AD-R126 886 THE STRUCTURE OF DIVIDE AND CONQUER ALGORITHMS(U) NAVAL 1/1
POSTGRADUATE SCHOOL MONTEREY CR D R SMITH 84 MAR 82 '
NP552-53-882

UNCLASSIFIED F/G 1271

Al
T et iR R it R .-
" DA RCIAC IO e SR g .
W e e T At . - -
N lma W s W Mo ™
e

We s v e T e TN e Y
DRI WO WL VRS Y

- - ;"
PERANIR RSN

L Wos 25 -
g £ @
—— § m =
"m 1) B S
== g
1h25 g s

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

WA126086

DTIC FILE copy

L P N T

NPS52-83-002

NAVAL POSTGRADUATE SCHOOL

Monterey, Galifornia

THE STRUCTURE OF DIVIDE AND CONQUER ALGORITHMS
Douglas R. Smith

March 1983

Approved for public release; distribution unlimited

Prepared for:

Chief of Naval Research
‘ . [

Arlington, Va 22217 3 28

'f'.'."z'.". o TTr———
i b et e

,,,,,,,,,

......................

.......................................

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral J. J. Ekelund
Superintendent

D. A. Schrady
Acting Provost

The work reported herein was supported in part by the Foundation
Research Program of the Naval Postgraduate School with funds provided

by the Chief of Naval Research.

Reproduction of all or part of this report is authorized.

This report was prepared by:

Reviewed by:

/Z’,";}Zu L /(- .7%’ | fé(j\

DAVID K. HSIAO, Chairman
Department of Computer Science

Dol R

DOUGLAS R ZSMITH
Assistant Professor
of Computer Science

Released by:

:.~<:_./

WILLIAM M. TOLLES
Dean of Research

DA I At
S

TR

SECURITY CLASSIPACATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE AET O L TG Tom
1. REPORT NUMBER 2. GOVT ACCESSION NOJ 3= RECIPIENT'S CATALOG NUMSER
NPS52-83-002 L
/-
4. TITLE (and Subtitle)] . 5. TYPE OF REPORT & PEMOO COVERED
The Structure of Divide and Conquer Algorithms Technical Report

7. AUTHOR(s) 8. [NUM o)

Douglas R. Smith

P ————————— =i Y Y= ————————
6. PERFORMING ORG. REPORT NUMBER

. PERFORMING ONGANTZATION NAME AND ADDRESS . ::32".‘% ‘n.‘magr’?:ul:'o“tg TASK
Naval Postgraduate School 61152N:, RRO00—01~-100
Monterey, CA 93940 N00014 30104

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATHR
Naval Postgraduate School T'._'f.a_"c_g 1"9'83‘3:’

Monterey, CA 93940 " “f;;‘ orF »

I ORITORING ACENCY NAME & AGDRESS(I7 different from Centroiling Office) | 15. SECURITY CLASS. (of this repert)
Chief of Naval Research Unclassified
Arlington, VA 22217 CECL AT FICATION DOWNGRAGIN

18. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the sbatract entered in Bleck 30, i{ different fram Repest)

18. SUPPLEMENTARY NOTES

Submitted for publication March 1983.

19. KEY WORDS (Continue on reverse eide if nececssary and ldentily by block mumber)

Algorithm design, divide and conquer, algebras, top-down programming,
program schemes

20. ABSTRACT (Continue en reverse side If necessary and identify by bleck sumber)

"2 The structure of divide and conquer algorithms is represented by program
schemes which provide a kind of normal-form for expressing these algorithms.
A theorem relating the correctness of a divide and conquer algorithm to the
correctness of its subalgorithms is given. Several strategies for designing
divide and conquer algorithms arise from this theorem and we use them to
formally derive algorithms for sorting a 1ist of numbers, evaluating a

propositional formula, and forming the cartesian product of two sets.
\

00 ‘:2:"!,, 1473 eoimion oF t NOV 68 1S ORsOLETE

$/N 0102 LF- 014- 6601 nclassifi

— —— “M

SECURITY CLASSIPICATION OF THIS PAGE (When Deata Bntered)

v P Th by VA
RV EA LS ERCR AN

vz Ty
A S AL AN

. Accessien Yor

The Structure of Divide and Conquer Algorit:hms1 :;:g ,“I Axz

0o

S euuced
.%* aJOstificaty

Douglas R. Smith ¢
Department of Computer Science
Naval Postgraduate School
8 Monterey, California 93940 + or
4 March 1983 ecte

A

ABSTRACT

The structure of divide and conquer algorithms is
represented by program schemes which provide a kind of
nomal~-form for expressing these algorithms. A theorem relat-
iy the correctness of a divide and conquer algorithm to the
correctness of its subalgorithms is given. Several strategies
for designing divide and comquer algorithms arise from this
theorem and we use them to formally derive algerithms for
sorting a list of numbers, evaluating a propositional formula,
ard forming the cartesian product of two sets,

0. Introduction

The advance of scientific knowledge often inwvolves the grouping together of
similar objects followed by the abstraction and representation of their common
structural and functional features. Generic properties of the objects in the
class are then studied by reasoning about this abstract characterization. The
resulting theory may suggest strategies for designing objects in the class which
have given characteristics. This paper reports on one such investigation into a
class of related algorithms called "divide and conquer®". We seek not only to
gain a deeper and clearer understanding of the algorithms in this class, but to
formulate this knowledge for the purposes of algorithm design. The essential
structure of divide and conquer algorithms is expressed by a class of program
schemes. We present a fundamental theorem relating the correctness of an
instance of one of these schemes to the correctness of its parts. This theorem

1 Te work reported herein was supported by the Foundation Research Frogram
of the Naval Postgraduate School with funds provided by the Chief of Naval
Research.

provides a basis for designing divide and conquer algorithms in a formal way.

The principle underlyiny divide and conquer algorithms can be simply
stated: if .the problem posed by a given input is sufficiently simple we solve it
directly, otherwise we decompose it into independent subproblems, solve the sub-
problems, then campose the resulting solutions. The process of decomposing the
input problem and solving the subproblems gives rise to the tem "divide and
comuer® although “decompose, solve, and compose” would be more accurate.

We chose to explore the synthesis of divide and conquer algorithms for
several reasons:

Structural Simplicity - Divide and conquer is perhaps the simplest program
structuring technique which does not appear as an explicit control structure in
current programming languages. Our description of the structure of divide and
comuer algorithms is based on a view of them as computational homomorphisms
between algebras on their input and output domains. Careful choice of program-
ming larguage constructs allows us to express divide and conquer algorithms con-
cisely and in accord with their essential structure as homomorphisms.

Computational Efficiency - Often algorithms of asymptotically optimal complexity
arise fram the application of the divide and conquer principle to a problem.
Fast approximate algorithms for NP-hard problems frequently are based on the
divide and conquer mrinciple.

Diversity of Applications - Divide and conquer algorithms are common in program—
ming, especially when processing structured data objects such as arrays, lists,
and trees. Many examples of divide and conquer algorithms may be found in texts
on algorithm design (e.g. [1,11]). Bentley [3] presents numerous applications
of the divide and conquer principle to problems involving sets of objects in
multidimensional space.

ne of our goals is help formalize the process of designing algorithms to
meet given specifications. Our approach in this paper is based on instantiating
program schemes to obtain concrete programs satisfying a given specification.
Relatad work on programming by instantiating program schemes is reported in
{4,5,7,8,15]. Aside from the fact that we are concerned here with only one
class of algorithms, our approach differs from these others mostly in focusing
on formal techniques for deriving specifications for the uninterpreted operators
in a program scheme.

. PP - . " . - . o

Can)

PPp——

In Section 1 we seek to acquaint the reader with some examples of divide
and conquer algorithms. Algebraic notation introduced in Section 2 {s used to
present schemes in Section 3 characterizing the class of divide and conquer
algorithms. The main result of this paper is a theorem showing how the correct-
ness of a divide and conquer algorithm follows from its form and the correctness
of its parts. In Section 4 we discuss the top-down design of divide ami conquer
algorithms and proceed with the derivation of a selection sort algorithm. In
Section 5 we derive algorithms for a few more problems including the evaluation
of Boolean expression and finding the cartesian product of two sets.

1. Examples of Divide and Conquer Algorithms

Applications of the divide and conquer principle are most naturally
expressed by recursive programs. In Figure 1 we present a selection sort pro-
gram expressed in an ad-hoc functional programming language (based on Backus' FP
systams [2]) which we now summarize.

We use three data types: B (Boolean values TRUE and FALSE), IN (natural
numbers 0,1,2,...), and LIST(NN) (linear lists of natural numbers e.g., nil,
(3)s (5,2,2,7))« BAny element of these types is called an object, and if
X1reeeiy for n> 0 are data objects then the n-tuple <Xj,...,X,> is also a data
object. The selector functions 1, 2,... return the first, second,... elements
of a tuple respectively. For example, 1:<3,4>=3, 2:<3,4>=4.

