
ARD-RI26 986 THE STRUCTURE OF DIVIDE AND CONQUER RLGORITHMS(U) NAVAL 1/1
POSTGRADUATE SCHOOL MONJTEREY CR D R SMITH 94 MAR 83

UNCOhSS IFIED NPS52-83-862 .F/G 12/1i N

11111 1 .0 I~ M212.5

Ll1111 11112.0
1.8

111111.25..........

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 163-A

NPS52-83-002

NAVAL POSTGRADUATE SCHOOL
* - Monterey, California

THE STRUCTURE OF DIVIDE AND CONQUER ALGORITHMS

Douglas R. Smith

March 1983

C.-) Approved for public release; distribution unlimited ~

'p. Prepared for:

LL- Ciief of Naval Research
Arlngton, Va 22217 ~ ~

4 .

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral J. J. Ekelund D. A. Schrady
Superintendent Acting Provost

The work reported herein was supported in part by the Foundation
Research Program of the Naval Postgraduate School with funds provided
by the Chief of Naval Research.

Reproduction of all or part of this report is authorized.

This report was prepared by:

•U
DOUGLAS R. SMITH
Assistant Professor
of Computer Science

Reviewed by: Released by:

DAVID K. HSIAO, Chairman WILLIAM M. TOLLES
Department of Computer Science Dean of Research

4

I

*-,. .J . - '. . . .

SECURITY CLASSIFICATION OP THIS PAGE (Mhn DWN afumd
r)_

REPORT DOCUMENTATION PAGE ______ __m_____from

1. REPORT NUMUER 1 GOVT ACC9ESUON NO , RECIPIENTS CATALOG NUMNER

NPS52-83-002 I L 0 _

4. TITLE (a Subli*e). TYPE OF RP..T A P•mOO COVER.

7 The Structure of Divide and Conquer Algorithms Technical Report

6. PEaRonmNGm ORI. REPORT NUMER

7. AUTHOR(&) 1. ONTRACT OR ORAT NUM119(e)

Douglas R. Smith
S. PERFORMING ORGANIZATION NAME ANO ADORES$ I0. POGRAM ELEMENT'. PROJECT. TANK

AREA i WOW UNIT NUMUN

Naval Postgraduate School 61152N- RR000-01-100
Monterey, CA 93940 N000144R30104

I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Naval Postgraduate School March 1983
I.NUMBER OF PA-2ESMonterey, CA 93940 3838

14. MONITORING AGENCY NAME & AOORESS(I/ differet ferom Csan& o/ OfIo.) IS. SECURITY CLASL (01 lOWN #*Pe

Chief of Naval Research Unclassified
Arlington, VA 22217 S bEc. ASiCATIOW DOOWRAceOne

SCHEDULE

14. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the aeseac entered In Block 30. If 0e11"t kern Rqfiej)

III. SUPPLEMENTARY NOTES

Submitted for publication March 1983.

It. KEY WOROS (Centihme en reverse ode It neceesary old Iddnt' 6 block mini..)

Algorithm design, divide and conquer, algebras, top-down programming,
program schemes

.4

20. ABSTRACT (Centna en revere side It necoeeay and identifS by bleat200.)

) The structure of divide and conquer algorithms is represented by program
schemes which provide a kind of normal-form for expressing these algorithms.
A theorem relating the correctness of a divide and conquer algorithm to the
correctness of its subalgorithms is given. Several strategies for designing

4 divide and conquer algorithms arise from this theorem and we use them to
formally derive algorithms for sorting a list of numbers, evaluating a
propositional formula, and forming the cartesian product of two sets.

DD JN 1473 EDITION OP I NOV ,5 S OBSOLETE Unclassified
S/N 0107. LF. 0 14- 601 SECURITY CLASSIFICATION OF THIS PAGE (W111Mh De SWOMP94)

4

• JoAoeguim FOez.

The Structure of Divide and Conquer Algorithms1 DTI0 TAB

Douglas R. Smith

Department of Computer Science

Naval Postgraduate School

Mo~nterey, California 93940 o
4 March 1983 a8

The structure of divide and conquer algorithm is

represented by program schemes which provide a kind of

normal-form for expressing these algorithms. A theorem relat-

ing the correctness of a divide and conquer algorithm bo the

correctness of its subalgorithms is given. Several strategies

for designing divide and conquer algorithms arise from this

theorem and we use them to formally derive algorithms for

sorting a list of numbers, evaluating a propositional formula,

and forming the cartesian product of two sets.

0. Introduction

The advance of scientific knowledge often involves the grouping together of
similar objects followed by the abstraction and representation of their common

structural and functional features. Generic properties of the objects in the

class are then studied by reasoning about this abstract characterization. The

resulting theory may suggest strategies for designing objects in the class which

have given characteristics. This paper reports on one such investigation into a

class of related algorithms called "divide and conquer". We seek not only to

gain a deeper and clearer understanding of the algorithms in this class, but to

formulate this knowledge for the purposes of algorithm design. The essential

structure of divide and conquer algorithms is expressed by a class of program

schemes. We present a fundamental theorem relating the correctness of an
instance of one of these schemes to the correctness of its parts. This theorem

1 The work reported herein was supported by the Foundation Research Program

of the Naval Postgraduate School with funds provided by the Chief of N.aval

Research.

-1-

-. . -. ., w..w ... U . ,.. , ,. . . , . - , .. . ,. ,. - . .- . , . -. , . ,.. ,

provides a basis for designing divide and conquer algorithms in a formal wy.

The prmneip] underlying divide and conquer algorithms can be simply

stated: if .the problem posed by a given input is sufficiently simple we solve it

directly, otherwise we decompose it into independent subproblems, solve the sub-

problems, then compose the resulting solutions. The process of decomposing the

input problem and solving the subproblems gives rise to the term "divide and

conquer" although udecompose, solve, and compose* would be more accurate.

We chose to explore the synthesis of divide and conquer algorithms for

several reasons:

Structural Simplicity - Divide and conquer is perhaps the simplest program

structuring technique %hich does not appear as an explicit control structure in

current programming languages. Our description of the structure of divide and

conquer algorithms is based on a view of them as computational homomorphisms

between algebras on their input and output domains. Careful choice of program-

- iing larguage constructs allows us to express divide and conquer algorithms con-

cisely ad in accord with their essential structure as homorphisms.

CoMutational Efficiency - Often algorithms of asymptotically optimal complexity

arise fran the application of the divide and conquer principle to a problem.

Fast approximate algorithms for NP-hard problems frequently are based on the

divide and conquer principle.

Diversity of Applications - Divide and conquer algorithms are common in program-

ming, especially when processing structured data objects such as arrays, lists,

and trees. Many examples of divide and conquer algorithms may be found in texts

on algorithm design (e.g. [1,11]). Bentley (3] presents numerous applications

of the divide and conquer principle to problems involving sets of objects in

multidimensional space.

one of our goals is help formalize the process of designing algorithms to

Smoet given specifications. Our approach in this paper is based on instantiating

program schemes to obtain concrete programs satisfying a given specification.

Related work on programming by instantiating program schemes is reported in

(4,5,7,8,15]. Aside from the fact that we are concerned here with only one

class of algorithms, our approach differs from these others mostly in focusing
on formal techniques for deriving specifications for the uninterpreted operators

in a program scheme.

-2-

In Section 1 we seek to acquaint the reader with some examples of divide

and conquer algorithms. Algebraic notation introduced in Section 2 is used to

present schemes in Section 3 characterizing the class of divide and conquer

, algorithms. The main result of this papmr is a theorem showing how the correct-

newo of a divide and conquer algorithm follows from its form and the correctness

of its parts. In Section 4 we discuss the top-down design of divide and conquer

algorithms and proceed with the derivation of a selection sort algorithm. In

Section 5 we derive algorithms for a few more problems including the evaluation

of Boolean expression and finding the cartesian product of two sets.

1. Examples of Divide and Conquer Algorithms

Applications of the divide and conquer principle are most naturally

expressed by recursive programs. In Figure 1 we present a selection sort pro-

gram expressed in an ad-hoc functional programming language (based on Backus' FP

systems (2]) whid we now summarize.

We use three data types: B (Boolean values TRUE and FALSE), IN (natural

numbers 0,1,2,...), and LIST(IN) (linear lists of natural numbers e.g., nil,

(3), (5,2,2,7)). Any element of these types is called an object, and if

X''" , n for n>0 are data objects then the n-tuple Xl ,...,xn> is also a data

object. 7he selector functions 1, 2,... return the first, second,... elements

of a tuple respectively. For example, i:<3,4>- 3, 2:<3,4>- 4.

