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1. EXECUTIVE SUMMARY

1.1 BACKGROUND

Advances in the underlying technology and increased demands from a
growing range of highly sophisticated application areas are drastically
affecting the complexity of systems development. (A system is defined
here as a hardware/software or H/S aggregate supporting a given
application.) Technological difficulties stem from an increase in the
number of design alternatives and related changes in the nature of the
systems being considered. The widespread availability of microprocessors
has brought about an increased awareness of the role played by H/S
trade-offs in systems development. Successful experimentation with
unconventional machine architectures has identified the need for careful
consideration of the relationship between problem domain characteristics
and the architectural features of the support system. Finally, VLSI
technology has placed within the designer's reach specialized high
performance (off-the-shelf and custom) devices, while requiring a
completely new approach to algorithm design that stresses communication
cost minimization, simple interconnection topology, and parallelism.

This new technological climate presents DMA as well as all DoD
organizations with great opportunities and new challenges in the area of
systems design. The performance of existing systems may be increased
through enhancements that take advantage of the new technology.
Furthermore, systems of unprecedented sophistication can be conceived in
response to the ever growing needs of the national defense. The promise
of great achievements, however, is postulated on the premise that this new
technology may be used effectively. Effective technology utilization can
be realized only by employing appropriate methodologies and design aids.

Early recognition of these trends by Rome Air Development Center
(RADC) has been marked by a series of related research and development
activities whose starting point was the Total System Design (TSD) concept.
It envisions system design as taking place in a support environment
consisting of a family of design methodologies and a collection of
associated design aids. Moreover, the TSD concept also presumes the
ability to easily explore the space of design alternatives every step of
the way, and to make rational decisions based primarily on solid technical
reasons. The notion of avoiding premature commitments to particular
design solutions, such as the a priori selection of specific hardware, is
another key component of the concept and one of the motivating factors
behind its inception.

DMA involvement in the TSD research and development activities came
about due to the realization that the establishment of a TSD Facility at
RADC, an important DFA service laboratory, would enable DMA contractors to
reduce system development costs while enhancing the quality of the systems
being built for DMA. Because the DMA production capabilities depend to a
significant degree upon the quality of the computer based systems
available at its two production centers, the decision to support the TSD
efforts represents a major step toward preparing the organization to meet
its future operational needs.
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The fact that software development work internal to DMA could also
benefit from the existence of a TSD Facility (through importation of
proven design and management tools) has been realized only recently.
During the Seventies, TSD efforts focused on refinement and evaluation of
the concept, and on investigation of the feasibility of the development
and integration of the required design aids within a TSD Facility. The
present version of the facility is known as the System Architecture
Evaluation Facility (SAFF) and is generally viewed as serving a dual
purpose. On one hand, it supports some of the aids envisioned under the
umbrella of the TSD concept while, on the other, SAFF also provides an
experimentation laboratory for research into advanced hardware
architectures.

The current SAFF configuration (still under development) stresses the
use of powerful emulation engines aimed at providing rapid implementation
and analysis of alternate hardware configurations, a capability which
establishes SAEF as an effective environment for the development and
maintenance of embedded computer systems. Single processor emulation is
carried out on a nigh-speed microprogrammable machine already installed at
RADC, the Nanodata QM-1, which may be used both in stand alone mode and as
shared resource through a DEC-20. The DFC-20, which is connected to the
ARPA net, makes the facility available to distant users. Emulation of
distributed systems is anticipated to take place primarily on a Multiple
Microprocessor System (YMS) which is still in the design stage. The
interface between the MMS and the other components of SAEF is to be done
via a bus shared with the QM-1 and an already existing STARAN S-1000
associative processor. Accessible from the ARPA net through an H6180
MULTICS system, STARAN is used as an aid in evaluating single-instruction,
multiple-data stream (SIMD) architectures.

Attempts to apply existing TSD technology on DMA type problems have
revealed, however, the need to broaden the initial scope of the
investigation to include:

- the reevaluation of the system life-cycle definition in view of
recent changes in the nature of systems (e.g., distribution of
both data and processing) and in the relation between hardware
and software;

- the identification of the role played by H/S trade-offs in the
system life-cycle;

- the development of distributed systems design methodologies that
approach the selection of an appropriate H/S mix in a systematic
and objective manner;

- the reevaluation of the TSD Facility definition and plans in
light of the growing realization that design environments (e.g.,
Ada) hold the key to productivity and quality increases in the
system design area, i.e., tool integration is as important as
tool availability.

These issues are considered in this assessment of the current state of the
TSD family of methodologies and of the TSD Facility.

2



1.2 OBJECTIVES

Consolidation of past accomplishments, assessment of the TSD role in
the design of DoD/DMA systems, planning for future efforts, and
dissemination of the current state of the TSD based technology to its
intended beneficiaries are the four principal goals of this assessment
study.

TSD CONCEPT CONSOLIDATION.
The consolidation reflects the current perception of the TSD concept.

These views are the result of a maturation process stimulated by
technological changes that have occurred in the last decade, and by
valuable experience gained on TSD research and development projects. The
aim is to determine, from a TSD perspective, the fundamental nature of the
decision processes involved in system design and to formalize them so that
they become the basis for a rigorous system design approach. Of special
concern is the expansion of the present understanding of the dynamics of
H/S trade-offs. The result of the consolidation is meant to benefit both
researchers and technology development planners.

TSD TECHNOLOGY ASSESSMENT.
The most important criterion used in assessing the TSD technology is

its effectiveness in the development, analysis, enhancement, and
maintenance of those systems that are most often encountered in DoD/DMA
applications. Three such applications are considered in this study, and
an evaluation is carried out in order to establish the degree to which
they could be supported by existing or postulated TSD-based approaches.
The TSD's practical significance is measured by the extent to which such
approaches could lead to definite cost reductions and quality
improvements.

TSD TECHNOLOGY TRANSFER INTO PRODUCTION AND FUTURE R&D PLANS.
Another key objective of this investigation is the generation of

recommendations for plans to accomplish the transfer of the TSD technology
into the production environment, and the establishment of future research
and development directions for the TSD efforts as a whole. DoD/DMA
priorities, previous work, anticipated technological trends, and the more
refined and comprehensive nature of the newly consolidated view of the TSD
concept are all factors that impact the planning process.

TSD TECHNOLOGY DISSEMINATION.
The rationale behind the dissemination of the TSD technology is to be

found in a commitment to the establishment of effective production
environments. As such, the development of materials that introduce the
community of potential users to this technology is considered to be an
important and necessary by-product of this study. The materials are
intended to increase the visibility and the utilization of the TSD
technology within DoD/DMA. While this offers the benefits of further
comprehensive evaluation of the TSD technology within a real production
effort, it also creates the opportunity for the exploitation of existing
TSD design aids and methodologies.

3
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1.3 DEFINITION OF TERMS

Understanding the thesis of this report requires a good grasp of four
fundamental concepts: methodological framework (henceforth called
framework), methodology, computer-aided design system and design facility.
The definition of these terms and their relevance to TSD are reviewed here
in preparation for subsequent sections, where more detailed discussions
are to be found.

METHODOLOGICAL FRAMEWORK.
A framework represents a high level non-procedural description of

some general problem solving approach. More specifically, it identifies:

(1) a set of subproblems whose solutions lead to the solution of the
target problem; and

(2) fundamental relationships among the subproblems, without regard
to the manner in which one arrives at their solutions.

The framework has the ability to relate the nature of the problem and the
essence of its solution without telling HOW, but rather WHAT is involved
in solving it.

METHODOLOGY.
In contrast with the framework, a methodology prescribes a particular

mode of procedure to be followed in solving a given problem. While the
objective of a framework is to characterize a class of feasible solutions
by abstracting over a family of methodologies, the goal of a methodology
is to define an effective solution for the problem at hand. Effectiveness
is achieved by exploiting particular features of the problem or
environment through the use of specific techniques or classes of
techniques. In the latter case, rules for selecting the most appropriate
technique from the class of usable techniques are an integral part of the
methodology. As a direct result of the emphasis placed on effectiveness,
methodologies are largely problem and environment dependent.

COMPUTER-AIDED DESIGN SYSTEM.
A computer-aided design system provides the designer with an

integrated set of tools aimed at increasing his/her productivity through
the automation of difficult or time consuming tasks. Most often, the tool
set directly supports a class of related design methodologies and the
management of projects that use the respective methodologies.

DESIGN FACILITY.
A facility is defined as the means of support (i.e., resources)

available at some location for use in the application of certain
methodologies to various problems. These resources include people,
computer-aided design systems, documentation, tools, physical plant, etc.,
and they are established for the purpose of enhancing design productivity.
Consequently, the resources that make up a particular facility tend to be
centered around a specific methodology.
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In light of the definitions above, the TSD Framework is a framework
which assumes systems design to be its problem domain, postulates
successful design on the availability of a disciplined design strategy,
and acknowledges:

(1) the H/S dualism rather than dichotomy,

(2) the need for a formal H/S trade-offs strategy,

(3) the advantages of systematic error detection,

(4) the importance of step-by-step performance evaluation,

(5) the need for proper evaluation of human interfaces.

Thus, the TSD Framework captures the very essence of the TSD concept.

Moreover, the TSD Framework specifies the basic characteristics of an
entire family of TSD Methodologies to be supported by a computer-aided
design system, called TSD System, incorporated in a powerful TSD Facility.
The facility is aimed at providing assistance throughout the entire system

life cycle, from development to subsequent analysis, enhancement, and
maintenance.

5
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1.4 SUMMARY OF RESULTS

The four key objectives of the study correlate strongly with the
levels of abstraction identified in the previous section. The
consolidation corresponds to the development of the TSD Framework. The
assessment involves an evaluation of several TSD Methodologies with
respect to their effectiveness in three critical DoD application areas.
The planning consists of a review of the current state of the TSD System
and Facility and a determination, in light of the earlier assessment, of a
suitable course for the future. Finally, a user-oriented TSD Guidebook is
created in order to meet the dissemination objective. The main results of
the study are reviewed below.

- The TSD Framework represents a redefinition of the system
life-cycle -- systems are treated as H/S aggregates and the
life-cycle definitions for hardware and software are brought
under a unified umbrella.

- The dynamics of the H/S trade-offs have been identified and
their role in the system development life-cycle has been
established.

- An approach for the development of system design methodologies
from the framework definition has been defined and illustrated.

- A distributed systems design methodology that uses the system
requirements to generate hardware and software requirements for
the system has been proposed and illustrated for a real-time and
a data processing system.

- High level requirements and design structure for the TSD System,
the computer aided design system at the center of the TSD
Facility, have been developed and have been used in the
preparation of a TSD Facility master plan.

- A methodology definition language having the potential to be
used for configuration control in computer aided design systems
and for project planning has been proposed and illustrated.

- A formal characterization of distributed systems design has been
developed in order to establish the requirements definition for
specification languages needed in system design.

- A distributed systems design specification language meeting some
of the requirements identified in the formal model has been
developed and illustrated -- its distinguishing feature is the
designer's freedom to define arbitrary communication protocols
among concurrent processes.

- The formal model has been used also in the development of a
systematic approach to building formal system requirements.

- An assessment of the plans for a Modern Programming Environment
at DMA based on the concepts of the TSD Facility.

6



1.5 RECOMMENDATIONS

The recommendations of this study fall into two categories. The
first group deals with the master plan for establishing a TSD Facility.
The second addresses the issue of how DMA could take advantage of the TSD
technology and methodologies in the interim period during which a TSD
Facility is not available and as part of its effort to establish a modern
programming environment.

TSD FACILITY DEVELOPMENT MASTER PLAN

The following explicit objectives have determined the nature of the
TSD Facility master plan:

- low development cost;

- speedy development;
- limited risk;
- early availability to potential users;
- ability to respond to immediate design needs without

compromising the long range requirements;
- smooth growth in capability and range of applicability;
- compatibility with other related DoD efforts (e.g., SAFF, Ada);
- strong interaction between R&D and production efforts.

Because the development of a design facility is generally a high risk
and high cost proposition, the strategy adopted in the master plan is to
minimize new tool development and focus on integrating off-the-shelf
components to the greatest possible extent.4 While the command language,
database view and core tools which characterize the central part of the
TSD Environment could be assembled together from existing components, the
lack of application specific tools could make it difficult to attract
potential users of the prototype TSD Facility. This may be avoided if an
already successful existing facility could be used to supply the
application oriented tools. SAFF has been selected to meet this
objective. This particular choice has several other advantages. It
employs a facility which is compatible with the general TSD Concept, it
provides continuity to the entire TSD program, it addresses a class of
users who feel most acutely the need for a design facility (for embedded
systems), and it promises immediate and high payoffs.

The result of these and other considerations is a plan which consists
of three concurrent efforts which gradually merge into one. The main
stream deals with the selection and integration of the TSD Facility
components. The other two focus, respectively, on increasing the
effectiveness of the application specific tools through enhancements to
the SAEF and on providing the technical support needed for long range
planning through the development and evaluation of new TSD Methodologies.

The development and evaluation of new TSD Methodologies is meant to
have little or no impact on the near term version of the TSD Facility.
The objective is to assist in the later evaluation and subsequent
enhancements of the TSD Facility available at the end of this planning
period. This is to be accomplished by developing tools to be incorporated

in subsequent versions of the facility and methodologies that define the
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manner in which such tools should be used in various application areas.
Because effective methodologies are application dependent, the plan
suggests work to be concentrated only on a few application areas of
special significance within DoD. Corresponding independent refinements of
the TSD Methodologies should be produced for each selected area.
Following the methodology development, empirical evaluations on real-life
moderately sized projects should be carried out. The experience should be
used to further refine and tune the methodologies to the needs of the
respectiva application areas3. The development of specification languages
and analysis techniques should be centered around mechanizing some of the
activities involved in applying the methodologies. This is the point
where some integration between the intentionally independent undertakings
ought to take place. The level of effort required by this particular
stream of the master plan deperds upon the range of applications being
chosen. (No more than three areas should be attempted.)

SAEF enhancements are motivated by the desire to make the ultimate
facility more attractive to potential users, to build a user community
concurrently with the development of the facility, and to establish a
realistic base for determining the priority assigned to introducing
various core tools. Since it is expected that not all core tools will be
available in the prototype facility, those tools that appear to be most
needed by the particular community of users ought to be considered first.
Furthermore, current understanding of the specification language needs for
the system design stage should be used in the design of the next version
of the hardware description language used by SAEF. This stream of
activities is also independent in nature from the other two.

The main thread of the master plan is concerned with building a TSD
System from available components and its integration with the SAFF to form
the TSD Facility prototype. The approach is actually consistent with the
TSD Methodologies. It starts with the problem definition stage during
which a detailed definition of the TSD Environment (only outlined by this
study) is generated. Based on the TSD Environment definition a system
architecture for the TSD System is developed in a manner which is
consistent with the constraint that the proposed architecture must be
supported primarily by the resources available in SAEF. (Given the short
range nature of the plan hardware procurement ought to be avoided.) Next
the binding phase is carried out. It consists of the selection of
existing tools required to support various entities of the TSD System and
of the definition of custom software needed to integrate them. This
activity represents, in the terminology of the TSD Framework, the
generation of software requirements. (The hardware is given in this
case.) The integration of the tools is carried out in stages. The last
one involves placing all acquired tools on the SAEF and thus establishing
the TSD Facility prototype. Once some experience with the use of the TSD
Facility on several production efforts is accumulated, the facility may be
reevaluated and new plans devised for its future.

8
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TSD FACILITY AND SYSTEM DESIGN AT DMA

In order to understand the methodological needs of the DMA, one has
to consider the characteristics of the production environment existing at
DMA and the nature of the applications with which this organization is
involved. In this regard, the following issues seem to have the greatest
bearing on the future of system design at DMA.

- The DMA production plan is determined by the mapping, charting,
and geodesy (MC&G) defense needs of the many DoD organizations.
Changes in the data format, use and collection (quite often
unanticipated) bring about increased demands for MC&C products,
demands that translate into corresponding enhancements in the
systems employed by DMA. Its ability to keep up with future
growth indicates a need to employ effective system design
methodologies capable of supporting the dynamic evolution
experienced by DMA systems.

- While at present most DMA systems could be considered to be of
the information processing type, their MC&G nature makes the
importation of system design technology somewhat less direct.
The following is a list of features unique to geographic data
processing:

-- demanding performance constraints not present in other
data processing applications;

-- presence of locational attributes;
-- two-dimensional nature of the problem domain;
-- particularly large amount of storage;
-- lack of commercially available systems;
-- government ownership of most existing systems;
-- specialized and expensive input/output devices;
-- dependence upon remote sensing technology.

- All major geographic data processing systems in production today
have been developed by some government organization (within or
outside the U.S.A.) and have been designed to serve a set of
very specific requirements. Consequently, geographic data
processing for military purposes receives little attention
outside the government and puts DMA in the position of having to
develop on its own the system design technology required to
maintain and enhance its MC&G production.

- The complexity of the current types of systems is on the rise.
The number and volumes of the databases, the workload, and the
number and variety of products all experience noticeable growth.
Moreover, greater interdependencies between databases and
products is anticipated. The ultimate consequence of these
trends might be the evolution of a single distributed DMA
system, a critical component of the entire organiza+in.

- There is also evidence pointing to a possible new group of
systems of the embedded type. Computer controlled devices in
use at DMA can be viewed to be in this category already.
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Furthermore, any increased future involvement of the
organization in the data collection process most certainly is
bound to extend DMA related system design efforts into the
embedded systems area.

- At a more speculative level, incorporation of DMA systems into
larger C3 systems can not be ruled out. Major increases in the
data collection rate combined with a need to possess extremely
current MC&G products (possibly on-line) may contribute to
making this qualitative jump.

The productivity associated with the generation of MC&G products at
DMA appears to be related to the quality of the computer based systems
being employed, which in turn depends on the effective use of current
technology at hardware, software, and system levels. TSD Methodologies
hold the potential to assist DMA with many of these system related
problems and to provide cohesiveness to long range planning in this area.
They extend the ability of the organization to control and manage system
development, maintenance, and enhancement. Furthermore, TSD Methodologies
promote careful definition of system requirements and more effective use
of available technology. In other words, the DMA's strides toward
quality, productivity, enhanceability, maintainability, and low system
design costs are identical to the basic objectives of the TSD technology.

DMA is in a position to take advantage of the TSD technology in

several important ways:

- Contractors could make use of the envisioned TSD Facility on
projects involved in the development of DMA systems;

- The TSD technology could be used by DMA contractors, even in the

absence of the TSD Facility, particularly in the design of
systems which are distributed in nature and involve decisions
regarding the selection of a proper hardware/software mix;

- The core tools being developed for the TSD Facility are also

needed as part of the DMA modern programming environment (MPE)
which is seen as evolving in a TSD Facility specialized in
software development;

- The TSD Methodologies may also be used in DMA on certain

projects where the relation between software and hardware is
important (e.g., the placement of various functions on a locally
distributed system) and, thus, could affect DMA software
development practices.

The first of the above concerns was discussed in the master plan, and
a way to approach the remaining three is outlined below. The direction
being suggested here is analogous to that part of the master plan that
deals with the refinement of TSD Methodologies. The distinction is not in
the basic approach but in the scope and objectives. In the master plan
the intent is to define the scope of and to support the long range R&D
efforts in the area of distributed system design. Here, the objective is
technology transfer from the R&D domain to actual production for the sake
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of achieving immediate quality and productivity improvements. As such,
the emphasis is not on developing novel design, specification, analysis,
and other techniques but rather on adapting already existing techniques
for use in some particular application in a manner compatible with the TSD
piilosophy. It is conceivable that after empirical evaluations via
appropriate pilot projects, some limited use of the methodologies on
selected projects will become feasible in the near future. The potential
impact of such endeavors on the DMA modern programming environment, on its
approach to system development, and even on its software development
standards should not be underestimated.



IDENTIFICATION OF POTENTIALLY
HIGH PAYOFF AREAS AS
CONTRACTOR AND AS DEVELOPER

REFINEMENT OF THE TSD
METHODOLOGIES WITH RESPECT
TO THE SELECTED AREAS

EMPIRICAL EVALUATION OF
THE METHODOLOGIES ON SEVERAL
SMALL PILOT PROJECTS

EVALUATION OF THE DMA
MODERN PROGRAMMING ENVIRONMENT
WITH RESPECT TO ITS ABILITY
TO SUPPORT THE METHODOLOGIES

ENHANCEMENT OF CURRENT DMA
ENVIRONMENT TOWARD BEING
BETTER PREPARED TO RESPOND
TO FUTURE SYSTEM DESIGN NEEDS

LIMITED USE OF TSD METHODOLOGIES
ON SELECTED DMA PROJECTS

REEVALUATION OF SYSTEM DESIGN
NEEDS AND AVAILABLE TECHNOLOGY
AT DMA

DMA OPPORTUNITIES FOR PRODUCTIVE USE OF TSD TECHNOLOGY
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1.6 REPORT SUMMARY

Brief summaries of all major sections and key appendixes of the
report are presented here for the reader's convenience.

TSD FRAMEWORK CONSOLIDATION (Section 2).

The section outlines the philosophy, motivation, and significance of
the TSD concept and dwells on the structural details of the TSD Framework,
stressing its relation to fundamental decision processes that take place
during system design. The partitioning of the system functions between
hardware and software receives extensive coverage. The relevance of the
TSD Framework for system development, analysis, enhancement, and
maintenance is also discussed. A strong emphasis is placed on
demonstrating the practical advantages derived from the availability of
the framework.

The TSD Framework is hierarchical in structure, being composed of
stages which are, in turn, composed of phases, which are composed of
steps. The stages represent broad design areas such as system design,
software design, and hardware design, while the phases represent finer
divisions of these design areas. For example, a stage dealing with
software design could contain separate phases for software architecture,
program design, and coding. The steps represent design activities that go
on within the design areas. They include activities such P.9 performance
evaluation, functional verification, documentation, and acceptance. The
framework describes, in a straightforward manner, the logical organization
and the design activities intrinsic to a particular family of design
methodologies called TSD Methodologies.

Distinct methodologies emphasize different applications and thus
instantiate the phases and steps in different ways. This principle is
illustrated on a small example. By selecting a sample application area
and by considering its characteristics and their relation to both
technology and application environment, a methodology is derived in a
systematic manner from Lhe TSD Framework. The approach suggests that, for
each application area and organization, methodology development involves a
certain degree of "pre-design" in addition to the selection of particular
techniques for design, analysis and specification. This fact becomes even
more evident in the assessment.
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ASSESSING THE FAMILY OF TSD METHODOLOGIFS (Section 3).

The TSD assessment starts with an examination of the essential
characteristics of the embedded, information processing, and command,
control and communication systems. Tne unique nature of the applications
supported by DMA is used to emphasize the dependency between methodologies
and the nature of the organization that may employ them. The point is
made that future detailed assessments of the TSD technology ought to be
carried out not only with respect to a specific class of systems but also
with respect to the type of organization that intends to build them. The
principal results of the assessment are given below.

- By accomplishing the transition from the TSD Framework to a
class of distributed system design methodologies and by
describing how one could employ these methodologies on system
design projects having characteristics common to a multitude of
DoD (including DMA) type systems, the technical feasibility of
the TSD Framework is demonstrated.

- The actual use of the concepts and methodological study

approaches developed during the consolidation effort (in
particular the synthesis of methodologies given a framework and
a class of applications) illustrates convincingly the assistance
these approaches could provide to methodological research and
development.

- The TSD Methodologies are shown to promote a systematic approach
to the performance of hardware/software trade-offs thus avoiding
the known problem of premature hardware procurement. Future
research advances in this area combined with experiments in
which these methodologies are applied to real-life systems hold
tne key to making the employment of these methodologies both
practical and profitable in terms of quality and productivity
gains.

- Techniques and tools (available or postulated) identified as
necessary for productive use of the TSD Methodologies form the
starting point for the development of the TSD Facility master
plan. It must be noted, however, that there are many other
factors that intervene and influence the planning of such a
facility in addition to the techniques suggested by the use of
one methodology or another.

- Four by-products of the assessment are:

-- a methodology definition language;
-- a formal characterization of the nature of the

specification languages involved in system design;
-- a rigorous approach to developing formal system

requirements;
-- a distributed system design specification language.
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TSP FACILITY DFVELOPMENT MASTER PLAN (Section 4).

Three steps were involved in the development of the TSD Facility
master plan. Their respective objectives are discussed below.

-- Objective 1: Develop a conceptual model for an integrated set
of design tools to support the first three stages of the TSD
Framework (Problem Definition, System Design, Software Design).
That is, characterize the computer based environment in which
the users (designers, managers, etc.) will work.

An environment is the set of services provided to a user when a
collection of tools are integrated together to form a cohesive set. We
shall call the set of services provided by an integrated set of tools
supporting a TSD Methodology a Total System Design Environment. Thus the
TSD Environment forms a conceptual model of a group of services that
support the first three stages in the life cycle of a project, with the
support following a set of guidelines (from the appropriate methodology)
to increase user productivity and system reliability. A high level
characterization of the TSD Environment had to be developed in order to
lay tne foundation for the planning activities.

-- Objective 2: Investigate design alternatives for the TSD
Environment, and select a specific direction to elaborate.
Apply the selected approach to develop a high level design
proposal for a TSD System prototype.

When a TSD System is installed in a particular computer center,
unique features at that center may have to be accommodated within the TSD
System itself. Special emulation facilities, unusual applications, or
customized tools may all represent factors that may cause the basic TSD
System to vary from one installation to another. These variations,
however, represent local enhancements of the System, not basic changes.
The collection of all of these possible enhanced versions of the System
will be called the TSD System Family. A set of Core tools, however,
remains common among all TSD Systems.

-- Objective 3: Develop a phased implementation plan for a TSD
System prototype. Recommend ways to establish a TSD Facility
supporting the prototype TSD System.

The prototype TSD System is recommended to be implemented as an
outgrowth of the existing SAEF and by using currently available technology
in order to obtain a running system within a reasonable budget of time and
effort. The implementation plan is phased so as to allow the immediate
exercising of parts of the overall system as they become usable. This
approach increases the short term utility of the effort, and at the same
time provides for critically important user feedback.

The TSD System prototype, when actually implemented, will also serve
as an excellent test vehicle for the research and development necessary to
create new tools and methodologies. Thus the implementation plan stresses
feedback from both research and production efforts.
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ANNOTATED BIBLIOGRAPHY (Appendix A).

Abstracts for a large number of TSD-related government documents have
been collected for use on future TSD projects.

GLOSSARY OF TERMS (Appendix B).

The glossary contains the definition of the key terms needed in order
to understand the results of this study.

TSD GUIDEBOOK (Appendix C).

The guidebook provides in user oriented terminology a synopsis of the

entire report, including descriptions of the TSD philosophy, existing and
anticipated TSD technology, and the benefits derivable from its use in
actual production.

ON REDUCING AMBIGUITIES IN METHODOLOGY DEFINITIONS (Appendix D).

Specification languages have an important role to play in the
generation of unambiguous methodology definitions which, in turn, would
affect the way in which configuration control and project planning would
be carried out in the computer-aided design systems of the future.
Precise methodology definitions hold tne promise for better communication
among designers and are also the key to increasing the designer's capacity
to study, understand, evaluate, and compare one methodology against
another. Furthermore, the inclusion of the methodology specification as
part of the database of a computer-aided design system opens the
possibility for a better enforcement of the correct use of methodology on
a given project. Its use as an input to the project management tools is
also being contemplated.

These opportunities are only now beginning to be explored and, to the
best of our knowledge, no similar efforts have yet been reported in the
open literature. The TSD assessment led to a proposal for a methodology
definition language illustrated in Appendix D on a variant of the top-down
program design methodology. Its use on the project has yielded
significant quality improvements in the communication between the members
of the research team. Many problems that were overlooked in the informal
presentations of new proposals for the distributed systems design strategy
have been rapidly uncovered during the effort of formally describing the
methodology.

The language has the ability to describe the structure of and the
relations between various products of the design process (confipuration
items), to capture changes in the state of these configuration items, to
define consistency constraints between their states, and to prescribe the
sequencing of design activities permitted by a methodology.
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A FORMAL TREATMENT OF DISTRIBUTED SYSTEMS DESIGN (Appendix F).

Formal models have been developed for each of the specifications that
are required by the system design stage in order to acquire a better
understanding of the principles behind the TSP Methodologies. Formal
models are provided for the system requirements constructed in the problem
definition stage, for the processing model generated in the system
architecture phase, and for the hardware/software requirements produced by
the system binding phase. Concepts important in the TSD Methodologies
(e.g., refinement, support, implementation, and binding) are also defined
formally.

The development of tnese models represents an important contribution
toward placing distributed system design on a solid formal foundation. As
such, the models provide valuable guidance for the designer involved in
the development and evaluation of certain classes of specification
languages. They identify what concerns need to be addressed by the
respective specification languages but not how they are addressed.

RIGOROUS APPROACH TO BUILDING SYSTEM RFOUIRFMPENTS (Appendix F).

Because the ability to carry out the system design rests to a certain
extent on the availability of a well-defined set of system requirements,
the assessment included an investigation of formal methods for tne
specification of system requirements. The use of formal requirements is
anticipated to play an increasingly important role in the TFD technology
of the future. Our study looked into the feasibility of introducing the
use of t'eir'l requirements definitions on system development projects.

A systematic approach to developing formal requirements by starting
with the general model and by adapting it to the needs of the problem at
hand has been proposed and illustrated by means of a simple but realistic
example. The approach reflects the authors' experience with developing
formal requirements for a variety of small scale problems. The notation
used is based on set theory and predicate calculus both of whi.ch are
generally considered essential in the education of the today's computer
scientist and are familiar to many system designers. The conclusion is
reached that, based on the experience accumulated with the use of both
formal and semi-formal specifications, the development of formal
requirements for small to medium size systems is feasible and can be cost
effective.
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FYU:CTIONAL ?PFCIFTCA- ION OF PITRIPUTFD SYSTEMS (Appendix G).

The potentiaR for a major qualitative improvement in the
effectiveness of systems development rests to a large extent on the
avai'ability of appropriate specification languages. While establishing
the basis for precise communication, formal specifications also open the
doors to extensive systematic (mental or automated) system design analysis
techniques wnose scope would ultimately include logical verification,
performance checking, automatic generation of predictive models, and more.
Such advances in system design technology are presumed to pave the way for
the powerful development tools reauired by the TSD Facility.

A by-product of studying the technologizal needs of TSD Methodologies
is the development of a formal Pistributed Systems Design Language (DSDL).
In DSrL, systems are described as nets of communicating processes. Each
process in the net has its own local data over which it has sole control,
has procedures that specify primitive and indivisible operations over the
data, and possesses the ability to exchange messages with other processes
in the net. The behavior of the process specifies the order in which its
procedures are invoked. Seouences of procedure invocations, also called
event sequences, are allowed to execute concurrently within the process.

A net is defined by its processes, by the logical communication
links, and by the communication protocols associated with the individual
links. Among the processes of a net, some are used to model its
environment; they are called external processes. The links identify the
logical connections between processes. Several processes may be
associated with the same link and the same process may use several links.
The way in which an individual link behaves is stipulated by the
communication protocol associated with the respective link.

Several considerations have influenced heavily the nature of the
DSDL: the emphasis on formality, the desire to promote the principle of
separation of concerns, the need to support hierarchical specifications,
and the aim toward generality. Formality is achieved through the use of
set theoretical models for data representation, by employing predicate
calculus in defining the procedures (using input/output assertions), etc.
The principle of separation of concerns is reflected by the manner in
which the definitions of the net and of the process are structured; they
are meant to enhance the designer's ability to describe the system in
terms of clean abstractions. Fierarchical descriptions of the system are
enabled by the fact that processes may be refined into nets. Finally, the
generality of the language is enhanced, among others, by its capacity to
describe a variety of communication structures and protocols.

MODERN PROGRAMMING ENVIRONMENT ASSESSMENT (Appendix H).

The plans for a Modern Programming Environment (MPF) at DMA are
assessed from the perspective of the TSD Facility. The rationale for this
assessment lies in the fact that the MPF can be viewed as a TSD Facility
specialized to the production of software at DMA. Since the plans for the
far-term (Phase II/IIA) MPF development are likely to be affected greatly
by the results of the near-term (Phase I/IA) development, this assessment
is restricted primarily to the near-term plans. The objectives of the
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assessment are discussed below.

- Objective 1: to evaluate current MPE plans and, if needed,
prepare alternatives.

The current plans for the far-term MPF are considered sound for the
most part. A reorganization of the tasks associated with the near-term
development is proposed, however, in order to minimize the overall risk of
this development. The proposed tasks for the near-term are: (1) the
Facility Development task, which is concerned with the design,
implementation, and phasing in of the near term experimental and full
scale MPE facilities; (2) the Methodology Development task, which is
concerned with the development and phasing in of a software development
methodology for the MPE, and the preparation of requirements for
methodology related enhancements to the far-term MPE; and (3) R&D
Preparation for Phase II Startup, which is concerned with carrying out
research and development in areas which are beyond the scope of the other
two tasks but which are required for the startup of the far-term
development effort.

- Objective 2: to identify issues which should be considered in

future MPE efforts.

Many issues are identified which should be addressed in each of the
three near-term tasks identified above. Issues relating to the Facility
Development task include the maturing of the MPE tool set, the further
development of user interface aspects, and the phased introduction of the
MPE facility into the DMA production environment. Issues relating to the
Methodology Development task include the indentification of new tools
needed to more completely support the life cycle activities identified in
the methodology, and the phased introduction of the methodology. Issues
which need to be addressed in the R&D task include the determination of
evolving DMA software development needs, the determination of the effect
of technology advances on the MPE, the development of structures and
procedures to facilitate the evolution of the MPE, the specification of
better management support tools, the determination of the appropriateness
and feasibility of the multiple environment and project database concepts
in the MPE, and the determination of the feasibility of achieing
portability and vendor independence in the MPE.
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2. TSD FRAMEWORK CONSOLIDATION

2.1 INTRODUCTION

The objective of this section is to report on the effort to
consolidate the experience and knowledge accumulated as a result of past
studies and projects that exercised the TSD concept and related technology
with respect to their feasibility and the potential benefits they could
bring to system design. The motivation for undertaking this task stems
from the need to consider technological changes that have occurred since
the TSD concept was first proposed, and with the expectation that
important qualitative developments are at hand. The former requires a
reexamination of the TSD concept in view of the continuing trend toward
distributed processing and increased use of custom-made VLSI components,
while the latter is based on preliminary results of several earlier
studies.

The reexamination is aimed at ersuring that the TSD concept maintains
its compatibility with the technological directions of this decade by
giving proper recognition to any new scientific results pertinent to the
TSD concept.

The qualitative improvements targeted for this study involve several
important facets of the TSD concept, ranging from the very pragmatic to
the highly abstract. They are a direct outgrowth of successful research
and development activities that were carried out under the TSD umbrella.
At a practical level, the emphasis is on expanding the ability to
characterize in a precise manner a large class of TSD methodologies with
respect to the entire system life-cycle, on enabling evaluation and
comparison among different methodologies, and on providing the basis for a
systematic approach to methodology development. In the realm of the
abstract, special attention is given to reaching a better and more
complete understanding of the fundamental decision-making processes
involved in system design, particularly when H/S trade-offs are involved.

The starting point of the consolidation is the review of past TSD
work and current state-of-the-art in system design. References to
pertinent papers appear throughout this section, and an Annotated
Bibliography of TSD-relevant government reports is available in
Appendix A. The basis for the new unified and refined perspective on TSD
is the notion of a methodological framework. It represents the means by
which the consolidated TSD concept is formally defined. The TSD Framework
is conceived as a methodological framework that synthesizes the
fundamental attributes of the TSD methodologies in light of the philosophy
behind the TSD concept. In turn, the TSD Framework is employed as an aid
to sharpen the current understanding of the H/S trade-offs issue.

The results of the consolidation process are reviewed in the
remainder of Section 2, which may be read as if it were a self-contained
document. Its overall organization is as follows.
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Section 2.2 introduces the TSD Framework and discusses its

distinguishing features and basic philosophy. The framework is shown to
be composed of several stages which represent groupings of phases. The
phases, which are defined as activities taking place in some common
knowledge domain and aimed at describing a transformation between two
requirements specifications, are shown to possess a common structure,
i.e., component steps. An approach for developing TSD Methodologies from
the framework is also presented.

Section 2.3 considers the stages of the TSD Framework, one by one.
The definition of each stage is given in terms of its component phases.
Each phase is defined with respect to the requirements specifications it
uses and produces. Each pertinent step is analyzed and the nature and
complexity of the techniques required to support it are identified.
Whenever such techniques are available, the reader is advised. Each phase
description concludes with a discussion of the nature of the

specifications generated by the respective phase.

Section 2.4 is an elaboration, in the context of the framework, on
the topic of H/S trade-offs. Emphasis is placed on explaining the dynamic
nature of H/S trade-offs, an approach which is in strong contrast with the
earlier static perception of the way the H/S trade-offs are carried out.

Section 2.5 gives precise definitions for four key technical aspects
of the system life-cycle (development, analysis, enhancement, and
maintenance), and identifies the connection between them and the TSD
Framework in preparation for the assessment being carried out in
Section 3.

Section 2.6 contains a summary of conclusions.
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2.2 TSD FRAMEWORK DEFINITION

INTRODUCTION

The software crisis of the 70's played a significant role in
increasing the general awareness of, and interest in, design
methodologies. In particular, it brought about a wide-spread belief that

large system development without strong methodological support involves
unacceptable risks. As a result and in a relatively short time span,
major advances have been registered in the areas of methodology
development, project control and review, specification techniques, and
automated documentation and analysis tools [CHAN78, WASS78, WEGN79,
YEH77.

Nevertheless, serious problems continue to plague the software
industry. Some problems are due to a reluctance of management and
personnel to accept change, a reluctance that is partially justified by
the high cost of retraining and retooling. Some problems are due to the
failure of many highly touted techniques to deliver all that was
advertised. Finally, there are problems due to the fact that the level of
abstraction being dealt with in the areas of methodology development,

analysis, and evaluation is too low. This manifests itself through the
existence of few generally accepted principles, through parochialism, and
through a limited ability to evaluate and compare proposed methods.

Matters have been further complicated by an ever increasing
interdependency between hardware and software. This has led to the view
that a system is a hardware/software (H/S) aggregate in which the hardware
and software aspects must be treated together and not separately as has
been traditional. Today's system designer must have an understanding of
both hardware and software and must have an appreciation of their combined
impact on the performance characteristics of the total system. In
particular, the designer needs a unified methodological perspective in
which hardware and software issues can be brought together properly.

This report presents an approach for satisfying two pressing
methodological needs, namely, the need for a more abstract treatment of
methodologies and the need for a unified methodological perspective for
hardware and software. The report introduces a type of model called a
methodological framework for handling the first need, and proposes a
particular framework, called the Total System Design (TSD) Framework, for
handling the second need.

A methodological framework is an abstraction of a class of system
design methodologies. The framework is hierarchical in structure, being
composed of stages which are, in turn, composed of phases, which are
composed of steps. The stages represent broad design areas such as system
design, software design, and hardware design, while the phases represent
finer divisions of these design areas. For example, a stage dealing with
software design could contain separate phases for software architecture,
program design, and coding. The steps represent design activities that go
on within the design areas. They include activities such as performance
evaluation, functional verification, documentation, and acceptance. The
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framework can describe, in a straightforward manner, the logical
organization and the design activities intrinsic to a particular
methodology. This fact makes the framework a potentially valuable
analytic tool for comparing the fundamental traits of different
methodologies. It also makes the framework useful as a specification tool
for describing a methodology that is to be designed.

The TSD Framework is intended as a specification for system design
methodologies which have a unified perspective of hardware and software
and which embody other attributes necessary for effective and efficient
design. Briefly stated, these methodologies (1) recognize formally the
H/S dualism, (2) avoid premature hardware selection, (3) minimize error
costs through early error detection, (4) treat performance constraints as
a major driving force behind the design process, (5) promote design
automation, and (6) assure proper attention to human interfaces.

The remainder of this section is devoted to the TSD Framework. The
purpose is two-fold: to introduce the structure of the TSD Framework, and
to illustrate thereby the nature of methodological frameworks in general.
The exposition is introductory in nature, with a detail description of the
TSD stages, phases, and steps being given elsewhere (Section 2.3).

The discussion is organized as follows. The next subsection
concentrates on the description of stages and phases. While most of them
are quite mundane in concept, the syste . design stage contains some novel
aspects. They are the result of an emphasis placed on avoiding premature
hardware and software selection. Another subsection is dedicated to the
steps recognized by the framework. It is shown there that all phases
involve the same ten steps. While some have been recognized for a long
time (even if not presented from the same perspective), others represent a
departure from traditional views. The inference step, for instance,
formalizes the process of evaluating the design decision taken in one
phase with respect to technological implications on subsequent phases.
Originally motivated by the H/S partitioning issue, inference has been
shown to be present in all phases. Another example is the treatment of
integration as a step rather than a phase. The integration activities are
distributed among phases based upon the nature of the expertise required
to carry them out.

The presentation continues with a discussion of the relation between
the structure of the framework and its six stated objectives. It is also
pointed out that distinct methodologies may emphasize different objectives
and thus instantiate the steps in different ways. This particular aspect
is further clarified in a subsection which illustrates the use of the
framework for purposes of methodology development. By selecting a sample
application area and by considering its characteristics and their relation
to both technology and application environment, a methodology is derived
in a systematic manner from the TSD Framework. The approach suggests
that, for each application area and organization, methodology development
involves a certain degree of "pre-design" in addition to the selection of
particular techniques for design, analysis and specification. Conclusions
and references appear at the end.
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STAGES AND PHASES

Figure 2-1 shows the logical structure of the TSD Framework. The
stage boundaries are drawn along traditional lines and the concern of each
is obvious from the stage name. Each stage is composed of two or more
phases which represent well known design areas. The downward arrows
represent requirements specifications that define the problem to be solved
by a subsequent stage. Each specification has two parts, a functional
requirement and a set of implementation constraints. The upward arrows
indicate the flow of finished products during the integration portion of
system development. The idea here is that each stage is responsible for
the integration of its portion of the design. The integration process
thus begins at the lowest level of detail and works upward until all
components of the system have been assembled and tested. Although the
diagram does not show it, the reader should visualize upward and downward
arrows between the phases of a stage. They have been omitted from the
diagram in order to make it more readable.

The dependency between phases is not as simple as the figure might
suggest. For example, it should not be inferred that a project must
complete each phase or stage before beginning the next phase or stage.
Parts of a project may move through the development process faster than
other parts and hence be in different phases and stages. Also,
methodologies represented by this framework can differ in the way they
schedule the basic activities of the framework and in the design
techniques that they employ. These distinctions must be kept in mind at
all times in order not to read into the framework more than it represents.

The PROBLEM DEFINITION STAGE is composed of two phases, called
identification and conceptualization. Both phases are application domain
dependent and their successful completion rests on a good understanding of
the application. The IDENTIFICATION phase is informal in nature and has
an exploratory flavor. Its objective is to produce an identification
report which contains all the information available with regard to the
system support required by the application at hand, as well as any
relevant constraints. Despite the fact that the level of formalization
and abstraction of the identification report is relatively low, the report
serves two important functions: it establishes the communication link
between the designer and the user and provides the necessary base for the
development of a formal definition of the problem. This formal
development is done in the conceptualization phase.

The CONCEPTUALIZATION phase uses the identification report in order
to generate the system requirements. These requirements contain a
conceptual model which formalizes the system's role from a user
perspective and the application constraints identified earlier. Because
of its formal nature, the conceptual model provides a solid basis for the
entire design process and represents the ultimate correctness criterion
against which the final system is judged. The ability to meet all the
stated constraints is a second fundamental evaluation criterion.
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FIGURE 2-1: TSD FRAMEWORK STRUCTURE
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The SYSTEM DESIGN STAGE is central to the TSD Framework because H/S
trade-offs are one of its major responsibilities. System architecture
design and system binding are the two phases that make up this critical
stage. The main concern of the SYSTEM ARCHITECTURE DESIGN phase is to
investigate system design alternatives and their potential impact on the
choices for a feasible system configuration (i.e., H/S mix). Without
making any explicit choices with respect to the selection of particular
software or hardware components, this phase is involved in the performance
of H/S trade-offs to the extent that design decisions taken here affect
the class of feasible configurations in a manner too significant to be
left to chance.

The functional/performance specifications generated by the system
architecture design, as part of the system configuration requirements,
form the basis on which a particular H/S mix is selected during the SYSTEM
BINDING phase. The hardware and software requirements being generated by
this phase may assume a variety of H/S combinations from off-the-shelf
complete systems to custom built components. The election of one option
over another is determined by the nature of the system design, the
constraints it has to meet, and the available technology. It is
accomplished by the system architecture design phase, but the selection of
specific components is done during binding.

The SOFTWARE DESIGN STAGE includes all activities relating to
software design and procurement. There are three phases involved in this
stage. The first one, SOFTWARE CONFIGURATION DESIGN, is responsible for
the procurement of off-the-shelf software as well as the overall high
level design of the software system. The software requirements are the
basis for these activities which result in the development of program
requirements specifications, including the complete design of its data and
environment interfaces. The PROGRAM DESIGN phase, in turn, takes these
requirements and produces the program design (data and processing
structures) which, together with all pertinent assumptions and
constraints, make up the implementation requirements. They are used by
the CODING phase to build the actual programs.

The MACHINE DESIGN STAGE plays a role similar to that of the first
two phases of the software design stage. The HARDWARE CONFIGURATION
DESIGN phase is concerned with the procurement of off-the-shelf machines
and the design of the high level architecture of custom hardware.
Component requirements are developed for all entities that are part of the
custom hardware and passed on to the COMPONENT DESIGN phase. This phase
generates a register transfer level machine description that will be
included in the circuit design requirements and in the firmware
requirements.

The CIRCUIT DESIGN STAGE follows a generally accepted scenario
involving four phases: SWITCHING CIRCUIT DESIGN, ELECTRICAL CIRCUIT
DESIGN, SOLID STATE DESIGN, and FABRICATION. Each phase generates design
requirements for the phase listed after it.

The FIRMWARE DESIGN STAGE consists of three phases that are an analog
to program design, coding, and compilation. These phases are called
MICROCODE DESIGN, MICROPROGRAMMING and MICROCODE GENERATION.
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STEPS

The previous subsection gave a general introduction to the design
areas covered by the TSD stages and phases. This subsection gives a
general introduction to the activities that occur during the design
process. The major design activities within a phase are called STEPS.
There are ten steps which collectively represent the activities within any
phase, regardless of the nature of the phase. Some of the steps represent
activities that are common practice among good designers and appear to be
fundamental to the design process. The other steps represent activities
that are needed to meet the objectives of the TSD Framework. The names of
these steps are listed below. The dashed lines are used to indicate
groups of related steps.

formalism selection
formalism validation

exploration
elaboration

consistency checking
verification
evaluation

inference

invocation

integration

The FORMALISM SELECTION step encompasses the activities involved in
selecting a formalism for a particular problem domain. Candidate
formalisms are evaluated for their expressive power in that domain and
also for qualities such as simplicity of use, lack of ambiguity,
analyzability, and potential for automation. While this step must take
place before other steps in the phase, it often occurs long before them.
This is sometimes due to the use of a methodology that is based on a
particular formalism, but is more often simply a matter of policy or is
due to the availability of tools tailored to that formalism.

The FORMALISM VALIDATION step encompasses activities involved in
determining whether a formalism has the expressive power needed for a
particular task. It also includes the evaluation of formalisms from the
standpoint of ease of use. These tasks are generally non-trivial and may
involve both theoretical and experimental evaluations. Theoretical
results may indicate the power and the fundamental limitations of the
formalism while past experience with it on similar projects may provide
insight in its appropriateness and ease of use. The step also includes
evaluations of the formplism's potential for design automation (as a way
to bring about productivity increases) and its ability to support
hierarchical specifications (as an aid to controlling complexity).
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The EXPLORATION step encompasses the mental activities involved in
synthesizing a design. These activities are creative in nature and depend
on experience and natural talent. They cannot be formalized or automated
unless the problem domain is restricted to a significant degree.

The ELABORATION step encompasses the activities involved in giving
form to the ideas produced in the exploration step. In general, this step
involves the use of formalisms and its activities are facilitated by
design aids such as text editors and formatters. This step includes the
building of a concrete object such as a piece of hardware.

The CONSISTENCY CHECKING step encompasses activities such as checking
for incorrect uses of formalisms, checking for contradictions, conflicts,
and incompletness in specifications, and checking for errors of a semantic
nature. It includes checking for consistency between different levels of
abstraction in a hierarchical specification and the reconciliation of
multiple viewpoints.

The VERIFICATION step encompasses activities involved in
demonstrating that a design has the functional properties called for in
its requirements specification. Since each phase has a requirements
specification and produces a design, this step applies to all phases. A
common example of this type of activity is the proving of program
correctness. The difficulty of this task is well known and is also
representative of the difficulty of the verification task in general.

The EVALUATION step encompasses activities involved in determining if
a design meets a given set of constraints. This includes constraints
which are part of the requirements specification for the phase and
constraints which result from design decisions. The nature of the
eva2uation activities depends on the type of constraints being analyzed.
They' include classical system performance evaluation of response time and
workload by means of analytical or simulation methods; deductive
reasoning for investigating certain qualitative aspects like fault
tolerance or survivability; construction of predictive models for
properties such as cost and reliability.

The INFERENCE step encompasses activities involved in assessing the
potential impact of design decisions made in the phase. The domain of
these activities include: impact on the application environment, ability
of subsequent phases to live with decisions made in this phase, effect on
system maintainability and enhanceability, effect on implementation
options. While these issues must be considered in every phase, proper
treatment is particularly critical in those stages defining architectures.

The INVOCATION step encompasses the activities associated with
releasing the results of the phase. It includes quality control
activities where tangible products are involved and review activities
leading to the formal release of output specifications. It is this latter
aspect that gives the step its name, since the release of specifications
in effect invokes subsequent phases.
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The INTEGRATION step encompasses the activities associated with the
configuring and testing of that portion of the total system that was
designed in the phase. Although it is traditional to consider integration
to be a design area that would qualify as a stage in the framework, the
integration activities have been distributed among the phases in
recognition of the fact that the expertise needed to test that portion of
the system is the same as the expertise needed to design it. In addition,
design errors found during integration must naturally be referred back to
that phase. It is therefore fitting that integration be considered a
phase activity.
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THE TSD FRAMEWORK OBJECTIVES REVISITED

There are three factors that have influenced the conception of the
TSD Framework: current state-of-the-art in the area of distributed
systems design, the conviction that a systematic application of the
principle of separation of concerns is fundamental to a formal treatment
of design methodologies, and a set of six explicit methodological
objectives motivated by generally desirable features of good system design
and by the desire to make the selection of hardware and software on the
basis of more objective criteria than those in use today. The six
methodological objectives are: (1) formal recognition of the H/S dualism,
(2) deterrence of premature hardware selection, (3) minimization of error
costs through early error detection, (4) proper consideration of the role
played by performance constraints in the design process, (5) design
automation, and (6) proper attention to human interfaces.

The TSD Framework builds directly on the current understanding of
system design methodologies with respect to both the phases and the steps
that make up its structure. Its steps represent a taxonomy of the design
activities generally encountered in system design. Its phases, aside from
those included in the system design stage, have been recognized already by
other authors. There are, however, two important distinctions between the
way phases and steps are used here and elsewhere. First, the grouping of
activities into a phase is based upon the nature of the technical
expertise they require rather than upon considerations related to project
management. The latter are relegated to methodologies and are not part of
the framework. Second, the steps are abstractions over classes of design
activities and not specific actions to be carried out by the designer in
some prescribed order. These differences stem from the fundamental
distinction between frameworks and methodologies.

The criteria used in the selection of both phases and steps are '

direct reflection of the principle of separation of concerns. The
traditional separation between hardware and software design, for instance,
is captured by the identification of distinct phases associated with each.
At the same time, however, because judicious partitioning of the system
functions between hardware and software demands the two to be considered
together and to perform certain trade-offs, the system design stage has
been included. It separates the selection and specification of the
hardware and software from hardware and software design.

Because the TSD Framework has been used primarily as a way of
specifying a class of distr4'uted system design methodologies called the
TSD Methodologies, some of tne characteristics required of these
methodologies have affected the structure of the framework. The manner in
which this took place is explained below.

Formal recognition of the H/S dualism and the desire to avoid
premature selection of the hardware led to the proposal of the system
design stage in which design decisions take into considerat2on the fact
that a given system function may be realized n hardware, software, or by
a combination of the two. These two related objectives also represent the
original motivation behind the introduction of the inferenu, step which,
in the context of the system design stage, evaluates the consequences of
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system level design decisions with respect to the hardware/software
selection options they may promote or rule out. Furthermore, the
hardware/software dualism suggested the adoption of similar structures for
the software and machine design stages.

The minimization of error costs is supported, at the framework level,
by the emphasis on formal specifications which are the foundation for
computer-aided design systems able to carry out cost-effective and, at the
same time, extensive automated error checking. The presence of the
verification and consistency checks define the nature of the error
detection to be incorporated in the TSD Methodologies.

The role played by performance constraints is made explicit in the
structure of the requirements generated by the various phases and in the
definition of the evaluation step. Moreover, the definition of the
integration step includes checking the satisfiability of the constraints
and the validity of the performance models employed in the evaluation
step. (The checking that takes place in the evaluation step is only as
good as the models used and the accuracy of the assumptions made about the
performance characteristics of components to be designed in subsequent
phases.)

The definition of the formalism selection and validation steps have
been strongly influenced by the intent to support the TSD Methodologies by
means of computer-aided design. The promotion of formal specifications
is, to the largest extent, due to the emphasis on design automation.

Finally, in order to stress the importance of properly evaluating the
design of the human interfaces, the inference step includes an
investigation of the potential impact of alternate design decisions upon
the user environment and the evaluation step includes human engineering
studies.
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FROM FRAMEWORK TO METHODOLOGY

Because effective methodologies are application and environment
(i.e., organization) dependent, the TSD Framework specifies the
requirements for not one single methodology, but a class of similar yet
Gistinct methodo]ogies. Differences between methodologies that address
the needs of different applications and organizations manifest themselves
in the relative weights attached to the importance of the methodological
objectives of various steps, in the order in which the design activities
are scheduled, in the frequency and extent of the design checks, etc.
Consequently, an in-depth understanding of the nature of the systems to be

developed and of the character of the system development and maintenance
organizations is a prerequisite to considering an instantiation of the
framework.

The framework may be used as a methodology skeleton and checklist
which is pruned and refined during methodology development based on the
nature of the application and organization. A certain amount of
"pre-design" takes place. It may a priori remove from consideration some
technological alternatives, it may restrict the designer to using
particular specification languages thus eliminating the formalism
selection and validation steps, etc. To illustrate this process and as an
aid to exposition, the following application is used as an example. We
will assume that the systems to be develop"A are turnkey systems for
relatively small data processing applications. The development and
maintenance of these systems is to be the resp. sibility of the vendor
organization, and copies of the same system are to exist in several user
organizations.

Methodology development begins by identifying those stages and phases
that are unnecessary. For the given application, the circuit design and
firmware design stages are eliminated by virtue of the fact they deal with
high cost design and maintenance components, both in terms of needed
personnel expertise and required facilities. The machine design stage is
also discarded because, in order to keep maintenance costs down, it is
desirable to limit the type of hardware to a single machine. The nature
of the application, small data processing, makes it possible for the
vendor organization to select a single minicomputer as the common hardware
support for all systems to be developed. Since hardware selection is done
a priori, the machine design stage is totally unnecessary.

Next, the remaining stages and phases are analysed with respect to
the role they might have to play in the new methodology in light of the
specific application being considered. The investigation reveals that the
objective of the system architecture design phase is limited to the
determination of how to allocate the system's functions among one or more
minicomputers of a given type. The binding phase, in turn, is assigned
the task of evaluating the proposed distribution against the
characteristics of the actual machines and of generating the hardware and
software requirements. The former specify the number of machines and the
way in which they are configured. The latter contains a description of
the software to be placed on each of the machines, the implementation
language (always the same), and the communication protocols between the
software pieces residing on different machines.
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Most activities abstracted by a given phase depend heavily on the
nature of the formalism chosen in the formalism selection step. Because
the use of identical formalisms on all system design projects has obvious
advantages, several specification languages could be adopted as company
standard after evaluating their appropriateness for the type of projects
being envisioned. The formalism selection and validation steps are thus
eliminated from the methodology. In the context of our example, the
vendor organization could decide in favor of: some graphic language
[ROSS77, ROMA793 to assist the conceptualization phase with the functional
decomposition of the system requirements; a data processing system design
language [TEIC77] for both the system architecture and software
configuration design phases; some form of pseudocode for the program
design phase; and a standard programming language for coding.

Following the formalism selection above, the steps that are involved
in the evaluation of the specifications produced by each phase need to be
defined in terms of the intended scope, objective, and analytical
techniques to be used. It may turn out for instance that consistency
checking and verification steps are carried out by means of some
nonautomated procedures [ROMA79]; the evaluation step in the
conceptualization phase is implemented as a user review; the evaluation
step in the architecture design phase is limited to questions of time and
space and done by hand, while in the software design stage it is neglected
completely; and the inference step is not present anywhere due to lack of
adequate techniques and tools.

Besides the use of particular techniques, another factor that
contributes to the effectiveness of some methodology is the manner in
which design activities identified by the framework as steps within
various phases are to be sequenced on actual projects. Considering the
example again, project control objectives may dictate that all relevant
phases are to be done in the order in which they appear in the framework
except for the case when corrections to earlier work are deemed necessary.
Different subsystems, however, are permitted to be in different stages of
development as long as their interfaces are clearly identified. On the
other hand, within a single phase, all steps are to be repeated, in the
same sequence as in the framework, for every level of the hierarchical
specification being produced. (Significantly more complex sequencing
strategies have been observed in some existing design methodologies
[MCCL75].)

Methodology development must also include the managerial perspective
on system design, which brings into the methodology aspects not yet
considered. They would deal, at a minimum, with issues related to project
status evaluation checkpoints and procedures (e.g., reporting and auditing
procedures), system design and integration planning, physical and human
resources allocation, marketing strategy, etc.

Finally, once a methodology has been developed, there is still the
problem of acquiring a facility which, through its tools and personnel,
enforces the methodology, speeds up tedious and time consuming human
activities, assists in project control, etc. In other words, the facility
complements effective methodology and management with a highly productive
design environment brought about by the availability of automated tools.
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CONCLUSIONS

By concentrating solely on the meihodological schema identified by
the framework, one is more apt to see the real goals, strengths, and
weaknesses of a methodology. Thus, empirical comparisons among
methodologies may be complemented in the future by evaluations on an
abstract level. (Unfortunately, the use of the framework as an analytic
tool has been investigated, so far, only to a very limited extent.)
Furthermore, a change in goals may be better effected by first subjecting
the framework to needed enhancements or refinements and only later making
the corresponding adjustments to the methodology itself. Modifications to
the methodology need to consider the way in which the changes in its
foundation (i.e., framework) relate to the characteriitics of the
application, the techniques supporting the methodology, and the
environment in which the methodology is used. This approach to
methodology development and enhancement promises to be less prone to
judgmental errors, and promises to provide valuable assistance to
designers investigating methodological alternatives. The approach has
been successfully employed already in the development of a class of
distributed system design methodologies.
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2.3 STAGES IN THE TSD FRAMEWORK

2.3.1 PROBLEM DEFINITION STAGE

TERMINOLOGY OF THIS STAGE

REQUIREMENTS: User Problem Statement
PHASE: Identification

REQUIREMENTS: Identification Report
PHASE: Conceptualization

REQUIREMENTS: System Requirements

DESCRIPTION OF STAGE ACTIVITIES

One of the most critical aspects in developing a new system is to
insure that the problem the system is designed to solve is the same one
that the user of the system wants solved. This implies that the customer
(assumed to be skilled in the area of the application) must accurately
communicate his needs to an analyst (assumed to be skilled in the area of
computer systems analysis). Since these two specialists speak different
technical languages, how can the communication gap be bridged? Further,
how can the correctness of the resulting information transfer be assessed?
The first stage in the TSD framework insures that this communication takes
place and that the result is an accurate, mutually acceptable definition
of the problem to be solved. This objective is achieved in two phases:
first by a general identification of the problem's characteristics, and
then by the articulation of these characteristics as a more formal
conceptual model.

At the end of this stage, a System Requirements report is produced
that presents the total set of functional specifications and performance
constraints for the creation and evaluation of the ultimate delivered
product. Thus, the overall success or failure of a project hinges on the
successful completion of the Problem Definition Stage, as effected through
its Identification and Conceptualization phases.

STATE-OF-THE-ART

Successful achievement of this stages's goals requires that the
proposed member methodologies have certain attributes. Among these is the
ability to support a formal approach to the problem definition activity,
with the resulting definition free of any design bias; moreover, the
methods must clearly separate constraints on the system from its
functional requirements. Additional tools required to support the use of
these methodologies include utilities for text input, editing and
formatting, database storage and retrieval of text, formal syntax
verifiers, report generators (including system consistency checkers and
verification aids), and possible functional simulators for system
verification and evaluation.
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The usual practice today is to treat the Identification Report as a
basis for immediately starting design activities, thus completely avoiding
the establishment of a formal conceptual model of the proposed system.
Design specification languages are used for expressing whatever system
conceptualization still occurs, resulting in the introduction of a
premature design bias into the developing system. This is particularly
evident when a high-level design language is used to propose a solution at
this stage.

It is clear that considerable effort still is needed to develop
appropriate formalisms and tools to support conceptual model building,
since without them consistency checking and model verification remain
error prone. As errors are allowed to pass from one stage to the next,
they require more and more effort to correct. This fact alone could
justify the TSD framework requirement that any methodology used in this
first stage must produce a formal conceptual model that completely defines
all system requirements.
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PHASE NAME: Identification

PURPOSE

Identify and define the requirements and constraints needed to

specify completely a computer system that will solve a customer's problem.

INPUT

A general problem statement plus a list of customer personnel

available for contact.

OUTPUT

Identification Report detailing the problem requirements and
constraints as obtained from the customer.

STEPS

FORMALISM SELECTION

The Identification Phase represents the first contact point
between the customer and the builders of the proposed system. This
first phase must create an atmosphere conducive to the free exchange of
information between all personnel concerned, since the final report of
the phase must consider all factors pertinent to the problem
definition. During the entire system life cycle, each phase will
require a specific language or formalism to express the pertinent

information, and certainly this phase is no exception. However, this
beginning phase is unique due to the breadth of both potential problem

requirements and personnel experiences. Hence, it may be best to
handle it in a more informal manner. This implies that English text
should be the vehicle used to express the relevant assumptions,
constraints, and demands to be satisfied by the proposed system. Note
that there is no design done in this phase; all effort is concentrated
on the identification and specification of the problem requirements.

Although a natural language does not present the opportunities for
rigorous analysis associated with a more formally defined lang~age,
some structuring should still be imposed on the English text. Forms,
checklists, and suggested report outlines have all been proposed as
mechanisms that may help overcome the ambiguity of English text and
thus help insure that all of the necessary factors are considered

[NAUM80]. This point will be discussed further in the later steps, and

also is considered in [HENI79, ROMA79, TAGG77].
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FORMALISM VALIDATION

The technical vocabulary should be drawn primarily from the
application area, since the language of the customer should best define
the problem during this phase. Computer jargon is not the basis for
effective communication between the customer and the analyst.

EXPLORATION

Just what are the factors that need to be established during the

Identification Phase? A number of references EMETZ73, STAA79] present
suggested checklists that help to fulfill the abovementioned needs.
These lists represent attempts to generalize experiences based on the
results of past design efforts. As such they must be considered as

guidelines adaptable to the actual application at hand. Specific
results will emerge as the customer and the analyst work together to
explore the broad possibilities and requirements of the general problem
space being considered. Detailed interviews with customer personnel
represent the main source of Laformation for this step. Questions that
need to be addressed include:

Why should a system be built?
What assumptions are being made to define the system?
What customer needs must be satisfied?
What constraints must be imposed on the system?
What environmental demands must the system satisfy?
Which system boundaries are hard or soft?
What trade-offs at what costs may be allowed?

One result of this initial exploration step is the establishment of
tentative system boundaries and the corresponding definition of
human/system interfaces.

ELABORATION

As the exploratory activities conclude, and the overall scope of
the system has been identified, the points thus raised must be
elaborated by filling in sufficient detail to define completely all
necessary system functions and constraints. This requires the drafting
of a report that integrates all information collected thus far. This
activity may be facilitated by appropriate tools for text entry,
editing, and formatting.

The information recorded in this step represents an important part
of the final Identification Report. Hence considerable care must be
given to insure that it is complete, accurate, and unambiguous.
However, it must also represent the beginning of a project database
that will support all project-related activities for the duration of
the entire system life cycle. The information entered into the project
database supports an audit function and serves as a source of authority
for all later system developments. That is, any factor in the later
stages must be able to trace its reason for existence back to entries
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created in the project database during this phase and, ultimately, to
the customer's original problem statement.

CONSISTENCY CHECKING

Despite the lack of formalism during this phase of the TSD
framework, it is still of vital importance to attempt to check the
system elaboration for consistency. For example, the requirements
established by one system function should be compatible with the
requirements of another function or of any of the imposed constraints.
Further, the elaboration should be complete, particularly in the sense
that there should be no undefined terms, functions, or constraints.
The sooner such errors of validity/consistency are detected, the easier
(i.e. cheaper) it is to correct them.

VERIFICATION

Once it is decided that the requirements are consistent, the
requirements should be verified to any extent possible. The key
element in this verification is for the customer to agree that the
desired problem has been completely and accurately identified in terms
of a usable set of requirements. That is, an Identification Report has
been produced that contains a complete and unambiguous identification
of the problem. Proposed user scenarios represent a possible means of
testing for any problems. If the system identification is not
satisfactory, then more time and effort must be devoted to this phase
by both the customer and the analyst. Although a more rigorous system
verification will be possible in the next phase, at this point there
are some additional tools that may be available to aid in the review
and acceptance of the requirements document. These include feasibility
studies, simulated scenarios, and comparisons based on extrapolations
from existing systems.

EVALUATION

The next step in this phase must be an eval-jation of the work done
so far. It is still early in the TSD framework, and thus any results
tend to be soft. However, it still may be possible to build cost and
other forecasting models to support the analytical task of the next
step.,

INFERENCE

The impact of the identified system requirements and constraints
on later stages of the TSD framework are considered here. There is no
detailed system design available yet, but still the background and
knowledge of the project team should allow some assessment of the
technical feasibility of achieving the desired goals. Further, the
studies conducted for the verification and evaluation steps should
allow additional conclusions to be established relative to the
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technical and economic consequences of the system requirements. Thus,
at this point, estimates should be established for schedules, staffing,
and resource requirements for all of the later system development
stages. In addition, this information should establish the effect of
the final system on the user, in terms of cost, time, environmental
impact, and resource requirements. The results of the cost/benefit
analysis enables the customer to decide on final acceptance of the
Identification Report.

INVOCATION

The next phase will be invoked when the Identification Report,
consisting of all system requirements and constraints, is completely
accepted by all concerned. The invocation step consists of passing the
requirements document to the Conceptualization Phase for the
development of a more formal system model.

INTEGRATION

The final step of any phase is the acceptance and integration of
the results obtained from the invocation of the later phases. Since
the Identification Phase is the first phase in the TSD framework, its
final result consists of putting into production the complete system as
specified by the Identification Report. Thus, system installation at
the user's site, user testing, and user training must all be
accomplished. Maintenance procedures and methods for phasing the new
system into active production must also be specified and implemented.
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PHASE NAME: Conceptualization

PURPOSE

Convert an informal set of requirements for the proposed system into

a formal conceptual model.

INPUT

Identification Report containing a complete description of the system
requirements and constraints.

OUTPUT

System Requirements containing a formal conceptual model of the
proposed system plus the set of all constraints that the system must
satisfy. The requirements must be complete and unambiguous since it must
first serve as a basis for all later development work and then as a
yardstick for testing the acceptability of the final delivered system.

STEPS

FORMALISM SELECTION

Once all of the aspects of the informal system identification
produced in the previous phase have been accepted, it is time to
develop a more formal conceptual model of the proposed system. This
will require the selection of an appropriate formalism, along with a
validation that the particular formalism can handle problems from the
given application area. Many suggested formalisms have been described
in the literature, and many of these are still undergoing active
development. (For some of the most widely used current systems see:
[GANE79, ORR77, ROSS77, TEIC77].) The published systems vary widely in
expressive power, ease of use, extent of automation, and tool
availability [LISK79]. Hence, the formalism selected for this phase
will have a strong impact on the future progress of the project. Even
if a special purpose system must be designed and implemented, it is
important for the TSD framework that the informal requirements from the
previous phase be converted into formal specifications that can drive
later stages.

Using a formal approach to building a conceptual model may be
justified by noting a number of advantages. A formalism implies that a
definite syntax has been established, thus allowing automated tools to
do syntax checking, reporting, and project database maintenance. The
selected formalism must have the ability to model all aspects of the
application domain, and so it certainly depends on the state of the art
in that area. However, an application specific formalism may include
semantics such that additional verification checks, particular to the
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. .. ... .

application, also may be automated. Examples of this approach may be
seen in the database field, where extensive data models have been
developed. The relational data models are especially advanced from the
point of view of including semantic information and constraints, so
that the formal models even provide for automating much of the design
process itself [ULLM80.

Note that this stage in the TSD framework is attempting to define
completely and unambiguously the system requirements. The vehicle for
this definition is a conceptual model of the proposed system that
includes all necessary functions and constraints. This model, however,
does not represent a system design! A major drawback in many of the
available formalisms is that they were created initially as program
specification languages. This heritage forces the user of these
systems to consider (perhaps unconsciously) design aspects of the
evolving conceptual model. In this early phase there is simply not
enough information to make any proper design decisions.