In a functional programming language programs are viewed as a hierarchy of
functions. All functiuns map a data object to a data object. We use the nota-
tion f£:x to denote the result of applying the function (program) £ to data
object x. If a fuiction requires n arguments for some n>1, then it is applied
to an n-tuple of objects. For the natural numbers we have the usual addition
function, denoted +, and the comparison operators <,<,=,#,>,> In deference
to convention we allow infix notation for the arithmetic functions and rela-
tional operators, thus we equivalently write "3+ 5" and "+:<3,5>". On the data
type LIST(IN) we use the following functions: Nil, which returns the empty list
(denoted nil); List, which maps a natural number into the list containing it;
First, which returns the first element in a list; Rest, which returns its input
list mimus the first element; Cons, which adds a number to the front of a list
(e.g. Cons:<2,(5,4)>= (2,5,4)): sno(, (the inverse of Cons) which returns a 2-
tuple containing the first element and the rest of the input list (e.q.
snoC: (2,5,4) = <2, (5,4)>); and Length, which returns the length of a list. On
all types we use Id as the identity function.

" s N e A Pk 2 S e AR A A s NS . » EaAY
RSP DI I s i A S I e e iy MR MRS W TGN W N BCACSYOAS v, W LN L L e
'_ [l l‘ e et et .- '-. ‘e ta % ‘I - -t -". PR 3 r e . LA ._. - ‘~ . .',.' b % ~- b (Y - A e A\ »" h.\ Ax\.-. ... ‘--‘ -.' “ .' -.‘ ..' --' -.‘ .~' ...l

a
L)

Ssortix, = if
XO'nﬂ -> x°u

xo;in:ll -> Cons~(IdXSsort)°Select:xo
£i

-"“l."-')l“‘vl "‘l

Select:x = if
Rest:x=nil = snoC:x [

Rest:x# nil —> Compose+(Id¥X Select) *snoC:x
fi

Oompose:<v1.<v2,z» = if
Vlin -> <v1,ConS:<v2.z)> n
V12V, > <v,,Considvy,z>>
. £i

, Figure 1: A Selection Sort Program

Functions are cambined to yield new functions via the following cambining

foms. f+g, called the composition of f and g, denotes the function resulting
fram applying £ to the result of applying g to its argument.

: For example: Length°Rest:(1,3,5) = Length: (Rest:(1,3,5))
i = Length: (3,5)
= 2

£X g, called the product of £ and g, is defined by
- EX gi<x,y> =<£:x,g:7>,
_Q For example: IdX Length:<3,(1,3,5,7)>=<3,4>.

If dyseeei, are boolean functions or constants and fl""'fn are functions or
data objects then

L i£q = £ 0..0q, > £ i

is a nondetemministic conditional form. During evaluation each of the boolean
furctions, called quards, are evaluated. If any of the quards are undefined, or

4=

.......................................

if none of the quards evaluate to TRUE, then the value of the form is wmndefined.
Otherwise one of the guards, say Qi which evaluates o TRUE is nondeterministi-

cally selected and the form evaluates to fizx. For example,

iIf< »>10> - 2f£i

is a simple if-fi form mapping INX IN into IN ad computing the minimum of two

: natural numbers. On application to <2,3> the guard "< " evaluates to TRUE thus
the form evaluates to 1:<2,3>=2, Note that on application to <3,3> both guards
evaluate to TRUE thus either branch of the conditional can be taken. Although
either branch can be taken the result is the same for this function.

We name functions by means of definitions. For example we can name the
above if-fi form Min by means of the following definition

Min = if < > 10> = 2 fi,

For readability in definitions we allow the naming of arguments, replace selec-
tor function applications by the name of their result, and pretty print, so Min
can be defined by

Min:<x,y> = if
x<y = x1
X2y = Yy
fi.

The selection sort algorithm in Figure 1 works as follows. If the input is
nil then nil is output. If the input is non-nil then a smallest element is
split off and then prepended onte the result of recursively sorting the
remainder of the input. The function Select evaluates as follows on the list

(2,5,1,4)

Select: (2,5,1,4) = Compose-*(Id¥X Select) *snoC:(2,5,1,4)
= Compose- (Id X Select) :<2, (5,1,4)>

= Campose:<2,<1,(5,4)>>

<1,Cons:<2, (5,4)>>

<1,(2,5,4)>

where Select:(S5,1,4) evaluates to <1,(5,4)> in a similar manner. Ssort when
applied to (2,5,1,4) evaluates as follows

Ssort:(2,5,1,4) = Cons+(IdX Ssort) *Select: (2,5,1,4)
= Conse (IdX Ssort) :<1, (2,5,4)>
= Cons:<1,(2,4,5)>
= (1,2,4,5)

where Ssort: (2,5,4) evaluates to (2,4,5) in a similar manner.

Ssort and Select exemplify the structure of divide and conquer algorithms.
In Ssort when the input is nil then the problem is solved directly, otherwise
the input problem is decamposed via Select, the subproblems solved via the pro-
duct 1dX Ssort, amd the results camposed by Cons. In Select when the input has
length one then the problem is solved directly, otherwise the input 1is decom-
posed via snoC into a tuple of subinputs, the subinputs processed in parallel by
IdX Select, and the results camposed by (obmpose. We call Select in Ssort and
snoC in Select the decomposition operators. Cons in Ssort and Compose in Select
are called composition operators. The identity function, Id, in both Ssort and
Select is called an auxiliary operator.

Why introduce new language features here? We feel that the importance of
divide and conquer algorithms is justification enough to require that a program—-
ming language allow their concise expression. We have introduced those linguis-
tic features which allow divide and conquer programs to clearly reflect their
essential structure. For example, the construction of decomposition operators
is facilitated by allowing functions to return a tuple of objects. The product
fom allows us to directly express parallel processing of independent subprob-
lems. In conditionals we are not forced to determine the order in which the
guards are to be evaluated - they are conceptually evaluated in parallel. In
addition, the language simplifies reasoning about and designing divide anmd con-
quer algorithms.

2. Algebraic Concepts

2.1 Program Termination

In designing divide and conquer algorithms we shall be concerned with
ensuring that they terminate on all legal inputs. The usual method for showing
the termmination of a recursive program depends on the existence of a well-
founded ordering on the input damain.

A structure <W, > where W is a set and p is a binary relation on W is a
well-founded set and ¥ is a well-founded ordering on W if:

e A i AR A 4

vy

1) ¥ is irreflexive: upu for all u@W

2) ¥ is assymetric: if udv then v‘-u for all u,v@W

3) ¥ is transitive: if ujv and viw then udw for all u,v,w@W
4) there is no infinite descending sequence ugd U;deUjde... in W.

For example, N (natural numbers) with the usual greater tha relation > fomms
the well-founded set <IN,>>.

A recursive program P with input domain D can be shown to terminate on all
irputs in the following way. First, a well-founded ordering ¥ is constructed
on D. Then, we show that for any x@D P applied to x only generates recursive
applications (calls) to inputs x' for which x¥x'., There can be no infinite
sequence X;,Xj,X; ... Such that applying P to x; results in the application of
P to xj,; for i>0 since the well-founded ordering does not allow xg¥X;

} 2Tt TETI

Proposition 1. Let E be a set, let <W, > be a well-founded set, and let
h:E -> Wbe a function from E into W. The relation ¥ defined by:

uepu' iff h(u) Jphr(u’)

is a well-founded orderirg on E.

Proof: 1) p is irreflexive - for any u, h:u}wh:u, but then by definition
U*Eu.

2) P is assymetric - if upgu' then h(u) Py h(u') and h(u') Py h(u)
(by assymetry of Pey) thus u'Pyu.

3) Pg is transitive - if uPpu' and u'Pegu" then h(u)yh(u') and

h(u") pph(u) . h(u) pyh(u”) follows by transitivity of ey, then udpu" follows
by definition of Pp.

4) <E,¥g> has no infinite decreasing sequence - if Ugg Ujdg Usdp
«es then h(uy) ¥y h(u;) Py h(us) e ... contradicting the well-foundedness of
<W,*w>. @D

Proposition 1 enables us to establish a well-founded ordering on LIST(IN)
(list of natural numbers) by simply finding a function from LIST(IN) to N. A
suitable primitive function is Length, so we may define

xPpy iff Length:x > Length:y

-7-

........
............................

..............
...................................

for all x,y@LIST(IN). By Proposition 1 we conclude that <LIST(N),}> is a
well-founded set.

2.2 Many-Sorted Algebras

Algebraic concepts are playing an increasingly important role in formulat-
ing the fundamental notions of camputer science, In this paper we show that
divide and conquer algorithms can be usefully characterized algebraicly as
homomorphisms between appropriately defined algebras on the input and output
domains. In this section we present the basic temminology of many-sorted alge-
bras based on and extending the notation of ADJ (9,10].

