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t. EXECUTIVE SUMMARY

1.1 BACKGROUND

Advances in the underlying technology and increased demands from a
growing range of highly sophisticated application areas are drastically
affecting the complexity of systems development. (A system is defined
here as a hardware/software or H/S aggregate supporting a given
application.) Technological difficulties stem from an increase in the
number of design alternatives and related changes in the nature of the
systems being considered. The widespread availability of microprocessors
has brought about an increased awareness of the role played by H/S
trade-offs in systems development. Successful experimentation with
unconventional machine architectures has identified the need for careful
consideration of the relationship between problem domain characteristics
and the architectural features of the support system. Finally, VLSI
technology has placed within the designer's reach specialized high
performance (off-the-shelf and custom) devices, while requiring a
completely new approach to algorithm design that stresses communication
cost minimization, simple interconnection topology, and parallelism.

This new technolcgical climate presents DMA as well as all DoD
organizations with great opportunities and new challenges in the area of
systems design. The performance of existing systems may be increased
through enhancements tha! take advantage of the new technology.
Furthermore, systems of unprecedented sophistication can be conceived in
response to the ever growing needs of the national defense. The promise
of great achievements, however, is postulated on the premise that thia new
technology may be used effectively. Effective technology utilization can
be realized only by employing appropriate methodologies and design aids.

Early recognition of these trends by Rome Air Development Center
(RADC) has been marked by a series of related research and development
activities whose starting point was the Total System Design (TSD) concept.
It envisions system design as taking place in a support environment
consisting of a family of design methodologies and 2 collection of
associated design aids. Moreover, the TSD concept also presumes the
ability to easily explore the space of design slternatives every step of
the way, and to make rational decisions based primarily on solid technical
reasons. The notion of avoiding premature commitments to particular
design solutions, such as the a priori selection of specific hardware, is
another key component of the concept and one of the motivating factors
behind its inception.

DMA involvement in the TSD research and development activities came
about due to the realization that the establishment of a TSD Facility at
RADC, an important DMA service laboratory, would enable DMA contractors to
reduce ayatem development costs while enhancing the quality of the systems
being built for DMA. Because the DMA production capabilities depend to a
significant degree upon the quality of the computer based systems
available at its two production centera, the decision to support the TSD
efforts represents a major step toward preparing the organization to meet
its future operational needs.
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The fact that software development work internal to DMA could also
benefit from the existence of a TSD Facility (through importation of
proven design and management tools) has been realized only recently.
During the Seventies, TSD efforts focused on refinement and evaluation of
the concept, and on investigation of the feasibility of the development
and integration of the required design aids within a TSD Facility. The
present version of the facility is known as the System Architecture
Evaluation Facility (SAFF) and is generally viewed as serving a2 dual
purpose. On one hand, it supports some of the aids envisioned under the
umbrella of the TSD concept while, on the other, SAEF also provides an
experimentation laboratory for research into advanced hardware
architectures.

The current SAFF configuration (still under development) stresses the
use of powerful emulation engines aimed at providing rapid implementation
and analysis of alternate hardware configurations, a capability which
establishes SAEF as an effective environment for the development and
maintenance of embedded computer systems. Single processor emulation is
carried out on a nigh-speed microprogrammable machine already installed at
RADC, the Nanodata QM-1, which may be used both in stand alone mode and as
shared resource through a DEC-20. The DEC-20, which is connected to the
ARPA net, makes *‘he facility available to distant users. Emulation of
distributed systems is anticipated to take place primarily on a Multiple
Microprocessor System (MMS) which is still in the design stage. The
interface between the MMS and the other components of SAEF is to be done
via a bus shared with the QM-1 and an already existing STARAN S-1000
associative processor. Accessible from the ARPA net through an H6180
MULTICS system, STARAN is used as an aid in evaluating single-instruction,
multiple~data stream (SIMD) architectures.

Attempts to apply existing TSD technology on DMA type problems have
revealed, however, the need to broaden the initial scope of the
investigation to include:

- the reevaluation of the system life-cycle definition in view of
recent changes in the nature of systems (e.g., distribution of
both data and processing) and in the relation between hardware
and software;

- the identification of the role played by H/S trade-offs in the
system life-cycle;

- the development of distributed systems design methodologies that
approach the selection of an appropriate H/S mix in a systematic
and objective manner;

- the reevaluation of the TSD Facility definition and plans in
light of the growing realization that design environments (e.g.,
Ada) hold the key to productivity and quality increases in the
system design area, i.e., tool integration is as important as
tool availability.

These issues are considered in this assessment of the current state of the
TSD family of methodologies and of the TSD Facility.

2




1.2 OBJECTIVES

Consolidation of past accomplishments, assessment of the TSD role in
the design of DoD/DMA systems, planning for future efforts, and
dissemination of the current state of the TSD based technology to its
intended beneficiaries are the four principal goals of this assessment
study.

TSD CONCEPT CONSOLIDATION.

The consolidation reflects the current perception of the TSD concept.
These views are the result of a maturation process stimulated by
technological changes that have occurred in the last decade, and by
valuable experience gained on TSD research and development projects. The
aim is to determine, from a TSD perspective, the fundemental nature of the
decision processes involved in system design and to formalize them so that
they become the basis for a rigorous system design approach. Of special
concern is the expansion of the present understanding of the dynamics of
H/S trade-offs. The result of the consolidation is meant to benefit both
researchers and technology development planners.

TSD TECHNOLOGY ASSESSMENT.

The most important criterion used in assessing the TSD technology is
ita effectiveness in the development, analysis, enhancement, and
maintenance of those systems that are most often encountered in DoD/DMA
applications. Three such applications are considered in this study, and
an evaluation is carried out in order to establish the degree to which
they could be supported by existing or postulated TSD-based approaches.
The TSD's practical significance is measured by the extent to which such
approaches could lead to definite cost reductions and quality
improvements.

TSD TECHNOLOGY TRANSFER INTO PRODUCTION AND FUTURE R&D PLANS.

Another key objective of this investigation is the generation of
recommendations for plans to accomplish the transfer of the TSD technology
into the production environment, and the establishment of future research
and development directions for the TSD efforts as a whole. DoD/DMA
priorities, previous work, anticipated technological trends, and the more
refined and comprehensive nature of the newly consolidated view of the TSD
concept are all factors that impact the planning process.

TSD TECHNOLOGY DISSEMINATION.

The rationale behind the dissemination of the TSD technology is to be
found in a commitment to the establishment of effective production
environments. As such, the development of materials that introduce the
community of potential users to this technology is considered to be an
important and neceasary by-product of this study. The materials are
intended to increase the visibility and the utilization of the TSD
technology within DoD/DMA. While this offers the benefits of further
comprehensive evaluation of the TSD technology within a real production
effort, it also creates the opportunity for the exploitation of existing
TSD design aida and methodologies.




1.3 DEFINITION OF TERMS

Understanding the thesis of this report requires a good grasp of four
fundamental concepts: methodological framework (henceforth called
framework), methodology, computer-aided design system and design facility.
The definition of these terms and their relevance to TSD are reviewed here
in preparation for subsequent sections, where more detailed discussions
are to be found.

Fup-pry

METHODOLOGICAL FRAMEWORK.
A framework represents a high level non-procedural description of
some general problem solving approach. More specifically, it identifies:

(1) a set of subproblems whose solutions lead to the solution of the
target problem; and

(2) fundamental relationships among the subproblems, without regard
to the manner in which one arrives at their solutions.

The framework has the ability to relate the nature of the problem and the
essence of its solution without telling HOW, but rather WHAT is involved
in solving it.

METHODOLOGY.

In contrast with the framework, a methodology prescribes a particular
mode of procedure to be followed in solving a given problem. While the
objective of a framework is to characterize a class of feasible solutions
by abstracting over a family of methodologies, the goal of a methodology
is to define an effective solution for the problem at hand. Effectiveness
is achieved by exploiting particular features of the problem or
environment through the use of specific techniques or classes of
techniques. In the latter case, rules for selecting the most appropriate
technique from the class of usable techniques are an integral part of the
methodology. As a direct result of the emphasis placed on effectiveness,
methodologies are largely problem and environment dependent.

COMPUTER-AIDED DESIGN SYSTEM.

A computer-aided design system provides the designer with an
integrated set of tools aimed at increasing his/her productivity through
the automation of difficult or time consuming tasks. Most often, the tool
set directly supports a class of related design methodologies and the
management of projects that use the respective methodologies.

DESIGN FACILITY.

A facility is defined as the means of support (i.e., resources)
available at some location for use in the application of certain
methodologies to various problems. These resources include people,
computer-aided design systems, documentation, tools, physical plant, etc.,
and they are established for the purpose of enhancing design productivity.
Consequently, the resources that make up a particular facility tend to be
centered around a specific methodology.




In light of the definitions above, the TSD Framework is a framework
which assumes systems design to be its problem domain, postulates
successful design on the availability of a disciplined design strategy,
and acknowledges:

(1) the
(2) the
(3) the
(4) the

(5) the

H/S dualism rather than dichotomy,

need for a formal H/S trade-offs strategy,
advantages of systematic error detection,
importance of step-by-step performance evaluation,

need for proper evaluation of human interfaces.

Thus, the TSD Framework captures the very essence of the TSD concept.
Moreover, the TSD Framework specifies the basic characteristics of an
entire family of TSD Methodologies to be supported by a computer-aided
design system, called TSD System, incorporated in a powerful TSD Facility.
The facility is aimed at providing assistance throughout the entire aystem
life cycle, from development to subsequent analysis, enhancement, and

maintenance.




1.4 SUMMARY OF RESULTS

The four key objectives of the study correlate strongly with the
levels of abstraction identified in the previous section. The
consolidation corresponds to the development of the TSD Framework. The
assessment involves an evaluation of several TSD Methodologies with
respect to their effectiveness in three critical DoD application areas.
The planning consists of a review of the current state of the TSD System
and Facility and a determination, in light of the earlier assessment, of a
suitable course for the future. Finally, a user-oriented TSD Guidebook is
created in order to meet the dissemination objective. The main results of
the study are reviewed below.

- The TSD Framework represents a redefinition of the system
life-cycle -- systems are treated as H/S aggregates and the
life-cycle definitions for hardware and software are brought
under a unified umbrella.

- The dynamics of the H/S trade-offs have been identified and
their role in the system development life-cycle has been
established.

- An approach for the development of system design methodologies
from the framework definition has been defined and illustrated.

- A distributed systems design methodology that uses the system
requirements to generate hardware and software requirements for
the system has been proposed and illustrated for a real-time and
a data processing system.

- High level requirements and design structure for the TSD System,
the computer aided design system at the center of the TSD
Facility, have been developed and have been used in the
preparation of a TSD Facility master plan.

- A methodology definition language having the potential to be
used for configuration control in computer aided design systems
and for project planning has been proposed and illustrated.

-~ A formal characterization of distributed systéms design has been
developed in order to establish the requirements definition for
specification languages needed in system design.

- A distributed systems design specification language meeting some
of the requirements identified in the formal model has been
developed and illustrated -- its distinguishing feature is the
designer's freedom to define arbitrary communication protocols
among concurrent processes.

- The formal model has been used also in the development of a
L systematic approach to building formal system requirements.

- An assessment of the plans for a Modern Programming Environment
at DMA based on the concepts of the TSD Facility.

6
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1.5 RECOMMENDATIONS

The recommendations of this study fall into two categories. The
first group deals with the master plan for establishing a TSD Facility.
The second addresses the issue of how DMA could take advantage of the TSD
technology and methodologies in the interim period during which a TSD
Facility is not available and as part of its effort to establish a modern
programming environment,

TSD FACILITY DEVELOPMENT MASTER PLAN

The following explicit objectives have determined the nature of the
TSD Facility master plan:

- low development cost;

- speedy development;

- limited risk;

- early availability to potential users;

~ ability to respond to immediate design needs without
compromising the long range requirements;

- smooth growth in capability and range of applicability;

- compatibility with other related DoD efforts (e.g., SAEF, Ada);

-~ strong interaction between R&D and production efforts.

Because the development of a design facility is generally a high risk
and high cost proposition, the strategy adopted in the master plan is to
minimize new tool development and focus on integrating off-the-shelf
components to the greatest possible extent. : While the command language,
database view and core tools which characterize the central part of the
T8D Fnvironment could be assembled together from existing components, the
lack of application specific tools could make it difficult to attract
potential users of the prototype TSD Facility. This may be avoided if an
already successful existing facility could be used to supply the
application oriented tools. SAFF has been selected to meet this
objective. This particular choice has several other advantages. It
employs a facility which is compatible with the general TSD Concept, it
provides continuity to the entire TSD program, it addresses a class of
users who feel most acutely the need for a design facility (for embedded
systems), and it promises immediate and high payoffs.

The result of these and other considerations is a plan which consists
of three concurrent efforts which gradually merge into one. The main
stream deals with the selection and integration of the TSD Facility
components. The other two focus, respectively, on increasing the
effectiveness of the application specific tools through enhancements to
the SAEF and on providing the technical support needed for long range
planning through the development and evaluation of new TSD Methodologies.

The development and evaluation of new TSD Methodologies is meant to
have little or no impact on the near term version of the TSD Facility.
The objective is to assist in the later evaluation and subsequent
enhancements of the TSD Facility available at the end of this planning
reriod. This is to be accomplished by developing tools to be incorporated
in subsequent versions of the facility and methodologies that define the

7




manner in which such tools should be used in various application areas.
Because effective methodologies are application dependent, the plan
suggests work to be concentrated only on a few application areas of
special significance within DoD. Corresponding independent refinements of
the TSD Methodologies should be produced for each selected area.

Following the methodology development, empirical evaluations on real-life
moderately sized projects should be carried out. The experience should be
used to further refine and tune the methodologies to the needs of the
respective application areas. The development of specification languages
and analysis techniques should be centered around mechanizing some of the
activities involved in applying the methodologies. This is the point
where some integration between the intentionally independent undertakings
ought to take place. The level of effort required by this particular
stream of the master plan depernds upon the range of applications being
chosen. (No more than three areas should be attempted.)

SAEF enhancements are motivated by the desire to make the ultimate
facility more attractive to potential users, to build a user community
concurrently with the development of the facility, and to establish a
realistic base for determining the priority assigned to introducing
various core tools. Since it is expected that not all core tools will be
available in the prototype facility, those tools that appear to be most
needed by the particular community of users ought to be considered first.
Furthermore, current understanding of the specification language needs for
the system design stage should be used in the design of the next version
of the hardware description language used by SAEF. This stream of
activities is also independent in nature from the other two.

The main thread of the master plan is concerned with building a TSD
System from available components and its integration with the SAFF to form
the TSD Facility prototype. The approach is actually consistent with the
TSD Methodologies. It starts with the problem definition stage during
which a detailed definition of the TSD Environment (only outlined by this
study) is generated. Based on the TSD Environment defirition a system
architecture for the TSD System is developed in a manner which is
consistent with the constraint that the proposed architecture must be
supported primarily by the resources available in SAEF. (Given the short
range nature of the plan hardware procurement ought to be avoided.) Next
the binding phase is carried out. It consists of the selection of
exiating tools required to support various entities of the TSD System and
of the definition of custom software needed to integrate them. This
activity represents, in the terminology of the TSD Framework, the
generation of software requirements. (The hardware is given in this
case.) The integration of the tools is carried out in stages. The last
one involves placing all acquired tools on the SAEF and thus establishing
the TSD Facility prototype. Once some experience with the use of the TSD
Facility on several production efforts is accumulated, the facility may be
reevaluated and new plans devised for its future.
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TSD FACILITY AND SYSTEM DESIGN AT DMA

In order to understand the methodological needs of the DMA, one has
to consider the characteristics of the production environment existing at
DMA and the nature of the applications with which this organization is
involved. In this regard, the following issues seem to have the greatest
bearing on the future of system design at DMA.

- The DMA production plan is determined by the mapping, charting,
and geodesy (MC&G) defense needs of the many DoD organizations.
Changes in the data format, use and collection (quite often
unanticipated) bring about increased demands for MC&G products,
demands that translate into corresponding enhancements in the
systems employed by DMA. 1Its ability to keep up with future
growth indicates a need to employ effective system design
methodologies capable of supporting the dynamic evolution
experienced by DMA systems.

- While at present most DMA systems could be considered to be of
the information processing type, their MC&G nature makes the
importation of system design technology somewhat less direct.
The following is a list of features unique to geographic data
processing:

-- demanding performance constraints not present in other
data processing applications;

-- presence of locational attributes;

-- two~dimensional nature of the problem domain;

-- particularly large amount of storage;

-- lack of commercially available systems;

-=- government ownership of most existing systems;

-- specialized and expensive input/output devices;

~- dependence upon remote sensing technology.

- All major geographic data processing systems in production today
have been developed by some government organization (within or
outside the U.S.A.) and have been designed to serve a set of
very specific requirements. Consequently, geographic data
processing for military purposes receives little attention
outside the government and puts DMA in the position of having to
develop on its own the system design technology required to
maintain and enhance its MC&G production.

- The complexity of the current types of systems is on the rise.
The number and volumes of the databases, the workload, and the
number and variety of products all experience noticeable growth.
Moreover, greater interdependencies between databases and
products is anticipated. The ultimate consequence of these
trends might be the evolution of & single distributed DMA
system, a critical component of the entire organizat‘on.

- There is also evidence pointing to a possible new group of

syatems of the embedded type. Computer controlled devices in
use at DMA can be viewed to be in this category already.

10
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Furthermore, any increased future involvement of the
organization in the data collection process most certainly is
bound to extend DMA related system design efforts into the
embedded systems area.

~ At a more speculative level, incorporation of DMA systems into
larger C3 systems can not be ruled out. Major increases in the
data collection rate combined with a need to possess extremely
current MC& products (possibly on-line) may contribute to
making this qualitative jump. !

The productivity associated with the generation of MC&G products at
DMA appears to be related to the quality of the computer based systems
being employed, which in turn depends on the effective use of current
technology at hardware, software, and system levels. TSD Methodologies
hold the potential to assist DMA with many of these system related
problems and to provide cohesiveness to long range planning in this area.
They extend the ability of the organization to control and manage system
development, maintenance, and enhancement. Furthermore, TSD Methodologies
promote careful definition of system requirements and more effective use
of available technology. In other words, the DMA's strides toward
quality, productivity, enhanceability, maintainability, and low system
design costs are identical to the basic objectives of the TSD technology.

DMA is in a position to take advantage of the TSD technology in
several important ways:

- Contractors could make use of the envisioned TSD Facility on
projects involved in the development of DMA systems;

- The TSD technology could be used by DMA contractors, even in the
absence of the TSD Facility, particularly in the design of
systems which are distributed in nature and involve decisions
regarding the selection of a proper hardware/software mix;

-~ The core tools being developed for the TSD Facility are also
needed as part of the DMA modern programming environment (MPE)
which is seen as evolving in a TSD Facility specialized in ;
software development;

- The TSD Methodologies may also be used in DMA on certain
projects where the relation between software and hardware is
important (e.g., the placement of various functions on a locally
distributed system) and, thus, could affect DMA software
development practices.

The first of the above concerns was discussed in the master plan, and
a way to approach the remaining three is outlined below. The direction
being suggested here is analogous to that part of the master plan that . {
deals with the refinement of TSD Methodologies. The distinction is not in :
the basic approach but in the scope and objectives. In the master plan
the intent is to define the scope of and to support the long range R&D
E efforts in the area of distributed system design. Here, the objective is
technology transfer from the R8D domain to actual production for the sake
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of achieving immediate quality and productivity improvements. As such,
the emphasis is not on developing novel design, specification, analysis,
and other techniques but rather on adapting already existing techniques
for use in some particular application in a manner compatible with the TSD
prilosophy. It is conceivable that after empirical evaluations via
appropriate pilot projects, some limited use of the methodologies on
selected projects will become feasible in the near future. The potential
impact of such endeavors on the DMA modern programming environment, on its
approach to system development, and even on its software development
standards should not be underestimated.
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IDENTIFICATION OF POTENTIALLY
HIGH PAYOFF AREAS AS
CONTRACTOR AND AS DEVELOPER

.

REFINEMENT OF THE TSD
METHODOLOGIES WITH RESPECT
TO THE SELECTED AREAS

EMPIRICAL EVALUATION OF
THE METHODOLOGIES ON SEVERAL
SMALL PILOT PROJECTS

EVALUATION OF THE DMA

MODERN PROGRAMMING FENVIRONMENT
WITH RESPECT TO ITS ABILITY

TO SUPPORT THE METHODOLOGIES

ENHANCEMENT OF CURRENT DMA
ENVIRONMENT TOWARD BEING
BETTER PREPARED TO RESPOND
TO FUTURE SYSTEM DESIGN NEEDS

LIMITED USE OF TSD METHODOLOGIES
ON SELECTED DMA PROJECTS

REEVALUATION OF SYSTEM DESIGN
NEEDS AND AVAILABLE TECHNOLOGY
AT IMA

DMA OPPORTUNITIES FOR PRODUCTIVE USE OF TSD TECHNOLOGY
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1.6 REPORT SUMMARY

Brief summaries of all major sections and key appendixes of the
report are presented here for the reader’s convenience.

TSD FRAMEWORK CONSOLIDATION (Section 2).

The section outlines the philosophy, motivation, and significance of
the TSD concept and dwells on the structural details of the TSD Framework,
stressing its relation to fundamental decision processes that take place
during system design. The partitioning of the system functions between
hardware and software receives extensive coverage. The relevance of the
TSD Framework for system development, analysis, enhancement, and
maintenance is also discussed. A strong emphasis is placed on
demonstrating the practical advantages derived from the availability of
the framework.

The TSD Framework is hierarchical in structure, being composed of
stages which are, in turn, composed of phases, which are composed of
steps. The stages represent broad design areas such as system design,
software design, and hardware design, while the phases represent finer
divisions of these design areas. For example, a stage dealing with
software design could contain separate phases for software architecture,
program design, and coding. The steps represent design activities that go
on within the design areas. They include activities such as performance
evaluation, functional verification, documentation, and acceptance. The
framework describes, in a straightforward manner, the logical organization
and the design activities intrinsic to a particular family of design
methodologies called TSD Methodologies.

Distinct methodologies emphasize different applications and thus
instantiate the phases and steps in different ways. This principle is
illustrated on a small example. By selecting a sample application area
and by considering its characteristics and their relation to both
technology and application environment, a methodology is derived in a
systematic manner from ihe TSD Fremework. The approach suggests that, for
each application area and organization, methodology development involves a
certain degree of "pre-design" in addition to the selection of particular
techniques for design, analysis and specification. This fact becomes even
more evident in the assessment.

14




ASSESSING THE FAMILY OF TSD METHODOLOGIFS (Section 3).

The TSD assessment starts with an examination of the essential
characteristics of the embedded, information processing, and command,
control and communication systems. The unique nature of the applications
supported by DMA is used to emphasize the dependency between methodologies
and the nature of the organization that may employ them. The point is
made that future detailed assessments of the TSD technology ought to be
carried out not only with respect to a specific class of systems but also
with respect to the type of organization that intends to build them. The
principal results of the assessment are given below.

- By accomplishing the transition from the TSD Framework to a
class of distributed system design methodologies and by
describing how one could employ these methodologies on system
design projects having characteristics common to a multitude of
DoD (including DMA) type systems, the technical feasibility of
the TSD Framework is demonstrated.

- The actual use of the concepts and methodological study
approaches developed during the consolidation effort (in
particular the synthesis of methodologies given a framework and
a class of applications) illustrates convincingly the assistance
these approaches could provide to methodological research and
development.

~ The TSD Methodologies are shown to promote a systematic approach
to the performance of hardware/software trade-offs thus avoiding
the known problem of premature hardware procurement. Future
research advances in this area combined with experiments in
which these methodologies are applied to real-life systems hold
the key to making the employment of these methodologies both
practical and profitable in terms of quality and productivity
gains.

- Techniques and tools (available or postulated) identified as
necessary for productive use of the TSD Methodologies form the
starting point for the development of the TSD Facility master
plan. It must be noted, however, that there are many other
factors that intervene and influence the planning of such &
facility in addition to the techniques suggested by the use of
one methodology or another.

-~ Four by-products of the assessment are:

-- a methodology definition language;

-- a formal characterization of the nature of the
specification languages involved in system design;

-~ a rigorous approach to developing formal system
requirements;

-~ a distributed system design specification language.
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TSP FACILITY DEVELOPMENT MASTER PLAN (Section 4).

Three steps were involved in the development of the TSD Facility
master plan. Their respective objectives are discussed below.

-~ Objective 1: Develop a conceptual model for an integrated set
of design tools to support the first three stages of the TSD
Framework (Problem Definition, System Design, Software Design).
That is, characterize the computer based environment in which
the users (designers, managers, etc.) will work.

An environment is the set of services provided to a user when a
collection of tools are integrated together to form a cohesive set. We
shall call the set of services provided by an integrated set of tools
supporting a TSD Methodology a Total System Design Environment. Thus the
TSD Fnvironment forms a conceptual model of a group of services that
support the first three stages in the life cycle of a project, with the
support following a set of guidelines (from the appropriate methodology)
to increase user productivity and system reliability. A high level
characterization of the TSD Environment had to be developed in order to
lay tne foundation for the planning activities.

-- Objective 2: Investigate design alternatives for the TSD
Environment, and select a specific direction to elaborate.
Apply the selected approach to develop a high level design
proposal for a TSD System prototype.

Wnen a TSD System is installed in a particular computer center,
unique features at that center may have to be accommodated within the TSD
System itself. Special emulation facilities, unusual applications, or
customized tools may all represent factors that may cause the basic TSD
System to vary from one installation to another. These variations,
however, represent local enhancements of the System, not basic changes.
The collection of all of these possible enhanced versions of the System
will be called the TSD System Family. A set of core tools, however,
remains common among all TSD Systems.

-- Objective 3: Develop a phased implementation plan for a TSD
System prototype. Recommend ways to establish a TSD Facility
supporting the prototype TSD System.

The prototype TSD System is recommended to be implemented as an
outgrowth of the existing SAEF and by using currently available technology
in order to obtain a running system within a reasonable budget of time and
effort. The implementation plan is phased so as to allow the immediate
exercising of parts of the overall system as they become usable. This
approach increases the short term utility of the effort, and at the same
time provides for critically important user feedback.

The TSD System prototype, when actually implemented, will also serve
as an excellent test vehicle for the research and development necessary to
create new tools and methodologies. Thus the implementation plan stresses
feedback from both research and production efforts.

16




Work Stations Offering Specialized
Design and Management Environments

++-rbee s +++e 44+
+ WS1 + 000 + WSn +
+++et st +4++++4+e

| ]
! |
L2 2 222, : Lot a gl 2l sl : B0 A6 62T 60 U6 03 636U 6966 26 IO O 295 2 3 0 0

| |
#H804048 ! Las i f ol 22 Ll sl : S A 03 A A0S A0 6 I 3 U S S

+Pt ettt +4t+ted
+ SP1 + 000 + SPm +
+4+44 44 +4Ebetd

Highly Specialized Local Resources
(e.g., emulation engine, VLSI design tools, etc.)

TSD_SYSTEM -- HIGH LEVEL STRUCTURE

» } : *
» T I TS T YT Py T YT FYYRYSYY I
d + + + Database + + TSD + *
* + 4e=m———ut+ Access 4wmecemt DBMS 4-acee-=+ DBMS +
» + + + Control + + + *
* »> + P T TS +ttbttes B
» + Command + *
» + + I L e e »
* + Language +==----+ Tool Access Control + *
* + + S Y T N *
bl + Interpreter + *
- + + D Y *
* + +~—-=-=+ Core Tools + *
» + + PP Y YW *
» + + *
» + + N LTI Y *
* + +ewe-==+ Other Tools + *
* + + IR I Y *
» L T YT R RN *
* } { )
* XYY 44+ *
® 4+ T+ o000 + Tm+ *
» +44 444 T oY »
» ! ! »

et s

PRy

Commercial
Database
Support
for the
TSD
Database
View

[



ANNOTATED BIBLIOGRAPHY (Appendix A).

Abstracts for a large number of TSD-related government documents have
been collected for use on future TSD projects.

GLOSSARY OF TERMS (Appendix B). !

The glossary contains the definition of the key terms needed in order
to understand the results of this study.

| TSD GUIDEBOOK (Appendix C).

The guidebook provides in user oriented terminology a synopsis of the
1 entire report, including descriptions of the TSD philosophy, existing and
anticipated TSD technology, and the benefits derivable from its use in
actual production.

ON REDUCING AMBIGUITIES IN METHODOLOGY DEFINITIONS (Appendix D).

Specification languages have an important role to play in the
generation of unambiguous methodology definitions whieh, in turn, would
affect the way in which configuration control and project planning would
be carried out in the computer-aided design systems of the future.
Precise methodology definitions hold the promise for better communication
among designers and are also the key to increasing the designer's capacity
to study, understand, evaluate, and compare one methodology against
another. Furthermore, the inclusion of the methodology specification as
part of the database of a computer-aided design system opens the
possibility for a better enforcement of the correct use of methodology on
a given project. Its use as an input to the project management tools is
also being contemplated.

These opportunities are only now beginning to be explored and, to the
best of our knowledge, no similar efforts have yet been reported in the
open literature. The TSD assessment led to a proposal for a methodology
definition language illustrated in Appendix D on a variant of the top-down
program design methodology. Its use on the project has yielded
‘ significant quality improvements in the communication between the members
{ of the research team. Many problems that were overlooked in the informal
presentations of new proposals for the distributed systems design strategy
have been rapidly uncovered during the effort of formally describing the
methodology.

| The language has the ability to describe the structure of and the

; relations between various products of the design process (configuration

| items), to capture changes in the state of these configuration items, *o
define consistency constraints between their states, and to prescribe the
sequencing of design activities permitted by a methodology.
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A FORMAL TREATMENT OF DISTRIBUTED SYSTEMS DESIGN (Appendix E).

Formal models have been developed for each of the specifications that
are required by the system design stage in order to acquire a better
understanding of the principles behind the TST Metnodologies. Formal
models are provided for the system requirements constructed in the problem !
definition stage, for the processing model generated in the system {
architecture phase, and for the hardware/software requirements produced by )
the system binding phase. Concepts important in the TSD Methodologies !
(e.g., refinement, support, implementation, and binding) are also defined i
formally.

The development of these models represents an important contribution
toward placing distributed system design on a solid formal foundation. As
such, the models provide valuable guidance for the designer involved in
the development and evaluation of certain classes of specification
languages. They identify what concerns need to be addressed by the
respective specification languages but not how they are addressed.

RIGCROUS APPROACH TO RUILDING SYSTEM RFQUIRFMENTS (Appendix F).

Because the ability to carry out the system design rests to a certain
extent on the availability of a well-defined set of system requirements,
the assessment included an investigation of formal methods for tne
specification of system requirements. The use of formal requirements is
anticipated to play an increasingly important role in the TSD technology
of the future. Our study looked into the feasibility of introducing the
use of terrmal roguirements definitions on system development projects.

A systematic approach to developing formal requirements by starting
with the general model and by adapting it to the needs of the problem at
hand has been proposed and illustrated by means of a simple but realistic
example. The approach reflects the authors' experience with developing
formal requirements for a variety of small scale problems. The notation
used is based on set theory and predicate calculus both of which are
generally considered essential in the education of the today's computer
scientist and are familiar to many system designers. The conclusion is
reached that, based on the experience accumulated with the use of both
formal and semi-formal specifications, the development of formal
requirements for small to medium size systems is feasible and can be cost
effective.
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FUNCTIONAL SPFCIFICATION OF DISTRIRUTED SYSTEMS (Appendix G).

The potential for a major qualitative improvement in the
effectiveness of systems development rests to a large extent oa the
availability of aprropriate specification languages. While establishing
tne tasis for precise communication, formal specifications also open the
doors to extensive systematic (mental or automated) system design analysis
techniques wnose scope would ultimately include logical verification,
performance checking, automatic peneration of predictive models, and more.
Such advances in system design %technology are presumed to pave the way for
the powerful development tools reaquired by the TSD Fazility.

A by-product of studying tne technologi:zal needs of TSI Methodologies
is the development of a formal Distributed Systems Design Language (DSDL).
In DSPL, systems are described as nets of communicating processes. Each
process in the net has its own local data over which it has sole control,
has procedures that specify primitive and indivisible operations over the
data, and possesses the ability to exchange messages with other processes
in the net. The behavior of the process specifies the order in which its
procedures are invoked. Seguences of procedure invocations, also called
event sequences, are allowed to execute concurrently within the process.

A net is defined by its processes, by the logical communication
links, and by the communication protocols associated with the individual
links. Among the processes of a net, some are used to model its
environment; they are called external processes. The links identify the
jogical connections between processes. Several processes may be
associated with the same link and tne same process may use several links.
The way in which an individual link behaves is stipulated by the
communication protocol associated witn the respective link.

Several considerations have influenced heavily the nature of the
DSDL: tne emphasis on formality, the desire to promote the principle of
separation of concerns, the need to support hierarchical specifications,
and the aim toward generality. Formality is achieved through the use of
set theoretical models for data representation, by employing predicate
calculus in defining the procedures {using input/output assertions), etc.
The principle of separation of concerns is reflected by the manner in
which the definitions of the net and of the process are structured; they
are meant to enhance the designer's ability to describe the system in
terms of clean abstractions. Hierarchical descriptions of the system are
enabled by the fact that processes may be refined into nets. Finally, the
generality of the language is enhanced, among others, by its capacity to
describe a variety of communication structures and protocols.

MODERN PROGRAMMING ENVIRONMENT ASSESSMENT (Appendix H).

The plans for a Modern Programming Environment (MPE) at DMA are
assessed from the perspective of the TSD Facility. The rationale for this
assessment lies in the fact that the MPF can be viewed as a TSD Facility
specialized to the production of software at DMA. Since the plans for the
far-term (Phase II/IIA) MPF development are likely to be affected greatly
by the results of the near-term (Phase I/IA) development, this assessment
is restricted primarily to the near-term plans. The objectives of the
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assessment are discussed below.

- Objective 1: +to evaluate current MPE plans and, if needed,
prepare alternatives.

The current plans for the far-term MPE are considered sound for the
most part. A reorganization of the tasks associated with the near-temm
development is proposed, however, in order to minimize the overall risk of
tnhis development. The proposed tasks for the near-term are: (1) the
Facility Development task, which is concerned with the design,
implementation, and phasing in of the near term experimental and full
scale MPE facilities; (2) the Methodology Development task, which is
concerned with the development and phasing in of a software development
methodology for the MPE, and the preparation of requirements for
methodology related enhancements to the far-term MPE; and (3) R&D
Preparation for Phase II Startup, which is concerned with carrying out
research and development in areas which are beyond the scope of the other
two tasks but which are required for the startup of the far-term
development effort.

- Objective 2: to identify issues which should be considered in
future MPE efforts.

Many issues are identified which should be addressed in each of the
three near-term tasks identified above. Issues relating to the Facility
Development task include the maturing of the MPE tool set, the further
development of user interface aspects, and the phased introduction of the
MPE facility into the DMA production environment. Issues relating to the
Methodology Development task include the indentification of new tools
needed to more completely support the life cycle activities identified in
the methodology, and the phased introduction of the methodology. Issues
which need to be addressed in the R&D task include the determination of
evolving DMA software development needs, the determination of the effect
of technology advances on the MPE, the development of structures and
procedures to facilitate the evolution of the MPE, the specification of
better management support tools, the determination of the appropriateness
and feasibility of the multiple environment and project database concepts
in the MPE, and the determination of the feasibility of achieving
portability and vendor independence in the MPE.
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2. TSD FRAMEWORK CONSOLIDATION

2.1 INTRODUCTION

The objective of this section is to report on the effort to
consolidate the experience and knowledge accumulated as a result of past
studies and projects that exercised the TSD concept and related technology
with respect to their feasibility and the potential benefits they could
bring to system design. The motivation for undertaking this task stems
from the need to consider technological changes that have occurred since
the TSD concept was first proposed, and with the expectation that
important qualitative developments are at hand, The former requires a
reexamination of the TSD concept in view of the continuing trend toward
distributed processing and increased use of custom-made VLSI components,
while the latter is based on preliminary results of several earlier
studies.

The reexamination is aimed at ersuring that the TSD concept maintains
its compatibility with the technolcgical directions of this decade by
giving proper recognition to any new scientific results pertinent to the
TSD concept.

The qualitative improvements targeted for this study involve several
important facets of the TSP concept, ranging from the very pragmatic to
the highly abstract. They are a direct outgrowth of successful research
and development activities that were carried out under the TSD umbrella.
At a practical level, the emphasis is on expanding the ability to
characterize in a precise manner a large class of TSD methodologies with
respect to the entire system life-cycle, on enabling evaluation and
comparison among different methodologies, and on providing the basis for a
systematic approach to methodology development. In the realm of the
abstract, special attention is given to reaching a better and more
complete understanding of the fundamental decision-making processes
involved in system design, particularly when H/S trade-offs are involved.

The starting point of the consolidation is the review of past TSD
work and current state-of-the-art in system design. References to
pertinent papers appear throughout this section, and an Annotated
Bibliography of TSD-relevant government reports is available in
Appendix A. The basis for the new unified and refined perspective on TSD
is the notion of a methodological framework. It represents the means by
which the consolidated TSD concept is formally defined. The TSD Framework
is conceived as a methodclogical framework that synthesizes the
fundamental attributes of the TSD methodologies in light of the philosophy
behind the TSD concept. In turn, the TSD Framework is employed as an aid
to sharpen the current understanding of the H/S trade-offs issue.

The results of the consolidation process are reviewed in the

remainder of Section 2, which may be read as if it were a self-contained
document. 1Its overall organization is as follows,
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Section 2.2 introduces the TSD Framework and discusses its
distinguishing features and basic philosophy. The framework is shown to
be composed of several stages which represent groupings of phases. The
phases, which are defined as activities taking place in some common
knowledge domain and aimed at describing a transformation between two
requirements specifications, are shown to possess a common structure,
i.e., component steps. An approach for developing TSD Methodologies from
the framework is also presented.

Section 2.3 considers the stages of the TSD Framework, one by one.
The definition of each stage is given in terms of its component phases.
Each phase is defined with respect to the requirements specifications it
uses and produces. Each pertinent step is analyzed and the nature and
complexity of the techniques required to support it are identified.
Whenever such techniques are available, the reader is advised. Each phase
description concludes with a discussion of the nature of the
specifications generated by the respective phase.

Section 2.4 is an elaboration, in the context of the framework, on
the topic of H/S trade-offs. Emphasis is placed on explaining the dynamic
nature of H/S trade-offs, an approach which is in strong contrast with the
earlier static perception of the way the H/S trade-offs are carried out.

Section 2.5 gives precise definitions for four key technical aspects
of the system life-cycle (development, analysis, enhancement, and
maintenance), and identifies the connection between them and the TSD
Framework in preparation for the assessment being carried out in
Section 3.

Section 2.6 contains a summary of conclusions.
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2.2 TSD FRAMEWORK DEFINITION

INTRODUCTION

The software crisis of the 70's played a significant role in
increasing the general awareness of, and interest in, design
methodologies, In particular, it brought about a wide-spread belief that
large system development without strong methodological support involves
unacceptable risks. As a result and in a relatively short time span,
major advances have been registered in the areas of methodology
development, project control and review, specification techniques, and
automated documentation and analysis tools [CHAN78, WASS78, WEGN79,
YEHTT].

Nevertheless, serious problems continue to plague the software
industry. Some problems are due to a reluctance of management and
personnel to accept change, a reluctance that is partially justified by
the high cost of retraining and retooling. Some problems are due to the
failure of many highly touted techniques to deliver all that was |
advertised. Finally, there are problems due to the fact that the level of
abstraction being dealt with in the areas of methodology development,
analysis, and evaluation is too low. This manifests itself through the
existence of few generally accepted principles, through parochialism, and
through a limited ability to evaluate and compare proposed methods.

Matters have been further complicated by an ever increasing
interdependency between hardware and software. This has led to the view
that a system is a hardware/software (H/S) aggregate in which the hardware
and software aspects must be treated together and not separately as has
been traditional. Today's system designer must have an understanding of
both hardware and software and must have an appreciation of their combined
impact on the performance characteristics of the total system. In
particular, the designer needs a unified methodological perspective in
which hardware and software issues can be brought together properly.

This report presents an approach for satisfying two pressing
methodological needs, namely, the need for a more abstract treatment of ‘
methodologies and the need for a unified methodological perspective for
hardware and software. The report introduces a type of model called a
methodological framework for handling the first need, and proposes a
particular framework, called the Total System Design (TSD) Framework, for
handling the second need.

A methodological framework is an abstraction of a class of system
design methodologies. The framework is hierarchical in structure, being
composed of stages which are, in turn, composed of phases, which are
composed of steps. The stages represent broad design areas such as system
design, software design, and hardware design, while the phases represent |
finer divisions of these design areas. For example, a stage dealing with
software design could contain separate phases for software architecture,
program design, and coding. The steps represent design activities that go
on within the design areas. They include activities such as performance
evaluation, functional verification, documentation, and acceptance. The
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framework can describe, in a straightforward manner, the logical
organization and the design activities intrinsic to a particular
methodology. This fact makes the framework a potentially valuable
analytic tool for comparing the fundamental traits of different
methodologies. It also makes the framework useful as a specification tool
for describing a methodology that is to be designed.

The TSD Framework is intended as a specification for system design
methodologies which have a unified perspective of hardware and software
and which embody other attributes necessary for effective and efficient
design. Briefly stated, these methodologies (1) recognize formally the
H/S dualism, (2) avoid premature hardware selection, (3) minimize error
costs through early error detection, (4) treat performance constraints as
a major driving force behind the design process, (5) promote design
automation, and (6) assure proper attention to human interfaces.

The remainder of this section is devoted to the TSD Framework. The
purpose is two-fold: to introduce the structure of the TSD Framework, and
to illustrate thereby the nature of methodological frameworks in general.
The exposition is introductory in nature, with a detail description of the
TSD stages, phases, and steps being given elsewhere (Section 2.3).

The discussion is organized as follows. The next subsection
concentrates on the description of stages and phases. While most of them
are quite mundane in concept, the syste.. design stage contains some novel
aspects. They are the result of an emphasis placed on avoiding premature
hardware and software selection. Another subsection is dedicated to the
steps recognized by the framework. It is shown there that all phases
involve the same ten steps. While some have been recognized for a long
time (even if not presented from the same perspective), others represent a
departure from traditional views, The inference step, for instance,
formalizes the process of evaluating the design decision taken in one
phase with respect to technological implications on subsequent phases.
Originally motivated by the H/S partitioning issue, inference has been
shown to be present in all phases. Another example is the treatment of
integration as a step rather than a phase. The integration activities are
distributed among phases based upon the nature of the expertise required
to carry them out.

The presentation continues with a discussion of the relation between
the structure of the framework and its six stated objectives, It is alsc
pointed out that distinct methodologies may emphasize different objectives
and thus instantiate the steps in different ways. This particular aspect
is further clarified in a subsection which illustrates the use of the
framework for purposes of methodology development. By selecting a sample
application area and by considering its characteristics and their relation
to both technology and application environment, a methodology is derived
in a systematic manner from the TSD Framework. The approach suggests
that, for each application area and organizationh, methodology development
involves a certain degree of "pre-design" in addition to the selection of
particular techniques for design, analysis and specification, Conclusions
and references appear at the end.
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STAGES AND PHASES

Figure 2-1 shows the logical structure of the TSD Framework. The
stage boundaries are drawn along traditional lines and the concern of each
is obvious from the stage name. Each stage is composed of two or more
phases which represent well known design areas. The downward arrows
represent requirements specifications that define the problem to be solved
by a subsequent stage. Each specification has two parts, a functional
requirement and a set of implementation constraints. The upward arrows
indicate the flow of finished products during the integration portion of
system development. The idea here is that each stage is responsible for
the integration of its portion of the design. The integration process
thus begins at the lowest level of detail and works upward until all
components of the system have been assembled and tested. Although the
diagram does not show it, the reader should visualize upward and downward
arrows between the phases of a stage. They have been omitted from the
diagram in order to make it more readable.

The dependency between phases is not as simple as the figure might
suggest. For example, it should not be inferred that a project must
complete each phase or stage before beginning the next phase or stage.
Parts of a project may move through the development process faster than
other parts and hence be in different phases and stages. Also,
methodologies represented by this framework can differ in the way they
schedule the basic activities of the framework and in the design
techniques that they employ. These distinctions must be kept in mind at
all times in order not to read into the framework more than it represents.

The PROBLEM DEFINITION STAGE is composed of two phases, called
identification and conceptualization. Both phases are application domain
dependent and their successful completion rests on a good understanding of
the application. The IDENTIFICATION phase is informal in nature and has
an exploratory flavor. Its objective is to produce an identification
report which contains all the information available with regard to the
system support required by the application at hand, as well as any
relevant constraints. Despite the fact that the level of formalization
and abstraction of the identification report is relatively low, the report
serves two important functions: it establishes the communication link
between the designer and the user and provides the necessary base for the
development of a formal definition of the problem. This formal
development is done in the conceptualization phase.