FORMALISM VALIDATION

Most of the published techniques have additional significant
weaknesses when considered from the TSD framework point of view: They
tend to have evolved from a data processing background with a bias
towards generality. The resulting formalisms are not application
oriented and thus are difficult to apply to a specific problem. They
frequently use visual (flow-chart like) presentations of essential
system relationships that drastically reduce any possible automation
and make formal consistency checking and verification techniques very
awkward to use. Further, a background based on large data processing
systems means that most of the formalisms are very weak in the areas of
real time signal processing and hardware/software trade-off
considerations. As a consequence, they are weakest in exactly the
features needed most for embedded computer systems.

EXPLORATION

The exploration and elaboration steps of this phase parallel the
informal efforts of the previous phase, except that the formalism now
allows much more precision in the definitions of information flows,
functionalities and system constraints. Although the potential system
user does not need the expertise to develop descriptions in the
selected formalism, it is important for him to be able to read and
understand such descriptions. The customer must agree that the
conceptual model being created does indeed meet the application needs
(as were stated in the informal description created in the previous
Identification Phase), since the Report produced in this Phase will be
the technical driving force behind all subsequent system design
efforts. Further, the trace of what formal requirements were induced
by what informal statements must be maintained through the project
database for later potential authorization, feedback and modification.
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ELABORATION

The results of the previous exploration step must be recorded in
an appropriate format. Construction of a conceptual model on a digital
computer, using the selected formalism, represents that format.
However, it is important to maintain the viewpoint that the model is
being built to help in understanding the evolving system design. That
is, there should be a definite bias towards clarity and ease of
understanding in all aspects of building the model.

It is in this step that the full power of the formal approach
begins to be used. The same types of tools mentioned in the previous
phase are of use here, but since they are being applied to a formally
defined system the possibilities for automatic error detection are much
greater. In addition, this step forms the foundation required to
automate many parts of the next three steps.

CONSISTENCY CHECKING

One major benefit of casting the conceptual model into formal
terms comes from the availability of automated tools that help to
insure the internal consistency of the model. In particular, this
phase can benefit greatly by tools that process input data for proper
syntax and/or semantics and reports on the status of various
information flows, functional dependencies, and constraint
specifications. What information is created and never used? Multiply
created? Used but never created? Constraints never referenced? Are
all interfaces compatible? Is there consistency among levels in a
hierarchical model? Many such questions may readily be answered given
an appropriate supporting formalism. Further, the ability to change
the conceptual model and immediately see the overall effect by using
these automated reporting tools allows the analyst to do a far better
and faster job of creating an acceptable system model.

VERIFICATION

The functional requirements built into the conceptual model must
match the requirements specified in the Identification Report.
Checking that every external aspect is covered by the model implies
that informal statements and formal statements must be established as
equivalent - this is a necessary task, but one that the current state
of the art cannot handle automatically. At least, functional
simulation and user reviews provide a solid foundation of information
for the verification of the conceptual model.

EVALUATION

The evaluation and inference steps also benefit by the
introduction of the selected formalism. These steps in the
Conceptualization Phase become much more quantitative than in the
previous Identification Phase, thus increasing the overall confidence
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level in being able to produce the desired system. As in the previous

phase, the evaluation step should look at the raw data from feasibility
studies, simulations, and system application scenarios (usually
obtained during the last two steps) to determine the behavior of the
proposed system. Analysis of the resulting system characteristics
produces the system evaluation for this development stage.

INFERENCE

The information on system behavior analyzed in the Evaluation Step
also must be studied to determine how the system requirements will
impact the later TSD framework stages. The System Requirements Report
must contain a complete, unambiguous, testable set of requirements and
constraints that the customer agrees will establish the formal basis
for all later system development. If an earlier step finds a
requirement or constraint that cannot be satisfied, or the inference
step suggests a later stage may not be implementable, then the feedback
within this stage still has a chance to correct the situation.
Additional studies on cost effectiveness, scheduling, etc (all started
in this step of the previous stage) may now be expanded based on the
more quantitative information developed from the conceptual model.

INVOCATION

Once the system requirements have been specified by the acceptance
of the formal conceptual model, the System Design Stage of the TSD
Framework is invoked.

INTEGRATION

The Integration Step consists of testing the deliverable system,
as created by the next Stage, to determine if all of the specifications
and constraints detailed in the System Requirements Report have been
satisfied. Thus this step concludes with a complete system
demonstration.
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2.3.2 SYSTEM DESIGN STAGE

TERMINOLOGY OF THIS STAGE

REQUIREMENTS: System Requirement!F

PHASE: System Architecture vsign
REQUIREMENTS: Binding Requirements

PHASE: System Binding
REQUIREMENTS: Software Requirements, Hardware Requirements

DESCRIPTION OF STAGE ACTIVITIr

The system design -'age .ines the logical structure of the system
and the manner in whicn nardware and software are to be used in its

implementation. These activities are split between the f~llowing phases:

SYSTEM ARCHITECTURE --- defines the structure of the system

and all system-level processes.

SYSTEM BINDING --- selects the hardware that is to
support the system processes.

The primary input to this stage is the system requirements
specification generated in the Problem Definition Stage. This includes:
a conceptual model of the role of the system in the application
environment, performance requirements such as throughput and response time
goals, physical constraints such as limitations on size and power
consumption, reliability requirements such as survivability goals, and
design guidelines such as restrictions on types of equipment, technology,
and venders.

In addition to the system requirements, the design process is guided
by recognized rules-of-the-trade and by good engineering practice. These
include design guidelines which promote the development of systems that
are easy to maintain and enhance. Architectural models that reduce the

impact of hardware obsolescence on system life-cycle are emphasized.

Customer interactions comprise a third type of input to this stage.
These interactions occur for many reasons, including: clarification of
ambiguous or incomplete specifications, revision of conflicting or
unachievable requirements, and assessment of the impact of a proposed
design on the user environment. The latter may require the construction
of mock-ups and the development of simulated versions of the system. It
may also require new studies of the application environment. These
activities are an intrinsic aspect of the system design stage.

The design activities in this stage are disciplined in a manner that
meets the common objectives of all TSD methodologies. Briefly stated,
these are

-- Systematic approach to hardware/software trade-offs.
-- Systematic approach to system/environment interfacing.
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-- Systematic approach to early detection of errors.
-- Systematic approach to performance evaluation.
-- Emphasis on maintainability and enhanceability.
-- Emphasis on computer aided design.

The output of the System Design Stage has many parts, including: a
model identifying all system-level processes, including interfaces and
performance constraints; a complete description of all system-level
algorithms, including goals, underlying assumptions, and proofs of
correctness; a description of the physical structure of the system,
including a description of all processing hardware, physical links, and
communication protocols; a complete mapping of system-level processes to
system hardware. In short, it includes all information needed for the
design or procurement of hardware and software (the Hardware Requirements
and the Software Requirements) and all information needed for system
integration, maintenance, and enhancement.

STATE-OF-THE-ART

The activities of this stage require certain resources, formalisms,
and software tools in order to be carried out efficiently. With regard to
resources, the design activities should be supported by a computer system
which provides database support for the storage of the design data, and
designers should have interactive access to this system from terminals
with graphics capabilities. With regard to formalisms, there should be
standard formalisms for each aspect of design documentation. Standardized
formalisms are necessary to the development of unambiguous documentation
and are also fundamental to the development of software tools. With
regard to the latter, a variety is needed to expedite the documentation
and analysis activities of the design process. These include

-- utilities for checking syntax
-- utilities for checking consistency
-- utilities to perform or assist in verification
-- documentation aids such as a text editor/formatter
-- utilities for generating performance data from processing

models

These resources are commercially available from a wide range of
vendors and in a multitude of configurations. Most companies involved in
system design have these resources in one form or another, and current
technology is capable of outfitting almost any design environment that
might be defined.

Many of the necessary formalisms are available due to the
considerable attention that system design specification languages have
received during the last decade. Proposals range in flavor from
standardized graphic representations, tables, and document formats
[ROSS77] at one extreme, to formal languages having well-defined syntax
and semantics [ROBI77] at the other.
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The work on program specifications dominates the field in terms of
attention received and level of formality. A good survey of available
formal program specification techniques is given in [LISK79]. Those
specification languages that are designed to support concurrency, such as
Path-Pascal [CAMP79) and DREAM [RIDD78], are appropriate for the
specification of distributed systems.

Also available but somewhat less formal are RSL [BELL77] and PSL/PSA
[TEIC77]. These are particularly noteworthy because they have been
implemented and are being used in the development of large systems. Both
are part of computer-aided design packages which provide database support
for storing design specifications and provide software tools tailored to
the specification formalism. The services provided include consistency
checking, automatic generation of system simulations, reporting,
configuration management, etc.

The specification of distributed systems continues to have many
unresolved problems. Some of these are due to an incomplete understanding
of what to include in a functional specification. Others are due to an
incomplete understanding of how to relate issues such as concurrency
coordination and input/output specifications which, despite their
interdependence, are currently being treated in an independent manner.
Another source of problems is in the area of performance specifications.
Except for the work of Booth and Wiecek [BOOT80], there has been little
research in this area.
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PHASE NAME: System Architecture Design

PURPOSE

The purpose of this phase is to define the architecture of the
system. It assumes a general model in which the architecture is
represented as a set of communicating processes that reside on a network
of processors. The term "processor" as used here is a general term
representing all entities that can support processes. It includes
graphics terminals, CPUs, special purpose hardware, complete computer
systems, etc. The architecture phase defines a processor structure and a
set of processes that will meet the goals contained in the system
requirements. This includes a specification of function and performance
requirements for each process, and a specification of device type and
implementation constraints for each processor and for each
interconnection. In most cases, the hardware specification does not
uniquely identify all details of the hardware, but describes only those
aspects needed to support the functionality and performance of the system.
It is the task of the Binding Phase to determine the exact hardware that
is to be used.

INPUT

The input data for this phase is the system requirements
specification produced by the Problem Definition Stage. It consists of a
conceptual model, which defines the role of the system in the application
environment, and a set of associated design constraints. This data
includes (but is not limited to) the following items.

Conceptual Model

-- A description of the services to be provided by the
system.

-- A description of the system interface.

Constraints

-- Performance requirements such as throughput rates
and response times.

-- Physical constraints such as limitations on size,
weight, and power consumption.

-- Reliability requirements such as survivability
goals.

-- Equipment constraints such as restrictions on types
of equipment, technology, and vendors.
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OUTPUT

The output of this phase is the system-level information needed for
binding, integration, maintenance, and enhancement. This information
includes the following items.

Binding Requirements

-- A processing model defining system-level processes
and their interactions, interfaces, communication
protocols, and performance constraints. Model
includes response of processes to undefined data
and/or protocol violations wherever such is
possible.

-- Implementation constraints consisting of an
assignment of processes to processors and a
specification of device type, technology, and
selection constraints for the processors and
interconnections.

Theory of Operation

-- A description of all system-level algorithms,
including goals, underlying assumptions, and proofs
of correctness.

-- All models used to predict performance
characteristics of the design.

-- A description of the design decisions reflected in
the architecture, including motivations, underlying
assumptions, and interdependencies.

STEPS

FORMALISM SELECTION

A formalism with the following characteristics is needed for the
representation of processing model information:

-- It should be easy to understand and use. This
reduces the risk of a design specification
describing more or less than intended.

-- It should be able to represent the types of
processing structure common to the application
area. In some cases this may only require an
ability to represent finite state machines; in
others, it may require an ability to represent
networks of cooperating processors.
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-- It should make possible the expression of
functional and performance information in the same
model. This eliminates the risk of inconsistencies

between models.

-- It should be syntactically and semantically

well-defined. This reduces the risk of ambiguous
specifications and makes possible the detection of
certain types of specification error.

FORMALISM VALIDATION

Those aspects of the selection criteria that are mathematical in
nature may be validated by formal analysis. Those that are subjective
or dependent on the application domain must be judged on the basis of

experience in the application area.

EXPLORATION

The development of an architecture requires that algorithms be
devised for performing the system functions and that a processing model
be devised for executing these algorithms. This development effort is
guided by the need to meet the requirements and constraints given in
the system requirements specification.

The design process is also guided by general rules-of-the-trade
which suggest structures that facilitate maintainability and
enhanceability. Also considered are implementation issues. This is
because the processing model and associated parameters will determine
the set of implementation choices, and the design must therefore be
guided toward a reasonable set of options.

The development of the architecture normally proceeds in an
incremental manner, with certain aspects taking shape before others.
In order to assure that the developing architecture is consistent with
the design goals, TSD methodologies require that each increment be
formally documented and validated before being incorporated in the
architecture. This acceptance process consists of the activities
described in the steps called Elaboration, Consistency Checking,
Verification, Evaluation, and Inference.

ELABORATION

The task of this step is to create a formal representation of the
design. Besides the obvious need for appropriate formalisms, there is
a need for documentation aids such as those listed below.

-- Interactive terminals with graphics capabilities.

-- A database system for storing designs.
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-- Software for detecting typographical errors. An
example is a program that lists names that occur
only once, these being potential typos.

CONSISTENCY CHECKING

This step involves checks of various sorts. At the simplest
level, there are checks for syntactic correctness of specifications and
checks for agreement of interface specifications of communicating
processes. At a more complex level, there are checks to verify that a
refinement is consistent in function and performance with the item
being refined, and checks for agreement of complementary specifications
such as a data-flow model with a behavioral model.

While the simplest of these checks can be readily carried out by
software tools given the current state-of-the-art, this is not the case
for the more complex. They are best dealt wiLn by semi-automatic
approaches in which the designer performs the checks with the aid of
software tools.

VERIFICATION

The task of this step is to show that the design is consistent
with the intent of the system requirements specification.
Mechanization of this task is beyond the current state-of-the-art and
verification must therefore be carried out by informal means, sometimes
with the assistance of the user. This may be a permanent situation
since the items of information being compared tend to belong to
different levels of abstraction.

One very important means of verification is through trace-driven
simulations and through simulations in which the user interacts with
the system. A example where both are warranted is a flight-training
system for pilots. Such simulations can also be used to evaluate the
appropriateness of proposed system/environment interfaces.

EVALUATION

This step determines the extent to which the design meets the
constraints imposed on it. This applies to all categories of
constraint, whether given in the system requirements specification or
identified as the consequence of design decisions. The needed analysis
can sometimes be performed by analytic means, but most often requires
the use of functional and/or discrete event simulation (or emulation).
Some simulations may require user interaction and some may have to be
trace-driven or distribution-driven.

In general, it is desirable for simulations to be derived directly
from the processing model by software tools [BELL77, TEIC77]. This
speeds up the evaluation process and also eliminates a major source of
error by taking humans out of the loop. Automatic derivation of
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simulations seems feasible for the more common types of analysis but

seems unlikely for the rest. In cases where new models must be created
in order to perform a particular analysis, the models and all
underlying assumptions must be recorded in the design documentation of

the system.

INFERENCE

The purpose of this step is to make sure that the design has
properly addressed the issues of implementation options,
maintainability and enhanceability, and environmental impact. This
involves the following assessments:

-- The structure is evaluated for modularity,
simplicity of interconnections, and low performance
requirements. Anything that would appear to unduly
restrict the range of implementation options,
either by limiting the choice of technology or by
requiring non-standard or specialized components,
is rejected.

-- The processing model is evaluated from the
standpoint of modularity, degree of process
interactions, and standardization of interfaces.
Anything that would unduly complicate either
maintenance or enhancement is reject.ed.

-- The overall design is reviewed from the standpoint
of impact on the user environment. Any
interactions between system and environment whose
details were not dictated by the system
requirements specification are referred to the user

for approval.

INVOCATION

This step consists of a formal review and sign-off on the
arbhitecture, thereby giving official permission to start the binding
phase.

INTEGRATION

This step has two tasks. The first is to configure a complete
prototype system and make it operational. This validates the quality
and completeness of the documentation and sets the stage for the second
task, which is to verify that the prototype has the function and
performance required by the system requirements specification.
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PHASE NAME: System Binding

PURPOSE

The purpose of this phase is to produce hardware and software
specifications for the system. The architecture phase has already done
much of this work, and this phase simply finishes the task. With regard
to software, most of the software requirements are provided in the
processing model produced by the architecture phase. All that remains is
to specify the target machine, and this can be done as soon as the
hardware portion of this phase has been completed. With regard to
hardware, the task is more complex.

The architecture phase views the system as being supported by a
network of processors, where the term "processor" is a general term that
includes all forms of hardware, including computer terminals, CPUs,
special purpose hardware, complete computer systems, etc. That phase also
establishes the basic nature of the processors and the interconnections.
For example, one processor might be described as a mini-computer with
certain characteristics, another processor might be described as a custom
device to be implemented in CMOS technology, and an interconnection might
be described as a serial link with a certain bandwidth. These
specifications sometimes uniquely define the component, but more often
they simply identify a class of components. The task of the binding phase
is to select a specific implementation when more than one option exists.

This selection process is guided by a variety of considerations, many
of which are system-wide in scope. As a result, selection cannot be done
by considering each processor and interconnection in isolation. Instead,
candidates must be identified for each processor and interconnection and
then selections must be made that are best for the system as a whole. The
following items are representative of the factors that are taken into
account.

-- maintenance. This biases the selection toward
minimizing the number of venders.

-- purchase cost. This is the sum of hardware and

software costs for the entire system. It takes
into account the fact that higher costs for some
items may be offset by lower costs for others.

-- operating cost. This takes into account power
consumption, cooling costs, and costs of service
contracts for the entire system.

-- availability and manufacturer's reputation. This
takes into account delivery times, product quality,
and ability of the manufacturer to assist when
problems occur.
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INPUT

The input data for this phase is the binding requirements
specification produced by the System Architecture Phase. It consists of a
processing model, which defines the system-level processes, and a set of
implementation constraints. The nature of this information is indicated
below.

Processing Model

-- A model defining system-level processes and their
interactions, interfaces, communication protocols,
and performance constraints. Model includes
response of processes to undefined data and/or
protocol violations wherever such are possible.

Implementation Constraints

-- An assignment of processes to processors and a

specification of device type, technology, and
selection constraints for processors and
interconnections.

OUTPUT

The output of this phase consists of two parts, a hardware
requirements specification and a software requirements specification.

The hardware requirements specification contains all technical
information needed for procuring existing (off-the-shelf or
build-on-demand) hardware and for letting contracts for the design and
development of custom hardware. The existing-hardware category includes
existing computer systems and customizable hardware.

Hardware that must be designed from scratch is specified in terms of
its functionality, performance, and implementation constraints. This
includes a complete logical and electro-mechanical description of its
interfaces. In those cases where the custom hardware is to support
software, the hardware/software interface will be defined well enough to
allow the concurrent and independent design of the software.

The software requirements specification contains the technical
information needed for the procurement of existing software packages and
for the letting of contracts for the design and development of custom
software. Software is specified in terms of its functionality,
performance, and implementation constraints. The implementation
constraints contain a description of the hardware/software interface, with
the term "hardware" being understood to include computer systems. It may
also specify that the software be written in a particular
high-order-language or assembly language.
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STEPS

FORMALISM SELECTION

In the hardware area, specification formalisms are needed for

describing hardware that is to be designed. For programmable devices,
the formalisms must deal with the instruction-set domain, while for
non-programmable devices, the formalisms must deal with functional
domain. In the software area, specification formalisms are needed for
describing software that is to be designed.

Several specification formalisms exist for each of the areas
described above. Each formalism is well suited to a particular range
of application, and all application areas appear to be covered.

FORMALISM VALIDATION

The suitability of a formalism depends on how well it meets the
needs of the application area. In most cases, there is no standard
describing these needs, so suitability must be judged on the basis of
experience.

EXPLORATION

The identification of suitable candidates for a given processor
can be a complex task. Each processor has been assigned one or more
system processes by the architecture phase, and each process has a set
of performance constraints that must be met. In the case of custom
hardware, the assigned processes define the behavior of the hardware to
be designed. In the case of programmable hardware, the assigned
processes define the software that is to be purchased or designed and
they also constrain the selection of the programmable hardware. The
latter results from the fact that software performance is dependent on
the instruction set and speed of the hardware. In those cases where
the software already exists, performance can be ascertained
experimentally. In those cases where the software must be written, the
suitability of the hardware can be judged by two approaches. The first
is by educated guesses based on experience with similar processes and
hardware. The second is by identifying the performance-critical
sections of the processes and then programming them for the hardware
under consideration.

The selection of winning candidates can also be a complex task.
This is particularly true when the item in question is a computer
system because the candidates usually have features not called for in
the design effort. Since these features are potentially useful, it is
unreasonable to simply disregard them. At the same time, it is
difficult to know how to weigh them in the selection process. This
issue has received much study [TIMM73] and is still unresolved.
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Binding can be done in a brute-force manner by exhaustively

identifying all candidates for each processor and interconnection and
then performing the selection process. This is very time-consuming,
especially for large systems, and more efficient approaches are needed.

One possibility is to use the system-wide considerations during

candidate identification to reduce the number of candidates that must
be considered in detail. Such a strategy would have to be worked out
very carefully in order to assure that the only candidates that would

be eliminated are those that would be eliminated by the brute-force

approach.

ELABORATION

The task of this step is to record the design data generated
during the binding phase. These data include the models used for

evaluating candidates, the considerations used in choosing winning

candidates, and the specifications generated for hardware and software.

This documentation task is facilitated by documentation aids of the

type described under the elaboration step of the system architectlre

phase.

CONSISTENCY CHECKING

This step deals with checking the software and hardware
requirements for internal consistency and proper use of the respective
formalisms. Most effort is expanded in the evaluation of the interface

consistency between software components, between hardware components,
and between software and hardware.

VERIFICATION

The verification of the software and hardware requirements is
carried out against the binding requirements received from the system

architectur design phase.

EVALUATION

The task of this step is to determine whether potential

implementation methods can meet the performance requirements of the

processes being bound. If the implementation being considered is an

off-the-shelf package, the performance parameters of the package must

be reconciled with the requirements of the process(es) it is to

implement. If the implementation is custom software running on some

device, the issue is whether software that meets the performance
requirements of the process(es) can be written for that device.

Techniques for determining this are discussed under the exploration

step of this phase.
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INFERENCE

The objectives of this step are similar to those of the
corresponding step from the system architecture design phase. The
difference is in the fact that here the actual machines to be used are
known and, therefore, the analysis becomes more concrete.

INVOCATION

This step consists of a formal review and sign-off on the hardware
and software specifications, thereby giving official permission to
begin procurement of hardware and software.

INTEGRATION

This step is vacuous for the binding phase. All aspects of system
integration fall under the purview of the system architecture phase.
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2.3.3 SOFTWARE DESIGN STAGE

TERMINOLOGY OF THIS STAGE

REQUIREMENTS: Software Requirements

PHASE: Software Configuration Design
REQUIREMENTS: Program Design Requirements

PHASE: Program Design
REQUIREMENTS: Implementation Requirements

PHASE: Coding

DESCRIPTION OF STAGE ACTIVITIES

The Software Design Stage transforms the software functionality and
performance requirements, as specified by the System Design Stage, into a
working software system meeting those requirements. This transformation
may generally be performed in one of three ways: the custom design,
development, and implementation of the software system, the procurement of
a suitable software system from an external source, or some combination of
these two activities, supported by a rigorous integration and validation
effort.

STATE-OF-THE-ART

Recognition of the well-known software crisis came during the late
Sixties. Since that time, considerable progress has been made toward
systematizing the production of reliable software. Starting with
tentative steps toward the improvement and definition of programming style
[KERN741, the ideas of top-down design, modularity, structured
programming, and stepwise refinement [WIRT71a, WIRT73, DAHL74]
crystallized into well-defined practices supported by a variety of
vehicles ranging from guidelines [JACK75] to formalized rules for
describing and documenting programs (see [LISK79] for a general discussion
of the state of the art), and automated tools to expedite and monitor the
program implementation process [TEIC77]. The impact of this movement
extends to the programming languages themselves, since their construction,

stemming from earlier perceptions of the programming process, generally
did not anticipate the trend toward systematization. As a result,
important changes have been introduced into existing languages such as
FORTRAN [ANS166] and COBOL [ANSI68]. In addition, concern with structured
programming has prompted the appearance of new languages such as PASCAL

[WIRT71a, JENS75], Simula [DAHL66, DAHL70], Ada [DOD791, and CLU [LISK77a]
in which such features as strong typing and user-defined abstract datL
types play prominent roles.

Response to the software crisis transcended the individual program,
addressing a spectrum of system design issues as well. Accordingly, the
system design and development process is currently supported by a variety
of technical and management instruments, including chief programmer teams
[BAKE72, BAKE73], structured analysis [ROSS77a, ROSS77b], and structured
walkthroughs (YOUR75]. In summary, the software development process is
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now perceived as an engineering endeavor, with the primary emphasis on
reliability, maintainability, quality assurance, and fault tolerance.

However, further work is needed since many of the above-mentioned
areas are still in their early stages of development. Issues yet to be
addressed include:

-- The further integration of automatic tools with
methodologies well suited to their use, and integration
between different methodologies and techniques.

-- Greater transfer of technology between developers and
potential users, as well as further use of existing
tools and techniques.

-- The further development of formal languages and
rigorously verifiable techniques. These should have a
positive impact on the traceability of requirements and
constraints throughout the system development process.

-- A better understanding of how to exploit concurrency in
the design of software systems, all the while managing
the complexity of such designs. Accordingly, the need
for formal tools and sophisticated design aids oriented
toward concurrent systems presents an important frontier
for future research.
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PHASE NAME: Software Configuration Design

PURPOSE

The purpose of the Software Configuration Design phase is the
development of a model of the software system structure, description of
the programs comprising the software system, the interfaces through which
the comp nents communicate with one another and with their environment,
and a specification of how the components of the system are to be acquired
(i.e., through custom design and implementation, off-the-shelf
procurement, a combination of the two, or by some other means).

INPUT

The Software Configuration Design Phase receives as its input from
the System Binding Phase of the System Design Stage a set of Software
System Requirements. This consists of the system functionality
specifications and the system constraints. The former describes what the
system must do; the latter imposes quantitative and qualitative
restrictions on the set of possible design solutions. Examples of such
constraints are: performance constraints, hardware and configuration
constraints, and implementation language constraints.

OUTPUT

The Software Configuration Design Phase provides the Program Design
Phase with a specification of the structure of the software system,
functional and performance specifications of the programs which need to be
designed to implement that structure, and the program interfaces. The
latter refer to major software system interfaces, such as databases and
file management systems, major data structures, user interfaces, etc.
This phase may also develop some further constraints to be observed in the
later software development phases, such as time and space constraints for
each system program.

STEPS

FORMALISM SELECTION

The formalism selected for this phase of the system design should
be useful in the description of the important design aspects of a
software system. These include the structure of the system, behavior
of the component programs, the interfaces between the component
programs, and procedural relationships and models.

The criteria to be employed in the selection of one formalism over
another include: degree of formality, nonprocedurality, verifiability,
analyzability, the existence of automated support tools, simplicity,
the support of hierarchical descriptions, suitability for the
description of concurrency in a system, and the capability to deal with
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multi-level, virtual-machine system architectures.

Existing formalisms having some of these properties, in different
and varying combinations, include:

-- Structured Analysis (SA, or SADT) [ROSS77a, ROSS77b]
-- Structure Charts and Data Flow Charts (MYER73]
-- HIPO's (Hierarchy plus Input-Process-Output) [IBM74]
-- Structured Systems Analysis [GANE79]
-- Procedural and data abstractions [LISK77b]
-- PSL/PSA [TEIC77]
-- HOS [HAM176]
-- RSL [BELL77]

FORMALISM VALIDATION

The important factors to be considered in the validation of the
selected formalism are: the formal aspects of the system selected and
their applicability to the problem domain, and empirical evidence
obtained through previous experiences with the use of the selected
formalism. In addition, the formalism must be suitable for software
engineers to use comfortably as a design tool.

EXPLORATION

Guidelines to be employed in the decomposition of the software
system into a set of programs include:

-- Isolation of functionally-related or data-related
activities into single programs, thereby
maintaining strong correspondence between
conceptual activities and actual processes.

-- Use of straightforward, well-documented interfaces
to minimize apparent complexity.

-- Employment of stepwise refinement to develop the
design from initial requirements in a systematic
manner.

-- Comparison of different possible program and
interface configurations to arrive at the best
possible design.

Available techniques and aids include:

-- Top-down design through stepwise refinement
[WIRT71b, DAHL72].

-- Bottom-up design through stepwise composition
(DIJK68b].
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-- The use of virtual machines to implement a set of
interacting software layers [DIJK68b].

-- Modularization of data and function [PARN72b).

-- Data structuring and encapsulation [LISK791.

-- Invariant data structures.

ELABORATION

The current trend in elaboration centers around the use of one of
the design aids mentioned above. Some of the design aids mentioned are
supported by automatic tools; more generally, however, they are simply
a set of rules and procedures to be followed. Common software aids
such as databases and computer graphics, however, can be helpful in the
management of information, particularly on very large projects.
Application of these aids expedites the production of requirements
definitions for the Program Design Phase.

CONSISTENCY CHECKING

The specifications produced in the elaboration step should be
checked against the rules of the selected formalism (i.e. syntax).
Problems with self-consistency, contradictions, and completeness should
be checked for, as well as consistency between levels of the
development when hierarchical specifications are used. Interface
usages should be verified against their definitions. When
complementary specifications are used, they should be checked against
one another (e.g., behavior vs. structure; data flows vs. event
sequences).

VERIFICATION

The logical correctness of the specifications should be verified
with respect to the specifications input to the stage. This includes
the verification that no information from the previous stage is lost or
ignored. Logical verification is somewhat similar to a proof of the
correctness of a program, but an order of magnitude more difficult.

EVALUATION

The evaluation step examines the specifications set down in the
previous steps and produces data describing aspects of those
specifications. This may include an evaluation and prediction of the
performance of the selected software architecture, in terms of the
performance of each component program. This evaluation may be arrived
at through various methods of performance modeling and simulation,
forecasting models, reliability models, etc. The specific-tions should
also be examined in light of the other qualitative and quantitative
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constraints, such as fault detection and recovery, maintainability,
flexibility, transportability, freedom from problems such as deadlock,
and feasibility of implementation. Other important factors are the
human engineering factors, which may be studied by a user review of
human interfaces, mockups, etc.

INFERENCE

In the inference step, those aspects from the mass of data
produced in the evaluation step relating to the user environment and
the next phases are studied and evaluated to obtain a global picture of
the quality of the proposed software system architecture. The initial
study of testing strategy is also begun. In addition, the impact of
the proposed design on the module level design phase should be
considered (e.g., the gross complexity of the algorithms to be used).
The results of this inference determine whether the next design phase
should be invoked, or whether further iteration over and refinement of
the design are necessary. The potential impact of the parts of the
system specified for procurement should also be anticipated at this
point.

INVOCATION

The Program Design Phase is invoked.

INTEGRATION

The tested and 'debugged' programs are received back from the
program design phase, and are integrated together, along with any
off-the-shelf software specified in the software system architecture,
into a coherent software system. The system is thoroughly tested,
using test cases generated in previous steps of this phase, along with
any testing suggested by designers in the lower phases. Testing can be
speeded and aided in completeness by use of any of the several
automatic testing aids and systematic testing procedures available
(HETZ73].
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PHASE NAME: Program Design

PURPOSE

The Program Design Phase is responsible for the decomposition and
refinement of the program specifications generated in the previous phase

into lower-level, reasonably sized, completely specified modules,
including descriptions of the algorithms and -he local data structures to
be employed.

INPUT

The inputs to the Program Design Pha-e are simply the outputs of the
Software Configuration Design Phase, the Program Design Requirements,
consisting of:

-- the system structure
-- the program requirements specifications
-- the program interfaces.

OUTPUT

As output, the Program Design Phase produces a set of Implementation
Requirements. These requirements are:

-- the module specifications, composed of algorithm
specifications and local data structure
specifications

-- the intermodule interfaces, such as data structures

and parameter lists.

STEPS

FORMALISM SELECTION

The most important criteria for formalism selection in this phase
are the degree of formality of the formalism, and the ease with which
it can be used. Some examples of formalisms relevant to this phase of
the design are: English, conventional flowcharts, structured
flowcharts [NASS73], schematic logic [JACK75, JENS79], pseudocode (with
assertions), decision tables, finite state machines, and formal program
specification languages (e.g. PSL [TEIC77], GYPSY [AMEL77]) and
techniques (axiomatic specifications (HOAR69], operational
specifications [PAGA81]).
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FORMALISM VALIDATION

The formalism should be examined primarily with regard to the
degree to which specifications produced through its use may be
verified, and the productivity expected from its users. Productivity
is largely a function of how well the formalism is suited to use by
software engineers, and how easily it can be translated to code.

EXPLORATION

The purpose of this step is the decomposition of the program into
a set of functionally simple modules, and the selection and description
of the data structures and algorithms to be employed in the
implementation of the program modules. Techniques useful in this
decomposition are: modularization [PARN75]; structured programming
[DAHL72]; stepwise refinement [WIRT71b]; abstract machines [DIJK68b];
data structuring; abstract data types and encapsulation [LISK74]; and
information hiding [PARN72b].

ELABORATION

In this phase, the elaboration step simply involves the
description of the design decisions made during the exploration step
through use of the selected formalism(s).

CONSISTENCY CHECKING

Consistency checking is performed with respect to the rules of the
formalism, i.e., the syntax of the formalism. The use of the
interfaces also has to be checked, both between modules, and when the
modules must interface to the environment. The module descriptions
must be checked for violation of invariants during their processing,
and while interacting with the program interfaces.

VERIFICATION

The specification must be verified against the requirements of the
programs as passed in from the software design phase. They can be
checked for the preservation of specified I/O assertions. Correctness
proof techniques may be employed, to the extent that they are usable
and useful.

EVALUATION

The evaluation step of this phase is concerned with many of the
same issues as described in the evaluation step of the software
configuration design phase. The further decomposition should be
reflected through the further refinement of the performance parameters.
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INFERENCE

In the inference step, one of the things to be considered is the
implication of the data structures selected on the choice of a
programming language. Different structures are more naturally
represented and manipulated in different languages. Likewise, the
relation between the proposed algorithms and the operations they
require, and the features and performance of different programming
languages should be considered.

INVOCATION

The Coding Phase is invoked.

INTEGRATION

The program design phase receives back tested modules from the
Coding Phase. Integration involves the testing of these modules as
they interact with each other as programs.
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PHASE NAME: Coding

PURPOSE

The Coding Phase is responsible for the actual programming of the
modules specified in the Program Design Phase, and the testing of the
modules against their specifications.

INPUT

The Coding Phase receives the Implementation Requirements produced by
the Program Design Phase. These requirements are: the module
specifications, and the intermodule interfaces.

OUTPUT

The coding phase produces coded, tested modules and any necessary
documentation.

STEPS

FORMALISM SELECTION

The formalism employed in the coding phase is some kind of
programming language. The language may either be selected on the basis

of the problem domain and suitability to implementation of the data
structures and algorithms specified in the program design phase; or,
it may be specified as a constraint from much higher in the design.
Examples of programming languages, such as Pascal, PL/I, Algol, or any
of a number of assembly level languages, should be familiar to most.
One alternative to the conventional programming languages is the
preprocessor, which, depending on it and the language it is targeted
for, may make coding a much easier and reliable matter through the
assistance it can provide in programming style, available control or
data structures, data types, concurrency, etc. One of the better known
preprocessors is the RATFOR preprocessor for the FORTRAN language
[KERN75].

FORMALISM VALIDATION

The formalism validation simply involves examination of the
suitability of the selected language with respect to the algorithms,
data structures, and general problem domain inherent in the modules to
be coded. Other factors are the availability of language processors
and program development tools, such as special purpose text editors,
and the machine (hardware or software) on which the programs are to
run.
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EXPLORATION

A one to one mapping between module specifications and coded
program modules is performed. The many rules of good programming style
and structured program development should be employed.

ELABORATION

On-line syntax checkers and standards enforcers provide valuable
assistance in the coding of error-free programs. Library modules are
useful in reducing the work of the programmer, provided that care is
taken that they actually meet the specifications of the module or

module fraction.

CONSISTENCY CHECKING

Consistency checking is usually provided by the language processor
or translator, whether it be a compiler, assembler, or interpreter.

VERIFICATION

The coded modules should be verified against the specifications
describing them, as passed into the coding phase from the program
design phase. The coded modules should then be thoroughly tested.
There are tools available for testing, tracing, instrumenting, and
performance monitoring.

EVALUATION

The actual performance data can be obtained and checked against

the constraints associated with each module. If performance criteria
can not be met, then recoding or redesign should be considered.

INFERENCE

The inference step is vacuous for this phase.

INVOCATION

The Coding Phase does not invoke any further phases.

INTEGRATION

Since there are no further phases below the Coding Phase,
integrating is vacuous for this phase.
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2 .3 .4 MACHINE DESIGN STAGE

TERMINOLOGY OF THIS STAGE

REQUIREMENTS: Hardware Require.ents

PHASE: Hardware Configu.ation Design
REQUIREMENTS: Component Requirements

PHASE: Component Design
REQUIREMENTS: Circuit Design Requirements; Firmware Requirements

DESCRIPTION OF STAGE ACTIVITIES

This stage receives as input a set of hardware requirements, which
may consist of a set of procurement instructions and/or design
specifications for customized hardware (such as the desired instruction
set and performance constraints, or some form of signal transformation
function). The purpose of this stage is to procure hardware for the
system and to carry out a high level design of all custom hardware. The
output of this stage, if necessary, is a set of firmware requirements for
the hardware that has been purchased or designed and a register level
specification of the hardware circuitry which must be custom made.

STATE-OF-THE-ART

Well established methodologies already exist in many places for the
development and procurement of hardware at this level, but most suffer
from serious shortcomings. Despite the wealth of knowledge and experience
that has been developed over the years of large hardware systems design,
the design of these system remains an art. Much of this is due to a lack
of formality in the specification methods used and the lack of a cohesive
support facility for the development of hardware. In recent years,
however, the development of hardware description languages [SHIV79] and
efforts by the American National Standards Institute to establish a
standard formal symbology for hardware description have paved the way for
the establishment of hardware design facilities meeting the requirements
of the TSD framework.
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PHASE NAME: Hardware Configuration Design

PURPOSE

This phase serves to procure off-the-shelf hardware to meet the

system hardware specifications where possible and to carry out an
architectural design of the hardware which cannot be purchased.

INPUT

The Hardware Requirements specification consists of one or more of
the following:

-- A set of procurement specifications for the purchase of
existing hardware systems.

-- A set of specifications for the design of custom hardware
including the required instruction set or processing
capabilities and the required performance of the hardware
system.

-- A set of transformation functions for hardware which must
provide an interface with the environment.

OUTPUT

The output of this phase is the Component Design Requirements

specification, which is a formal model of the system at the hardware
architecture level (the building blocks for the model at this level are
processors, memories, switching networks, interconnection links, etc.).

This model must include both a functional and performance model of the
system, with orientation toward the implementation of the instruction set
presented in the input requirements in such a way that all of the
constraints are met.

STEPS

FORMALISM SELECTION

The formalism used in this phase must be designed to work with
design components at the level of processors, memories, and
communications structures. For those portions of the system which must
be custom designed, the formalism should be oriented toward the type of
machine architecture being designed (a formalism designed for use in
distributed systems design would be more complex than is needed for the
design of a single stand-alone computer system). If procurement is the
desired goal, then the formalism should be oriented toward the
evaluation of existing machines in terms of the Hardware Requirements.

In all cases the formalism should allow for the description and
analysis of system constraints as well as function. (See [BELL71 for
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one formalism which is widely used at this level.) Such factors as
human engineering and availability of automated aids should be
considered when evaluating any formalism for potential use.

FORMALISM VALIDATION

Validation of the formalism chosen consists of performing an
analysis of suitability of the formalism for use with the particular
design and procurement problems presented by the proposed hardware
system. In many cases this is done by using the formalism to construct
a "toy" model of the proposed system and then evaluating the formalism
in terms of this model.

EXPLORATION

The exploration task consists of two possibly interrelated tasks:
the search for existing hardware systems for purchase, and the design
of the hardware architecture for custom machinery. The search for
existing equipment essentially involves a survey of current commercial
hardware, interviews with manufacturer representatives, analysis of
established customer installations, etc. In the design of custom
hardware, a modular approach to design emphasizing flexible and
expandable structures with simple interfaces is required. In all cases
a review and incorporation of past efforts in similar areas could
greatly reduce the amount of effort necessary in this step.

ELABORATION

In this step the results obtained in the previous step are
expressed formally using the formalism chosen for this phase. In this
way the design of custom components and the characteristics of proposed
off-the-shelf hardware is put in a form which allows extensive analysis
in later steps. Because of the complexity and formality required, some
form of computer aid is needed to support this activity. Examples of
this are storage of the specification in a database and automatic
generation of documents from the database, syntax checking on the
specification, maintenance of a library of standard components and
solutions to specific problems, and the handling of simple clerical
chores for the designer [SHIV79].

CONSISTENCY CHECKING

This step, which should be carried out with as much automated
support as is possible, serves to analyze the formal specification of
the hardware system for correct usage and self-consistency. No attempt
is made at this step to analyze the system itself, however. Examples
of inconsistent specifications are: requiring communication between
machines of different word lengths or processing speeds without an
interface, specifying a processor component without providing any
memory for it, specification of a communications link without a
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termination, etc. Automated support for this could take the form of a
set of analysis programs to check the specification for specific
consistency criteria or some kind of formatting system to present the
specification in a form that can be easily analyzed by the designer.

VERIFICATION

In this step the hardware system itself is analyzed functionally
for correctness with respect to the Hardware Requirements. In
particular, sequencing and protocol in the system must be verified, as
well as the support for all of the required hardware functions such as
the hardware instruction set and input/output functions. Mechanical
analysis here may be difficult as it requires comparison of two
(perhaps completely different) formal specifications for mutual
consistency, but some kind of computer aid to format the specification
in a form that is convenient for the comparison of the two
specifications would be helpful. In addition, the function of
processor components in the system may be verifi,d by emulation of
their instruction sets [CLAR78J.

EVALUATION

The purpose of this step is to evaluate the design in terms of the
constraints presented in the Hardware Requirements. The performance
and timing of the system can be evaluated in part by simulation of the
system [T074], although in cases which are simple or very regular in
structure some form of analytic technique may be developed [ALLE80].
For devices which have been purchased, a set of benchmark tests
designed to evaluate the hardware for the specific task that it will
perform may be used to evaluate the equipment. For processor type
components, emulation may be used in conjunction with estimates of the
required execution time for each instruction to gather performance
data. Other constraints such as power and weight limitations may be
measured directly for existing equipment and must be estimated for
custom equipment. Aspects such as fault tolerance and maintainability
may also be of concern in this step [COX79].

INFERENCE

This step attempts to project the impact that decisions made at
this level of the design will have on any later phases of the design
and on later use of the system in a production or maintenance
environment. Such a projection is to serve both as a guide to later
design phases and as a final analysis of issues other than
functionality and performance that may have an impact on the acceptance
of the design. Examples of issues that are of concern in this step are
the feasibility of construction of the hardware as specified,
manufacturer support for procured hardware, availability of
off-the-shelf parts for implementation of the next level of design,
manpower requirements to complete the system construction,
determination of critical areas which require extra design effort (such
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as processing bottlenecks in a high performance system), etc.

INVOCATION

This step invokes the Component Design Phase. If all of the
necessary hardware, complete with firmware, has been procured then this
step is omitted.

INTEGRATION

In this step all of the hardware (both procured and custom
designed) is integrated and tested. The major task of the step is to
insure that the hardware system as a whole works as it was designed
before releasing it for integration with the system software.
Benchmark programs and simulation of the projected operating
environment are two methods which may be used to isolate errors and
confirm correct operation [TO74].
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PHASE NAME: Component Design

PURPOSE

The purpose of this phase is to analyze the component requirements,
purchase all commercially available components (processors, memories, I/0
controllers, etc.) which meet the component requirements and carry out a
register level design of those components which must be custom built. In

addition, the requirements for system firmware must be determined in this
phase.

INPUT

The input to this phase is the Component Requirements specification,

which is a description of the architectural components comprising the
hardware system. This includes both a functional specification and a set
of constraints (speed, size, etc.) over these components. An important

part of this specification is the intended instr tion set for the
processor elements with its requisite timing.

OUTPUT

There are two sets of output requirements for this phase: the

Circuit Design Requirements and the Firmware Design Requirements. The
Circuit Design Requirements specification is a register level description
of the design of those components which cannot be bought commercially.
This specification must include both the functionality of the register
level circuits used as primitives and a description of the speed, size,
and power constraints for the circuit. The Firmware Design Requirements
is a specification of the functionality, performance, and memory
constraints required of the system firmware. This is typically given in
terms of an instruction set to be implemented given the register structure
of the hardware, system protocols to be established, and constraints over
timing and memory usage for these functions.

STEPS

FORMALISM SELECTION

The range of activities to be carried out in this phase is fairly
large, and a variety of formalisms may need to be selected here in
order to carry out the activities of this phase. One of the primary

activities of this phase is the procurement of commercial hardware
components such as processors, memories, mass storage, communications

interfaces, etc.; and this is aided by a formalism oriented towards
the description of these components in a formal manner that lends
itself to later analysis (such a general formalism does not currently
exist). The second major activity is the further design of those
components which cannot be purchased. The formalism used for this must
support hardware description at the register transfer level (typical
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primitives at this level are storage and shift registers, ALUs, bus
structures and controllers, multiplexers, etc.) and be able to model
system constraints as well as function in an analyzable manner. The
last major activity is the establishment of the firmware requirements
for processor-type components. The formalism used here must be capable
of modelling the register level architecture of the hardware to be
microprogrammed as well as present a functional and performance model
for that firmware. Each of these formalisms should be compatible as
the analysis and evaluation of the system requires coordinated analysis
of each of these specifications. Some examples of formalisms
possessing some of the required properties are SMITE, ISPS, CDL, and
DDL (SHIV79].

FORMALISM VALIDATION

The basic requirement in this step is that the formalisms selected
be able to support the types of analysis and descriptive tasks required
of them. The use of the formalisms on simple test cases and experience
from any previous use of the formalisms should provide the lasis for
establishing the validity of using the formalism for any particular
design. Human factors such as usability should be considered when
validating a formalism.

EXPLORATION

It is in this step that the major design activities of the phase
are carried out. A review of commercial components must be made, and a
study of their potential use as components in the design must be made.
Those components which cannot be purchased must be custom designed, and
this design must be carried out to a register transfer level. If a
microprogrammed control structure is to be used, a set of
microinstructions must be decided upon and implemented in the control
structure design. The microinstruction set along with the requirements
for the machine instruction set and timing establish the basic
requirements for the system firmware. As always, the principles of
good design emphasizing modularity, simple module interfaces and
interconnections, maintainability, etc. should be followed.

ELABORATTJN

This step serves to express the informal designs, firmware
requirements, and commercial component descriptions in the formalisms
selected for this phase. The relative simplicity of the basic
primitives at this level should allow for a great deal of structuring
in the formalisms, which in turn should enable mechanized support for
building these models. This support will usually take the form of
computer aided construction of a design database, syntax checking on
all input constructs to this database, prompting for missing components
of the specification, and specially formatted output of the
specification for de3igner verification [SHIV79].
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CONSISTENCY CHECKING

The purpose of this step is to evaluate the formal models produced
above for self consistency and for consistency with each other.
Examples of inconsistent specifications are microcode instructions
which act on registers not defined in the register description of the
processor, connecting byte-parallel devices with bit-serial
controllers, or attempts to place 36-bit data values on a bus which has
only 32 data lines. Again, due the the relative simplicity and
structure at this level it should be possible to automate a great deal
of this consistency checking through a series of analysis programs
which act on the specification database.

VERIFICATION

In this step the design of the system is analyzed for functional
correctness with respect to the Component Requirements. For small
systems this may be done manually by walking through the sequences of
events which occur in the system. For larger systems, automated tools
such as simulation may be used. Protocols between the custom
components and the purchased components should be analyzed for
correctness. The microcode instruction set should also be analysed in
terms of the purchased and custom components to insure that the
microinstructions are all implemented. Procured components may also be
tested in simulated operating environments to verify their
functionality.

EVALUATION

In this step a functionally correct design is analyzed for
conformance with the performance requirements and other constraints
established for the system. Items to be considered at this point are
projected speed, projected size, projected weight, etc. Most of these
constraints can be measured directly with the purchased hardware. For
the custom hardware, emulation of the microcode level and simulation of
the circuit activity using estimates of the timing of these elements
can be used to gather performance data. Additional analysis that
should be performed at this step includes fault tolerance analysis,
failure rate predictions, and probability of entering a deadlock state.
In all cases some kind of automated aid to set up the component tests
and simulations would greatly simplify the task of this step (TO74,
COX79 ].

INFERENCE

The purpose of this step is to analyze the design decisions made
in this phase in terms of their impact on the later phases of the
design. In particular, items such as the feasibility of implementation
of the design, circuit implementation technology, strategies for
firmware design, effects on system maintainability, and effects on
system usability all need to be considered. The conclusions reached
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here serve as a guide to designers at the next levels and to identify

areas in the design which will require extra attention at the next
levels (such as a high speed ALU and efficient firmware to drive it).

INVOCATION

The phases invoked at this point are the Circuit Design Phase and
the Firmware Design Phase.

INTEGRATION

This step serves to integrate the individual circuits designed in
the circuit design stage into components, and integrate the firmware
developed in the firmware design stage with the custom and commercial
components considered in this phase. The components must then be
individually tested and debugged, usually through some sort of
simulation of the projected operating environment. Only after these
components have been shown to meet the functional and performance
requirements established for them are they turned over to the hardware
configuration design phase for further integration.
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2.3.5 CIRCUIT DESIGN STAGE

TERMINOLOGY OF THIS STAGE

REQUIREMENTS: Circuit Design Requirements
PHASE: Switching Circuit Design

REQUIREMENTS: Electrical Circuit Requirements

PHASE: Electrical Circuit Design
REQUIREMENTS: Solid State Requirements

PHASE: Solid State Design
REQUIREMENTS: Fabrication Requirements

PHASE: Fabrication

DESCRIPTION OF STAGE ACTIVITIES

The CIRCUIT DESIGN STAGE is comprised of four phases called the
switching circuit design, electrical circuit design, solid state design,
and fabrication. These phases will be treated summarily as the principles
and techniques used in these phases are already well understood and
contribute little to the understanding of the TSD philosophy as a whole.
Because of the shortened treatment, the format of this section will not
follow that of the other stage descriptions.

The SWITCHING CIRCUIT DESIGN phase deals with the design of custom
circuits at the level of logic functions, op-amps, A/D converters,
flip/flops, etc. The input to this phase is the Circuit Design
Requirements specification, which is a register transfer level description
of the circuit with timing and physical constraints included. The
objective is to produce a full description of the circuit at the logic
gate level, and to obtain off-the-shelf circuits when performance, size,
power, and other constraints allow. Some formalisms which are often used
in this phase are Boolean Algebra and switching theoretic techniques,
augmented with performance models for logic circuits under current
technologies. Analog components require s7-cifications such as transfer
functions or Bode plots. Exploration in es a review of current
commercial circuit packages and techniq,- for constructing circuits
within present technology, as well as systematic design of custom
circuitry. Procurement, as usual, is preferred at this stage if all
functional requirements and constraints can be met. Evaluations of the
circuits at this level consist typically of analytic methods based on
graph theory and switching theory, simulation of the circuit action, and
breadboarding. The input to the next phase is the Electrical Circuit
Design Requirements, consisting of logic and analog circuit models of the
system augmented with performance requirements and other physical
constraints. After invocation of this phase, the custom designed circuits
and the off-the-shelf circuitry must be integrated and tested, usually
through a small scale simulation of the target environment.

The ELECTRICAL rTRCUIT DESIGN phase deals with the circuit design at
the level of conceptual devices such as transistors, resistors,
capacitors, etc. The input to this phase is the Electrical Circuit Design
Requirements, which is typically a logic circuit model with added
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performance and other constraints. The objective of this phase is to
transform these requirements into a design composed entirely of conceptual
electrical devices. The usual formalism used at this level is the
standard electrical schematic diagram, but the ability to model device
characteristics and circuit layout geometry must be present at this level.
It is at this level that the characteristics of the physical medium of
implementation of the circuit begin to have a great effect on the design,
principally through the t o , f devices av-Ailable to the designer but
also in such considerations ,s loading of circuits, amplifier gains,
transmission line effects, et. . Hence, the technology used to implement
the circuit must be deciaed at this phase. The exploration and
elaboration steps rely largely on a review of existing circuit
construction techniques within each technological family, and the
principles of design at this level are comparatively well understood if
not always followed. Although for small circuits or one-time productions
the procurement of discrete transistors, inductors, etc. for circuit
construction is preferred, the decreasing startup costs of integrated

circuit fabrication may make implementation via integrated circuit more
practical as time goes on. Evaluation of a design at this level is
largely done through manual analysis and breadboarding, although computer
simulation of circuits at this level is available (and expensive). The
output of this phase is the Solid State Design Requirements, which is
usually a specification of the electrical devices comprising the circuit
and a set of physical constraints and assumptions concerning these
devices. Once these devices have been procured or fabricated, they are
assembled and tested in the integration step, typically by simulation of
the operating environment or application of a set of test signals designed

to put the circuit through a significant portion of its active state set.

The SOLID 2TATE DESIGN phase serves to translate the electrical
circuit specification into a form suitaole for fabrication. The input to
this phase is the Solid State Design Requirements, which contains
information concerning the device interconnections and device
characteristics of the integrated circuit to be constructed, along with
the assumed fabrication technology. The formalisms used in this phase are
mainly graphical, and in most places are aided extensively by computer.
It is at this point that all device dimensions are fixed, interconnecticn
patterns and chip geometry worked out, and approximate physical and
performance characteristics of the end circuit determined. To aid in this
process, many facilities have developed a set a standard design riles for
each technology, which if followed will guarantee a Thip design that can
be fabricated successfully. The exploratioi and elaboration steps
themselves involve a great deal of exploration into possible circuit
structures and layouts, but a fairly large body of existing solutions to
layout problems is making this task easier. Evaluation is done typically
through analysis for conformance with these design rules, and may also
include automated analysis for conformance with performance requirements.
The output of this phase is the Fabrication Requirements specification,

which is some form of formal specification of the geometry and layout of

the chip to be fabricated. The integration step here is nonexistent, as
the circuit arrives in integrated form from the fabrication phase.

90

i i i C =, ..-...



AD-A126 101 TOTAL SYSTEM DESIGN (TSD) METHODOLOGY ASSESSMENT(U) /
WASHINGTON UNIV SEATTLE DEPT OF COMPUTER SCIENCE

ROMAN ET AL. JAN 83 RADC-TR-82-331 F30602-80-C-0284

OGASF/G 9/2 NL

EIIEIIEEEIhllE
EIEEEIIIIIIIEE
EIIIIIEEIIIIEE
EEEEEEIIIEEII
EEEIIIIIIIIEI
EEEEE.EIIEEIIIE



328 1125
-1L

1-3:2

1.25 114 .

MICROCOPY RESOLUTION TEST CHART

NAIIONAi BURIAL) Of 'IANUARD' 1 6 A



The FABRICATION phase serves to translate the geometric specification
of the integrated circuit to be produced into a finished circuit. The
input to this phase is the Fabrication Requirements specification,
described above. The formalism used is the specific fabrication process
for the device, which involves the generation of process masks from the
input specifications and the use of these masks to guide the fabrication
process. Exploration and elaboration are automatic at this point and
involve simply the production of the circuit. Verification of ths design
at 'nis level takes the form of visually checking for flaws in the
f.AL-rcation of the circuit and checking the operation of embedded test
eircults, and evaluation takes the fcrm of electrically testing the
circuit. The output of this phase is a finished circuit.
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2.3.6 FIRMWARE DESIGN STAGE

TERMINOLOGY OF THIS STAGE

REQUIREMENTS: Firmware Requirements
PHASE: Microcode Design

REQUIREMENTS: Microcode Requirements
PHASE: Microprogramming

REQUIREMENTS: Microcode Generation Requirements
PHASE: Microcode Generation

DESCRIPTION OF STAGE ACTIVITIES

The purpose of the firmware design stage is to translate the firmware
requirements into executable microcode, along with appropriate
documentation and analyses. The complexity of application in which
firmware is useful ranges from very large systems, such as a PASCAL
engine, through less complex applications, such as a graphics display
module or a matrix multiplication module, to relatively simple
applications, such as the implementation of specific machine language
instructions. Firmware development is similar in many ways to general
software development, and many of the concepts, techniques, and tools
applicable in that discipline also are useful in the development of
firmware. However, there are a number of ways in which general software
and firmware differ; because of these differences, techniques not
normally applied in the development of software are sometimes required for
the development of effective firmware. Firmware often deals with more
complex, detailed and low-level hardware components (and the data paths
between them) than does software. This, combined with parallel
manipulation of the hardware components and data paths, requires unique
code generation, verification, and optimization (often known as
compaction) techniques not used in software development. The input to
this stage, firmware requirements, includes:

Functional Specification

-- The semantics of the action to be performed are usually specified
by use of a register transfer language (RTL). The objects
manipulated by this specification are only those defined by the
user (person who will utilize the firmware) and do not include the
actual hardware components available for computation.

Constraints

-- The pertinent aspects of the hardware architecture (e.g.,
horizontal or vertical) must be specified; this includes the
logical and timing properties of the hardware components and their
interfaces. A specification of the microinstructions must be
given, detailing the format, semantics, and timing of each
microinstruction. Requirements on performance (i.e., timing) and
space limitations also must be specified.
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The output of this stage is:

-- The microcode itself.

-- Documentation of the microcode.

-- Any analyses (such as timing summaries) that may be useful for
confirmation at higher levels of the total development process.

The firmware design stage is divided into three phases: the
microcode design phase, the microprogramming phase, and the microcode
generation phase. In performing the activities in these phases, four
languages will be postulated. LI is the primary functional specification
language in which the semantics of the firmware requirements are expressed
(in terms of the user-defined registers). L2 is a secondary functional
specification language in which the semantics can be expressed in terms of
the actual hardware components and data paths to be used by the eventual
microcode developed. Two major alternatives for L2 are an RTL and a
high-level microprogramming language (HLML). L3 is an implementation
language in which the details of the semantics and structure of the final
microcode can be expressed. The major alternatives for L3 are an HLML and
an assembly language. L4 is the microcode itself.

In the microcode design phase, L2 is selected. First, a microprogram
design activity is done, in which common subfunctions are identified and
functionally complete computational components are associated with
self-contained microprogram modules. During this design, specific
algorithms for accomplishing the required tasks are chosen; these
algorithms must be proven to be correct and documented. Then the
functional specification of the firmware requirements as expressed in Li
are translated into L2. During the translation, the structure of the
microprogram design is incorporated and design decisions are made about
which hardware components and data paths are to be used to accomplish the
required tasks. The semantics as expressed in L2 become the functional
specification for the next phase. The performance constraints of the
firmware requirements are distributed to the microprogram modules
identified in the microprogram design activity; these become the
performance constraints of the next phase.

In the microprogramming phase, L3 is selected, and the semantics as
expressed in L2 are translated into L3. During the translation, certain
implementation decisions are made, such as subroutines vs. functions,
global vs. local parameter passing, and temporary handling. The
semantics as expressed in L3 become the functional specification for the
next phase. The performance constraints of this phase, with virtually no
modification, become the performance constraints of the next phase.

In the microcode generation phase, the semantics expressed in L3 are
translated into L4, the microcode itself. During the translation,
optimization of the final microcode is performed. The means of performing
the translation and the type of optimization to be performed must be
determined. Although testing and integration are performed in all three
phases, the majority of the microcode testing is done in this phase.

93



The intent is to produce methodologies in which the maximum amount of
computer automation that can be incorporated is actually utilized. To
this end, we advocate methodologies in which the specification languages,

Li and L2, are as formal as possible. This facilitates machine
manipulation of the specification text, allows the utilization of
automated design aids for consistency-checking and verification, and
encourages the development of automated or semi-automated de:sign aids for
translating between the various languages. Throughout this oection, both
automated and unautomated techniques will be discussed as possible
options; this reflects the current state of the art. However, the
emphasis is on the development of automated design tools and their
incorporation into an integrated, coherent system in which the effort
expended by a human designer in the process of developing a final product
is minimized.

Two major observations about the effort expended in the phases of
this stage should be made clear. First, L2 and L3 should be selected to
be as similar to one another as possible; this will reduce the effort in
the microprogramming phase. In fact, it may be possible to select L2 to
be the same as L3 (or a subset thereof). An obvious choice for such a
combined L2-L3 language is a high-level microprogramming language (i.e.,
L3) capable of expressing the semantics (of Li) in terms of the hardware
components and data paths available to the microcode (i.e., L2). The
utilization of such a combined language would make the microprogramming
phase essentially vacuous, although it would tend to push some
implementation decisions into the design phase. Second, if L3 is selected
to be a high-level language and various optimization tools are integrated
into its implementation, then the microcode generation phase becomes
essentially vacuous. These two observations, along with the fact that
high-level language programs are more easily produced and modified than
low-level language programs, are a strong motivation for selecting L3 to
be a high-level microprogramming language.

STATE-OF-THE-ART

In order to understand the objective of introducing firmware into the

total system design, a general overview of the properties, uses and intent
of firmware seems appropriate. There are usually three alternatives for
the implementation of any specific function: software, firmware, and
hardware. Hardware is fastest in execution, but is not flexible (when
simple corrective modifications must be made) and may require a
significant design effort. Software is slowest in execution, but is very
flexible and requires less design effort. Firmware is a compromise which
combines the flexibility and speed of design of software with some of the
execution speed of hardware. Thus, firmware is most applicable when a
flexible, relatively fast system must be developed with a relatively small
design effort.

The execution speed of the final system is very important. The
speedup (of firmware over software) is accomplished due to the inherent
speed at which microinstructions can be executed and the potential
parallelism of accessing many hardware components at the same time.
(Reduction in storage space requirements also may be realizable by the use
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of microcode as compared with macrocode, but this usually is secondary to
the speedup advantage.) Since one of the intents of introducing firmware
into the system design is to achieve this execution speedup, an obvious
objective is to produce firmware that coutains a minimal number of
microinstructions and can produce the desired semantic actions in the
shortest possible amount of time. Thus, the results (and therefore the
quality) of the optimization activity is important in the development of
effective firmware.

There are two commonly utilized characterizations for firmware
architectures: vertical and horizontal. A vertical architecture is one
in which each microinstruction incorporates little or no parallelism in
the manipulation of different hardware components. A horizontal
architecture is one in which each microinstruction has the capability to
manipulate a significant number of hardware components in parallel. Most
of the firmware systems used in practice combine these two architectures
into a mixed implementation. Speedup can be obtained in vertical
architectures, but this speedup is limited by the small degree of
parallelism. Local [AH076, BUSA69, FRAI70] and global [ALLE7O, ALLE76,
COCK7O, EARN72, GILL77, GRAH75, HECH72, HECH73, HECH74, HOPC72, KAM76,
KENN71, KENN75, KILD73, OSTE74, SCHA73, ULLM72] optimization techniques
used in general software development are normally sufficient to produce
reasonably optimized code for such a vertical architecture. On the other
hand, very significant speedup can be realized in horizontal architectures
by taking advantage of the inherent parallelism. However, optimization
techniques not used in general software development (because the inherent
parallelism is not present) must be used to produce significantly
optimized code. The introduction of parallelism also makes it more
difficult to verify that the action of the optimized code represents the
semantics of the original specifications.

The selection of L3 can have a significant affect on the total
effort. It should be clear that developing a program (whether software or
firmware) in a high-level language requires less effort to code originally
and maintain than ore developed in a low-level language, such as assembly
language. However, this is not the only advantage of writing in a
high-level language. Optimization tools can be incorporated into the
underlying implementation of the high-level language to perform automatic
optimization of the resulting code. Also, it is possible to incorporate

an assertion sublanguage within the high-level language to aid in
automatic verification of the resulting code. This is not intended to
imply that such tools cannot be incorporated into low-level languages;
however, the natural way in which they can be packaged in a high-level
language, the ease of use of the high-level language, and the way in which
the high-level language releases the programmer from burdensome details
all indicate that this is the more appropriate course. A high-level
language also may be applicable to more than one firmware system.

It is a common belief that hand optimization of microcode always
produces more effective firmware than machine optimized code. Experience
has shown that, for small microcode segments, this probably is true.
However, experiments on large firmware systems indicate that machine
optimized microcode can produce better firmware than hand optimized
microcode [PATT79]. This may be due to the observation that for small
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segments of microcode, the complexity is small enough that a person

performing hand optimization can do an excellent job of optimization;

however, as the size of the microcode (and therefore its complexity)

increases, the person is generally unable to effectively manage the

increased complexity, and thus fails to recognize optimizations that an

automated optimizer is capable of recognizing.

A significant effort has been expended to develop high-level

microprogramming languages for microprogrammable machines (such as SMITE
[SMIT77]). Work has been done to develop similar languages that are

applicable to a wide variety of machines instead of just one. Progress in
this area has been hampered by the facts that: many of the

microprogrammable machines have a fundamentally different detailed
architecture, the semantics of certain microinstructions of one machine
may have no corresponding counterpart in another machine, and the

development of effective firmware requires utilization of these
specialized architectures and microinstructions. No specific approach to

these problems has shown itself to be the ultimate solution. However, two
specific approaches seem promising. The first approach uses the concept

of extensibility, such as EMPL as proposed by DeWitt [DEWI76a, DEWI76b).
In such an approach, a core language is defined in which the properties

common to most machines are explicitly expressible (e.g., control

structures, data transfer). The language is designed so that extensions
to the syntax and semantics can be introduced into the language by use of
appropriate directives contained in the core language. In this way, such

a high-level language can express thiss aspects common to most machines
(by use of the core language), and the differences can be expressed by use
of extensions. A second approach is similar in intent to the extensible
language approach but uses a machine-independent microprogram language

schema to accomplish the goal [DASG78a, DASG8Oa, DASG8Ob]. In this
approach, the language is defined at several different levels. The top
level constitutes a core language (similar to that of extensible

languages) in which aspects common to most machines can be expressed.

Lower levels define more detailed aipects of the machine; these lower
levels are 'instantiated' for the specific machine upon which the

microcode will execute. In other words, the differences between two

specific machines become apparent and are introduced only at the lowest
level necessary. Th:. , significant amounts of code will be applicable to

a wide variety of machines. One or both of these approaches eventually

may produce a language (or family of languages) applicable to a wide range

of microprogrammab..e machines.

An area in which essentially no work has been done is that of mapping

the original firmware requirements onto the specific hardware architecture

of the machine. This activity is currently done primarily by hand and is

presumed to require the skill of a highly trained designer. If a

coherent, integrated, automated facility is to become a reality, the

development of an automated or semi-automated design tool to help in this

activity is essential.
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PHASE NAME: Microcode Design

PURPOSE

The purpose of the microcode design phase is to produce and document
an overall design of the microcode. This includes selection of a specific
program structure and algorithms for performing various functions (such as
a multiplication or table lookup).

INPUT

The firmware requirements include:

-- Functional specification of the firmware.

-- Hardware description (components, data paths, and communication).

-- Microinstructions specification (format, semantics).

-- Performance constraints.

OUTPUT

The microcode requirements include:

-- Microprogram organization.

-- Module specifications.

-- Hardware Description (same as in input).

Microinstructions specification (same as in input).

-- Performance constraints (time constraints for each module)

STEPS

FORMALISM SELECTION

The microcode design language, L2, must be selected. The
selection criterion for the language is a function of the hardware
components, their data paths, and their forms of communication; L2
must be able to express the original functional specification in terms
of the actual hardware the final microcode will manipulate. L2 should
be as high-level as possible (suppressing certain implementation
details) but should be as similar to L3, the implementation language,
as possible (to reduce translation effort in the next phase).
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The selection of L2 may. of course, depend on the specific tools
available. It is usually chosen to be an RTL or a subset of an HLML.
Since automation is one of the primary objectives, its specification
form should be machine manipulatable and its semantics should be formal
enough that at least certain forms of verification can be performed
upon it.

FORMALISM VALIDATION

Validation is normally performed by hand by a designer familiar
with the firmware architecture. This can be done by exhaustive
verification that each of the hardware components, data paths and
communication primitives (in all their combinations) can be expressed
within the formalism of L2.

EXPLORATION

The exploration step embodies two basic activities which may be
intertwined. The first is microprogram design in which common
subfunctions are identified and functionally complete computational
components are associated with self-contained microprogram modules.
Specific algorithms must be selected to perform various tasks. These
algorithms must be well documented and proven correct with respect to
the environment in which they will operate. The concepts and
techniques used here are well understood and are very similar to those
used in software program design. The second deals with mapping the
original functional specifications (as expressed in Li) into
specifications that address the actual hardware to be manipulated (L2).
This activity is viewed as being an art and requiring skilled personnel
familiar with firmware design.

ELABORATION

The elaboration step deals with incorporating the decisions made
in the exploration step within the process of translating the
functional specifications from Li to L2. There are no known tools
available to help in this translation process. However, the
development of such a design aid is very important for the development
of an integrated design facility, and a significant effort should be
expended in this effort.

The results of this elaboration step become the module
specification input for the next phase.

CONSISTENCY CHECKING

Besides eliminating syntax errors, the consistency checking step
deals with verifying that the semantics expressed in L2 are consistent

as a function of the hardware. For instance, no two parallel data
transfers should utilize the same data path; nor should two parallel
data transfers have a common target. If L2 has been chosen to be an
HLML, such consistency checking may be an integral part of the
implementation of the corresponding compiler. In any event, if such
consistency checking functions are not available elsewhere, specific
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design aids should be developed. Of course, such design aids must have
some knowledge of the hardware (at least local semantics), and the
effort required to develop them will depend on the specific hardware

(or class of hardware) involved.

VERIFICATION

The verifieation step deals with ensuring that the specifications
expressed in L2 are consistent with those expressed in Li. Since the
design activity constitutes a significant translation between
(potentially) two distinctly different domains, it may be difficult to
develop design aids that can formally guarantee consistency between the
specifications. Such a design aid would require a very detailed
knowledge of the hardware (such as timing). It might involve some form
of global simulation; a concept similar to symbolic execution might be
employed.