For any n@€ N let n={1,2,...,n}. As usual the cartesian product of - :s
Ajs Agreeer A, is written A)XA,X...XA, and denotes {<a1,a2,...,an> iag o«
for i@&n}. Parentheses are used for nesting so

the set of 2-tuples whose first component belongs to Ay, and whose second com-
ponent belongs to A, X Aj.

Generally, we use the termm many-sorted algebra to denote a collection of
sets equipped with operators defined on cartesian products of the sets. Let S
denote a nonempty set of symbols called sorts and 3@S be a distinguished sort
called the principal sort. A finite S-oriented S-sorted signature 3 is a finite
set of operator symbols {¢l,...,0r}, r>1, where for 1< i<r, oi has type <wi,3>
where wi@s" and wi=wil...W1ni, n;>0. Let A > gg be an S-indexed family of

sets. If w@S" and w= WiWoeesW, then a¥ denotes the cartesian product
Alel\,zX ".XA"’n' Letting N denote the empty string, AN denotes the set

consisting of the O-tuple, {<}. AZ-algebra A consists of a family of sets
<Ag>;gs Called the carriers of A, and a set of operators denoted Gip i=l,...,r,

where 0i,:A% - A, A, will be called the principal carrier of A. A 3-

algebta A Will be written A=<[C1,...,Ck},{f1...-,fr}) where Cl,...,Ck are the
carriers of A and fl,...,fr are its operators. A 2-algebra will be called a
composition algebra.

We shall be interested in composition algebras which 1) allow each element
of the principal carrier to be expressed as a composition of other elements, and
2) compose smaller elements into larger elements. For example, on the domain
LIST(IN) consider the operators

Nil: = LIST(IN) (e.g., Nil: O = nil)

~8-

List:IN = LIST(IN) (e.g., List:3 = (3))

Cons:IN X LIST(IN) = LIST(IN) (e.g., ®ONS:<3,(1,4)> = (3,1,4)).
Every list of natural numbers can be expressed as either a composition by Cons
(®ns:<i,y> for some i@ IN and Y@ LIST(IN)) or by Nil, thus
<{LIST(N),IN}, {Cons,Nil}>

is a composition algebra for LIST(IN). For the damain LIST(IN)-nil, the opera-
tors Cons and List allow expression of each non-nil list as a composition by
Cons (Cons:<i,y> for some i@ NN and y@ LIST(IN)-nil) or by List (List:i for some
i@N), thus

<{LIST(IN)-nil,IN}, {Cons,List}>

is a canposition algebra for LIST(IN)-nil.

Let A and B be 3-algebras and let H=<h > gg be an S-indexed family of
functions where for each s@S, h :A; - Bg. If w=wiwo...w, let h" denote the
product function h, Xh, X...X b, . Thus if a@aA" then

n

w. 3 L - .
h .a—(hwl‘al, hWZ.az' eveyp klwntan>.

h® denotes the unique function mapping ad B’“, also written Id.

H=<hs>sQS is a @-)homomorphism from A to B if for each operator symbol &i
and a@A"!

hs-a'iA:a = ch-hWi :a.

i.e. the diagram in Figure 2 cammutes.

h

s
A > 5B
[8

N

AW > gV
hw

Figure 2: Commutative Diagram of a 33 -homomorphism.

A

.'-“r';r T
R YT

A3” l-algebra A is a family of sets <A>,gs and operators oips 41\s -> avl

for each 1<i<r. A3 'l-algebra will be called a decomposition algebra. We
shall be interested in decamposition algebras which 1) allow each element of the
principal carrier to be decamposed into other elements, and 2) decompose larger
elements into smaller elements. For example, on the damain LIST(IN) we can
define operators which are the inverses of the camposition operators considered
above.

1iN:LIST(IN) - (e.g. 1iN:nil = ©)
tsiL:LIST(N)~-> N (e.g. tsil:(3) = 3)
snoC:LIST(IN) - IN X LIST(IN) (e.g. snoC:(3,1,4) = <3,(1,4)>)

Every list of natural numbers can be decamposed either by snoC or 1iN, thus
<{LIST(IN),N}, {snoC,1liN}>

is a decomposition algebra for LIST(IN). For the damain LIST(N)-nil, the
operators snoC and tsiL allow the decomposition of each non-nil list into non-
nil lists and natural numbers, thus

<{LIST(N)-nil,N}, {snoC,tsilL}>

is a decamposition algebra for LIST(N).

Let Abe a3 "l-algebra, B a Z-algebra, ard let H=<h > g g be an S-indexed
family of functions such that for each s@&S hg:A;>Bg. His a (2‘12)-
homomorphism from A to B if for each xeAg such that gp:x is defined

hgix = ogh%eapix (2.1)

i.e., the diagram in Figure 3 commutes. For example, let S={c,8} amd let

Figure 3: Commutative Diagram of a 3 ~ l§-homomorpl’u’.5m.

.................

S = 1,02} be a S-sorted signature where o'l has type <N\,8> and 02 has type
<c8,8>. Consider IS and IC which are 2~ 1 ang 2-algebras respectively where:

IS=<{IN,LIST(N)}, {1liN,Select}>
IC=<{IN,LIST(IN)}, {Nil,Cons}>.

LS has carriers [S,=N ard lsg=LIST(]N) and operators
Select: LIST(N) = W X LIST(N) and

PP -

liN:LIST(IN) = {<O).

P. Select splits a list of natural numbers into its least element and the rest of
'E the 1list as discussed earlier. LC has carriers LC,=IN and u:g=LIST(1N) and
F operators

- Cons: IN XLIST(IN) = LIST(IN) and

Nil: {¢<} = LIST(N).

Letting hg be the function Sort, which sorts a list of numbers, and hg the iden-

tity function Id, we have a natural homomorphism from LS to LC. First, Sort and
1d have the required domains and codomains:

Id:IN=-> IN (hc:ISc—> Ic.)

Sort:LIST(N) - LIST(IN) (hg:lZ.Ss -> ch)

and the homomorphism condition (2.1) is satisfied: for any x€@ LIST(IN) such that
1iN:x is defined (i.e. x=nil)

Sort:x=Nil'Id<>-liN:x mg:x=o'lm-hx'clts:x)
and for any x@LIST(IN) such that Select:x is defined (i.e. x#nil)
Sort:x = Conse (IdX Sort) -Select:x. (hg:x=crzm-hcs-a'2[s:x)

This homomorphism, of course, is the esserce of a selection sort algorithm.
When the input x is nil we can sort directly, otherwise we decompose x into a
number i and a list y, sort y, then Cons i onto the result.

-11-

3. Divide and Conjuer Algorithms: Form and Function

tﬂ In this section we present notation expressing the form (via program
schemes) and functior (via specifications) of divide and conquer algorithms. We
also present a fundamental theorem showing low the functionality of a divide and
comuer program follows from its form and the functionalities of its parts.
First we consider the expression of functionality.

3.1 Specifications

Specifications are a precise notzation for describing the problem (or func-
tion) we desire to solve without necessarily indicating how to solve (or com-
pute) it. For example, the problem of decomposing a 1list of natural numbers
into its smallest element and the remainder of the list may be specified as fol-
lows.

Select:x=<i,z> such that x¥ nil =» i< Bag:z /A Bag:x=Add:<i,Bag:z>
where Select: LIST(IN) —> IN XLIST(IN).

The problem is named Select which is a function from lists of natural numbers to
2-tuples consisting of a natural number amd a list. Naming the input x and the
output <i,z>, the formula "x¥ nil", called the input condition, expresses any
restrictions on the inputs we can expect to the problem. The formula "i <Bag:z
/\ Bag:x=2Add:<{,Bag:2z>", called the output condition, expresses the conditions
under which <i,z> is an acceptable output with respect to input x. The function
3ag maps a list into the bag (multiset) of elements contained in it (e.g.
Bag:(1,5,2,2) = {1,5,2,2} =Bag: (1,2,5,2)). 1i<Bag:z asserts that each element
in the list z is no less than i. The function Add:<i,b> returns the bag con-
taining i 1in addition to all elements of bag b. Bag:x=Add:<i,Bag:z>, asserts
that the multiset (bag) of elements in the input list x is the same as the mul-
tiset of elements in z with i added.

Generally, a specification TT has the form

T :x= 2z such that I:x =% 0:<{x,2>
where TT: D = R.