The CONCEPTUALIZATION phase uses the identification report in order
to generate the system requirements. These requirements contain a
conceptual model which formalizes the system's role from a user
perspective and the application constraints identified earlier. Because
of its formal nature, the conceptual model provides a sclid basis for the
entire design process and represents the ultimate correctness criterion
against which the final system is judged. The ability to meet all the
stated constraints is a second fundamental evaluation criterion,
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The SYSTEM DESIGN STAGE is central to the TSD Framework because H/S
trade-offs are one of its major responsibilities. System architecture
design and system binding are the two phases that make up this critical
stage. The main concern of the SYSTEM ARCHITECTURE DESIGN phase is to
investigate system design alternatives and their potential impact on the
choices for a feasible system configuration (i.e., H/S mix). Without
making any explicit choices with respect to the selection of particular
software or hardware components, this phase is involved in the performance
of H/S trade-offs to the extent that design decisions taken here affect
the class of feasible configurations in a manner too significant to be
left to chance.

The functional/performance specifications generated by the system
architecture design, as part of the system configuration requirements,
form the basis on which a particular H/S mix is selected during the SYSTEM
BINDING phase. The hardware and software requirements being generated by
this phase may assume a variety of H/S combinations from off-the-shelf
complete systems to custom built components. The election of one option
over another is determined by the nature of the system design, the
constraints it has to meet, and the available technology. It is
accomplished by the system architecture design phase, but the selection of
specific components is done during binding.

The SOFTWARE DESIGN STAGE includes all activities relating to
software design and procurement. There are three phases involved in this
stage. The first one, SOFTWARE CONFIGURATION DESIGN, is responsible for
the procurement of off-the-shelf software as well as the overall high
level design of the software system. The software requirements are the
basis for these activities which result in the development of program
requirements specifications, including the complete design of its data and
environment interfaces, The PROGRAM DESIGN phase, in turn, takes these
requirements and produces the program design (data and processing
structures) which, together with all pertinent assumptions and
constraints, make up the implementation requirements. They are used by
the CODING phase to build the actual programs.

The MACHINE DESIGN STAGE plays a role similar to that of the first
two phases of the software design stage. The HARDWARE CONFIGURATION
DESIGN phase is concerned with the procurement of off-the-shelf machines
and the design of the high level architecture of custom hardware.
Component requirements are developed for all entities that are part of the
custom hardware and passed on to the COMPONENT DESIGN phase. This phase
generates a register transfer level machine description that will be
included in the circuit design requirements and in the firmware
requirements.

The CIRCUIT DESIGN STAGE follows a generally accepted scenario
involving four phases: SWITCHING CIRCUIT DESIGN, ELECTRICAL CIRCUIT
DESIGN, SOLID STATE DESIGN, and FABRICATION. Each phase generates design
requirements for the phase listed after it.

The FIRMWARE DESIGN STAGE consists of three phases that are an analog
to program design, coding, and compilation. These phases are called
MICROCODE DESIGN, MICROPROGRAMMING and MICROCODE GENERATION.
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STEPS

The previous subsection gave a general introduction to the design
areas covered by the TSD stages and phases., This subsection gives a
general introduction to the activities that occur during the design
process., The major design activities within a phase are called STEPS.
There are ten steps which collectively represent the activities within any
phase, regardless of the nature of the phase. Some of the steps represent
activities that are common practice among good designers and appear to be
fundamental to the design process. The other steps represent activities
that are needed to meet the objectives of the TSD Framework. The names of
these steps are listed below. The dashed lines are used to indicate
groups of related steps.

- = e S e W

formalism selection

formalism validation
exploration
elaboration

consistency checking
verification
evaluation
inference

- e o o e e D e

integration

—————— vt o s st s

The FORMALISM SELECTION step encompasses the activities involved in
selecting a formalism for a particular problem domain., Candidate
formalisms are evaluated for their expressive power in that domain and
also for qualities such as simplicity of use, lack of ambiguity,
analyzability, and potential for automation. While this step must take
place before other steps in the phase, it often occurs long before them.
This is sometimes due to the use of a methodology that is based on a
particular formalism, but is more often simply a matter of policy or is
due to the availability of tools tailored to that formalism.

The FORMALISM VALIDATION step encompasses activities involved in
determining whether a formalism has the expressive power needed for a
particular task. It also includes the evaluation of formalisms from the
standpoint of ease of use. These tasks are generally non-trivial and may
involve both theoretical and experimental evaluations. Theoretical
results may indicate the power and the fundamental limitations of the
formalism while past experience with it on similar projects may provide
insight in its appropriateness and ease of use. The step also includes
evaluations of the formelism's potential for design automation (as a way 4
to bring about productivity increases) and its ability to support
hierarchical specifications (as an aid to controlling complexity).
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The EXPLORATION step encompasses the mental activities involved in
synthesizing a design. These activities are creative in nature and depend
on experience and natural talent. They cannot be formalized or automated
unless the problem domain is restricted to a significant degree.

The ELABORATION step encompasses the activities involved in giving
form to the ideas produced in the exploration step. In general, this step
involves the use of formalisms and its activities are facilitated by
design aids such as text editors and formatters. This step includes the
building of a concrete object such as a piece of hardware.

The CONSISTENCY CHECKING step encompasses activities such as checking
for incorrect uses of formalisms, checking for contradictions, conflicts,
and incompletness in specifications, and checking for errors of a semantic
nature. It includes checking for consistency between different levels of
abstraction in a hierarchical specification and the reconciliation of
multiple viewpoints.

The VERIFICATION step encompasses activities involved in
demonstrating that a design has the functional properties called for in
its requirements specification. Since each phase has a requirements
specification and produces a design, this step applies to all phases. A
common example of this type of activity is the proving of program
correctness. The difficulty of this task is well known and is also
representative of the difficulty of the verification task in general,

The EVALUATION step encompasses activities involved in determining if
a design meets a given set of constraints. This includes constraints
which are part of the requirements specification for the phase and
constraints which result from design decisions. The nature of the
evaluation activities depends on the type of constraints being analyzed.
They include classical system performance evaluation of response time and
workload by means of analytical or simulation methods; deductive
reasoning for investigating certain qualitative aspects like fault
tolerance or survivability; construction of predictive models for
properties such as cost and reliability.

The INFERENCE step encompasses activities involved in assessing the
potential impact of design decisions made in the phase. The domain of
these activities include: impact on the application environment, ability
of subsequent phases to live with decisions made in this phase, effect on
system maintainability and enhanceability, effect on implementation
options. While these issues must be considered in every phase, proper
treatment is particularly critical in those stages defining architectures.

The INVOCATION step encompasses the activities associated with
releasing the results of the phase. It includes quality control
activities where tangible products are involved and review activities
leading to the formal release of output specifications. It is this latter
aspect that gives the step its name, since the release of specifications
in effect invokes subsequent phases,
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The INTEGRATION step encompasses the activities associated with the
configuring and testing of that portion of the total system that was
designed in the phase. Although it is traditional to consider integration
to be a design area that would qualify as a stage in the framework, the
integration activities have been distributed among the phases in
recognition of the fact that the expertise needed to test that portion of
the system is the same as the expertise needed to design it. In addition,
design errors found during integration must naturally be referred back to
that phase. It is therefore fitting that integration be considered a
phase activity.
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THE TSD FRAMEWORK OBJECTIVES REVISITED

There are three factors that have influenced the conception of the
TSD Framework: current state-of-the-art in the area of distributed
systems design, the conviction that a systematic application of the
principle of separation of concerns is fundamental to a formal treatment
of design methodologies, and a set of six explicit methodological
objectives motivated by generally desirable features of good system design
and by the desire to make the selection of hardware and software on the
basis of more objective criteria than those in use today. The six
methodological objectives are: (1) formal recognition of the H/S dualism,
(2) deterrence of premature hardware selection, (3) minimization of error
costs through early error detection, (4) proper consideration of the role
played by performance constraints in the design process, (5) design
automation, and (6) proper attention to human interfaces.

The TSD Framework builds directly on the current understanding of
system design methodologies with respect to both the phases and the steps
that make up its structure. Its steps represent a taxonomy of the design
activities generally encountered in system design. Its phases, aside from
those included in the system design stage, have been recognized already by
other authors., There are, however, two important distinctions between the
way phases and steps are used here and elsewhere. First, the grouping of
activities into a phase is based upon the nature of the technical
expertise they require rather than upon considerations related to project
management. The latter are relegated to methodologies and are not part of
the framework. Second, the steps are abstractions over classes of design
activities and not specific actions to be carried out by the designer in
some prescribed order. These differences stem from the fundamental
distinction between frameworks and methodologies.

The criteria used in the selection of both phases and steps are o
direct reflection of the principle of separation of concerns. The
traditional separation between hardware and software design, for instance,
is captured by the identification of distinct phases associated with each.
At the same time, however, because judicious partitioning of the system
functions between hardware and software demands the two to be considered
together and to perform certain trade-offs, the system design stage has
been included. It separates the selection and specification of the
hardware and software from hardware and software design.

Because the TSD Framework has been used primarily as a way of
specifying a class of distri“uted system design methodologies called the
T3SD Methodologies, some of tne characteristics required of these
methodologies have affected the structure of the framework. The manner in
which this took place is explained below,

Formal recognition of the H/S dualism and the desire to avoid
premature selection of the hardware led to the proposal of the system
design stage in which design decisions take into considerat:on the fact
that a given system function may be realized in hardware, software, or by
a combination of the two. These two related objectives also represent the
original motivation behind the introduction of the inferenc. step which,
in the context of the system design stage, evaluates the consequences of
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system level design decisions with respect to the hardware/software
selection options they may promote or rule out. Furthermore, the
hardware/software dualism suggested the adoption of similar structures for
the software and machine design stages.

The minimization of error costs is supported, at the framework level,
by the emphasis on formal specifications which are the foundation for
computer-aided design systems able to carry out cost-effective and, at the
same time, extensive automated error checking. The presence of the i
verification and consistency checks define the nature of the error
detection to be incorporated in the TSD Methodologies.

The role played by performance constraints is made explicit in the
structure of the requirements generated by the various phases and in the
definition of the evaluation step. Moreover, the definition of the
integration step includes checking the satisfiability of the constraints
and the validity of the performance models employed in the evaluation
step. (The checking that takes place in the evaluation step is only as
good as the models used and the accuracy of the assumptions made about the
performance characteristics of components to be designed in subsequent
phases.)

The definition of the formalism selection and validation steps have
been strongly influenced by the intent to support the TSD Methodologies by
means of computer-aided design, The promotion of formal specifications
is, to the largest extent, due to the emphasis on design automation.

Finally, in order to stress the importance of properly evaluating the
design of the human interfaces, the inference step includes an
investigation of the potential impact of alternate design decisions upon
the user environment and the evaluation step includes human engineering
sStudies.

34




FROM FRAMEWORK TO METHCDOLOGY

Because effective methodologies are application and environment
(i.e., organization) dependent, the TSD Framework specifies the
requirements for not one single methodology, but a class of similar yet
cistinct methodologies. Differences between methodologies that address
the needs of different applications and organizations manifest themselves
in the relative weights attached to the importance of the methodological
objectives of various steps, in the order in which the design activities
are scheduled, in the frequency and extent of the design checks, etc.
Consequently, an in-depth understanding of the nature of the systems to be
developed and of the character of the system development and maintenance
organizations is a prerequisite to considering an instantiation of the
framework.

The framework may be used as a methodology skeleton and checklist
which is pruned and refined during methodology develcpment based on the
nature of the application and organization. A certain amount of
"pre~design" takes place. It may a priori remove from consideration some
technological alternatives, it may restrict the designer to using
particular specification languages thus eliminating the formalism
selection and validation steps, etc. To illustrate this process and as an
aid to exposition, the following application is used as an example., We
will assume that the systems to be develop-- are turnkey systems for
relatively small data processing applications. The development and
maintenance of these systems is to be the resp. .sibility of the vendor
organization, and copies of the same system are to exist in several user
organizations,

Methodology development begins by identifying those stages and phases
that are unnecessary. For the given application, the circuit design and
firmware design stages are eliminated by virtue of the fact they deal with
high cost design and maintenance components, both in terms of needed
personnel expertise and required facilities. The machine design stage is
also discarded because, in order to keep maintenance costs down, it is
desirable to limit the type of hardware to a single machine. The nature
of the application, small data processing, makes it possible for the
vendor organization to select a single minicomputer as the common hardware
support for all systems to be developed. Since hardware selection is done
a priori, the machine design stage is totally unnecessary.

Next, the remaining stages and phases are analysed with respect to
the role they might have to play in the new methodology in light of the
specific application being considered. 'The investigation reveals that the
objective of the system architecture design phase is limited to the
determination of how to allocate the system's functions among one or more
minicomputers of a given type. The binding phase, in turn, is assigned
the task of evaluating the proposed distribution against the
characteristics of the actual machines and of generating the hardware and
software requirements. The former specify the number of machines and the
way in which they are configured. The latter contains a description of
the software to be placed on each of the machines, the implementation
language (always the same), and the communication protocols between the
software pieces residing on different machines,
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Most activities abstracted by a given phase depend heavily on the
nature of the formalism chosen in the formalism selection step. Because
the use of identical formalisms on all system design projects has obvious
advantages, several specification languages could be adopted as company
standard after evaluating their appropriateness for the type of projects
being envisioned. The formalism selection and validation steps are thus
eliminated from the methodology. In the context of our example, the
vendor organization could decide in favor of: some graphic language
{ROSST7, ROMA79] to assist the conceptualization phase with the functional
decomposition of the system requirements; a data processing system design
language [TEIC77] for both the system architecture and software
configuration design phases; some form of pseudocode for the program
design phase; and a standard programming language for coding.

Following the formalism selection above, the steps that are involved
in the evaluation of the specifications produced by each phase need to be
defined in terms of the intended scope, objective, and analytical
techniques to be used. It may turn out for instance that consistency
checking and verification steps are carried out by means of some
nonautomated procedures [ROMA79]; the evaluation step in the
conceptualization phase is implemented as a user review; the evaluation
step in the architecture design phase is limited to questions of time and
space and done by hand, while in the software design stage it is neglected
completely; and the inference step is not present anywhere due to lack of
adequate techniques and tools.

Besides the use of particular techniques, another factor that
contributes to the effectiveness of some methodology is the manner in
which design activities identified by the framework as steps within
various phases are to be sequenced on actual projects. Considering the
example again, project control objectives may dictate that all relevant
phases are to be done in the order in which they appear in the framework
except for the case when corrections to earlier work are deemed necessary.
Different subsystems, however, are permitted to be in different stages of
development as long as their interfaces are clearly identified. On the
other hand, within a single phase, all steps are to be repeated, in the
same sequence as in the framework, for every level of the hierarchical
specification being produced. (Significantly more complex sequencing
strategies have been observed in some existing design methodologies
[MCCL751.)

Methodology development must also include the managerial perspective
on system design, which brings into the methodology aspects not yet
considered. They would deal, at a minimum, with issues related to project
status evaluation checkpoints and procedures (e.g., reporting and auditing
procedures), system design and integration planning, physical and human
resources allocation, marketing strategy, etc.

Finally, once a methodology has been developed, there is still the
problem of acquiring a facility which, through its tools and personnel,
enforces the methodology, speeds up tedious and time consuming human
activities, assists in project control, etc. In other words, the facility
complements effective methodology and management with a highly productive
design environment brought about by the availability of automated tools.
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CONCLUSIONS

By concentrating solely on the mechodological schema identified by
the framework, one is more apt to see the real goals, strengths, and
weaknesses of a methodology. Thus, empirical comparisons among
methodologies may be complemented in the future by evaluations on an
abstract level. (Unfortunately, the use of the framework as an analytic
tool has been investigated, so far, only to a very limited extent.)
Furthermore, a change in goals may be better effected by first subjecting
the framework to needed enhancements or refinements and only later making
the corresponding adjustments to the methodology itself. Modifications to
the methodology need to consider the way in which the changes in its
foundation (i.e., framework) relate to the characteristics of the
application, the techniques supporting the methodology, and the
environment in which the methodology is used. This approach to
methodology development and enhancement promises to be less prone to
Jjudgmental errors, and promises to provide valuable assistance to
designers investigating methodological alternatives. The approach has
been successfully employed already in the development of a class of
distributed system design methodologies.
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2.3 STAGES IN THE TSD FRAMEWORK

2.3.1 PROBLEM DEFINITION STAGE

TERMINOLOGY OF THIS STAGE

REQUIREMENTS: User Problem Statement
PHASE: Identification
REQUIREMENTS: Identification Report

PHASE: Conceptualization
REQUIREMENTS: System Requirements

DESCRIPTION OF STAGE ACTIVITIES

One of the most critical aspects in developing a new system is to
insure that the problem the system is designed to solve is the same one
that the user of the system wants solved. This implies that the customer
(assumed to be skilled in the area of the application) must accurately
communicate his needs to an analyst (assumed to be skilled in the area of
computer systems analysis). Since these two specialists speak different
technical languages, how can the communication gap be bridged? Further,
how can the correctness of the resulting information transfer be assessed?
The first stage in the TSD framework insures that this communication takes
place and that the result is an accurate, mutually acceptable definition
of the problem to be solved. This objective is achieved in two phases:
first by a general identification of the problem's characteristics, and
then by the articulation of these characteristics as a more formal
conceptual model.

At the end of this stage, a System Requirements report is produced
that presents the tctal set of functional specifications and performance
constraints for the creation and evaluation of the ultimate delivered
product. Thus, the overall success or failure of a project hinges on the
successful completion of the Problem Definition Stage, as effected through
its Identification and Conceptualization phases.

STATE-OF-THE-ART

Successful achievement of this stages's goals requires that the
proposed member methodologies have certain attributes. Among these is the
ability to support a formal approach to the problem definition activity,
with the resulting definition free of any design bias; moreover, the
methods must clearly separate constraints on the system from its
functional requirements. Additional tools required to support the use of
these methodologies include utilities for text input, editing and
formatting, database storage and retrieval of text, formal syntax
verifiers, report generators (including system consistency checkers and
verification aids), and possible functional simulators for system
verification and evaluation.
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The usual practice today is to treat the Identification Report as a
basis for immediately starting design activities, thus completely avoiding
the establishment of a formal conceptual model of the proposed system.
Design specification languages are used for expressing whatever system
conceptualization still occurs, resulting in the introduction of a
premature design bias into the developing system. This 1s particularly
evident when a high-level design language is used to propose a solution at
this stage.

It is clear that considerable effort still is needed to develop
appropriate formalisms and tools to support conceptual model building,
since without them consistency checking and model verification remain
error prone., As errors are allowed to pass from one stage to the next,
they require more and more effort to correct. This fact alone could
Jjustify the TSD framework requirement that any methodology used in this
first stage must produce a formal conceptual model that completely defines
all system requirements,
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PHASE NAME: Identification

PURPOSE ,

Identify and define the requirements and constraints needed to
specify completely a computer system that will solve a customer's problem.

INPUT

A general problem statement plus a list of customer personnel
available for contact.

OUTPUT
Identification Report detailing the problem requirements and
constraints as obtained from the customer.

STEPS

FORMALISM SELECTION

The Identification Phase represents the first contact point
between the customer and the builders of the proposed system., This
first phase must create an atmosphere conducive to the free exchange of
information between all persornel concerned, since the final report of
the phase must consider all factors pertinent to the problem
definition. During the entire system life cycle, each phase will
require a specific language or formalism to express the pertinent
information, and certainly this phase is no exception. However, this
beginning phase is unique due to the breadth of both potential problem
requirements and personnel experiences. Hence, it may be best to
handle it in a more informal manner. This implies that English text
should be the vehicle used to express the relevant assumptions,
constraints, and demands to be satisfied by the proposed system. Note
that there is no design cone in this phase; all effort is concentrated
on the identification and specification of the problem requirements.

Although a natural language does not present the opportunities for
rigorous analysis associated with a more formally defined language,
some structuring should still be imposed on the English text. Forms,
checklists, and suggested report outlines have all been proposed as
mechanisms that may help overcome the ambiguity of English text and
thus help insure that all of the necessary factors are considered
[NAUM80]. This point will be discussed further in the later steps, and
also is considered in [HENI79, ROMA79, TAGG77].
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FORMALISM VALIDATION

The technical vocabulary should be drawn primarily from the
application area, since the language of the customer should best define
the problem during this phase. Computer jargon is not the basis for
effective communication between the customer and the analyst.

EXPLORATION

Just what are the factors that need to be established during the
Identification Phase? A number of references [METZ73, STAA79] present
suggested checklists that help to fulfill the abovementioned needs.
These lists represent attempts to generalize experiences based on the
results of past design efforts. As such they must be considered as
guidelines adaptable to the actual application at hand. Specific
results will emerge as the customer and the analyst work together to
explore the broad possibilities and requirements of the general problem
space being considered. Detailed interviews with customer personnel
represent the main source of iuformation for this step. Questions that
need to be addressed include:

Why should a system be built?

What assumptions are being made to define the system?
What customer needs must be satisfied?

What constraints must be imposed on the system?

What environmental demands must the system satisfy?
Which system boundaries are hard or soft?

What trade-offs at what costs may be allowed?

Cne result of this initial exploration step is the establishment of
tentative system boundaries and the corresponding definition of
human/system interfaces.

ELABORATION

As the exploratory activities conclude, and the overall scope of
the system has been identified, the points thus raised must be
elaborated by filling in sufficient detail to define completely all
necessary system functions and constraints. This requires the drafting
of a report that integrates all information collected thus far. This
activity may be facilitated by appropriate tools for text entry,
editing, and formatting.

The information recorded in this step represents an important part
of the final Identification Report. Hence considerable care must be
given to insure that it is complete, accurate, and unambiguous.
However, it must also represent the beginning of a project database
that will support all project-related activities for the duration of
the entire system life cycle. The information entered into the project
database supports an audit function and serves as a source of authority
for all later system developments. That is, any factor in the later
stages must be able to trace its reason for existence back to entries
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created in the project database during this phase and, ultimately, to
the customer's original problem statement,

CONSISTENCY CHECKING

Despite the lack of formalism during this phase of the TSD
framework, it is still of vital importance to attempt to check the
system elaboration for consistency. For example, the requirements
established by one system function should be compatible with the
requirements of another function or of any of the imposed constraints.
Further, the elaboration should be complete, particularly in the sense
that there should be no undefined terms, functions, or constraints.

The sconer such errors of validity/consistency are detected, the easier
(i.e. cheaper) it is to correct them.

VERIFICATION

Once it is decided that the requirements are consistent, the
requirements should be verified to any extent possible. The key
element in this verification is for the customer to agree that the
desired problem has been completely and accurately identified in terms
of a usable set of requirements. That is, an Identification Report has
been produced that contains a complete and unambiguous identification
of the problem. Proposed user scenarios represent a possible means of
testing for any problems. If the system identification is not
satisfactory, then more time and effort must be devoted to this phase
by both the customer and the analyst. Although a more rigorous system
verification will be possible in the next phase, at this point there
are some additional tools that may be available to aid in the review
and acceptance of the requirements document. These include feasibility
studies, simulated scenarios, and comparisons based on extrapolations
from existing systems.

EVALUATION

The next step in this phase must be an evaluation of the work done
so far., It is still early in the TSD framework, and thus any results
tend to be soft. However, it still may be possible to build cost and
other forecasting models to support the analytical task of the next
step.

INFERENCE

The impact of the identified system requirements and constraints
on later stages of the TSD framework are considered here. There is no
detailed system design available yet, but still the background and
knowledge of the project team should allow some assessment of the
technical feasibility of achieving the desired goals. Further, the
studies conducted for the verification and evaluation steps should
allow additional conclusions to be established relative to the
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technical and economic consequences of the system requirements. Thus,
at this point, estimates should be established for schedules, staffing,
and resource requirements for all of the later system development
stages, In addition, this information should establish the effect of
the final system on the user, in terms of cost, time, environmental
impact, and resource requirements. The results of the cost/benefit
analysis enables the customer to decide on final acceptance of the
Identification Report.

INVOCATION

The next phase will be ‘nvoked when the Identification Report,
consisting of all system requirements and constraints, is completely
accepted by all concerned. The invocation step consists of passing the
requirements document to the Conceptualization Phase for the
development of a more formal system model.

INTEGRATION

The final step of any phase is the acceptance and integration of
the results obtained from the invocation of the later phases. Since
the Identification Phase is the first phase in the TSD framework, its
final result consists of putting into production the complete system as
specified by the Identification Report. Thus, system installation at
the user's site, user testing, and user training must all be
accomplished. Maintenance procedures and methods for phasing the new
system into active production must also be specified and implemented.
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PHASE NAME: Conceptualization

PURPOSE

Convert an informal set of requirements for the proposed system into
a formal conceptual model,
INPUT

Identification Report containing a complete description of the system
requirements and constraints.
OUTPUT

System Requirements containing a formal conceptual model of the
proposed system plus the set of all constraints that the system must
satisfy. The requirements must be complete and unambiguous since it must

first serve as a basis for all later development work and then as a
yardstick for testing the acceptability of the final delivered system,

STEPS

FORMALISM SELECTION

Once all of the aspects of the informal system identification
produced in the previous phase have been accepted, it is time to
develop a more formal conceptual model of the proposed system. This
will require the selection of an appropriate formalism, along with a
validation that the particular formalism can handle problems from the
given application area. Many suggested formalisms have been described
in the literature, and many of these are still undergoing active
development, (For some of the most widely used current systems see:
(GANET9, ORR7T7, ROSS77, TEIC77].) The published systems vary widely in
expressive power, ease of use, extent of automation, and tool
availability [LISK79). Hence, the formalism selected for this phase
will have a strong impact on the future progress of the project., Even
if a special purpose system must be designed and implemented, it is
important for the TSD framework that the informal requirements from the
previous phase be converted into formal specifications that can drive
later stages.

Using a formal approach to building a conceptual model may be
Jjustified by noting a number of advantages. A formalism implies that a
definite syntax has been established, thus allowing automated tools to
do syntax checking, reporting, and project database maintenance. The
selected formalism must have the ability to model all aspects of the
application domain, and so it certainly depends on the state of the art
in that area. However, an application specific formalism may include
semantics such that additional verification checks, particular to the
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application, aiso may be automated. Examples of this approach may be
seen in the database field, where extensive data models have been
developed. The relational data models are especially advanced from the
point of view of including semantic information and constraints, so
that the formal models even provide for automating much of the design
process itself [ULLMBO].

Note that this stage in the TSD framework is attempting to define
completely and unambiguously the system requirements. The vehicle for
this definition is a conceptual model of the proposed system that
includes all necessary functions and constraints. This model, however,
does not represent a system design! A major drawback in many of the
available formalisms is that they were created initially as program
specification languages. This heritage forces the user of these
systems to consider (perhaps unconsciously) design aspects of the
evolving conceptual model, In this early phase there is simply not
enough information to make any proper design decisions,

FORMALISM VALIDATION

Most of the published techniques have additional significant
weaknesses when considered from the TSD framework point of view: They
tend to have evolved from a data processing background with a bias
towards generality. The resulting formalisms are not application
oriented and thus are difficult to apply to a specific problem., They
frequently use visual (flow-chart like) presentations of essential
system relationships that drastically reduce any possible automation
and make formal consistency checking and verification techniques very
awkward to use. Further, a background based on large data processing
systems means that most of the formalisms are very weak in the areas of
real time signal processing and hardware/software trade-off
considerations. As a consequence, they are weakest in exactly the
features needed most for embedded computer systems,

EXPLORATION

The exploration and elaboration steps of this phase parallel the
informal efforts of the previous phase, except that the formalism now
allows much more precision in the definitions of information flows,
functionalities and system constraints, Although the potential system
user does not need the expertise to develop descriptions in the
selected formalism, it is important for him to be able to read and
understand such descriptions. The customer must agree that the
conceptual model being created does indeed meet the application needs
(as were stated in the informal description created in the previous
Identification Phase), since the Report produced in this Phase will be
the technical driving force behind all subsequent system design
efforts, Further, the trace of what formal requirements were induced
by what informal statements must be maintained through the project
database for later potential authorization, feedback and modification,
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ELABORATION

The results of the previous exploration step must be recorded in
an appropriate format. Construction of a conceptual model on a digital
computer, using the selected formalism, represents that format,
However, it is important to maintain the viewpoint that the model is
being built to help in understanding the evolving system design. That
is, there should be a definite bias towards clarity and ease of
understanding in all aspects of building the model.

It is in this step that the full power of the formal approach
begins to be used. The same types of tools mentioned in the previous
phase are of use here, but since they are being applied to a formally
defined system the possibilities for automatic error detection are much
greater. In addition, this step forms the foundation required to
automate many parts of the next three steps.

CONSISTENCY CHECKING

One major benefit of casting the conceptual model into formal
terms comes from the availability of automated tools that help to
insure the internal consistency of the model. In particular, this
phase can benefit greatly by tools that process input data for proper
syntax and/or semantics and reports on the status of various
information flows, functional dependencies, and constraint
specifications. What information is created and never used? Multiply
created? Used but never created? Constraints never referenced? Are
all interfaces compatible? Is there consistency among levels in a
hierarchical model? Many such questions may readily be answered given
an appropriate supporting formalism. Further, the ability to change
the conceptual model and immediately see the overall effect by using
these automated reporting tools allows the analyst to do a far better
and faster job of creating an acceptable system model.

VERIFICATION

The functional requirements built into the conceptual model must
match the requirements specified in the Identification Report.
Checking that every external aspect is covered by the model implies
that informal statements and formal statements must be established as
equivalent -~ this is a necessary task, but one that the current state
of the art cannot handle automatically. At least, functional
simulation and user reviews provide a solid foundation of information
for the verification of the conceptual model.

EVALUATION
The evaluation and inference steps also benefit by the
introduction of the selected formalism. These steps in the

Conceptualization Phase become much mere quantitative than in the
previous Identification Phase, thus increasing the overall confidence
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level in being able to produce the desired system. As in the previous
phase, the evaluation step should look at the raw data from feasibility
studies, simulations, and system application scenarios (usually
obtained during the last two steps) to determine the behavior of the
proposed system. Analysis of the resulting system characteristics
produces the system evaluation for this development stage.

INFERENCE

The information on system behavior analyzed in the Evaluation Step
also must be studied to determine how the system requirements will
impact the later TSD framework stages. The System Requirements Report
must contain a complete, unambiguous, testable set of requirements and
constraints that the customer agrees will establish the formal basis
for all later system development. If an earlier step finds a
requirement or constraint that cannot be satisfied, or the inference
step suggests a later stage may not be implementable, then the feedback
within this stage still has a chance to correct the situation.
Additional studies on cost effectiveness, scheduling, etc (all started
in this step of the previous stage) may now be expanded based on the
more quantitative information developed from the conceptual model.

INVOCATION

Once the system requirements have been specified by the acceptance
of the formal conceptual model, the System Design Stage of the TSD
Framework is invoked,

INTEGRATION

The Integration Step consists of testing the deliverable system,
as created by the next Stage, to determine if all of the specifications
and constraints detailed in the System Requirements Report have been
satisfied. Thus this step concludes with a complete system
demonstration.
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2.3.2 SYSTEM DESIGN STAGE

TERMINOLOGY OF THIS STAGE

REQUIREMENTS: System Requirements
PHASE: System Architecture uesign
REQUIREMENTS: Binding Requirements
PHASE: System Binding
REQUIREMENTS: Software Requirements, Hardware Requirements

DESCRIPTION OF STAGE ACTIVITIFS

The system design < age - .ines the logical structure of the system
and the manner in which nardware and software are to be used in its
implementation. These activities are split between the f-llowing phases:

SYSTEM ARCHITECTURE ~-- defines the structure of the system
and all system-level processes,

SYSTEM BINDING ~--~ selects the hardware that is to
support the system processes,

The primary input to this stage is the system requirements
specification generated in the Problem Definition Stage. This includes:
a conceptual model of the role of the system in the application
environment, performance requirements such as throughput and response time
goals, physical constraints such as limitations on size and power
consumption, reliability requirements such as survivability goals, and
design guidelines such as restrictions on types of equipment, technology,
and venders.

In addition to the system requirements, the design process is guided
by recognized rules-of-the~-trade and by good engineering practice. These
include design guidelines which promote the development of systems that
are easy to maintain and enhance. Architectural models that reduce the
impact of hardware obsolescence on system life-cycle are emphasized.

Customer interactions comprise a third type of input to this stage.
These interactions occur for many reasons, including: clarification of
ambiguous or incomplete specifications, revision of conflicting or
unachievable requirements, and assessment of the impact of a proposed
design on the user environment, The latter may require the construction
of mock-ups and the development of simulated versions of the system. It
may also require new studies of the application environment. These
activities are an intrinsic aspect of the system design stage.

The design activities in this stage are disciplined in a manner that
meets the common objectives of all TSD methodologies. Briefly stated,
these are

-- Systematic approach to hardware/software trade-offs.
-~ Systematic approach to system/environment interfacing.
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Systematic approach to early detection of errors.
Systematic approach to performance evaluation.

~- Emphasis on maintainability and enhanceability.
-- Emphasis on computer aided design.

The output of the System Design Stage has many parts, including: a
model identifying all system-level processes, including interfaces and
performance constraints; a complete description of all system-level
algorithms, including goals, underlying assumptions, and proofs of
correctness; a description of the physical structure of the system,
including a description of all processing hardware, physical links, and
communication protocols; a complete mapping of system-level processes to
system hardware. In short, it includes all information needed for the
design or procurement of hardware and software (the Hardware Requirements
and the Software Requirements) and all information needed for system
integration, maintenance, and enhancement.

STATE-OF-THE-ART

The activities of this stage require certain resources, formalisms,
and software tools in order to be carried out efficiently. With regard to
resources, the design activities should be supported by a computer system
which provides database support for the storage of the design data, and
designers should have interactive access to this system from terminals
with graphics capabilities. With regard to formalisms, there should be
standard formalisms for each aspect of design documentation. Standardized
formalisms are necessary to the development of unambiguous documentation
and are also fundamental to the development of software tools. With
regard to the latter, a variety is needed to expedite the documentation
and analysis activities of the design process, These include

~- utilities for checking syntax

~- utilities for checking consistency

~- utilities to perform or assist in verification

~- documentation aids such as a text editor/formatter

~- utilities for generating performance data from processing
models

These resources are commercially available from a wide range of
vendors and in a multitude of configurations. Most companies involved in
system design have these resources in one form or another, and current
technology is capable of outfitting almost any design environment that
might be defined.

Many of the necessary formalisms are available due to the
considerable attention that system design specification languages have
received during the last decade. Proposals range in flavor from
standardized graphic representations, tables, and document formats
[ROSS77] at one extreme, to formal languages having well-defined syntax
and semantics [ROBI77] at the other.
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The work on program specifications dominates the field in terms of
attention received and level of formality. A good survey of available
formal program specification techniques is given in [LISK79]. Those
specification languages that are designed to support concurrency, such as
Path-Pascal [CAMPT9] and DREAM [RIDD781, are appropriate for the
specification of distributed systems,

Also available but somewhat less formal are RSL [BELL77] and PSL/PSA
{TEIC77]. These are particularly noteworthy because they have been
implemented and are being used in the development of large systems. Both
are part of computer-aided design packages which provide database support
for storing design specifications and provide software tools tailored to
the specification formalism. The services provided include consistency
checking, automatic generation of system simulations, reporting,
configuration management, etc,

The specification of distributed systems continues to have many
unresolved problems. Some of these are due to an incomplete understanding
of what to include in a functional specification., Others are due to an
incomplete understanding of how to relate issues such as concurrency
coordination and input/output specifications which, despite their
interdependence, are currently being treated in an independent manner.
Another source of problems is in the area of performance specifications,
Except for the work of Booth and Wiecek [BOOT80], there has been little
research in this area.
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PHASE NAME: System Architecture Design

PURPOSE

The purpose of this phase is to define the architecture of the
system. It assumes a general model in which the architecture is
represented as a set of communicating processes that reside on a network
of processors., The term "processor" as used here is a general term
representing all entities that can support processes. It includes
graphics terminals, CPUs, special purpose hardware, complete computer
systems, etc. The architecture phase defines a processor structure and a
set of processes that will meet the goals contained in the system
requirements. This includes a specification of function and performance
requirements for each process, and a specification of device type and
implementation constraints for each processor and for each
interconnection. In most cases, the hardware specification does not
uniquely identify all details of the hardware, but describes only those
aspects needed to support the functionality and performance of the system.
It is the task of the Binding Phase to determine the exact hardware that
is to be used.

INPUT

The input data for this phase is the system requirements
specification produced by the Problem Definition Stage. It consists of a
conceptual model, which defines the role of the system in the application
environment, and a set of associated design constraints. This data
includes (but is not limited to) the following items.

Conceptual Model

—— A description of the services to be provided by the
system.

-~ A description of the system interface.
Constraints

-- Performance requirements such as throughput rates
and response times,

—= Physical constraints such as limitations on size,
weight, and power consumption.

—-- Reliability requirements such as survivability
goals.

-- Equipment constraints such as restrictions on types
of equipment, technology, and vendors.




OUTPUT
. The output of this phase is the system-level information needed for
. binding, integration, maintenance, and enhancement. This information
includes the following items.

Binding Requirements

—— A processing model defining system-level processes
and their interactions, interfaces, communication
protocols, and performance constraints. Model
includes response of processes to undefined data
and/or protocol violations wherever such is
possible.

—- Implementation counstraints consisting of an
assignment of processes to processors and a
specification of device type, technology, and
selection constraints for the processors and
interconnections.

Theory of Operation

-- A description of all system~level algorithms,
including goals, underlying assumptions, and proofs
of correctness.

—— All models used to predict performance
characteristics of the design.

—— A description of the design decisions reflected in
the architecture, including motivations, underlying
assumptions, and interdependencies.

STEPS

FORMALISM SELECTION

A formalism with the following characteristics is needed for the
representation of processing model information:

—- It should be easy to understand and use. This
reduces the risk of a design specification
describing more or less than intended.

-- It should be able to represent the types of
processing structure common to the anplication
area. In some cases this may only require an
ability to represent finite state machines; in
others, it may require an ability to represent
networks of cooperating processors,
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-- It should make possible the expression of
functional and performance information in the same
model, This eliminates the risk of inconsistencies
between models.

-~ It should be syntactically and semantically
well-defined, This reduces the risk of ambiguous
specifications and makes possible the detection of
certain types of specification error.

FORMALISM VALIDATION

Those aspects of the selection criteria that are mathematical in
nature may be validated by formal analysis., Those that are subjective
or dependent on the application domain must be judged on the basis of
experience in the application area.

EXPLORATION

The development of an architecture requires that algorithms be
devised for performing the system functions and that a processing model
be devised for executing these algorithms. This development effort is
guided by the need to meet the requirements and constraints given in
the system requirements specification.

The design process is also guided by general rules-of-the-trade
which suggest structures that facilitate maintainability and
enhanceability. Alsc considered are implementation issues. This is
because the processing model and associated parameters will determine
the set of implementation choices, and the design must therefore be
guided toward a reasonable set of options,

The development of the architecture normally proceeds in an
incremental manner, with certain aspects taking shape before others,
In order to assure that the developing architecture is consistent with
the design goals, TSD methodologies require that each increment be
formally documented and validated before being incorporated in the
architecture, This acceptance process consists of the activities
described in the steps called Elaboration, Consistency Checking,
Verification, Evaluation, and Inference,

ELABORATION

The task of this step is to create a formal representation of the
design. Besides the obvious need for appropriate formalisms, there is
a need for documentation aids such as those listed below.

-- Interactive terminals with graphics capabilities,

-~ A database system for storing designs.
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-- Software for detecting typographical errors. An
example is a program that lists names that occur
only once, these being potential typos.

CONSISTENCY CHECKING

This step involves checks of various sorts. At the simplest
level, there are checks for syntactic correctness of specifications and
checks for agreement of interface specifications of communicating
processes. At a more complex level, there are checks to verify that a
refinement is consistent in function and performance with the item
being refined, and checks for agreement of complementary specifications
such as a data-flow model with a behavioral model.

While the simplest of these checks can be readily carried out by
software tools given the current state-of-the-art, this is not the case
for the more complex. They are best dealt wiiun by semi-automatic
approaches in which the designer performs the checks with the aid of
software tools.

VERIFICATION

The task of this step is to show that the design is consistent
with the intent of the system requirements specification.
Mechanization of this task is beyond the current state-of-the-art and
verification must therefore be carried out by informal means, sometimes
with the assistance of the user. This may be a permanent situation
since the items of information being compared tend to belong to
different levels of abstraction.

One very important means of verification is through trace-driven
simulations and through simulations in which the user interacts with
the system., A example where both are warranted is a flight-training
system for pilots. Such simulations can also be used to evaluate the
appropriateness of proposed system/environment interfaces.

EVALUATION

This step determines the extent to which the design meets the
constraints imposed on it. This applies to all categories of
constraint, whether given in the system requirements specification or
identified as the consequence of design decisions. The needed analysis
can sometimes be performed by analytic means, but most often requires
the use of functional and/or discrete event simulation (or emulation).
Some simulations may require user interaction and some may have to be
trace-driven or distribution-driven.

In general, it is desirable for simulations to be derived directly
from the processing model by software tools [BELL77, TEIC77]. This
speeds up the evaluation process and also eliminates a major source of
error by taking humans out of the loop. Automatic derivation of
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simulations seems feasible for the more common types of analysis but
seems unlikely for the rest. In cases where new models must be created
in order to perform a particular analysis, the models and all
underlying assumptions must be recorded in the design documentation of
the system,

INFERENCE

The purpose of this step is to make sure that the design has
properly addressed the issues of implementation options,
maintainability and enhanceability, and environmental impact., This
involves the following assessments:

-- The structure is evaluated for modularity,
simplicity of interconnections, and low performance
requirements. Anything that would appear to unduly
restrict the range of implementation options,
either by limiting the choice of technology or by
requiring non-standard or specialized components,
is rejected.

-~ The processing model is evaluated from the
standpoint of modularity, degree of process
interactions, and standardization of interfaces,
Anything that would unduly complicate either
maintenance or enhancement is rejected.

-— The overall design is reviewed from the standpoint
of impact on the user environment. Any
interactions between system and environment whose
details were not dictated by the system
requirements specification are referred to the user
for approval.

INVOCATION

This step consists of a formal review and sign-off on the
arthitecture, thereby giving official permission to start the binding
phase.

INTEGRATION

This step has two tasks. The first is to configure a complete
prototype system and make it operational. This validates the quality
and completeness of the documentation and sets the stage for the second
task, which is to verify that the prototype has the function and
performance required by the system requirements specification,
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PHASE NAME: System Binding

PURPOSE

The purpose of this phase is to produce hardware and software
specifications for the system. The architecture phase has already done
much of this work, and this phase simply finishes the task. With regard
to software, most of the software requirements are provided in the
processing model produced by the architecture phase. All that remains is
to specify the target machine, and this can be done as soon as the
hardware portion of this phase has been completed. With regard to
hardware, the task is more complex.

The architecture phase views the system as being supported by a
network of processors, where the term "processor" is a general term that
includes all forms of hardware, including computer terminals, CPUs,
special purpose hardware, complete computer systems, etc. That phase also
establishes the basic nature of the processors and the interconnections.
For example, one processor might be described as a mini-computer with
certain characteristics, another processor might be described as a custom
device to be implemented in CMOS technology, and an interconnection might
be described as a serial link with a certain bandwidth. These
specifications sometimes uniquely define the component, but more often
they simply identify a class of components., The task of the binding phase
is to select a specific implementation when more than one option exists.

This selection process is guided by a variety of considerations, many
of which are system-wide in scope. As a result, selection cannot be done
by considering each processor and interconnection in isolation. Instead,
candidates must be identified for each processor and interconnection and
then selections must be made that are best for the system as a whole. The
following items are representative of the factors that are taken into
account.

-- maintenance. This biases the selection toward
minimizing the number of venders.

-~ purchase cost, This is the sum of hardware and
software costs for the entire system. It takes
into account the fact that higher costs for some
items may be offset by lower costs for others.

-~ operating cost. This takes into account power
consumption, cooling costs, and costs of service
contracts for the entire system.

—- availability and manufacturer's reputation. This
takes into account delivery times, product quality,
and ability of the manufacturer to assist when
problems occur.
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INPUT

The input data for this phase is the binding requirements
specification produced by the System Architecture Phase. It consists of a
processing model, which defines the system-level processes, and a set of
implementation constraints. The nature of this information is indicated
below.

Processing Model

-- A model defining system-~level processes and their
interactions, interfaces, communication protocols,
and performance constraints, Model includes
response of processes to undefined data and/or
protocol violations wherever such are possible.

Implementation Constraints

-— An assignment of processes to processors and a
specification of device type, technology, and
selection constraints for processors and
interconnections.

OUTPUT

The output of this phase consists of two parts, a hardware
requirements specification and a software requirements specification.

The hardware requirements specification contains all technical
information needed for procuring existing (off-the-shelf or
build-on-demand) hardware and for letting contracts for the design and
development of custom hardware. The existing-hardware category includes
existing computer systems and customizable hardware.