EVALUATION

The evaluation step deals with distributing the performance
constraints of the firmware requirements onto the microprogram modules
identified in the exploration step. This distribution is based on the
specific decomposition chosen and the designer's judgements (estimates)
about the actual properties of the microcode to be produced. Although
design aids could be developed to help distribute the affect of these
judgements onto the separate modules, this is usually easily done by
hand, and such aids seem unwarranted.

INFERENCE

With a specific design developed in this phase, it may be
impossible to implement (in the next two phases) the firmware given the
space and execution time constraints. If it is determined that the
specific design cannot be effectively implemented, then a new design
must be developed (or failure reported to the invoking stage).

INVOCATION

The microprogramming phase is invoked. This may be done
separately for each distinct module, certain collections of modules, or
the entire microcode design.

INTEGRATION

This step deals with integrating separate microcode modules
together to verify that the total firmware package works as an
integrated whole. For instance, it must be verified that all the
modules have consistent interfaces. A systematic testing strategy
should be developed to insure that the firmware is consistent with the
original functional specifications. It must also be verified that the
actual microcode meets the input performance specifications. If the
actual hardware is available, this testing can be performed on it;
otherwise, the hardware may be emulated (or simulated).
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PHASE NAME: Microprogramming

PURPOSE

The purpose of the microprogramming phase is to translate the results
of the microcode design phase into an implementation language capable of
producing actual microcode.

INPUT

The microcode requirements include:

-- Microprogram organization.

-- Module specifications.

-- Hardware description.

-- Microinstructions specification.

-- Performance constraints.

OUTPUT

The microcode generation requirements include:

-- Implementation specifications (HLML or low-level assembly
language).

-- Hardware description (same as the input).

-- Microinstructions specification (same as the input).

-- Performance constraints (usually the same as the input).

STEPS

FORMALISM SELECTION

The implementation language, L3, must be selected. It must be
able to express the semantics of the actual microcode to be executed.
The selection criteria include: the specific tools available, ease of
semantic expression, ease of translation from L2 to L3, and foresight
about optimization, modifiability, and verifiability. There must be an
effective translation process from L3 to the microinstructions. The
major choices for L3 are an HLML and a low-level assembly language.
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FORMALISM VALIDATION

The validation criteria are similar to that of the microcode
design phase. If L3 is chosen to be an assembly language, this step is
vacuous; if a HLML is chosen, an exhaustive verification can be
performed. The appropriateness of the language chosen is based on the
criteria mentioned in the formalism selection step and the quality of
the actual microcode produced. For instance, assembly language may be
difficult to optimize and verify, whereas an HLML may not produce
sufficiently compacted code.

EXPLORATION

The implementation decisions that must be made are very similar to
those found in software implementation. Such decisions include:
whether to implement a module as a subroutine or a function, whether to

pass data globally or explicitly through a parameter list, and how to
hold temporary values.

ELABORATION

The specification expressed in L2 must be translated to L3. If L2
was chosen to be the same language as L3 (or a subset thereof), then
this step is essentially vacuous (or close to it). If L3 was chosen to
be a low-level language, then this translation is normally done by
hand. It is possible to develop design aids to help in this
translation. However, this is essentially the same as developing a
compiler for L2, and, therefore, this option reduces to a previously
considered option.

CONSISTENCY CHECKING

If L2 was chosen to be L3, consistency checking is inherited from
the microcode design phase. If L2 and L3 are significantly different,

the same activities performed in the microcode design phase must be
duplicated here with respect to the new formalism, L3.

VERIFICATION

Again, if L2 was chosen to be L3, then verification is inherited
from the microcode design phase; otherwise, the same kind of activity

and design aids are appropriate here.

EVALUATION

This step is normally vacuous. If no new decomposition is
performed and no more detailed information is now available, then the
input performance constraints become the output performance
constraints.
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INFERENCE

This step is Pisentially vacuous.

INVOCATION

The microcode generation phase is invoked. Again, this may be
done separately for each distinct module, a certain collection of
modules, or the entire microcode design.

INTEGRATION

The activity in this step is identical to that in the microcode
design phase.
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PHASE NAME: Microcode Generation

PURPOSE

The purpose of the microcode generation phase is to produce the
actual microcode required. This may involve translation and/or

optimization.

INPUT

The microcode generation requirements include:

-- Implementation specifications.

-- Microinstructions specification.

-- Hardware description.

-- Performance constraints.

UUTPUT

The output of this phase is the microcode itself.

STEPS

FORMALISM SELECTION

This step is vacuous; L4 is given.

FORMALISM VALIDATION

This step is vacuous.

EXPLORATION

The specific translation tool or technique for transforming L3

into L4 must be selected. The implementor must decide whether local
and/or global optimization is to be performed and, if so, what methods

or tools are to be used. Optimization could also be done for either
time or space.

ELABORATION

The elaboration step corresponds to translating the specification

expressed in L3 into the microcode itself and optimizing that
microcode. In the current state of the art, there is essentially
always a tool for performing the translation (either a compiler or an

assembler). Generic assemblers are available [ADVA78]. Generic
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compilers are not yet common place although work has been done in this

area [DASG78a, DASG8Oa).

Optimization can be done by hand or can be automated. Hand
optimization may be best for short sequences of code; automated
optimization is probably better for large segments of code. If
automated optimization is appropriate, it is best to integrate the tool

into an integrated package with the translator. There are many
techniques for compacting the microcode [ FR76, BARN78, DASG76,
DASG78b, LAND80, MALL78, TOK077, WOOD78, YAU74], and some have been
integrated into HLMLs [PATT79].

CONSISTENCY CHECKING

This step corresponds to verifying that there are no
compile/assembly errors. Such checking is normally incorporated into
the translation tool.

VERIFICATION

If the optimization was done by hand, verification may be very
time consuming due to human error. If the optimization was automated,
verification can be done on the optimization tool itself (once) and the
correctness of the microcode produced is inherited from the correctness
of the tool.

Since the actual microcode is now available, testing (as described
in the previous phase) can be performed on each separate microcode
module.

EVALUATION

Now that the actual microcode is available, its performance
characteristics can be evaluated and compared with the performance
constraints developed in previous phases. If the actual hardware is
available, these performance characteristics can be determined by
executing on the hardware; otherwise, emulation (or simulation) can be
used. These performance characteristics are made available to the
previous phase.

INFERENCE

This step is essentially vacuous.

INVOCATION

This step is vacuous.

INTEGRATION

If each separate microcode module was passed to this phase, then
this step is vacuous. If several modules were passed, they can be
integrated together before making them available to the previous phase,
or the integration can be done there.
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2.4 HARDWARE/SOFTWARE TRADE-OFFS

This topic was already introduced earlier in the context of the
system design stage and receives additional in-depth coverage in Section 3
of this report which deals with the assessment of the family of TSD
Methodologies. In this section we provide a brief review of the
framework's perspective on this issue in its own right undiluted by all
the other details involved in the presentation of the framework. The
discussion starts with the definition of H/S trade-offs, outlines the
approach prescribed by the framework, and identifies the main problem
areas.

The problem embodied in H/S trade-offs is that of allocating the
system's functionality between hardware and software components (be they
off-the-shelf or custom designed) in a manner that satisfies all system
design constraints. Because systems are perceived as H/S aggregates, the
consideration of H/S trade-offs is perceived to be a central system design
methodology issue. Its complexity is so high, however, that few
methodologies make any attempt to deal with it, and most existing work

focuses solely on computer systems selection, itself a difficult problem.

As far as the TSD Framework is concerned, the activities related to
H/S trade-offs are distributed across the two phases of the system design
stage: The system architecture design phase is engaged in a systematic
process of reducing the binding options to the point where the binding
phase is left to deal strictly with a selection among a few feasible
alternatives. Every system architecture design decision, taken in the
exploration step, has implications with respect to the type of technology
that would be needed to realize the system. Furthermore, partitioning
into hardware and software needs to be carried out as part of this phase
because all performance models used in the evaluation and inference steps
demand, as a minimum, information about the distribution of the system's
functions among various processors and about interprocessor communication
costs. All such design decisions are actually subject to explicit review
and analysis in the inference step. Of particular concern for the
inference step is to reject any design solutions which limit the range of
feasible binding options unnecessarily. Since the system architecture is
presumed to be developed top-down, the option elimination process is
characterized by an iterative sequence of refinements and inferences.

Having the range of binding options significantly reduced by the
previous phase, binding concentrates on selecting specific components
among those still eligible. It is critical to proceed with the selection
of individual components in the context of the entire system, and not by
optimizing local decisions. This enables the focus to remain on the
performance objectives of the system as a whole (cost included), where it
belongs.
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Neither option reduction nor component selection is a simple task.
The former requires significant experience with system design and a good
grasp of existing technology and current technological trends, issues that
are difficult to formalize. The availability of appropriate performance
models applicable both for performance evaluation and technological
inferences could, however, assist the designer in very important ways.
While the number of conceivable binding options may be overwhelming, the
development of reduction strategies and performance models for a few
common ones is believed to be feasible, but nontrivial. Similar
challenges are present in dealing with the binding phase. On one hand,
there is a need to develop adequate selection strategies for both software
and hardware components. On the other hand, it is necessary to establish
meaningful mappings between performance attributes present in the

performance models mentioned above and those recognized in the actual
component candidates.

The extent to which we are able to deal with some of these problems
is treated explicitly in Section 3 of this report.
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2.5 SYSTEM LIFE-CYCLE ISSUES AND THE TSD FRAMEWORK

2.5.1 DEVELOPMENT

In the normal system life-cycle, the "development" aspect refers to a

sequence of logically equivalent systems descriptions. These begin with a
high-level specification and continue through successively lower-level
specification refinements until an implementation level is reached .
Successive description levels are usually baselined to serve as milestones

in the development pt3cess. For systems that involve only software, this
approach is well documented [IBM8O, JENS79). However, when the system
requires the possibility of a hardware/software tradeoff, then the methods
that are designed to apply to software development begin to fail.

The TSD Framework provides an intellectual control that is the key to
an orderly overall systems development process. In particular, the key
concept of successive refinement is retained, but broaden in concept to
include the H/S possibilities. Every phase of the TSD Framework accepts
as an input the specifications of a set of system requirements. Each
phase then transforms these requirements into a more detailed refinement
by a fixed sequences of steps. Although the framework does not specify
how the refinement is to be done, it does impose certain characteristics
on any methodologies used for the task. The sequence of steps specified
in each phase forces the methodologies to consider all issues pertinent to
the given level of system development within that phase.

Because the process of moving from the TSD Framework to selected

methodologies was discussed in the beginning of Section 2, there is no
need for repetition here. The procedure is further illustrated in Section
3 where appropriate TSD methodologies for several application 3reas are

introduced. The relations between the TSD Framework and the analysis,
enhancement, and maintenance parts of the system life-cycle will be
discussed next.
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2.5.2 ANALYSIS

System analysis is the process of assessing some performance property
of the system by examining it or its specifications. In the first case,
it involves monitoring the actual system behavior and evaluating the
collected data with respect to the property of interest. Alternately, one
uses the specifications to construct a model of the system being
investigated. Thus, the model replaces the system as the object of the
analysis and, consequently, the conclusions being drawn are valid only to
the extent to which the model may be shown to be faithful to the real
(existing or postulated) system. In either case, both quantitative and
qualitative aspects of the system may be subject to analysis.

The TSD Framework indicates that analysis is part of each phase and
is concentrated mainly in the evaluation, inference, and integration
steps. During evaluation, analysis is based on system models derived from
specifications available in that phase and is aimed at supporting both
development and enhancement activities. Furthermore, it is the
fundamental mechanism through which performance parameters (constraints)
are assigned to newly identified lower level components in a manner which
assures that the constraints acting upon the upper level components are
guaranteed to be met if the lower level ones are satisfied. Besides
assisting in the propagation of constraints, analysis is also instrumental
in rejecting any design solutions that are clearly unable to meet stated
constraints.

The models and the data generated by the evaluation step are the
basis on which the analysis process draws various conclusions in the
inference step. They deal with all facets of performance including
feasibility, forecasting, technological consequences, environmental
impact, etc. Again, both development and enhancement take advantage of
this instance of the analysis in similar ways. Negative results are used
to accept or reject proposed design solutions or enhancements.

In contrast with the other two steps, integration has available to it
the actual system or parts thereof. As a result, the starting point for
the analysis is monitoring system behavior under various benchmarks
(actual or synthetic). The goal is to determitie if all assumptions made
earlier are satisfied and all relevant constraints are actually met (even
though the assumptions are proven correct the models reliting them to the
active constraints could be shown to be invalid). Furthermore, whenever
this is not the case the analysis is directed toward identifying the
source of the discovered problem. Development, enhancement, and
maintenance involve this aspect of analysis in analogous manner.

Because analysis is rarely done for its own sake, it was to be
expected that its goals vary with those of the activity to which it is
subordinated. Nevertheless, development, enhancement, and maintenance
appear to to employ analysis in a similar manner while placing different
emphasis on one step or another. Maintenance, for instance, deals
primarily, but not exclusively, with the type of activities present in the
integration step. It is reasonable, therefore, to conclude that the
framework's ability to characterize methodologies does not exclude
analysis and should prove to be an invaluable aid in better understanding
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its relationship with the other aspects of the system life-cycle.

2.5.3 ENHANCEMENT

It is not unusual for the needs of an application to gradually change
with time. As a result, even if a given computer based system initially
fulfills all the needs of an application, the suitability of the system
diminishes with time. One solution to this problem is to replace the
system when its capabilities become too limiting. Another solution is to
periodically modify the system so as to enhance its capabilities. The
choice of one approach over the other is primarily a matter of economics
and involves considerations such as the cost of lost productivity due to
limited system capabilities, the current investment in equipment and
software, and the costs involved in making system modifications. The
first two considerations strongly favor enhancement, but the latter may
rule it out if the system has not been designed in a manner conducive to
the making of modifications. For this reason, a fundamental objective of
the development process should be the design of systems that are easy to
modify.

From the framework viewpoint, the process of enhancing a system is
the same as the process of developing a system. There must be a problem

definition stage to identify the current needs of the application domain
and to identify system enhancements that meet these needs, there must be a
system design stage in which the system-level revisions are designed, and
there must be a hardware design stage and a software design stage in which
the hardware and software revisions are designed. The distinguishing
aspect of enhancement is that all deliberations in these stages are
constrained by the need to be compatible with the existing system. The
effect of this constraint is to severely limit the range of options that
are feasible.

Economic considerations play an important role in any design effort,
but are more significant in enhancement than in development. The reason

is that during development, the cost of doing a system right (creating a
modular, easy to understand structure) may cost no more than doing it
otherwise. In the case of enhancement, revisions may not fit naturally
into the existing structure, and the cost of revising the structure to
cleanly incorporate the changes may cost much more than a "quick" fix.
However, quick fixes make the system structure more complex and this makes
subsequent modifications more costly. The issues are quite complex,
especially for large systems, and a good discussion of this is given in
[BELA79]. In particular, it is quite possible that the best strategy,
from the viewpoint of total life-cycle costs, may be to employ sequences
of quick fixes followed by periodic restructuring efforts. Because quick
fixes are contrary to the general rules of good design practice, it is
clear that the system requirements associated with enhancement efforts
must include specific instructions regarding this issue.

The task of enhancement is greatly facilitated if the original system
was designed under a TSD methodology, if the design documents are
accessible from a local database, and if there are software tools for
performing various analysis tasks that are necessary to the design
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process. The benefits of this are several. Because the original design
was done under a TSD methodology, the design decisions are recorded and the
sources of constraints are traceable. This information allows the
designer to evaluate the effect of proposed changes on the entire system
behavior and thus reduce the risk of side-effects. Having the design
information in a local database and having software tools to aid in
analysis reduces the time and effort needed to identify acceptable design
changes. Finally, if the redesign is done under a TSD methodology and the
database documentation is appropriately updated, the maintainability and
the enhanceability of the system will be preserved.

REFERENCES

[BELA79] Belady, L. A. and Lehman, M. M., "The Characteristics of Large
Systems," in Research Directions In Software Technology,
MIT Press, pp. 106-138, 1979.

113



2.5.4 MAINTENANCE

The continuing growth in required complexity makes it unrealistic to
test any useful system exhaustively as part of its development. Granting
even the most enthusiastic attention to systematic evaluation, it simply
is impractical to route a system through each possible decision path that
it could follow. As a result, there is a likelihood that, ai. some point
during its routine use, a system's decision mechanism will sele-t a
previously untested course that happens to produce a malfunction. This
behavior, affecting both hardware and software, is distinct from the wear
and tear traditionally associated with physical equipment. When these
factors are considered together, it is clear that maintenance is an
unavoidable aspect of any system with which we are to be concerned.
Treatment of this situation as a reality rather than an outbreak of
pessimism makes it compulsory to consider the need for maintenance as a
fundamental system issue. In fact, maintainability represents a property
to be treated as an integral part of the concerns from the start of the
system development process.

Acceptance of maintenance as an inevitable requirement exerts an
influence throughout the major development stages. Awareness of this need
at the problem definition stage, for example, establishes the impetus to
include maintainability as one of the basic system requirements. This
serves a useful purpose even before the system is bound to a distinct
architecture because it allows the designers to focus on the weak points
inherent in the application, independent on any particular design. Once
these potential trouble areas are identified, the need to address them can
be included among the system requirements generated by this stage. It is
not at all surprising to see these considerations manifest themselves as
serious constraints on those requirements.

Once the dominant activities move to the system design s age,
maintenance considerations expand to include those related to a particular
configuration. It is at this point that the designers can begin to assess
the effects of maintainability requirements on H/S tradeoffs. For
instance, a seemingly attractive hardware solution may be less so (in
comparison to a software approach) when one includes the relative burdens
imposed on each alternative by maintainability requirements. The
resulting set of eligible entries to the binding phase would be tempered
accordingly.

The resulting requirements that are made available to the hardware
and software design stages reflect the ongoing concern with maintenance.
On the hardware side, this means that error detection, fault tolerance,
and component modularity are prominent factors influencing the selection
of off-the-shelf equipment and the specifications for custom hardware.
The resulting requirements propagate to each phase of the component design
stage, ultimately producing circuits and electromechanical components in
which maintainability is an inseparable aspect. Analogous concerns are
included as part of the software and firmware design efforts. Thus,
concepts such as modularity and simplicity of interfaces between modules
are not viewed exclusively as vehicles for simplifying development.
Rather, they can also be exploited to facilitate the process of localizing
software errors and correcting them with minimum impact on the rest of the
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system. (The actual processes associated with error correction are
conceptually identical to those involved in enhancement and, therefore,
are not addressed here.) Similarly, emphasis on error reporting is not
limited to hardware design. Using information developed during previous
stages (including that relating to the application's intrinsic
weaknesses), the program design requirements can be defined to include
features whose specific purpose is to reveal certain aspects of the
software's behavior so that potential trouble spots can be monitored and
malfunctions can be detected quickly.

Since maintainability parallels other system concerns throughout this
succession of stages, the resulting documentation will include helpful
information about the nature and use of the system's maintenance-related
features. Accordingly, the system's users will be in a position to take
full advantage of these facilities when such needs arise. Additional help
can be obtained from development facilities. Besides their primary use,
such vehicles offer excellent opportunities to identify
implementation-dependent weak spots and other potential trouble areas that
were not identified in other ways.

Because of its emphasis on the H/S dualism, the TSD Framework
accommodates sustained attention to maintenance quite comfortably. Since
maintainability is a basic property that transcends the particular
implementation selected to meet a given set of requirements, its
characteristics can be defined abstractly for the system being considered.
Then, when the system design is bound to a specific H/S configuration,
maintainability is included among the objectives addressed by that design.
For instance, the designer can determine which aspects of system
performance to monitor prior to any specific configurational commitment.
Exactly how the hardware and software will be instrumented to report on
these aspects is an issue to be addressed in subsequent stages. Thus,
concerns for maintenance are attended to along with the others at each
stage. Consistent with the TSD Framework's intent, such attention can be
assured regardless of the way the maintainability requirements are
perceived or the method used to decide how the requirements will be met.
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2.6 CONCLUSIONS

The development of the TSD Framework goes beyond the mere
consolidation of current understanding of system design approaches and
methods under an unified umbrella. It demonstrates, first of all, the

potential benefits derivable from the use of the methodological framework
concept in studies concerned with methodology characterization, evaluation
and development. Its ability to focus strictly on the basic decision
mechanisms involved in particular methodologies simplifies the
investigation, aids in the discovery of possible omissions, and directs
the researcher's attention on the main methodological objectives, be they
explicit or implicit. Thus both better understanding and easier
redefinition of the goals are enabled. By providing for the readjustment
of the objectives prior to restructuring the methodology, a new and more
rational approach to methodology development is made available.

The TSD Framework also promises to place on a more rigorous basis the
notions of phase and step. The former is defined based on the
identification of the knowledge domain that appears to sipDort its
activities. It is also shown that the sharing of similar ultimate
objectives among phases results in a unified phase structure that consists
of steps that are either fundamental to all design endeavors or supportive
of one of the common objectives such as early error detection or
systematic performance of H/S trade-offs analysis.

Furthermore, as part of the TSD Framework consolidation some
contribution is made toward establishing a novel perspective on system
integration. A rigorous scrutiny of its role in system design shows it to
be an essential part (i.e., step) of each phase and not a phase in its own
right.

Finally, the work being reported here demonstrates that a systematic
H/S trade-offs strategy must acknowledge the presence of these trade-offs
as an important issue in all phases of the framework (as part of a
technological 'inference' step). The reason for this being the fact that
all design decisions affect the range of available choice for both
software and hardware binding. Moreover, trade-offs analysis similar to
that employed for software and hardware is also present in phases that
deal solely with software or hardware design.

In conclusion, one could state that the results obtained so far
strongly support the conjecture that the TSD Framework has the potential
to play a significant role in future methodological advances. The stage
is set now for instantiating the framework into several system design
methodologies aimed at supporting effective design in key application
a"eas.

116



3. ASSESSING THE FAMILY OF TSD METHODOLOGIES

3.1 NT CDUCTI(,N

The goal )f this section is to assess the family of TSD Methodologies
with respect to its ability to effectively meet the system design
objectives of ;everal common DoD applications: embedded systems,
informati)oz processing systems, and command, control and communication
systems. The assessment consists of a feasibility study which illustrates
the key features of the TSD Methodologies. It shows the way in which
these methodologies approach system design and the techniques and tools
that would make viable their transfer from the current research and
development state into productive use.

The difficulty of such an undertaking hardly needs to be argued.
Methodologies, in contrast with the framework they instantiate, are
problem and environment dependent. They owe their effectiveness largely
to the extent to which they are able to take advantage of the
characteristics of the application through the use of appropriate
techniques. Furthermore, the usefulness of a methodology also depends
upon a correct match between the techniques it employs and the environment
in which it functions, i.e., the organization, the people, the available
technology and expertise, etc. Consequently, consideration of the entire
range of systems being grouped under the three generic categories
introduced earlier is deemed impossible in view of the great variety of
applications encountered in the defense field.

The information processing systems category, for instance, includes
both cartographic databases such as those seen at the Defense Mapping
Agency (DMA) and logistics command databases; they are, however, quite
distinct in nature. Similar heterogeneity may be observed in the other
two groups. Moreover, even when two applications seem to have many
features in common, they may be subject to different sets of design
constraints which lead to methodological variations. Such is the case,
for example, when one compares functionally similar embedded systems
present in a manned versus unmanned spacecraft.

As a direct consequence of these facts and other considerations
explained below, several limitations have been imposed over the scope of
the TSD assessment.

- Three classes of systems are considered, one for each of the
three application areas above. Furthermore, each class is
characterized by certain so-called 'characteristic' features
thus hiding some of the variability between systems supporting
similar application domains.

- This general view of the application areas is coupled with an
equally high level treatment of the corresponding methodologies.
Consequently, the methodologies being outlined in the study
would necessitate further refinement if the problem domain and
the environment in which they are to be employed are
reconsidered at a greater degree of specificity.
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- Another scope limitation is the result of the fact that not all

areas covered by the TSD Framework are of equal significance for
this study. Software and hardware design, for instance, receive
minor coverage because these design activities are relatively
well understood and because a lot has been written about then:
already. (See Section 2 for an overview of existing technology
and appropriate relerences.) Special attention, ho.(ver, is
given to system-level design issues, in general, aid o the
complex issue of hardware/software trade-offs, in particular.

- The feasibility of the TSD Framework for command, control and
communication systems is demonstrated only by implication;
since such systems are understood to be a composite of embedded
and information processing systems, the benefits the last two
groups derive from the TSD technology are also enjoyed by their
composite. Section 3.2.3 considers this point of view in more
detail and shows the extent to which it represents a useful
working hypothesis as well as the design complexities it
ignores. In that section it is also explained that a separate
and more detailed study of a TSD Methodology for command,
control and communication systems is considered unwarranted at
the present since a better understanding of methodologies for
the design of embedded and information processing systems is a
prerequisite for a more in-depth investigation of command,
control and communication systems.

The TSD assessment starts with an examination of the essential
characteristics of the embedded, information processing, and command,
control and communication systems (Section 3.2). The unique nature of the
applications supported by DMA is used to emphasize the dependency between
methodologies and the nature of the organization that may employ them
(Section 3.3). The point is made that future detailed assess tnts Qf the
TSD technology ought to be carried out not only with respect to a specific
class of systems but also with respect to the type of organization that
intends to build them.

In Section 3.4 a class of TSD Methodologies whose scope is limited to
the system design stage is introduced. By relegating the formal
characterization of the class to Appendix E, the presentation is kept
informal. The emphasis is placed on the design strategy featured by the
TSD Methodologies. The feasibility of the approach and its ability to
adapt to a large variety of systems (of the embedded and data processing
type) is demonstrated in Sections 3.5 and 3.6. The principal results of
the assessment are reviewed below.

- By accomplishing the transition from the TSD Framework to a
class of distributed system design methodologies and by
describing how one could employ these methodologies on system
design projects having characteristics common to a multitude of
DoD (including DMA) type systems, the technical feasibility of
the TSD Framework is demonstrated.
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- The actual use of the concepts and methodological study

approaches developed during the consolidation effort described
in Section 2 (in particular the synthesis of methodologies given
a framework and a class of applications) illustrates
convincingly the assistance these approaches could provide to
methodological research and development.

- The TSD Methodologies are shown to promote a systematic approach
to the performance of hardware/software trade-offs thus avoiding
the known problem of premature hardware procurement. Future
research advances in this area combined with experiments in
which these methodologies are applied to real-life systems hold
the key to making the employment of these methodologies both
practical and profitable in terms of quality and productivity

gains.

- Techniques and tools (avrilable or postulated) identified as

necessary for prodictive use of the TSD Methodologies form the
starting point for the development of the TSD Facility master
plan introduced in Section 1. It must be noted, however, that,
as indicated in Section 4, there are many other factors that
intervene and influence the planning of such a facility in
addition to the techniques suggested by the use of one
methodology or another.

- Four by-products of this study are:

-- a methodology definition language (Appendix P) which holds
the promise to reduce some of the ambiguities currently
found in most of the methodology literature and which may
be useful as a methodology enforcement and project planning
tool;

-- a formal characterization of the nature of the
specification languages involved in system design and of
some of the criteria associated with the verification of
the proposed designs (Appendix E);

-- an investigation in formal approaches to system

requirements definition (Appendix F);

-- a proposal for a distributed system design specification

language (Appendix G).
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3.2 CHARACTERIZATION OF THREE CLASSES OF DOD SYSTEMS

Any characterization of the extreme diversity of systems encountered
in the defense field is bound to produce some controversy. This is, in
part, due to the fact that systems rarely fit cleanly in the niches
created by one taxonomy or another. For this reason, this section
describes not a taxonomy of DoD systems but a set of working hypotheses
whose role is to establish a precise context for the discussions to
follow. Rather than trying to partition systems into distinct categories
(i.e., equivalence classes), the approach adopted here is to identify
several types of systems which, as a group, are able to cover the
important characteristics of the systems in existence today. In other
words, the nature of an actual system should be describable in terms of a
composition of two or more idealized classes of systems to which it
belongs.

Three such classes are recognized here: (1) embedded systems,
(2) information processing systems, and (3) command, control and
communication systems. While the existence of these classes has long been
acknowledged and the terms are common in the literature, their meaning
differs from one report to another. This report attempts to associate
with each class those characteristics that seem to be commonly recognized
by most authors. All systems that do not match exactly the definitions of
any of the three classes are assumed to be made of subsystems which fall
cleanly in one of these classes.

Even under these simplifying assumptions, the difficulties associated
with the development of system design methodologies for each of the three
system classes are not completely overcome. The extent to which some
methodology is applicable to all systems of a given type is still a major
concern. Most problems stem from the great variability in the design
constraints associated with each system being developed. Since the
distinctions are not merely quantitative but also qualitative in nature,
design methodologies may differ significantly, if not in the overall
strategy, at least with respect to the specific design techniques being
employed.

The reliability requirements of a system embedded in a communication
satellite, for instance, are significantly more stringent than those
placed on an air traffic control system (particularly when considering
them in conjunction with other active constraints such as possible
maintenance procedures, weight, size, power, shielding, etc.) and they
result in the employment of drastically different system architectures. A
methodology aimed at the entire class is unable to recognize such fine
differences between the two instances of embedded systems. Nevertheless,
proper design of the methodology ought to enable further refinement of the
methodology so as to take advantage of the particular combination of
constraints. Otherwise the methodology may prove unfeasible for many
systems in the given class. While the characterizations that follow and
the methodologies proposed in later sections have been carefully selected
so as to avoid this pitfall, only through the actual use of the
methodologies one is able to provide the ultimate validation of having
achieved this goal.
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3.2.1 EMBEDDED SYSTEMS

While it is true that, from some point of view, all computer systems
are actually 'embedded' in some larger system such as a logistic command
center, a vehicle, a weapon, a communication network, etc., the term
embedded system is used to identify a class of systems having the
following main characteristics:

- They interact in real-time with electronic devices such as
sensors, radars, etc. by receiving inputs and/or by controlling
the activities of such devices.

- They are locally distributed, if at all.

- They provide a service critical to the system in which they are
embedded and require extremely high reliability. In other
words, their function is essential for the operation or survival
of the larger system they support. The on-board computers of
both manned and unmanned aircraft are generally relied upon to
assist at all times in the navigation procedures and their
failure may lead even to the loss of the craft. Similarly, a
computer failure on a communication satellite may hamper the
normal activities of an entire organization.

- They are often required to perform their functions in rather
restrictive environments such as on board ships, in outer space,
etc. and may be subjected to severe weight, power, and volume
limitations as well as to electromagnetic interference,
radiation, etc.

- Their human interfaces, when present, demand elaborate human
engineering.

- They need small databases but they may be involved in the
collection of large volumes of data for later processing or for
purpose of supplying it to some other system for analysis.

- Their evolution is determined by external changes in the goals
of the systems they support (e.g., a changes in the mission to
be performed by some military system).

- Their security against unauthorized access is achieved by
measures that secure the larger system in which they are
embedded. Therefore, security considerations do not affect
significantly the system design.
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3.2.2 INFORMATION PROCESSING SYSTEMS

With respect to information processing systems, there is greater

agreement on their definition:

- They consist of large databases and access mechanisms for

updating and retrieving the information present in the

databases.

- They are often geographicly distributed in order to improve data

accessibility and availability for the various components of the

organization being supported.

- They are rarely subject to meeting real-time processing
constraints. However, they are often required to maintain data
generated or used by real-time devices such as graphic displays.

- They interface with humans (to a growing extent) via interactive
terminals which are required to meet certain response time
constraints. The human factors, while somewhat less critical

then in the case of embedded systems, are still very important
in making the system an effective tool for the organization.

- Their throughput is viewed as a key parameter measuring the
volume of work they are able to carry out.

- Their security is a major concern particularly when the data

they control is of a sensitive nature. Furthermore, measures
that secure the physical location of the system are insufficient
and complex mechanisms need to be built into the system in order

to prevent unauthorized access to its data.

- They are generally built with off-the-shelf components but they
may include small highly specialized custom-made devices. In

the future, however, the role of custom-made components may
increase in importance thus making room for new
hardware/software alternatives to be considered.

- Their reliability is important, but they tend to be more
tolerant toward faults because of the ease with which human
intervention may take place. Furthermore, since information

systems are not subject to the same extreme physical constraints
placed over embedded systems, more resources are available for
use in the error detection and recovery.
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3.2.3 COMMAND, CONTROL. AND COMMUNICATION SYSTEMS

In the simplest way, command, control and communication (C3) systems
are mere assemblages of embedded and information processing systems. A
ballistic missile defense system, for instance, could be treated as being
composed of several cooperating subsystems. Among them, those that
support the individual radar posts and the weapon dispatching and guidance
fall in the category of embedded systems. The remaining subsystems are of
the information processing type. They are repositories of information
received from other subsystems and of tools that use this information to
support the decision processes for which the respective command centers
are responsible.

This view of C3 systems, while correct, is incomplete. It is
acceptable as long as one is concerned only with showing that the design
of C3 systems presupposes the availability of design methodologies for
embedded and information processing systems. The aspects not being
captured by this view, however, are the additional functional and
performance constraints placed on the component subsystems by the very
nature of the C3 system and the role played by communication. Some of
these issues are elaborated below.

- The communication between subsystems and between a subsystem and
the devices with which it interacts becomes the most critical
aspect of system design. A battlefield information distribution
system, for example, interfaces with troops operating on enemy
territory, with command posts, with intelligence gathering
devices, weapons, etc. The problems related to assuring
reliable communication, security, and continued operation in the
presence of communication, device, and/or subsystem failures and
potential subversion are complex.

- All the constraints recognized in the design of information
processing systems are present and exacerbated in the subsystems
of a C3 system. Both throughput and response time have to meet
sudden load increases placed on the system by critical and fast
evolving situations such as an enemy attack. Moreover, the
vital role played by the system, combined with increased
hostility in the environment in which it functions, demands
stricter security measures.

- The assumptions made about the data and the way it is being used
also differ from an information processing system. Potential
failures in reporting, intelligence, and communication may
render data to be either inaccurate or incomplete. For example,
a temporary communication cutoff between two command posts may
necessitate decisions to be made based on estimates of what
might be happening at the other post. Furthermore, because the
primary function of C3 systems is to support the decision making
process (tactical, logistic, etc.) easy development of
appropriate models for evaluating the potential consequences of
alternate strategies must exist in addition to the ability to
query the databases.
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In view of these facts, a methodology for the design of C3 systems

appears to involve several, somewhat independent, subtasks.

- The first one is to find acceptable solutions to maintaining
reliable communication and to adopt an overall policy with
regard to how one is to deal (from a military point of view)
with communicatior failures. The former issue falls more on the
shoulder of the communication technology while the latter
involves strategic considerations. Neither of the two is
within the scope of this research.

- The second subtask is to separate the C3 system into its
component subsystems of the embedded and information processing
types. The separation is based upon the intrinsic distribution
of functions between the entities forming the larger system
being supported, upon strategic and other military
considerations, and upon the communication technology being
employed.

- The next subtask is to define the constraints being placed upon
each of the subsystems.

- Having established both the functional definition and the
relevant constraints of each subsystem, its design may proceed
in a manner appropriate for the respective class of systems to
which it belongs.

The peculiar relationship between the three classes of systems
characterized in this section makes a separate assessment of the TSD
Methodologies with respect to C3 systems unnecessary. The development of
a TSD Methodology for C3 systems presupposes the availability of design
methodologies for the other two types of systems thus clearly identifying
both the feasibility and the importance of the TSD technology in the area
of C3 systems. Consequently, the decision has been made to focus the more
detailed investigation on the design strategy promulgated by the TSD
Methodologies and to illustrate it only for embedded and for information
processing systems. The results are presented in Sections 3.4 and 3.5.

124



3.3 SYSTEM DESIGN NEEDS AT DMA

The Defense Mapping Agency (DMA), like most other DoD organizations,
depends extensively on the support of computer based systems in order to
fulfill its role in the DoD community. Being responsible for satisfying
the mapping, charting and geodesy (KC&G) needs of all the military
organizations presents, from a system design perspective, some advantages
and many challenges. On one hand, a key advantage could be the fact that
by concentrating on a narrower set of applications one increases the
chances for fast meaningful progress in the establishment of effective
methodologies and facilities for use in system design. On the other hand,
however, there are two major difficulties that need to be overcome:
(1) the production pressures which leave few resources to be dedicated to
the means of production and (2) the unique and complex nature of DMA
systems involving numerous and extremely large cartographic databases as
well as specialized devices used to process some of the data.

In order to understand the methodological needs of the DMA, one has
to consider the characteristics of the production environment existing at
DMA and the nature of the applications with which this organization is
involved. In this regard, the following issues seem to have the greatest
bearing on the future of system design at DMA.

- The DMA production plan is determined by the MC&G defense needs
of the many DoD organizations. Changes in the data format, use
and collection (quite often unanticipated) bring about increased
demands for MC&G products, demands that translate into
corresponding enhancements in the systems employed by DMA. Its
ability to keep up with future growth indicates a need to employ
effective system design methodologies capable of supporting the
dynamic evolution experienced by DMA systems.

- While at present most DMA systems could be considered to be of
tfue information processing type, their MC&G nature makes the
importation of system design technology somewhat less direct.
For an extensive discussion of the basic distinctions between
business and geographic data processing the reader is directed
to [NAGY79] which also contains a survey of the major geographic
data processing systems in production today (including those
operating at DMA). The following is a list of features
identified in [NAGY791 as being unique to geographic data
processing:

-- demanding performance constraints not present in other
data processing applications;

-- presence of locational attributes;
-- two-dimensional nature of the problem domain;
-- particularly large amount of storage;
-- lack of commercially available systems;
-- government ownership of most existing systems;
-- specialized and expensive input/output devices;
-- dependence upon remote sensing technology.

- All major geographic data processing systems in production today
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have been developed by some government organization (within or
outside the U.S.A.) and have been designed to serve a set of
very specific requirements. Consequently, geographic data
processing for military purposes receives little attention
outside the Goveruiient and puts DMA in the position of having to
develop on its own the system design technology required to
maintain and enhance its MC&G production.

- The complexity of the current types of systems is on the rise.
The number and volumes of the databases, the workload, and the
number and variety of products all experience noticeable growth.
Moreover, greater interdependencies between databases and
products is anticipated. The ultimate consequence of these
trends might be the evolution of a single distributed DMA
system, a critical component of the entire organization.

- There is also evidence pointing to a possible new group of
systems of the embedded type. Computer controlled devices in
use at DMA can be viewed to be in this category already.
Furthermore, any increased future involvement of the
organization in the data collection process most certainly is
bound to extend DMA related system design efforts into the
embedded systems area.

- At a more speculative level, incorporation of DMA systems into
larger C3 systems can not be ruled out. Major increases in the
data collection rate combined with a need to possess extremely
current MC&G products (possibly on-line) may contribute to
making this qualitative jump.

The productivity associated with the generation of MC&C ,roducts at
DMA appears to be related to the quality of the computer based systems
being employed, which in turn depends on the effective use of current
technology at hardware, software, and system levels. TSP Methodologies
hold the potential to assist DMA with many of these system related
problems and to provide cohesiveness to long range planning in this area.
They extend the ability of the organization to control and manage system
development, maintenance, and enhancement. Furthermore, TSD Methodologies
promote careful definition of system requirements and more effective use
of available technology. In other words, the DMA's strides toward
quality, productivity, enhanceability, maintainability, and low system
design costs are identical to the basic objectives of the TFD technology.

Although the general orientation of this assessment is not DMA
specific, the impact of the TSD Methodologies on DMA related system design
efforts is apparent and the use of DMA inspired case studies only enforces
it further. Future advances in this direction, however, require some fine
tuning of these methodologies and additional experimental work on real PMA
systems. Moreover, the TSD Facility master plan presented in Section 4
relates directly to and is consistent with current efforts aimed at the
establishment of a DMA modern programming environment (MPE). The MPE work
is leading to the establishment of a TSD Facility at DMA, a facility whose
scope 's limited to software development. While current MPF efforts focus
on the selection of specialized tools, future work will have to emphasine
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the integration of these tools. The TSD Facility description appearing in
Section 4 includes the requirements definition for the integration
process.
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3.4 TSD VIEW OF DISTRIBUTED SYSTEMS DESIGN

3.4.1 INTRODUCTION

The system design stage covers all design activities involved in
taking a set of system design requirements and generating the

specification of the hardware and software requirements for the respective
system. There are two phases that make up this stage: the system
architecture design phase and the system binding phase. The former deals
with the selection of an overall system architecture which accomplishes
the intended system functionality and which, under a reasonable set of
technological assumptions, meets the performance and other constraints

originating with the system requirements. The proposed architecture and
all the design decisions taken during this phase form a processing model
used as input to the binding phase.

The binding phase, based on the limited degrees of freedom still left
open by the system architecture design phase and based on market
availability, identifies a particular mix of software and hardware and
produces specifications for all needed components. The nature of the

specifications, however, may vary from component to component depending on
its intended realization (software or hardware) and on the manner in which
it is to be obtained (off-the-shelf, through customization, or
custnm-made). The system design stage is also concerned with the
integration of the system components from the point when both the software
and the hardware components are available and up to the point when the
system is offered for customer acceptance testing.

A system design methodology, like all other design methodologies, has
three facets: one or more specification languages, a design strategy, and
an appropriate set of design/analysis techniques. Because Section 3.4 is
concerned with identifying not a specific methodology but a class of TSD
Methodologies, these three issues do not enjoy equal treatment.

- SPECIFICATION LANGUAGES. The system requirements, the
processing model, and the hardware/software requirements define
the specification language needs of the TSD Methodologies.
Sections 3.4.2 through 3.4.4 offer informal definitions of the
general nature of these three types of specifications. Formal
definitions are included, however, in Appendix E. It
establishes the theoretical foundation for the entire Section 3
and presents the interested reader with formal requirements
definitions for the specification languages needed to support
distributed system design. (The approach is similar to that
used in [ALFO79].) One may use the contents of Appendix E in
both the design and the evaluation of certain classes of
specification languages. While the design of particular
specification languages is outside the scope of this
investigation, an attempt has been made to illustrate potential
directions that could be followed by future research efforts in
this area. Consequently, Appendices F and G describe language
proposals for system requirements definition and parts of the
processing model.

128



rL

- DESIGN STRATEGY. The design strategy is first introduced in
Section 3.4.5 in the form of a tutorial. The strategy is later

formalized in Section 3.4.6 by using the methodology definition
approach described in Appendix D. Formal definition of the
relationship between the design strategy and the nature of the
specification languages involved is relegated to Appendix E.

- TECHNIQUES. In the absence of particular specificatic."
languages, the techniques are only touched upon. Their
objectives are suggested by the strategy and by the nature of
the specifications, but no specific techniques are proposed
here.
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3.4.2 INFORMAL DEFINITION OF SYSTEM REQUIREMENTS

The system requirements are generated in the problem definition
stage. They consist of a conceptual model and a set of constraints which
together define the acceptability criterion for any proposed system
realization: a system is said to meet its requirements if and only if it
carries out the functionality described by the conceptual model and

satisfies all the constraints present in the system requirements. (Note.
however, that implicit in this definition is the existence of a non-empty,
usually infinite, set of systems that are able to carry out the desired
functionality and an effective procedure by which to determine if a given
system does or does not satisfy all the constraints.)

The role of the nceptual model is to capture in finite and precise
terms the nature of the interaction between the needed system and its
environment. In general, the conceptual model must have the ability to
describe the relevant environmental states, an abstraction of the states
of the system, and the way in which both the environmental and system
states change. The approach to describing the states and the state
transition rules varies from one specification language to another. The
language discussed in Appendix F, for instance, em loys a set-theoretical
notation to describe both the environmertal and the system states and uses

predicate calculus to define the state transition rules. By contrast,
other languages promote operational approaches based on dAta flow graphs
[BELL77I, applicative methods [ZAVE81], etc.

Furthermore, some languages make implicit assumptions about either or
both the nature of the states and of the state transition rules; the loss
in generality is motivated by increased specificity in the handling of a
particular application area. As an example, a system that responds to
stimuli from the environment in a manner which is independent of the
history of previous stimuli and responses may be easily described in a
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language which equates the state of the environment with the current
stimulus, has no ability to describe system states, and is capable of
defining a mapping from the set of stimuli to the set of responses. Yet
another example could be used to illustrate the fact that there is also
great variability in the way state transitions may be described: in a
biomedical simulation system a new state is generated as a result of the
integration of a set of differential equations.

Increases in the ability to formally define the desired functionality
are not accompanied by commensurable advances in the definition of system
constraints. There are four important reasons contributing to this.
First, there is a great diversity of types of constraints (e.g., response
time, space, reliability, cost, schedule, weight, power, etc.). Second,

some of them are related to possible design solutions which are not yet
formally stated at the time the system requirements are being conceived.
Furthermore, their relevance differs at different points in the design.

Third, many constraints (e.g., maintainability) are not formalizable given
current state-of-the-art. Finally, not all constraints are explicit. ior
instance, the designer is expected to follow generally accepted rules of
the trade in designing a system without having them explicitly stated.

REFERENCES

[BELL77] Bell, T. E., Bixler, D. C. and Dyer, M. E., "An Extendable
Approach to Computer-Aided Software Requirements Engineering,"
IEEE Trans. on Soft. Eng. SE-3, No. 1, pp. 49-60, January 1977.

[ZAVE81] Zave, P. and Yeh, R. T., "Executable Requirements for Embedded
Systems," Proc. 5'th Int. Conf. on Soft. Eng., pp. 295-304,
March 1981.

3.4.3 INFORMAL DEFINITION OF PROCESSING MODEL

The methodology put forth in Section 3.4 treats systems as being
describable by a hierarchy of related design specifications where the
specification at one level reveals a design solution for some problem
which is formally defined within the level above. The processing model
reflects this view by assuming a similar structure: a total order over a
finite set of design specifications. The total ordering is not really
necessary but has been adopted in order to simplify the presentaticn of
both the processing model and the system design strategy. Furthermore,
the extrapolation to an upside-down tree (a tree in which the level number
of each node is defined as the longest distance from a leaf rather than
root) is trivial.

By definition, each design specification is viewed as corresponding

to a subsystem in the overall system. The support relation between
subsystems is explained in the Section 3.4.5 and is formally defined in
Appendix E. The remainder of this section focuses on the informal
definition of the design specifications.
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Regardless of its position in the hierarchy, each design
specification consists of same six components:

- PROCESS STRUCTURE
-- network topology in terms of processes and links
-- definition of system and external processes
-- definition of links
-- definition of link communication protocols

- PROCESSOR STRUCTURE
-- network topology ini terms of processors and interconnections
-- definition of processors
-- definition of processor interconnections
-- definition of interconnection communicatior protocols

- PROCESS/PROCESSOR ALLOCATION
-- allocation and reallocation rule

- PERFORMANCE SPECIFICATIONS
-- performance requirements of processes and links
-- performance requirements of processors and interconnections
-- performance characteristics of processes and links

performance characteristics of processors and interconnections
-- performance models

- BINDING OPTIONS
-- set of feasible realizations of the process and processor

structures
-- set of binding constraints

- CONSTRAINTS.

The PROCESS STRUCTURE describes the subsystem functionality by means
of a network of communicating processes interconnected via links. Each
link provides a logical connection between two or more processes. The
message traffic on each link, however, behaves in accordance with a
communication protocol specified by the designer. In the top level

subsystem the processes may correspond to successive transformations of
the input data in a data processing system or to query processing in a
database system. At other levels the process structure may be describing
operating system capabilities. In all cases, however, the description is
independent of the way in which the processes are distributed within a
realization of the system and of the manner in which they may be
implemented.

The PROCESSOR STRUCTURE, in conjunction with the process/processor
allocation explained below, is an abstraction of all the subsequent levels
in the hierarchy. In its simplest form, the distinction between the
process and the processor structures is like the distinction between an
application program and the operating-system/hardware combination that
enables it to execute. Furthermore, processors are assumed to correspond
to separate distributed collections of system components. In other words,
given the final system realization and any one of the processor structures
present in the hierarchy, one should be able to uniquely partition all
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system components into equivalence classes and to establish a meaningful
one-to-one correspondence between these equivalence classes and the
entities (processors and interconnections) of the chosen processor
structure.

The PROCESS/PROCESSOR ALLOCATION captures the distribution of the
processes among the available processors. In its simplest form, the
allocation may be static, i.e., does not change during the execution of
the system. In such cases, all processes are partitioned among the
available processors with the links being partitioned accordingly between
processors and their interconnections. Reliability, workload balancing,
and other design considerations, however, often require dynamic changes in
the allocation of processes and links among the available processors and
interconnections. (Note: An additional degree of complexity may be
noticed in systems which permit a process to be mapped simultaneously on
several processors. This occures, for instance, when the code associated
with a particular realization of some process and the execution of the
corresponding instructions are the responsibilities of two separate
processors. The definitions from Appendix E do not rule out such cases.)
The separation of the allocation/reallocation issue from the functional
details of the process structure has the potential to significantly reduce
the complexity of analyzing both the individual subsystems and their
relationships.

The PERFORMANCE SPECIFICATIONS deal with the performance attributes
of the system and with the models used to relate the performance
attributes to the selected system architecture and to each other. A
performance attribute may be associated with either the process or the
processor structure and represents either a performance requirement
originating with some performance constraint or a performance

characteristic that has been established to be true, i.e., it was
validated. Performance requirements (i.e., constraints) are assumed to
propagate top-down from the process structure to the processor structure,
and from one subsystem to the next. The performance characteristics,
however, propagate bottom-up; only when the exact characteristics of the
processor structure are known one may deduce with certainty the
characteristics of the process structure. Moreover, an acceptable design
demands that all performance characteristics imply the satisfiability of
the corresponding performance requirements. In this context, performance
models assume a dual role. First, they assist one in determining the
performance requirements of the processor structure from those of the
process structure. Second, they propagate the performance characteristics
of the processor over the process structure.

The BINDING OPTIONS represent a non-empty (possibly infinite) set of
system realizations that are still feasible at a given point in the design
process. This set is very large at the start of the system architecture
design phase and, through successive design refinements, is systematically
reduced to a manageable size upon entering the binding phase. Because at
no point in time it is possible to enumerate the members of this set, the
designer specifies it indirectily via a distinguished category of
constraints called binding constraints. They are formulated during the
design process as a result of explicit design choices (which rule other
out alternatives) and due to conclusions drawn from various design studies
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and analysis of the stated system requirements, available technology,
anticipated operating environment, etc.

Finally, the CONSTRAINTS that appear in each design specification are
inherited from the original system requirements and carried along
throughout the entire design. Different constraints, however, affect the
design at different points in time. Some represent the origin of the
performance requirements while others may affect certain aspects of
binding. It is the designer who brings into couisideration the appropriate
constraints at the right place in the design.

3.4.4 INFORMAL DEFINITION OF HARDWARE/SOFTWARE REQUIREMENTS

The hierarchy of design specifications present in the processing
model is mapped during the binding phase into off-the-shelf, customized,
and custom-made software and hardware. Separate software requirements
specifications are generated for each subsystem. In addition, hardware
requirements specifications are produced for the lowest level subsystem in
the processing model hierarchy. While there is great variability in the
way in which both software and hardware requirements need to be specified,
they generally include the following:

- a specification of the functional and performance requirements
of the hardware or the software (present, for the most part, in
the respective design specification);

- a specification of all relevant interfaces (between subsystems,
between components residing on different machines, between
components developed separately, etc.);

- a mapping from parts of the proposed design onto existing
hardware or software;

- a list of existing hardware or software to be used.

A simple inventory system may be used to illustrate the nature of the
hardware/software requirements:

SOFTWARE REQUIREMENTS.

LEVEL I (Application Program).
- functionality given by an inventory control language whose

syntax and semantics have been fully specified; no performance
constraints;

- user interface via the inventory command language; access to
the database defined by the INGRES user manual; the
implementation language C;

- all database manipulations are relegated to INGRES:
- off-the-shelf software to be used: INGRES -- a relaLional

database package.
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LEVEL 2 (Operating System).
- functionality given by the UNIX user manual;
- user interface via UNIX standard commands; UNIX version

supported by the PDP 11/40 machine and compatible with INGRES;
- no changes or enhancements to the UNIX operating system

permitted;
- off-the-shelf software to be used: UNIX operating system.

HARDWARE REQUIREMENTS.

LEVEL 2 (Hardware Configuration).
- the hardware configuration consists of a PDP 11/40 with 64k

bytes of main memory, a VT52 compatible CRT terminal, a 1200
baud printer, and two disk drives for 2.5 megabytes disk
cartridges;

- one serial port for interfacing the crt and the processor; one
parallel port for the printer; two direct memory access ports
for the disk drives;

- the mapping of functions to components is trivial in this case;
- specific printer, crt, and disk drives could be listed here.

The relation between the processing model and the hardware/software
requirements is further analyzed in the next section.

3.4.5 METHODOLOGY OUTLINE

3.4.5.1 GENERAL REMARKS

This section discusses a proposal for a class of TSD Methodologies
focused on the design activities leading to the identification of the
hardware and software components in distributed systems. The presentation
starts with a statement of objectives. It is followed by the design
strategy to carry out the system architecture design phase. The strategy
covers both the design of the individual subsystems and the sequencing of
design activities between subsystems. Finally, the discussion turns to a
systematic way of accomplishing the task associated with the binding
phase.

The principal goal of the proposed methodology is to increase the
quality and productivity of the design of large distributed systems.
Reaching this goal, however, places the following demands on the nature of
the TSD Methodologies:

- an ability to explore in a systematic manner a large design
space by separating system level issues from those involved in
the design of hardware and software and by placing the selection
of hardware and software (i.e., hardware/software trade-offs) on
a more rational base than it has been done in the past;

- a structuring of the design process in a way which assures a
great degree of control over design complexity and promotes
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incremental verification of both the functional and performance

aspects of successive system design refinements;

- a strategy which is based on general design principles rather
than the peculiarities of a specific class of applications but
which, at the same time, is adaptable, i.e., may be tuned to a

given application.

It is our contention that the design strategy we have selected indeed
has all these attributes. The remainder of this section describes the
proposed strategy while Sections 3.5 and 3.6 illustrate the TSD
Methodologies' ability to adapt to the specifics of several very diverse
applications. The ultimate validation, however, has to come from
empirical studies in which the methodologies are applied to specific
problems. Furthermore, specification languages and an appropriate
assortment of techniques need to be developed in order to provide the
designer with a computer aided environment that would assure the high
productivity to which the TSD Methodologies aspire.

Before presenting the methodology it is necessary to point out that,
for the sake of clarity, certain simplifying assumptions are being made
throughout Section 3.4.

- design backtracking due to errors receives limited coverage;

- parallel development of portions of the design by different
teams on the project is ignored despite the great opportunities
for concurrency within a project;

- most project minagement activities are omitted;

- system integration is not discussed.

While they do not alter the overall flavor of the strategy, they may
make the methodology appear somewhat inflexible. We hope that by pointing
them out early in the presentation, the reader will have no trouble in
discerning the difference between the overall design strategy and the
artifacts of the simplifying assumptions.

3.4.5.2 SINGLE SUBSYSTEM DESIGN STRATEGY

As indicated earlier, systems are described in terms of a hierarchy
of design specifications. They force a structuring of the system in terms
of a number of subsystems, each supporting the subsystem above. The
methodology requires the design of individual subsystems to proceed
top-down. Within the general context of top-down design, however, several
related activities are interleaved (in the manner specified in
Section 3.4.6). These design activities are outlined below.

Successive and concurrent refinement of both the process and the
processor structures. The fact that a given system function may be
decomposed in more than one way is well-known. This design freedom
is not a menace, as seen by some (e.g., [BERG81]), but rather a
degree of flexibility essential to good design. The selection
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between alternate decompositions is not intrinsic to the
decomposition itself, but depends upon of the designer's objectives
(maintainability, clean abstraction, simple interfaces, reliability,
etc.). Among them, the availability of certain (existing or
postulated) means of support may also affect the functional
decomposition. The case when the orocess structure is affected by
earlier choices of the processor structure is illustrated by the way
in which the solution for a certain computational problem may take
different forms if one assumes the use of a high speed minicomputer
with or without an attached array processor. The converse situation
(which occurs frequently in the data processing field) is where the
needed hardware is selected based on the result of a functional
decomposition of the application problem, where the decomposition is
guided by some modularization principle.

Because of this interdependence between the selection of the
process structure and of the processor structure, TSD Methodologies
emphasize the concurrent refinement of both structures. While
accommodating the special cases where the peculiarities of the
application force one structure or the other to be dominant, this
approach offers the system designer the added flexibility required by
an unbiased treatment of the hardware/software trade-offs problem.
Furthermore, the balance is allowed to shift in one direction or
another, not due to personal prejudices, but due to constraints that
affect the range of acceptable system realizations.

Top-down propagation of performance requirements. Fundamental
to the conception of the TSD Methodologies is the assumption that
performance constraints direct to a large extent the designer's
activities. Performance requirements recognized at the top level of
a design specification propagate from one level to the next through
the assumptions the designer makes at one level about the
characteristics of the next. The assumptions later become
requirements and the cycle continues. In order for the designer to
make reasonable assumptions, two things are needed: past experience
and adequate performance models that relate the presumed performance
characteristics of entities of some level and the performance
requirements placed over the particular level of the design
specification. The nature of the performance models has to change
according to the level of functional detail. When the level of
abstraction is high, the models are less detailed, less accurate, and
also less costly than when lower levels of the specification are
reached. The scheme has two advantages. On one hand, it allows
performance considerations to influence design decisions early on.
On the other hand, it holds the promise that this may be achieved in
a cost effective manner. (This idea has received some endorsement in
recent publications [KUMA80, SANG79].)

Bottom-up propagation of perrormance characteristics. While the
performance requirements flow top-down, the validated performance
characteristics (once available) propagate in the opposite direction

[BOOT8O]. The use of the performance data is important in making
immediate readjustments of the subsystem design and establishes the
accuracy of the assumptions that were made and the feasibility of the
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proposed design. (The way in which the performance characteristics
become available is discussed later.)

Binding constraints accumulation. The hardware/software
trade-offs dynamics manifest themselves during the system design
stage as a gradual narrowing down of the range of feasible
realizations, i.e., binding options. This takes effect through a
growth in the set of recognized binding constraints. The set,
originally inherited from the subsystem above, is augmented from
several sources. First, each design decision taken (e.g., successive
refinements, allocation, etc.) rules out all realizations which have
adopted different approaches. Second, design studies that look ahead
to low level but potentially difficult components of the system also
affect the directions the designer is willing to consider. If, for
instance, there were no totally distributed concurrency coordination
algorithms, a database design based on their potential availability
would have to be discarded. Third, inference studies may suggest
that the use of some technological alternatives may be unfeasible
(due to their impact on other aspects of the system or on its
operation environment, etc.) or, although feasible, not recommended
(due to anticipated technological trends, for instance). Finally,
the availability of certain software or hardware may dictate a design
solution which takes advantage of such off-the-shelf components in
order to reduce development costs.

Systematic error detection. Error detection is supported via a
number of checks placed at various critical points in the sequence of
design activities within the tasks/subtasks and in the tasks/subtasks
review sections of the methodology specification. They involve
consistency checks between adjacent levels of a design specification
and between related components of the specification (e.g.,
process/processor allocation versus the process and the processor
structures). The checks also include logical verification between
the design specification of one subsystem and its requirements which,
in general, are established by the specification of the subsystem
above, if any. For the top subsystem in the hierarchy, however, the
subsystem requirements Are the same as the system requirements. This
issue is considered again in the discussion of the subsystems' design
dependencies which follows.
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3.4-.5.3 OVERALL SYSTEM DESIGN STRATEGY

The structuring of the system design in terms of the proposed
hierarchy of design specifications, is motivated by the desire to control
complexity through a systematic and strict separation of concerns. The
idea originates in part with the already common concepts of virtual
machine and stratified design (layers of virtual machines (ROB177]). When
using a programming language, the designer is not in the least concerned
with the implementation details of the language (if the language is
properly designed). Similarly, when working at one level of a stratified
design the designer &'-als only with the semantics of the operations
available at that poitut and not with their possible realizations. The TSD
Methodologies attempt to exploit this approach in the context of
distributed systems by adapting it accordingly.

The designer starts from the system requirements and, through
successive refinements of the process and processor structures, defines
both the way in which the functionality specified in the conceptual model
is implemented and the support needs for such an implementation (e.g.,
message exchange capability, process reallocation due to failures, storage
management, etc.). The top design specification is said to describe the
application subsystem, due to the nature of its functionality which is
directly relevant to the application at hand. All subsequent
specificatior are said to describe support subsystems.

As already stated, the construction of each design specification
takes place in a top-down manner. However, it is often the case that,
prior to completing the specification, the support needs required by the
process structure may become clear. In such cases, the generation of the
current design specification, may be temporarily suspended and the design
of the supporting subsystem may proceed. Despite the fact t-at the strict
top-down design strategy could be followed, the designer may chose to move
to the next subsystem in the hierarchy in order to minimize the risk that
some of the assumptions made about the support subsystem may prove to be
wrong. However, once the designer decides to move to the subsystem below,
the design discipline prescribed by the TSD Methodologies requires one to
complete the design of the support subsystem prior to resuming the design
of the subsystem above. This reduces thrashing between subsystems and
enables the designer to make use of the performance characteristics of the
support subsystem in the adjustment and completion of the specification
for the subsystem being supported.
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The diagram that follows depicts the result of applying this strategy
to the design of a computer graphics system. Design activities are
represented by groups of slashes. The left most column of slashes
corresponds to the design of the top subsystem, i.e., the application
subsystem.

/ design of

/ graphics
/ language
/

// design of
// graphics
// language

// interpreter
//

/// design of
/// graphics

// and
// communication
I/I primitives

I//I design of
//// graphics
//// hardware

///9

//
/
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Aside from the global sequencing of design activities, an
understanding of the role that the processing model plays in the system
design stage requires the definition of three important concepts. The
first one is the notion that the top design specification (the application
subsystem) implements the system requirements. The second is the support
relation between the design specifications within the processing model
hierarchy. Finally, the concept of superficial binding makes the
transition to the bindi g phase.

A design specification is said to implement the system requirements
when its process structure is logically equivalent to the functionality
captured in the conceptual model. The definition may be actually extended
to the individual levels developed during the top-down design of the
specification. A given level in the specification implements the system
requirements if its process structure is logically equivalent to an
abstraction of the conceptual model. These definitions establish the
correctness criteria to be employed during the design of the application

subsystem and form the foundation for future automated checking of the top
design specification.

In the most basic terms, "subsystem B supports subsystem A" implies
two things about B: (1) it contains the design of functions (unrelated to
the application area) which were assumed to be available during the design
of subsystem A and (2) it may represent a further refinement of the degree
of distribution within the system. With regard to the first role of a
support subsystem, it must be pointed out that the ultimate realization of
the support relationship may assume a great variety of forms. Consider,
for instance, the special case when both subsystems are eventually
implemented in software:

- the programs of A may actually invoke the programs of B either
as procedure calls or as macros -- such is the case when B
realizes the communication protocol assumed by the message
sending and receiving commands used by A;

- the programs of A may be interpreted by programs in B -- the

availability of a LISP interpreter may be one of the support
functions assumed by A;

- the programs of A may by objects (i.e., data) manipulated by
programs in B -- programs in B may have the responsibility to
monitor and relocate the programs of A in case of equipment
failure or for load balancing purposes.
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About the potential increase in the degree of distribution from one
subsystem to the next, the idea may be rendered easily through the use of
the earlier graphics system example.

DESIGN ACTIVITY PROCESSOR STRUCTURE TOPOLOGY

/ design of (user) U <--> X -> I (image)
/ graphics
/ language
/

I/ design of U <--> Y1 --> Y2 --> I
I/ graphics
// language
// interpreter

//

/// design of U <--> Zi -- > Z2 -- > I
II graphics
// and
// communication

// primitives
///

///

/1/ design of -------- > W22 -- >I
//// graphics

//// hardware
///U <--> W1 --> W21

/// where
/// W1 = minicomputer

W21 = image buffer
/// W22 = display unit
////

//

///

14//
//

/

The third important concept, superficial binding, must be considered
in conjunction with the binding strategy.
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3.4.5.4 BINDING STRATEGY

A processing model is considered bound when all its entities are
mapped into software and hardware to be obtained (some by purchasing
off-the-shelf components, others by customizing available components, and
yet others by custom building them). The binding process (also called
hardware/software trade-offs) starts in the system architecture design
phase and reaches its conclusion in the binding phase. In the first of

these two phases the growth in the set of binding constraints (explained
earlier in this section) reduces the set of feasible alternatives, thus
biasing the design toward certain technological alternatives the designer
considers to be most promising. This biasing becomes very strong when the
designer choses to structure the system around the potential use of
available components; the system entities tentatively associated with
such components are said to be superficially bound to them. Note that one

entity may be superficially bound to one or more alternatives.

At the point when the binding phase is entered, large parts of the
processing model may be superficially bound. The strategy used to
accomplish the binding could be called a "most constrained first"
approach. The designer starts by identifying binding alternatives for the
most constrained areas of the specification. This results in the
immediate generation of new binding constraints over the remaining parts
of the design which, in turn, eliminates from consideration many fruitless
alternatives. Even if one is careful to always limit the investigation to
a tractable number of alternatives, the total number of system
configurations being evaluated at one time could grow rapidly. If, for
instance, one needs to merely select three machines and there are four
alternate candidates for each, the total number of system configurations
reaches sixty-four. While some configurations may be ruled out by
incompatibilities between some candidates associated with areas of the
design which are interfaced to each other, the designer needs to weed out
many more by employing guidelines such as cost minimization,
maintainability, uniformity, etc. Once the entire specification is
superficially bound to several alternate configurations, their number
needs to be reduced to one by evaluating the weak and the strong points of
each of them. Now the system specification is bound.

A last task still to be carried out is the generation of the software

and the hardware requirements. They have to include such things as the
functionality of various components, performance and other constraints,
interface definitions, etc. The exact contents and form of these
requirements is hard to formalize due to significant variability between
systems. This concludes the informal presentation of the design strategy
proposed for the system design stage.
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3.4.6 FORMALIZATION OF THE DESIGN STRATEGY

NOTE: The flow of control constructs employed in this section are
explained in Appendix D. Tasks, subtasks and procedures should be
treated like recursive procedures present in common programming
languages such as PL/1 or Pascal with the special provision that
their definition appears at the place of their first invocation.
Consequently, at the place of definition and first invocation,
parameters are defined and initialized at the same time.

Furthermore, all simplifying assumptions explained earlier are

reflected in the way the strategy is formalized here.

TASK System-Architecture-Design.

SUBTASK Subsystem-Design(i=1).

Review subsystem requirements (for i=1 the subsystem requirements

correspond to the system requirements and the subsystem is called the

application subsystem; otherwise, the requirements are given by the
processor structure definition and process/processor allocation defined
by the subsystem (i-I)).

Set the set of binding constraints to be the same as the binding

constraints of subsystem (i-I), unless i=1, in which case the set of
binding constraints starts by being empty.

Identify those technological alternatives that may be ruled out as
unacceptable and/or limit the set of technological alternatives only to
those that appear to be appropriate; formulate constraints which would
reflect these considerations; add these constraints to the binding
constraints.

IF the subsystem i is already available THEN DONE.

Develop top-level (i.e., level 1) for the design specification of the

subsystem i based on some abstraction of the requirements definition;
the process structure includes the modelling of the subsystem's
environment; the processor structure topology is inherited from the
subsystem (i-I), if it exists.

PROCEDURE Subsystem-Refinement(j=2).

{> { Generate the process structure for level j by decomposing or
by copying the process structure of level (j-1).
Generate the processor structure for level j by decomposing

the processor structure of level (-1) w.r.t. the needs of
the process structure on level j.) 1

=> { Generate the processor structure for level j by decomposing or

by copying the processor structure of level (Q-i).
Generate the process structure for level j by decomposing the
process structure of level (j-1) w.r.t. the capabilities of
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the processor structure on level j.11

Define process/processor allocation on level j; the allocation may be
static or dynamic and must be consistent with the allocation rule used
by the subsystem (i-i), if it exists.

iteration:

LOON => Adjust the specification of the level j. 1
= Propagate both process and processor performance

requirements of level (j-1) over the level j and refine the
performance models used at level(j-1); analytical,
simulation and empirical techniques may be required to

suppcrt the requirements propagation activity.
--> Investigate inference issues related to decisions taken at

this level and eliminate binding options that are shown to
be inappropriate. I

==> Superficially bind aspects of the subsystem to already
available software/hardware, if such decisions are strongly
motivated by constraints or design principles. 1

==> Carry out iogical and consistency checks for level j.
= Carry out design studies for this or subsequent

subsystems. 1
==> BREAK. }

IF level j does not refine correctly level (j-1) THEN BACK.

IF level j is not an implementation of some abstraction of the
subsystem requirements THEN BACK.

f Process and processor structures are not completely refined
--> INVOKE Subsystem-Refinement(j+1). 1

Processor structure is completely refined
::> { INVOKE Subsystem-Design(i+l).

LOOP{ => Propagate the performance characteristics of the
subsystem (i+I) to the processor structure of the
subsystem i and, subsequently, to the process
structure of subsystem i. ;

==> Adjust the specification of subsystem i.
=> BREAK.)

IF process structure is not completely refined THEN
PROCEDURE Finish-Refinement(jf~j+1).

Generate the process structure for level jf by
decomposing the process structure of level (jf-1) w.r.t.
the capabilities of the processor structure on level jf
(same as on level (jf-1)).

iteration:
LOOP => Adjust the specification of the level jf. 1

== Propagate process structure performance

requirements of level (Jf-i) over the level jf
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through the use of appropriate performance
models. :

==> Investigate inference issues related to
decisions taken at this level and eliminate
binding options that are shown to be

inappropriate. 1
= Superficially bind aspects of the subsystem if

such decisions are strongly motivated by
constraints or design principles. :

==> Carry out logical and consistency checks for
level jf.

==> BREAK.)

IF level jf does not refine correctly level (jf-1) THEN
BACK.

