.............

s RAAS

- el i

““‘m. .

;
% 5‘..D
b
(AR A

.

#
o T
-
¥

S — S ——
DTRIPUTION STATEMENT A

CMu-CS-82-15

Local Code Generation
and Compaction in
Optimizing Microcode Comp_ilers

Steven R. Vegdahl
December 1982

A
R
-

o
ey
¢

»%ﬁﬁKRTMENT

M ™
S)
& %
5 S
%

" BTIC.

‘ RELECTE
& SMAstm-

D

&

Carneqie-Mellon University

83 03 03 001

~ Approved fox public release;
Distribution Unlimited

v
B S W W e P a W, BV, W gV oWy T w® aV el =" &t -

CMU-CS-82-153

; Local Code Genération
and Compaction in
Optimizing Microcode Compilers

Steven R. Vegdahl

December 1982

1r,’;’\—-‘\ AN g

Computer Science Department
Carnegie-Mellon University

e

[accession For

L . — Pittsburgh, PA 15213
NTIS GRARL N[9

DTIC TAB O

Unannounced O

Justification . _ |

By Submitted to Carnegie-Mellon University
Distribution/ in partial fulfillment of the requirements

——]

Avallability Codes for the degree of Doctor of Philosophy.

Avall and/or
Dist Special

4 ‘
P' ' Copyright © 1982 Steven R. Vegdahl

This work was supported in part by the Fannie and John Hertz Foundation and in part by the
Defense Advanced Research Projects Agency (DOD), ARPA Order No. 3597, monitored by
the Air Force Avionics Laboratory Under Contract F33615-78-C-1551.

The views and conclusions contained in this document are those of the author and should not
be interpreted as representing the official policies, either expressed or implied, of the Defense
Advanced Research Projects Agency or the US Government.

UNCLASSIFIED

SECURITY CLASSIFICATION OF Twis PAGE (Wien Daia Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLEING FORM
1. REPORY NUMBER 2. GOVY ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
CMU-CS-82-153
4. TITLE (and Subtitle) . ' ' 8. TYPE OF REPORT & PERIOD COVERED
LOCAL CODE GENERATION AND COMPACTION IN Interim

OPTIMIZING MICROCODE COMPILERS

6. PERFORMING ORG. REPORT NUMBER

|74, MONITORING AGENCY NAME & ADDRESS(H different from Controlling Office) | 15. SECURITY CLASS. (ol thle report)

?. Auﬁa(.) 8. CONTRACT OR GRANT NUMBER’s)
STEVEN R VEGDHAL F33615-78-C-1551

8. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELENENT. ’ROJEC? TA$K
Carnegie-Mellon University : A & WORF UNLT MUMB
Department of Computer Science

Pittsburgh, Pennsylvania 15213
1Y CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Defense Advanced Research Projects Agency

1400 Wilson Blvd RRcsmber 142

Arlington, Virginia ~:s¢j yaa

Air Force Office of Scientific Research (NM)
Bolling AFB, DC 20332

15a. DECL ASSIFICATION/DOWNGRADING
SCHEDULE

—— LN
16. DISTRIBUTION STATEMENT (of thie Report)

Approved for public release; distribution unlimited.

) 17. DISTRIBUTION STATEMENT (of the alirtract entered In Block 20, i different from Report)

18. SUPPLEMENTARY NOTES -

19. KEY WORDS 7Continue on reverae side il neceseary and identily by block number)

20. ABSTRACY rContinue on reverse eide If necessary and fdentify by block number),

Horizontal microarchitectures often have features that make it difficult for a compiler to
produce good object code from a high-level language. Although the problem of compacting
microcode into a near-minimal number of microinstructions has received a great deal of
attention, other phases of the compiler have not been studied as thoroughly. This dissertation
explores methods of generating quality microcode for horizontal microarchitectures,

compacting the microcode, and the interaction between code generation and compaction.

DD 1 JE:.‘?; ‘473 EDITION 6? 1 NOV 63 1S CBSOLETE UNCLASSIEIED

SECURITY CLASS FICATION OF THIS FAGE (Rher Dok Entered)

b i 28

b4 il

oS A
L e T ey

g

it 4ot } ey
. AR

. I A
A e T

o r—
‘.'.." .

Mo s 2l d o
[4 s
.

v

mT & 2« ey T
Pl

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

——

There are often several code sequences that perform the same computation for a given
microarchitecture. If the code generation and compaction phases of the compiler are
executed sequentially, the code generator may not be able to determine the best code,
because a code sequence that compacts well in one situation may contain several
bottienecks in another. This dissertation explores three methods of coupling the code
generation and compaction phases of the compiler, and concludes that subtle micromachine
features make it vefy difficult to produce good code unless the code generator actually
produces several candidate code sequences that are compacted and compared with one

another.

This dissertation also explores machine-independent methods of generating microcode.

One aspect of the code generation problem—that of generating constants “intelligently”—is '

discussed in detail. A technique called constant unfolding is presented that can be used to
produce code sequences that generate constants in “unusual’’ ways during execution; such
code sequences often lead to more compact code when the literal field of the microinstruc-

tion is a bottleneck.

The classical microcode compaction problem is also examined. We show that this NP-hard
problem can be solved in polynomial time if the number of registers in the micromachine is
bounded, and use this result to argue that the problem is not general enough. A heuristic

algorithm is presented for solving the general problem.

—

SFCURITY CLALS,FICATION OF THIS PAGEr¥hen [ate Entered,

- Abstract

: Horizontal microarchitectures often have features that make it difficult for a compiler to
produce good object code from a high-level language. Although the problem of compacting
' microcode into a near-minimal number of microinstructions has received a great deal of
5 attention, other phases of the compiler have not been studied as thoroughly. This dissertation
;: explores methods of generating quality microcode for horizontal microarchitectures,
compacting the microcode, and the interaction between code generation and compaction.

There are often several code sequences that perform the same computation for a given
microarchitecture. If the code generation and compaction phases of the compiler are

* -executed sequentially, the code generator may not be able to determine the best code,
. because a code sequence that compacts well in one situation may contain several
{ bottlenecks in another. This dissertation explores three methods of coupling the code

gene-ation and compaction phases of the compiler, and concludes that subtie micromachine
features make it very difficult to produce good code unless the code generator actually
produces several candidate code sequences that are compacted and compared with one

another. K

This dissertation also explores machine-independent methods of generating microcode.
] One aspect of the code generation problem—that of generating constants “intelligently”—is
. discussed in detail. A technique called constant unfolding is presented that can be used to
. proc]uce code sequences that generate constants in “unusual’’ ways during execution; such
code sequences often lead to more compact code when the literal field of the microinstruc-

tion is a bottleneck.

el
The classical microcode compaction problem is also examined. We show that this NP-hard

problem can be solved in polynomial time if the number of registers in the micromachine is
- bounded, and use this result to argue that the problem is not general enough. A heuristic
algorithm is presented for solving the general problem.

Acknowledgemenfs

| wish to thank my advisor, Anita Jones, for much helpful guidance and encouragement
during the course of this research. | would also like to thank the rest of my committee, Rick
Cattell, Joe Newcomer and Guy Steele for their many helpful suggestions on improving this
manuscript. | am especially grateful to Guy and his wife Barbara for their emotional support
during times when the completion of this dissertation seemed an endless task.

| wish to acknowledge the following teachers, professors, and employers who played key
roles in my scholastic development during my grade school, high school, or college years:
Bill Wright, Maxeye Hanley, Francis Brewer, Ron Henley, Bill Colescott, and Don Knuth.

I am also grateful to the Fannie and John Hertz Foundation for its financial support during
my years at CMU.

I wish to express my appreciation to the National Football League Players Association for
going on strike during the final stages of the preparation of this manuscript, thereby
permitting additional work on Sunday afternoons and Monday nights.

Finally, | wish to thank my wife Jeannie for much-needed love and emotional support.

A

PPy - - - e a e A a A e m A & ala . omlimte —m e aalAllaia ba ot ao s R o

3
3
h
h

b 2 yaarar)

L 4

Lan g

o i Rty v, .
E et P R RS o e « e ¥ ate T aT -
FAE AL AL IR T Y Sl Pl L .. Wikl IS e PR DR P)

Table of Contents'

1. Introduction

1.1. Horizontal Microcode

1.2. Motivation

1.3. This Research Effort

1.4. Organization of the Dissertation

2. Issues in Microcode Optimization

2.1. Differences between Microcode and Traditional Architectures
2.1.1. Horizontal instruction format
2.1.2. Cost of main memory access
2.1.3. Timing issues
2.1.4. Large number of storage classes
2.2. Optimization Issues Affected by Microprogrammed Target Machines
2.2.1. Register allocation
2.2.2. Flow analysis
2.2.2.1. Volatile registers
2.2.2.2. Delayed instructions
2.2.3. Local code generation
2.2.4. Use of constants
2.2.5. Compaction
2.2.5.1. Complexity of the compaction problem
2.2.5.2. Compaction in the presence of volatile registers
2.2.6. Evaluation order determination
2.2.7. Short-circuit evaluation
2.3. Summary

3. Previous Work

3.1. Compaction
3.1.1. Compaction within a basic block
3.1.1.1. Heuristic searches
3.1.1.2. Greedy algorithms
3.1.1.3. lterative methods
3.1.2. Compaction involving mulitiple basic blocks
3.1.2.1. Ad hoc methods
3.1.2.2. Trace scheduling
3.1.2.3. Compaction involving loops
3.2. Micromachine Models
3.2.1. Conflict determination
3.2.2. Data dependency considerations

.......

3.2.2.1. Polyphase instructions
3.2.2.2. Delays
3.2.2.3. Volatile registers
3.2.3. Microoperation semantics
3.3. Register Allocation
3.4. Code Generation
3.4.1. Simple code generation systems
3.4.2. Code generation with limited optimization
3.4.3. Code synthesis from ISP
3.5. Summary

4. Scope of this Research

4.1. The Central Problem
4.1.1. Some examples
4.1.1.1. Increment by two
4.1.1.2. Loop testing
4.1.1.3. Volatiie register compensation
4.1.2. Summary
4.2. Related Issues
4.2.1. Machine model
4.2.2. Microcode compaction
4.2.3. Constant generation
4.2.4. Code generation
4.3. Problems Not Addressed
4.3.1. Register allocation
4.3.2. Other phase-coupling problems
4.3.3. Flow analysis
4.3.4. Interblock compaction
4.3.5. Machine model
4.4. Research Methodology
4.4.1. Coupling methods
4.4.1.1. Ignoring the problem
4.4.1.2. Educated guessing
4,.4.1.3. Iteration
4.4.1.4. Multiple choices
4.4.1.5. Performing the phases in paraliel
4.4.2. Coupling methods to be tested
4.4.2.1. And/Or
4,4.2.2. lteration
4.4.2.3. Squeeze

5. Micromachine Model

55838 BRLLRRLALLLLLRLR28B222 2 BRRBRIBRBRN

L b
-t b

5.1. Overview
5.2. Components of the Micromachine
5.2.1. Storage resources
5.2.2. Microoperations
5.2.2.1. Operators
5.2.2.2. Constants
5.2.2.3. Storage resources

55855288 &

’

vii

5.2.3. Conflict classes
5.2.4. Control flow
5.3. Observations about the Model

5.3.1. Limitations of the model
5.3.1.1. Conflict classes
5.3.1.2. Timing
5.3.1.3. Dynamic modification of control store
5.3.1.4. Two-level microcode
5.3.1.5. Microsubroutines

5.3.2. Effectiveness of the model

6. Microcode Generation

6.1. Overview
6.2. Nondeterministic Code Generation Algorithm
6.2.1. Data structures
6.2.2. The algorithm
6.2.3. An example
6.2.4. Data dependency and control flow information
6.2.5. Constant unfolding
6.2.5.1. The basic mechanism
6.2.5.2. An extension
6.2.5.3. An implementation note
6.2.5.4. Summary
6.2.6. Summary
6.3. Deterministic Code Generation Algorithm
6.3.1. Search depth
6.3.2. Pruning and ordering the search
6.3.3. The evaluation function
6.4. Results

7. Compaction

7.1. Fisher's Compaction Algorithm
7.2. The Volatile Register Problem
7.3. The Data Dependency Problem
7.3.1. Complexity revisited
7.3.1.1. A polynamial-time algorithm
7.3.1.2. An example
7.3.1.3. Main memory references
7.3.1.4. More complex machine models
7.3.2. Qur solution
7.4. The Intrablock Compaction Algorithm
7.5. Summary

8. Coupling Code Generation and Compaction

8.1. litlustrative Problems

8.2. And/Or Method
8.2.1. Modifications to the code generation and compaction routines
8.2.2. Examples
8.2.3. Evaluation

8.3. lteration

PTI ™

288

51
51

J3ARAVBLEER 6 BBBBR

7

~ N
® N

BYRLLL 2 88BIRFLBRBII I FAFR

.......................................

viii
8.3.1. Post-compaction analysis 100
8.3.2. Examples 101
8.3.3. Evaluation 102
8.4. The Squeeze Method , 103
8.4.1. Modifications to code generation routine 104
8.4.2. Examples ’ 104
8.4.3. Evaluation 105
8.5. Combining Methods 106
8.6. Summary 107 -
9. Conclusions 109
9.1. Contributions 109
_ 9.2. Future Work 110
“ Appendix A. Deterministic Code Generation Algorithm 113
- 5 A.1. Data Structures : 114
[~ A.2. The Algorithm 115
- A.2.1. Search cutoff 115
- - A.2.2. Beginning the search 115
T'.' A.2.3. Allocating costs among sub-searches 115
’ A.2.4. Node ordering and selection 116
A.2.5. Caching search resuits 117
: A.3. Limiting Search Breadth 117
- A.4. Specification of the Algorithm 118
t' A.5. An Example 120
Appendix B. The Evaluation Function 123
t- B.1. Some Definitions 124
- B.2. Data Structures 125
T B.2.1. Distance tables 125
] B.2.2. Caches 127
3 B.2.3. Other data structures 127
. B.3. The Evaluation Function Algorithm 127
g B.3.1. The distance function 128
q B.3.2. Associative distance 130
[B.3.3. Size-based distance 130
y B.4. Examples 131
{ B.4.1. Sample micromachine 131
1 B.4.2. Examples of the evaluation function in action 132
i B.5. Shortcomings of the Evaluation Function 135
i-‘ Appendix C. List of Axioms Used in Experiments 137 .
1 Appendix D. Kmap Machine Description 139
Appendix E. Puma Machine Description 143
i Appendix F. Selected Examples 149
A ® References 171
1 Index 179
1
b
I'®
g
| O . R L .

...
...................

List of Figures

Figure 1-1: Horizontal microinstruction that performs an add and shift.
Figure 2-1: Typical horizontal instruction format.

Figure 2-2: Horizontal control word controlling typical hardware resources.
Figure 2-3: Instruction sequence made illegal by delayed execution.
Figure 3-1: Shortening of loop by pushing pOp into previous iteration.
Figure 4-1: Micromachine with ALU and counter.

Figure 4-2: Micromachine with register file and volatile register.
Figure 6-1: Example ot Code Generation.

Figure 6-2: Example of with Search with Data Dependency.

Figure 6-3: Data links resulting from search in Figure 6-2.

Figure 6-4: Data links between pOps after transitive closure.

Figure 6-5: Search with constant unfolding.

Figure 6-6: Search with constant unfolding on a subexpression.
Figure 6-7: Constant unfolding used to avoid ALU uOps.

Figure 6-8: Three methods of performing a masking operation.

Figure 7-1: uOps with non-zero volatile data dependencies.

Figure 7-2: Bundles created from uOps in Figure 7-1.

Figure 7-3: Compactions of bundles in Figure 7-2.

sl e MO

[Figure 7-4: uOps with different data antidependencies.
F Figure 7-5: Data dependency graph cast as set of chains.
Figure 7-6: Data dependency graph with conflicts.

Figure 7-7: Matrix-graph before modifications for constraints.
Figure 7-8: Matrix-graph atter modifications for constraints.

Figure 7-9: Optimally-compacted uOps.

Figure 7-10: Dependency graph before serialization.

Figure 7-11: lliegal serial orderings of pOps.

Figure 8-1: Using the constant register to produce a constant on the fbus.
Figure 8-2: Using a mask to produce a constant on the fbus.
Figure 8-3: An And/Or tree.

Figure 8-4: lllustration of cutoff being reduced with search breadth.
Figure 8-5: Example of transform function.

Figure 8-6: Redundant version of transform in Figure 8-5.

5 Figure A-1: Two And/Or trees with different costs.

{ Figure D-1: Sketch of the Kmap microarchitecture.

Figure E-1: Sketch of the Puma microarchitecture.

—r—— r—p——
BBBEBRBELIRAB2BBI3BIIILLB2LBBB0on

= Y
8=

2

P R T

)
!

Y

xi

List of Tables

o 'WY-" o
.

Table 8-1: Summary of first iteration coupling example. 102

: Table 8-2: Summary of second iteration coupling example. 102
Table 8-3: Summary of third iteration coupling example. 102
: Table 8-4: Summary of first combination experiment. 106
X Table 8-5: Summary of second combination experiment. 107
X Table 8-6: Summary of third combination experiment. 107
3 Table B-1: pOp expressions. 131
- Table B-2: Operator-operator table. 131
f" Table B-3: Resource-resource table. 132
Table B-4: Operator-resource table. 132

[Table B-5: Literal-resource table, 132
- Table B-6: Pattern-resource table. 132

£l

Ceaa -

Introduction

Chapter 1
Introduction

In 1951, Maurice Wilkes introduced the concept of microprogramming at the Manchester
University Computer Inaugural Conference [Wilkes 51]. At that time, however, the cost of
memory was sufficiently high that microprogramming was not used seriously in practice until
more than a decade later with the implementation of the IBM 360 series machines [Fagg 64].
Since that time, the cost of memory, with its highly regular patterns, has decreased at a rapid
rate, making it more attractive to implement digital systems in microcode. At the same time,
programmers have demanded more complex computer architectures, which would be quite
cumbersome to implement completely in hardware. Thus, microcode offers a number of
advantages to both the hardware designer and the programmer:

Flexibility Many decisions can be delayed much further in the design process.

Extensibility Once an architecture is on the market, it can be extended with additional
microcode, perhaps to tailor a machine to a special application.

Cost The number of components (and types of components) can be reduced by
implementing a digital system in microcode; the information density in the
control memaory is much higher than in combinatorial logic.

Simplicity Many complex instructions, such as table translation and string com-
parison, are simpler to implement in microcode than in hardware.

The trend toward VLS| implementation of digital systems is expected to increase the use of
microprogramming. The use of microcode rather than digital logic decreases hardware
complexity, and increases functionality and flexibility. According to Parker and Wilner [Parker
81], “It is universally agreed that future single-chip processors will be microcoded.”

1.1. Horizontal Microcode

The desire for high performance has led many micromachine designers to choose a
horizontal instruction format [Husson 70, Salisbury 76}, which is to say that for each machine
resourle there exists a field in the microinstruction that is wired to the control lines o[the
resource during the execution of that microinstruction. A vertical (i.e., traditional) machine
instruction, on the other hand, specifies only a single operation to be performed. A vertical
architecture may therefore be considered a degenerate case of a horizontal one.

N e e

..................................

...........................

T
H 2 Local Microcode Generation and Compaction

Consider an example on a PDP-11. It takes three instructions to add two registers together,
shift the result left one bit, and store the resuit in a third register:

MOV R2,R3
ADD R1,R3
ASL R3

In a horizontal architecture, it may be possible to compute the result in a single instruction
because the shifter, the ALU function, and data paths are independently controlled. Figure
1-1 depicts a horizontal microinstruction format in which the shifter, ALU, and various

registers are independently controlied, performing the above operation in single instruction.

abus bbus ALU fen. shift count ALU dest

{ Rt [R2 | ADD | 1 | R3 | 3

Figure 1-1: Horizontal microinstruction that performs an add and shift.

There may also be additional fields that allow the programmer to specify branching conditions
or to control external devices.

Although the term horizontal technically refers to an instruction format with no encoding, a
typical “horizontal’” microinstruction format is a mixture of non-encoded and encoded fields.
This often occurs because a particular resource or operation will be used so infrequently (in
the designer's view) that the cost of an independent field is not justified. An example
commonly found in microarchitectures is that of a branch address. It is not expected that a
branch will occur during every instruction; similarly it is not expected ihat a every instruction
will need literal (constant) data. in many microarchitectures, then, the branch-address field

Y'YY'v'v' o

may specify literal data during microinstructions in which it is not specifying a branch
address.

1.2. Motivation

Ty

Until recently, the production of microcode could be characterized by the following
observations:

! e The microcode was written by someone who was of necessity intimately familiar
4 with the machine to be programmed-—possibly the hardware designer.

o Once the microcode was written and tested, it was written onto a ROM, and not
modified unless it was necessary to replace the ROM in order to remove a latent

E’. microcode bug.

b e The size of the control store was relatively small, thereby bounding thescomplexity

’ of the microprogram.

b

b

i

!

| 1
L‘AL — B B D o I O o 1

(s

Lo 4
)

w""'—'
VTN,
LA

LA Jue Al)

pp————r
-

N ~ACONODEY SEansy

introduction . _ | 3

In the 1970’s, however, it became increasingly popular to design machines that are
programmed according to a different scenario [Nanodata 72, Fuller 76]. Microprogramming
thus began to develop many of the same software engineering problems that traditional
programming has had for the past two decades [Davidson 78]. In particular:

e A microprogrammer does not want to become familiar with the machine by
studying circuit diagrams. It is desirable to free the programmer from having to
learn the machine in extreme detail. At the very least, a tutorial describing the
microarchitecture should be available. ldeally, the microprogrammer should be

freed from understanding such details as propagation delays and data path
routing.

e Microcode is frequently modified because many control stores are now writable.
Thus, tools for reliably maintaining firmware are necessary. This can be
especially important when a user desires te modify or extend *“house-written”
microcode, but keep it consistent with the rest of the system.

¢ As memory becomes less expensive, the size of control stores increases. Even
“expert”’ microprogrammers are finding that the size and complexity of the
microcode to be written and maintained is becoming too large [Jones 80].

In addition to the above problems which have analogues in macroprogramming, horizontal
microprogramming aiso iends itself to pipelining. It is not uncommon to have parts of three or
four unreiated computations being performed during a single microinstruction. For example,
one microinstruction might contain a conditional branch on a comparison from the previous
cycle, an addition being performed in the ALU, a main memory reference being initiated, and
data from a register file being read onto a bus in preparation for being fed into the shifter on
the next cycle. Such overlapping tends to make the code difficult to understand and maintain.

As user-microprogrammable machines become more common and control stores become
larger, the effort required to produce and maintain microprogrammed systems increases. As
a result, it is desirable to develop more powerful tools for the task. Researchers in firmware
engineering have made progress in several areas.

Microprogram verification [Patterson 76, Carter 78], can be helpful in detecting inconsis-
tencies that may be introduced during the production and maintenance of microprograms.
Still, this approach does not free the programmer from writing microcode at the machine
level.

The compilation of programs from a high-level language (HLL) has been quite successful in
facilitating program development and maintenance in traditional software systems, so it
seems reasonable to approach microcode in the same manner. HLL microprogramming does
have drawbacks, however:

e Language requirements for microprogrammed machines may differ from those of
traditional machines just as system implementation languages tend to differ from

_—y A . H PP G ey PP R L

o
............................
..................

.........

Local Microcode Generation and Compaction

;_1;". application languages. For example, the pipelining that is possible in many
microarchitectures can make it attractive tc specify which branch of an
it-then-else is most frequently executed {Fisher 81a]. DeWitt [DeWitt 76},
Dasgupta [Dasgupta 78], and Patterson [Patterson 79] are among those who
have explored solutions problems in the area of microprogramming languages.

¢ When a high-level language is used a compiler is necessary to translate the
program into machine language. Because speed is often the motivation for
putting a function into microcode in the first place, an optimizing compiler is
desirable. There is stil much work to be done in the area of horizontal
microprogram optimization. This dissertation will explore several aspects of
horizontal optimization.

e Validation of microprograms, which is sometimes done using oscilloscopes and
logic analyzers, can be quite difficult. Code motion and other optimizations
performed by a HLL compiler may compound this difficulty. There is certainly a
need for microprogram validation/debugging tools.

Microcode compaction has been attempted with moderate success by a number of
researchers [Yau 74, Tsuchiya 74, Dasgupta 76, DeWitt 76, Tokoro 78, Mallett 78, Wood 79a,
Fisher 79, Ma 80, L.andskov 80, Poe 80]. Compaction algorithms have typically assumed that
the object code has been generated (either by a compiler or by hand), but has not been
compacted. The goal, then, is to rearrange the given object code into as few instructions as
possible without changing the semantics of the program. Although the problem is NP-hard
(as will be shown in Chapter 2), a number of linear or near-linear algorithms have been
devised that produce less than optimal results, but nevertheless appear to compact
microcode quite well. Unfortunately, these algorithms exhibit a dependence on the initial
orcering of the source code, as will be shown in Chapter 7.

1.3. This Research Effort

While much work has been done in the area of compacting already-generated microcode,
relatively little attention has been paid to the problem of generating high quality microcode.
Previous work assumed that the code had already been generated—either by hand, or by a
previous phase of the compiler. in cases where a code generator actually exists (and the

details of the generator are given), there is little evidence that an attempt was made to
E ' produce good code—the authors were concentrating on the compaction problem [Mallett 78,
Fisher 79, Poe 80)]. This dissertation concerns itself with certain aspects of the code
generation process itself—in particular, generating code that is conducive to being com-
pacted well.

¢ Because is it generally agreed that the compilation process is too complex to perform in a
» single step [Aho 77, Leverett 79], we are presuming a compiler that consists of a number of
steps, or phases. The premise on which this thesis is based is that the code generation and

Introduction _ 5

compaction phases of the compiler cannot be separated if good code is desired; the two
phases must be performed together, iteratively or in some other manner that allows the code
generator some knowledge of how the code is being compacted. We have built code
generation and compaction phases as part of this research effort, and have demonstrated
that their coupling can improve code quality.

Other issues relating the generation of “packable’” microcode are also discussed, but only
to the degree that they relate to the primary topic. The intelligent generation of literals in
microarchitectures has some potential benefits and is discussed in moderate detail.

The techniques described in this dissertation have been implemented in Pascal and have
run on a DEC VAX-11/780 [Strecker 78]. Appendices A and B are devoted to the details of
the implementation, and may be skipped by the casual reader.

1.4. Organization of the Dissertation

The first four chapters are of an introductory nature. Chapter 2 is an overview of the key
issues in microcode optimization as we see them. The chaptzr is more or less a reply to the
question: Why is microcode optimization different from traditional optimization? Chapter 3is a
review of previous work done in the field of microcode optimization; it describes the current
state of the art in terms of the issues discussed in Chapter 2 and sketches the recent work by
several researchers in the field. Chapter 4 describes in detail the issues addressed in this
dissertation. In addition, it describes important related problems not addressed, along with
the reasons for not addressing them. The chapter concludes with an brief description of the
three techniques for coupling code generation and compaction that are considered in this
dissertation.

Chapters 5 through 8 describe the work we have performed. Chapter 5 is a discussion of
the micromachine model used in the implementation. It includes a discussion of the important
features of microarchitectures that the model fits, as well as examples of micromachines
which do not fit the model and the reasons for excluding them. It concludes with a discussion
of the ramifications of the model! for some of the issues stated in Chapter 2. Chapter
6 describes the heuristic search algorithm used in implementing the code generator. The
chapter first desgribes the algorithm nondeterministically and then discusses the pruning
mechanisms used that enabled it to run on a deterministic machine. In Chapter 7 we show
that the commonly accepted compaction model is insufficient in at least two respects, and
then present our algorithm, which solves a more general problem. Chapter 8 describes the
three methods used to couple the code generation and compaction phases of the compiler
and presents the experimental results for each method. The chapter concludes with a
description of an attempt to combine the techniques.

6 Local Microcode Generation and Compaction

Finally, Chapter 9 evaluates the research and summarizes what we believe to be its major
contributions. Recommendations are also made for promising avenues of future research.

Issues in Microcode Optimization 7

Chapter 2
Issues in Microcode Optimization

Over the past two decades, compiler writers have developed code optimization techniques

_! that have been used in the production of a number of high-quality compilers [Lowry 69, Wulf
[75, Kernighan 78]. In considering the problem of producing high-quality microcode, it is
[natural to try using the body of optimization knowledge that exists for traditional compilers. A

number of microcode compaction systems assume that there exists an optimizing compiler
that produces object code suitable for input to the compaction phase [Tokoro 78, Fisher 79,
Poe 80].

If microarchitectures were sufficiently similar to traditional architectures, the idea of using a
traditional optimizing compiler before doing the compaction would be a good one. Unfor-
tunately, such architectures have characteristics in which many traditiocnal optimization
techniques either are ineffective, or require modification. '

The scope of this chapter is much broader than that of the dissertation, including such
issues as flow analysis, register allocation and short-circuit evaluation. We begin by
discussing the key differences between microcode and traditional architectures. Following
this, a number of traditional optimization lechniques are evaluated with respect to their
suitability for use in an optimizing microcoae compiler.

L. This chapter has two purposes. The first is to acquaint readers, familiar with traditional
architectures, with some of the optimization issues that arise when a horizontal architecture is
considered, in order to give them a foundation from which Chapters 3 and 4 can be
1 understocd. The second is to bring the issues to the attention of researchers in the area of
i microcode optimization, many of whom have thus far concentrated on the issue of microcode
g compaction.
[

{

! 2.1. Differences between Microcode and Traditional Architectures

¢ Most compiler optimization research has assumed a target architecture that is both
macro—the instructions are stored in the main memory of the machine—and vertical—each
instruction performs a single operation. The architectures that we are considering, on the

8 , Local Microcode Generation and Compaction

other hand, are micro—the instructions are kept in a high-speed local memory—and
horizontal. We intend to describe how each of these aspects affects compiler optimization.
The discussions in this chapter apply to vertical microarchitectures [Digital 78] and horizontal
macroarchitectures [FPS 82] to a lesser extent.

Our research has led us to conclude that there are four major differences between
horizontal microarchitectures and vertical macroarchitectures. First, the instruction format of

a horizontal architecture allows independent computations to be performed during the same
instruction. Next, the cost of a main memory access is more expensive on a micromachine,
relative to the cost of instruction execution. Third, microarchitectures often require the
programmer or compiler to be concerned with low-level timing details. Last, horizontal
microarchitectures tend to have a large number of heterogeneous registers.

o

2.1.1. Horizontal instruction format

Traditonal machine architectures have what is known in the microprogramming literature

i S

as a vertical instruction format, while microprogrammable architectures that we are consider-
ing have a horizontal instruction format. The term horizontai came to be used because the
instruction in such a machine has a large number of bits; that is to say, the instruction is

typically a very wide (or horizontal!) one (see Figure 2-1).

branch cond xlatch ALU fcn reg index ylatch
| R [1 1 Il j
abus bbus carryin constant

Figure 2-1: Typical horizontal instruction format.

The term vertical was then used to describe instruction formats that are not horizontal—the
traditional instruction format in which there is an opcode and (possibly) one or more
operands.

in a purely horizontal, or non-encoded, instruction format, the microinstruction (ul) is
divided into a number of independent bit fields, where each field directly controls a machine
resource. For example, the ul in Figure 2-2 contains seven fields. The first controls the ALU

function; the second is the “count” input to the shift unit; the third and fourth serve as
selectors for the ALU data input; the fifth selects a register from the register file reading or
writing; the sixth specifies whether the register file is to be written; the seventh selects a
condition for micro-branching. During the execution of every ul, each resource is controlled
separately.

In microprogramming literature, the contents of an individual field of the pul is called a

P

Figure 2-2: Horizontal control word controlling typical hardware resources.

microoperation (1Op). Because each pOp is an independent field, the puOp is /ogically the
atomic unit of execution. A microcode generator, then, produces uOps, which are then
compacted into pls, which are physically the atomic unit of execution. Vertical architectures
do not have a distinction between logical and physical atomic execution units.!

This distinction makes it necessary to compact the uOps into uls after they have been
produced. Itis, of course, not generally possible to place all uOps into the same ul, because
two pOps may require the use of a common hardware resource or pul field; data dependencies
may also dictate that one uOp precede another. The compaction problem has been given a
great deal of attention by researchers, and near-linear time algorithms have been discovered
that usually do a good job compacting a pOp sequence into uls for some microarchitecture
modeis. ‘

A horizontal instruction format also makes it difficult to predict the cost of a uOp. When
compiling for a vertical target architecture, it is relatively easy to estimate the cost of adding a
particular instruction to an existing code segment. The insertion of an ADD #3, RO PDP-11
instruction into a segment of code increases its execution time by a fixed amount and
increases program size by two words. This cost of adding a uOp to a segment of code on a
horizontal machine is not as easy to predict because other uOps may or may not be able to
execute in parallel. The incremental cost of a uOp may be zero—if it can fit into an otherwise

1Several traditional machines do have instructions that are in some ways horizo~" . T. PDP-8 and HP-2100
each have a special instruction in which several independent actions may be applied to the ' « cumulator. PDP-11
instructions that use the auto-increment addressing mode may be considered “horizontal” 1n the sense that the
auto-increment can be either invoked or not when a register indirection is occurring.

PP A S
el

10 Local Microcode Generation and Compaction

unused pul field—or large—if it requires one or more pls to be added. It is generally not
possible to determine such costs until the code has been compacted.

Thus a compiler for a vertical architecture can generally assume that the cost of an
instruction is independent of the instructions surrounding it in the program. With these
estimates, it is able to make intelligent decisions about whether or not to perform a code
motion, how to allocate registers, and so forth. Such estimates are more difficult to make
when compiling for a horizontal architecture because the cost is less predictable.

2.1.2. Cost of main memory access

The cost of accessing main memory is generally much greater on a micromachine than the
cost of instruction execution. Macromachines tend to make one or more main memory
references per instruction just to read the instruction itself;, micromachines, on the other
hand, typically fetch instructions from a high-speed internal memory. This difference is likely
to affect compiler optimization strategies, such as register allocation, that might assume a
main memory reference is relatively inexpensive.

2.1.3. Timing issues

The programmer of (cr compiler for) a microarchitecture produces code that interacts more
closely with the hardware than does code for a macroarchitecture. in particular, there are
often timing constraints that require a programmer to be very careful in placing uOps into pls.

Many microarchitectures have polyphase execution—in other words, different uOps can be
executed during different clock phases within the ul; thus the execution of two uOps in a
particular ul may or may not overlap. In addition, certain uOps may take longer than one pl
cycle to execute, resulting in a situation where one pl begins execution before all uOps in the
previous ul have completed. Finally, volatile registers—thaose registers that lose their values
after a short period of time, such as one microcycle—are also common in micromachines.

2.1.4. Large number of storage classes

A typical macroarchitecture has a main memory, registers—some perhaps with special
designations such as ‘'stack pointer”, “index register’ or ‘‘program counter''—and possibly a
processor status word and condition-code bits, with data being stored only in memory and
registers. Microarchitectures, on the other hand, tend to have latches and registers of various
lengths scattered across the machine. The Cm* Kmap [Ousterhout 78] has three 16-bit
latches, one 12-bit latch, one 7-bit latch, two 4-bit latches and three 16-bit register banks
along its various data paths; in addition it has several registers that contain'data sent to/from
main memory and external devices. The Puma [Grishman 78] has two 20-bit register banks,

R AR e .T
T et . P

P a—

ey

P

Issues in Microcode Optimization 1

two 60-bit register banks, four 60-bit latches, one 20-bit latch and three 12-bit latches in
addition to registers for external communication. Research in compiler optimization suggests
that a large number of register classes tends to make register allocation more difficult [Kim
79, Leverett 81].

2.2. Optimization Issues Affected by Microprogrammed Target
Machines

The previous section described several features commonly found in horizontal microar-
chitectures that make them difficult to program. The discussion in this section focuses on the
how a horizontal microarchitecture affects the applicabiiity of a number of traditional
optimization techniques.

2.2.1. Register allocation

The problem of register allocation arises in compiier optimization because there exist
memory hierarchies within a machine architecture. Certain storage locations—usually called
registers—are cheaper to access (in time or in space) than others. There may also be
machine instructions in which the sources and/or destinations are limited to a certain class of
storage locations, or to one location. It is the job of the register ailocator to bind program
variables and compiler-created variables to storage locations. Sometimes a copy of a storage
location 1s rebound (temporarily) to another storage location to take advantage of access
frequency in a particular program segment.

Three features discussed in the previous section affect the problem of register allocation. It
was mentioned in Section 2.1.4 that horizontal microarchitectures tend to have a large
number of storage classes, which makes register allocation more difficult.

In addition, register allocation can be affected by the higher cost of accessing main
memory; the amount of main-memory traffic can easily become a dominating factor when
allocating registers for a micromachine. The microcode register allocation schemes designed
by Kim and Tan [Kim 79] and DeWitt [DeWitt 76] are based on the premise that main memory
traffic should be minimized.

Finally, register allocation can be affected by the difficulty of predicting the cost of a uOp.
In order to do a good job allocating registers, it is necessary to balance several costs. For
example, if a compiler-created variable contains the result of an intermediate computation,
the decision of where to place the variable should take into account costs that include
[Leverett 81]:

o The cost of accessing the variable in main memory versus the cost of accessing it
in a register.