In a functional programing language programs are viewed as a hierarchy of

functions. All functions map a data object to a data object. We use the nota-

tion f:x to denote the result of applying the function (program) f to data

object x. If a fuiction requires n arguments for some n>l, then it is applied

to an n-tuple of objects. Pbr the natural numbers we have the usual addition

function, denoted +, and the camperison operators <,< , ,# ,> ,>. In deference

to convention we allow infix notation for the arithmetic functions ard rela-

tioal operators, thus w equivalently write "3+5" and "+:<3,5>". On the data

type LIST(RN) we use the following functions: Nil, which returns the empty list

(denoted nil); List, which maps a natural number into the list containing it;

First, which returns the first element in a list; Rest, which returns its input

list minus the first element; Conr, which adds a number to the front of a list

(e.g. Cons:<2,(5,4)>= (2,5,4)); snoC, (the inverse of Cons) which returns a 2-

tuple containing the first element and the rest of the input list (e.g.

snoC:(2,5,4)- <2, (5,4)>); and Length, wich returns the length of a list. on

all types we use Id as the identity function.

-3-

4 . ! .*. .' .! _ a. t ! m . .

Suort:xo if~

xO-nil x0 U
x0onil -, Cons. (IdX Ssort) Select:x0

fi

Select:x - if
Rest:x-nil - snoC:x a

Rest:x# nil - b (mpose- (IdX Select) -snoC:x

fi

bmPse:<vl,<V2IZ> - if

vl<v 2 -v <V',ConS:<v 2 ,z>> U
Vl 2 - <v2 ,Cons:<vl,z"

fi

Figure 1: A Selection Sort Program

Functions are combined to yield new functions via the following combining

fones. fog, called the composition of f and g, denotes the function resulting
fran applying f to the result of applying g to its argument.

Ebr example: Length-est: (1,3,5) - Length: (Rest: (1,3,5))

- Length: (3,5)
" 2

fXg, called the product of f and g, is defined by
f X g: <x,y> - <f :x,g:y>.

Ebr exmple: IdX Length:<3,(1,3,5,7)>- <3,4>.

If ql,. .. % are boolean functions or constants and fl,..o,fn are functions or

data objects then

if q -o f 1 0 ... 0 qn "+ fn f

is a nondeterministic conditional form. During evaluation each of the boolean
functions, called guards, are evaluated. If any of the guards are undefined, or

I F -4-

i .- ..- ' - ',.".'.-, ';-, " " .. !..'.'':.'-'..'_'L'.L,'. "

if none of the quards evaluate to TRUE, then the value of the form is undefined.
Otherwise one of the guards, say qi, vhich evaluates to TRE is nondeterminlsti-
cally selected and the form evaluates to fi:x. For example,

I f < 14 2 fi -

is a simple if-f1 form mapping 34 X 1N into IN and computing the minimum of two

natural numbers. On application to <2,3> the guard "< evaluates to TRE thus
the form evaluates to 1:<2,3>= 2. Note that on application to <3,3> both guards

evaluate to TRUE thus either branch of the conditional can be taken. Although

either branch can be taken the result is the same for this function.

We name functions by means of definitions. Pbr example we can name the
above if-fi form Min by means of the following definition

Mm- if < a2 fi.

Ebr readability in definitions we allow the naming of arguments, replace selec-
tor function applications by the name of their result, and pretty print, so Min

can be defined by

Min:<x,y> i if
x<y 4 x U

x>y y
fi.

The selection sort algorithm in Figure 1 works as follows. If the input is

nil then nil is output. If the input is non-nil then a smallest element is
split off and then prepended onto the result of recursively sorting the
remainder of the input. The function Select evaluates as follows on the list

(2,5,1,4)

Select: (2,5,1,4) - Compose- (IdX Select) .snoC: (2,5,1,4)

- Compose- (IdX Select) :<2, (5,1,4)>
= Compose:<2,<l, (5,4)>>

- <1,Cons:<2,(5,4)>>
<1, (2,S,4)>

where Select: (5,1,4) evaluates to <1, (5,4)> in a similar manner. Ssort when
applied to (2,5,1,4) evaluates as follows

-5-

Ssort:(2,5,1,4) - Con-(IdX Ssort)-Select: (2,5,1,4)
- Cons* (IdX Sort) :<1, (2,5,4)>

. Conh<l, (2,4,5)>

= (1,2,4,5)

where Sort: (2,5,4) evaluates to (2,4,5) in a similar manner.

Ssort and Select exemplify the structure of divide and conquer algorithms.
In Ssort when the input is nil then the problem is solved directly, otherwise
the input problem is decomposed via Select, the subproblems solved via the pro-

duct IdX Ssort, and the results composed by Cons. In Select when the input has

length one then the problem is solved directly, otherwise the input is decom-

posed via snoC into a tuple of subinputs, the subinputs processed in parallel by

* .IdX Select, and the results composed by Cbmpose. We call Select in Sort and
snoC in Select the decomposition operators. Cons in Ssort and Compose in Select

are called composition operators. The identity function, Id, in both Ssort and

Select is called an auxiliary operator.

Why introduce new language features here? We feel that the importance of

-* divide and conquer algorithms is justification enough to require that a program-

ming language allow their concise expression. We have introduced those linguis-

tic features whid allow divide and conquer programs to clearly reflect their
essential structure. For example, the construction of decomposition operators

*is facilitated by allowing functions to return a tuple of objects. The product

form allows us to directly express parallel processing of independent subprob-
* lens. In conditionals we are not forced to determine the order in which the

guards are to be evaluated - they are conceptually evaluated in parallel. In
addition, the language simplifies reasoning about and designing divide and con-

quar algorithms.

2. Algebraic Concepts

* 2.1 Program Termination

In designing divide and conquer algorithms we shall be concerned with

ensuring that they terminate on all legal inputs. The usual method for showing
the termination of a recursive program depends on the existence of a well-

founded ordering on the input domain.

A structure <W,)-> where W Is a set and). is a binary relation on W is a
well-founded set and i is a well-founded ordering on W if:

4 -6-

1) i. is irreflexive: u ,u for all uW
2) , is assymetric: if u .v then v.u for all u,viW
3)). is transitive: if u .v and vi.w then ui.w for all u,v,wOW
4) there is no infinite descending sequence u0). ul.u 2%.... in W.

Ebr example, IN (natural numbers) with the usual greater tha relation > forms

the well-founded set <N,>>.

A recursive program P with input domain D can be shown to terminate on all
*inputs in the following way. First, a well-founded ordering). is constructed

on D. hen, we show that for any xA D P applied to x only generates recursive
applications (calls) to inputs x' for which x).x'. here can be no infinite
sequence x0 ,xlx 2 ... such that applying P to xi results in the application of
P to xi+ 1 for i>0 since the well-founded ordering does not allow x0)x 1

)-x 2)'-....

* Proposition 1. Let E be a set, let <WI.W> be a well-founded set, and let

h:E -), W be a function from E into W. The relation E defined by:

1 U -EU' iff h(u) -wh(ul)

is a well-founded ordering on E.

Proof: 1) E is irreflexive - for any u, h:u*wh:u, but then by definition

u" Eu"

2))*E is assymetric - if UmEu' then h(u))mW h(u') and h(u') W h(u)

(by assymetry of).W) thus u'wU.

3) "E is transitive - if u EU' and u')EEU" then h(u))-wh(u') and
h(u') -wh(u"). h(u))mwh(u*) follows by transitivity of)uW, then u)IEu" follows
by definition of E"

4) <EE> has no infinite decreasing sequence - if u0)IE ul)bE u2)mE
then h(uo) sw h(Ul))mW h(u 2) }- .. contradicting the well-foundedness of

<W,)mw>. D

Proposition 1 enables us to establish a well-founded ordering on LIST(N)
(list of natural numbers) by simply finding a function from LIST(1N) to 3N. A
suitable primitive function is Length, so we may define

x)-y iff Length:x > Length:y

-7-

for all x,,yELIST(IN). By Proposition 1 we conclude that <LIST(IN),.> is a

well-founded set.

2.2 MMM-Sorted Algebras

Algebraic concepts are playing an increasingly important role in forulat-

in; the fundamental notions of computer science. In this paper we show that

divide and conquer algorithms can be usefully characterized algebraicly as

hommorphisms between appropriately defined algebras on the input and output

domains. In this section we present the basic terminology of many-sorted alge-

bras based on and extending the notation of ADJ [9,10].

For any nI let n- {1,2,...,n). As usual the cartesian product of :s

Al, A2 ,..., An is written AlXA 2 X ...XAn and denotes {<al,a 2 ,...,an> i ai I

for iin}. Parentheses are used for nesting so

AX (A2 XA3)= {<al,<a 2 ,a 3 >> I a1i6A, a2 6A 2 , a3IA 3 }

the set of 2-tuples whose first component belongs to A1, and whose second com-

ponent belongs to A2 X A3 .