We ambiguwusly use the symbol TT to denote both the problem, its specification,
and a solution to the problem. Here the input and output domains are D amd R
respectively. The input condition I expresses any properties we can expect of
inputs to the desired program. Inputs satisfying the input condition will be
called legal inmputs. If an input does not satisfy the input condition then we

-12-

_ I . i

don't care what output, if any, the program produces. The output condition O
expresses the properties that an output object should satisfy. Any output
object 2z such that 0:<x,2> holds will be called a feasible output with respect
to input x. More formally, a specification T is a 4-tuple <D,R,I,0> where

D is a set called the input domain,

R is a set called the output domain,
N I is a relation on D called the input condition, and

0 is a relation on DXR called the output condition.
Program F satisfies specification T =<D,R,I,0> if

e " A g — —
. a AR Ml JI% USRS

N ha e ge o
Pty
[

W x@D(Isx =b 0:<x,F:0]

is valid in a suitable first-order theory, i.e., if on each legal input F com-
putes a feasible output,

Let s be a set of sorts with principal sort 8. T[=<g,T,J,P> denotes an
S-sorted family of problems where E and T are S-sorted families of sets, for
each s!S Jg Is a relation on Eg and Pg is a relation on EgXTg. For each s@s
let Tlg, called a component problem, denote the problem specification
<Eg/TgrdgiPs>. T will be called the principal problem and for esch s€5-2 Tl

will be called an auxiliary problem.

3.2 The Form of Divide and Conquer Algorithms

Let S be a sort set with principal sort § and let 3 be a finite S-oriented
S-sorted signature where 3= {5l,...,0r}, r>1l, and for 1<i<r, &1 has type
<wi 8> where wi!s* and wi=w11...wini, nilo. A 3-divide and conquer algorithm

has the fom

£f:x = if
gx

qp:x = Olp-E¥leglg:x)
- L] r. *
qr.x -> Gtor fw GrE-x
£i.

where
1. Eisaj” l-algebra
2. T is a 3-algebra
3. F=<f ;@5 is an S-indexed family of functions uwhere fg:Eg—> Tq

-13-

- ———-—-—-—-————M

4. q; for i€r, is a predicate on E

8
The operators in E and T are called the decomposition and composition operators

respectively, Each £ for s@S-8 is called an auxiliary function and £ s is

called the principal function. In these temms the program's behavior can be
described as follows: Given input x, a quard q which evaluates to TRIE is
selected nondeterministically. Input x is decomposed by the decomposition
operator oip into a tuple of subinputs. This tuple is then processed in paral-
lel by the function product f"! and the results composed by the composition
operator Cip. In order for the algorithm to terminate not all the branches of
the conditional can contain recursive calls. The nonrecursive branches treat
with those inputs which can be solved directly.

If we view the guards q; for i@r as characterizing the set of inputs on
which the corresponding decomposition operator gip is defined, then the divide
and conquer algorithm clearly expresses F as a homomorphism from the decomposi-
tion algebra E to the composition algebra T.

3.3 Correctness of a Divide and Conquer Algorithm

The main theoretical result of our paper is the following theorem which
shows low the correctness of the whole divide and conquer algorithm follows from
the correctness of its parts. Conditions (1), (2), and (3) of Theorem 1 simply
provide the form of a specification for the parts of a 3-divide and conquer
algorithm, The most interesting condition is the "separability” condition (4).
It is the principal 1link hetween the functionality of the algebras E and T, the
auxiliary problems ﬁs, and the given principal problem. In words it states
that if input Xq decomposes into subinputs Xyr s1Xpe and Z1s eeesZ, are feasi-
ble outputs with respect to these subinputs respectively, and Zj,...,2, Ccanpose
to form z, then z; is a feasible solution to input x;. Loosely put: feasible
outputs campose to form feasible outputs. Condition (5) asserts that for each
legal input at least one of the guards holds.

Theorem 1: Let S be a set of sorts with principal sort § and let 3 be a finite
8-oriented S~sorted signature. Let E be a3~ l—alc_;el:ara, T be a 3-algebra, Tl a
S-sorted family of specifications, F a S-sorted family of functions where for

each s@S £ :E; > T;. Llet ¥ be a well-founded ordering on Ey and for each i@r

let Oip and Oi be relations on ESWL ang oWl respectively. If

-14-

(1) (Specification of op) the decamposition operator oig, for i=1,...,r,
satisfies the specification

O‘iB:xoa <xllooolxni> such that qi=x° A Jg:xo =b
j‘\ni (Jwij:xj N\ (Wij'g = x°>xj)) A 0133(}(0,)(1,..,'3‘“1)
where op:E, > gl

(2) (Specification of O’T) the composition operator ai.r, for i=1,...,r,
satisfies the specification

61T301'-0-12n1>320 such that OiT3<ZO,21'ooo'zni>

where O'T:'I“'i > Tg

(3) (Solutions to Auxiliary Problems) for each s@S-3 f_ satisfies specifi-
cation

TTs:xsz such that J :x =» P :<x,2>
where T[:E;—> Tg.

(4) (Separability of P) the following formula is valid for each i@r:
V<XO'X1'ooo'xni>. Eai,i V<20121'.o.’zni>"léwj.

[OiE:<x0,xl,...,xni> A\ j‘\!‘.i Pm-_j:<xj,zj> N\ Oi.r:<zo,zl,...,zni> =5

P§:<xo,z°>]

S Definiti f the quards) For all E J, :x = :
(5) (Definition o g) x@ s Ja j¥£q1 X

then the divide and conquer program

£.:x = jif
3

qlzx -> GlT'EWI'GlESXU
. o gWL .
QpiX => Orpef" *Orp:ix
fi

satisfies specification TT =<E ,T ,J ,P >.
sfies specific onﬂg X g'Jg’g

Proof: T show that fg satisfies TTgs <E ,Tg,Jg,P > we will prove

8 s

AR Al o . e e
Pty

——————

e an o o

by structural induction? on Eg'

Let x be an arbitrary object in E:g such that Jg:x holds and assume (induc-

tively) that ngy -=b P=<y,f§:y> holds for any y!li:s such that xpy. From ngx

and condition (5) it follows that q;:x holds for some i@r. By the semantics of
the if-fi construct fg:x can evaluate to ai.r-f”'i-a'isax. We will show that

4 g:<x,f§:x> by using the inductive assumption and modus ponens on the separabil-

ity condition. Since qi:x A Jg:x holds and aiE satisfies its specification in
condition (1), the output condition of o also holds. Let ciE:x=<x1,...,xni>.

We have for each j@n; J; :xj. Consider x5 for each j@€n;. If wijfg then by
J
condition (3)

Jwij’xj = Pwij:<x-,fwij:xj>

amd we infer by modus ponens pwi-’<"j'fwi :x:>., If on the other hand wij=-§
J

P
J
then by condition (1) we have xo}-xj and thus by our inductive assumption

J tX: => P $<Xs,£ tXsDe
wij 3 wij 8 i wij 3

Again we infer P, :<x:,f . :x:> by modus ponens. By condition (2) we have
wij 3 wiJ 3

OiT=CiT:<fwil:xl' eee 'fwin:xn>'fwill sse 'fwin>

where

ciT: <fwi1:xl, coe 'fwin‘xn> = fg:x.

We have now established the antecedent of condition (4) enabling us to infer

P§:<x, f§:x>. QED

Notice that in Theorem 1 the form of the subalgorithms ciE, o‘iT, and fs for
s@S-8 is not relevant. All that matters is that they satisfy their respective
specifications. In other words, their function and not their form matters with
respect to the correctness of the whole divide and conquer algorithm.

2 Structural induction on a well-founded set W, > is a form of mathematical
induction described by

Vx@W Vy€W(xPy A Qiy => Q:x] => 7 x@W Q:x

i.e., if Q:x can be shown to follow from the assumption that Q:y holds for each
y such that x¥y, then we can conclude that Q:x holds for all x.

-16~

4. The Design of Divide and Conquer Algorithms

4.1 A Problem Reduction Approach to Design

Design is a goal-directed activity and this is the primary reason for the
importance of top-down design methods. One formm of top-down design, which we
call problem reduction, may be described by a two phase process - the top-down
decamposition of problem specifications and the bottom-up composition of pro-
grams. In practice these phases are interleaved but it helps to understand them
separately. Initially we are given a specification T[. In the first phase we
create an overall program structure for [, which fixes certain gross features
of the desired program. Some parts of the structure are at first underdeter-
mined but their functional specifications are worked out so that they can be
treated as relatively independent subproblems to be solved at a later stage.
Next we work in turn on each of the subproblem specifications, and o on. ‘This
process of creating program structure and decomposing problem specifications
terminates in primitive problem specifications which can be solved directly,
without reduction to subproblems. The result is a tree of specifications with
the initial specification at the root and primitive problem specifications at
the leaves. The children of a node represent the subproblem specifications

written (or derived) as we create program structure.

The second phase involves the bottom-up composition of programs. Initially
each primitive problem specification is solved to obtain a program (which is
often a programming language operator). Subsequently whenever each of the sub-
problem specifications generated when working on specification TT have solu-
tions, these subproblem solutions are assembled into a program for I7.

We adwocate (13,14] a formal counterpart to the problem reduction approach
based on the use of program schemes. A scheme provides a standard overall
structure for the desired program and its uninterpreted operator symbols stand
for the underdetermined parts of the structure. To use a scheme we reguire a
corresponding design strategy. Given a problem specification TI a design stra-
tegy derives specifications for subproblems in such a way that solutions for the
subproblems can be assembled (via the scheme) into a solution for TT. A design
strategy then is a way of generatirg an instance of a scheme which satisfies a
given specification. Any program scheme admits a rumber of design strategies.
Dershowitz and Manna (4] have presented some strategies for designing program
sequences, if-then-else statements, and loops.