-

v

v-v-v.vvv}'T e
Ll ‘.‘ K
St .,

[

. g
0
. .
» .

Pl
P

.
a2 a4

el

Yy
W.f‘r' . »

PNy

-

. m e e - TSRO TRTU T T

12 , . Local Microcode Generation and Compaction

o The cost of dedicating a register to the variable during the time in which it is live;
that is to say, the cost of requiring other variables, which otherwise could have
been in a register, to reside in main memory.

e The cost of not storing the value of the variable at all, but rather recomputing its
value whenever it is used. This cost may be small if the variable is used
infrequently.
For vertical architectures, reasonably accurate estimates of these costs can be computed by
examining the code sequences that perform each task. In a horizontal architecture, however,
the estimates of these costs are more difficult to derive.

' 2.2.2. Flow analysis

Flow analysis is ‘‘the transmission of useful relationships from all parts of a program to the
places where the information can be of use” [Aho 77]. Such information is necessary in
compiler optimizations such as code motion, common subexpression elimination and register
allocation [Cocke 70]. Flow analysis may be performed at many stages during the compilation
process—in particular, on both source and object code. If a microprogram is being written in
a traditional language such as Pascal, flow analysis at the source level will be identical to
source-level flow analysis in a traditional compiler. Object-code flow analysis, however, deals
with the physical resources of the target machine; the presence of volatile registers and
delayed instructions in a micromachine can make this analysis more difficult.

2.2.2.1. Volatile registers

A volatile register is one whose value is implicitly destroyed after a short amount of time.
This has an impact on flow analysis because live data in a volatile resource must be used or
transferred to another storage location before the volatile resource loses its data. In a
traditional compiler. the data in a storage location can be assumed to be preserved until
another instruction explicitly overwrites it. In order to perform flow analysis correctly for a
micromachine, it may therefore be necessary to take into consideration the relative distance
between uOps, not just the effects of intervening instructions.

2.2.2.2. Delayed instructions

Some microarchitectures have uOps whose effect is delayed for several pls beyond the
execution of the pl in which they occur. This can cause ambiguity in the specification of
whether a storage location is dead or live. Instructions in traditional architectures are
(logically) executed serially; between the execution of two instructions, each storage location
is in a well defined state. On some micromachines (e.g., PDP-11/40E [Fuiler 76]) the full
effect of a ul may not be realized before the next ul begins execution.

In this case, there exist two different times at which a storage location may be considered to
hecome dead: when the pl that uses the resource has been executed, or when the storage

e e e e

VN

o T W O O O O R e W e W . w7
" - T e oy e P A e 2 g B o e, . B
ettt B P L e e [. . A

Issues in Microcode Optimization 13

—— - - - - - " R AP A - A

first microinstruction latched
time

-—r— memory reference initiated

——] - o> W = - - > - AR = = -

second microinstruction latched

MData register overwritten

! Figure 2-3: Instruction sequence made illegal by delayed execution.

location has been physically read. Consider the example depicted in Figure 2-3. pul 1
contains the uOp that initiates the memory access MEM[mAddrReg]<-mDataReg, but
' because of bus timing, the value of the mDataReg is not used until the following pl. If it were
assumed that the uls were executed in a strictly serial fashion, then the ul 2 could contain a
_uOp which overwrites mDataReg, resulting in the wrong data being written to memory.

2.2.3. Local code generation

Although there are many aspects of code optimization, the ability of the code generator to
produce high-quality local code is very important [Leverett 79]. Even after other optimization
techniques have been applied, there are usually several ways to use an instruction set to
produce the same computation. Some macromachines, for example, have addressing modes
by which an address computation may be made cheaply; others have special-case instruc-
tions for setting a storage location to zero or for incrementing it by one; still others have
multiple-action instructions such as subiract one and branch if zero. It is important for the
code generator to take advantage of such instructions in order to generate code of minimum

q cost. Because these costs are less predictable for a microarchitecture until the microcode is
compacted, we believe that the code generation problem for horizontal machines is more
difficult. The coupling of code generation and compaction is a major topic of this
dissertation.

2.2.4. Use of constants

The translation of constants from a source language into machine instructions can also be 1
more difficult for horizontal target architectures. Macroarchitectures tend to have a |
“standard method" for generating constants (e.g., an immediate addressing mode). Com-
pilers for such architectures sometimes also perform transformations such as constant
folding and special casing—replacing an addition of the constant 1" with an increment

instruction, for example.

LGNS Au au mm B Smon abe o o

e e g 4

14 Local Microcode Generation and Compaction

The production of good microcode can require creativity in generating constants. It is
often not feasible to use main memory to store constants needed in the microprogram
because it is too expensive to access. Similarly, the specification of a constant in the pl is
often expensive because it usually requires a large number of bits that may also be needed for
other purposes.

A micromachine may have a collection of hardwired constants. It is often worthwhile to
formulate a “difficult” constant in terms of hardwired ones. A micromachine with a shifter
and the constant 1"’ hardwired into it may generate the constant 8" by left-shifting the “1"
by three. This type of optimization might be thought of as constant unfolding—transforming a
constant into a constant expression: the key to producing such a code sequence is the
recognition of the fact that 8" can be expressed as “1 leftshift 3. Constant unfolding is
discussed further in Section 6.2.5.

2.2.5. Compaction

A horizontal instruction format requires that uOps be compacted into pls. The necessity of
compaction is probably the most obvious difference between compilers for vertical and
horizontal machines, so it is not surprising that a great deal of attention has been paid to this
aspect of microcode optimization. Although progress in the area of pOp compaction will be
discussed in detail in Chapter 3, a shcri analysis of the complexity of the problem and two
other issues will be covered in this section.

2.2.5.1. Complexity of the compaction problem

DeWitt [DeWitt 76] proved that the c/assical microcode compaction problem is NP-hard? by
restricting it to the unit-execution-time scheduling problem. Here is an alternate proof, which
is based on the NP-hardness of the graph-coloring problem [Garey 79).

We restrict the compaction problem by assuming that there are no data dependencies
between the pOps. Each uOp is represented by a node in the color-graph; each conflict
between two uOps is represented by an arc between two nodes; each pl is represented by a
color. The problem of placing pOps into a minimal number of pls such that no pair of
conflicting pOps are in the same pul is isomorphic to the graph-coloring problem: that of
coloring nodes with a minimal number of colors such that no pair of connected nodes has the
same color.

2NP-h.«ard denotes the class of problems that are at least as hard as any problem in NP. DeWitt claimed that the
compaction problem is NP-complete (i.e., both NP-hard and in NP), but did not make the distinction between the
decision problem and the optimization problem. The decision problem, which specifies a constant K and asks
whether a given set of uOps can be compacted into a sequence of K or fewer uls, is certainly in NP. The optimization
problem, however, asks for the minimum number of ulis into which the 4Ops can be compacted; whether or not this is
in NP remains an open problem (Garey 79].

Issue's in Microcode Optimization 15

This result may be somewhat misleading, however, because in practice, pOps do have data
interdependencies. In Chapter 7, it is shown that the problem can be solved in polynomial
time if the number of registers in the micromachine is bounded; this result is used to argue
that the classical microcode compaction problem is not properly formulated. The correctly
formulated problem is indeed NP-hard.

2.2.5.2. Compaction in the presence of volatile registers

Because a microarchitecture may have volatile registers, it is sometimes necessary to force
a group of uOps to reside in the same pl. Mallett [Maliett 78] called such a group of uOps a
g buindle and treated each as a single pOp during compaction. Some machines, however,
- cannot be modeled by single-instruction bundles. If data in a volatile resource is destroyed
r_‘ during the middle of a ul, it may be necessary to place certain uOps a fixed number of pls
from one another [Poe 81]; in other words, a bundle might span several pls. If interblock
compaction is performed, it may even be necessary for a bundle to straddle a basic block

] boundary (i.e., to be divided between two pls in which either the first contains a branch
FF’ instruction or the second is a branch target).

2.2.6. Evaluation order determination

Before register allocation is performed, a compiler must determine the order in which
program statements are evaluated, and even the order in which subexpressions within an

v —Yav;

expression are evaluated. If such an ordering is not performed, the register allocation phase
will not know the number of compiler-created variables that are necessary at a given point in
the program to hold temporary results. The purpose of evaluation order determination in

optimizing compilers has traditionally been that of minimizing the number of registers
required for the evaluation of a given expression or the execution of a given block of code.

For horizontal architectures there is an additional factor that may take precedence over
register minimization: the evaluation order puts constraints on how pOps may be compacted.

L4 T.,W S e]
. .

It is therefore possible that a “poor’ choice of evaluation order may force uOps to be
compacted together that ‘‘don’t fit very well together.” There is thus a circular interdepen-
dence among the four tasks, evaluation order determination, register allocation, code

: ‘l ."u AR

generation, and compaction:

e Register allocation must know the storage requirements for temporary variables,
and is therefore dependent on the evaluation order of expressions.

o

e Code generation is dependent on register allocation because references to
}- different storage classes are likely to be accessed using different sequences of
e pOps.

e Compaction is dependent on code generation because uOps cannot be com-
» pacted until they are generated.

Mt e e e e m - A a. AL s e . A ed — r .

v

-

BMr ok

16 Local Microcode Generation and Compaction

e It is highly desirable that the task of determining evaluation order make use of
compaction information in ordering expressions so that the final ordering of code
“fits together well”.

2.2.7. Short-circuit evaluation

Short-circuit evaluation is an optimization often performed by traditional compilers on

boolean expressions such as
6, or (e, and e,)

If the subexpression e, is true, there is no need to evaluate the e, and e, iassuming no
side-effects); similarly, if e, is false, it is not necessary to evaluate e, It is also possible to
perform short-circuit evaluation on a numerical expressions—special-casing multiplication by
zero, for example. On a traditional machine, however, such an ‘“optimization” is not
attractive: program space and execution time would both be increased, except in one case
(i.e., first expression evaluates to zero). In a horizontai machine, however, it is possible that
prOps to test for the value zero and to perform a conditional branch could be added with no
space or speed penalty. The net resuit in this case would be a program that is occasionally
faster—but never slower—than the same program without the optimization. Such an
optimization might also be done for other operators or functions, such as min when there is a
known lower bound on the range of expression values. In short, a horizontal target
architecture increases the scope of feasible short-circuit evaluation optimizations.

2.3. Summary

A major problem with generating quality code for a microarchitecture is that it is often
difficult to estimate the cost of an instruction (i.e., a uOp). This problem affects aspects of
optimization such as register allocation, code generation, and short-circuit evaluation. In
addition, other characteristics of microarchitectures, such as volatile resources and the high
cost of main memory accesses, may also have an impact on optimization.

S S S S [P P s A ... a & & 4 a2 e . . e s -

[y

oy

Oul N gt o AEM 0 & o ZEN ETaa N
. amt R

Previous Work : 17

Chapter 3
Previous Work

in the past decade, significant progress has been made in the area of compilation for
microprogrammed target architectures. This chapter is an overview of the progress in the
foliowing areas:

e Microcode compaction, the packing of uOps into pls, attempting to minimize the
number of uls in the program.

e The formulation of a micromachine model that covers a large class of
microprogrammable machines but is simple enough that reasonably efficient
algorithms can be effective.

e The allocation of regiéters to program variables and compiler-created variables in
microarchitectures,

® Microcode generation, the production of uOps from high-level or intermediate-
level programs.

A'great deal of effort has been put into the development of effective compaction
algorithms, particularly in compacting pOps within a basic block. Several authors have
concluded that the problem of efficiently—usually optimally—compacting microcode within a
basic block is a solved problem [Fisher 81b, Davidson 81]. This conclusion, however,
assumes a simple (and usually unrealistic) view of the microarchitecture and the data
relationships among pOps, as will be shown in Chapter 7. There also remain unsolved
problems in the area of global (i.e., interblock) compaction.

The development of a reasonably general model has also progressed, although there still
exist areas in need of further refinement, particularly in the area of micromachine control
structures. Register allocation and code generation have received relatively little attention.

The purpose of this chapter is to give an overview of work in the area of compiler
optimization for horizontal target architectures. Its scope is therefore wider than that of the
subsequent chapters. We include such topics as register allocation and interblock cornpac-
tion for completeness.

b A P AL i < N W W T W N T T . - - . Ml it o o S 0 . . Y - Y e aowme 4

18 . Local Microcode Gerieration and Compaction

3.1. Compaction

Because several uOps may be executed during a single ul on a horizontal microar-
chitecture, it is desirable to compact them as tightly as possible in order to minimize the
execution time of-—and the space taken by—the microprogram. Most research to date has
been limited to the compaction of uOps within a basic block—a sequence of uls with a single
entry and exit point. These intrablock algorithms are discussed in Section 3.1.1, while

research in the area of interblock compaction is discussed in Section 3.1.2,

YTy

In this section, a simplified model of a microarchitecture is used so that the reader can
3 understand the algcrithms without being concerned with low-level machine details; issues
‘ regarding more complicated models are discussed in Chapter 5. The simplified model chosen
for the discussions in this section is:

A microprogram is a sequence of uls, each containing zero or more uOps. The
following relations are defined between pOps:

e Two pOps may conflict. Conflicting uOps may not be executed concur-
rently.

s

}.

L

:ﬂ e A 1Op may require data that is produced by another uOp. If this is the
l‘(case, then the former is said to be data dependent on the latter.
1

s

F

1

y

o A 1Op may destroy data that is required by another pOp. If this is the case,
then the former is said to be data antidependent on the latter [Banerjee 79).

For the purposes of this discussion we shall use the term data dependency when
relerring to either a dependency or an antidependency, because current compac-
tion algorithms treat them in the same manner; in Chapter 7 it is argued that such
treatment is a mistake.

A legal microprogram contains uls whose pOps satisfy the following constraints:
e Two conflicting uOps may not reside in the same pl.

o If a pOp is data dependent on another uOp, the former must be placed in a

E‘ later ul than the latter.

The classical microcode compaction problem [Landskov 80] is that of finding a
E;- legal microprogram of minimal size.
r" 3.1.1. Compaction within a basic block

3 With this simplified machine model in mind, let us consider the problem of compacting
pOps minimally within a basic block. Because the problem is NP-hard, one might expect ali
compaction algorithms to consider a large number of uOp orderings; surprisingly, many of the
algorithms are linear or near-linear. Three different strategies have been used in addressing

this problem:

P Y T

-
|
F
!
'
|
|
[
E
i
}
L

Ty et N e

Previous Work) 19

e Heuristic searches with backtracking [Winston 77]. Each pOp is potentially
placed into (and removed trom) several different uls during the compaction.

e Greedy algorithms, which consider the placement of each uOp only once.

e lterative algorithms, in which each uOp is considered once during each iteration,
but which continues compaction until a solution converges.
3.1.1.1. Heuristic searches
One of the earliest published methods for compacting microcode was presented by Yau,
Schowe and Tsuchiya [Yau 74]. The aigorithm is quite simple, as it performs an exhaustive
search with backtracking. For clarity, a nondeterministic version is presented here:

1. Determine data dependencies amang uOps based on resource usage.

2. Compute the data available set, which is the set of uOps that have not been
assigned to a ul, and which are data dependent only on uOps which have been
already been assigned to a pl.

3. Choose (nondeterministically) a pOp from the data available set. If it does not
conflict with the current ;u, add it to the current pl; otherwise create a new ul and
p:ace the uOp there, making the new pul the “current pl’.

4. Repeat steps 2 and 3 until all xOps have been assigned to uls.

Although the algorithm runs in exponential time, and is therefore not practical, it is important
historically because many of the current compaction algorithms are based on it.

Yau et al. also proposed two pruning methods in order to reduce the search time. The first
pruning method only considers in step 1 uOps which do not corflict with the current gl, if any
such uOps exist. This guarantees that each pl will be complete—a new pl will not be created
until it is impossible to add a pOp to the current one. For the simple micromachine model, this
pruning method is perfectly reasonable; for more complex machine models, however, such an
approach is insufficient (see Chapter 7). The second pruning method, which prunes all but
one branch at each node (i.e., backtracking is not performed), is presented in 3.1.1.2.

The compaction algorithm of DeWwitt [DeWitt 76] is a variation of the one described above.
(His algorithm also performs register allocation, which is being ignored in this discussion.)
The uOps are ordered using an evaluation function [Winston 77] that is a weighted sum of the
number of uOps in the pl, the number of operands it loads, and the number of new pOps
which become data available when the pOp is inserted. The search is pruned using upper
and lower bounds on the number of pls in the minimal-length program; these bounds are
computed using conflict and data dependency information.

Mallett’s experiments [Mallett 78] suggest that both of these algorithms are too slow to
perform well in practice. We shall therefore turn our attention to polynomial-time algorithms
in the rest of this section.

— rxr...*‘1vr-

v

~w
! -

Ty

20 Local Microcode Generation and Compaction

3.1.1.2. Greedy algorithms

A greedy algorithm is an algorithm that generates an approximate solution to an (often)
intractable problem by doing a linear-time partial search through the problem space,
choosing the locally optimal solution at each point [Horowitz 78]. Current greedy algorithms
in the area of microcode compaction fall roughly into two classes. The first class includes
versions of Yau's exhaustive algorithm that prune the search tree to one branch at each node.
Algorithms in the second class first identify and place “critical’ uOps, and then “fill in the
holes".

Greedy versions of the exhaustive search have been suggested by Yau et a/. [Yau 74,
Mallett 78], Wood {Wood 79a)], and Fisher [Fisher 79]. Except for the method of initially
ordering the nOps, all are essentially the same algorithm:

1. Determine data dependencies among pOps based on resource usage.
2. Order the operations according to an evaluation function.

3. Compute the data available set—the set of uOps that have not been assigned to a
il and that are data dependent only on uOps which have been already been
assigned to a pl.

4, Choose the Op from the data available set whose value (as determined by the
evaluation function) is the largest among the pOps that do not conflict with the
current ul, and place it into the current ul. if no such uOp exists, create a new
(empty) pl—which becomes the current ul—before placing the uOp.

5. Repeat steps 3 and 4 until all uOps have been assigned to pls.

Yau ct al. and Wocd weight each uOp according to the number of (direct or indirect)
descendents in the data dependency graph. Fisher based his choice on experiments that
tested twelve ordering strategies, and concluded that ranking the pOps according to their
height in the data dependency graph was among the most promising. Poe [Poe 80] is basing
his work on Fisher's conclusions and is also using graph height to order the uOps in the
compaction process.

A variation of the algorithms above is the linear pairwise comparisons algorithm, proposed
by Dasgupta and Tartar [Dasgupta 76]. This algorithm differs from the ones previously
discussed in that it scans 12 uCps strictly in order of weight (in this case, source order). Data
and conflict constraints are used only to bound the placement of uOps, which are placed in
the earliest possible pl. its heavy dependence on the (arbitrary) order of the uOps in the
uncompacted source code makes this algorithm rather unattractive.

The critical path partitioning algorithm by Tsuchiya and Gonzales [Tsuchiya 74] uses the
data dependency graph to identify critical pOps—operations which fall on a longest path of
the graph. The critical uOps are placed in uls first, with subsequent uOps being placed later;

PP P G U S g PR PRy P " . AT S I

L.

e

v ¥

Jifr?rv.‘
PP B
L e . .

Previous Work 21

new uls are created when necessary. When contlicts require one of two uOps to be delayed,
the one with the fewest successors in the dependency graph i chosen. Tokoro et al. [Tokoro
81] also use a version of this algorithm.

3.1.1.3. lterative methods

Gosling's iterative expansion compaction algorithm uses a somewhat different
approach [Gosling 81]. Instead of beginning with an “empty" basic block and placing yOps
until all have been placed, the algorithm begins by placing all uOps into a single ul at the
beginning of the block and successively moving them forward until all constraints are
satisfied:

Compute the dependency relations among the pOps.
Place all 1Ops into the first pl.
While there is still a (data or conflict) violation do
For each uOp do
If this nOp is causing a violation then
move it to a later time such that it causes no violation, if possible.

When there is a choice of two or more pOps to move, the current implementation chooses the
on=2 that was later in the initial ordering of puOps. This causes the algorithm to have some of
the same weaknesses as the basic pairwise comparisons algorithm of Dasgupta and
Tartar [Dasgupta 78]. An obvious extension would be to order the uOps “intelligently”” before
compaction. The worst-case execution time of the itzrative expansion algorithm is quadratic
in the number of pOps, although its performance is nearly linear in practice.

3.1.2. Compaction involving multiple basic blocks

Interblock compaction algorithms have bean the subject of only a limited amount of study.
Most techniques that have been considered involve first compacting the basic blocks
separately, and then recognizing individual situations in which a uOp (or group of uOps) may
be moved between blocks. Dasgupta [Dasgupta 77], Wood [Wood 79b], Poe [Poe 80}, and
Tokoro et al. [Tokoro 81] have proposed such methods. Fisher [Fisher 79, Fisher 81a]
developed another technique, trace scheduling, that performs both interblock and intrablock
compaction simultaneously.

3.1.2,1. Ad hoc methods
Dasgupta [Dasgupta 77] and Wood [Wood 79b] have considered movement of pOps

between pairs of basic biocks that surround an if-then-else or case construct that has no data
dependencies involving the uOps being moved.

The strategy being developed by Tokoro et al. [Tokoro 78, Tokoro 81] uses a set of rules to
determine when pOps may be moved among neighboring blocks; pOps can potentially move
long distances when these rules are applied recursively. The usefulness of their algorithm

.

LA

ory
o '
i

22 . Local Microcode Generation and Compaction

has yet to be proven, however, because the algorithm does not specify the order in which the
interblock motions are attempted or how it is determined whether a legal motion is desirable.
The only data that has been published about the algorithm's performance is based on hand
simulations.

Poe [Poe 80] suggested a technique in which each compacted basic block is examined for
“holes”. When a hole is found, an attempt is made to find a pOp from another block to fill it.
As with the algorithm of Tokoro et al., the overall methodology was been reported without
experimental results.

3.1.2.2. Trace scheduling
The method that has thus far shown the most promise for interblock compaction is that of
trace scheduling, which was introduced by Fisher [Fisher 79, Fisher 81a). A muitiblock
compaction problem is transformed into a series of basic-block compaction problems in such
a way that their solution will result in an effective interblock compaction:
1. Rank each basic block according to the expected number of times it will be

exec'ted. Presumably this is determined by “hints” in the source code, or by
teedback from execution profiles.

2. Use the rankings to trace a '‘most common path’ through the microcode.
Append the basic blocks in this trace together, adding artificial arcs to and from
branch uOps in the data precedence graph; these arcs represent data depen-
dency relations between pOps that are included in the trace and those in other
basic blocks.

oy

3. Compact the trace as if it were a basic block.

4. [Bookkeeping step.] Duplicate all instructions that were moved backward past
“join"' boundaries in the previous step. Create new basic blocks to hold these
1Ops and insert these new blocks in front of the respective off-trace blocks that
directly join blocks in the trace. This prevents off-trace paths from *losing”
pOps.

5. Repeat with other ‘common’ traces, preserving uOps in any basic block which
has already been part of a trace.

Trace scheduling has thus far shown the most promise of any the interblock compaction
technique. First and foremost, it is the only one that has been implemented to compact
microcode successfully. Secondly, the order in which blocks are compacted causes the most
frequently executed blocks to be compacted most tightly. Thirdly, it performs intrablock and
interblock compaction in parallel, allowing individual blocks to be compacted with a more
“global” view. Finally it subsumes many ad hoc interblock pOp motions.

3.1.2.3. Compaction involving loops
The horizontal nature of a microarchitecture makes it quite conducive to being
programmed in a pipelined fashion. This often resuits in a large payoff if uOps at the

T T N S U

.

- had - e WL W, T L W TWLWLW, WL . E Nl S

Previous Work . 23

beginning of a loop can be “rolled back” into the end of the (previous iteration of the) same
loop. Consider the three-ul loop in Figure 3-1a. it may be possible for the “load operands’
1Op in the first ul to be executed in the last pl of the previous iteration of the loop, thereby
reducing the size of the loop by one pl, as is shown in Figure 3-1b.

!

[load operands l l I

toad operands l
subtract
subtract
branch
load operands branch
(a) (b)

Figure 3-1: Shortening of loop by pushing pOp into previous iteration.

Discussions of loop compaction appear in papers by Fisher [Fisher 79, Fisher 81a] and Poe
[Poe 80]. Both consider compacting a loop as a basic block before compacting other blocks;
then the loop is treated as a “large uOp”, with limited involvement in the rest of the
compaction process. There is little discussion anywhere about rolling a loop back into itself.

3.2. Micromachine Models

In the previous section, several microcode compaction algorithms were discussed using an
intentionally simple mode! of a micromachine. This section discusses the development of
more realistic machine models.

Because most microcode optimization research has been directed toward the problem of
compaction, micromachine models have generally been defined in terms of the two
fundamental compaction constraints, uOp conflicts and pOp data dependencies. Other
aspects of the micromachine maodel, such as uOp semantics, have not been addressed to as
great an extent. On the other hand, models have been developed that are so general that they
encompass almost anything that could be characterized as a digital system [Barbacci 77,
Hansen 80]. While general models may be useful for other purposes (e.g., simulation) it is not
likely that they characterize microarchitectures in a manner that would be useful for
producing optimized microcode; we therefore do not consider them in our discussions.

Ao PP

Y

X A s A e A S e AR AC R N AP Y Jatit AEthe AlThe Siiel Sl e e Stal e Jhuet -Meni Rbel Ui Rt it R I ST T T T
B [N T -t . [.. S e L. e B P PR - ‘T

24 Local Microcode Generation and Compaction

3.2.1. Conflict determination

Early algorithms simply assumed that there exists a way to determine whether two pOps
could be legally placed in a ul [Yau 74]). Although simple, this assumption is still largely
valid [Fisher 79] because most current compaction algorithms treat conflict determination as
a "black box" subroutine. The remainder of this section is a discussion of the history of uOp
conflict models.

Tsuchiya and Gonzales [Tsuchiya 74] pointed out that pOps often conflict because they
use a common machine resource. Dasgupta and Tartar [Dasgupta 76] noted that even when
two uOps apparently use a single resource incompatibly, that it may still be possible for them
" to reside in the same word if each uses the resource during a different phase of a polyphase F
pl cycle. Although the inclusion of polyphase machines in the model affects conflict
{ ' determination, its major effect is in the area of discovering data dependencies (see Section
[3.2.2). '

It is also possible for two apparently independent pOps to conflict because of the format of
the ul. DeWitt [DeWitt 76] developed an extensive model of a micromachine control word in
which pOps using pl common fields only conflict with one another if they use different values
in their common fields; the mode! of Sint [Sint 81] alsc takes field values into account. The

models of Gosling [Gosling 31) and Fisher [Fisher 81a) do not compare field values; this
simpler view is less general, but allows conflicts to be determined using a bit vector.
Fisher [Fisher 79] also presented a clever method that allows field values to be encoded as bit
veciors that k.. ave’ as simple conflicts.

m With the exception of a model extension suggested by Fisher [Fisher 79], the machine
modeis proposed thus far assume that uOp conflict is a binary relation; that is, given any two
nOps, it can be determined whether they may reside in the same ul. Hardware considera-
tions, such as fan-out, may make this assumption ‘naccurate—a bus may exist that may be

o read by no more into two resources sirultaneously; three pairwise compatible uOps that read
the bus may cause unstable signals to be generated if executed concurrently. This situation

1 occurs rarely in practice, however, so it is probabiy not of great importance.

3.2.2. Data dependency considerations

[In the previous section, it was suggested that conflict determination can generally be
isolated from the rest of the compaction process. Unfortunately, the determination of data
dependencies cannot be so isolated; the manner in which data dependencies are modeled
t’ Y can have a profound effect on compaction. Our simple micromachine model states that if a
pOp is data-dependent on another pOp, the former must be in a later ul than the latter.

L ..

Previous Work 25

3.2.2.1. Polyphase instructions

Dasgupta and Tartar [Dasgupta 76) included in their model the possibility that a given uOp
may only be active during a portion of a ul. On such a machine, it may be possible for two
pOps to reside in the same pl even when one is data dependent on the other; this can happen
when one uOp executes during an earlier subphase of the pl than the other.

This led to a concept that they called conditional disjointness (..ter called weak
dependence, and most recently non-strict dependence)—a dependency relation in which a
1Op may coincide with, but not precede, a uOp on which it is data dependent. Previous

models had required data dependent uOps to be at least one ul apart.

3.2.2.2. Delays

The model of Mallett [Mallett 78] includes microarchitectures with pOps that require more
than one microcycle to complete. Such uOps are rather commffn references to main
memory, or complex operations like muitiplication, often last longer than a single microcycle.
Such "long” operations are generally handled in the compaction phase by inserting dummy
pOps into the instruction stream [Davidson 81].

3.2.2.3. Vclatile registers

Mallett also addressed the issue of volatile registers (sometimes called transitory data
resources) [Mallett 78]. A volatile resource is one which holds its data for only a short period
of time, typically one microcycle.

A 1Op that reads data from a volatile resource must read it before the data is lost. Mallett
therefore introduced the concept of a bundle, which is a set of uOps that muat reside in the
same u! because they pass data via volatile resources. In order to enforce the coresidency
restriction, each bundle is treated as a single pOp during compaction.

- Unfortunately, bundles as defined by Mallett do not successfully model a volatile register
whose lifetime extends into the next pl. This subject will be discussed at length in Chapter 7,
because it has a non-trivial impact on the compaction problem.

3.2.3. Microoperation semantics

The formalization of pOp semantics has received relatively little attention until recently.
This is largely due to fact that most microprogram optimization research has been limited to |
studying the compaction problem; semantics were modeled only as far as resource
usage [Sint 81]. Another reason is probably that the semantics of a uOp—apart from timing—
are basically the same as those of an instruction for a traditional machine. Several research

efforts in microcode generation have used an existing language, such as ISP [Barbacci 77,
Mueller 80a, Mueller 80b, Ulrich 80] or YaLLL [Patterson 79, Sint 81], to describe the functional
behavior of a uOp.

ey Laian AR LA L e SR Ba e o

T — 1-“, ———
X

T

26 Local Microcode Generation and Compaction-

The recent work of Sint [Sint 81] is directed at both the code generation and compaction
probiems and appears to be reasonabily general. The usefulness of the model for code
generation will be seen as her research progresses.

3.3. Register Allocation

The issue of register allocation for microarchitectures has received a moderate amount of
attention. DeWitt and Ma and Lewis base their algorithms on the premise that memory
references are extremely expensive; memory-register traffic should thus be minimized at all
costs. The effort by Kim and Tan attempts to balance the cost of memory-register transfers
with other costs.

Dewitt [DeWitt 76] and Ma and Lewis [Ma 80] each assume that the registers in a
microarchitecture are homogeneous, and that uncompacted object code has already been
generated. Unbound variables are, of course, named symbolically.

DeWwitt performs register allocation in paraile! with branch-and-bound compaction. Some
of the branches of his heuristic search involve attempting different register/variabie bindings,
including the insertion of instructions to swap variables between registers and memory. A set
of rules is used to prune the search tree, preventing known non-optimal paths from being
travarscd. Because his experiments were conducted only on small examples, no evidence is
presented to indicate that this method is computationally feasible.

Ma and Lewis divide the variables into local/global and dirty/clean classes. If at any point
a free ragister is needad in a basic block, another variable is preempted according to its
nriority, where the eight priorities are defined by the cartesian product of whether the variable
is dirty or clean, local or global, and used or unused in the current basic block. When it is
determined that memory-register transfer is necessary, additional uOps are inserted into the
object code. Compaction is performed as the final step.

The algorithm of Kim and Tan [Kim 79] includes microarchitectures with heterogeneous
registers; allocation is performed among registers classes as well as between the registers
and main memory. Costs are balanced between the generation of “optimal” local code,
swapping registers in and out of memory, and moving registers between classes within the
micromachine. The algorithm itself has four major steps:

e Given the generated object code, with symbolic names for variables, perform flow

analysis to determine the portions of the program (if any) where the number of
live variables exceeds the nuinber of registers.

e For each such portion of the program, attempt to reduce the number of live
variables by applying semantics-preserving transformations.

o If excessive variabtes still remain after attempting code transformations, insert

o an oo 2o an am aaee s an o o
4 -

w

———_— Bt
MO Jis Sunts SR Sed Saaarya gl 13 M A/ el A AR e PR S At S Rt At S S S) e

Previous Work : 27

load and store instructions to reduce the number of live variables assigned to
registers.

o Assign the variables to registers. It may be necessary at this point to insert
register-register transfer instructions in order to move variables into the ap-
propriate register class when they are needed—moving a variable involved in an
addition into a register which feeds the ALU, for example. An attempt is made to
minimize the cost of these transfers. Different combinations of register-register
transfer operations and additional load/store instructions are generated, the one
with the lowest cost being chosen.

They discuss in detail the methods of cost computation and selection of registers for

“spilling"’ to main memory.

Memory traffic is reduced by flagging pcrtions of the code that require more active
variables than there are registers; for such portions of code, a request is made to the code
generator to find an alternate sequence which uses fewer registers. If that fails, a variable is
swapped out to memory. Because the registers are heterogeneous it may also be necessary
to swap data among registers—if the register freed up is of the “wrong" class, for example.
An attempt is made o balance the costs of swapping to memory and shuffling registers.
Althcugh they do not specily whether the target machine is horizontal, the emphasis on
redhction of registrr-memory traffic and lhe handiing of heterogeneous register classes

makes this algorithm an attractive one for microarchitecture register allocation.

3.4. Code Generation

The major goal of microprogram optimization research is the efficient compilation of
microcode from a high-level language. Unfortunately, much of this research been limited to
the compaction problem, because “horizontalness' is the most striking difference between
micro- and macro- architectures. Tokoro et al. [Tokoro 78], Wood [Wood 79a], Fisher [Fisher
79, Fisher 81a), and Poe [Poe 80] all presume as a front end to their systems an optimizing
compiler that performs all classical compiler optimizations.

This section surveys research efforts that have attempted some form of code generation.
None of the systems generate code with the quality of traditional optimizing compilers; many
do no optimization at all. If nothing else, this illustrates that there is much work to be done in
this area.

Two efforts, the EMPL [DeWitt 76] and Strum [Patterson 76] systems, did not describe their
code generation techniques in sufficient detail to be reported here. These two systems are
probably not directly relevant to this work as the EMPL system had nct bepn completed at the
time it was described, and the Strum code generator made no attempt to optimize code.

28 Local Microcode Generation and Compaction

3.4.1. Simple code generation systems

As far as could be discerned from their examples, statements in the SIMPL [Ramamoorthy
74] and MDL [Wood 79a] language compilers correspond in a one-to-one manner to pOps in
the target machine. The translation process, then, is largely one of matching statements with
1Ops. Both compilers understand if and while constructs, and produce branch uOps and
labels when controi constructs are encountered.

The MumsLE language [Gosling 81] is largely at the same level as SIMPL and MDL in that
program statements correspond to uOps on an almost one-to-one basis. The MUMBLE
compiler also contains a graph that represents the data paths of the target machine. If a
register-transfer is specified between two registers that are not directly connected, the

compiler searches the graph and produces pOps which perform the complete transfer.

3
b,

g Language semantics in the MDIL [Ma 80] and MimoLA {Marwedel 81] systems are defined in
terms of the target machine using a macro table. When the compiler encounters a statement
in the language, its macro is expanded into machine code.

3 3.4.2. Code generation with limited optimization

The PL/MP micrccompiler [Tan 78] uses a series of templates that asscciate patterns in the
intermediate language with machine language constructs. The lemplates are ordered in such
a way that special cases (e.g., add indirect) are tried before generai cases (e.g., add).

Versions of the YALLL compiler [Patterson 79] have been implemented for two different

T

micrcarchitectures. Simple optimizations are performed, such as tha replacement of an

“add” uOp with an argument of 1" by an “increment”” uOp.

3.4.3. Code synthesis from ISP

Ulrich [Ulrich 80] and Mueller [Mueller 80a, Mueller 80b] have each explored the synthesis

! of microcode from ISP [Barbacci 77] in a machine-independent fashion using “unconven-

tional” techniques. The ISP statements that were used as “source code' were also quite

{ short. Neither one attempts to produce optimized code or to compact pls; neither system has
yet been shown to be fast enough to be practical.

L The system of Ulrich uses symbolic execution techniques. The ISP language is used both
as source code and to describe the micromachine semantics. First, a goal is set up by
symbolically executing the source ISP statement. Then different sequences of pOps are
symbolically executed until a sequence is found that achieves the goal. The current

implementation produces correct, albeit inefficient, code.

Mueller attempts to derive microcode using theorem-proving techniques. Micromachine

~ 4 & _a A a4 .+ a4 . _a a2 A a2 a e e a e A .

ST T T S ST TN W
R e

vy

pp—————

L o

Previous Work 29

semantics are specified in a dialect of ISP by defining each pOp in terms of the way it modifies
the state of the machine. The first phase of the translation process formulates the source
program as a symbolic assertion. Next, a theorem-proving process is invoked to verily the
existence of a computation which satisfies the assertion. The microprogram is then extracted
directly from the proof. At the time of this writing, only a nondeterministic algorithm is
implemented; in other words, human intervention is required to guide the program through
the search space.