Generally, we use the term many-sorted algebra to denote a collection of

sets equipped with operators defined on cartesian products of the sets. Let S
denote a nonempty set of symbols called sorts and 36S be a distinguished sort

* called the principal sort. A finite §-oriented S-sorted signature I is a finite

set of operator symbols {o1,...,T}, r>l, where for 1< i< r, ai has type <wi,3>

where wigS* and wi= wil...Wini, nil>0. Let <As>sgS be an S-indexed family of

sets. If wIS* and w=wlw2 ... wn then Aw denotes the cartesian product

AwlXAwX ... XAwn. Letting 16 denote the empty string, AX' denotes the set

G consisting of the 0-tuple, [<>). A2-algebra A consists of a family of sets

<As>so S called the carriers of A, and a set of operators denoted aiA i=l,...,r,

where ciA:Aw -* A a. A a will be called the principal carrier of A. A I-

algebra A will be written A=<(Cl,...,Ck},{fl,...,fr}> where Cl,...,Ck are the
carriers of A and fl,...,fr are its operators. A I-algebra will be called a

composition algebra.

We shall be interested in composition algebras which 1) allow each element
of the principal carrier to be expressed as a composition of other elements, and

2) compose smaller elements into larger elements. For example, on the domain

LIST(3N) consider the operators

Nil: -> LIST(IN) (e.g., Nil:O = nil)

* -8-

I

List:3N--LIST(IN) (e.g., List:3 = (3)

Cons: NXLIST(3N)-LIST(IN) (e.g., (bns:<3,(l,4)> = (3,1,4)).

: Every list of natural numbers can be expressed as either a composition by Cons

((bns:<i,y> for some iimN and ySLIST(IN)) or by Nil, thus
<{LIST(1N),3N }, {Cons,Nil}>

is a caposition algebra for LIST(IN). Ebr the domain LIST(])-nil, the opera-

tors Cons and List allow expression of ead non-nil list as a composition by
Cons (Cons:<i,y> for some iAhN and yOLIST(IN)-nil) or by List (List:i for some

il m), thus

<{LIST(N)-nil,3N}, {Cons,List)>

is a ccmposition algebra for LIST(N)-nil.

Let A and B be E-algebras and let H= <hs>s5 S be an S-indexed family of

fLnctions %here for each sGS, hs:As - Bs . If w=w 1 2...w n let hw denote the

product function hwlXhw2X ... X hw- Thus if aSAw then

hW:a=<hwl:a I , hw2:a 2 , ..- hwn:an>.

h denotes the unique function mapping A)6 to BX , also written Id<>.

H= <hs>sq S is a 2-)homomorphism from A to B if for each operator symbol 6i
and aG Awl

h oiA:a = oB-h wi :a.

i.e. the diagram in Figure 2 commutes.

4

h
A B

hw

Figure 2: Commutative Diagram of a 7-homomorphism.

4 -9-

.4

A [- 1-algebra A is a family of sets <As>sq S and operators aiA: A - Awi

for each 1< i< r. A J - 1-algebra will be called a decomposition algebra. We

shall be interested in decomposition algebras which 1) allow each element of the

principal carrier to be decomposed into other elements, and 2) decompose larger

elements into smaller elements. For example, on the domain LIST(IN) we can
define operators %hich are the inverses of the composition operators considered

abov.

liN:LIST(]N) 4 (e.g. liN:nil = 0

tsiL:LIST(IN) -+ 3N (e.g. tsiL: (3) = 3

snoC:LIST(]N) 4NXLIST(IN) (e.g. snoC:(3,1,4) = <3,(1,4)>

Every list of natural numbers can be decomposed either by snoC or 1iN, thus

<{LIST(N) ,ii}, [snoC,liN}>

is a decomposition algebra for LIST(JN). For the domain LIST(I)-nil, the

operators snoC and tsiL allow the decomposition of each non-nil list into non-

nil lists and natural numbers, thus

<{LIST (N) -nil,3N}, fsnoC,tsiL}>

is a decomposition algebra for LIST(.).

Let A be a 2 -1 -algebra, B a I-algebra, and let H= <hs>s1S be an S-indexed

family of functions such that for each siS hs:As -B s . H is a

homomorphism from A to B if for each xAA such that (7A:x is defined

h :x = aB-hW-A:X (2.1)

i.e., the diagram in Figure 3 comutes. Ebr example, let S= {c,I} ard let

h
A ,, B

AW > BW
hw

Figure 3: Connutative Diagram of a 2 - 12-homomorphism.

-10-

7= Tl,a2) be a S-sorted signature here o1 has type <),8> and o2 has type

<c§,S>. Consider IS and C vhich are : - 1 and 1-algebras respectively vhere:

ES- <{N,LIST(3N)), {liN,Select)>

LC - <{IN,LIST(ON)}, {Nil,Cons}>.

IS has carriers ESc=flN and ES =LIST(DI) and operators

Select: LIST(IN) --> IN X LIST (24) and

liN:LIST(N) -> {<>1.

uSelect splits a list of natural numbers into its least element and the rest of

the list as discussed earlier. C has carriers 1Cc= IN and LC = LIST(IN) and

operators

Cons: RIXLIST(IN) -+ LIST(IN) and

Nil:{<>} --> LIST(IN).

Letting h be the function Sort, uhich sorts a list of numbers, and hc the iden-

tity function Id, we have a natural homomorphism from LS to LC. First, Sort and

Id have the required domains and codomains:

Id: IN - IN (hc:ESc -w Wc)

Sort:LIST(IN) -0 LIST(N) (h§ :LS - LC

and the homomorphism condition (2.1) is satisfied: for any xELIST(N) such that

liN:x is defined (i.e. x=nil)

Sort:x= Nil*Id<>.liN:x (h :x =o-ILC h%.crlLS :x)

and for any xGLIST(IN) such that Select:x is defined (i.e. x#nil)

Sort:x = Cons- (IdX Sort) -Select:x. (h :x =a2kchCs-*21S:x)

This homomorphism, of course, is the essence of a selection sort algorithm.

When the input x is nil we can sort directly, otherwise we decompose x into a

number i and a list y, sort y, then Cons i onto the result.

-ii

.. . .,,-11-] L I

............. ° ?? !:i

3. Divide and ConI2ur Algorithms: Form and Function

In this section we present notation expressing the form (via program

schemes) and function (via specifications) of divide and conquer algorithms. We

also present a fundamental theorem slowing how the functionality of a divide and

conquer progra follows from its form and the functionalities of its parts.

First we consider the expression of functionality.

3.1 Specifications

Specifications are a precise notation for describing the problem (or func-

tion) we desire to solve without necessarily indicating how to solve (or co-

pute) it. For exanple, the problem of decomposing a list of natural numbers

into its smallest element and the remainder of the list may be specified as fol-

lows.

Select:x=<i,z> such that x9(nil -0 i<Bag:z A Bag:x=Add:<i,Bag:z>

where Select: LIST(l4) -I IN X LIST (IN).

The problem is named Select which is a function from lists of natural numbers to

2-tuples consisting of a natural number and a list. Naming the input x and the

output <iz>, the formula "x,nilw, called the input condition, expresses any

restrictions on the inputs we can expect to the problem. The formula i<Bag:z

A Bag:x= Add:<i,Bag:z>n, called the output condition, expresses the conditions

under wbhich <i,z> is an acceptable output with respect to input x. The function

3ag maps a list into the bag (multiset) of elements contained in it (e.g.

Bag:(1,5,2,2)= (1,5,2,2}= Bag:(1,2,5,2)). i<Bag:z asserts that each element

in the list z is no less than i. The function Add:<i,b> returns the bag con-
taining i in addition to all elements of bag b. Bag:x=Add:<i,Bag:z>, asserts

0 that the multiset (bag) of elements in the input list x is the same as the mul-

tiset of elements in z with I added.

Generally, a specification iT has the form

1 :x= z such that I:x =n O:<x,z>

where TT: D -) R.

We ambiguously use the symbol TT to denote both the problem, its specification,

and a solution to the problem. Here the input and output domains are D aid R

respectively. The input condition I expresses any properties we can expect of

inputs to the desired program. Inputs satisfying the input condition will be

called legal Inputs. If an input does not satisfy the input condition then we

*-12-

don't care what output, if any, the program produces. The output condition 0

expresses the properties that an output object should satisfy. Any output

object z such that 0:<x,z> holds will be called a feasible output with respect

to input x. More formally, a specification iT is a 4-tuple <D,R,I,(> where
D is a set called the input domain,

R is a set called the output domain,

I is a relation on D called the input condition, and

0 is a relation on DXR called the output condition.