IF level jf is not an implementation of some abstraction
of the conceptual model THEN BACK.

IF process structure is not completely refined THEN
INVOKE Finish-Refinement(jf+l).

PEND.1})

PEND.

STREVIEW.

F(Check the self-consistency of the design specification for the
subsystem i.) ==> BACK.

F(Perform logical verification of the design specification with respect
to its functional requirements.) ==> BACK.

F(Check that all performance constraints placed on subsystem i are met,
given the characteristics of subsystem (i+I).) ==> BACK.

F(Determine that all consequences of the proposed design are
acceptable.) :=> BACK.

STEND.

Develop system testing plan.

TREVIEW.

F(Evaluate the system testing plan.) => BACK.

TEND.

II.
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TASK Binding.

LOOP[ IF the system is superficially bound THEN BREAK.

Identify those design entities and groups of design entities which

are not superficially bound and have fewest degrees of freedom
with respect to binding.

FOR all such entities and groups DO
/ { Identify binding candidate selection rules.

Select tractable set of candidates.

Establish the mapping between the Pandidates and the
related design entities.))

Define the compatibility relation between the candidates

associated with various parts of the design.

IF Compatibility problems are found THEN BACK.

Keep a reduced list of compatible alternatives based on various
guidelines such as cost minimization, uniformity, flexibility,
interface complexity, etc. }

Evaluate the possible system configurations and reduce their number to
one.

{ Generate software requirements including: functionality; explicit

statements with regard to both constraints and degrees of freedom;
the specifications of the interfaces between the components of each
subsystem, between subsystems, and with the hardware; and the
off-the-shelf and customized software to which some of the components
are bound. //

Generate hardware requirements including: functionality; explicit
statements with regard to both constraints and degrees of freedom;

the specificatiuns of the interfaces between the hardware components
and with some of the software; and the off-the-shelf and customized
hardware to which some of the components are bound. }

Develop integration plan.

TREVIEW.

F(Check the self-consistency of the software requirements.) ==> BACK.

F(Check the self-conbistency of the hardware requirements.) =:> BACK.

F(Check consistency between hardware and software requirements.) ==> BACK.

F(Verify the functional aspects of the hardware/software requirements

against the processing model.) => BACK.
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F(Check that all performance onstraints placed on the system are met,
given the characteristics of the hardware and of the software.) =0: BACK.

F(Determine that all consequences of the proposed hardware/software
selection are acceptable.) ==> BACK.

F(Evaluate the integration plan.) => BACK.

TEND.
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3.5 DISTRIBUTED REAL-TIME SYSTEMS ILLUSTRATION

3.5.1 INTRODUCTION

In the most general sense of the term, a "real-time" application is
one which places stringent demands on computer system response time. More
often, however, the term refers to an application in which the computer
system is part of the control loop for some other system. In this control
capacity, the loop delay attributable to the computer system must be very
small compared to the rate at which the controlled system can change
state. This is the sense in which we use the term here.

The need to meet stringent response time requirements makes the task
of system design more difficult. The degree of difficulty depends on the
complexity of the processing and on the time allowed to do the processing.
For some application areas, the response-time constraint nan be met by an
unsophisticated program running on a typical off-the-shelf microprocessor.
For other areas, the demands are so severe that they require the devising
of novel algorithms that distribute the processing over collections of
processors working in parallel.

When the control system is located remotely from the system being
controlled, communication delays contribute to the loop delay. This
reduces the amount of time available for the system to compute its
response and, as a consequence, makes the design task more difficult.
When the control system is embedded within the system being controlled,
the communication delays are small and the time available for system
response is maximized. However, embedded systems must live within the
physical environment of the controlled system, and this operating
environment can impose constraints that greatly increase design
complexity.

Consider, for example, the control of a guided missile. If the
control system is embedded in the missile, the design must meet severe
volume, weight, and power constraints, and must be able to withstand the
g-loading, vibration, and other stresses peculiar to that operating
environment. These factors disappear if the missile is remotely
controlled, but at the cost of having to deal with communication delays
and the risk of communication disruption.

The trade-offs between remote and local control are important design
issues whose relative merits are weighed during the problem identification
phase of the system design process. The trade-off consideration is not a
matter of choosing one over the other, but rather, deciding which aspects
of system control should be handled remotely and which should be embedded.

A good example of this is provided by the unmanned space probe that
recently flew by Jupiter and Saturn and is now on the way to Uranus.
Embedded control takes care of the minute by minute operation of the space
craft, while earth-based stations interact with the craft for purposes of
defining future activities. This arrangement is mandated by the fact that
communication delays between Earth and craft get larger as the craft moves
farther away. Since communication delays on the order of minutes occur
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early in the mission, total control of the craft from Earth is not just
difficult, it is impossible.

In summary, then, a characteristic common to all real-time
applications is the need to meet stringent response time constraints. An
important subclass, the embedded systems, must also meet constraints
imposed by their operating environment. In application areas such as
weapons systems and medical prostheses, the design of these systems will
often push the state of the art. Solutions can require the design of
custom hardware, the development of novel processing architectures, or the
devising of new computational algorithms. The most demanding cases will
require all three.

The impact of these considerations on design methodologies is clearly
pronounced. To be effective, a methodology must facilitate the evaluation
of correctness from both the functional and performance standpoints.
These evaluations must be made during the problem definition stage in
order to assure that the design specifications are indeed adequate for the
intended control application, and they must be made during the design
process in order to assure correctness of the design. For those
applications that require the design of custom hardware, these evaluations
must also be carried out at the actual hardware/software level in order to
assure correctness prior to the costly process of hardware design and
manufacture. The sophistication of the evaluation tools will depend on
the class of system being designed. Relatively simple tools will suffice
for some application areas while other areas will require emulation
facilities in order to perform the evaluations within a realistic time
period.

Because real-time systems are strongly constrained, a methodology
must provide formalisms for expressing function/constraint relationships
in a precise, unambiguous manner. This applies to both the specification
of system requirements and the description of system design. Additional
expressive capabilities must be provided for specific application areas.
Among the more common auxiliary needs are abilities to express the
following: asynchronous interactions at the system interface; processing
structures comprised of concurrent, communicating processes; the dynamic
allocation of processes to processors.

Finally, design strategies for real-time systems are driven by the

need to meet constraints. The implications of this depend on the class of
system being designed. For some application areas, it means making a few
performance-related adjustments to a processing model developed through
straightforward functional decomposition. However, for areas with
constraints such as volume/weight limitations, a need for high throughput
and fault tolerance, etc., there may be no way to adjust a straightforward
processing model to meet these constraints. In these ca~es, an
appropriate processing model must be developed around general techniques
for meeting the various constraints and around the capabilities of current
hardware technology.

The diversity of methodological needs makes it difficult to devise a

methodology that is well-suited to all real-time systems. The more
realistic approach is to specialize methodologies to particular
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application areas, optimizing them to the particular needs of the area and
to the backgrounds of design personnel working in that area. The strong
impact of application area on design methodology is illustrated in the
next section. It gives an overview of a particular application area,
summarizes the impact of this area on methodology needs, and reviews the
design of a particular system within that area.

3.5.2 BALLISTIC MISSILE DEFENSE SYSTEMS

This section begins by giving an overview of a broad application
area, Ballistic Missile Defense Systems, and discussing the impact of
area needs on system requirements. The implications of these

requirements on design methodology is then considered, with attention
being narrowed to a subarea, homing interceptors, in order to make the
discussion more concrete. A processing model typical of systems in
this subarea is presented and is illustrated for an actual system, the
Modular Missile Borne Computer.

3.5.2.1 INTRODUCTION

Ballistic Missile Defense (BMD) systems are military systems used to
detect and to defend against missile-based attacks. Detection is based on
active (radar) and passive (optical) sensor systems, while defense is
based on the use of interceptor missiles. There are two distinct
operational phases for these systems. The precommit phase deals with the
gathering and analyzing of sensor data and the maintaining of battle ready
status. The postcommit phase deals with the launch and targeting of
interceptors and with all other aspects of battle management.

Computer systems are used extensively in BMD systems. Computer
systems embedded in the sensor systems direct the sensors, preprocess the
sensor data, and effect communication with battle management systems.
Computer systems embedded in the interceptor missiles perform target
tracking (via onboard sensors), navigation, guidance, and communication
with battle management systems. Computer systems in the battle management
systems process the data received from the sensor systems, schedule the
targeting and launch of interceptors, monitor the effectiveness of each
defensive action, and determine successive defensive actions for as long
as the battle lasts.

The nature of the BMD mission imposes tough requirements on most of
its computer systems. First, because of the limited time in which to
detect a threat and intercept it, response time requirements are severe.
Second, because the processing needed for various discrimination and
tracking functions requires complex mathematical computations on large
volumes of data, throughput requirements are severe. Third, the critical
nature of the BMD mission demands high availability. Fourth, the chanlieable
nature of defense requirements requires that systems be easy to upgrade.
Fifth, airborne and spaceborne systems must meet severe volume/weight
constraints. Sixth, systems must withstand radiation, shock, and
electromagnetic stress associated with an attack. In addition,
missile-borne and satellite-borne systems must withstand the stresses of
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launch and the stresses of harsh operating environments.

These requirements have a significant impact on the design of BHD
computer systems. For most systems, there is no way to meet either the
response time requirements or the throughput requirements with a
uni-processor architecture. Multi-computer architectures are generally
required and, for systems with volume/weight limits and harsh operating
environments, this usually means custom, state-of-the-art hardware.
Fortunately, the mathematical nature of most of the processing is well
understood, including the opportunities for concurrency, and this
facilitates the creating of processing models suited to such
architectures.

Most BMD systems handle a variety of tasks, each with specific
operating requirements. Some tasks are driven by the arrival of data
which may occur at a uniform rate or randomly. Some are driven by the
passage of time, such as issuing reports at specific times and
transmitting data at specific rates. Others are driven by exceptions such
as the detection of an abnormal system condition. The management of these
tasks usually requires the services of a real-time system executive. This
executive provides intertask communication and coordination, and schedules
tasks and allocates resources on the basis of input events, exceptions,
current time, task priority, task temporal requirements, and
precommit/postcommit status.

The extreme importance of system availability means that most BMD
systems are fault tolerant to some degree. Since methods for achieving
fault tolerance depend on hardware and software structure and on the type
of faults to be dealt with, the physical and logical structures of these

systems are strongly influenced by the hazards of their specific
application.

3.5.2.2 METHODOLOGICAL IMPLICATIONS

The BMD application area has a variety of sub-areas that warrant
separate treatment. These include the control of active sensors, the
control of passive sensors, the control of homing interceptors, and battle
management. Each of these application areas has distinctive processing
requirements which require different process structures. They also differ
in operating environment and possibilities for repair. For example,
battle management systems are typically earth based, are not subject to
volume/weight limitations, and operate in non-hostile environments. They
can thus utilize large mainframe architectures and commercially available
hardware and software, and they can be repaired through manual
intervention. In contrast, embedded systems that control homing
interceptors are subject to volume/weight limitations and operate in a
hostile environment. They require special hardware and software, and
special techniques for dealing with faults. In addition, the nature of
their processing tends to be more rigidly defined and less subject to
change. These differences have a considerable impact on system design and
warrant different forms of design methodology.
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Listed below are the methodological implications of applications
dealing with the control of homing interceptors. The characterization is

at a relatively high level, in terms of the gross structure of the
processing model and the general characteristics of the methodology
components.

PROLESSING MODEL

VERTICAL STRUCTURE. The processing model has a two tier
vertical structure consisting of an application oriented
tier supported by an executive tier.

PROCESS STRUCTURE. The process structure for each tier
consists of a collection of concurrent communicating
processes, many of which are event driven. Because of the
need to meet stringent temporal performance requirements,
the processes of both tiers are tightly coded, primarily in
terms of hardware primitives.

PROCESSOR STRUCTURE. The processor structure that supports
the system is a locally distributed multi-computer network.
This structure develops in an incremental manner, the gross
structure being defined by the needs of the application
tier, and the fine structure being defined by the needs of
the executive tier.

METHODOLOGY CHARACTERISTICS

SPECIFICATION FORMALISMS. Specification formalisms must be
able to express the concurrent, multi-task, event-driven
nature of both tiers.

TOOLS. Sophisticated evaluation tools are needed for
verifying functional and performance correctness.
Simulation at the object code level is needed to prove the
suitability of the hardware/software mix.

DESIGN STRATEGY. There is an intrinsic need for fault
tolerance. Because of the dependence of this property upon
the logical and physical structure of the system, the design
strategy is oriented around techniques for achieving this
property.

Although a working methodology with these characteristics does not
currently exist, there have been substantial research efforts on various
components. For example, TRW, a company that is a major BMD contractor,
has developed a requirements statement language called RSL [BELL76] for
specifying the functional, temporal, and analytic requirements of
real-time tasks, and has developed a computer-aided system called SREM
[ALF077] for developing, maintaining, and analyzing RSL system
specifications. TRW is also developing a computer-aided system called
FAST [McCL75) for the simulation and analysis of computer systems. As a
part of the FAST program, a high order computer description language
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called SMITE [SMIT77] has been developed for programming diagnostic
emulations, and a SMITE compiler has been developed for the Nanodata QM-1,
a horizontally microprogrammable machine suited to emulation applications.

The next section discusses the design of a specific interceptor
control system. The purpose is to illustrate the suitability of the above
processing model and to show how strongly the design strategy is driven by
availability considerations.

3.5.2.3 EXAMPLE: THE MODULAR MISSILE BORNE COMPUTER (MMBC)

MISSION

An intelligent interceptor missile is one that provides its own
target tracking and guidance through the use of onboard sensors and an
onboard computer system. The Modular Missile Borne Computer (MMBC) is a
computer system designed specifically for this application. A good
description of the design objectives and the details of the MMBC system
are given in CRAMS79, APPL79, KINN79, ARNO791 and our presentation here is
based on that material.

The mission responsibilities of the system are as follows. At launch
time the system is given information about particular incoming threat
objects and given a battle management strategy. From that point on the
system functions autonomously. It acquires and maintains track on the
assigned threat objects, recognizes any new targets deployed by the threat
objects, performs detailed discrimination on any undiscriminated objects
and begins tracking identified re-entry vehicles, issues guidance,
navigation, and control commands necessary to accomplish intercept, and
finally initiates homing and fuzing.

Information needed to control the missile during the mission is
obtained by processing image data from onboard optical sensor arrays.
Because of the speeds at which the missile and the targets move, image
data is acquired at a high rate in order to remain abreast of the
situation and make the necessary course corrections. This data rate
ranges from 10"'6 to 10**9 words per second, the actual rate depending on
the particular sensor configuration being used. These high data rates,
coupled with the amount of processing required per input word, require the
MMBC to have a multi-computer structure.

Because of the volume, weight, and power limitations associated with
being embedded in a missile, the MMBC computing components are
microcomputers, and, because of mission stresses such as g-loading,
vibration, and temperature extremes; radiation from terrestrial, solar,
and celestial sources; and shock and radiation from nuclear detonations;
the computing components are assembled from custom hardware. Careful
design, manufacture, and selection reduce the risk of hardware failure,
but there are limits as to what can be achieved. As a result, the MMBC is
also designed for fault tolerance.
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VERTICAL STRUCTURE

The MMBC has a two-tier vertical structure. The top tier contains

the application software while the second tier contains the system
executive. This two tier structure is not just a conceptual model, it is
implemented in the system in a very strict manner. There are several
reasons for this, but the primary reason is that the MMBC is to be used in
a variety of applications, each needing different configurations of

hardware and different application processes. The executive provides a
virtual machine that allows the application code to be configuration
independent.

PROCESS STRUCTURE

A high-level view of the application tier process structure is shown
below. The Sensor and Focal Plane Processor acquire image data and

prepare it for transmission to the MMBC. The MMBC converts this data into
track data and uses that to generate the commands needed for Guidance,

Navigation, and Control. Each of the first three processes are
implemented by a collection of concurrent tasks executing concurrently on
separate processors. These tasks are organized in a manner that promotes
throughput and fault tolerance -- for details see discussion of static
masking under heading "Design Strategy".

Sensor and
Focal Plane
Processor

MMBC input data

Preprocessing

and Bulk
Filtering

Pulse Match

Processing

f Track data

Tracking and
Discrimination
Processing

Requests/Commands

Guidance
Navigation,
and Control
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The application processes execute concurrently and are coded in an
instruction set consisting of hardware primitives (PDP11-like) and
instructions that trap to the executive. Communication between processes
is message based, with the destination process being specified by logical
name. The task of getting the message from the sending process to the
receiving process is taken care of by the executive and is transparent to
the application software.

The executive tier process structure consists of a local executive
for each processor and a link interconnecting all local executives. No
system-wide scheduling or resource management is attempted. Each local
executive consists of a set of concurrent processes for performing
scheduling and dispatching, interrupt and trap handling, memory
management, communications management, run-time management, miscellaneous
system services, instrumentation and performance monitoring. Commonly
used functions such as global bus allocation, message assembly, linked
list manipulation, context saving, and procedure entry/exit are
implemented ir; hardware while less commonly used functions are implemented
in software.

PROCESSOR STRUCTURE

The figure below, which is taken from Figure 6 of CRAMS79], shows the
processor structure for a typical MMBC application. Throughput and fault
tolerance considerations necessitate the use of multiple processors for
most high-level application processes. Sensor data arrives on 4 busses,
and 3 processors on each bus perform the Preprocessing And Bulk Filtering
of that data. The Pulse Match Process is handled by 4 processors, the
Tracking and Discrimination Process by 3 processors, and the Guidance,
Navigation, and Control Process by a single processor. There are two
separate bus systems, the sensor busses which carry data from the sensor
complex to the MMBC, and a global bus which interconnects all MMBC
processors. The processors come in several flavors -- SIMD processors (3
streams each), arithmetically enhanced processors (fest logic for sum of
product calculations), and general purpose processors.
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The MMBC hardware is modular in nature so that the processor
structure can be tailored to the needs of the mission. It includes a
microprogrammed general processing element (GPE), an element that combines
with the GPE to form a single instruction multiple data stream (SIMD)
processor, an element that combines with the GPE to form an arithmetically
enhanced processor, memory elements, and bus interface units.

DESIGN STRATEGY

Because techniques for achieving fault tolerance depend on the
logical and physical structure of a system, the design process was largely
driven by fault tolerance considerations. Also, because the opportunities
for fault recovery are different before and after launch, different
techniques were chosen for these periods of operation.

Prior to launch, the system maintains a battle ready status by
operating in a continuous self-checking mode. Malfunctions are made known
to the battle management system responsible for the missile and this leads
to manual repair. After launch, manual repair is no longer possible, and
fault tolerance is then provided by static masking. Provision is also
made for dynamic reconfiguration in case the masking capability is
exceeded.

Static masking is implemented in the application tier of the
processing model. The basic strategy is described in the following
excerpts from [APPL79].

"The architecture we have chosen for the applications
software is a pipeline. Tasks at a given level of pipeline
must communicate and coordinate with othmr tasks only at
preceding and succeeding levels. So there is no global
applications system state, but only communications between
successive layers of the pipe. Note that each level of the
pipe is a set of identical tasks implementing the same
function. The tasks reside in different processors and
provide both throughput and fault tolerance ... "

"Figure 7 shows the PBF function's gross software
architecture. The software is in the form of a pipeline;
each stage in the pipeline performs some well-defined
function (e.g., demultiplexing).

"Each level of the pipeline is supervised by a manager
task whose function is to distribute data to the tasks which
make up the level. Each level is made up of one or more
identical tasks. The number of tasks at a given level
determines that level's throughput and fault tolerance. The
flow of data through a level is as follows: when a task at
that level is idle, it sends a work request to its manager.
When the manager receives data from the next higher level,
it matches the data with a work request and notifies the
idle task. The previously idle task then processes its
data, sends the data to the manager on the next lower level
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and sends a work request to its own manager."

---- --- L------- -- --------- ,I ,

- "

I - - - - 0
--J~t I I "

MMBC Applications Software Pipeline

Figure 7 of [APPL79].

Stafic masking occurs because of the fact that a processor must
request work in order to get work. If the processor dies, it stops

requesting work and is automatically out of the job stream. By having
more copies of a task than needed to meet throughput requirements, the

excess copies can die during the mission without affecting performance.
Of course, if too many copies die, performance degrades. If the risk of
this occurring is deemed adequately high, a second level of fault
tolerance can be implemented using the technique of dynamic
reconfiguration, that is, by reconfiguring the processes needed for the
remainder of the mission around the processors that are still functioning.

Dynamic reconfiguration is an executive tier function, and the

executive was carefully designed to minimize the overhead associated with
this task. All processors are tied to a global bus (actually multiple

independent global busses to give high performance and fault tolerance) so
that processes can communicate no matter which processor supports them.
Communication between processes is message based, with the message having

a header containing the logical name of the destination process. The
communication logic of the originating processor determines if the message
destination is to a process which is local to or external to the
processor. If external, the message is put onto the global bus, header
first, and the processor that holds the destination process recognizes the
process name and reads in the message. The result of this arrangement is

that the processor sending the message does not have to know the physical
location of a process external to it, hence that process can be relocated
without having to inform the processor. This eliminates most of the
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overhead normally involved in system reconfiguration. For example, the
code for a given process could reside in the memory of all processors. If
a processor with an active copy of the task died, a surviving processor
could be told to activate its copy and the system would continue to
function.

3.5.3 TSD METHODOLOGY APPLICABILITY

The vertical structure, process structure, processor structure, and
design strategy are as predicted for an interceptor control system.
Specification formalisms and design tools were not discussed because of a
lack of reference material. Although we do not know the actual thought
processes that occurred during the design of the MMBC, the carefully
structured result could easily have resulted from the top-down approach
described in section 3 .4.6. The reasoning is as follows.

The processing requirements of the interceptor mission were well
understood and so was the processing load associated with each step.
Because the processing load for most steps was too high for a single
processor, it had to be distributed over multiple processors. The
beginning point of the design process was thus one of deciding on the
manner in which the processors were to be organized. This is the point at
which the need for fault tolerance begins to direct the design. Most
techniques for gaining fault tolerance depend on the inclusi-on of
redundant hardware. The static masking scheme that was chosen was one
that simultaneously satisfied the need for extra hardware and the need for
a multiprocessor organization.

Note, however, that this scheme has an impact on the communication
workload since two messages have to be sent for each task -- a work
request message and a work assignment message. The performance
requirements for the processes and for the interprocessor links had to be
adjusted accordingly.

The design of the application tier identified the number and nature
of the processors needed. This was based on throughput, response time,
and fault tolerance requirements, and on an assumed order code executing
at a rate of one million instructions per second. The hardware
assumptions were based on studies of current and near future technology
capabilities. It is important to note that even though the nature of the
processors was identified (e.g. SIMD, GPE, etc.), this did not bind them
to specific hardware, it only constrained the design of the hardware. In
a similar manner, the interconnection structure was not bound, only
constrained to support the links of the process structure.

The design of the executive tier was also strongly driven by fault
tolerance considerations. Two important decisions were made. First, the
executive was distributed over the system so that it could survive the
failure of any processor. Second, interprocessor communication was bound
to a global bus, and bus addressing was made configuration independent,
thus making it extremely easy to relocate the processes of a failed
processer. Again, these design decisions were not without cost. The
adoption of a global bus created a communication bottleneck that required
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the design of a high performance bus, and the bus addressing mode required
the bus interface units to have intelligence.

The design of the executive level was a cooperative effort involving
both software and hardware designers. This led to the implementation of
many functions in hardware so as to reduce software overhead and Improve
performance. The fact that the hostile operating environment required the
design of custom hardware was thus exploited to provide an extremely
efficient hardware/software mix.

This concludes our discussion of the MMBC. Its design has been
presented in enough detail to illustrate that it fits the proposed
processing model, that the design strategy of each level is based around
techniques for achieving fault-tolerance and throughput, and that the
design could have been developed in the top down manner prescribed by the
TSD methodology.
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3.6 Distributed Data Processing Systems Illustration

Distributed Data Processing Systems take on a variety of forms and
sizes. This section presents a broad description of these systems in
order tu clarify the problem domain, the system solution domain, and the
constraints which affect the solution domain. It also describes how the
TSD Methodology, presented in Section 3.4, can be applied to select an
appropriate design path from the problem domain to the system solution
domain. To that end, a specific example is presented, to which the
important aspects of the methodology are applied.

3.6.1 Introduction

Systems can be categorized by classifying them within different
dimensions of criteria. Here, we select a few of these dimensions to
attempt to characterize Data Processing Systems:

- applications vs. support

- environment (existing support to be used as primitives)

- constraints (time, space, cost, etc.)

- system solution (what kind of solutions are expected)

Data Processing applications are typically classified as those in
which a large amount of "external", complex data are processed and a
relatively small amount of computation is required for each set of data
processed. The data are often processed in a transaction type manner (a
specific set of output for each specific set of input). This is in
contrast to:

- numerical applications
Usually, a small amount of data is input or output, but a large
amount of numerical calculations are performed.

- control applications
Usually, the input and output are very simple control signals,
and very little processing is performed.

Unfortunately, there is no c. ear-cut criteria for pigeonholing
specific applications; there is almost always a hazy boundary, and
components which have distinctly different characteristics may be present
in any specific system. However, a reasonable definition of a Data
Processing System is one in which the ratio of data movement to data
computation is (in some sense) high.

We will further decompose Data Processing Systems into two classes:
application systems and support systems (ALF079]. Application systems are
those in which the semantics (meaning) of the data being processed
actually is known by the system. For instance, in a patient monitoring
system, the system knows that the data is the output of sensing devices
attached to patients. In contrast, a support system is one in which the
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semantics of the data being process is not known. For instance, a
generalized database system does not know whether the data being processed
represents patient's temperatures, automobile prices, or oil well depths.

The environment normally supplies a significant amount of processing
support. This support might be as small as a file system, or it may be as
large as a full operating system with database and utilities. The design
and implementation effort is significantly affected by the level of
support available.

The major constraints that are normally applied to Data Processing
Systems are:

- Performance

Here, the emphasis is put on obtaining the largest amount of
work from the system in a given amount of time (throughput).
Load averaging is involved, and there is little intent to allow
the exclusive processing of extremely high priority components
(as in real-time systems). However, there are often constraints
on the response time required by certain requests in an
interactive system.

- Maintenance Costs
The total life cycle of the system must be considered in the
process of design. The cost involved in maintaining the
hardware and software often is an extremely important factor in
picking specific system components. The availability of
maintenance contracts can significantly affect the system
design.

- Expandability and Enhancibility
Most Data Processing Systems expand beyond the scope of the
application for which they were designed originally. This may
occur in one or more of several dimensions: More may be data
maintained than originally expected, there may be greater
activity of the system (more users) than expected, or new
enhancements may be required to keep the system up to date.

There are several other kinds of constraints that can be applied to
Data Processing Systems, but often have little affect on the design.
Access security is normally supplied by the executive system in which the
Data Processing System is embedded. Reliability is often handled by
checkpoints and backups. Real time constraints are seldom applied.
Constraints on the physical environment (space, temperature, etc.) usually
are not significant factors in design decisions.

The solution systems designed for Data Processing Systems seldom are
on the cutting edge of technology. Hardware is usually off the self
mainframes or mini/microcomputers; customized options are often selected.
However, custom discrete logic and/or VLSI are not used. Likely reasons
for excluding custom hardware might include increased cost (both initial
and maintenance), lack of experienced personnel (training costs), and lack
of need (older technology seems to solve the problems). Software
components range from off the self, through customized packages, to
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specially written custom software.

The previous discussion has dealt with general Data Processing
Systems; however, here we are interested specifically in Distributed Data
Processing Systems. The are four major reasons that a Data Processing
System might have a distributed design:

- Geographic Constraints
The data manipulated by a Data Processing System may be obtained
from sites which are geographically distant. The system may
have to collect specific distributed data, transform these data,
and transmit appropriate aspects to specific sites. The
physical locations of the sites may be part of the requirements
specification.

- Performance Constraints

Due to computational complexity of the application, there may be
no single processor capable of producing the performance that is
required. Distributing the computations to multiple processors
may be the only way of obtaining the required performance.

- Expansion
Although the initial application might be solvable on a single
processor system, the desire for future expansion may dictate a
distributed design, one that will be easy to expand later.

- Cost
Although an application may have a system solution which uses a
large mainframe, the cost of such a system may be prohibitive.
A distributed system of mini/microcomputers may have the same
computing power but be much less expensive.

3.6.2 Applying the TSD Methodology

The most important tools available to a designer are his own skill,
ability, ingenuity, and experience; no methodology can replace these.
Instead, the methodology represents a roadmap through a very large,
complex catacomb of design decisions through which the designer must
traverse. It is intended to give guidance as to when the designer should
apply different aspects of his art to specific components of the design
problem. It should give insight into when to apply the art, not enhance
the art being applied.

The specific techniques used in different steps of the methodology
also may be part of the designers art. They may be dictated by a number
of different variables, among which are the type of system being designed,
the degree of formality in the specification, the tools available, and the
designer's experience. In this section, techniques that may be applicable
to Distributed Data Processing Systems are discussed.

The methodology has two major tasks: system architecture design and
binding. Although it may seem that (from the specification) these two
tasks are strictly sequential and independent, there actually is a very
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strong logical interconnection between them. Many of the physical
activities described in the binding task may have (and probably have) been
logically performed in the system architecture design task. In the
refinement of the design, the design decisions are based on 1) constraints
and 2) knowledge of what system components exist commercially and the cost
associated with building (currently) nonexistent system components. In
other words, the design must be a pragmatic one, not a theoretical one.
If the components developed during the design cannot be bound to existing
or buildable realizations, then the design is faulty. With this in mind,
it is clear that the design decisions must be based on concrete

assumptions as to how system components eventually will be bound to
realizations. Thus, the binding task is mainly intended to:

- bind a few components about which assumptions have not yet been

made

- determine the compatibility of previous assumptions (superficial
binding) and modify those assumptions to make them compatible

- generate hardware and software requirements for system components

not commercially available and state option selection for those
that are commercially available

The heart of the System Architecture Design Phase is the action of
decomposing the processing model (the first major step of
Subsystem-Refinement). The final characteristics of the system are almost
completely determined by the decisions made here. The manner in which the
decomposition takes place significantly affects the quality of the final
design and the speed with which the design is completed. Thus, it is
important to understand the factors upon which these decisions are based
and have some specific technique for performing the decomposition.

The major factors affecting the decomposition are:

- knowledge of the application

- knowledge of the applicable algorithms

- knowledge of the performance of hardware and software that is

available or can be built

- recognition of the constraints

All of these factors must be kept in mind as the designer considers
different decomposition options. The loop (iterationi) after
process/processor allocations is a formal verification of how adept the
designer is at juggling these factors during the decomposition.

Two well-known techniques for performing the decomposition are
functional decomposition [BERG81] and data flow analysis [PAGE80]. Since
these are well-known, they will not be discussed further. A more
interesting question relates to the selection of those
processes/processors that are considered as candidates for decomposition.
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The canonical problem is the one in which a set of n processes are
allocated to a single saturated (virtual) processor. (A saturated
processor is one which cannot be bound to a real machine and meet the
performance requirements of the processes allocated to it.) There are
three major alternatives: 1) decompose the processor into m processors
and reallocate the n processes in such a way that performance requirements
can be met, 2) deallocate the "appropriate" number of processes from the
processor (so that the performance requirements of the remaining processes
can be met by the processor) and reallocate them to other processors, and
3) decompose certain of the n processes and reallocate specific resulting
components to other processors (so that the performance requirements of
the remaining components can be met by the processor).

Option 1 should be used as a last resort, only after options 2 and 3
have failed. It introduces additional processors which a) increases the
cost of the ultimate system, b) increases communication cost, and c)
increases the complexity of the system.

Option 2 is applicable if there are unsaturated processors available
and the reallocation of the processes does not saturate them. This is the
preferred option, but random reallocations can unnecessarily increase the
number of communication links required between the processors.

The processor topology is inherited from that of the processes;
given a specific process topology, certain processor-processor
communication links may be required because of the associated
process-process communication links. As processes migrate to different
processors, the processor-processor communication topology may have to be
modified to reflect the new allocation. One solution is to simply accept
this situation and pay the price of the increased communication. Another
is to introduce "packet transmitting" processes that shuttle information
from processor to processor.

Option 3 may be applicable when there are unsaturated processors
available, but reallocation of entire processes saturate them. In this
case, reallocation of subprocesses (process components produced by the
decomposition) may not saturate the unsaturated processors. This option
also tends to reduce the processor communication problem mentioned above.

The overall objective is to produce a system (which meets all
constraints) with the fewest processors and fewest communication links
between them. Option 1 increases both the number of processors and the
number of links; options 2 and 3 potentially increase the number of
links.

The problem is very similar to grouping and assignment problems in
graph theory [BOND76, EVEN79]. How do you group the nodes of a graph in
such a way that the connecting arcs between groups is minimized and
certain constraints on the nodes within each group are met? Research into
graph theory may yield appropriate algorithms for helping the designer to
select candidate decompositions.
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Determining performance capabilities of different components (both
hardware and software) of the system is another extremely important aspect
of the TSD Methodology. Benchmarks may be useful for gross estimation of
general performance capabilities and comparisons between different
hardware. However, extreme caution must be taken in selecting the type of
application upon which the benchmark is based. If the test application
does not have computations similar to the problem application, essentially
no inference can be drawn.

Analytical models, such as queuing theory models may be applicable for
determining the order of an algorithm and its appropriateness in an

application. Simulation with languages, such as GPSS, may also provide
insight into the ultimate performance of a specific system design.

Often the performance of a subsystem is dependent on the performance
of a critical section of code, and the total performance can be calculated
in a straightforward way once the performance of that code is known.
Thus, an excellent alternative is to program the critical section of code
and do performance measurements.

Emulation and simulation are not particularly applicable to
determining performance capabilities in Data Processing Systems.

3.6.3 An Example - Digital Land Mass System (DLMS)

The informal specifications of a cartographic database [NAGY79] are
presented in this section. This will be used as a basis for presenting
the general properties of the TSD Methodology and how it is used
dynamically. The example presented here is very simple. It has been
constructed in order to demonstrate the use of the Methodology ind not to
demonstrate the work required to develop the detailed design of a complex
system. We will refer to this example as the Digital Land Mass System
(DLMS).

DLMS consists of a set of data (the database) and a set of
transactions. The system is capable of accepting, retaining and answering
questions about three different kinds of objects embedded in an absolute
latitude-longitude coordinate system: points, lines, and areas.

Each data group has the same conceptual form, a 3-tuple: <feature,
type, coordinates>. The feature component specifies a unique name of the
object (e.g., Missouri River, Pike's Peak, Lake Michigan, etc.) within a
specific type. No two objects in the database of the same type can have
the same feature. The type component specifies the kind of object being
described. In this database, there are only three kinds of objects:
points, lines, and areas. The coordinates component specifies a list of
2-tuples which are interpreted as latitude-longitude coordinates. If the
type of the object is point, the coordinate list corresponds to a sequence
(possibly only one) of points which are conceptually associated (such as
the positions of telephone poles along a telephone line). If the object
is a line, the list is of arbitrary finite length; the sequence of points
defined by the coordinates are conceptually joined (in sequential order)
by straight line segments in order to approximate the actual line being
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defined. If the object is an area, the list is of arbitrary finite
length; the sequence of points, joined by straight line segments,
represents a closed curve enclosing the area being defined. The database
consists of a specific set of objects defined in the above manner.

There are four primative transactions: create, find, update, and
plot. Each command is input to the system along with a number of
arguments. In each case, if an argument is of the wrong format or
structure, the database remains unaltered and an error message is given.

The create command has three arguments: a feature, a type, and
coordinates. If any object currently in the database has a feature and
type identical to that specified, an error message is returned and the
database is not altered. Otherwise, an object with the given feature,
type, and coordinates is added to the database.

The find command has two arguments. The first is either empty (null)
or a feature; the second is either empty or a type. Only one of the
arguments may be empty. If only a feature has been supplied, then those
objects (a maximum of three) named with that feature are returned as
output data (if such objects exist in the database). If only a type has
been supplied, then all objects with that type are returned as output data
(if there are any such objects). If both feature and type are supplied,
then the object with the specified feature and type is returned as output
data (if it exists). The database itself is not altered by this command.

The update command has three arguments: a feature, a type, and
coordinates. If no object in the database has the feature and type
specified, an error message is returned and the database is not altered.
If there is an object in the database with the feature and type specified,
then one of two actions occurs: if the coordinates are empty, then the
object is removed from the database; otherwise, the coordinates of the
named database object are replaced by those specified in the command.

The plot command has four arguments: each is a latitude or longitude
coordinate. Collectively, they define a rectangular area of interest.
The plot command returns as output the set of objects (or portions
thereof) that lie within this area. The database is not altered by this
command.

This chartographic database system is intended as a subcomponent of a
larger system which must be able to manipulate geographic data. Thus, it
is not intended for direct use by an end user; there is some software
interface that transformes the users' input into the commands specified
above and interprets the output and displays it to the user in an
appropriate manner. Thus, there is no question about how error messages
or output responses are displayed to the user or how the response from the
plot command actually is plotted.

The intended size of the database is between 100*5 and 100*6 objects.
Thus, a significant amount of on-line secondary storage will be required.
It also is anticipated that the database may be extended beyond this
initial volume.
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The system is intended to be used in an interactive environment.

Thus, although this is not a real-time system, there are certain
requirements on the response time required to execute commands (as opposed
to a batch oriented system where average throughput might be more
important). It is intended that both data entry and query of the database
are to be done interactively; thus, techniques that balance data insert
and data search are most appropriate. (This is in contrast to techniques
that produce very fast data entry but very slow data retrieval, or visa
versa.)

Although concrete performance constraints would be required in order
to do an actual design, numerical constraints are not presented here
because in this exposition, the algorithms used will not be analyzed to a
low enough level to be able to apply actual numerical constraints.
However, during the exposition, assumptions will be made about the
comparison of the numerical constraints and the algorithm analyses.

3.6.4 A Design - DLMS

In this section, the TSD Methodology is applied to the example
described in the previous section. The intent is to show the sequencing
of the steps involved in applying the Methodology and how results from
analyses affect decision points of the Methodology. The intent is not to
show the details of the analysis or exactly how the decisions are made.

A preliminary analysis of the system leads to some conclusions about
the solution domain. Some form of random access secondary storage is
required; this rules out tape. Because of the amount of data to be
stored, performance constraints, and reliability considerations, floppy
disk is ruled out. This leaves hard disk and bubble memories. Because of
the current state of the art for bubble memories and personnel expertise,
bubble memories are ruled out, and some form of hard disk is selected for
secondary storage.

Because of performance constraints, cost constraints, current
technology and the desire to be able to expand later, a distributed
architecture seems to be appropriate. Some form of mini/microcomputer is
deemed appropriate; however, some software support is required, at least
a file system and the availability of a high-level language. This leads
the designers to place machines like the PDP-11 and MC68000 in the design
space (binding options).

Thus, as the designers start into the design, they have some idea of
what hardware and software might be appropriate. They have not decided
what hardware and software to use, but they have restricted their search
space.

An important aspect to consider before getting too deep into the
design is what fundamental approach (top-level idea) will be used to
perform the database searches. There are many such approaches: binary
search, binary trees, AVL-trees, hashing, B-trees [AHO74, HOR076], etc.
In fact, the initial technique selected may not be the final technique
used; however, it is useful to have a strawman against which to evaluate
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design decisions.

Because of the large and unknown amount of data, many of the standard
search techniques are inappropriate. B-trees [COME79, HANS81] seem to be

applicable to this application. They can handle very large data sets of
initially unknow size; they supply relatively good performance; and they
can be "tuned" to the properties of the specific secondary storage system.
Let us assume that although other approaches initially may have been*
considered (and some design done based on that choice), m-way B-trees
constitute the final selection.

An m-way B-tree is a search tree in which:

1) all leaf nodes are at the same level (distance from the root
node)

2) the root node has at least 2 children

3) all nodes other than the root and leaf nodes have between m

and m/2 (rounded up) children

In such trees, the raw records (or pointers to them) are held only at
the leaf nodes. Internal nodes contain search information about the key
(of the records) and allow algorithms to select the appropriate child to
be searched. The leaf nodes are sorted from left to right, and the B-tree
structure supplies a fast access structure for finding the appropriate
entry (or where it would be if it were present). The search, insert, and
delete algorithms are straightforward, and the height of the tree
determines the number of nodes that must be interrogated in order to find
the appropriate entry. Since each node must have at least m/2 children,
it can be shown that this does not exceed log{(N+1)/21 + 1. (Here, the
logarithm is taken base m/2, and N is the number of leaf nodes.) For
instance, if m=20 and the number of entries does not exceed 2xi0**6 - 2,
then no more than 7 nodes must be interrogated. (m usually is determined
on the basis of the key size and the disk block size.)

The initial process structure is shown in Figure 3.2(a). Here two
independent user processes (Ul and U2), running on their own processors,
interact with the DLMS process; these are outside the scope of our
design. The DLMS executes on a single virtual processor. Because of the

transaction nature of the specifications, a natural first level
decomposition is to recognize the four different commands by introducing
processes to handle each of them (see Figure 3.2(b)).

Upon further analysis of the requirements, it becomes clear that the
database will have to be searched in several different ways -- the find
command searches on feature and type, and the plot command searches on
coordinates. It is decided that separate access structures should be
built for each type of search to insure maximum performance for that
specific kind of search.

One possibility is to have a different search structure for each
component type: feature, type, and coordinate. However, there are only
three different values for type. The following compromise is chosen:
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There is one access structure for coordinates and three access structures
for feature, each containing types of only point, line and area,
respectively. Given this architecture, if a type is specified in a find
command, only the corresponding access structure need be searched. If
only a feature is specified in the find command, then three B-trees must
be searched.

Clearly Plot is the critical process because a spatial search must be
done in the rectangular area of interest. It is selected as the critical
component to analyze and decompose. Two basic functions must be
performed: (1) determine the objects that intersect the area of interest,
and (2) extract the portions of those objects that lie within the area
(see Figure 3.2(c); for brevity, only the refinement is shown; SIR
stands for Search/Insert/Retrieve). We will assume that (2) is not
difficult once the object is identified. Thus, (1) becomes the critical
process of interest.

One way to perform this search is to: (1) identify all objects lying
within the appropriate range of x-coordinates (corresponding to the sides
of the rectangular area of interest), (2) identify all objects lying
within the appropriate range of y-coordinates (top and bottom of the area
of interest), and (3) take the intersection. If a separate access
structure were held for the x coordinates (that define the objects) and
the y coordinates, then (1) and (2) above have simple algorithms and

potentially can be done in parallel. Thus, the decision is made to refine
the previously conceived single access structure for coordinates into two
distinct ones -- one for the x coordinates and one for the y coordinates
(see Figure 3.2(d)).

Now that a sufficient amount of design has been done to crystallize a
probable structure for a critical area of the system, it becomes evident
what the design of the remaining portion of the system should be (see
Figure 3.3). As an example, consider the create command. Up n receiving
an object, the type is known so the appropriate feature B-tree can be
searched. If there is no object of the given type and name, Create puts
the primative object in the database (getting a pointer back) and puts the
pointer in the appropriate place in the appropriate feature B-tree. It
then performs a similar action for each of the x and y coordinates in the
list of coordinates. Update is similar to Create; Find only does
searches; and Plot has already been discussed.

The above scenario corresponds to recursively traversing the

procedure Subsystem-Refinement to the fourth level (j=4) while performing
some incidental backtracking. Note that no mention has been make of
refining the processor structure or which of these processes are to be
performed in parallel on separate processors (so far, there is just one
processor). Subsequent levels of refinement will address these questions
and potentially refine the process structure.

Supervisor, Create, Find, Update, and Plot all have simple. similar
supervisory activities that do not require much execution time. Because
their functions are similar, they may have common utilities; thus, it is
potentially advantageous to place them on the same processor. The five
SIR processes are very similar in nature, but their processing load is
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anticipated to be drastically different. The three feature SIR processes
are accessed by Create, Find and Update. These normally perform one probe
into the B-tree and do minor manipulation of the local region found in the
search. However, the two coordinate SIR processes are used by Plot to
extract large amounts of data; two probes are made and all the data "in
between" is returned. Thus, an appropriate processor structure might be
to assign the three feature SIRs to one processor and each of SIR X-coord
and SIR Y-coord to two other processors. Although the algorithm in
Intersect and Extract Portion are simple, they will be performed on a
large amount of data. They can be assigned to their own processor. This
suggests a processor structure of that shown in Figure 3.4. Note that the
majority of the processing power (three processors) is allocated to the
critical activities of Plot. Also note that the structure shown has the
minimal communication (six links) required by a connected system of seven
processors.

After consistency, performance, and inference analysis, this
processing structure seems appropriate and we can consider the processor
structure to be completely refined. Thus, we start on the subsystem
design (recursing into Subsystem-Design at i=2). The SIR processes can be
viewed as accessing a virtual B-tree machine; there are specific
instructions to search, insert, and retrieve information from a B-tree
(the B-tree conceptually residing on disk). At this stage, the B-tree
machine must be designed. (Of course, all the five B-tree machines have
the same design.) Although such a B-tree machine could be built completely
in hardware, a more standard approach (and the one we take here) is a
combination of hardware and software (processors and processes).

The basic structure of the processes of the B-tree machine is shown
in Figure 3.5. (Here we assume a single processor consistent with prior
decisions, although we co ild refine the processor structure more.) SIR*
represents the interface between the specific SIR process making the
request and the B-tree machine. Decode interprets the request and
dispatches the appropriate action. Each of Search, Insert, and Retrieve
execute sequences of commands on the processor to achieve the required
function.

Let us assume that the designers believe that this is the design that
they want, but they are still not sure of the performance characteristics.
As an inference tool, they implement certain portions of the system ind
execute against what they believe is a representative set of queries.
Unfortunately, they find that the performance is below requirements.
After analyzing the detailed execution results, they find that the poor
performance is due to excessive I/O to the disk. However, on further
analysis, they find that they had not recognized the principal of locality
(if a certain portion of the B-tree has just been searched, it a likely to
be searched again in the near future) and that much of the I/O can be
eliminated by holding the most recently accessed nodes of the B-tree in
primary storage buffers.

Thus, the designers recurse one more level into Subsystem-Design
(i=3) by assuming that Search, Insert, and Retrieve have available to them
a virtual disk machine (see Figure 3.6). Here, the starred processes
represent interfaces to processes which need access to the virtual disk
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machine. When requests for access to the disk are make, buffers which

hold recently accessed information are searched first to see if the
information is available in primary storage; if it is not, the disk is
accessed and the buffers are updated.

Now assume that after modifying the previous implementation to
reflect the virtual disk machine subsystem, performance seems to be within
bounds. Although it cannot be assumed that the final system will work
within the required performance bounds, the designers now have a much
clearer understanding of the overall structure of the system and may have
already identified places where the system can be optimized if later
necessary.

The preceding scenario has been intended to show the general overall
nature of the TSD Methodology. There are many aspects of the design which
have not been addressed. For instance, what kind of interfaces between
processes and processors were assumed and how is the disk system
organized? Are all the B-trees on one disk (causing seek thrashing), or
are they segregated? The Methodology has lead to a design that allow
these questions to be resolved in multiple (acceptable) ways. It has not
force the designers to "paint themselves into a corner".

What will happen as the system grows? There are several ways in
which the system might expand: more data may be held, more users may be
put onto the system, or more types of objects may be added. The current
design allows graceful growth in all these directions. As the number of
objects grows, the disk system can be expanded and performance can be
enhanced in several different ways depending the location of the
bottleneck. For instance, Extract Portion and Intersect can be put on
separate machines; the three feature SIR processes can be put on separate
machines; SIR X-coord and SIR Y-coord can be refined by dividing the
coordinate space into fixed regions and assigning different processes (and
processors) to each region. As the number of users grows, the processes
on PS processor can be split up and put on their own machines (along with
the modifications above). As the number of types grows (so that user
defined types are available and a finite by unbounded number of type are
possible), the three feature SIR processes can be logically combined and
then split into two processes (each on its own processor): one searching
on feature and one searching on type.

In summary, the Methodology has produced a design that is flexible to
growth and enhancement in many different dimensions. For instance, the
basic design is applicable to different access structures other than
B-trees, different commercially available machines and different disk
systems. Performance and cost are the two driving forces that affect the
implementability of the final system.

3.6.5 Conclusions

The TSD Methodology has some interesting and unique properties. Many
of these are important to computer system design in general, but a few are
particularly important to Data Processing System design. For instance,

172

j



the Methodology formally recognizes the concepts of support, subsystem and
virtual machine. This is extremely important in Data Processing where
system. often are built of pre-existing building blocks. This not only
allows the designer to use already available components when applicable,
but is a tremendously powerful conceptual tool for reducing apparent
complexity when new components must be designed and built.

The Methodology is flexible in that it allows the designer to examine
design paths, select those of critical importance, and use the design
developed along these paths to mold the remainder of the system. The
designer can move about the design space in a flexible and yet structured
way. However, it is rigid in that it continually reinforces that the
constraints are a fundamental criteria against which the final design must
be judged. At each decomposition point, the designer must relate the
ramifications of his decisions to the constraints. Although the designer
can suppress considering the constraints at certain points, it is still
brought to his attention and he must formally address that he is
suppressing such considerations.

The Methodology formally recognizes that either the process structure
or the processor structure may be the driving factor behind the design.
However, it does not force the designer into excluding one aspect for the
other; in successive levels of decomposition, the designer can switch
from one viewpoint to the other.

Formal specification languages and checks are fostered by the TSD
Methodology, and many of the formalisms present in other methodologies
[ALFO791 are applicable here. Our Methodology also distributes
verification checks to different decision points. The intent is to insure
a sufficient degree of verification without forcing the designer to spend
excessive time. The Methodology also formally recognizes the environment
that interfaces with the system to be designed.

Although this section Las only applied the Methodology to an
application Data Processing System, the Mithodology can be applied in a
similar way to support systems. For, instance, the techniques used in the
design of the DLMS may be extendable to a generalized database system (in
which the semantics of the data is not known). In support systems, the
constraints may be less well defined because the use of the system and the
semantics of the data are not know. In fact, processes may be created at
execution time that cannot be analyzed at design time. Here, queuing
theory models may become a very important analytical tool.
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4. TSD FACILITY DEVELOPMENT MASTER PLAN

4.1 INTRODUCTION

System designers and programmers have long felt the need for computer
aided assistance in performing their jobs. Software tools represent one
of the mechanisms by which the appropriate computer services can be
provided. Many of these tools have evolved since the days when the first
programs were written, since there always has been the desire to let the
computer do more of the mechanical work required to define, design, build,
and maintain any computer based system. The justification for this has
been primarily economic: people will be more productive in doing any task
if they have the correct tools to help them with their work. As an added
benefit, it is also usually true that the resulting systems will be more
reliable. The definition of what is a "correct" tool, however, varies
with the project, the personnel, and the times. Of course, if any new
support system is not easy and natural to use, there will be a definite
tendency to avoid using it and to continue with the older more familiar
methods. Thus what is needed is a comprehensive computerized support
system that w.ll provide a set of the appropriate tools to a group of
users in a friendly, convenient, easily learned fashion.

GOALS

The goal of this work is the creation of a computer based system that
will support, in a cost-effective manner, a computer oriented project from
conception through performance evaluation. This includes enhancements in
the productivity and the quality of system design efforts within DoD
through the use of systematic design approaches. The resulting
methodologies are to be supported by the large-scale highly-integrated set
of computer aided design and management tools that compose the system.

The implementation of this system should take advantage of as much
existing technology as possible in order to become operative in as short a
time as .rssible. However, this emphasis on short term utility should be
balanced against the long-term need for the system to accommodate new
technologies, tools, and methodologies, or extensions to cover the entire

system life cycle.

OBJECTIVES

In order to achieve the goals, the following specific tasks were
established as the initial objectives:

-- Objective 1:

Develop a conceptual model for an integrated set of
design tools to support the first three stages of the

TSD Framework (Problem Definition, System Design,
Software Design). That is, characterize the computer
based environment in which the users will work.
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We shall use the expression Total System Design (TSD) Concept to
represent the abstract process by which a computer-based system is
defined, designed and developed, plus the management of these activities.
The TSD Concept establishes the requirements that must be met by the
proposed computer aided design system, and hence must be defined before
design may begin. A Total System Design Methodology is a particular
instantiation of the TSD Concept for one application area.

Usually a system designer will have available a collection of
computer based tools (such as a text editor, a language compiler, etc),
but this collection does not necessarily form an environment. An
environment is the set of services provided to a user when a collection of
tools are integrated together to form a cohesive set. We shall call the
set of services provided by an integrated set of tools supporting a TSD
Methodology a Total System Design Environment. Thus the TSD Environment
forms a conceptual model of a group of services that support the first
three stages in the life cycle of a project, with the support following a
set of guidelines (from the appropriate methodology) to increase user
productivity and system reliability.

This task ensures that the functionalities and interfaces required by
the TSD Methodologies are defined and included within the TSD Environment.
This task also will enforce the integration of the various tools that
cover the appropriate system life cycle stages, and hence will demonstrate
the ability of the TSD Environment to support all appropriate TSD
Methodologies.

-- Objective 2:

Investigate design alternatives for the TSD
Environment, and select a specific direction to
elaborate. Apply the selected approach to develop a
high level design proposal for a TSD System prototype.

We shall call a computer implementation of a TSD Environment a Total
System Design System. When a TSD System is installed in a particular
computer center, unique features at that center may have to be
accommodated within the TSD System itself. Special emulation facilities,
unusual applications, or customized tools may all represent factors that
may cause the basic TSD System to vary from one installation to another.
These variations, however, represent local enhancements of the System, not
basic changes. The collection of all of these possible enhanced versions
of the System will be called the TSD System Family.

A general design must be found for TSD Systems that incorporates all
of the necessary factors identified in the TSD Fnvironment, and also
allows for the open-ended inclusion of new technology. Various approaches
need to be evaluated to produce the most cost-effective final design
proposal. The creation of a specific design for a prototype system allows
the general design approach to be evaluated.

The proposed TSD System design is called a prototype because it will
be the first one to be implemented. It is assumed that lessons learned
from implementing and using the prototype will result in modifications
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that produce the final production TSD System design. Depending on the
extent of the changes required, the final system may evolve from the
prototype or it may come from a complete restart of the design process.

- 'bJective 3:

Develop a phased implementation plan for a TSD System

prototype that emphasizes both the immediate
productive use of existing installations and the
long-term research and development role of the System.

The TSD System prototype design proposal must be implemented
initially by using currently available technology in order to obtain a
running prototype system within a reasonable budget of time and effort.
The implementation plan must be in phases to allow the immediate
exercising of parts of the overall system as they become useable. This
approach increases the short term utility of the effort, and at the same
time provides for critically important user feedback. The choices made
during the development of the TSD System prototype design proposal must be
evaluated within the context of an actual project effort, and so the plan
must be able to accommodate revisions based on such information. The
evaluation must be done in terms of the computer aided design and
productivity enhancement goals previously stated.

The TSD System prototype, when actually implemented, will also serve
as an excellent test vehicle for the research and development necessary to
create new tools and methodologies. These new items may replace or add to
existing items, or they may serve to expand the system life cycle
coverage. Thus the implementation plan must stress flexibility to allow
the research results to feed back immediately into the System for
production use. The System implementation plan must also stress
portability to allow the results to be distributed to other installations
for testing and production.

Facility Considerations

A computer installation that is running the TSD System Software, and
is providing all of the necessary support material and personnel, will be
called a Total System Design Facility. The essence of the TSD Facility is
in its support of one member of the TSD System Family, and thus we may
have the TSD Environment implemented at many different installations.

Since each TSD Facility may have something unique to offer (such as
special hardware or special tools), a user physically located at one TSD
Facility site would have local access to only the one member of the TSD
System Family that was adapted to the local capabilities. As a
consequence, each TSD System Family member program must have the ability
to communicate with all other Family -nembers in order to provide each user
with the complete TSD System capabilities (i.e. the union of the
capabilities of all of the TSD System Family members).

The core of the TSD System Family is defined as the intersection of
the capabilities of all of the potential TSD System Family members. In
other words, the core represents the features that are available locally
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at all of the TSD Facilities. These features are the computer based
functions that are implemented uniformly for all TSD Methodologies,
independent of whatever application area is being considered.

APPROACH

Objective 1

The first objective will be achieved by developing a TSD Environment
based on the following basic principles:

-- Capture the nature of project organization

Most projects are organized in a hierarchical or matrix fashion.
This provides for both supervision and grouping of functions within the
project. In a similar manner, the computer environment seen by a user
should reflect his level of function within the project organization.
This may be readily achieved by organizing the TSD Environment itself into
a corresponding hierarchical or matrix structure.

A user working in any given environment should always be able to
define a new sub-environment that has access to a defined set of tools and
project information. The user should be able to control access rights to
any sub-environment that he has created. This will also help satisfy the
need for specialization, allowing a user to define an environment tailored
to his own special requirements.

-- Complete documentation and configuration control

In order to maintain consistency and control, all information about a
developing project must be stored in one data depository. Users may have
local copies of pertinent data for their own use, but changes may be made
in the central project databise only under strict control. This will also
support the mechanisms for tracing changes, tracking version numbers, and
for maintaining authorization controls.

-- Standardized tool access and control

The TSD Environment will define a set of tools and interfaces that
are common for all TSD Systems. This core will represent the components
used to build all of the operating sub-environments. In order for this
collection of components to form a true environment, the collection must

form a cohesive set. This means that each tool may potentially have to
accept as input the output of other tools, and all of the tools must
interface smoothly with both the project database and the user. Of
course, users must be able to add (easily) private tools and interfaces to
customize an environment for their own work habits and personal use, and
so the model must also provide for these dynamic possibilities.

-- Separation of concerns
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Certain major tasks are common for almost all projects, but each
project contains tasks of widely varying concerns. System designers and
the project manager have quite different requirements for computer
assistance in their jobs. In order to aid in the human engineering
aspects of using a complex and extensive system, such as the TSD System
Family, sub-environments will be predefined that aid particular types of
tasks. Current planning calls for three distinctly tailored types: a
management environment, a design environment, and a production
environment.

Objective 2

The design alternatives for a TSD System that implements the TSD
Environment will be developed from the following principles and
assumptions:

-- Cooperating installations

The size of this undertaking suggests that there should be multiple
simultaneous developments occurring. This will require a strong emphasis
on portability (to allow programs and results to be freely interchanged)
and for inter-facilities communication (for the rapid exchange of
information). A design direction leading to cooperating independent
stand-alone system modules should be emphasized.

-- Specialized facilities

It is expected that different installations of the TSD Facility will
offer different specialized capabili4 es. For example, one installation
may have a hardware emulation cape cty that is unique. It may not be
cost-effective to duplicate these capabilities in all installations, but
workers at another TSD Facility may require access to such unique
facilities. Thus we find that the need for portability and communication
capabilities mentioned above is re-enforced. However, the design must
incorporate such flexibility and still maintain a reasonable efficiency.

-- Workstations

It is assumed that users will communicate with the TSD Fdcility
through local workstations. However, the inter-relationship:, among the
user needs and desires, the workstation capabilities, and the TSD System
tool functions, must be carefully explored to insure maximizing the
effectiveness of all components. The potential effect of technology (such
as graphics, vocal I/O, touch screens, etc) needs to be evaluated.

-- Standardized interface to database management systeis

In order to make maximum use of existing technology, it is expected
that current database management systems (DBMS) will be used to handle the
project database. This expectation must be verified, of course, but the
cost of developing a specialized DBMS is large. The disadvantages of
excessive generality, size, and slow performance of an existing DBMS must
be balanced against the advantages of flexibility and short-term utility.
In addition, the use of an existing system allows the core tool set to
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interact with the project database through a well-defined, standardized,
machine-independent interface (from the tools' point of view).
Implementations for a new machine installation would then require mapping
the standardized interface, as seen by the tools, into a DBMS that already
exists on the new mdchine. Thus all necessary machine dependencies can be
encapsulated. -he design characteristics should lead to the most
universal and easily adapted interface definition and so must be carefully
considered.

-- Standardized core command language and tool set

Command languages, interfaces, and functionalities defined to be in
the TSD System core will not change from one installation to another, or
from one project to another. This supports portability of tools and
applications, plus it allows the personnel to move between projects or
installations with minimum retraining. However, the definition and design
of such a common core is a significant undertaking in itself. It depends
on extracting the essential features from the TSD Environment, and on
establishing all of the potential tool/database/human interactions.

Objective 3

The third objective, to creaue a phased implementation plan for a TSD
System Prototype, will be achieved following these guidelines:

-- Evaluate available technology

A demonstration facility should be selected first, since the
constraints on the design of the prototype system will depend partly on
where it is to be implemented. The existing hardware factors (speed,
size, terminal availability, emulation capability, etc) and the existing
software tools (database management systems, language compilers, text
processors, etc) need to be evaluated and factured into the design
proposal. This should result in an id-rtification and partial ordering of
the specific steps that need to be completed to produce the prototype
system.

-- Determine benefit/cost/risk factors

If these factors are associated with each of the implementation
steps, then the partial ordering information may be used to define a
series of benchmark systems such that each partial system combines the
highest benefits with the lowest cost/risk for that point in the overall
development. The phases of the final implementation plan will be
structured to produce the benchmark series of systems, with elapsed time
and pot ntial parallelism indicated for the phases.

-- Identify missing technology

Some of the identified implementation steps will undoubtedly depend
on missing tools, techniques, or other knowledge. Along with the phased
implementation plan, a parallel supportive research plan will also be
developed.
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OVERVIEW

This introduction has described the goal of cost-effective project
support to be achieved by a TSD Facility. However, this goal may only be
approached in stages, as described in terms of three initial objectives:

1. Characterize the TSD Environment.
2. Develop a design proposal for a TSD System.
3. Describe a phased implementation plan for a prototype system.

The balhrice of Section 4 describes the results obtained in trying to
achieve the3e objectives. Section 4.2, Background, begins the task of
characterizing the TSD Environment. Section 4.3, Proposal for a TSD
System Family, completes the environment characterization and outlines the
TSD System design proposal. Implementation plans are discussed in Section
4.4, Recommendations for Facility Development. A concluding discussion,
Section 4.5, TSD Facility and System Design for DMA, presents the case for
using the TSD System approach in the DMA work environment.

Note that the proposed TSD System Prototype design is based on a
characterization of the TSD Environment, not on a set of detailed
specifications. Thus the design is at a high level, allowing us to
structure the "forest" before detailing the individual "trees". In other
words, the system design proposal is for the overall system structure and
organization. The implementation plan then describes the detail work that
must be performed in order to bring the TSD System Prototype on-line. For
example, the system requires the use of a command language and this fact
is built into the design. However, the detailing of the command syntax
and the specific command list is not included in this report.
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4.2 BACKGROUND

There are many existing tools and environments. Characteristics of a
few of the major systems are discussed in this section. However, an
overall view may be obtained from work done at the Center for Programming
Science and Technology, National Bureau of Standards. The Center has been
compiling data on the availability of software development and testing
tools [HOUG80]. Their objectives are, first, to aid NBS efforts to
develop guidelines and standards that will improve the quality of
software. Secondly, to provide a means to determine what tools are
available and what their capabilities are. Finally, to determine what
tools are currently under development in order to share knowledge and
avoid duplication of effort.

The collected tools are classified into one of five areas (data as of
the October 1980 report):

1. Software Management, Control and Maintenance (110 entries).

2. Software Modeling and Simulation (7 entries).
3. Requirements/Design Specification, Analysis, and Program

Generation (42 entries).
4. Source Program Testing and Analysis (96 entries).
5. Software Support System/Programming Environment (2 entries).

The extreme variation in the number of area entries suggests that either
work has been concentrated on tools with the largest immediate benefits or
that the easier problems were solved first.

PROGRAMMING ENVIRONMENTS

Unix (IVIE77, KERN81] (*) is a system that is widely used with great

success. Many companies currently offer systems that are either derived
from or compatible with the Unix system, and for processors ranging from
microprocessors to large mainframes. A number of features help to explain

its popularity, the most significant being the way files are handled, the
way the command language is handled, and the way users of Unix (and its
system language) have historically approached the problem of system
development. The general style that has developed in the Unix community
is unique and very productive for certain classes of users.

All files are treated uniformly by the Unix system. The files are
assumed to be a sequence of bytes with no internal file structure, hence
all structure is imposed by user programs and not by the operating system.
Further, the file system even treats all peripheral devices as files.
From the programmer's standpoint, the homogeneity of files and peripheral
devices is a great simplification.

When a user logs into a Unix system, a command interpreter called the

"shell" accepts commands and interprets them as requests to run programs.

The user's terminal is just another file in the file system. Part of the

(1) Unix is a trademark of Bell Laboratories.
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function of the shell is to connect the input/output files referenced by a
program to the actual files supplied. This allows any program to use
input from the user's terminal, an actual file, or the output from another
program. The shell capability, plus the ability to easily pass
information between programs (no special arrangement is necessary!), has
led Unix users to develop a style in which each program is specialized to
just one task. Programs and programming thus tend to be much simpler than
if each program attempted more.

In the Unix environment the average program is rather small. People
tend to search for ways to use existing tools instead of laboriously
making new ones from scratch. Thus we have a model environment in which
large systems may be constructed easily from many small pieces by
supplying the appropriate interconnections. In addition, system
modifications may be made by replacing individual specialized pieces
without upsetting the overall program operation.

Interlisp [TEIT81] is a programming environment, based on Lisp, that

is in widespread use in the artificial intelligence community. The nature
of this user group has greatly influenced the characteristics of the
system. The typical users are engaged in experimental rather than
production programming. They were willing to expend computer resources to
improve human productivity, and they prefered sophisticated tools even at

the expense of simplicity.

A program may undergo drastic revisions, in experimental work, as the

problem being solved becomes better understood and more completely
defined. Keeping track of such change for a large program is an extremely
complex task. It is the job of the Interlisp file package to help the
programmer manage this task by automating the necessary bookkeeping of
where things are and what things have changed. The file package supports
the abstraction that the user is truly manipulating his program as data
and that the file is merely one particular representation of a collection
of program pieces.

An impressive feature of Interlisp is the "DWIM"1 (Do What I Mean)
facility. It is invoked when the basic system detects an error, and it
then attempts to guess what the user might have intended. Thus spelling

error corrections, command corrections, misspelled function name
corrections, and other such corrections can all be achieved within the

Interlisp environment. This type of support helps to provide the desired
increase in user productivity, but at the expense of a significant amount
of computer resources.

Interlisp has been characterized as friendly, cooperative, and

forgiving, at least for the skilled users. However, the two attributes
that set it apart are the degree to which the system is integrated and the
degree to which the facilities can be tailored or extended. The
integration means that any facility may be called from any other facility.
For example, the editor may be called from inside the debugger. The
various facilities readily call on each other for important support during
a session, which means that the integration of the facilities actually
increases their power. Interlisp provides for extensions by allowing the
user to specify a function to be called whenever a facility encounters any
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object, expression, or command that it does not recognize. Alternately,
almost all facilities support extensions via substitution macros which
associate a template of existing commands with a new command.

Interlisp has an abundance of user setable parameters which allow it

to support a wide variety of programming styles. However, it has been
carried to the point that new users are usually overwhelmed and
intimidated by the sheer number of choices that must be made.

The Ada environment (Stoneman) [STEN81, WOLF811, in contrast to Unix

and Interlisp, is not a production system as yet. However, a considerable
amount of work has already gone into its specification. A primary
requirement is to allow a project team always to work in terms of the Ada
language, rather than in terms of a particular target machine. Thus the
environment should offer comprehensive support for the full Ada language.

Another major objective of this environment is to offer effective

support to a project throughout its life cycle, from initial requirements
specification through long-term maintenance. This means that the project
database must be able to hold all relevant project information (source
code, binary code, documentation, test histories, etc.), as well as
maintaining accurate records of relationships among the items of
information as the project evolves. It also requires that the environment
must provide for configuration control and management control.

Stoneman represents a commitment to an open-ended environment. That
is, the tool set included in the system may be modified or extended at any
time. The individual can develop tools that support his own style of
working. Of course, there is a danger in that this may lead to lack of
portability, but it also raises a more serious question. Can there be a
complete and accurate database recording of the relationships between
objects when these objects are created by user-supplied tools?

For reasons of portability, Stoneman recognizes three distinct levels
within the environment. These consist of the kernel Ada programming

support environment (KAPSE), the minimal Ada programming support
environment (MAPSE), and the full Ada programming support environment
(APSE). The KAPSE is a system and tool portability level, and the MAPSE
is a user portability level. An APSE is based on a particular MAPSE, but
may include additional tools that support use of specific methodologies.

Ada is a machine independent language, but that is not sufficient for
tool portability. The language definition does not address such issues as
the organization of the database or the means for tool composition.
Portability requires the definition of some framework in which tool
programs execute, and the KAPSE provides this framework.

The MAPSE consists of a minimal comprehensive tool set, in that no
smaller tool set is adequate for the purpose and that it is possible for
all members of the project team to work with just this tool set at all
stages of the life cycle. An APSE can incorporate additional tools of
general interest, of interest to a particular project only, or of interest

to just one individual programmer. In the degenerate case a MAPSE is
itself a APSE. While a MAPSE offers very general tools, an APSE can be
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more specific and contain tools that encourage, or even enforce, use of a
particular design or development methodology.

DESIGN ENVIRONMENTS

PSL/PSA [TEIC771 is a system concerned with one approach to improving
systems development. The approach is based on three premises: first,
that more effort should be devoted to the front end of the process where a
proposed system is being described from the user's point of view; second,
that the computer should be used in the development process since systems
development involves large amounts of information processing; third, that
a computer aided approach to systems development must start with
documentation.

In computer aided logical system design, the object is to produce the
System Definition Report. The capability to describe systems in a
computer processible form results from using the Problem Statement
Language (PSL). The ability to record such descriptions in a database,
incrementally modify it, and on demand perform analysis and produce
reports, comes from the software package called the Problem Statement
Analyzer (PSA). The use of PSL/PSA does not depend on any particular
structure of the systems development process or any standards on the
format and content of hard copy documentation.