3.5. Summary

Although algorithms for solving the classical microcode compaction problem have been
developed that appear to perform well in practice, the problem itself does not address the
issue of dealing with data antidependencies. Interblock compaction is understood to even a
lesser extent, particularly the problem of compacting a loop that "'wraps around itself'’; details
of puOp timing may also complicate the flow analysis necessary to perform interblock
compaction.

The development of micromachine models has progressed slowly, but a recent model by
Sint [Sint 81] appears to be a reasonable compromise between completeness and utility;
because her research effort is in progress, final judgement must be reserved until later.

Research in other phases of optimizing micromachine compilers has progressed much
more slowly. Although moderate progress has been made in the area of register ailocation,
the state of the art in most phases (e.g., code generation) seems to be liinited to the
techniques used in traditional optimizing compilers.

—v}.vv-,,, 0

vg‘

pEp——"

Scope of this Research ' a

Chapter 4
Scope of this Research

This chapter defines the set of problems addressed by this dissertation and introduces
methods by which the research was performed. First, the central problem—coupling the code
generation and compaction phases of compiler for a horizontal microarchitecture—is
described. Then three issues are discussed that are closely related to the central problem;
these are addressed to a lesser extent in the dissertation. Following that, the scope of this
dissertation is delimited by describing related problems that are not addressed. Finaily, the
research methodology is described.

4.1. The Central Problem

This dissertation describes the exploration of three methcds by which the code generation
and compaction phases of a compiler for a horizontal target microarchitecture can be
coupled. The task of the code generator in an optimizing compiler is that of producing
high-quality maching code that preserves program semantics, where quality is defined as a
function of time and space costs. As was discussed in Section 2.1.1, these costs are difficuit
to estimate for horizontal machines until after compaction is performed. The central issue
that this dissertation explores is then, How can compaction information be used to increase
the effectiveness of the code generator?

4.1.1. Some examples

In order to demonstrate that such a problem may arise in a real program, three examples
are given. The first involves the addition of a small constant to a register. The second
involves generating a test for a loop, while the last involves the interaction of uOp conflicts
and a volatile resource.

4.1.1.1. Increment by two

For our first example, consider a situation in which the code generator is required to add
the constant 2" to a register on the micromachine sketched in Figure 4-1. An obvious code
sequence to perform this operation is one that gates the register onto one input of the ALU

PREVIOUS PAGE
IS BLANK

AR A B S oaa - oS e Loans - SRt as oty IR L g e i i bl i e ol A S e eaunan. _inmmi _aanlin emmatt ededil denatie Jnbenah sainalih andil Sl _Enathl_Ratadll R DL A B A A B
A N W T T N T e TR W e e e e e, e e - e W T e e . Bl .
SR E e e O - ‘ . - : . !

32 Local Microcode Generation and Compaction

| constant I register

file

-

Figure 4-1: Micromachine with ALU and counter.

the constant 2" onto the other, sets the ALU function input to add, and then stores the result
back into the register. Such a code sequence would probably require one or two uls,
depending on uOp timing.

Another possibility would be to move the register value into the counter, increment the
counter twice, and move the counter value back into the register. This sequence would take
at least two uls, and possibly three or four.

In deciding which of these sequences to produce, the code generator might consider the
following:

'I*v

:-‘ o If surrounding code uses the ALU heavily, but does not use the counter, it is
possible that the second sequence can be done for “free''—that is to say, using
holes in existing pls.

o It is possible that the compaction algorithm can arrange for a prior uOp sequence

to leave a constant 2" in a scratch register, making the first sequence more
t attractive. On the other hand if the constant “~2" could be left in a scratch
: register, the shortest code sequence might be one in which the ALU performs a
subtraction.

y

L

i o If neither the ALU or counter is overloaded, the first sequence is probably both
3 faster and more compact.

s e It is possible that, due to ul field contention, an additional u! or two will have to be
{ inserted in order to produce the constant *2" for the first sequence.

&

}

e N S U WGP RSP DU SIS |

0 Scope oi this Research 33
4.1.1.2. Loop testing
im The second example involves conditional branching on a micromachine in which the

. computation of branch conditions is overlapped with the fetching of uls from the control store
[Fulter 76, Ousterhout 78, Rosen 79].3 In such a machine, a conditional branch may require
several pcycles to complete; it may be necessary to place the pOps that initiate the
conditional branch several pls before the actual branch is performed. A typical comparison
and branch sequence on the Kmap, for example. takes three uls. During the first ul the ALU
inputs are loaded with the values to be compared. The second pl uses the ALU to perform a

comparison and to generate condition codes, which are used by the third ul to perform the
conditional branch.

~ Given such an architecture, consider a program containing a loop that is to terminate when
the counter reaches the value 50. The code produced in this loop would then include:

: 1. A uOp that increments a counter.
F‘ 2. nOps that read the counter (and value 50) into the ALU for comparison.
; 3. A uOp that branches on the condition generated by the ALU.

The 1Ops to be compacted would include data dependencies between the uOpsin 1 and 2. It
is possible, however, that the code for the loop cculd be compacted more tightly if uOp 1 were
:@ somehow allowed move past those in 2. If the code generator and packer were working
[tegether, it might be recognized that the order in which 1 and 2 are executed could be
! reversed, if the the key value were changed from 50 to 42, resulting in a semantically
equivalent, but shorter, pl sequence. If the remainder of the loop could be compacted even
m more tightly, this lag might even be twqo iterations, requiring a comparison with the value 48.
The code generator, which is responsible for producing the uOp sequence, does not have
enough information before compaction to determine which value to use.

4.1.1.3. Volatile register compensation

o As a final example, consider the following simplification of a problem that occurred when
the author was writing microcode for the STAROS operating system [Jones 79, Vegdahl 81].
The micromachine, shown in Figure 4-2, has the following hardware constraints:

] e The V-register is volatile, losing its data at the end of each ul.

¢ e uOps that load the D-register and V-register execute during the first sub-

microcycle of the ul; pOps which load the register file, A-register, and F-register
execute during the second sub-microcycle. It is thus possible for data to be
moved from the A-register to Reg[0] during a single ul, but it takes two uls to
move data from Reg[0] to the V-register.

o

1

aThis example‘involves interblock compaction, which is not directly addressed in this dissertation. It is included as
an illustration of the general problem.
o

i 4

Tt

P

ww—‘rv

L s

>

L

K7) Local Microcode Generation and Compaction

¢ The register file is read and written during the same sub-microcycle, and thus
cannot be read and written during the same pl.

y

register

file

kT
T

Figure 4-2: Microinachine with register file and volatile register.

With this machine in mind, consider the problem of moving data in the A.-register to Reg[1],
and the data from Reg(0] into the D-reyister. The straightforward code sequence for this

would be
Areg -> Vreg:; Vreg -> Reg[1] move data from Areg to Reg[1]
Reg[0] -> Areg move data from Reg[0]
Areg -> Dreg to Dreg

This sequence can te compacted into three pls. The first two uOps must reside in the same
pl because the V-register is volatile; the second and third pOps may not reside in the same pl
because they both access the register file, while data dependencies require the fourth uOp to
follow the third.

Note that if the V-register were not volatile, the second and third pOps could be
interchanged, allowing the sequence to be packed into two pls:

Areg -> Vreg: Reg[0] -> Areg
Vreg -> Reg[1]: Areg -> Dreg

This can be simulated by using the F-register to hold the data for one cycle:

Areg -> Vreg; Vreg -> Freg; Reg{0] -> Areg
Freg -> Vreg; Vreg -> Reg[1]: Areg -> Dreg

We see then, an unusual situation in which the execution time of a sequence can be
shortened by inserting additional pOps. It is highly doubtful that the code generator in an
optimizing compiler would produce this sequence, in which the data traverses an
“extraneous’’ data path, unless compaction were considered.

R r)

Yy
. aa

rd

- s

Scope of this Research 35

4.1.2. Summary

The above exampies illustrate that it is potentially profitable to couple code generation and
compaction. A solution to the first example would involve primarily analysis of resource
bottlenacks (ALU, counter), while a solution to the the second depends more on the ability of
the two phases to share timing information; the last example has some elements of both.

We do not mean to suggest that this dissertation presents methods for effectively dealing
with all three of the above problems; rather, several methods of coupling the phases are
explored, leaving the reader the opportunity to judge their strengths and weaknesses. The
procedure used in these experiments is outlined in Section 4.4.

4.2. Related Issues

in addition to the prablem of coupling compaction and code generation, several other
issues relevant to microcode generation are explored here. The development of an adequate
micromachine model and code generation and compaction algorithms are necessary
prerequisites for the study of the coupling problem. We also explore a technique for
generating micromachine constants more intelligently because it appears to be promising.

4.2.1. Machine model

Previous research in the areas of microcode compaction and microcode generation has
produced a number of micromachine models. Unfortunately, the compaction research has
produced micromachine models that are too simplified to characterize uOp semantics
adequately; similarly, microcode generation research has tended to ignore timing and
resource-conflict issues. The machine model presented in Chapter § incorporates machine
semantics and timing. We do not mean to imply, however, that our model encompasses all
microarchitectures; examples of machines that do not completely fit the model are given in
Section 4.3.5.

4.2.2. Microcode compaction

Aithough the problem of microcode compaction has received much attention, we became
convinced during the course of this research that further work is needed. The data
dependency models used as a basis for current compaction techniques are not adequate. As
a result, the solution space is severely restricted; even the exhaustive compaction algorithms
consider only a small subset of legal uOp orderings.

In addition, the machine models under which most compaction algorithms have been
developed do not allow volatile resources to hold data across ul boundaries. When this

—p i

’:
&
.

36 Local Microcode Generation and Compaction

feature is introduced to the model, current compaction techniques appear to be inadequate.
Exampies of this problem are given in Chapter 7.

4.2.3. Constant generation

When translating microprograms that contain constants, the compiler must produce one or
more uOps that bring the constant into the micromachine. Possible ways of doing this
include:

e Reading the constant in from main memory. This method has a number of
shortcomings, not the least of which is that it is likely to be quite slow.

e Reading the constant from the literal field of the ul. This is the most straightfor-
ward method of producing a constant in most microarchitectures. It can be
somewhat expensive, however, because such fields in the pul tend to be quite
wide; one fourth of a 64-bit control word is used to specify a 16-bit constant.
Consequently, the literal field is usually overloaded, resulting in constraints on the
number of uOps that may be executed during a ul in which a constant is
specified.

e Proclucing the constant “‘creatively”. Most microarchitectures have a number of
constants “built in’’ to the machine; these may include masks, small positive and
negative integers, and constants that the designers knew would be required for
the “primary’' application. It may be possible to combine these built-in constants
to produce other constants, In the (hand-coded) STAROS microcode [Vegdahl
81], such creative methods were uscd several dozen times,

This research effort addresses the problem by performing constant unfolding during the
process of code generaticn. An altempt is made to express "difficult’” constants in terms of
“easy’ ones in the hope that otherwise unused (or lightly used) resources can be used to

remove some of the ‘constant generation’ burden from overloaded fields in the ul.

4.2.4, Code generation

The code generation algorithms in this research are based on the code-generator
generation algorithms of Cattell [Cattell 78]). Several modifications were made in order to
increase the depth of a feasible search. The complexity of the evaluation function for the
heuristic search was increased; additionally, the method of ordering the search was modified
and a constant unfoiding mechanism was added.

4.3. Problems Not Addressed

Because of the need to limit the scope of this dissertation, many interesting and important
issues relevant to optimized microcode production are not addressed. This section sketches
some of the problems that we chose not to address beéause they did not appear to be as
closely related to the phase-coupling problem ac those described in the previous section.

~ —ywrrr————

v

AR s T e T T T Ny oy Tw T TR o, e Y e

Scope of this Research 37

4.3.1. Register allocation

The problem of register allocation for traditional compilers has been studied by many
researchers, including several that have directed their efforts toward microarchitectures [Kim
79, Ma 80]. While it is the author’s belief that there is still much work to be done in the area, it
is deemed to be outside the scope of this dissertation. The *variables’ given as input to the
code generation phase are assumed to be the names of machine resources; when a register
is needed for an intermediate value, register allocation is done “on the fly”.

4.3.2. Other phase-coupling problems

The reader might have guessed that the code generation and compaction phases are not
the only ones that should be coupled in an optimizing microcode compiler. It has been
demonstrated, for example, that register allocation and compaction are another pair of tasks
that can benefit from communicating with one another [DeWitt 76]. Similarly, for reasons
stated in Chapter 2, redundant expression elimination and compaction fall into this category.
It also appears that there is a strong interaction between evaluation order determination and
compaction; this issue is discussed in Chapter 7. Writers of optimizing compilers for
traditional machines also face many of the same issues [Leverett 79].

This dissértation focuses on one particular phase-coupling problem in the interest of
making the task manageable. It may be possible to generalize this research to some of these
other problems at a later time.

4.3.3. Flow analysis

Flow analysis, which can become quite complicated in the presence of unusual timing
features (see Section 2.2.2), will be performed only in as much as needed to determine data
dependency relationships among uOps for the purpose of compaction.

4.3.4. Interblock compaction

When this project began, we hoped to address the problem of interblock compaction. This
topic is outside the scope of the current research effort because of the complex flow analysis
it requires, and because unresolved issues in the area of intrablock compaction were
discovered.

R ’7‘1
AR - 3 -‘

VI, Y Y vow
i . ‘
e o

] .
. i

-

R 0 SIS Mg oif 2l an e SRe o i

————

e 4

W N T N T e e T R TV R R TR ST T e e T Y % % e T ChC R i S)

38 Local Microcode Generation and Compaction

4.3.5. Machine model

In order to do an effective job at producing and compacting code, we have excluded
several microarchitecture characteristics from our model, including:

e Two-level control stores: Nanodata QM-1 [Nanodata 72], MIT Scheme Chip
[Holloway 79].

o uls with variable-length execution times: PDP-11/40E [Fuller 76].

¢ Subroutines: many micromachines, including the PDP-11/40E [Fuller 76], OM
[Johannsen 78], Kmap [Ousterhout 78], and Perq [Rosen 79].

Limitations of the modef are discussed in Chapter 5.

4.4. Research Methodology

This section sketches the method by which the issues described in Section 4.1 are
explored. We begin with a general discussion of techniques for handling problems of phase
coupling, and then present an overview of the three coupling methods that have been
explored as part of this research effort.

4.4.1. Coupling methods

As was demonstrated in Section 4.1, when the code generation and compaction phases oi
a microcode compiler are performed sequentially, many optimizations may be missed. In
Section 4.3.2 it was mentioned that there exist phase-coupling problems for compilers in
general. ‘- This section describes a number of possible techniques for dedling with the
problem, of which a subset have been tried as a part of this research effort.

4.4.1.1. Ignoring the problem

Although obvious, the “technique” of doing nothing is probably quite appropriate in a
number of situations. A small amount of efficiency gained in the final code may not warrant
the additional compiler-writing effort or compile-time [Aho 77]. in addition, an algorithm in
which no coupling is done can serve as a benchmark for comparison with other methods.

4.4.1.2. Educated guessing

The method of educated guessing involves performing the phases sequentially, but using
heuristics in the first to ““guess’ what the other phase is going to do; it then performs its task
using the “knowledge’’ it has about the second phase.

This technique has been used by the PQCC group [Leverett 79, Leverett 81] in resolving the
coupling problem between the register allocation and code generation phases of the
compiler. The register allocation phase performs an initial code generation in whiclr it
predicts the final code that will be generated; this allows it to ‘‘know"’, for example, how many

v - T)

P4

BRAM A b o e, 4
f .

Scope of this Research , 39

compiler-created variables will be required for code generation in any given block. This
information is then used to make register-assignment decisions.

4.4.1.3. Iteration

Rather than require one phase to make a guess about the behavior of another, it may be
appropriate to execute the phases alternately allowing each the opportunity to use the
information generated by the previous invocation of the other. This has been shown to be an
effective method of dealing with the subphases in object-code optimizers [Wulf 75, Leverett
79).

While this method appears to be appropriate for phases which open up optimization
opportunities for one another, it may be quite ineffective in a case where one phase makes a
decision that prevents the other phase from performing an optimization; in other words, a
poor decision in the first iteration may be propagated into subsequent iterations [Leverett 79).

4.4.1.4. Multiple choices

In situations where one phase detects a potential optimization, but it is the responsibility of
another phase to decide whether the optimization is desirable, a scheme might be tried
whereby the first phase, rather than performing the optimization(s) it deems best, passes a list
of choices to the second. It is the responsibility of the second phase to select the appropriate
set of optimizations.

This technique is used in the FLowaN and DELAY phases of the PQCC project; the existence
of such choices is also permitted to a limited extent in the microcode compaction a!gorithms
developed at the University of Southwestern-Louisana [Mallett 78, Landskov 80].

4.4.1.5. Performing the phases in parallel

If two phases are highly interrelated, it may be reasonable to incorporate them into the
same phase. The Hearsay speech understanding system [Erman 78] used the concept of a
blackboard, a database common to all phases of the translation process from which any
process could read and onto which any could write.

One might also imagine a scenario in which one phase served as a “master’’ over the other,
calling it as a subroutine. A flow analysis phase might be designed as a slave to a number of
other modules, each of which requires flow information.

DeWitt [DeWitt 76] designed a microcode compaction and register allocation system in
which the two phases called one another recursively. In this case, each phase acted, in some
sense, as a master over the other.

v‘?:—'Tl.

S am o gn o2 g "t m
RS .

40 Local Microcode Generation and Compaction

4.4.2. Coupling methods to be tested

The research for this dissertation has been carried out in four phases:

e The creation of a micromachine model that is well suited to both code generation
and compaction.

e The development of a machine-independent microcode generation system. The
code-generator generation algorithms of Cattell [Cattell 78] serve as a basis for
the machine-independent code generation in our system.

e The extension of the list scheduling compaction algorithm of Fisher [Fisher 79] to
encompass a more complex micromachine model and a more general notion of
data dependency.

e The development and testing of three strategies for coupling the code generation
and compaction phases of the compiler. In the terminology of Section 4.4.1, one
is multiple choice, one is iterative, and one is parallel.
The micromachine model is presented in Chapter 5, while code generation and compaction
are the subjects of Chapters 6 and 7. The remainder of this chapter briefly describes the three
coupling methods, which will be discussed at length in Chapter 8.

4.4.2.1. And/0Or

The first coupling technique, which we will subsequently call And/Cr, falls in the category
of “multiple choice’ methods listed above. The code generator, rather than producing a
single sequence of uOps, produces an And/Or tree [Winston 77] from which the compaction
phase can choose pOps as it compacts them. An And/Or tree is a tree in which each interior
node is marked either And or Or, and the leaf nodes are, in our case, uOps. A solutionto a
tree consisting of a single leaf is simply the uOp named by the leaf, while a solution to a tree
whose root is an And node consists of a solution to each of its sons; similarly, a solution to a
tree whose root is an Or node consists of a solution to any one of its sons.

This coupling method relies on the conjecture that there generally exist only a few uOp
sequences that need to be considered; if the code generator can produce them, then the
compaction phase has all the information necessary to produce “optimal” code.

This method is used to a limited extent by Mallett [Mallett 78] and the microcode research
group at the University of Southwestern Louisana [Davidson 81]. The notion of a version—a
group of semantically equivalent uOps, one of which must be selected by the compaction
phase—was introduced. A version is equivalent to an And/Or rre-e with maximum depth of
two (an And node at the root and Or nodes at the second level) in which all uOps in a version
must execute during the same pl.

The And/Or method is not without its problems. The code generator is complicated by the
need to produce multiple “correct” sequences rather than just one, and the compaction

W T T T T TR T T T T T LW Y

e e e e e A

- . —— —v AT R W W W W T e e T e TG T TR TR T e e e oy L e e T T

YT Y

'
1

;

Scope of this Research 41

T T

phase must consider an And/Or tree rather than a simple code sequence. Chapter
8 discusses these problems and their solutions in detail.

4.4.2.2. lteration
Consider the following view of microcode optimization:

A typical block of microcode contains one or more groups of pOps that cause
bottlenecks; that is to say, the removal of such a pOp would reduce the total
number of pls required. For example, let us assume that every ul contains a uOp
that uses resource X. If one such uOp is removed, it may be possible to move the
pOps in its ul into surrounding pls, thereby reducing the code size by one ul. On
the other hand, the removal of some other uOp would not reduce the code size
because the uOps which use resource X would still be required to reside in
separate pls. The code generator, in order to do a good job, should attempt to
avcid generating code sequences containing these uOps, preferring pOps that are
less likely to be involved in bottlenecks.

2 200 SO an s b o
[-

[. T

e e

The iteration method of coupling attempts to produce code that minimizes bottlenecks due
to these high-conflict pOps. The code generator uses a table of pOp costs to produce what it
believes is optimal code; that is to say, an attempt is made to minimize the sum of the pOp

P ——p—p—y ——rry

costs. The compaction phase then compacts the uOps into uls, which are analyzed for

i bottlenecks. The cost tables are updated, increasing the costs of uOps that are involved in
X bottlenecks; the process is repeated, with the code generator using the updated cost tables.

This method is attractive because it disturbs neither the code generation or compaction
phases as such. It involves only the addition of an analysis phase to update the cost tables,
and a loop to cause the phases to be repeated. The questions of how to update the tables is
discussed in Chapter 8.

4.4.2.3. Squeeze

The third coupling method involves actually performing the phases in parallel. This is
achieved by setting the code generator as master over the packer. Before the code is
compacted, censtraints are placed on the “shape” on the final code; for example, it might be
specified that the final code must be compacted into two pls, and that the ALU may not be
used during the second. The code generator calls the compaction phase whenever it
considers a pOp; if the uOp cannot be compacted subject to the initial constraints and the
already generated pOps, the code generator searches for alternate code sequences.

With this method, the packer.acts as an additional cutoft criterion, pruning the search tree
as the code generator attempts to find a code sequence. it is hoped that this method can be
extended to the area of producing code for tight loops. The first constraint placed on the final
code could be “all uOps must fit into one ul”. If that failed to produce a solution, a search
could take place with a two-instruction constraint, and so forth. Although this coupling
method appears to be quite simple, we encountered a number of problems, which are
discussed in Chapter 8.

R

Local Microcode Generation and Compaction

42

‘o .o , X . .
A O USRS s RIS

o s
PO TY S VP

POV AP SR SN

hdd o d ol

Cant- s e e . el

Micromachine Model 43

Chapter 5
Micromachine Model

~ v

-y vV Y

Betore we can produce a machine-independent microcode generator, we must define
' precisely what we mean by the term micromachine. Cattell has noted that the definition of
such a class of machines requires tradeoffs between generality and feasibility [Cattell 78]:

—ovY

We walk a fine line in making a rigorous definition of a machine in this chapter.
On the one hand, we want to include all the machines commonly classified as
computers. On the other hand, we want a formal definition that restricts the class
of machines enough to make it feasible to automatically generate software. Any
useful model must therefore strike a compromise between generality and
feasibility.

This chapter defines what a micromachine is for our purposes. First the major machine
components are discussed informally; then a formal description of the model is presented.
Finally, observations are made about the generality and feasibility of the model.

5.1. Overview

The machine model described here is based on that of Cattell, but differs in a number of
respects, largely due to differences between macro and micro architectures. The model of
storage resources is simpler because horizontal micromachines typically do not have
p compiex addressing modes, which are common in macroarchitectures. The model has been
extended, however, to include information about timing and pOp conflicts—that is, the
determination of whether two pOps can reside in the same pl.

LAB. S Gn o 2 o RS 0 AR ekl ang
. ’

Our micromachine definition has three major components:

(e Storage resources are the locations in the machine where data can be stored
: (e.g., a register) or along which data can be moved (e.g., a bus).

e Microoperations (uOps) are the operations available on the machine to move and
transform data.

} p e Contlict classes specify which uOps may reside together in a single ul.
| Storage resources include busses, latches, register files, and the main memory of the

macromachine. The capacity of a storage resource is specified by a bit length and a rank.
The indices of an array storage resource are defined by the pOp semantics.

PP

v
)

v Hrv- —— v‘”f,v,v_,v-‘rr.
: ¥ :

™

F e N e e St e S e S S i A Wi, St ST rteC R G e St e JRem Mbie S b uwi Sone aracs ume v e

44 Local Microcode Generation and Compaction

pOps correspond roughly to the Machine-Operations (M-ops) of Cattell. The semantics of a
uOp are defined by an expression, which is represented as a tree; a pOp expression may
contain operators, names of machine resources, constants, and constant pattern names.
Timing information, which accounts for such features as bus delays and clock phases, is also
included.

The text representation of a uOp expression is written in a parenthesized, prefix, LISP-like
notation, whose atoms are operators, resources names, and constants. The expression
(<- fbus{3 12} (+ (+ areg{2 6} breg{1l 5}) 1)))
for example, specifies that the fbus is to be assigned the value of the sum of areg, breg, and
the constant “1". The numbers in braces specify timing information, which is discussed in
5.2.23.

The final component of our machine model is the method of determining whether two uOps
can reside in the same pl. Several authors have previously examined this problem [DeWitt 76,
Landskov 80}, and have included in their models such details as when pOps using a common
field might happen to have compatible bit patterns. We have adopted a simpler approach in
which the machine description contains a number of conflict classes. Typicalily, a conflict
class corresponds to a field in the ul, or to a machine resource. Two pOps that belong to a
common conflict class may not reside in the same pl. A pOp may belong to several conilict
classes.

Although the uOp conflict model is not as general as it might be, we do not see this as a
serious problem. All uCp compaction algorithms we have encountered treat conflict
determination as a “black box’ subroutine, in which a uOp and a partially-filled pl (or two
uOps) are passed in, and a boolean resuit—"does conflict” or ‘‘does not conflict"—is
returned. It should thus be relatively easy to extend the model so that it embodies a more
general notion of uOp conflicts. During implementation, the *“conflict class” model has
allowed us to represent conflicts as a bit vector. Additionally, it has allowed us to ignore the
explicit bit representation of the uOp, and to produce purely symbolic code.

5.2. Components of the Micromachine

The previous section gave an overview of the micromachine model being used in this
research effort. In this section, each Somponent of the mode! is described more precisely.

5.2.1. Storage resources

The processor state consists of a collection of storage resources. A storage resource is a
set of one or more words, each with a fixed number of bits, and is defined in terms of the
following components:

:‘. Micromachine Model 45

e A name. This is the alphanumeric string representing the storage resource.

§ e A bit length. This is a positive integer that specifies the word size (in number of
».G bits) of this resource.

. e A rank. A storage resource consisting of a single word has rank zero. A storage

' resource that is comprised of more than one word—and therefore must be
indexed—has a rank equal to the number of indices that are required to access it.
In principle, any multi-word storage resources could be defined to have a rank of
one by concatenating its address bits, but we find that allowing muitiple indices in
our notation is more convenient, and simplifies the heuristic search during code
generation.

The size (in words) of a storage resource is never explicitly stated in our model. Instead, it is

inferred from the ranges of its indices, as specified in uOp definitions.

There are two resources of rank zero that that the code generator handles in a distinctive
manner. The first, called the micro-address register (MAR), has special semantics with
respect to program execution. The value of this resource at any time determines the ul that is
currently being executed. An assignment to this resource causes a branch to be taken,
interrupting the default flow of program control; this is discussed further in Section 5.2.4.

The second ‘special” resource is the undefined resource, which is written in the
tree-notation as “???"'. This resource contains a ‘‘random’' value, and is used to specify that
unknown or arbitrary data is assigned to a register or bus. For example, the “‘and” function in
an ALU might specify that the value of the carry out is undefined.

All other storage resources are divided into the two categories temporary and permanent.
A temporary resource is one that may be used to compute or store intermediate results—in
other words, a value held in such a resource does not need to be preserved during a
computation. Permanent resources, on the other hand, may not be modified, except as

explicitly specified by the source program.

:. In our model, the instruction memory is assumed to remain unchanged during program
3 execution; its contents may therefore be ignored for the purposes of defining machine state.
b The contents of the MAR effectively defines the ul that is being executed; the job of the

compiler is to bind non-conflicting uOps to potential values of the MAR.

i ‘H*'— .

‘irr.

>

o
LY

S AN, 40 am an b a0 o

Local Microcode Generation and Compaction

§.2.2. Microoperations

A microoperation (uOp) has the following components:
e A name, which is an alphanumeric string that is used to refer to the pOp.

e A conflict class list, which is a list of the conflict classes to which this uOp
belongs.

e An expression that describes the effect of the pOp on the storage resources of
the machine.

¢ Optionally, a list of constant bindings, which specify particular constant values for
parametrized pOps. For example, a shift uOp may require a shift count
parameter.
We now proceed to describe the expression tree; its interior nodes are operators, while its

leaves are either constants or resource names.

5.2.2.1. Operators

An operator is represented by a character string and is the leftmost symbol in an
expression. The semantics of most operators are defined by axioms (see Section 6.2.1),
which are used during code generation to transform the program tree. A few operators,
however, have semantics that are explicitly understood by the compiler itself—one may
consider the “axioms” for these operators to be represented directly in the compiler code.
Examples of such operators are “if’’ (conditional), "“~" (assignment), ;" (sequencing), and
“loop” (iteration); such operators are understood specially by the compiler because they
involve side-effects or control flow. The representation of axioms is described in Section
6.2.1.

In the future, concatenation and shift/rotatron operators may be added to the list of
operators understood by the compiler. Presently, the compiler does a poor job (i.e., is usually
unsuccessful) in compiling code that requires multiple shift and concatenation operations
because the evaluation function cannot predict the outcome of such operations to a depth of
greater than one. This subject is discussed further in Section 6.4 and in Appendix B.

5.2.2.2. Constants

There exist two types of constants that may be leaf nodes of an expression. The simplest is
a literal constant, which is an integer value that is represented in the program text in either
decimal or octal—an octal number is specified if the leading digit is a zero. For example, the
expression

(<- areg (and 0777 rbus))

specifies that all but the lowest nine bits of rbus are to be masked off, the value being stored in
areg.

The second type of constant that may appear in the program text is a constant pattern,

o o Annandhn PO o PPN NP SN W

- -

T

" —ﬂﬁ"v]VVYI.‘(T

T

MR gy ¢

Micromachine Model 47

which is represented in the program text as a “%" character, followed by an alphanumeric
string (e.g., ¥wi1d). A constant pattern represents a set of constant values, and will match
any literal constant that belongs to its set, or another constant pattern of which it is a
superset. For example, the expression
(<- areg (and %mask rbus))

specifies a uOp which may assign to areg the rbus value “anded” with any value that matches
the pattern ¥mask. One special pattern, ¥wi1d, represents the set of all constants, and will
match any literal constant or constant pattern. In the current implementation, each constant
pattern is associated with a matching routine that determines whether any particular constant
matches the pattern. '

When a uOp is first selected by the code generator, the constant patterns in its expression
are unbound—that is to say, there are no particular values associated with any of its patterns.
When the code is compacted, however, specific literal values are associated with each
pattern. Thus, a uOp may or may not have a list of constant bindings associated with it,
depending on the stage of the compilation process. An unbound pOp is denoted by its name;
a bound pOp is denoted by its name, followed by a list of literal values that represent bindings
to the constant patterns in its expression. For example, if 2 uOp with the name shiftmask has
the expression

(<~ areg (and %mask (shift %wild breg)))
the unbound version of the pOp would be represented by
shiftmask
while a bound version might be represented by
shiftmask 0777700 6
where the “0777700" corresponds to ¥mask and the "5 to Xwi1d. A xOp whose expression
contains no constant patterns is always considered to be bound.

5.2.2.3. Storage resources)

A storage resource in an expression is represented by the resource name, timing
information, and list of indices whose length is equal to the rank of the resource. The general
form of a reference to a resource in an expression is

<{name>{<early time> <late time>}[<index1> <{index2> ...]

The indices and their surrounding brackets are required for resources whose rank is
greater than zero; the number of indices must be equal to the rank of the resource. The value
of the index expressions is used to select the particular word in the storage resource that is to
be accessed. If a resource has rank zero, the square brackets must be either empty or
omitted.

Timing information, which consists of a pair of integers written between braces, is required

...........

1

;

,L! 48 . Local Microcode Generation and Compaction
! : '

for all references to storage resources. The integers refer to times relative to the beginning of
pl in which their pOp is placed. Our model assumes that all ul have identical execution times,
which, for the purposes of this dissertation, we will (arbitrarily) choose to be ten time units.
These time units represent discrete event points during the execution of a pl, and do not
necessarily correspond to uniform time intervals.

!

4

FS

b When a resource name appears as the destination of an assignment statement, the integers
’ in the braces indicate the range of time that the resource will contain valid data. In other
cases (i.e., when a resource appears as a source), the integers indicate the time in which the
é-. ‘ data must be valid in order for the ul to execute properly. For example, the statement

g (<~ areg{3 8) breg{2 4})

»‘ specifies that if the value of breg is stable between times 2 and 4, it will be latched into areg,
remaining stable there between times 3 and 8. (Remember that all times are relative to the
beginning of the ul in which the pOp is placed). It is the responsibility of compiler to
guarantee that stability constraints are satisfied.

non-volatile resource. Thus, the expression

(<- qreg{3 *} breg{2 4})
w indicates that greg will be assigned the value of breg (assuming that breg is stable between
r

>
I" An asterisk, “*”, denotes infinity and is used when an assignment is to be made to a
S

times 2 and 4), and will hold that value until the next explicit assignment is made to greg.

If a resource appears in an index expression (i.e., inside square brackets), it is treated as a
source even if it appears as part of the destination of an assignment statement. The

i

S

L expression

P (<- regfile(7 *}[regindex{4 8}] regfile2{6 8}[regidx2{1 7}])
indicates a transfer in which the indices must be stable before the source itself.

The specification of timing information in this manner allows a broad raﬁge of
k "] micromachine timing features to be represented:

o A volatile register whose value remains stable partly into the next ul:
(<- areg{5 14} breg {3 6})

e A resource whose value must be stable even before the ul begins execution (to
}] account for a propagation delay, for example):

t (<- qreg{6 *} breg{-2 7})
o A uOp whose execution does not complete until several pls later:
(<- qreg{26 *} (times areg{6 13} breg{b 13}))

|
t

E e e A resource whose value remains stable for more than one pl, but not forever:
(<- areg{b 21} breg {3 6})

——y-

. .. . L L o il .

T T

T

P ———
¢

- T T ——— L D Sam p A S Ut atar ML SN L e O et S A

Micromachine Model

5.2.3. Conflict classes

Conflict classes have two purposes. First, they are used as the basis for determining
whether two pOps may reside in the same pl. The rule for determining this is simple: two
pOps that have a conflict class in common may not reside in the same pl; pOps that have no
conflict class in common may reside in the same pl.

Second, conflict classes define the cost of each puOp. Each conflict class is assigned an
integer cost as part of the micromachine specification; the cost of a uOp is computed by
adding together the costs of all conflict classes to which it belongs.

If should be emphasized that costs are defined for the uOps solely for the purpose of
guiding the heuristic search during code generation. A pOp has no intrinsic cost of its own;
rather it is the ul whose cost is well defined. A uOp is a subset of a ul, but there is no precise
way to allocate the cost of the ul over its uOps: at code generation time, it is not known which
pls will contain which pOps. Our goal is to minimize the number of uls, not necessarily the
number of uOps or conflict classes.

There are a number of possible methods for assigning a cost to a particular conflict class;
three that might be considered are:

e Assign the value 1 to each conflict class. The cost of a uOp is then the number of
conflict classes it is in, which might be a rough measure of the probability of
conflicting with another uOp.

e Assign a value to a conflict class that is equal to the number of bits in the ul word
it represents. This would cause the cost of a uOp to be the number of bits it
requires in the pl.

o Assign a value to a conflict class based on one’s expectation that the conflict
class will become a bottleneck during compaction.
We have more or less adopted the third approach; this results in the *“high-conflict” uOps
(based on our estimates at machine-definition time) being considered the most expensive by
the code generator.

A final comment about the cost of conflict classes: the iteration coupling method modifies
the conflict class cost tables in its attempt to induce the code generator to produce better
code. Thus, even if the user's estimate of such costs is particularly bad, the compiler has
some hope of compensating for it.

5.2.4. Control flow

Mipromachines differ greatly in the way conditional branching is performed. The control
flow of some micromachines is similar that of a typical macromachine—the MAR acts as a
program counter and is incremented unless an explicit branch uOp is executed, in which case

[N S S P 2 e "

Latn s am an e a s o o o

-v

P

50 Local Microcode Generation and Compaction

a branch may be taken depending on the value of a condition code or machine register. In
others, the ul contains one or more explicit destination addresses—the MAR is therefore
never incremented. The Puma instruction format [Grishman 78] has a true and false branch
address in each pl—a condition select field in the pl specifies a condition to test, which is
used to select the address of the next ul. The PDP-11/40E and Kmap [Fhller 76, Ousterhout
78] each have a single next address field in the ul; conditional branching is performed by
ORing condition code values into the lower bits of the MAR before the next pl is fetched.
Many such schemes cause restrictions on the reiative placement of uls in the control store.

In this dissertation, we wish to avoid issues of placement algorithms in the control store and
of characterizing methods by which individual machines perform conditional branching.
Such issues have been investigated by others [Fisher 80, Meyers 80, Sint 81] and we believe
that most (if not all) of these problems can be handled by a postprocessor to the compiler
(e.g., at microassembly time) if code is generated symbolically. We have therefore elected to
abstract the conditional branching mechanism by introducing the nondeterministic flow
operator.