Program F satisfies specification TI = <D,R,I,C> if
VxQD[I-x -* 0:<x,F:x>]

is valid in a suitable first-order theory, i.e., if on each legal input F com-

putes a feasible output.

Let s be a set of sorts with principal sort 1. TI - <E,TJ,P> denotes an

• S-sorted family o problem where E and T are S-sorted families of sets, for

each sS Js is a relation on Es and Ps is a relation on EsXT s . For each sS

* let TsI called a omonent problem, denote the problem specification

<Es,Tsjs,Ps>. I will be called the principal problem and for each sS-a TS
will be called an auxiliary problem.

3.2 The Form of Divide and Conquer Algorithms

Let S be a sort set with principal sort 9 and let 2 be a finite a-oriented

S-sorted signature where 2= {al,...,ar), r>l, and for 1< i< r, ii has type

<wi,8> where wi41S* and wi= wi1 ... Win i , ni> 0. A 2-divide and conquer algorithm

has the fo m

f :x - if

ql :X - alT.fWI- lE:xD

qr:x - OrT.fwroarE:x
fi.

where

1. E is a2 '--algebra

2. T is a 2-algebra

3. F= <fs>s4S is an S-indexed family of functions where fs:Es- Ts

-13-

* " 4. for tlr, is a predicate on E

The operators in E and T are called the decomposition and composition operators

respectively. Each fs for sG S-9 is called an auxiliary function and f is

called the principal function. In these terms the program's behavior can be

described as follow: Given input x, a guard q1 which evaluates to TRW is
selected nondeterministically. Input x is decomposed by the decomposition

operator aiE into a tuple of subinputs. This tuple is then processed in paral-

lel by the function product fWi and the results composed by the composition

operator GtTs In order for the algorithm to terminate not all the branches of

qthe conditional can contain recursive calls. The nonrecursive branches treat

with those inputs which can be solved directly.

If we view the guards qi for if r as characterizing the set of inputs on

which the corresponding decomposition operator aiE is defined, then the divide

and conquer algorithm clearly expresses F as a homomorphism from the decomposi-

tion algebra E to the composition algebra T.

3.3 Correctness of a Divide and Conquer Algorithm

The min theoretical result of our paper is the following theorem which

shows how the correctness of the whole divide and conquer algorithm follows from

the correctness of its parts. Conditions (1), (2), and (3) of Theorem 1 simply

provide the form of a specification for the parts of a 2-divide and conquer
algorithm. The most interesting condition is the *separability" condition (4).

It is the principal link between the functionality of the algebras E and T, the

auxiliary problems T', and the given principal problem. In words it states

that if input x0 decomposes into subinputs xl, .,Xn, and zl, ... ,z n are feasi-

ble outputs with respect to these subinputs respectively, and zl,...,Z n compose

to form z0 then z0 is a feasible solution to input xO. Loosely put: feasible

outputs compose to form feasible outputs. Condition (5) asserts that for each

legal input at least one of the guards holds.

Theorem 1: Let S be a set of sorts with principal sort 9 and let 2 be a finite

2-oriented S-sorted signature. Let E be a I - '-algebra, T be a I-algebra, ft a

• S-sorted family of specifications, F a S-sorted family of functions where for

each sAS fs:Es ->T.. Let be a well-founded ordering on E and for each imr

let OiE and OiT be relations on E wi and TAw i respectively. If

-14-

(1) (Specification of <E) the decomposition operator CiE, f r iml,.o,r,

satisfies the specification

i:.7u.1>such that qi:xo A J MO -)

.- (Jwi:xj A (wij-n - 0 xo),xj)) A OiE:<XOXl,...,Xni>

where (7:Ea-?,E

(2) (Specification of cT} the composition operator iT, for in ,...,r,

* .satisfies the specification

O iT:<zl,...,znj>IZO such that OiT:<zOZl,...,Znl>

where cT:wi -) T

(3) (Solutions to Auxiliary Problems) for each s S-4 fs satisfies specifi-

cation

1Ts:x = z such that Js:x ; Ps:<x,z>

where 1T s: Es -4 Ts .

(4) (Separability of P) the following formula is valid for each ilr:

V<X#Xl***xn>'IE gwi IV<ZoZl,**z? >T s~i

[OiE:<x01 x ... ,xi> A j i Pwij :<xj,zj> A OiT:<ZOZl,...,aZni>

P 9 :<xo'zo>]

(5) (Definition of the guards) For all xGEa J :x =i

then the divide and conquer program

f a :x 0 if

ql:x 4 6lT.fWl.6lE:X

qr:x -4 (rT.fWr-rE:x

fi

satisfies specification TI = <E ,T aT ,P >.

Proof: Tb show that f satisfies 1TM <E T '3 P > we will prove

* -15-

. .. ,. . . ,, . . S. . . ., . .

by structural induction2 on E

Let x be an arbitrary object In E such that J :x holds and assume (Induc-

tively) that J :y -- P:<y,f :y> holds for any yGE such that x)my. From J :x

and condition (5) it follow that qi:x holds for some if r. By the semantics of

- . the if-fi construct fa :x can evaluate to OiT.fwiaiE:x_ We will show that

P :<x,f :x> by using the inductive assumption and modus ponens on the separabil-

ityj condition. Since qi:x A J :x holds and oiE satisfies its specification in

condition (1), the output condition of YE also holds. Let CiE:x=<xl,.Xnt> -

* We have for each iIni Jwij:xj. Consider xj for each jni. If wij#9 then by

condition (3)
Jwiji:x j * Pwii:<xj,fwij:xj>

and we infer by modus ponens Pw :<xj,fwj:x>. If on the other hand wija

then by condition (1) we have xo.x j and thus by our inductive assumption
JwiX j =0 Pwi j:<xj,fwlji:Xj>.

Again we infer Pwi iw:<xjifwij:xj> by modus ponens. By condition (2) we have

OIT: 7iT: <fwil :Xl, •. •,fWin :Xn>, fwi , •.•*•,fWin
>

where
aiT: <fwil:Xl, .. • fWin :xn > =f f:X.

We have now established the antecedent of condition (4) enabling us to infer

P 9 :<x, f :x>. QM

0 Notice that in Theorem 1 the form of the subalgorithms diE, aiT, and fs for

sGS-a is not relevant. All that matters is that they satisfy their respective

specifications. In other words, their function and not their form matters with

respect to the correctness of the whole divide and conquer algorithm.

2 Structural induction on a well-founded set <W, i> is a form of mathematical

induction described by

* VxGW 'VyfW~x).y A Q:y 9; Q:xl =* VxGW Q:x

i.e., if Q:x can be shown to follow from the assumption that Q:y holds for each

y such that x).y, then we can conclude that Q:x holds for all x.

* -16-

4. The Desiqn of Divide and Conquer Algorithm

' 4.1 A Problem Reduction Approach to Design

.,. Design is a goal-directed activity and this is the primary reason for the

importance of top-down design methods. Cne form of top-down design, which we

call problem redtiction, may be described by a two phase process - the top-down

decomposition of problem specifications and the bottom-up composition of pro-

grams. In practice these phases are interleaved but it helps to understand them

separately. Initially we are given a specification TT. In the first phase we

create an overall program structure for iT, which fixes certain gross features

of the desired program. Sow parts of the structure are at first underdeter-

mined but their functional specifications are worked out so that they can be

treated as relatively independent subproblems to be solved at a later stage.

Next we work in turn on each of the subproblem specifications, and so on. This

process of creating program structure and decomposing problem specifications

terminates in primitive problem specifications which can be solved directly,

without reduction to subproblems. The result is a tree of specifications with

the initial specification at the root and primitive problem specifications at

the leaves. The children of a node represent the subproblem specifications

written (or derived) as we create program structure.

The second phase involves the bottom-up composition of programs. Initially

each primitive problem specification is solved to obtain a program (which is

often a programing language operator). Subsequently whenever each of the sub-

problem specifications generated when working on specification TT hawe solu-

tions, these subproblem solutions are assembled into a program for TT.

We advocate (13,14] a formal counterpart to the problem reduction approach
based on the use of program schemes. A scheme provides a standard overall
structure for the desired program and its uninterpreted operator symbols stand

for the underdetermined parts of the structure. To use a scheme we require a

corresponding d strategy. Given a problem specification TT a design stra-

tegy derives specifications for subproblems in such a way that solutions for the

subproblems can be assembled (via the scheme) into a solution for T. A design

strategy then is a way of generating an instance of a scheme which satisfies a

given specification. Any program scheme admits a number of design strategies.

Dershowitz and Manna [4] have presented some strategies for designing program

sequences, if-then-else statements, and loops.