PSL is based on a relatively simple model of a general system. It
states that a system consists of things which are called OBJECTS. These
objects may have PROPERTIES, and each of these properties may have
PROPERTY VALUES. The objects may be connected or interrelated in various
ways by connections called RELATIONSHIPS. The general model is
specialized for an information system by allowing the use of only a
limited number of predefined objects, properties, and relationships.

The system design activities assumed ajod supported by the PSL/PSA
design environment include:

1. Data Collection: since most of the data must be obtained
initially through personal contact, interviews will still be
required. The data collected are recorded using PSL.

2. Analysis: a number of different kinds of analysis can be
performed on demand by PSA and therefore need no longer be done
manually.

3. Design: design is essentially a creative process and cannot be
automated. However, PSA can make data available to the designer
and allow him to manipulate it extensively. The results of his
decisions are also entered into the database.

4. Evaluation: PSA provides some rudimentary facilities for
computing work measures from the data in the problem statement.
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5. Improvements: identification of areas for possible improvements
is also a creative task. However, PSA output, particularly from
the evaluation phase, should be useful to the analyst.

Thus the System Definition Report ultimately contains a large amount of
material produced automatically from the design database.

The Software Requirements Engineering Methodology (SREM) program
[BELL??), is a system that includes techniques and procedures for
requirements decomposition and for managing the requirements development
process. A major part of SREM is the Requirements Engineering and
Validation System (REVS), a computer-aided system to support the
requirements development activities. REVS consists of three major
segments: a translator for the Requirements Statement Language (RSL), a
centralized data base called the Abstract System Semantic Model (ASSM),
and a set of automated tools for processing the information in the ASSM.

RSL is designed to be a means for stating requirements naturally

while still being rigorous enough for machine interpretation. It is
oriented around the specification of flow graphs of the required
processing steps expressed in terms of four primitives: Elements,
Relationships, Attributes, and Structures. The language is extensible at
the concept level by adding new types of elements, relationships, and
attributes. This extensibility allows the language to respond to
application specific needs and other unanticipated needs for stating
requirements. The RSL statements are input to REVS through a translator
that checks the statements for individual correctness, and then abstracts
them. The extracted information is then entered into the ASSM. No
executable code is generated, only the entries in the data base that will
later be used by other REVS tools.

The information available in the ASSM will support a wide variety of
analysis tools. Normally available is a base]ine set of widely applicable
tools which perform analyses primarily related to flow properties of the
information in the problem specifications . This capability is very
important for generating consistent, correct requirements and enforcing
any desired discipline on the requirements generation process. Among the
available tools are an interactive graphics package to aid in the
specification of the flow paths, static consistency checkers which check
for consistency in the use of information throughout the system, and an
automated simulator generator and execution package which aids in the
study of dynamic interactions of the various requirements.

FACILITIES

The facility concept has been implemented or proposed in a number of

cases. Three of these are considered as a context for the proposed TSD
System.

The System Architecture Evaluation Facility (SAEF) [ANDE78,CLARK], '.s
located at RADC. SAEF is designed to provide an experimental laboratory
for research into the advanced hardware configuration necessary to support
the complex data processing needs of military command, control, and
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communication systems. It allows overall system designs and alternatives,
both hardware and software, to be quickly and easily evaluated, thus
minimizing actual development and life-cycle costs for new systems.

Direct experimentation with unique hardware architectures is
extremely expensive and time consuming. It is also wasteful of resources
because prototypes are rarely useable systems and hence are discarded
after the initial studies are completed. Rather than actually build new
hardware components, SAEF provides the means by which they may be emulated
by a microprogrammable computer. In effect, the microprogrammable
computer (a Nanodata Q4-1) is molded to look and act like the proposed
design at the instruction set level. Thus, machine language level
programs may be written for the proposed machine design and then executed
by the microprogrammed machine emulation.

The QM-1 is operable in both a stand alone mode (where it supports a
full complement of peripherals) and in a time share mode connected to a
DECsystem-20 computer. Since many support tools are essential to the
successful operation of such a facility, many of the tools run on the
separate DECsystem-20. These tools provide the necessary control and
reporting capabilities for the installation complex, plus allowing a
convenient user interface to the facility.

There are two major problems in the SAEF approach that require
specialized tools: one is to define the hardware system architecture to
be emulated, and the other is to generate code to run on the defined
machine. SMITE (Software Machine Implementation Tool for Emulation) was
developed to attack the first probTlem. It is a high order-language which
allows machine descriptions at the register transfer level. Thes
descriptions are compiled into microcode to run on the QM-1. Once the
description of an architecture has been implemented through SMITE and its
associated support software, there is a need to write software for the
emulated machine. What is needed is a compiler that would automatically
compile object code for a machine bbsed on the SMITE description of that
machine. Such a retargetable compiler is still subject to research and
development efforts.

CAMEO [RYAN79] is a system being developed to provide a single,
integrated capability for a dual OM-1 computer configuration in which the
design and performance characteristics of definable target systems can be
easily represented. This representation is in terms of a model consisting
of one or more interacting emulations and/or simulations. CAMEO stands
for "Concurrent Application of Multiple Emulations On-line", and it
provides for all user access to the QM-1 through a common standardized
environment.

Based partly on the importance of configuration management practices
and partly on the need for organizational and accounting controls, all
users interact with the CAMEO system through "Target Systems Complexes".
These complexes are created and maintained as an integral part of the
CAMEO data base. One or more target systems may be prepared for exclusive
access under each complex.
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In addition to the facility to control target systems, software may
be developed at any of three levels:

1. Programs prepared, debugged, and applied in the context of a
target system. This is a function of the facilities of a
pre-existing target system with an operating system and Its
utilities.

2. Programs prepared, debugged, and installed to function as an
operating system for a target machine being emulated. This is
supported by appropriate CAMEO utilities.

3. Programs prepared, debugged, and applied in the CAMEO System
context to function as a new target machine emulation or
simulation.

The CAMEO System development goals call for capabilities which are in
some respects conflicting: there is a stated critical need for an
operating environment in which the user's target system can perform
realistically at near real-time speeds: on the other hand, facilities
must be provided through which the users can deal effectively with the
problems of software generatic, testing, and performance evaluation.

FASP, the Facility for Automated Software Production, is a Naval Air
Development Center facility in which operational and system test software
for any Navy platform can be developed and maintained. This facility
offers a large complex of commercial computers, including two CDC 6600's
and one CDC CYBER 175, plus extensive supporting peripheral devices. The
software supported includes a full suite of program-generation
capabilities for standard Navy languages and target machines, together
with tools to support the use of modern software engineering technology.
As a software generation facility, FASP complements the capabilities of
individual platform integration facilities where the operational hardware
configuration is mocked-up in a simulated environment for testing,
evaluation and training.

The goal of FASP is to keep pace with emerging software engineering
methodologies and tools, and to provide support for the Navy's standard
military computers and standard high order languages, assembly languages,
and microprogram languages.

FASP is a comprehensive software generation facility consisting of an
integrated collection of software development and maintenance tools. The
tools are designed to provide support for each phase of the software life
cycle: (1) design, requirements and specification aids, (2)
implementation tools (translators and system generators), (3) testing
tools, (4) project management tools, and (5) configuration management
tools.

The remote terminal capability of FASP allows Industry, Navy
Laboratories, and other Government Agencies to use FASP for software
production and maintenance. FASP then insures continuity from system
development by the prime contractor through maintenance by the Navy. The
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. . . . . .. ..

same tools and records that support the development remain available
throughout the maintenance phase, thereby minimizing transition problems
and training.

COMPARISON WITH TSD OBJECTIVES

One useful dimension for comparing facilities comes from the
evaluation of the environments supported by the facilities. Cheatham
[CHEA80] suggests a comparison based on the following functional aspects
of a facility:

Language Support
Target Configuration Support
User Interface
Command Language
Integration of Tools
Granularity of Tools
Relationships Supported

Protection
Documentation Support
Management Support

All of the systems discussed in this section, both existing and proposed,
adequately satisfy the TSD System objectives for some of these areas.
However, none of the systems adequately support the entire range. A
top-level characterization of the TSD System is presented in the next
section, where these functional aspects are treated in more detail.
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4.3 PROPOSAL FOR A TSD SYSTEM FAMILY

INTRODUCTION

In this section we shall determine significant functional properties
of a TSD System by characterizing the nature of the desired TSD
Environment. This effort will result in a top level view of the TSD
System requirements and a corresponding set of system specifications. The
section concludes with a TSD System design proposal for a prototype system
that will meet all of the stated requirements at the top level.

In the discussion to follow we shall adopt the view that only one

project must be supported. This approach is based on the assumption that
two different projects are independent, and hence will be developed in
completely separate environments. The possibility of joining separate
projects (or their supporting environments) is viewed as a higher-level
management/facility function that is not to be considered here. Of
course, various parts of a single project may be in different life cycle
stages at the same time, and hence these stages must all be supported
simultaneously.

CHARACTERIZATION OF THE TSD ENVIRONMENT

The Scope of the System

A complete environment for a specific application provides tools to
support the complete application system life cycle. One element in the
evaluation of any proposed system is to establish how well each area is
supported by tools and how thoroughly the support is integrated across the
areas. The following suggested list of functional areas is given in
[HUNK80]:

requirements analysis and specification
system specification
project management
implementation, coding, and testing
simulation and modeling
system integration
cost estimation and cost control
verification, validation, and inspection
configuration control and version control
acceptance testing
modification and maintenance

As discussed in Section 4.1, the goal for the initial TSD Prototype System
is to provide an environment that supports only the first three stages of
the project life cycle, thus the final five functional areas in Hunke's
list will not be considered at this time. However, this proposal is
written with the understanding that extending the TSD System to cover the
entire life cycle may be eventually economically justifiable, and hence
must be allowed for with a minimum of system re-design.
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It is the purpose of the TSD Environment to support and encourage the
use of TSD Methodologies by all users of the system. This implies that
the level of integration of the system parts will be sufficient to
discourage random or disorganized use of its capabilities, while strongly
encouraging organized and purposeful use. To this end, and following the
TSD Methodology concepts, the system must be easily adapted to the
specialized needs of any specific application or application dependent
methodology. Organizational concepts from the TSD Framework must be built
into the structure of the environment, but otherwise it must be extremely
flexible in style and detail.

The Human Interface

[SPIE80] suggests that a friendly user interface for an environment
must allow the user to create and use new private tools specifically
geared to the user's needs of the moment. A variation of this requirement
is to allow the user to superimpose a private interface on an existing
standard tool. All of this so that the user is not forced into the
work-patterns envisioned by the environment/tool designer. [PREN81]
suggests that the environment should be adaptable, user-centered,
suggestive, helpful and supportive, and not imposing. User friendliness
should also include human interfaces other than text, such as menu
selection capability, graphics, and possibly voice recognition.

There generally will be three classes of users of the TSD System:
managers, designers, and evaluators. Each user class may be further
divided into the naive and the sophisticated users. Each set of users
will need their own special tools and support utilities, as well as access
to general tools needed by all system users. By providing a tailored
environment for each of these groups it will be possible to provide the
type of friendly interface to the system that actively encourages the use
of the system. Thus three standard environments should be provided by
default: a management environment, a design environment, and a production
environment. In addition, the ability to define and add additional
environments must be readily available to the sophisticated user.

The management environment provides the appropriate tools to support
all project management tasks, including configuration and version control.
The design environment supports the project requirements, specifications,
design, and programming activities. The production environment is the
most non-traditional in orientation: it is responsible for the testing,
simulation, and modeling activities that lead eventually to system
integration and final acceptance testing.

Types of Tools

The tight coupling between a project, its appropriate methodology and
its support environment, and the users of that environment suggests that
each project needs a different environment. In particular, it is
important that the tools provided by the environment be continuously
supportive to the users in their day to day work. Perhaps the environment
should even change continuously as a project evolves through its
life-cycle, but too much or too rapid a change in a system would present
problems in human learning and adaptation. Even so, could we possibly
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build every possible environment from scratch as we need it? Yes, but the
effort required to do so would be tremendous, since we would be, in
effect, re-inventing many parts of the wheel for each new environment.
Therefore, to minimize the effort required to create an environment, it is
necessary to configure environments largely from standard modular
capabilities. The problem is to balance the advantages of using
standardized broadranging tools for all applications against the
advantages of specializing each tool to a particular application.

Some types of tools will be needed for all applications. For
example, information about the developing system must be stored in a
project database so that the appropriate tools, under the command of the
users, may study and transform the project information. Thus a central
TSD System database must be defined and the necessary tool interfaces must
be created. It is assumed that all project information must be stored in
the automated project database in order to make the TSD System truly
supportive of all of the users. Such a total depository of information
requires an equally total control of access to insure the integrity and
security of the data.

Other types of tools may be more specialized for particular
environments. Text processors, for example, should be tailored to the
users and the application: helpful for beginners, terse and powerful for
experienced users, able to process straight English text for reports and
documentation, able to process partially formal text for problem
requirements definition, and able to process formal text for a rigidly
structured programming language. Implementation of such diversity could
come from one generalized tool driven by appropriate data tables ([STAL81]
describes an elegant use of this approach to develop an editor with many
of these properties).

Tools directly affected by the definition of the target system
represent a somewhat different case. For example, language compilers have
a front-end that depends only on the source language being used (FORTRAN,
Ada, etc.), and a back-end that depends only on the target machine
architecture (DECsystem-20, UYK-32, etc.). If all languages and all
machines were known and fixed, then a complete set of compilers could be
written and incorporated into the support environments. However, this is
simply not the case, even though it has been the traditional approach. By
defining the correct level of detail for tool modules, pieces may be
assembled to produce the necessary final results. Thus a FORTRAN compiler
front-end could be assembled with a back-end code generator for a new
machine, producing a new FORTRAN compiler. The production of the new
compiler requires defining new code generators with a standard interface,
not the creation of an entirely new program.

The total tool set available in the TSD System prototype must support
the functional areas of: project management; requirements analysis and
specification; systems specification (both hardware and software);
implementation, coding, and testing; system integration; simulation,
emulation, and modeling. These functional areas, and the corresponding
tools, are distributed to the appropriate environments in order to provide
the tool users with a system context. It is the TSD System itself,
through control of the environments, that defines the system context that
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ensures each user is provided with all of the tools and data necessary
(and no morel) for the user to function in a productive cost-effective
manner.

Tool Integration

In an important sense, the basic function of an environment is to
ensure that everybody connected with a project gets the information that
they need, when they need it, and that the results of their work are
preserved. This implies that at the center of the environment there must
be a database containing all of the information about the project. The
existence of the project database does not guarantee the integration of
the various tools in the TSD System, but it does make tool integration
possible.

Given a complex system of cooperating tools that use a supporting
database, where and how does the user interact? There must be a command
language so that the user may give instructions to the system. The
command language should be as uniform and general as possible to satisfy
portability considerations. The TSD System, through the command language,
should look the same, as much as possible, to all users located at all
installations. The command language should contain no surprises; that
is, any command should do what you would normally expect such a command to
do. Further, all commands should be failsafe in the sense that it should
not be possible for a slight mistake to have catastrophic consequences
(you said "delete", and an entire file was deleted instead of just the
last line!). The commands should also be self-documenting. The naive
user should be able to ask at any time "What does this mean?", or "What
options are available to me now?", and yet the sophisticated user should
not be impeded by such a facility.

It is important for a user to not be distracted or surprised by the
system reacting to features or tools that the user does not know about.
Thus a significant feature of an environment is the tool access rights
granted to a user of that environment. A manager using a management
environment should not have to be concerned with tool or system names used
by a designer operating in a designer environment. In general, the
defining of environments and the corresponding granting of tool access
rights is a project management function.

In a similar and perhaps even more important manner access rights to
the project database must also be controlled. Operational questions must
be answered, such as: How does a designer make a temporary change to a
file in order to test the change, and yet not affect any other person that
may be using the same file? When and how is a temporary change in the
system incorporated as a permanent change? How is the version/level
problem to be solved for the given application? The database access
control must provide the mechanism to solve these problems. Further, it
must also control tool access to the database, since a user command may
trigger a series of unforeseen tool operations (read, write, update, etc.)
that may not be desired.
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The integration of tools essentially allows any tool to work with any
other tool, or to manipulate the database. The power and scope of this
concept is controlled in two stages: (1) limit user access to tools, and
(2) limit user and tool access to the database.

Dynamics of the TSD Environment

Certain tools are of such common utility that all environments are
expected to use them, independent of whatever application area is being
considered. These tools are elements of the core tool set. Text
processors and database utilities, for example, will always be needed and
hence are in the core. The ability to define and create environments, and
to authorize the use of those environments and any associated parts of the
database must also be functions performed by tools in the core. The core
will always represent the common tool set for all TSD Systems.

Anyone that has access to the core tools that define a new
environment may use those tools. That is, they may actually define a new
sub-environment of whatever environments they originally could access.
This automatically allows a network accessing structure, since a project
manager can (by definition?) always access any information about the
entire project, and the manager may create and allocate any number of
sub-environments for each group leader in the organization. The group
leaders may, in turn, create and allocate further sub-environments for
each of their group members. Thus the necessary overlapping and
restricted spheres of access may be established as appropriate to the
given application and project management organization.

A TSD SYSTEM DESIGN PROPOSAL

Figure 4-1 is a top-level diagram of the proposed TSD System design
which incorporates all of the previously discussed factors. The main
control module of the system is the Command Language Interpreter (CLI).
All user communication must pass through this module for interpretation.
control, and possible execution. The CLI keeps track of all system
resources and user authorizations, allowing it to automatically provide
users with their proper environment when they log onto the system.

User communication with the TSD System is through work stations
(WS1,...,WSn). These stations may be as simple as dumb CRT terminals, or
as complex as sophisticated graphics work stations, depending on the
user/application requirements.

Each TSD System may also be connected to selected specialized
peripherals (SP1,...,SPm). Although every installation will have standard
peripherals, such as line printers and tape drives, more specialized
devices such as those needed for emulation (perhaps a QM-1) or VLSI design
(perhaps a large plotter) may not be available so universally. In order
to share the use of such devices, one of the specialized peripherals is
assumed to be a network connection. This allows a user from one TSD
System to access and use the specialized devices that may be available at
another installation. As indicated in Figure 4-1, all such accessing goes
through the appropriate interface routines (T1,....Tm), bAt the central
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control still resides in the respective CLI modules.

All communications with the project database must pass through the
Database Access Control (DAC) module. The DAC uses the appropriate

project database tables to either allow or disallow the requested
user/tool access. In order to provide for portability these access
requests assume a standardized TSD System database structure. However,

this is essentially a "pseudo" or "logical" database in that it probably
will be more economical to use an existing commercial database system for
the actual physical data storage and retrieval operations. Thus the TSD
database management system may be viewed as an interface between the
assumed TSD logical database and the actual physical database. Note that
this means that different commercial database management systems could be
used at different TSD System installations, with the only added expense
that of redefining the TSD DBMS interface.

The CLI uses the Tool Access Control (TAC) module to maintain control
over the use of the tool set. User requests for tools, tool requests for
tools, tool compatibility and interface requirements, and all other
information about tool usage will be maintained through this module. The
TAC essentially maintains the integrity of the system integration. New
tools to be added to the system are integrated into the system by
supplying the appropriate information to the TAC module.

The Core Tools module represents the collection of all standard TSD
System tools available at any given time. As mentioned previously, some
installations may have additional specialized peripherals that require
unique tools. In general, the tools that are unique to a given TSD System
installation are contained in the Other Tools module.

CONCLUSIONS

One poorly understood aspect of many current environments and

facilities is what has been termed the "gulp factor" [KERN81]. This
concept deals with what must be done to adopt a new environment. Many
current environments are high on the gulp factor scale because they must
be adopted all at once, require a massive retraining of all potential
users, and/or provide little support for systems previously developed.
Although the TSD System design proposal has been presented as a single
stand-alone entity, the background considerations that went into its
development were based partly on making the maximum use of existing
resources and partly on making the transition to a TSD Environment as easy
and desirable as possible. That is, the envisioned eventual
implementation was designed to be low on the gulp factor scale.

The high level design proposal presented in this section represents
the ultimate goal to be achieved by the implementation plan described in
the next section.
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4.4 RECOMMENDATIONS FOR FACILITY DEVELOPMENT

INTRODUCTION

One of the main goals of the TSD Facility development effort is to
enhance the productivity and the quality of system design efforts related
to DMA production. This goal is to be achieved through supporting the use
of systematic design approaches in a cost-effective manner. In
establishing a plan to implement this support it was found that the
resulting cost-effectiveness could be enhanced considerably by creating
both a short term and a long term development plan. These plans, in
combination, form the TSD Facility Development Master Plan.

The short term view of the TSD Facility represents a low-risk,
high-benefit utilization of mostly available resources. It is organized
in such a way as to provide immediate production support. In addition, it
serves as a compatible "hot-bench" for the long term research and
development necessary for the Facility to achieve its ultimate goals.

NEAR TERM FACILITY DESCRIPTION

There are a number of distinct components that make up a prototype
TSD Facility:

-- TSD System
-- Physical Resources
-- Technical Staff
-- Management Staff

Each of these components must be defined and in place for the operation of
a successful facility. The following discussion points up some of the
aspects of these components that need to be established in the near term.
The purpose of this discussion is to help describe the expected nature of
the near term prototype TSD Facility as produced by the Facility
Development Master Plan (Figure 4-2).

The TSD System is composed of software, with perhaps the addition of
some specialized hardware. It is assumed that the TSD System executes
under a standard operating system. The operating system is assumed to be
available on whatever computer complex is used for the prototype TSD
Facility, and that it is complete with a normal complement of utility
routines. Terminal and network communication protocols are also assumed
to be available.

A detailed set of requirements and a corresponding set of
specifications must be established for the TSD Environment. (The study
must consider the relation between the Ads Fnvironment specifications and
the TSD System effort.) The initial design of the command language and
the design and implementation of the prototype command language
interpreter must be accomplished. The unified logical database must be
defined, along with the data accessing mechanisms to be used by the
command language interpreter. Techniques for interfacing existing and
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proposed tools with each other and with the project database must be
defined.

The TSD System must provide support for TSD Methodologies for some
number of applications. This means that specialized languages for system
requirements and system design must be developed for these applications,
as well as appropriate analysis techniques. The TSD System must then
integrate and support the new tools that make these languages and
techniques available to the users.

Currently available support for specialized tasks must also be

extended and integrated into the TSD System. For example, the analysis of
most embedded systems requires the use of high speed simulation or
emulation studies. The tools that support these studies need to be
augmented in order to be more responsive to the increased levels of
distribution and complexity encountered in current advanced architectures.
(SMITE, for instance, needs to be enhanced to provide for distributed
hardware and multilevel designs.) The future use of Ada in DoD projects
must be identified, and its role in the evolution of the TSD System must
also be defined.

Physical Resources

In the near term there is not sufficient time for a major equipment
procurement, so it is expected that existing computer installations will
have to serve as hosts for the prototype TSD Facility. Questions must be
resolved concerning the sharing of physical resources for the TSD Facility
versus resources dedicated to the Facility.

Technical Staff

The development of the TSD Facility represents a major technical
effort that must be supported by an appropriate organization of
technically trained personnel.

First, a significant factor in the success of such an undertaking is
the user assistance provided by the staff. No matter how friendly and
helpful the on-line environment may be, both prospective and active users
need well written introductory and advance guides for using the system.
Experts are needed that may teach application oriented courses in the use
of the system, or simply be available to answer questions from puzzled
users. Information about the Facility availability must be widely
distributed to potential customers.

Another significant technical activity is in the area of development,
maintenance, and enhancement of the existing TSD Facility. Much of this
effort will be based on feed-back from active users, to correct problems
encountered or add features not already implemented. Porting of the TSD
System to alternate facilities must also be considered.

Research into TSD System related topics should also be an on-going
effort in order to maintain the evolution of the system to its
state-of-the-art, most cost-effective form. Perhaps some of this effort
should be guided by feed-back from prospective users that refuse to become
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active users.

Management Staff

Coordinating, planning, and monitoring of all of the tasks described
in this section requires a management effort with an appropriate support
organization.

FIVE YEAR PLAN

Figure 4-2 details the steps in the TSD Facility Master Plan. The
following explicit objectives have determined the nature of that plan:

-- low development cost;
-- speedy development;
-- limited risk;
-- early availability to potential users;
-- ability to respond to immediate design needs without

compromising the long range requirements;
-- smooth growth in capability and range of applicability;
-- compatibility with other related DoD efforts (e.g., SAEF, Ada);
-- strong interaction between R&D and production efforts.

Because the development of a design facility is generally a high risk
and high cost proposition, the strategy adopted in the master plan is to
minimize new tool development and focus on integrating off-the-shelf
components to the greatest possible extent. While the command language,
database view and core tools which characterize the central part of the
TSD Environment could be assembled together from existing components, the
lack of application specific tools could make it difficult to attract
potential users of the prototype TSD Facility. This may be avoided if an
already successful existing facility could be used to supply the
application oriented tools. SAEF has been selected to meet this
objective. This particular choice has several other advantages. It
employs a facility which is compatible with the general TSD Concept, it
provides continuity to the entire TSD program, it addresses a class of
users who feel most acutely the need for a design facility (for embedded
systems), and it promises immediate and high payoffs.

The result of these and other considerations is a plan which consists
of three concurrent efforts which gradually merge into one. The main
stream deals with the selection and integration of the TSD Facility
components. The other two focus, respectively, on increasing th
effectiveness of the application specific tools through enhancements to
the SAEF and on providing the technical support needed for long range
planning through the development and evaluation of new TSD Methodologies.

The development and evaluation of new TSD Methodologies is meant to
have little or no impact on the near term version of the TSD Facility.
The objective is to assist in the later evaluation and subsequent
enhancements of the TSD Facility available at the end of this planning
period. This is to be accomplished by developing tools to be incorporated
in subsequent versions of the facility and methodologies that define the
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manner in which such tools should be used in various application areas.
Because effective methodologies are application dependent, the plan
suggests work to be concentrated only on a few application areas of
special significance within DoD. Corresponding independent refinements of
the TSD Methodologies should be produced for each selected area.
Following the methodology development, empirical evaluations on real-life
moderately sized projects should be carried out. The experience should be
used to further refine and tune the methodologies to the needs of the
respective application areas. The development of specification languages
and analysis techniques should be centered around mechanizing some of the
activities involved in applying the methodologies. This is the point
where some integration between the intentionally independent undertakings
ought to take place. The level of effort required by this particular
stream of the master plan depends upon the range of applications being
chosen. (No more than three areas should be attempted.)

SAEF enhancements are motivated by the desire to make the ultimate
facility more attractive to potential users, to build a user community
concurrently with the development of the facility, and to establish a
realistic base for determining the priority assigned to introducing
various core tools. Since it is expected that not all core tools will be
available in the prototype facility, those tools that appear to be most
needed by the particular community of users ought to be considered first.
Furthermore, current understanding of the specification language needs for
the system design stage should be used in the design of the next version
of the hardware description language used by SAEF. This stream of
activities is also independent in nature from the other two.

The main thread of the master plan is concerned with building a TSD
System from available components and its integration with the SAEF to form
the TSD Facility prototype. The approach is actually consistent with the
TSD Methodologies. It starts with the problem definition stage during
which a detailed definition of the TSD Environment (only outlined by this
study) is generated. Based on the TSD Environment definition a system
architecture for the TSD System is developed in a manner which is
consistent with the constraint that the proposed architecture must be
supported primarily by the resources available in SAEF. (Given the short
range nature of the plan hardware procurement ought to be avcided.) Next
the binding phase is carried out. It consists of the selection of
existing tools required to support various entities of the TSD System and
of the definition of custom software needed to integrate them. This
activity represents, in the terminology of the TSD Framework, the
generation of software requirements. (The hardware is given in this
case.) The integration of the tools is carried out in stages. The last
one involves placing all acquired tools on the SAEF and thus establishing
the TSD Facility prototype. Once some experience with the use of the TSD
Facility on several production efforts is accumulated, it is time to
reevaluate the facility and to devise new plans for its future.
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CONCLUSIONS

Three concurrent time lines of activities have been defined in order
to maximize both the short term utility and the long term benefits of the
prototype TSD Facility development effort. The final merging of the
separate time lines produces a prototype TSD Facility that has
demonstrated its ability to achieve the original goals in routine
production use.
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Figure 4-2. TSD FACILITY DEVELOPMENT MASTER PLAN
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4.5 TSD FACILITY AND SYSTEM DESIGN AT DMA

DMA is in a position to take advantage of the TSD technology in
several important ways:

- Contractors could make use of the envisioned TSD Facility on

projects involved in the development of DMA systems;

- The TSD technology could be used by DMA contractors, even in the

absence of the TSD Facility, particularly in the design of
systems which are distributed in nature and involve decisions
regarding the selection of a proper hardware/software mix;

- The core tools being developed for the TSD Facility are also
needed as part of the DMA modern programming environment (MPE)
which is seen as evolving in a TSD Facility specialized in

software development;

- The TSD Methodologies may also be used in DMA on certain

projects where the relation between software and hardware is
important (e.g., the placement of various functions on a locally
distributed system) and, thus, could affect DMA software
development practices.

Figure 4-3 outlines a plan dealing with the last three of the four
concerns expressed above. The direction being suggested here is analogous
to that part of the master plan that deals with the refinement of TSD
Methodologies. The distinction is not in the basic approach but in the
scope and objectives. In the master plan the intent is to define the
scope of and to support the long range R&D efforts in the area of
distributed system design. Here, the objective is technology transfer

from the R&D domain to actual production for the sake of achieving
immediate quality and productivity improvements. As such, the emphasis is
not on developing novel design, specification, analysis, and other
techniques but rather on adapting already existing techniques for use in
some particular application in a manner compatible with the TSD
philosophy. It is conceivable that after empirical evaluations via
appropriate pilot projects, some limited use of the methodologies on
selected projects will become feasible in the near future. The potential
impact of such endeavors on the DMA modern programming environment, on its
approach to system development, and even on its software development
standards should not be underestimated.

The results of this kind of highly pragmatic investigation could be
instrumental in disseminating the TSD technology and its benefits to
organizations which need it, in promoting tool development efforts which
would later contribute to the evolution of TSD Facilities, and in
stimulating more rapid exchange of ideas between researchers and
practitioners in the field of distributed system design. Furthermore,
this secondary plan is fully consistent with the TSD Facility master plan
and it is necessary in order to assure broad application area coverage
when practical considerations impose severe limitations on the scope of
the proposed TSD Facility.
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Figure 4-3. DMA OPPORTUNITIES FOR USE OF TSD TECHNOLOGY
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Authors: David A. Bennett, Christopher A. Landauer, Mark E.

Radlowski

Title: Automatic Integration of Multiple Element Radar

Source: PAR Corporation, under RADC Contract F30602-78-C-0139

Abstract: A case study of an application of the SAEF facility at
RADC is presented, along with a complete evaluation of
the facility. The application is in the domain of Com-
mand Control and Communication (C3); the development of
a radar system, employing several independent radars to
track multiple ground vehicle targets. The SAEF
facility was employed in the emulation of a network of
loosely coupled, distributed PDP-11 - type processors.
A variation of the PDP-11/70 CPU was developed to emulate
the -eparate processors, termed a PDQ-11 since it ran on
the Nanodata QM-1. The PDQ-11 emulators were developed in
SMITE and implemented in MULTI, the QM-1's microassembly
language.

The report presents an overview of the tracking
application logic, describes the components of the AIMER
system emulation, discusses problems with the SAEF facil-
ity, and makes several recommendations for the improve-
ment of the facility. Progress on the AIMER project was
impeded primarily because of faulty or incomplete docu-
mentation of the SAEF facility and problems with the
interface between the QM-1 and the MULTICS sapport
system. PAR recommends research into the development of a
coherent, well-integrated software development system
(perhaps UNIX) to be used in conjunction with the QM-1.

Authors: Donald Boyd, Antonio Pizzarello, Stanley C. Vestal

Title: Rational Design Methodology

Source: RADC Technical Report RADC-TR-78-208

Abstract: This report describes an effort to specify a software
design methodology applicable to the Air Force software
environment. Available methodologies and techniques were
examined and investigated for (1) level of completeness;
(2) ability to conform to Air Force design practices; and
(3) inclusion of techniques for proof of correctness,
design specification, and performance assessment of static
designs. The rational methodology selected is a synthesis
of ideas including data abstraction and refinement,
constructive approach for software design, documentation
procedures and tools. As a demonstration, the methodology
was used to design a major function in the IBM Program
Support Library.
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Authors: Benjamin Britt, Alvin Cooperband, Louis Gallenson, Joel
Goldberg

Title: PRIM System: Overview

Source: Information Sciences Institute
ARPA Report ISI/RR-77-58

Abstract: This document is an introduction to the services available
with the Programming Research Instrument (PRIM), an
interactive microprogrammable environment available to
remote users through the ARPANET. PRIM, which runs under
the TENEX timesharing system, makes it possible to create
and use emulators of existing or newly specified
computers, with major emphasis on debugging tools. PRIM
and TENEX together provide not only editors, compilers,
and debuggers for creating emulators, but also an
environment for using the target systems, debuggers, and
configurers in the familiar language of the original
system.

Author: Capt. N. Bruce Clark

Title: Common Software Support Environment

Source: White paper, RADC

Abstract: This paper describes the costs associated with the
traditional practice of providing an independent support
system for each weapon system embedded computer system
(ECS). These costs include the physical plant associated
with a hotbench configuration, the software tools needed
to prepare, debug, and evaluate software for that ECS, and
the training and staffing of associated personnel. It is
observed that the unique aspects of a hotbench require its
continuation. However, the support software and support
personnel could be provided at a separate facility. This
would have a comprehensive set of software tools such as
editors, assemblers, and simulators. In addition, it is
suggested that the facility have an emulation capability
that could support software testing tools that are not
commonly supportable in a hotbench environment. The
emulation capability would also enable proposed hardware
designs (or modifications) to be evaluated for proper
function and performance prior to procurement. The paper
concludes by describing the efforts toward the implement-
ation of such a support facility being carried out by the
Rome Air Development Center (RADC), Rome, New York.
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Author: Capt. N. Bruce Clark

Title: The Total System Design Methodology

Source: White paper, RADC

Abstract: This paper-points out that the cost and performance
of a system can be adversely affected by deciding too
early in the process of system development on the
hardware to be used. In particular, since hardware
costs are known to be a small part of total development
costs, the hardware decision should be tailored to
the needs of the system and therefore not frozen until
most system details have been worked out. This paper
presents a development methodology which emphasizes
the dependent role of hardware. This methodology,
called the Total System Development (TSD) Methodology,
requires the following resources: a set of languages
for formally representing the system design at various
stages in the development process; a set of software
tools for managing the development process and for
automating many of the development tasks; and an emu-
lation facility to allow the system (or parts thereof)
to be evaluated for functional and performance accept-
ability. Efforts by RADC to acquire the appropriate
resources are discussed. These include an emulation
facility called the System Architecture Evaluation
Facility (SAEF), being built at RADC, and various language
and software products being developed under RADC sponsor-
ship.

Authors: Capt. N. Bruce Clark, 2Lt. Michael A. Troutman, USAF

Title: The System Architecture Evaluation Facility, an Emulation
Facility at Rome Air Development Center

Source: White Paper, RADC

Abstract: The System Architecture Evaluation Facility (SAEF) is
designed to provide an experimentation laboratory for
research into advanced hardware configurations necessary
to support the complex data processing needs of military
command, control and communications systems. Elements of
SAEF include a Nanodata QM-1 as the primary emulation
tool, and a DECsystem-20 with Q-PRIM (an interactive
microprogramming environment). A Multiple Microprocessor
System (MMS) is currently in the design stage and, when
completed, will provide the capability to emulate a wide
variety of multiple processor architectures. Support
tools include SMITE, which is a hardware description
language which allows machine descriptions without
resorting to microprogramming, and a retargetable compiler
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to be developed for use with emulated architectures. Both
basic research on computer architectures and systems
development activities using the "Software First" concept

are possible with the SAEF.

Authors: Jack M. Dreyfus, Peter J. Karacsony

Title: The Preliminary Design as a Key to Successful

Software Development

Source: TRW Defense and Space Systems Group
Report TRW-SS-76-09

Abstract: The paper predicates the success of a software
development effort upon the establishment of a complete
preliminary design emphasizing: (1) clear definition of
data processing requirements, (2) top-down design
definition, (3) design traceability, and (4) design
verification. The report describes TRW's preliminary

design methodology which has successfully been applied to
large scale software development. The Methodology is a
disciplined integration of design activities from initial
system definition to successful completion of the soft-
ware Preliminary Design Review. The benefits from
complete preliminary design and some of the specific
design techniques employed are described.

Author: Harris Corporation GCS Division

Title: Multiple Microprocessor System (MMS) Design Study

Source: Rome Air Development Center
Technical Report RADC-TR-80-33
(RADC Contract F306602-78-C-0114)

Abstract: The report describes and justifies the design of
the Multiple Microprocessor System (MMS). A major
component of the System Architecture Evaluation
Facility (SAEF), MMS is intended for use in the
emulation and evaluation of a wide range of multi-
processor configurations. The proposed hardware
consists of 64 processing units and several other

specialized control and monitoring components.
The communications take place via a segmented bus.
The design choice is justified by means of a statisti-
cal analysis based on expected characteristics of

of the systems to be modelled. The hardware design
is followed by the specification of the companion
software needs for the MMS.
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Authors: Charles Hayden, Peter W. Alfvin, Stephen D. Crocker

Title: Multi-Microprocessor Emulation Annual Report for 1977

Source: Information Sciences Institute
ARPA Report ISI/SR-78-12

Abstract: The goal of the Multi-Microprocessor Emulation (MMPE)
project is to develop modeling and emulation techniques
for assemblies of microprocessors. An extension to an
existing computer description language (ISPS) is proposed
for representing the architecture of multi-microprocessor
systems, and the results of some preliminary studies on
the design of an emulation facility are described. This
effort will eventually lead to a high-speed emulation
f~cility based on the Q-PRIM system. The emulation
facility is one component of the SAEF under development at
RADC.

Editors: Raymond C. Houghton, Karen A. Oakley

Title: NBS Software Tools Database

Source: National Bureau of Stano6ds
Report NBSIR 80-2159

Abstract: The paper contains a compilation of data on the
availability of software development and testing tools.
The data that has been compiled has been placed into a
relational database using Pascal/R, a language that
extends Pascal by a data relation. The database allows
for information retrieval on tool features, languages,
developers, documentation, hardware and software
requirements, availability, publications, and contacts.
The purpose of the report is to put forward the
information currently contained in the database for
review, assimilation, and update. Section 2 contains the
Call for Tools. This section includes instructions for
providing information on tools for inclusion in the
database. Section 3 is a discussion of the records that
may be stored in the database. Section 4 is a dump of the
information contained in the database in alphabetical
order by tool acronym. Section 5 is a list of general
references. The appendices include several cross-
references to the tools in the database and a list of
specific tool references.
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Author: Raymond A. Liuzzi

Title: The Specification of a Data Base Machine Architecture
Development Facility and a Methodology for Developing
Special Purpose Function Architectures

Source: Rome Air Development Center
Technical Report RADC-TR-80-256

Abstract: This report specifies the set of components/tools

needed in a Data Base Machine Architecture Development
(DMAD) Facility. A methodology is described to illustrate
how this proposed facility can be used to develop
special purpose function architectures (SPFAs).
These SPFAs perform a data base management function
in hardware that is currently performed in software
on a sequential computer. The methodology includes
a series of processes which are the select candidate
function process, and the create, test, evaluate, and
substitute SPFA processes. Each process can be per-
formed with a series of procedures that utilize tools/
components of the DMAD Facility. Tests and measurements
conducted in order to illustrate the feasibility of
generating detailed analysis data prior to any actual
hardware implementation of a SPFA are also presented.
This type of data is shown to be invaluable in helping
project the highest qualified SPFA candidates to actually
be hardware prototypes, and in providing input that can
be used in their actual hardware implementation.

Author: Martin-Marietta Aerospace

Title: Total System Design Methodology

Source: Martin-Marietta Technical Report MCR-79-646

Abstract: During the last several years the experience with
complex command, communication, and control (C-cubed
or C3) systems has indicated that a systematic, rational
approach to computer systems design is needed. Martin-
Marietta has produced a Total System Design Methodology to
support such design. This methodology includes both a
philosophy of design and a framework for carrying out a
design, along with some automated tools to aid in
information gathering and ordering. The purpose of the
paper is to document the existing TSD methoeology at
Martin-Marietta, describe the supporting tools, and review
the use of the methodology on the design of the Navstar
Global Positioning System Operational Control Segment.

219



Author: Gruia-Catalin Roman

Title: A Methodological Framework for the Design of

Distributed Systems

Source: Washington University Technical Report WUCS-79-10
(RADC Contract F30602-78-C-0148)

Abstract: Building on the fundamental assumption that effective
methodologies are problem and environment dependent,

a suggestion is made to distinguish between methodo-
logies and the methodological frameworks they in-
stantiate. TSD (Total System Development) is put
forth as a candidate framework able to assist in the
generation and evaluation of specific system deve-
lopment methodologies, where systems are defined as
distributed hardware/software aggregates.

Author: Rome Air Development Center

Title: Reconfigurable Computer System Design Facility Initial
Design Study

Source: RADC Technical Report RADC-TR-78-6

Abstract: The total system design concept envisions a disciplined
system design environment that allows overall system
designs and alternatives to be quickly and easily
evaluated, thus minimizing the actual development and
life-cycle costs for new systems. A total system design
facility is required to provide the necessary tools,
evaluation techniques, and methods that support such an
environment. The objective of the initial Reconfigurable
Computer System Design Facility (RCSDF) design study was
the preparation of a development plan describing the
necessary studies and development tasks that would
achieve the required facility capabilities. The initial
RCSDF design study was organized into three major tasks:
(1) Evaluation and definition of RCSDF capabilities,
philosophy, and procedures; (2) Performance of RCSDF
technical baseline development studies; and (3) Prep-
aration of a RCSDF development plan. The three tasks of
the initial RCSDF design study led to a development plan
for a demonstration of the total system facility concept
with available hardware and technology during the 1980s.
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Author: TRW Defense and Space Systems Group

Title: SMITE Installation and Analysis - SMITE Training Manual

Source: TRW Report 30417-6002-RU-O0

Abstract: This document is written for the person who wants to
understand the use of the SMITE computer description
language in the solution of problems of computer
architecture and emulation in computer information systems
development. The book has three distinct roles: (1) It
is the primary material used in formal training classes on
SMITE. (2) It is suitable for self-study use by persons
familiar with basic computer architecture and emulation
concepts. (3) It is suitable for use as a reference
manual for users of the SMITE language, compiler, and
associated support software.

Author: TRW Defense and Space Systems Group

Title: FAST Methodology and Case Study

Source: Final Report on Contract F30602-79-C-0078, RADC

Abstract: The overall presentation is organized top-down, from
general to particular, over several levels of
abstraction. First, the entire system development is
considered from a highly abstract nonprocedural point of
view in order to identify the role of hardware/software
trade-offs and the way in which they relate to other
system development activities. Second, issues pertinent
to the functional and performance specification of systems
design are reviewed. The report next focuses on the
fundamentals of hardware/software tradeoffs and proposes a
general approach to carrying out the tradeoffs analysis.
Finally, application of this method to a DMA based case
study is described in detail.
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LOGICAL GROUPING OF TERMS

framework
methodology
facility
stage
phase
step

TSD
TSD concept
TSD framework
TSD methodology
TSD facility

problem definition stage

system design stage
software design stage

machine design stage

circuit design stage
firmware design stage

identification phase
conceptualization phase

system architecture phase

system binding phase

software configuration design phase

program design phase

coding phase

hardware configuration design phase

component design phase

switching circuit design phase

electrical circuit design phase

solid state design phase

fabrication phase

microcode design phase

microprogramming phase

microcode generation phase

224



formalism selection step

formalism validatiOn step

exploration step
elaboration step g step
consistency checkin

verification step

evaluation step

inference step
invocation step

integration step

life-cYcle
development
analysis

enhancement
maintenance

performance

system

embedded computer system

C-cubed system

information processing 
system

requirements specification

specification language

conceptual model

processing model
constraints

H/S trade-offs
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DEFINITIONS IN ALPHABETICAL ORDER

analysis
The process of assessing some performance property or properties
of a system by examining it or its specifications.

C-cubed system
A computer system supporting the command, control, and
communication functions within some military outfit.

circuit design stage
A stage of the TSD framework.

coding phase
A phase of the software design stage.

component design phase
A phase of the machine design stage.

conceptualization phase
A phase of the problem definition stage.

conceptual model
A model formalizing an application problem in terms of abstract
application domain concepts and independent of possible system
realizations. It is produced by the conceptualization phase.

consistency checking step
A step in the unified phase structure.

constraints
Factors limiting the domain of acceptable design solutions.
They may originate with the customer, technology, rules of the
trade, previous design decisions, etc.

development
The set of all activities nvolved in the generation of a first
version of some system, from initial concept to production and
deployment.

elaboration step
A step in the unified phase structure.

electrical circuit design phase
A phase of the circuit design stage.

embedded computer system

A computer system supporting real-time process control functions,
such as flight control, firing control, guidance, etc.
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enhancement
The process of modifying an existing system in order to acquire
additional or different functional/performance characteristics.

evaluation step
A step in the unified phase structure.

exploration step
A step in the unified phase structure.

fabrication phase
A phase of the circuit design stage.

facility
The resources available at some location for use in the
application of methodologies to various problems.

firmware design stage
A stage of the TSD framework.

formalism selection step

A step in the unified phase structure.

formalism validation step

A step in the unified phase structure.

framework
A high level non-procedural description of some general problem
solving approach which identifies: (1) a set of subproblems
whose solutions lead to solving the target problem, and (2) the
fundamental relationships among subproblems without regard to the
manner in which one Prrives at their solution.

H/S trade-offs
Hardware/software tradeoffs. The process of, and issues involved
in, deciding the assignment of a system's functions to various
types of physical system components.

hardware configuration design phase

A phase of the machine design stage.

identification phase

A phase of the problem definition stage.

inference step
A step in the unified phase structure.

information processing system

A computer system supporting some application area (business,
project management, logistics command) by enabling the
acquisition, storage, and retrieval of pertinent information.

integration step
A step in the unified phase structure.
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invocation step
A step in the unified phase structure.

life-cycle
This denotes the period of time from the conception to the
retirement of a system, as well as all activities involving the
system, its development, analysis, enhancement, and maintenance.

machine design stage
A stage of the TSD framework.

maintenance
The process of (1) modifying an existing system in order to
correct deviations from its functional/performance

specifications, and (2) of replacing obsolete or defective
components.

methodology
A mode of procedure to be followed in solving a given problem.
It exploits particular features of the problem and environment
through the use of specific techniques or classes of techniques.

microcode design phase
A phase of the firmware design stage.

microcode generation phase
A phase of the firmware design stage.

microprogramming phase
A phase of the firmwaze design stage.

performance
A collection of attributes associated with the structure or
behavior (though not functionality) of a system (e.g., response
time), or activities involved in a system's life-cycle (e.g.,
maintenance costs).

phase (of a methodological framework)
A design problem formulated as a transformation between two
requirements specifications and involving activities within the
same knowledge domain.

problem definition stage
A stage of the TSD framework.

processing model
A system design description produced by the system architecture
design phase.

program design phase
A phase of the software design stage.

228



requirements specification

A consistent and complete description of some problem statement,
or interim solution to a design problem, or some fraction
thereof.

software configuration design phase
A phase of the software design stage.

software design stage
A stage of the TSD framework.

solid state design phase
A phase of the circuit design stage.

specification language
A language used to state a problem, or to describe the solution
to a problem.

stage (of a methodological framework)

A hierarchical group of related phases.

step (of a methodological framework)

A subproblem fundamental to the solution of the problem
identified by a given phase.

system
A hardware/software aggregate.

system architecture design phase

A phase of the system design stage.,

system binding phase
A phase of the system design stage.

system design stage
A stage of the TSD framework.

switching circuit design phase
A phase of the circuit design stage.

TSD
An acronym standing for Total System Design.
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TSD concept
A viewpoint which envisions system design as taking place in a
support environment consisting of a family of design
methodologies and a collection of associated design aids.
Moreover, the TSD concept also presumes the ability to explore
easily the space of design alternatives every step on the way,
and to take rational decisions based primarily on solid
technical reasons. The notion of avoiding premature commitments
to particular design solutions, such as the a priori selection of
specific hardware, is another key component of the concept and one
of the motivating factors behind its inception.

TSD facility
A facility providing support for the class of TSD methodologies.

TSD framework
The TSD framework is a methodological framework that forms the
foundation of a class of system design methodologies whose goals
are: (1) to recognize formally the H/S dualism, (2) to avoid
premature hardware selection, (3) to minimize error costs
through early error detection, (4) to treat performance
constraints as a major driving force behind the design process,
(5) to promote design automation, and (6) to enable proper
evaluation of human interfaces.

TSD methodology
Any methodology compatible with the TSD framework definition.

verification step
A step in the unified phase structure.
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C.1 Overview

This Appendix offers a brief introduction to the ideas and attitudes
surrounding the methodical design and development of systems. A "system,"
in this context, is defined as a computer-based set of hardware and
software components for processing information in support of one or more
applications. The application(s) for which the system is intended may
require that system to exist as a physically distinct entity (i.e., a
standalone system), or it may be an integral component of some larger
complex (i.e., an embedded system). In any event, the design,
development, implementation, use, and maintenance of such systems plays a
significant role in DoD's activities.

Advances in the underlying technology, along with continuing demands
from a growing range of sophisticated application areas, are causing
dramatic increases in system complexity. As a result, the use of
traditional (ad hoc) approaches to system development has become
progressively less effective in meeting requirements for timeliness,
reliability, and cost effectiveness. The situation is aggravated by a
burgeoning microelectronics technology that has presented designers with
unprecedented hardware alternatives. Opportunities to consider this
broader range of choices in computer architecture in a given situation
often go unexploited because current system design/development practices
tend to be dominated by a "hardware first" philosophy in which software is
superimposed on a hardware system whose characteristics are completely
defined early in the system life cycle - even before the functional
requirements are completely clear.

These factors have prompted a growing interest in (and movement
toward) more systematic design methodologies in which engineering
principles used effectively for general product design/development are
being applied to computer-based applications. As a result, numerous
methodologies have emerged in an effort to impose more discipline on the
system design process, and a variety of tools have become available in
support of these methodologies. The effectiveness of this systematization
has been demonstrated in a wide range of application areas, so that these
methodical approaches are rapidly replacing traditional ways.

With the increasing use of orderly system design methodologies has
come a growing awareness that the effectiveness of a given methodology may
depend strongly on the type of application being developed. DoD, being
one of the first organizations to recognize this dependency, saw the need
for a way to deal with multiple methodologies and the assessment of their
applicability to DoD needs. The result is the Total System Design (TSD)
concept, a logical framework within which system design methodologies (and
tcols used as components of such methodologies) can be organized and
considered.

Within the perspective outlined above, this Guidebook seeks to:

-- acquaint its readers with the major benefits derived from
the use of orderly methodologies in the system design
process. Toward this end, Section C.2 briefly traces the
factors underlying the development of an acknowledged
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software crisis and its broadening growth to a system
crisis. Response to the symptoms of that crisis is
characterized as a continuing shift away from ad hoc
approaches toward a more systematic orientation in which
principles of engineering project design, management, and
control play an increasingly important role. These
developments are related to the problems they are
intended to relieve. Introduction of technological
advances, especially those in the microelectronics area,
establish the need to accelerate the changing perception
of the system design process so that hardware
architecture is included as a design variable. At the
same time, proliferation of design methodologies and
tools is shown to prompt a need for a general framework
within which these resources can be examined. This sets
the stage for the TSD framework.

-- define the TSD concept and establish its framework as a
vehicle for classifying, analyzing, and comparing system
design methodologies. Accordingly, Section C.3
characterizes the framework as a logical structure in
which the components of the system design process are
abstracted, categorized, and organized into a cohesive
whole. The entire process is divided into stages, and
each stage's duties are described in terms of major
activities called phases. Each phase, in turn, is
comprised of ten standardized steps required to bring
that phase's work to fruition. The importance of any
step is seen to depend on the phase in which it is being
considered while the importance of any phase or stage is
seen to be dictated by the particular application being
examined within the framework.

-- acquaint the reader with the nature and extent of tools
that are currently available in support of the system
design effort. This is done in Section C.4 where each
phase in each step of the TSD framework is associated
with the kinds of available resour-es that aid in
performing aspects of that phase's work. While some
tools relate uniquely to a particular phase (for example,
a compiler for a high level programming language is
applicable specifically to the coding phase of the
software design stage), others (like a text editor or
report generator) may help support the work in each phase
of several stages. Reference also is made to the growing
practice of combining tools implemented for a given
computer system and integrating them within appropriate
supervisory software to form a computer-based working
environment for design, programming, project management,
or some other major activity in the system cycle.

-- characterize the nature and direction of expected future
developments in system design methodologies. Although
extrapolation always involves some speculation, it
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appears highly likely that there will be continued
movement from individual tools and methodologies to
computer-based design/development/management environments
offering a range of methodologies (and opportunities to
build new ones). A second contention is that continuing
demands for increasingly complex systems will obligate
more and more organizations to embrace a design
philosophy in which a priori hardware selection is no
longer acceptable as a universal rule of practice.
Instead, system duties will be relegated to
hardware/firmware or software as the result of a design
activity in which hardware/software tradeoffs are
seriously examined. These two ideas are combined in
Section C.5 to form the basis for projections that
envision growing acceptance of a total system design
approach supported by methodologies consistent with the
TSD framework. Such methodologies, in turn, are expected
to be made available on increasingly versatile facilities
that include hardware emulation capabilities and are
configured expressly for support of system design
activities across the entire life cycle.
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C.2 Background

The application of orderly, disciplined methodologies to
computer-based system design/development is an idea whose general
acceptance reaches into every area in which computers are involved. In
fact, the precepts of software engineering have been institutionalized to
a sufficient extent that many practitioners find it increasingly difficult
to imagine an alternative. Yet, this seemingly inevitable approach lagged
the introduction of computers by almost two decades. During this initial
period, little or no attention was paid to systematization; ad hoc
development prevailed. As Clark points out [CLAR79a], this approach to
computer applications development was characterized further by a
perception that emphasized early selection and procurement of hardware.
Consequently, software development was a process which started with the
intended hardware already defined. This "hardware first" approach
persisted throughout the computer community even after software costs
began to domir ate overall zjstem costs. The need to establish system
requirements as the driving force for both hardware and software
definition now has begun to gain recognition. An important response to
this need has been DoD's Total System Design (TSD) methodology, this
section examines the shift toward a TSD approach by discussing the forces
that brought it on.

C.2.1 Introduction

In 1961, a computer equipped with 8000 bytes of main storage, a card
reader/punch, and a line printer was considered a medium-sized
constellation. Such a system cost two hundred forty five thousand
dollars; 1961 dollars. Its memory speed was about five percent of that
seen in today's personal computers. This is pointed out to underscore the
fact that the hardware was the predominant financial factor in most
computer installations. The resulting effect on computer usage and its
management was profound. Moreover, its consequences continue to persist
even though the financial factors have changed drastically. The climate
produced by this situation can be characterized briefly as follows:

1. Productive computer utilization was uppermost. Managers were
9ager to justify sizable hardware expenditures by filling the
available machine time with useful computer applications. For
many installations it was typical for the equipment to be
acquired initially for certain applications. Once implemented,
these applications consumed a relatively modest fraction of the
time. In spite of the fact that procurement of the computer
often could have been defended solely on the basis of these
initial applications, "idle time" was something actively to be
minimized. While this certainly was not the only factor, it did
contribute significantly to the rapid growth in the number and
diversity of computer applications during the Fifties and well
into the Sixties. From another point of view, there was an even
more telling effect: The drive to fill a computer's available
time helped establish and reinforce a tradition in which a
computer application is perceived in terms of a program (or a
complex of interrelated programs) written for a computer whose
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configuration and architecture are "given". That is, the
hardware is (essentially) defined before the application is
conceived. Advances in microelectronics have made this operating
mode increasingly obsolete for many types of applications. By
the same token, design approaches predicated solely on this basis
can impose unnecessary constraints. Consequently, when this
tradition is broken, a significant underlying concept emerges in
which the hardware and software are treated as parallel design
issues, both driven by the application. This concept, which we
term the hardware/software duality, is one of the focal points
behind the TSD framework.

2. Computer applications were considered to be relatively stable.
Many of the early computer applications were transferrals of
procedures done previously by hand or with unit record equipment.
These generally were established processes whose requirements
were well understood. It is not surprising, therefore, to find
the same kind of stability being attributed to applications with

no prior counterparts. This perception often turned out to be
erroneous. For instance, requirements defined at some early
point in a system's life cycle were seen to be inadequate or
improper because of information that came to light during
subsequent development. Alternatively, systems deemed at first
to be satisfactory tended to lose their appeal as experience with
them accumulated: Operating features that were unanticipated at

first were recognized later on as being desirable or even
essential. Consequently, there was a pervasive and growing
discrepancy between the perception of stable applications and
their actual dynamic nature. This idealistic view was to be a
crucial factor in precipitating what turned out to be nothing
less than a software revolution.

3. Program efficiency was a primary software design objective.
Although such issues as software maintenance and reliability were
recognized and considered, attention in software development
focused primarily on the production of programs in which size and
execution time were minimized. Main storage and computer time
both were perceived (and treated) as precious commodities, so
that their conservation was a matter of high priority. Such
emphasis was not misplaced. Restrictions imposed by the
available hardware often forced the development of applications
that operated at or near system capacity. This meant that
programmers tended to accumulate shortcuts and special tricks
which saved words of storage or microseconds of execution time.

By and large, these techniques were not algorithmic; rather,
their effectiveness was based on specific idiosyncrasies
intrinsic to the particular computer, language, or operating
system being used to implement the application. The resulting
changes in a program usually helped obscure its intent. Thus, it
was not unusual for situations to develop in which a programmer,
looking at the listing of a program he or she had written some
weeks earlier, could not discern what that program did or how it
did it.
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A more fundamental factor contributed to the perceived
pre-eminence of program efficiency: software design and
programming were treated as an Integral activity, with neither
conceptual nor temporal distinctions being made between them.
Consequently, it was inevitable to find system and program
efficiency being intermixed.

4. Error removal was associated with the latter stages of the
software development evcle and was handled predominantlyb j
program debugging. For many practitioners at every level of
computer applications development, the programming process was
defined rather vaguely. It was seen to include aspects of
algorithm design, requirements definition, and optimization in
addition to the actual production of coded programming language
statements. Understandably, then, it was expected (ard accepted)
that an initial version of a program (or subprogram) would
contain a mixture of errors attributable to any or all of these
factors and not just to syntactic/semantic misstatements
vis-a-vis the rules of the programming language. Ultimately, all
of these types of difficulties would be sought, discovered, and
corrected when the completed program is debugged. As the
discussion in the next two sections makes clear, the adverse
effects of this orientation cannot be overstated.

C.2.2 Current Problems and Concerns

The difficulties encountered in the design, development and
implementation of computer-based systems are deceptively easy to
characterize: Compared to earlier systems, more recent ones have tended
to:

I. exhibit greater discrepancies between estimated and actual costs,
with software costs assuming an increasing fraction of the total.

2. suffer greater time delays in their preparation.

3. contain more errors when released for use, so that maintenance
(correction of errors to make a system match current
requirements) is becoming an increasingly significant cost

component.

4. be more difficult to enhance properly in response to changing
requirements.

There is no intent to imply that early systems were free of such troubles.
However, trends have been observed wherein these tendencies have been
intensifying with time. In a widely quoted landmark study that includes
many DoD projects [BOEH73), software is seen to have become the dominant
cost component (as hardware price/performance figures decrease and labor
costs continue to go up), with maintenance/enhancement constituting the
primary ingredient in software cost. Similar findings are reported in
(CLAR79b] and [FASPI.
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There is little doubt that these trends can legitimately be
attributed to the continuing growth in the complexity of more recent
computer applications and the systems required to implement them.
However, if this trend is to be arrested and, ultimately, reversed, it is
necessary to understand why the increase in complexity should exert such
an adverse influence.

Severe problems in the design and development of computer
applications did not arise overnight. When they did appear, they
generally were unanticipated and often misinterpreted. It would be
misleading to think of this as shortsightedness. The simple fact is that
innumerable projects and applications were implemented successfully, with

performance being improved dramatically over previous versions in which
computers were not involved. Failures, viewed in their own context, were
thought to be doe perhaps to an unrealistic time constraint, too few
programmers, or inadequate programmer quality. Thus, there was little or
no impetus to examine the programming process or the broader scope of
activities related to the preparation of a system. At the time "third
generation" computers began to emerge from the production lines,
programming was still treated as a craft taught by masters to apprentices,
and the design and realization of computer-based systems continued on an
ad hoc basis.

The potential for severe software problems already was present with
the first computer applications. However, the recognition of the problem
as being intrinsic did not spread until newer systems became sufficiently
complex to begin stressing the capabilities of ad hoc system design
approaches beyond their limits. Experience with large software projects
[BR0075] shows that as projects increase in scope and more programmers are
assigned to work on them, the positive effect of the additional people
tends to be neutralized and eventually overwhelmed by the rapidly
increasing complexity of the required communication among all of the cooks
working on the various parts of the same broth. As long as the projects
were limited, this clash of effects was not apparent. However, with
increasing growth, projects became more vulnerable to failure through
misinterpretation, duplication of effort, lost information, and other
consequences stemming from inadequate coordination. To counteract this
susceptibility, it was necessary to devote an increasing (and ultimately
disproportionate) fraction of personnel time and effort to making sure
that all concerned parties knew what they needed to know. By the
mid-Sixties, many organizations were undertaking system projects of
sufficient complexity to bring these problems into prominence. This was
particularly true in DoD, where C-Cubed systems and embedded computer
systems were assuming an increasing role in the Department's activities.

This increase in complexity is a natural phenomenon. There is hardly
a human endeavor that is exempt from the forces of discontent pushing
toward "improvement" and "expansion". Something (a computer-based system,
in our context) that is deemed "effective" or even "outstanding" when it
first appears, soon becomes "adequate" and, ultimately, "mediocre" or even
"unsatisfactory". In addition, requirements motivating a particular
system often are imposed by external sources so that arbitrary changes in
requirements (leading to complications more often than simplifications)
may appear at arbitrary points in the system's history. (DoD systems are
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no exception.) Thus, if nothing else were to happen, it still would have
been inevitable for software problems to surface as endemic
characteristics of the development processes then current.

As it turns out, the emergence of an acknowledged "software problem"
has been accelerated (indirectly) by a rush of technological advances. On
repeated occasions, new, less expensive hardware with higher capacity,
increased speed, and more versatile configurational possibilities has
engendered dissatisfaction with application systems previously viewed as
being adventurous. Similar effects h ,e been (and continue to be) wrought
by more powerful languages and operating system software as well.

The effect of these advances in computer science and technology on
application systems is even more fundamental than that just mentioned.
Briefly stated, the availability of a wide variety of powerful, fast,
inexpensive processors has expanded what was perceived as a "software

problem" to a "hardware/software problem". Fulfillment of a particular
set of requirements can no longer be viewed solely in terms of a
traditional "hardware first" solution in which a software structure is
superimposed on a predefined hardware architecture. Thus, hardware
architecture has become a legitimate design variable, to be considered on
a par with software issues(*). Failure to exploit these
expanded hardware possibilities often contributes to the severity of the

overall systems problems. In the next section, when responses to these
problems are discussed, we shall examine conceptual mechanisms that allow
for the natural inclusion of hardware considerations as an integral part
of a total systems design.

C.2.3 Response to Increasing Complexity

Any reasonable attempt to relieve the problems cited in the previous

section must stem from the realization that the phenomenon of increasing
complexity will not go away. As we continue to learn more about the
behavior of current systems, our expectations grow accordingly, and they
manifest themselves as more ambitious demands and challenging requirements
for future systems. These new systems, expectedly, will turn out to be
more complex than their predecessors.

Faced with this reality, attacks on systems problems are based on the
idea of reducing apparent complexity. This is the common objective that
motivates all efforts to systematize the design, implementation, and
maintenance of a computer-based application. For any aspect of that
process (such as software design or programming), the intent is to
represent a pertinent problem as a collection of interrelated but distinct
subproblems, each one sized so that an individual can deal with its entire
scope and all its details. Such subdivision is effective when an
individual working on a particular subproblem can focus full attention on
it with minimal concern about how it relates to the overall system.

* Perhaps the most significant characteristic of so-called
"third generation" computer systems is the concurrent design
of their hardware and executive software.
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Later, when all of the (temporarily) isolated subproblems have been
resolved, they can be brought together and integrated to form the final
product. Since this orientation closely resembles the classical approach
to product engineering, the term "divide and conquer" often is used to
characterize methodological computer-based system development as well.

Even from this brief characterization, it is evident that the success
of such an approach requires careful definition of the subproblems and the
connections among them. Consequently, considerable work has been directed
toward devising useful methods for establishing and documenting such
definitions, facilitating their implementation, and enforcing adherence to
them. Before such work could proceed fruitfully, it was necessary to
deemphasize (or abandon entirely) some of the precepts underlying the
traditional (ad hoe) approach to system design and development and replace
them with a revised perspective more hospitable to systematic approaches.
This need, not immediately apparent, was established by studying the
programming process [WEIN70] along with other aspects of software design
and development [YOUR751. The salient features can be examined
conveniently by contrasting them with their earlier counterparts:

1. Successful fulfillment of a computer-based system's requirements
is perceived as a solution to a set of hardware/software
problems. Advances in microcircuitry, improved manufacturing
methods, and a deeper understanding of computer architecture have
provided the system designer with an unprecedented range of
hardware alternatives. The cost of this equipment has declined
well beyond the point where idle computer time need be a matter
of primary concern. Newly emerging technology in very large
scale integrated circuits (VLSI) promises to reduce this concern
even further [MEAD80]. This makes it possible (and practical) to
derive the hardware requirements from those imposed by the
application (rather than the other way around). The resulting
configuration still may turn out to be a general purpose machine
whose resources will be shared by several applications. However,
the inclusion of hardware as a design variable introduces the
opportunity to define equipment with specific architectural
characteristics when the situation dictates it. Thus, instead of
moving from the tradition "hardware first" perception of the
system design process to a "software first" approach, increased
architectural opportunities are prompting a shift to a "system
first" philosophy in which both hardware and software can contend

for selection as solutions to system component needs. As will be
seen later, the family of TSD methodologies formalizes this
opportunity.

Besides making processor utilization less prominent as a
major objective, architectural flexibility introduces a more
basic consequence: Many of the technological advances have
blurred the distinction between those processing activities
traditionally relegated to hardware and those automatically
associated with software. For a growing number of processing
activities, this choice no longer is clear-cut. As a result,
more recent efforts to reduce apparent complexity include
mechanisms that obligate the designer to examine a broader range
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of possibilities so that hardware/software tradeoffs can be
recognized and assessed.

2. Change is recognized as an intrinsic property of computer
applications. Although this seems to be saying that water is
wet, i' does represent a significant change in orientation. The
point is that traditional approaches to system design either
assumed a stabilized set of requirements or resigned themselves
to the inevitability of change with the implicit intention of

accommodating changes (or fighting them off) when they came. A
revised perspective accepts changing requirements as a basic
system characteristic. Adaptability to change (enhanceability),
then, becomes an explicit primary design objective to be met
rather than a fortuitous byproduct when and if it happens.
Inclusion of this criterion provides further motivation for
careful subdivision of a problem into distinct but interrelated
subproblems: with such decomposition, eventual enhancement of
the system in response to changing requirements can proceed more
smoothly if the alterations are localized to a small number of

components. Consequently, the reduction of apparent complexity
and the improvement of enhanceability are mutually supportive
aspects of methodological system design.

3. Program clarity, simplicity, and reliability have emerged as
prominent implementation objectives while efficiency has become
an explicit concern that extends beyond the program. This stems
directly from the separation that now has been established
between design and programming/coding. Although program
efficiency remains a serious concern, it is no longer the
overriding factor to which all others are subordinated.
Improvements in hardware, along with reduced costs, now make it
largely unnecessary to develop systems that operate disturbingly
close to equipment capacity. At the same time, accelerating
in-reases in labor costs exert additional pressure against the
(once traditional' use of skilled personnel to ferret out
arbitrary (and often marginal) savings in execution time or
memory use.

Efficiency, per se, is not seen as a primary driving force
at the programming level. Instead, it is viewed in the context
of the application being considered. This removes it from its
earlier role as a programming/coding issue and expands it to one
that is pertinent during all phases of the system cycle. As a
result, there are numerous opportunities to include efficiency

considerations on a continuing basis ns a system takes conceptual,
logical, and then physical shape. For example, if speed of
execution is an important requirement (as it is in DoD's C-cubed
applications), it can exert considerable influence on hardware
choices and, more fundamentally, on hardware/software

preferences. Similarly, it may affect the design of crucial
algorithms. This latter effect is becoming increasingly
important as theoretical advances continue to improve designers'
ability to predict computational performance. As a result of
these expanded opportunities, it is likely that the system design

2 41



already will be intrinsically efficient before it reaches a point
where its software is ready to be implemented.

Once efficiency of the ultimate program is removed as a
pivotal design concern, it becomes more fruitful to focus
attention (when it comeF to programming) on the efficiency of the
programming process. Toward this end, the importance cf program
clarity and simpli.. ty as primary programming objectives has been
demonstrated repeateily ([YOUR75], [WIRT73]). All of the

precepts and practices being advocate4 under the umbrella of
"structured programming" share a common goal: to make it easier
(i.e., less expensive and less time-consuming) to produce a
program that is organizationally and logically simple, clear, and
more convenient to use. This means that its 'ntent and its major
processing characteristics are readily disce:nable, thereby
making it easier to analyze (and modify, when required) and less
likely to contain errors once it is released for use. These
considerations constitute a major influence on the design and
structure of the DoD's Ada language [DOD79].