‘-

Y
v T

)
.
.

T Y YNy Y v v
.

We have found three design strategies for divide and conquer algorithms.
Each attempts to derive specifications for subalgorithms which satisfy the con-
ditions of Theorem 1. If sucessful then any operators which satisfy these
derived specifications can be assembled into a divide amd conquer algorithm
satisfying the given specification. The key difficulty is to ensure that the
derived specifications satisfy the separability condition, so each design stra-
tegy concentrates on this goal.

The first design strategy, called DS1, can be described as follows.

D61) First choose a simple decomposition algebra as E and
choose simple known functions for the auxiliary functions,
then use the separability condition to reason backwards
towards output conditions and to reason forwards towards input
conditions for the operators in T.

To see how we reason towards specifications for the operators in T, suppose that
we have selected a 3~ l-algebra E and chosen simple known functions fg for
s@5-8 and let the given problem be T = <D,R,I,0>. We show how to derive output
conditions for gip for some i@r. First use

cig:xoa <x1,...,xni> as oiE:<zo,zl,...,zni>,

fwij:xj’zj as pmjﬂ(Xj,Zj) for l_<_j5_n1 Wijfgg and

0:<x,2> as P§:<x,z>,

and create the following formula

V<x0'x1,oco'xn>. E@i V<20121’ocolzn>.T§Wi
01 :(X LN] X > p :< = '> g P :< > . 4-1
(E:<XQsX]1r ’ ny J/.\£ Wij Xj z] 8 *0s20] ()

This formula differs fram the separability condition only in that the hypothesis
OiT:<zo,zl,...,zn> is missing. We desire to establish the separability condi-
tion so that we can apply Theorem 1 to show that the program we construct satis-
fies its specification. We know that Oi.r it is a relation on the variables
zo,zl....,zni. Our technique is to reason backwards from the consequent always

tryinmg to reduce it to relations expressed in temms of the variables
zo,zl,...,zni. If we can show that the assumption of an additional hypothesis

of the fom

Q:<ZO,21' eo e ,Zni>

-18-

> Y N P a ot el .

allows us to prove (4.1), i.e., if we can show that

V(xO,xl’ooo'xn>. Eﬁi v<z°'zl, eee 'zn>‘ ﬁWi

then we take Q as the output condition Oi, since the separability condition is
satisfied by this choice of Oi,. Fommal systems for performing this kind of
deduction are presented in (12,13]. We shall proceed a little less formally
here, making use of our intuition for guidance.

We can also use (4.1) to obtain input conditions for our composition opera-
tors. The input condition for Gin is some relation on z]_,...,zni which can be

expected to hold when oi, is invoked. Suppose that by reasoning forwards from
the relations established by the decomposition operator amd the component func-
tions we infer a relation Q':<z1,...,zni>, i.e., that

W <XqeXq0 ...,xn>. pdwi V(zo,zl,... ,zn>. pSwi

[OiE:<XO,X1,oo.,Xni> A jQE Pw j:<Xj,2j> =$ Q':<21,.oolzni>]o

Then we take Q' as an input condition to &i,.

The other two design strategies are variations on DS1 and use the separa-
bility condition in an analogous manner.

D82) First choose a simple composition algebra as T,
second,choose simple known functions for the auxiliary func-
tions, then use the separability condition to solve for the
input and output conditions for the operators in E. An input
condition for the decomposition operator is found by determin-
irg conditions under which a feasible output exists,

I653) First choose a simple decomposition 3~ 1-algebra as E and
choose a simple composition 2Z-algebra as T, then use the
separability condition to reason backwards towards output con-
ditions and to reason forwards towards imput conditions for
the auxiliary functions.

In each of these design strategies we must find a suitable well-founded ordering
on the input domain in order to ensure program termination. Also, the guards
are chosen to reflect the damain of definition of the decomposition operators.

4.2 Design of a Selection Sort Algorithm

Suppose we are given the following specification for sorting a 1list of
natural rumbers

SORT:x =2z such that Bag:x=Bag:z /\ Ordered:z
where Sort:LIST(IN) - LIST(N).

Here "Bag:x=Bag:2" asserts that the multiset (bag) of elements in the list z is
the same as the multiset of elements in x. Ordered is a predicate which holds
when applied to a list whose elements are in nondecreasing order.

The selection sort algorithm presented in Figure 4 will be derived using
design strategy DS2. Note that Ssort makes use of the composition algebra
A=<{LIST(N),N},{Nil,Cons}> discussed in Section 2.2. 1In choosing A as the
camposition algebra it is not obvious ahead of time that a decomposition algebra
can be found which works with A to solve the SORT problem. This choice of alge-
bra should be regarded as a tentative hypothesis about how sorted lists can be
canposed. The sort set of A is S= {c,8} where A3=LIS‘I'(1N) and A, =N. The

operator Nil has type <\ ,8> and operator Cons has type <c§,8>, Nil:Ax—>A§,

and Cons: A o Ay
Naming our desired program Ssort we have at this point,
Egt LIST(IN), 'rgs LIST(IN), Tc=1N

Jg!-bTHJE,

P§:<x,z> b Bag:x=Bag:z /\ Ordered:z,
Ol.r:<<>,z> &b z=nijl,
021.: <zo,b,zl> > Oons:<b,zl> =20

£ is Ssort.
8

It remains to determine input and output conditions J, and P, for the auxiliary
function fc' the damain Eqr and the output conditions 0lg and OZE for the decom-
position operators.

Qur first step towards determining 02g is to instantiate the separability
condition as far as possible thus obtainimg

W <xgs<@,%) >>@ LIST(IN) X (E_X LIST(IN)) W/ <z(,<b,2)>>@LIST(IN) X (IN X LIST(IN))

-20-

............

Ssort:x ® if
x=nil - Nil-Ido-liN:xU
x#nil - Cons-(IdX Ssort)*Select:x
£i

Select:x = if
Rest:x=nil -> Oomposel-Id-snoC:x {
Rest:x# nil -> Oompose2+ (IdX Select) *SnoC:x
fi

Composel:v ® <v,nil>

Oompose2:<vl,<v2,z>> = if
v1_<_v2 -> <v1,Cons:<v2,z>> 0
V12V, -> <v2,Cons:<vl,z>>
£i

Figure 4: A Selection Sort Program

[OZE:<x0,<a,x1>> N\ P.:<a,b> N\ Bag:x; =Bag:2z, FAN Ordered:z, A Cons:<b,z1> =z,
=> Bag:Xp=Bag:z /\ Ordered:z] (4.2)

To construct this formula we have made the following substitutions into the
separability condition of Theorem 1:

1. replace w2 by c8
2. replace E A and 'I‘g by LIST(IN)

3. replace E° by E_XLIST(N) and T°° by IN X LIST(N)
4, replace P§:<x,z> by Bag:x=Bag:2 /\ Ordered:z
5. replace o‘T:<b,zl> by ®ns:<b,zy>
Since we desire to have the separability condition hold in order to apply

Theorem 1 we evidently must try to find values for E./P., and 02p which allow us
to prove (4.2).

=2]1=

< I

L X3 o

e
‘. M -"‘li'

In order to determine 02; we attempt to reduce (4.2) to a formula dependent
on the variables X5, a, and Xy only. The consequent {s the conjunction of two
atamic formulas so we can tackle them separately. Consider first

Bag:xy= Bag:z,. (4.3)
This is equivalent to
Bag:x0==8ag:(bns:<b,zl>
since Cons:<b,2)> =2, is a hypothesis. The fact
Bag+Cons:<u,y> =Add:<b,Bag:y>
allows us to reduce the goal to

Bag:x0=hdd:<b,Bag:zl>.
Then since '
Bag:x, =Bag:z,
is a hypothesis we further reduce to
Bag:x0=Md:<b,Bag:x1>.

This last relation is almost expressed in terms of variables required by 02g.
Let us assume a=b and thus let Ec=m, Jc:x <> TRUE, Pc:<a,b> &> a=b, and
let £, be Id. This finally reduces (4.3) to

Bag:xo=Add:<a,Bag:xl>. (4.4)

In other words, if we had (4.4) and a=b as additional hypotheses then we could

establish our original goal (4.3). We will use (4.4) in the output condition
02
E.

Consider now the second goal

Ordered:zo (4.5)
which via the hypotheses Cons:(b,zl>=zo and a=b reduces to
Ordered-Oons:(a,zl>.

The fact
u<lBag:y A\ Ordered:y <> Ordered<Cons:<u,y>

can be used to produce the equivalent goal
alBag:z; A Ordered:z,,

Now Ordered:z; is a hypothesis and thus is assumed to hold. The remaining
subgoal can be transformed via the hypothesis Bag:x) =Bag:z; to
a_<_Bag:x1.