The flow operator, unlike most operators, does not represent a single function; rather, it
represents the class of injective (i.e., invertible) functions that map integers to integers. When
used as the source operand of an assignment statement, the domain of the class of functions
is the range of its argument, and the range of the class of functions is identical to the range of
possible values of the destination of the assignment.

For example, let us assume that the MAR is a ten-bit register; then the flow operator in the
expression
(<~ MAR (flow (> a b)))
represents any member of the set of functions that map {0,1} injectively to {0,1, ...,1023}.4 I
the functions 1‘1 through f, are defined as

1.(0) = 234; f,(1) = 235

1,(0) = 2; f,(1) = 1012
15(0) = 18; f3(1) = 3458
1,(0) = 20; f,(1) = 20

then functions 1'1 and 1’z fall into the class represented by the operator flow in the above
exampie, but functions f3 and f, do not; the range of 1’3 is not a subset of {0,1,...,1023},
while f , is not injective.

The flow operator allows conditional execution to be expressed (by assigning to MAR),
without having to specify the absolute addresses or the low-level details of how the branch is

‘The greater than tunction, represented by the operator "*>", returns a boolean result; hence the domain of flow in
this instance is {0,1}.

q Micromachine Mode! 51

effected. The concept that we wish to embody is that the MAR is assigned one of n distinct
values that depends only on the value of the flow expression specified in the uOp. The n

-

values are given symbolic names, and it is expected that a postprocessor will bind the
symbols to absolute addresses in the control store.

The use of the flow operator also allows certain axiomatic simplifications to be easily
recognized:
(flow (not X))
can be simplified to

(flow X)
] representing the fact that the sense of a branch may be reversed. The use of axioms in
J[! conjunction with the flow operator is discussed more fuily in Section 6.2.1.

5.3. Observations about the Model

We now begin a discussion of the generality and feasibility of the model. We first list a
number of features found in existing micromachines and discuss reasons for not including
them. Then we argue that the model is useful for the task of pertorming local code generation
and compaction.

5.3.1. Limitations of the mode!

The micromachine model described in this chapter is not entirely general. Part of this is
due to the fact that certain aspects of microarchitectures are not relevant to our problem
domain. Other micromachine features are excluded or simplified because doing so
decreases the difficulty of the implementation (e.g., fewer bookkeeping steps in the algorithm)
even though we are aware of no fundamental problems of including them in the model. Still
other features are ignored because they do introduce fundamental problems, but we feit their
inclusion would make the problem too difficult. There are undoubtedly other fgatures of
which we are simply unaware, or that will be present only in future micromachines.

5.3.1.1. Conflict classes

One micromachine characteristic that our model does not incorporate is the possibility that
the pl bit encodings of two partially-overlapping uOps are compatible; thus two uOps that
conflict in our model might be legally representable in the ul. In the Puma [Grishman 78], for
example, the literal field overlaps several other functions. If the constant we want to generate
happens to have the "‘right” bits set, however, it is possible to use the literal field in addition to
one or more of the other uOps.

As mentioned in Section 5.1, we do not see this as a problem for compaction algorithm to
handle, because it treats conflict determination as a ‘‘black box” subroutine. By adding the

e e e e e e e M

G UL JND SER 5

,'v
. T
SRR S

REAAR LIS Sl

4

(L i e R St Sal vl sk e A At EIRC SaND S - ag Laten g R S S .o L

52 Local Microcode Generation and Compaction
appropriate information to the data structures and modifying the algorithm to perform the
necessary bookkeeping, the compaction algorithm could be modified to handle the more
complex model.

Unfortunately, we are also interested in coupling the code generation and compaction
phases of the compiler. Some cof the algorithms make use of the conflict class abstraction in
making estimates of the local cost of a uOp. It is not obvious that the coupling algorithms
could cope with this extended conflict model without a prohibitive amount of bookkeeping.

5.3.1.2. Timing

Although the model can handle a large class of ul timings, certain timing features are not
included. For example, the execution time of a ul on the PDP-11/40E depends on the
particular pOps resident in the ul [Fuller 76]; our model assumes that all uls have identical
execution times. In order to extend the model to include such a feature, it might be necessary
to express timing information from two different frames of reference. For example, if a main
memory reference takes 750 nanoseconds, and pls take either 250 or 500 nanoseconds, the
time between the initiation and completion of a memory reference may be two or three pls,
depending on the particular puOps that are present. This constraint cannot be easily
expressed in our notation.

Another assumption made by the model is that a siorage resource changes its state
instantaneously without going through unstable states. Initially, our solution to this problem
was to be “pessimistic” while writing the machine description. If areg, during an assignment
from breg, was unstable from time 2 to time 4, we. would write the machine description
specifying that the data did not arrive until time 4:

(<- areg{4 *} breg{0 4})
Unfortunately, this expression does not reflect the fact that the previous value in areg could
have been destroyed as early as time 2. A compaction aigorithm that “trusts” the above
expression, and counts on the fact that areg will hold its value until time 4, might introduce a
timing bug into the program. In retrospect, it would have been better to have three
components of timing information, instead of two:

o The earliest time the assignment might cause the old value to be destroyed.
o The earliest time that the new value is guaranteed to be stable.

e The latest time that the new value is guaranteed be stable, assuming no further
assignments are made to the resource.
Although our current model assumes that the first two of these are identical, we have opted to
leave the system as it is. We felt that making such a change to the model would make a
difference in only a few micromachines, and was therefore not worth the effort of modifying
the machine descriptions, data structures, 1/0O routines, and compaction algorithm, even
though the modification is trivial conceptually.

Ca . an L g e as ae g

Micromachine Model 53

A third shortcoming of our model with respect to timing is in the handling of asynchronous
logic [Syiek 80, McCreight 80]. The model assumes that each pOp assigns data to a resource
at an exact time during the pl. If data along a certain path were not clocked, but rather
propagated asynchronously, the timing specification of the pOp would be “whenever the data
arrives.”” The notion of a uOp whose timing is determined by fhe arrival of its data is not
represented in our model. We consider compilation for such machines to be beyond the
scope of this dissertation.

5.3.1.3. Dynamic modification of control store

Our model assumes that the control store is read-only and therefore cannot be modified by
the program. We do not see this as being overly restrictive because we believe that
self-modifying programs should be avoided anyway. Some micromachines, however, allow
the control word to be moditied after it is read from the control store by allowing additional
bits to be ORed into it [Fuller 78]. It may even be the case that this is the only way to address a
register file dynamically, or to perform some other task. Our mcdel fails to account for this
feature, even though it may be important for some machines. Qur philosophy has been to
generate code symbolically; the inclusion of this feature would require detailed knowledge of
the bit-encodings and placement of pOps. It is still possible to include important special
cases (e.g., dynamic register file addressing) by prespecifying to the compiler a sequence of
pOps that performs the task.

5.3.1.4. Two-level microcode

We are aware of micromachines that have two levels of control store [Nanodata 72,
Holloway 79], often called microcode and nanocode. There is no way of specifying such
machines in our model; we consider such machines to constitute a completely different class
of computing engines.

5.3.1.5. Microsubroutines

As the emphasis of our work is on the generation of local microcode, we have chosen to
ignore subroutine calls, stack/display management, parameter passing, and other related
issues. We believe that there are difficult and important problems in this area, but we
consider them to be beyond the scope of this dissertation.

5.3.2. Effectiveness of the model

Although the model excludes a number of micromachine features, we believe that it is quite
useful for performing local code generation and compaction for a large class of horizontal
micromachines. Cattell [Cattell 78] has already demonstrated that a similar model can be
used for generating code for macroarchitectures.

We also believe that the timing and conflict information also facilitates compaction. Qur

Py

54 Local Microcode Generation and Compaction

model choice allows us to represent conflicts as bit-vectors. It can thus be determined
whether two uOps may reside together in a pl by performing a bit-mask operation.

The timing constraints between pOps can be determined by subtracting the corresponding
components of the source and destination timing information pairs, and then dividing the
results by the number of time units in a pl. If uOp A:

(<- areg{8 156} breg{7 9})
produces data for uOp B:

(<- xreg{3 *} (+ areg{0 3} 1))
then the timing constraint between the uOps is determined by considering the timing pairs of
the common resource, areg. pOp B requires areg to be valid between times 0 and 3, relative
to its pl, while uOp A guarantees stability only between times 8 and 15—that is to say from
time 8 of the current pl through time 5 of the next ul. Thus, the pOps are *“timing-compatible”
only if uOp A executes exactly one ul before uOp B. More formally, the range of legal pl
offsets between uOps is computed by subtracting corresponding components of the timing
pairs, dividing by the number of time units in a pl (which for our purposes is 10), and rounding
down or up. Thus, the earliest that uOp A can be placed with respect to pOp B is

| (dest.early - source.early)/10] = |(0-8)/10] = -1
or one pl before pOp B. Similarly, the latest uOp A can be placed is

[(dest.late - source.late)/10] = [(3-15)/10] = -1
or one ul before pOp B. Thus the timing information in this example has allowed us to
determine that uOps A and B must be exactly one pl apart.
We believe that this timing model is quite useful. It allows us to compute the relative
placement of uOps in uls, while at the same time allowing a wide range of micromachine
timing constraints to be specified.

Rhdie Sng Sihas S S
I | AT

T ——

P Ep—
)

B T e ——————— T

- e S e et A A e e

Microcode Generation _ 55

Chapter 6
Microcode Generation

This chapter describes the heuristic search that performs code generation, which is based
on the code-generator generator algorithm of Cattell [Cattell 78]. Because our primary goal is
to discover unusual code sequences that will compact well under special circumstances, we
have rejected the approach of using predefined templates as our only means of generating
code, as some microcode compilers have done [Patterson 79, Ma 80]. We wish to use
information from the compaction process to increase the power of the code generator. If we
were limited to predefined templates, it would be necessary to specify these unusual code
sequences in advance.

We view the code generator as a testbed for experimenting with methods of coupling code
generation and compaction. This testbed mentality led us to lean very heavily in the direction
of flexibility over speed. The model we have selected provides such flexibility by allowing the
“intelligence” of the code generator to be increased by adding new axioms.

The remainder of this chapter describes the code generator. We begu with an overview of
the code generation algorithm in order to familiarize the reader with the basic concepts.
Then, a nondeterministic version of the algorithm is described so that it can be understood
without having to consider issues such as ordering and pruning the search. Finally, the
problems of making the algorithm deterministic are addressed, and a summary of its
effectiveness is given.

6.1. Overview

The code generation algorithm is based on an artificial intelligence technique called
backward chaining means-ends analysis (MEA) [Winst. 1 77], which presumes an initial state
(the situation before the solution is applied) and a goal state (the desired state). A set of
transformation rules is available that transform states to other states. The backward-chaining
MEA method may be summarized as follows:

1. The current state is initially defined to be the goal state.

2. If the current state is identical to the initial state, then the algorithm terminates.

Ty v v
LR '."1

Y
4

LECMEE A DA sl a2 AL S JHI BRSPS 84
Lo a T .

56 Local Microcode Generation and Compaction

3. Otherwise, compute the difference between the current state and the initial state,

and use this difference to select a transformation rule. Apply the selected

transformation rule to compute a new current state; then go back to step 2.
For code generation, the goal state corresponds to a source-language expression for which a
code sequence is desired, the initial state to the null expression, and the transformations to
machine instructions (pOps) and axioms. Thus the code generation process is one in which
pOps and axioms are successively applied to the goal state until it becomes null. The uOps
that are selected during a successful search are those that together satisfy the goal
expression.

This process is implemented by two functions, search and transform. Search takes a single
argument (a goal expression) and attempts to transform it into the null expression by applying
decompositions and pOps. Transform takes two expression arguments and attempts to
transform one into the other by applying axioms. The two functions call each other
recursively, and together implement a depth-first heuristic search with backtracking.

In order make this otherwise exponential algorithm practical, it is necessary to introduce
ordering and pruning mechanisms into the search. Selecting the order in which to visit the
nodes amounts to ranking the applicable axioms in transform and ranking feasible pOos nd
decompositions in search. The most important component of this process is the evaive. 20
furiction, which computes a ‘“‘distance” batween two expressions—that is to say, it estimates
the cost of transforming the first expression into the second. The evaluation function is used
in conjunction with other heuristics to guide the search.

6.2. Nondeterministic Code Generation Algorithm

This section describes the basic code generation algorithm nondeterministically, ignoring
the issues of ordering and pruning the search, which are discussed in Section 6.3. First, the
data structures used by the nondeterministic version of the algorithm are described. Then,
the algorithm itself is presented, followed by an example. Finally, two extensions to the
algorithm—the collection of data dependency information and the use of constant unfolding
axioms—are discussed.

6.2.1. Data structures

The nondeterministic algorithm makes use of two data structures: a list of pOp definitions,
which defines the semantics of each uOp, and a list of axioms, which specifies the
transformations that may be applied to expressions during the code generation process. The
pOp definitions were presenfed in Chapter 5 and will not be discussed further here except to
say that relevant portions of a uOp’s definition are its name and the expression that specifies

its semantics.

v T, Ty

Microcode Generation 57

An axiom is defined by two expressions that together specify an equivalence-preserving
transformation on expression trees. An axiom expression differs from an expression as
defined in Chapter § in that its leaves may be axiom parameters as well as resources or
constants. An axiom parameter is represented by a “$"' followed by an positive integer. The

additive commutativity and additive identity axioms, for example, may be represented by

(+ $1 82) :: (+ $2 $1)
and
$1 :: (+ 0 81)

Whenever a goal is encountered that “matches’” the first expression during the search
process, it may be replaced with the second expression, where each axiom parameter is
replaced by the subexpression that matches it in the first expression.

The axioms in our system are unidirectional—that is to say, the left side is always
transformed into the right side, not vice versa. One reason for this is that we allow the
pseudo-operator eval to be present on the right side of an axiom definition. This operator
specifies that constant folding should be attempted when an expression is transformed by an
axiom. During the application of an axiom, the eva/ operator specifies that its operand should
be replaced with its value whenever it evaluates to a constant; in other cases, the eval
operator is simply removed. Thus, the associative axiom

(+ $1 (+ $2 $3)) :: (+ (eval (+ $1 $2)) $3)
transforms

(+ 4 (+ 2 areg)) into (+ 6 areg)
but transforms

(+ areg (+ 4 2)) into (+ (+ areg 4) 2)

A second reason for using unidirectional axioms is the presence of the flow operator.
Remember from Chapter 5 that this operator is used to specify a flow result (e.g., a branch
condition), and thereby represents a whole class of functions. We wish to have axioms that
can specily certain properties of flow, such as the fact that identity and complementation
satisfy the requirements of the flow operator:

(flow $1) :: $1
and
(flow $1) :: (not $1)

The converses of these axioms are not true because the left side of an axiom must always be
at least as general as the right side.

The examples later in this chapter will illustrate the use of axioms in the code generation
process. Appendix C lists the axioms used during our experiments.

.

N L LA A A A D e C I D M) e T e s YT T T F e e e - -, T &

58 Local Microcode Generation and Compaction

6.2.2. The algorithm

The code generation algorithm consists of the two mutually recursive functions, search and
transform. The search function begins with a goal expression, and returns a tree of uOps that
satisfies the goal. The transform function takes two expressions, goa/ and current, and
returns a tree of pOps that transforms goal into current. Typically, search is invoked for
“statement’’ expressions (e.g., assignment, conditional, sequencing) and transform for
arithmetic and logical expressions (e.g., plus, and). We denote a call to search by

search: <goal>
and a call to transform by
transform: <goal> => <current>

In this discussion, we suppress information about determining the order in which the uOps
are executed. Issues regarding the compaction of pOps into pls are discussed in Section
5.3.2 and in Chapter 7. The collection of control flow and data dependency information—
which is used during compaction—is discussed in Section 6.2.4. For the purpose of this
discussion, the reader may assume that control flow and data dependency information is

- automatically generated.

The search function usually chooses a pOp that is semantically close to the goal, and then
invokes transform to resolve any differences between the goal and the pOp. In cases where
the outermost operator is sequencing (;), conditional (if) or repetition (loop), a decomposition
may be performed instead, resuiting in one or more recursive invocations of the search
function. Search, then, is defined as follows:

e A feasible pOp may be chosen whose outermost operator matches the goal.
Transform is then invoked on each operand. When the outermost operator is an

assignment, the transformation between the destination operators—but not their
indices—is reversed. For example,

search: (<- w x)
becomes (after choosing feasible pOp: (—y (+ u 2)))

transform: x => (+ u 2)
transform: y => w Here we transform the feasible operand into the
goal operand, because of the assignment statement.

returning the pOp (— y (+ u 2)), plus any puOps generated by the two calls to
transform.

o If the outermost operator of the goal is the sequencing operator, the search may
be decomposed into its component parts. For example,
search: (; (<- a 0) (<- w x))
becomes

search: (<- a 0)
search: (<- w x)

returning any uOps generated by these two calls.

Microcode Generation . 59

o If the outermost operator of the goal is the conditional operator, the search may
be decomposed into its component parts, one of which is the movement of a flow
result to the micro-address register (MAR). For example,

search: (if (> ab) (<- x 0) (<- x b))
becomes

transform: (flow (> a b)) => MAR
search: (<- x 0)
- search: (<- x b)

returning any pOps generated by these three calls.

L 2N i £

= o If the outermost operator of the goal is an iteration operator, the search may be
' decomposed into its component parts; again, one of these is the movement of a

P". flow result to the MAR. For example,
é search: (loop (<- a (+ a 1)) (> a 10) (<- x (* x 3)))
becomes

search: (<- a (+ a 1))
transform: (flow (> a b)) => MAR
search: (¢ x (* x 3))

returning any pOps generated by these three calls. (The loop operator defines a
generalized looping construct whose operands are executed sequentially; an exit
is taken from the loop when the second operand evaluates to true.)

AL e Sa S 2 4

The transform function transforms one expression into another:

e If the expressions are identical, or goal is the undefined resource (see Section
5.2.1),asin
transform: (+ a b) => (+ a b)
return an empty list of uOps.
e If current is a constant pattern, and goal is a “compatible” literal constant or
constant pattern, as in For example,
transform: 123 => %wild
return an empty list of uOps.

i o If both expressions are identical storage resources, but with non-identical
indices, transform may be called on the indices. For example,

; transform: regfile[3] => regfile[regindex]
becomes

[‘ transform: 3 => regindex

When the call to transform had resulted from the matching of assignment
statement destinations, the transformation is reversed. This is implemented by
setting the reverse index flag—a boolean parameter—when the transform func-
tion is called.

a4

T

|

i

—— Y
o ’ L
. P

R T

e |
A

60 ' Local Microcode Generation and Compaction

o If current is a storage resource, the fetch decomposition may be applied:
transform: (+ a b) => ¢
becomes
search: (- ¢ (+ a b))
o If both operands are expressions with identical outermost operators, transform
may call itself recursively on corresponding operands. Thus,
transform: (+ a (- b c)) => (+ (or x 2) ¥)
becomes

transform: a => (or x 2Z)
transform: (- b c) => ¥y

returning any pOps generated by either call.
e An axiom may be applied to goal, followed by a recursive call to transform:
transform: x => (+ y z)
becomes (after applying the additive identity axiom)
transform: (+ 0 x) => (+ y 2)

Although the search and transform functions may seem complex, most of this complexity is
due either to special knowledge the program has about certain operators, such as
assignment or if. or to special casing on operand type (when the second operand of transform
is a constant, for example). During any particular invocation of search or transform, there are
normally only one or two choices that apply.

6.2.3. An example

To illustrate how the different portions of the algorithm work together, let us presume a
hypothetical machine with the following pOps:

AluPlus: (<- ALUoutput (+ aSide bSide)) performs an addition in the ALU

ASmalINum: (<- aSide %smallNum) sets “A” input of ALU to an
integer between 0 and 15

BranchZero: (<- MAR (flow (= ALUoutput 0))) performs conditional branch on
whether ALU result is zero

BReg: (<- bSide reg[regidx]) loads “B" input of ALU with a
value from the register file

ClearCounter: (<- counter 0) sets counter to zero

IncCounter: (<- counter (+ counter 1)) increments counter

SetRegidx: (<- regidx %wild) jspljecifies value of register file
index

and let us assume that the additive identity axiom, $§1 :: (+ 0 $1) is also available.

T LW, TN e VL W e W W s N e e e W R TR, T e T T e T T T T e s e e e R e
e Te e et . R P PR - .

Microcode Generation 61

search: (if (= reg[1] 0)
(<- counter 0) (<~ counter (+ counter 1)))
apply if decomposition, dividing problem into 3 parts
decide to perform test by getting reqf1] onto AL Uoutput
transform: (flow (= reg[1] 0)) => MAR
apply fetch decomposition
search: (<- MAR (flow (= reg[1] 0)))
select feasible pOp, BranchZero: (— MAR (flow (= ALUoutput 0)))
transform: (flow (= reg[1] 0)) => (fiow (= ALUoutput 0))
decompose on operand-by-operand basis
transform: (= reg[1] 0) => (= ALUoutput 0)
decompose on operand-by-operand basis
decide to get regf1] onto AL Uoutput by adding 9
transform: reg[1] => ALUoutput
apply fetch decomposition
search: (<- AlLUoutput reg{1])
select feasible puOp. AluPlus: (— ALUoutput (+ aSide bSide))
transform: reg[1] -=> (+ aSide bSide)
apply additive identity axiom
transform: (+ 0 reg[1]) => (+ aSids bSide)
decompose on operand-by-operand basis
find code to put 0 onto aSide
transform: 0 => aSide
apply fetch decomposition
search: (<- aSide 0)
select feasible pOp, ASmallNum: (— aSide %smallNum)
transform: 0 => %smallNum constants match
find code to put reg[1] onto bSide
transform: reg[i] => bSide
apply fetch decomposition
search: (- bSide reg[1])
select feasible pOp, BReg: (— bSide reg[regidx])
transform: reg[1] => reg[regidx]
transform indices
transform: 1 => regidx
apply fetch decomposition
search: (<- regidx 1)
select feasible pOp, SetRegidx: (— regidx %wild)
transform: 1 => %wild constants match
find code to clear counter
search: (<- counter 0)
select feasible pOp, ClearCounter: (— counter 0)
tind code to increment counter
search: (<- counter (+ counter 1))
select feasible pOp, IncCounter: (— counter (+ counter 1))

Figure 6-1: Example of Code Generation.

T T YT S Y

62 Local Microcode Generation and Compaction

Figure 6-1 shows a sequence of calls® to search and transform that produces the following
pOps to test reg[1], clcaring counter if it is zero, and incrementing it otherwise:
SetRegidx 1 setregister file index to 1

BReg read indexed register value onto “B’’ ALU input
ASmaliNum 0 set “A” ALU inputto 0
AluPlus add ALU inputs together

BranchZero perform conditional branch based on whether sum was 0

Compaction phase and/or postprocessor determines the branch sense, g
and inserts any branches necessary after the next two pOps

ClearCounter control passes here if sum was 0—clear counter
IncCounter control passes here if sum was not 0—increment counter

6.2.4. Data dependency and control flow information

Although the code generation algorithm just described generates code for a large number
expressions, we found it necessary to enhance the algorithm in two ways. The first
enhancement, discussed in this section, enables the code generator to produce data
dependency and control flow information. The second is an extension that increases the
power of the algorithm when dealing with constants in the source program, and is discussed
in Section 6.2.5. '

The algorithm presented in Section 6.2.2 produces a tree of uOps that is semantically
equivalent to a given goal expression, but does not specify data dependency or control flow
infarmation. Thus, it is not necessarily possible to determine the relationships between pOps
in the final code by examining the algorithm’s output. In order to make this information
available later, the algorithm both creates a flow graph—a directed graph in which every basic
block is represented by a node and each branch between basic blocks by an arcs—and
inserts data dependency links between uOps.

New nodes in the flow graph are created during the search routine whenever an if or loop
decomposition is performed. This is implemented by attaching a label to each pOp identifying
the linear block of code into which it is to be placed, and linking together the linear blocks
whenever an if or loop decomposition is performed. We assume that a postprocessor is
responsible for binding the fabels and pls to absolute storage locations, and for inserting any
unconditional branches necessary to enforce control flow constraints.

Data dependencies between uOps are maintained by associating with each instance of a
1Op a copy of the expression that defines its semantics. Data dependency links are placed
between the atomic components (resources and constants) of these expressions in the
following situations:

sln this and later examples, "null’’ transformations (e.g., areg => areg) are suppressed.

- Microcode Generation , 83

. o Whenever an exact match occurs during a call to transform, data dependency
‘ links are created between the respective atoms of the two expressions.

v
! ¢ Whenever a constant match occurs between two compatible constants during a
call to transform, a data dependency link is placed between the two constants.
Typically, this link specifies a binding between a Jiteral and a constant pattern. A
' pseudo-pOp representing the literal is passed back as the result of the transform
v function.

F) e The sequence decomposition (when the outermost operator is *;"") gives rise to
certain implicit data dependencies. For example, there is an implicit dependency
involving b in the expression

(;: (<- b 256) (£~ a b))

Whenever the search function applies a sequence decomposition, data depen-
dency links between such resources are created.

T T

e At the end of a call to search or transform, a transitive closure is performed on
data dependencies to account for the fact that the search often involves
intermediate expressions.
s It is the responsibility of the compaction phase to guarantee that the uOps are compacted in
{ such a way that no data dependencies are violated.

search: (; (<- b, 26) (<- 8, b,))
apply sequence decompos:t:on——mrs includes setting up
a data dependency between b, and b
search: (<- b, 26)
select feaSibIe uwOp, bWild: (— 37 %wild)—we make a copy
of the exgression, to distinguish this mstance of ‘b’ and %wild
from all others that may be generated.
transform: b, => b
here, we place a data dependency link between the two b's
transform: 26 => %wﬂd3
in this case, we create a pseudo-uOp representing the literal 25, and
create a data dependency link to this instance of the pattern %wild
search: (<- a, b,)
select feasible yOp, cB: (—c,b,)
f transform: b, => b,
again, /ust place a data dependency link between the two b's
transform: c, => a
apply fetch decomposition
1 search: (<- a, c,)
' select feasible i uOp, aC: (—a,c,)
transform: c, => ¢
place a data dependency link between the two ¢’s
transform: a; => a
place a data dependency link between the two a's

i Figure 6-2: Example of with Search with Data Dependency.

e As an example, let us consider the search in Figure 6-2. We have subscripted resource and

¥

A Dl 2 Trlr vy ey —y
DA — ONCIODIAIL ~ AIMIMESEDE
. .. IR L .

T

Danm o e
s

64 _Local Microcode Generation and Compaction

pattern names in the example to distinguish between instances of the same atom. It can be
seen that data dependencies are placed between references to various patterns and
resources as the search progresses; the resulting structure is shown in Figure 6-3.

aC cB
Cmany Ceah>
(¢ a, b,)

Figure 6-3: Data links resulting from search in Figure 6-2.

At the end of the search, a transitive closure is taken on the data links. This causes all data
dependencies between uOps to be expressed as direct links between atoms in their
expressions. The resulting structure is shown in Figure 6-4.

bwild

aC cB pseudo

¢~ by %wild

Figure 6-4: Data links between pOps after transitive closure.

Thus, a result tree returned by search or transform consists of a tree of uOps, each linked
to an expression that describes its semantics, where a data dependency between two pOps is
represented as a link between atoms of their corresponding expressions.

T T

Microcode Generation 65

6.2.5. Constant unfolding

A source program often contains literals (constants) that the compiler must generate during
the translation process. A macromachine typically has a standard method for generating
constants, such as an immediate addressing mode. The ‘‘standard” method of generating a
constant on a horizontal micromachine is often to use a literal field in the pl. Such a field,
however, is often used for other purposes as well; it is expected that a constant will not be

needed during every ul, yet it requires a fairly wide field in the pul to contain the constant—a
32-bit field for a 32-bit machine, for example. This overloading of the literal field leads to pOp
conflict restrictions like “‘a constant cannot be used during the same cycle as a conditional
branch” or “‘a constant cannot be used during a main memory operation.”

It is our experience that such restrictions can make the literal field a bottleneck during

(s L An i;r",vu, g
.)

microcode compaction. We have therefore added to the code generation algorithm a
mechanism for discovering methods of generating constants in “unusual’”’ ways by taking
advantage of constants that are built into a machine's hardware.

Generating constants intelligently is more difficult for micromachines than for mac-

.v.YT,v....
..

romachines. The cost of generating a constant on a macromachine is typically no more than
one word of code (space) and one memory reference (time); there is thus a fairly tight bound
on the complexity of any solution that is better. For micromachines, however, it is possible for

" ,J

an arbitrarily complex solution to be optimal in a given situation, as long as its pOps fill
“holes” in uls that would otherwise be vacant.

The original goal of our research in this area was that of building a mechanism that would
allow code sequences to be generated that would avoid using the Jiteral field of a ul. We were

ﬂ"'wv" R

surprised to discover that this mechanism is capable of discovering optimizations beyond

those originally envisioned.

6.2.5.1. The basic mechanism

The basic mechanism for generating constants is the application of constant unfolding
axioms during the search. A constant unfolding axiom replaces a constant by a constant
expression of equal value. The goal is to make use of constants that are hard-wired into the

e
-

micromachine, replacing difficult-to-generate constants with expressions involving only
hard-wired constants. Constant unfolding axioms are applied during the transform function in
the same way other axioms are applied.

; As an example, let us consider the problem of adding the value 8" to a register R, given a

micromachine in which “masking’’ constants (e.;, U, 1, 3, 7, 15) are built into the machine.
The straightforward method of performing the operation would be to generate the constant
“expensively” (using the literal field), gating it to one input of the ALU, and to place the value
of R at the other input.

]

et e
)

Vi, ,,‘:1

¢

Local Microcode Generation and Compaction

decide to compute result by adding 8 on bSide, R on aside, with carry 0

1! search: (<~ R (+ R 8))
4 select pOp: (— R ALUoutput)
. transform: (+ R 8) => ALUoutput

apply fetch decomposition
search: (<- ALUcutput (+ R 8))
. select uOp: (— ALUoutput (+ (+ aSide bSide) carryin))
l!! transform: (+ R 8) => (+ (+ aSide bSide) carryln)
apply additive identity axiom
{ transform: (+ (+ R 8) 0) => (+ (+ aSide bSide) carryln)
- decompose on cperand-by-operand basis
- select code t¢ put 0 in carryln, R on aSide
; transform: 0 => carryln
apply fetch decomposition
search (<- carryIn 0)
select uOp: (— carryln 0)
transform: (+ R 8) => (+ aSide bSide)
decompose on operand-by-operand basis
transform: R => aSide
apply fetch decomposition
search: (<- aSide R)
select uOp: (— aSide R)
decide to put 8 on bSide by adding 1 and 7
transform: 8 => bSide
apply constant unfolding axiom
transform: (+ 1 7) => bSide
apply fetch decomposition
search: (<- bSide (+ 1 7))
select uOp: (— ALUoutput (+ 1 bSide))
transform: AlLUoutput => bSide
apply fetch decomposition
search: (<- bSide ALUoutput)
select pOp: (— bSide ALUoutput)
3 select code to get 7 onto bSide
f transform: 7 => bSide
apply fetch decomposition

{ search: (<- bSide 7)
!» select uOp: (— bSide %MaskConstant)
o transform: 7 => %MaskConstant

i 7 matches the %MaskConstant pattern

1 Figure 6-5: Search with constant unfolding.

o Figure 6-5 shows how constant unfolding can be used to generate this aiternate code
sequence:

pp——p———p

v T e T Dmes me. A JEN @I M

Microcode Gene-ation 67

(<- bSide %MaskConstant) 7 putconstant7 on Binputio ALU
(<- ALUoutput (+ 1 bSide)) increment the 7, getting 8 on ALUoutput

(<- bSide ALUoutput) swing the 8 back to the B input
(<- aSide R) place value of register R in A input
(<- carrylIn 0) set carry-in value to 0

(<- ALUoutput (+ (+ aSide bSide) carryln))
use ALU again, computing R+8+0
(<- R ALUoutput) store result back in register R

This sequence does not use the literal field of any ul. The ALU, however, is used during two
cycles.

6.2.5.2. An extension

The above method can be useful when it is necessary to produce a constant explicitly. The
mechanism can be extended, however, by applying its axioms to subexpressions. This can
allow a constant in the source program to be unfolded and combined with other expressions,
often resulting a code sequence in which the constant is never explicitly generated during
execution. Figure 6-6 shows how the application of constant unfolding at the subexpression
levet can improve the code sequence generated in Figure 6-5:

(<- bSide Z%MaskConstant) 7 place constant 7 onto BALU input
(<- aSide R) place value of register R onto A ALU input
(<- carrylIn 1) setcarryinto 1
(<- ALUoutput (+ (+ aSide bSide)) carryln)
compute value R+ 7 + 1in ALU
(<- R AlLUoutput) store value back into register R

This sequence not only avoids using the literal field, but also uses the ALU during only one pl.
This is a result of performing constant unfolding at the subexpression level so that the
associativity axiom can bring the 1" portion of the unfcided constant into a position where it
can be matched with “‘carryln”. This follows a pattern that will also be seen in the remaining
examples:

e First, a constant unfolding axiom is applied to a subexpression.

e Then, another axiom—usually associative or distributive—is applied to the entire
expression, causing portions of the unfolded constant to be combined with other
portions of the expression.

e The portions of the unfolded constant are matchad with different (and perhaps
distant) pOps, often generating a code sequence in which the original constant is
never generated explicitly.

As another example, consider the problem of adding the constant ''2'' to a register on a
machine that has a counter. Again, the straightforward method of doing this would be to use
the literal field of the ul to generate a 2", and to use the ALU to perform the addition. An
alternate method would be to load the value into the counter and increment it twice, as can be
seen in Figure 6-7. The resulting code,

Dk Z s
®

-y ifrr.rlvv‘ -

ﬂ:. R rEans g aes
.

Caary

Ty

p——
®

P

68 Local Microcode Generation and Compaction

deci.’2 to use ALU to perform addition
search: (<~ R (+ R 8))
select pOp: (— R ALUoutput)
transform: (+ R 8) => ALUoutput
apply fetch decomposition
search: (<- ALUoutput (+ R 8))
select uOp: (— ALUoutput (+ (+ aSide bSide) carryin))
unfold constant, and use associativity to match up corresponding parts
transform: (+ R 8) => (+ (+ aSide bSide) carryln)
apply constant unfolding axiom
transform: (+ R (+ 7 1)) => (+ (+ aSide bSide) carryln)
apply additive associativity axiom
transform: (+ (+ R 7) 1)) => (+ (+ aSide bSide) carryln)
decompose on operand-by-operand basis
tind uOps to load ALY inputs
transform: 1 => carryln
apply fetch decomposition
search (<- carryln 1)
select pOp: (— carryln 1)
transform: (+ R 7) => (+ aSide bSide)
decompose on operand-by-operand basis
transform: R => aSide
apply fetch decomposition
search: (<~ aSide R)
select uOp: (— aSide R)
transform: 7 => bSide
apply fetch decomposition
search: (<- bSide 7)
select uOp: (— bSide %MaskConstant)
transform: 7 => %MaskConstant
7 matches the % MaskConstant pattern

Figure 6-6: Search with constant unfolding on a subexpression.

(<- counter R)
(<- counter (+ counter 1))
(<- counter (+ counter 1))
(<- R counter)

completely avoids using the ALU. Again, performing constant unfolding at the subexpression
level is critical in discovering the code sequence.

Another example of the use of constant unfolding in discovering nonstandard methods of
generating constants is the problem of performing a masking operation.6 Let us hypothesize
a machine which has built-in masking constants of the form (27 - 1) and their complements—
in other words, the (binary) constants 0, 1, 11, 111, etc. and 11111111, 11111110, 11111100,
etc. Thus any number of high (or low) bits may be masked off using an ‘‘easy-to-generate"
constant. Let us then consider the problem of generating the expression:

In this example, binary notation is used for clarity. 8-bit data is assumed so that binary constants can be written in
reasonabie space.

SRS S

Microcode Generation 69

decide to use counter to increment
search: (<- R (+ R 2))
select pOp: (— counter (+ counter 1))
transform: counter => R
apply fetch decomposition
search: (<- R counter)
select pOp: (— R counter)
unfold constant, and match “outermost’ |
transform: (+ R 2) => (+ counter 1)
apply constant unfolding axiom
transform: (+ R (+ 1 1)) => (+ counter 1)
apply additive associativity axiom
transform: (+ (+ R 1) 1)) => (+ counter 1)
decompose on operand-by-operand basis
find code to increment again, and to store resulit
transform: (+ R 1) => counter
apply fetch decomposition
search: (<- counter (+ R 1))
select uOp: (— counter (+ counter 1))
transform: (+ R 1) => (+ countesr 1)
decompose on operand-by-operand basis
transform: R => counter
spply fetch decomposition
search: (<- counter R)
select nOp: (— counter R)

Figure 6-7: Constant unfolding used to avoid ALU pOps.