Hardware that must be designed from scratch is specified in terms of
its functionality, performance, and implementation constraints. This
includes a complete logical and electro-mechanical description of its
interfaces. In those cases where the custom hardware is to support
software, the hardware/software interface will be defined well enough to
allow the concurrent and independent design of the software.

The software requirements specification contains the technical
information needed for the procurement of existing software packages and
for the letting of contracts for the design and development of custom
software. Software is specified in terms of its functionality,
performance, and implementation constraints. The implementation
constraints contain a description of the hardware/software interface, with
the term "hardware" being understood to include computer systems. It may
also specify that the software be written in a particular
high-order-language or assembly language.
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STEPS

FORMALISM SELECTION

In the hardware area, specification formalisms are needed for
describing hardware that is to be designed. For programmable devices,
the formalisms must deal with the instruction-set domain, while for
non-programmable devices, the formalisms must deal with functional
domain. In the software area, specification formalisms are needed for
describing software that is to be designed.

Several specification formalisms exist for each of the areas

described above. Each formalism is well suited to a particular range
of application, and all application areas appear to be covered.

FORMALISM VALIDATION

The suitability of a formalism depends on how well it meets the
needs of the application area. In most cases, there is no standard
describing these needs, so suitability must be judged on the basis of
experience,

EXPLORATION

The identification of suitable candidates for a given processor
can be a complex task. Each processor has been assigned one or more
system processes by the architecture phase, and each process has a set
of performance constraints that must be met. In the case of custom
hardware, the assigned processes define the behavior of the hardware to
be designed. In the case of programmable hardware, the assigned
processes define the software that is to be purchased or designed and
they also constrain the selection of the programmable hardware. The
latter results from the fact that software performance is dependent on
the instruction set and speed of the hardware. In those cases where
the software already exists, performance can be ascertained
experimentally. In those cases where the software must be written, the
suitability of the hardware can be judged by two approaches, The first
is by educated guesses based on experience with similar processes and
hardware. The second is by identifying the performance-critical
sections of the processes and then programming them for the hardware
under consideration,

The selection of winning candidates can also be a complex task.
This is particularly true when the item in question is a computer
system because the candidates usually have features not called for in
the design effort. Since these features are potentially useful, it is
unreasonable to simply disregard them. At the same time, it is
difficult to know how to weigh them in the selection process. This
issue has received much study [TIMM73] and is still unresolved.
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Binding can be done in a brute-force manner by exhaustively
identifying all candidates for each processor and interconnection and
then performing the selection process. This is very time-consuming,
especially for large systems, and more efficient approaches are needed.
One possibility is to use the system-wide considerations during
candidate identification to reduce the number of candidates that must
be considered in detail. Such a strategy would have to be worked out
very carefully in order to assure that the only candidates that would
be eliminated are those that would be eliminated by the brute-force
approach,

ELABORATION

The task of this step is to record the design data generated
during the binding phase. These data include the models used for
evaluating candidates, the considerations used in choosing winning
candidates, and the specifications generated for hardware and software.
This documentation task is facilitated by documentation aids of the
type described under the elaboration step of the system architecture
phase.

CONSISTENCY CHECKING

This step deals with checking the software and hardware
requirements for internal consistency and proper use of the respective
formalisms, Most effort is expanded in the evaluation of the interface
consistency between software components, between hardware components,
and between software and hardware.

VERIFICATION

The verification of the software and hardware requirements is
carried out against the binding requirements received from the system
architectur design phase.

EVALUATION

The task of this step is to determine whether potential
implementation methods can meet the performance requirements of the
processes being bound. If the implementation being considered is an
of f-the-shelf package, the performance parameters of the package must
be reconciled with the requirements of the process(es) it is to
implement. If the implementation is custom software running on some
device, the issue is whether software that meets the performance
requirements of the process{es) can be written for that device.
Techniques for determining this are discussed under the exploration
step of this phase.
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INFERENCE

The objectives of this step are similar to those of the
corresponding step from the system architecture design phase. The
difference is in the fact that here the actual machines to be used are
known and, therefore, the analysis becomes more concrete,

INVOCATION

This step consists of a formal review and sign-off on the hardware
and software specifications, thereby giving official permission to
begin procurement of hardware and software.

INTEGRATION

This step is vacuous for the binding phase. All aspects of system
integration fall under the purview of the system architecture phase.
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2.3.3 SOFTWARE DESIGN STAGE

TERMINOLOGY OF THIS STAGE

REQUIREMENTS: Software Requirements
PHASE: Software Configuration Design

REQUIREMENTS: Program Desigh Requirements
PHASE: Program Design

REQUIREMENTS: Implementation Requirements
PHASE: Coding

DESCRIPTION OF STAGE ACTIVITIES

The Software Design Stage transforms the software functionality and
performance requirements, as specified by the System Design Stage, into a
working software system meeting those requirements. This transformation
may generally be performed in one of three ways: the custom design,
development, and implementation of the software system, the procurement of
a suitable software system from an external source, or some combination of
these two activities, supported by a rigorous integration and validation
effort.

STATE-OF-THE-ART

Recognition of the well-known software crisis came during the late
Sixties. Since that time, considerable progress has been made toward
systematizing the production of reliable software. Starting with
tentative steps toward the improvement and definition of programming style
(KERN741, the ideas of top-down design, modularity, structured
programming, and stepwise refinement {WIRT71a, WIRT73, DAHL74]
crystallized into well-defined practices supported by a variety of
vehicles ranging from guidelines [JACK75] to formalized rules for
describing and documenting programs (see [LISK79] for a general discussion
of the state of the art), and automated tools to expedite and monitor the
program implementation process [TEIC77]. The impact of this movement
extends to the programming languages themselves, since their construction,
stemming from earlier perceptions of the programming process, generally
did not anticipate the trend toward systematization. As a result,
important changes have been introduced into existing languages such as
FORTRAN [ANSI66] and COBOL [ANSI68]. In addition, concern with structured
programming has prompted the appearance of new languages such as PASCAL
[WIRT71a, JENS75], Simula [DAHL66, DAHL70], Ada {DODT9], and CLU [LISK77a]
in which such features as strong typing and user-defined abstract datec
types play prominent roles.

Response to the software crisis transcended the individual program,
addressing a spectrum of system design issues as well. Accordingly, the
system design and development process is currently supported by a variety
of technical and management instruments, including chief programmer teams
[BAKE72, BAKE73], structured analysis [R0SS77a, ROSS77b], and structured
walkthroughs [YOUR75]. 1In summary, the software development process is
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now perceived as an engineering endeavor, with the primary emphasis on
reliability, maintainability, quality assurance, and fault tolerance.

However, further work 1is needed since many of the above-mentioned
areas are still in their early stages of development. 1Issues yet to be
addressed include:

-- The further integration of automatic tools with
methodologies well suited to their use, and integration
between different methodologies and techniques.

-—- Greater transfer of technology between developers and
potential users, as well as further use of existing
tools and techniques.

-~ The further development of formal languages and
rigorously verifiable techniques. These should have a
positive impact on the traceability of requirements and
constraints throughout the system development process.

—- A better understanding of how to exploit concurrency in
the design of software systems, all the while managing
the complexity of such designs. Accordingly, the need
for formal tools and sophisticated design aids oriented
toward concurrent systems presents an important frontier
for future research.
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PHASE NAME: Software Configuration Design

PURPOSE

The purpose of the Software Configuration Design phase is the
development of a model of the software system structure, description of
the programs comprising the software system, the interfaces through which
the comp nents communicate with one another and with their environment,
and a specification of how the components of the system are to be acquired
(i.e., through custom design and implementation, off-the-shelf
procurement, a combination of the two, or by some other means).

INPUT

The Software Configuration Design Phase receives as its input from
the System Binding Phase of the System Design Stage a set of Software
System Requirements. This consists of the system functionality
specifications and the system constraints. The former describes what the
system must do; the latter imposes quantitative and qualitative
restrictions on the set of possible design solutions. Examples of such
constraints are: performance constraints, hardware and configuration
constraints, and implementation language constraints,

OUTPUT

The Software Configuration Design Phase provides the Program Design
Phase with a specification of the structure of the software system,
functional and performance specifications of the programs which need to be
designed to implement that structure, and the program interfaces. The
latter refer to major software system interfaces, such as databases and
file management systems, major data structures, user interfaces, etc.

This phase may also develop some further constraints to be observed in the
later software development phases, such as time and space constraints for
each system program.

STEPS

FORMALISM SELECTICN

The formalism selected for this phase of the system design should
be useful in the description of the important design aspects of a
software system. These include the structure of the system, behavior
of the component programs, the interfaces between the component
programs, and procedural relationships and models,

The criteria to be employed in the selection of one formalism over
another include: degree of formality, nonprocedurality, verifiability,
analyzability, the existence of automated support tools, simplicity,
the support of hierarchical descriptions, suitability for the
description of concurrency in a system, and the capability to deal with
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multi-level, virtual-machine system architectures.

Existing formalisms having some of these properties, in different
and varying combinations, include:

FORMALISM

Structured Analysis (SA, or SADT) [R0SS77a, ROSS77b)
Structure Charts and Data Flow Charts [MYER73]
HIPO's (Hierarchy plus Input-Process-Output) [IBM74]
Structured Systems Analysis [GANE79]

Procedural and data abstractions [LISK77b]

PSL/PSA [TEICT77]

HOS [HAMIT76]

RSL [BELLT77]

VALIDATION

The important factors to be considered in the validation of the
selected formalism are: the formal aspects of the system selected and
their applicability to the problem domain, and empirical evidence
obtained through previous experiences with the use of the selected

formalism.

engineers

In addition, the formalism must be suitable for software
to use comfortably as a design tool.

EXPLORATION

Guidelines to be employed in the decomposition of the software
system into a set of programs include:

Available

Isolation of functionally-related or data-related
activities into single programs, thereby
maintaining strong correspondence between
conceptual activities and actual processes,

Use of straightforward, well-documented interfaces
to minimize apparent complexity.

Employment of stepwise refinement to develop the
design from initial requirements in a systematic
manner.

Comparison of different possible program and
interface configurations to arrive at the best
possible design.

techniques and aids include:

Top-down design through stepwise refinement
[WIRT71b, DAHL72].

Bottom-up design through stepwise composition
[{DIJK68D].
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~- The use of virtual machines to implement a set of
interacting software layers [DIJK68b].

~- Modularization of data and funciion [PARN72b].

Data structuring and encapsulation [LISK79].

-- Invariant data structures.

ELABORATION

The current trend in elaboration centers around the use of one of
the design aids mentioned above. Some of the design aids mentioned are
supported by automatic tools; more generally, however, they are simply
a set of rules and procedures to be followed. Common software aids
such as databases and computer graphics, however, can be helpful in the
management of information, particularly on very large projects.
Application of these aids expedites the production of requirements
definitions for the Program Design Phase.

CONSISTENCY CHECKING

The specifications produced in the elaboration step should be
checked against the rules of the selected formalism (i.e, syntax).
Problems with self-consistency, contradictions, and completeness should
be checked for, as well as consistency between levels of the
development when hierarchical specifications are used. Interface
usages should be verified against their definitions. When
complementary specifications are used, they should be checked against
one another (e.g., behavior vs. structure; data flows vs. event
sequences).

VERIFICATION

The logical correctness of the specifications should be verified
with respect to the specifications input to the stage. This includes
the verification that no information from the previous stage is lost or
ignored. Logical verification is somewhat similar to a proof of the
correctness of a program, but an order of magnitude more difficult.

EVALUATION

The evaluation step examines the specifications set down in the
previous steps and produces data describing aspects of those
specifications. This may include an evaluation and prediction of the
performance of the selected software architecture, in terms of the
performance of each component program. This evaluation may be arrived
at through various methods of performance modeling and simulation,
forecasting models, reliability models, etc. The specificitions should
also be examined in light of the other qualitative and quantitative
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constraints, such as fault detection and recovery, maintainability,
flexibility, transportability, freedom from problems such as deadlock,
and feasibility of implementation. Other important factors are the
human engineering factors, which may be studied by a user review of
human interfaces, mockups, etc.

INFERENCE

In the inference step, those aspects from the mass of data
produced in the evaluation step relating to the user environment and
the next phases are studied and evaluated to obtain a global picture of
the quality of the proposed software system architecture. The initial
study of testing strategy is also begun. In addition, the impact of
the proposed design on the module level design phase should be
considered (e.g., the gross complexity of the algorithms to be used).
The results of this inference determine whether the next design phase
should be invoked, or whether further iteration over and refinement of
the design are necessary. The potential impact of the parts of the
system specified for procurement should also be anticipated at this
point.

INVOCATION

The Program Design Phase is invoked.

INTEGRATION

The tested and fdebugged' programs are received back from the
program design phase, and are integrated together, along with any
of f-the-shelf software specified in the software system architecture,
into a coherent software system. The system is thoroughly tested,
using test cases generated in previous steps of this phase, along with
any testing suggested by designers in the lower phases., Testing can be
speeded and aided in completeness by use of any of the several
automatic testing aids and systematic testing procedures available
(HETZT31.
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PHASE NAME: Program Design

PURPOSE

The Program Design Phase is responsible for the decomposition and
refinement of the program specifications generated in the previous phase
into lower-level, reasonably sized, completely specified modules,
including descriptions of the algorithms and -he local data structures to
be employed.

INPUT

The inputs to the Program Design Pha_e are simply the outputs of the
Software Configuration Design Phase, the Program Design Requirements,
consisting of:

-- the system structure

-~ the program requirements specifications
-~ the program interfaces.

OUTPUT

As output, the Program Design Phase produces a set of Implementation
Requirements., These requirements are:

-~ the module specifications, composed of algorithm
specifications and local data structure
specifications

-- the intermodule interfaces, such as data structures
and parameter lists, -

fo T

STEPS

FORMALISM SELECTION

The most important criteria for formalism selection in this phase
are the degree of formality of the formalism, and the ease with which
it can be used. Some examples of formalisms relevant to this phase of
the design are: English, conventional flowcharts, structured
flowcharts [NASS731, schematic logic [JACK75, JENS79], pseudocode (with
assertions), decision tables, finite state machines, and formal program
specification languages (e.g. PSL [TEIC77], GYPSY [AMBL77]) and
techniques (axiomatic specifications [HOAR69), operational
specifications [PAGA811]).
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FORMALISM VALIDATION

The formalism should be examined primarily with regard to the
degree to which specifications produced through its use may be
verified, and the productivity expected from its users. Productivity
is largely a function of how well the formalism is suited to use by
software engineers, and how easily it can be translated to code.

EXPLORATION

The purpose of this step is the decomposition of the program into
a set of functionally simple modules, and the selection and description
of the data structures and algorithms to be employed in the
implementation of the program modules. Techniques useful in this
decomposition are: modularization [PARN75]; structured programming
[DAHL72]; stepwise refinement [WIRT71b]l; abstract machines [DIJK68b]:
data structuring; abstract data types and encapsulation [LISK74]; and
information hiding [PARN72b].

ELABORATION
In this phase, the elaboration step simply involves the

description of the design decisions made during the exploration step
through use of the selected formalism(s).

CONSISTENCY CHECKING

Consistency checking is performed with respect to the rules of the
formalism, i.e., the syntax of the formalism. The use of the
interfaces also has to be checked, both between modules, and when the
modules must interface to the environment. The module descriptions
must be checked for violation of invariants during their processing,
and while interacting with the program interfaces.

VERIFICATION

The specification must be verified against the requirements of the
programs as passed in from the software design phase. They can be
checked for the preservation of specified I/0 assertions, Correctness
proof techniques may be employed, to the extent that they are usable
and useful.

EVALUATION

The evaluation step of this phase is concerned with many of the
same issues as described in the evaluation step of the software
configuration design phase., The further decomposition should be
reflected through the further refinement of the performance parameters.
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In the inference step, one of the things to be considered is the
implication of the data structures selected on the choice of a
programming language. Different structures are more naturally
represented and manipulated in different languages. Likewise, the
relation between the proposed algorithms and the operations they
require, and the features and performance of different programming
languages should be considered.

INFERENCE

INVOCATION

The Coding Phase is invoked. [

INTEGRATION

The program design phase receives back tested modules from the

Coding Phase. Integration involves the testing of these modules as
they interact with each other as programs.
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PHASE NAME: Coding

PURPOSE
The Coding Phase is responsible for the actual programming of the

modules specified in the Program Design Phase, and the testing of the
modules against their specifications.

INPUT
The Coding Phase receives the Implementation Requiremerits produced by

the Program Design Phase. These requirements are: the module
specifications, and the intermodule interfaces.

QUTPUT

The coding phase produces coded, tested modules and any necessary
documentation,

STEPS

FORMALISM SELECTION

The formalism employed in the coding phase is some kind of
programming language. The language may either be selected on the basis
of the problem domain and suitability to implementation of the data
structures and algorithms specified in the program design phase; or,
it may be specified as a constraint from much higher in the design.
Examples of programming languages, such as Pascal, PL/I, Algol, or any
of a number of assembly level languages, should be familiar to most.
One alternative to the conventional programming languages is the
preprocessor, which, depending on it and the language it is targeted
for, may make coding a much easier and reliable matter through the
assistance it can provide in programming style, available control or
data structures, data types, concurrency, etc. One of the better known
preprocessors is the RATFOR preprocessor for the FORTRAN language
{KERN7S].

FORMALISM VALIDATION

The formalism validation simply involves examination of the
suitability of the selected language with respect to the algorithms,
data structures, and general problem domain inherent in the modules to
be coded. Other factors are the availability of language processors
and program development tools, such as special purpose text editors,
and the machine (hardware or software) on which the programs are to
run,
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EXPLORATION

A one to one mapping between module specifications and coded
program modules is performed. The many rules of good programming style
and structured program development should be employed.

ELABORATION

On-line syntax checkers and standards enforcers provide valuable
asgistance in the coding of error-free programs. Library modules are
useful in reducing the work of the programmer, provided that care is
taken that they actually meet the specifications of the module or
module fraction,

CONSISTENCY CHECKING

Consistency checking is usually provided by the language processor
or translator, whether it be a compiler, assembler, or interpreter.
VERIFICATION

The coded modules should be verified against the specifications
describing them, as passed into the coding phase from the program
design phase. The coded modules should then be thoroughly tested.
There are tools available for testing, tracing, instrumenting, and
performance monitoring.

EVALUATION

The actual performance data can be obtained and checked against
the constraints associated with each module. If performance criteria
can not be met, then recoding or redesign should be considered.

INFERENCE

The inference step is vacuous for this phase.

INVOCATION

The Coding Phase does not invoke any further phases.
INTEGRATION

Since there are no further phases below the Coding Phase,
integrating is vacuous for this phase.
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2.3.4 MACHINE DESIGN STAGE

TERMINOLOGY OF THIS STAGE

REQUIREMENTS: Hardware Require.ents
PHASE: Hardware Configu.;ation Design
REQUIREMENTS: Component Requirements
PHASE: Component Design
REQUIREMENTS: Circuit Design Requirements; Firmware Requirements

DESCRIPTION OF STAGE ACTIVITIES

This stage receives as input a set of hardware requirements, which
may consist of a set of procurement instructions and/or design
specifications for customized hardware (such as the desired instruction
set and performance constraints, or some form of signal transformation
function)., The purpose of this stage is to procure hardware for the
system and to carry out a high level design of all custom hardware. The
output of this stage, if necessary, is a set of firmware requirements for
the hardware that has been purchased or designed and a register level
specification of the hardware circuitry which must be custom made.

STATE-OF-THE-ART

Well established methodologies already exist in many places for the
development and procurement of hardware at this level, but most suffer
from serious shortcomings. Despite the wealth of knowledge and experience
that has been developed over the years of large hardware systems design,
the design of these system remains an art., Much of this is due to a lack
of formality in the specification methods used and the lack of a cohesive
support facility for the development of hardware. In recent years,
however, the development of hardware description languages [SHIV79] and
efforts by the American National Standards Institute to establish a
standard formal symbology for hardware description have paved the way for
the establishment of hardware design facilities meeting the requirements
of the TSD framework.
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PHASE NAME: Hardware Configuration Design

PURPOSE
This phase serves to procure off-the-shelf hardware to meet the

system hardware specifications where possible and to carry out an
architectural design of the hardware which cannot be purchased,

INPUT

The Hardware Requirements specification consists of one or more of
the following :

~— A set of procurement specifications for the purchase of
existing hardware systems.

~— A set of specifications for the design of custom hardware
including the required instruction set or processing
capabilities and the required performance of the hardware
system,

-- A set of transformation functions for hardware which must
provide an interface with the environment.

OUTPUT

The output of this phase is the Component Design Requirements
specification, which is a formal model of the system at the hardware
architecture level (the building blocks for the model at this level are
processors, memories, switching networks, interconnection links, etc.).
This model must include both a functional and performance model of the
system, with orientation toward the implementation of the instruction set
presented in the input requirements in such a way that all of the
constraints are met.

STEPS

FORMALISM SELECTION

The formalism used in this phase must be designed to work with
design components at the level of processors, memories, and
communications structures. For those portions of the system which must
be custom designed, the formalism should be oriented toward the type of
machine architecture being designed (a formalism designed for use in
distributed systems design would be more complex than is needed for the
design of a single stand-alone computer system). If procurement is the
desired goal, then the formalism should be oriented toward the
evaluation of existing machines in terms of the Hardware Requirements,.
In all cases the formalism should allow for the description and
analysis of system constraints as well as function. (See [BELL71] for
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one formalism which is widely used at this level.) Such factors as
human engineering and availability of automated aids should be
considered when evaluating any formalism for potential use.

FORMALISM VALIDATION

Validation of the formalism chosen consists of performing an
analysis of suitability of the formalism for use with the particular
design and procurement problems presented by the proposed hardware
system. In many cases this is done by using the formalism to construct
a "toy" model of the proposed system and then evaluating the formalism
in terms of this model,.

EXPLORATION

The exploration task consists of two possibly interrelated tasks:
the search for existing hardware systems for purchase, and the design
of the hardware architecture for custom machinery. The search for
existing equipment essentially involves a survey of current commercial
hardware, interviews with manufacturer representatives, analysis of
established customer installations, etc. In the design of custom
hardware, a modular approach to design emphasizing flexible and
expandable structures with simple interfaces is required. 1In all cases
a review and incorporation of past efforts in similar areas could
greatly reduce the amount of effort necessary in this step.

ELABORATION

In this step the results obtained in the previous step are
expressed formally using the formalism chosen for this phase. 1In this
way the design of custom components and the characteristics of proposed
off-the-shelf hardware is put in a form which allows extensive analysis
in later steps. Because of the complexity and formality required, some
form of computer aid is needed to support this activity. Examples of
this are storage of the specification in a database and automatic
generation of documents from the database, syntax checking on the
specification, maintenance of a library of standard components and
solutions to specific problems, and the handling of simple clerical
chores for the designer [SHIV79],

CONSISTENCY CHECKING

This step, which should be carried out with as much automated
support as is possible, serves to analyze the formal specification of
the hardware system for correct usage and self-consistency. Nc attempt
is made at this step to analyze the system itself, however. Examples
of inconsistent specifications are: requiring communication between
machines of different word lengths or processing speeds without an
interface, specifying a processor component without providing any
memory for it, specification of a communications link without a
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termination, etc. Automated support for this could take the form of a
set of analysis programs to check the specification for specific
consistency criteria or some kind of formatting system to present the
specification in a form that can be easily analyzed by the designer.

VERIFICATION

In this step the hardware system itself is analyzed functionally
for correctness with respect to the Hardware Requirements, 1In
particular, sequencing and protocol in the system must be verified, as
well as the support for all of the required hardware functions such as
the hardware instruction set and input/output functions. Mechanical
analysis here may be difficult as it requires comparison of two
(perhaps completely different) formal specifications for mutual
consistency, but some kind of computer aid to format the specification
in a form that is convenient for the comparison of the two
specifications would be helpful. In addition, the function of
processor components in the system may oe verifiwd by emulation of
their instruction sets [CLAR78].

EVALUATION

The purpose of this step is to evaluate the design in terms of the
constraints presented in the Hardware Requirements. The performance
and timing of the system can be evaluated in part by simulation of the
system [TO74], although in cases which are simple or very regular in
structure some form of analytic technique may be developed [ALLE80O].
For devices which have been purchased, a set of benchmark tests
designed to evaluate the hardware for the specific task that it will
perform may be used to evaluate the equipment. For processor type
components, emulation may be used in conjunction with estimates of the
required execution time for each instruction to gather performance
data. Other constraints such as power and weight limitations may be
measured directly for existing equipment and must be estimated for
custom equipment, Aspects such as fault tolerance and maintainability
may also be of concern in this step [COX79].

INFERENCE

This step attempts to project the impact that decisions made at
this level of the design will have on any later phases of the design
and on later use of the system in a production or maintenance
environment., Such a projection is to serve both as a guide to later
design phases and as a final analysis of issues other than
functionality and performance that may have an impact on the acceptance
of the design. Examples of issues that are of concern in this step are
the feasibility of construction of the hardware as specified,
manufacturer support for procured hardware, availability of
off-the-shelf parts for implementation of the next level of design,
manpower requirements to complete the system construction,
determination of critical areas which require extra design effort (such
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as processing bottlenecks in a high performance system), etc.

INVOCATION

This step invokes the Component Design Phase. If all of the
necessary hardware, complete with firmware, has been procured then this
step is omitted.

INTEGRATION

In this step all of the hardware (both procured and custom
designed) is integrated and tested. The major task of the step is to
insure that the hardware system as a whole works as it was designed
before releasing it for integration with the system software.
Benchmark programs and simulation of the projected operating
environment are two methods which may be used to isolate errors and
confirm correct operation [TO74].




PHASE NAME: Component Design

PURPOSE

The purpose of this phase is to analyze the component requirements,
purchase all commercially available components (processors, memories, I/0
controllers, etc.) which meet the component requirements and carry out a
register level design of those components which must be custom built. In
addition, the requirements for system firmware must be determined in this
phase.

INPUT

The input to this phase is the Component Requirements specification,
which is a description of the architectural components comprising the
hardware system. This includes both a functional specification and a set
of constraints (speed, size, etc.) over these components. An important
part of this specification is the intended instr tion set for the
processor elements with its requisite timing.

QUTPUT

There are two sets of output requirements for this phase: the
Circuit Design Requirements and the Firmware Design Requirements. The
Circuit Design Requirements specification is a register level description
of the design of those components which cannot be bought commercially.
This specification must include both the functionality of the register
level circuits used as primitives and a description of the speed, size,
and power constraints for the circuit. The Firmware Design Requirements
is a specification of the functionality, performance, and memory
constraints required of the system firmware. This is typically given in
terms of an instruction set to be implemented given the register structure
of the hardware, system protocols to be established, and constraints over
timing and memory usage for these functions.

STEPS

FORMALISM SELECTION

The range of activities to be carried out in this phase is fairly
large, and a variety of formalisms may need to be selected here in
order to carry out the activities of this phase. One of the primary
activities of this phase is the procurement of commercial hardware
components such as processors, memories, mass storage, communications
interfaces, etc,; and this is aided by a formalism oriented towards
the description of these components in a formal manner that lends
itself to later analysis (such a general formalism does not currently
exist), The second major activity is the further design of those
components which cannot be purchased. The formalism used for this must
support hardware description at the register transfer level (typical
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primitives at this level are storage and shift registers, ALUs, bus
structures and controllers, multiplexers, etc.) and be able to model
system constraints as well as function in an analyzable manner. The
last major activity is the establishment of the firmware requirements
for processor-type components. The formalism used here must be capable
of modelling the register level architecture of the hardware to be
microprogrammed as well as present a functional and performance model
for that firmware. Each of these formalisms should be compatible as
the analysis and evaluation of the system requires coordinated analysis
of each of these specifications. Some examples of formalisms
possessing some of the required properties are SMITE, ISPS, CDL, and
DDL [SHIV79].

FORMALISM VALIDATION

The basic requirement in this step is that the formalisms selected
be able to support the types of analysis and descriptive tasks required
of them. The use of the formalisms on simple test cases and experience
from any previous use of the formalisms should provide the lasis for
establishing the validity of using the formalism for any particular
design. Human factors such as usability should be considered when
validating a formalism.

EXPLORATION

It is in this step that the major design activities of the phase
are carried out. A review of commercial components must be made, and a
study of their potential use as components in the design must be made.
Those components which cannot be purchased must be custom designed, and
this design must be carried out to a register transfer level., If a
microprogrammed control structure is to be used, a set of
microinstructions must be decided upon and implemented in the control
structure design. The microinstruction set along with the requirements
for the machine instruction set and timing establish the basic
requirements for the system firmware. As always, the principles of
good design emphasizing modularity, simple module interfaces and
interconnections, maintainability, etc. should be followed.

ELABORATTUn

This step serves to express the informal designs, firmware
requirements, and commercial component descriptions in the formalisms
selected for this phase. The relative simplicity of the basic
primitives at this level should allow for a great deal of structuring
in the formalisms, which in turn should enable mechanized support for
building these models. This support will usually take the form of
computer aided construction of a design database, syntax checking on
all input constructs to this database, prompting for missing components
of the specification, and specially formatted output of the
specification for designer verification [SHIV79].
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CONSISTENCY CHECKING

The purpose of this step is to evaluate the formal models produced
above for self consistency and for consistency with each other.
Examples of inconsistent specifications are microcode instructions
which act on registers not defined in the register description of the
processor, connecting byte~parallel devices with bit-serial
controllers, or attempts to place 36-bit data values on a bus which has
only 32 data lines. Again, due the the relative simplicity and
structure at this level it should be possible to automate a great deal
of this consistency checking through a series of analysis programs
which act on the specification database.

VERIFICATION

In this step the design of the system is analyzed for functional
correctness with respect to the Component Requirements. For small
systems this may be done manually by walking through the sequences of
events which occur in the system. For larger systems, automated tools
such as simulation may be used. Protocols between the custom
components and the purchased components should be analyzed for
correctness. The microcode instruction set should also be analysed in
terms of the purchased and custom components to insure that the
microinstructions are all implemented. Procured components may also be
tested in simulated operating environments to verify their
functionality.

EVALUATION

In this step a functionally correct design is analyzed for
conformance with the performance requirements and other constraints
established for the system. Items to be considered at this point are
projected speed, projected size, projected weight, etc. Most of these
constraints can be measured directly with the purchased hardware. For
the custom hardware, emulation of the microcode level and simulation of
the circuit activity using estimates of the timing of these elements
can be used to gather performance data. Additional analysis that
should be performed at this step includes fault tolerance analysis,
failure rate predictions, and probability of entering a deadlock state.
In all cases some kind of automated aid to set up the component tests
and simulations would greatly simplify the task of this step [TOTY,
COX791].

INFERENCE

The purpose of this step is to analyze the design decisions made
in this phase in terms of their impact on the later phases of the
design. In particular, items such as the feasibility of implementation
of the design, circuit implementation technology, strategies for
firmware design, effects on system maintaingbility, and effects on
system usability all need to te considered. The conclusions reached
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here serve as a guide to designers at the next levels and to identify
areas in the design which will require extra attention at the next
levels (such as a high speed ALU and efficient firmware to drive it).

INVOCATION

The phases invoked at this point are the Circuit Design Phase and
the Firmware Design Phase.

INTEGRATION

This step serves to integrate the individual circuits designed in
the circuit design stage into components, and integrate the firmware
developed in the firmware design stage with the custom and commercial
components considered in this phase. The components must then be
individually tested and debugged, usually through some sort of
simulation of the projected operating environment. Only after these
components have been shown to meet the functional and performance
requirements established for them are they turned over to the hardware
configuration design phase for further integration.
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2.3.5 CIRCUIT DESIGN STAGE

TERMINOLOGY OF THIS STAGE

REQUIREMENTS: Circuit Design Requirements
PHASE: Switching Circuit Design
REQUIREMENTS: Electrical Circuit Requirements
PHASE: Electrical Circuit Design

REQUIREMENTS: Solid State Requirements
PHASE: Solid State Design
REQUIREMENTS: Fabrication Requirements
PHASE: Fabrication

DESCRIPTION OF STAGE ACTIVITIES

The CIRCUIT DESIGN STAGE is comprised of four phases called the
switching circuit design, electrical circuit design, solid state design,
and fabrication, These phases will be treated summarily as the principles
and techniques used in these phases are already well understood and
contribute little to the understanding of the TSD philosophy as a whole.
Because of the shortened treatment, the format of this section will not
follow that of the other stage descriptions.

The SWITCHING CIRCUIT DESIGN phase deals with the design of custom
circuits at the level of logic functions, op-amps, A/D converters,
flip/flops, etc., The input to this phase is the Circuit Design
Requirements specification, which is & register transfer level description
of the circuit with timing and physical constraints included. The
objective is to produce a full description of the circuit at the logic
gate level, and to obtain off-the-shelf circuits when performance, size,
power, and other constraints allow. Some formalisms which are often used
in this phase are Boolean Algebra and switching theoretic techniques,
augmented with performance models for logic circuits under current
technologies. Analog components require sr=cifications such as transfer
functions or Bode plots. Exploration in -es a review of current
commercial circuit packages and techniqu.. for constructing circuits
within present technology, as well as systematic design of custom
circuitry. Procurement, as usual, is preferred at this stage if all
functional requirements and constraints can be met. Evaluations of the
circuits at this level consist typically of analytic methods based on
graph theory and switching theory, simulation of the circuit action, and
breadboarding. The input to the next phase is the Electrical Circuit
Design Requirements, consisting of logic and analog circuit models of the
system augmented with performance requirements and other physical
constraints. After invocation of this phase, the custom designed circuits
and the off-the-shelf circuitry must be integrated and tested, usually
through a small scale simulation of the target environment.

The ELECTRICAL CTRCUIT DESIGN phase deals with the circuit design at
the level of conceptual devices such as transistors, resistors,
capacitors, etc. The input to this phase is the Electrical Circuit Design
Requirements, which is typically a logic circuit model with added
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performance and other constraints. The objective of this phase is to
transform these requirements into a design composed entirely of conceptual
electrical devices, The usual formalism used at this level is the
standard electrical schematic diagram, but the ability to model device
characteristics and circuit layout geometry must be present at this level,
It is at this level that the characteristics of the physical medium of
implementation of the circuit btegin to have a great effect on the design,

principally through the tv - of devices available to the designer but
also in such consideraticns as loading of circuits, amplifier gains,
transmission line effects, etc., Hence, the technology used to implement

the circuit must be deciged at this phase. The exploration and
elaboration steps rely largely on a review of existing circuit
construction techniques within each technological family, and the
principles of design at this level are comparatively well understood if
not always followed. Although for small circuits or one-time productions
the procurement of discrete transistors, inductors, etc. for circuit
construction is preferred, the decreasing startup costs of integrated
circuit fabrication may make implementation via integrated circuit more
practical as time goes on. Evaluation of a design at this level is
largely done through manual analysis and breadboarding, although computer
simulation of circuits at this level is available (and expensive). The
output of this phase is the Solid State Design Requirements, which is
usually a specification of the electrical devices comprising the circuit
and a set of physical constraints and assumptions concerning these
devices. Once these devices have been procured or fabricated, they are
assembled and tested in the integration step, typically by simulation of
the operating environment or application of a set of test signals designed
to put the circuit through a significant portion of its active state set.

The SOLID 2TATE DESIGN phase serves to translate the electrical
circuit specification into a form suitavle for fabrication. The input to
this phase is the Solid State Design Requirements, which contains
information concerning the device interconnections and device
characteristics of the integrated circuit to be constructed, along with
the assumed fabrication technology. The formalisms used in this phase are
mainly graphical, and in most places are aided extensively by computer,
It is at this point that all device dimensions are fixed, interconnecticn
patterns and chip geometry worked out, and approximate physical and
performance characteristics of the end circuit determined. To aid in this
process, many facilities have developed a set a standard design rules for
each technology, which if followed will guarantee a thip design that can
be fabricated successfully. The exploratioi and elaboration steps
themselves involve a great deal of exploraticn into possible circuit
structures and layouts, but a fairly large body of existing solutions to
layout problems is making this task easier. Evaluation is done typically
through analysis for conformance with these design rules, and may a.so
include automated analysis for conformance with performance requirements,
The output of this phase is the Fabrication Requirements specificiation,
which is some form of formal specification of the geometry and layout of
the chip to be fabricated. The integration step here is nonexistent, as
the circuit arrives in integrated form from the fabrication phase,.
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The FABRICATION phase serves to translate the geometric specification
of the integrated circuit to be produced into a finished circuit. The
input to this phase is the Fabrication Requirements specification,
described above. The formalism used is the specific fabrication process
for the device, which involves the generation of process masks from the ‘
input specifications and the use of these masks to guide the fabrication ‘
process. Exploration and elaboration are automatic at this point and
involve simply the production of the cirecuit. Verification of the design
at this level takes the form of visually checking for flaws in the
fuvrication of the circuit and checking the operation of embedded test
circuits, and evaluation takes the fcrm of electrically testing the
circuit. The output of this phase is a finished circuit.
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2.3.6 FIRMWARE DESIGN STAGE

TERMINOLOGY OF THIS STAGE

REQUIREMENTS: Firmware Requirements
PHASE: Microcode Design

REQUIREMENTS: Microcode Requirements
PHASE: Microprogramming

REQUIREMENTS: Microcode Generation Requirements
PHASE: Microcode Generation

DESCRIPTION OF STAGE ACTIVITIES

The purpose of the firmware design stage is to translate the firmware
requirements intc executable microcode, along with appropriate
documentation and analyses. The complexity of application in which
firmware is useful ranges from very large systems, such as a PASCAL
engine, through less complex applications, such as a graphics display
module or a matrix multiplication module, to relatively simple
applications, such as the implementation of specific machine language
instructions. Firmware development is similar in many ways to general
software development, and many of the concepts, techniques, and tools
applicable in that discipline also are useful in the development of
firmware. However, there are a number of ways in which general software
and firmware differ; because of these differences, techniques not
normally applied in the development of software are sometimes required for
the development of effective firmware. Firmware often deals with more
complex, detailed and low-level hardware components (and the data paths
between them) than does software. This, combined with parallel
manipulation of the hardware components and data paths, requires unique
code generation, verification, and optimization (often known as
compaction) techniques not used in software development, The input to
this stage, firmware requirements, includes:

Functional Specification

-- The semantics of the action to be performed are usually specified
by use of a register transfer language (RTL). The objects
manipulated by this specification are only those defined by the
user (person who will utilize the firmware) and do not include the
actual hardware components available for computation.

Constraints

~- The pertinent aspects of the hardware architecture (e.g.,
horizontal or vertical) must be specified; this includes the
logical and timing properties of the hardware components and their
interfaces. A specification of the microinstructions must be
given, detailing the format, semantics, and timing of each
microinstruction. Requirements on performance (i.e., timing) and
space limitations also must be specified.
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The output of this stage is:
-- The microcode itself,.
-— Documentation of the microcode.

-- Any analyses (such as timing summaries) that may be useful for
confirmation at higher levels of the total development process.

The firmware design stage is divided into three phases: the
microcode design phase, the microprogramming phase, and the microcode
generation phase, In performing the activities in these phases, four
languages will be postulated. L1 is the primary functional specification
language in which the semantics of the firmware requirements are expressed
(in terms of the user-defined registers). L2 is a secondary functional
specification language in which the semantics can be expressed in terms of
the actual hardware components and data paths to be used by the eventual
microcode developed. Two major alternatives for L2 are an RTL and a
high-level microprogramming language (HLML). L3 is an implementation
language in which the details of the semantics and structure of the final
microcode can be expressed. The major alternatives for L3 are an HLML and
an assembly language. L4 is the microcode itself.

In the microcode design phase, L2 is selected. First, a microprogram
design activity is done, in which common subfunctions are identified and
functionally complete computational components are associated with
self-contained microprogram modules. During this design, specific
algorithms for accomplishing the required tasks are chosen; these
algorithms must be proven to be correct and documented. Then the
functional specification of the firmware requirements a2s expressed in L1
are translated into L2. During the translation, the structure of the
microprogram design is incorporated and design decisions are made about
which hardware components and data paths are to be used to accomplish the
required tasks. The semantics as expressed in L2 become the functional
specification for the next phase. The performance constraints of the
firmware requirements are distributed to the microprogram modules
identified in the microprogram design activity; these become the
performance constraints of the next phase.

In the microprogramming phase, L3 is selected, and the semantics as
expressed in L2 are translated into L3. During the translation, certain
implementation decisions are made, such as subroutines vs. functions,
global vs. local parameter passing, and temporary handling. The
semantics as expressed in L3 become the functional specification for the
next phase. The performance constraints of this phase, with virtually no
modification, become the performance constraints of the next phase,

In the microcode generation phase, the semantics expressed in L3 are
translated into LU, the microcode itself. During the translation,
cptimization of the final microcode is performed. The means of performing
the translation and the type of optimization to be performed must be
determined. Although testing and integration are performed in all three
phases, the majority of the microcode testing is done in this phase.
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The intent is to produce methodologies in which the maximum amount of
computer automation that can be incorporated is actually utilized. To
this end, we advocate methodologies in which the specification languages,
L1 and L2, are as formal as possible. This facilitates machine
manipulation of the specification text, allows the utilization of
automated design aids for consistency-checking and verification, and
encourages the development of automated or semi-automated design aids for
translating between the various languages., Throughout this section, both
automated and unautomated techniques will be discussed as possible
options; this reflects the current state of the art. However, the
emphasis is on the development of automated design tools and their
incorporation into an integrated, coherent system in which the effort
expended by a human designer in the process of developing a final product
is minimized.

Two major observations about the effort expended in the phases of
this stage should be made clear. First, L2 and L3 should be selected to
be as similar to one another as possible; this will reduce the effort in
the microprogramming phase. 1In fact, it may be possible to select L2 to
be the same as L3 (or a subset thereof). An obvious choice for such a
combined L2~L3 language is a high-level microprogramming language (i.e.,
L3) capable of expressing the semantics (of L1) in terms of the hardware
components and data paths available to the microcode (i.e., L2). The
utilization of such a combined language would make the microprogramming
phase essentially vacuous, although it would tend to push some
implementation decisions into the design phase. Second, if L3 is selected
to be a high-level language and various optimization tools are integrated
into its implementation, then the microcode generation phase becomes
essentially vacuous. These two observations, along with the fact that
high-level language programs are more easily produced and modified than
low~-level language programs, are a strong motivation for selecting L3 to
be a high~level microprogramming language.

STATE-OF-THE-ART

In order to understand the objective of introducing firmware into the
total system design, a general overview of the properties, uses and intent
of firmware seems appropriate. There are usually three alternatives for
the implementation of any specific function: software, firmware, and
hardware. Hardware is fastest in execution, but is not flexible (when
simple corrective modifications must be made) and may require a
significant design effort. Software is slowest in execution, but is very
flexible and requires less design effort. Firmware is a compromise which
combines the flexibility and speed of design of software with some of the
execution speed of hardware. Thus, firmware is most applicable when a
flexible, relatively fast system must be developed with a relatively small
design effort.

The execution speed of the final system is very important. The
speedup (of firmware over software) is accomplished due to the inherent
speed at which microinstructions can be executed and the potential
parallelism of accessing many hardware components at the same time,
(Reduction in storage space requirements also may be realizable by the use
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of microcode as compared with macrocode, but this usually is secondary to
the speedup advantage.) Since one of the intents of introducing firmware
into the system design is to achieve this execution speedup, an obvious
objective is to produce firmware that contains a minimal number of
microinstructions and can produce the desired semantic actions in the
shortest possible amount of time. Thus, the results (and therefore the

quality) of the optimization activity is important in the development of
effective firmware.

There are two commonly utilized characterizations for firmware
architectures: vertical and horizontal. A vertical architecture is one
in which each microinstruction incorporates little or no parallelism in
the manipulation of different hardware components. A horizontal
architecture is one in which each microinstruction has the capability to
manipulate a significant number of hardware components in parallel. Most
of the firmware systems used in practice combine these two architectures
into a mixed implementation. Speedup can be obtained in vertical
architectures, but this speedup is limited by the small degree of
parallelism. Local [AHO76, BUSA69, FRAI70] and global [ALLE70, ALLE76,
COCKT70, EARNT72, GILLT7, GRAH7S, HECHT2, HECHT73, HECHTY4, HOPC72, KAMT76,
KENNT71, KENN75, KILD73, OSTETY4, SCHAT3, ULLM72] optimization techniques
used in general software development are normally sufficient to produce
reasonably optimized code for such a vertical architecture. On the other
hand, very significant speedup can be realized in horizontal architectures
by taking advantage of the inherent parallelism. However, optimization
techniques not used in general software development (because the inherent
parallelism is not present) must be used to produce significantly
optimized code. The introduction of parallelism also makes it more
difficult to verify that the action of the optimized code represents the
semantics of the original specifications.