@ -17-

We have found three design strategies for divide and conquer algorithms.

Each attempts to derive specifications for subalgoritms which satisfy the con-

ditions of Theorem 1. If sucessful then any operators which satisfy these

derived specifications can be assambled into a divide and conquer algorithm

satisfying the given specification. The key difficulty is to ensure that the

derived specifications satisfy the separability condition, so each design stra-

tegy concentrates on this goal.

The first design strategy, called DS1, can be described as follows.

U61) First choose a simple decomposition algebra as E and

choose simple known functions for the auxiliary functions,

qthen use the separability condition to reason beckwards

towards output conditions and to reason forwards towards input

conditions for the operators in T.

P. To see how we reason towards specifications for the operators in T, suppose that

we have selected a I- '-algebra E and chosen simple known functions fs for

sAS-9 and let the given problem be T- <D,R,I,O>. We show how to derive output

conditions for aiT for some ifr. First use
(7Iz.xo = <xl,.V.., xni > as OiE:<z0,z1,...,Znj>,

fwij:xjMzj as Pwi :<xj, zj> for l<j<n i wij#, and

0:<x,z> as P :<x,z>,

and create the following formula

S<xo,x I, .. •,xn>4E V~i <Zo,Zl,*...,Zne T wi

[OiE:<x0'xl'"''fXni> jA~r Pwij : <x j = z j > = * P, :< x0 'z 0 >]" (4.1)

This formula differs from the separability condition only in that the hypothesis

OiT:<zO,zl,...,Zn> is missing. We desire to establish the separability condi-

tion so that we can apply Theorem 1 to show that the program we construct satis-

fies its specification. We know that OiT it is a relation on the variables

z0,zl,...#zni. Our technique is to reason backwards from the consequent always

trying to reduce it to relations expressed in tenrs of the variables

FZo,,...,zni. If we can show that the assumption of an additional hypothesis

of the fo r

Q:<Zoz, ,... zn i>

* -18-

allows us to prove (4.1), i.e., if we can show that

V<x0 ,xl , . . . ,'xn ~j i %V<z0,zl1, ... Zn> wi

[0" [OiE:<X0'Xl,'".xni> A A w:<xj = zj> A Q:<zO,z,...,zn > =0 P:<x0,z0>]

then we take Q as the output condition OiT since the separability condition is
satisfied by this choice of OiT. Formal systems for performing this kind of

deduction are presented in (12,131. We shall proceed a little less formally

here, makin use of our Intuition for guidance.

We can also use (4.1) to obtain input conditions for our composition opera-
tors. The input condition for aiT is some relation on Zl,...,zni which can be

expected to hold when aiT is invoked. Suppose that by reasoning forwards from

the relations established by the decomposition operator and the component func-

tions we infer a relation Q':<zl,...,Zni>, i.e., that

V<xxl.*Oxn> i %w V <Z0 ,Z 1I.. ,Zn>41T5 wi

[OiE:<XO,xl,..°,Xni> A j~gr Pwij:<xJ'zj> =01 Q:<Zl'°*°zni>]"

Then we take Q' as an input condition to ai T.

The other two design strategies are variations on DSl and use the separa-

bility condition in an analogous manner.

DS2) First choose a simple composition algebra as T,

second,choose simple known functions for the auxiliary func-

tions, then use the separability condition to solve for the

input and output conditions for the operators in E. An input

condition for the decomposition operator is found by determin-

* irg conditions under Which a feasible output exists.

DS3) First choose a simple decomposition 2- 1 -algebra as E and

choose a simple composition I-algebra as T, then use the

* separability condition to reason backwards towards output con-

ditions and to reason forwards towards input conditions for

the auxiliary functions.

In each of these design strategies we must find a suitable well-founded ordering
e

on the input domain in order to ensure program termination. Also, the guards

are chosen to reflect the domain of definition of the decomposition operators.

* -19-

4.2 Design of a Selection Sort Algorithm

Suppose we are given the following specification for sorting a list of

natural nuaers

SORT:x-z such that Bag:x=Bag:z A Ordered:z

where Sort:LIST(N) -> LIST(IN).

Here "Bag:x-Bag:z" asserts that the multiset (bag) of elements in the list z is

the sams as the multiset of elements in x. Ordered is a predicate which holds

when applied to a list whose elements are in nondecreasing order.

The selection sort algorithm presented in Figure 4 will be derived using

design strategy L52. Note that Ssort makes use of the composition algebra

A-<{LIST(N),?J),{Nil,Cons)> discussed in Section 2.2. In choosing A as the

cmposition algebra it is not obvious ahead of time that a decomposition algebra

can be found which works with A to solve the SORT problem. This choice of alge-

bra should be regarded as a tentative hypothesis about how sorted lists can be

composed. The sort set of A is S= {c,A) where A =LIST(IN) and Ac -IN. The

operator Nil has type <%,.> and operator Cons has type <cg,a>, Nil:A -4A ,

and Cons:Ad -+ A 9a
Naming our desired program Ssort we have at this point,

E, LIST(IN), T aLIST(IN), Tc= 3N

J 4=0 TRUE,

P :<x,z> 4-* Bag:x=Bag:z A Ordered:z,

*@ OIT:<<>,z> O z-nil,

OZr:<Zo,b,zl> 40 Cbns:<b,zl>=z 0 ,

f a is Ssort.
ea

It remains to determine input and output conditions Jc and PC for the auxiliary

function fc, the domain Ec, and the output conditions O1E and 02E for the decom-

position operators.

Our first step towards determining 0 2E is to instantiate the separability

condition as far as possible thus obtaining

V <x0 ,<a,x>>G LIST(IN) X (ECX LIST (IN)) t/<z0 ,<b,Zl>>1 LIST (IN) X (IN X LIST (IN))

* -20-

..* .

a

Ssort:x n if
x- nil - Nil-Ido-liN:x a

x,'nil - C Qons-(IdXSsort).Select:x
fi

Select:x " if

Rest:x= nil -> (Omposel-Id-snoC:x a

Rest:xj i nil -) Ompose2- (IdX Select) .SnoC:x

fi

Oomposel:v = <v,nil>

Compose2:<vl,<v2,z>> - if

Vl< - <v1 ,Cons:<v 2 ,z>> 0

vl>v 2 - <v2 ,Cons:<vl,z>>

fi

Figure 4: A Selection Sort Program

[O2E:<x 0,<a,xl>> A Pc:<a,b> A Bag:xl=Bag:z I A Ordered:z I A Cons:<b,zl>=z 0

-0 Bag:x 0 =Bag:z 0 A Ordered:z 0] (4.2)

To construct this formula we have made the following substitutions into the

separability condition of Theorem 1:

1. replace w2 by cA
2. replace E and T by LIST(IN)

0 3. replace EC9 by EcXLIST(IN) and Tc g by IN XLIST(3N)

4. replace P :<x,z> by Bag:x=Bag:z A Ordered:z

5. replace aT:<b,Zl> by Oons:<b,zl>

• Since we desire to have the separability condition hold in order o apply

Theoren 1 we evidently must try to find values for EcPc, and 02E which allow us

to prove (4.2).

-21-

In order to determine 0 2E we attempt to reduce (4.2) to a formula dependent
on the variables x0 , a, and x, only. The consequent Is the conjunction of two
atomic formulas so we can tackle them separately. Consider first

Bag:xo= Bag:z 0. (4.3)
This is equivalent to

Bag:xo Bag:Cons:<b,zl>
since Cons:<bzl> =z 0 is a hypothesis. The fact

Bag-Cons:<u,y> =Add:<bBag:y>
allows us to reduce the goal to

Bag:x 0 = Add:<b,Bag:zl>.

Then since

Bag:xl= Bag:z 1
is a hypothesis we further reduce to

Bag:x 0 = Add:<b,Bag:xl>.
* This last relation is almost expressed in terms of variables required by 02E%

Let us assume a-b and thus let Ec =TN , Jc:x 4m* TRUE, PC:<a,b> 4=o a-b, and
let fc be Id. This finally reduces (4.3) to

Bag:x 0 P dd:<a,Bag:xl>. (4.4)

In other words, if we had (4.4) and a= b as additional hypotheses then we could
establish our original goal (4.3). We will use (4.4) in the output condition
02E .

Consider now the second goal

Ordered:z 0 (4.5)
which via the hypotheses Cons:<b,zl> =z and a b reduces to

* Ordered-Cons:<aZl

The fact

u< Bag:y A Ordered:y 4=0 Ordered.Cons: <u,y>

can be used to produce the equivalent goal

a< Bag:z A Ordered:z I.

Now Ordered:zl is a hypothesis and thus is assumed to hold. The remaining
subgoal can be transformed via the hypothesis Bag:xl=Bag:z I to

6 a< Bag:xi.