(and 00111000 reg)

In this case. the cgonstant 00111000 may be unfolded in three ways, each unfolding resulting
in a different code sequence. It may be expressed as the bit product of two masks and then
transformed by an associativity axiom,

(and CU111000 reg) => (apply constant unfoiding)
(and (and 11111000 00111111) reg) => (apply associativity)
(and 11111000 (and 00111111 reg))

resulting in a code sequence in which reg is first masked with 00111111 and then by
11111000. Alternatively, we may express the constant as a rotated mask and then apply a
distributive axiom,

(and 00111000 reg) => (apply constant unfolding)
(and (rotLeft 3 00000111) reg) => (apply distributive law)
(rotLeft 3 (and 00000111 (rotRight 3 reg)))

resulting in a code sequence in which reg is rotated right by 3, masked and rotated back.
Similarly, we may express the constant as a mask rotated in the opposite direction and apply a
distributive axiom,

(and 00111000 reg) => (apply constant unfolding)
(and (rotRight 2 11100000) reg) => (apply distributive law)
(rotRight 2 (and 11100000 (rotLeft 2 reg)))

aad

I e A f“'ﬁ*""t‘v‘*"’—‘ i N - v T L = '3 - — T ﬁ]
b
1
(@
70 Local Microcode Generation and Compaction
b Method 1
b
}C’ PIPIGIGISIOIE (B original bitstring
{ mask high 2bits ~)€Y)
2 DO OE @@ after masking high bits
mask low 3 bits)
E L @ @ @] final result
. Method 2
original bitstring
rotate right 3
. after first rotation
L‘ mask high 5 bits
A after mask
rotate left 3
final resuit
* ° Method 3
@ @ @ @ @ (’9 @ (3] original itstring
4 rotate left 2 o
! QO @) ® ARG after first rotation
ﬁ mask low 5 bits DI
C l@@@ ‘l after mask
{ rotate right 2
b @@ 3 final result
m Figure 6-8: Three methods of performing a masking operation.
causing reg to be rotated left by 2, masked and rotated back. Diagrams illustrating the three
code sequences discussed for this problem are shown in Figure 6-8.
; ° Qur final example illustrates the use of constant unfalding in conjunction with a distributive
1 law and strength reduction, in “discovering” that a multiplication by the constant “3” is
L equivalent to a shift and add:
(* 3 x) => (apply constant unfolding)
(* (+ 1 2) x) => (apply distributive law)
PY (+ (* 1 x) (* 2 x)) => (apply identity and strength reduction axioms)
b (+ x (shiftLeft 1 x))
6.2.5.3. An implementation note
We have found that the analysis necessary for doing an effective job of unfolding constants
. has been difficult to formalize; such axioms can be expressed in the same way that other
1 axioms are expressed, but it is sometimes necessary tc introduce new axiom parameters on
right side of the definition. This would make it necessary for the axiom mechanism to make a
L
]

i e A v

\QhOl

Ty

Microcode Generation 71

nondeterministic choice for unbound variables. For example, an axiom that unfolds a
constant into a sum of two others might be expressed as:

$1 :: (+ $2 (eval (- $1 $2)))
When the constant is unfolded, a value must be chosen for $2.

For this reason, the current implementation requires that the set of constant unfolding
axioms be represented by a routine in the code itself. This routine takes two operands: if the
first is a constant, it returns a list of constant expressions whose values are identical to the
first operand, but that are *good candidates” for matching the second operand. If the first
operand is an expression, it attempts to unfold any constant suboperands, and returns a list of
expressions that are equivalent to the first operand, but with one of the constant suboperands
unfolded. Currently, it is necessary to write for for each target microarchitecture a new
routine that “knows’ about generating constants for that particular architecture. We hope
that methods for making such analysis machine-independent can be developed in the future.

6.2.5.4. Summary

We have found that constant unfolding axioms lead to discovering code sequences that
generate constants in non-standard ways. In particular, their application at the subexpression
level is a quite powerful, and can lead to the discovery of code sequences that could not
otherwise be discovered by the code generator.

We have not attempted to apply constant unfolding axioms to subexpressions whose depth
is greater than one. According to our experience, this is not necessary, as we have never
encountered a situation in which the unfolding of a constant at a greater depth would have
increased the effectiveness of the code generator.

6.2.6. Summary

In order to make the formalism of Cattell suitable for micromachine target architectures we
have modified his algorithms to fit our machine model. In addition, we have added
mechanisms for keeping track of data dependencies between uOps, and for performing

constant unfolding.

We are now ready to present the final version of the nondeterministic code generation
algorithm:

Search(goal) =

e A feasible uOp may be chosen whose outermost operator matches the goal.
Transform is then invoked on an operand-by-operand basis. returning all uOps
from all such calls to transform. |f the outermost operator is an assignment, the
transformation between the destination operators is reversed, with the reverse
index flag being set.

v (e e oun e e o Py
. SN

72 Local Microcode Generation and Compaction

¢ If the outermost operator of the goal is a sequencing operator, the search may be
decomposed into its component parts, and data dependency links added
between certain references to resources in the original expression.

o If the outermost operator of the goal is a conditional or iteration, the search may
be decomposed into its component parts, one of which is the movement of a flow
resuit to the MAR. New flow graph nodes and links are also generated.

Transform(goal, current) =

o If the operands are identical constants or resources, place a data dependency
link between goal and current; the operands are identical expressions recursively
call transform on corresponding suboperands. Return an empty list, signifying
that no pOps are necessary to transform the first operand into the other.

e if current is a constant pattern, and goal is a “compatible” literal constant or
constant pattern, place a data dependency link between goal/ and current, and
create and return a pseudo-pOp (as defined in Section 6.2.4) whose operand is
goal.

o If both expressions are identical storage resources with non-identical indices,
transform may be applied to the indices; if the call had been made with the
reverse index flag, the sense of the transformation is reversed.

o If current is a storage resource, the fetch decomposition may be applied,
resulting in a call of the form:

search: (<- current goal)

o If both operands are expressions with identical outermost operators, transform
may call itself recursively on an operand-by-operand basis, returning all pOps
generated by any of the calls.

e An axiom may be applied to goal, followed by a recursive call to transform the
modified goal into current.

o If goal or one of its suboperands is a constant, a constant unfolding axiom may be
applied to goal, followed by a recursive call to transform the modified goal into
current.

6.3. Deterministic Code Generation Algorithm

Because the nondeterministic algorithm requires exponential time when run on a
uniprocessor, it is necessary to limit the number of nodes that are examined during the
search. Initially, we considered using heuristics similar to those used by Cattell [Cattell 78].
In his system, a predetermined integer, the depth /imit, specified the maximum depth ir terms
of number of recursive calls to the search and transform functions. No other pruning or
ordering was performed on axiom applications. The feasible instructions were ordered by
performing some simple expression comparisons, and were pruned using a breadth limit—an
upper bound on the total number of nodes searched at or below any given level in the search
tree.

SACRONIN *.‘T"‘T I -

U

Microcode Generation 73

Our experiments have convinced us that the mechanisms developed by Cattell are not
sufficient for generating microcode. Our heuristic searches tend to be deeper than his,
because our code generator must produce longer instruction sequences. This is partially due
to the difference in machine architectures; our algorithm must discover longer code
sequences because our “‘instructions” are pOps, each of which tend to change the state of
the machine in only a small (micro!) way.

Another reason that our searches tend to be longer is that our task is that of a code
generator, while his was that of a code-generator generator. Input to his algorithm tends to
be a set of reasonably simple expressions, resuiting in code sequences of one to three
instructions in length. Input to our system can be a block of code, sometimes requiring the
production of a dozen or more puOps.

The requirement of a greater search depth has its obvious drawbacks. Because the time
complexity is exponential in search depth, we must either accept the exponential time
increase or develop a searching strategy that performs more pruning. Experiments have
convinced us that the former approach is not feasible; we have therefore introduced a more
complex searching strategy and evaluation function.

The remainder of this section discusses the important issues that arose as we implemented
the code generation system, and outlines our solutions. A detailed discussion of the
deterministic algorithm may be found in Appendix A; details of the evaluation function
algorithm are given in Appendix B.

6.3.1. Search depth

One of the major questions we faced in building the system was that of defining what was
meant by the term search depth. In Cattell’s system, depth is defined simply by the number of
recursive calls to the search and transform functions. In our system, however, it is sometimes
necessary for the depth of the search (by this definition) to reach 20 or more; we certainly
cannot afford to examine all nodes in the search tree at that depth!

Instead we define the depth of a node in the search tree to be the sum of the costs of the
uOps that lie along the path that connects it with the root. A search may therefore be quite
deep (in the number of calls) as long as it selects only inexpensive pOps.

In order to approximate a breadth-first search—which has a number of attractive
properties—without incurring the storage costs that are typically associated with a breadth-
first search, we use the iterative deepening [Slate 77]. When a search is started, it is passed a
“cutoff’ value that defires the depth beyond which it is not allowed to examine nodes; this is
implemented by reducing the cutoff whenever a uOp is selected during the search. If the

—r -

-y

Y Y Y T YT T VYV YW YV WY Y YT v

-

OEEES ARshby

74 Local Microcode Generation and Compaction

search terminates without having found a solution, the cutoff is increased and the search is
retried, the process being repeated until a successful solution is found.

When a search is passed a particular cutoff value, our intention is that the search will find a
solution only if one exists whose total cost is not greater than the cutoff. Unfortunately, a
search can be partitioned into subsearches (e.g., operand-by-operand decomposition),
leading to a situation where the total cost can exceed the cutoff. In order to remedy this
situation, the cutoff value is divided among the subsearches whenever such an occasion
arises. Our experiments suggest that the search is most effective when such an allocation
heavily favors the subsearches that are deemed (by the evaluation function) likely to be the
most expensive.)

6.3.2. Pruning and ordering the search

The evaluation function (see Section 6.3.3) is used as the primary method of pruning the
search and determining the order in which nodes are examined. A path along the search tree
is pruned whenever its cost—as estimated by the evaluation function—exceeds the cutoff
value; nodes in the search tree and examined in ascending order of cost, again as estimated
by the evaluation function.

A small number of other pruning mechanisms are also employed, primarily because
experiments indicated that the evaluation function often allows axioms to be applied so
profusely that the search explodes exponentially. Most of these heuristics are ones that
require primary operators or destinations (for assignment statements) to match; one heuristic
limits to three the number of axioms that may be applied at any node in the search tree.

We also introduced a caching mechanism that has proven to be useful in pruning the
search: if a particular search has already failed at the current depth, the path is aborted
immediately. The caching mechanism also acts as a memo function [Michie 68]: a previously
successful search need not be repeated.

6.3.3. The evaluation function

The purpose of the evaluation function is to give an estimate of cost of transforming the
machine from one state into another. Its parameters are two expressions, a goal expression
and a current expression. The evaluation function recursively compares various subexpres-
sions of the goal and current expressions, and uses ‘‘distance tables’’—generated from the
machine definition and axioms—to arrive at the final estimate. An extensive description of the
evaluation function is given in Appendix B.

C ol i sli RS s ar Alr AEnnt) A AR A R R 4 v Bl i B A A A AT

T V‘,l? 0
o

Microcode Generation : . 75

6.4. Results

We conclude from our experiments that the system does a reasonably good job of
producing microcode for source expressions that only require data to be moved along busses
and through ALU’s and masks, and constants to be generated. We were particularly pleased

to find that it performed quite well on a subset of the Puma microarchitecture the first time

r,.., v ,.,..H,—V "

that we tried it, and even discovered one code sequence that was better than we had
anticipated. In addition we feel the “discovery” that incrementing a counter three times is
equivalent to adding the constant “3"” was impressive.

Qur system is able to perform searches that are much deeper than those performed by the

P T Rpep—

,' prototype implemented by Cattell, but is also slower. It has produced a successful search to a
depth of 28 calls to search or transform, and has applied axioms in a successful search to a
depth of 11. Catteli’'s system, which used a much simpler evaluation function, searched to
maximums of 8 and 3 respectively. We by do not mean to imply that our system will always be

*:. successful in searches as deep at 28 and 11; more typical search depths are 13 and 4. As far
A as execution time is concerned, Cattell's system, which was written in SAIL, typically
[examines 200 nodes in the search tree per second when running on a DEC KL-10 [Bell 78);
‘ A our system, which was written in Berkeley Pascal, examines about 30 nodes per second when
%Q running on a DEC VAX/11-780 [Strecker 78].

3 Our experience is that the major reason for “exponential blowup” of the search is the
; profuse application of axioms. One of the major reasons for this is probably that we do not
‘L_ consider axioms to increase the depth of the search for the purpose of pruning it. From
b studying traces of searches in our system, we believe that the caching mechanism is the
single most important factor in limiting the otherwise profuse application of axioms.

We feel that the greatest shortcoming of our system is that the evaluation function has very
little “‘understanding’’ of rotation, shifting, and bit extraction. More than two months were

4

i. spent attempting to incorporate such knowiedge into the system, but the effort was not
: successful. One of the reasons for our failure is that it appeared to us that it was necessary
: (at least logically) to have separate distance tables tcr each combination of rotations and bit
i ‘ lengths—an increase by a factor of 256 in the size of the distance tables for a 16-bit machine.

We hope that this problem will be addressed more successfully in the future.

e o ous sam |

Y L2E. PRS0 40 o8 S0 g b S0 N

Chae A 4
N

. ey
RO

MR ARSI i o
T X

A A

v

~—

76

EaE i s

Local Microcode Generation and Compaction

R W P g .

Compaction 77

Chapter 7
Compaction

e e i}

At the beginning of this research effort, our plan was to take the best microcode
’! compaction algorithm available—which we believed to be that of Fisher [Fisher 79]—and to
extend it to perform interblock compaction, particularly emphasizing the compaction of loops.
- As the research progressed, it became clear that there were still unsolved problems in the

; area of intrablock compaction; in particular, there are a large number of important code
;‘i movements that current compaction algorithms do not consider. We also encountered
E problems in formalizing the interblock compaction constrainis (see Section 2.2.2) because
i our micromachine model was more complex than that used by Fisher. As a result, we have

limited our study to that of intrablock compaction.

:‘ We begin this chapter by reviswing Fisher’s intrablock compaction algorithm, and then
discuss two problems that his algorithm does not address; we believe that the second of
these—the data dependency problem—is of fundamental importance. Finally, we present our
compaction algorithm.

7.1. Fisher’s Compaction Aigorithm

The intrablock compaction algorithm of Fisher [Fisher 79], which compacts a linear
sequence of pOps into uls, consists of the following steps:

\ARE o 2o o o o
-

1. Determine the data dependencies among uOps based on register usage. A data
dependency exists between two uOps A and B, where A precedes B in the
original sequence, if A writes a register that B uses—ensuring that data is not
read from a register before it is written—or if A reads or writes a register that B

;' writes—ensuring that data in a register is not overwritten until all pOps that

require its value have read it. The data dependencies in the latter group are

f actually data antidependencies [Banerjee 79]; as will be shown in Section 7.3,

I many important optimizations are missed because the algorithm treats them as

[data dependencies.

2. The height of each pOp in the dependency graph is computed.

. The data available set—those pOps that have not been placed in a pl, but that are
data dependent only on uOps that have already been placed in a pl—is
computed.

P
w

Gy 4 v, v .
i

Ty I,r...riwrr ~TrorYvTeew

Damien of
. AR

e .

-.-177

ey
[]

Py

T S R—— e I ——— A A Bt A S St Shadi M SR o) S _gabule JhUn e Badhe dafias
K A - - . Baff A - . . -

78 Local Microcode Generation and Compaction

4. The pOp from the data available set whose height is the largest among the pOps
that do not conflict with the current gl is placed in into the current ul. If no such
1Op exists, a new ul—which now becomes the current ul—is created, and the
pOp from the data available set with the greatest height is placed into it.

5. Steps 3 and 4 are repeated until all @Ops have been placed into uls.

We are unable to use this algorithm without modifications for our machine model and
compiler. One problem is that the algorithm assumes that the values of volatile registers do
not extend across pul boundaries; another is that data dependencies are not handled in a
general manner.

7.2. The Volatile Register Problem

The algorithm just described makes the assumption that at the end of every ul, the values of
all volatile registers become undefined; thus data dependency constraints such as “uOp A
must precede pOp B by exactly one ul” are not accounted for. Either two uOps must reside in
the same pl—due to data being transmitted via a volatile register—or the second pOp may
follow the first by an arbitrary number of pls—in cases where data is transmitted via a
non-volatile register. In the first case, the necessary simultaneous pOps are combined and
treated as a single uOp (called a bundle) during compaction. In the second case, the uOps
are treated as separate, but there is no upper bound on the distance between them; this
guarantees that they can be compacted without backup.

When constraints are introduced that require two pOps to be a fixed distance apart, the
notion of a bundie must be extended to include groups of uOps that do not all reside in the
same pl, but whose placement relative to one another is fixed. The obvious extension of the
algorithm is to map all data dependencies between puOps to data dependencies between
bundles, and to map all conflicts between uOps to conflicts between bundles, taking care to
account for the relative placement of any uOp within a bundle in all cases; the location of a
bundle is defined to be the ul in which its earliest pOp(s) resides. Before such an extended
bundle is assigned to a contiguous set of uls, it is necessary to check conflicts with each pul.
This extension, which was first proposed by Poe et al. [Poe 81], is the one that we use in our
compaction algorithm.

During the latter stages of this research, we discovered a problem with this algorithm that
arises because the presence of multi-pl bundles makes it possible for a bundle to be
scheduled in an earlier ul than a bundie on which it is data dependent! Consider an example
having the following constraints:

Bundle 1 uOps A, B, C and D each belong to conflict class X, and must reside in
consecutive uls.

. r,rlak

Compaction

Bundle 2 1Op E belongs to conflict class Y, and must not precede uOp D.

Bundle 3 1Op J belongs to conflict class X, and must follow pOp D.

Bundle 4 pOps F, G and H all belong to conflict class Y, and must reside in

consecutive pls. In addition, uOp H may not precede pOp J.

The pOps are shown in Figure 7-1; the bracketed numbers along each dependency arc
indicate the minimum and maximum relative placement between the two pOps. Figure
7-2 shows the same puOps, grouped into bundles. Notice that the minimum relative placement
between bundles 3 and 4 is negative.

()

Figure 7-1: pOps with non-zero volatile data dependencies.

The proposed compaction algorithm would first place bundle 1 in ul 1; no bundles would be
placed in uls 2 and 3 due to conflicts and data dependencies. When the algorithm reached ul
4, bundle 2 would be placed there. Bundles 3 and 4 could then be placed in ul 5. The
resulting compaction, shown in Figure 7-3a, would have length 7.

Unfortunately, this compaction is non-optimal because the algorithm cannot anticipate the
effect of a data dependency with a negative offset. A compaction of length 6 could have been
obtained if the placement of bundle 2 had been delayed until after bundle 4 were placed in ul
3, as shown in Figure 7-3b. In order to obtain the optimal compaction, the algorithm must be
modified to perform something similar to lookahead or backtracking. '

' 4

80 Local Microcode Generation and Compaction

(3,0} Y

Figure 7-2: Bundles created from uOps in Figure 7-1.

X Y X Y

A A

B B

c C F

D E D G

J v J H
G £
H

(a) (b)

Figure 7-3: Compactions of bundles in Figure 7-2.

We therefore conclude that current intrablock compaction aigorithms may do a pqor job in
the presence of constraints such as “must precede by exactly one”, largely because it is
sometimes necessary to consider pls that are not complete (see 3.1.1.1) in order find the
optimal solution, as was the case in the above example. Still, we are content to use the
near-linear algorithm just described because we have devoted most of our research effort to
other tasks. An extension of the chain-matrix compaction algorithm, presented in Section
7.3, can solve this problem in polynomial time, but the degree of the polynomial may be quite
high.

7.3. The Data Dependency Problem

An even more serious problem than the one just discussed is that current compaction
algorithms treat data antidependencies as data dependencies. Remember from Chapter
3 that a data antidependency is a constraint in which one pOp must precede another because
the second destroys data that is read or written by .- e first.

T«'-v

o

Compaction 81

Current compaction algorithms accept a linear sequence of pOps as input, and compute
antidependencies solely on the basis of that linear order. This prevents such an algorithm
from ever changing the order in which two pOps that write the same register are executed.

As an example of this problem, consider compacting the pOps

B <A (1)
X<-B (2)
C<-X 3)
X<-D (4)
E<-X (5)
F <~ E (6)

Data dependencies are placed among uOps 1, 2 and 3, and among uOps 4, 5 and 6; in
addition an data antidependency is placed between uOps 3 and 4 because of their common
use of register X, as is shown in Figure 7-4a.

(b)

Figure 7-4: puOps with different data antidependencies.

This results in a pl sequence of length six because each puOp is data dependent—or
antidependent—on its immediate predecessor. It is possible, however, t0 compact this
sequence into four uls if a different ordering is considered for the use of register X, as is seen
in Figure 7-4b. Current compaction algorithms—even exhaustive searches—fail to consider
such uOp movement.

T LT e e e s

! 82 Local Microcode Generation and Compaction

We found this problem mentioned only once in the literature, and even then it was
dismissed as unimportant [Fisher 81b]:

As long as data precedence is not violated, a compacted microprogram will
preserve its data integrity. A few integrity-preserving compactions that do violate
precedence can sometimes be obtained by moving each write uOp and its
associated reads as a group, but this is widely regarded as an excessively
complicated technique offering little gain.

We believe this to be a miscenception, which we suspect is due largely to the manner in which

compaction algorithms have been tested. In some cases [Mallett 78], the test is based on an
abstract machine model in which da.a dependencies and pl conflicts are assumed to be the
only constraints; data antidependencies are not considered. In other cases [Fisher 79], uOps
for a real micromachine are produced by taking hand-written code and uncompacting it; in
this case the antidependencies—as determined by the original programmer—are (unwittingly)
passed to the compaction algorithm.

In our compiler, uOps are passed to the compaction phase in the form of a dependency
graph in which data antidependencies—and hence the orderings for temporary registers—
have not yet been determined. We have no choice but to develop a method for determining
the data antidependencies before—or in paralle! with—compaction.

7.3.1. Complexity revisited

We now turn our attention to the problems of compacting microcode with and without
predetermined data antidependen-ies. It is our contention that the problem of optimally
ordering the pOps—and thereby determining the antidependencies—is the more difficult
problem. We support this contention by proving (informally) that the compaction problem—
once data antidependencies are specified—can be solved optimally in polynomial time.
Because the general compaction problem is NP-hard, we conclude that the determination of
antidependencies is likely the more difficuit problem.

] 7.3.1.1. A polynomial time algorithm
We base our proof on the commonly-accepted classical microcode compaction model
[Fisher 79, Landskov 80]. The following propertie:s are especially important:

o Two uOps that conflict may not be placed in the same pl.
o if one uOp is data dependent on another, the former may not precede the latter.

e The micromachine contains v registers, where v is a small constant. Two uOps
that write the same register may not reside in the same pl.
(Our proof depends particularly on the last item: the number of registers in the micromachine ‘
f bounds the breadth of a data dependency graph to which antidependencies have been
added. NP-hardness proofs of the compaction problem have assumed that the breadth of the
graph could be arbitrarily large.

Compaction 83

We now state the theorem, and sketch a proof.

Thec:om 1: An optimal solution to the classical microcode compaction

prs e, can be discovered in time polynomial in the number of uOps, where the

degre2 of the polynomial is equal to the number of registers in the micromachine.
We (informally) prove the theorem by sketching the chain-matrix compaction algorithm,
which computes an optimal schedule in polynomial time. The overall strategy of the algorithm
is to create a graph in the shape of a v-dimensional matrix, whose arcs represent legal uls; the
optimal sofution is then determined by finding the shortest path in the matrix-graph from the
origin to the node at the opposite corner.

This is accomplished by first dividing the pOps into v disjoint sets, called chains, according
to the register each writes; if a pOp writes more than one register, it may be placed in the
chain corresponding to either. According to the formulation of the problem, any two pOps
that write the same register have, either directly or indirectly, a strict data dependency
between them; thus, the data dependencies completely determine the order in which the
elements of each chain are executed. The data dependency graph is therefore necessarily a
set of v totally ordered chains, whose nodes may also have other data dependencies as well.
An example of such a set of chains is shown in Figure 7-5. Data dependencies are
represented in the figure by arcs (with the data dependencies belonging to chains are in bold
face) and uOps are represented by nodes.

--\ , —\\ - -m‘
. A . \Y /, \\
\ r?,gnster 2\\ regjster 3\‘ register 4%,

' ‘ \ / '
'
¥
:

Figure 7-5: Data dependency graph cast as set of chains.

The compaction is performed by creating a graph in the shape of a v-dimensional matrix—
one dimension for each chain—in which element <k, k,,..:, k,> of-the matrix represents a
partially completed sequence of uOps in which the first k, uOps from chain 1 have been

-
b -
-
- -
i

@
-

(4 Sihan chb on el PN vt Sl BN g S o Jaciar e i)

T

.rwr.
X =

.

- b [t -y - v w y >
DR . _-.'_‘'_. ACRaC) _'. ‘- S ol '\\("r_ :',‘ N L ..1 . “L - vy ..v-\'- .'- reid \\r..r.-'\...r":“ "-' o - £y _ﬁr:’
< T - .- Seee AtataNat.

» .

R TR NI S Prody S w-'.‘.'n" . R e S AR AL NS

84 {ocal Microcode Genqration and Compactidn

compacted, the first k, pOps from chain 2 have been compacted, and so forth. Directed arcs
between elements of the graph represent uls; the distance of an arc along any dimension
must be either zero or one; an arc in the direction 1,0, 0, . . . 0> represents the ul containing
only a pOp from chain 1, <1,1,0,0....,0> represents the ul containing puOps from chain 1
and 2, and so forth. Each arc representing a ul that violates a conflict constraint is removed;
likewise, each node of the matrix graph representing a set of uOps that violates a data
dependency—that is to say, one that represents a situation where a pOp is compacted
without one of its predecessors having also been compacted—is removed, along with any
connected arcs.

At this point the problem is reduced to finding the shortest path from <0,0,...,0> to
oty ..., 1>, where the f; are the lengths of the respective chains. Dynamic programming
solutions to this problem are well known [Aho 74], and can be computed in time polynomial—
in this case linear—in the number of nodes and arcs in the graph. If n is the total number of
1Ops, then the number of nodes in the matrix is certainly bounded by n", while the outgoing
degree of any node is bounded by a constant—namely 2'. Thus the complexity of the
algorithm is O(n"), where v is the number of registers in the micromachine.

7.3.1.2. An example

As an example, consider the puOps in Figure 7-6.7 The solid lines represent data
dependencies, while the dotted lines represent conflicts. The data dependency arc marked
with an " ="' denotes a non-strict dependency—that is, a dependency in which the uOps are
allowed to reside in the same pl. Strict dependencies are “implemented” by a non-strict
dependency and a conflict. The bold lines represent strict dependencies between elements
of a chain. The matrix-graph for this problem, shown in Figure 7-7, has been augmented with
markings that illustrate the mapping from the original problem. The node marked X
represents a pl sequence into which uOps A, B and E have been compacted, the arc marked
Y represents the pl containing pOps C and F, and the arcs marked Z each represent the pl
containing only pOp G. In order to include conflict and data dependency information in the
matrix-graph, arcs representing illegal uls, and nodes representing sets of uOps that violate
data dependency, are removed. This means that 7 arcs,

(A,E) (B,E) (B,F) (C,E) (C,G) (C,H) and (D,G)
and 8 nodes are deleted. The node in the bottom-left corner, for example, is removed
because it represents pis containing uOps A, B, C, and D, which violates the constraints that
C must not precede £ and that D must not precede G. Figure 7-8 shows the modified

7We use an example with only two chains because a matrix of dimension two is much easier to depict on paper
than one of higher dimension.

Compaction - . .) 85

Figure 7-7: Matrix-graph before modifications for constraints.

matrix-graph, in which each node is also marked with its distance from the origin. A minimal
path—shown in bold face—is produced by following arcs from the final state (i.e., bottom-

Figure 7-8: Matrix-graph after modifications for constraints.

right corner) that always reduce the distance by one. The resulting ul sequence is shown in
Figure 7-9. ‘

We conclude from Theorem 1 that although the local microcode compaction problem is
NP-hard, the addition of a “‘complete” set of antidependency arcs to the dependency graph
constrains the breadth of the graph so severely that problem can be solved in polynomial
time. A corollary is that the determination of the initial ordering of uOps for the purpose of
determining antidependencies is NP-hard and is therefore likely a more difficult problem than
that of compaction with predetermined antidependencies.

7.3.1.3. Main memory references

Before proceeding any further, we wish to address the question of references to an
arbitrarily large external memory. if each memory location is considered to be a register, the
algorithm is again exponential. We answer this by observing that writes to external memory
are typically performed on micromachines by first loading the data and memory address into
“memory data” and “memory address’ registers, and then performing the actual transfer.
The order in which writes are made to main memory is thus completely determined by the
order of the pOps that write thé micromachine registers that hold the data and address; this
allows the external memory to be treated as a single register. The result does not apply to
machines in which data may be written to main memory without first being loaded into a
register.

PURP L LIS S YR WP . P e, a P ST VL. . AP P W S W P S I P N U U S S U Y S o . 2

CAlLA

U A MadcaTnaedest Sy ehEreRoy

b .‘.".j..'..'.v'.'l, F.- O

Figure 7-9: Optimally-compacted pOps.

7.3.1.4. More complex machine models

The chain-matrix algorithm—and hence the complexity result—can also be applied to
slightly more complex micromachine models, two of which we will mention here. The first
extension allows the data dependency discussed in Section 7.2, “nOp A must precede uOp B
by exactly one cycle,” to be expressed. Because a node in the matrix-graph represents a set
of pOps, the restriction “may follow by no more than one pl'" can be enforced by removing all
arcs that originate from nodes (uls) "containing” pOp A, but whose destinations do not
“contain” pOp B. The addition of a strict data dependency between the puOps can be used to
guarantee that pOp B follows uOp A. Together, the two restrictions satisfy the original
constraint. A dependency of the form “uOp A must coincide with puOp B, or precede it by
exactly one cycle’” may be modeled in an analogous manner, using a non-strict dependency.

The algorithm can also be extended to micromachines that allow some registers to be
written twice during the same microcycle. This is done by allowing the arcs in the
matrix-graph to have a length of two along dimensions that correspond to those registers.

uuuuuuuuu

...........
LS i e e P e R P L L AT P Y A P . S AN ML S A
e WL N

88 Local Microcode Generation and Compaction

7.3.2. Our solution

Because our compaction algorithm begins with a data dependency graph of uOps instead
of a linear sequence of uOps, we must ensure that overlapping uses of a register do not
occur. We have considered two methods of performing this task. The first was to develop a
completely new compaction algorithm that accounts for register conflicts as it compacts the
pOps. Although we suspect that this approach will uitimately lead to the best solutions, we
reject it for our system because such an algorithm would almost certainly entail heuristic
search and backtracking; its development alone would require a substantial research effort.
Instead, we adopted a second approach: that of pre-serializing the graph using a simple
heuristic, thereby making it amenable to a compaction algorithm in which the antidepen-
dencies are assumed to be specified.

In general, a dependency graph specifies only a partial ordering, while the equivalent of a
total ordering is needed to compute a complete set of antidependencies. Our approach is to
give commonly-used registers the highest priority, allowing infrequently-used registers to be
hold their values for longer periods of time. For the purpose of defining priority, we consider
volatile registers to be used “infinitely often’, thereby guaranteeing thut each use of such a
register is localized. Thus the serialization algorithm ranks all registers—first according to
volatility, and then according to frequency of use—and then ranks the uOps by iteratively
vinding dependent pOps together in order of the priority of their dependency.

As an example, consider the data dependency graph in Figure.7-10, where the nodes
represent uOps, and where each dependency (arc) is marked with its “‘ranking’’; the dummy
pOps X, and Xg have been added to indicate reqisters that are live at the beginning or end of
the sequence.

Figure 7-10: Dependency graph before serialization.

ta atat mtaa ala el Loa e o

First, D is placed before X and B is placed before D because the dependencies between
those pairs are of the highest priority.

. e,

—y :.’ Ty r!. O A R A
: h L . S e,
. . R ¢ B

Compaction 89

X, ... BDX
0 F
Then C, based on its dependency with D, is placed next to B, which is the closest available
position before D.
xo ... CBD)(,=

The next dependency, which is between X, and 8, is ignored because B has already been
placed. The remaining pOps, A and E are placed between X, and C.
Xo A ECBD Xg

Because this algorithm does no backtracking, it is possible for an illegal serialization—one
in which a register is required to hold two distinct values simuitaneously—to be produced.
One reason is that it is possible for a code generator to produce code for which no legal
serialization exists (Figure 7-11a); we have produced (by hand) cases where the algorithm
would even fail to find a serialization that exists (Figure 7-11b). The algorithm checks for such
inconsistencies, but gives only a warning if one occurs. We do not examine the problem
further in this dissertation because such a situation has never occurred during our
experiments, and because we suspect that ‘‘higher-level” issues, such as register allocation,
are also involved.

(A) (B)

Figure 7-11: lllegal serial orderings of uOps.

V.
......

............. . -'l
B I A B e T T e
LIRSS " R A R I PR PP I i U T P S I N Y T At e At

. 20 Local Microcode Generation and Compaction
,'_s"

- 7.4. The intrablock Compaction Algorithm

; We now present the algorithm that compacts a dependency graph of uOps into pls.

-. 1. First, the serialization aigorithm described \n Section 7.3.2 is used to place the

&8 pOps into a linear sequence that satisfies the data dependency constraints.

5

Sy 2. Then antidependencies are placed between any two pOps in which the first

_ precedes the second in the linear list and reads or writes a register that the

second writes. From this point on, data dependencies and antidependencies are
treated identically.

e 3. Next, the uOps are mapped into bundles. Any two uOps that are required,
according to the data dependency graph, to reside a constant distance apart are
placed into the same bundle. Data dependencies between pOps in different
{ bundles are mapped into data dependencies between their respective bundles in
a way that accounts for the relative position of each pOp within its bundle.
Conflicts from all uOps in a bundle are mapped into the bundie’s conflict list;
again the relative position of the each uOp is taken into account.

4. Finally, the height of each bundle in the data dependency graph is computed in
e the obvious way, and the compaction algorithm of 3.1.1.2—modified to handie
multi-ul bundles as described in Section 7.2—is applied, where bundle height is
used as the evaluation function, with the highest bundles placed first.

7.5. Summary

The major resuit of this chapter is not a new compaction algorithm, but rather a
demonstration that previous intrablock compaction algorithms are inadequate because they
rely on the order in which the uOps are placed in the source code to determine the placement
of data antidependencies. We have shown that the complexity of the problem solved by such
algorithms is polynomial in the number of uOps, and have therefore concluded that the
difficult part of the compaction problem is the initial placement of the data antidependencies.
We therefore do not consider intrablock compaction to be a solved problem, as seems to be
the general consensus among researchers in the field [Davidson 81).

We have also presented a modest extension to the intrablock compaction algorithm of
Fisher that addresses the data dependency problem and handles volatile registers in a more
general—but still inadequate—manner. It certainly will not always produce optimal code, but
it has performed well in our limited experiments.

SOOI, (O A28 DN O OGP KR

..................

........

Coupling Code Generation and Compaction ' o1

Chapter 8
Coupling Code Generation and Compaction

This chapter describes the methods by which we attempted to couple the code generation
and compaction phases of the compiler. Each method succeeded—that is, produced better
code than without coupling—in some situations, but failed in others; sometimes the coupling
perturbed the search so severely that no code was produced at all.

Recall from Chapter 4 that three methods of coupling were tested. The first requires the
compaction phase to select one of several of code sequences that have been produced by
the code generator. The second involves a feedback loop between the two phases, while the
third requires the code generator to ‘‘call” the compaction phase as a subroutine, using
information returned to prune the heuristic search.

The first section describes three example problems—along with their solutions—used in
this chapter to illustrate the strengths and weaknesses of each method. The next three
sections describe the coupling methods, reporting their behavior on the three ‘‘test
problems”, and give summaries of their effectiveness. Finally, an attempt to combine two of

the coupling methods is described.

8.1. |Hustrative Problems

The example problems used in this chapter are all from the Kmap [Ousterhout 78]
microarchitecture. (A sketch of the Kmap may be found in Appendix D.) Due to the length of
the heuristic searches described in this section, it is not feasible to present them in the text.
Traces of some, however, along with examples from the Puma [Grishman 78] microar-
chitecture, may be found in Appendix F.

So that the reader may better understand the examples in this chapter, we first discuss
relevant features of the Kmap. The two ALU data inputs are areg and breg; there do not exist,
however, ALU functions "select areg" or “select breg”. The ‘‘normal’” way to move the areg
value to the fbus (i.e., ALU output) is to put the constant “-1" in breg, using the breg.ones
1Op, and to set the ALU function to AND. Similarly, the value of breg may be passed to the
fbus by placing the constant “0" in areg and setting the ALU function to OR. This is more

[
LI

............
...............

Local Microcode Generation and Compaction

difficult for the heuristic search to discover, however, because there is no pOp that explicitly
sets areg to zero. Instead, the uOp

(<~ areg (and %mask (rot scount tlatch))
is used, requiring the search to apply the axiom *zero ANDed with anything is zero” and to
recognize that Xmask pattern matches "'0".

The first problem we will consider is that of prdducing the constant *-2" on the fbus. It was
chosen largely because it was the only example in which the squeeze method outperformed
the others. We find it an interesting task, because the optimal solution is quite difficult to
discover.