The selection of L3 can have a significant affect on the total
effort. It should be clear that developing a program (whether software or
firmware) in a high-level language requires less effort to code originally
and maintain than orc developed in a low-level language, such as assembly
language. However, this is not the only advantage of writing in a
high-level language. Optimization tools can be incorporated into the
underlying implementation of the high-level language to perform automatic
optimization of the resulting code. Also, it is possible to incorporate
an assertion sublanguage within the high-level language to aid in
automatic verification of the resulting code. This is not intended to
imply that such tools cannot be incorporated into low-level languages;
however, the natural way in which they can be packaged in a high-level
language, the ease of use of the high-level language, and the way in which
the high-level language releases the programmer from burdensome details
all indicate that this is the more appropriate course. A high-~level
language also may be applicable to more than one firmware system,

It is a common belief that hand optimization of microcode always
produces more effective firmware than machine optimized code. Experience
has shown that, for small microcode segments, this probably is true.
However, experiments on large firmware systems indicate that machine
optimized microcode can produce better firmware than hand optimized
microcode [PATT79). This may be due to the observation that for small
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segments of microcode, the complexity is small enough that a person
performing hand optimization can do an excellent job of optimization;
however, as the size of the microcode (and therefore its complexity)
increases, the person is generally unable to effectively manage the
increased complexity, and thus fails to recognize optimizations that an
automated optimizer is capable of recognizing.

A significant effort has been expended to develop high-level
microprogramming languages for microprogrammable machines (such as SMITE
[SMIT77]). Work has been done to develop similar languages that are
applicable to a wide variety of machines instead of just one. Progress in
this area has been hampered by the facts that: many of the
microprogrammable machines have a fundamentally different detailed
architecture, the semantics of certain microinstructions of one machine
may have no corresponding counterpart in another machine, and the
development of effective firmware requires utilization of these
specialized architectures and microinstructions. No specific approach to
these problems has shown itself to be the ultimate solution. However, two
specific approaches seem promising. The first approach uses the concept
of extensibility, such as EMPL as proposed by DeWitt [DEWI76a, DEWI76b].
In such an approach, a core language is defined in which the properties
common to most machines are explicitly expressible (e.g., control
structures, data transfer). The language is designed so that extensions
to the syntax and semantics can be introduced into the language by use of
appropriate directives contained in the core language. In this way, such
a high~level language can express those aspects common to most machines
(by use of the core language), and the differences can be expressed by use
of extensions. A second approach is similar in intent to the extensible
language approach but uses a machine-independent microprogram language
schema to accomplish the goal [DASG78a, DASG80a, DASG80Ob]. 1In this
approach, the language is defined at several different levels. The top
level constitutes a core language (similar to that of extensible
languages) in which aspects common to most machines can be expressed.
Lower levels define more detailed aspects of the machine; these lower
levels are 'instantiated' for the specific machine upon which the
microcode will execute. In other words, the differences between two
specific machines become apparent and are introduced only at the lowest
level necessary. Th..,6 significant amounts of code will be applicable to
a wide variety of machines. One or both of these approaches eventually
may produce a language (or family of languages) applicable to a wide range
of microprogrammab.e machines,

An area in which essentially no work has been done is that of mapping
the original firmware requirements onto the specific hardware architecture
of the machine. This activity is currently done primarily by hand and is
presumed to require the skill of a highly trained designer. 1If a
coherent, integrated, automated facility is to become a reality, the
development of an automated or semi-automated design tool to help in this
activity is essential.
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PHASE NAME: Microcode Design

PURPOSE

The purpose of the microcode design phase is to produce and document
an overall design of the microcode. This includes selection of a specific
program structure and algorithms for performing various functions (such as
a multiplication or table lookup).
INPUT

The firmware requirements include:

—- Functional specification of the firmware.

-~ Hardware description (components, data paths, and communication).

-- Microinstructions specification (format, semantics).

-- Performance constraints.

OUTPUT
The microcode requirements include:

Microprogram organization.

Module specifications.
~- Hardware Description (same as in input).
-~ Microinstructions specification (same as in input).

-- Performance constraints (time constraints for each module).

STEPS

FORMALISM SELECTION

The microcode design language, L2, must be selected, The
selection criterion for the language is a function of the hardware
components, their data paths, and their forms of communication; L2
must be able to express the original functional specification in terms
of the actual hardware the final microcode will manipulate. L2 should 4
be as high-level as possible (suppressing certain implementation
details) but should be as similar to L3, the implementation language,
as possible (tc reduce translation effort in the next phase).
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The selection of L2 may, of course, depend on the specific tools
available., It is usually chosen to be an RTL or a subset of an HLML.
Since automation is one of the primary objectives, its specification
form should be machine manipulatable and its semantics should be formal
enough that at least certain forms of verification can be performed
upon it.

FORMALISM VALIDATION

EXPLORATION

Validation is normally performed by hand by a designer familiar
with the firmware architecture. This can be done by exhaustive
verification that each of the hardware components, data paths and
communication primitives (in all their combinations) can be expressed
within the formalism of L2,

The exploration step embodies two basic activities which may be
intertwined. The first is microprogram design in which common
subfunctions are identified and functionally complete computational
components are associated with self-contained microprogram modules.
Specific algorithms must be selected to perform various tasks. These
algorithms must be well documented and proven correct with respect to
the environment in which they will operate. The concepts and
techniques used here are well understood and are very similar to those
used in software program design. The second deals with mapping the
original functional specifications (as expressed in Li) into
specifications that address the actual hardware to be manipulated (L2).
This activity is viewed as being an art and requiring skilled personnel
familiar with firmware design.

ELABORATION

The elaboration step deals with incorporating the decisions made
in the exploration step within the process of translating the
functional specifications from L1 to L2. There are no known tools
available to help in this translation process. However, the
development of sSuch a design aid is very important for the development
of an integrated design facility, and a significant effort should be
expended in this effort.

The results of this elaboration step become the module
specification input for the next phase,

CONSISTENCY CHECKING

Besides eliminating syntax errors, the consistency checking step
deals with verifying that the semantics expressed in L2 are consistent
as a function of the hardware. For instance, no two parallel data
transfers should utilize the same data path; nor should two parallel
data transfers have a common target, If L2 has been chosen to be an
HLML, such consistency checking may be an integral part of the
implementation of the corresponding compiler. In any event, if such
ccnsistency checking functions are not available elsewhere, specific
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EVALUATION

design aids should be developed. Of course, such design aids must have
some knowledge of the hardware (at least local semantics), and the
effort required to develop them will depend on the specific hardware
(or class of hardware) involved.

VERIFICATION

The verification step deals with ensuring that the specifications
expressed in L2 are consistent with those expressed in L1, Since the
design activity constitutes a significant translation between
(potentially) two distinctly different domains, it may be difficult to
develop design aids that can formally guarantee consistency between the
specifications. Such a design aid would require a very detailed
knowledge of the hardware (such as timing). It might involve some form
of global simulation; a concept similar to symbolic execution might be
employed.

The evaluation step deals with distributing the performance
constraints of the firmware requirements onto the microprogram modules
identified in the exploration step. This distribution is based on the
specific decomposition chosen and the designer's judgements (estimates)
about the actual properties of the microcode to be produced. Although
design aids could be developed to help distribute the affect of these
Jjudgements onto the separate modules, this is usually easily done by
hand, and such aids seem unwarranted.

INFERENCE

With a specific design developed in this phase, it may be
impossible to implement (in the next two phases) the firmware given the
space and execution time constraints. If it is determined that the
specific design cannot be effectively implemented, then a new design
must be developed (or failure reported to the invoking stage).

INVOCATION

The microprogramming phase is invoked. This may be done
separately for each distinct module, certain collections of modules, or
the entire microcode design.

INTEGRATION

This step deals with integrating separate microcode modules
together to verify that the total firmware package works as an
integrated whole, For instance, it must be verified that all the
modules have consistent interfaces. A systematic testing strategy
should be developed to insure that the firmware is consistent with the
original functional specifications. It must also be verified that the
actuval microcode meets the input performance specifications, If the
actual hardware is available, this testing can be performed on it;
otherwise, the hardware may be emulated (or simulated).
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PHASE NAME: Microprogramming

PURPOSE

The purpose of the microprogramming phase is to translate the results
of the microcode design phase into an implementation language capable of
producing actual microcode.
INPUT

’ The microcode requirements include:

Microprogram organization.

-- Module specifications.
~- Hardware description.
-- Microinstructions specification.

~- Performance constraints.

OUTPUT
The microcode generation requirements include:

~- Implementation specifications (HLML or low-level assembly
language).

-~ Hardware description (same as the input).

--— Microinstructions specification (same as the input).

» —- Performance constraints (usually the same as the input).

f STEPS

FORMALISM SELECTION

The implementation language, L3, must be selected. It must be
able to express the semantics of the actual microcode to be executed.
The selection criteria include: the specific tools available, ease of
semantic expression, ease of translation from L2 to L3, and foresight
about optimization, modifiability, and verifiability. There must be an
effective translation process from L3 to the microinstructions, The
ma jor choices for L3 are an HLML and a low-level assembly language.
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FORMALISM VALIDATION

The validation criteria are similar to that of the microcode
design phase. If L3 is chosen to be an assembly language, this step is
vacuous; if a HLML is chosen, an exhaustive verification can be
performed. The appropriateness of the language chosen is based on the
criteria mentioned in the formalism selection step and the quality of
the actual microcode produced. For instance, assembly language may be
difficult to optimize and verify, whereas an HLML may not produce
sufficiently compacted code.

EXPLORATION

The implementation decisions that must be made are very similar to
those found in software implementation. Such decisions include:
whether to implement a module as a subroutine or a function, whether to
pass data globally or explicitly through a parameter list, and how to
hold temporary values.

ELABORATION

The specification expressed in L2 must be translated to L3. If L2
was chosen to be the same language as L3 (or a subset thereof), then
this step is essentially vacuous (or close to it). If L3 was chosen to
be a low-level language, then this translation is normally done by
hand. It is possible to develop design aids to help in this
translation. However, this is essentially the same as developing a
compiler for L2, and, therefore, this option reduces to a previously
considered option.

CONSISTENCY CHECKING

If L2 was chosen to be L3, consistency checking is inherited from
the microcode design phase. If L2 and L3 are significantly different,
the same activities performed in the microcode design phase must be
duplicated here with respect to the new formalism, L3.

VERIFICATION

Again, if L2 was chosen to be L3, then verification is inherited
from the microcode design phase; otherwise, the same kind of activity
and design aids are appropriate here.

EVALUATION
This step is normally vacuous. If no new decomposition is
performed and no more detailed information is now available, then the

input performance constraints become the output performance
constraints,
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INFERENCE

This step is essentially vacuous.
INVOCATION

The microcode generation phase is invoked. Again, this mav be
done separately for each distinct module, a certain collection of
modules, or the entire microcode design.

INTEGRATION

The activity in this step is identical to that in the microcode
design phase.
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PHASE NAME: Microcode Generation

PURPOSE

The purpose of the microcode generation phase is to produce the
actual microcode required. This may involve translation and/or
optimization.
INPUT

The microcode generation requirements include:

-- Implementation specifications.

-- Microinstructions specification.

-~ Hardware description.

-- Performance constraints.

UUTPUT

The output of this phase is the microcode itself.

This step is vacuous; L4 is given.

FORMALISM VALIDATION

This step is vacuous.

EXPLORATION

The specific translation tool or technique for transforming L3
into L4 must be selected. The implementor must decide whether local
and/or global optimization is to be performed and, if so, what methods
or tools are to be used., Optimization could also be done for either
time or space.

STEPS
FORMALISM SELECTION
|

ELABORATION

The elaboration step corresponds to translating the specification
expressed in L3 into the microcode itself and optimizing that
microcode. In the current state of the art, there is essentially
always a tool for performing the translation (either a compiler or an
assembler). Generic assemblers are available [ADVA78]. Generic
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compilers are not yet common place although work has been done in this
area [DASG78a, DASG80al.

Optimization can be done by hand or can be automated. Hand
optimization may be best for short sequences of code; automated
optimization is probably better for large segments of code. If
automated optimization is appropriate, it is best to integrate the tool
into an integrated package with the translator, There are many
techniques for compacting the microcode [/ TR76, BARN78, DASGT6,
LLASG78b, LAND8O, MALL78, TOKO77, WOOD78, YAU74], and some have been
integrated into HLMLs [PATT79].

CONSISTENCY CHECKING

This step corresponds to verifying that there are no
compile/assembly errors. Such checking is normally incorporated into
the translation tool.

VERIFICATION

If the optimization was done by hand, verification may be very
time consuming due to human error. If the optimization was automated,
verification can be done on the optimization tool itself (once) and the
correctness of the microcode produced is inherited from the correctness
of the tool.

Since the actual microcode is now available, testing (as described
in the previous phase) can be performed on each separate microcode
module,

EVALUATION

Now that the actual microcode is available, its performance
characteristics can be evaluated and compared with the performance
constraints developed in previous phases., If the actual hardware is
available, these performance characteristics can be determined by
executing on the hardware; otherwise, emulation (or simulation) can be
used. These performance characteristics are made available to the
previous phase.

INFERENCE {
This step is essentially vacuous.
INVOCATION

This step is vacuous. J

INTEGRATION

If each separate microcode module was passed to this phase, then
this step is vacuous. If several modules were passed, they can be
integrated together before making them available to the previous phase,
or the integration can be done there.
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2.4 HARDWARE/SOFTWARE TRADE-OFFS

This topic was already introduced earlier in the context of the
system design stage and receives additional in-depth coverage in Section 3
of this report which deals with the assessment of the family of TSD
Methodologies. In this section we provide a brief review of the
framework's perspective on this issue in its own right undiluted by all
the other details involved in the presentation of the framework. The
discussion starts with the definition of H/S trade-offs, outlines the
approach prescribed by the framework, and identifies the main problem
areas.

The problem embodied in H/S trade-offs is that of allocating the
system's functionality between hardware and software components (be they
off-the~shelf or custom designed) in a manner that satisfies all system
design constraints. Because systems are perceived as H/S aggregates, the
consideration of H/S trade-offs is perceived to be a central system design
methodology issue, Its complexity is so high, however, that few
methodologies make any attempt to deal with it, and most existing work
focuses solely on computer systems selection, itself a difficult problem.

As far as the TSD Framework is concerned, the activities related to
H/S trade-offs are distributed across the two phases of the system design
stage: The system architecture design phase is engaged in a systematic
process of reducing the binding options to the point where the binding
phase is left to deal strictly with a selection among a few feasible
alternatives. Every system architecture design decision, taken in the
exploration step, has implications with respect to the type of technology
that would be needed to realize the system. Furthermore, partitioning
into hardware and software needs to be carried out as part of this phase
because all performance models used in the evaluation and inference steps
demand, as a minimum, information about the distribution of the system's
functions among various processors and about interprocessor communication
costs. All such design decisions are actually subject to explicit review
and analysis in the inference step. Of particular concern for the
inference step is to reject any design solutions which limit the range of
feasible binding options unnecessarily. Since the systam architecture is
presumed to be developed top-down, the option elimination process is
characterized by an iterative sequence of refinements and inferences,

Having the range of binding options significantly reduced by the
previous phase, binding concentrates on selecting specific components
among those still eligible. It is critical to proceed with the selection
of individual components in the context of the entire system, and not by
optimizing local decisions. This enables the focus to remain on the
performance objectives of the system as a whole (cost included), where it
belongs.
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Neither option reduction nor component selection is a simple task.
The former requires significant experience with system design and a good
grasp of existing technology and current technological trends, issues that
are difficult to formalize. The availability of appropriate performance
models applicable both for performance evaluation and technological
inferences could, however, assist the designer in very important ways.
While the number of conceivable binding options may be overwhelming, the
development of reduction strategies and performance models for a few
common ones is believed to be feasible, but nontrivial., Similar
challenges are present in dealing with the binding phase. On one hand,
there is a need to develop adequate selection strategies for both software
and hardware components. On the other hand, it is necessary to establish
meaningful mappings between performance attributes present in the
performance models mentioned above and those recognized in the actual
component candidates.

The extent to which we are able to deal with some of these problems
is treated explicitly in Section 3 of this report.
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2.5  SYSTEM LIFE-CYCLE ISSUES AND THE TSD FRAMEWORK

2.5.1 DEVELOPMENT

In the normal system life-cycle, the "development" aspec:t refers to a
sequence of logically equivalent systems descriptions. These begin with a
high-level specification and continue through successively lower-level
specification refinements until an implementation level is reached .
Successive description levels are usually baselined to serve as milestones
in the development process. For systems that involve only software, this
approach is well documented [IBM80, JENS79]. However, when the system
requires the possibility of a hardware/software tradeoff, then the methods
that are designed to apply to software development begin to fail.

The TSD Framework provides an intellectual control that is the key to
an orderly overall systems development process. In particular, the key
concept of successive refinement is retained, but broaden in concept to
include the H/S possibilities. Every phase of the TSD Framework accepts
as an input the specifications of a set of system requirements, Each
phase then transforms these requirements into a more detailed refinement
by a fixed sequences of steps. Although the framework does not specify
how the refinement is to be done, it does impose certain characteristics
on any methodologies used for the task. The sequence of steps specified
in each phase forces the methodologies to consider all issues pertinent to
the given level of system development within that phase.

Because the process of moving from the TSD Framework to selected
methodologies was discussed in the beginning of Section 2, there is no
need for repetition here. The procedure is further illustrated in Section
3 where appropriate TSD methodologies for several application areas are
introduced. The relations between the TSD Framework and the analysis,
enhancement, and maintenance parts of the system life-cycle will be
discussed next.
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2.5.2 ANALYSIS

System analysis is the process of assessing some performance property
of the system by examining it or its specifications. In the first case,
it involves monitoring the actual system behavior and evaluating the
collected data with respect to the property of interest. Alternately, one
uses the specifications to construct a model of the system being
investigated. Thus, the model replaces the system as the object of the
analysis and, consequently, the conclusions being drawn are valid only to
the extent to which the model may be shown to be faithful to the real
(existing or postulated) system. In either case, both quantitative and
qualitative aspects of the system may be subject to analysis,

The TSD Framework indicates that analysis is part of each phase and
is concentrated mainly in the evaluation, inference, and integration
steps. During evaluation, analysis is based on system models derived from
specifications available in that phase and is aimed at supporting both
development and enhancement activities. Furthermore, it is the
fundamental mechanism through which performance parameters (constraints)
are assigned to newly identified lower level components in a manner which
assures that the constraints acting upon the uvpper level components are
guaranteed to be met if the lower level ones are satisfied. Besides
assisting in the propagation of constraints, analysis is also instrumental
in rejecting any design solutions that are clearly unable to meet stated
constraints,

The models and the data generated by the evaluation step are the
basis on which the analysis process draws various conclusions in the
inference step. They deal with all facets of performance including
feasibility, forecasting, technological consequences, environmental
impact, etc. Again, both development and enhancement take advantage of
this instance of the analysis in similar ways. Negative results are used
to accept or reject proposed design solutions or enhancements.

In contrast with the other two steps, integration has available to it
the actual system or parts thereof. As a result, the starting point for
the analysis is monitoring system behavior under various benchmarks
(actual or synthetic). The goal is to determine if all assumptions made
earlier are satisfied and all relevant constraints are actually met (even
though the assumptions are proven correct the models relating them to the
active constraints could be shown to be invalid). Furthermore, whenever
this is not the case the analysis is directed toward identifying the
source of the discovered problem. Development, enhancement, and
maintenance involve this aspect of analysis in analogous manner.

Because analysis is rarely done for its own sake, it was to be
expected that its goals vary with those of the activity to which it is
subordinated. Nevertheless, development, enhancement, and maintenance
appear to to employ analysis in a similar manner while placing different
emphasis on one step or another. Maintenance, for instance, deals
primarily, but not exclusively, with the type of activities present in the
integration step. It is reasonable, therefore, to conclude that the
framework's ability to characterize methodologies does not exclude
analysis and should prove to be an invaluable aid in better understanding
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its relationship with the other aspects of the system life-cycle.

2.5.3 ENHANCEMENT

It is not unusual for the needs of an application to gradually change
with time. As a result, even if a given computer based system initially
fulfills all the needs of an application, the suitability of the system
diminishes with time. One solution to this problem is to replace the
system when its capabilities become too limiting. Another solution is to
periodically modify the system so as to enhance its capabilities. The
choice of one approach over the other is primarily a matter of economics
and involves considerations such as the cost of lost productivity due to
limited system capabilities, the current investment in equipment and
software, and the costs involved in making system modifications., The
first two considerations strongly favor enhancement, but the latter may
rule it out if the system has not been designed in a manner conducive to
the making of modifications. For this reason, a fundamental objective of
the development process should be the design of systems that are easy to
modify.

From the framework viewpoint, the process of enhancing a system is
the same as the process of developing a system. There must be a problem
definition stage to identify the current needs of the application domain
and to identify system enhancements that meet these needs, there must be a
system design stage in which the system-level revisions are designed, and
there must be a hardware design stage and a software design stage in which
the hardware and software revisions are designed. The distinguishing
aspect of enhancement is that all deliberations in these stages are
constrained by the need to be compatible with the existing system. The
effect of this constraint is to severely limit the range of options that
are feasible,

Economic considerations play an important role in any design effort,
but are more significant in enhancement than in development. The reason
is that during development, the cost of doing a system right (creating a
modular, easy to understand structure) may cost no more than doing it
otherwise. In the case of enhancement, revisions may not fit naturally
into the existing structure, and the cost of revising the structure to
cleanly incorporate the changes may cost much more than a "quick" fix.
However, quick fixes make the system structure more complex and this makes
subsequent modifications more costly. The issues are quite complex,
especially for large systems, and a good discussion of this is given in
[{BELA79]. 1In particular, it is quite possible that the best strategy,
from the viewpoint of total life-cycle costs, may be to employ sequences
of quick fixes followed by periodic restructuring efforts. Because quick
fixes are contrary to the general rules of good design practice, it is
clear that the system requirements associated with enhancement efforts
must include specific instructions regarding this issue,

The task of enhancement is greatly facilitated if the original system
was designed under a TSD methodology, if the design documents are
accessible from a local database, and if there are software tools for
performing various analysis tasks that are necessary to the design
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process. The benefits of this are several. Because the original design
was done under a TSD methodology, the design decisions are recorded and the
sources of constraints are traceable. This information allows the

designer to evaluate the effect of proposed changes on the entire system
behavior and thus reduce the risk of side-effects. Having the design
information in a local database and having software tools to aid in
analysis reduces the time and effort needed to identify acceptable design
changes. Finally, if the redesign is done under a TSD methodology and the
database documentation is appropriately updated, the maintainability and
the enhanceability of the system will be preserved.
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2.5.4 MAINTENANCE

The continuing growth in required complexity makes it unrealistic to
test any useful system exhaustively as part of its development. Granting
even the most enthusiastic attention to systematic evaluation, it simply
is impractical to route a system through each possible decision path that
it could follow., As a result, there is a likelihood that, av some point
during its routine use, a system's decision mechanism will select a
previously untested course that happens to produce a malfunction. This
behavior, affecting both hardware and software, is distinct from the wear |
and tear traditionally associated with physical equipment. When these |
factors are considered together, it is clear that maintenance is an
unavoidable aspect of any system with which we are to be concerned.
Treatment of this situation as a reality rather than an outbreak of
pessimism makes it compulsory to consider the need for maintenance as a
fundamental system issue. In fact, maintainability represents a property
to be treated as an integral part of the concerns from the start of the
system development process,

Acceptance of maintenance as an inevitable requirement exerts an
influence throughout the major development stages. Awareness of this need
at the problem definition stage, for example, establishes the impetus to
include maintainability as one of the basic system requirements. This
serves a useful purpose even before the system is bound to a distinct
architecture because it allows the designers to focus on the weak points
inherent in the application, independent on any particular design. Once
these potential trouble areas are identified, the need to address them can
be included among the system requirements generated by this stage. It is
not at all surprising to see these considerations manifest themselves as
serious constraints on those requirements.

Once the dominant activities move to the system design s age,
maintenance considerations expand to include those related to a particular
configuration. It is at this point that the designhers can begin to assess
the effects of maintainability requirements on H/S tradeoffs. For
instance, a seemingly attractive hardware solution may be less so (in
comparison to a software approach) when one includes the relative burdens
imposed on each alternative by maintainability requirements., The
resulting set of eligible entries to the binding phase would be tempered
accordingly.

The resulting requirements that are made available to the hardware
and software design stages reflect the ongoing concern with maintenance,
On the hardware side, this means that error detection, fault tolerance,
and component modularity are prominent factors influencing the selection
of off-the-shelf equipment and the specifications for custom hardware,

The resulting requirements propagate to each phase of the component design
stage, ultimately producing circuits and electromechanical components in
which maintainability is an inseparable aspect. Analogous concerns are
included as part of the software and firmware design efforts., Thus,
concepts such as modularity and simplicity of interfaces between modules
are not viewed exclusively as vehicles for simplifying development,
Rather, they can also be exploited to facilitate the process of localizing
software errors and correcting them with minimum impact on the rest of the
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system. (The actual processes associated with error correction are
conceptually identical to those involved in enhancement and, therefore,
are not addressed here,) Similarly, emphasis on error reporting is not
limited to hardware design. Using information developed during previous
stages (including that relating to the application's intrinsic
weaknesses), the program design requirements can be defined to include
features whose specific purpose is to reveal certain aspects of the
software's behavior so that potential trouble spots can be monitored and
malfunctions can be detected quickly.

Since maintainability parallels other system concerns throughout this
succession of stages, the resulting documentation will include helpful
information about the nature and use of the system's maintenance-related
features. Accordingly, the system's users will be in a position to take
full advantage of these facilities when such needs arise. Additional help
can be obtained from development facilities. Besides their primary use,
such vehicles offer excellent opportunities to identify
implementation-dependent weak spots and other potential trouble areas that
were not identified in other ways.

Because of its emphasis on the H/S dualism, the TSD Framework
accommodates sustained attention to maintenance quite comfortably. Since
maintainability is a basic property that transcends the particular
implementation selected to meet a given set of requirements, its
characteristics can be defined abstractly for the system being considered.
Then, when the system design is bound to a specific H/S configuration,
maintainability is included among the objectives addressed by that design.
For instance, the designer can determine which aspects of system
performance to monitor prior to any specific configurational commitment,
Exactly how the hardware and software will be instrumented to report on
these aspects is an issue to be addressed in subsequent stages. Thus,
concerns for maintenance are attended to along with the others at each
stage. Consistent with the TSD Framework's intent, such attention can be
assured regardless of the way the maintainability requirements are
perceived or the method used to decide how the requirements will be met.
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2.6 CONCLUSIONS

The development of the TSD Framework goes beyond the mere
consolidation of current understanding of system design approaches and
methods under an unified umbrella. It demonstrates, first of all, the
potential benefits derivable from the use of the methodological framework
concept in studies concerned with methodology characterization, evaluation
and development., Its ability to focus strictly on the basic decision
mechanisms involved in particular methodologies simplifies the
investigation, aids in the discovery of possible omissions, and directs
the researcher's attention on the main methodological objectives, be they
explicit or implicit. Thus both better understanding and easier
redefinition of the goals are enabled, By providing for the readjustment
of the objectives prior to restructuring the methodology, a new and more
rational approach to methodology development is made available.

The TSD Framework also promises to place on a more rigorous basis the
notions of phase and step. The former is defined based on the
identification of the knowledge domain that appears to support its
activities. It is also shown that the sharing of similar ultimate
objectives among phases results in a unified phase structure that consists
of steps that are either fundamental to all design endeavors or supportive
of one of the common objectives such as early error detection or
systematic performance of H/S trade-offs analysis.

Furthermore, as part of the TSD Framework consolidation some
contribution is made toward establishing a novel perspective on system
integration., A rigorous scrutiny of its role in system design shows it to
be an essential part (i.e., step) of each phase and not a phase in its own
right.

Finally, the work being reported here demonstrates that a systematic
H/S trade~offs strategy must acknowledge the presence of these trade-offs
as an important issue in all phases of the framework (as part of a
technological 'inference' step). The reason for this being the fact that
all design decisions affect the range of available choice for both
software and hardware binding. Moreover, trade-offs analysis similar to
that employed for software and hardware is also present in phases that
deal solely with software or hardware design,

In conclusion, one could state that the results obtained so far
strongly support the conjecture that the TSD Framework has the potential
to play a significant role in future methodological advances. The stage
is set now for instantiating the framework into several system design
methodologies aimed at supporting effective design in key application
areas.
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3. ASSESSING THE FAMILY OF TSD METHODOLOGIES

2.1 INTRCGDUCTICON

The goal ~»f this secticn is to assess the family of TSD Methodologies
with respect to its ability to effectively meet the system design
objectives of several common DoD applications: embedded systems,
information processing systems, and command, control and communication
systems. The assessment consists of 2 feasibility study which illustrates
the key features of the TSD Methodologies. It shows the way in which
these methodologies approach system design and the techniques and tools
that would make viable their transfer from the current research and
development state into productive use,

The difficulty of such an undertaking hardly needs to be argued.
Methodologies, in contrast with the framework they instantiate, are
problem and environment dependent. They owe their effectiveness largely
to the extent to which they are able to take advantage of the
characteristics of the application through the use of appropriate
techniques. Furthermore, the usefulness of a methodology also depends
upon a correct match between the techniques it employs and the environment
in which it functions, i.e., the organization, the people, the available
technology and expertise, etc, Consequently, consideration of the entire
range of systems being grouped under the three generic categories
introduced earlier is deemed impossible in view of the great variety of
applications encountered in the defense field.

The information processing systems category, for instance, includes
both cartographic databases such as those seen at the Defense Mapping
Agency (DMA) and logistiecs command databases; they are, however, quite
distincet in nature. Similar heterogeneity may be observed in the other
two groups. Moreover, even when two applications seem to have many
features in common, they may be subject to different sets of design
constraints which lead to methodological variations. Such is the case,
for example, when one compares functionally similar embedded systems
present in a manned versus unmanned spacecraft.

As a direct consequence of these facts and other considerations
explained beiow, several limitations have been imposed over the scope of
the TSD assessment.

- Three classes of systems are considered, one for each of the
three application areas above. Furthermore, each class is
characterized by certain so-called ’characteristic’ features
thus hiding some of the variability between systems supporting
similar application domains.

~ This general view of the application areas is coupled with an
» equally high level treatment of the corresponding methodologies.
Ccnsequently, the methodologies being outlined in the study
would necessitate further refinement if the problem domain and
the environment in which they are to be employed are
reconsidered at a greatei degree of specificity.
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~ Another scope limitation is the result of the fact that not all

areas covered by the TSD Framework are of equal significance for
this study. Software and hardware design, for instance, receive
minor coverage because these design activities are relatively
well understood and because a lot has been written ahout them
already. (See Section 2 for an overview of existing technology
and appropriate re.erences.) Special attention, however, is
given to system-level design issues, in general, anc¢ .o the
complex issue of hardware/software trade-offs, in particular.

- The feasibility of the TSD Framework for command, control and
communication systems is demonstrated only by implication;
since such systems are understood to be a composite of embedded
and information processing systems, the benefits the last two
groups derive from the TSD technology are also enjoyed by their
composite, Section 3.2.3 considers this point of view in more
detail and shows the extent to which it represents a useful
working hypothesis as well as the design complexities it
ignores, 1In that section it is also explained that a separate
and more detailed study of a TSD Methodology for command,
control and communication systems is considered unwarranted at
the present since a better understanding of methodologies for
the design of embedded and information processing systems is a2
prerequisite for a more in-depth investigation of command,
control and communication systems.

The TSD assessment starts with an examination of the essential
characteristics of the embedded, information processing, and command,
control and communication systems (Section 3.2). The unique nature of the
applications supported by DMA is used to emphasize the dependency between
methodologies and the nature of the organization that may employ them
(Section 3.3). The point is made that future detailed assess snts uf the
TSD technology ought to be carried out not only with respect to a specific
class of systems but also with respect to.the type of organization that
intends to build them.

In Section 3.4 a class of TSD Methodologies whose scope is limited to
the system design stage is introduced. By relegating the formal
characterization of the class to Appendix E, the presentation is kept
informal. The emphasis is placed on the design strategy featured by the
TSD Methodologies. The feasibility of the approach and its ability to
adapt to a large variety of systems (of the embedded and data processing
type) is demonstrated in Sections 3.5 and 3.6. The principal results of
the assessment are reviewed below.

- By accomplishing the transition from the TSD Framework to a
class of distributed system design methodologies and by
describing how one could employ these methodologies on system
design projects having characteristics common to a multitude of
DoD (including DMA) type systems, the technical feasibility of
the TSD Framework is demonstrated.
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~ The actual use of the concepts and methodological study

approaches developed during the consolidation effort described
in Section 2 (in particular the synthesis of methodologies given
a framework and a class of applications) illustrates
convincingly the assistance these approaches could provide to
methodological research and develcpment.

The TSD Methodologies are shown to promote a systematic approach
to the performance of hardware/software trade-offs thus avoiding
the known problem of premature hardware procurement, Future
research advances in this area combined with experiments in
which these methodologies are applied to real-life systems hold
the key to making the employment of these methodologies both
practical and profitable in terms of quality and productivity
gains.

Techniques and tools (avzilable or postulated) identified as
necessary for prodirctive use of the TSD Methodologies form the
starting point for the development of the TSD Facility master
plan introduced in Section 4, It must be noted, however, that,
as indicated in Section 4, there are many other factors that
intervene and influence the planning of such a facility in
addition to the techniques suggested by the use of one
methodology or another.

- Four by-products of this study are:

-~ a methodology definition language (Appendix DY which holds
the promise to reduce some of the ambiguities currently
found in most of the methodology litersture and which may
be useful as a methodology enforcement and project planning
tool;

-~ a formal characterization of the nature of the
specification languages involved in system design and of
some of the criteria associated with the verification of
the proposed designs (Appendix E);

—- an investigation in formal approaches to system
requirements definition (Appendix F);

-- a proposal for a distributed system design specification
language (Appendix G).
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3.2 CHARACTERIZATION OF THREE CLASSES OF DOD SYSTEMS

Any characterization of the extreme diversity of systems encountered
in the defense field is bound to produce some controversy. This is, in
part, due to the fact that systems rarely fit cleanly in the niches
created by one taxonomy or another. For this reason, this section
describes not a taxonomy of DoD systems but a set of working hypotheses
whose role is to establish a precise context for the discussions to
follow. Rather than trying to partition systems into distinct categories
(i.e., equivalence classes), the approach adopted here is to identify
several types of systems which, as a group, are able to cover the
important characteristics of the systems in existence today. In other
words, the nature of an actual system should be describable in terms of a
composition of two or more idealized classes of systems to which it
belongs.

Three such classes are recognized here: (1) embedded systems,
(2) information processing systems, and (3) command, control and
communication systems. While the existence of these classes has long been
acknowledged and the terms are common in the literature, their meaning
differs from one report to another. This report attempts to associate
with each class those characteristics that seem to be commonly recognized
by most authors. All systems that do not match exactly the definitions of
any of the three classes are assumed to be made of subsystems which fall
cleanly in one of these classes.

Even under these simplifying assumptions, the difficulties associated
with the development of system design methodologies for each of the three
system classes are not completely overcome. The extent to which some
methodology is applicable to all systems of a given type is still a major
concern, Most problems stem from the great variability in the design
constraints associated with each system being developed. Since the
distinctions are not merely quantitative but also qualitative in nature,
design methodologies may differ significantly, if not in the overall
strategy, at least with respect to the specific design techniques being
employed.

The reliability requirements of a system embedded in a communication
satellite, for instance, are significantly more stringent than those
placed on an air traffic control system (particularly when considering
them in conjunction with other active constraints such as possible
maintenance procedures, weight, size, power, shielding, etc.) and they
result in the employment of drastically different system architectures. A
methodology aimed at the entire class is unable to recognize such fine
differences between the two instances of embedded systems. Nevertheless,
proper design of the methodology ought to enable further refinement of the
methodology so as to take advantage of the particular combination of
constraints. Otherwise the methodology may prove unfeasible for many
systems in the given class. While the characterizations that follow and
the methodologies proposed in later sections have been carefully selected
so as to avoid this pitfall, only through the actual use of the
methodologies one is able to provide the ultimate validation of having
achieved this goal.
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3.2.1 EMBEDDED SYSTEMS

While it is true that, from some point of view, all computer systems

are actually 'embedded' in some larger system such as a logistic command

center, a vehicle, a weapon, a communication network, etc., the term
embedded system is used to identify a class of systems having the

following main characteristics:

They interact in real-time with electronic devices such as
sensors, radars, etc, by receiving inputs and/or by controlling
the activities of such devices.

They are locally distributed, if at all,

They provide a service critical to the system in which they are
embedded and require extremely high reliability. 1In other
words, their function is essential for the operation or survival
of the larger system they support. The on-board computers of
both manned and unmanned aircraft are generally relied upon to
assist at all times in the navigation procedures and their
failure may lead even to the loss of the craft. Similarly, a
computer failure on a communication satellite may hamper the
normal activities of an entire organization.

They are often required to perform their functions in rather
restrictive environments such as on board ships, in outer space,
etc. and may be subjected to severe weight, power, and volume
limitations as well as to electromagnetic interference,
radiation, etc.

Their human interfaces, when present, demand elaborate human
engineering.

They need small databases but they may be involved in the
collection of large volumes of data for later processing or for
purpose of supplying it to some other system for analysis.

Their evolution is determined by external changes in the goals
of the systems they support (e.g., a changes in the mission to
be performed by some military system).

Their security against unauthorized access is achieved by
measures that secure the larger system in which they are
embedded. Therefore, security considerations do not affect
significantly the system design.
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3.2.2 INFORMATION PROCESSING SYSTEMS

With respect to information processing systems, there is greater
agreement on their definition:

- They consist of large databases and access mechanisms for
updating and retrieving the information present in the
databases.

- They are often geographicly distributed in order to improve data
accessibility and availability for the various components of the
organization being supported.

- They are rarely subject to meeting real-time processing
constraints., However, they are often required to maintain data
generated or used by real-time devices such as graphic displays. ¢

- They interface with humans (to a growing extent) via interactive
terminals which are required to meet certain response time
constraints. The human factors, while somewhat less critical
then in the case of embedded systems, are still very important
in making the system an effective tool for the organization.

- Their throughput is viewed as a key parameter measuring the
volume of work they are able to carry out.

- Their security is a major concern particularly when the data
they control is of a sensitive nature., Furthermore, measures
that secure the physical location of the system are insufficient
and complex mechanisms need to be built into the system in order
to prevent unauthorized access to its data.

- They are generally built with off-the~shelf components but they
may include small highly specialized custom-made devices, 1In
the future, however, the role of custom-made components may
increase in importance thus making room for new
hardware/software alternatives to be considered.

- Their reliability is important, but they tend to be more
tolerant toward faults because of the ease with which human
intervention may take place. Furthermore, since information
systems are not subject to the same extreme physical constraints
placed over embedded systems, more resources are available for
use in the error detection and recovery.
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3.2.3 COMMAND, CONTROL, AND COMMUNICATION SYSTEMS

In the simplest way, command, control and communication (C3) systems
are mere assemblages of embedded and information processing systems. A
ballistic missile defense system, for instance, could be treated as being
composed of several cooperating subsystems. Among them, those that
support the individual radar posts and the weapon dispatching and guidance
fall in the category of embedded systems, The remaining subsystems are of
the information processing type. They are repositories of information
received from other subsystems and of tools that use this information to
support the decision processes for which the respective command centers
are responsible,

This view of C3 systems, while correct, is incomplete. It is
acceptable as long as one is concerned only with showing that the design
of C3 systems presupposes the availability of design methodologies for
embedded and information processing systems. The aspects not being
captured by this view, however, are the additional functional and
performance constraints placed on the component subsystems by the very
nature of the C3 system and the role played by communication. Some of
these issues are elaborated below.

~ The communication between subsystems and between a subsystem and
the devices with which it interacts becomes the most critical
aspect of system design. A battlefield information distribution
system, for example, interfaces with troops operating on enemy
territory, with command posts, with intelligence gathering
devices, weapons, etc. The problems related to assuring
reliable communication, security, and continued operation in the
presence of communication, device, and/or subsystem failures and
potential subversion are complex.

- All the constraints recognized in the design of information
processing systems are present and exacerbated in the subsystems
of a C3 system, Both throughput and response time have to meet
sudden load increases placed on the system by critical and fast
evolving situations such as an enemy attack. Moreover, the
vital role played by the system, combined with increased
hostility in the environment in which it functions, demands
stricter security measures.

- The assumptions made about the data and the way it is being used
also differ from an information processing system. Potential
failures in reporting, intelligence, and communication may
render data to be either inaccurate or incomplete. For example,
a temporary communication cutoff between two command posts may
necessitate decisions to be made based on estimates of what
might be happening at the other post. Furthermore, because the
primary function of C3 systems is to support the decision making
process (tactical, logistic, etc.) easy development of
appropriate models for evaluating the potential consequences of
alternate strategies must exist in addition to the ability to
query the databases.
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In view of these facts, a methodology for the design of C3 systems
appears to involve several, somewhat independent, subtasks.

The first one is to find acceptable solutions to maintaining
reliable communication and to adopt an overall policy with
regard to how one is to deal (from a military point of view)
with communicatior. failures, The former issue falls more on the
shoulder of the communication technology while the latter
involves strategic considerations., Neither of the two is
within the scope of this research.

The second subtask is to separate the C3 system into its
component subsystems of the embedded and information processing
types. The separation is based upon the intrinsic distribution
of functions between the entities forming the larger system
being supported, upon strategic and other military
considerations, and upon the communication technology being
employed.

The next subtask is to define the constraints being placed upon
each of the subsystems.

Having established both the functional definition and the
relevant constraints of each subsystem, its design may proceed
in a manner appropriate for the respective class of systems to
which it belongs.

The peculiar relationship between the three classes of systems
characterized in this section makes a separate assessment of the TSD
Methodologies with respect to C3 systems unnecessary. The development of
a TSD Methodology for C3 systems presupposes the availability of design
methodologies for the other two types of systems thus clearly identifying
both the feasibility and the importance of the TSD technology in the area
of C3 systems. Consequently, the decision has been made to focus the more
detailed investigation on the design strategy promulgated by the TSD
Methodologies and to illustrate it only for embedded and for information
processing systems., The results are presented in Sections 3.4 and 3.5.

124




3.3 SYSTEM DESIGN NEEDS AT DMA

The Defense Mapping Agency (DMA), like most other Dol organizations,
depends extensively on the support of computer based systems in order to
fulfill its role in the DoD community. Being reasponsible for satisfying
the mapping, charting and geodesy (MC&G) needs of all the military
organizations presents, from a system design perspective, some advantages
and many challenges. On one hand, a key advantage could be the fact that
by concentrating on a narrower set of applications one increases the
chances for fast meaningful progress in the establishment of effective
methodologies and facilities for use in system design. On the other hand,
however, there are two major difficulties that need to be overcome:

(1) the production pressures which leave few resources to be dedicated to
the means of production and (2) the unique and complex nature of DMA
systems involving numerous and extremely large cartographic databases as
well as specialized devices used to process some of the data.

In order to understand the methodological needs of the DMA, one has
to consider the characteristics of the production environment existing at
DMA and the nature of the applications with which this organization is
involved. 1In this regard, the following issues seem to have the greatest
bearing on the future of system design at DMA.

- The DMA production plan is determined by the MC&GC defense needs
of the many DoD organizations. Changes in the data format, use
and collection (quite often unanticipated) bring about increased
demands for MC&G products, demands that translate into
corresponding enhancements in the systems employed by DMA. Its
ability to keep up with future growth indicates a need to employ
effective system design methodologies capable of supporting the
dynamic evolution experienced by DMA systems.

- While &t present most DMA systems could be considered to be of
the information processing type, their MC&G nature makes the
importation of system design technology somewhat less direct.
For an extensive discussion of the basic distinctions between
business and geogravhic data processing the reader is directed
to [NAGY?Q] which also contains a survey of the major geographic
data processing systems in production today (including those
operating at DMA). The following is a list of features
identified in [NAGY79] as being unique to geographic data
processing:

~- demanding performance constraints not present in other
data processing applications;

-- presence of locational attributes;

-- two-dimensional nature of the problem domain;

-- particularly large amount of storage;

~-- lack of commercially available systems;

-~ government ownership of most existing systems;

-- specialized and expensive input/cutput devices;

-- dependence upon remote sensing technology.

- All major geographic data processing systems in production today
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have been developed by some government organization (within or
outside the U.S.A.) and have been designed to serve a set of
very specific requirements. Consequently, geographic data
processing for military purposes receives little attention
outside the Govermient and puts DMA in the position of having to
develop on its own the system design technology reguired to
maintain and enhance its MC&G production.

The complexity of the current types of systems is on the rise.
The number and volumes of the databases, the workload, and the
number and variety of products all experience noticeable growth.
Moreover, greater interdependencies between databases and
products is anticipated. The ultimate consequence of these
trends might be the evolution of a single distributed DMA
system, a critical component of the entire organization.

There is also evidence pointing to a possible new group of
systems of the embedded type. Computer controlled devices in
use at DMA can be viewed to be in this category already.
Furthermore, any increased future involvement of the
organization in the data collection process most certainly is
bound to extend DMA related system design efforts into the
embedded systems area.

At a more speculative level, incorporation of DMA systems into
larger C3 systems can not be ruled out. Major increases in the
data collection rate combined with a need to possess extremely
current MC&G products (possibly on-line) may contribute to
making this qualitative jump.