We have reduced (4.5) to a subgoal which is expressed in termms of the variables

-22-

PSS n . L - X ‘

R e

required by 02;. By reasoning backwards we have shown above that if

a< Bag:x; VAN Bag:xo=Add:<a,Bag:xl> (4.6)

holds then we can establish (4.2). We take (4.6) as OZE.

Before constructing the specification for 62 we construct a well-founded
ordering on Eg=LIS'r(IN). By Proposition 1 we can construct one based on a map~

ping from LIST(IN) to IN. The known function Length maps LIST(N) to IN so
define

Xg ¥ x; iff Length:x; > Length:x;.
By Proposition 1 <E§,}-> is a well-founded set.

Using (4.6) as 02; and this well-founded ordering on LIST(IN) we create the
following specification for 02p in accord with condition (1) of Theorem 1.

O2p:Xy=<a,x;> such that a<Bag:x; A Bag:x, = Add:<a,Bag:xy> A
Length:x,>Length:x,
where op:LIST(IN) -> IN XLIST(NN)

By inspection we see that there is no feasible output when the input is nil so
we add the input condition "x# nil" obtaining

T2gixg = <a,x)> such that x5#nil = Bag:x=Add:<a,Bag:xy> A
agBag:x; /A Length:xy>Lengin:x,
where O’E:LIST(]N) - I XLIST(IN).

In (13] we show how to derive the input condition for decomposition operators by
formal means. In the next section we derive a divide and conquer algorithm,
called Select, for this problem.

From the input condition of Select we obtain the gquard x#nil. The
intended algorithm at this point has the form:
Ssort:x = |if
qp:x > Nil-f\-cls:xl]
x¥nil -> Cons-(IdX Ssort)-+Select:x
fi.

The construction «f a specification for Olp is similar. First, we instan-
tiate the separability condition obtainimng

‘v’xo. LIST(IN) Vzo‘ LIST(IN)

-23-

[OIE:xO FAN Ni.].:<>=-z° => Bag:xy=Bag:z, VAN Otdered:zol 4.7)

In creating this formula we have replaced
wlby h

E, and T, by LIST(N)

P§ by Bag:xq=Bag:2y /\ Ordered:z,]
and performed some simplifications.

Again we treat the two conjuncts of the goal separately. Since z; is nil

then the goal Ordered:z, holds. The other goal
Bag320=mzx°
is equivalent to
Xg= nil
since zz=nil. We use "x5=nil" as the output condition of Olp and create the
specification
olp:xg=2z such that xo=nil

where c'lE:LIS‘I‘(]N) 2> {<O}.

The function 1liN satisfies this specification.

Putting together all of the operators derived above, we obtain the follow—-
ing selection sort program:

Ssort:x =® if
x=nil => Nil-l’d<>~11N:xl]
x#nil = Oons+*(IdX Ssort)-Select:x
fi

which can be simplified to

Ssort:x = if
x=nil = x 10
x#nil -> Cons-*(IdX Ssort)+Select:x
fi

4.3 Synthesis of Select

In the previous section we derived the specification

-24-

|

[Select:x,=<a,x;> such that x,#nil = Bag:x,=Add:<a,Bag:x;> A
':j’ y agBag:x; A Length:x; > Length:x,.
TI where Select:LIST(N) —> IN X LIST(N)

The synthesis of Select proceeds according to the design strategy DS2., First,
we choose a simple decomposition algebra for the input domain - the set of non-
nil lists of natural rumbers. The algebra A=<{IN,LIST(N)},{tsiL,snoC}> is
satisfactory since all non-nil lists can be decomposed into non-nil lists and
natural numbers by tsiL and snoC. The sort set is S= {c,8}, tsilL. has type
<8,c>, and snoC has type <§,c8>. We have
E.=N,
=LIST(IN), T§= IN X LIST(IN),

0

-~

(7))

Jé:xO < xO # nil,

Pg:(xo,ca,xl» > Bag:xy=Add:<a,Bag:x;> A ag<Bag:x; A Length:xj>Length:y,

tsil is defined when Rest:x=nil so this condition is used as q;. snoC will
decampose a non-nil list x into a number amd a non-nil list when Rest:x#nil, so
we take this condition as qy. Our intended algorithm now has the form

Select:xo = jf
Rest::x0=nil -> clT-fc-tsiL:xo 0
Rest:xg#nil - 02q¢ (£, X Select) »snoC:xy
£i

It remains to determine the output domain Tar the input and output conditions Je
and P, for the auxiliary function f., and the composition operators Olp and 02p.

E:§=LIST(IN) is made a well-founded set exactly as in the previous example

by defining xg¥x; iff Length:xy > Length:x;. snoC and tsiL clearly preserve
this ordering.
In pursuit of an output condition for 02y (a relation dependent on the

variables a, Zgs VY, Ay, and Zy), we first instantiate the separability condi-
tion with the result

WV <<ap,2g>,<v,<ay,2)>>>@ N XLIST(IN)) X (T X (IN X LIST(IN)))
W/ <Xq,<u,x;>>@LIST(IN) X (IN X LIST(IN))

[snoC:xqg = <u, x> A Bag:x; = Add:<a,,Bag:2;> A a; <Bag:z; A
Length:xl > Length:zl A Pc:<u,v> A\ Ozr:<<ao,zo>,<v,<a1,zl>>>

-25-

_ | 1

=> Bag:xo=Add:<a;,zp> /\ ag<Bag:zy> A Length:x, > Length:zy). (4.8)

To create this formula the following substitutions were made
c8 replaces w2

LIST(IN) replaces E:s and IN X LIST(IN) replaces '1‘g

IN replaces E,

snoC:xq = <u,¥;> replaces 92p:<xq,X) ,Xo>

Bag:x; = Add:<a,,Bag:z)> A a; <Bag:z; A Length:x; > Length:z;
replaces P§:<xi,<al,zi>>

Again we consider the goals in (4.8) one at a time. The goal
ag < Bag:z,
is already expressed in the form we desire, so we can use it in O02p. Consider
the goal
Bag:xq= Add:<ag,zq>.

We hawe

Bag:xy = Bag-Cons:<u,x,> (by hypothesis)
= Add:(u,Bag:x1>

= Add:<u,Add:<a,,z,>> (by hypothesis)

Suppose that we let u=v and thus let T,= N, Poidu,v>é&pu=v, and f, be Id. We
have

Add:<v,Add:<al,zl>> = Pdd:<a°,zo>.

This condition is expressed in the desired variables so we use it in 02.
Finally, consider the goal

Length:x, > Length:zo. (4.9)
In the following derivation we use Card:x to denote the cardinality of the bag
X. We then have

Length:xo = LengtheCons::<u,x;>
1 + Length:x,

1+ Card-pdd:<al,Bag:z1> (using hypothesis
Bag:x1=Add:<al,Baq:zl>)

2 + CardoBag:zl

2 + Length:zl.

- Thus we have reduced (4.9) to

L 2+ Length:zl > Length:z,.
rc Putting all these conditions together we obtain
5 Add:<v,Add:<a, ,Bag:z,>> = Add:<a;,Bag:zp> A

ag<Bag:z; A\ 2+Length:z,>Length:z,

ard use it as 02p. We derive an input condition by reasoning forwards from

snoC:xq = <u,x;> N\ Bag:x) = Add:<ay,Bag:z,> A\ a, <Bag:z, A Length:xy >
Len;th:zl/\usv

towards a relation expressed in terms if the variables v, a,, and zy. The only
useful inference seems to be

a) < Bag:zy
so we take this as the input condition and form the specification

62T=<V'<al'zl>>=<ao'20> such that aliaﬂzzl = ao_<.Bag:2° A
Add:<v, Pdd:<a1,Bag:zl>>=Add:<ao,Bag:zo> A\ 2+Length:zl > Length:z,
where O'ZI.:IN X (INXLIST(N)) -> IN XLIST(N)

A conditional program, call it Compose2, can be constructed satisfying this
specification.

Compose2:<v,<al,zl>> = if
Vial -> <V,Cons:<al,zl>>[]
vg_al -> <al,Cons:<v,zl>>

£i

We construct Olg in a similar manner. The separability condition is par-
tially instantiated yieldimng

WV <<ag,2o>,v>& N XLIST(IN)) X IN 'V <x,u>@LIST(IN) X N
(tsil:xg=u A u=v
=> Bag:xq = Add:<a;,Bag:z,> VAN ag<Bag:zy> /\ Length:xg>Length:zg]. (4.9)
Dealing first with the goal
Bag:xo=.3dd:<ao,Bag:zo>
we have

Bag:xy = {u} = {v}

-27-

P o —y et P S SIe W

thus
{v} = add:<a;,Bag:zy>

or equivalently
ag=v FaN P nil.