We haw reduced (4.5) to a subgoal whid is expressed in terms of the variables

* -22-

required by 0 2E. By reasoning backwards we have shown above that if

a<Bag:x A Bag:x 0 =Add:<a,Bag:xl> (4.6)

holds then we can establish (4.2). We take (4.6) as 0 2E.

Before constructing the specification for a2E we construct a well-founded

ordering on E.M LIST(IN). By Proposition 1 we can construct one based on a map-

ping from LIST(IN) to IN. 7he known function Length maps LIST(N) to 3N so

define

x0 i x, iff Length:x0 > Length:x I .

By Proposition 1 <E,+> is a well-founded set.

Using (4.6) as 02 E and this well-founded ordering on LIST(IN) we create the

following specification for c2E in accord with condition (1) of Theorem 1.

1 72 E:xO=<a,xl> such that a<Bag:x I A Bag:x 0 =Add:<a,Bag:x0 > A
Length: x0>Length: x,

where aE:LIST(IN) -3 INXLIST(N)

By inspection we see that there is no feasible output when the input is nil so

we add the input condition "x# nil" obtaining

2E:x = <a,xl> such that x 0 pnil =! Bag:x 0 =Add:<a,Bag:x0 > A
a<Bag:x I A Length:x0 >LengLh:x 1

where oE:LIST(IN) -) INXLIST(IN).

In (13] we show how to derive the input condition for decomposition operators by

formal means. In the next section we derive a divide and conquer algorithm,

called Select, for this problem.

4 From the input condition of Select we obtain the guard x nil. The

intended algorithm at this point has the form:

Ssort:x = if

4 ql:x -* Nil'f)'iE:x G
x-#nil -+ Cons- (IdXSsort)-Select:x

fi.

The construction cf a specification for ciE is similar. First, we instan-
4 tiate the separability condition obtaining

V'x 0 GLIST(IN) Vz 0 ILIST(IN)

-23-

[OlE:xo A Nil:O-z 0 - Bag:x 0 -Bag:z 0 A Ordered:z0] (4.7)

In creatir this formula we have replaced

wl by 36

E and T by LIST(IN)

P by Bag:x 0 Bag:z o A Ordered:z O]

C'T by Nil

and performed some simplifications.

Again we treat the two conjuncts of the goal separately. Since z0 is nil

then the goal Ordered:z0 holds. The other goal

i Bag:z0 Bag:x0

is equivalent to

x0 = nil

since z0 = nil. We use "x0=nil" as the output condition of OlE and create the

specification

OIE:xO=z such that x0 =nil
where 61E:LIST(IN) -4 {<>}.

The function liN satisfies this specification.

Putting together all of the operators derived above, we obtain the follow-

ing selection sort program:

Ssort:x -0 if

x=nil - Nil'Id0 >liN:x I
xM nil - cans- (IdX Ssort) -Select:x

fi

which can be simplified to

Ssort:x 2 if

x=nil - x 0

x nil -> Cons- (IdX Ssort) -Select:x

fi

4.3 Synthesis of Select

In the previous section we derived the specification

-24-
0

Select:xO=<a,x> such that xo'nil -0 Bag:xo-Add:<a,Bag:xl> A
a<Bag:x 1 A Length:x 0 > Length:x l .

%here Select:LIST(ON) -' IN XLIST(N)

The synthesis of Select proceeds according to the design strategy nS2. First,

we choose a simple decomposition algebra for the input domain - the set of non-

nil lists of natural numbers. The algebra A=<{INLIST(IN)),(tsiL,snoC}> is

satisfactory since all non-nil lists can be decomposed into non-nil lists and

natural numbers by tsiL and snoC. The sort set is S= fc,f}, tsL has type

<9,c>, and snoC has type <S,cg>. We hav
..: Ec= I ,

. E = LIST (N), T IN X LIST (IN),

J:x0 4=0 x0 #nil,

P a:<x0 ,<a,xl>> 4= Bag:x 0 =Add:<a,Bag:xl> A a<Bag:xI A Length:x 0 >Length:x,

C1 E is tsiL, and a2E is snoC.

tsiL is defined when Rest:x= nil so this condition is used as ql. snoC will

decompose a non-nil list x into a number and a non-nil list when Rest:x# nil, so
we take this condition as q2" Our intended algorithm now has the form

Select:x0 = if

Rest:x0 = nil -> alT'fc-tsiL:xo0O

Rest:x0 @ nil -> 2T -(fcX Select) -soC:xo

fi

It remains to determine the output domain Tc, the input and output conditions J.

and Pc for the auxiliary function fc" and the composition operators ct1T and cr2

0 E =LISTCIN) is made a wll-founded set exactly as in the previous example
s

by defining x0o.x I iff Length:x 0 > Length:x I . snoC and tsiL clearly preserve

this ordering.

In pursuit of an output condition for c2 Tr (a relation dependent on the

variables ao, z0, v, a1 , and zI), w first instantiate the separability condi-

tion with the result

)V<<a0,z0>,<v,<al,zl>>> I)N X LIST(IN)) X (TcX (3N X LIST(IN)))

V '/<x 0,<u,xl>> LIST(IN) X (3N X LIST(N))

(snoC:x 0-<u,xl> A Bag:xl=Add:<alBag:zl> A al<Bag:z I A

Length:x I > Length:z I A Pc:<u,v> A 02T:<<aO,zO>,<v,<al,zl>>>

-25-

-- 0

-0, Bag:x 0 "-dd:<a0 ,z 0 > A a0 <Bag:z 0 > A Length:x0 > Length:z0]. (4.8)

7b create this formula the following substitution were made

cAi replaces w2
LIST(4) replaces E and 3IN XLIST(INI replaces T

IN replaces Ec

snoC:x0 <u,Yl> Leplaces 02E:<xOxl,x2>

Bag:x 1 MAdd:<alBag:zl> A al<Bag:zl A Length:xl > Length:z I

relaces Pa:<xi,<aizi

* Again w consider the goals in (4.8) one at a time. 7he goal

ao< Bag:z 0

is already expressed In the form we desire, so we can use it in a2T. Consider

the goal

Bag:x 0 = Add:<a 0 ,z0 >.

We have

Bag:x 0 = Bag-Cons:<u,xl> (by hypothesis)

= Add:<u,Bag:xl>

= Add:<u,Add:<alZl>> (by hypothesis)

Suppose that we let u=v and thus let Tc= 3N, PC:<u,v>4mku=v, and fc be Id. We
have

Add:<v,Add:<a1,zl>> = Add:<a0 ,z 0 >.

This condition is expressed in the desired variables so we use it in O2T.

Finally, consider the goal

* Length:x 0 > Length:z 0 . (4.9)

In the followir derivation we use Card:x to denote the cardinality of the bag

x. We then have

* Length:x 0 - Length.Cons::<u,xl>
= 1 + Length:x1

= 1 + Card-Add:<a1 ,Bag:zl> (using hypothesis

Bag:x=Md:<a,Bag:zl>)

=2 + Card.Bag:z1

= 2 + Length:z I .

* •-26-

Thus we have reduced (4.9) to

2 + Lerngth:z I > Lerth:z0 .

Putting all these conditiom together we obtain

Add: <vAdd:<a 1 ,Bag:zl>> a Add:<a0 ,Bag:z 0 > A
ao<Bag:z 0 A 2+Length:zl>Length:z 0

and use it as 02T. We derive an input condition by reasoning forwards from

snoC:xO=<u,xl> A Bag:xl=Add:<a,Bag:zl> A al<Bag:z I A Length:x 1 >

Length:zl A u=v

towards a relation expressed in terms if the variables v, a1 , and zl. The only

useful inference seems to be

al< Bag:z 1

so we take this as the input condition and form the specification
>>= <a0 > such that al<Bag:z1 =- ao_<Bag:z 0 A

Add:<v, Add:<al,Bag:zl>>=Add:<a0 ,Bag:z0 > A 2+Length:zl > Length:z 0

where a2TA:N X (IN XLIST(ON)) -) IN XLIST(]N)

A conditional program, call it Compose2, can be constructed satisfying this

specification.

Compose2:<v,<al,Zl>> - if

v<al -* <v,Cons:<al,zl>>

v>a I -> <al,Cons:<v, zl>>

fi

We construct 01T in a similar manner. The separability condition is par-

tially instantiated yielding

V<<a0 Oz0 >,v> INXLIST(1N))X3N '<x 0 , u>4LIST(N)X3N

[tsiL:x O -u A u-v
-0 Bag:x 0 =Add:<a0 ,Bag:z 0 > A a0 <Bag:z 0 > A Length:x0 >Length:z 0] . (4.9)

Dealing first with the goal

Bag:x 0 = Add:<a0,Bag:z0>

we have
Bag:x0 = {u} - {v1

-27-

thus

{v - Add:<aOaEg:zo>

or equivalently

aO -v A zO-nl.