The productivity associated with the generation of MC&G rroducts at
DMA appears to be related to the quality of the computer based systems
being employed, which in turn depends on the effective use of current
technology at hardware, software, and system levels. TSI’ Methodologies
hold the potential to assist DMA with many of these system related
problems and to provide cohesiveness to long range planning in this area.
They extend the ability of the organization to control and manage system
development, maintenance, and enhancement. Furthermore, TSD Methodologies
promote careful definition of system requirements and more effective use
of available technology. In other words, the DMA's strides toward
quality, productivity, emhanceability, maintainability, and low system
design costs are identical to the basic objectives of the TSD technology.

Although the general orientation of this assessment is not DMA
specific, the impact of the TSD Methodologies on DMA related system design
efforts is apparent and the use of DMA inspired case studies only enforces
it further. Future advances in this direction, however, require some fine
tuning of these methodologies and additional experimental work on real DMA

Moreover, the TSD Facility master plan presented in Section 4

relates directly to and is consistent with current efforts aimed at the
establishment of a DMA modern programming environment (MPE). The MPE work
is leading to the establishment of a TSD Facility at DMA, a facility whose
scope is limited to software development. While current MPE efforts focus
on the selection of specialized tools, future work will have to emphasire
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the integration of these tools. The TSD Facility description appearing in
Section 4 includes the requirements definition for the integration !
process.
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3.4 TSD VIEW OF DISTRIBUTED SYSTEMS DESIGN

3.4.1 INTRODUCTION

The system design stage covers all design activities involved in
taking a set of system design requirements and generating the
specification of the hardware and software requirements for the respective
system. There are two phases that make up this stage: the system
architecture design phase and the system binding phase. The former deals
with the selection of an overall system architecture which accomplishes
the intended system functionality and which, under a reasonable set of
technological assumptions, meets the performance and other constraints
originating with the system requirements. The proposed architecture and
all the design decisions taken during this phase form a processing model
used as input to the binding phase.

The binding phase, based on the limited degrees of freedom still left
open by the system architecture design phase and based on market
availability, identifies a particular mix of software and hardware and
produces specifications for all needed components., The nature of the
specifications, however, may vary from component to component depending on
its intended realization (software or hardware) and on the manner in which
it is to be obtained (off-the-shelf, through customization, or
custom-made). The system design stage is also concerned with the
integration of the system components from the point when both the software
and the hardware components are available and up to the point when the
system is offered for customer acceptance testing.

A system design methodology, like all other design methodologies, has
three facets: one or more specification languages, a design strategy, and
an appropriate set of design/analysis techniques. Because Section 3.4 is
concerned with identifying not a specific methodology but a class of TSD
Methodologies, these three issues do not enjoy equal treatment.

- SPECIFICATION LANGUAGES. The system requirements, the
processing model, and the hardware/software requirements define
the specification language needs of the TSD Methodologies.
Sections 3.4.2 through 3.4.4 offer informal definitions of the
general nature of these three types of specifications. Formal
definitions are included, however, in Appendix E. It
establishes the theoretical foundation for the entire Section 3
and presents the interested reader with formal requirements
definitions for the specification languages needed to support
distributed system design. (The approach is similar to that
used in [ALF079].) One may use the contents of Appendix E in
both the design and the evaluation of certain classes of
specification languages. While the design of particular
specification languages is outside the scope of this
investigation, an attempt has been made to illustrate potential
directions that could be followed by future research efforts in
this area. Consequently, Appendices F and G describe language
proposals for system requirements definition and parts of the
processing model.
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- DESIGN STRATEGY. The design strategy is first introduced in
Section 3.4.5 in the form of a tutorial., The strategy is later
formalized in Section 3.4.6 by using the methodology definition
approach described in Appendix D. Formal definition of the
relationship between the design strategy and the nature of the
specification languages involved is relegated to Appendix E.

- TECHNIQUES. 1In the absence of particular specificatic-
languages, the techniques are only touched upon. Their
objectives are suggested by the strategy and by the nature of
the specifications, but no specific techniques are proposed
here.
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3.4.2 INFORMAL DEFINITION OF SYSTEM REQUIREMENTS

The system requirements are generated in the problem definition
stage. They consist of a conceptual model and a set of constraints which
together define the acceptability criterion for any proposed system
realization: a system is said to meet its requirements if and only if it
carries out the functionality described by the conceptual model and
satisfies all the constraints present in the system requirements. (Note,
however, that implicit in this definition is the existence of a non-empty,
usually infinite, set of systems that are able to carry out the desired
functionality and an effective procedure by which to determine if a given
system does or does not satisfy all the constraints.)

The role of the nceptual model is to capture in finite and precise
terms the nature of the interaction between the needed system and its
environment., 1In general, the conceptual model must have the ability to
describe the relevant environmental states, an abstraction of the states
of the system, and the way in which both the environmental and system
states change. The approach to describing the states and the state
transition rules varies from one specification language to another. The
language discussed in Appendix F, for instance, em, loys a set-theoretical
notation to describe both the environmertal and the system states and uses
predicate calculus to define the state transition rules. Ry contrast,
other languages promote operational approaches based on data flow graphs
(BELL77], applicative methods [ZAVE81], etc.

Furthermore, some languages make implicit assumptions about either or
both the nature of the states and of the state transition rules; the loss
in generality is motivated by increased specificity in the handling of a
particular application area. As an example, a system that responds to
stimuli from the environment in a manner which is independent of the
history of previous stimuli and responses may be easily described in a
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language which equates the state of the environment with the current
stimulus, has no ability to describe system states, and is capable of
defining a mapping from the set of stimuli to the set of responses. Yet
another example could be used to illustrate the fact that there is also
great variability in the way state transitions may be described: 1in a
biomedical simulation system a new state is generated as a result of the
integration of a set of differential equations.

Increases in the ability to formally define the desired functionality
are not accompanied by commensurable advances in the definition of system
constraints. There are four important reasons contributing to this.
First, there is a great diversity of types of constraints (e.g., response
time, space, reliability, cost, schedule, weight, power, etc.). Second,
some of them are reiated to possible design solutions which are not yet
formally stated at the time the system requirements are being conceived.
Furthermore, their relevance differs at different points in the design.
Third, many constraints (e.g., maintainability) are not formalizable given
current state-of-the-art. Finally, not 2ll constraints are explicit. tor
instance, the designer is expected to follow generally accepted rules of
the trade in designing a system without having them explicitly stated.
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3.4.3 INFORMAL DEFINITION OF PROCESSING MODEL

The methodology put forth in Section 3.4 treats systems as being
describable by a hierarchy of related designh specifications where the
specification at one level reveals a design solution for some problem
which is formally defined within the level above. The processing model
reflects this view by assuming a similar structure: a total order over a
finite set of design specifications. The total ordering is not really
necessary but has been adopted in order to simplify the presentaticn of
both the processing model and the system design strategy. Furthermore,
the extrapolation to an upside-down tree (a tree in which the level number
of each node is defined as the longest distance from a leaf rather than
root) is trivial.

By definition, each design specification is viewed as corresponding
to a subsystem in the overall system. The support relation between
subsystems is explained in the Section 3.4.5 and is formally defined in
Appendix E. The remainder of this section focuses on the informal
definition of the design specifications.




Regardless of its position in the hierarchy, each design
specification consists of same six components:

PROCESS STRUCTURE
~-- network topology in terms of processes and links
~-- definition of system and external processes
-— definition of links
-- definition of link communication protocols

PROCESSOR STRUCTURE
-- network topology in terms of processors and interconnections
--~ definition of processors
-~ definition of processor interconnections
-~ definition of interconnection communicatior protocols

PROCESS/PROCESSOR ALLOCATION
-~ allocation and reallocation rule

PERFORMANCE SPECIFICATIONS
-~ performance requirements of processes and links
-- performance requirements of processors and interconnections
-- performance characteristics of processes and links
-- performance characteristics of processors and interconnections
—-- performance models

BINDING OPTIONS
-- set of feasible realizations of the process and processor
structures
—- set of binding constraints

CONSTRAINTS,

The PROCESS STRUCTURE describes the subsystem functionality by means
of a network of communicating processes interconnected via links. Each
link provides a logical connection between two or more processes. The
message traffic on each link, however, behaves in accordance with a
communication protocol specified by the designer. 1In the top level
subsystem the processes may correspond to successive transformations of
: the input data in a data processing system or to query processing in a
database system. At other levels the process structure may be describing
operating system capabilities. 1In all cases, however, the description is
independent of the way in which the processes are distributed within a
realization of the system and of the manner in which they may be
implemented.

The PROCESSOR STRUCTURE, in conjunction with the process/processor
allocation explained below, is an abstraction of all the subsequent levels
in the hierarchy. 1In its simplest form, the distinction between the
process and the processor structures is like the distinction between an
application program and the operating-system/hardware combination that
enables it to execute, Furthermore, processors are assumed to correspond
to separate distributed collections of system components. In other words,
given the final system realization and any one of the processor structures
present in the hierarchy, one should be able to uniquely partition all
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system components into equivalence classes and to establish a meaningful
one~to-one correspondence between these equivalence classes and the
entities (processors and interconnections) of the chosen processor
structure,

The PROCESS/PROCESSOR ALLOCATION captures the distribution of the
processes among the available processors. In its simplest form, the
allocation may be static, i.e., does not change during the execution of
the system. In such cases, all processes are partitioned among the
available processors with the links being partitioned accordingly between
processors and their interconnections. Reliability, workload balancing,
and other design considerations, however, often require dynamic changes in
the allocation of processes and links among the available processors and
interconnections. (Note: An additional degree of complexity may be
noticed in systems which permit a process to be mapped simultaneously on
several processors, This occures, for instance, when the code associated
with a particular realization of some process and the execution of the
corresponding instructions are the responsibilities of two separate
processors., The definitions from Appendix E do not rule out such cases.)
The separation of the allocation/reallocation issue from the functional
details of the process structure has the potential to significantly reduce
the complexity of analyzing both the individual subsystems and their
relationships.

The PERFORMANCE SPECIFICATIONS deal with the performance attributes
of the system and with the models used to relate the performance
attributes to the selected system architecture and to each other, A
performance attribute may be associated with either the process or the
processor structure and represents either a performance requirement
originating with some performance constraint or a performance
characteristic that has been established to be true, i.e., it was
validated. Performance requirements (i.e., constraints) are assumed to
propagate top-down from the process structure to the processor structure,
and from one subsystem to the next. The performance characteristics,
however, propagate bottom-up; only when the exact characteristics of the
processor structure are known one may deduce with certainty the
characteristics of the process structure., Moreover, an acceptable design
demands that all performance characteristics imply the satisfiability of
the corresponding performance requirements. In this context, performance
models assume a dual role. First, they assist one in determining the
performance requirements of the processor structure from those of the
process structure. Second, they propagate the performance characteristics
of the processor over the process structure.

The BINDING OPTIONS represent a non-empty (possibly infinite) set of
system realizations that are still feasible at a given point in the design
process, This set is very large at the start of the system architecture
design phase and, through successive design refinements, is systematically
reduced to a manageable size upon entering the binding phase. Because at
no point in time it is possible to enumerate the members of this set, the
designer specifies it indirectily via a distinguished category of
constraints called binding constraints. They are formulated during the
design process as a result of explicit design choices (which rule other
out alternatives) and due to conclusions drawn from various design studies
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and analysis of the stated system requirements, available technology,
anticipated operating environment, etc.

Finally, the CONSTRAINTS that appear in each design specification are
inherited from the original system requirements and carried along
throughout the entire design. Different constraints, however, affect the
design at different points in time. Some represent the origin of the
performance requirements while others may affect certain aspects of
binding. It is the designer who brings into cousideration the appropriate
constraints at the right place in the design.

3.4.4 INFORMAL DEFINITION OF HARDWARE/SOFTWARE REQUIREMENTS

The hierarchy of design specifications present in the processing
model is mapped during the binding phase into off-the-shelf, customized,
and custom-made software and hardware, Separate software requirements
specifications are generated for each subsystem. In addition, hardware
requirements specifications are produced for the lowest level subsystem in
the processing model hierarchy. While there is great variability in the
way in which both software and hardware requirements need to be specified,
they generally include the following:

a specification of the functional and performance requirements
of the hardware or the software (present, for the most part, in
the respective design specification);

a specification of all relevant interfaces (between subsystems,
between components residing on different machines, between
components developed separately, etc.);

a mapping from parts of the proposed design onto existing
hardware or software;

a list of existing hardware or software to be used.

A simple inventory system may be used to illustrate the nature of the
hardware/software requirements:

SOFTWARE REQUIREMENTS.

LEVEL 1 (Application Program).

- functionality given by an inventory control language whose
syntax and semantics have been fully specified; no performance
constraints;

- user interface via the inventory command language; access to
the database defined by the INGRES user manual; the
implementation language C;

- all database manipulations are relegated to INGRES:

- off-the~shelf software to be used: INGRES ~- a relavional
database package.
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LEVEL 2 (Operating System).
- functionality given by the UNIX user manual;
- user interface via UNIX standard commands; UNIX version
supported by the PDP 11/40 machine and compatible with INGRES;
- no changes or enhancements to the UNIX operating system
permitted;
- off-the-shelf software to be used: UNIX operating system.

HARDWARE REQUIREMENTS.

LEVEL 2 (Hardware Configuration).

- the hardware configuration consists of a PDP 11/40 with 64k
bytes of main memory, a VI52 compatible CRT terminal, a 1200
baud printer, and two disk drives for 2.5 megabytes disk
cartridges;

-~ one serial port for interfacing the crt and the processor; one
parallel port for the printer; two direct memory access ports
for the disk drives:

- the mapping of functions to components is trivial in this case;

- specific printer, crt, and disk drives could be listed here.

The relation between the processing model and the hardware/software
requirements is further analyzed in the next section.

3.4.5 METHODOLOGY OUTLINE
3.4.5.1 GENERAL REMARKS

This section discusses a proposal for a class of TSD Methodologies
focused on the design activities leading to the identification of the
hardware and software components in distributed systems. The presentation
starts with a statement of objectives. It is followed by the design
strategy to carry out the system architecture design phase. The strategy
covers both the design of the individual subsystems and the sequencing of
design activities between subsystems. Finally, the discussion turns to a
systematic way of accomplishing the task associated with the binding
phase.

The principal goal of the proposed methodology is to increase the
quality and productivity of the design of large distributed systems.
Reaching this goal, however, places the following demands on the nature of
the TSD Methodologies:

- an ability to explore in a systematic manner a large design
space by separating system level issues from those involved in
the design of hardware and software and by placing the selection
of hardware and software (i.e., hardware/software trade-offs) on
a more rational base than it has been done in the past;

- a structuring of the design process in a way which assures a
great degree of control over design complexity and promotes
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incremental verification of both the functional and performance
aspects of successive system design refinements;

- a strategy which is based on general design principles rather
than the peculiarities of a specific class of applications but
which, at the same time, is adaptable, i.e., may be tuned to a
given application,

It is our contention that the design strategy we have selected indeed
has all these attributes. The remainder of this section describes the
proposed strategy while Sections 3.5 and 3.6 illustrate the TSD
Methodologies' ability to adapt to the specifics of several very diverse
applications. The ultimate validation, however, has to come from
empirical studies in which the methodologies are applied to specific
problems., Furthermore, specification languages and an appropriate
assortment of techniques need to be developed in order to provide the
designer with a computer aided environment that would assure the high
productivity to which the TSD Methodologies aspire.

Before presenting the methodology it is necessary to point out that,
for the sake of clarity, certain simplifying assumptions are being made
throughout Section 3.4,

design backtracking due to errors receives limited coverage;

parallel development of portions of the design by different
teams on the project is ignored despite the great opportunities
for concurrency within a project;

most project menagement activities are omitted:

system integration is not discussed.

While they do not alter the overall flavor of the strategy, they may
make the methodology appear somewhat inflexible. We hope that by pointing
them out early in the presentation, the reader will have no trouble in
discerning the difference between the overall design strategy and the
artifacts of the simplifying assumptions.

3.4.5.2 SINGLE SUBSYSTEM DESIGN STRATEGY

As indicated earlier, systems are described in terms of a hierarchy
of design specifications, They force a structuring of the system in terms
of a number of subsystems, each supporting the subsystem above. The
methodology requires the design of individual subsystems to proceed
top-down. Within the general context of top-down design, however, several
related activities are interleaved (in the manner specified in
Section 3.4.6). These design activities are outlined below.

Successive and concurrent refinement of both the process and the
processor structures, The fact that a given system function may be
decomposed in more than one way is well-known., This design freedom
is not a menace, as seen by some (e.g., [BERG81]), but rather a
degree of flexibility essential to good design. The selection
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between alternate decompositions is not intrinsic to the
decomposition itself, but depends upon of the designer's objectives
(maintainability, clean abstraction, simple interfaces, reliability,
etc.). Among them, the availability of certain (existing or
postulated) means of support may also affect the functional
decomposition. The case when the process structure is affected by
earlier choices of the processor structure is illustrated by the way
in which the solution for a certain computational problem may take
different forms if one assumes the use of a high speed minicomputer
with or without an attached array processor. The converse situation
(which occurs frequently in the data processing field) is where the
needed hardware is selected based on the result of a functional
decomposition of the application problem, where the decomposition is
guided by some modularization principle.

Because of this interdependence between the selection of the
process structure and of the processor structure, TSD Methodologies
emphasize the concurrent refinement of both structures. While
accommodating the special cases where the peculiarities of the
application force one structure or the other to be dominant, this
approach offers the system designer the added flexibility required by
an unbiased treatment of the hardware/software trade-offs problem.
Furthermore, the balance is allowed to shift in one direction or
another, not due to personal prejudices, but due to constraints that
affect the range of acceptable system realizations.

Top-down propagation of performance requirements. Fundamental
to the conception of the TSD Methodologies is the assumption that
performance constraints direct to a large extent the designer's
activities. Performance requirements recognized at the top level of
a design specification propagate from one level to the next through
the assumptions the designer makes at one level about the
characteristics of the next. The assumptions later become
requirements and the cycle continues. In order for the designer to
make reasonable assumptions, two things are needed: past experience
and adequate performance models that relate the presumed performance
characteristics of entities of some level and the performance
requirements placed over the particular level of the design
specification. The nature of the performance models has to change
according to the level of functional detail. When the level of
abstraction is high, the models are less detailed, less accurate, and
also less costly than when lower levels of the specification are
reached. The scheme has two advantages. On one hand, it allows
performance considerations to influence design decisions early on,
On the other hand, it holds the promise that this may be achieved in
a cost effective manner. (This idea has received some endorsement in
recent publications [KUMA80, SANG791.)

Bottom-up propagation of perrormance characteristics. While the
performance requirements flow top-down, the validated performance
characteristics (once available) propagate in the opposite direction
[BOOT80]. The use of the performance data is important in making
immediate readjustments of the subsystem design and establishes the
accuracy of the assumptions that were made and the feasibility of the
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proposed design. (The way in which the performance characteristics
become available is discussed later.)

Binding constraints accumulation. The hardware/software
trade-offs dynamics manifest themselves during the system design
stage as a gradual narrowing down of the range of feasible
realizations, i.e., binding options. This takes effect through a
growth in the set of recognized binding constraints. The set,
originally inherited from the subsystem above, is augmented from
several sources. First, each design decision taken (e.g., successive
refinements, allocation, etc.) rules out all realizations which have
adopted different approaches. Second, design studies that look ahead
to low level but potentially difficult components of the system also
affect the directions the designer is willing to consider. If, for
instance, there were no totally distributed concurrency coordination
algorithms, a database design based on their potential availability
would have to be discarded. Third, inference studies may suggest
that the use of some technological alternatives may be unfeasible
(due to their impact on other aspects of the system or on its
operation environment, etc.) or, although feasible, not recommended
(due to anticipated technological trends, for instance). Finally,
the availability of certain software or hardware may dictate a design
solution which takes advantage of such off-the-shelf components in
order to reduce development costs.

Systematic error detection. Error detection is supported via a
number of checks placed at various critical points in the sequence of
design activities within the tasks/subtasks and in the tasks/subtasks
review sections of the methodology specification, They involve
consistency checks between adjacent levels of a design specification
and between related components of the specification (e.g.,
process/processor ailocation versus the process and the processor
structures). The checks also include logical verification between
the design specification of one subsystem and its requirements which,
in general, are established by the specification of the subsystem
above, if any. For the top subsystem in the hierarchy, however, the
subsystem requirements are the same as the system requirements. This
issue is considered again in the discussion of the subsystems' design
dependencies which follows.
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3.4.5.3 OVERALL SYSTEM DESIGN STRATEGY

The structuring of the system design in terms of the proposed
hierarchy of design specifications, is motivated by the desire to control
complexity through a systematic and strict separation of concerns, The
idea originates in part with the already common concepts of virtual
machine and stratified design (layers of virtual machines [ROBI77]). When
using a programming language, the designer is not in the least concerned
with the implementation details of the language (if the language is
properly designed). Similarly, when working at one level of a stratified
design the designer c-als only with the semantics of the operations
availatle at that poirt and not with their possible realizations. The TSD
Methodologies attempt to exploit this approach in the context of
distributed systems by adapting it accordingly.

The designer starts from the system requirements and, through
successive refinements of the process and processor structures, defines
both the way in which the functionality specified in the conceptual model
is implemented and the support needs for such an implementation (e.g.,
message exchange capability, process reallocation due to failures, storage
management, etc.). The top design specification is said to describe the
application subsystem, due to the nature of its functionality which is
directly relevant to the application at hand. All subsequent
specificatior + are said to describe support subsystems.

As already stated, the construction of each design specification
takes place in a top-down manner. However, it is often the case that,
prior to completing the specification, the support needs required by the
rrocess structure may become clear. In such cases, the generation of the
current design specification may be temporarily suspended and the design
of the supporting subsystem may proceed. Despite the fact ti:at the strict
top-down design strategy could be followed, the designer may chose to move
tc the next subsystem in the hierarchy in order to minimize the risk that
some of the assumptions made about the support subsystem may prove to be
wrong. However, once the designer decides to move to the subsystem below,
the design discipline prescribed by the TSD Methodologies requires one to
complete the design of the support subsystem prior to resuming the design
of the subsystem above. This reduces thrashing between subsystems and
enables the designer to make use of the performance characteristics of the
support subsystem in the adjustment and completion of the specification
for the subsystem being supported.
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The diagram that follows depicts the result of applying this strategy
to the design of a computer graphics system. Design activities are
represented by groups of slashes, The left most column of slashes
corresponds to the design of the top subsystem, i.e., the application
subsystem,

/ design of
/ graphics
/ language
/

// design of
// graphics
// language
// interpreter
//
/// design of
/// graphics
/// and
/// communication
/// primitives
///
//// design of
//// graphics
//// hardware
//7/
///
’/
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Aside from the global sequencing of design activities, an
understanding of the role that the processing model plays in the system
design stage requires the definition of three important concepts., The
first one is the notion that the top design specification (the application
subsystem) implements the system requirements. The second is the support
relation between the design specifications within the processing model
hierarchy. Finally, the concept of superficial binding makes the
transition to the binding phase.

A design specification is said to implement the system requirements
when its process structure is logically equivalent to the functionality
captured in the conceptual model. The definition may be actually extended
to the individual levels developed during the top-down design of the
specification., A given level in the specification implements the system
requirements if its process structure is logically equivalent to an
abstraction of the conceptual model. These definitions establish the
correctness criteria to be employed during the design of the application
subsystem and form the foundation for future automated checking of the top
design specification,

In the most basic terms, "subsystem B supports subsystem A" implies
two things about B: (1) it contains the design of functions (unrelated to
the application area) which were assumed to be available during the design
of subsystem A and (2) it may represent a further refinement of the degree
of distribution within the system. With regard to the first role of a
support subsystem, it must be pointed out that the ultimate realization of
the support relationship may assume a great variety of forms. Consider,
for instance, the special case when both subsystems are eventually
implemented in software:

- the programs of A may actually invoke the programs of B either
as procedure calls or as macros -- such is the case when B
realizes the communication protocol assumed by the message
sending and receiving commands used by A;

- the programs of A may be interpreted by programs in B -- the
availability of a LISP interpreter may be one of the support
functions assumed by A;

~ the programs of A may by objects (i.e., data) manipulated by
programs in B ~- programs in B may have the responsibility to
monitor and relocate the programs of A in case of equipment
failure or for load balancing purposes,.
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About the potential increase in the degree of distribution from one
subsystem to the next, the idea may be rendered easily through the use of
the earlier graphics system example.

DESIGN ACTIVITY PROCESSOR STRUCTURE TOPOLOGY
/ design of (user) U <==> X —==> I (image)
/ graphics
/ language
/
/

// design of U <> Y1 ==> Y2 ==> 1

// graphics
// language
// interpreter

1/
//
/// design of U =D ZT1 ==> 22 ==> 1T
/// graphics
/// and
/// communication
/// primitives
/77
/77
//// design of 0000 @ cemceeea > W22 -->1
//// graphics H i
//// hardware | !
171/ U <==> W1 -=> W21
/177 where
/777 W1 = minicomputer
44 W21 = image buffer
//// W22 = display unit
/777
///
/77
/77
/177
//
//
//
//

NN N N

The third important concept, superficial binding, must be considered
in conjunction with the binding strategy.
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3.4.5.4 BINDING STRATEGY

A processing model is considered bcund when all its entities are
mapped into software and hardware to be obtained (some by purchasing
of f-the-shelf components, others by customizing available components, and
yet others by custom building them). The binding process (also called
hardware/software trade-offs) starts in the system architecture design
phase and reaches its conclusion in the binding phase. In the first of
these two phases the growth in the set of binding constraints (explained
earlier in this section) reduces the set of feasible alternatives, thus
biasing the design toward certain technological alternatives the designer
considers to be most promising. This biasing becomes very strong when the
designer choses to structure the system around the potential use of
available components; the system entities tentatively associated with
such components are said to be superficially bound to them. Note that one
entity may be superficially bound to one or more alternatives,

At the point when the binding phase is entered, large parts of the
processing model may be superficially bound. The strategy used to
accomplish the binding could be called a "most constrained first"
approach. The designer starts by identifying binding alternatives for the
most constrained areas of the specification. This results in the
immediate generation of new binding constraints over the remaining parts
of the design which, in turn, eliminates from consideration many fruitless
alternatives. Even if one is careful to always limit the investigation to
a tractable number of alternatives, the total number of system
configurations being evaluated at one time could grow rapidly. If, for
instance, one needs to merely select three machines and there are four
alternate candidates for each, the total number of system configurations
reaches sixty-four. While some configurations may be ruled out by
incompatibilities between some candidates associated with areas of the
design which are interfaced to each other, the designer needs to weed out
many more by employing guidelines such as cost minimization,
maintainability, uniformity, etc., Once the entire specification is
superficially bound to several alternate configurations, their number
needs to be reduced to one by evaluating the weak and the strong points of
each of them, Now the system specification is bound,

A last task still to be carried out is the generation of the software
and the hardware requirements. They have to include such things as the
functionality of various components, performance and other constraints,
interface definitions, etc, The exact contents and form of these
requirements is hard to formalize due to significant variability between
systems. This concludes the informal presentation of the design strategy
proposed for the system design stage.
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3.4.6 FORMALIZATION OF THE DESIGN STRATEGY

NOTE: The flow of control constructs employed in this section are ’
explained in Appendix D. Tasks, subtasks and procedures should be
treated like recursive procedures present in common programming
languages such as PL/1 or Pascal with the special provision that
their definition appears at the place of their first invocation, 5
Consequently, at the place of definition and first invocation, !
parameters are defined and initialized at the same time. '

Furthermore, all simplifying assumptions explained earlier are
reflected in the way the strategy is formalized here.

TASK System-Architecture-Design. f
SUBTASK Subsystem-Design(i=1).

Review subsystem requirements (for i=z1 the subsystem requirements |
correspond to the system requirements and the subsystem is called the
application subsystem; otherwise, the requirements are given by the
processor structure definition and process/processor allocation defined
by the subsystem (i-1)).

Set the set of binding constraints to be the same as the binding
constraints of subsystem (i-1), unless i=1, in which case the set of
binding constraints starts by being empty.

Identify those technological alternatives that may be ruled out as
unacceptable and/or limit the set of technological alternatives only to
those that appear to be appropriate; formulate constraints which would
reflect these considerations; add these constraints to the binding
constraints.

IF the subsystem i is already available THEN DONE.

Develop top-level (i.e., level 1) for the design specification of the
subsystem i based on some abstraction of the requirements definition;
the process structure includes the modeiling of the subsystem's
environment; the processor structure topology is inherited from the
subsystem (i-1), if it exists.

PROCEDURE Subsystem-Refinement( j=2).

{ ==> { Generate the process structure for level j by decomposing or
by copying the process structure of level (j-1),
Generate the processor structure for level j by decomposing
the processor structure of level (j-1) w.r.t. the needs of
the process structure on level j.} |

z=> { Generate the processor structure for level j by decomposing or
by copying the processor structure of level (j-1).
Generate the process structure for level j by decomposing the
process structure of level (j-1) w.r.t. the capabilities of
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the processor structure on level j.}}

Define process/processor allocation on level j; the allocation may be

static or

dynamic and must be consistent with the allocation rule used

by the subsystem (i-1), if it exists.

iteration:

LOOP{ ==>
==>

>
>

=>

Adjust the specification of the level j. |

Propagate both process and processor performance
requirements of level (j~1) over the level j and refine the
performance models used at level(j-1); analytical,
simulation and empirical techniques may be required to
suppcrt the requirements propagation activity. !
Investigate inference issues related to decisions taken at
this level and eliminate binding options that are shown to
be inappropriate. |

Superficially bind aspects of the subsystem to ‘already
available software/hardware, if such decisions are strongly
motivated by constraints or design principles. |

Carry out iogical and consistency checks for level j. |
Carry out design studies for this or subsequent

]

subsystems. |
BREAK. 1}

IF level j does not refine correctly level (j-1) THEN BACK.

IF level j is not an implementation of some abstraction of the

subsystem

{ Process

requirements THEN BACK.

and processor structures are not completely refined

==> INVOKE Subsystem-Refinement(j+1). |

Processor structure is completely refined
==> { INVOKE Subsystem-Design(i+1).

LOOP{ ==> Propagate the performance characteristics of the

subsystem (i+1) to the processor structure of the

subsystem i and, subsequently, to the process
1

structure of subsystem i. |

1

=> Adjust the specification of subsystem i. |
=> BREAK.}

IF process structure is not completely refined THEN

{ PROCEDURE Finish-Refinement{(jf=j+1).

Generate the process structure for level jf by
decomposing the process structure of level (jf-1) w.r.t.
the capabilities of the processor structure on level jf
(same as on level (jf-1)).

iteration:
LOOP{ ==> Adjust the specification of the level jf. !
==> Propagate process structure performance
requirements of level (jf-1) over the level jf
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through the use of appropriate performance
models. |

==> Investigate inference issues related to
decisions taken at this level and eliminate
binding options that are shown to be
inappropriate. |

=z> Superficially bind aspects of the subsystem if
such decisions are strongly motivated by
constraints or design principles. |

Carry out logical and consistency checks for

level jf. |

=> BREAK.}

1}
[
v

IF level jf does not refine correctly level (jf-1) THEN
BACK.

IF level jf is not an implementation of some abstraction
of the conceptual model THEN BACK.

IF process structure is not completely refined THEN
INVOKE Finish-Refinement(jf+1).

PEND.}})
PEND.
STREVIEW.

F(Check the self-consistency of the design specification for the
subsystem i.) ==z> BACK.

F(Perform logical verification of the design specification with respect
to its functional requirements.) ==> BACK.

F(Check that all performance constraints placed on subsystem i are met,
given the characteristics of subsystem (i+1).) ==> BACK.

F(Determine that all consequences of the proposed design are
acceptable.) ==z> BACK.

STEND.
Develop system testing plan.
TREVIEW.

F(Evaluate the system testing plan.) ==> BACK.

TEND.




TASK Binding.
LOOP{ IF the system is superficially bound THEN BREAK.
Identify those design entities and groups of design entities which
are not superficially bound and have fewest degrees of freedom

with respect to binding.

FOR all such entities and groups DO
{ /7 { Identify binding candidate selection rules.

Select tractable set of candidates.

Establish the mapping between the candidates and the
related design entities.}}

Define the compatibility relation between the candidates
associated with various parts of the design.

IF Compatibility problems are found THEN BACK.

Keep a reduced list of compatible alternatives based on various
guidelines such as cost minimization, uniformity, flexibility,
interface complexity, etc. }

Evaluate the possible system configurations and reduce their number to
one, ’

{ Generate software requirements including: functionality; explicit
statements with regard to both constraints and degrees of freedom;
the specifications of the interfaces between the components of each
subsystem, between subsystems, and with the hardware; and the
off-the-shelf and customized software to which some of the components
are bound., //

Generate hardware requirements including: functionality; explicit
statements with regard to both constraints and degrees of freedom;
the specifications of the interfaces between the hardware components
and with some of the software: and the off-the-shelf and customized
hardware to which some of the components are bound. }
Develop integration plan,

TREVIEW.

F(Check the self-consistency of the software requirements.) ==> BACK.

F(Check the self-consistency of the hardware requirements.) ==> BACK.

F(Check consistency between hardware and software requirements.) ==> BACK.

F(Verify the functional aspects of the hardware/software requirements
against the processing model.) ==> BACK.




F(Check that all performance cunstraints placed on the system are met,
given the characteristics of the hardware and of the software.,) ==> BACK.

F(Determine that all consequences of the proposed hardware/software
selection are acceptable.) ==> BACK.

F(Evaluate the integration plan.) ==> BACK.

TEND.
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3.5 DISTRIBUTED REAL-TIME SYSTEMS ILLUSTRATION

3.5.1 INTRODUCTION

In the most general sense of the term, a "real-time" application is
one which places stringent demands on computer system response time. More
often, however, the term refers to an application in which the computer
system is part of the control loop for some other system. In this control
capacity, the loop delay attributable to the computer system must be very
small compared to the rate at which the controlled system can change
state, This is the sense in which we use the term here.

The need to meet stringent response time requirements makes the task
of system design more difficult. The degree of difficulty depends on the
complexity of the processing and on the time allowed to do the processing.
For some application areas, the response-time constraint can be met by an
unsophisticated program running on a typical off-the-shelf microprocesscr.
For other areas, the demands are so severe that they require the devising
of novel algorithms that distribute the processing over collections of
processors working in parallel,

When the control system is located remotely from the system being

controlled, communication delays contribute to the loop delay. This
reduces the amount of time available for the system to compute its
response and, as a consequence, makes the design task more difficult.
When the control system is embedded within the system being controlled,
the communication delays are small and the time available for system
response is maximized. However, embedded systems must live within the
physical environment of the controlled system, and this operating
environment can impose constraints that greatly increase design
complexity.

Consider, for example, the control of a guided missile. 1If the
control system is embedded in the missile, the design must meet severe
volume, weight, and power constraints, and must be able to withstand the
g-loading, vibration, and other stresses peculiar to that operating
environment. These factors disappear if the missile is remotely
controlled, but at the cost of having to deal with communication delays
and the risk of communication disruption.

The trade-offs between remote and local control are important design
issues whose relative merits are weighed during the problem identification
phase of the system design process. The trade-off consideration is not a
matter of choosing one over the other, but rather, deciding which aspects
of system control should be handled remotely and which should be embedded.

A good example of this is provided by the unmanned space probe that
recently flew by Jupiter and Saturn and is now on the way to Uranus.
Embedded control takes care of the minute by minute operation of the space
craft, while earth-based stations interact with the craft for purposes of
defining future activities. This arrangement is mandated by the fact that
communication delays between Earth and craft get larger as the craft moves
v farther away. Since communication delays on the order of minutes occur
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early in the mission, total control of the craft from Earth is not just
difficult, it is impossible.

In summary, then, a characteristic common to all real-time
applications is the need to meet stringent response time constraints, An
important subclass, the embedded systems, must also meet constraints
imposed by their operating environment. In application areas such as
weapons systems and medical prostheses, the design of these systems will
often push the state of the art. Solutions can require the design of
custom hardware, the development of novel processing architectures, or the
devising of new computational algorithms. The most demanding cases will
require all three.

The impact of these considerations on design methodologies is clearly
pronounced. To be effective, a methodology must facilitate the evaluation
of correctness from both the functional and performance standpoints.

These evaluations must be made during the problem definition stage in
order to assure that the design specifications are indeed adequate for the
intended control application, and they must be made during the design
process in order to assure correctness of the design. For those
applications that require the design of custom hardware, these evaluations
must also be carried out at the actual hardware/software level in order to
assure correctness prior to the costly process of hardware design and
manufacture. The sophistication of the evaluation tools will depend on
the class of system being designed. Relatively simple tools will suffice
for some application areas while other areas will require emulation
facilities in order to perform the evaluations within a realistic time
period,

Because real-time systems are strongly constrained, a methodology
must provide formalisms for expressing function/constraint relationships
in a precise, unambiguous manner. This applies to both the specification
of system requirements and the description of system design. Additional
expressive capabilities must be provided for specific application areas.
Among the more common auxiliary needs are abilities to express the
following: asynchronous interactions at the system interface; processing
structures comprised of concurrent, communicating processes; the dynamic
allocation of processes to processors,

Finally, design strategies for real-time systems are driven by the
need to meet constraints. The implications of this depend on the class of
system being designed. For some application areas, it means making a few
performance-related adjustments to a processing model developed through
straightforward functional decomposition. However, for areas with
constraints such as volume/weight limitations, a need for high throughput
and fault tolerance, etc., there may be no way to adjust a straightforward
processing model to meet these constraints, 1In these cases, an
appropriate processing model must be developed around general techniques
for meeting the various constraints and around the capabilities of current
hardware technology.

The diversity of methodological needs makes it difficult to devise s
methodology that is well-suited to all real-time systems. The more
realistic approach is to specialize methodologies to particular
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application areas, optimizing them to the particular needs of the area and
to the backgrounds of design personnel working in that area. The strong
impact of application area on design methodology is illustrated in the
next section. It gives an overview of a particular application area,
summarizes the impact of this area on methodology needs, and reviews the
design of a particular system within that area.

3.5.2 BALLISTIC MISSILE DEFENSE SYSTEMS

This section begins by giving an overview of a broad application
area, Ballistic Missile Defense Systems, and discussing the impact of
area needs on system requirements. The implications of these
requirements on design methodology is then considered, with attention
being narrowed to a subarea, homing interceptors, in order to make the
discussion more concrete. A processing model typical of systems in
this subarea is presented and is illustrated for an actual system, the
Modular Missile Borne Computer,

3.5.2.1 INTRODUCTION

Ballistic Missile Defense (BMD) systems are military systems used to
detect and to defend against missile-based attacks. Detection is based on
active (radar) and passive (optical) sensor systems, while defense is
based on the use of interceptor missiles., There are two distinct
operational phases for these systems. The precommit phase deals with the
gathering and analyzing of sensor data and the maintaining of battle ready
status. The postcommit phase deals with the launch and targeting of
interceptors and with all other aspects of battle management.

Computer systems are used extensively in BMD systems. Computer
systems embedded in the sensor systems direct the sensors, preprocess the
sensor data, and effect communication with battle management systems.
Computer systems embedded in the interceptor missiles perform target
tracking (via onboard sensors), navigation, guidance, and communication
with battle management systems. Computer systems in the battle management
systems process the data received from the sensor systems, schedule the
targeting and launch of interceptors, monitor the effectiveness of each
defensive action, and determine successive defensive actions for as long
as the battle lasts,

The nature of the BMD mission imposes tough requirements on most of
its computer systems. First, because of the limited time in which to
detect a threat and intercept it, response time requirements are severe,
Second, because the processing needed for various discrimination and
tracking functions requires complex mathematical computations on large
volumes of data, throughput requirements are severe. Third, the critical

nature of the BMD mission demands high availability. Fourth, the chanveable

nature of defense requirements requires that systems be easy to upgrade.
Fifth, airborne and spaceborne systems must meet severe volume/weight
constraints. Sixth, systems must withstand radiation, shock, and
electromagnetic stress associated with an attack. In addition,
missile-borne and satellite-borne systems must withstand the stresses of
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launch and the stresses of harsh operating environments.

These requirements have a significant impact on the design of BMD
computer systems, For most systems, there is no way to meet either the
response time requirements or the throughput requirements with a
uni-processor architecture. Multi-computer architectures are generally
required and, for systems with volume/weight limits and harsh operating
environments, this usually means custom, state-of-the-art hardware.
Fortunately, the mathematical nature of most of the processing is well
understood, including the opportunities for concurrency, and this
facilitates the creating of processing models suited to such
architectures,

Most BMD systems handle a variety of tasks, each with specific
operating requirements, Some tasks are driven by the arrival of data
which may occur at a uniform rate or randomly. Some are driven by the
passage of time, such as issuing reports at specific times and
transmitting data at specific rates. Others are driven by exceptions such
as the detection of an abnormal system condition. The management of these
tasks usually requires the services of a real-time system executive. This
executive provides intertask communication and coordination, and schedules
tasks and allocates resources on the basis of input events, exceptions,
current time, task priority, task temporal requirements, and
precommit/postcommit status,

The extreme importance of system availability means that most BMD
systems are fault tolerant to some degree. Since methods for achieving
fault tolerance depend on hardware and software structure and on the type
of faults to be dealt with, the physical and logical structures of these
systems are strongly influenced by the hazards of their specific
application.

3.5.2.2 METHODOLOGICAL IMPLICATIONS

The BMD application area has a variety of sub-areas that warrant
separate treatment. These include the control of active sensors, the
control of passive sensors, the control of homing interceptors, and battle
management. Each of these application areas has distinctive processing
requirements which require different process structures. They also differ
in operating environment and possibilities for repair. For example,
battle management systems are typically earth based, are not subject to
volume/weight limitations, and operate in non-hostile environments. They
can thus utilize large mainframe architectures and commercially available
hardware and software, and they can be repaired through manual
intervention. 1In contrast, embedded systems that control homing
interceptors are subject to volume/weight limitations and operate in a
hostile environment. They require special hardware and software, and
special techniques for dealing with faults., In addition, the nature of
their processing tends to be more rigidly defined and less subject to
change, These differences have a considerable impact on system design and
warrant different forms of design methodology.

151




Listed below are the methodological implications of applications
dealing with the control of homing interceptors. The characterization is
at a relatively high level, in terms of the gross structure of the
processing model and the general characteristics of the methodology
components.

PROLESSING MODEL

VERTICAL STRUCTURE. The processing model has a two tier
vertical structure consisting of an application oriented
tier supported by an executive tier.

PROCESS STRUCTURE. The process structure for each tier
consists of a collection of concurrent communicating
processes, many of which are event driven. Because of the
need to meet stringent temporal performance requirements,
the processes of both tiers are tightly coded, primarily in
terms of hardware primitives.

PROCESSOR STRUCTURE. The processor structure that supports
the system is a locally distributed multi-computer network.
This structure develops in an incremental manner, the gross
structure being defined by the needs of the application
tier, and the fine structure being defined by the needs of
the executive tier.

METHODOLOGY CHARACTERISTICS

SPECIFICATION FORMALISMS, Specification formalisms must be
able to express the concurrent, multi-task, event-driven
nature of both tiers.

TOOLS. Sophisticated evaluation tools are needed for
verifying functional and performance correctness,
Simulation at the object code level is needed to prove the
suitability of the hardware/software mix.

DESIGN STRATEGY. There is an intrinsic need for fault
tolerance. Because of the dependence of this property upon
the logical and physical structure of the system, the design
strategy is oriented around techniques for achieving this
property.

Although a working methodology with these characteristics does not
currently exist, there have been substantial research efforts on various
components., For example, TRW, a company that is a major BMD contractor,
has developed a requirements statement language called RSL [BELL76] for
specifying the functional, temporal, and analytic requirements of
real-time tasks, and has developed a computer-aided system called SREM
[ALFO77] for developing, maintaining, and analyzing RSL system
specifications. TRW is also developing a computer-aided system called
FAST [McCL75] for the simulation and analysis of computer systems. As a
part of the FAST program, a high order computer description language

152




called SMITE [SMIT77] has been developed for programming diagnostic
emulations, and a SMITE compiler has been developed for the Nanodata QM-1,
a horizontally microprogrammable machine suited to emulation applications,

The next section discusses the design of a specific interceptor
control system, The purpose is to illustrate the suitability of the above
processing model and to show how strongly the design strategy is driven by
availability considerations,

3.5.2.3 EXAMPLE: THE MODULAR MISSILE BORNE COMPUTER (MMBC)

MISSION

An intelligent interceptor missile is one that provides its own
target tracking and guidance through the use of onboard sensors and an
onboard computer system. The Modular Missile Borne Computer (MMBC) is a
computer system designed specifically for this application. A good
description of the design objectives and the details of the MMBC system
are given in [RAMSTG, APPL79, KINNT9, ARNO79] and our presentation here is
based on that material.

The mission responsibilities of the system are as follows. At launch
time the system is given information about particular incoming threat
objects and given a battle management strategy. From that point on the
system functions autonomously. It acquires and maintains track on the
assigned threat objects, recognizes any new targets deployed by the threat
objects, performs detailed discrimination on any undiscriminated objects
and begins tracking identified re-entry vehicles, issues guidance,
navigation, and control commands necessary to accomplish intercept, and
finally initiates homing and fuzing.