This does not mean that program efficiency is abandoned;

far from it. However, it places such considerations in their
proper context: Once a program has been written and is being
evaluated, its implementers are in an ideal position to observe
its performance and pinpoint sources of inefficiency.
Appropriate improvements tnen can be made systematically, by
streamlining those individual programs or modules causing the
bottlenecks. The consequences are localized and the process is
more easily managed. Of particular importance here is the idea
that these improvements are brought about by changes in the
implementation, not in the design. In effect, this constitutes
something akin to fine-tuning. It is worth repeating that when
the (partially developed) system arrives at its software
implementation phase, its efficiency is part of its design. The
effect of the actual code, then, is likely to be less profound
than that originally ascribed to it.

4 . Error detection and removal are seen as explicit activities that
pervade the entire system development cycle. A cornerstone of
any disciplined approach to system design and development is the
recognition that each distinct phase in the process must include
a concerted effort to establish (to whatever extent feasible) the
validity of the work produced by that phase. For effective
methodologies, this is not merely a wish. It imposes a
managerial responsibility to define and implement enforcement
mechanisms that use such validations as criteria for embarking on
subsequent phases.

As a result, the role of the programming process is
perceived as being more sharply focused as an implementation
activity. Since each prior phase is capped by a validation
activity, the expectation is that programming is concerned solely
with the implementation of algorithms whose logical and
procedural correctness already have been established. An error
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in the program, when viewed in this context, represents a failure
to convey the intent of an underlying algorithm rather than a
flaw in the algorithm or in the design that motivated the

algorithm.

This orientation has helped L, r efforts to devise improved
approaches and techniques that allow progress toward the ideal
situation in which a program is free of errors at the point of
its first test. One technique, that of structured programming,
already has been mentioned. Its objective, i.e., the imposition
of consistency on the way programs are coded, is being fulfilled
and the benefits ([BAKE72], for example) are widely acknowledged.
Another side of this e, "-t pays attention to the environment in
which programming -kes 3ce. While the production of code
continues to be ... individual endeavor, today's programmer works
(conceptually) in less isolation than in the past. In an
increasing number of organizations, including many with heavy
involvement in DoD-related computing projects, the programming
process is supported by a variety of "programmers' tools" whose
primary purpose is to facilitate (and help manage) the activities

involved in preparing, refining, documenting, and monitoring the
progress of software under development [KERN81]. Such aids
continue to be a subject of intensive research.

In addition, programmers operate in a more structured
managerial environment that lends administrative support to their

efforts. Part of the task of reducing apparent complexity
entails the establishment and maintenance of orderly
communication channels among a project's participants.
Innovations such as chief programmer teams [BAKE72] are proving
to be effective in this regard. Other aids [TEIC77] are used to
provide ample opportunities for program review and validation.

The conceptual separation of programming from system design
also has highlighted the importance of program testing as an
organized activity. Even if the abovementioned ideal of an
initially correct program were to be met routinely, it still
would be necessary to demonstrate a program's validity prior to
its release. Such demonstrations never have been easy to define
satisfactorily, and the task grows more difficult as systems
become more complex. While it is impossible to perform an
exhaustive demonstration of the validity of a realistic system, a
well-conceived test plan, devised during development and not as
an afterthought, can provide a demonstration that is both
reasonable and convincing. Accordingly, test definition (for
components as well as for the integrated system) is viewed as a
design activity and not something to do ad hoe. This increases
the likelihood of producing a systematic evaluation that includes
what are thought to be the "most typical" episodes of system
behavior as well as those that exercise the system at its limits.

5. Maintainability is treated as an explicit system characteristic.
We have mentioned enhanceability as a recognized property that
facilitates incorporation of changes to systems already in use.
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A related but distinct consideration is maintainability. Since
the complexity of moderns systems rules out any prospect of
exhaustive testing, we must deal with the potentially strong
possibility of a system containing residual errors even after
successful completion of a well-conceived testing effort. Such
errors may show up early in the system's usage or they may not
surface for years; some may not appear during the entire life of
the system. In any event, a maintainable system is designed to
help pinpoint the source of an error when one occurs. One
important implication of this view is that it encourages
designers to devise ways in which the system can assume more of
the responsibility for distinguishing between "normal" and
"abnormal" behavior and explicitly reporting instances of the
latter. This philosophy, already well established for hardware,
is beginning to make itself felt with regard to software as well.
For hardware, this help consists of special diagnostic components
included to enhance the system's ability to report (and in some
cases correct or circumvent) physical malfunctions. For
firmware/software, sensitivity to possible errors is heightened
by additional programming that can be activated when a hitherto
undiscovered logical malfunction emerges. This diagnostic
programming provides helpful information by revealing procedural
details that are "invisible" during normal system use.

6. Diversity is seen as being potentially counterproductive as
system complexity increases. Although increased
hardware/software opportunities must be exploited if effective
systems are to be assured, it is now understood that the
advantages of a widened spectrum of choices are quickly
neutralized by arbitrary, uncontrolled diversity. Without some
degree of standardization, design and development costs often
are inflated unnecessarily by the inability to make use of
earlier work that would have been relevant if it were not for its
incompatibility. This negative effect is intensified by the
additional overhead incurred in having to familiarize technical
personnel with a broader array of hardware/software products and
their use in application systems development.

Consequently, the system design community has been moving
toward an orientation that seeks to introduce standardization
without compromising versatility. A prominent example is seen in
DoD's effort to supplant a multiplicity of programming languages
with a single one (Ada) designed to provide a consistent
programming vehicle while still offering the wide flexibility
required for embedded computer systems. Similarly, there are
strong tendencies within DoD and other organizations to define
stable architectures for single processors and input/output
subsystems wherever appropriate. In a sense, there is a
compelling similarity between this movement toward
standardization and the more general one that helped characterize
the Industrial Revolution.
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7. There is growing recognition that system design and development
can be helped considerably by the introduction of automation into
the process. The basic concept certainly is not new to
computing: automation of the program development process began
with the appearance of the first high level language processor in
the mid-Fifties. Since that time, there has been a concerted
effort to define facilities and tools that would help automate
other aspects of the system cycle. Until recently, these aids
have concentrated on facilitating software development and system
documentation by providing a variety of software-based supports.
(Further discussion of these aids appears in Section C.4.2.) Now,
the emergence of hardware and software as parallel design
variables (i.e., the "system first" philosophy referred to
earlier) is prompting growing interest in similar aids for

hardware design and evaluation. An idea that is particularly
prominent in this rapidly emerging technological area is the Air
Force's System Architecture Evaluation Facility (SAEF). This is
examined in Section C.5.

These responses to rapidly growing demands for more complex
hardware/software systems manifest themselves as methodologies for
orderly conduct of the activities encompassed by the system cycle.
Resulting improvements in workers' productivity and system effectiveness
and economy have placed such applications of structured design/development
principles beyond dispute.

C.3 The TSD Framework

Work on disciplined system design/development methods has been
intensifying since the late Sixties. As a result, there is a growing
collection of rezources aimed at supporting various stages of the overall
process. Some of these are rather narrow in scope, taking the form of
aids that expedite a particular step in a design stage; others are more
comprehensive, providing an orderly approach that covers an entire design
stage. At present, diversity, perhaps more than any other attribute,
tends to characterize these resources. First, there is no single,
integrated methodology that encompasses the entire system cycle.
Individual approaches deal with various segments of that cycle, and the
scope of one methodology does not necessarily coincide or dovetail exactly
with that of another one. Moreover, many of the methodologies reflect the
perceptions and concerns of the particular application areas that
motivated their development and/or the environments in which they were
produced. Thus, for example, a particular approach that was used
effectively in the design of realtime software for an airline reservation
system may not be as appropriate when applied to a vehicle dispatching
system.

It is this realization that signals a transition to what might be
considered a "second generation" in system design disciplines: In
addition to continued work on individual methodologies, there is growing
impetus to organize this knowledge into some sort of continuum that will
enable people to exploit available technology in the most effective way
for their particular system needs. The TSD framework, described in this
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section, has been formulated to provide this kind of vehicle.

C.3.1 Characteristics of the TSD Framework

The TSD framework is not a method for designing computer-based

systems. Rather, it is an abstraction of a class of system design
methodologies. As such, it provides an organized way of looking at (and
comparing) alternative approaches for handling various aspects of the
system life cycle. Use of the framework is expected to facilitate the
task of selecting methodologies and combining them to form the most
effective total system design approach for a given set of circumstances.
As new methodologies are introduced, their characteristics can be
expressed in accordance with the framework's structure, thereby allowing
the range of available choices to grow consistently.

It is helpful to point out that the TSD framework is not intended to

serve as an abstraction for all system design methodologies. The class of
approaches it is designed to accommodate can be characterized in terms of
six common concerns:

1. A formal recognition of the hardware/software duality.

2. An explicit commitment to arrange the system life cycle so that
premature hardware selection is unnecessary.

3. Inclusion of activities aimed specifically at early error
detection.

4. Treatment of performance constraints as a major influence on the

design process throughout the cycle.

5. Promotion of design automation.

6. Serious (and substantive) concern with the interfaces between a

system and its human users.

To provide a structural basis for the TSD framework, the system life
cycle is characterized by dividing it into major activities called stages.
Each stage is divided further into phases and each phase, in turn,
consists of a number of steps. Certain of these activities will require
less emphasis for some systems than for others. However, from the
framework's point of view, each activity is included (in concept) in any
system's development, even if performance of the activity is trivial.

Steps within a phase (or phases within a stage) are not meant to
follow each other in any particular sequence. Nor does the beginning of a
particular step, phase, or stage automatically imply the irrevocable
conclusion of one preceding it. The framework, by being abstract, is
non-procedural, so that temporal relations among component activities can
be dictated by the characteristics of the individual methodologies and the
requirements of the applications. This abstraction makes it particularly
convenient to include consideration of hardware/software tradeoffs as an
explicit activity.
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C.3.2 Structure of the TSD Framework

We shall begin examination of the TSD framework by characterizing its
major structural constituents. Once the basic dependency relations have
been established, we shall return to each stage and phase for a closer
look.

C.3.2.1 stages: The conceptual relations among these major design
activities is summarized in Figure C.1. Progress through the design
process is indicated by the downward arrows, each of which represents
requirements specifications developed by a particular stage. These, in
turn, define the problems to be solved in the next stage. The overall
downward flow is that of a system design working its way through
increasing refinements until it is completely specified.

The diagram in Figure C.1 also is meant to convey the overall flow of
the system integration process. This is represented by the upward arrows,
each of which denotes the completion of a component that has been fully
developed and is ready for integration into the next higher level of the
system's organization. For example, the arrow ascending from the firmware
stage represents the availability of the (actual) firmware. Accordingly,
the integration process is ready to proceed to the next higher level
(assuming the availability of the completed circuits as well) in which the
firmware and circuitry will be combined in the machine stage to form the
system's hardware configuration. The upward arrow from that stage
indicates the hardware's readiness to be integrated with the (previously
completed and tested) software. As is the case with design, there is no
intent in the framework to imply a fixed dependency among the stages or
phases. Parts of a project may move through their respective development
processes faster than others, so that it may be reasonable for various
parts to be in different phases/stages at a given time. This movement
will be affected by the application and/or the characteristics of a
particular methodology. Consequently, this diversity is not observed or
delineated at the level of abstraction at which the framework functions.

C.3.2.2 Phases: Successful completion of each stage requires the
completion of two or more constituent phases. (The individual phases are
named in Figure C.1.) Although the activity associated with a phase is
narrower than that of a stage, the relations among phases in a stage are
conceptually similar to those that exist among the stages in the overall
framework. Accordingly, each phase assumes an obligation to develop a
conceptual, logical, or physical product that advances the state of the
system and defines (completely) the work for the next phase. Similarly,
when the system components are being integrated to produce the finished
product, each phase assumes the responsibility for performing whatever
integration is necessary (within its jurisdiction) to deliver its
component or subproduct in final form a3 well.

To illustrate, the firmware design stage is isolated and redrawn with
more emphasis on the individual phases (Figure C.2). (Deliberations
undertaken during the machine design stage already would have established
the advantages of firmware, thereby placing this issue beyond dispute in
the firmware design stage.) The downward arrow from the microcode design
phase denotes that phase's obligation to produce a complete set of
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microcode requirements congruent with the firmware requirements delivered

to it. In turn, these requirements serve as a basis for the microcode
design to be turned out by the microprogramming phase. Exactly how the
microcode requirements will be expressed and in what form they will be
delivered depends on the particular methodology and its supporting
facilities; the framework merely characterizes the activities.
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In the same way, the downward arrow from the microprogramming phase
establishes the set of microcode implementation requirements as being the
product delivered by that phase to motivate the production of the
microcode itself by the third and final phase of the firmware design
stage. The upward arrow from the microcode generation phase indicates
that phase's responsibility to insure that its product (a set of
micromodules) performs as an integrated whole in accordance with the

implementation specifications on which they are based. The
microprogramming phase, in turn, guarantees that those implementation
specifications reflect precisely the intent of the microcode requirements.

firmware requirements

FIRMWARE DESIGN STAGE

------------------------------- --

microcode design phase I

------------------------------- --

microcode requirements

------------------------------- --
I

microprogramming phase

------------------------------- --

microcode generation requirements

* microcode generation phase

------------------------------- --

microcode

Detailed Structure of the Firmware Design Stage
Figure C.2
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C.3.2.3 steps: During the design process, each phase addresses a
different design activity. However, the way the activity takes place is
viewed by the framework as being conceptually consistent throughout all
the phases. Accordingly, the framework subdivides each phase into a
series of steps that are standardized across all phases. Some of the
steps represent unit activities that reflect good practice and are
fundamental to the design process in general. Others represent activities
that support the realization of the framework's objectives in significant
ways. The steps, named in Figure C.3, tend to cluster into four
groupings, as the figure indicates.

formalism selection
formalism validation

exploration
elaboration

consistency checking
verification
evaluation
inference

invocation

integration

Standardized Steps in Each Phase of the TSD Framework
Figure C.3

formalism selection
This step deals with the selection of an appropriate notational vehicle
for expressing precisely the system component, requirements, or other
entity that needs to be described by a particular phase. The suitability
of a specific formalism will depend strongly on the problem domain for
which it is to be used. Some will be especially simple and convenient to
use for certain kinds of problems while being unnecessarily complicated
and/or ambiguous for others. Often, the selection may not be made in
isolation; rather, a particular formalism may be used because it is the
one employed by a methodology chosen for other reasons.

formalism validation
Before a formalism can be applied, the adequacy of its expressive power
must be determined. This is the purpose of the formalism validation step.
In general, this activity involves a combination of theoretical and
experimental assessments that examine the formalism's ease of use and
potential for automation, as well as its ability to convey completely and
precisely the information required from that phase. It is clear that the
selection and validation steps are closely intertwined.

exploration
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The exploration step, perhaps, is the most difficult activity to
characterize. It is here that the germ of the design is born. Since this
is a creative process, it has defied efforts at quantification and it
continues to depend, in large measure, on talent, wisdom, and experience.
Accordingly, it is irrelevant to consider candidate methodologies for
quantifying this activity. However, the search continues for ways of
lending some supporting structure to this step so that designers can focus
their talents more effectively on the problems at hand.

elaboration
Design ideas produced in the exploration step are given forrn h" e.
Depending on the phase being considered, elaboration rry use vehicles
ranging from mathematical formalisms to physicai hardware in order to give
expression to the ideas being developed.

consistency checking

This step encompasses activities centered around checking :r incorrect
uses of formalisms, detecting and reconciiing contradictions, conflicts,
and multiple viewpoints, and completing (pr iously) inadequate
specifications.

verification
The purpose of this step is to demonstrate tLal a e-sign embodies the
functional properties called for in its requirements specification. For
example, when applied in the program design phase, verification would sce
to prove the correctness of the program specified there. Although such
tasks continue to be inordinately difficult, it is important t. note the
step (and its intent) in the framework.

evaluation

Activities included in the evaluation step are aimed at cctermining
whether a design meets a given set of constraints. These may stem from
initial requirements, or they may be those imposed later in the system
development cycle as the result of certain design decisions. Included are
such constraints as system response time, throughput, fault tolerance, and
cost. Accordingly, the evaluative approach will depend on the particular
constraint being assessed. For example, investigation of system
performance (in advance of the actual system's emergence) is likely to
involve the use of simulation models, while cost analysis would call for
an appropriate predictive model.

inference
In this step, the designers project beyond the immediate phase in which
they are working to assess the potential impact of their design decision
on other aspects of the system cycle and on the application environment
itself. Since each phase interfaces closely with others, serious
attention must be paid to the possible hardships imposed on the design
activity in a subsequent phase by the choices made in a current one.
Similarly, options selected to favor a particular design or pirformance
attribute may exact an excessive (perhaps unacceptable) penalty on
maintainability or enhanceability later in the life cycle.

invocation
The activity in this step centers around preparation of the phase's
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product for formal release. In keeping with the philosophy intrinsically
associated with methodological system design (Section C.7), such release
must follow some type of "inspection" and "acceptance" procedures (their
nature depending, of course, on the item being reviewed and the
methodology under which the activity is org-nized). Once this release is
secured, authorization to undertake the next phase is automatically
implied. Thus, formal release of the specifications developed in one
phase invokes subsequent phases.

integration
This final step encompasses the activities associated with the (conceptual
or physical) assembly and testing of that portion of the total system
designed in that phase. (This is in keeping with the assertion made
earlier that responsibility for delivery of its product as an integrated,
tested entity rests with each phase.) Because of the prominence of
reliability as a system design objective, the TSD framework treats testing
as an important activity whose proper exploitation requires the same
expertise as does design. Consequently, integration is perceived as an
activity to be localized at the phase level.

C.3.3 A Brief Walk Through the TSD Framework

Using the previous sections as background, we now can characterize
the framewok in more detail by examining each stage individually.

C.3.1 pr,1-Pm definition: Successful system design must start with
a clear understanding of the problem being addressed. Although this need
sounds self-evident, virtually every organization can cite instances of
systems that do an effective job of solving problems other than those
their users wanted solved. Consequently, as Figure C.3 indicates, the
problem definition stage includes an explicit identification phase whose
purp27 e it is rroduce a vitten description of the problem that also
spec.ffes any buz - constr-nts within which the problem must be solved.
This report se~ves as the primary o'mmunication link between the users,
who understand the application, and the analysts, designers, and
levelopers, who are skil" ' 'n computer-based systems but need guidance
with regard to the characteristics of the problem at hand. The pivotal
importance of this document is underscored by the insistence that the
concerned parties accept its lescription of the problem as being accuratE-,
(implete, and unambigu us.

ident, ficat. i on p,.as

Alt'..jwd the idPntification phase is not a design activity, the
written [--iolem description developed here provides the basis fer the

entire system design. Hence, it is unique with respect to the breadth ol

issues it must address and the diversity of personnel who must agree on

those issues. No single formal system could hope to fulfill the

requirements imposed by this report. Consequently, the formaliuiT

selection and validation are not enforced as ricorously as they would be
in more formal phases. English text, subject to structural constraints

such as those imposed by report forms, outlines, and chec. lists, prohbbly

is the most appropriate vehicle for expressing the relevant assumptions,

253



constraints and demands to be satisfied by the proposed system.

The absence of a strict formalism does not lessen the importance of
exploration, elaboration, consistency checking, and verification in this
phase. User and builder must work together closely to establish the
system's requirements, constraints, boundaries, and underlying
assumptions. Trade-offs need to be anticipated and assessed to the
greatest possible extent. In short, sufficient information has to be
developed about the nature of the problem and the scope of the required
solution to establish the beginnings of a project database that will
support (and serve as the ultimate authority for) all subsequent project
activities.

Completion of the identification phase involves acceptance of the
identification report resulting from the detailed interactions between the
system's developers and its ultimate users. Implicit in such acceptance
is the authorization to begin (and eventually complete) the entire system
development.

conceptualization phase

Using the rather informal system identification report as a basis,
requirements now have to be expressed within a more formal conceptual
model. The precise definition thus made possible will serve as the most
direct source of direction for the system's design. Accordingly, the

formalism selection and validation steps assume particular importance in
this phase: Availability of a formalism that allows exact expression of
the system's requirements increases the possibility that subsequent
activities can be automated. For example, a set of precise syntactic
rules (which such a formalism necessarily would include) allow automated
consistency checking, documentation, and database updating. Consequently,
there is a more objective foundation from which subsequent phases can
draw. The effectiveness of a formalism is enhanced, incidentally, if
particular care is taken to select a formalism that does not bias the
resulting system definition toward a specific design alternative.
Although it is complete and precise, the formal conceptual model of the
proposed system z 'll should not orient the system designer in any
particular direction.

The value of the conceptual model becomes more apparent during the
latter steps of the conceptualization phase. Here, the model is combined
with the identification report to produce a set of system requirements.
Fortified with this conceptual material, the report now includes a
complete, unambiguous, testable set of requirements and constraints that
the customer agrees will establish the formal basis for all later system
dveL, lopment. Additional studies on cost effectiveness, sC'heduling, etc.
(all stirted earl r) now may be expanded based on the more quantitative
information developed from the conceptual model.

C.3.3.2 system design: This stage is central to the TSD framework
because the logical design of the system is defined here.
Hardware/software studies are conducted in sufficient detail to establish
the manner in which hardware and software are to be used in the system's
implementation. The primary motivation for this stage stems from the
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specification of system requirements generated by the problem definition
stage and qualified by performance constraints, time and financial
considerations, and physical factors such as size, weight, and power
consumption. In addition, the design process is guided by recognized
principles and practices which promote the development of systems that
resist obsolescence and are easy to maintain and enhance.

The activities of the system design stage can be characterized as a

composite of the following concerns:

-- a systematic examination of hardware/software tradeoffs;

-- a systematic approach to system/environment interfacing;

-- early definition of mechanisms for systematic error
detection;

-- identification of a disciplined approach to performance
evaluation;

-- explicit emphasis on maintainability and enhanceability;

-- consideration of approaches that exploit computer-aided

design.

The pivotal nature of this stage is reinforced by specifying its
output requirements: The stage must produce all information needed for
the design and/or procurement of the system's hardware and software.
Moreover, it must develop sufficiently detailed system definitions for
system integration, Pnd it must identify specific procedural mechanisms
for system maintenance and enhancement. Toward these ends, the system
design stage is divided into two phases: the system architecture design
phase and the system binding phase.

system architecture design phase

The system architecture design phase bears the responsibility of
investigating system design alternatives and their potential impact on the
choices for a feasible system configuration. Thus, consideration of
hardware/software tradeoffs plays a crucial role here. Although this
phase does not identify any specific hardware or software components, the
hardware/software choices made here have a profound effect on shaping the
class of eligible configurations.

Since the architecture specified by this phase will dictate the way
in which the system if configured (but not the spccific components that
ultimately will be used), it is important to make sure that the formal
description is complete. Consequently, the selection of the formalism
must be able to represent the kinds of processing systems common to the
application area. For example, if the project is in the C-c'ubed arta, its
architectural description is likely to require a formalism capable of
representing networks of cooperating processors.
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With the architectural specifications as a basis, the designer(s) can
begin devising algorithms for performing the system processes defined in
the conceptualization phase. The latter steps in this phase examine the
resulting processing model to make sure that it does not violate the
constraints established earlier and that it promotes maintainable and
enhanceable implementations. Evaluation of the design and assessment of

its implications for subsequent activities can take advantage of

methodologies emphasizing the _.se of simulation.

system binding phase

Binding, in this context, refers to the process of defining

hardware/software specifications that meet the processing requirements

established in the architectural specifications. For some of the

hardware, it may tarn oat that the system's reqairements necessitate the
use of a uniqae item, in which case the binding has already been done;

there are no alternatives from which to select. This is unlikely to be
true for all of the hardware; rather, the more common case is one in

which several alternatives will be eligible candidates for a given
component. It is the job of the binding phase to identify sach candidates

and select the most suitable one.

This selection process cannot be condacted for each component in

isolation. A functional organization or fabrication technology that

appears to be ideal for one part of the system may not be best for the

system as a whole. Alternatively, it may violate an implementation

constraint imposed by considerations elsewhere in the system. Placing the

binding process at this point in the development cycle enforces the
priority of system-wide considerations over local (component-level)
issues.

Factors influencing the selection process include:

-- product availability and manufacturer's marketing and

fiscal position. This takes into account delivery time,

usage history, and the manufactarer's ability to provide

timely and effective sapport when there are problems.

-- purchase cost for hardware and software. System-wide

examination of cost factors provides opportunities to

discover situations where more expensive alternatives for

specific components allow the use of others that reduce

the overall cost.

-- operating cost. Included here are considerations sach as

power consumption, cooling, and other ongoing service

costs.

-- maintenance. Distinct from maintainability (i.e., the
ease with which a system's or component's problems can be
isolated), maintenance considers the activities involved
in correcting problems. For example, the choice of a
common vendor for functionally adjacent components may
simplify maintenance procedures by reducing the
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phenomenon known as "finger pointing."

-- enhanceability. Consistent with the anticipation that
system requirements will grow as experience accumulates,
it may be advantageous (where options exist) to favor
hardware components that can grow easily. For example, a
processor that is near the lower end of its architectural
family may be preferable to a functionally acceptable
alternative (which may even be less expensive) positioned
at or near the top of its line.

When a required hardware/software component cannot be obtained off
the shelf, the binding phase mist produce specifications that are
sufficiently detailed to enable contracts to be let for its design and
development. Moreover, when custom hardware is to support software, the
hardware/software interfaces must be sufficiently well-defined to allow
concurrent and independent design of the software. Consequently, it is
important to select specification formalisms that are adequate for
expressing the varied functional and operational characteristics.
Separate formalisms will be required for hardware and software
descriptions.

Exploration is the key step in this phase. Although it would be
ideal to specify custom hardware for all of the system's processes,
reality dictates a philosophy that opts for customization only when there
is no suitable alternative off the shelf. Consequently, many (if not
most) of the hardware candidates are likely to include facilities that are
irrelevant in the light of currently defined requirements bit may be
potentially useful later ir the life cycle. Thus, the equipment with the
fewest "extraneous" capabilities is not necessarily the most attractive
choice.

The exploration step is complicated further by the need to recognize
the strong hardware/software dependency: Choice of a particular hardware
configurotion constrains the design of the software that is to function
with it. Conversely, if an available software product meets certain
component requirements, its selection dictates (to an extent) the
characteristics of the hardware with which it can be used.

C.3.3.3 software design: Using the software's functional and
performance requirements developed during the system design stage, the
software design stage prepares a working software system meeting those
requirements. The resulting software constellation may take one of three
basic forms:

-- It may be a custom-designed system developed specifically

for a project;

-- It may be a prepackaged system acquired from an external
source;

-- It may be a combination of prepackaged and
cJstom-designed components
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When custom design is involved, the stage's activities are supported by an
extensive accumulation of methodologies, facilities, and techniques that
have been developed in response to a recognized need for handling
increasingly complex software projects systematically.

Since the software design stage must produce a fully tested software
package supported by appropriate documentation, there is particular
emphasis here on making sure that the requirements and restrictions
defined in the previous stage are reflected completely in the design and
implementation of the resulting software products. Accordingly,
integration and validation play important roles in the three phases that
comprise this stage. The fact that there are three phases (with the
actual coding being relegated to the final phase) underscores the
importance of explicitly delaying the coding activities until the
underlying design is completely defined and validated.

software configuration design phase

During this initial phase of the software design process,
configurational requirements are transformed into a model of the final
software system. A crucial aspect of this activity involves decomposition
of the overall processing into interrelated functional components. This
serves as a foundation for related activities within the phase to develop
the following:

-- a definition for the interfaces through which the
components communicate with each other and with their
environment;

-- specification of appropriate performance requirements and
special constraints related specifically to each of the
functional components identified by the decomposition
process;

-- definition of the major data structures to be used in
support of each functional module;

-- identification of those components to be custom designed
and those to be acquired from external sources.

As input to the program design phase, this material is the direct and
immediate motivation for the programs' implementation. Consequently, the
selected formalism must allow complete description of all of the design
aspects. For example, if some or all of the modules must operate
concurrently, the formalism must allow this concurrency to be expressed
accurately and unambiguously.

Exploration and elaboration play particularly crucial roles in this
phase. The decomposition process is by no means straightforward.
Accordingly, great care must be taken to make sure that the resulting
software design maintains a strong correspondence between conceptual
activities and actual processes while providing the clearest, simplest
interfaces among the functionally isolated modules. This could well
require the development of several alternative software architectures
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before a final selection is made. In addition to serving as the blueprint
for subsequent implementation, this software design will guide the
division of labor and definition of project schedules as well.

program design phase

The decomposition process continues in this phase. Using the
architectural plan developed during the software design phase, each of the
specified modules is developed in further detail, producing complete
definitions of the appropriate algorithms and data structures. In
addition, specifications for the connections among the modules are
completely developed and documented. For many projects, it also may be
appropriate for this phase to define evaluation procedures (and test data)
for each of the software components.

Thus, once the work of tiis phase has been verified, there exists a
complete set of software descriptions ready to serve as a basis for
implementation. These are presented formally (using structured
flowcharts, pseudocode, or some other suitable vehicle) so that there are
no ambiguities with regard to the exact requirements; at this point, all
of the software design has been done. In a real sense, the specifications
produced by this phase are strongly analogous to detail drawings for a
physical product's components.

the coding phase

The coding phase is responsible for the actual programming of the
modules specified in the program design phase. In addition, it is
responsible for the testing of those modules against their respective
specifications. Formalism selection plays an interesting role in this
phase: although the formalism must be taken from the domain of available
programming languages, the selection itself may not occur during this
phase. Rather, it may be imposed as a restriction during an earlier phase
or even during an earlier stage. In fact, it is entirely possible for the
programming language to be one of the constraints defined during the
problem definition stage. Another interesting circumstance with regard to
formalism selection in this phase is that it is possible to combine
several formalisms without compromising consistency. For example, it may
turn out that the implementation of a particular module requires the use
of facilities accessible only through an assembler-level language while
the bulk of the software can be coded satisfactorily in a higher level
language.

The coding phase represents a logical terminus when considered within
the overall TSD framework. That is, the phase's output consists of a set
of validated, tested and documented software products not subject to
further development as such. Rather, these components are ready for
integration into the overall system: The initial aspect of this
integration occurs within the program design phase where the individual
modules are combined to determine the efficacy of their interconnections.
This establishes and verifies the integrity of all of the custom-designed
software. The resulting constellation, in turn, is combined with any
off-the-shelf software to be integrated within the software configuration
design phase. The result is the system's complete software. Final
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evaluation of the total system then can take place in the system
architecture design phase by combining software, firmware, and hardware to
produce a prototype system which can be compared against its overall
requirements and constraints.

C.3.3.4 machine design: As a result of the work performed during the
binding phase of the system design stage the machine design stage starts
with a clear definition of the system's hardware requirements. This
includes an explicitly stated distinction between those components and/or
subsystems that are to be procured off the shelf and those requiring
custom design. Accordingly, the equipment in the former category is
procured during this stage. In addition, a complete high level design is
prepared for all custom hardware. This will serve as a basis for
subsequent circuit design activity. If necessary, the stage also develops
a set of firmware requirements for the hardware that has been purchased or
designed.

The stage's work is divided into two phases: A hardware
configuration design phase that produces component requirements, and a
component design phase that produces circuit design requirements.

hardware configuration design phase

The purpose of this phase is to develop a formal model of the system
at the hardware architecture level. The functional units comprising such
a model typically are processors, memories, switching networks,
input/output buses, and other intercommunication links. Consequently, the
selected formalism is particularly important here: It must accommodate the
full spectrum of these components. (For instance, a formalism designed to
describe stand-alone computer systems is hardly suitable for a situation
calling for distributed processing hardware.) If procured hardware is also
part of the picture, the formalism must include capabilities for comparing
properties and performance of existing machinery. A variety of hardware
description languages are available as formalisms to support this effort.
Once the formalism has been selected and validated, exploration is
undertaken to identify eligible hardware to purchase. For custom-designed
equipment, this step manifests itself as a modular approach to design in
which expandable structures and simple interfaces are exploited to the
greatest possible extent.

The overall hardware design thus produced must undergo comprehensive
evaluation to make sure that its behavior and performance will meet the
conditions and constraints imposed by the hardware requirements. Such
evaluations combine tests on the actual hardware with those conducted on
systems designed to simulate/emulate equipment not yet built or procured.
For certain well-defined hardware configurations, it may be possible to
evaluate performance analytically.

component design phase

Using the architectural requirements developed during the hardware
configuration design phase, this phase procures the hardware that is off
the shelf and redefines the components that are to be custom designed.
Functional and performance requirements for these custom components now
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are reflected in specifications at the circuit level. Here again, as in
the configuration design phase, certain items will be identified as being
available off the shelf while others will have to be custom designed. In
this case, however, scrutiny occurs at the level of storage/shift
registers, arithmetic/logical units, multiplexers, etc. rather than
processors and storage structures. Thus, a custom-designed component may
itself consist of prepackaged circuits combined with others developed
explicitly for this system.

If some aspects of the system's operations are to be performed using
firmware, this phase also carries those decisions forward by developing a
set of firmware design requirements. These usually are expressed as an
instruction set to be implemented via microprogramming on a host machine
with a defined set of structural and behavioral properties.

The breadth of activities addressed during this phase may compel the
use of several formalisms: Procurement of complete processors,
input/output channels, etc. is supported by formalisms designed to allow
precise hardware descriptions at that level. Such analytical vehicles are
likely to be inappropriate when dealing with more primitive components at
the register level. Consequently, a different formalism may be needed for
those descriptions. Yet another formalism may be required for adequate
expression of the architecture of the target machine (the machine to be
represented by microprogramming) and its host (the equipment on which the
firmware is to operate). Consequently, care must be taken to select
formalisms that can be reconciled with each other when the diverse
hardware components are integrated.

Exploration, elaboration, and consistency checking receive special
emphasis in this phase because of the need to organize a collection of
informal design requirements into a precise, cohesive set of
specifications. For instance, this phase must make sure that the set of
mieroinstructions defined for use in firmware production is completely
compatible with the specified architecture of the host processor. Once
the completed designs have been analyzed and evaluated (the latter
activity usually involving tests on simulation systems), sufficient
groundwork has been prepared to invoke the circuit design and firmware
design stages.

C.3.3.5 the circuit design stage: This stage carries the circuit
design process from requirements to actual fabrication. The work divides
naturally into four phases, each of which is well nupported by a variety
of technological aids.

switching circuit design phase

The first major step toward fabrication of custom circuitry involves
re-expression of the circuits' functions in terms of logic components such
as operational amplifiers, flip-flops, and so on. Description of the
circuits at this level enables designers to identify those logical
components whose requirements can be fulfilled by available hardware.
Formalisms used for such descriptions, including Boolean Algebra and
switching-theoretic concepts, are well-defined and widely accepted.
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Evaluation of the circuits at this level typically exploits
technologies such as circuit simulation, breadboarding, and those derived
from switching and graph theory. As a result, requirements for those
circuits to be custom designed are defined and are ready for further work
in the electrical circuit design phase.

electrical circuit design phase

Starting with logic circuit models augmented by performance
requirements, this phase transforms these requirements into an equivalent
set of solid state design requirements in which the circuits are described
entirely in terms of conceptual electronic devices (e.g., transistors,
resistors, etc.). Circuit details are expressed via standard electrical
schematic diagrams enriched (as required) by formalisms that allow
designers to model device characteristics and circuit layout geometry.

At this point in the custom circuits' developmental history, physical
implementation assumes an important role in the design considerations.
(For instance, use of discrete components over integrated circuits (or
vice versa) will be determined during this phase.) This establishes a
specific basis for defining the interconnections among the devices in each
circuit.

the solid state design phase

This phase develops the finishing touches for the custom designed
circuits, preparing them in a form suitable for fabrication: Device
dimensions are fixed, detailed interconnections and chip geometry are
worked out, and physical and performance characteristics of the final
circuits are determined as accurately as possible. Using standardized
design rules based on numerous successful precedents, all of the
determinations are combined to form a precise specification of the
geometry and layout for each circuit.

the fabrication phase

The final major activity in the circuit design process translates the
geometric specifications into a physical reality. Using appropriate
fabrication techniques (e.g., those employed in the preparation of an
integrated circuit will differ basically from those applied to the
synthesis of a circuit from discrete components), the actual hardware is
produced and tested. Once the operational characteristics have been
verified against their respective requirements, the finished circuits are
available for integration with the rest of the hardware.

C.3.3.6 the firmware design stage: When deliberations conducted
during the machine design stage determine that there is a need for
firmware, appropriate requirements are generated and a distinct stage is
included to translate those requirements into executable microcode
supported by adequate documentation and analysis. Since the final output
of this stage consists, basically, of programs, an analogy may be drawn
between firmware development and general software development. In many
respects, the concepts, techniques and tools seen to be helpful in the
software area are applicable here as well. (This is reflected in the
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similarity between the conceptual structure of this stage and that of the
software design stage.) However, the direct relations between firmware and
the low-level components of the machinery for which it is written often
necessitate the use of code generation/optimization approaches not used in
software development.

This stage is divided into three phases: the microcode design phase,
the microprogramming phase, and the microcode generation phase.

the microcode design phase

Activities undertaken during this )hase are roughly parallel to those
associated with the software configuration design phase of the software
design stage. Starting with a functional specification of the required
firmware, this phase initiates the microprogram development process by
preparing a program structure and decomposing it into functionally
distinct modules. Performance requirements for each module are defined to
a sufficient extent to allow appropriate algorithms to be identified
during this phase.

To ensure a smooth and valid transition from microprogram design to
actual microcode, the modules' specifications must be documented in a way
t~'at is consistent with the characteristics of the hardware on which the
firmware will operate. Consequently, the selected description language is
an important factor here. Use if a formally defined, machine-readable
language is desirable since this enhances the prospects for automated
verification. In any case, this phase must establish (to the greatest
extent possible) that the microprograms produced here, when properly
implemented, will meet the firmware's requirements.

the microprogramming phase

During this phase, functional modules designed during the previous
phase are converted to individual statements in an appropriate
microprogramming language. "Appropriate" in this context means that the
language must be capable of conveying the full range of capabilities
offered by the hardware on which the final microcode is to be executed.
Moreover, the language must be supported by an available translating
vehicle (usually software) that will produce functionally equivalent,
executable microcode. In this phase, the firmware development process has
progressed to a point where all design decisions have been made, and
attention can focus on implementation issues such as selection of storage
structures and subroutine linkages.

the microcode generation phase

In a conceptual sense, this phase "fabricates" the actual microcode
by processing the microprogramming statements through a suitable
translator. Although the activity is essentially automated, there may be
instances whereby a particular performance constraint may be violated
because of inefficiencies present in the microcode generator. Such
shortcomings often are remedied by manual adjustment of the
microinstruction sequences. In effect, this subjects the automatically
produced code to a "fine tuning" process.
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As is true with hardware and software design, the products developed
here are in their final states (as components) in that they are not
subject to further dissection. Rather, they are ready to enter the
integration process in which firmware modules will be combined to form the
overall firmware configuration which, in turn, will be installed on a host
processor to provide a suitable target machine for the system's software.

C.4 Existing Resources for Methodological System Development

Response to acknowledged problems in system design/development has
been characterized (Section C.2.3) by changes in designers' and managers'
perception of computer applications and their realization. This has
prompted the development of methodologies and tools aimed at supporting a
disciplined approach to the system development process.

In a sense, the appearance of these software resources is not a
revolutionary development. Rather, it can be viewed as a stage in a
continuing process that started with the first assembler-level programming
language. The "revolution" occurred at that point because the basic
relationship between the programmer and the machine suddenly was changed
by the introduction of a "third party" - a software product designed to
facilitate coding. This third participant has been an integral part of
the picture ever since, its scope continually broadening to include aid

for more and more of the activities performed throughout the system cycle:
in addition to providing growing support for the programming process
(realized via increasingly powerful and convenient programming languages),
tools and methodologies have been introduced to aid in system
specification, design, documentation, and testing as well. In fact, the
level of support has reached a point [HOWD81] where it now is appropriate
to view a collection of such aids conceptually as a software development
environment. As a result, today's designers can call on a variety of
resources ranging from simple checklists to comprehensive software
packages equipped with extensive automated features to support
documentation and checkout(*).

Unfortunately, there is no single methodology that has been found to
be the "best" vehicle for orderly system development, nor is it likely
that one will emerge. The existence of numerous "competing" approaches,
all of them orderly, attests to the unavoidable fact that the

effectiveness of a particular methodology depends strongly on the kind of
system to which it is applied. For example, a software facility useful in
documenting batch-oriented data processing systems may prove inadequate
for expressing some of the realtime properties that are basic to a C-cubed
system. Moreover, a point made in Section C.3 is worth reemphasizing
here: support over the entire range of a project's activities requires a
combination of methodologies, each of which supports only part of those
activities. Consequently, selection of appropriate compatible

* The National Bureau of Standards [HOUG80] has undertaken the
task of serving as a clearinghouse for documentation on
software methodologies, tools, and techniques.
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methodologies can exert considerable influence on the system's progress.
The TSD framework can be of considerable help in systematizing this
selection process; its use for this purpose is examined in Section C.4.1.

Section C.4.2 then mirrors available tools and methodologies against
various parts of the framework to characterize the nature and extent of
existing software engineering support. Finally, Section C.4.3 looks at
general (hardware/software) facilities that are currently available for
support of system development.

C.4.1 Relation between the Framework and Applicable Methodologies

The TSD framework serves as a convenient guide upon which various
methodologies can be superimposed and compared. As indicated earlier, the
TSD framework's organization provides definitions for a complete hierarchy
of stages, phases, and steps. Thus, an effective first step in applying
the framework is to juxtapose these definitions against a particular
application. This can identify phases (or, perhaps, entire stages) whose
activities are unnecessary for that project.

For instance, if the project calls for the production of an easily
replicated turnkey system consisting of one or more processors equipped
with predefined small-scale data processing programs, the machine design
stage can be eliminated. Unless the applications' requirements are
particularly severe of exotic, there is no reason for an organization to
assume the considerable additional burdens imposed by the preparation,
checkout, and subsequent maintenance of a new machine. Instead,
processing hardware can be selected from existing choices during the
system design stage. Once the decision has been made to use off-the-shelf
equipment, the machine design stage drops out, and the circuit design and
firmware design stages are eliminated automatically. With certain parts
of the framework having been earmarked as superfluous for a given project,
the remaining stages and phases can be analyzed to establish their
respective roles in the project. To illustrate, let us pursue the data
processing project mentioned before. Since the hardware requirements are
to be met (in that example) by predesigned equipment, the system design
stage is less comprehensive than it would be for a situation in which the
use of such hardware is uncertain or infeasible. Specifically, the system

architecture phase can be limited to a determination of the number of
(identical) processors over which the system's operations will be
distributed, along with the nature of the distribution. The binding
phase, then, will match the desired hardware characteristics against those
of eligible processors, and it will generate appropriate hardware and
software requirements.

These considerations, applied to each relevant stage and phase,
enable design and management personnel to identify appropriate formalisms
for describing the outcomes of the respective activities. Tn many
organizations, the scope of system designs is sufficiently restricted to
allow certain formalisms to be defined as standards for various phases.
For instance, it may be possible to standardize on a particular form of
pseudocode for the program design phases (regardless of the project)
and/or on a particular program language for the coding phase. This
simplifies matters even further since it obviates the need to include
formalism selection and validation steps in those phases to which the
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standard formalisms apply.

Next we need to consider evaluation of the descriptions to be voiced

using the selected formalisms. Employing the (reduced) framework again,
each phase can be associated (if appropriate) with approaches and
techniques deemed suitable for the nature and extent of the activities
undertaken in that phase for that project. For example, evaluation in the
conceptualization phase may involve a user review; evaluation in the
coding phase may take advantage of automated debugging software, while
evaluation in the other phases of the software design stage may be ignored
altogether as being irrelevant.

In this way, developmental aids, each designed to support particular
activities, can be brought together and considered within the
comprehensive structure of the TSD framework. When the selections are
made, the result is a cohesive methodology, tailored for the project and
designed wherever possible to exploit available tools and techniques to

facilitate the system's implementation and management.

C.4.2 Software Engineering Support

It would be misleading to create the impression that the system
designer, eager to put together an effective methodology for his or her
project, simply selects from a wide variety of existing, proven aids and
techniques. True, there are numerous software engineering resources, and
some of these have demonstrated their utility. (The National Bureau of
Standards estimates that there are over 4O0 commercially available
software development tools [HOWD81]). However, many of these aids are
effective only for certain families of applications. Moreover, there are
entire areas within the framework that continue to be resistant to
analysis and quantification. For these activities, methodological aids
remain largely manual, and many exhibit essentially a qualitative
character. This does not necessarily detract from their importance. The
major point is that such aids can be effective if they succeed in
eliminating (or drastically reducing) the "ad hoc" aspect of the
associated activity.

C.4.2.1 aids for problem definition: The "system first" approach to
project design, pioneered by the Air Force [CLAR79a], is a relatively new
idea. It is not surprising, then, that current software engineering
support for the problem definition stage is base predominantly on the
premise that the hardware is already prescribed and the "problem" being
defined will be solved by software. Consequently, the ability to apply a
particular aid to a given project cannot be assured.

During the identification phase, it is desirable to find ways of
removing ambiguity from requirements definitions and providing

opportunities for disciplined review and revision. Since the major
communication vehicles are documents containing informal descriptions,
aids seek to promote more controlled documentation in two related but

distinct ways. One objective is to provide a computer-based operating
environment for the orderly creation, updating, and management of
documents. Such facilities, designed for use with any document
collection, include text editors, formatters, report generators, and
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library maintenance software. These are available in abundance and are
usually tailored to particular computing systems. (Of course, general
resources for documentation support will find similar uses in every stage
and phase.)

A second (complementary) approach to support during the
identification phase seeks to introduce structure into the documents
themselves through such organizing features as check lists, controlled
vocabularies, standardized forms, and other, similar features designed to
make the writer more aware of what he or she says and how he or she says
is [HENI79, RAMA78, TAGG79].

Facilities applicable to the conceptualization phase tend to be
specification languages with sufficient formalism to allow automated
checking for syntax and completeness. Prominent examples of such
resources are given in [LISK79, ROSS77b, TEIC77].

C.4.2.2 aids in system design: The all-important hardware/software
tradeoffs, considered during this stage, involve activities in which
experience, judgment, serendipity, *nd other intangible factors play a
significant role. Consequently, it would be unduly optimistic to expect
anything sibstantial by way of automated support for this inherently
complex process. However, powerful uxilliary aids exist to help
facilitate and organize the description of hardware/software requirements
produced by this stage.

During the system architecture phase, designers decide how to
distribute the system's processes between hardware and software. These
decisions must be expressed as precise descriptions of function and
performance requirements for each process so that they may drive hardware
selection and software design. Numerous software-based facilities have
been designed to help turn the architects' decisions into effective
blueprints. On the hardware side, there are description languages
[SHIV79] for defining individual processors as well as networks of
interconnected machines. These languages are equipped with processing
software for automatic consistency checking. In addition, the general
documentation aids mentioned before often include capabilities for
representing, updating, retrieving and displaying design material in
graphical form [ROSS77b]. Software description languages [LISK79, BELL77,
TEIC77, CAMP79] also include their own processors for consistency
checking.

The binding phase, during which requirements for processors and
interconnections must be matched to suitable candidates, is not well
supported at present. Processing requirements defined during the
architecture phase necessarily are specific to the needs of the system as
perceived at that point in the project's history. Consequently, a search
among existing computers is likely to identify candidates whose features,
though adequate for the job at hand, also include those that appear to be
"irrelevant" when viewed against the hardware requirements. Yet, their
potential usefulness argues against immediate rejection of such
candidates. This complicates the binding process so that proven
methodologies are not available [TIMM73]. However, the use of
grammatically consistent hardware description languages in the
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architecture phase places the comparison of hardware candidates on a more
organized basis.

C.4.2.3 aids in software design: This area of the system cycle has
received tremendous attention. In fact, what is now beginning to be
recognized as a system crisis was perceived originally as a software

crisis [ROMA81]. As a result, there is an extensive repertoire of
methodologies dealing with the programming/coding process and, more
recently, with the broader scope of softiware design. Unlike the other
stages in the framework, software design includes aids for project
management as well as those resources with a technical focus.

The first of this stage's three phases (i.e., software configuration
design) can avail itself of a variety of methodologies, all of which are
intended to organize and facilitate the task of producing a coherent
structural model of a software system and its components [ROSS77a,
ROSS77b, MYER73, IBM74, GANE79, LISK77b, TEIC77, HAMI76, BELL77]. In
addition, tools are available for setting up disciplined, systematic
design reviews [YOUR75].

The program design phase, charged with the transformation of the
program design requirements into a set of implementation requirements,
also may call on an extensive array of technical supports. There are
guidelines and techniques [PARN72, WIRT71, BERG81] for facilitating the
process of decomposing a set of software requirements into functionally
distinct modules. Description of the results may take one of several
well-defined graphical forms CNASS73, JACK75], or the designers may find
it more advantageous to use a more formal description language [TEIC77,
AMBL77, PAGA81] with opportunities for automated consistency checking.

The final phase, during which the actual code is produced, has been
the focus of the structured programming revolution, a movement that has

produced profound changes in programming techniques [WIRT73, KERN74,
DAHL74, GILL82], programming project management [BAKE72, PO075, ROCH75]
and programming languages themselves [DAHL66, JENS75, DOD79, POLL82]. In
addition, considerable understanding has been gained with regard to
systematic program testing, so that test design methodologies [HUAN78,
GILL82] can be used to expedite and improve testing (both at the module
and system levels) during maintenance as well as development. Although
complete formal program verificatio.i is not a reality, the insights
developed from research in the area [ROBI77, WEGB76] have contributed
substantially to the improvement of program description and implementation
methodologies.

C.4.2.4 aids in machine design: Although a wealth of experience has
been accumulated in the design of custom digital hardware, it is only
recently [SHIV79] that concerted efforts have been mounted to provide

formal specification methods and a cohesive support facility for hardware
development. Now, with added impetus from the American National Standards
Institute, definitions for a universally acceptable formal symbology for
hardware description are well underway, and the availability of design
support facilities meeting TSD requirements are nearing realization.
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Work performed during the hardware configuration design phase can
benefit from the same array of hardware description languages [SHIV79]
applied to the system binding phase. These languages include facilities
for expressing hardware requirements at the component level and below.
Moreover, their software support provides automated consistency checking
for the resulting component specifications.

Support for performance evaluation remains elusive at present. A
.]amber of analytical and simulation approaches have been suggested [T074,
COX79], but adequate attet ion to this important activity ultimately may
be found in the availability of versatile hardware-based emulation
facilities.

As mentioned earlier, currently available hardware description
languages also serve as satisfactory vehicles for the detailed
:,ecification of components to be custom designed. This is not the case
witt: regard to any microprogrammed control structures defined during this

ase. Descriptions of such components necessarily mist be expressed as a
39t of target instructions to be implemented (in firmware) on a host
machine. The activities leading to such a definition are subject to the
3*me intingible forces that operate in the system architecture phase.
Accordingly, absence of supporting methodologies is not surprising.

S)ixd support for the evaluation of component designs also is
-i:-fibie at present. As in the case of higher level hardware designs,

.i itisfactory answer eventually may be found in emulation.

. aids in circuit design: As is true with software design,
tn(-se activities have received an enormous amount of attention. Unlike
.;iftware design, however, the payoff has already arrived and is well
established [MEAD80]. Circuit design and fabrication are so well
supported that any discussion regarding the application of a methodology
would be anachronistic. Consequently, no purpose would be served in
pressing the issue further in this Appendix.

C.4.2.6 aids in firmware design: Current support for firmware design
is conceptually similar to that available for software design. (This is
understandable since the respective activities in the two stages are
strongly analogous to each other.) Accordingly, the designer can call on
the general documentation/library management methodologies and
accompanying software used throughout the system cycle. In addition,
there are language aids designed specifically to facilitate the process of
transforming a set of firmware requirements, expressed in one language, to
a functionally equivalent set of coded microinstructions in the host
macnine's (low level) language.

The stage's initial phase, charged with the development of an
integrated microprogram design, can avail itself of a broad range of'
rrpthodologies (such as those cited in Section C.4.2.3) for help in
decomp sing the firmware specifications into a coordinated set of
functionally distinct modules. Of special interest here is the
availability of high level microprogramming languages (SMITE [SMIT77]
being the most completely defined) as convenient vehicles for expressing
miorprogram designs. In some situations (i.e., for certain host machine
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architectures) it may be possible to submit the high level language
description directly to a compiler, in which case the production of

executable microcode is completely automatic. This eliminates the need
for the interim transformation otherwise handled by a separate
microprogramming phase.

Since a system's firmware requirements are likely to in( ude

stringe.,t performance constraints (e.g., maximum allowable execution tiines
for target instructions), automatic production of executable
microinstructions often is followed by an effort to optimize the
microcode. This process may or may not be manual, depending on the
availability of optimizing software for the particular host machine
[TOKO78].

C.4.3 Facility Support

The document handlers, text formatters, assernblers, compilers,
consistency checkers, debugging packages, data base managers, performance
monitors, and other computer-based software engineering aids outlined ir
the previous section exist in the form of programs implemented on one or
more types of general purpose compiter systems, With a "hardware first"
philosophy, this has meant that, once the computer type was selected, the
choice of softdare-based aids would be determined by the range of products

available for that machine. Moreover, "he extent to which available
softwzre engineering support is exploitel on a given hardware system
often i- affected by short-range economic pressures. These considerations
tena to limit hardware procurement to equipment that is adequate for
system testing/modification under hot bench conditions, but is
insufficiently configured to accommodate the full complement of additional
resources that offer helpful technical and managerial support. For
example, a configuration explicitly equipped to exploit systematic
design/development aids is likely to include peripheral devices (and ports
to accommodate them) for programmers' work stations, massive online
secondary storage for such items as source code libraries, system
documentation and project histories, and additional main storage for
support programs. These resources would be considered superfluous (and
intolerable) in a weapon's embedded computer system or in an airborne data
acquisition system.

Consequently, most of today's facility support can be characterized
as being project-specific: For a given project, the facility consists of
that project's hardware (or a realistic surrogate) implanted with a
(limited or extensive) software development environment. (Since the
hardware is already defined, consideration of an analogous hardware
development environment is, by definition, irrelevant in this context.)

Proliferation of software development methodologies and tools,
coupled with a growing recognition of thei' effectiveness, has prompted
growing interest in hardware/software complexes designed explicitly to he
software development facilities. Such a facility would be equipped to
accommodate a number of groups working concurrently (and independently) on
different project for different hardware using different software
development environments.

.)70



Perhaps the most prominent instance of this type of centralized

facility is the Naval Air Development Center's Facility for Automated
Software Production [FASPI. Although designed with a "hardware first"

orientation, the facility offers a degree of flexibility by accepting
software intended for any of several standard military computer systems.
The central computing constellation, though architecturally different from
the target machines, provides cross-assemblers and cross-compilers that
enable users to write code in standard high level programming languages

and have that code translated automatically to instructions that will
execute on their respective hot bench configurations. A range of
software-based development/management aids also is available so that the
individual project can choose a methodology that provides the most
appropriate support. Typical usage involves remote access to the FASP

(through the use of secure data communication lines) in conjunction with
the hot bench system on site.

The Air Force is looking to carry this concept further [CLAR79b,

CLAR79c] by expanding the resources of such a facility to include
microprogramming capabilities for emulating a potentially arbitrary range

of hardware architectures. Properties of this type of facility, and its

relation to the TSD philosophy, will be examined in the next section.

C.5 Future Trends in System Design Methodology

Although it is difficult to chart an orderly future, especially in a

dynamically changing field such as computing, sufficient momentum has
built up in the system design area to provide a reasonable basis for

extrapolation. The factors that brought on the system crisis (Section

C.1) will not go away: It is clear that requirements for computer-based

systems continue to grow in complexity, thereby placing increasing
pressure on design organizations to find and use more cost-effective ways
of producing reliable systems that can be maintained and enhanced without

cataclysm. At the same time, advances in microelectronics also contribute

to designers' mounting technological difficulties by increasing the number
of serious design alternatives for a given system.

These combined forces help give impetus for the continuing movement
of the system development process away from its ad hoc roots. In this
connection, the already sizable array of computer-based design tools is
certain to be augmented by a continuing stream of new text editors, report

generators, automated librarians, and so on. More significantly, an

increasing number of these new products will be designed to provide
support for the first three stages of the system cycle - areas where such
support currently is sparse.

This growing emphasis on the conceptual aspects of the system design
process can be viewed as a clear signal that the next major stage in the
evolution oI Q,-stem design will be a shift from a "hardware first"
philosophy 1, "ystem first" orientation in which the hardware/software
duality 13 e-,. cItly recognized, and ample opportunities are provided for

full exploitation of systematic methodologies. Although the need for such
a shift is compelling, the actual transformation will be painful. In

order for such a change to be realized, designers must be provided with
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computer-based facilities that differ from their predecessors in three
important respects:

Instead of concentrating primarily on software
development, the next generatio of facilities will have
to provide total system design nvjronments in which
integrated sets of services and tools support a project's
activities over the entire system cycle - from conception
onwards.

-- Total system design facilities mist respond to the fact
that the effectiveness of a particular methodology will
depend (sometimes strongly) on the application for which
its use is being considered. Consequently, such
facilities cannot limit themselves to a single collection
of tools that form an "official" methodology. Instead,
there must be a range of computer-based tools, installed
within a powerful logical framework that enables
designers to select those that are appropriate to their
needs and integrate them into an effective methodology.
Thus, the facility provides the means whereby each
project can construct (and operate in) its own system
design environment.

-- There is every likelihood that newly emerging tools will
offer improved vehicles for supporting various activities

in the system cycle. For example, research in
specification languages promises to motivate important
progress in automated docir ntation and verification
mechanisms. Consequently, a Total System Design facility
will have to be inherently dynamic - capable of accepting
new tools and making them available for integration into
more effective methodologies.

An important technology that w .1 be exploited extensively in the
forthcoming "system first" support facilities is that of emulation - the
ability (via microprogrammed firmware) to represent the internal
functional structure of one machine (the target machine) on another
machine (the host) that is architecturally different. The role of
emulation is seen to be twofold: First, it enables a particular computer
system to accept a broader range of (existing) software products by
providing "machines" that are "identical" to those for which the software
was implemented. This offers designers enhanced opportunities for the
preparation of effective system design environments.

The second role, more significant in terms of its impact on the
system design process, places hardware selection on an equal footing with
that of software. Functional characteristics of alternative architectures
can be compared without the time and expense involved in obtaining the
actual hardware. This obviates the need to "settle for" a particular
configuration so that it can be procured and delivered in time for
software and performance tests. Once the architecture is selected, the
emulated system continues to serve as a vehicle for software development
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and testing in advance of the actual hardware's arrival and installation.

in fact, the operating characteristics of an emulated system can be so
close to its actual counterpart that it often is possible to use the
emulated system for obtaining valuable data on system performance as well

as )perational integrity. Of course, the criteria for system operability
still must be tied to hot bench results; however, the important point is
that the availability of an emulated system allows the hardware and
..)ftware procurement cycles to proceed in parallel, thereby opening the

area of system architecture to exploitation.

DoD has been early in recognizing the need to move away from the

increasingly burdensome constrains imposed by a facility with fixed
architecture(s). Accordingly, it has pioneered the development of
facilities in which emulation is included among the resources. The System
Architecture Evaluation Facility (SAEF), located at RADC, is a prominent
example. SAEF is designed to provide an experimental laboratory for
research into the advanced hardware configurations necessary to support

the complex information processing needs of military command, control, and
communication systems. It allows overall system designs and alternatives,
both hardware and software, to be evaluated quickly and conveniently,

thereby minimizing actual development and life-cycle costs for new

systems. Construction of actual new hardware components can be delayed or
av)ided by providing means for emulating such components on a
microprogramming computer (a Nanodata QM-!). Thus, programs may be
written for a proposed machine design at the machine language level and

then executed by the microprogrammed machine emulation.

The QM-1 is operable in both a standalone mode (under which

conditions it supports a full complement of peripheral equipment) and in a
timesharing mode connected to a DECsystem-20 computer. The latter is
equipped with many supporting tools that provide the necessary control and

reporting capabilities for the installation and enable users to interact

with the system easily and conveniently.

The architecture to be emulated is defined in a high level language
named SMITE (Software Machine Implementation Tool for Emulation). These

descriptions (specified at the register transfer level) are compiled into
microcode to run on the QM-1. Still to be produced is a versatile
language processing system that would automatically compile object code
for a target machine based on a SMITE description of that machine.

The SAEF now is perceived as the basis for a more comprehensive
resource that will support a computer-oriented project by enabling its
workers to do their jobs within productive environments consistent with
the TSD framework. Chapter 4 of this Report describes the master plan for
such a facility (the first of its kind) in detail.) In addition to
providing a wide range of existing tools, the TSD facility would be
designed to accept new tools for general use as 4ell as specialized tools
needed for particular projects. Integration of a given set of tools to
fo)rm a suitable environment for a c~rtain system activity (management of
documentation versions, for example) will be aided by a command language
through which the user avails himself of the facility's resources.
Commands submitted in the same language would enable another project
member to create a different environment effective for his or her
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particular activity (e.g.. preparation of an emulator for an architecture
to be tested). Consistency and control is to be maintained by storing all
information about a project in a data repository managed by effective
database software.

Initially, the TSD facility is to support the problem definition,
system design, and software design stages of the TSD framework, with
expansion to the other stages to follow in due course. Although it may be
possible to employ this facility to support an actual DoD project, it is
intended primarily to serve as a prototype - a test bed for investigating
the organizational and behavioral properties of such facilities.
Information gathered by such inquiries is expected to provide definitive
guidelines for the preparation of subsequent, more powerful TSD facilities
for actual project support. There is reason to be optimistic that the
emergence of increasingly systematic design methodologies, together with
effective facilities to support them, will contribute significantly to the
attenuation of the system crisis.
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INTRODUCTION

Efforts to enhance the preciseness of design methodology descriptions
have been following two main directions. One avenue being pursued
involves attempts to describe formally the nature of the design
specifications and the logical and performance evaluation criteria used in
determining the acceptability of proposed designs [ALFO79]. The second
direction being observed, primarily in the data processing area [BERG81],
is characterized by efforts to treat methodologies as well-defined
algorithms. While the notion of reducing design to a mechanical procedure
may be subjec' to debate, its contribution to promoting precise
definitions o- he methodologies is beyond dispute. Unfortunately,
despite the trend toward better defined methodologies, their presentation
continues to be almost exclusively informal and, as a consequence of this
fact, it is plagued by ambiguities.

The work being reported here is based on the premise that
specification languages have an important role to play in the generation
of unambiguous methodology definitions which, in turn, affect the way in
which configuration control and project planning will be carried out in
the computer-aided design systems of the future. Precise methodology
definitions hold the promise for better communication among designers and
also the key to increasing the designer's capacity to study, understand,
evaluate, and compare one methodology against another. Furthermore, the
inclusion of the methodology specification as part of the database of a
computer-aided design system opens the possibility for a better
enforcement of the correct use of methodology an a given project. Its use
as an input to the project management tools is also being contemplated.

These opportunities are only now beginning to be explored and no
similar efforts have been yet reported in the open literature, to the best
of our knowledge. This paper reports the results of an investigation
whose three major objectives, while falling short of the stated goals,
represent a necessary stepping stone toward them. The first objective is
to identify a way of describing the structure of and the relations between
various products of the design process. They are referred here as
configuration items and may include such things as system requirements,
program specifications, module design, code, etc. The second objective is
the ability to capture changes in the state of these configuration items
and to define consistency constraints between their states. The third
major objective is to be able to prescrite the sequencing of design
activities permitted by the methodology in question.

The next four sections of the paper describe a proposal for a
methodology definition language and illustrate it on a variation of a
well-known methodology, top-down program design. A separate section is
dedicated to discussing the way in which the issue of backtracking due to
design errors is addressed in this paper. The concluding section

summarizes the experience to date with the methodology definition proposal
and some of difficulties encountered.
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OVERVIEW OF THE METHODOLOGY DEFINITION APPROACH

The methodology definition consists of three parts: the definition
of the configuration items, the definition of consistency constraints, and
the sequencing of design activities. Syntactically, the definition
assumes the following appearance with the keywords being capitalized.
kSee also Figure D-1.)

METHODOLOGY methodology-name.

CONFIGURATION ITEMS.

CONSISTENCY CONSTRAINTS.

sequencing of design activities

MEND.

The configuration items represent entities being generated and used
in the design process, e.g., documentation, programs, hardware components,
etc. The exact configuration items one may include in the definition of
the methodology depends upon the nature of the methodology and upon the
granularity of its description. Program modules, for instance, may be
relevant for a program design methodology, but they may not appear in a
software system design methodology which treats programs as the lowest
level entities of interest to the designer. Aside from configuration
items identification, the methodology definition needs to include the
structural relations between these items. Considering the case of the
program modules again, they are grouped in a hierarchical structure to
form a program. Moreover, the program, ir turn, has a program
specification (another configuration item) and maybe a program design
document. All this information has to be stated in the configuration
items definition. As shown in the next section this is accomplished
through the use of a method borrowed from Hoare's treatment of recursive
data structures [DAHL72]. Because of the use of recursive data
structures, the definition of the consistency constraints employs a
LISP-like notation for defining the structural and state invariants over
the configuration items [WEIS67] It is explained two sections later.

The consistency constraints over the configuration items originate in
the design rules prescribed by the methodology and reflect properties that
remain invariant throughout the design process. (They are not unlike the
consistency constraints present in a database.) Because the design rules
are prescribed by the sequencing of design activities, the consistency
constraints may appear to be unnecessary unless one requires a certain
le~el of redundancy in the definition. (Redundancy is considered
desirable and forms the basis for the self-consistoncy of the
specification.) However, the presence of the consistency constraints is
necessary and desirable from another point of view. Since, as shown
later, many of the design activities are presented informally (natural
language), the consistency constraints enable one to reduce the ambiguity
level intrinsic to natural language. Furthermore, certain possible but
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undesirable sequences of design activities may be ruled out. (This
situation occurs when using nondeterministic constructs in the activity
sequencing part of the language.)

The scquencing of design activities in a methodology is not,
generally speaking, different from the sequencing of instructions in
programming languages. Consequently, most control abstractions (i.e.,
flow of 2ontrol constructs) havo been borrowed from structured languages,
with some modifications. By necessity, they include sequential type
constructs, parallel type constructs, nondeterminism and recursion. The
last three require some discussion. The need for high degrees of
concurrency in the methodology definition is motivated by the fact that
most projects involve designers that work in parallel on different aspects
of a problem. Nondeterminism is required for two key reasons. The first
one is the frequent occurrence of situations where the designer has to
choose among several courses of action based on personal experience and
methodology supplied guidelines rather than algorithmically. The second
reason is the equally common situation where the methodology is only
partially defined and still under development and evaluation. Finally,
regarding recursion, it is required by the use of recursive data
structures.

CONFIGURATION ITEMS DEFINITION

The simplest configuration item is one which has no recognized
structure. It is called an atom. Given any number of configurations
items, they may be used to create more complex configuration items: sets,
which are abstractions of collections of items, and recursive structures
which render the organization of documents or actual products. The BNF
specification of the syntax used in specifying the configuration items
looks as follows:

<configuration-structure>
<item-definition> ";"

<item-definition> ";" <conf' •3tion-structure>

<item-definition>

<item-name> "=" "(" <item-tuple> ")"
<item-name> "=" "{" <item-list> "}"

<item-tuple>

<atom> 1 <item-name>
"SEQUENCE" <item-name>
<item-tuple> "," <item-tuple>

<item-list>
::= <atom> ; <atom> "," <item-list>

In order to better understand the approach, let us consider the
relatively simple case of a top-down program design methodology. The
intent is to carry out the example through completion by starting 4' here
with the definition of the configuration items and continuing it in the
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next two sections. A reasonable set of configuration items one might
consijer is bound to include the original program specification, the
program design, and the code. The program specification may include the

input and output assertions and some sample test data. The program design

generally consists of the program data structures and the module
definitions. The modules form a hierarchical structure which is
isomorphic to that formed by the subroutines present in the program code.
Keeping all these in mind, one may build the following configuration items
definition:

METHODOLOGY top-down-design.

CONFIGURATION ITEMS.

program-specification

= (input-assertion, output-assertion, test-data);

program-design
" (data-structures, module);

module
" (module-name, module-definition, SEQUENCE module);

program-code
= (subroutine);

subroutine
= (subroutine-n,me, sut'outine-code, SEQUENCE subroutine);

CONSISTENCY CONSTRAINTS.

sequencing of design activities

MEND.
(Note: The definition above may appear to rule out programs whose
structures are not trees. Actually, it is shown in the next section that
this is not so.)

CONSISTENCY CONSTRAINTS SPECIFICATION

Most often, the consistency constraints one may want to specify
i-..)Ive more than mere structural properties of the configurationl items.
Take, for instance, the relation between modules and subroutines. They
form two isomorphic structures, i.e., for each module there is a
corresponding subroutine and the subroutines called by it correspond to
the modules called by the said module. This relation, however, is not an
invariant over the configuration items because it holds true only at the
end of the design process and not throughout. One way to assist the
designer in the formulation of consistency constraints such as this is
through the introduction of the concept of state. States and state
transitions may be includej in the consistency constraints definition
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next two sections. A reasonable set of configuration items one might
consider is bound to include the original program specification, the
program design, and the code. The program specification may include the
input and output assertions and some sample test data. The program design
generally consists of the program data structures and the module
definitions. The modules form a hierarchical structure which is
isomorphic to that formed by the subroutines present in the r 3gram code.
Keeping all these in mind, one may build the following config:i ation items
definition:

METHODOLOGY top-down-design.

CONFIGURATION ITEMS.

program-specification
- (input-assertion, output-assertion, test-data);

program-design
= (data-structures, module);

module
= (module-name, module-definition, SEQUENCE module);

program-code
- (subroutine);

subroutine
= (subroutine-name, subroutine-code, SEQUENCE subroutine);

CONSISTENCY CONSTRAINTS.

sequencing of design activities

MEND.
(Note: The definition above may appear to rule out programs whose
structures are not trees. Actually, it is shown in the next section that
this is not so.)