The first sequence (see Figure 8-1) takes advantage of the fact that the constant register is
directly connected to breg. The constant register is loaded, and the value is then moved to
breg. A zerois placed in areg and an OR ALU function causes the value to appear the fbus.

mask

ROM

0 " | constant |
-2

| Breg |

Figure 8-1: Using the constant register to produce a constant on the /fbus.

The use of the constant in the Kmap tends to make the literal field a bottleneck because two
pOps—that both use the literal field—are required to load the constant—one for the high haif,
and one for the low half.

Another sequence, which is the one generated without coupling, produces the constant in
areg using the *~2'' mask (see Figure 8-2). This requires a *‘-~1"" to be placed in tlatch, having
been routed from the fbus via the abus. We remark that this sequence requires the fbus to be
used during two pis—one with the ALU function ONES, the other with the function OR.

The best method for producing the constant, however, is to perform a subtraction using the

Coupling Code Generation and Compaction ' 93

- -1) 3
' mask | tlatch | abus 1
N ROM v-1

N\ shifter "\
B

-1

Figure 8-2: Using a mask to produce a constant on the fbus.

2z

pOp (<~ fbus (+ (+ (not areg) breg) carryin)). When the carryin is set to zero,

this pOp is effectively breg - areg - 1. Because breg can be easily set to *-1", and areg to
. “Q", a*“-2" can be produced on the fbus in this way without using any resource for more than

one cycle. Unfortunately, discovering this sequence requires a number of axioms to be

applied; specifically, the constant “-2" must be unfolded, through the repetitive application of

axioms and selection of pOps into

(+ (+ (not (and 0 (rot scount tlatch))) -1) 0)
which is quite difficult to discover.

The second and third examples require code to be generated that places the constant “7"
on the fbus, while performing an additional task. In the second example the additionai task is
that of moving data from /incwd to a word in the dram (data ram); in the third example, a word
must be copied from the dram to a gpr (general purpose register).

There are two basic ways to produce the constant “7” in the Kmap; the first, which uses the
constant register, has the drawback that it requires the literal field to be used during two pls
while both halves of the constant register are loaded. This can produce poor code if other
operations that use the literal field—such as loading dram or reading lincwd—are nearby,
because the literal field will be a bottleneck. The second method of generating a ‘7" is to use
the mask unit, as “7" is one of the available masks. As in the first example, this requires the
\‘ ' production of a “~1” from the fbus; thus, the method “overloads” the fbus.

In both cases, the code sequence using the mask was produced by the code generator in

TP T —

CHNNIE aiull “urai i R Ry - Rt iy Mo v N T Wy T
N ,"h._‘ N - . . . % e B A . . . - N Bttt e - Ditaliivg low .." ____

94 » Local Microcode Generation and Compaction

the absence of coupling. We would expect that with coupling, the constant register would be
used in the fatter case, as the literal field is otherwise free.

8.2. And/Or Method

The And/Or method of coupling the two phases requires the code generator to produce
several code sequences so that the compaction phase can select the one that produces the
shortest ul sequence. This is implemented by modifying the search and transform routines to
return an And/Or tree [Winston 77] of uOps. Recall from Chapter 4 that an And/Or tree is a
tree in which each interior node is marked either And or Or; a solution to a tree whose root is
marked And consists of solutions for all of its sons, while a solution to a tree whose root is
marked Or consists of a solution for any of its sons. Because an And/Or tree represents a set
of solutions, it is the responsibility of the compaction routine to choose the solution that
produces the smallest final code. ;

8.2.1. Moditications to the code generation and compaction routines

Recall that the code generation algorithm in Chapter 6 produces a degenerate And/Or
tree—in which all interior nodes are And nodes—representing only a single solution
consisting of ail pOps in the tree. The And/Or coupling method considers trees in which Or
nodes are also present; this requires both that the code generator be modified so that it
produces such trees, and that the compaction routine be modified so that it accepts them as
input.

Enabling the code generator to produce multiple solutions is reasonably straightforward.
The search and transform routines are modified so that each continues searching even after a
solution is found; two or more solutions for a given subproblem are placed under an Or node
in the And/Or tree. Thus, each recursive call to search or transform has the potential to
produce an Or node in the tree.

The modification to the compaction routine is more difficuit. Although in theory a
compaction could be attempted for every combination of uOps in the set of solutions
specified by the And/Or tree, the number of solutions grows exponentially with the depth of
the tree; such an approach is therefore acceptable only for small trees. We have adopted a
hill-climbing strategy [Winston 77] that considers each leaf node at least once, but does not

consider all combinations of uOps.

Initially, the cheapest sequence of uOps, according to the pOp cost table, is selected; we
will call this sequence the primary sequence. Then a set of secondary sequences are
combuted from the primary sequence. A secondary sequence is a group of uOps that differs
from the primary sequence “in only a few uOps'. More precisely, a group of uOps is a

P e i I Y RN L e T e e Ye T T e et a2

Coupling Code Generation and Compaction 95

secondary sequence if it can be transformed into the primary sequence by changing the
selection of exactly one Or node in the And/Or tree. The primary sequence and each of the
secondary sequences are compacted. The sequence that compacts most tightly is chosen as
the new primary sequence, and the process is repeated until no secondary sequence can be
found that is better than the current primary sequence. Ties are broken by first comparing the
number of subcycles used by each sequence and then the total cost of the pOps as defined
by the pOp cost tables.

As a simple example, let us name the uOps m1 through m6, and assume that the And/Or
tree, shown in Figure 8-3, is ordered so that the left-most operands are the ones considered
least expensive.

Figure 8-3: An And/Or tree.

The primary sequence is

mi m2 m4
where all right sons of OR nodes are pruned away. The two secondary sequences,

mi m3 m4 and m1 m2 mé6 mé
are computed by reversing the sense of the first and second OR nodes respectively. Let us
assume that the sequence

ml m2 mb mé
compacts most tightly. Then it becomes the new primary sequence, and the secondary
sequences are

mi m2 m4d and m1 m3 mb mé
In practice, there would be more than two OR nodes, and this process might continue for
several iterations.

o

Lase L SR 0 & i Ak e aus o 4
-

LA A

2

S

rfvrv' ———

96 v Local Microcode Generation and Compaction

8.2.2. Examples

In the first example,
(<- fbus -2)
the search examines 64 nodes and finds the foliowing code sequences: .

1. Loading the constant register with “-2", gating it onto breg, masking areg with
zero, and performing an OR operation in the ALU.

2. Moving a “-1" from the fbus to tlatch, masking it with a “-2" into areg, putting
*“—~1" on breg and performing an AND operation in the ALU.

3. Same as (2), except that a gpr is allocated and used to pass the “-1" from the
fbus to tlatch.

4. Same as (2), except that a zero is placed in breg (via the fbus and fblatch), and an
OR is performed in the ALU.
The first sequence is initially chosen as the primary sequence, but after ail compactions are
attempted, it is discovered that the second requires one less pl. A second iteration with (2) as
the primary sequence uncovers no new sequences, so (2) is selected as the best sequence.
Without more powerful heuristics in the code generator, the optimal (subtraction) sequence
was not found.

In addition, the And/0Or method did not discover the sequence using the constant register
until after we “precompiled"’ the solution to
(<- areg 0)
This same precompilation was also necessary for the other And/Or examples described in
this section.

In the second example, the source statements
(i (<- dram[dadr 0] lincwd) (<- fbus 7))
are compiled and compacted. In the Kmap, both accessing lincwd and writing the dram
require the use of the literal field of the ul; one would thus expect a poor compaction from a
sequence that generates the 7"’ by loading it into the constant register because it uses the
literal field for two cycles. On the other hand, loading a gpr from the dram does not require
the literal field to be used.

Only one sequence is found to move data from /incwd to the dram, but five are produced to
put the constant “7" on the fbus:

1. Use the constant register to generate the “7", setting areg to 0", and setting the
ALU function to OR.

2. Use the mask to generate the "7, fetching a “~1" from the fbus, as was done in
the previous example, and setting breg to '-1"" and the ALU function to AND.

3. Same as (2), but using a gpr to store the *“~1"" for one or more cycles.

.................

Coupling Code Generation and Compaction 97

4. Same as (2), but putting a ‘0" in breg (via fbus and Iblatch), and setting the ALU
function to OR.

5. Same as (4), but using a gpr to store the **~1"' for one or more cycles.
Initially, the sequence that uses the constant register is chosen as the primary sequence, but
is replaced on the next iteration because it requires 5 cycles to compact, while all of the

others require only three; this is, of course, due to the heavy use of the literal field. Sequence
(2) is finally chosen as the best sequence.

The third example,

- (; (<- gpr[2] dram[dadr 0]) (<~ fbus 7))

- is a different matter. In this case the first source statement does not use the literal field of the
? ul, but rather uses the fbus for an additional cycle; thus, the constant register is used to
generate the “7".

- 8.2.3. Evaluation

F The And/0Or method of coupling the phases appears to be an effective one. Once the
s And/0Or tree has been generated, the compaction phase seems to have little trouble selecting

a good sequence. In particular this method has performed well in situations similar to that

described in 4.1.1.3. We reinark, howevar, that all of our experiments have been moderately
small (€.g., 100-200 nodes); we would not necessarily expeact the hill-climbing to perform as
well with a larger tree—say several thousand nodes—as input.

The major difficultiecs appear to be in controlling and directing the code-generation
process. One problem we have encountered has been excessive searching even after
acceptabie solutions have been found. Because the evaluation function often overestimates
the difficulty of producing code for a particular expression, it is possible for the search and
transform routines to *“‘waste’ a large amount of time attempting to find additional solutions
that may not even exist. In order to contain the.search, we have introduced a global search
parameter that we call the foundfactor, which is typically a real number in the range (0, 1).
Whenever a code sequence is found that satisfies a particular invocation of search or
transform, the cutoff is multiplied by the foundfactor; additional solutions are thus required to
satisfy a4 more stringent cutoff. If a second solution is found, the cutoif is again multiplied by
the foundfactor, further limiting the depth of a search for a third sequence.

We have generally set the initial search cutoff to be 1.2 times its estimated cost as
determined by the evaluation function. A foundfactor of 0.84—so0 the product of the two is
slightly greater than 1.0—has generally performed well in our experiments. This tends to
allow at least two solutions to be found at any given level of the search. Figure 8-4 illustrates
the effect of the foundfactor on the search.

a 2 a4 e e e m e s .a ale — - PR ST

-~ .

b N e 2 N S Ry

i e

.......
- o e

.............................

Figure 8-4: Ilustration of cutoff being reduced with search breadth.

One of the shortcomings of And/Or method is that occasionally a simple solution is found,
but the search continues, attempting to find more complicated solutions. This was made
painfully clear during an experiment in which a search for the subgoal,

(<- fbus 0)
was passed a relatively large cutoff. In the Kmap microarchitecture, there is an explicit uOp
that performs the function of setting the fbus to zero. The large cutoft, however, allowed the
search to continue to find “better” solutions, such as

(<- fbus (and (and 0 (rot scount tlatch)) breg))
and
(<- fbus (+ (+ (and 0 (rot scount tlatch)) (not -1)) 0))

Cattell addressed this problem by introducing a breadth limit; when the number of nodes
traversed in the search tree during a search for an additional solution exceeded a predefined
limit, it was terminated. We have had difficuity directly applying his solution to our system,
because the breadth limit was defined to be a function of the depth; in our system, there is
little correlation between the absolute depth of the search and the amount of work to which
we are willing to expend in finding a solution.

Another problem we encountered with the And/Or method was that of finding redundant
solutions, which can happen when the order in which axioms are applied is reversed. Figures
8-5 and 8-6, for example, show two nondeterministic searches that find the same solution to a
problem. In many cases, the order in which the pOps are generated is different, so such
redundancy does not become apparent until the search is completed. Such redundant
solutions may cause the cutoff to be reduced to the point that other unique solutions are
missed. Although certain features of the searching strategy—requiring destination operands
to match when considering a feasible uOp, for example—reduce the number of duplications,
it is not uncommon for our system to discover the same sequence of uOps in four or five
different ways.

L. .

Coupling Code Generation and Compaction : 29

transform: (+ 0 breg) => (+ (+ areg breg) carryin)
apply commutativity axiom
transform: (+ breg 0) => (+ (+ areg breg) carryin)
decompose by operand
transform: 0 => carryin
results in pOp: carry.0
transform: breg => (+ areg breg)
apply identity axiom
transform: (+ 0 breg) => (+ areg breg)
decompose by operand
transform: 0 => areg
results in uOp: areg.mask 0

Figure 8-5: Example of transform function.

transform: (+ 0 breg) => (+ (+ areg breg) carryin)
apply identity axiom
transform: (+ 0 (+ 0 breg)) => (+ (+ areg breg) carryin)
apply commutativity axiom
transform: (+ (+ 0 brag) 0) => (+ (+ areg brag) carryin)
decompose by operand
transform: 0 => carryin
results in nOp: carry.0
transform: (+ 0 breg) => (+ areq breg)
decompose by operand
transform: 0 => areg
results in uOp: areg.mask 0

Figure 8-6: Redundant version of transform in Figure 8-5.

An inherent problem with the And/Or strategy is that the code generator receives no
feedback from the compaction phase; it must therefore be “intelligent”” enough to create all
possible code sequences that might compact well in a given situation. In the first example,
the code generator in fact did not find the best solution, because it required the application of
more axioms than did other solutions. We see this as the most fundamental problem; if the
code generator is good enough—a big if—we believe that the And/Or method can be used to
produce high-quality compacted microcode.

8.3. Iteration

The iteration method requires neither the code generation nor compaction phases to be
modified; rather, a post-compaction analysis is performed on the compacted microcode to
determine which uOps are responsible for causing bottlenecks. The cost tables, which are
used by the code generator to guide the search, are then modified so that “bottieneck-prone"
uOps are assigned a higher cost, and the search is repeated. The idea is to encourage the
code generator to use uOps that are less likely to conflict with other uOps.

o T
. o S
‘. S i,

vy
0t
»

ll'l‘

AL

'
T
AN

ragn

Sy u e o o
. .

......

'' . LW

ST e e W W e e e ..'.'.'."‘.'.‘.'.'_" Ry Y e W W e v
D T S R P . . St e T te e T PN T - e T A R A)

100 Loucal Microcode Generation and Compaction

8.3.1. Post-compaclion analysis

The post-compaction analysis consists of two phasegs. The first is the determination of
which conflicts are most often involved in botllenecks. The secord is the updating of the
conilict cost tables, which are in turn reflected in the uOp cost tables and distarice tables.

Qur first attempt at post-compaction analysis was to count the number of times that a
conflict was present in the uOps produced by the code generator, and increase the cost of
the conflict(s) that appeared the most frequently. This strategy had the drawback, however,
that conflicts appearing frequently were penalized, rather thar ones that might have caused
local bottlenecks.

This led us to change our approach: instead of counting the contlicts. the nOps are first
divided into bundles—a set of uOps that is compacted as a group (see 2.2.5.2). Then, one of
the bundles is removed, and the remaining cundles are compacted; if this ‘“modified”
microccde compacts more tightly. we assume thai the removed bundle must have contained a
petileneck. Following this. the bundle is raturnad to its original place, and another bundle is
chesen for removal; this proccess is performad for each bundle. Each conflict contained in
any "botticneck-prone’ bundle becomes a candidate for having its cost increased.

by determining the quantity to add to each conflict, we have taken the approach that the
cum of the conilicts’ costs shouid increase by constant amount—in our experiments 10
vnits—during each iteration; there is therefore a finite amount of ‘‘cost’” to be allocated
amoag confticts that are involved in bottlenecks. This cost is allocated in proportion to the
nroctuct of the conflict’s current cost and totai number of uls “'saved’ during compactions in
witichh a bundle containing the conflict was "“missing'. In the current implementation, tr{ese
costs are represented by integers, so the computations are only approximate.

As an examplo, let us assume that conflicts involving
4 alu (cost 5)
t,) regfilo {cost 3)
) shifter (cost 6)
i 1iteral (cost 8)
S exist, and that three bundies have been produced by the code generator, containing the
: conflicts '
E-. [alu 11teral]
(shifter]
f’ and
[(alu regfile]
respectively. Let us further assume that when the code is compacted without the
E ° [alu 1iteral] bundle, two pls were saved, that none were saved when the [shifter]
4 bundle was removed, and that one was saved when the [alu regfile] bundle was
:
3
4
}
| @
.
| Sosntesntsh Fe ey i TP W Wy -

S aEnat .

T
AN

Coupling Code Generation and Compaction 101

removed. If we desire to add a cost of 10 to the set of conflicts, the a/u conflict is increased by
4, and literal conflict by 5, and the regfile conflict by 1; these increments are computed as
follows:

conllict orig. cost uls saved product proportion X10, rounded
alu 5 3 15 0.44 4
regfile 3 1 3 0.09 1
shifter 6 0 0 0.00 0
literal 8 2 16 047 5

In addition to the modification of conflict, uOp, and distance tables, the caches must aiso be
flushed, so that information based on the old table values is not present.

8.3.2. Examples

The examples illustrate the reasons that we found this coupling method rather disappoint-
ing. Before we present the examples, however, we wish to define some terminology so that
two different types of iteration are not confused. When a search is initiated, it is passed a
cutoff that is computed by multiplying its “expected cost” (as determined by the evaluation
function) by a small factor such as 1.2. If the search terminates in a failure, this factor is
increased and the search is attempted again. We shall call these failure-induced repetitions

subiterations.

At a higher level, we speak of iteration to mean the cycle in which code is generated, code
is compacted, tables are updated, code is generated, and so forth. The purpose of this
iteration is to improve code that has already been successfully generated; we call these
improvement-induced repetitions iterations. Thereforé the statement “the first iteration
required only one subiteration, but the second required three," means that the search using
unmodified tables was successful the first time, but that it took three searches (with
successively greater cutoffs) in order to find a code sequence after the tables were modified.

In the first example, where the constant “~2" is to be placed on the fbus, the algorithm
found a 2-pl solution—using the mask unit—on the first two iterations, and then found a 3-ul
solution—using the constant register—on the next two iterations. On the fifth iteration, no
solution was found after the first two subiterations, and the third gave indications of taking a
very long time, at which point we manually terminated the search. Table 8-1 summarizes its
performance on the first example. The distressing result is that as the tables become
“better”, the cost of finding a solution increases, and the quality of the solution decreases.

In the second example (see Table 8-2), where it is undesirable to use the constant register
because of literal field conflicts, a 3-ul sequence is generated on the first iteration. On the
second iteration, the algorithm perceives the fbus as a bottleneck, and the task of constant
generation is assigned to the constant register, resulting in a 5-ul sequence. On the third

(S

total #
iteration Subilerations nodes # uls comments
(1) 1 23 2 uses mask
(2) 2 34 2 same as (1)
Q) 2 41 3 uses const. reg.
(4) 3 61 3 same as (3)
(5) 2 333 ” no solution after 333 nodes
Table 8-1: Summary of first iteration coupling example.

iteration, the sequence using the constant register is again found, but at greater search cost.
Finally, the solution using the mask unit and fbus is rediscovered on the fourth iteration.

total #
iteration subiterations nodes # uls comments
(1) 1 34 3 uses mask
(2) 2 57 5 uses constant register
(3) 3 68 5 same as (2)
(4) 4 114 3 same as (1)

Table 8-2: Summary of second iteration coupling example.

In the third example (see Table 8-3), the goal cf putting a “7" on the fbus should be
achieved using the constant register, as the literal field is otherwise unused. In this case, as in
the previous exaniples. the solution using the mask is generated on the first iteration; in this
example, however, an identical search is performed during the second iteration. Finally the
solution using the constant register is found on the third (and again on the fourth) iteration,
decreasing code size from 4 to 3 uls.

total #
iteration subiterations nodes # wuls comments
) 1 49 4 uses mask
(2) 1 49 4 same as (1)
3 2 73 3 uses constant register
(4) 2 73 3 same as (3)
Table 8-3: Summary of third iteration coupling example.

8.3.3. Evaluation

‘We found these results rather discouraging, as we had hoped for a quick convergence to a
good solution in most cases. More than one code sequence was found for each input

R P . _— £ e m o m A -,-,,_J

Coupling Code Generation and Compaction 103

expression, but the convergence to good solutions was not impressive. Furthermore, the
amount of time spent finding a solution tended to increase with each iteration; one would
have hoped that the finding a solution would become easier as the cost tables became
“better’.

We have two thecries for the reason that the cost increases with each iteration. The first is
that when the cost of some uOps is increased, the initial estimate of the cost of the search—
and hence its depth—is also increased. Thus, a search is allowed o go deeper if it involves
only uOps whose costs did not increase; in many cases such searches are fruitiess anyway.
The other theory is that there are many times when it is impossible to generate code that
completely avoids using a '‘high-cost’’ conflict, so the goal becomes one of minimizing its
use; if a particular conflict is assigned an extremely high cost, the distinction tetween the
costs of other conflicts can become *‘noise’’, causing the evaluation function to become less
effective.

Another shortcoming of the iteration coupling method is that it often fails to distinguish
between local bottlenecks and global bottlenecks. In a pl sequence of moderate-to-large
length, {or example. it may be the case that the insertion of a particular conflict will cause the
number of pls to be increased if added to near the beginning—but not the end—of a pl
sequence. This coupling method assigns a single cost to the uOp over the entire segment,
patentially causing poor code to be generated in the presence of local bottlenecks.

We conclude that iteration coupling is not sensitive to subtle features of the microar-
chitecture, features that oftsn determine how well code compacts. We also remark that this
method aszumes that ul conflicts are modeled by conflict classes; this assumption is false for
some micrcarchitectures. The consequence is not that the method will fail to work, but that it
will be necessary to make some simplifying assumptions about the architecture, causing its
feedback to be even less accurate.

The one positive thing we have 0 say about iteration coupling is that it does produce a
number of different sequences, even if some of them them were worse than the one originally
generated. As evidence that this method has some merit, we point out that it was able to
discover the sequences using the constant register without requiring precompilation of the
expression

(<- areg 0)

8.4. The Squeeze Method

The third and final coupling method that we tested is the squeeze method, given its name
because the code generator is required to “squeeze’” all of the uOps into a certain number of
partially-filled uls as it produces them. Originally we had planned to perform a complete

itdteessedessiaiie i M

104 Local Microcode Generation and Compaction

compaction each time a pOp was considered, but the cost of setting up the compaction,
mapping the uOps into bundles, and compacting the code was too great to perform in an
inner loop of the algorithm. Ideally, it would be nice to have an incremental compaction
algorithm.

8.4.1. Modifications to code generation routine

Instead cf performing the compaction each time, we approximate a compaction by keeping
a count of the number of times each conflict is used. When code is to be generated,
constraints such as “the ALU may only be used during three pls’ are specified. This is quite
easy to implement: an array of integers keeps track of the number of times each conflict is
used. Whenever a uOp is added, the array elements corresponding to each of its conflicts is
incremented; similarly, whenever a pOp is removed—as a result of an unsuccessful search,
for example—the same array elements are decremented. This ‘‘squeeze array’ is used as an
additional search cutoff. whenever the addition of a pOp causes the count for any conflict to
exceed its limit, the pOp is immediately removed from consideration as a candidate.

8.4.2. Examples

The first example—that of putting *-2" on the fbus-—illustrates the only success we had
with the squeeze method. Previously, it was noted that the best method of putting a “-2" on
the fbus was to use put a “-1" in breg, 0" in areg and to set the ALU/carry so that
breg - areg - 1 is computed. Because there are a number of other solutions that do not
require as many axioms to be applied, the And/Or and iteration coupling methods never
found this solution. In performing this experiment with the squeeze method, we added the
requirement that no conflict could appear in the solution more than once;8 thus solutions
found by previous methods would necessarily be pruned in this case, because each requires
the use of some resource for more than one cycle.

During the first subiteration, the cutoff was small enough so that only the AND, OR, and
XOR ALU operations—not subtraction—were considered; this search ended in failure after

examining 43 nodes in the search tree. After the cutoff was increased by 30%, the search
considered 5 ALU operations—including subtraction—resulting in a search that found the

b

3

{ ® solution after examining 253 nodes—a number that we believe borders on being excessive.
[‘ In the second example code is to be generated for the expression

- (: (<~ dram[dadr 0] 1incwd) (<~ fbus 7))

: .

L

p

8We chose this restriction for the prablem because we knew a priorf that there exists a solution that satisfies it. In
! a fult compiler, the issue of determining such “shapes’ would be an issue, but we do not address it here.

R - i ik - .
e - it . - B U ST S U N

L T T T e A

Coupling Code Generation and Compaction 105

in which no conflict is allowed to appear more than twice. In this case, the successful search
is able to generate code without ever having to prune the search using the *squeeze’
heuristic, because even the search without coupling found a sequence that did not use any
conflict more than twice. The fact that optimal code is generated is therefore not indicative of
the usefulness of the squeeze strategy.

The squeeze method never found a solution for the third example,
(: (<- gpr[2] dram[dadr 0]) (<- fbus 7))
In this case, code was generated first for the expression
(<- fbus 7)
which consists of the pOps that use the fbus twice. After that subsearch returned
successfully, the search was required to find a solution to '
(<- gpr[2] dram[dadr 0])
without using the fbus —a task that is impossible. If the order of the subsearches had been
reversed, a solution could have been found rather quickly that used the constant register to
generate the “7"; unfortunately, the evaluation function had no way of determining which
subgoal was more '‘flexible’.

8.4.3. Evaluation

We conclude from our experiments that this method can be of use in special situations, but
that it is generally not very effective. The most fundamental problem is that the evaluation
function has no knowledge about the ''squeeze cutoff'’, and therefore guides the search in
many ‘“‘promising’’ directions that become 'surprising”’ deuad-ends. Judging from our
experience, it is very important that the evaluation function be a reasonably accurate
reflection of the search itself. Although this method found the optimal solution in the first
example, its weakness became evident when the window was expanded to two or three uls.

Another drawback of the squeeze method is that it requires the ‘‘'shape” of final code to be
guessed before the code is generated. For the last two examples, we also tried invoking the
search routine with code space requirements that were too stringent, hoping that such
searches would terminate very quickly. Unfortunately, axioms were applied profusely, and the
search was time-consuming and ineffective.

Still another problem—exemplified by the third example—is that the order in which two or
more conjunctive subgoals are examined can determine whether the search fails or
succeeds. If a solution to the 'flexible" subgoal is generated first, it is possible that no
solution will ever be found because the code generator will insist on generating code for the
“inflexible” subgoal that fits into an incompatible “shape’. It is not clear to us that it can
always be determined which of two subgoals might be more adaptable to a solution by an

RS A) PPN A A

106 Local Microcode Generation and Compaction

alternate uOp sequence. We have not explored the possibility of rating subgoals with respect
to the number of different possible code sequences they might generate.

8.5. Combining Methods

In this section we briefly describe experiments in which the And/Or and iteration methods
were combined and applied to the three examples that have been used in this chapter. We
found that the squeeze method was difficult to combine with either of the other two: we did
not combine it with And/Or because conflict counting cannot be performed in a straightfor-
ward manner when multipte solutions are generated. The iteration method requires feedback
from successful searches; we therefore did not combine iteration and squeeze because the
“philosophy’ behind the squeeze method is that the search should be so constrained that any
solution found will fit into the minimum space. It therefore does not make much sense
combine these two methods unless one of them is aitered.

The And/Or and iteration methods, on the other hand, are quite easy to combine. All that is
rneeded is to use the And/Or method as we normally would, and then perform the
post-compaction analysis, table update, and iteration that is always done for the iteration
method.

Although the optimal sequerice for putting “-2" on the fbus was not discovered, the
solution involving the constant was found withcut precompiling the
(<- areg 0)
sequence that was necessary when the And/Or methcd was used alone; in addition, a
sequence using the XOR ALU cperation was found—one that had not been found when either
method was used alone. A summary of this search is given in Table 8-4.

total # minimum
iteration subiterations nodes # pls comments
1) 1 38 2 2 solutions, using mask
(2) 2 46 2 1 solution, using mask
3) 2 55 3 2 solutions, using constant register
(4) 3 76 3 same as (3)
5) 2 235 7 no solution after 235 nodes
Table 8-4: Summary of first combination experiment.

The second and third examples, whose summaries are given in Tables 8-5 and 8-6, gave
similar resuits. The use of iteration in addition to And/Or generated all of the code sequences
found previously and new ones as well—all without the need for precompiling the 0 to areg"
sequence.

PR WY WP S

.- -, - oy R, o wTe AL AL MLV AN AL
S O Ty T Ty oy ey e o om0,

Coupling Code Generation and Compaction 107
total # minimum
iteration subiterations nodes # wuls comments
) 1 51 3 2 solutions, using mask
(2) 2 81 5 2 solutions, using constant register

Table 8-5: Summary of second combination experiment.

total # minimum
iteration subiterations nodes # uls comments
(1) 1 109 4 10 solutions, using mask
(2) 2 94 4 2 solutions, using mask
(3) 2 141 3 4 solutions, using constant register

Table 8-6: Summary of third combination experiment.

8.6. Summary

Based on the experiments that we have performed, we must conclude that the And/Or
method is the most effective of the three for generating code that compacts well, but that the
combination of the Ana/Or and iteration methods appears to be even more elfective. We
believe that And/Or is the best of the three because neither of the other methods actually
attempts to compact ditferent combinations of uOps. Our experiments have convinced us
that subtle characteristics of microarchitectures—timing, for example-—are often critical in
determining whether two sets of uOps will compact together well. Methods that do not
actually attempt such compactions are likely to overlook many of these subtleties.

One problem that we have not yet resolved with the And/Or method is that of preventing
the search from continuing to examine hundreds of nodes in the search tree looking for
non-existent or highly inefficient solutions, while at the same time, giving all nodes of the
search tree a 'fair shake' in attempting to find alternate solutions that may lead to a better
compaction. Although Cattell used a breadth limit to limit the search, his limit was based on
the search depth. Because our search is pruned in a more flexible manner, we see no
obviously “‘right” way of incorporating a breadth limit; still it seems that such will be necessary
in order to control runaway searches.

We were disappointed that the squeeze method did not generaily seem to do well,
particularly since it was the only method to find the optimal solution to the first example. In
retrospect, the squeeze method appears to apply too much “brute force”, and will be
applicable only in extremely "'tight” situations.

-,

r—y Y —
P P
B T ¥ A

108 : Local Microcode Generation and Compaction

H

& Lo P P PR P - P P PO P S P

. Conclusions 109

Chapter 9
Conclusions

As a result of this research effort, we conclude that the code generation and compaction
phases of a compiler can be coupled in such a way that microcode is produced that is of
higher quality than that produced by a compiler in which the phases are executed
sequentially. In addition, we believe that micromachine features make it necessary to attempt
compaction on severai teasible pOp sequences in order to determine which compacts into
the smallest number of pls.

In the first section of this chapter, we discuss what we believe are the major contributions
of this dissertation in the area of optimizing compilers for horizontal target architectures.
Foliowing that, we discuss the limitations of our work and suggest promising areas for future
research.

9.1. Contributions

We helieve that the major contributions of this dissertation are:

e The development of a micromachine model that expresses both semantics and
timing information in a flexible—but useful—manner.

e An extension of the code-generator generator work of Cattell [Cattell 78] with
more powerful heuristics that enable successful searches at a depth ap-
proximately three times greater than the original implementation.

o A demonstration that constant unfolding is a useful optimization technique for
horizontal target architectures.

e The discovery of a polynomial-time algorithm for optimally solving the classical
microcode compaction problem for any real micromachine—a problem
previously thought to be NP-hard—and subsequent analysis that suggests that
the problem of originally ordering the nOps—previously considered secondary—
is both more difficult and more important.

e The testing of three methods of coupling code generation and compaction, and
the conclusion that presence of micromachine features makes it highly desirable
to compact a number of different semantically equivalent code sequences before
selecting the final code.

ARS A S BLLC e ARAdossagn o o

L as ony o BN ABan a2 e aan a0 g

M GEe & o n on aam e o aamas o o)

110 Local Microcode Generation and Compaction

We believe that the manner in which timing constraints are specified here is significantly
better than in other models we have seen because each resource is treated separately with
respect to timing. Other models treat all data inputs to a given pOp identically, and therefore
cannot express requirements such as an address having to be stable for one subcycle before
data during a write operation.

The ability to perform successful searches in which axioms are applied at depths of ten or
greater is a significant improvement over the implementation by Cattell, an implementation
that itself was quite impressive. We believe that such an improvement was necessary in order
to extend his algorithms to the domain of horizontal microcode; still, we often wished during
our experiments that the evaluation function was yet more accurate.

The demonstration that constant unfolding is effective is perhaps the result with which we
are the most pleased. Our microprogramming experience had previously convinced us that
the generation of constants in the ‘‘standard manner’ often results in poor-quality code. We
are therefore happy to report that constant unfolding has been successfully perfarmed, and
has led to code unprovement in a number of cases. The discovery that constant unfolding
could be extended by applying it to subexpressions, thereby subsuming a number of ad hoc
optimizations, is evidence that such an optimization may even be useful in compilers (or
compiler-compilers) for macroarchitectures.

Perhaps the most significant result is that the classical microcode compaction problem
daes not model data relationships between pOps in a general manner, and therefore fails to
acknowledge many semantics-preserving orderings of pOps. We hope that our arguments
that determining the initial ordering of the #Ops is the more important problem will cause
researchers in the area to direct their attention towards this more challenging problem.

Finally, the original goal of our research—that of tesling phase-coupling methods—has
been moderately successful. We believe that we have given convincing arguments that the
coupling problem should be addressed in an optimizing microcode compiler, and have
presented results indicating that the And/0Or method shows particular promise for future
compilers.

9.2. Future Work

Although we believe that our research effort was generally successful, there were a number
of areas that we did not have time to explore, or in which we simply failed to make headway.

Perhaps the most critical is in the area of automatically producing code that intelligently
performs rotations, shifts, and bit extractions. Qur evaluation function does not “understand”’
the semantics of such operations, and consequently the heuristic search rarely finds code

—— e T v,

v

A ".T -

R . . .

'

E AR AP R i e S A A A e SR A

Tt Tar T s N [e T

Conclusions 11

sequences that depend on such operators. One of the major problems we encountered in
attempting to incorporate such knowledge into our evaluation function is that it appears that
logically we need a separate distance table for every combination of rotation, shift, and bit
length; the size of such a set of tables would be prohibitive. Cattell noted that the
understanding of such operators was beyond the scope of his system; based on our
reasonably intense (and extremely frustrating) effort to incorporate such understanding into
our system, we consider this problem to be exceedingly difficult. Our problem is compounded
by the fact that microprograms tend to perform a great deal of shifting and masking; a
machine-independent microcode generation system must handle rotations, shifts, and bit
extractions.

Another area that warrants further study is that of incorporating some sort of breadth limit
into our algorithm in order to guarantee that all subsearches terminate in a reasonable
amount of time. We are reluctant to adopt a strategy that makes the breadth limit a function of
search depth because the current depth of a subsearch has little correlation with the amount
of effort we are willing to expend in finding a solution; rather, the search cutoff serves that
function. Qur simple minded attempts to make search breadth a function of the search cutoff
have thus far not been effective.

We explored only three methods of coupling the code yeneration and compaction phases
of the compiler. Although we had moderate success, we must certainly not rule out the
possibility that some other method of coupling the phases might prove to be the most
effective. In particular, methods that actually perform compaction on several code sequences
seem worthy of investigation.

More generally, further work is needed in developing coupling methods among other
phases of the compiler. The research of DeWitt [DeWitt 76) suggests that register allocation
and compaction should be coupled. We have also argued in Section 2.2.6 that evaluation
order determination is integrally tied to compaction. Additionally, several other optimization
probiems mentioned in Chapter 2 warrant further study.

Athough constant unfolding has been quite successful, it is likely that it will not be practical
to apply constant unfolding axioms at compile time for a production compiler. We suggest
that it might be appropriate to develop techniques for analyzing a microarchitecture at
compiler-compile time in order to discover “unusual” ways of producing various combina.
tions of constants (or constant classes), storage resources, and operators, so that most of the
constant unfolding work is performed only once for a given microarchitecture.

Similarly, the time required for the heuristic search to generate code may make the entire
code generator impractical for production compiler. We anticipate that it will be necessary to
precompile most common sequences, letting the compiler spend most of its time searching

URLIA A) i Paednan

112 Local Microcode Generation and Compaction

for unusual sequences that might compact well in a particular program. Such a strategy,
however, gives rise to new problems. It must somehow be decided what a “common’
sequence is; research suggests that this problem is quite difficult {Cattell 78). Furthermore, if
any searching at all is done at compile time, methods must be developed for determining
source expressions that warrant further searching and how much search time the compiler
should spend for a particular subproblem.

As we have stated before, we—unlike many others—do not believe that the intrablock
compaction problem is solved. Further research is necessary to develop compaction
algorithms that consider partial orders other than the one implied by the ordering of the pOps
that are passed to the compaction phase. This will certainly be true in a production compiler,
where the uOps are passed to the compaction phase in the form of a graph rather than as a
sequential list.