Information needed to control the missile during the mission is
obtained by processing image data from onboard optical sensor arrays.
Because of the speeds at which the missile and the targets move, image
data is acquired at a high rate in order to remain abreast of the
situation and make the necessary course corrections., This data rate
ranges from 10**%6 to 10%*g words per second, the actual rate depending on
the particular sensor configuration being used, These high data rates,
coupled with the amount of processing required per input word, require the
MMBC to have a multi-computer structure.

Because of the volume, weight, and power limitations associated with
being embedded in a missile, the MMBC computing components are
microcomputers, and, because of mission stresses such as g-loading,
vibration, and temperature extremes; radiation from terrestrial, solar,
and celestial sources; and shock and radiation from nuclear detonations:
the computing components are assembled from custom hardware., Careful
design, manufacture, and selection reduce the risk of hardware failure,
but there are limits as to what can be achieved., As a result, the MMBC is
also designed for fault tolerance.
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VERTICAL STRUCTURE

The MMBC has a two-tier vertical structure. The top tier contains
the application software while the second tier contains the system
executive. This two tier structure is not just a conceptual model, it is
implemented in the system in a very strict manner. There are several
reasons for this, but the primary reason is that the MMBC is to be used in
a variety of applications, each needing different configurations of
hardware and different application processes, The executive provides a
virtual machine that allows the application code to be configuration
independent.

PROCESS STRUCTURE

A high-level view of the application tier process structure is shown
below. The Sensor and Focal Plane Processor acquire image data and
prepare it for transmission to the MMBC. The MMBC converts this data into
track data and uses that to generate the commands needed for Guidance,
Navigation, and Control. Each of the first three processes are
implemented by a collection of concurrent tasks executing concurrently on
separate processors. These tasks are organized in a manner that promotes
throughput and fault tolerance -~ for details see discussion of static
masking under heading "Design Strategy".

Sensor and
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Processor

—-———— -

MMBC input data

Preprocessing
and Bulk
Filtering

1

|

]
Pulse Match
Processing

:

H Track data

)

1
Tracking and
Discrimination
Processing

1
|
' Requests/Commands
]
]
Guidance
Navigation,
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The application processes execute concurrently and are coded in an
instruction set consisting of hardware primitives (PDP11-like) and
instructions that trap to the executive. Communication between processes
is message based, with the destination process being specified by logical
name, The task of getting the message from the sending process to the
receiving process is taken care of by the executive and is transparent to
the application software.

The executive tier process structure consists of a local executive
for each processor and a link interconnecting all local executives, No
system-wide scheduling or resource management is attempted. Each local
executive consists of a set of concurrent processes for performing
scheduling and dispatching, interrupt and trap handling, memory
management, communications management, run-time management, miscellaneous
system services, instrumentation and performance monitoring. Commonly
used functions such as global bus allocation, message assembly, linked
list manipulation, context saving, and procedure entry/exit are
implemented ir. hardware while less commonly used functions are implemented
in software,.

PROCESSOR STRUCTURE

The figure below, which is taken from Figure 6 of [RAMS79], shows the
processor structure for a typical MMBC application. Throughput and fault
tolerance considerations necessitate the use of multiple processors for
most high-level application processes. Sensor data arrives on 4 busses,
and 3 processors on each bus perform the Preprocessing And Bulk Filtering
of that data, The Pulse Match Process is handled by 4 processors, the
Tracking and Discrimination Process by 3 processors, and the Guidance,
Navigation, and Control Process by a single processor. There are two
separate bus systems, the sensor busses which carry data from the sensor
complex to the MMBC, and a global bus which interconnects all MMBC
processors. The processors come in several flavors -~ SIMD processors (3
streams each), arithmetically enhanced processors (fast logic for sum of
product calculations), and general purpose processors,
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The MMBC hardware is modular in nature so that the processor
structure can be tailored to the needs of the mission. It includes a
microprogrammed general processing element (GPE), an element that combines
with the GPE to form a single instruction multiple data stream (SIMD)
processor, an element that combines with the GPE to form an arithmetically
enhanced processor, memory elements, and bus interface units.

DESIGN STRATEGY

Because techniques for achieving fault tolerance depend on the
logical and physical structure of a system, the design process was largely
driven by fault tolerance considerations. Also, because the opportunities
for fault recovery are different before and after launch, different
techniques were chosen for these periods of operation.

Prior to launch, the system maintains a battle ready status by
operating in a continuous self-checking mode. Malfunctions are made known
to the battle management system responsible for the missile and this leads
to manual repair. After launch, manual repair is no longer possible, and
fault tolerance is then provided by static masking. Provision is also
made for dynamic reconfiguration in case the masking capability is
exceeded.

Static masking is implemented in the application tier of the
processing model. The basic strategy is described in the following
excerpts from [APPL79].

"The architecture we have chosen for the applications
software 1is a pipeline., Tasks at a given level of pipeline
must communicate and coordinate with othe:r tasks only at
preceding and succeeding 1levels. So there is no global
applications system state, but only communications between
successive 1layers of the pipe. Note that each level of the
pipe is a set of identical tasks implementing the same
function, The tasks reside in different processors and
provide both throughput and fault tolerance. ..."

"Figure 7 shows the PBF function's gross software
architecture. The software is in the form of a pipeline;
each stage 1in the pipeline performs some well-defined
function (e.g., demultiplexing). .,.."

"Each level of the pipeline is supervised by a manager
task whose function is to distribute data to the tasks which
make up the level. Each level is made up of one or more
identical tasks. The number of tasks at a given level
determines that level's throughput and fault tolerance. The
flow of data through a level is as follows: when a task at
that level is idle, it sends a work request to its manager.
When the manager receives data from the next higher level,
it matches the data with a work request and notifies the
idie task. The previocusly 1idle task then processes its
data, sends the data to the manager on the next lower level
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and sends a work request to its own manager."

wowsTDA MANALER
Tase ———

woeitgrRwavacta |
Task |

MMBC Applications Software Pipeline
Figure 7 of [APPL79].

Stetic masking occurs because of the fact that a processor must
request work in order to get work. If the processor dies, it stops
requesting work and is automatically out of the job stream., By having
more copies of a task than needed to meet throughput requirements, the
excess copies can die during the mission without affecting performance.
Of course, if too many copies die, performance degrades. If the risk of
this occurring is deemed adequately high, a second level of fault
tolerance can be implemented using the technique of dynamic
reconfiguration, that is, by reconfiguring the processes needed for the
remainder of the mission around the processors that are still functioning.

Dynamic reconfiguration is an executive tier function, and the
executive was carefully designed to minimize the overhead associated with
this task. All processors are tied to a global bus (actually multiple
independent global busses to give high performance and fault tolerance) so
that processes can communicate no matter which processor supports them.
Communication between processes is message based, with the message having
a header containing the logical name of the destination process. The
communication logic of the originating processor determines if the message
destination is to a process which is local to or external to the
processor. If external, the message is put onto the global bus, header
first, and the processor that holds the destination process recognizes the
process name and reads in the message., The result of this arrangement is
that the processor sending the message does not have to know the physical
location of a process external to it, hence that process can be relocated
without having to inform the processor. This eliminates most of the
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overhead normally involved in system reconfiguration., For example, the
code for a given process could reside in the memory of all processors, If
a processor with an active copy of the task died, a surviving processor
could be told to activate its copy and the system would continue to
function,

3.5.3 TSD METHODOLOGY APPLICABILITY

The vertical structure, process structure, processor structure, and
design strategy are as predicted for an interceptor control system.
Specification formalisms and design tools were not discussed because of a
lack of reference material. Although we do not know the actual thought
processes that occurred during the design of the MMBC, the carefully
structured result could easily have resulted from the top-down approach
described in section 3.4.6. The reasoning is as follows. i

The processing requirements of the interceptor mission were well
understood and so was the processing load associated with each step.
Because the processing load for most steps was too high for a single
processor, it had to be distributed over multiple processors., The
beginning point of the design process was thus one of deciding on the
manner in which the processors were to be organized. This is the point at
which the need for fault tolerance begins to direct the design. Most
techniques for gaining fault tolerance depend on the inclusion of
redundant hardware. The static masking scheme that was chosen was one
that simultaneously satisfied the need for extra hardware and the need for
a multiprocessor organization.

Note, however, that this scheme has an impact on the communication
workload since two messages have to be sent for each task -- a work
request message and a work assignment message., The performance
requirements for the processes and for the interprocessor links had to be
ad justed accordingly.

The design of the application tier identified the number and nature
of the processors needed., This was based on throughput, response time,
and fault tolerance requirements, and on an assumed order code executing
at a rate of one million instructions per second. The hardware
assumptions were based on studies of current and near future technology
capabilities, It is important to note that even though the nature of the
processors was identified (e.g8. SIMD, GPE, etc.), this did not bind them
to specific hardware, it only constrained the design of the hardware. 1In
a similar manner, the interconnection structure was not bound, only
constrained to support the links of the process structure.

The design of the executive tier was also strongly driven by fault
tolerance considerations. Two important decisions were made. First, the
executive was distributed over the system so that it could survive the
failure of any processor. Second, interprocessor communication was bound
to a global bus, and bus addressing was made configuration independent,
thus making it extremely easy to relocate the processcs of a failed
frocesser. Again, these design decisions were not without cost. The
adoption of a global bus created a communication bottleneck that required
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the desigh of a high performance bus, and the bus addressing mode required
the bus interface units to have intelligence.

The design of the executive level was a cooperative effort involving
both software and hardware designers, This led to the implementation of
many functions in hardware so0 as to reduce software overhead and improve
performance. The fact that the hostile operating environment required the
design of custom hardware was thus exploited to provide an extremely
efficient hardware/software mix.

This concluces our discussion of the MMBC. 1Its design has been
presented in enough detail to illustrate that it fits the proposed
processing model, that the design strategy of each level is based around
techniques for achieving fault-tolerance and throughput, and that the
design could have been developed in the top down manner prescribed by the
TSD methodology.
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3.6 Distributed Data Processing Systems Illustration

Distributed Data Processing Systems take on a variety of forms and
sizes, This section presents a broad description of these systems in
order tu clarify the problem domain, the system solution domain, and the
constraints which affect the solution domain. It also describes how the
TSD Methodology, presented in Section 3.4, can be applied to select an
appropriate design path from the problem domain to the system solution
domain, To that end, a specific example is presented, to which the
important aspects of the methodology are applied.

3.6.1 Introduction
Systems can be categorized by classifying them within different

dimensions of criteria. Here, we select a few of these dimensions to
attempt to characterize Data Processing Systems:

applications vs. support

environment (existing support to be used as primitives)

constraints (time, space, cost, ete.)

system solution (what kind of solutions are expected)

Data Processing applications are typically classified as those in
which a large amount of "external", complex data are processed and a
relatively small amount of computation is required for each set of data
processed. The data are often processed in a transaction type manner (a
specific set of output for each specific set of input). This is in
contrast to:

- numerical applications
Usually, a small amount of data is input or output, but a large
amount of numerical calculations are performed.

- control applications
Usually, the input and output are very simple control signals,
and very little processing is performed.

Unfortunately, there is no c. ear-cut criteria for pigeonholing
specific applications; there is :lmost always a hazy boundary, and
components which have distinctly different characteristics may be present
in any specific system. However, a reasonable definition of a Data
Processing System is one in which the ratio of data movement to data
computation is (in some sense) high.

We will further decompose Data Processing Systems into two classes:
application systems and support systems [ALFO79]. Application systems are
those in which the semantics (meaning) of the data being processed
actually is known by the system. For instance, in a patient monitoring
system, the system knows that the data is the output of sensing devices
attached to patients. In contrast, a support system is one in which the
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semantics of the data being process is not known. For instance, a
generalized database system does not know whether the data being processed
represents patient's temperatures, automobile prices, or o0il well depths.

The environment normally supplies a significant amount of processing
support. This support might be as small as a file system, or it may be as
large as a full operating system with database and utilities. The design
and implementation effort is significantly affected by the level of
support available.

The major constraints that are normally applied to Data Processing
Systems are:
- Performance

Here, the emphasis is put on obtaining the largest amount of
work from the system in a given amount of time (throughput).
Load averaging is involved, and there is little intent to allow
the exclusive processing of extremely high priority components
(as in real-time systems). However, there are often constraints
on the response time required by certain requests in an
interactive system.

~ Maintenance Costs
The total life cycle of the system must be considered in the
process of design. The cost involved in maintaining the
hardware and software often is an extremely important factor in
picking specific system components. The availability of
maintenance contracts can significantly affect the system
design.

- Expandability and Enhancibility
Most Data Processing Systems expand beyond the scope of the
application for which they were designed originally. This may
occur in one or more of several dimensions: More may be data
maintained than originally expected, there may be greater
activity of the system (more users) than expected, or new
enhancements may be required to keep the system up to date,

There are several other kinds of constraints that can be applied to
Data Processing Systems, but often have little affect on the design,
Access security is normally supplied by the executive system in which the
Data Processing System is embedded. Reliability is often handled by
checkpoints and backups. Real time constraints are seldom applied.
Constraints on the physical environment (space, temperature, etc.) usually
are not significant factors in design decisions,

The solution systems designed for Data Processing Systems seldom are
on the cutting edge of technology. Hardware is usually off the self
mainframes or mini/microcomputers; customized options are often selected,. !
However, custom discrete logic and/or VLSI are not used., Likely reasons
for excluding custom hardware might include increased cost (both initial
and maintenance), lack of experienced personnel (training costs), and lack
of need (older technology seems to solve the problems), Software
components range from off the self, through customized packages, to
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specially written custom software,

The previous discussion has dealt with general Data Processing
Systems; however, here we are interested specifically in Distributed Data
Processing Systems. The are four major reasons that a Data Processing
System might have a distributed design:

Geographic Constraints
The data manipulated by a Data Processing System may be obtained
from sites which are geographically distant. The system may
have to collect specific distributed data, transform these data,
and transmit appropriate aspects to specific sites. The
physical locations of the sites may be part of the requirements
specification.

Performance Constraints
Due to computational complexity of the application, there may be
no single processor capable of producing the performance that is
required. Distributing the computations to multiple processors
may be the only way of obtaining the required performance.

Expansion
Although the initial application might be solvable on a single
processor system, the desire for future expansion may dictate a
distributed design, one that will be easy to expand later.

- Cost
Although an application may have a system solution which uses a
large mainframe, the cost of such a system may be prohibitive.
A distributed system of mini/microcomputers may have the same
computing power but be much less expensive.

3.6.2 Applying the TSD Methodology

The most important tools available to a designer are his own skill,
ability, ingenuity, and experience; no methodology can replace these.
Instead, the methodology represents a roadmap through a very large,
complex catacomb of design decisions through which the designer must
traverse. It is intended to give guidance as to when the designer should
apply different aspects of his art to specific components of the design
problem, It should give insight into when to apply the art, not enhance
the art being applied.

The specific techniques used in different steps of the methodology
also may be part of the designers art, They may be dictated by a number
of different variables, among which are the type of system being designed,
the degree of formality in the specification, the tools available, and the
designer's experience. 1In this section, techniques that may be applicable
to Distributed Data Processing Systems are discussed.

The methodology has two major tasks: system architecture design and

binding. Although it may seem that (from the specification) these two
tasks are strictly sequential and independent, there actually is a very
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strong logical interconnection between them. Many of the physical
activities described in the binding task may have (and probably have) been
logically performed in the system architecture design task. In the
refinement of the design, the design decisions are based on 1) constraints
and 2) knowledge of what system components exist commercially and the cost
associated with building (currently) nonexistent system components. 1In
other words, the design must be a pragmatic one, not a theoretical one.

If the components developed during the design cannot be bound to existing
or buildable realizations, then the design is faulty. With this in mind,
it is clear that the design decisions must be based on concrete
assumptions as to how system components eventually will be bound to
realizations, Thus, the binding task is mainly intended to:

- bind a few components about which assumptions have not yet been
made

- determine the compatibility of previous assumptions (superficial
binding) and modify those assumptions to make them compatible

- generate hardware and software requirements for system components
not commercially available and state option selection for those
that are commercially available

The heart of the System Architecture Design Phase is the action of
decomposing the processing model (the first major step of
Subsystem-Refinement). The final characteristics of the system are almost
completely determined by the decisions made here. The manner in which the
decomposition takes place significantly affects the quality of the final
design and the speed with which the design is completed. Thus, it is
important to understand the factors upon which these decisions are based
and have some specific technique for performing the decomposition, ﬁ

The major factors affecting the decomposition are:

- knowledge of the application

- knowledge of the applicable algorithms

- knowledge of the performance of hardware and software that is
available or can be built

- recognition of the constraints

All of these factors must be kept in mind as the designer considers
different decomposition options. The loop (iterationi) after
process/processor allocations is a formal verification of how adept the
designer is at juggling these factors during the decomposition.

Two well-known techniques for performing the decomposition are
functional decomposition [BERG81) and data flow analysis [PAGEB80]. Since
these are well-known, they will not be discussed further. A more
interesting question relates to the selection of those
processes/processors that are considered as candidates for decomposition,
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The canonical problem is the one in which a set of n processes are
allocated to a single saturated (virtual) processor. (A saturated
processor is one which cannot be bound to a real machine and meet the
performance requirements of the processes allocated to it.) There are
three major alternatives: 1) decompose the processor into m processors
and reallocate the n processes in such a way that performance requirements
can be met, 2) deallocate the "appropriate" number of processes from the
processor (8o that the performance requirements of the remaining processes
can be met by the processor) and reallocate them to other processors, and
3) decompose certain of the n processes and reallocate specific resulting
components to other processors (so that the performance requirements of
the remaining components can be met by the processor).

Option 1 should be used as a last resort, only after options 2 and 3
have failed. It introduces additional processors which a) increases the
cost of the ultimate system, b) increases communication cost, and c¢)
increases the complexity of the system.

Option 2 is applicable if there are unsaturated processors available
and the reallocation of the processes does not saturate them., This is the
preferred option, but random reallocations can unnecessarily increase the
number of communication links required between the processors.

The processor topology is inherited from that of the processes;
given a specific process topology, certain processor-processor
communication links may be required because of the associated
process~process communication links. As processes migrate to different
processors, the processor-processor communication topology may have to be
modified to reflect the new allocation. One solution is to simply accept
this situation and pay the price of the increased communication, Another
is to introduce "packet transmitting" processes that shuttle information
from processor to processor,

Option 3 may be applicable when there are unsaturated processors
available, but reallocation of entire processes saturate them, In this
case, reallocation of subprocesses (process components produced by the
decomposition) may not saturate the unsaturated processors, This option
also tends to reduce the processor communication problem mentioned above.

The overall objective is to produce a system (which meets all
constraints) with the fewest processors and fewest communication links
between them. Option 1 increases both the number of processors and the
number of links; options 2 and 3 potentially increase the number of
links.

The problem is very similar to grouping and assignment problems in
graph theory [BOND76, EVEN79]. How do you group the nodes of a graph in
such a way that the connecting arcs between groups is minimized and
~ertain constraints on the nodes within each group are met? Research into
graph theory may yield appropriate algorithms for helping the designer to
select candidate decompositions.
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Determining performance capabilities of different components (both
hardware and software) of the system is another extremely important aspect
of the TSD Methodology. Benchmarks may be useful for gross estimation of
general performance capabilities and comparisons between different
hardware. However, extreme caution must be taken in selecting the type of ;
application upon which the benchmark is based. If the test application
does not have computations similar to the problem application, essentially
no inference can be drawn.

Analytical models, such as queuing theory models may be applicable for
determining the order of an algorithm and its appropriateness in an
application. Simulation with languages, such as GPSS, may also provide
insight into the ultimate performance of a specific system design.

Often the performance of a subsystem is dependent on the performance
of a critical section of code, and the total performance can be calculated
in a straightforward way once the performance of that code is known,

Thus, an excellent alternative is to program the critical section of code
and do performance measurements,

“ Emulation and simulation are not particularly applicable to
determining performance capabilities in Data Processing Systems,

3.6.3 An Example - Digital Land Mass System (DLMS)

The informal specifications of a cartographic database [NAGYT79] are
presented in this section. This will be used as a basis for presenting
the general properties of the TSD Methodology and how it is used
dynamically. The example presented here is very simple. It has been
constructed in order to demonstrate the use of the Methodology and not to
demonstrate the work required to develop the detailed design of a complex
system. We will refer to this example as the Digital Land Mass System
(DLMS).

DLMS consists of a set of data (the database) and a set of
transactions, The system is capable of accepting, retaining and answering
questions about three different kinds of objects embedded in an absolute
latitude-longitude coordinate system: points, lines, and areas.

Each data group has the same conceptual form, a 3-tuple: <feature,
type, coordinates>. The feature component specifies a unique name of the
object (e.g., Missouri River, Pike's Peak, Lake Michigan, etc.) within a
specific type. No two objects in the database of the same type can have
the same feature. The type component specifies the kind of object being
described. 1In this database, there are only three kinds of objects:
points, lines, and areas. The coordinates component specifies a list of
2-tuples which are interpreted as latitude-longitude coordinates. 1If the
type of the object is point, the coordinate list corresponds to a sequence
(possibly only one) of points which are conceptually adsociated (such as
the positions of telephone poles along a telephone line). If the object
is a line, the list is of arbitrary finite length; the sequence of points
defined by the coordinates are conceptually joined (in sequential order)
by straight line segments in order to approximate the actial line being

166




defined., If the object is an area, the list is of arbitrary finite
length; the sequence of points, joined by straight line segments,
represents a closed curve enclosing the area being defined. The database

consists of a specific set of objects defined in the above manner,

There are four primative transactions: create, find, update, and
plot. Each command is input to the system along with a number of !
arguments. In each case, if an argument is of the wrong format or i
structure, the database remains unaltered and an error message is given,

The create command has three arguments: a feature, a type, and
coordinates. If any object currently in the database has a feature and ;
type identical to that specified, an error message is returned and the §

database is not altered. Otherwise, an object with the given feature,
type, and coordinates is added to the database.

The find command has two arguments. The first is either empty (null)
or a feature; the second is either empty or a type. Only one of the
arguments may be empty. If only a feature has been supplied, then those
objects (a maximum of three) named with that feature are returned as
output data (if such objects exist in the database). If only a type has
been supplied, then all objects with that type are returned as output data
(if there are any such objects). If both feature and type are supplied,
then the object with the specified feature and type is returned as output
data (if it exists). The database itself is not altered by this command.

The update command has three arguments: a feature, a type, and
coordinates. If no object in the database has the feature and type
specified, an error message is returned and the database is not altered,
If there is an object in the database with the feature and type specified,
then one of two actions occurs: if the coordinates are empty, then the
object is removed from the database; otherwise, the coordinates of the
named database object are replaced by those specified in the command.

The plot command has four arguments: each is a latitude or longitude
coordinate. Collectively, they define a rectangular area of interest.
The plot command returns as output the set of objects (or portions
thereof) that lie within this area. The database is not altered by this
command.

This chartographic database system is intended as a subcomponent of a
larger system which must be able to manipulate geographic data. Thus, it
is not intended for direct use by an end user; there is some software
interface that transformes the users' input into the commands specified
above and interprets the output and displays it to the user in an
appropriate manner. Thus, there is no question about how error messages
or output responses are displayed to the user or how the response from the
plot command actually is plotted,.

The intended size of the database is between 10#%5 and 10%%6 objects.
Thus, a significant amount of on-line secondary storage will be required.
It also is anticipated that the database may be extended beyond this
initial volume.
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The system is intended to be used in an interactive environment.
Thus, although this is not a real-time system, there are certain
requirements on the response time required to execute commands (as opposed
to a batch oriented system where average throughput might be more
important). It is intended that both data entry and query of the database
are to be done interactively; thus, techniques that balance data insert
and data search are most appropriate. (This is in contrast to techniques

that produce very fast data entry but very slow data retrieval, or visa
versa.)

Although concrete performance constraints would be required in order
to do an actual design, numerical constraints are not presented here
because in this exposition, the algorithms used will not be analyzed to a
low enough level to be able to apply actual numerical constraints.
However, during the exposition, assumptions will be made about the
comparison of the numerical constraints and the algorithm analyses.

3.6.4 A Design -~ DLMS

In this section, the TSD Methodology is applied to the example
described in the previous section. The intent is to show the sequencing
of the steps involved in applying the Methodology and how results from
analyses affect decision points of the Methodology. The intent is not to
show the details of the analysis or exactly how the decisions are made.

A preliminary analysis of the system leads to some conclusions about
the solution domain. Some form of random access secondary storage is
required; this rules out tape. Because of the amount of data to be
stored, performance constraints, ard reliability considerations, floppy
disk is ruled out. This leaves hard disk and bubble memories. Because of
the current state of the art for bubble memories and personnel expertise,
bubble memories are ruled out, and some form of hard disk is selected for
Secondary storage.

Because of performance constraints, cost constraints, current
technology and the desire to be able to expand later, a distributed
architecture seems to be appropriate. Some form of mini/microcomputer is
deemed appropriate; however, some software support is required, at least
a file system and the availability of a high-level language. This leads
the designers to place machines like the PDP-11 and MC68000 in the design
space (binding options).

Thus, as the designers start into the desigh, they have some idea of
what hardware and software might be appropriate. They have not decided
what hardware and software to use, but they have restricted their search
space.

An important aspect to consider before getting too deep into the
design is what fundamental approach (top-level idea) will be used to
perform the database searches. There are many such approaches: binary
search, binary trees, AVL-trees, hashing, B-trees [AHO74, HORO76], etc.
In fact, the initial technique selected may not be the final technique
used; however, it is useful to have a strawman against which to evaluate
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design decisions,

Because of the large and unknown amount of data, many of the standard
search techniques are inappropriate. B-trees [COMEY9, HANS81] seem to be
applicable to this application. They can handle very large data sets of
initially unknow size; they supply relatively good performance; and they
can be "tuned" to the properties of the specific secondary storage system.
Let us assume that although other approaches initially may have been’
considered (and some design done based on that choice), m-way B-trees
constitute the final selection.

An m-way B-tree is a search tree in which:

1) all leaf nodes are at the same level (distance from the root
node)

2) the root node has at least 2 children

3) all nodes other than the root and leaf nodes have between m
and m/2 (rounded up) children

In such trees, the raw records (or pointers to them) are held only at
the leaf nodes. Internal nodes contain search information about the key
{of the records) and allow algorithms to select the appropriate child to
be searched. The leaf nodes are sorted from left to right, and the B-tree
structure supplies a fast access structure for finding the appropriate
entry (or where it would be if it were present). The search, insert, and
delete algorithms are straightforward, and the height of the tree
determines the number of nodes that must be interrogated in order to find
the appropriate entry. Since each node must have at least m/2 children,
it can be shown that this does not exceed log{(N+1)/2} + 1. (Here, the
logarithm is taken base m/2, and N is the number of leaf nodes.) For
instance, if m=20 and the number of entries does not exceed 2x10%%6 - 2,
then no more than 7 nodes must be interrogated. (m usually is determined
on the basis of the key size and the disk block size.,)

The initial process structure is shown in Figure 3,2(a). Here two
independent user processes (U1 and U2), running on their own processors,
interact with the DLMS process; these are outside the scope of our
design. The DLMS executes on a single virtual processor. Because of the
transaction nature of the specifications, a natural first level
decomposition is to recognize the four different commands by introducing
processes to handle each of them (see Figure 3.2(b}).

Upon further analysis of the requirements, it becomes clear that the
database will have to be searched in several different ways -- the find
command searches on feature and type, and the plot command searches on
coordinates. It is decided that separate access structures should be
built for each type of search to insure maximum performance for that
specific kind of search,

Cne possibility is to have a different search structure for each
component type: feature, type, and coordinate. However, there are only
three different values for type. The following compromise is chosen:
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There is one access structure for coordinates and three access structures
for feature, each containing types of only point, line and area,
respectively., Given this architecture, if a type is specified in a find
command, only the corresponding access structure need be searched, If
only a feature is specified in the find command, then three B-trees must
be searched.

Clearly Plot is the critical process because a spatial search must be
done in the rectangular area of interest. It is selected as the critical
component to analyze and decompose. Two basic functions must be
performed: (1) determine the objects that intersect the area of interest,
and (2) extract the portions of those objects that lie within the area
(see Figure 3.2(c); for brevity, only the refinement is shown; SIR ¢
stands for Search/Insert/Retrieve)., We will assume that (2) is not
difficult once the object is identified, Thus, (1) becomes the critical
process of interest.

atn sty =

One way to perform this search is to: (1) identify all objects lying
within the appropriate range of x-coordinates (corresponding to the sides
of the rectangular area of interest), (2) identify all objects lying
within the appropriate range of y~coordinates (top and bottom of the area
of interest), and (3) take the intersection. If a separate access
structure were held for the x coordinates (that define the objects) and
the y coordinates, then (1) and (2) above have simple algorithms and
potentially can be done in parallel. Thus, the decision is made to refine
the previously conceived single access structure for coordinates into two
distinct ones —- one for the x coordinates and one for the y coordinates
(see Figure 3.2(d)).

Now that a sufficient amount of design has been done to crystallize a
probable structure for a critical area of the system, it becomes evident
what the design of the remaining portion of the system should be (see
Figure 3.3). As an example, consider the create command. Upcn receiving
an object, the type is known so the appropriate feature B-tree can be
searched. If there is no object of the given type and name, Create puts
the primative object in the database (getting a pointer back) and puts the
pointer in the appropriate place in the appropriate feature B-tree. It
then performs a similar action for each of the x and y coordinates in the
list of coordinates, Update is similar to Create; Find only does
searches; and Plot has already been discussed.

The above scenario corresponds to recursively traversing the
procedure Subsystem-Refinement to the fourth level (j=zU) while performing
some incidental backtracking. Note that no mention has been make of
refining the processor structure or which of these processes are to be
performed in parallel on separate processors (so far, there is just one
processor). Subsequent levels of refinement will address these questions
and potentially refine the process structure.

Supervisor, Create, Find, Update, and Plot all have simple, similar
supervisory activities that do not require much execution time. Because
their functions are similar, they may have common utilities; thus, it is
potentially advantageous to place them on the same processor. The five
SIR processes are very similar in nature, but their processing load is
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anticipated to be drastically different. The three feature SIR processes
are accessed by Create, Find and Update., These normally perform one probe
into the B-tree and do minor manipulation of the local region found in the
search. However, the two coordinate SIR processes are used by Plot to
extract large amounts of data; two probes are made and all the data "in
between" is returned., Thus, an appropriate processor structure might be
to assign the three feature SIRs to one processor and each of SIR X-coord
and SIR Y-coord to two other processors. Although the algorithm in
Intersect and Extract Portion are simple, they will be performed on a
large amount of data. They can be assigned to their own processor. This
suggests a processor structure of that shown in Figure 3.4, Note that the ;
majority of the processing power (three processors) is allocated to the
critical activities of Plot. Also note that the structure shown has the |
minimal communication (six links) required by a connected system of seven
processors,

After consistency, performance, and inference analysis, this .
processing structure seems appropriate and we can consider the processor :
structure to be completely refined. Thus, we start on the subsystem
design (recursing into Subsystem-Design at iz2). The SIR processes can be
viewed as accessing a virtual B-tree machine; there are specific
instructions to search, insert, and retrieve information from a B-tree
(the B-tree conceptually residing on disk). At this stage, the B-tree
machine must be designed. (Of course, all the five B-tree machines have P
the same design.) Although such a B-tree machine could be built completely ;
in hardware, a more standard approach (and the one we take here) is a
combination of hardware and software (processors and processes).

The basic structure of the processes of the B-tree machine is shown
in Figure 3.5. (Here we assume a single processor consistent with prior
decisions, although we co.u'd refine the processor structure more.) SIR¥
represents the interface between the specific SIR process making the
request and the B-tree machine. Decode interprets the request and
dispatches the appropriate action, Each of Search, Insert, and Retrieve
execute sequences of commands on the processor to achieve the required
function.

Let us assume that the designers believe that this is the design that
they want, but they are still not sure of the performance characteristics.
As an inference tool, they implement certain portions of the system and
execute against what they believe is a representative set of queries.
Unfortunately, they find that the performance is below requirements.

After analyzing the detailed execution results, they find that the poor
performance is due to excessive I/0 to the disk. However, on further
analysis, they find that they had not recognized the principal of locality
(if a certain portion of the B-tree has just been searched, it a likely to
be searched again in the near future) and that much of the I/0 can be
eliminated by holding the most recently accessed nodes of the R-tree in
primary storage buffers.

Thus, the designers recurse one more level into Subsystem-Design
(i=3) by assuming that Search, Insert, and Retrieve have available to them
a virtual disk machine (see Figure 3.6), Here, the starred processes
represent interfaces to processes which need access to the virtual disk




machine. When requests for access to the disk are make, buffers which
hold recently accessed information are searched first to see if the
information is available in primary storage; if it is not, the disk is
accessed and the buffers are updated.

Now assume that after modifying the previous implementation to
reflect the virtual disk machine subsystem, performance seems to be within
bounds. Although it cannot be assumed that the final system will work
within the required performance bounds, the designers now have a much
clearer understanding of the overall structure of the system and may have
already identified places where the system can be optimized if later
necessary.

The preceding scenario has been intended to show the general overall
nature of the TSD Methodology. There are many aspects of the design which
have not been addressed. For instance, what kind of interfaces between
processes and processors were assumed and how is the disk system
organized? Are all the B-trees on one disk (causing seek thrashing), or
are they segregated? The Methodology has lead to a design that allow
these questions to be resolved in multiple (acceptable) ways. It has not
force the designers to "paint themselves into a corner",

What will happen as the system grows? There are several ways in
which the system might expand: more data may be held, more users may be
put onto the system, or more types of objects may be added. The current
design allows graceful growth in all these directions. As the number of
objects grows, the disk system can be expanded and performance can be
enhanced in several different ways depending the location of the
bottleneck. For instance, Extract Portion and Intersect can be put on
separate machines; the three feature SIR processes can be put on separate
machines; SIR X-coord and SIR Y-coord can be refined by dividing the
coordinate space into fixed regions and assigning different processes (and
processors) to each region. As the number of users grows, the processes
on PS processor can be split up and put on their own machines (along with
the modifications above). As the number of types grows (so that user
defined types are available and a finite by unbounded number of type are
possible), the three feature SIR processes can be logically combined and
then split into two processes (each on its own processor): one searching
on feature and one searching on type.

In summary, the Methodology has produced a design that is flexible to
growth and enhancement in many different dimensions. For instance, the
basic design is applicable to different access structures other than
B~trees, different commercially available machines and different disk
systems, Performance and cost are the two driving forces that affect the
implementability of the final system.

3.6.5 Conclusions

The TSD Methodology has some interesting and unique properties, Many
of these are important to computer system design in general, but a few are
particularly important to Data Processing System design. For instance,
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the Methodology formally recognizes the concepts of support, subsystem and
virtual machine. This is extremely important in Data Processing where
systems often are built of pre-existing building blocks, This not only
allows the designer to use already available components when applicable,
but is a tremendously powerful conceptual tool for reducing apparent
complexity when new components must be designhed and built.

The Methodology is flexible in that it allows the designer to examine
design paths, select those of critical importance, and use the design
developed along these paths to mold the remainder of the system. The
designer can move about the design space in a flexible and yet structured
way. However, it is rigid in that it continually reinforces that the
constraints are a fundamental criteria against which the final design must
be judged. At each decomposition point, the designer must relate the
ramifications of his decisions to the constraints. Although the designer
can suppress considering the constraints at certain points, it is still
orought to his attention and he must formally address that he is
suppressing such considerations.

The Methodology formally recognizes that either the process structure
or the processor structure may be the driving factor behind the design.
However, it does not force the designer into excluding one aspect for the
other; in successive levels of decomposition, the designer can switch
from one viewpoint to the other.

Formal specification languages and checks are fostered by the TSD
Methodology, and many of the formalisms present in other methodologies
TALFO79) are applicable here. Our Methodology also distributes
verification checks to different decision points. The intent is to insure
a sutficient degree of verification without forcing the designer to spend
excessive time. The Methodology also formally recognizes the environment
that interfaces with the system to be designed.

Although this section has only applied the Methodology to an
application Data Processing System, the M:thodology can be applied in a
similar way to support systems. For instance, the techniques used in the
design of the DLMS may be extendablie to a generalized database system (in
which the semantics of the data is not known). In zupport systems, the
constraints mav be less well defined because the use of the system and the
semantics of the data are not know. 1In fact, processes may be created at
execution time that cannot be analyzed at design time. Here, queuing
theory models may become a very impcrtant analytical tool.
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L, TSD FACILITY DEVELOPMENT MASTER PLAN

4.1 INTRODUCTION

System designers and programmers have long felt the need for computer
aided assistance in performing their jobs. Software tools represent one
of the mechanisms by which the appropriate computer services can be .
provided. Many of these tools have evolved since the days when the first
programs were written, since there always has been the desire to let the
computer do more of the mechanical work required to define, design, build,
and maintain any computer based system. The justification for this has 1
been primarily economic: people will be more productive in doing any task ;
if they have the correct tools to help them with their work. As an added ?
benefit, it is also usually true that the resulting systems will be more
reliable. The definition of what is a "correct" tool, however, varies

with the project, the personnel, and the times. Of course, if any new 1
support system is not easy and natural to use, there will be a definite
tendency to avoid using it and to continue with the older more familiar

methods. Thus what is needed is a comprehensive computerized support
system that w1l provide a set of the appropriate tools to a group of
users in a friendly, convenient, easily learned fashion.

Yt yery

GOALS

The goal of this work is the creation of a computer based system that ;
will support, in a cost-effective manner, a computer oriented project from
conception through performance evaluation. This includes enhancements in
the productivity and the quality of system design efforts within DoD
through the use of systematic design approaches. The resulting
methodologies are to be supported by the large-scale highly-integrated set
of computer aided design and management tools that compose the system.

The implementation of this system should take advantage of as much
existing technology as possible in order to become operative in as short a
time as ,rssible. However, this emphasis on short term utility should be
balanced against the long-term need for the system to accommodate new
technologies, tools, and methodologies, or extensions to cover the entire
system life cycle.

'--..,‘,...i,,..u

OBJECTIVES

In order to achieve the goals, the following specific tasks were
established as the initial objectives:

-~ Objective 1:

Develop a conceptual model for an integrated set of
design tools to support the first three stages of the
TSD Framework (Problem Definition, System Design,
Software Design). That is, characterize the computer
based environment in which the users will work.
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We shall use the expression Total System Design (TSD) Concept to
represent the abstract process by which a computer-based system is
defined, designed and developed, plus the management of these activities.
The TSD Concept establishes the requirements that must be met by the
proposed computer aided design system, and hence must be defined before
design may begin., A Total System Design Methodology is a particular
instantiation of the TSD Concept for one application area.

Usually a system designer will have available a collection of
computer based tools (such as a text editor, a language compiler, etc),
but this collection does not necessarily form an environment. An
environment is the set of services provided to a user when a collection of
tools are integrated together to form a cohesive set. We shall call the
set of services provided by an integrated set of tools supporting a TSD
Methodology a Total System Design Environment. Thus the TSD Environment
forms a conceptual model of a group of services that support the first
three stages in the life cycle of a project, with the support following a
set of guidelines (from the appropriate methodology) to increase user
productivity and system reliability.

This task ensures that the functionalities and interfaces required by
the TSD Methodologies are defined and included within the TSD Environment.
This task also will enforce the integration of the various tools that
cover the appropriate system life cycle stages, and hence will demonstrate
the ability of the TSD Environment to support all appropriate TSD
Methodologies.

-— Objective 2:

Investigate design alternatives for the TSD
Environment, and select a specific direction to
elaborate. Apply the selected approach to develop a
high level design proposal for a TSD System prototype.

We shall call a computer implementation of a TSD Environment a Total
System Design System. When a TSD System is installed in a particular
computer center, unique features at that center may have to be
accommodated within the TSD System itself. Special emulation facilities,
unusual applications, or customized tools may all represent factors that
may cause the basic TSD System to vary from one installation to another.
These variations, however, represent local enhancements of the System, not
basic changes. The collection of all of these possible enhanced versions
of the System will be called the TSD System Family.

A general design must be found for TSD Systems that incorporates all
of the necessary factors identified in the TSD Environment, and also
allows for the open-ended inclusion of new technology. Various approaches
need to be evaluated to produce the most cost-effective final design
proposal. The creation of a specific design for a prototype system allows
the general design approach to be evaluated.

The proposed TSD System design is called a prototype because it will
be the first one to be implemented. It is assumed that lessons learned
from implementing and using the prototype will result in modifications
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that produce the final production TSD System design. Depending on the
extent of the changes required, the final system may evolve from the
prototype or it may come from a complete restart of the design process.

~ ‘'bjective 3:

Develop a phased implementation plan for a TSD System
prototype that emphasizes both the immediate
productive use of existing installations and the
long-term research and development role of the System,

The TSD System prototype design proposal must be implemented
initially by using currently available technology in order to obtain a
running prototype system within a reasonable budget of time and effort,
The implementation plan must be in phases to allow the immediate
exercising of parts of the overall system as they become useable. This
approach increases the short term utility of the effort, and at the same
time provides for critically important user feedback. The choices made
during the development of the TSD System prototype design proposal must be
evaluated within the context of an actual project effort, and so the plan
must be able to accommodate revisions based on such information. The
evaluation must be done in terms of the computer aided design and
productivity enhancement goals previously stated.

The TSD System prototype, when actually implemented, will also serve
as an excellent test vehicle for the research and development necessary to
create new tools and methodologies. These new items may replace or add to
existing items, or they may serve to expand the system life cycle
coverage. Thus the implementation plan must stress flexibility to allow
the research results to feed back immediately into the System for
production use. The System implementation plan must also stress
portability to allow the results to be distributed to other installations
for testing and production.

Facility Considerztions

A computer installation that is running the TSD System Software, and
is providing all of the necessary support material and personnel, will be
called a Total System Design Facility. The essence of the TSD Facility is
in its support of one member of the TSD System Family, and thus we may
have the TSD Environment implemented at many different installations.

Since each TSD Facility may have something unique to offer (such as
special hardware or special tools), a user physically located at one TSD
Facility site would have local access to only the one member of the TSD
System Family that was adapted to the local capabilities. As a
consequence, each TSD System Family member program must have the ability
to communicate with all other Family members in order to provide each user
with the complete TSD System capabilities (i.e. the union of the
capabilities of all of the TSD System Family members).

The core of the TSD System Family is defined as the intersection of

the capabilities of all of the potential TSD System Family members. 1In
other words, the core represents the features that are available locally
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at all of the TSD Facilities. These features are the computer based
functions that are implemented uniformly for all TSD Methodologies,
independent of whatever application area is being considered,

APPROACH
Objective 1

The first objective will be achieved by developing a TSD Environment
based on the following basic principles:

-— Capture the nature of project organization

Most projects are organized in a hierarchical or matrix fashion.
This provides for both supervision and grouping of functions within the
project. In a similar manner, the computer environment seen by a user
should reflect his level of function within the project organization.
This may be readily achieved by organizing the TSD Environment itself into
a corresponding hierarchical or matrix structure.

A user working in any given environment should always be able to
define a new sub-environment that has access to a defined set of tools and
project information. The user should be able to control access rights to
any sub-environment that he has created. This will also help satisfy the
need for specialization, allowing a user to define an environment tailored
to his own special requirements.

-~ Complete documentation and configuration control

In order to maintain consistency and control, all information about a
developing project must be stored in one data depository. Users may have
local copies of pertinent data for their own use, but changes may be made
in the central project database only under strict control. This will also
support the mechanisms for tracing changes, tracking version numbers, and
for maintaining authorization controls.

-- Standardized tool access and control

The TSD Environment will define a set of tools and interfaces that
are common for all TSD Systems. This core will represent the components
used to build all of the operating sub-environments. In order for this
collection of components to form a true environment, the collection must
form a cohesive set, This means that each tool may potentially have to
accept as input the output of other tools, and all of the tools must
interface smoothly with both the project database and the user. Of
course, users must be able to add (easily) private tools and interfaces to
customize an environment for their own work habits and personal use, and
so the model must also provide for these dynamic possibilities.

-- Separation of concerns
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Certain major tasks are common for almost all projects, but each
project contains tasks of widely varying concerns. System designers and
the project manager have quite different requirements for computer
assistance in their jobs. 1In order to aid in the human engineering
aspects of using a complex and extensive system, such as the TSD System
Family, sub-environments will be predefined that aid particular types of
tasks. Current planning calls for three distinctly tailored types: a
management environment, a design environment, and a production
environment.

Objective 2

The design alternatives for a TSD System that implements the TSD
Environment will be developed from the following principles and
assumptions:

-— Cooperating installations

The size of this undertaking suggests that there should be multiple
simultaneous developments occurring. This will reguire a strong emphasis
on portability (to allow programs and results to be freely interchanged)
and for inter-facilities communication (for the rapid exchange of
information). A design direction leading to cooperating independent
stand-alone system modules should be emphasized,

-~ Specialized facilities

It is expected that different installations of the TSD Facility will
offer different specialized capabili' . es. For example, one installation
may have a hardware emulation capa’ .ty that is unique. It may not be
cost-effective to duplicate these capabilities in all installations, but
workers at another TSD Facility may require access to such unique
facilities. Thus we find that the need for portability and communication
capabilities mentioned above is re-enforced. However, the design must
incorporate such flexibility and still maintain a reasonable efficiency.