Again the second goal ao<Bag:z 0 is already reduced to the desired form. cbn-

sider now the final goal

Length:x0 >Length: z0 .

We have Length:x 0 - 1 thus the goal must reduce to

Length:z0 - 0

or equivalently, z 0 =nil.

Putting together all these conditions we obtain

01T:<zOv> " zo-nil A aO-v

and create the specification

alT:V <az> such that z-nil A a-v.
%here flT:LIST(IN) -3 IN XLIST(DI).

The function Composel is easily shown to satisfy this specification:

Composel:v = <v,nil>.

The functions derived above are assembled into the following program:

Select:x0 = if

Rest:x 0 = nil - Oomposel-Id0*tsiL:x 0 0
* Rest:x 0#nil - C ompose2*(IdX Select) .snoC:x0

fi

The complete selection sort program derived in this section is listed in Figure
4. It can be transformed into the simpler program listed in Figure 1.

5. More Examples

5.1. Cartesian Product of Two Sets

* In this section w illustrate the design of a divide and conquer algorithm

using design strategy E63. The problem of forming the cartesian product of two

sets can be specified by

-28-

.- ..

CART PR D:<x,x > z such that z (<ab>Ia1x and bdxI

where CART PRODSE (I) XSET(I)-SET(I XN).

Here SET(R) denotes the data type of finite sets whose elements belong to the

data type R.

First, we choose a decomposition algebra on SET(I)XSET(2) and then a

canposition algebra on SET(I X IN). A simple decomposition algebra on sets Is

easily found:

Al <SET (IN), IN), {Split, ihP}>

where

SAla a SET (IN)

Ale :N

'lAl - ihP:SET(R) -+ [<>) (type <XA>)

Oc2Al Split:SET(R)-) RXSET(R) (type <c9,A>).

ihP decomposes the empty set into the 0-tuple 0 and Split decomposes a nonempty

set into an element and the remainder of the set. ihP is defined only on the

empty set and Split is defined only on nonempty sets so together these operators

deccmpose every finite set.

However, our input domain is 2-tuples of sets. We shall apply the above

decomposition operators to the first component of the tuple and leave the second

uncharged. The result is the 2- 1-decmposition algebra

A2=<{INXSET(N),SET(IN)XSET(IN))},(ihP-1, Trans- (SplitX Id2)}>.

where

A2= SET(N) X SET(IN),

A2c= IN X SET(3N),

aIE= ihP-:SET(N) X SET(W) -- [<>1 (type <X,S>),

c2E,= Trans* (SplitX Id2) :SET(IN) X SET(N) -> (INXSET(N))X (SET(I)XSET(3N))
(type <c8,9>).

a2E makes use of two new functions. The function Id2 returns a 2-tuple contain-

ir copies of its input, i.e., Id2:x=<x,x>. The function Trans transposes a

tuple of tuples as follows

* -29-

,TarA:<Xl,...eXn> - <yl,...,ym>

where xio<xileee,xim> and yj-<xlj,e*,Xnj> for l< <n and l<Jjim. For

example,

Trans:<<l,2,3>,<4,5,6>> <<1,4>,<2,5>,<3,6>.

a2A2 behaves as follows on input <(l,2,3),{4,5)>:

Trans-(SplitX Id2):<(1,2,3),(4,5}> - Trans:<<l, {2,3)>,<{4,5),(4,5)>>

= <<.,[4,5}>, <[2,3),[4,5}>.

Before choosing a composition algebra for T we nust decide what can the

auxiliary output type Tc be given that Ec is IN XSET(). Since Ec appears to

be a slightly modified form of E (-SET(IN)XSET IN)) we might conjecture that

the auxiliary function fc is similar to the principal function f and thus use

SET(NX]N) as Tc. The composition operator a2 T then is some mapping from

SET(NX3N)XSET(INXIN) to SET(3NX) - we can use the set-union operator

Union. ClT is some mapping from {<>} to SET(14X IN) - we can use the function

Phi, whid maps the 0-tuple into the empty set.

So far we have developed the program structure

CP:<x,x'> f if

x0 () -3 Phi.1d0 -ihP1l:<x,x'> 0

x#[(-* Union- (fcX CP) -Trans- (SplitX Id2)) :<x,x'> 0

fi.

In order to determine a specification for fc we create the following instance of

the separability condition

* <<Xo,X' >,<ax' >,<XzX'2>> (SET(I)XSET((li X SET(]N))X (SET(3N)XSET(N))

V<z0 ,zlz 2 >ISET(X N) XSET(X N) XSET(I X IN)

[Split:x 0-<a,x 2 > A x'l x10 A x' 2 -x' 0 A P,:<<a,x' 1 >,zl> A

z2 - {<u,v>1ulx 2 and vlx' 2) A

* z0 -Union:<zl,z 2 > -* z0 = (<u,v>IuGx 0 and vx' 0 } 1. (5.1)

Since we are trying to reason backwards to an expression for Pc:<<a,x'l>,zl> we

seek to reduce the goal to a relation over the variables a, x' 1 , and z1 . Con-

sider the goal

z0 = {<u,v>lulx 0 and vAx' 01. (5.2)

The set expression on the right hand side can be transformed as follows.

6l -30-

{<uv>lutx o and vlx'0) - {<uv>lu§Add:<a,x2> and vAx 0)

(since Split:x- <a,y>)

- {<u,v>l (u-a or ulx 2) and v/x' O)

- Union:<{<u,v>lu-a and v/x'o), {<uv>iu/Ix 2 and v/ix'o)>

- Union:<(<u,v>Iu,-a and vAx'1), {<uv>Iud x2 and ve x' 2 1>

(since x'1 -X'0 and x'2 -x'O)

- Union:<(<u,v>lu- a and vAx'1lz 2>.

(since zo- (<uv>Iudx0 and vAx'o)).

Using the hypothesis zo-Union:<zlz 2> we reduce (5.2) to

Union:<zlz 2> =Union<I<uv>lu= a and vt x'l},Z2>

whid holds if

zI - {<u,v>lu=a and v4lx'0 } (5.3)

holds. So if we take (5.3) as an additional hypothesis then (5.1) holds. We
take (5.3) as our output condition for fc and create the specification

CP aux: <a,x> = z such that z = {<u,v> I u = a and v x)

CP aux:N X SET (IN) -- SET ON) X SET (IN).

A divide and conquer algorithm for this problem can easily be constructed using

design strategy ESl (along the same lines as Ssort). The complete algorithm for
producing the cartesian product of two sets is listed in Figure 5. The reader

can easily find several ways to simplify CP and CPaux without affecting their

correctness.

5.2 Evaluating a Proposition

In this section we present a divide and conquer algorithm for evaluating a

proposition. It provides an example of a more complex signature and illustrates

* a programming style suggested by our treatment of divide and conquer algorithms.

Given a well-formed proposition F and an interpretation I the problem is to comn-

pute the truth value of F under I. Relevant portions of the abstract data types

for propositions, interpretations, and truth values are presented below.

*) A data type PR(P representing well-formed propositions can be described

abstractly as follows. Let L"TERS be a set of symbols called letters. PRCP is

generated from LETeRS using the constructors

* -31-

a

CP:<xx'> if

x= [Phi -Id 0 ilhlP-:<x,x'> 0
fi xY (1 "- Union- (CP auxXCP) -Trans (SplitX Id2):<x,x'> 0

CPaux: <a,x> 0 if

x= { 4 Phi.Id 0 .ithP-2<a,x> 0

ft. x Y(4 Add-(IdXCP aux)-Trans-(Id2XSplit) :<a,x> 0

Figure 5. Forming the Cartesian Product of Two Sets.

Compose atom:LETrER-) PROP, which converts a letter into an atomic proposition,

Ccmpose..neg:PROP-- PROP, whid forms the negation of a proposition,

Compose conj :PROP X PROP - PROP, which forms the conjunction of two propositions,

Compose_disj:PRCPXPROP-+ PROP, whid forms the disjunction of two propositions.

In other words we have

<PROP,ErrMrS}, {Compose atom, Compose neg, Compose conj, Compose disj}>

as a composition algebra for PROP. Each of these constructors are uniquely

invertible and we have the corresponding decomposition algebra

<(PROP,LETTERS), (Decomposeatom, Decomposeneg, Decomposeconj, Decompose disj}>

-. 'where

Decomposeatom:PROP -> LETER, which decomposes an atomic proposition into its

constituent letter,

Decompose neg:PROP - PROP, which decomposes a negation into its constituent pro-

position,

Decompose conj:PROP-)PROPX PROP, which decomposes a conjunction into its con-

stituent propositions, and
I

Decompose disj:PRCP - PROP X PROP, which decomposes a disjunction into its con-
stituent propositions.