We suggest that dynamic programming may prove to be useful in compacting microcode,
particularly after the ordering of register usage has been determined. Although the
coinnlexity of the chain matrix compaction algorithm is, in theory, a polynomial whose degree
is the number of reqgisters in the micromachine, we suspect that in practice the complexity will
be much lower if the algorithm is optimized so that it does not create portions of the
matrix-grapi that are subsequently removed. In addition, preliminary study indicates that
dynamic programming shows promise for compacting tight loops.

Finally, the classical microcode compaction problem contains several other scheduling
problems as specicl cases. It may therefore be worthwhile to apply it to other situations in
which the "breadtih” of the partial order is small.

Deterministic Code Generation Aigorithm 113

Appendix A
Deterministic Code Generation Algorithm

This appendix discusses in detail the ordering and pruning mechanisms that allow the code
generation algorithm to run on a deterministic machine. Because the evaluation function is
so complex, we treat it separately in Appendix B; for the purpose of this discussion, the reader
can assume that the evaluation function compares two operands and returns a value that
represents the cost of transforming the first into the second.

Research in artificial intelligence has demonstrated that a depth-first searching strategy is
highly dependent on the order in which the nodes of the search tree are examined, while a
breadth-first searching strategy is not [Nilsson 80]. {f a depth-first strategy is used, it is
possible for an enormous amount of time to be spent searching down dead-end paths of the
search tree, even when a shallow solution exists. A breadth-first search is guaranteed to find
a shallow solution before it finds a deep one.

Although a breadth-first search appears to be attractive, it is probably not practicat:

¢ In a breadth-first search, all nodes are expanded in parallel; thus the search
requires an amount of gpace that is exponential with respect to its depth. A
depth-flirst search requires only linear space.

o The search depth should not be defined by the number of nodes examined, but
rather by the cost of the uOps generated along the path. If this is the case, then
the application of an axiom during the search would not increase the ‘‘depth” of
the search. This could give rise to arbitrarily long paths of depth zero in the
search tree. For example, the repeated application identity axiom could lead to
the path:

X = (+ 0x) = (+0(+0x)) =>...

Clearly, a search that expands such a path until its cost became non-zero would
be ineffective. .

e The most shallow solution is not necessarily the /east expensive; the cost of a
AND node in the search tree is the sum of the costs of its sons rather than their
minimum. The two And/Or trees in Figure A-1 demonstrate this; the depth of a
solution to the tree on the left is 5, but the total cost is 45 because the AND node
requires that the costs be summed. Conversely, the depth of a solution to the tree
on the right is equal to its cost, 10.

9
b
X
e
-

.

......

114 Local Microcode Generation and Compaction

Figure A-1: Two And/Or trees with different costs.

We use the iterative deepening [Slate 77] technique to approximate a breadth first search.
First. a depth-first search is attempted with with a shallow depth limit. If no solution is found,
the search is repeated with progressively greater depth cutoffs until a solution is found. In
addition, we have added a caching mechanism, which has proven useful in pruning the
search in a several ways.

The remainder of this appendix is organized as follows. First, the data structures used by
the deterministic algorithm are described. Next follows by a detailed discussion of the basic
searching strategy. Then descriptions are given of additional mechanisms for limiting the
search breadth. Finally, an example is presentad, illustrating how the pruning and ordering
mechanisms work.

A.1. Data Structures

The deterministic search algorithm uses two data structures in addition to those used by
the nondeterministic algorithm. The first is a table that defines a cost for each pOp. The
second is a cache that stores the results of previous searghes. The uOp cost table is a
one-dimensional array that specifies an integer cost for each uOp; as was discussed in
Chapter 5, the cost of a uOp is initially computed by summing the cost of the conflict classes
to which it belongs.

As uOps are generated during the heuristic search, the sum of their costs (which defines
the search depth at any given node in the search tree) is accumulated. If the depth along a
search path exceeds a preset limit, the search path is pruned.

The cache, which records the results of all previous calls to search and transform, contains
two fields for each entry:

e A cache cutoff, which is the greatest depth at which a search/transform has been
attempted with a particular set of arguments.

o A result, which is a tree of pOps that resulted from the search at that depth.

The cache is used to prune the search in several ways, and is discussed further in Section
A.2.5.

T A S A e S PRI S A et MR Pin M MR AT e R S S Lt RTINS
ARt A P M - AN B I PO PR

Deterministic Code Generation Algorithm 115

A.2. The Algorithm

The code generation algorithm is a further specification of the nondeterministic algorithm
presented in Chapter 6, and resolves the following questions:

e At what cost (depth) should the search be attempted at the top level? What action
should be taken if no solution is found?

e How should the search be bounded? In other words, how should it be decided
that a path is no longer worth pursuing?

¢ |n what order should the nodes be examined?

‘ e How should the cost be allocated when a search is decomposed into several
:! subsearches?

In this discussion, we assume that the code generation algorithm is satisfied with a single
& solution, and therefore terminates the search when it finds a solution. Extensions that allow

the search to generate multiple solutions are discussed in Chapter 8.

A.2.1. Search cutoff

The primary method cf pruning the search is through the use of a search cutoff; whenever
search (or transform) is called, it is passed a cutoff that specifies the cost above which a
solution is unacceptable. Any search path is immediately pruned that would, according 1o the

evaluation function, exceed the cutoff; thus only paths that “‘show promise” are pursued.

The cutoff is normally passed without change down the search tree. In two instances, -
however, the cutoff 1s modified. First, the cutoff is divided among subsearches when a search

' A

is decomposed (see A.2.3). Secondly, whenever a uOp is selected on a particular search
path, the cost of the uOp is subtracted from the cutoff.

A.2.2. Beginning the search

2

When the code generator is invoked to produce code for a particular expression, the

Cu 2 A0 Rl S mEn Sl ol

evaluation function estimates the cost of producing of code for that expression. The initial
cutoff is determined by multiplying this estimate by a prespecified constant (e.g., 1.25) in
order to account for the fact that the evaluation function is often too optimistic in its estimates.

If the search with the initial cutoff is unsuccessful, it is increased—again by multiplying by a
prespecified constant—and the search is retried. This process is continued iteratively until

Aand sl g

either a solution is found or a time limit is exceeded.

A.2.3. Allocating costs among sub-searches

Mg SR ORONg

There are a number of circumstances in which a search is decomposed into subsearches.

pp———

116 Local Microcode Generation and Compaction

If expr? is divided into expr2 and expr3 during a search whose cutoff is 100, we must
determine the values x and y in

search(120): expril
decompaose search:
search(x): expr2
search(y): exprd

In this case, it is necessary to determine new cutoffs for each of these subsearches. During
the course of our research, we have tried four different methods for determining such cutoffs:

1. Pass the cutoff directly to each subsearch. The values for x and y would then
both be 120 in the above example.

2. Use the evaluation function to determine minimum requirements for the search,
and divide tha ‘“slack” evenly among the subsearches. Assuming that the
evaluation function “rated’ expr2 at 40 and expr3 at 30, x and y would then be 65
and 55, respectively, the slack of 50 being divided evenly between expr2 and
expr3.

3. Divide the cutoff so that each subsearch receives slack in proportion to its
evaluation function rating. In this case, the cutoff for expr2 and expr3 would be
68.6 and 51.4, respectively.

4. Divide the cutoff so that each subsearch receives slack in proportion to the
square of its evaluation function rating. In this case, the cutoff for expr2 and
expr3 would be 72 and 48, respectively.

The last three of these methods have the advantage that they guarantee that the total cost of
1Ops will be less than the cutoff, and will prune the search more quickly if the evaluation
function has been overoptimistic. Although method 3 might in some sense seem the
“faircst’”, we have found that 4 is the most effective. It appears that this is because the
evaluation function is most accurate when its result is small, so a policy of assigning most of
the slack to those expressions whose evaluation function is large accounts in some manner
for the fact that those expressions probably need more slack due to an inaccurate estimate by
the evaluation function. An exception to this policy occurs in the case where a search is
decomposed and the sequencing operator (;) is the outermost operator. In this case, the
searches are really independent, and the slack is distributed proportionally (i.e., method 3).

A.2.4. Node ordering and selection

There are a number of points in the search where a nondeterministic choice must be made.
In the transform function for example, it is possible that several axioms and constant
unfolding axioms and the operand-by-operand decomposition are all applicable. In such a
case, the evaluation function is used to rank each potential choice. The lowest-valued choice
is attempted first, then the second, third, and so forth, until either the search completes
successfully, or all choices have been exhausted. In the former case, search/transform
returns successfully; in the latter, unsuccessfuily.

PR e VIR grin et
T I P

- L asdi)
......
...............

P Deterministic Code Generation Algorithm 117

A.2.5. Caching search resuits

E

Eﬂ We have found that the evaluation function alone does not adequately bound the search,
and have therefore added a caching mechanism. The result of each call to search or
transtorm for a given set of arguments is recorded, along with the highest cutoff value with
= which it was called. The cache is used for pruning the search in three situations:

b . e When a search is attempted on a resuit for which a prior resuit exists that satisfies
s the cutoff criterion, the previously computed resuit is used immediately.

f_.'_‘- e When an identical (unsuccessful) search has already been completed with a
S cutoff whose value is greater than or equal to the present cutoff, the local search
is immediately terminated.

4
-. e When an identical search is already in progress, the search is terminated
2 immediately. This often happens when a search calls itself indirectly as a result of
the application of two or more axioms that ‘‘cancel each other out” (e.g., two
commutative axioms applied consecutively).
The transform cache is also used by the evaluation function; this will be discussed in

Appendix B.

A.3. Limiting Search Breadth

In addition to using the evaluation function and cache for pruning the search, we have
introduced a number of other rules for limiting the breadth of the search. The first rule
requires that a feasible pOp whose semantics are defined by an assignment statement have

Dl Al A0 4 DhOARI N 4
o e

. the same destination operand as the goal (not counting indices). This avoids a great deal of
u redundancy resulting from the the selection of pOps in different orders during the search. For
example, the solution

(<- b a)
(<- ¢ b)
(<- d ¢)

of (<~ d a) could be discovered in five different orders by the heuristic search. With the
“matching destination’’ rule, only one of these orderings is considered.

L A2 2l a
: chd

L AEA an ma ae dE o e
' e

The other three rules for limiting search breadth are included as a result of experiments that
led us to conclude that the application of axioms often causes the search breadth to increase

P
.‘ .

in an unmanageable manner. First, an axiom may be applied only if it causes the outermost
operators of the new expressions to match. Second'y, an axiom or constant unfolding axiom
may not be applied if introduces an operator that is not already present in either the goal or
E current expression. Finally, the total number of axioms and constant unfolding axioms
»! applied at any node in the search may not exceed a predefined limit, which is a function of
search depth (in terms of number of axioms applied), and was introduced after experiments
b
le

DSy

o e . -\ e
A R T T O e

118 v Local Microcode Generation and Compaction

B [R ARPAAMNEE,

revealed that the eager application of axioms often causes enormous amounts of time to be
spent following “ridiculous’ paths.

Pruning mechanisms carry with them the danger that branches leading to good solutions
might also be lost. This has in fact happened auring our experiments, but we see no way of
avoiding it. Unless the evaluation function is perfect or an exhaustive search of the solution

space is feasible, we must accept the fact that some good solutions will be missed.

A.4. Specification of the Algorithm

We are now ready to present the deterministic version of the code generation aigorithm.
Search{goal) =

1. If a failure is found in the search cache, and the cache cutoff is as least as large
as the search cutoff, return a failure.

2. if a success if found in the search cache, and the search cutoff as least as large
as the cache cutoff, return the result from the cache.

3. Otherwise, mark the cache entry as a failure (so that this call to search will not
directly or indirectly call itself with an identical argument) and use the evaluation
function to select the decompositions (for sequencing, iteration and looping
operators) and feasible uOps thav have values less than the search cutoff.
(Feasible uOps whose definitions are assignment statments must have destina-
tions that match the destination of the goal. Furthermore the cost of such a uOp
is added to the value of evaluation function.) Then in order of evaluation function
rating, perform the following to each decomposition or feasible uOp until a
successful search is found or all selected feasibles and decompositions have
been tried:

o If the selection is a feasible uOp, transform on the respective sources and
destinations, with the cost of the pOp being subtracted from the cutoff. If
the outermost operator is an assignment, the transformation between the
destination operators is reversed, and the reverse index flag is set.

o |f the selection is a decomposition, the search is decomposed into its
component parts. If the outermost operator of the goal is a sequencing
operator, data dependency links are added between certain references to
resources in the original expression. |f the goal expression is a conditional
or iteration, new flow graph nodes and links are generated.

in all cases, the cutoff is divided among the search and transform functions in the
manner described in Section A.2.3.

v

4, Finally, the search cache is updated to reflect the result of this call to search.

PP
[)

Deterministic Code Generation Algorithm

Transform(goal, current) =

1. If a failure is found in the transform cache, and the cache cutoff is as least as

large as the search cutoff, return a failure.

. If a success is found in the transform cache, and the cost search cutoff as least

as large as the cache cutoff, return the result from the cache.

. If the operands are identical or if goal is the undefined resource, return an empty

list, signifying that no pOps are necessary to transform the first operand into the
other. It the operands are identical constants or resources, place a data
dependency link between goal/ and current; if the operands are identical
expressions, recursively call transform on each pair of suboperands.

. If current is a constant pattern, and goal is a ‘‘compatible” literal constant or

constant pattern, place a data dependency link between goal and current, and
create and return a pseudo-uOp whose operand is goal.

. if both expressions are identical storage resources, but with non-identical

indices, apply transform to the indices; if the reverse index flag is set, reverse the
sense of the transformation.

. If current is a storage resource, and step S does not apply or did not succeed,

apply the fetch decomposition:
search: (<- current goal)

Otherwise, mark the cache entry as a failure (so that this call to transform will not
directly or indirectly call itself with identical arguments) and use the evaluation
function to select axioms and constant unfolding axioms that result in goal
expressions that are “rated” below the cutoff value, eliminating any that fail to
satisfy the criteria of Section A.3. If the outermost operators of goal/ and current
are identical, and the operand-by-operand decomposition is rated below the
cutoff, also include it in the list of feasible axioms. Then in order of evaluation
function rating, with the decomposition taking precedence if there is a tie,
perform the following to each decomposition or axiom until a successful search is
found or all selected axioms and decompositions have been attempted:

o If an operand-by-operand decompasition is selected, call transform recur-
sively on an operand-by-operand basis, returning all pOps generated by
any of the calls.

o If an axiom or constant unfolding axiom is selected, apply it to the goal and
attempt to transform the modified goal into current.

In all cases, the cutoff is divided among the search and transform functions in the
manner described in Section A.2.3.

. Finally, the transform cache is updated to reflect the result of this call to

transform.

119

T } 120 Local Microcode Generation and Compaction

~_ A.5. An Example

S

3 As an example of the algorithm in action, let us consider a problem on the Puma
ﬂ micromachine [Grishman 78]. (A description and sketch of the Puma may be found in

Appendix E). The problem is to add the constant 5 to the buffer register, and to store the
result in the AC register. The problem is especially interesting because the Puma has two
ALUs: an exponent ALU (EALU) and a normal ALU. The literal field of the ul is directly
connected only to the former, while the buffer register is directly connected to the latter; the

presence of two ALUs, neither of which is "‘obviously’ the right one to use, makes the job of
discovering the best code sequence more difficult.

The initial call, with a cutoff of 69.60,
search(69.680): (<- ac (+ 00000056 buffer))
is followed by a few calls to search and transform that discover pOps (with a total cost of 5)
that move the final answer from the ALUX register to the AC. At this point, the problem has
been reduced to
search(64.60): (<- alux (+ 0000006 buffer))
and a decision must be made about which ALU should be used. From the perspective of the
heuristic search, the decision takes the form of deciding which of the feasible instructions
alux.or = ((- alux (or alu 80)) or alux.alu = (<- alux alu)
should be selected next. The evaluation function predicts that alux.or is likely to be less
expensive, so it is selected and the “OR identity’’ axiom is applied, resulting in the call
transform(64.60): (or 0000000 (+ 0000005 buffer)) => (or alu e0)
This, in turn, results the operand-by-operand decomposition;

transform(2.02): 0000000 => alu
and
transform(62.68): (+ 0000006 buffer) => e0

with most of the cutoff value being assigned to the latter task. A pOp that computes a zero in
the ALU is found immediately, but after expending a moderate amount of effort, the search for
a solution to the latter task returns with failure; as it turns out, it is impossible to move the
value of the buffer register unmodified to an EALU input.

After this failure, the search backtracks to the point where the alux.alu pOp is considered.

This leads to the selection of a uOp

alu.plus = (<- alu (+ (+ ac buffer) carryin))
which results in the call

transform(62.60): (+ 0000006 buffer) => (+ (+ ac buffer) carryin)
After applying the additive identity axiom and finding a pOp that sets carryin to zero, the
problem is reduce to that of transforming the constant 5" into AC. Again the uOps that move
the value of ALUX to AC are easily discovered, so the problem becomes

PP Sy S . a i, . il s P A

Deterministic Code Generation Algorithm) , 121

search(57.60): (<- alux 0000006)
Again alux.or is selected ahead of alux.alu. This time, however, the subprobleras become
(after the "'OR identity’’ axiom is applied)

transform(2.20): 0000000 => alu
and
transform(56.40): 0000006 => 0

The solution to the first of these problems is read from the cache; the second results in the
nOp
ealu.plus = (<- ealu (+ ea sb)) '
being selected (after finding the pOp that moves data from calu to e0). This, reduces the
problem to transforming the constant 5 into the sum of the two ALU inputs:
transform(562.40): 0000006 => (+ ea eb)
In this situation, the author expected the additive identity axiom to be applied, and a zero to
moved to one input from another part of the machine. Instead, a constant unfolding axiom
was applied that allowed the *-1"—which is directly connected to one of the EALU inputs—to
be used; thus the code that was discovered set the literal field to 6", and added it to the “-1"
causing a '5" to be produced, thereby compléting the search.

The entire search examined 63 non-trivial nodes in 48.33 seconds, with a maximum search
depth of 28 nodes, and a maximum depth in applied axioms of 4. The resulting code is:
ea.con 6 load constant 6 into “A’" input of EALU

eb.ones load all ones into “B’ input of EALU
ealu.plus perform an addition in EALU

1d.e0 load.register EQ with the output of EALU

alu.0 set ALU function to "'zero”

alux.or “OR" constant 5 with the zero from ALU output
shlo.pass passconstant 5 through shifter without shifting
ac.lo load the AC with the constant 5 from shifter

carry.0 set the ALU carr, inputto 0

alu.plus addthe values in the BUFFER and AC together
alux.alu do not “OR’ the value of EO with ALU output
shlo.pass pass final result through shifter without shifting
ac.lo load the AC with the final result from shifter

3

S

-

- 122

Local Microcode Generation and Compaction

P R e PO A e

L arih oSk od

The Evaluation Function 123

Appendix B
The Evaluation Function

This appendix describes the evaluation function that is used to guide the heuristic search.
It is our hope that someone who understands its contents will be able to reproduce (and
probably improve upon) the code generator; there are therefore necessarily many details. A

P 0t gl SN Je
a ’ |

casual reader may wish to ignore this appendix altogether.

Nilsson [Nilsson 80] claims that the evaluation function is a critical component of any

heuristic search. We certainly agree with his assessment; More time was spent testing and
modifying the evaluation function than any other single component of the microcode
generation system hecause the entire search depends on its estimates being reasonably
accurate.

The evaluation function in our system compares two expressions and estimates the cost of
transforming the first into the second. It is important that the evaluation function take into

account the overall searching strategy, the uOps available on the target architecture, and the
axioms that are available for performing transformations. The success of code generation
- process is largely dependent on the accuracy with which the evaluation function reflects the
p heuristic search.

The evaluation function makes use of a number of distance tables, which contain estimates

of the cost of transformations or data movements between storage resources, operators and

® constants. When two atomic operands (a storage resource or constant) are compared, the

evaluation function generally performs a table icokup. When one or both of the operands is

an expression, portions of the expression are compared in different combinations to arrive at

an estimate of the ‘“distance” from one expression to another. This generally involves

'Y recursive calls to the evaluation function; the distance tables are therefore ultimately used in
{ all cases. '

4 In order to increase the efficiency of the evaluation function, we have introduced a cutoff
parameter, which allows the computation to be terminated early in many cases. The cutoff is
[) useful because it is often the case that the search and transform functions are only interested
in a solution whose value is below a certain threshold. In such cases, the evaluation function

-y

pp——
L J

b
3
b

'?r‘ﬁv LA g S b g p, 3 are s g

. "?TT' —

P

S

v

MRS A En Bl on A aniaaus ghe o g

124 Local Microcode Generation and Compaction

computation is terminated as soon as it determines that its value is above the cutoff
threshhold. Measurements suggest that the use of this cutoff increases the speed of the
evaluation function by about a factor of two.

The remainder of this section is organized as foliows: Some preliminary definiticns are
given, followed by a description of the data structures that are used. Then, the algorithm itself
is described, followed by detailed examples. Finally, the evaluation function is analyzed in
terms of its effectiveness, with particular emphasis on its known shortcomings.

B.1. Some Definitions

Before discussing the evaluation function itself, we wish to define a few terms that will be
used throughout the section. For these definitions, we will assume that X and Y are

- expressions as defined in Section 5.2.2, and that E is the expression

(+ 4 (and Zmask (rotate abus regfile[23])))

The first few definitions are quite simple. Atoms(E) represents the set of all atomic
operands of £ (i.e., storage resources and constants, excluding indices): ‘4", “%mask”,
“abus” and “regfile”. SubOpds(E) are the top-levei operands of £: “(and %mask ...)”
and “4"”. Operators(E) are the operators in E: “+", “and” and “rotate’”, while Size(E) is the
total number of operators and atoms in E, excluding indices, which in this case is seven.
Finally, the outermost operator of an expression is the operator in the leftmost position as it is

itten; OuterOp(E) is '+,

The other terms deal with properties of the operators themselves, or define data sfructures
used by the evaluation function. The index cost of an indexed storage resource (e.g.,
regfi119[23]) is the cost of transforming the actual index (e.g., 23) into an operand that
actually indexes the resource in a puOp definition. Thus, if there were a pOp with the
semantics

(<- abus (regfile [regidx]))
then IndexCost(regfile[23]) would be the cost, as estimated by the evaluation function, of
transforming 23 into regidx. If more than one such expression occurs in the pOp definitions,
the smallest value is used.

The table cost between two operands/atoms, denoted XY, is the cost of transforming or
moving the first to the second as determined by a table lookup. A discussion of the tables

- may be found in Section B.2.1. v

The data operands of an expression are those suboperands for which the operator may act
as an identity operator, given the proper values for the other suboperands. This-information is
used by the evaluation function in estimating how data may be routed. For example, both

The Evaluation Function 125
operands of the " + " operator are data operands, as zero may act as either the left or right
identity. The second (but not the first) operand of the “rotate’” operator is a data operand
because rotate has a left identity but no right identity.

The identity cost of an operator is the difficulty, according the evaluation function, of
transforming the operator into the identity operator, and is found by table lookup, identop.
The identity depth of one expression within another is the sum of the identity costs of all
operators that are ancestors of the first expression in the second. Itis an estimate of the cost
of transforming the first expression into the second by the application of identity axioms.

The uOp expressions of an operator are those expressions occurring in the pOp definitions
that contain either the operator itself, or a “‘closely related’’ operator. the evaluation function
uses these expressions to determine whether a particular operation can be performed
anywhere on the micromachine.

Finally. we define the axiom factor, a “fudge factor’ that is used to account for the fact that
an axiom often brings new operators and operands into the search. In transforming (not A)
into B, for exampie, one may have to account for the fact that the axiom

(not $1) :: (xor -1 $2)
introduces a new operator, XOR, and new literal, “=1". The axiom factor is a very rough
estimate of the the extra uOps that are necessary to generate these new additional constants
and operators. The axiom factor is defined as a percentage (currently 14%) of the cost of the
entire ul (i.e., the sum of the costs of all conflicts)_and is used to by the evaluation function to
multiply costs involving operator comparisons.

B.2. Data Structures

The evaluation function uses several data structures in performing its task. As was
mentioned earlier, there are a number of tables which estimate the distance between
constants, resources and operators. In addition to these tables, the evaluation function
makes use of a cache of previous results, lists of expressions involved in indexing resources,
and certain information about operators, such as which ones are commutative.

B.2.1. Distance tables

Five distance tables are used, four of which contain estimates of the cost of
transforming/moving some quantity to a storage resource. The resource-resource table
specifies the cost of moving data from any (storage) resource to any other. The
operator-resource table gives the cost of performing a particular operation, and then moving
the data from that operation to the specif;ed resource. The literal-resource table specifies the
cost of moving “'commonly used" literais to the resource—in our implementation, such literals

ST R A

126 Local Microcode Generation and Compaction

are defined to be the integers -1, 0, and 1. Finally, the pattern-resource table defines the
distance between any constant pattern and a particular resource. The other distance table is
the operator-operator table, which defines a how closely related a pair of operators is.
Sample distance tables are given in Section B.4.1.

Once the values contained in these tables are computed, they remain fixed until the
micromachine definition or axioms are changed. The operator-operator table is computed in
four steps:

1. Initially the cost of each distance in the table is set to infinity, except that the
distance between an operator and itself is set to zero.

2. The "cost” of each axiom is computed by counting the number of operators and
constants it introduces.

3. The distance from one operator to another is the minimum axiom cost in which
the first operator occurs on the left side, and the second occurs on the right side.
The distance from the identity operator to any other operator is computed by
considering axioms of the form

$1 :: (op opd1 opd2)
to be
(ident $1) :: (op opd? opd2)
4. A transitive closure is taken on the entire table.

The “distance” from one operator to another is defined to be the product of their table value
and the axiom factor.

The resource-resource, literal-resource, operator-resource, and paitern-resource tables
are determined by considering all pOps whose semantics are defined by an assignment
statement. The distance to the destination resource from any other resource (or literal,
pattern, operator) is computed by adding the cost of the uOp and the identity depth of the
latter.

After the table entries have been computed, transitive closures are taken with the
resource-resource table to account for literals, patterns, operation resources that must pass
through intermediate resources. In addition, a transitive closure is taken on the
resource-resource table with respect to the operator-resource table to account for the
application of axioms during the heuristic search.

Conceptually, there is one more table, the literal-pattern table, which contains the
“distance” from each literal and each pattern. This “table” is implemented in the code,
however, in order to save space—a 16-bit machine with 4 patterns would require 4-2'¢ table
entries otherwise. For each pattern there exists a routine which determines whether a literal
matches, almost matches, or fails to match it.

...............

LN The Evaluation Function 127

B.2.2. Caches

In order to take advantage of the fact that the same expressions tend to be repeatedly
compared during a given search, the evaluation function maintains a distance cache, in which
previously computed values may be looked up rather than recomputed. The transform cache
is also used for operand pairs on which transform has already been called; when such a
cache entry is available, the evaluation function returns an exact value instead of an estimate.

B.2.3. Other data structures

Several other data structures are used in addition to the distance tables and caches. The

L index table contains for each indexed storage resource a list of expressions that appear as
:‘ indices for that resource in the uOp definitions. It is used to determine the index cost of an
operand.

The operator-expression table contains the uOp expressions for each operator, and is used
to determine a lower bound on the least expensive way to compute a given expression. The
commutativity and associativity vectors are bit vectors that specify whether a given operator is
commutaiive and/or associative, and are computed by examining the axioms. Finally, the
data operand table specifies for each operator which of its operands are data operands.

B.3. The Evaluation Function Algorithm

We are now ready to present the algorithm itself, which computes a “distance’” from one
operand/operator to another. We use the word distance loosely here because it is

unidirectional; it is used in the rest of this section tor lack of a better term.

The evaluation function is actually a synthesis of three different functions. The distance
function (DF) compares suboperands and operators recursively and in different combina-
tions. The associative distance function (assocDF) compares operators and atomic

operands, without regard for the structure of either expression. The size-based distance
3 function (sizeDF) is a function of the difference in the number of nodes in the expression tree.
! The evaluation function is computed by taking the larger of the size-based distance function
and a weighted sum of the other two:

3 EF = Max(sizeDF, Min(DF,0.9 X assocDF + 0.1 X DF))

The purpose of the weighting between the associative distance function and the distance

function is to break ties, which are often generated by the associative distance function.

P WU T U U VI Y S . |

e

—

r

RAAAE s ’1

...............
........................

128 L.ocal Microcode Generati_on and Compaction

B.3.1. The distance function

The distance function first checks the transform cache, returning the cost of the transform
if it finds that a successful transform has been attempted. If it finds an unsuccessful transform
with a high enough cutoff, it also returns returns a lower bound on the cost of the transform,
which it reads from the cache. If a result cannot be inferred from the transform cache, the
distance cache is checked. If no entry is found in the distance cache, the computation
depends on the types of operands that are being compared:

If the second operand is a constant, the first operand must be a ‘compatible’” constant:

e Literal constant =) literal constant. If the values are equal, their distance is
0. If their values are “almost equal’, which for our purposes means that the
former can be converted to the latter by adding or subtracting 1, or by
complementing or negating, their distance is defined to be a predefined positive
integer—currently ten times the axiom factor—signifying that the constants are
“close’’; otherwise the distance is infinite.

e Literal constant =) constant pattern. If the literal matches the constant, the
distance is zero. If it “almost”” matches, the distance is the predefined constant
described above; otherwise their distance is infinite.

o Constant pattern => constant pattern. The distance is either zero or infinite,
depending on whether the first pattern is a subset of the second.

e Anything else => literal constant or constant pattern. The distance is
defined to be infinite.

If the first operand is a constant or storage resource, and the second is something other
than a constant, the distance tables are used:

e Literal constant or constant pattern =) resource. The pattern-resource
table is examined to determine the smallest distance to the resource from any
pattern that matches the first operand. If the first operand is a literal constant
between -2 and 2, the literal-resource table is also used to further minimize the
value. The index cost of the second operand is also added.

e Resou rce, =>resource,. The resource-resource table is used to estimate the
cost of moving data from resource, to resource,; the index cost of each operand
is then added.

e Literal constant, constant pattern or resource => expression. The
minimum over all atomic operands in the expression is taken of the distance from
the first operand to the given atomic suboperand pius the identity depth of the
atomic suboperand. If the expression evaluates to a constant, it is folded before
the comparison.

Min 0Ofiopd,.e) + identDepth(e)

e €Eaxpression

When the first operand is an expression, the computation is dependent on its outermost
operator and the type of second operand:

The Evaluation Function

o (Flow opd) => anyOperand. When only a flow result is being passed, the value
computed is the smallest distance from any atomic suboperand of opd to the
second operand.

Min 0F(op.anyoperana)
op e Atoms(opd)

e Expression s> resource. When the first operz.ad is an expression and the
second is a resource, lower bounds on the distance from expression to resource
are computed in two ways; the value returned as the distance is the largest of
these lower bounds. The first lower bound is computed by computing the
distance from each atomic operand in expression to resource, adding it to its
identity depth in expression, and selecting the largest such sum.

——r

M ax (aresource) + IdentDepth(a)
a € Atoms{expression)

DA a4 3
R :H-

The second bound is computed by finding the smallest distance between
expression and any uOp expression of the outermost cperator of expression, and
adding it to the distance from latter to resource.

L

OuterOp(expression) rresource +
Min DF(expression, e)
@ € MuopExprs(OuterOp(expression))

o (- dst, src1) => (K- dst, srcz). The distance from src, o src,, is added to the
distance from dst2 to dst,.

DF(src,.src,) + DF(dst, dst,)

e Expression, =) expression,. If the outermost operators are identical, the
distances are added together on an operand-by-operand basis.

DF(SubOpds(expression.))), SubOpds(expressionz)i))
j€ operand index

e 7."_._“- -

If the operator is commutative, an attempt is made to reduce this amount by
performing the computations with the operands reversed. If, on the other hand,
the outermost operators differ, the sum of the minimum distances between each
suboperand of expression and any suboperand of expressionz is added to the
table distance between the operators.

QuterOp(expression,)»OuterOp(expression,} +

Min DF(x.y)

x € SubOpds{expression,) y€SubOpds(expressiony,)

N G g e e o

Whether the outermost operators are identical or not, an alternative computation
is used when smaller than the above: the minimum of the distance from
expression, to any suboperation of expression, plus the identity depth of the
latter.

Min IdentDepth(x) + DF(expression,, x)
x € SubOpds(expression,)

129

Riutihs aleaey oon ae S A A Al ba o Mna. An 0 o o e

W e T T T P S e ad v ™ W
A A N N I . . ICRN L e T R . ..W_ .(“ \\‘»\‘ St _--,'r_r_._

130 . Local Microcode Generation and Compaction

B.3.2. Associative distance

The associative distance function computes an “altérnate distance” between two expres-
sions. Although we use the term associative, its purpose is more or less to compute distances
bétween all operators in the expression and between all resources/constants in the
expression without regard to parenthesization or order. Thus, it also accounts for other
axioms, such as distributive ones.

The associative distance between two assignment statements is simply the sum of the
associative distances between their corresponding operands, with the direction reversed for
the destination operands. Otherwise the associative distance from one operand to another is
the sum of four quantities: '

1. The sum of the minimum distances from each “difficult’’ operator to any resource
in the second operand is computed. A “‘difficult” operator is one that appears in

the opd,, but not in opd,, and cannot be removed from the first by the application
of an axiom without introducing additional operators.

Min o
ocdifticuit reAtoms(opd,)

2. The maximum of the minimum distances from each resource or constant in opd,
to any resource or constant in opd,.

Max Min xwy

x € Atoms(opd,) y€Atoms(opdy)

3. The difference in size between opd, and opd,, multiplied by the axiom factor.

4. A predefined constant, currently five times the axiom factor, to account for the
fact that the associative distance function ignores structure, and would therefore
tend to dominate other distance computations.

B.3.3. Size-based distance

The purpose of the size-based distance computation is to introduce a penaity when the size
of the two operands differs greatly. It is computed by multiplying by the difference in size of
the two expressions by the axiom factor.

AxiomFactor X | Size(opd,) - Size(opd,) |

ek ki - Ay P O S S S Y e Ny DUV WUV UG U U

A

b Bt rf‘,' —x

- v
L. B

1t

p—

T oy

The Evaluation Function 131

B.4. Examples

In this section, a simple hypothetical micromachine is described, the associated distance
tables are presented, and a few examples are given to demonstrate how the evaluation
function works.

B.4.1. Sample micromachine

Table B-1 shows the expression for each pOp in the hypothetical machine along with its
cost,

(<- areg gpr[%wild]) cost 4
(<- areg fbus) cost 2
(<- breg (and ¥%mask fblatch)) cost5
(<- breg %wild) cost s
(<- fbus (+ areg breg)) cost 4
(<- fbus (- areg breg)) cost4
(<- fbus (and areg breg)) cost 4
(<- fbus 0) cost 4
(<- gpr[%wild] fbus) cost 2
(<- fblatch fbus) cost 1
Table B-1: pOp expressions.

while Table B-2 shows the relevant portion of the operator-operator table, derived from the
axioms in Appendix C. In this case, the table values are estimates of the “similarity” of two
operators.)

and + - ident
and 0 00 o0 0
+ 00 0 1 00
- Io'e) 2 0 00
ident 2 2 3 0

Table B-2: Operator-operator table.

The remaining tables assume that the axiom factor is two (2), implying that the “distance”
between a pair of operators is twice the table entry. Table B-3 is the resource-resource table;
the entries with an asterisk (*) are those derived directly from the uOps; the remaining entries
were computed by the transitive closure.

Table B-4 is the operator-resource table, B-5 is the literal-resource tadle, and B-6 is the
pattern-resource table.

The index table for the machine contains a singie entry, ¥wi1d, for the gpr resource. The
operator-expression table contains entries for three operators:

R T .

ey

LA Al o oh om s o

.......

132

Local Microcode Generation and Compaction

areg breg fbus gpr fblatch
[] ®
areg 0 18 8 10 9
breg 10 0° 8’ 10 9,
fbus z_ 10 0 z_ 1
gpr 4 zg 12 0 1§
fblatch 19 9 17 19 0
Table B-3: Resource-resource table.
areg breg fbus gpr fblatch
and 8 6° 4 6 6
+ 8 14 4. 6 b
- 6 14 4 6]
ident 8 7 8 8 7
Table B-4: Operator-resource table.
areg breg fbus gpr fblatch
-1 16 5° 13 15 14
0 6 lg 4 8 6
1 16] 13 16 14
Table B-5: Literal-resource table.
areg breg fbus gpr fblatch
%wild 16 5. 13 16 14
%mask 16 6 13 16 14
Table B-6: Pattern-resource table.
and (and %mask fblatch) (and areg breg)

(+ areg breg) (- areg breg)
(- areg breg) (+ areg breg)

B.4.2. Examples of the evaluation function in action

Let us consider the distance from

(+ 3 fblatch) to (+ areg breg)

on the machine just described. This is computed as specified in Section B.3:

1. The sum of the operand-by-operand distances is 24. The distance from 3" to
areg, 15, is found in the pattern-resource table; 3" matches both %wild and

g Py AR

v

.....

The Evaluation Function 133

%mask, so the minimum distance is chosen—in this case they are identical. The
distance from fblatch to breg, 9, is found in the resource-resource table.

2. Because " +'" is commutative, the computation is also considered with the
operands reversed. The distance from “3" to breg is 5, while the distance from
fblatch to areg is 19. Again, the total is 24.