-- Workstations

It is assumed that users will communicate with the TSD Facility
through local workstations. However, the inter-relationships among the
user needs and desires, the workstation capabilities, and the TSD System
tool functions, must be carefully explored to insure maximizing the
effectiveness of all components. The potential effect of technology (such
as graphics, vocal I/0, touch screens, etc) needs to be evaluated.

-— Standardized interface to database management systemns

In order to make maximum use of existing technology, it is expected
that current database management systems (DBMS) will be used to handle the
project database. This expectation must be verified, of course, but the
cost of developing a specialized DBMS is large. The disadvantages of
excessive generality, size, and slow performance of an existing DBMS must
be balanced against the advantages of flexibility and short-term utility.
In addition, the use of an existing system allows the core tool set to
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interact with the project database through a well-defined, standardized,
machine-independent interface (from the tools' point of view).
Implementations for a new machine installation would then require mapping
the standardized interface, as seen by tne tools, into a DBMS that already
exists on the new machine. Thus all necessary machine dependencies can be
encapsulated., The design characteristics should lead to the mest
universal and easily adapted interface definitison and so must be carefu.ly
considered.

-—- Standardized core command language and tool set

Command languages, interfaces, and functionalities defined to be in
the TSD System core will not change from one installation to another, or
from one project to another. This supports portability of tools and
applications, plus it allows the personnel to move between projects or
installations with minimum retraining. dowever, the definition and design
of such a common core is a significant undertaking in itself. It depends
on extracting the essential features from the TSD Environment, and on
establishing all of the potential tool/database/human interactions,

Objective 3

The third objective, to creai.e a phased implementation plan for a TSD
System Prototype, will be achieved following these guidelines:

-~ Evaluate available technology

A demonstration faci.ity should be selected first, since the
constraints on the design of the prototype system will depend partly on
where it is to be implemented. The existing hardware factors (speed,
size, terminal availability, emulation capability, etc) and the existing
software tools (database management systems, language compilers, text
processors, etc) need to be evaluated and factcred into the design
proposal. This should result in an id-ntification and partial ordering of
the specific steps that need to be completed to produce the prototype
system,

—- Determine benefit/cost/risk factors

If these factors are associated with each of the implementation
steps, then the partial ordering information may be used to define a
series of benchmark systems such that each partial system combines the
highest benefits with the lowest cost/risk for that point in the overall
development. The phases of the final implementation plan will be
structured to produce the benchmark series of systems, with elapsed time
and pot.ntial parallelism indicated for the phases.

-- Identify missing technology

Some of the identified implementation steps will undoubtedly depend
on missing tools, techniques, or other knowledge. Along with the phased
implementation plan, a parallel supportive research plan will also be
developed.




AD-A126 101 TOTAL SYSTEM DESIGN (TSD) METHODOLOGY ASSESSMENT(U) 3/‘/
WASHINGTON UNIV SEATTLE DEPT OF COMPUTER SCIENCE
G ROMAN ET AL. JAN 83 RADC-TR-82-331 F30602- 80 C 0284
UNCLASSIFIED

- — A




ot &
s
““\_‘_-__—____,___:—-L | B

iz i s




OVERVIEW

This introduction has described the goal of cost-effective project
support to be achieved by a TSD Facility. However, this goal may only be
approached in stages, as described in terms of three initial objectives:

1. Characterize the TSD Environment.
2. Develop a design proposal for a TSD System.
3. Describe a phased implementation plan for a prototype system.

The balance of Section U4 describes the results obtained in trying to
achieve these objectives. Section 4.2, Background, begins the task of
characterizing the TSD Environment. Section 4,3, Proposal for a TSD
System Family, completes the environment characterization and outlines the
TSD System design proposal. Implementation plans are discussed in Section
4.4, Recommendations for Facility Development. A concluding discussion,
Section 4.5, TSD Facility and System Design for DMA, presents the case for
using the TSD System approach in the DMA work environment.

Note that the proposed TSD System Prototype design is based on a
characterization of the TSD Environment, not on a set of detailed
specifications. Thus the design is at a high level, allowing us to
structure the "forest" before detailing the individual "trees". 1In other
words, the system design proposal is for the overall system structure and
organization., The implementation plan then describes the detail work that
must be performed in order to bring the TSD System Prototype on-line. For
example, the system requires the use of a command language and this fact
is built into the design. However, the detailing of the command syntax
and the specific command list is not included in this report.
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4,2 BACKGROUND

There are many existing tools and environments. Characteristics of a
few of the major systems are discussed in this section. However, an
overall view may be obtained from work done at the Center for Programming
Science and Technology, National Bureau of Standards. The Center has been
compiling data on the availability of software development and testing
tools [HOUG80]. Their objectives are, first, to aid NBS efforts to
develop guidelines and standards that will improve the quality of
software. Secondly, to provide a means to determine what tools are
available and what their capabilities are. Finally, to determine what
tools are currently under development in order to share knowledge and
avoid duplication of effort.

The collected tools are classified into one of five areas (data as of
the October 1980 report):

1. Software Management, Control and Maintenance (110 entries).

2. Software Modeling and Simulation (7 entries).

3. Requirements/Design Specification, Analysis, and Program
Generation (42 entries).

4, Source Program Testing and Analysis (96 entries).

5. Software Support System/Programming Environment (2 entries).

The extreme variation in the number of area entries suggests that either
work has been concentrated on tools with the largest immediate benefits or
that the easier problems were solved first.

PROGRAMMING ENVIRONMENTS

Unix [IVIE77, KERN81] (*) is a system that is widely used with great
success. Many companies currently offer systems that are either derived
from or compatible with the Unix system, and for processors ranging from
microprocessors to large mainframes. A number of features help to explain
its popularity, the most significant being the way files are handled, the
way the command language is handled, and the way users of Unix (and its
system language) have historically approached the problem of system
development., The general style that has developed in the Unix community
is unique and very productive for certain classes of users,

All files are treated uniformly by the Unix system. The files are
assumed to be a sequence of bytes with no internal file structure, hence
all structure is imposed by user programs and not by the operating system.
Further, the file system even treats all peripheral devices as files,.

From the programmer's standpoint, the homogeneity of files and peripheral
devices is a great simplification.

When a user logs into a Unix system, a command interpreter called the
"shell" accepts commands and interprets them as requests to run programs.
The user's terminal is just another file in the file system. Part of the

(%) Unix is a trademark of Bell Laboratories.
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function of the shell is to connect the input/output files referenced by a
program to the actual files supplied. This allows any program to use

input from the user's terminal, an actual file, or the output from another

program., The shell capability, plus the ability to easily pass
information between programs (no special arrangement is necessary!), has
led Unix users to develop a style in which each program is specialized to
Jjust one task. Programs and programming thus tend to be much simpler than
if each program attempted more.

In the Unix environment the average program is rather small. People
tend to search for ways to use existing tools instead of laboriously
making new ones from scratch. Thus we have a model environment in which
large systems may be constructed easily from many small pieces by
supplying the appropriate interconnections. In addition, system
modifications may be made by replacing individual specialized pieces
without upsetting the overall program operation,

Interlisp [TEIT81) is a programming environment, based on Lisp, that
is in widespread use in the artificial intelligence community. The nature
of this user group has greatly influenced the characteristics of the
system. The typical users are engaged in experimental rather than
production programming. They were willing to expend computer resources to
improve human productivity, and they prefered sophisticated tools even at
the expense of simplicity.

A program may undergo drastic revisions, in experimental work, as the
problem being solved becomes better understood and more completely
defined. Keeping track of such change for a large program is an extremely
complex task. It is the job of the Interlisp file package to help the
programmer manage this task by automating the necessary bookkeeping of
where things are and what things have changed. The file package supports
the abstraction that the user is truly manipulating his program as data
and that the file is merely one particular representation of a collection
of program pieces,

An impressive feature of Interlisp is the "DWIM" (Do What I Mean)
facility. It is invoked when the basic system detects an error, and it
then attempts to guess what the user might have intended. Thus spelling
error corrections, command corrections, misspelled function name
corrections, and other such corrections can all be achieved within the
Interlisp environment. This type of support helps to provide the desired
increase in user productivity, but at the expense of a significant amount
of computer resources.

Interlisp has been characterized as friendly, cooperative, and
forgiving, at least for the skilled users. However, the two attributes
that set it apart are the degree to which the system is integrated and the
degree to which the facilities can be tailored or extended. The
integration means that any facility may be called from any other facility.
For example, the editor may be called from inside the debugger., The
various facilities readily call on each other for important support during
a session, which means that the integration of the facilities actually
increases their power. Interlisp provides for extensions by allowing the
user to specify a function to be called whenever a facility encounters any
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object, expression, or command that it does not recognize. Alternately,
almost all facilities support extensions via substitution macros which
associate a template of existing commands with a new command.

Interlisp has an abundance of user setable parameters which allow it
to support a wide variety of programming styles. However, it has been
carried to the point that new users are usually overwhelmed and
intimidated by the sheer number of choices that must be made.

The Ada environment (Stoneman) [STEN81, WOLF81], in contrast to Unix
and Interlisp, is not a production system as yet. However, a considerable
amount of work has already gone into its specification., A primary
requirement is to allow a project team always to work in terms of the Ada
language, rather than in terms of a particular target machine. Thus the
environment should offer comprehensive support for the full Ada language.

Another major objective of this environment is to offer effective
support to a project throughout its life cycle, from initial requirements
specification through long~term maintenance. This means that the project
database must be able to hold all relevant project information (source
code, binary code, documentation, test histories, etc.), as well as
maintaining accurate records of relationships among the items of
information as the project evolves. It also requires that the environment
must provide for configuration control and management control.

Stoneman represents a commitment to an open-ended environment., That
is, the tool set included in the system may be modified or extended at any
time. The individual can develop tools that support his own style of
working. Of course, there is a danger in that this may lead to lack of
portability, but it also raises a more serious question. Can there be a
complete and accurate database recording of the relationships between
objects when these objects are created by user-supplied tools?

For reasons of portability, Stoneman recognizes three distinct levels
within the environment. These consist of the kernel Ada programming
support environment (KAPSE), the minimal Ada programming support
environment (MAPSE), and the full Ada programming support environment
(APSE). The KAPSE is a system and tool portability level, and the MAPSE
is a user portability level. An APSE is based on a particular MAPSE, but
may include additional tools that support use of specific methodolcgies.

Ada is a machine independent language, but that is not sufficient for
tool portability. The language definition does not address such issues as
the organization of the database or the means for tool composition.
Portability requires the definition of some framework in which tool
programs execute, and the KAPSE provides this framework.

The MAPSE consists of a minimal comprehensive tool set, in that no
smaller tool set is adequate for the purpose and that it is possible for
all members of the project team to work with just this tool set at all
stages of the life cycle. An APSE can incorporate additional tools of
general interest, of interest to a particular project only, or of interest
to just one individual programmer. In the degenerate case a MAPSE is
itself a APSE. While a MAPSE offers very general tools, an APSE can be
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more specific and contain tools that encourage, or even enforce, use of a
particular design or development methodology.

DESIGN ENVIRONMENTS

PSL/PSA [TEIC77] is a system concerned with one approach to improving
systems development. The approach is based on three premises: first,
that more effort should be devoted to the front end of the process where a
proposed system is being described from the user's point of view; second,
that the computer should be used in the development process since systems
development involves large amounts of information processing; third, that
a computer aided approach to systems development must start with
documentation.

In computer aided logical system design, the object is to produce the
System Definition Report. The capability to describe systems in a
computer processible form results from using the Problem Statement
Language (PSL)., The ability to record such descriptions in a database,
incrementally modify it, and on demand perform analysis and produce
reports, comes from the software package called the Problem Statement
Analyzer (PSA). The use of PSL/PSA does not depend on any particular
structure of the systems development process or any standards on the
format and content of hard copy documentation.

PSL is based on a relatively simple model of a general system. It
states that a system consists of things which are called OBJECTS. These
objects may have PROPERTIES, and each of these properties may have
PROPERTY VALUES. The objects may be connected or interrelated in various
ways by connections called RELATIONSHIPS. The general model is
specialized for an information system by allowing the use of only a
limited number of predefined objects, properties, and relationships.

The system design activities assumed aid supported by the PSL/PSA
design environment include:

1. Data Collection: since most of the data must be obtained
initially through personal contact, interviews will still be
required, The data collected are recorded using PSL.

2. Analysis: a number of different kinds of analysis can be
performed on demand by PSA and therefore need no longer be done
manually.

3. Design: design is essentially a creative process and cannot be
automated. However, PSA can make data available to the designer
and allow him to manipulate it extensively. The results of his
decisions are also entered into the database.

4, Evaluation: PSA provides some rudimentary facilities for
computing work measures from the data in the problem statement.
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5. Improvements: identification of areas for possible improvements
is also a creative task. However, PSA output, particularly from
the evaluation phase, should be useful to the analyst.

Thus the System Definition Report ultimately contains a large amount of
! material produced automatically from the design database.

The Software Requirements Engineering Methodology (SREM) program
[BELL77]. is a system that includes techniques and procedures for
requirements decomposition and for managing the requirements development
process. A major part of SREM is the Requirements Engineering and
Validation System (REVS), a computer-aided system to support the
requirements development activities. REVS consists of three major
segments: a translator for the Requirements Statement Language (RSL),
centralized data base called the Abstract System Semantlc Model (ASSM)
and a set of automated tools for processing the information in the ASSM.

RSL is designed to be a means for stating requirements naturally
while still being rigorous enough for machine interpretation. It is !
oriented around the specification of flow graphs of the required
processing steps expressed in terms of four primitives: Elements,
Relationships, Attributes, and Structures. The language is extensible at
the concept level by adding new types of elements, relationships, and
attributes. This extensibility allows the language to respond to
application specific needs and other unanticipated needs for stating
requirements. The RSL statements are input to REVS through a translator
that checks the statements for individual correctness, and then abstracts
them. The extracted information is then entered into the ASSM. No
executable code is generated, only the entries in the data base that will
later be used by other REVS tools.

The information available in the ASSM will support a wide variety of
analysis tools, Normally available is a baseline set of widely applicable
tools which perform analyses primarily related to flow properties of the
information in the problem specifications . This capability is very
important for generating consistent, correct requirements and enforcing
any desired discipline on the requirements generation process. Among the
available tools are an interactive graphics package to aid in the
specification of the flow paths, static consistency checkers which check
for consistency in the use of information throughout the system, and an
automated simulator generator and execution package which aids in the
study of dynamic interactions of the various requirements, {

FACILITIES

The facility concept has been implemented or proposed in a number of
cases. Three of these are consicered as a context for the proposed TSD
System, i

The System Architecture Evaluation Facility (SAEF) [ANDE78,CLARK], is
i located at RADC. SAEF is designed to provide an experimental laboratory ‘
for research into the advanced hardware configuration necessary to support
the complex data processing needs of military command, control, and
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communication systems. It allows overall system designs and alternatives,
both hardware and software, to be quickly and easily evaluated, thus
minimizing actual development and life-cyale costs for new systems.

Direct experimentation with unique hardware architectures is
extremely expensive and time consuming. It is also wasteful of resources
because prototypes are rarely useable systems and hence are discarded
after the initial studies are completed. Rather than actually build new
hardware components, SAEF provides the means by which they may be emulgted
by a microprogrammable computer. In effect, the microprogrammable
computer (a Nanodata QM-1) is molded to look and act like the proposed
design at the instruction set level. Thus, machine language level
programs may be written for the proposed machine design and then executed
by the microprogrammed machine emulation.

The QM-1 is operable in both a stand alone mode (where it supports a
full complement of peripherals) and in a time share mode connected to a
DECsystem-20 computer., Since many support tools are essential to the
successful operation of such a facility, many of the tools run on the
separate DECsystem-20. These tools provide the necessary control and
reporting capabilities for the installation complex, plus allowing a
convenient user interface to the facility,

There are two major problems in the SAEF approach that require
specialized tools: one is to define the hardware system architecture to
be emulated, and the other is to generate code to run on the defined
machine. SMITE (Software Machine Implementation Tool for Emulation) was
developed to attack the first problem. It is a high order language which
allows machine descriptions at the register transfer level. Thes
descriptions are compiled into microcode to run on the QM-1, Once the
description of an architecture has been implemented through SMITE and its
associated support software, there is a need to write software for the
emulated machine, What is needed is a compiler that would automatically
compile object code for a machine based on the SMITE description of that
machine. Such a retargetable compiler is still subject to research and
development efforts.

CAMEO [RYAN79] is a system being developed to provide a single,
integrated capability for a dual QM-1 computer configuration in which the
design and performance characteristics of definable target systems can be
easily represented. This representation is in terms of a model consisting
of one or more interacting emulations and/or simulations, CAMEO stands
for "Concurrent Application of Multiple Emulations On-line", and it
provides for all user access to the QM-1 through a common standardized
environment.

Based partly on the importance of configuration management practices
and partly on the need for organizational and accounting controls, all
users interact with the CAMEO system through "Target Systems Complexes",
These complexes are created and maintained as an integral part of the
CAMEO data base, One or more target systems may be prepared for exclusive
access under each complex,

193

JM .‘;A




- " O ——————reeer oy

In addition to the facility to control target systems, software may
be developed at any of three levels:

1. Programs prepared, debugged, and applied in the context of a
target system, This is a function of the facilities of a
pre—existing target system with an operating system and its
utilities.

2. Programs prepared, debugged, and installed to function as an
operating system for a target machine being emulated. This is
supported by appropriate CAMEO utilities,

3. Programs prepared, debugged, and applied in the CAMEO System
context to function as a new target machine emulation or
simulation.

The CAMEO System development goals call for capabilities which are in
some respects conflicting: there is a stated critical need for an
operating environment in which the user's target system can perform
realistically at near real-time speeds: on the other hand, facilities
must be provided through which the users can deal effectively with the
problems of software generatic:y, testing, and performance evaluation.

FASP, the Facility for Automated Software Production, is a Naval Air
Development Center facility in which operational and system test software
for any Navy platform can be developed and maintained. This facility
offers a large complex of commercial computers, including two CDC 6600's
and one CDC CYBER 175, plus extensive supporting peripheral devices. The
software supported includes a full suite of program-generation
capabilities for standard Navy languages and target machines, together
with tools to support the use of modern software engineering technology.
As a software generation facility, FASP complements the capabilities of
individual platform integration facilities where the operational hardware
configuration is mocked-up in a simulated environment for testing,
evaluation and training.

The goal of FASP is to keep pace with emerging software engineering
methodologies and tools, and to provide support for the Navy's standard
military computers and standard high order languages, assembly languages,
and microprogram languages.

FASP is a comprehensive software generation facility consisting of an
integrated collection of software development and maintenance tools. The
tools are designed to provide support for each phase of the software life
cycle: (1) design, requirements and specification aids, (2)
implementation tools (translators and system generators), (3) testing
tools, (U4) project management tools, and (5) configuration management
tools.

The remote terminal capabllity of FASP allows Industry, Navy
Laboratories, and other Government Agencies to use FASP for software
production and maintenance., FASP then insures continuity from system
development by the prime contractor through maintenance by the Navy. The
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same tools and records that support the development remain available
throughout the maintenance phase, thereby minimizing transition problems
and training.

COMPARISON WITH TSD OBJECTIVES

One useful dimension for comparing facilities comes from the
evaluation of the environments supported by the facilities. Cheatham
[CHEAB80] suggests a comparison based on the following functional aspects
of a facility:

Language Support

Target Configuration Support
User Interface

Command Language

Integration of Tools
Granularity of Tools
Relationships Supported
Protection

Documentation Support
Management Support

All of the systems discussed in this section, both existing and proposed,
adequately satisfy the TSD System objectives for some of these areas.
However, none of the systems adequately support the entire range. A
top-level characterization of the TSD System is presented in the next
section, where these functional aspects are treated in more detail.
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4.3 PROPOSAL FOR A TSD SYSTEM FAMILY

INTRODUCTION

In this section we shall determine significant functional properties
of a TSD System by characterizing the nature of the desired TSD
Environment., This effort will result in a top level view of the TSD
System requirements and a corresponding set of system specifications. The
section concludes with a TSD System design proposal for a prototype system
that will meet all of the stated requirements at the top level.

In the discussion to follow we shall adopt the view that only one
project must be supported. This approach is based on the assumption that
two different projects are independent, and hence will be developed in
completely separate environments. The possibility of joining separate
projects {or their supporting environments) is viewed as a higher-level
management/facility function that is not to be considered here. Of
course, various parts of a single project may be in different life cycle
stages at the same time, and hence these stages must all be supported
simultaneously.

CHARACTERIZATION OF THE TSD ENVIRONMENT

The Scope of the System

A complete environment for a specific application provides tools to
support the complete application system life cycle. One element in the
evaluation of any proposed system is to establish how well each area is
supported by tools and how thoroughly the support is integrated across the
areas. The following suggested list of functional areas is given in
[HUNK80]:

requirements analysis and specification
! system specification

project management
implementation, coding, and testing
simulation and modeling
system integration
cost estimation and cost control
verification, validation, and inspection
configuration control and version control
acceptance testing
modification and maintenance

As discussed in Section 4.1, the goal for the initial TSD Prototype System
is to provide an environment that supports only the first three stages of
the project life cycle, thus the final five functional areas in Hunke's
list will not be considered at this time. However, this proposal is
written with the understanding that extending the TSD System to cover the
entire life cycle may be eventually economically justifiable, and hence
must be allowed for with a minimum of system re-design.
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It is the purpose of the TSD Environment to support and encourage the
use of TSD Methodologies by all users of the system. This implies that
the level of integration of the system parts will be sufficient to
discourage random or disorganized use of its capabilities, while strongly
encouraging organized and purposeful use. To this end, and following the
TSD Methodology concepts, the system must be easily adapted to the
specialized needs of any specific application or application dependent
methodology. Organizational concepts from the TSD Framework must be built
into the structure of the environment, but otherwise it must be extremely
flexible in style and detail.

The Human Interface

(SPIE80] suggests that a friendly user interface for an environment
must allow the user to create and use new private tools specifically
geared to the user's needs of the moment. A variation of this requirement
is to allow the user to superimpose a private interface on an existing
standard tool. All of this so that the user is not forced into the
work-patterns envisioned by the environment/tool designer. [PREN81]
suggests that the environment should be adaptable, user-centered,
suggestive, helpful and supportive, and not imposing. User friendliness
should also include human interfaces other than text, such as menu
selection capability, graphics, and possibly voice recognition.

There generally will be three classes of users of the TSD System:
managers, designers, and evaluators. Each user c¢lass may be further
divided into the naive and the sophisticated users. Each set of users
will need their own special tools and support utilities, as well as access
to general tools needed by all system users, By providing a tailored
environment for each of these groups it will be possible to provide the
type of friendly interface to the system that actively encourages the use
of the system., Thus three standard environments should be provided by
default: a management environment, a design environment, and a production
environment. In addition, the ability to define and add additional
environments must be readily available to the sophisticated user.

The management environment provides the appropriate tools to support
all project management tasks, including configuration and version control.
The design environment supports the project requirements, specificetions,
design, and programming activities. The production environment is the
most non-traditional in orientation: it is responsible for the testing,
simulation, and modeling activities that lead eventually to system
integration and final acceptance testing.

Types of Tools

The tight coupling between a project, its appropriate methodology and
its support environment, and the users of that environment suggests that
each project needs a different environment, In particular, it i3
important that the tools provided by the environment be continuously
supportive to the users in their day to day work. Perhaps the environment
should even change continuously as a project evolves through its
life-cycle, but too much or too rapid a change in a system would present
problems in human learning and adaptation. Even so, could we possibly
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build every possible environment from scratch as we need it? Yes, but the
effort required to do so would be tremendous, since we would be, in
effect, re-inventing many parts of the wheel for each new environment,
Therefore, to minimize the effort required to create an environment, it is
necessary to configure environments largely from standard modular
capabilities. The problem is to balance the advantages of using
standardized broadranging tools for all applications against the
advantages of specializing each tool to a particular application.

Some types of tools will be needed for all applications. For
example, information about the developing system must be stored in a
project database so that the appropriate tools, under the command of the
users, may study and transform the project information. Thus a central
TSD System database must be defined and the necessary tool interfaces must
be created. It is assumed that all project information must be stored in
the automated project database in order to make the TSD System truly
supportive of all of the users. Such a total depository of information
requires an equally total control of access to insure the integrity and
Security of the data. -

Other types of tools may be more specialized for particular
environments. Text processors, for example, should be tailored to the
users and the application: helpful for beginners, terse and powerful for
experienced users, able to process straight English text for reports and
documentation, able to process partially formal text for problem
requirements definition, and able to process formal text for a rigidly
structured programming language. Implementation of such diversity could
come from one generalized tool driven by appropriate data tables ([STAL81]
describes an elegant use of this approach to develop an editor with many
of these properties).

Tools directly affected by the definition of the target system
represent a somewhat different case. For example, language compilers have
a front-end that depends only on the source language being used (FORTRAN,
Ada, etc.), and a back-end that depends only on the target machine
architecture (DECsystem-20, UYK~32, etc.). If all languages and all
machines were known and fixed, then a complete set of compilers could be
written and incorporated into the support environments. However, this is
simply not the case, even though it has been the traditional approach. By
defining the correct level of detail for tool modules, pieces may be
assembled to produce the necessary final results. Thus a FORTRAN compiler
front-end could be assembled with a back-end code generator for a new
machine, producing a new FORTRAN compiler. The production of the new
compiler requires defining new code generators with a standard interface,
not the creation of an entirely new program.

The total tool set available in the TSD System prototype must support
the functional areas of: project management; requirements analysis and
specification; systems specification (both hardware and software);
implementation, coding, and testing; system integration; simulation,
emulation, and modeling, These functional areas, and the corresponding
tools, are distributed to the appropriate environments in order to provide
the tool users with a system context. It is the TSD System itself,
through control of the environments, that defines the system context that
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ensures each user is provided with all of the tools and data necessary
(and no more!) for the user to function in a productive cost-effective
manner,

Tool Integration

In an important sense, the basic function of an environment is to
ensure that everybody connected with a project gets the information that
they need, when they need it, and that the results of their work are
preserved. This implies that at the center of the envircnment there must
be a database containing all of the information about the project. The
existence of the project database does not guarantee the integration of
the various tools in the TSD System, but it does make tool integration
possible.

Given a complex system of cooperating tools that use a supporting
database, where and how does the user interact? There must be a command
language so0 that the user may give instructions to the system. The
command language should be as uniform and general as possible to satisfy
portability considerations. The TSD System, through the command language,
should look the same, as much as possible, to all users located at all
installations. The command language should contain no surprises; that
is, any command should do what you would normally expect such a command to
do. Further, all commands should be failsafe in the sense that it should
not be possible for a slight mistake to have catastrophic consequences
(you said "delete", and an entire file was deleted instead of just the
last line!). The commands should also be self-documenting. The naive
user should be able to ask at any time "What does this mean?", or "What
options are available to me now?”, and yet the sophisticated user should
not be impeded by such a facility.

It is important for a user to not be distracted or surprised by the
system reacting to features or tools that the user does not know about.
Thus a significant feature of an environment is the tool access rights
granted to a user of that environment. A manager using a management
environment should not have to be concerned with tool or system names used
by a designer operating in a designer environment. 1In general, the
defining of environments and the corresponding granting of tool access
rights is a project management function.

In a similar and perhaps even more important manner access rights to
the project database must also be controlled. Operational questions must
be answered, such as: How does a designer make a temporary change to a
file in order to test the change, and yet not affect any other person that
may be using the same file? When and how is a temporary change in the
system incorporated as a permanent change? How is the version/level
problem to be solved for the given application? The database access
control must provide the mechanism to solve these problems. Further, it
must also control tool access to the database, since a user command may
trigger a series of unforeseen tool operations (read, write, update, etc.)
that may not be desired.
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The integration of tools essentially allows any tool to work with any
other tool, or to manipulate the database. The power and scope of this
concept is controlled in two stages: (1) limit user access to tools, and
(2) limit user and tool access to the database.

Dynamics of the TSD Environment

Certain tools are of such common utility that all environments are
expected to use them, independent of whatever application area i{s being
considered. These tools are elements of the core tool set. Text
processors and database utilities, for example, will always be needed and
hence are in the core. The ability to define and create environments, and
to authorize the use of those environments and any associated parts of the
database must also be functions performed by tools in the core. The core
will always represent the common tool set for all TSD Systems.

Anyone that has access to the core tools that define a new
environment may use those tools. That is, they may actually define 2 new
sub-environment of whatever environments they originally could access.
This automatically allows a network accessing structure, since a project
manager can (by definition?) always access any information about the
entire project, and the manager may create and 2llocate any number of
sub-environments for each group leader in the organization. The group
leaders may, in turn, create and allocate further sub-environments for
each of their group members. Thus the necessary overlapping and
restricted spheres of access may be established as appropriate to the
given application and project management organization.

A TSD SYSTEM DESIGN PROPOSAL

Figure 4-1 is a top-level diagram of the proposed TSD System design
which incorporates all of the previously discussed factors, The main
control module of the system is the Command Language Interpreter (CLI).
All user communication must pass through this module for interpretation,
control, and possible execution. The CLI keeps track of all system
resources and user authorizations, allowing it to automatically provide
users with their proper environment when they log onto the system.

User communication with the TSD System is through work stations
(WS1,...,WSn). These stations may be as simple as dumb CRT terminals, or
as complex as sophisticated graphics work stations, depending on the
user/application requirements,

Each TSD System may also be connected to selected specialized
peripherals (SP1,...,SPm). Although every installation will have standard
peripherals, such as line printers and tape drives, more specialized
devices such as those needed for emulation (perhaps a QM-1) or VLSI design
(perhaps a large plotter) may not be available so universally. In order
to share the use of such devices, one of the specialized peripherals is
assumed to be a network connection. This allows a user from one TSD
System to access and use the specialized devices that may be available at
another installation. As indicated in Figure 4-1, all such accessing goes
through the appropriate interface routines (T1,...,Tm), but the central
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control still resides in the respective CLI modules.

All communications with the project database must pass through the
Database Access Control (DAC) module., The DAC uses the appropriate
project database tables to either allow or disallow the requested
user/tool access. In order to provide for portability these access
requests assume a standardized TSD System database structure. However,
this is essentially a "pseudo" or "logical"” database in that it probably
will be more economical to use an existing commercial database system for
the actual physical data storage and retrieval operations. Thus the TSD
database management system may be viewed as an interface between the
assumed TSD logical database and the actual physical database. Note that
this means that different commercial database management systems could be
used at different TSD System installations, with the only added expense
that of redefining the TSD DBMS interface.

The CLI uses the Tool Access Control (TAC) module to maintain control
over the use of the tool set. User requests for tools, tool requests for
tools, tool compatibility and interface requirements, and all other
information about tool usage will be maintained through this module. The
TAC essentially maintains the integrity of the system integration. New
tools to be added to the system are integrated into the system by
supplying the appropriate information to the TAC module.

The Core Tools module represents the collection of all standard TSD
System tools available at any given time. As mentioned previously, some
installations may have additional specialized peripherals that require
unique tools. In general, the tools that are unique to a given TSD System
installation are contained in the Other Tools module.

CONCLUSIONS

One poorly understood aspect of many current environments and
facilities is what has been termed the "gulp factor" [KERN81]. This
concept deals with what must be done to adopt a new environment. Many
current environments are high on the gulp factor scale because they must
be adopted all at once, require a massive retraining of all potential
users, and/or provide little support for systems previously developed.
Although the TSD System design proposal has been presented as a single
stand-alone entity, the background considerations that went into its
development were based partly on making the maximum use of existing
resources and partly on making the transition to a TSD Environment as easy
and desirable as possible. That is, the envisioned eventual
implementation was designed to be low on the gulp factor scale,

The high level design proposal presented in this section represents

the ultimate goal to be achieved by the implementation plan described in
the next section.
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4.4 RECOMMENDATIONS FOR FACILITY DEVELOPMENT

INTRODUCTION

One of the main goals of the TSD Facility development effort is to
enhance the productivity and the quality of system deaign efforts related
to DMA production. This goal is to be achieved through supporting the use
of systematic design approaches in a cost-effective manner. 1In
establishing a plan to implement this support it was found that the
resulting cost-effectiveness could be enhanced considerably by creating
both a short term and a long term development plan. These plans, in
combination, form the TSD Facility Development Master Plan.

The short term view of the TSD Facility represents a low-risk,
high~benefit utilization of mostly available resources. It is organized
in such a way as to provide immediate production support. In addition, it
serves as a compatible "hot-bench" for the long term research and
development necessary for the Facility to achieve its ultimate goals.

NEAR TERM FACILITY DESCRIPTION

There are a number of distinct components that make up a prototype
TSD Facility:

TSD System

~- Physical Resources
~- Technical Staff
~- Management Staff

Each of these components must be defined and in place for the operation of
a successful facility. The following discussion points up some of the
aspects of these components that need to be established in the near term.
The purpose of this discussion is to help describe the expected nature of
the near term prototype TSD Facility as produced by the Facility
Development Master Plan (Figure 4-2§.

The TSD System is composed of software, with perhaps the gddition of
some specialized hardware. It is assumed that the TSD System executes
under a standard operating system. The operating system is assumed to be
available on whatever computer complex is used for the prototype TSD
Facility, and that it is complete with a normal complement of utility
routines. Terminal and network communication protocols are also aasumed
to be available.

A detailed set of requirements and a corresponding set of
specifications must be established for the TSD Environment. (The study
must consider the relation between the Ada Fnvironment specifications and
the TSD System effort.) The initial design of the command language and
the design and implementation of the prototype command language
interpreter must be accomplished. The unified logical database must be
defined, along with the data accessing mechanisms to be used by the
command language interpreter. Techniques for interfacing existing and
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proposed tools with each other and with the project database must be
defined.

The TSD System must provide support for TSD Methodologies for aome
number of applications. This means that specialized languages for aystem
requirements and system design must be developed for these applications,
as well as appropriate analysis techniques. The TSD System must then
integrate and support the new tools that make these languages and
techniques available to the users.

Currently available support for specialized tasks must also be
extended and integrated into the TSD System. For example, the analysis of
most embedded systems requires the use of high speed simulation or |
emulation studies. The tools that support these studies need to be |
augmented in order to be more responsive to the increased levels of
distribution and complexity encountered in current advanced architectures.
(SMITE, for instance, needs to be enhanced to provide for distributed
hardware and multilevel designs.) The future use of Ada in DoD projects
must be identified, and its role in the evolution of the TSD System must
also be defined.

Physical Resources

In the near term there is not sufficient time for a major equipment
procurement, so it is expected that existing computer installations will
have to serve as hosts for the prototype TSD Facility. Questions must be
resolved concerning the sharing of physical resources for the TSD Facility
versus resources dedicated to the Facility.

Technical Staff

The development of the TSD Facility represents a major technical
effort that must be supported by an appropriate organization of
technically trained personnel.

First, a significant factor in the success of such an undertaking is
the user assistance provided by the staff. No matter how friendly and
helpful the on-line environment may be, both prospective and active users
need well written introductory and advance guides for using the system.
Experts are needed that may teach application oriented courses in the use
of the system, or simply be available to answer questions from puzzled
users. Information about the Facility availability must be widely
distributed to potential customers.

Another significant technical activity is in the area of development,
maintenance, and enhancement of the existing TSD Facility. Much of this
effort will be based on feed-back from active users, to correct problems
encountered or add features not already implemented. Porting of the TSD
System to alternate facilities must also be considered.

Research into TSD System related topics should also be an on-going
effort in order to maintain the evolution of the system to its
state-of-the-art, most cost-effective form. Perhaps some of this effort
should be guided by feed-back from prospective users that refuse to become
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active users.

Management Staff

Coordinating, planning, and monitoring of all of the tasks described

in this section requires a management effort with an appropriate support
organization.

FIVE YEAR PLAN

Figure 4-2 details the steps in the TSD Facility Master Plan. The
following explicit objectives have determined the nature of that plan:

~- low development cost;

-- speedy development;

~- limited risk;

~- early availability to potential users;

-~ ability to respond to immediate design needs without
compromising the long range requirements;

-- smooth growth in capability and range of applicability;

-- compatibility with other related DoD efforts (e.g., SAEF, Ada);

-- strong interaction between R&D and production efforts.

Because the development of a design facility is generally a high risk
and high cost proposition, the strategy adopted in the master plan is to
minimize new tool development and focus on integrating off-the-shelf
components to the greatest possible extent. While the command language,
database view and core tools which characterize the central part of the
TSD Environment could be assembled together from existing components, the
lack of application specific tools could make it difficult to attract
potential users of the prototype TSD Facility. This may be avoided if an
already successful existing facility could be used to supply the
application oriented tools. SAEF has been selected to meet this
objective. This particular choice has several other advantages. It
employs a facility which is compatible with the general TSD Concept, it
provides continuity to the entire TSD program, it addresses a class of
users who feel most acutely the need for a design facility (for embedded
systems), and it promises immediate and high payoffs.

The result of these and other considerations is a plan which consists
of tnree concurrent efforts which gradually merge into one. The main
stream deals with the selection and integration of the TSD Facility
components. The other two focus, respectively, on increasing the
effectiveness of the application specific tools through enhancements to
the SAEF aend on providing the technical support needed for long range
planning through the development and evaluation of new TSD Methodologies.

The development and evaluation of new TSD Methodologies is meant to
have little or no impact on the near term version of the TSD Facility.
The objective is to assist in the later evaluation and subsequent
enhancements of the TSD Facility available at the end of this planning
period. This is to be accomplished by developing tools to be incorporated
in subsequent versions of the facility and methodologiea that define the
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manner in which such tools should be used in various application areas.
Because effective methodologies are application dependent, the plan
suggests work to be concentrated only on a few application areas of
special significance within DoD. Corresponding independent refinements of
the TSD Methodologies should be produced for each selected area.

Following the methodology development, empirical evaluations on real-life
moderately sized projects should be carried out. The experience should be
used to further refine and tune the methodologies to the needs of the
respective application areas. The development of specification languages
and analysis techniques should be centered around mechanizing some of the
activities involved in applying the methodologies. This is the point
where some integration between the intentionally independent undertakings
ought to take place. The level of effort required by this particular
stream of the master plan depends upon the range of applications being
chosen. (No more than three areas should be attempted.)

SAEF enhancements are motivated by the desire to make the ultimate
facility more attractive to potential users, to build a user community
concurrently with the development of the facility, and to establish a
realistic base for determining the priority assigned to introducing
various core tools. Since it is expected that not all core tools will be
available in the prototype facility, those tools that appear to be most
needed by the particular community of users ought to be considered first.
Furthermore, current understanding of the specification language needs for
the system design stage should be used in the design of the next version
of the hardware description language used by SAEF. This stream of
activities is also independent in nature from the other two.

The main thread of the master plan is concerned with building a TSD .
System from available components and its integration with the SAEF to form

the TSD Facility prototype. The approach is actually consistent with the
TSD Methodologies. It starts with the problem definition stage during
which a detailed definition of the TSD Environment (only outlined by this
study) is generated. Based on the TSD Environment definition a system
architecture for the TSD System is developed in a manner which is
consistent with the constraint that the proposed architecture must be
supported primarily by the resources available in SAEF. (Given the short
range nature of the plan hardware procurement ought to be avdided.) Next
the binding phase is carried out. It consists of the selection of
existing tools required to support various entities of the TSD System and
of the definition of custom software needed to integrate them. This
activity represents, in the terminology of the TSD Framework, the
generation of software requirements. (The hardware is given in this
case.) The integration of the tools is carried out in stages. The last
one involves placing all acquired tools on the SAEF and thus establishing
the TSD Facility prototype. Once some experience with the use of the TSD
Facility on several production efforts is accumulated, it is time to

reevaluate the facility and to devise new plans for its future.
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CONCLUSIONS

Three concurrent time lines of activities have been defined in order
to maximize both the short term utility and the long term benefits of the
prototype TSD Facility development effort. The finel merging of the
separate time lines produces a prototype TSD Facility that has
demonstrated its ability to achieve the original goals in routine
production use.

209




S ASISS_TIT=Z2E=R

e -
SESRSasIcERzRn

-t de  Ew  w e o ae a w -
.................

REFINEMENT OF ENHANCEMENTS DEVELOPMENT :
TSD METHODOLOGIES TO OF

FOR SEVERAL KEY SAEF TSD SYSTEM i
APPLICATIONS CAPABILITIES PROTOTYPE

SELECTION STUDY OF DETAILED

OF POTENTIAL DEFINITION OF

KEY SAEF TSD ENVIRONMENT

APPLICATIONS ENHANCEMENTS AND SYSTEM

DEVELOPMENT OF UPGRADING OF TSD SYSTEM

NARROWLY FOCUSED SAEF BINDING

TSD METHODOLOGIES CAPABILITIES (TOOL SELECTION)
EMPIRICAL . INTEGRATION OF DE&ELOPMENT
EVALUATION OF . OFF-THE-SHELF OF CUSTOM
TSD METHODOLOGIES . TOOLS COMPONENTS
DEVELOPMENT OF USE Oé CONTINUATION OF
SPECIFICATION ENHANCED SAEF THE TOOL

LANGUAGES IN PRODUCTION INTEGRATION

DEVELOPMENT OF

-

-

ceeestnsanse INTEGRATION

ANALYSIS WITH SAEF
TECHNIQUES CAPABILITIES
: PRODUCTION
. EXPERIENCE

TSD FACILITY

teseassetnetet st ssscsatentnotans REVIEW AND

~ PLANNING

Figure 4-2, TSD FACILITY DEVELOPMENT MASTER PLAN

210




r’

4.5 TSD FACILITY AND SYSTEM DESIGN AT DMA

DMA is in a position to take advantage of the TSD technology in
several important ways:

Contractors could make use of the envisioned TSD Facility on
projects involved in the development of DMA systems;

-~ Tne TSD technology could be used by DMA contractors, even in the
absence of tne TSD Facility, particularly in the design of
systems which are distributed in nature and involve decisions
regarding the selection of a proper hardware/software mix;

- The core tools being developed for the TSD Facility are also
needed as part of the DMA modern programming enviromment (MPE)
which is seen as evolving in a TSD Facility specialized in
software development;

-~ The TSD Methodologies may also be used in DMA on certain
projects where the relation between software and hardware is
important (e.g., the placement of various functions on a locally
distributed system) and, thus, could affect DMA software
development practices.

Figure 4-3 outlines a plan dealing with the last three of the four
concerns expressed above. The direction being suggested here is analogous
to that part of the master plan that deals with the refinement of TSD
Methodologies. The distinction is not in the basic approach but in the
scope and objectives. In the master plan the intent is to define the
scope of and to support the long range R&D efforts in the area of
distributed system design. Here, the objective is technology transfer
from the R&D domain to actual production for the sake of achieving
immediate quality and productivity improvements. As such, the emphasis is
not on developing novel design, specification, analysis, and other
techniques but rather on adapting already existing techniques for use in
some particular application in a manner compatible with the TSD
philosophy. It is conceivable that after empirical evaluations via
appropriate pilot projects, some limited use of the methodologies on
selected projects will become feasible in the near future. The potential
impact of such endeavors on the DMA modern programming environment, on its
approach to system development, and even on its software development
standards should not be underestimated.

The results of this kind of highly pragmatic investigation could be
instrumental in disseminating the TSD technology and its benefits to
organizations which need it, in promoting tool development efforts which
would later contribute to the evolution of TSD Facilities, and in
stimulating more rapid exchange of ideas between researchers and
practitioners in the field of distributed system design. Furthermore,
this secondary plan is fully consistent with the TSD Facility master plan
and it is necessary in order to assure broad application area coverage
when practical considerations impose severe limitations on the scope of
the proposed TSD Facility.
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Authors: David A. Bennett, Christopher A, Landauer, Mark E.
Radlowski

Title: Automatic Integration of Multiple Element Radar

Source: PAR Corporation, under RADC Contract F30602-78-C-0139

Abstract: A case study of an application of the SAEF facility at

RADC is presented, along with a complete evaluation of
the facility. The application is in the domain of Com-
mand Control and Communication (C3); the development of
a radar system, employing several independent radars to
track multiple ground vehicle targets., The SAEF

facility was employed in the emulation of a network of
loosely coupled, distributed PDP-11 - type processors.

A variation of the PDP-11/70 CPU was developed to emulate
the -eparate processors, termed a PDQ-11 since it ran on
the Nanodata QM-1. The PDQ-11 emulators were developed in
SMITE and implemented in MULTI, the QM-1's microassembly
language.