CONSISTENCY CONSTRAINTS SPECIFICATION

Most often, the consistency constraints one may want to specify
involve more than mere structural properties of the configuration items.
Take, for instance, the relation between modules and subroutines. They
form two isomorphic structures, i.e., for each module there is a
corresponding subroutine and the subroutines called by it correspond to
the modules called by the said module. This relation, however, is not an
invariant over the configuration items because it holds true only at the
end of the design process and not throughout. One way to assist the
designer in the formulation of consistency constraints such as this is
through the introduction of the concept of state. States and state
transitions may be included in the consistency constraints definition
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section and referred in the statement of other invariants. The relation
above could thus be reformulated by adding the condition that both the
program-design and the program-code are in the state called "frozen." The
notion of state also helps capture the progress made by the designer.

The syntax employed in the state specification is given below.

<state-assignment>

::= <item-name> ":" <initial-state> ";"

<item-name> ":" <initial-state> "," <transitions> ";"

<atom> ":" <initial-state> ";"

<atom> ":" <initial-state> "," <transitions> ";"

<transitions>

::= <state> "-->" <state>

<transitions> "," <transitions>

Assisted by this notation system, the following state definitions may be
added to the example.

METHODOLOGY top-down-design.

CONFIGURATION ITEMS.

CONSISTENCY CONSTRAINTS.

STATES.
program-specification: given;
program-design: not-started,

not-started --> in-progress,
in-progress -- > frozen;

data-structures: null,
null --> designed;

module: null,
null --> designed;

program-code: not-started,
not-started --> in-progress,
in-progress --> frozen;

subroutine: null,
null -- > stubbed
stubbed --> coded
coded --> tested;

INVARIANTS.

sequencing of design activities
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MEND.

The approach to invariants definition is illustrated by constructing
two invariants required by the example. Some knowledge of LISP is assumed
on the part of the reader. A more convenient notation is being planned
but its introduction would increase the size of the paper without adding
to its technical contents. A configuration item name followed by a state
name in square brackets should be treated as a predicate that evaluates to
true if the item is in the specified state, and to nil, otherwise.

The first invariant states that the coding may not start until the
completion of the design:

(COND ( program-code[in-progress] program-design[frozen])
T T))

The second invariant originates in the requirement that the design
may not be frozen unless all modules have been designed:

(COND (program-design[frozen]
(AND data-structures[designed]

(NIL ((check LAMBDA X)
(COND ((NIL X) NIL)

CX[designed]
((checkseq LAMBDA (Y)

(COND ((check (CAR Y)) T)
(T (checkseq (CDR Y))))

) (CDDR X)))
(T T)

)
) (CADR program-design))

))

(T T))

In the above invariant the function check performs a depth-first search of
the module call tree and returns T if and only if a module which has not
been designed is encountered. This search is performed recursively
through the checkseq function which invokes check for each of the modules
called by a given module.

In a similar manner, all other invariants may be constructed. A
complete specification would require at least two more invariants. The
first one is needed to establish the isomorphism between the structure of
the modules from the program design and the structure of the subroutines
present in the code. The second has a more subtle flavor and states the
fact that two modules bearing the same name must be the identical. This
constraint is an artifact of the fact that directed acyclic graphs are
represented as trees by duplicating certain of the graph nodes.
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SEQUENCING OF DESIGN ACTIVITIES

The main body of the methodology is described by a combination of
formal and informal statements sequenced by means similar to those
employed by programming languages. (See Figure D-2.) Tasks, subtasks, and
procedures are subject to the same scoping and invocation rules as
procedures in block-structured languages. If there are small differences,
they are due to the need to capture some concepts peculiar to
methodologies. Both tasks and subtasks, for instance, have a section
dedicated to project review activities. The section is entered just
before the returning from the task or subtask. Another distinction is the
fact that a task may not be invoked recursively or from other tasks,
subtasks, or procedures. The motivation for this limitation stems from
the intent that tasks be used to describe major design baselines.

Before continuing the example, one unusual feature of the language
must be pointed out in order to avoid possible confusion. It concerns the
place of definition for tasks, subtasks, and procedures. The definitions
always appear at the place of first mention for the respective task,
subtask, or procedure. The choice has been made based on the results of
early experiments in the use of the language which indicated that the
placement of the definitions at any other place distracts the reader who
would encounter definitions prior to understanding their role in the
description or would have to search for definitions when the first mention
of some task, subtask, or procedure is made in the text. It is felt,
however, that in the future both in-line and separate definition
capabilities may have to be provided, particularly for use with very large
descriptions.

The program design methodology used for illustration purposes
includes two phases: program design and coding. Because coding should
not be started before the completion and the review of the design, the two
phases may be separated into two distinct tasks.

METHODOLOGY top-down-design.

CONFIGURATION ITEMS.

CONSISTENCY CONSTRAINTS.

TASK design.

TREVIEW.

TEND.

TASK code.

TREiVIEW.

TEND.
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MEND.

The program design starts with the tentative selection of the program
data structures. After designing the top-level module, the design
proceeds with the design of the modules identified in the definition of
the top-level module. A strict one level at a time strategy is followed
until no more modules are identified. Appropriate checks and adjustments
take place throughout the design process rendered in the following
definition of the program design task. (The state changes have been
omitted from the definition.)

TASK design.
Design data-structures.
Design top-level module.

SUBTASK level-design(x='top-level module').
Identify modules called by x.
FOR z IN modules called by x DO

(IF z needs to be refined
THEN {Design z.

Data-structures changed => BACK design.
F(Verify consistency of z with x) => BACK}}

STREVIEW.
F(Verify refinement of x.) => BACK level-design(x).
FOR z IN modules called by x DO { // level-design(z).)

STEND.

TREVIEW.
F(Verify program-design against program-specification.)

=> BACK design.
Declare program-design frozen.

TEND.

In contrast with the program design, coding is assumed to follow a
top-down direction but not in the strict level by level manner. The
designer has the freedom to guide the coding and testing based on testing
dependencies, as long as testing and coding are not done separately, but
progress together. As a way to restrict the designer from coding too much
before attempting testing, no more than five untested subroutines are
permitted to exist at one time. The same simple style free of the formal
state transitions is used to describe also the coding task.

TASK coding.
Code the main program and stub all subroutines it calls.
Debug main using stubs.
LOOP

{(All subroutine are tested.) => BREAK.
IF fewer than 5 subroutines are untested
THEN { T => Replace one stub by actual code.

T > Debug available code.)
ELSE Debug available code.

TREVIEW.
F(Check agreement between code and the design.) => BACK.
F(Obtain user acceptance of the program.)
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=> ( T a> BACK design. 1
T => BACK coding.)

TEND.

The last thing to be done is to establish the entry points for
program maintenance activities and the rules by which the appropriate
entry point is selected.

METHODOLOGY top-down-design.

CONFIGURATION ITEMS.

CONSISTENCY CONSTRAINTS.

ENTRY major-maintenance.
Design errors and major enhancements.

END.

TASK design.

TREVIEW.

TEND.

ENTRY minor-maintenance.
Changes to the printout format and coding level errors.

END.

TASK code.

TREVIEW.

TEND.

MEND.

The semantics of a -ntry point is similar to that of backtracking to be

discussed in the next section. The only difference lies in their
different causes. One is due to the check that takes place in the
development of the program (backtracking), while the other has its roots
in either the dekision to enhance the program or the discovery of errors
during production.

BACKTRACKING

The discovery of design errors, the identification of a better design
path, changes in the specifications, and a newly acquired understanding of

the technological impact of a proposed design are some of the most common
reasons for backtracking. One can hardly conceive of a methodology that
denies the possibility for backtracking to occur. Furthermore, while
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intentional neglect of backtracking for the sake of simplifying the
presentation of some methodology is common practice, to disregard its
effects is not acceptable. The cost of backtracking is an important
factor in selecting one methodology over another. Methodology design is
centered around cutting the cost of backtracking through autowated and
non-automated checks, through exercising control over the degree of
backtracking being permitted, through automatic detection of the potential
side effects of backtracking, etc.

The costs of backtracking, however, needs to be weighed against that
of the checks employed for the sake of reducing it. In general, increased
degrees of automation enable one to enjoy both frequent design checks
which reduce backtracking due to errors and greater opportunities for the
exploration of the design space. The cost of backtracking is also
affected by the project management procedures. For instance, when several
designers work in parallel any backtracking that impacts more than one of
the designers may prove very costly compared with backtracking concerning
one of them alone.

Such considerations strongly suggest that a methodology definition
approach ought to provide a mechanism for explicit structuring of the
backtracking process and should lay the foundation for employing
(methodology-based) quantitative project planning methods. These methods
would require knowledge of the backtracking patterns, backtracking
probabilities due to various causes, and the cost associated with various
backtracking procedures. By placing explicit backtracking statements, the
approach put forth in this paper enables the definition of backtracking
patterns, but their use in project planning will have to be explored later
on. The adoption of explicit backtracking statements (e.g., BACK name.),
however, raises tv'o issues concerning their impact on the flow of control
and on the configuration items that have been generated prior to executing
the backtracking statement.

The first issue is rather easy to resolve. The name that follows the
backtracking command defines the backtracking point and may be the name of
some group of statements or the name of some task, subtask, or procedure.
Io the first case, BACK could be treated as a "goto" to a label which is
defined in the current referencing environment and which is always
encountered prior to the execution of the BACK command. (This condition
may be checked statically by means of data flow analysis.) For instance,

label: (...}

BACK label.

IF ... THEN {...) ELSE {... BACK label ....

represents a correct use of the BACK command because the statement named
"label" is always executed prior to the "BACK label." statement. The
following sequence of statements, however, is improper.
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IF ... THEN label: {...}

BACK label.

IF ... THEN {...} ELSE {... BACK label ....

The rule may be easily extended to procedures, tasks and subtasks by
considering their names in place of the statement label. However, only
tasks, subtasks, and procedures which have not been exited yet may be
backtracked. Furthermore, sequences of recursive invocations are
backtracked up to the first invocation of the named subtask or procedure.

The backing up of the flow of control must be accompanied by a
corresponding backtracking of the configuration items state. It is easy
to conceive that the state of the design is saved at every backtracking
point and reestablished any time backtracking brings the flow of control
back to the respective point. This way of looking at backtracking has one
drawback. It seems to suggest that all the design generated prior to
backtracking is lost together with the reason for the backtracking itself.
Therefore, the interpretation adopted in this paper requires all results
generated after encountering the backtracking point to be tagged as
needing the designer's revalidation. The designer may chose to accept
some results the way they are, to discard others, and to alter still other
configuration items, all decisions being based on knowledge of the
backtracking cause. Thus, no design decisions potentially affected by
backtracking are left unchecked.

CONCLUSIONS

The methodology definition approach proposed in this paper has been
used in the specification of several methodologies. Their descriptions,
which vary in size from one to five single-spaced pages, have confirmed
some of the advantages that were expected. Its use on a methodology
development project has yielded significant quality improvements in the
communication between the members of the research team. Many problems
that were overlooked in the informal presentations of new proposals for a
distributed systems design strategy have been rapidly uncovered during the
effort of formally describing the methodology.

Despite the early successes in using the methodology definition
approach, much work still lies ahead. There are four areas that seem to
require immediate attention. First, it is the issue of incorporating the
approach in some computer-aided design system for purposes of methodology
enforcement and project planning. Second, project planning techniques
based on formal methodology definitions need to be developed and
parameterized so as to be usable over a large class of problems and by a
variety of organizations. Third, more practical experience is required in
using the approach. Of particular interest are methodologies
characterized by high degree of backtracking and concurrency. Finally,
the availability of a formal definition offers the possibility to carry
out quantitative evaluations regarding optimal placement and frequency of
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various design checks within methodologies. Preliminary work strongly
indicates that these future research directions hold great promise for
significant system design productivity payoffs.
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FIGURE D-1: METHODOLOGY SPECIFICATION STRUCTURE.

METHODOLOGY DEFINITION

CONFIGURATION ITEMS

CONSISTENCY CONSTRAINTS

SEQUENCE OF TASKS AND MAINTENANCE ENTRY POINTS

ENTRY
ENTRY POINT CONDITIONS

TASK

1 DESIGN/ANALYTIC ACTIVITIES, ENTRY POINTS AND
INVOCATIONS OF SUBTASKS AND PROCEDURES

SUBTASK
1 DESIGN/ANALYTIC ACTIVITIES, ENTRY POINTS AND

INVOCATIONS OF SUBTASKS AND PROCEDURES

PROCEDURE

I DESIGN/ANALYTIC ACTIVITIES, ENTRY POINTS AND
INVOCATIONS OF SUBTASKS AND PROCEDURES

SUBTASK COMPLETION REVIEW
ANALYTIC ACTIVITIES
AND INVOCATIONS OF SUBTASKS AND PROCEDURES

TASK COMPLETION REVIEW
ANALYTIC ACTIVITIES

1 AND INVOCATIONS OF SUBTASKS AND PROCEDURES
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FIGURE D-2: SEQUENCING OF DESIGN ACTIVITIES.

TASK name(parameters). SUBTASK name(parameters).

TREVIEW. STREVIEW.

TEND. STEND.

PROC name(parameters). ENTRY name.

PEND. END.

activity informal description followed by a period
list of state transition rules

(e.g., item[sl-->s2, s3-->s4J.)
new state assignment (e.g., itemrsl].)
invocation of task, subtask, or procedure

(e.g., INVOKE p.)

condition activity failure (e.g., F(activity));

activity success (e.g., S(activity));
formal and informal predicates;

state test (e.g., item[s1]).

sequence a b ... c

if-then-else IF condition THEN a ELSE b
if-then condition => a

IF condition THEN a

group name: { a b ... c )
(Note: it acts as a DO group in PL/I.)

parallel group name: { a // b // ... // c I
(Note: it acts as a COBEGIN-COEND block.)

nondeterminism name: { condition => a ... }

(Note: one activity preceded by a true condition
is selected as desired by the designer.)

iteration name: LOOP a

(Note: 'BREAK loop-name.' and 'NEXT loop-name.'
are used to exit the loop and to go back
to its beginning, respectively.)

293



FIGURE D-2 (cont.): SEQUENCING OF DESIGN ACTIVITIES.

sequential for name: FOR item IN item-list DO a
(Note: activity a is repeted for each item in order.)

parallel for name: FOR item IN item-list DO { // a)
(Note: activity a is carried out for each item

in parallel.)

backtracking BACK name.
(Note: the name may be a construct label or the

name of a procedure, task, or subtask from
the calling sequence; when no label is provided,
the most recent invocation of a procedure, task,
or subtask is restarted.)

others RETURN.
(Note: normal return from procedures.)

DONE.
(Note: normal return from tasks, and subtasks;

the task/subtask reviews are not omited.)

ABORT name.
(Note: failure return from procedures, tasks, and

subtasks; any procedure, task, and subtask
in the calling sequence may be aborted.)
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APPENDIX E

A FORMAL TREATMENT OF DISTRIBUTED SYSTEMS DESIGN
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E.1 INTRODUCTION

The system design stage covers all design activities involved in
taking a set of system design requirements and generating the

specification of the hardware and software requirements for the respective
system. There are two phases that make up this stage: the system
architecture design phase and the systen binding phase. The former deals
with the selection of an overall system architecture which accomplishes
the intended system functionality and which, under a reasonable set of
technological assumptions, meets the performance and other constraints
originating with the system requirements. The proposed architecture and
all the design decisions taken during this phase form a processing model
used as input to the binding phase.

The binding phase, based on the limited degrees of freedom still left
open by the system architecture design phase and based on market
availability, identifies a particular mix of software and hardware and
produces specifications for all needed components. The nature of the
specifications, however, may vary from component to component depending on
its intended realization (software or hardware) and on the manner in which
it is to be obtained (off-the-shelf, through customization, or
custom-made). The system design stage is also concerned with the
integration of the system components from the point when both the software
and the hardware components are available and up to the point when the
system is offered for customer acceptance testing.

In order to carry out the tasks of the system design stage, a set of
specifications languages is necessary to formally characterize the design
at different points in the design process. The particular specifications
needed during this stage are the system requirements, which serve as input
to the system architecture design phase; the processing model, which is
the interface between the system architecture design phase and the system
binding phase; and the hardware/software requirements, which is the
output of the system binding phase. Together these specification media
provide the core around which a system design methodology can be
organized.

The purpose of this appendix is to define a formal model of each of
the specifications that are required by the system design stage, as well
as to define the interrelationships between these specifications. The
first definition is that of the system requirements model, which is
presented in section E.2. Next, the processing model is defined in
section E.3 along with its relationship to the system requirements.
Finally, in section E.4 the hardware/software requirements model is
defined along with its relationship to the processing model.

Note: In this appendix the following notation will be used.
(1A x) - For all x :
(?E x) - There exists an x such that
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E.2 SYSTEM REQUIREMENTS DEFINITION

The system requirements are a description of the functional
requirements for the proposed design and the constraints which the design
must meet. For the requirements to be analyzable, some structure must be
imposed upon them. The following definitions are intended both to
formalize the concept of system requirements definition and to impose a
hierarchical structure on that definition in order to support the notion
of stepwise decoposition inherent in the TSD philosophy. First, a
definition of the concept of system requirements is presented in section
E.2.1. This is followed in section E.2.2 by a more detailed definition of
one component of the system requirements called the conceptual model.
Finally, the decomposition of a conceptual model in a hierarchical manner
is defined and discussed in section E.2.3.

E.2.1 SYSTEM REQUIREMENTS

SRQ = (CM, R, CQ, eval)

CM - conceptual model
R - domain of possible system realizations
CQ - set of design constraints
eval - system evaluation procedure

The system requirements (SRQ) are defined as a 4-tuple consisting of
a conceptual model, a set of possible system realizations, a set of
constraints on the system, and a system evaluation function. The
conceptual model (CM), which is formally defined in the next section, is a
model of the functionality of the system with respect to its environment.
The conceptual model does not incorporate any non-functional constraints
such as speed or size limitations. This allows for formal treatment of
system functions independent of the complexity of performance
requirements. The set of possible system realizations (R) is a conceptual
entity consisting of all possible system realizations which exhibit the
functionality defined in the conceptual model. Although this set is not
necessary for the definition of the system requirements, the concept it
represents will be used later in the system design definition. The set of
constraints (CQ) consists of all explicit or implied constraints on the
performance, packaging, implementation, etc. of the system that exist
independent of the system design process. The constraints together with
the conceptual model fully specify the system to be designed as the
conceptual model determines the set of possible realizations and the
constraints determine a (possible empty) subset of those realizations that
meet all of the non-functional requirements. The determination of the
subset of realizations which meet all of the requirements is done by the
system evaluation function (eval). More specifically, given a set of
realizations R and a set of constraints C, eval(R,C) is a set containing
only those members of R which are consistent with the requirements C.
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E.2.2 CONCEPTUAL MODEL

CM = (ES, ESO, SS, SSO, F)

ES - set of environmental states
ESO - set of initial environment states

SS - set of system states
SSO - set of initial system states

F - functionality
F SUBSET.OF ((ES x SS) x (ES x SS))

The conceptual model (CM) is defined as a 5-tuple consisting of a set

of environmental states (ES), a set of initial states for the environment

(ESO), a set of system ststes (SS), a set of initial states for the system

(SSO), and a transition mapping (F). The sets ES and ESO, where ESO is a

subset of ES, are used to model the environment of the system, as the

allowable functionality of the environment must be determined in order to

establish the functionality of the system. Similarly, the sets SS and

SSO, where SSO is a subset of SS, are used to model the system. Given
this static characterization of the system and its environment the mapping
F is used to model their dynamic properties. F can be described as a

subset of ((ES x SS) x (ES x SS)) where the first element in the pair can

be thought of as the current state of the system and the environment, and

the second element as the successor state. Since many to many mappings in

F are allowed, it is possible to model non-deterministic state

transitions.

The thrust of these definitions is that the system functionality can

be modeled by a set consisting of all valid sequences of

system-environment states. Such a set represents only the possible

orderings of occurrences in the system, and implies nothing of the timing

involved. Under the CM definition a valid sequence can be characterized

as follows. A sequence ((el,sl),(e2,s2) .... (en,sn) .... ) is valid iff el

is a member of ESO, sl is a member of SSO, and each pair of successive

states ((ei,si),(ei+1,si+1)) is a member of F.

E.2.3 DECOMPOSITION

Since the concept of hierarchical top-down refinement is central to

the TSD philosophy, a hierarchical refinement of conceptual models is a

natural method of construction under this philosophy. Formally, a

conceptual model can be defined in terms of a hierarchy of models

(CM1,CM2 .... CMn) where each CMi+1 is a decomposition of CMi. The

decomposition relationship, denoted CM' REFINES CM, is defined as follows:

Given CM = (ES,ESO,SS,SSO,F) and CM' = (ES',ESO',SS',SSO',F'),
then CM' REFINES CM iff there exists a function

PHI : (ES' x SS') -> (ES x SS)
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For every initial state (.0', sO') there exists an initial
state (eO, s0) such that

PHI(eO',sO') = (eO,sO)

PHI is onto (ES x SS)

((el',sl'),(e2',s2')) HEHBER.OF F'
AND PHI(el',sl') = (el,sl)
AND PHI(e2',s2') = (e2,s2)
AND NOT (el,s1) = (e2,s2)
IMPLIES ((el,sl),(e2,s2)) MEMBER.OF F

In English, CM' REFINES CM iff each state in CM' can be mapped to a
unique state in CM, all states in CM are covered by the mapping, all
initial states in CM' map to initial states in CM, and all allowable
transitions in CM' correspond either to no transition in CM or an
allowable transition in CM. Aride from its use in the definition of a
hierarchy of conceptual models, REFINES can be used to define equivalence
as follows:

CHI is equivalent to CM2 IFF
CM1 REFINES C42
AND CM2 REFINES CM1
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E.3 PROCESSING MODEL DEFINITION

The methodology described in section 3.4 models systems as a
hierarchy of related design specifications where the specification at one
level reveals a design solution for some problem which is formally defined
within the level above. The processing model reflects this view by

characterizing the system as a total order over a finite set of design
specifications. Although the total ordering is not really necessary, it
has been adopted in order to simplify the presentation of both the
processing model and the system design strategy. Furthermore, the
extrapolation to an upside down tree (a tree in which the level of each
node is the longest distance from a leaf rather than the root) is trivial.
A formal definition of this processing model is presented in the next
section, followed by a definition of the system design specifications
which make up the processing model in section E.3.2. The relationships
which must hold between the processing model and the system requirements,
as well as between different design specifications in the processing model
are defined in section E.3.3.

E.3.1 DEFINITION OF THE PROCESSING MODEL

PM m (DS1, DS2, ... DSn)

DSi - System design specifications
DSI IMPLEMENTS SRQ
DSi+1 SUPPORTS DSi for i<n
PM SBOUND.TO MCH IFF (DSn SPECIFIES MCH)

The processing model is defined as a linear order of design
specifications which meet a number of criteria. First, the initial design
specification (DS1) must implement the system requirements (SRQ). The
IMPLEMENTS relationship, formally defined in section E.3.3, essentially
requires that the design specification implements the functionality
established by the conceptual model and that at least one realization of
that design specification meets the system constraints. The next
requirement is that each successive design specification must support its
immediate predecessor. The SUPPORTS relationship requires that one design
specification implements the processor structure portion of another design
specification (see section E.3.3). The last criterion for the processing
model is one of completeness: the model completely specifies a system
architecture when it can be superficially bound to a network of physical
machines and support processes. A processing model PM is superficially
bound to a net of machines MCH if and only if the lowest level design
specification DSn SPECIFIES MCH. The SPECIFIES relationship is defined
more formally in section E.3.3, but essentially states that the processor
structure of DSn can be mapped directly onto MCH.
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E.3.2 DEFINITION OF THE SYSTEM DESIGN SPECIFICATION

DS = (PSS, PRS, ALC, PFS, BD, C, eval)

PSS - process structure
PRS - processor structure
ALC - process/processor allocation
PFS - performance specifications
BD - binding options
C - constraints
eval - system evaluation procedure w.r.t. C

A system design specification is a 7-tuple consisting of a process
structure, a processor structure, an allocation of processes to
processors, a set of performance specifications, a set of binding options,
a set of system constraints, and a procedure for evaluating systems with
respect to the constraints. The process structure is a network of
processes and conceptual communications links, and essentially describes
the functional elements which interact to carry out the overall system
function. The processor structure describes a network of conceptual
processors and their interconnections which provides the support structure
on which the process structure resides. The process/processor allocation
defines a mapping of processes and inter-process communications in the
process structure onto the processors and interconnections in the
processor structure. The performance specifications attach performance
requirements to the process and processor structures and also contain
performance data derived from these structures that can be used in the
design validation process. The binding options represent a conceptual set
of feasible realizations of the system design which meet the binding
constraints (to be defined later). The set of constraints consists of the
constraints established by the system requjirements. Finally, the system
evaluation function serves to define the set of binding options by
evaluating the validity of potential system realizations with respect to a
set of constraints. A more formal definition of each of these components
of the design specification is presented in the following subsections.

E.3.2.1 PROCESS STRUCTURE

PSS (PS, LK)

PS - set of processes
PS : P 1 P=(SP, spO, TP) I
SP - set of process states
spO - set if initial process states
TP - state transition rule

TP SUBSET.OF (SP x SP)

LK - set of links between processes
LK : L 1 L:(PL, SL, slO, TL) }
PL - processes linked by L

PL SUBSET.OF PS
SL - states internal to the link
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slO - set of initial link states
TL - link communication protocol

TL SUBSET.OF (icstates x lostates)
where

lcstates = (SL x SPI x ... SPn)
Pi MEMBER.OF PL
Pi = (SPi, spOi, TPi)

The process structure (PSS) is defined as an ordered pair (PS,LK),
where PS is a set of processes and LK is a set of links. Processes are
the individual functional entities in the system, and they are defined
more fully below. Links are the logical communications paths of the
system, and can be viewed as the medium by which inter-process message

passing is carried out. The functionality of the entire system is
determined by the superposition of these two sub-specifications of the
system.

A process P is defined as a triple (SP, spO, TP), where SP is a set
of process states, spO is a set of initial process states, and TP is a set
of valid transitions from one process state to another. The functionality
of the process is the set of all valid sequences of states, which can be
determined from spO through successive application of the transitions in
TP (the conceptual model was defined similarly). The set SP describes not
only the internal states of the process, but also those of the process
interfaces to the links. Hence, the interaction of the system and its
environment is specified completely through this scheme.

A link L is defined as a 4-tuple (PL, SL, slO, TL), where PL is a set
of processes, SL is a set of internal link states, slO is a set of initial
states, and TL is a set of valid transitions which serves to specify the
link protocol. PL is a subset of PS, and represents those processes which
can communicate through the link subject to the link protocol. The set SL
describes the internal states of the link, but does not include knowledge
of any portion of the internal process state. The functionality of the
link and its interaction with the processes it interconnects is specified
by the state transition rules in TL, which specify transitions from one
aggregate process/link state to another. Hence, the functionality of the
links is intimately bound to that of the processes it interconnects.

E.3.2.2 PROCESSOR STRUCTURE

PRS (PR, IC)

PR - set of processors

PR { Q Q :(SQ, sqO, TO) I
SQ - set of processor states
sqO - set of initial processor states
TQ - state transition rule

TQ SUBSET.OF (SQ x SQ)

IC - set of processor interconnections
IC { W 1 W:(PW, SW, swO, TW) }

PW - processors being interconnected
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SW - set of internal interconnection states
swO - set of initial interconnection states
TW - interconnection protocol

TW SUBSET.OF (icstates x icstates)
where

icstate = (SW x SQl x ... SQn)
Qi MEMBER.OF PW
Qi = (S, sqOi, TQi)

The processor structure (PRS) is defined as an ordered pair (PR,IC),
where PR is a set of processors and IC is a set of processor
interconnections. PR is a set of conceptual processors, and represent the
functional processing elements in the system. IC is a set of processor
interconnections, which defines the communications paths between
processors. The network of processors and interconnections so described
provides the support structure upon which the process structure resides
(in a manner like tnat of a virtual machine supporting the execution of a
user process).

Each processor Q in PR is defined as a triplet (SQ. sqO, TQ), where
SQ is a set of processor states, sqO is a set of initial processor states,
and and TQ is a set of valid state transitions. The processor states
include both the internal processor state description and the state of the
interfaces to the communications interconnections for that processor.
Thus, in a manner similar to that of the process definition, the
functionality of the processor with respect to its environment is defined.

An interconnection W in IC is defined as a 4-tuple (PW, SW, swO, TW),
where PW is a set of processors, SW is a set of internal interconnection
states, swO is a set of initial interconnection states, and IW is a set of
valid interconnection state transitions, PW is of course a subset of PR
ad represents those processors which can communicate across the
interccnnection subject to the interconnection protocol. SW models the
internal state of the interconnection but does not include knowledge of
any portion of the processor states. The functionality of the
interconnection and its interaction with the processors it connects is
specified by TW, which is a set of allowable transitions from one
aggregate processor/interconnection state to another. Hence, the
functionality of the interconnection is intimately bound to that of the
processors it interconnects.

E.3.2.3 PROCESS/PROCESSOR ALLOCATION

ALC (AF, afO, TA)

AF - set of all allocations functions
AF = [A A : prstates --> psstates}
prstates - composite processor structure states

prstates = SQl x SQ2 x ... SQh x SWi x ... SWk
psstates - composite process structure states

psstates = SPI x SP2 x ... SPn x SLI x ... SLm
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afO - set of initial allocation functions

TA - set of valid allocation changes
TA SUBSET.OF ((AF x psstates x prstates)x(AF x psstates x prstates))
(IA ((A1,xl,yl),(A2,x2,y2)) ELEMENT.OF TA)

[ Al(yl)=xl AND A2(y2)=x2 AND
( (A2 = Al AND x2 = xl AND TRS(yly2))
OR (A2 = Al AND TSS(xl,x2) AND TRS(yl,y2))
OR (NOT(Al=A2) AND xl=x2) ) I

where TRS = composite state transition rule for PRS
TSS = composite state transition rule for PSS

The process/processor allocation is defined as a triple (AF, afO,
TA), where AF is the set of all allocation functions, afO is a set of
initial allocation functions, and TA is a set of transitions between
allocation functions. The purpose here is to model the association
between processes and processors in the two models. Although most systems
maintain a static mapping between processes and processors, this model
allows for the specification of systems in which the mappings change over
time. The valid sequences of transitions is determined from afO and TA.

The set of allocation functions AF is defined as the set of all
mappings from the set of composite processor states (prstates) onto the
set of composite process states (psstates). The set prstates is
essentially the cross product of all processor and interconnection states in
the processor structure, and the psstates is the cross product of the
process and link states in the process structure. The mapping is
functional, so that a given state of the processor structure uniquely
identifies a state of the process structure. Note that it is possible for
an individual process state to have a functional dependency on the states
of more than one processor, so that a process can effectively be mapped
onto more than one processor or interconnection.

The set of valid allocation changes TA is a subset of ( (AF x
psstates x prstates) x (AF x psstates x pratates) ), where each member of
an ordered pair in TA represents the association of an allocation function
with a specific processor structure state and a process structure state.
Each member of TA represents a change in the system allocation function to
be associated with a given change in the processor structure and process
structure states. Non-determinism is allowed in that several members of
TA may have the same first element but different second elements so that
many different changes in the allocation may be possible at a given state
of the system. In all cases, the members of TA are subject to the
following constraints. First, if the allocation function remains the same
across a transition, then a valid change in state of the processor
structure must have occurred and the process structure state must have
remained the same or undergone a valid transition. Second, if the
allocation function changes across a transition then no change in the
process structure state must have occurred. These constraints assure that
TA is consistent with the transition functions in the processes and
processors.
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The method by which process/processor allocation is modeled by this
structure can be illustrated by two simple examples. The first example is
one of modelling a static allocation of processes to processors. Here the
allocation is modeled by the allocation function AO, with ALC = (AF, AO,
TA). The set TA is then restricted to be a subset of {AO) x psstates x
prstates, subject to the above constraints. As a result, the
process/processor allocation reduces to a description of the static
mapping between prstates and psstates.

The second example is one where the allocation of the system is
allowed to change upon the failure of a processor. Assume that the
processor structure consists of two processors X and Y with an
interconnection I to which they are both connected (see figure E-1). The
process structure consists of a single process P, and the initial
allocation Al has the property that the state of P is dependent solely on
the state of processor X. To model the secondary allocation which must
occur if X fails, a second allocation function A2 is specified in which
the state of ? depends solely on the state of processor Y. Let s be a
processor structure state, XFAIL(s) be a predicate asserting that s is a
state in which processor X has failed, and recover(s) be a processor
structure state which is entered after the recovery process from state s.
The required allocation change can be modelled as follows:

(!A p) (!A s) (XFAIL(s) IMPLIES ((A1,p,s),(A2,p,recover(s)) ) MEMBER.OF TA ]

.X . . . . . Y

.. .. .... .......... . .. . ... . . .

process struct. state: p process struct. state: p
processor struct. state: s processor struct. state: recover(s)
allocation function: Al allocation function: A2
XFAIL(s): TRUE

BEFORE TRANSITION AFTER TRANSITION

FIGURE E-1.

E.3.2.4 PERFORMANCE SPECIFICATIONS

PFS (PSRQ, PRRQ, PSCH, PRCH, PMOD)

PSRQ - process structure performance requirements
PSRQ SUBSET.OF (psstates* x PSA)

PSA - process structure attributes

PRRQ - processor structure performance requirements
PRRQ SUBSET.OF (prstates* x PRA)
PRA - processor structure attributes
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PSCH - process structure performance characteristics
PSCH SUBSET.OF (psstates* x PSA)

PRCH - processor structure performance characteristics
PRCH SUBSET.OF (prstates* x PRA)

PMOD - performance model
PMOD POWERSET(prstates* x PRA)

-- > POWERSET(psstates* x PSA)

PMOD(PRRQ) => PSRQ
PMOD(PRCH) => PSCH

PSCH :> PSRQ
PRCH :> PRRQ

where {(xl,yl),...(xn,yn)} ==> {(xl,zl),...(xn,zn)}

IFF (!A i) [ O<i<n+1 IMPLIES (yi IMPLIES zi)]

The performance specification (PFS) is defined as a 5-tuple (PSRQ,

PRRQ, PSCH, PRCH, PMOD) where PSRQ is a set of process structure
performance requirements, PRRQ is a set of processor structure performance
requirements, PSCH is a set of process structure performance
characteristics, PRCH is a set of processor structure performance
characteristics, and PMOD is a performance model relating the various
specifications. The performance requirements specifications serve to
establish performance criteria which must be met by the process and
processor structures. These requirements are propagated top-down as the
performance requirements for a processor structure at one level determine
the performance requirements for the process structure at the next level
down. The performance characteristics represent derived performance data
about the system. These characteristics have a bottom-up dependency as
the performance characteristics of the process structure at one level
determine the performance characteristics of the processor structure at
the next level up.

The performance requirements and characteristics are defined as sets
of (state sequence, attribute predicate) pairs. The state sequences are

linear sequences of 0 or more composite structure states, and represent
various subparts of a process or processor structure functionality. The
predicates associate specific attributes with each sequence, such as

"elapse time < 100 microseconds". Attributes of the entire structure can
be associated with null sequences, such as "system storage < 64K" or
"system mass < 40Kg". Using this mechanism, the various quantifiable
performance requirements or characteristics can be attached to the process
and processor structures at each level.

The performance requirements and characteristics for the process and
processor structures must have certain relationships to each other for the
design specification to be valid, and these relationships are established
through the performance model. The performance model is a function which
maps (processor state sequence, attribute) pairs to (process state
sequence, attribute) pairs, thus serving to transform the performance
requirements/characteristics for a processor structure to a set of
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requirements/characteristics for a process structure that it supports.
Given the performance model PMOD, then PMOD(PRRQ) must be consistent with
PSRQ, and PMOD(PRCH) must be consistent with PSCH, where a requirement RI
is consistent with a requirement R2 iff the attributes associated with
sequences in RI imply the attributes associated with the same sequences in
R2. Of course, for the design specification to be valid the performance
characteristics in each structure must be consistent with the performance
requirements for the structure.

E.3.2.5 BINDING OPTIONS

BD z (FB, FR, BC, eval)

FB - feasible bindings
FR - feasible realizations
BC - binding constraints
eval - binding evaluation function

FB = eval(FR, BC)
NOT(eval(FB, C) = nil)

(PSS U PRS U ALC U PSRQ U PRRQ) SUBSET.OF BC

The binding options (BD) are defined as a 4-tuple (FB, FR, BC, eval)
where FB is a set of feasible bindings, FR is a set of feasible system
realizations, BC is a set of binding constraints, and eval is a binding
evaluation function. The set of feasible realizations FR is a conceptual
set of all system realizations which meet the functional requirements of
the design specification. The set of binding constraints BC represents a
cumulative set of constraints which have been imposed on the system
binding through the design process. Constraints which are included in BC
are such things as binding restrictions derived from the system
requirements, restrictions imposed by the choice of process and processor
structures at the "current" and all higher levels in the processing model,
and restrictions imposed by the performance requirements. The set of
feasible bindings FB is the set of all feasible realizations which are
consistent with the binding constraints, i.e. FB = eval(FR,BC). For the
system design to be valid, it must also be true that eval(BD,C) is not
empty, where C is the set of constraints from the design specification.
Hence, there must be at least one binding of the design to a system
realization which meets all of the system constraints.

E.3.3 DEFINITION OF THE RELATIONSHIPS BETWEEN SPECIFICATIONS

Although the definitions of the various components of the processing
model above define the contents of each part, they provide no definition
of the interrelationships between the specifications defined. There are
four basic relationships which tie together these specifications, and they
are defined below. The first relationship, IMPLEMENTS, is defined in
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section E.3.3.1 and defines the requirements that must be met for a design
specification of a system to be consistent with the system requirements
definition. The SUPPORTS relationship defined in section E.3.3.2 ties a
design specification to another design specification which provides the
support structure for it. The REFINES relationship presented in section
E.3.3.3 describes the relationship between design specifications in the
stepwise refinement of a design at one level in the processing model.
Finally, the SPECIFIES relationship presented in section E.3.3.4 ties a
design specification to a network of physical machines.

E.3.3.1 IMPLEMENTS

DS (PSS, PRS, PFS, ALC, BD:(FB, FR, BC, eval), C)
SRQ (CM=(ES, ESO, SS, SSO, F), R, CQ, eval)

DS IMPLEMENTS SRQ IFF

(?E PHI) C PHI: psstates --> (ES x SS) ]
where PHI is onto (ES x SS)
TSS(xl, x2) AND NOT( PHI(xI) = PHI(x2) )

IMPLIES (PHI(xl), PHI(x2)) MMBFR.OF F

FR = R
C : CQ

The implements relationship is essentially a predicate asserting that
a design specification specifies at least one system realization that
meets a system requirements specification. The relationship is
established if there exists a mapping of composite process structure
states in the design specification onto the composite system-environment
state set in the system requirements which has the following properties.
First, the constraints CQ in SRQ must be the same as the constraints C in
DS. Second, the set FR of feasible realizations in DS must be the same as
the set R of valid system realizations in SRQ. Finally, any valid
trqnsition between states in DS must map onto either no change in states
of the conceptual model or a valid change of states of CM. Hence, PHI
represents a mapping of the functionality of DS onto the functionality of
SRQ, with DS and SRQ required to have the same set of constraints.

E.3.3.2 SUPPORTS

DS (PSS, PRS, ALC, PFS, BD, C, eval)
DS' (PSS', PRS', ALC', PFS', BD', C', eval)

DS' SUPPORTS DS IFF

(?E PSI) [PSI : (PS' U LK') --> (PR U IC)
PSI is onto (PR U IC)
IF (Pi' MEMBER.OF PS') AND (PSI(Pi') MEMBER.OF LK)

THEN (!A Lj' MEMBER.OF LK')
[IF PiP MEMBER.OF PLj' THEN PSI(Pi') PSI(Lj')]

IF (Lj' MEMBER.OF LK') AND (PSI(Lj') MEMBER.OF PR)
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THEN (!A Pk' MEHBER.OF PUj')

(?E QSI) [OSI :(PR' U IC') -- > (PR U IC)
QSI is onto (PR U IC)
IF (Qi' MEMBER.OF PR') AND (QSI(Qi') MEMBER.OF IC)

THEN (!A Wj' MEMBER.OF IC')
[IF Qi' MEMBER.OF PWJ' THEN QSI(Qi') QSI(Wj'))

IF (Wj' HEHBER.OF IC') AND (QSI(Wj') MEMBER.OF PR)
THEN (!A Qk' MEMBER.OF PWj')

[(QSI(Qk') QSI(Wj'))] )

('?E PHI) [(PHI :psstates' ->prstates)

PHI is onto prstates
IF TS'I(xl', x2') AND NOT(PHI(x1')=PHI(x2'))

THEN TRS(PHI(xil), PHI(x2')) I

(!A Qi MEMBER.OF PR) (?E PHIl.i)
[(PHIl.i :psstates.i' -- > SQi)
PHIl.i is onto SQi
IF TSS.il(xl', x2') AND NOT(PHIl.i(xl1)=PHIl.i(x2'))

THEN TQi(PHIl.i(xl'), PHIl.i(x2')) I

(!A Wj MEMBER.OF IC) (?E PH12.j)
[(PHI2.j :psstates.j' -- > SWj)
PHI2.j is onto SWj
IF TSS.j'(xl', x2') AND NOT(PHI?.j(xl1)=PHI2.j(x2'))

THEN TWj(PH12.j(xl'), PHI2.j(x2'))

AF' A' A' :prstates' -- > psstates' AND
A' (Aql',...,Aqn', Awl'......Awm') AND
(!A Qi MEMBER.OF PR)

[Aqi :prstate.i' ->psstate.i' AND
(!A Wj MEMBER.OF IC)

[Awj :prstate.j' - psstate..j' I

where
psstate.i' - composite state of entities mapped by PSI into Qi
TSS.i' - corresponding state transition rule
prstate.i' - composite state of entities mapped by QSI into Qi
TRS.i' - corresponding state transition rule
and
psstate.j' - composite state of entities mapped by PSI into Wj
TSS .-;' - corresponding state transition rule
prstate.j' - composite state of entities mapped by QSI into Wj
TRS.j' - corresponding state transition rule

(?E KAI) [KAI :(psstate'* x PSA') --> (prstate* x PRA)
KAI(PSRQ') =PRRQ
KAI(PSCH') =PRCH I

FBI evalCFR', BCt)
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FR' SUBSET.OF FR

BC SUBSET.OF BC'

C' = C

The SUPPORTS relationship between two design specifications DS' and
DS states that DS' specifies the support system upon which DS resides, or
more specifically that DS' is a design specification for the processor
structure of DS. A number of requirements must be met for the
relationship to hold, and these are described below. The first set of
requirements deals with the mapping of processes, processors, links, and
interconnections in DS' to processors and interconnections in DS. For
processes and links, there must exist a function PSI from processes and
links in DS' onto processors and interconnections in DS. Under PSI, if
any process in DS' maps to a link in DS, then all links to which that
process is attached in DS' must map to the same link in DS. Similarly, if
any link in DS' maps to a processor in DS then all processes connected by
the link must also map to the same processor. For processors and
interconnections in DS', there must exist a function QSI from processors
and interconnections in DS' to processors and interconnections in DS.
Under QSI, if any processor in DS' maps to an interconnection in DS, then
all interconnections to which that processor is attached in DS must also
map to the same interconnection in DS. Similarly, if an interconnection
in DS' maps to a processor in DS then all processors connected by that
interconnection must map to the same processor in DS. The result of these
restrictions is that the processes, processors, links, and
interconnections of DS' are partitioned into disjoint sets according to
the processor or interconnection in DS to which they are mapped.

The second group of restrictions deals with the functional mapping
between the two design specifications. In a global sense, there must
exist a mapping PHI from the composite process structure state (psstates')
in DS' to the composite processor structure state (prstates) in DS such
that valid transitions in psstates' map to eithe, valid transitions in
prstates or no transition. Using the partitioning from above, however, we
can qualify the mapping further. For every processor Qi in the processor
structure of DS, we can define a composite process state psstates.i' which
is the composite state of all links and processes in DS' which map to Qi
through PSI. Similarly, for each interconnection Wj in DS we can define a
composite process state psstates.j'. We can now define a mapping between
the partitions of the processing model in DS' and the processors and
interconnections in DS as follows. For each processor Qi in DS, there
must exist a mapping PHI1.i from psstates.i' onto SQi such that all valid
transitions in psstates.i' map to valid transitions in SOi or no
transition in SQi. Also, for each interconnection Wj in DS there must
exist a mapping PHI2.j from psstates.j' onto SWj such that all valid
transitions in psstates.j' map to valid transitions in SWj or no
transition.

Using the partitioning concept a restriction can also be placed on
the the process/processor allocation in DS'. The requirement is
essentially that processes within a partition mapping to a processor 0 in
DS can only be allocated to processors in DS' which are also mapped to Q.
Put more formally, let us define prstates.i' as the composite state of the
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processors and interconnections in DS' which map through QSI to processor

Qi in DS, and prstates.j' be the composite state of the processors and
interconnections which map through QSI to interconnection WJ in DS. Then
the allocation functions A' in DS' can be decomposed irto subfunctions
Aq1' .... Aqn',Awl',...Awm' such that the Aqi map prstates.i' onto
psstates.i' and the Awj map prstates.j' onto psstates.j', subject to the
state transition consistency rules for allocation functions.

The last set of requirements deals with the constraints and
performance requirements/characterlstics of the two models. First, there
must exist a function KAI which maps (psstates sequences, attribute

predicate) pairs onto (prstates sequences, attribute predicate) pairs such
that KAI(PSRQ') is consistent with PRRQ and KAI(PSCH') is equal to PRCH.
Of course, the mapping of psstates' sequences to prstates sequences
implied by KAI must be consistent with the function PHI. In this way KAI
provides the translation between the performance requirements and
characteristics in DS' an,, those in DS. Second, the set of constraints C'
in DS' must equal the Ret of constraints C in DS. Finally, FR' must be a
subset of FR and SC a subset of BC'. Hence, BC' contains the binding
constraints imposed by the design decisions in DS as well as those imposed
by design decisions in DS'.

E.3.3.3 REFINES

DS t (PSS, PRS, ALC, PFS, BD, C, eval)

DS' = (PSS', PRS', ALC', PFS', BD', C', eval)

DS' REFINES DS IFF

(?E PHI) (PHI : psstates' --> psstates
PHI is onto psstates
IF TSS'(x1', x2') AND NOT(PHI(xI'):PHI(x2'))

THEN TSS(PHI(xl'), PHI(x2')) ]

(?E QSI) [QSI : prstates' --> prstates
QSI is onto prstates
IF TRS'(yI', y2') AND NOT(QSI(yl')=QSI(y2'))

THEN TRS(QSI(yl'), QSI(y2')) ]

(!A A MEMBER.OF TA)
x = (xl,... ,xn,...,xn+m)
y = (yl ... yn,..., yn+m)

with yi MEMBER.OF sQi for O<i<n l
yi MEMBER.OF SWi for n<i<n+m+l

A = (Al,... ,An,... ,An+m)
with Ai(yi) = xi for O<i<n+m+l ]

(1A A' MEMBER.OF TA')
[ x' (xl1' .. ,xlk(1)', .

xn1' .. ,xnk(n)', ..

x(n+m)l',...,x(n+m)k(n+m)')
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ynl' ,. ,ynk(n),

y(n+m)l'....,y(n+m)k(n+m)')

with yij' MEMBER.OF SQiJI for O<i<n+l and O<J<k(i)
yij' MEMBER.OF SWij' for n<i<n+m-1 and O<J<k(i)

A' = (A11',...,Ak(1)',...,
An1I, . ,Ank(n)I,. ,

A(n+m)l',...,A(n+m)k(n+m)')
with Aij'(yij') = xij' for O<i<n+m+1 and O<J<k(i)

PHI( ... xi1', . ,xik(i)' ) ( .. xi, ..

QSI( ... yi1I' ,.yik(i) , ) ...( y , .. ) ]

(?E KHI) [ KHI : (psstate'* x PSA') -- > (psstate* x PSA)

KHI(PSRQ') ==> PSRQ
KHI(PSCH') = PSCH I

(?E KSI) [ KSI : (prstate'* x PRA') -- > (prstate* x PRA)

KSI(PRRQ') ==> PRRQ
KSI(PRCH') = PRCH ]

FB' = eval(FR', BC')
FR' SUBSET.OF FR
BC SUBSET.OF BC'

C' = C

During the process of system design it is usually necessary to
decompose a design specification at one level in the processing model into
a more detailed specification of the same level. It is therefore
necessary to define a relationship REFINES between a design specification
DS and its refinement DS' in order to formalize this notion of
decomposition. For the relationship DS' REFINES DS to be valid, the
following requirements must hold.

The first requirement is that there be a functional mapping between
the two design specifications. For the process structures, there must
exist a function PHI from the composite process structure state of DS' to
that of DS, such that valid transitions in the process structure state of
DS' map onto valid process structure state transitions in DS, or no
transition. A similar function QSI from the composite processor structure
state of DS' to that of DS must also exist.

The second requirement is that the allocation functions of the two
design specifications must be consistent with the functional mappings PHI
and QSI. Let the allocation functions A in DS be broken up into n+m
sub-allocations Al, A2, ...An+m, where n is the number of processors in PR
and m is the number of interconnections in IC. If yi is the state of a
single processor or interconnection, then xi = Ai(yi) is the composite
state of all processes and links which are allocated at least in part to
the given processor or interconnection. In the refinement DS', there must
be corresponding allocations AiJ' and states xij', yij' such that
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Aij'(yij') = xij', PHI(...xiI',...xik(i)'...) (...xi...) and

PHI(...yil' .... yik(i)...) = (...yi...). In other words, if a set of
processes (or links) ps in DS is allocated to . specific processor (or
interconnection) pr in DS, the the set of processes (links) ps' in DS'
onto which ps is refined must be allocated within the set pr' of
processors (interconnections) which correspond to pr in the refinement.
Aside form the restriction to the allocation function, this requires that
processors and interconnections be decomposed in a hierarchical manner.

The final set of requirements deals with the consistency of the
binding options and performance requirements. For process structures
there must exist a mapping KHI from (process state sequence, attribute
predicate) pairs in DS' to (process state sequence, attribute predicate)
pairs in DS such that KHI(PSRQ') is consistent with PSRQ (see section
E.3.2.3), and KHI(PSCH') is equal to PSCH. For processor structures,
there must exist a similar mapping KSI between (processor state sequence,
attribute predicate) pairs in DS' and DS such that KSI(PRRQ') is
consistent with PRRQ and KSI(PRCH') is equal to PRCH. Next, the set of
constraints C' in DS' must equal the set of constraints C in DS. Finally,
the set of fealtble realizations FR' in DS' must be a subset of FR, and
BC' a superset of BC.

E.3.3.4 SPECIFIES

DS = (PSS, PRS, ALC, PFS, BD, C, eval)
MCH = (PSS", PRS", ALC", PFS", BD", C", eval)

DS SPECIFIES MCH IFF

MCH SUPPORTS DS

OSI is one-to-one

SOFTWARE(PSS")
HARDWARE(PRS")
STATIC(ALC")

i.e., TA" = (A"} x psstates" x prstates")'*2)

A processing model is in a sense complete when its lowest level
design specification can be mapped onto a physical set of hardware and
software. Given a machine level specification MCH and a design
specification DS, we say that DS SPECIFIES MCH if the following
requirements are met. First, the machine level specification MCH must
have its processor structure map directly to a hardware implementation and
its process structure map directly to a software implementation on the
given hardware. Second, the process/processor allocation in MCH must be
static (see section E.3.2.3). Third, the relationship MCH SUPPORTS DS
must be valid. Finally, the function QSI mapping processors and
interconnections in MCH to processors and interconnections in DS must be
one to one.
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E.4 HARDWARE/SOFTWARE REQUIREMENTS DEFINITION

HSRQ = (SFRQ1,...,SFRQn,HDRQ)

SFRQi - subsystem software requirements
HDRQ - hardware requirements

SFRQ = (DS, SINT, SBIND, SOFT)

DS - subsystem design specification
SINT - interface specifications
SBIND - software subsystem binding function

SBIND : PSS --> SOFT
SBIND is onto SOFT

SOFT - existing software

HDRQ = (DS, HINT, HBIND, HARD)

DS - subsystem design specification
HINT - interface specifications
HBIND - hardware subsystem binding function

HBIND : PRS --> HARD
iBIND is one-to-one

HARD - existing hardware

PM BOUND.TO HSRQ IFF

PM =(DS1, ..., DSn)
PM SBOUND.TO MCH
HSRQ = (SFRQ1, ..., SFRQn+1, HDRQ)

SFRQi =(DSi, SINTi, SBINDi, SOFTi) O<i<n+1
SFRQn+1 = (MCH, SINTn+1, SBINDn+1, SOFTn+1)
HDRQ = (MCH, HINT, HBIND, HARD)

The hardware/software requirements comprises the total output of the
system design stage. In essence it is a list of software requirements
specifications along with a hardware requirements specification, where
these requirements are defined below. The hardware/software requirements
are of course derived from the processing model constructed during the
system architecture design phase, and so the binding requirements between
the processing model and the hardware/software requirements are discussed
below.

The software requirements component of the hardware/software
requirements is defined as a 4-tuple (DS, SINT, SBIND, SOFT), where DS is
a design specification, SINT is a set of interface specifications, SBIND
is a software subsystem binding function, and SOFT is a set of existing
software components. The design specification DS is that portion of the
processing model from which this particular software requirements
specification if derived, and it is the source of the functional
requirements, performance requirements, and constraints which are to guide
the software design process. The interface specifications are a formal
specification of the interfaces between different software components at
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this level and the interface to the subsystem at the next higher level in
the processing m~odel. SBIND is a function which maps PSS (from DS) onto
SOFT, where SOFT is a set of software components used in the
implementation of the subsystem.

The hardware requirement specification is defined as a 4-tuple (DS,
HINT, HBIND, HARD), where DS is a design specification, HINT is a set of
hardware interfaces, HBIND is a hardware binding function, and HARD Is a
set of hardware components. Again, DS provides the functional
requirements, performance requirements, and constraints to drive the
hardware design. HINT specifies the interfaces between the different
hardware components in the design, as well as the interface between the
hardware and the software which executes on it. Finally, HBIND is a
function which maps PRS (from DS) onto HARD, where HARD is a set of
hardware components used in the implementation of the subsystem.

The purpose of the system binding phase is to create the HSRQ so that
the relationship PM BOUND.TO HSRQ is valid. Given a processing model
PM = (DS1, DS2, ...DSn) and a hardware/software requirements specification
HSRQ = (SFRQ1, ...SFRQn+I,HDRQ), then PM BOUND.TO HSRQ is valid if and
only if the following relationships hold. First, PM must be superficially
bound to a net of machines MCH (see section E.3.1). Second, each set of
software requirements in HSRQ must be derived from their corresponding
design specifications in PM, with an extra set of software requirements
derived from the specification MCH. Put more directly, SFRQi = (DSi,
SINTi, SBINDi, SOFTi) for all DSi in PM, SFRQn+1 = (MCH, SINTn+l,
SBINDn+1, SOFTn+1), and HDRQ = (MCH, HINT, HBIND, HARD). These two
requirements complete the linkage between the processing model and the
hardware/software requirements.
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E.5 CONCLUSIONS

The models presented above serve as a conceptual model for the
specification languages needed in the system design stage. As such, they

specify what concerns need to be addressed by these languages but not how
they are addressed. It is not intended that any actual specification
language directly specify the components of these definitions, as certain

sets such as the set of legal state transitions in the conceptual model
would defy total enumeration. It is necessary, however, for any
specification language used to be conceptually mappable into the models
provided here (thus defining the semantics of that specification

language).

Although the structure of the models given does contain some

implications concerning the system design methodology, it is not a
specification for any particular methodology (as a conceptual model for a
system is not a specification for a single implementation of that system).
For instance, although the processing model is structured in a top-down

hierarchical manner, since it is merely a model of the interface between
the architecture design phase and the binding phase it does not preclude
the use of a bottom-up oriented design methodology within the system

architecture design phase. Neither is it necessary that the processing
model be completed before binding is undertaken. What these models do
provide is a formal definition of the specifications which are the core of

the system de3ign process, and so provide the means by which the formal

specification of a system design methodology can be constructed.
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APPENDIX F

A RIGOROUS APPROACH TO BUILDING FORMAL SYSTEM REQUIREMENTS
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INTRODUCTION

Formal definition of system requirements has received considerable
attention in recent years. A measure of the researchers' concern with
this topic is the great variety of specification language proposals that
have been put forth. They differ in the degree of formality, power, and
the nature of the formalisms being used. Some approaches are based on the
use of finite-state machines [HENI79] and, thus, they offer simplicity but
also reduced power. Others emphasize dataflow (SADT [ROSS77], PSL/PSA
[TEIC77]). They are concerned with the functions to be performed by the
system and the data being passed between them. Yet another approach is
used in RSL [BELL77J which defines the requirements in terms of
stimulus-response paths. Attempts have also been made to capture the
behavior characteristics of the systems in algebraic specifications, e.g.,
[RIDD78], and as partial orders [GREI77]. Data-oriented modeling of the
requirements has been stimulated by efforts in the database area [SMIT79]
while applicative languages have been advocated as a means to achieve
executability of the requirements [ZAVE81].

The dominant concerns of those involved in the development of
requirements specification languages have been the ease of use and the
potential for automation of their respective proposals. There are,
however, a number of other important issues demanding careful
investigation. They relate to the pragmatics of using formal
specifications. How one choses an appropriate specification language, how
one develops the specifications, how one gets started, are questions often
formulated by designers that feel the need for improvements in the quality
of the system requirements but have no experience with the use of formal
specifications. These questions also explain why formal specifications
are rarely used in practice despite the great need to accumulate
experience in this area and despite the benefits they promise.

This paper addresses several of these issues. It reports on the
author's experience in the use of formal specifications and presents a
step by step approach to developing formal requirements. The tutorial is
intended to give assistance and confidence to the novice and to share with
other practitioners some observations about the nature of system
requirements. A basic knowledge of predicate calculus and set theory is
assumed on the part of the reader. While no exposure to any requirements
definition language is required, some appreciation for the role the
requirements play in the development of the system is necessary.

The remainder of the presentation is separated into four sections.
The first one introduces a formal model of system requirements. A
systematic approach to developing formal requirements by starting with the
general model and by adapting it to the needs of the problem at hand is
described and illustrated by means of a simple but realistic example in
the section that follows. A discussion of several topics related to the
development of formal requirements, including unresolved issues and
current concerns, preceeds the conclusions.
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FORMAL MODEL OF SYSTEM REQUIREMENTS

The system requirements are generated in the problem definition stage
and prior to any attempt at system design. They consist of a conceptual
model and a set of constraints which together define the acceptability
criterion for any proposed system realization:

SRQ = (CM, CQ)

CM - conceptual model
CQ - set of design constraints (implicit/explicit)

(See the notation summary for conventions used in this paper.) A system is
said to meet its requirements if and only if it carries out the
functionality described by the conceptual model and satisfies all relevant
constraints.

The role of the conceptual model is to capture in finite and precise
terms the nature of the interaction between the needed system and its
environment. The constraints, on the other hand, limit the design space
by imposing restrictions over the class of systems the designer might
consider. Actually, the degree of complexity of a system is measured not
by size alone but also by the severity of the constraints it must satisfy.

Before continuing the discussion of the conceptual model which is the
main concern of this paper, it ought to be pointed out that recent
increases in the ability to formally define the desired functionality have
not been accompanied by commensurate advances in the definition of system
constraints. There are four important reasons contributing to this state
of affairs. First, there is a great diversity of types of constraints
(e.g., response time, space, reliability, cost, schedule, weight, power,
etc.). Second, some of them are related to possible design solutions
which are not formally stated at the time the system requirements are
conceived. Furthermore, their relevance differs at different points in
the design. Third, many constraints (e.g., maintainability) are not
formalizable given current state-of-the-art. Finally, not all constraints
are explicit. For instance, the designer is expected to follow generally
accepted rules of the trade in designing a system without having them
explicitly stated.

In general, there is considerable agreement among authors with regard
to the nature of the conceptual model. The conceptual model must have the
ability to describe all pertinent environmental states, an abstraction of
the system states, and the way in which both environmental and system
states change.

CM (E, EO, S, SO, F)

E - environmental states
EO - possible initial environmcntal states
S - system states
SO - possible initial system states
F - state transition rules

F SUBSET.OF ((E x S) x (E x S))
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The definition above makes clear two important facts. First, because both
the environmental and the system states may be infinite in number, the
model may not be reduced, in general, to a finite-state machine. Second,
in the general case, the state transition rules define a relation between
pairs of states because nondeterminism is present in most systems and
their environments.

The approach to describing the states and the state transition rules

varies from one specification language to another. The notation used in
the next section, for instance, is borrowed from set theory (for
describing the environmental and the system states) and predicate calculus
(for defining the state transition rules). Furthermore, some languages
make implicit assumptions about either or both the nature of the states
and of the state transition rules; the loss in generality is motivated by
increased specificity in the handling of a particular application area.
As an example, given a system that responds to stimuli from the
environment in a manner which is independent of the history of previous
stimuli and responses, it may be easily described in a language which
equates the state of the environment with the current stimulus, which has
no ability to describe system states, and which is able to define a
mapping from the set of stimuli to the set of responses. Yet another
example could be used to illustrate the fact that there is also great
variability in the way state transitions may be described: in a
biomedical simulation system a new state is generated as a result of the
integration of a set of differential equations.

If the conceptual model is structured in a hierarchical manner, e.g.,
CM" = (CM, CM'), then one needs to have defined the notion of
decomposition as shown below. CM' is said to be a decomposition of CM,
i.e., CM' REFINES CM, if and only if

given CM = (E, EO, S, SO, F) and CM' = (E', EO', S', SO', F')

there exists a function PHI such that

a. PHI : (E' x S') --> (E x S)

b. PHI is onto (E x S)

c. for-all eO',sO' there-exist eO,sO: PHI(eO',sO') = (eO,sO)

d. IF ( ((el',sl'), (e2',s2')) MEMBER.OF F') AND
PHI(el',sl') = (el,sl) AND
PHI(e2',s2') = (e2,s2) AND
NOT (el,sl) = (e2,s2) )

THEN ((el,sl), (e2,s2)) MEMBER.OF F

In the case of large systems, where top-down specification of the
conceptual model becomes a necessity, this definition establishes a
fundamental criterion for checking the self-consistency of the system
requirements.
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THE APPROACH

This section introduces the reader to a systematic approach to
developing formal system requirements. The formal definition of system
requirements and an informal description of the application are the
starting point for this approach. The formal definition of system
requirements was given in the previous section. The application
considered here is a simplified version of a banking operation:

EGBANK is a small bank having several branch offices 4n the
city. Tellers from each branch office are authorized to
create new accounts, to check the balance of some account,
to make deposits and withdrawals from one account at a time,
and to transfer money from one account to another. All
successful banking transactions are logged for auditing
purposes. The log entries always include the teller
identification.

The way in which the informal specification is converted in a formal

conceptual model is outlined below.

Preliminary tailoring of the formal model.

Most applications do not require the full power of the formal
requirements definition model. This explains why in some cases even
finite-state machines proved adequate [HENI79]. Early identification of
the complexity of the state transition rules may bring about significant

savings in the effort involved in generating the requirements. This
statement is strongly supported by past experience and may be explained by
the fact that, by understanding the exact nature of the transition rules
one is better prepared to avoid two opposite but equally time wasting
pitfalls: (1) the use of formalisms which are not powerful enough to do
the job and (2) the generation of specifications which are unnecessarily
complex and whose simplification often turns out to be more expensive than
starting from scratch.

Fortunately, a priori determination of the nature of the state
transition rul appears to be possible. By analyzing the informal
problem definition one may be able to establish if the state transition
rule, F, is indeed a relation or maybe a function. In general,
nondeterministic behavior suggests the use of a relation rather then a
function, i.e., given the current system/environment state there are
several possible next states.

In EGBANK, the state of the environment is given by the nature of the
currently pending teller queries. The state of the system is represented
by the composite of all bank accounts. State changes in the environment
occur due to arrival of new customers which trigger new queries in their
behalf and due to arrival of replies to pending queries. State changes in
the system take place due to processing of queries which may change the
amounts present in various accounts and may create new accounts.
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It appears, therefore, that F needs to be defined as the relation

F SUBSET.OF ((E x S) x (E x S))

where both E and S are non-finite. While this degree of complexity seems
unavoidable, there are still some opportunities for simplifications and
they should be investigated. For instance, F may be decomposable into
simpler relations or functions.

The suggestion has been made earlier that the state of the
environment is determined by the pending queries. An argument could be
made, however, that the system is affected not by the pending queries, but
by the processing of each new query. Furthermore, the answer to a query
is determined by the nature of the respective query and by the state of
the system at the time the query is processed (not at arrival time).
Consequently, one component cf F could be

FS : (Q x S) --> (R x S)

where

Q is the set of possible queries
R is the set of possible replies
S is the set of system states (as before).

Each query may be considered as if it were alone in the system because
this is exactly the tellers' perception of the system.

As far as the environment is concerned, one may define a relation FE
which captures the changes that occur at each teller: the issuing of some
query from Q, the return of some answer from R, and the lack of activity
which is denoted by "nil".

FE SUBSET.OF (E x E)

where

n is the number of tellers

E = (Q UNION R UNION {nil})**n

for-all x,y:
[ ((...,x .... ), (...,y .... )) MEMBER.OF FE

IFF
( (x MEMBER.OF Q) AND (y MEMBER.OF R) AND id(x)=id(y)
OR ( (x MEMBER.OF R) AND (y = nil)
OR ( (x = nil) AND (y MEMBER.OF Q) ) ]

The function "id" appearing above will be formally defined later. It was
introduced here, however, in order to state that the answer (i.e., y)
received by some teller bears the same identification as the original
query (i.e., x) sent by the same teller.
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At last F may be defined by using FS and FE:

(el, sl), (e2,s2) ) MEMBER.OF F
IFF
(el, e2) MEMBER.OF FE
AND
IF ( ( ei-(....x,...) AND e2=( .... y,...) AND

(x MEMBER.OF Q) AND (y MEMBER.OF R) )
THEN ( ((x, sl), (y,s2)) MEMBER.OF FS

While it is true that F could have been defined directly in terms of S, Q,
R, and n, there are certain advantages to the strategy being presented.
in many cases, the attempt to look for a decomposition of F results in
much simplified formalizations. More importantly, however, it often leads
to a degree of separation of concerns useful in the understanding and
analysis of the requirements. In our example, for instance, FS deals with
the query processing aspect while FE relates to behavioral aspects of the
environment indicating such things as the fact that a reply must succeed
the respective query, that queries are not necessarily processed in the
order of arrival, etc.

Definition of the envir'-mental states.

The informal requirements f: cify the nature of the queries (Q) and,
indirectly, the nature of the replies (R) that have been used in the high
level definition of the environmental states. There are four types of
queries: account creation, reading of the account data, updating of the
account, and fund transfer between two accounts. Furthermore, each
account is generally characterized by the owner's name, by the amount on
deposit, and by some account number. By taking advantage of this
knowledge and by the fact that each query must have a teller identifier,
the set Q may be now defined

Q = tellerids x
({create} x accounts x customers x deposits)
UNION
({read) x accounts)
UNION
({update} x accounts x deposits)
UNION
({trans) x accounts x accounts x deposits)

The sets tellerids, accounts, customers, and deposits are left undefined
in this paper because their definitions are trivial to construct, not from
the earlier informal specification of the problem but by soliciting the
missing information. This illustrates one important advantage of the
formal specifications. They frequently uncover many important details
that were left out in the informal requirements definition.
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If one assumes that all replies must be complete, i.e., they must

include the account number, customer name, and current deposit value, than
R is defined as follows:

R = tellerids x
(error)
UNION

(accounts x customers x deposits)
UNION

(accounts x customers x deposits)
x
(accounts x customers x deposits)

At this point, it is easy to ste how the id function introduced earlier
works. It simply returns the first element of any n-tuple supplied as its

argument.

Definition of system states.

The state of the system is characterized, at any point in time, by
the status of all the accounts and by the transaction log. Therefore, the

system state might have to be defined in terms of a set that captures the
state of the accounts (call it "b" from bank records) and by a sequence
that models the log (call it "1").

s = (b, 1)

Next, one could propose b to be descrited by

b SUBSET.OF (accounts x (customers UNION (nil)) x deposits)

This definition, however, would permit the undesirable situation where the
same account appears twice in the system. Both (1234, Smith, $350) and
(1234, Brown, $250) could be part of S. The single account number
occurrence condition forces b to be a function from accounts to customers
cross deposits:

b : accounts --> (customers x deposits)

Notation wise, however, later use of b will be permitted to take both the
form of a set (e.g., (a,c,d) MEMBER.OF b) and that of a function (e.g.,
b(a)), depending of which one is more convenient at the time.

Given the nature of the log which is only a sequence of queries,
i.e.,

1 MEMBER.OF Q*,

the set of system states, S, becomes

S SUBSET.OF (b 1 b : accounts --> (customers x deposits)) x Q*

This completes the definition of the system states.
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Definition of state transition rules.

Because part of the definition was already given earlier in this

section, all that remains to be done is to complete the definition of FS
which has been established to be of the form:

FS : (Q x S) -> (R x S)

For the sake of clarity, separate definitions are provided for each of the
four types of queries.

The creation of a new account requires that account to be unassigned

to any customer. Furthermore, at creation time, both the customer name
and some value for the initial deposit must be provided. The account
number is supplied by the teller.