Again the second goal ap <Bag:z, is already reduced to the desired form. Con-
sidar now the final goal

Length:xox.engthz Zg.

We have Length:xy = 1 thus the goal must reduce to
[ﬂmth:zo = 0

or equivalently, z,=nil.
Putting together all these conditions we obtain

Ol.rz<zo,v> - zo-nil FaN ap=v
and create the specification

a'l.r:v-<a,z> such that z=njil A a=v,
where clT:LIST(]N) - INXLIST(IN).

The function Composel is easily shown to satisfy this specification:

Composel:v = <v,nil>,

The functions derived above are assembled into the following program:

Select:x, = if
Rest:xg;=nil -> Composel-Id.<tsiL:xy [
Rest:xofnil > Oompose2« (IdX Select) »snoC:x
£i

The camplete selection sort program derived in this section is listed in Figure
4. It can be transformed into the simpler program listed in Figure 1.

S More Examples

S.1. Cartesian Product of Two Sets

In this section we illustrate the design of a divide and conquer algorithm

using design strategy D53. The problem of forming the cartesian product of two
sets can be specified by

o a PRI - - P Y P S T G ¥ \‘i

CART _PROD: <x,x'>=z such that z= {<a,b>|a@x and b@x'}
where CART PROD:SET(IN) X SET(IN) <> SET(N X IN).

Here SET(R) denotes the data type of finite sets whose elements belony to the
data type R.

First, we choose a decamposition algebra on SET(IN) XSET(IN) and then a
canposition algebra on SET(INXIN). A simple decomposition algebra on sets is
easily found:

Al =<{SET(IN),N},{sSplit,ihP}>

where
Algs SET(IN)
Al.=IN
olp, = ihP:SET(R) = {<>} (type <\ ,3>)
02, = SPLt:SET(R) > RX SET(R) (type <c8,8>).

ihP decomposes the empty set into the O-tuple © and Split decomposes a nonempty
set into an element and the remainder of the set., ihP is defined only on the
empty set and Split is defined only on nonempty sets so together these operators
decompose every finite set.

However, our input domain is 2-tuples of sets. We shall apply the above
decomposition operators to the first component of the tuple and leave the second
unchanged. The result is the 3 "1—decomposition algebra

A2=<{IN X SET(IN) ,SET(IN) X SET(IN)},{ihPl, Trans-(SplitX 1d2)}>.
where

A2§= SET(IN) X SET(N),

A2 =IN X SET(IN),
Olg = ihP+1 :SET(IN) X SET(IN) = {<>} (type <N,3>),

aﬁgsTrans-(SplitX 1d2) :SET(IN) X SET(IN) = (IN X SET(IN)) X (SET(IN) X SET(IN))
(type <c§,8>).

02p makes use of two new functions. The function Id2 returns a 2-tuple contain-
ing copies of its input, i.e., Id2:x=<x,®. The function Trans transposes a
tuple of tuples as follows

e~

L

ot .

Trans: <Xy jeeesXy> = <Yqoeees¥p®
where Xx{ = <XjjseeesXjn> and Yj"<"1j'"°"‘nj> for 1<i<n and 1<j<m. For
example,
Trans:<<1,2,3>,<4,5,6>> = «1,4>,42,5>,<3,6>>.

02, behaves as follows on input <{1,2,3},{4,5}>:
Transe (Split¥X 1d2):<{1,2,3},{4,5}> = Trans:<<1,{2,3}>,<{4,5},{4,5}>>

= <<1,{4,5}>, <{2,3},{4,5}>>.

Before choosing a camposition algebra for T we must decide what can the
auxiliary output type T, be given that E, is N XSET(N). Since E, appears to
be a slightly modified form of Eg (= SET(IN) X SET(IN)) we might conjecture that

the auxiliary function f, is similar to the principal function fg and thus use

SET(NXIN) as T.. The camposition operator &62p then is some mapping from
SET(IN XIN) XSET(IN XIN) to SET(INXIN) - we can use the set-union operator
Union. Oly is some mapping from {<>} to SET(INXIN) - we can use the function
phi, which maps the O-tuple into the empty set.

So far we have developed the program structure

CP:<x,x'> ® if
x= {} = PhisIdibPel:<x,x'> [
x# {} = Union-(£,X CP) *Trans- (SplitX 1d2)) :<x,x'> {
fi.

In order to determine a specification for f, we create the following instance of
the separability condition

W <kg X" 020 <@ X" 13 <Xp k" >>@ (SET(IN) X SET(IN)) X (IN X SET(IN)) X (SET(IN) X SET(IN))

W/ <2sZ) 12,>@SET (N X IN) X SET(IN X IN) X SET(IN X V)

[sp11t3x°=<a,X2> N\ x’l‘X'o VA X'Z.X'o A pc:<<a,X'l>,21> A

zy= Ku,v>|ul x, and v@x',} A

zg=Union:<zy,z,> =% 5= {<u,v>|ulx0 and v@x'y} 1. (5.1)

Since we are trying to reason backwards to an expression for Pc:<<a,x'l>,z1> we
seek to reduce the goal to a relation over the variables a, x'l, and zy. Con-
sider the goal

The set expression on the right hand side can be transformed as follows.

-30-

AT
To

Falie Bn cun anh g g

{<u,v>iu@x, and v@x',} = {<u,v>|u@Add:<a,x,> and v@x',}
¥ 0 2 0
(since Split:x= <a,y>)

= {<u,v>| (u=a or ullx,) and v@x',}
= Union:<{<u,v>lu=a and le'o}, {<u,v>|u.x2 and v@x'y}>

= Union:<{<u,v>lu=a and le'l}, {<u,v>lulx2 and v‘x‘2}>
(since x';=x'; and x'5,=x',)

= Union:<{<u,v>lu=a and v@x' 1,25,
(since zy= [<u,v>|u.xo and v@x'gl).

Using the hypothesis ZO-Union:<zl,zz> we reduce (5.2) to
Union:<z;,z,5> aUnion:<{<u,v>|u=a and v@ x'l},zz>

which holds if
z; = {Ku,v>|u=a and vl x',} (5.3)

holds. So if we take (5.3) as an additional hypothesis then (5.1) holds. We
take (5.3) as our output condition for £, ard create the specification

CP_aux:<a,x>=z such that z= {<u,v>lu=a and vl x}
CP_aJx:IN XSET(IN) = SET(IN) X SET(IN) .

A divide and comquer algorithm for this problem can easily be constructed using
design strategy D81 (along the same lines as Ssort). The complete algorithm for
producing the cartesian product of two sets is listed in Figure 5. The readsr
can easily find several ways to simplify CP and CP_aux without affecting their
correctness.

5.2 Evaluating a Proposition

In this section we present a divide and conquer algorithm for evaluating a
proposition. It provides an example of a more complex signature amd illustrates
a programming style suggested by our treatment of divide and conquer algorithms.
Given a well-formed proposition F and an interpretation I the problem is to com-
pute the truth value of F under I. Relevant portions of the abstract data types
for propositions, interpretations, and truth values are presented below.

A data type PROP representing well-formed propositions can be described
abstractly as follows. Let LETTERS be a set of symbols called letters. PRCP is
generated fram LETTERS using the constructors

-31-

CP:<x,x'> ®m if

x= {} = Phi-Id,*1hP-1:<x,x'> [
et x¥ {} = Unione(CP_aux X CP) *Trans- (SplitX 1d2) :<x,x'> [
CP aux:<a,x> = {f
x= {} = Phi-Id*ihPe2:<a,x> [
£1 x¥ {} -> Adde(IdX CP_aux)-Trans-(Id2X Split):<a,x> {

Figure 5. Forming the Cartesian Product of Two Sets.

Compose_atom:LETTER—> PROP, which converts a letter into an atomic proposition,
Campose_neg:PROP -> PROP, which foms the negation of a proposition,

Compose_conj :PROP X PROP > PROP, which forms the conjunction of two propositions,
Campose_disj:PROP X PROP —» PROP, which forms the disjunction of two propositions.

In other words we have
<{PROP,LETTERS}, {Campose_atom, Campose_neg, Compose conj, Compose disj}>

as a canposition algebra for PROP. Each of these constructors are uniquely
invertible and we have the corresponding decomposition algebra

<{PROP,LETTERS}, {Decompose atom, Decompose neg, Decompose_conj, Decompose_ disj}>
where

Decompose_atom:PRCP <> LETTER, which decomposes an atomic proposition into its
constituent letter,

Decampose_neg:PROP => PROP, which decomposes a negation into its constituent pro-
position,

Decompose_conj :PRCP <> PROP X PROP, which decomposes a conjunction into its con-
stituent propositions, amd

Decompose_di sj: PRCOP -> PROP X PROP, which decomposes a disjunction into its con-
stituent propositions.