The report presents an overview of the tracking
application logic, describes the components of the AIMER
system emulation, discusses problems with the SAEF facil-
ity, and makes several recommendations for the improve-
ment of the facility. Progress on the AIMER project was
impeded primarily because of faulty or incomplete docu-
mentation of the SAEF facility and problems with the
interface between the QM-1 and the MULTICS sapport
system. PAR recommends research into the development of a
coherent, well-integrated software development system
(perhaps UNIX) to be used in conjunction with the QM-1,

Authors: Donald Boyd, Antonio Pizzarello, Stanley C. Vestal

Title: Rational Design Methodology !
Source: RADC Technical Report RADC-TR-78-208

Abstract: This report describes an effort to specify a software

design methodology applicable to the Air Force software
environment. Available methodologies and techniques were
examined and investigated for (1) level of completeness;
(2) ability to conform to Air Force design practices; and
(3) inclusion of techniques for proof of correctness,
design specification, and performance assessment of static
designs. The rational methodology selected is a synthesis {
of ideas including data abstraction and refinement,
constructive approach for software design, documentation
procedures and tools. As a demonstration, the methodology
was used to design a major function in the IBM Program
Support Library,
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Authors:

Title:

Source:

Abstract:

Author:

Title:

Source:

Abstract:

Benjamin Britt, Alvin Cooperband, Louis Gallenson, Joel
Goldberg

PRIM System: Overview

Information Sciences Institute
ARPA Report ISI/RR-77-58

This document is an introduction to the services available
with the Programming Research Instrument (PRIM), an
interactive microprogrammable environment available to
remote users through the ARPANET. PRIM, which runs under
the TENEX timesharing system, makes it possible to create
and use emulators of existing or newly specified
computers, with major emphasis on debugging tools. PRIM
and TENEX together provide not only editors, compilers,
and debuggers for creating emulators, but also an
environment for using the target systems, debuggers, and
configurers in the familiar language of the original
system,

Capt. N. Bruce Clark
Common Software Support Environment
White paper, RADC

This paper describes the costs associated with the
traditional practice of providing an independent support
system for each weapon system embedded computer system
(ECS). These costs include the physical plant associated
with a hotbench configuration, the software tools needed
to prepare, debug, and evaluate software for that ECS, and
the training and staffing of associated personnel. It is
observed that the unique aspects of a hotbench require its
continuation, However, the support software and support
personnel could be provided at a separate facility. This
would have a comprehensive set of software tools such as
editors, assemblers, and simulators. 1In addition, it is
suggested that the facility have an emulation capability
that could support software testing tools that are not
commonly supportable in a hotbench environment., The
emulation capability would also enable proposed hardware
designs (or modifications) to be evaluated for proper
function and performance prior to procurement. The paper
concludes by describing the efforts toward the implement-
ation of such a support facility being carried out by the
Rome Air Development Center (RADC), Rome, New York.
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Abstract:

Authors:

Title:

Source:

Abstract:

Capt. N. Bruce Clark
The Total System Design Methodology
White paper, RADC

This paper points out that the cost and performance

of a system can be adversely affected by deciding too
early in the process of system development on the
hardware to be used. In particular, since hardware
costs are known to be a small part of total development
costs, the hardware decision should be tailored to

the needs of the system and therefore not frozen until
most system details have been worked out. This paper
presents a development methodology which emphasizes

the dependent role of hardware. This methodology,
called the Total System Development (TSD) Methodology,
requires the following resources: a set of languages
for formally representing the system design at various
stages in the development process; a set of software
tools for managing the development process and for
automating many of the development tasks; and an emu-
lation facility to allow the system (or parts thereof)
to be evaluated for functional and performance accept-
ability. Efforts by RADC to acquire the appropriate
resources are discussed. These include an emulation
facility called the System Architecture Evaluation
Facility (SAEF), being built at RADC, and various language
and software products being developed under RADC sponsor-
ship.

Capt. N. Bruce Clark, 2Lt. Michael A. Troutman, USAF

The System Architecture Evaluation Facility, an Emulation
Facility at Rome Air Development Center

White Paper, RADC

The System Architecture Evaluation Facility (SAEF) is
designed to provide an experimentation laboratory for
research into advanced hardware configurations necessary
to support the complex data processing needs of military
command, control and communications systems. Elements of
SAEF include a Nanodata QM-1 as the primary emulation
tool, and a DECsystem-20 with Q-PRIM (an interactive
microprogramming environment). A Multiple Microprocessor
System (MMS) is currently in the design stage and, when
completed, will provide the capability to emulate a wide
variety of multiple processor architectures. Support
tools include SMITE, which is a hardware description
language which allows machine descriptions without
resorting to microprogramming, and a retargetable compiler
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to be developed for use with emulated architectures. Both
basic research on computer architectures and systems
development activities using the "Software First" concept
are possible with the SAEF.

Authors: Jack M, Dreyfus, Peter J. Karacsony

Title: The Preliminary Design as a Key to Successful
Software Development

Source: TRW Defense and Space Systems Group
Report TRW-SS-76-09

Abstract: The paper predicates the success of a software
development effort upon the establishment of a complete
preliminary design emphasizing: (1) clear definition of
data processing requirements, (2) top-down design
definition, (3) design traceability, and (4) design
verification. The report describes TRW's preliminary
design methodology which has successfully been applied to
large scale software development. The Methodology is a
disciplined integration of design activities from initial
system definition to successful completion of the soft-
ware Preliminary Design Review. The benefits from
complete preliminary design and some of the specific
design techniques employed are described.

Author: Harris Corporation GCS Division
Title: Multiple Microprocessor System (MMS) Design Study
Source: Rome Air Development Center

Technical Report RADC-TR-80-33
(RADC Contract F306602-78-C-0114)

Abstract: The report describes and justifies the design of
the Multiple Microprocessor System (MMS). A major
component of the System Architecture Evaluation
Facility (SAEF), MMS is intended for use in the
emulation and evaluation of a wide range of multi-
processor configurations. The proposed hardware
consists of 64 processing units and several other
specialized control and monitoring components,

The communications take place via a segmented bus.

The design choice is justified by means of a statisti-
cal analysis based on expected characteristics of

of the systems to be modelled. The hardware design

is followed by the specification of the companion
software needs for the MMS,
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Abstract:
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Source:

Abstract:

Charles Hayden, Peter W. Alfvin, Stephen D. Crocker
Multi~Microprocessor Emulation Annual Report for 1977

Information Sciences Institute
ARPA Report ISI/SR-78-12

The goal of the Multi-Microprocessor Emulation (MMPE)
project is to develop modeling and emulation techniques
for assemblies of microprocessors. An extension to an
existing computer description language (ISPS) is proposed
for representing the architecture of multi-microprocessor
systems, and the results of some preliminary studies on
the design of an emulation facility are described. This
effort will eventually lead to a high-speed emulation
facility based on the Q-PRIM system. The emulation
facility is one component of the SAEF under development at
RADC.

Raymond C. Houghton, Karen A. Oakley
NBS Software Tools Database

National Bureau of Stanaxcds
Report NBSIR 80-2159

The paper contains a compilation of data on the
availability of software development and testing tools.
The data that has been compiled has been placed into a
relational database using Pascal/R, a language that
extends Pascal by a data relation. The database allows
for information retrieval on tool features, languages,
developers, documentation, hardware and software
requirements, availability, publications, and contacts.
The purpose of the report is to put forward the
information currently contained in the database for
review, assimilation, and update. Section 2 contains the
Call for Tools. This section includes instructions for
providing information on tools for inclusion in the
database. Section 3 is a discussion of the records that
may be stored in the database. 3Section 4 is a dump of the
information contained in the database in alphabetical
order by tool acronym., Section 5 is a list of general
references. The appendices include several cross-
references to the tools in the database and a list of
specific tool references.
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| Title:

Source:

Abstract:

Author:
Title:
Source:

Abstract:

Raymond A, Liuzzi

The Specification of a Data Base Machine Architecture
Development Facility and a Methodology for Developing
Special Purpose Function Architectures

Rome Air Development Center
Technical Report RADC-TR-80-256

This report specifies the set of components/tools

needed in a Data Base Machine Architecture Development
(DMAD) Facility. A methodology is described to illustrate
how this proposed facility can be used to develop

special purpose function architectures (SPFAs).

These SPFAs perform a data base management function

in hardware that is currently performed in software

on a sequential computer, The methodology includes

a series of processes which are the select candidate
function process, and the create, test, evaluate, and
substitute SPFA processes, Each process can be per-
formed with a series of procedures that utilize tools/
components of the DMAD Facility. Tests and measurements
conducted in order to illustrate the feasibility of
generating detailed analysis data prior to any actual
hardware implementation of a SPFA are also presented.
This type of data is shown to be invaluable in helping
project the highest qualified SPFA candidates to actually
be hardware prototypes, and in providing input that can
be used in their actual hardware implementation.

Martin-Marietta Aerospace
Total System Design Methodology
Martin-Marietta Technical Report MCR-79-646

During the last several years the experience with

complex command, communication, and control (C-cubed

or C3) systems has indicated that a systematic, rational
approach to computer systems design is needed., Martin-
Marietta has produced a Total System Design Methodology to
support such design. This methodology includes both a
philosophy of design and a framework for carrying out a
design, along with some automated tools to aid in
information gathering and ordering. The purpose of the
paper is to document the existing TSD methocology at
Martin-Marietta, describe the supporting tools, and review
the use of the methodology on the design of the Navstar
Global Positioning System Operational Control Segment.
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Author:

Title:

Source:

Abstract:

Author:

Title:

Source:

Abstract:

Gruia-Catalin Roman

A Methodological Framework for the Design of
Distributed Systems

Washington University Technical Report WUCS-79-10
(RADC Contract F30602-78-C-0148)

Building on the fundamental assumption that effective
methodologies are protlem and environment dependent,
a suggestion is made to distinguish between methodo-~
logies and the methodological frameworks they in-
stantiate. TSD (Total System Development) is put
forth as a candidate framework able to assist in the
generation and evaluation of specific system deve-~
lopment methodologies, where systems are defined as
distributed hardware/software aggregates.

Rome Air Development Center

Reconfigurable Computer System Design Facility Initial
Design Study

RADC Technical Report RADC-TR-78-6

The total system design concept envisions a disciplined
system design environment that allows overall system
designs and alternatives to be quickly and easily
evaluated, thus minimizing the actual development and
life~cycle costs for new systems, A total system design
facility is required to provide the necessary tools,
evaluation techniques, and methods that support such an
environment. The objective of the initial Reconfigurable
Computer System Design Facility (RCSDF) design study was
the preparation of a development plan describing the
necessary studies and development tasks that would
achieve the required facility capabilities. The initial
RCSDF design study was organized into three major tasks:
(1) Evaluation and definition of RCSDF capabilities,
philosophy, and procedures; (2) Performance of RCSDF
technical baseline development studies; and (3) Prep-
aration of a RCSDF development plan. The three tasks of
the initial RCSDF design study led to a development plan
for a demonstration of the total system facility concept
with available hardware and technology during the 1980s,
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Author: TRW Defense and Space Systems Group
Title: SMITE Installation and Analysis - SMITE Training Manual
Source: TRW Report 30417-6002-RU-00

| Abstract: This document is written for the person who wants to

understand the use of the SMITE computer description
language 1n the solution of problems of computer
architecture and emulation in computer information systems
development. The book has three distinct roles: (1) It
is the primary material used in formal training classes on
SMITE. (2) It is suitable for self-study use by persons
familiar with basic computer architecture and emulation
concepts. (3) It is suitable for use as a reference
manual for users of the SMITE language, compiler, and
associated support software,

Author: TRW Defense and Space Systems Group

Title: FAST Methodology and Case Study

Source: Final Report on Contract F30602-79-C-0078, RADC
Abstract: The overall presentation is organized top-down, from

general to particular, over several levels of

abstraction. First, the entire system development is
considered from a highly abstract nonprocedural point of
view in order to identify the role of hardware/software
trade-offs and the way in which they relate to other
system development activities. Second, issues pertinent
to the functional and performance specification of systems
design are reviewed. The report next focuses on the
fundamentals of hardware/software tradeoffs and proposes a
general approach to carrying out the tradeoffs analysis.
Finally, application of this method to a DMA based case
study is described in detail.
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APPENDIX B

GLOSSARY OF TERMS




LOGICAL GROUPING OF TERMS

framework
methodology
facility
stage

phase

step

TSD

TSD concept
TSD framework
TSD methodology
TSD facility

problem definition stage
system design stage
software design stage
machine design stage
circuit design stage
firmware design stage

identification phase
conceptualization phase

system architecture phase
system binding phase

software configuration design phase
program design phase
coding phase

hardware configuration design phase
component design phase

switching circuit design phase
electrical circuit design phase
solid state design phase
fabrication phase

microcode design phase

microprogramming phase
microcode generation phase
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formalism selection step
formalism validation step
exploration step
elaboration step
consistency checking step
verification step
evaluation step

inference step

invocation step
integration step

life~cycle
development
analysis
enhancement
maintenance

performance

system

embedded computer system
C-cubed system

information processing system

requirements specification
specification language
conceptual model
processing model
constraints

H/S trade-offs

225




DEFINITIONS IN ALPHABETICAL ORDER

analysis
The process of assessing some performance property or properties
of a system by examining it or its specifications,

C-cubed system
A computer system supporting the command, control, and
communication functions within some military outfit.

circuit design stage
A stage of the TSD framework,

coding phase
A phase of the software design stage.

component design phase
A phase of the machine design stage,

conceptualization phase
A phase of the problem definition stage.

conceptual model
A model formalizing an application problem in terms of abstract
application domain concepts and independent of possible system
realizations. It is produced by the conceptualization phase.

consistency checking step
A step in the unified phase structure.

constraints
Factors limiting the domain of acceptable design solutions.
They may originate with the customer, technology, rules of the
trade, previdus design decisions, etc.

development
The set of all activities navolved in the generation of a first
version of some system, from initial concept to production and
deployment.

elaboration step
A step in the unified phase structure.

electrical circuit design phase
A phase of the circuit design stage.

embedded computer system

A computer system supporting real-time process control functions,
such as flight control, firing control, guidance, etc.
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enhancement
The process of modifying an existing system in order to acquire
additional or different functional/performance characteristics.

evaluation step
A step in the unified phase structure.

exploration step
A step in the unified phase structure.

fabrication phase
A phase of the circuit design stage.

facility
The resources available at some location for use in the
application of methodologies to various problems.

firmware design stage
A stage of the TSD framework.

formalism selection step
A step in the unified phase structure.

formalism validation step
A step in the unified phase structure.

framework

A high level non-procedural description of some general problem
solving approach which identifies: (1) a set of subproblems
whose solutions lead to solving the target problem, and (2) the
fundamental relationships among subproblems without regard to the

manner in which one ~rrives at their solution.

H/S trade-~offs

Hardware/software tradeoffs. The process of, and issues involved

in, deciding the assignment of a system's functions to various
types of physical system components.,

hardware configuration design phase
A phase of the machine design stage,

identification phase
A phase of the problem definition stage.

inference step
A step in the unified phase structure.

information processing system
A computer system supporting some application area (business,
project management, logistics command) by enabling the
acquisition, storage, and retrieval of pertinent information.

integration step
A step in the unified phase structure,
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invocation step
A step in the unified phase structure.

life-cycle
This denotes the period of time from the conception to the
retirement of a system, as well as all activities involving the
system, its develvpment, analysis, enhancement, and maintenance.

machine design stage
A stage of the TSD framework.

maintenance
The process of (1) modifying an existing system in order to
correct deviations from its functional/performance
specifications, and (2) of replacing obsolete or defective
components,

methodology
A mode of procedure to be followed in solving a given problem.
It exploits particuiar features of the problem and environment
through the use of specific techniques or classes of techniques.

microcode design phase
A phase of the firmware design stage.

microcode generation phase
A phase of the firmware design stage.

microprogramming phase
A phase of the firmware design stage.

performance
A collection of attributes associated with the structure or
behavior (though not functionality) of a system (e.g., response
time), or activities involved in a system's life-cycle (e.g.,
maintenance costs).

phase (of a methodological framework)
A design problem formulated as a transformation between two
requirements specifications and involving activities within the
same knowledge domain,

problem definition stage
A stage of the TSD framework.

processing model
A system design description produced by the system architecture
design phase.

program design phase
A phase of the software design stage.
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requirements specification
A consistent and complete description of some problem statement,
or interim solution to a design problem, or some fraction
thereof.

software configuration design phase
A phase of the software design stage.

software design stage
A stage of the TSD framework.

solid state design phase
A phase of the circuit design stage.

specification language
A language used to state a problem, or to describe the solution
to a problem.

stage (of a methodological framework)
A hierarchical group of related phases.

step (of a methodological framework)
A subproblem fundamental to the solution of the problem
identified by a given phase.

system
A hardware/software aggregate.

system architecture design phase
A phase of the system design stage.

system binding phase
A phase of the system design stage.

system design stage
A stage of the TSD framework.

switching circuit design phase
A phase of the circuit design stage.

TSD
An acronym standing for Total System Design.
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TSD concept
A viewpoint which envisions system design as taking place in a
support environment consisting of a family of design
methodologies and a collection of associated design aids.
Moreover, the TSD concept also presumes the ability to explore
easily the space of design alternatives every step on the way,
and to take rational decisions based primarily on solid
technical reasons. The notion of avoiding premature commitments
to particular design solutions, such as the a priori selection of
specific hardware, is another key component of the concept and one
of the motivating factors behind its inception,

TSD facility
A facility providing support for the class of TSD methodologies.

TSD framework
The TSD framework is a methodological framework that forms the
foundation of a class of system design methodologies whose goals
are: (1) to recognize formally the H/S dualism, (2) to avoid
premature hardware selection, (3) to minimize error costs
through early error detection, (4) to treat performance
constraints as a major driving force behind the design process,
(5) to promote design automation, and (6) to enable proper
evaluation of human interfaces.

TSD methodology
Any methodology compatible with the TSD framework definition.

verification step
A step in the unified phase structure,
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C.1 Overview

This Appendix offers a brief introduction to the ideas and attitudes
surrounding the methodical design and development of systems. A "system,"
in this context, is defined as a computer-based set of hardware and
software components for processing information in support of one or more
applications. The application(s) for which the system is intended may
require that system to exist as a physically distinct entity (i.e., a
standalone system), or it may be an integral component of some larger
complex (i.e., an embedded system). In any event, the design,
development, implementation, use, and maintenance of such systems plays a
significant role in DoD's activities.

Advances in the underlying technology, along with continuing demands
from a growing range of sophisticated application areas, are causing
dramatic increases in system complexity. As a result, the use of
traditional (ad hoc) approaches to system development has become
progressively less effective in meeting requirements for timeliness,
reliability, and cost effectiveness. The situation is aggravated by a
burgeoning microelectronics technology that has presented designers with
unprecedented hardware alternatives, Opportunities to consider this
broader range of choices in computer architecture in a given situation
often go unexploited because current system design/development practices
tend to be dominated by a "hardware first" philosophy in which software is
superimposed on a hardware system whose characteristics are completely
defined early in the system life cycle - even before the functional
requirements are completely clear.

These factors have prompted a growing interest in (and movement
toward) more systematic design methodologies in which engineering
principles used effectively for general product design/development are
being applied to computer~based applications. As a result, numerous
methodologies have emerged in an effort to impose more discipline on the
system design process, and a variety of tools have become available in
support of these methodologies. The effectiveness of this systematization
has been demonstrated in a wide range of application areas, so that these
methodical approaches are rapidly replacing traditional ways.

With the increasing use of orderly system design methodologies has
come a growing awareness that the effectiveness of a given methodology may
depend strongly on the type of application being developed. DoD, being
one of the first organizations to recognize this dependency, saw the need
for a way to deal with multiple methodologies and the assessment of their
applicability to DoD needs. The result is the Total System Design (TSD)
concept, a logical framework within which system design methodologies (and
tcols used as components of such methodologies) can be organized and
considered.

Within the perspective outlined above, this Guidebook seeks to:
-- acquaint its readers with the major benefits derived from
the use of orderly methodologies in the system design

process, Toward this end, Section C.2 briefly traces the
factors underlying the development of an acknowledged
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software crisis and its broadening growth to a system
crisis, Response to the symptoms of that crisis is
characterized as a continuing shift away from ad hoc
approaches toward a more systematic orientation in which
principles of engineering project design, management, and
control play an increasingly important role. These
developments are related to the problems they are
intended to relieve. Introduction of technological
advances, especially those in the microelectronics area,
establish the need to accelerate the changing perception
of the system design process so that hardware
architecture is included as a design variable, At the
same time, proliferation of design methodologies and
tools is shown to prompt a need for a general framework
within which these resources can be examined. This sets
the stage for the TSD framework.

define the TSD concept and establish its framework as a
vehicle for classifying, analyzing, and comparing system
design methodologies. Accordingly, Section C.3
characterizes the framework as a logical structure in
which the components of the system design process are
abstracted, categorized, and organized into a cohesive
whole. The entire process is divided into stages, and
each stage's duties are described in terms of major
activities called phases. Each phase, in turn, is
comprised of ten standardized steps required to bring
that phase's work to fruition. The importance of any
step is seen to depend on the phase in which it is being
considered while the importance of any phase or stage is
seen to be dictated by the particular application being
examined within the framework.

acquaint the reader with the nature and extent of tools
that are currently available in support of the system
design effort. This is done in Section C.4 where each
phase in each step of the TSD framework is associated
with the kinds of available resour~es that aid in
performing aspects of that phase's work. While some
tools relate uniquely to a particular phase (for example,
a compiler for a high level programming language is
applicable specifically to the coding phase of the
software design stage), others (like a text editor or
report generator) may help support the work in each phase
of several stages. Reference also is made to the growing
practice of combining tools implemented for a given
computer system and integrating them within appropriate
supervisory software to form a computer-based working
environment for design, programming, project management,
or some other major activity in the system cycle.

characterize the nature and direction of expected future
developments in system design methodologies. Although
extrapolation always involves some speculation, it
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appears highly likely that there will be continued
movement from individual tools and methodologies to
computer-based design/development/management environments
offering a range of methodologies (and opportunities to
build new ones). A second contention is that continuing
demands for increasingly complex systems will obligate
more and more organizations to embrace a design
philosophy in which a priori hardware selection is no
longer acceptable as a universal rule of practice.
Instead, system duties will be relegated to
hardware/firmware or software as the result of a design
activity in which hardware/software tradeoffs are
seriously examined. These two ideas are combined in
Section C.5 to form the basis for projections that
envision growing acceptance of a total system design
approach supported by methodologies consistent with the
TSD framework. Such methodologies, in turn, are expected
to be made available on increasingly versatile facilities
that include hardware emulation capabilities and are
configured expressly for support of system design
activities across the entire life cycle.
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C.2 Background

The application of orderly, disciplined methodologies to
computer-based system design/development is an idea whose general
acceptance reaches into every area in which computers are involved. 1In
fact, the precepts of software engineering have been institutionalized to
a sufficient extent that many practitioners find it increasingly difficult
to imagine an alternative, Yet, this seemingly inevitable approach lagged
the introduction of computers by almost two decades. During this initial
period, little or no attention was paid to systematization; ad hoc
development prevailed. As Clark points out [CLAR79a), this approach to
computer applications development was characterized further by a
perception that emphasized early selection and procurement of hardware.
Consequently, software development was a process which started with the
intended hardware already defined. This "hardware first" approach
persisted throughout the computer community even after software costs
began to domirate overall system costs, The need to establish system
requirements as the driving force for both hardware and software
definition now has begun to gain recognition. An important response to
this need has been DoD's Total System Design (TSD) methodology. this
section examines the shift toward a TSD approach by discussing the forces
that brought it on.

C.2.1 Introduction

In 1961, a computer equipped with 8000 bytes of main storage, a card
reader/punch, and a line printer was considered a medium~sized
constellation. Such a system cost two hundred forty five thousand
dollars; 1961 dollars. Its memory speed was about five percent of that
seen in today's personal computers. This is pointed out to underscore the
fact that the hardware was the predominant financial factor in most
computer installations. The resulting effect on computer usage and its
management was profound. Moreover, its consequences continue to persist
even though the financial factors have changed drastically. The climate
produced by this situation can be characterized briefly as follows:

1. Productive computer utilization was uppermost. Managers were
cager to justify sizable hardware expenditures by filling the
available machine time with useful computer applications. For
many installations it was typical for the equipment to be
acquired initially for certain applications., Once implemented,
these applications consumed a relatively modest fraction of the
time. In spite of the fact that procurement of the computer
often could have been defended solely on the basis of these
initial applications, "idle time" was something actively to be
minimized, While this certainly was not the only factor, it did
contribute significantly to the rapid growth in the number and
diversity of computer applications during the Fifties and well
into the Sixties, From another point of view, there was an even
more telling effect: The drive to fill a computer's available
time helped establish and reinforce a tradition in which a
computer application is perceived in terms of a program (or a
complex of interrelated programs) written for a computer whose
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configuration and architecture are "given". That is, the
hardware is (essentially) defined before the application is

conceived. Advances in microelectronics have made this operating

mode increasingly obsolete for many types of applications, By
the same token, design approaches predicated solely on this basis
can impose unnecessary constraints. Consequently, when this
tradition is broken, a significant underlying concept emerges in
which the hardware and software are treated as parallel design
issues, both driven by the application. This concept, which we
term the hardware/software duality, is one of the focal points
behind the TSD framework.

Computer applications were considered to be relatively stable.

Many of the early computer appllcatlons were transferrals of
procedures done previously by hand or with unit record equipment.
These generally were established processes whose requirements
were well understood. It is not surprising, therefore, to find
the same kind of stability being attributed to applications with
no prior counterparts. This perception often turned out to be
erroneous, For instance, requirements defined at some early
point in a system's life cycle were seen to be inadequate or
improper because of information that came to light during
subsequent development., Alternatively, systems deemed at first
to be satisfactory tended to lose their appeal as experience with
them accumulated: Operating features that were unanticipated at
first were recognized later on as being desirable or even
essential. Consequently, there was a pervasive and growing
discrepancy between the perception of stable applications and
their actual dynamic nature. This idealistic view was to be a
crucial factor in precipitating what turned out to be nothing
less than a software revolution.

Program efficiency was a primary software design objective.

Although such issues as software maintenance and reliability were
recognized and considered, attention in software development
focused primarily on the production of programs in which size and
execution time were minimized, Main storage and computer time
both were perceived (and treated) as precious commodities, so
that their conservation was a matter of high priority. Such
emphasis was not misplaced. Restrictions imposed by the
available hardware often forced the development of applications
that operated at or near system capacity. This meant that
programmers tended to accumulate shortcuts and special tricks
which saved words of storage or microseconds of execution time.
By and large, these techniques were not algorithmic; rather,
their effectiveness was based on specific idiosyncrasies
intrinsic to the particular computer, language, or operating
system being used to implement the application., The resulting
changes in a program usually helped obscure its intent, Thus, it
was not unusual for situations to develop in which a programmer,
looking at the listing of a program he or she had written some
weeks earlier, could not discern what that program did or how it
did it.
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A more fundamental factor contributed to the perceived
pre-eminence of program efficiency: software design and
programming were treated as an integral activity, with neither
conceptual nor temporal distinctions being made between them.
Consequently, it was inevitable to find system and program
efficiency being intermixed.

4. Error removal was associated with the latter stages of the
software development cycle and was handled predominantly by
program debugging. For many practitioners at every level of
computer applications development, the programming process was
defined rather vaguely. It was seen to include aspects of
algorithm design, requirements definition, and optimization in
addition to the actual production of coded programming language
statements. Understandably, then, it was expected (ard accepted)
that an initial version of a program (or subprogram) would
contain a mixture of errors attributable to any or all of these
factors and not just to syntactic/semantic misstatements
vis~a-vis the rules of the programming language. Ultimately, all
of these types of difficulties would be sought, discovered, and
corrected when the completed program is debugged. As the
discussion in the next two sections makes clear, the adverse
effects of this orientation cannot be overstated.

C.2.2 Current Problems and Concerns

The difficulties encountered in the design, development and
implementation of computer-based systems are deceptively easy to
characterize: Compared to earlier systems, more recent ones have tended
to:

1. exhibit greater discrepancies between estimated and actual costs,
with software costs assuming an increasing fraction of the total.

2. suffer greater time delays in their preparation.

3. contain more errors when released for use, so that maintenance
{(correction of errors to make a system match current
requirements) is becoming an increasingly significant cost
component.

4, be more difficult to enhance properly in response to changing
requirements,

There is no intent to imply that early systems were free of such troubles.
However, trends have been observed wherein these tendencies have been
intensifying with time. 1In a widely quoted landmark study that includes
many DoD projects [BOEH73], software is seen to have become the dominant
cost component (as hardware price/performance figures decrease and labor
costs continue to go up), with maintenance/enhancement constituting the
primary ingredient in software cost. Similar findings are reported in
[CLART9b] and [FASP].
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There is little doubt that these trends can legitimately be
attributed to the continuing growth in the complexity of more recent
computer applications and the systems required to implement them.
However, if this trend is to be arrested and, ultimately, reversed, it is
necessary to understand why the increase in complexity should exert such
an adverse influence.

Severe problems in the design and development of computer
applications did not arise overnight. When they did appear, they
generally were unanticipated and often misinterpreted. It would be
misleading to think of this as shortsightedness. The simple fact is that
innumerable projects and applications were implemented successfully, with
performance being improved dramatically over previous versions in which
computers were not involved. Failures, viewed in their own context, were
thought to be due perhaps to an unrealistic time constraint, too few
programmers, or inadequate programmer quality. Thus, there was little or
no impetus to examine the programming process or the broader scope of
activities related to the preparation of a system. At the time "third
generation" computers began to emerge from the production lines,
programming was still treated as a craft taught by masters to apprentices,
and the design and realization oOf computer-based systems continued on an
ad hoc basis.

The potential for severe software problems already was present with
the first computer applications. However, the recognition of the problem
as being intrinsic did not spread until newer systems became sufficiently
complex to begin stressing the capabilities of ad hoc system design
approaches beyond their limits, Experience with large software projects
[BROO75] shows that as projects increase in scope and more programmers are
assigned to work on them, the positive effect of the additional people
tends to be neutralized and eventually overwhelmed by the rapidly
increasing complexity of the required communication among all of the cooks
working on the various parts of the same broth. As long as the projects
were limited, this clash of effects was not apparent. However, with
increasing growth, projects became more vulnerable to failure through
misinterpretation, duplication of effort, lost information, and other
consequences stemming from inadequate coordination. To counteract this
susceptibility, it was necessary to devote an increasing (and ultimately
disproportionate) fraction of personnel time and effort to making sure
that all concerned parties knew what they needed to know, By the
mid-Sixties, many organizations were undertaking system projects of
sufficient complexity to bring these problems into prominence. This was
particularly true in DoD, where C-Cubed systems and embedded computer
systems were assuming an increasing role in the Department's antivities,

This increase in complexity is a natural phenomenon. There is hardly
a human endeavor that is exempt from the forces of discontent pushing
toward "improvement" and "expansion"., Something (a computer-based system,
in our context) that is deemed "effective" or even "outstanding" when it
first appears, soon becomes "adequate" and, ultimately, "mediocre" or even
"unsatisfactory". In addition, requirements motivating a particular
system often are imposed by external sources so that arbitrary changes in
requirements (leading to complications more often than simplifications)
may appear at arbitrary points in the system's history. (DoD systems are
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no exception.) Thus, if nothing else were to happen, it still would have
been inevitable for software problems to surface as endemic
characteristics of the development processes then current,

As it turns out, the emergence of an acknowledged "software problem"
has been accelerated (indirectly) by a rush of technological advances. On
repeated occasions, new, less expensive hardware with higher capacity,
increased speed, and more versatile configurational possibilities has
engendered dissatisfaction with application systems previously viewed as
being adventurous. Similar effects h .e been (and continue to be) wrought
by more powerful languages and operating system software as well.

The effect of these advances in computer science and technology on
application systems is even more fundamental than that just mentioned.
Briefly stated, the availability of a wide variety of powerful, fast,
inexpensive processors has expanded what was perceived as a "software
problem" to a "hardware/software problem"., Fulfillment of a particular
set of requirements can no longer be viewed solely in terms of a
traditional "hardware first" solution in which a software structure is
superimposed on a predefined hardware architecture. Thus, hardware
architecture has become a legitimate design variable, to be considered on
a par with software issues(*), Failure to exploit these
expanded hardware possibilities often contributes to the severity of the
overall systems problems. In the next section, when responses to these
problems are discussed, we shall examine conceptual mechanisms that allow
for the natural inclusion of hardware considerations as an integral part
of a total systems design.

C.2.3 Response to Increasing Complexity

Any reasonable attempt to relieve the problems cited in the previous
section must stem from the realization that the phenomenon of increasing
complexity will not go away. As we continue to learn more about the
behavior of current systems, our expectations grow accordingly, and they
manifest themselves as more ambitious demands and challenging requirements
for future systems. These new systems, expectedly, will turn out to be
more complex than their predecessors.

Faced with this reality, attacks on systems problems are based on the
idea of reducing apparent complexity. This is the common objective that
motivates all efforts to systematize the design, implementation, and
maintenance of a computer-based application. For any aspect of that
process (such as software design or programming), the intent is to
represent a pertinent problem as a collection of interrelated but distinct
subproblems, each one sized so that an individual can deal with its entire
scope and all its details. Such subdivision is effective when an
individual working on a particular subproblem can focus full attention on
it with minimal concern about how it relates to the overall system.

® Perhaps the most significant characteristic of so-called
"third generation" computer systems is the concurrent design
of their hardware and executive software.
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Later, when all of the (temporarily) isolated subproblems have been
resolved, they can be brought together and integrated to form the final
product., Since this orientation closely resembles the classical approach
to product engineering, the term "divide and conquer" often is used to
characterize methodological computer-based system development as well.

Even from this brief characterization, it is evident that the success
of such an approach requires careful definition of the subproblems and the
coninections among them, Consequently, considerable work has been directed
toward devising useful methods for establishing and documenting such
definitions, facilitating their implementation, and enforcing adherence to
them. Before such work could proceed fruitfully, it was necessary to
deemphasize (or abandon entirely) some of the precepts underlying the
traditional (ad hoc) approach to system design and development and replace
them with a revised perspective more hospitable to systematic approaches.
This need, not immediately apparent, was established by studying the
programming process [WEIN70] along with other aspects of software design
and development [YOUR75]. The salient features can be examined
conveniently by contrasting them with their earlier counterparts:

1. Successful fulfillment of a computer-based system's requirements
is perceived as a solution to a set of hardware/software
problems. Advances in microcircuitry, improved manufacturing
methods, and a deeper understanding of computer architecture have
provided the system designer with an unprecedented range of
hardware alternatives. The cost of this equipment has declined
well beyond the point where idle computer time need be a matter
of primary concern. Newly emerging technology in very large
scale integrated circuits (VLSI) promises to reduce this concern
even further [MEAD80]. This makes it possible (and practical) to
derive the hardware requirements from those imposed by the
application (rather than the other way around). The resulting
configuration still may turn out to be a general purpose machine
whose resources will be shared by several applications. However,
the inclusion of hardware as a design variable introduces the
opportunity to define equipment with specific architectural
characteristics when the situation dictates it., Thus, instead of
moving from the tradition "hardware first" perception of the
system design process to a "software first" approach, increased
architectural opportunities are prompting a shift to a "system
first" philosophy in which both hardware and software can contend
for selection as solutions to system component needs. As will be
seen later, the family of TSD methodologies formalizes this

opportunity,

Besides making processor utilization less prominent as a
major objective, architectural flexibility introduces a more
basic consequence: Many of the technological advances have
blurred the distinction between those processing activities
traditionally relegated to hardware and those automatically
associated with software. For a growing number of processing
activities, this choice no longer is clear-cut. As a result,
more recent efforts to reduce apparent complexity include
mechanisms that obligate the designer to examine a broader range
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of possibilities so that hardware/software tradeoffs can be
recognized and assessed,

2. Change is recognized as an intrinsic property of computer
applications. Although this seems to be saying that water is
wet, iiL does represent a significant change in orientation. The
point is that traditional approaches to system design either
assumed a stabilized set of requirements or resigned themselves
to the inevitability of change with the implicit intention of
accommodating changes (or fighting them off) when they came. A
revised perspective accepts changing requirements as a basic
system characteristic. Adaptability to change (enhanceability),
then, becomes an explicit primary design objective to be met
rather than a fortuitous byproduct when and if it happens.
Inclusion of this criterion provides further motivation for
careful subdivision of a problem into distinct but interrelated
subproblems: with such decomposition, eventual enhancement of
the system in response to changing requirements can proceed more
smoothly if the alterations are localized to a small number of
components. Consequently, the reduction of apparent complexity
and the improvement of enhanceability are mutually supportive
aspects of methodological system desiga.

3. Program clarity, simplicity, and reliability have emerged as
prominent implementation objectives while efficiency has become
an explicit concern that extends beyond the program. This stems
directly from the separation that now has been established
between design and programming/coding. Although program
efficiency remains a serious concern, it is no longer the
overriding factor to which all others are subordinated,
Improvements in hardware, along with reduced costs, now make it
largely unnecessary to develop systems that operate disturbingly
close to equipment capacity. At the same time, accelerating
inrreases in labor costs exert additional pressure against the
(once traditional, use of skilled personnel to ferret out
arbitrary (and often marginal) savings in execution time or
memory use.

Efficiency, per se, is not seen as a primary driving force
at the programming level. Instead, it is viewed in the context
of the application being considered., This removes it from its
earlier role as a programming/coding issue and expands it to one
that is pertinent during all phases of the system cycle. As a
result, there are numerous opportunities to include efficiency
considerations on a continuing basis as a system takes conceptual,
logical, and then physical shape. For example, if speed of
execution is an important requirement (as it is in DoD's C-cubed
applications), it can exert considerable influence un hardware
choices and, more fundamentally, on hardware/soffware
preferences., Similarly, it may affect the design of crucial
algorithms. This latter effect is becoming increasingly
important as theoretical advances continue to improve designers'
ability to predict computational performance. As a2 result of
these expanded opportunities, it is likely that the system design
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already will be intrinsically efficient before it reaches a point
where its software is ready to be implemented.

Once efficiency of the ultimate program is removed as 2
pivotal design concern, it becomes more fruitful to focus
attention (when it comes to programming) on the efficiency of the
programming process. Toward this end, the importance c¢f program

clarity and simpli<ity as primary programming objectives has been
demonstrated repeatc3ly (IYOUR751, [WIRT731). All of the
precepts and practices being advocate? under the umbrella of
"structured programming" share a common goal: to make it easier
(i.e., less expensive and less time~consuming) to produce a
program that is organizationally and logically simple, clear, and
more convenient to use. This means that its intent and its major
processing characteristics are readily discernable, thereby
making it easier to analyze (and modify, when required) and less
likely to contain errors once it is released for use. These
considerations constitute a major influence on the design and
structure of the DoD's Ada language [DOD79].

This does not mean that program efficiency is abandoned;
far from it. However, it places such considerations in their
proper context: Once a program has been written and is being
evaluated, its implementers are in an ideal position to observe
its performance and pinpoint sources of inefficiency.
Appropriate improvements then can be made systematically, by
streamlining those individual programs or modules causing the
bottlenecks., The consequences are localized and the process is
more easily managed. Of particular importance here is the idea
that these improvements are brought about by changes in the
implementation, not in the design, In effect, this constitutes

something akin to fine-tuning. It is worth repeating that when
the (partially developed) system arrives at its software
implementation phase, its efficiency is part of its design. The
effect of the actual code, then, is likely to be less profound
than that originally ascribed to it,

Error detection and removal are seen as explicit activities that
pervade the entire system development cycle. A cornerstone of
any disciplined approach to system design and development is the
recognition that each distinct phase in the process must include
a concerted effort to establish (to whatever extent feasible) the
validity of the work produced by that phase. For effective
methodologies, this is not merely a wish. It imposes a
managerial respoansibility to define and implement enforcement
mechanisms that use such validations as criteria for embarking on
subsequent phases,

As a result, the role of the programming process is
perceived as being more sharply focused as an implementation
activity. Since each prior phase is capped by a validation
activity, the expectation is that programming is concerned solely
with the implementation of algorithms whose logical and
procedural correctness already have been established. An error
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in the program, when viewed in this context, represents a failure
to convey the intent of an underlying algorithm rather than a
flaw in the algorithm or in the design that motivated the
algorithm,

This orientation has helped ., & efforts to devise improved
approaches and techniques that allow progress toward the ideal
situation in whichk a program is free of errors at the point of
its first test. One technique, that of structured programming,
already has been mentioned., Its objective, i.e., the imposition
of consistency on the way programs are coded, is being fulfilled
and the benefits ([BAKE7?], for example) are widely acknowledged.
Another side of this e.* *~t pays attention to the environment in
which programming *3kes ace. While the production of code
continues to be .. individual endeavor, today's programmer works
(conceptually) in less isolation than in the past. In an
increasing number of organizations, including many with heavy
involvement in DoD-related computing projects, the programming
process is supported by a variety of "programmers' tools" whose
primary purpose is to facilitate (and help manage) the activities
involved ia preparing, refining, documenting, and monitoring the
progress of software under development [KERN81]. Such aids
continae to be a subject of intensive research.

In addition, programmers operate in a more structured
managerial environment that lends administrative support to their
efforts. Part of the task of reducing apparent complexity
entails the establishment and maintenance of orderly
communication channels among a project's participants.
Innovations such as chief programmer teams [BAKE72) are proving
to be effective in this regard. Other aids [TEIC77] are used to
provide ample opportunities for program review and validation,

The conceptual separation of programming from system design
also has highlighted the importance of program testing as an
organized activity. Even if the abovementioned ideal of an
initially correct program were to be met routinely, it still
would be necessary to demonstrate a program's validity prior to
its release. Such demonstrations never have been easy to define
satisfactorily, and the task grows more difficult as systems
become more complex. While it is impossible to perform an
exhaustive demonstration of the validity of a realistic system, a
well-conceived test plan, devised during development and not as
an afterthought, can provide a demonstration that is both
reasonable and convincing. Accordingly, test definition (for
components as well as for the integrated system) is viewed as a
design activity and not something to do ad hoc. This increases
the likelihood of producing a systematic evaluation that includes
what are thought to be the "most typical" episodes of system
behavior as well as those that exercise the system at its limits.

Maintainability is treated as an explicit system characteristic.

We have mentioned enhanceability as a recognized property that
facilitates incorporation of changes to systems already in use,
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A related but distinct consideration is maintainability. Since
the complexity of moderns systems rules out any prospect of
exhaustive testing, we must deal with the potentially strong
possibility of a system containing residual errors even after
successful completion of a well-conceived testing effort. Such
errors may show up early in the system's usage or they may not
surface for years; some may not appear during the entire life of
the system. In any event, a maintainable system is designed to
help pinpoint the source of an error when one occurs. One
important implication of this view is that it encourages
designers to devise ways in which the system can assume more of
the responsibility for distinguishing between "normal" and
"abnormal® behavior and explicitly reporting instances of the
latter. This philosophy, already well established for hardware,
is beginning to make itself felt with regard to software as well,
For hardware, this help consists of special diagnostic components
included to enhance the system's ability to report (and in some
cases correct or circumvent) physical malfunctions. For
firmware/software, sensitivity to possible errors is heightened
by additional programming that can be activated when a hitherto
undiscovered logical malfunction emerges. This diagnostic
programming provides helpful information by revealing procedural
details that are "invisible" during normal system use.

Diversity is seen as being potentially counterproductive as
system complexity increases. Although increased
hardware/software opportunities must be exploited if effective
systems are to be assured, it is now understood that the
advantages of a widened spectrum of choices are quickly
neutralized by arbitrary, uncontrolled diversity. Without some
degree of standardization, design and development costs often
are inflated unnecessarily by the inability to make use of
earlier work that would have been relevant if it were not for its
incompatibility. This negative effect is intensified by the
additional overhead incurred in having to familiarize technical
personnel with a broader array of hardware/software products and
their use in application systems development.

Consequently, the system design community has been moving
toward an orientation that seeks to introduce standardization
without compromising versatility. A prominent example is seen in
DoD's effort to supplant a multiplicity of programming languages
with a single one (Ada) designed to provide a consistent
programming vehicle while still offering the wide flexibility
required for embedded computer systems., Similarly, there are
strong tendencies within DoD and other organizations to define
stable architectures for single processors and input/output
subsystems wherever appropriate. In a sense, there is a
compelling similarity between this movement toward
standardization and the more general one that heiped characterize
the Industrial Revolution.
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7. There is growing recognition that system design and development
can be helped considerably by the introduction of automation into
the process. The basic concept certainly is not new to
computing: automation of the program development process began
with the appearance of the first high level language processor in
the mid-Fifties, Since that time, there has been a concerted
effort to define facilities and tools that would help automate
other aspects of the system cycle. Until recently, these aids
have concentrated on facilitating software development and system
documentation by providing a variety of software-based supports.
(Further discussion of these aids appears in Section C.4.2.) Now,
the emergence of hardware and software as parallel design
variables (i.e., the "system first” philosophy referred to
earlier) is prompting growing interest in similar aids for
hardware design and evaluation., An idea that is particularly
prominent in this rapidly emerging technological area is the Air
Force's System Architecture Evaluation Facility (SAEF). This is
examined in Section C.5.

These responses to rapidly growing demands for more complex
hardware/software systems manifest themselves as methodologies for

orderly conduct of the activities encompassed by the system cycle.
Resulting improvements in workers' prodactivity and system effectiveness
and economy hav