FS((id,create,a,c,d), (b,l))

<== if (a MEMBER.OF accounts) AND
(c MEMBER.OF customers) AND
(d MEMBER.OF deposits) AND
(C(a,nil,O) MEMBER.OF b )
then

C(id,a,c,d),
((b MINUS f(a,nil,O)) UNION {(a,c,d)}),

((id,create,a,c,d).l)))
else

C(id,error), (b,l))

It should be noted that in case the query is improperly specified, the
reply being returned is an error message. Moreover, errors are not
logged.

In order to find out information about an account, its number has to
be supplied.

FS((id,read,a), (b,l))
<== if (a MEMBER.OF accounts) AND

(there-exist c,d: ((a,c,d) MEMBER.OF b ))
then

((id,a,cd), (b,((idread,a).l)))
else

(Cid,error), (b,l))

While testing the fact that "a" is a valid account is mathematically
redundant, it is kept in the definition for clarity purposes. (This issue
often causes long discussions during requirements reviews but it is the
author's strong conviction that clarity must come before brevity.)
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Both deposits and withdrawals are accomplished via the update query.

It depends upon the sign of the amount being supplied by the teller. An
additional condition for the success of the query is that the amount left
in the account must be strictly positive.

FS((id,update,a,d), (b,l))

<== if (a MEMBER.OF accounts) AND
(d MEMBER.OF deposits) AND
(there-exist cdO: ( (a,c,dO) MEMBER.OF b ) AND

(dO+d > 0) )
then

((id,a,c,dO+d),
((b MINUS {(a,c,dO)) UNION {(a,c,dO+d)}),

((id,update,a,d).l)))
else

((id,error), (b,l))

The transfer query, called trans, allows one to transfer funds
between two accounts. Its meaning is analog to that of removing a
positive amount from the first account followed by a deposit in the second
account.

FS((id,trans,al,a2,d), (b,l))

<== if (al MEMBER.OF accounts) AND
(a2 MEMBER.OF accounts) AND
(d MEMBER.OF deposits) AND (d>O) AND
(there-exist cl,dl: ( (alcl,dl) MEMBER.OF b )

AND (dl-d > 0) ) AND
(there-exist c2,d2: ( (a2,c2,d2) MEMBER.OF b ) )
then

((id,a1,c1,d1-d,a2,c2,d2+d),
((b MINUS {(al,cl,dl)} UNION {(al,cl,dl-d))

MINUS {(a2,c2,d2)) UNION {(a2,c2,d2+d)}),
C(id,trans,al,a2,d).l)))

else
((id,error), (b,l))

The entire specification is complete. Its accuracy still needs to be
established through reviews involving the intended user or customer.

Because increases in the complexity of the items being described
results in more complex definitions, the introduction of more powerful
notation than the one employed in this paper becomes a necessity. At a
minimum, one needs to formulate the definitions in terms of primitive
functions which are separately defined at some later point. Ultimately,
the designer is led naturally, by the need for clarity and simplicity, to
developing hierarchical specifications.
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DISCUSSION

The approach described in this paper has grown out of the experience
gained in the last four years during which formal requirements have been
defined for a large variety of relatively small problems. They included
the semantic definition of numerous toy languages, the specification, at
several levels, of the message handling subsystem for a local
communication network, the definition of the communication primitives for
a proposed message based version of Pascal, and some data processing
applications comparable to the example used in the previous section.
Involvement in the development of requirements for some real production
systems using a partially-formalized technique described in [ROMA79] also
helped in better understanding what is pragmatically feasible with regard
to the production use of formal requirements.

It is the contention of this paper that the approach is ready for use
in small to medium size data processing and real time systems.
Nevertheless, special consideration must be given to the nature of the
problem being considered, the background of the personnel involved, the
formalism being contemplated, and to the balance between the formal and
the informal components of the requirements to be produced.

The introduction of formal requirements into an organization can be
neither sudden nor complete. A wise first step is to employ formal
requirements only for the hard-to-define aspects of the system
requirements in conjunction with some other less formal but already
familiar technique. Thus, the few designers who happen to have the
appropriate formal background may be utilized effectively and the initial
learning curve has a minimal effect on the overall project performance.

Furthermore, the combined use of formal and informal specifications
appears to be not just a transient solution meant to bring about the
widespread use of formal specifications but a highly desirable property of
requirements definitions in general. Experience has shown that, even when
the requirements are completely formalized and the people involved have
above average mathematical skills, the absence of an accompanying informal
narrative greatly increases the review time and reduces their
effectiveness. Finally, one other important factor affecting the success
of a formal specification is the use of standard notation. Future use of
computer-aided design tools will make this issue obsolete but, until then,
lack a standardization may result in misunderstandings and confusion.
(Our policy has been to stay with basic mathematical notation. However,
the use of a standard keyboard character set has resulted in some
compromises.)

One issue that has been ignored throughout most of this paper is the

formal definition of the system constraints. So far, the formal
requirements we developed centered on rendering the system functionality
(the conceptual model) and allowed the constraints to be formulated
through the use of natural language. However, attempts to formally
specify some of the constraints have been made by others, e.g., [ALF079,
ZAVE81]. Our own preliminary results indicate that different approaches
are required in order to deal with different types of constraints.
Compulsory distribution of some of the data or processing, for instance,
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may be defined by a site function which maps entities of the conceptual
model (e.g., events or state transitions) into a set of locations. Other
constraints, such as response time, involve a mapping from sequences of
events to some appropriate set of values. A well-defined approach,
however, still needs to be developed and evaluated.

More work is also required to establish techniques for checking the
self-consistency, completeness and accuracy of the requirements. Ad-hoc
mathematical proofs and group reviews proved adequate for small scale
problems but are not expected to be cost effective and accurate enough for
large projects where the use of computer-aided design tools able to carry
out some of these checks and proofs becomes a necessity.

CONCLUSIONS

A rigorous approach to the development of formal system requirements
definitions has been presented in a tutorial fashion and illustrated on a
simple example of a banking system. The approach reflects the author's
several years experience with developing formal requirements for a variety
of small scale problems. The notation used in the paper is based on set
theory and predicate calculus both of which are generally considered
essential in the education of the today's computer scientist and are
familiar to many system designers. The paper contends that, based on the
experience accumulated with the use of both formal and semi-formal
specifications, the development of formal requirements for small to medium
size systems is feasible and can be cost effective.

328



REFERENCES

[ALFO79] Alford, M., "Requirements for Distributed Data Processing
Design," Proc. 1'st Int. Conf. on Distributed Computing Systems,
pp. 1-14, October 1979.

[BELL771 Bell, T. E., Bixler, D. C. and Dyer, M. E., "An Extendable
Approach to Computer-Aided Software Requirements Engineering,"
IEEE Trans. on Soft. Eng. SE-3, No. 1, pp. 49-60, January 1977.

[GREI77] Greif, I., "A Language for Formal Problem Specification,"
CACM 20, No. 12, pp. 931-935, December 1977.

[HENI79] Heninger, K. L. "Specifying Software Requirements for Complex

Systems: New Techniques and Their Applications," Proc. Conf. on
Specifications of Reliable Software, April 1979.

[RIDD78] Riddle, W. E., et al, "Behavior Modeling During Software
Design," IEEE Trans. on Soft. Eng. SE-4, No. 4, pp. 671-678,
July 1978.

[ROMA79] Roman, G.-C., "Verification Procedures Supporting Software
Systems Development," Proc. of 1979 NCC, pp. 947-956, June 1979.

[ROSS77] Ross, D. T., "Structured Analysis (SA): A Language for
Communicating Ideas," IEEE Trans. on Soft. Eng. SE-3, No. 1,
pp. 16-34, January 1977.

[SMIT79] Smith, C. and Browne, J. C., "Modeling Software Systems for
Performance Predictions," Proc. Computer Measurement Group X,
pp. 321-341, December 1979.

(TEIC77] Teichroew, D. and Hershey, III, E. A., "PSL/PSA: A
Computer-Aided Technique for Structured Documentation and
Analysis of Information Processing Systems," IEEE Trans. on
Soft. Eng. SE-3, No. 1, pp. 41-48, January 1977.

[ZAVE81] Zave, P. and Yeh, R. T., "Executable Requirements for Embedded
Systems," Proc. 5'th Int. Conf. on Soft. Eng., pp. 295-304,
March 1981.

329



NOTATION SUMMARY

n-tuple (a, b, ...)

set definition {a, b, ...)
{x 1 predicate(x))

function definition fname: domain --> range
fname(arguments)

<== if predicate then valuel
else value2

quantifiers
existential (there-exist x: predicate)

universal (for-all x: predicate)

cross product seti x set2

n'power cross product set**n

logical implication IF predicatel THEN predicate2

logical operators AND, OR, NOT

subset test setl SUBSET.OF set2

set membership test element MEMBER.OF set

set operations UNION, INTERSECTION, MINUS

set of all sequences
over some set set*

concatenation sequencel.sequence2
special constant nil
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FUNCTIONAL SPECIFICATION OF DISTRIBUTED SYSTEMS
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INTRODUCTION

The potential for a major qualitative improvement in the
effectiveness of systems development rests to a large extent on the
availability of appropriate specification languages. While establishing
the basis for precise communication, formal specifications also open the
doors to extensive systematic (mental or automated) system design analysis
techniques whose scope would ultimately include logical verification,
performance checking, automatic generation of predictive models, and more.
Such advances in system design technology are presumed to pave the way for
powerful development tools which are very much needed at a time when
system development productivity registers relatively minor increases and
personnel costs are on the rise.

Specification languages have received considerable attention both in
industrial and academic circles. Various proposals range in flavor from
tables, standardized document formats, and graphic representations
[ROSS77], at one extreme, to formal languages having well-defined syntax
and semantics [ROBI773 at the other. The work on program specifications
has largely dominated the field, both with respect to the attention
received and level of formality. (The reader is referred to [LISK793 for
a good survey of available formal program specification techniques.) This
is in part due to the strong influence exercised by related research in
the programming language area (CLU [LISK77], Alphard [WULF76], etc.).

Despite the considerable effort that has been expended in recent
years in the study of parallel computation and distributed systems design,
the specification of distributed systems continues to present designers
with many unresolved problems [LISK79]. Some programming and program
specification languages (Path-Pascal (CAMP792, DREAM [RIDD78], etc.),
while able to express concurrency, are limited in their capacity to deal
with distribution and restrict the designer's freedom to define arbitrary
communication protocols. Furthermore, less formal approaches (e.g., RSL
[BELL77]), while valuable from a pragmatical viewpoint, are only a
temporary solution that sets the stage for future assimilation of
theoretical results into the production environment. This paper reports
on one effort to develop a formal Distributed Systems Design Language
(DSDL) and the conclusions reached after experimentation with the language
on several case studies. The hope is for this work to provide valuable
insights that could affect the next generation of distributed systems
specification languages.

In DSDL, systems are described as nets of communicating processes.
Each process in the net has its own local data over which it has sole
control, procedures that specify primitive and indivisible operations over
the data, and possesses the ability to exchange messages with other
processes in the net. The behavior of the process specifies the order in
which its procedures are invoked. Sequences of procedure invocations,
also called event sequences, are allowed to execute concurrently within
the process.

A net is defined by its processes, by the logical communication
links, and by the communication protocols associated with the individual
links. Among the processes of a net, some are used to model its
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environment; they are called external processes. The links identify the
logical connections between processes. Several processes may be
associated with the same link and the same process may use several links.
The way in which an individual link behaves is stipulated by the
communication protocol associated with the respective link.

Several considerations have influenced heavily the nature of the
DSDL: the emphasis on formality, the desire to promote the principle of
separation of concerns, the need to support hierarchical specifications,

and the aim toward generality. Formality is achieved through the use of
set theoretical models for data representation, by employing predicate
calculus in defining the procedures (using input/output assertions), etc.
The principle of separation of concerns is reflected by the manner in
which the definitions of the net and of the process are structured; they
are meant to enhance the designer's ability to describe the system in
terms of clean abstractions. Hierarchical descriptions of the system are
enabled by the fact that processes may be refined into nets. Finally, the
generality of the language is enhanced by its capacity to describe a
variety of communication structures and protocols.

The language, as described here, is concerned only with the
functional specification of distributed systems. However, the addition of
performance specifications to DSDL is currently under investigation and is
anticipated to share the direction adopted in [BOOT8O, SMIT79, SANG79].
The ability to relate in a direct and simple fashion functional and
performance aspects of distributed systems is expected to contribute to
the enhancement of the designer's ability to choose objectively between
alternate solutions based on performance analysis of the various
candidates.

The next section introduces DSDL by means of a highly simplified

annotated example representative of the nature of the language. While
many of the language features may still remain rather obscure after
scanning the example, the subsequent section refers back to the example as
an illustration for the definition of the language syntax and semantics,
thus removing any ambiguities one might read into the example. The
language definition is followed by a review of several open issues and
preliminary research results.
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LANGUAGE ILLUSTRATION

The purpose of this section is to introduce the reader to the various
DSDL features by means of a simple annotated example. It is intended to

provide a concrete reference point for the formal definitions of process
and net described in the next section. A highly simplified version of a
distributed banking system forms the basis for this illustration. Upper
case words indicate language defined entities while lower case words

denote terms selected by the designer.

NET egbank. /0 EGBANK is a small bank having two branch offices in the city.

/ Tellers from each branch office are authorized to create new
/o accounts, to check the balance of one or more accounts, to
/, make deposits and withdrawals from one account at a time, and
/* to transfer money from one account to another. These activities
/o are supported by a computer system consisting of three
/9 components that communicate with each other via messages.
/* Each branch office interacts with a local process which, in
/* turn, has access to a database located elsewhere.

DEFINE office: PROCESS. / Definition of a class of processes.

PARAMETERS.
CONST id: INTEGER; /* Branch office identifier.
CONST db: PROCESS; /* Process controlling the databank.
CONST tty: EXTERNAL PROCESS; /* Local data entry sources.
CONST ttylink: LINK; /* Connection to data entry sources.

DATA.
VAR /* Request counter and message identifier.

n: INTEGER; n>O;
CONST / Terminal identifiers.

Terminals={z 1 O<z<21 AND INTEGER(z);
CONST /* Definition of acceptable input commands, i.e., requests.

Req ={('create',c),('update',a,v),('transfer',al,a2,v),
('read',a[1],..,a[m]) : INTEGER(m) AND m>O };

INITIALIZATION.
n = 1;

PROCEDURE w:=format(z). /* Message is formed for transmittal to db.
IN: z MEMBER.OF (Terminals X Req) AND z:(trm,rq);

OUT: n'=n+1 AND w'=(id,n,trm,rq);
EXPT: w'=NIL;

PROCEDURE w:=reply(z). /0 Reply from db is prepared for the teller.
IN: z=(id,no,trm,ans) AND no<n AND trm MEMBER.OF Terminals;
OUT: w'=(trm,ans);
EXPT: w':NIL;
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BEHAVIOR.

PARBEGIN
BEGIN /* Terminal requests are accepted, formated, and sent to the

/* database for processing. Invalid queries are rejected.
LOOP {GET(z) FROM tty ON ttylink; w:=format(z);

IF NOT.NIL(w) THEN SEND(w) TO db ON switch;

ELSE SEND(w) TO tty ON ttylink;}
END.

BEGIN /* Replies from the db are sent to the terminals.
LOOP {GET(z) FROM db ON switch; w:=reply(z);

IF NOT.NIL(w) THEN SEND(w) TO tty ON ttylink;}
END.

PAREND.
END-DEFINE office.

EXTERNAL PROCESS ttyl: UNDEFINED;

EXTERNAL PROCESS tty2: UNDEFINED;

PROCESS branchi: office. /* Local processing for branchl.

PARAMETERS.
id = 1;
db = database;
tty = ttyl;
ttylink= ttylinkl;

END-PROCESS branchl.

PROCESS branch2: office. /* Local processing for branch2.
PARAMETERS.

id = 2;
db = database;
tty = tty2;
ttylink = ttylink2;

END-PROCESS branch2.
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PROCESS database. /, Central databank.
DATA.

VAR /0 Input buffer for messages received from the branch offices.
ibuffer z{z 1 z SUBSET.OF C? X ? X ? X Req)};

VAR /* Output buffer for messages to be sent to the branch officei.
obuffer ={z 1 z SUBSET.OF C? X ? X ? X Ans)};

CONST /* Definition of acceptable requests.
Req ={('create',c),('update',a,v),('transfer',al,a2,v),

('read',a[1],..,a[m) INTEGER(m) AND m>O }
CONST /* Definition of database replies.

Ans ={'error'} UNION (Accounts X Names X INTEGER)*;
VAR /* Databank containing account information.

Records SUBSET.OF (Accounts X Names X INTEGER);
CONST /* Valid account numbers.

Accounts =1z 1 1000<z AND INTEGER(z)};
CONST /* Set of all representable names.

Names :{z 1 CHARSTRING(z)};

INITIALIZATION.
UNDEFINED.

PROCEDURE file(z). /* Branch query is filed for future processing.
IN: z=(idno,trm,req);
OUT: ibuffer'=ibuffer UNION (z};
EXPT: NIL;

PROCEDURE transaction. /* A query from the input buffer is processed
/* and the answer is placed in the output buffer.

IN: z=(id,no,trm,req) AND z MEMBER.OF ibuffer AND
IF t=(id1,no1,trm1,req1) AND t MEMBER.OF ibuffer

THEN no<nol+1;

OUTI: /* Final buffer states.
ibuffer'=ibuffer MINUS 1z};
obuffer'=obuffer UNION {Cid,no,trm,ans)};

OUT2: /* The effect of creating an account for customer c.
IF req=('create',c) THEN
Records'=Records UNION {(k,cO)} AND
ans=(k,c) AND k=NEWACCT;

OUT3: /* The result of extracting information about m accourts.
IF req=('read',a[1],..,a[m]) THEN

IF (a[i1,..,m],c[i],b[i]) MEMBER.OF Records
THEN ans=((a[1],c[1],b[1)),...a[m],c[m],b[n]));
ELSE ans:'error';

OUT4: /* The result of adding signed value v to account a.
IF req=('update',a,v) THEN
IF (a,c,u) MEMBER.OF Records AND u+v+1>)

THEN Records'=Records MINUS {(a,c,u)} UNION {(a,cu+v)l
AND ans=(a,c,u+v);

ELSE ansz'error';

336



OUT5: /* The effect of transfering positive amount v from
I, account al to a2.
IF req=('transfer',a1,a2,v) THEN
IF (al,cl,u1),(a2,c2,u2) MEMBER.OF Records

AND ul-v+1>O AND 0>O
THEN Records'=Records MINUS {(al,cl,ul)) MINUS 1Ua2.c2,u2))

UNION {(al,cl,ul-v)) UNION i(a2,c2,u2.v))
AND ans=((a1 ,cl ,u1-v) ,(a2,c2,u2+v))

ELSE ans='ero'

EXPT: RESTART:

PROCEDURE z:=retrieve. /* Processed query is removed from the
/* output buffer.

IN: w=(id,no,trm,ans) AND w MEMBER.OF obufter;
OUT: z'=w AND obuffer'=obuffer MINUS (w);
EXPT: RESTART;

PROCEDURE w:=branchid(z). I' The destination of answer contained in z
/* is determined and returned in w.

IN: z=(id,no,trm,ans);
OUT* wt=id;

BEHAVIOR.
PARBEGIN

BEGIN /* Database queries are accepted and placed in the
/* input buffer.

LOOP tGET(z) FROM ALL ON switch; file(z);1
END.

BEGIN I' Database answers are removed from the output buffer
/* and sent to their sources.

LOOP Iz:=retrieve; w:=branchid(z);
IF w=1 THEN SEND(z) TO branchi ON switch;
IF w=2 THEN SEND(z) TO branch2 ON switch;)

END.
PA REND.

END-PROCESS database.

LINKS.
/* Definition of logical communication links.

switch: (brancbi, branch2, database);
ttylinkl: Cttyl, branchi);
ttyiink2: (tty2, branch2);
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COMMUNICATION.
I* Definition of the communication protocol for each link.

switch: PARBEGIN
BEGIN LOOP I branchl:SEND[1)(z) to database;

database:GET[1 ](z);
[branchl:GO[1J; // database:GWrl];

END.

BEGIN LOOP { branch2:SEND[1)(z) to database;
database:GET( 1 (z);
ibranch2:GO[1); // database:GO(1J;I

END.

BEGIN LOOP f database:SEND[1](z) to branchi;
brancbl:GET[1J(z) from database;
{database:GO[1); // branchl:GO[1];I

END.

BEGIN LOOP f database:SEND[1)(z) to branch2;
branch2:GET[1)(z) from database;
(database:GO[1); IIbranch2:GO[1);}

END.
PAR END.

ttylinkl: UNDEFINED;
ttylink2: UNDEFINED;

END-NET egbank.
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LANGUAGE DEFINITION

The presentation of the language is organized in a manner similar to
that of the DSDL specifications except that the definition of a process is
introduced first and is later used in the definition of the net. The
discussion of the process consists of a formal statement of the semantics
of the process and its component entities (data, procedures, and behavior)
and an overview of the language features available for specifying
processes. The net and its components (environment, processes, links, and
communication) receive a similar treatment.

PROCESS DEFINITION.

The process is the basic functional unit of DSDL, and is similar to
the guardian [LISK79] and the monitor [RIDD78] (except that internal
parallelism is allowed). It serves to encapsulate data as in the abstract
data type [GUTT77, WULF76], and has sole access to its own data. In
addition, a process is able to receive and send information via messages
as in [HOAR78]. In order to define the functionality of a process, a set
of procedures are defined. They perform indivisible operations on data or
communicate with the environment. The behavior of a process is then
defined as the set of allowable sequences of procedure invocations within
the process. The formal definition of the process is shown below.

DEFINITION.

A process p is defined as a flve-tuple

p = (Dp, Tp, Rp, Sp, Bp)

where

Dp = (Qp, Hp, Ip)
with Qp denoting the set of data entities controlled
by p, the data invariant Hp being a predicate over Qp,
and the initialization Ip being a predicate defining the
initial values for the data in Qp.

Tp = {z 1 z = (Ain(Dp, w), Aout(Dp, Dp', w, w'))}
with Tp representing a set of tcansformational procedures
described by pairs of assertions; the input assertion is
a predicate over the data owned by the process p, i.e., Dp,
and the input values of the parameters w; the output
assertion is over the old and the new values of the data
and of the parameters.

Rp = {z 1 z = ('true', Aout(Dp, w'))1
with Rp representing a set of message receiving procedures
whose (partial) meaning is given by an output assertion
which describes the kind of values expected to be received
from some other processes.

Sp = (z 1 z = (Ain(Dp, w), 'true'))

with Sp representing a set of message sending procedures
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whose (partial) meaning is given by an input assertion

which describes the kind of values expected to be sent
to some other processes.

Bp SUBSET.OF (Tp U Rp U Sp)*

with Bp defining the process behavior given in terms of
possible sequences of events, where each instance of a
procedure invocation is treated as a primitive event.

In the EGBANK example, 'branch1', 'branch2', and 'database' are
processes while 'office' is a process type used in defining the first two
of the three processes in the net. The basic process definition takes two
syntactic forms:

(1) PROCESS process.name; (2) PROCESS process.name:

process.type;

DATA. PARAMETERS.
... definitions; ... values;

INITIALIZATION.
... initial values; END-PROCESS process.name.

PROCEDURE ... definition; Note: the process.type has to be
declared through the use of the

PROCEDURE ... definition; 'DEFINE' statement.

BEHAVIOR.
... description;

END-PROCESS process.name.

DATA.
The first element in the 5-tuple representing the process p is the

data Dp, which belongs to that process. The data is defined as an ordered
triple (Qp, Hp, Ip), as shown above. The first element, Qp, is a set of
data entities controlled by p. Qp may be of arbitrary complexity and
structure and its elements may be accessed only by procedures within the
process. The second element, Hp, is the data invariant, which is a
predicate describing the properties which must be possessed by the
elements of Qp both before and after all data transformations. (See
[WULF76] for a discussion of the abstract and concrete invariants used in
Alphard). The purpose of the invariant is to provide an aid in checking
for preservation of data consistency and to serve as a lemma in proofs
concerning the process. The third element, Ip, is a predicate defining
the initial values for each data entity in Qp.

The data controlled by some process appears in the "DATA" section of
the process definition. Both variables and constantr may be declared
using statements whose syntax resembles Pascal. The variable declarations
are placed side by side predicates that are taken to be parts of the
invariant Hp (e.g., VAR n: INTEGER; n>O;). Because of the set theoretical
approach to data representation adopted by DSDL, both variables and
constants are either sets or elements of sets. Some sets are assumed to
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be built-in (e.g., INTEGER) while others are constructed by enumeration
(e.g., S=11,2,3)), by providing an intensional definition (e.g.,
S={z 1 O<z<4 AND INTEGER(z)}), or by means of standard set operations
(e.g., union, intersection, subtraction, cross-product, etc.). In
addition to the set notation the standard mathematical notation for
functions and relations 4s also available:

CONST f : INTEGER -> INTEGER;

f(n) <= IF n<1 THEN 1
ELSE n X f(n-1);

The use of the set theoretical notation is motivated not only by the

desire to develop a simple but formal specification language, but also by
a deliberate effort to promote a high level of abstraction which, free of
unnecessary detail, allows the designer to concentrate on system level
issues rather than the design intricacies of its components. Furthermore,
most system designers are fairly familiar with set theory, a fact that
makes it attractive both from the point of view of ease of use and with
regard to the analyzability of the specifications being generated.

PROCEDURES.
The process activities, data transformations and message exchanges,

are defined by the procedures it controls. The transformational
procedures, given in terms of input and output assertions, describe state
changes and return values to be used as input parameters in subsequent
procedure invocations. While these procedures are defined by the user of
the language, the message exchanges are carried out by two built-in
procedures (SEND and GET) whose semantics are stated in the communication
section of the net definition. Consequently, their discussion is
postponed for now.

The use of nonprocedural specifications in defining the meaning of
the transformational procedures enhances the understandability of the
process specification. Furthermore, by treating procedure invocations as
primitive operations over the data the need for synchronization within a
process is avoided in the same way as it is done in the monitor concept
employed by concurrent Pascal [HANS77), but without prohibiting
concurrency from occurring in the process.

Syntactically, the definition of the transformational procedures is

straightforward: pairs of input ("IN:") and output ("OUT:") assertions
are used to cover distinct cases; when an input assertion is followed by
several output assertions (numbered or not) a conjunction between them is
implied; an exception ("EXPT:") assertion may be provided to indicate the
action to be taken in case all input assertions fail (e.g., NIL, RESTART,
ABORT, etc.); standard predicate calculus is used in constructing the
assertions (AND, OR, XOR, NOT, IF-THEN-ELSE, i.e., implication); finally,
a name followed by a single quote denotes the value of a data item after
the completion of the procedure.

BEHAVIOR.
The behavior of a process is defined Ps the set of all allowable

sequences of events within a process, where an event is defined as an
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invocation of a procedure. The following constructs are available for the
behavior specification:

PARBEGIN concurrent begin-end blocks PAREND

{ event.sequencel // ... // event.sequence.n }

BEGIN list of events or event.sequences END

I event.sequencel ... event.sequence.n }

IF condition THEN event.sequencel ELSE event.sequence2

CASE (condition1) -> event.sequencel

() -- > default.event.sequence
ENDCASE

WHILE (condition) -- > event.sequence

LOOP event.sequence

DOUNTIL (condition) --> event.sequence

where an event.sequence is
- a procedure invocation followed by

a semicolon (e.g., z:=f(a);),
- a list of event.sequences between

braces (e.g., {z:=f(a); g(a,z);} ),
- a list of concurrent event.sequences

(e.g., {{z:=f(a); g(a,z);) // h(a,b);} ), or

- any sequence of events described by one of
the flow of control constructs listed above.

Because of the nature of distributed processing, in general, and due
to the fact that at higher levels of abstraction processes represent
entire networks, the availability of both concurrency and nondeterminism
in describing the process behavior is essential. The PARBEGIN-PAREND and
the concurrent event sequences provide the mechanisms needed to express
concurrency, while the CASE construct allows one to support
nondeterminism. One last thing to be mentioned here is the scope rules
for the variables used in the behavior section of the process definition:
their type need not be declared because it is determined by the procedure
definitions. The scope rules are the same as in all block structured
languages and a mere listing of the variables after the BEGIN or PARBEGIN
is required. As an exception, variables that are not declared explicitly
are associated with the block in which are first used.

NET DEFINITION.

In order to specify a distributed system, the concept of a net is
included in DSDL. A net is defined as a set of independent, concurrent
processes which communicate among themselves by means of messages [BELL77,
FELD79, RIDD78]. Messages are sent over abstract nommunications paths
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called links. The behavior of these links, along with the behavior of
each process, determines the behavior of the net as a whole. The formal
definition of the net is given next.

DEFINITION.

A net n is defined as a four-tuple

n (P, P', L, C)

where

P = [ p 1 p is a process I

P' SUBSET.OF P
with P' representing a set of processes used to model
the environment of the system.

L = { 1 1 SUBSET.OF P I

where a link 1 is defined by the set of processes
that may use it.

C: L --> POWERSET.OF ( (UNION OVER ALL p OF (Sp UNION Rp)) )
with
C(1) SUBSET.OF (UNION OVER ALL p MEMBER.OF 1 (Sp UNION Rp))*
i.e., C(M) establis'ies the link behavior which determines
the set of allowable sequences of send and receive events
over the link.

The first two elements in the 4-tuple describing the net are the set
of processes P and a set P' such that P' SUBSET.OF P. Each of the
processes in the set P is an independent unit, and is defined formally in
the manner illustrated in the previous subsection. The process is used to
model a single processing/storage element in a concurrent and possibly
distributed system. These processes represent logical functional units,
and not physical processors. Hence, an actual implementation of a process
may be split across several real processors or share a single processor
with several other processes. As part of the concurrent system, in most
cases one or more processes are used to model the environment. These
environment processes comprise the set P'.

The last two elements in the net 4-tuple are the set of links L and
the communications protocol C. The links connect receiving ports of
processes on the link to sending ports of other processes on the link, and
represent the available paths of communication within the net. Each link
is a logical communications path. Hence, a link may represent a large
number of physical connections (such as paths through a packet switching
network) or simply a message buffer in shared memory. For each link I a
set C(M) of allowable sequences of send and receive type events in the
processes that it connects is defined. This set essentially describes the
communications protocol on the link, and will be referred to as the link
behavior. The events used to define each link behavior are all of the
send and receive type events in the processes which it connects, and the
link behavior itself is specified using constructs introduced earlier for

343



defining a process behavior.

ENVIRONMENT.
In general, the nature of the environment with which a system is

intended to interact affects the design not only with respect to the
functionality that needs to be supported but also in terms of the workload
characteristics. Systems having identical functionality may exhibit
significant differences in design complexity due to the distinct
assumptions made about their environment. Consequently, a system
specification can hardly be considered complete unless these, often
hidden, assumptions are made explicit. In DSDL, processes declared to be
"EXTERNAL" encapsulate the nature of the environment. However, whenever
the environment plays only a marginal role in the specification of the
system, the external processes and the links that connect them to the
system may be declared to be undefi;,ed. Under such circumstances, the
environment is presumed to provide the system with "appropriate" messages
on demand and to immediately accept all messages generated by the system.

PROCESSES.
The processes that form a net are defined in the manner already

discussed above. It must be added, however, that processes at one level
of the specification may represent abstractions of entire nets to be
identified later. DSDL allows one to state this fact through the use of
the attribute "REFINEMENT.OF" as in the example below:

NET netname; REFINEMENT.OF pname.

END-NET netname.

where the net "netname" is identified to be a refinement of the process
"pname". Furthermore, any entity in the net may be declared to be a
refinement of some entity in the process as long as consistency is
preserved. Unfortunately, general consistency proof techniques are still

under investigation and ad-hoc methods are used instead.

LINKS.
Each link is defined by its unique name, the processes that may use

it, and a description of its behavior given in the section on
communication. More than two processes may have access to the same link
and the same two processes may have more than one link in common. The
motivation for this approach is to be found in the desire to enable the
description of arbitrary interconnection structures. Furthermore, because
links are logical and not physical in nature, a link may be later refined
as a net that implements the behavior of the respective link. A packet
switching net, for instance, may be described first as a link between all
the nodes it services and may be subsequently refined to include the
switching nodes and their protocols.

COMMUNICATION.
For every link in the net, a behavior description has to be included

in the communication definition section. The link behavior defines the
communication protocol associated with the respective link, i.e., the
semantics of the GET and SEND commands. In defining the link behavior,
the designer may use the same the same means of specification as in the
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description of a process behavior except that the set of events that may
be involved is restricted to

- invocation of a receiving procedure
(e.g., branchl:GET[1J(z) from database;)

- invocation of a sending procedure
(e.g., branchl:SEND[1](z) to database;)

- resumption of processing after the invocation of a
sending or receiving procedure (e.g., branch1:GO[1];)

in processes associated with the respective link.

(Note: the number between the square brackets serves the purpose of
matching resumption of processing events with corresponding invocations of
sending and receiving procedures.)

In the definition of the behavior of the link called "switch", for
instance, the following BEGIN-END block appears:

BEGIN LOOP { branchl:SEND(1J(z) to database;
database:GET[1](z);
{branchl:GO[1]; // database:GO[l];1 I

END.

It establishes the fact that once a SEND is invoked, the issuing process
waits for completion of the corresponding GET and that no GET is invoked
by the database unless the corresponding SEND has been issued first.
Moreover, after exchanging the message "z", both processes may resume
processing in no particular order. Similar protocols are described for
the other message exchanges occurring over the link "switch".

The behavior of the net as a whole is determined by the behaviors of
its processes and links. The net behavior is formally defined as the set
of all sequences of events that have the property that are consistent with
the local behavior of each of the processes and links:

B = ( Bpl % ... % Bpn ) % ( C(11) % ... % C(Im) )

where

B is the net behavior
Bpi is the behavior of process i (for i=1 .... n)
C(Ij) is the protocol for link j (for j=1,...,m)

and

% is the synchronized shuffle operator defined as follows

V % W ={ v % w : (v MEMBER.OF V) AND (w MEMBER.OF W)}
a % b = {ab, ba)
a % a = (al
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CONCLUSIONS

There are four key features that make DSDL an attractive candidate
for a distributed system design language: high degree of formality,
designer specified communication protocols, non-procedural character, and
strong emphasis on separation of concerns.

The high degree of formality is achieved through the use of set
theory and predicate calculus. Both are a common place background for
recent computer science graduates and for most experienced system
designers. Furthermore, sets and set operators are already present in
languages such as Pascal while predicate calculus is central to current
work in artificial intelligence. Thus, it appears that future attempts to
support and analyze DSDL may require initially no development of new
technology but use of already available expertise in the computer science
field.

The freedom of specifying abitrary communication protocols is an
essential feature for any distributed system design language. One can

hardly expect a designer to have to have to limit the design space due to
specification language limitations. Moreover, evaluation of alternate
communication protocols is an important design activity and ought to be
supported in a straightforward manner, i.e., one should be able to alter
the communication protocols without having to consider changes in the
other aspects of the system specifications.

Advances in proofs of the correctness of sequential programs have
been based on the non-procedural nature of I/O assertions. It is our
conjecture that the specification of distributed systems could benefit
from the use of I/O assertions for the description of presumedly
sequential activities within a process, and from the extension of the
non-procedural type of specifications to behavior specification. (Efforts
to accomplish the latter goal have not been completely successful and,
consequently, the current definition of DSDL describes both behavior and
communication in a procedural manner.) Furthermore, non-procedural
specifications avoid the addition of extraneous detail during the
different stages of the design and specification.

It is a generally accepted fact that hierarchical design is useful in
reducing the overall complexity of large systems. Further reductions in
the complexity of the specification are achievable by imposing some
appropriate structure over each level of the hierarchical specification.
In DSDL, this is achieved by applying the principle of separation of
concerns in such a way as to assist in the logical verification of the
specification at that level. The solution is to structure the design
specifications based on correctness and self-consistency proof
dependencies. In DSDL, for instance, one would first prove the
preservation of specified invariants over the data local to a procedure.
Proofs about data may then be employed as lemmas in proofs about the
procedures; proofs about procedures may be used as lemmas in proofs about
the processes, etc. The dependence of the higher-level entities on the
lower-level entities creates the opportunity for simplification of proofs
about the system as a whole through the use of hierarchically structured
proofs.
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DSDL has been exercised on several small problems. These exercises

were useful in demonstrating the language's power of expression.
Nevertheless, there are many unresolved issues. First of all, a

meaningful evaluation of the language demands its use on a real-life

project of adequate complexity. Second, future advances in the study of

the formal aspect of the language must be carried out in preparation for

potential incorporation of DSDL in a computer-aided design system. As of

now, a definition for consistency between levels has been proposed but

proof strategies need to be developed. Finally, a complete system

specification language ought to include also the capability to define

processors and their characteristics, the rules for allocating processes

among processors, and performance specifications. Research in these areas

is currently under way and its results will be reported elsewhere.
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H.I. INTRODUCTION

H.1.1 OBJECTIVES

This document provides an assessment of the Modern Programming
Environment (MPE) being developed for the Defense Mapping Agency (DMA).
The MPE effort under review is a design study performed under contract
F30602-81-C-0039 to Rome Air Development Center (RADC) for DMA. The
assessment of that study, as documented in this report, is based solely on
government supplied documents and information gathered during meetings
with persons involved in the MPE program. This information is evaluated
from the perspective of the Total System Design (TSD) Facility.

The rationale for this assessment lies in the fact that the MPE can
be viewed as a TSD facility specialized to the production of software at
DMA. As a result, many of the issues considered in defining the TSD
facility are relevant to the MPE. The objectives of the assessment are:

(i) To evaluate the current MPF plans and, if needed, prepare
alternatifs.

(2) To identify issues which should be considered in future MPE
efforts.

The assesssment results pertinent to objective (1) are presented in
section H.1.2, and are summarized in Figure H-1. The results pertinent to
objective (2) are presented in Section H.5. As the MPF study was not
complete at the time of this assessment, the documents and personal
communications which served as the basis of this assessment must be
considered preliminary in nature. As a consequence, it is possible that
some of tne issues raised in this document may be resolved prior to
completion of the MPE study.

H.1 2 RFCOMMENDATIONS

F.1.2.1 OVFRVIEW

The recommendations presented in this section are concerned mainly
with the near term MPE development effort. We believe that the tasks
associated with Phase II of the development will be greatly affected by
the results cf the the near term (Phase I) development, and so specific
recommendations concerning Phase II are not presented. In addition, as
the near term Fffort will provide the basis for all long term facility
development, the overall success of the MPE depends largely on the
successful implementation and phase in of the near term MPE facility and
its associated software development methodology. The recommendations
presented are intended to reduce the risk of this near term development.
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TASK PHASE I , PHASE IA

*Design and implementation *Implementation of the near
for the near term experi- term full scale system.
mental system.

*Performance of the phase in
FACILITY *Training for the near term plans for the near term full

DEVELOPMENT experimental system. scale system.

*Design of the near term
full scale system.

*Development of phase in

plans for the near term
full scale system.

--------------------------------------------------- --------------------------------*Definition of the MPE *Performance of the MPE

software development software development
methodology. methodology phase in.

METHODOLOGY
DEVELOPMENT *Development of requirements!

for enhancements to the
phase II MPF.

*Development of phase in

plans for the methodology.

*Assessment of the pntential use of the project database

concept in the far term MPE.
R&D

PREPARATION *Evaluation of techniques for achieving high levels of
FOR PHASE II integration in the MPE tool set.

START UP
*Evaluation of facility structures which enable smooth
facility evolution and responsiveness to technological
changes.

*evelopment of technical and manerial procedures for
assuring smooth evolution of the MPL .

Figure H-I. ALTERNATE PROPOSAL FOR PHASE I/IA MPH DEVELOPM T
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Based on our evaluation of the current MPE plans and on the issues
presented in Section H.5, the following tasks are proposed as a framework
for the MPE development effort (see Figure H-i).

- Facility Development
- Methodology Development
- R&D Preparation for Phase II Startup

Each of these tasks is independent of the others and involves a different
area of expertise, allowing them to be carried out separately. The
separation of the Facility Development and the Methodology Development
tasks is highly recommended as both are essential to the initial success
of the MPE and independent scheduling would preclude the compromising of
one task due to time or manpower shortages in the other. A more detailed
treatment of each of these tasks is presented below.

H.1.2.2 FACILITY DEVELOPMENT

The facility development should proceed largely as planned in the MPE
study, except that no methodology related development should be included.
In particular, we agree with the selection of the VAX as the basis of the
facility development, as the future availability of new software tools and
specialized hardware support for this system appears to be excellent. The
tool set also appears to be satisfactory for initial development. Special
emphasis should be placed on the plans for a phased introduction of the
MPE into the DMA working environment, as this process will have a strong
bearing on the initial success of the MPE. The basic tasks to be carried
out are as follows.

Phase I
(1) Design and implementation for the near term experimental system.
(2) Training for the near term experimental system.
(3) Design of the near term full scale system.
(4) Development of phase in plans for the near term full scale

system.

Phase IA
(1) Implementation of the near term full scale system.
(2) Performance of the phase in plans for the near term full

scale system.
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H.1. 2.3 METHODOLOGY DEVELOPMENT

The methodology development should be carried out based on a review
of current DMA standards, the DMA environment, and the MPE tool set. The
methodology established should completely define the phases of the life
cycle (in a manner similar to that in the current DMAAC standards), the
documents produced by each phase, the tools used to develop the documents,
document organization standards, and tool usage techniques which support
these standards. In addition, the methodology should establish review
points in the development process, the scope of the reviews, and the tools
which will be used to support the review process at each point. The basic
tasks to be carried out are as follows.

Phase I
(i Definition of the MPE software development methodology.
(2) Development of requirements for enhancements to the Phase II

MPE which are needed to support the methodology. These
requirements should identify improvements to existing tools,
new tools which will provide more complete coverage of the
activities identified by the methodology, and requirements
for the integration of the tools based on the usage patterns
established in the methodology.

(3) Development of phase in plans for the methodology.

Phase IA
(1) Perfomance of the MPE software development methodology

phase in.

H.1.2.4 R&D PREPARATION FOR PHASE II STARTUP

This task is concerned with carrying out research and development
activities which are beyond the scope of the facility and methodology
development tasks, but which are required for the startup of the Phase II
development effort. Many of the concerns to be addressed by this task
have been identified in Section 5 of this assessment. A sampling of these
R&D tasks includes:

(1) Assessment of the potential use of the project database concept
in the far term MPE.

(2) Evaluation of techniques for achieving high levels of integration
in the MPE tool set.

(3) Evaluation of facility structures which enable smooth facility
evolution and responsiveness to technological changes.

(4) Development of technical and managerial procedures for assuring
smooth evolution of the MPE.

These R&D tasks will lead to the development of a preliminary design for
the far term MPE system.
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H.1.3 TECHNICAL SUMMARY

H.1..1 CURRENT DMA SOFTWARE DEVELOPMENT NEEDS

The software development effort at DMA can be broken down into two
classes. The first class consists of software developed and maintained
within DMA. This software can be further categorized as closed shop
products (for a controlled environment on the production mainframes) and
open shop products (not for the controlled mainframes). The second class
consists of software contracted to outside organizations but maintained
within DMA.

In order to keep pace with the ever increasing demand for software,

DMA must improve the productivity of the software development and
maintenance process, and improve the quality of the software produced. In
order to make these improvements, several needs must be met. First,
automated support for software development and maintenance activities is
needed to make efficient use of personnel and aid in the detection of
errors and inconsistencies. Second, project management aids are needed to
improve the visibility of development and maintenance activities and to
aid in project control, scheduling, and resource allocation. Finally, a
appropriate methodology for software development and maintenance is
needed, along with verification and enforcement aids for the methodology.

H.1.3.2 MODERN PROGRAMMING ENVIRONMENT OVERVIEW

The MPE is concerned solely with the needs of the product oriented
software developed or maintained within DMA. It does not specifically aid
in the development or maintenance of the large CIP systems mentioned
above, as these systems are not as yet part of the main software
production environment at DMA. In addition, the MPF is oriented largely
to the needs of the closed shop software development. The two main
functions to be served by the MPE are described below.

The first function of the near-term MPE (referred to simply as the
MPE) is to improve the productivity of development and maintenance,

improve the quality of the resulting software and documentation, and
improve the visibility and control for management. This is accomplished
by providing:

- a set of automated tools to support development activities and
project management over the entire software life cycle;

- a methodology for software development based on the the tools

provided and the DMA environment; and
- support for the training of DMA personnel.

The second function of the MPE is to provide a basis for long term
facility development. The MPE is designed to provide an elementary
facility in which tools, usage techniques, and methodologies can be tried
and analyzed. The experience gained through use of the MPF will then
serve as a guide for future facility development. In addition, the
gradual development and enhancement of the initial MPE facility will allow

356

S__



for the incremental training of DMA personnel.

H.1.3.3 TOTAL SYSTEM DESIGN FACILITY OVERVIEW

As part of the TSD study, a high level specification for a system
development facility called the TSD Facility was developed, consisting of
an automated system to provide a software development environment (SDF)
and a set of resources which are required to support its operation and
use. What makes the TSD Facility concept unique is the fact that, rather
than revolving around a particular set of tools or specification
languages, it assumes a functionalist point of view. Factors considered
in the TSD Facility concept include the dynamics of tool development, the
relationship between organizations and facilities, the impact of project
management objectives, geographic distribution, multi-organization project
management, portability, technology transfer mechanisms, specialization,
etc. The emphasis is placed on the evolutionary process to which the
facility will be subjected and on facility structures that will be
responsive to evolving needs.

H.1.3.4 MODERN PROGRAMMING ENVIRONMENT ASSESSMENT

The MPE design, as proposed in MPE study, was assessed on the basis
of the technical and managerial environment at DMA and the concepts
developed in the TSD study. Since the TSD study was directed at the
general problem of designing computer based systems, the TSD view of a
support facility is of a wider scope than that taken in the MPE study.
Each aspect of the MPE design was evaluated from this broader perspective
and with respect to the specific needs of DMA. Based on this evaluation,
the proposed MPE design appears to be satisfactory for the near term MPF
development. Many issues were identified, however, which should be
addressed during the MPF development process. These issues are discussed
fully in Section H.5.

H.1.4 INFORMATION SOURCES

Interactive Computer Program Development System Study Final Report,
Contract Number F30602-81-C-0039

Interactive Computer Program Development System Study
Functional Description, Contract Number F30602-81-C-OO30

Interactive Computer Program Development System Study
System/Subsystem Specification, Contract Number F30602-81-C-OOo
Software Life Cycle Standards, Defense Mapping Apencj Aerospace

Center

Tutorial: Software Development Environments, IEFF Computer Society
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H.2. CURRENT DMA SOFTWARE DEVELOPMENT NEEDS

H.2.1 CURRENT PROCEDURES

The software development work at DMA can be divided into two
categories, each with different support needs. The first category is
comprised of new software which is developed from scratch. Programs in
this category are usually developed for a single Mapping, Charting and
Geodesy (MC&G) product application, and their development may take place
in either an open shop or closed shop environment. The second category is
comprised of the maintenance and enhancement of existing software
developed at DMA, and the maintenance of software developed by outside
contractors. This second category represents the major portion of the
software effort at DMA.

The method used by DMA to develop software can be characterized as
follows. In the requirements definition portion of the life cycle,
requirements specification generally is informal and has no automated
support. Some efforts are under way at DMAAC, however, which use formal
requirements specifications that are generated by hand. In the area of
program design, there is no formal specification technique and no
automated support. Some organizations, however, do make use of some form
of program specifications. Programming itself is performed mostly in
dialects of FORTRAN and COBOL, although some assembly language programming
is also done. Automated support for this process is provided by the
language compilers. In the area of program testing, some automated tools
are in existence within DMA to support this process. However, these tools
are not in general use. Finally, the major effort over the system life
cycle is spent in the maintenance and enhancement of programs. Within
DMA, this process is ad hoc with no automated support to control and
document modifications.

H.2.2 DMA NEEDS

In order to guide the MPE design, the perceived DMA needs for
software development and maintenance support were studied by General
Dynamics. An informal life cycle model consisting of phases for
requirements definition, program design, coding, testing, production, and
maintenance was used, and needs within each category were investigated.
In addition, the needs for project management and training of personnel
were also investigated. The specific needs which have been documented by
General Dynamics in each area are presented below.
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Development and Maintenance Needs

- Reevaluation of current methodologies based on the availability of

automated support.
- A computer supported requirements specification language.
- A computer supported program design language.

- A program piototyping capability.
- Support for production code optimization.
- Configuration control and requirements tracking.

Management Needs

- Project scheduling aids, such as schedule impact analysis and

resource allocation (especially manpower allocation).
- Project review aids, including improved milestone identification

and the establishment of quality assurance procedures and
guidelines.

- Proje-t history statistics to provide information for the

management of future projects.

Personnel Needs

- Interactive access for all personnel.

- Graphic display capabilities.
- Natural language interface.
- Modern data entry techniques.
- Rapid turn-around time.
- A decrease in the volume of paperwork.
- A training/orientation program.

- A user assistance service to aid personnel in solving system usage

problems.
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H.3. MPE OVERVIEW

H.3.1 MPE OBJECTIVES

The main objective of the MPE is to meet, as much as possible, the
current software development and maintenance needs of DMA. These needs
revolve around three main concerns. First, DMA must improve the
productivity of its software development and maintenance in order to meet
current and future demand for its MC&G products. Second, DMA must also
improve to quality of its software and documentation in order to help
control the ever rising cost of program maintenance. Lastly, the
visibility of the entire development and maintenance process must be
improved so that management will have better control over the entire
process.

The MPE facility was designed in order to meet these needs at DMA.
To accomplish this, the facility will provide the following: (1) a set of
automated tools to support software development, maintenance, and project
management activities; (2) a methodology for the use of these tools and
the facility as a whole; and (3) training for DMA personnel in the proper
use of the facility.

H.3.2 MPE DESCRIPTION

As part of the MPE facility design, the following equipment
configuration has been proposed. Central to the MPE equipment
configuration is the Tool Bearing Host (TBH), which will support the
automated tools relating to software development, maintenance, and project
management. The TBH function is to be provided by a VAX 11/780
minicomputer, with the requisite disk and tape mass storage equipment and
a number of interactive terminals to serve as workstations. In addition
to the TBHs, the existing production mainframes also have a role in the
MPE. The mainframes are to be connected to the TPHs through a
communications link to allow for the transportation of production programs
from the development to the production environment.

The set of development and maintenance tools selected for the MPE
consists of the following.

- USE.IT is a tool which supports the high level design and
documentation of software. With the aid of a library of defined
functions, USE.IT is also capable of producing high level language
code directly.

- SDDL (Software Design and Documentation Language) is a language and
associated analysis tools for detailed program design specification
and documentation.

- FORTRAN 77 and COBOL 74 compilers are the major high level language
processors to be supported.

- FAVS and CAVS (FORTRAN Automated Verification System, COBOL
Automated Verification System) are to provide support for program
testing. Static and dynamic analysis of program usage and path
coverage is performed.

- IS/i (Interactive Systems/One) is a compatability package which
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makes many of the UNIX Programmer's Work Bench (PWB) tools
available on the VAX 11/780. These tools include text processing
and configuration control.

The management support functions are to be provided by a single tool
called VUE. The focus of VUE is on providing support for project planning
and control activities. It analysis is based in established networking
techniques, and provides support for the following: (1) time analysis,
(2) cost analysis, (3) resource analysis, (4) resource allocation, and (5)
report generation.

Lastly, the training function is to be supported by a tool called
HYPERGRAPHICS, which is to be hosted on a microcomputer system for
portability. This tool will enable low cost training of DMA personnel
outside of the production environment. The basic function of the tool is
to support the preparation and presentation of lecture material, allowing
for structured movement through the lecture material and the execution of
example programs within the framework of the training tool.

H.3.3 MPE USAGE

Although a formal methodology has not jet been developed for the MPE,
the manner in which the MPE might be used to develop programs can be
characterized as follows. USE.IT will be used to develop the high level
design of a program (which is referred to as the "requirements definition"
in the MPE study). Reports describing the design and presenting some
analysis are automatically produced for management review. If the program
is simple or is composed of predefined library functions, then the high
level language code for the program can be generated automatically by
USE.IT. (The the classes of programs which can be developed automatically
by USE.IT should be determined during the Phase I development effort.) For
the detailed design of the more complex programs or for simple
modifications to existing programs, SDDL will used. Design reports
(Software Design Documents) are produced automatically. Once the design
has been completed, the programs are then written and compiled using the
FORTRAN 77 or COBOL 74 compilers. Programs (either produced manually or
generated automatically by USF.IT) are tested with the aid of FAVI or
CAV, which produce a number of reports on the testing status. These
reports can then be reviewed by project management before authorizing a
program for production status. Once authorized for production, a program
is then transported to the production mainframes, where it is compiled and
run. In addition, all documentation and source code for the program are
brought under configuration control using the Source Code Control System
(SCCS) component of the IS/i package. All subsequent maintenance and
enhancements performed on the program are then done with the help and
under the control of SCCS.
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H.4. TSD FACILITY OVERVIEW

H.4.1 THE TSD PERSPECTIVE ON SOFTWARE DEVELOPMENT

The TSD facility concept has been developed to encompass all of the
current trends in software development environments, and more. In its
simplest terms, a TSD facility consists of both an automated system to
provide a software development environment, and a set of physical
resources which support its operation and use. What makes the TSD
facility concept unique is that fact that, rather than revolving around a
particular set of tools or specification languages, it assumes a
functionalist point of view. In contrast, current SDfLs tend to be
organized around a particular language (Ada, LISP), operating system
(UNIX), or methodology (DREAM, 1DM). Factors considered in the TSD
facility concept include the dynamics of tool development, the
relationship between organizations and facilities, the impact of project
management objectives, geographic distribution, multi-organization project
management, portability, technology transfer mechanisms, specialization,
etc. The emphasis is placed on the evolutionary process to which the
facility will be subjected and on facility structures that will be
responsive to evolving needs.

The discussion in the remainder of this section revolves around three
main concepts, namely those of Environment, System, and Facility. An
Environment is a user view of the services and data provided by a system.
A System is the entity which provides an environment or set of
environments for its users. Lastly, a Facility is everything which is
needed to support a System ana its usage at a particular location.

H.4.2 THE TSD ENVIRONMENT CONCEPT

The TSD Environment, which represents the user's view of the system,
consists of the following items. The first item is the set of tools which
are provided to the user. In the TSD view, the tool set should be well
integrated and cohesive, which can be achieved best through their
organization around a central project database. The next item is the set
of project data available to the user, which determines his view of the
project he is working on. The last item is the user interface, which
determines the method of access to the tools and data, as well as the
method of interaction. This interface should be as friendly and
supportive as possible, in order to make efficient use of the users' time.

The tools provided within an environment must be integrated and
support those activities for which the environment is specialized. One
category of tools, which is present in all environments, is thqt of the
core tools. Core tools provide general services to the user, such as
general text processing, database manipulation, or confipuration eontrol.
In order to be general, these tools must be language and application
independent. While there may be some dependency of the tools on the form
(schema) of the data which they are accessing, they must be independent of
the semantic content of the data (for example, the TS/i core tools all
assume a fixed schema, tnat of a continuous stream of chara~ters). 'ne

362



second category of tools identified within TSD is that of the specialized
tools, which are tailored to specific languages, applications, or
techniques. Some examples of specialized tools are management tools such
as cost estimation (special application), requirements specification
analysis tools (special language), design specification analysis tools,
and test coverage analysis tools. Those tools which have been selected
for an environment must be integrated, i.e must be able to work with each
other witnin a common user interface structure. Two particular techniques
for integrating a tool set are the organization of the tools around a
central project database, and the support of automatic +ransition from one
tool to another.

The user interface presented in the environment should be designed in
order to make efficient use of the users' time. A basic assumption of TSD
is that this interface will be provided through interactive workstations,
in order to allow immediate feedback to the user. All tools which the
user must use should be accessible through a common command language,
which should have the flavor of natural language, without strict syntactic
constraints. The interface should also assist the user as much as
possible in learning and using the interface, by providing such services
as online documentation. Lastly, it should be possible for individual
users to tailor the interface to their own particular needs.

The set of project data available to the user within an environment
is assumed under TSD to be maintained and controlled by means of a central
project database. This database serves as a central repository for all

information relating to an individual project. Aside from maintaining
each individual environment's view of the project data, the database
serves as a focal point around which the environment tool set is
organized. A particular advantage of this organization is that it makes
it easier to develop tools to analyze the consistency between different
portions of the project data, such as the consistency between the
requirements specification and the design.

A final aspect to be considered in the discussion of the TSD
environment concept is that of the control of multiple environments within
a single project. Each environment has its own set of tools and
capabilities with respect to tool usage and project data which is
available. Through control of the tools and capabilities allocated to an
environment, the environment can be specialized (and restricted) to a
particular application. Particular criteria for specialization are
project type, phase of a project (requirements definition, design,
programming, maintenance), and role of the user in the project
(management, development, technical review). An environment manager for a
project can create sub-environments whose tools and capabilities are a
subset of his own (hence environments are hierarchically structured).
Several environments may be created around the same set (or common
subsets) of project information, allowing for many views of the project to
exist simultaneously. Within each environment, the user may manipulate
his portion of the project data without affecting the views of the other
users. Once he has completed his work (such as a programmer completing
the coding of a module), any new project data generated can be reviewed by

management before incorporating it into the global project view. Finally,
tnrough ,<-ntrol of the tools and data available to individual users, the
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entire project database can be protected from unauthorized access and
manipulation.

H.4.3 THE TSD SYSTEM CONCEPT

A TSD System is any system which implements a TSD Environment
structure as characterized above. As part of the TSD study, the high
level design of a TSD System was carried out in order to illustrate a
method of implementing the various environment concepts. An overview of
that design is presented below.

Figure H-2 is a top-level diagram of the proposed TSD System design
which incorporates all of the aspects of the TSD Environment described
above. The main control module of the system is the Command Language
Interpreter (CLI). All user communication must pass through this module
for interpretation, control, and possible execution. Hence the CLI
presents the main user interface for the system. The CLI keeps track of
all system resources and user authorizations, allowing it to automatically
provide users with their proper environment when they log onto the system.

User communication with the TSD System is through the interactive
work stations (WS1,...,WSn). These stations may be as simple as dumb CRT
terminals, or as complex as sophisticated graphics work stations,
depending on the user/application requirements.

Each TSD System may also be connected to selected specialized
peripherals (SPI,...,SPm). Although every installation will have standard
peripherals, such as line printers and tape drives, more specialized
devices such as those needed for graphics display or sophisticated data
gathering may not be available so universally. In order to share the use
of such devices, one of the specialized peripherals is assumed to be a
network connection. This allows a user from one TSD System to access and
use the specialized uL0,ices that may be available at another installation.
As indicated in Figure H-2, all such accessing goes through the
appropriate interface routines (TI,...,Tm), but the central control still
resides in the respective CLI modules.

All communications with the project database must pass through the
Database Access Control (DAC) module. The DAC uses the appropriate
project database tables to either allow or disallow the requested
user/tool access. This is the mechanism through which the control of user
access to information inherent in the environment concept is performed.
In order to provide for portability these access requests assume a
standardized TSD System database structure. However, this is essentially
a "pseudo" or "logical" database in that it probably will be more
economical to use an existing commercial database system for the actual
physical data storage and retrieval operations. Thus the TSD database
management system may be viewed as an interface between the assumed TSD
logical database and the actual physical database. Note that this means
that different commercial database management systems could be used at
different TSD System installations, with the only added expense that of
redefining the TSD DBMS interface.
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Tne CLI uses the Tool Access Control (TAC) module to maintain control
over the use of the tool set. User requests for tools, tool recuests for
tools, tool compaticility and interface requirements, and all other
information about tool usage will be maintained through this module.
ence, it provides the mechanism through which too: usage is restricted

for individual envirorunents. Ii. addition, the 'AC maintains tne inteprity
of the system integration tnrough the enforcement of tool compatibility
and interface requirements. New tools to be added to the system are
integrated into tne system bysuppi-ng the appropriate information to tne
TAC module.

Tne Core Tools module represents the collection of all standard TSD
System tools availaole at any given time. As mentioned previously,
pa.ticular applications will need specialized tools or utilize specialized
peripherals *hat require unique tools. In general, these tools are
contained in the Other Tools module, which will vary in concent from
sy-htern to system.

F .,1.4 THE TSP %A(>LTTY

A TSI Facility .s a TSP System implementation along with everything
needed to support its operation and use. in particular, the support for
tne System consists of a set of physical resources, a methodology. for
using tne facility, and facility personnel. A more detailed description
of earn of trese aspects of the Facility is presented below.

Tne center is the TSD Facility is, of course, the TSP System which it
provides for its users. Typically, a TSP System can be implemented in
software on top of a standard comnarcial operating system along iith a
standard commercial dptaoase. 'n addition, some specialized nardware
(sucn as grapnics displays) may be needed to implement some functions of 9
particular system. Any tools provided in excess of the core tool set may
be specialized according to the overall purpose of the facility.

The physical resources provided for the Facility must be sufficient
to meet the needs of the TSP System implementation, the Facility stpff,
and the Facility users. Some examples of resources required by the
facility are computer equipment (processors, memory, mass storage,
terminals, specialized hnrdware, etc.), building space, and office
equipment.

Anotner basic component of a TSD Facility is the methodologzy which
specifies bow the facility and its tools are to be used to solve problems.
This methodology must present a well defined life cycle for the products
being developed by the Facility, including a description .f the documents
and +.nols involved at each point in the lire cycle. Also important are
the procedures for verifying and enforcing compliance with the
metnodology. To aid in the usage of the methodology, the TSP System
-nrouid be specialized to support it directly. In particular, specialized
,< n anould be selected which aid in and enforce the use of the

• rodolopy. Also as an aid in usape, a set of guidelines for tail orinp
".. nodolopy to specific applications should be provided.
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The last basic component of the TSD Facility is the Facility staff,
which can be divided into technical staff and management staff. The
technical staff provide all of the technical support needed by the TSD
System and its users. Their functions include operation of the TSD System
implementation, assisting users in performing System related activities,
training of new Facility users, and performing development and maintenance
functions for the facility. The management staff ensure that all aspects
of the Facility operation proceed correctly and efficiently. The
functions of this staff include the coordination, supervision, planning,
and monitoring of the Facility and its usage.
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H. q. MPF AFSFFSMFNT

H.5.1 OVFRVIFW

T1e YPF desip presented in the VPF study was assessed based on the
environment at PMA and the concepts developed in the T7', study. Since the
TSD studj was directed at the general problem of designing complete
hardware/software systems, the T h view of a development facility is of a
wider scope than that taken in the YPF study. Fach aspect of the MPF was
evaluated from this vroader perspective and w-tr: respect to the specific
needs of rYA.

Based on this evaluation, the current MPF design was determined to be
a satisfactory casis for the MPF development. Many issues were
identified, nowever, which dOi not fall within the scope of the MPF study
but which should be taken into account prior to the phase I development
effort. The purpo se of this section is to present a discussion of these
issues witnin the context of the TSP overview of the previous section, and
to discuss the rationale for our a1 ternative proposal for the phase I/IA
MPF development.

H.5.2 FACILITY DFVFLP?'FNT CONCFPNF (PFAPF I/IA)

Maturing of tne tool set. Tn order to minimize cost and development
time, it was spe'ified tnat the tool set for the MPF consist mostly of
mature tools, i.e. tools whin alre:dy exist and have been successfully
used on a non-trivia. r)sis. The tnol set selected for the MPE has
largely met tnis requirement, altnough some tools are relatively new and
may require some developmeni to cecome fully mature. One such tool is
USE.IT, which has nad linited usage -n a practical software development
environment and whi:.h '-,n ruires a rich library of program modules tailored
to the DMA application environment in order to be effective. Another
major area requiring development is the interfacing of the non-UNIX tools
witn the IS/i system, which will be a major task of the MPF development.

User interface. The major user interface issues are centered around
tne command language interface and user assistance. The command language
interface for the PF -s provided mainly by the IS/i shell, although
VAX/VMS may be used to a lesser extent. In general, it will be desirable
to avoid the use of the VMS command language system so that a more unified
interface is presented to the user. In the near term, the flexibility of
the IS/1 shell should be used to create new commands which directly
support and enforce facilitj-wide policies and standards. User assistance
within the MPF is provided mainly through online documentation with tools
fc- rapidly searching through this documentation. During the MPE
development, this documentation should be extended to cover the non-IS/1
tools and other MPF specific material such as usage standards.

MPE phase in. One of the major concerns for the MPE, particularly in
the near term, has been the achievement of high payoffs from the MPE
usage. The determination of the cost impact of the MPF on DMA is
extremely difficult, however. A major factor in the near term cost
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savings is the plan for the phased introduction of the MPE into the DMA
environment. Hence, careful attention should be paid to the development
of tnis plan during the MPE development effort. Benefits should be
projected based on better data gained from the use of the near-term
experimental system.

H.5.3 METHODOLOGY DEVELOPMENT CONCERNS (PHASE I/IA)

Separation of methodology and facility development. The separation
of the facility development task and the methodology development task is
highly recommended during the phase I/IA MPE development effort. As these
tasks are largely independent of each other and require different areas of
expertise, they represent a logical division of effort. Their separation
would preclude the compromising of one task due to time or manpower
snortages in the other. As both these tasks are essential to the initial
success of the MPE, such a separation will lower the overall risk of the
initial development effort.

Life cycle coverage. An important concern which impacts the overall
effectiveness of the MPF is the tool coverage of the software system life
cycle. The proposed near term MPE tool set was selected based on an
informal life cycle model. The tool set selected covers most of the
activities identified in that life cycle. During methodology development
task, however, additional life cycle activities may be identified which
are not directly covered by any tool in the proposed tool set. Two such
activities which were identified through comparison with the TSD
Methodology and which may require MPE support in the long term are formal
problem definition and software system design. The formal problem
definition activity involves the specification of the function to be
performed by a program in a manner which is independent of that program's
design. The inclusion of a tool to support the specification and analysis
of a problem definition will aid the identification and correction of
errors and ambiguities in the specification before they are passed on to
the software design. The software system design activity deals with the
specification of multiple programs, databases, and interface file
structures. The need for a tool to provide such system design support
within DMA is likely to grow in the future.

H.5.4 AREAS FOR RESEARCH AND DEVELOPMENT

Determination of evolving needs. The MPE Study attempts to determine
needs based on an averaging of the needs stated by DMA personnel
regardless of differences in individual training or level of
sophistication. Pence, the needs identified are limited to the general
case and do not reflect the special needs of individual organizations. In
the long term, the perceived needs of DMA personnel will change as they
become more sophisticated through tool use, education, and exposure to new
technology. In addition, we envision an increased demand for
specialization of the facility to meet the needs of particular
organizations, projects, or individuals. Procedures for determining these
evolving needs and changing the MPE to meet them need to be addressed in
future MPE planning and development efforts.
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Effect of technology advances. A specific area related to needs
determination is the effect of foreseeable technology advances on the MPF.
The current needs have been addressed solely from the point of view of the
current DMA technological environment. An attempt to determine and
address the needs which will develop with the advent of new technology
should be made. S pecific areas for investigation include the introduction
of artificial intelligence into DMA applications, the development of
geographic database systems, the use of problem oriented languages, the
proliferation of personal computing with high degrees of distribution, and
the introduction of new peripheral devices.

MPE evolution. In order to be cost effective in the long run, the
MPF must be capable of evolving to meet the changing needs of DMA and to
deal with the effects of new technology. Particular concerns in the
evolutionary process are the maintenance and enhancement of existing
tools, the acquisition of new tools, and the ongoing integration of the
tool set. The potential for evolution already exists in the proposed MPF,
as the underlying system for the MPE (VAX/VMS, IS/i) is one for which a
large number of tools are available or under development. In order to
take advantage of this potential, an assessment should be made of long
term MPE architectures which will foster smooth growth and evolution, as
well as the technical and managerial procedures needed to carry it out.

Management support. One area in which additional tool support may be
required in the long term is project management. One aspect of this
support is the integration of the programmer and management tools.
Currently, VUE does not gather data from any programmer tool, and hence
the identification of project status or scheduling updates cannot be done
automatically. Integration of these tools would provide management with a
better view of the project status and also aid in planning. Another area
requiring study is the method for controlling information access and
modification within a project. Lastly, procedures and tools for verifying
and enforcing compliance with an MPE methodology should be developed.

Multiple environments. The MPE presents a single environment which
has been specialized to the task of software development and maintenance
within DMA. While a single environment system is sufficient for current
DMA needs, there are several advantages to a multiple environment scheme
which can aid in the long term usage of the MPE. These advantages include
the ability to specialize individual user or project views to meet
specific needs, the control of access to project information, the control
of additions and modifications for project data, and the ability to
provide a smooth, phased evolution of the system tailored to the needs of
individual projects.

Project database. Currently, the concept of a project database does
not exist in the MPE design, which is in sharp contrast to other facility
development efforts such as SREM at TRW. Each individual tool in the MPE
maintains its own separate data within the VMS file system, which can
result in a fragmentation of the data associated with each project and
makes the global analysis of this data more difficult. The organization
of the MPE tools around a central project database would be a major step
toward unifying the project data collection and integrating the tool set.
Particular advantages of this organization are the ability to perform
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sophisticated query processing on the entire project database, the
establishment of a uniform access structure for the data, and the
associated capability of creating tools which collect, analyze, and
compare data from many different parts of the project (such as in
requirements tracing).

Portability and vendor independence. A final concern which should be
assessed is the potential for achieving full portability and vendor
independence in the MPE. Portability and vendor independence can be
achieved through the use of system architectures and individual components
which do not rely on a specific hardware or software support system.
Individual components of the system can be made portable by developing
them in a high level language which is highly portable, such as C or Ada.
Such languages rely on a library of standard support routines which can be
redefined easily for each target environment. An entire system can be
made independent of vendor-supplied support systems through use of a
structure in which all accesses to the support systems (such as a
commercial database system) are filtered through a standard interface (as
in the TSD System design presented in Section 4) which can be rewritten
for each vendor package without affecting the remainder of the system.
The applicability of such techniques to the far term, MPE system
development should be assessed in the R&D task.

-3
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