=3 2=

L - et POy ko

]
4

)

)

j

1

1

]

]

b

These decamposition operators are defined when the predicates Atom, Neg, Conj,
Disj are true respectively. For example, Atom:F holds exactly when
Decompose_atom:F=oc for some oc@LETTER. We also have F=Compose_atom:oc,
Similarly, Conj:F holds iff Decompose _conj:F= <G,H> for some G,H& PROP and thus
F=Compose_conj:<G,H>. More formally the following axioms hold for all
oc @ LETTER and F,G@& PROP

AR s ZAE JEM A A S

s

Decompose_atomeCompose_atom:oc = oC
Decompose_neg *Compose_neg:F=F
Decampose_conj *Compose_conj : <F,G> = <F,G>
Decompose_disj-Compose_disj:<F,G> = <F,G>
Atom<Compose_atom:oc = TRUE
Neg *Compose_nieg:F = TRJE
Conj -Compose_conj : <F,G> = TRUE
Disj-Compose disj:<F,G>= TRUE
The input for our proposition evaluater also includes an interpretation
1@ INTERPRETATION which associates boolean values with each letter. We use the

operator Assoc:LETTERX INTERPRETATION—> B to determmine the wvalue of a given
letter under an interpretation.

The output domain for our proposition evaluater is IBB, which has the compo-
sition algebra
<{B},{1d,Not,And,Or}>,

where

Id:B > B (the identity operator),

Not:IB > B (the usual negation operator),

And:B X B —> B (the usual logical ard operator),

Or:BXB->B (the usual logical or operator).

A divide and conquer algorithm, called Prop_eval, for evaluating a proposi-
tion is listed in Figure 6. Here is an example computaticn of Prop eval: Let F
denote the representation of the proposition (A A B) V ~Aand F; and F, the

~33~

4 g v
LELA AL AL " e
PRI . . L
P A P

Prop_eval:<F,I>=
if
Atom:F ~» Id-Assoce(Decompose atomX Id):<F,I>
q Neg:F -> Not+Prop_eval-(Decompose neg X Id):<F,I> [
E Conj:F ~>» Ande(Prop_eval X Prop_eval) -Trans- (Decompose_conj X 1d2) :<F,I> {
{ Disj:F = Or - (Prop_eval X Prop_eval) *Trans+ (Decompose_disjX 1d2) :<F,I> [
£i

Figure 6. A Proposition Evaluator

propositions A A B and ~A respectively thus E‘=<bmpose_Disj:<Fl'F2>. Let I be
an interpretation under which letters A and B hawe the values TRUE and FALSE
respectively.

Prop_eval:<F,I> = Or- (Prop_eval X Prop_eval) *Trans- (Decompose_disjX 1d2) :<F,I>
(since Disj:F holds)

= Or- (Prop_eval X Prop_eval) *Trans: <<F1 ,F2> L<L,D>
= Or+ (Prop_eval X Prop_eval) :<<Fy,I>,<F,, >>
= Or:<FALSE,FALSE>
= FALSE
where Prop__eval:(Fl,D and Prop_eval:<E'2,I> both evaluate to FALSE in a similar

manner.

6. Concluding Remarks

We have presented a class of program schemes which provide a normal-form
for expressing the structure of divide and conquer algorithms. Based on these
schemes we have given a theorem relating the correctness of a divide amd conquer
algorithm to the correctness of its parts. The theorem gives rise to several
strategies for designing divide and conquer algorithms and we used these stra-
tegies to derive several algorithms.,

By using syntactic program schemes to express the structure of a diverse
class of algorithms we have the disadvantage that some instances will not be in
their most desireable form, However this approach to representing programming

-34-

Py p—
0

PRCINRE RS A A gt S Jaamt S e

knowledge has a mnumber of important advantages. 1) Schemes express the essen-
tial structure of algorithms in the class in a clear and precise way. 2) Gen-
eric proofs of correctness, as provided here by Theorem 1, can be given. The
correctness of a divide and conquer algorithm is reduced to the simpler task of
establishing the conditions of Theorem 1. 3) By providing the essential struc-
ture of algorithms in a class schemes may suggest uniform approachs to designing
them.

The design strategies we have presented involwve choices which may be weakly
motivated and we may need to try several alternatives before we find one which
works. The resulting design process can be represented by a tree of derivation
paths, some of which lead to useful algorithms, some of which are dead ends.
Aside fram this control problem the design strategies can be formalized for use
in automatic program synthesizers., However at present it is not clear whether
an adequate collection of heuristics can be found to guide an automated design
process through the design space without human insight.

The top-down style of programming suggested by our design strategies can be
sumarized as follows. First we require a clear understanding of the problem to
be solved, expressed formally by specifications. If a divide amd conquer solu-
tion seems both possible and desireable we begin to explore the input and/or
output domains looking for simple decomposition amd composition algebras respec-
tively. Depending on our choice we follow one of the design strategies dis-
cussed above. Usirg our intuition and/or proceeding formally using the separa-
bility condition we derive specifications for the unknown operators in our pro-
gram. These specifications are then satisfied either by target language opera-
tors or by (recursively) designing algorithms for them. Once a correct but pos-
sibly over-structured or inefficient algorithm has been constructed we subject
it to equivalence-preserving transformations resulting in a more satisfactory
desion.

-35-

REFERENCES

1. Aho, A.V., Hopcroft, J.E., and Ullman, J.D. (1974) . The Design and Analysis
of Camputer Algorithms, Addison-Wesley Pub. Co., Reading MA, 1974.

2. Backus, J. (1978), Can Programming be Liberated from the won Neumann Style?
A Functional Style of Programming amd its Algebra of Programs. CACM 21,
8(1978), pp 613~641,

3. Bentley, J. (1980), Multidimensional Divide and Conquer, CACM 23, 4(1980),
214-229,

4. Dershowitz, N., and Manna, Z., (1975), On Automating Structured Programming,
Proc. Colloques IRIA on Proving and Improving Programs, Arc-et-Senans, France,
July 1975,

5. Dershowitz, N. (1981), The Ewolution of Programs: Program Abstraction and
Instantiation, Report No. UIUCDCS-R-81-~1011, Dept. of Computer Science, uUniv. of
Illinois at Urbana-Champaign, Urbana, IL, 1981,

6. Dijkstra, E.W. A Discipline of Programming. Prentice-Hall, Englewood
Cliffs, NJ, 1976,

7. Gerhart, S. (1975), Knowledge about Programs: A Model and Case Study, Inter-
national Conference on Reliable Software, Los Angeles, California, April, 1975,
88-940

8. Gerhart, S. and Yelowitz, L., (1976), Control Structure Abstractions of the
Backtrack Progra—ing Technique, IEEE Trans. Software Engineering SE-2, 4(1976),
285-292.

9., Goguen, J.A., Thatcher, J.W., and Wagner, E.G.,, (1977), Initial Algebra
Semantics and Continuous Algebras, JACM 1(24), 1977, 68-95.

10. Goguen, J.A., Thatcher, J.W., and Wagner, E.G. (1978), An initial algebra
approach to the specification, correctness, and implementation of abstract data
types. in Current Trends in Programming Methodology, Vol. 4. R.T. Yeh, Ed.,
Prentice-Hall Inc., Bnglewood Cliffs, NJ, 1978, 80-147,

11. Horowitz, E. and Sahni, S., (1978), Fundamentals of Camputer Algorithms,
Computer Science Press, Potomac, MD, 1978,

12, Smith, D.R. (1982a), Derived Preconditions and Their Use in Program Syn-
thesis, Sixth Conference on Automated Deduction, Zd. D.W. Loveland, Lecture

-36-

Notes in Computer Science 138, Springer-Verlag, New York, 1982, pp 172-193,

13, Smith, D.R. (1982b), Top-Down Synthesis of Simple Divide and Conquer Algo-

rithms, Technical Report NPS 52-82-011, Naval Postgraduate School, Monterey, CA,
November 1982, 100 pages.

14. Smith, D.R. (1983), A Problem Reduction Approach to Program Synthesis, Sub-
mitted for publication, January 1983.

15. Yelowitz, L. and Duncan, A.G., (1977), Aabstractions, Instantiations and
Proofs of Marking Algorithms, Proc. ACM Symp. on Artificial Intelligence and
Programming Languages, Rochester, NY, 1977, 13-21.

-37=-

' e - e vy Te e e " R W T Cal e s e e e

INITIAL DISTRIBUTION LIST

Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22314

Dudley Knox Library 2
Code 0142

Naval Postgraduate School

Monterey, CA 93940

Office of Researc'. Administration 1
Code 012A

Naval Postgraduate Schuol

Monterey, CA 93940

Chairman, Code 52Hq 40
Department of Computer Science

Naval Postgraduate School

Monterey, CA 93940

Professor Douglas R. Smith, Code 52Sc 16
Department of Computer Science

Naval Postgraduate School

Monterey, CA 93940

Chief of Naval Research 1
Arlington, Va 22217

~38-

LRIGLIER) 7 LEIGLNIZ) /\ FeiSUpV2 /\ Uipissdg, 27 \Vysay &7/

-25-