4 -32-

These decomposition operators are defined when the predicates Atom, Neg, Conj,

Disj are true respectively. Fbr example, Atom:F holds exactly when

Decompose atom:F- oc for some ocQ LETTER. We also have F= Compose. atom:oc.
Similarly, Conj:F holds iff Decompose conj:F- <G,H> for some G,HQPROP and thus

F = Compose conj: <GH>. More formally the followir axioms hold for all

ocLETTER and F,GGPRCP

Decompose.atm-ompose atom:oc =oc

Decompose neg •Compose neg: F - F

Decompose conj *Compose conj: <F,G> = <F,G>

Decompose disj .Compose disj:<F,G>= <F,G>

Atom-Compose atom:oc = TRUE

* Neg *Composeg F - TRJE

Conj *Compose conj : <F,G> = TRUE

Di sj -Compose disj: <F,G> = TRUE

The input for our proposition evaluater also includes an interpretation

IGINTERPRETATION which associates boolean values with each letter. We use the

operator Assoc:LETTERX INTERPRETATION-+ B to determine the value of a given

letter under an interpretation.

The output domain for our proposition evaluater is 2B, which has the compo-

sition algebra

<[]B), Id,Not,And,Or}>,

* where

Id:B --+ 1B (the identity operator),

Not:3B -* B (the usual negation operator),

And:B X B -+ B (the usual logical and operator),

Or:1B X B - 3B (the usual logical or operator).

A divide and conquer algorithm, called Prop_eval, for evaluating a proposi-

tion is listed in Figure 6. Here is an example computation of Prop_eval: Let F

denote the representation of the proposition (A A B) V -A and F1 and F2 the

" •-33-

Prcpval: <F, I>"

if

Atom:F -) Id.Assoc- (Decmpose atomX Id) :<F,I> 0

Neg:F - Not.Propoval.(Decompose neg)XId):<F,I> 0

Oonj :F -* And- (Prop eval X Proppoval) -Trans- (Decompose conj)(Id2) :<F,I> 0
Disj:F - Or - (Prop evalX Prop pval) -Trans. (Decompose_disjX Id2) :<F,I> 0

fi

Figure 6. A Proposition Evaluator

propositions A A B and -A respectively thus F=ompose Disj:<FlF 2>. Let I be

an interpretation under which letters A and B have the values TRUE and rALSE

respect ively.

Prop oval: <F, I> = Or- (Prop oval X Prop oval) .Trans- (Decompose_disjX Id2) : <F, I>

(since Disj:F holds)

= Or •(Prop.oval X Propoval) -Trans:<<F IF2>,<I,>>

= Or. (Prop oval X Propoval) :<<F11 > ,<F2, I>>

- Or: <FALSE,FALSE>

= FALSE

where Prop eval:<F1 ,I> and Prop eval:<F2,I> both evaluate to FALSE in a similar

manner.

6. Concludinq Remarks

We have presented a class of program schemes which provide a normal-form

for expressing the structure of divide and conquer algorithms. Based on these

schemes we have given a theorem relating the correctness of a divide and conquer

algorithm to the correctness of its parts. The theorem gives rise to several
strategies for designing divide and conquer algorithms and we used these stra-

tegies to derive several algorithms.

By using syntactic program schemes to express the structure of a diverse
class of algorithms we have the disadvantage that some instances will not be in

their most desireable form. However this approach to representing programming

* -34-

knowledge has a number of important advantages. 1) Schemes express the essen-

tial structure of algorithms in the class in a clear and precise way. 2) Gen-

eric proofs of correctness, as provided here by Theorem 1, can be given. The

correctness of a divide and conquer algorithm is reduced to the simpler task of

establishing the conditions of Theorem 1. 3) By providing the essential struc-

ture of algorithms in a class schemes may suggest uniform approachs to designing

then.

The design strategies we have presented involve choices which may be weakly

motivated and we may need to try several alternatives before we find one which

works. The resulting design process can be represented by a tree of derivation

* paths, some of which lead to useful algorithms, some of which are dead ends.

Aside from this control problem the design strategies can be formalized for use

in automatic program synthesizers. However at present it is not clear whether

an adequate collection of heuristics can be found to guide an automated design

* process through the design space without human insight.

The top-down style of programming suggested by our design strategies can be

summarized as follows. First we require a clear understanding of the problem to

be solved, expressed formally by specifications. If a divide and conquer solu-

tion seems both possible and desireable we begin to explore the input and/or

output domains looking for simple decomposition and composition algebras respec-

tively. Depending on our choice we follow one of the design strategies dis-

cussed above. Using our intuition and/or proceeding formally using the separa-

bility condition we derive specifications for the unknown operators in our pro-

gram. These specifications are then satisfied either by target language opera-
tors or by (recursively) designing algorithms for them. Once a correct but pos-

sibly over-structured or inefficient algorithm has been constructed we subject

!0 it to equivalence-preserving transformations resulting in a more satisfactory

-design.

-35-

REFERENCES

1. Aho, A.V., Fbpcroft, J.E., and Ullman, J.D. (1974). Th.Desi!n and Analysis

of Computer Algorithms, Addison-Wesley Pub. Co., Reading MA, 1974.

2. Backus, J. (1978), Can Programming be Liberated from the vn Neumann Style?

A Functional Style of Programing and its Algebra of Programs. CACM 21,

8(1978), pp 613-641.

3. Bentley, J. (1980), Multidimensional Divide and Conquer, CACt 23, 4(1980),

214-229.

* 4. Dershowitz, N., and Manna, Z., (1975), On Automating Structured Programming,

Proc. Colloques IRIA on Proving and Improving Programs, Arc-et-Senans, France,

July 1975.

5. Dershowitz, N. (1981), The Evlution of Programs: Program Abstraction and0
Instantiation, Report No. UIUCDCS-R-81-1011, Dept. of Computer Science, Univ. of

Illinois at Urbana-Champaign, Urbana, IL, 1981.

6. Dijkstra, E.W. A Discipline of Programing. Prentice-Hall, Englewood

Cliffs, NJ, 1976.

7. Gerhart, S. (1975), Knowledge about Programs: A Model and Case Study, Inter-

national Conference on Reliable Software, Los Angeles, California, April, 1975,

88-94.

8. Gerhart, S. and Yelowitz, L., (1976), Control Structure Abstractions of the

Backtrack Progra'-ing Technique, IEEE Trans. Software Engineering SE-2, 4(1976),

285-292.

9. Goguen, J.A., Thatcher, J.W., and Wagner, E.G., (1977), Initial Algebra

Semantics and Continuous Algebras, JACM 1(24), 1977, 68-95.

10. Goguen, J.A., Thatcher, J.W., and Wagner, E.G. (1978), An initial algebra

* approach to the specification, correctness, and implementation of abstract data

types. in Current Trends in Programming Methodology, Vol. 4. R.T. Yeh, Ed.,

Prentice-Hall Inc., Englewood Cliffs, NJ, 1978, 80-140.

11. Horowitz, E. and Sahni, S., (1978), Fundamentals of Computer Algorithms,

* Computer Science Press, Potomac, MD, 1978.

12. Smith, D.R. (1982a), Derived Preconditions and Their Use in Program Syn-

thesis, Sixth Conference on Automated Deduction, Ed. D.W. Loveland, Lecture

* -36-

Notes in Computer Science 138, Springer-Verlag, New York, 1982, pp 172-193.

-V 13. Smith, D.R. (1982b), Top-Down Synthesis of Simple Divide and Conquer Algo-

rithms, Technical Report NPS 52-82-011, Naval Postgraduate School, Monterey, CA,

November 1982, 100 pages.

14. Smith, D.R. (1983), A Problem Reduction Approach to Program Synthesis, Sub-

mitted for publication, January 1983.

15. Yelowitz, L. and Duncan, A.G., (1977), Abstractions, Instantiations and

Proofs of Marking Algorithms, Proc. ACM Symp. on Artificial Intelligence and

Programming Languages, Rochester, NY, 1977, 13-21.

-37-

INITIAL DISTRIBUTION LIST

Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22314

Dudley Knox Library 2
Code 0142
Naval Postgraduate School
Monterey, CA 93940

Office of Researc-, Administration
*m Code 012A

Naval Postgraduate Schuol
Monterey, CA 93940

Chairman, Code 52Hq 40
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93940

Professor Douglas R. Smith, Code 52Sc 16
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93940

Chief of Naval Research
Arlington, Va 22217

-

I

I

-38-

I

-2LMED