3. Next an attempt is made to use “+' in the second operand as an identity
operator. Its identity cost (4) is added to the distance from
(+ 3 fblatch) to areg

which is 23, resulting in a total of 27.

4. The same is also attempted with the other operand:
(+ 3 fblatch) to breg
resulting in a distance of 30, and a sum of 34,

5. Finally, the associative distance is attempted; in this case, the computation is

quite simple because there are no “difficult’” operators, and the expression sizes

are identical: 10 (i.e., five times the axiom factor) is added to 9, the max/min

distance between atoms in the first/second operands, giving the result 19.
The distance function result is 24, the minimum of the first 4 computations. Because the
associative distance is smaller, the final result is 90% of 19 plus 10% of 24, or 19.5; the
size-based distance does not affect the result in this case because the expression sizes are
identical.

Next, consider a similar problem, the distance from
(+ 3 fblatch) to (- areg breg)
In this case, the outermost operators are different, so different computations are performed:

1. The three distances,

g to o
(3 to areg) min (3 to breg)
and
(fblatch to areg) min (fblatch to breg)

which are 2, 5, and 9, respectively, resulting in a sum of 16.

2. Next an attempt is made to use **~" in the second operand as an identity operator.
Its identity cost (6) is added to the distance from

(+ 3 fblatch) to areg
which is 23, resulting in a total of 29.

3. The same is also attempted with the other operand:
(+ 3 fblatch) to breg
resulting in a distance of 30, and a sum of 36.
4. The associative distance is 25. As in the previous case, there are no difficult
operators, the max/min distance is 9, and the fixed constant is 10. Here, however

the distance from " +" to “-~" (2) and a size difference penalty of 4 are also
added.

R 2a on ae o LA Ja siet i s oo
| ‘i." . .

T P

PAuEn a2 on e ma o an oo)

-

134 Local Microcode Generation and Compaction

The distance function result is 16, the minimum of the first three computations; this is also the
final result because:the associative distance is larger and the size-based distance (4) is
smaller.

One might think it peculiar that the
(+ 3 fblatch) to (- areg breg)
distance is smaller than that cf
(+ 3 fblatch) to (+ areg breg)
since the expression pairs are identical except that the former has more distant operators.
This anomaly is discussed in Section B.S.

The next example,
(+ 3 fblatch) to areg
was a subcomputation in the previous two examples:
1. The first lower bound for the distance function is the maximum “distance plus

identity depth” from 3" or fblatch to areg. The distances are 15 and 19
respectively, and both identity depths are 4, so the result of this step is 23.

2. The second lower bound is the distance from * +" to areg (4) plus the smallest

distance from the expression to any member of the set MuopExprs(*' +'). The
twoe members of this set are "

(+ areg breg) and (- areg breg)

In the previous examples, we saw that second of these expression gives us the
smallest result, 16, so the value computed by this step is 22.

3. The associative distance is the sum of the distance from * +" to areg (6), the
maximum distance of “3" or fblatch to areg (19), the size-based distance (4), and
the fixed constant (10), or 39.
The largest of the first two results, 23, is selected as the distance function value; because the
associative distance is larger, and the size difference (4) is larger, 23 is selected as the final
result.

The attentive reader may have noticed that the evaluation of the distance from
(+ 3 fblatch) to areg
requires the evaluation of the distance from
(+ 3 fblatch) to (+ areg breg)
and vice versa, because the former evaluation computes the distance from
(+ 3 fblatch)
to each element of MuopExprs(‘' +'). The caching mechanism ensures that indefinite
recursion does not occur by prohibiting any computation'to be performed when an identical
computation is in progress.

The final example involves a resource with an index, estimating the distance from

The Evaluation Function 135

(<- gpr[3] areg) to ({- fbus (and areg breg))
This distance is computed by adding the distances

(and areg breg) to areg
and
fbus to gpr[3]

The first of these is computed by adding the identity cost of the AND operation (4) to the

smallest distance from any suboperand of the expression to areg, which in this case is 0. The
second value is computed by adding table distance from fbus to gpr (2), to the index cost (0)
which is the distance from 3" to %wi1d. Thus the total value is 6.

B.5. Shortcomings of the Evaluation Function

T - ¢

1 Although we have found that the evaluation function is usually effective in guiding the
' heuristic search, it should be evident from the examples that it computes only a rough
approximation of the true cost of performing the actual transformation. The next few
paragraphs discuss some of its weaknesses that became evident during experimentation.

A weakness mentioned previously is that the distance from
(+ 3 fblatch) to (+ areg breg)
was estimated to be greater than the distance from
(+ 3 fblatch) to (- areg breg)
This is because the evaluation function requires the .operands to be matched in a one-to-one

——

correspondence when the outermost operators are identical—thus either *3” or fblatch must
be matched with areg—while the constraints are less strict when the operators are not
identical—both 3" and fblatch can be match with breg. A one-to-one correspondence is not
always possible when the outermost operators are different; the expressions may differ in the

r——v

number of suboperands, for example. Thus the estimate may be less accurate, and
sometimes lower, when the primary operators differ.

ey

b The evaluation function performs very poorly in the presence of expressions that include
f rotation or bit extraction operators. Qur heuristic searches, for example, are not able to
discover that a rotation by 8 can be performed by rotatirig by 5, and then later rotating by 3. it
! appears to us that in order to handle rotation and bit extraction correctly, it would be
s necessary to have b? separate distance tables for every one that currently exists—where b is
A the word length of the machine—in order to make estimates such as ‘“the distance from
resource A, rotated by 7, field length 5. During the course of this research, we attempted to
approximate this information by adding 5 or 6 more tables, but the experiment was not
3 successful.

e Another inaccuracy in the evaluation function is its use of the axiom factor and multiples

-

Chl N e aie aub) gl

——— '2'—

I I o 2o _an e g

136 Local Microcode Generation and Compaction

thereof, to estimate the cost of unknown operations. In some cases the estimate is too high,
while in others it is too low.

The size-based distance can also be a cause of inaccuracy because it assumes that the
distance between two operands that differ greatly in size will be great. This is not true if there
is an inexpensive pOp whose semantics are specified by a large expression. For example, if
the uOp

(<- areg (and (+ %mask gpr[3]) (rot %wild fbus)))
had a cost of 2, the size-based distance would cause the total distance from

(and (+ Zmask gpr[3]) (rot %wild fbus)) to areg
to be 14 (7 times the axiom factor), even though the transformation could be performed by the
search at a cost of 2.

Because the evaluation function is often inaccurate, one might ask the question, Why not
improve it? We answer this by saying that we have improved it many times already—the
reader only need refer to the Section B.3 to verify that it is quite complex; it is necessary to
choose some stopping point in order to report on this research, The evaluation function
appears to be accurate enough to be able to guide a large number of relatively deep
searches.

1
4
MJ

List of Axioms Used in Experiments 137

Appendix C
List of Axioms Used in Experiments

This appendix contains the list of axioms that were used for the examples in chapters 6 and
8.

notid $1 :: (not (not $1)):
anddemorg (and S1 $2) :: (not (or (eval (not $1)) (eval (not $2)))):
ordemorg (or S1 $2) :: (not (and (eval (not $1)) (eval (not $2)))):
unmindef (-- $1) :: (- 0 $1);
mindef (- $1 82) :: (+ (+ $1 (eval (not $2))) 1);
plusid $1 :: (+ 0 $1):
unminid $1 :: (-- (evaT (== $1)));
unminnot (+ S1 -1) :: (not (eval (-- $1))):
plusnot (+ $2 (not 51)) :: (not (eval (- $1 $2))):
minnct (- $1 $2) :: (not (eval (+ (not S$1) $2))):
miaplusxfm (- S1 $2) :: (+ $1 (eval (-- $2))):
pluscommut (+ $1 $2) :: (+ $2 $1);
plusassoc (+ (+ $1 §2) $3) :: (+ $1 (eval (+ $2 33)) §
plusassoc2 (+ $1 (+ $2 $3)) :: (+ (eval (+ $1 $2)) $3);
orid $1 :: (or 0 $1);
andid $1 :: (and -1 $1);
xorid 81 :: (xor 0 S$1);
andcommut (and $1 $2) :: (and $2 $1);
orcommut (or $1 $2) :: (or $2 $1);
xorcommut (xor $1 $2) :: (xor $2 §1):
andassoc (and (and $1 8$2) $3) :: (and $1 (evaI (and $2 $3))):
andassoc2 (and $1 (and $2 $3)) :: (and (eval (and $1 $2)) $3);
orassoc (or (or $1 §2) $3) :: (or $1 (eval (or $2 $3))):
orassoc2 (or $1 (or $2 $3)) :: (or (eval (or $1 $2)) 53).
xorassoc (xor (xor $1 $2) $3) :: (xor $1 (eval (xor $2 $3))):
xorassoc2 (xor $1 (xor $2 $3)) :: (xor (eval (xor $1 $2)) $3):
rotid $1 :: (rot 0 $1);
gtrminxfm (> $1 $2) :: (¢3 0 $1 (not $2));
1ssminxfm (< 81 $2) :: (c3 0 (not $1) $2);
1sszeroxfm (< $1 0) :: (rot 15 $1):
geqlssxfm (>= $1 $2) :: (not (< $1 $2)):
leqgtrxfm (<= $1 $2) :: (not (> $1 8$2)):
eqlplusdef (= $1 $2) :: (bitand (+ (eval (not $1)) $2)):
eqlxordef (= $1 $2) :: (bitand (xor (eval (not $1)) $2));
eqlonesdef (= $1 -1) :: (bitand $1);
zeroand 0 :: (and 0 777{0 1}):
onesor -1 :: (or -1 777{0 1}):
p3carylid $1 (+ (eval (+ -1 81)) 1):
concat2id $1 :: (02 8 (rot 8 $1) $1);
concatdid $1 :: /®3 4 4 (rot 8 $1) (rot 4 $1) $1);
concatdid $1 :: (04 1 2 12 (rot 15 $1) (rot 14 $1) (rot 12 $1) $1);
concat5id $1 :: (@5 1 1 1 12 (rot 15 31) (rot 14 $1) (rot 13 $1)

(rot 12 §1) 81);
subconcat (@2 §1 ??7?7{0 1} $2) :: $2;:
andgarbhi (@2 $1 0 $2) :: (and (eval (himask $1))

(62 $1 ?777{0 1} $2));
andgarblo (@2 $1 $2 0) :: (and (eval (lowmask (- 16 $1)))
(02 $1 $2 777{0 1})):

138 Local Microcode Generation and Compaction

orgarbhi (82 $1 -1 $2) :: (or (eval (lowmask (- 16 $1)))
(82 $1 777{0 1} §2));
orgarblo (82 $1 $2 -1) :: (or (eval (himask $1))

(82 $1 $3 777{0 1})):
xorcom (not $1) :: (xor -1 $1);
eqlcommut (= $1 $2) :: (= $2 §1);
repack $1 :: (pack (mant $1) (expo $1));
expozero 0 :: (expo 0);
packzero 0 :: (pack 0 ??7)
offflow (flow $1) ::
notflow (fiow (not 51)) (flow $1);

»

e

Kmap Machine Description ‘ 139

Appendix D
Kmap Machine Description

This appendix contains the machine description of the Kmap micromachine [Qusterhout
78] that was used in many of the examples. A sketch of the machine is given in Figure D-1,

Y Vv
l dadr l _L"._r from memory
ddta ram gpr’'s

[Tolatch]

mbdr |
v bbus
| | areg | [breg |
v Y
N/
ALU
fous
to memory 4__]’—r_—buth£ ‘
Ly

Figure D-1: Sketch of the Kmap microarchitecture.

The description is contained in three files. The first contains the names of all storage

- P - e ek B A . S . N - ~

]

o

ATLY T
.
.
.
'

R L A
AT N

™TTTE

.

PP N

LTy N W e WL W . o PR AT T AU Yt i A Vi g 2 gt

140 Local Microcode Generation and Compaction

resources in the micromachine. An asterisk (*) after a resource specifies that it is a
permanent resource—that is that it may not be used to store temporary results. The numbers
parentheses specify the word size and rank respectively.

madr * (12 0) cxreg (8 0) lincwd * (16 0)

fbus (16 0) abus (16 0) breg (16 0) areg (16 0)

ger (16 1) dadr (12 0) dram * (16 2)

gpridx (5 0) tlatch (16 0) scount (4 0)

conhi (8 0) conlo (8 0) ccl (1 0) cc2 (1 0) cci6 (4 0) carry (1 0)
carryin (1 0) fblatch (16 0) mbdr (16 0) mbcr (16 0)

timeout (1 0) refctl (6 0) flaga (4 0) flagb (4 0) dmask (16 0)

The second file contains the names of all conflict classes, each followed by its cost.

fbus 3 gpr 6 eopl 2 eo0p2 2

shift 2 areg 2 tlatch 1 gpridx 0

ccZ 2 c¢c2s 1 breg 2 c¢cl 2

ccls 1 fbl 1 flags 2 carry 2

dadr 2 abus 3 carryout 0 carryoutl O

carryout2 0 carryoutd 0

The third file contains the pOp definitions.

nop {}

(<= ??7{0 1} ?77{0 1})
constoinag {}

(<= ?272{0 t} ??2?(0 1})
shift {shift}

(<~ scount{4 9} %wild)
shift. fous {shift}

(<= scount{4 9} fous({3 4})
areg.mask {areg}

(<~ dreg{8 16} (and %mask (rot scount{7 8} tlatch{7 8})))
10.t1 {tlatch}

(<= tlatch{6 *} abus{5 6})
fous.add {fbus carryout2 carryoutd}

(<- fbus{2 11} (+ (+ areg{0 1} breg{0 1}) carryin{0 1}))
carry.add {carryout carryoutl}

(<= carry{2 11} (c3 carryin{0 1} areg{0 1} breg{0 1}))
fous.amb {fbus carryoutl carryoutl}

(<= fous{2 11} (+ (+ areg{0 1} (not breg{0 1})) carryin{0 1}))
carry.ampb {carryout carryout2}

(<= carry{2 11} (c3 carryin{0 1} areg{0 1} (not breg{0 1})))
fbus.oma {fbus carryoutl carryout2}

(<- fous{2 11} (+ (+ (not areg{0 1}) breg({0 1}) carryin{0 1}))
carry.bma {carryout carryout3}

(<= carry{2 11} (c3 carryin{0 1} (not areg(0 1}) breg{0 1}))
fous.and {fbus carryoutl carryout2 carryoutd}

(<~ fbus{2 11} (and areg{0 1} breg{0 1}))
fous.or {fbus carryoutl carryout2 carryoutd}

(<~ fbus{2 11} (or areg{0 1} breg{0 1}))
fbus.xor {fbus carryoutl carryout2 carryoutd}

(<= fous{2 11} (xor areg{0 1} breg{0 1}))
fbus.zero {fbus carryoutl carryout2 carryoutld}

(<= fous{2 11} 0)
fous.ones {fbus carryoutl carryout2 carryoutd}

(<- fous{2 11} -1)
td.gpr {gpr})

(<- gpr{8 *}[gpridx{2 3}] fbus{4 5})
gpridx (gpridx}

(<= gpridx{0 9} %wild)
cc2.0 {cc2}

(<- cc2(1 9} 0)

— . m M 4 a4 e = o

vy RIS A A
'h : . o

Kmap Machine Description

cc2.1 {cc2}
(<= cc2(1 9} 1)
cc2.feven {cc2)
(<~ cc2{1 9} (not fbus{0 1}))
cc2.czero {cc2}
(<= cc2{1 9} (not carry{0 1}))
cc2.fones {cc2)
(<~ cc2{1 9} (bitand fbus{0 1}))
breg.gpr {breg gpr}
(<~ breg{4 313} gpr{5 6}[gpridx{2 3}])
breg.fbl {nreg}
(<= brag{4 13} fblatch{3 4})
breg.con {breg}
(<~ brey{4 13} (82 8 conhi{3 4} conlo{3 4}))
breg.mbdr {breg}
(<- breg(4 13} mbdr{3 4})
breg.mbdlo {breg}
(<- breg{4 13} (and 07777 mbdr(3 4}))
breg.ones {breg}
(<- breg{4 13} -1)
ccl.0 {ccl}
(<= cc1{1 9} 0)
ccl.1 {cct}
(<~ ccl{1 9} 1)
ccl.fbusis {cci)
(<= cc1{1 9} (rot 15 fbus{0 1}))
ccl.abus15 {ccl} :
(<= cci1{1 3} (rot 15 abus{0 1}))
ccl.abusid {cct
{<- ¢c1{1 9} (rot 14 abus{0 1}))
ccl.oregid {ccl}
(<= cc1{1 9} (rot 15 breg{0 1}))
ccl.timout (ccl)
(<= cci{l 3} timeout{0 1})
cclb.rctl {ccl}
(<- ccl671 9} refcti{0 1})
ccl6.ahi {ccl}
(<= cc16{1 9} (rot 12 abus{0 1}))
cclG.blo {cci1}
(<- ¢cc16{1 9} breg{0 1})
cclb.rlo {cct}
{<- cc16{1 9} fous{0 1})
cclo.fFlagh {cct}
(<= ¢c16{1 9} fragh(0 1})
cci6.flaga (ccl}
(<- cc16{1 9} flaga{0o 1})
1d.fo1 {fb1})
(<- fblatch{3 *} fbus{2 3})
1d.flaga {flags}
(<= flaga{4 *) fbus{0 1})
1d.flagb (flags}
(<- flagb(4 *} (@4 1 1 1 1 carry(0 1} cc2{3 4} cc1{3 4}))
carry.0 {carry}
(<- carryin{0 9} 0)
carry.1 {carry}
(<- carryin{0 9} 1)
carry.old {carry}
{<- carryin{1 9} carry{0 1})
1d.conhi (eopl eo0p2}
(<- conhi{0 *} %wild)
Td.conlo {eopl eop2}
(<- conlo{0 *} %wild)
1d.d.fbus {eopl}
(<- dram(8 *}[dadr{2 3} %wild] fbus{7 8})
1d.dr. aset {eopl}
(<= dram(3 *}[dadr{2 3} %wild] (or dmask{1l 2} abus{0 1}))
1d.dr.acir {eopl)}
(<- dram{3 *}[dadr{2 3} %wild] (and (not dmask{1 2}) abus{0
1d.dmask (}
(<- dmask{0 7} “bitset)
1d.dadr.a {dadr}
(<= dadr{1 *} abus{0 1})

.

O P Y

1)

- Y Y
. RS e
I . . ‘) .

Nt Jaaw

142 Local Microcode Generation and Compaction

1d.dadr.f {dadr}
(<~ dadr{1 *} fbus{0 1})
abus.gpr {abus}
(<~ abus{5 12} gpr{2 3}{gpriax{2 3}])
abus. fbus {abus}
(<~ abus{5 12} fbus{2 3})
abus.edadr (abus}
(<~ abus{5 12} (@2 12 (hizero fbus{2 3}) dadr{2 3}))
abus.mber {abus}
(<- abus{5 12} mbecr{0 1})
abus.pmcc {abus}
(<~ abus{5 12} (85 1 1 1 12 0 carry{0 1} cc2{2 3} cc1{2 3} madr{0 1}))
abus.cxf1 (abus}
(<~ abus{5 12} (@3 4 4 cxregq{0 1) flagb{4 5} flaga{4 5}))
abus.dram {abus}
(<~ abus{5 12} dram{4 5}[dadr{4 5} %wild])
abus.linc {abus eopl eop2}
(<- anus{5 12} lincwd{4 §})
br.ccl {ccis})
(<- madr{6 15} (flow cc1{5 6}))
br.cc2 {cc2s}
(<- madr{6 15} (flow cc2({5 6}))
br.ccls {ccls}
(<- madr{6 15} (flow cc16(5 6}))

N

B PR

S BRI

v r'*vvl'*ﬂ".t

ML ARRA I S-~ S
R R .

v
v

e —— T

Puma Machine Description _ 143

Appendix E
Puma Machine Description

This appendix contains the machine description a subset aof the Puma micromachine
[Grishman 78] that was used in our experiments. This model is inconsistent with the real
machine in several respects. First, because our implementation assumed a maximum 16-bit
word size (for the purposes of constant-folding, etc.) we also assume a maximum 16-bit word
size, although the real machine has registers as wide as 60 bits. Secondly, many of the
“exotic” uOps for setting condition codes have been omitted. Thirdly, although the ALU in
the real machine is capable of hoth twos-complement and ones-complement arithmetic, our
implementation is only capable of handling the former; nOps that perform ones-complement
arithmetic are therefore omitted. A sketch of the microarchitecture is given in Figure E-1.

The description is contained in three files. The first contains the names of all storage
resources in the micromachine. An asterisk (*) after a resource specifies that it is a
permanent resource—that is that it may not be used to store temporary results. The numbers
parentheses specify the word size and rank respectively.

mar * (10 0) cond (1 0) jfield (3 0) kfield (3 0)
ifield (3 0) ealu (12 0) mq (16 0) regoutput (16 0)
buffer (16 0) alu (16 0) carryin (1 0) ac (16 0)
ilatch (3 0) areg * (16 1) breg * (16 1) xreg * (16 1)
yreg (16 1) reginput (16 0) regidx (16 0) e0 (12 0)

el (12 0) e2 (12 0) alux (16 0) shiftlo (16 0)

c¢mrd (16 0) preg (16 0) shifthi (16 0) ea (12 0)

eb (12 0) mbus (16 0) ma (16 0) mem * (16 1)

The second file contains the names of all conflict classes, together with the cost assigned to
each.

cc 2 reginput 0 reg 3 ridx O
ilatch 1 buf 1 nomant 0 noexpo O
noexpo2 0 mant 0 alu 2 carry 0
alux 0 shlo 0 shhi 0 ac 5

ac1 0 ach 0 mq 2 1it75 5

11¢73 6§ 1it79 6§ ea 1 eb 1

ealu 3 preg 1 mal io 1

1P
i

o 4 W"v‘r‘fr
N

f.vv.v.‘ ,..'v-
oy \ AR
. :

B a e A
¢ .

N e Y v

144

........

AP Tl

Local Microcode Generation and Compaction

v l—‘b
xReg file yReg file aReg file bReg file
v v v v
v v
unpack
ogic | MData | MA
\ 4 \ 4 \
\/ to memory
EALU buffer
from memory
v =) AlU I_L_—IpReg \

cmrd

N\ shifter

AN

Y
AC]

v
[MQ | |
]

Figure E-1: Sketch of the Puma microarchitecture.

-—

Puma Machine Description

The third file contains the uOp definitions.

nop (}
(<= 777 777)
const.bind ()}
(<= 777 ?77)
branch (}
(<~ mar{9 18} (flow cond{8 9}))
cc.j.0 {cc}
(<- cond{B 9} (= jfield{0 1} 0))
cc.ealu.11 {cc}
. (<~ cond{8 9} (rot 11 ealu{8 9}))
cc.ealu.4z (cc}
(<- cond{8 9} (= 0 (and 017 ealu{8 9})))
cc.mq.497 {cc)
(<- cond{8 9} (> (and 017 mq{8 9}) 7))
cc.mq.4g8 {cc} ’
(<- cond{8 9} (> (and 017 mq{8 9}) 8))
cc.reg.15 {cc}
(<- cond{8 9} (rot 15 regoutput(8 9}))
cc.buf.15 (cc}
(<~ cond{8 9} (rot 15 buffer{d 9}))
cc.alu.15 {cec}
(<- cond{8 9} (rot 15 alu{8 8}))
cc.ac.15 {cc}
(<- cond{8 9} (rot 15 ac{8 9}))
cc.i1.0 {cc}
(<- cond(8 9} ilatch{8 9})
cc.il.1 {cc¢}
(<~ cond{8 9} (rot 1 ilatch{8 9}))
cc.i1.2 {cc}
(<- cond{8 9} (rot 2 ilatch{8 9}))
cc.il.z {cc)
(<- cond{8 9} (= 0 ilatch{8 9}))
cc.j.z {cc}
{<- cond{8 9} (= 0 jfield{s 9)}))
id.areg {reg}
(<- areg{4 *}[regidx(3 4}] reginput{3 4})
1d4.breg {reg}
(<- breg{4 *}[regidx{3 4}] reginput{3 4})
1d.xreq [reg}
(<- xreg{4 *}[regidx{3 4}] reginput{3 4})
1d.yreg {reg}
(<- yreq{4 *}[regidx{3 4}] reginput{3 4})
rd.areg {reg}
(<- regoutput{2 11} areg{0 1}[regidx{1l 2}])
rd.breg {reg}
(<- regoutput{2 11} breg{0 1}[regidx{1 2}])
rd.xreg {reg}
(<~ regoutput{2 11} xreg{0 1}[regidx{1 2}])
rd.yreg {reg}
(<~ regoutput{2 11} yreg{0 1}[regidx{1 2}])
ridx.con {ridx}
(<- regidx(0 9} %wild)
ridx.j {ridx}
(<= regidx{0 9} jfield{0 1})
ridx.k {ridx}
(<- regidx{0 9} kfield{0 1})
ridx.i1 {ridx}
(<- regidx{0 9} ilatch{0 1})
ridx.mq {ridx}
(<= regidx{0 9} mq{0 1})
1d.41 {ilatch}
(<- ilatch(d *} ifie1d{0 1})
buf.reg {buf nomant noexpo}
(<- buffer{4 *} regoutput{2 3})
buf.mant {buf mant}
(<- buffer{4 *} (mant regoutput(2 3}))
reg.ac {reginput mant noexpo2}
(<= reginput{1l 10} ac{0 1})

P T S V|

i ?:— R

7 ﬁvi’.,-y ORI
Ty P]

T x'v‘v-—-vv-v—!—v'v. o

EE S S)

..............................

148 . Local Microcode Generation and Compaction

reg.pack {reginput nomant}

(<= reginput{l 10} (pack ac{0 1} e0{0 1}))
alu.0 {alu}

(<- alu{2 11} 0)
alu.ones {alu}

(<- alu{2 11} -1)
alu.ac {alu)

(<~ alu{2 11} (+ ac{0 1} carryin{0 1}))

alu.buf (atu)

(<- alu{2 11} (+ buffer{0 1} carryin{0 1}))
alu.ng.ac {alu}

(<- alu{2 11} (+ (not ac{0 1}) carryin{0 1}))
alu.ng.buf {alu}

(<= alu{2 11} (+ (not buffer{0 1}) carryin{(0 1}))
alu.plus {alu}

{<- alu{2 11} (+ (+ ac{0 1} buffer{0 1}) carryin{0 1}))
alu.minus (alu

(«<- alu{2 11} (+ (+ ac{0 1} (not buffer{0 1})) carryin{0 1}))
alu.or {alu}

(<- alu{2 11} (or ac{0 1} buffer{0 1}))

alu.xor {alu}

(<- alu{2 11} (xor ac{0 1} buffer{0 1}))
alu.and {alu}

(<- alu{2 11} (and ac{0 1} buffer{0 1}))
aly.andnot {alu}

(<- alu{2 11} (and ac{d 1} (not buffer{0 1})))
carry.0 {carry}

(<= carryin 0)
carry.! {carry}

(<= carryin 1)
alux.alu {alux}

{<- 231ux{2 11} alu{2 3})

alux.or {alux}

(<- 2lux{2 11} (or a'u{2 3} e0(0 1}))

shlo.pass {shlo}

(<- shiftlo{2 11} alux{2 3})
shlo.cmrd {shlo}

(<- shifeig{2 11} (or alux{2 3} cmrd{0 1}))

shlo.k {shlo}

{<- shifvlo(2 11} (or alux{2 3} kfi21d{0 1}))

shlo.preq (shle}

(<- shift1o(2 11} (or alux{2 3} preg{0 1}))

shhi.mg {shh1}

(<= shifehi{2 11} mq{0 1})
mq.hi {mq ach}

(<= mq{4 *)} shifthi{2 1})
mg.10 {mg acl}

(<- mq{4 *} shiftio{2 3})
ac.lo {ac acl}

(<- ac{4 *} shiftio{2 3})
ac.hi {ac ach}

(<- ac{4 *} shifthi{2 3})
mq.0 {mnq acl}

(<~ mq{4 *} 0)
mg.ones {mq acl}

(<~ mq{d *} -1)
ea.con {ea 1it75 1it73 1it79}

(<- ea{2 11} %wild)
ea.e0 {ea}

(<= ea{2 11} e0({0 1})
ea.el {ea}

(<- ea{2 11} e1{0 1})
ea.e2 {ea}

(<~ ea{2 11} e2(0 1})
eb.ones (eb}

(<- 8b{2 11} -1)
eb.e0 {eb}

(<- eb{2 11} e0{0 1})
eb.el (eb}

(<- eb{2 11} e1{0 1})
eb.e2 {eb}

(<- eb{2 11} e2{0 1})

IR |

(<-
ealu.

(<-

:ﬂ ealu
3 (<_
ealu
(<

,ﬂ~r-».rﬂr ’v ,
8. _
.

r‘r."T?.'."
L L e .

(<
(<-
(<
(<=

(<=

(<=
(<
(<-

(<-

(<=
read.

(<-
reag

(<-

Puma Machine Description

eb.jk (eb)
eb{2 11} (02 8 jfield(D 1) kfield{0 1}))

plus {ealu}
ealu{2 11} (+ ea{2 3} eb{2 3}))

.minus (ealu}

ealu{2 11} (- ea{2 3} eb{2 3}))

.expo {ealu noexpo noaexpo}

ealu{2 11} (expo regoutput{2 3}))

1d.e0 {}

e0({4 *} ealu(2 3})

1d.el1 {}

el{4 *} ealu(2 3})

1d.e2 {}

e2{4 *} ealu{2 3})

1d.preg {preg 1it75}

preg{4 *} ac(0 1})

inc.preg {preg 1it75}

preg{4 *} (+ pgreg{0 1} 1))

cdec.preq {preg 1it75)

preg{4 *} (- preg{0 1} 1))

ma.preg {(ma 1it73)

ma{4 *} preg{0 1})

ma.ac (ma 11t73}

ma{d4 *} ac{0 1})

write.init (io 1it79}

mbus{6 15} ac{5 6})

write.cont {io ac cc

merm{4 *}[ma{0 1}] mbus{0 1})
init {0 1it79)
mbas{7 16} mem{4 S}{ma(6 7}])

.cont {io cc}

cmrg{4 *3 mbus{d 1})

147

148

Pl MR vt mate Shatt el Tt T /APRM S it e S Ry
AR A A R St R R DR

L T

Local Microcode Generation and Compaction

—r-r

Selected Examples 149

Appendix F
Selected Examples

This appendix contains three examples of the code generator and compaction routines in
action. The first is a complete trace of the Puma example described in Appendix A, which
discovers a code sequence that adds 5 to the buffer and stores the result in the AC. The other
two examples are for the Kmap micromachine; the first uses the squeeze strategy to put the
constant “-2" onto the fbus, while the third uses a combination of And/Or and iteration to
move lincwd to a location in the dram and to move the value 7 onto the fbus.

The integers in braces denote the timing information as described in Chapter 5. Resource

names without timing information are assumed by this implementation to have a timing value
of {0 1}.

The timings listed after the heuristic searches in this section are not particularly accurate
because the runs were made at time when the system was moderately loaded; paging and
other overhead is * .cluded in the times listed.

search(68.80): (<- ac (0 0000005 buffer))
ac.lo(58.00)ac. n1$ 60.
feasibie: ac.lo » {<- ac A 9999} shiftlo{2 3)2
transform(64.60): (+ 0000005 buffer) > shiftlo(2 3)
applying fetch decomposition
search{ 64.60): (<- sh1rtlofz 3} (+ 0000005 buffer) ?
shlo.pass(53.00)shio.cmrd(59.03)shlo.k(59. 03)sh o.preg(59.03)
feasible: shlo.pass = (<- shirtlo$z 11} alux{2 3}
transform(64.60): (+ 0000005 buffer) => alux{2 3}
applying fetch decomposition -
search{ 64.80): (<= alux?! 3} (+ 0000005 buffer))
alux.alu{ 62.00)alux.or .13)
feasible: alux.or = (<= c\uxsz 11) (or alu{2 3} e 02
transform(64.60): (¢ 0000005 buffer) =»> éor alu{2 3} 20)
orid(56.00)con-unfold(58.70)con-unfold(58.78
applytng orid: $1 :: (or J000000 $1) to {4 0000005 buffer)
transform(64.60): (or 0000000 (+ 0000005 buffer)) => (or alu(2 3} e0)
orcommut{ 58.76)operandmatch(56.00)
decomposing by operand
transform(2.02): 0000000 => alu(2 3}
spplying fetch decomposition
search(2.02): (<= alu{2 3} 0000000)
alu.0(2.00
feasible: aiu.0 =« (<- alu{2 11) 0000000)
. success on search{ 2. 02% with 2.00
.. success on transform(2.02) with 2.00
ransform(62.58): (+ 0000005 buffer) => €0
spplying fetch decompos!tion
search(62.58): (<- o0 (+ 0000005 buffer))
1d.e0(54.00
feasible: 1d.e0 = (<- eogl 9999} ealu{2 3})
transform(62.58): (+ 0000005 duffer) »> ealu(2 3}
applytng fetch decomposition
search(62.58): (<- ealugz 3} (+ 0000005 buffer))
ealu.plus(58.00)ealu.minus{ 62.
feasible: ealu.plus = (<- ea!u(z 11) (+ nufz 3} eh{2 33 2
transform(59.58): (+ 0000005 buffer) »> (+ ea(2 I} e 3})
pluscommut{ 57.00)operandmatch(55.00)
decomposing by operand
transform? 16.68): 0000005 => ea{2 3}
japplying fetch decompositien

e - row,

s

Ca e P et i J 0y 'ﬂ

ey i

™ - e -
- B * - . - 4
VA S R B S R U A e Y, A S R E AL S S L SR 14"-': S DN IR

150 Local Microcode Generation and Compaction

search(16. Sla (<= eaf{2 3} 0000006)
fe <=

ea.con
s tb | ll.COl - 22 l'lulll)
transform(0.00): 000000
lL:nnptinq constant match

[1t's a matchi!
... Success on transform
. Success om svarch(16.

& 0. 00{ "li

“success on transform(18.6

(2 with I .ﬂl

ransform(42.90): buffer 2o
fetch decomposit

search

i

42.90
39.00

‘Oh (3}

(<=

feasidle:

obsz

ogiub ;z(;I.OG)

transform(41.00): buffer => ¢0
spplying fetch I!conﬂe;l tion

scarch{ 41.90):

(<= o0 Dufr.r)

feasible:
Lrlr:fo'a(
applyin
search

1d.¢0 JI.OO

il 90): buffer ., ol u{
fetch decompositi

o0 = (c- e0(4 9999) alluS! 3))

takers!

eaiu.expo(38.0
feasidle: ealu.expo *
transform(38.90): buffer =>

41.90): 8;- onlu{! 3} buffer)

cutoff reached.

<= .n1ut! 11} (empo re

expo regoutput

Hu;”t(z nn

.. fa'l on transform(38.90)
... cuteff resched.
i... fatl on search(o1. io&
... fail on transform(41.90)
... Cutoff reached.
... Tatl on search(41.90
. fail on transform(41.90)
feasinle: eb.el = (<= eb(2 11) e1)
transform{ 41.90): buffer > el
2 applying fetch decomposition
search{ 41.90): (<- o1 buffer)
No takers!

i
'els'h‘u

cutoff reached,

fatl on search(41.90

11 cn transform(41.90)
©0.82 = (<= eb(2 11) nt)

transform{ 41.90):

buffer > 82

epplyin
search

fetch decomposition

4°.99):

(<= 2 buffer)

No tekers!

1 ... sutaff reached.

1 ... fai) on sea~ch! 41,90)
| ... fai) on transform(41.90)

. cutyf

reached.

fatl cn sunrch(42.9C

.DJ‘ying pluscommut:
rrensfarm(29, 5,):
‘a1Js'cnmn" §5.00)

. fat) gn transform(42.9
(s §1 82

. é.
(0 buffer 00Q0 25

2

lagpiying p

trensfo

~r{

uscommut:
59.58):

(+ $1 82

(+ 000000

. *ound prtv|ou! fatlyre
.. fatl on rnn‘form(59.5
cutoff r2ache

L it

3)

1) teo

) = (* ea

+ $2 §1)

er) => (+ ea
-

¢

4]

3 0000008 batrer)
2 3} en{2 3})

20 buffer 000N0005)

2 3) en(2 3))

. fa!l on t'nnlvorm(59.68)

.. cutoff reached.

. fatl on Lrlnsform&(f¢;==3 1} (- ea2 J{ "iz lil)
23 3))

fessible: ealu.minus o
transform(59.58): (# 0000008 nuffor) > (- o8

No takers!

. cutoff reached.
... fail on transform(
... cutoff resched.
... Tei1l on search(62.68

... Tall on transform{ 62.
cutoff reached.

fail on search(62.88

50.58)

s‘)

L
orcommut

trlnsforl{

64,

ffnlontuuuoniezl
1

plying orcommut: (or
biis J '((ur (0 u&oono

2 $1) to (or 3000000 (¢ 000000. ?uiror))

huf'nr) 0000000) +» (or aluf{2 3

applying orcomuut. (or & $2 $1) to (or (+ 0000008 buffcr) 0000000)
transform(64.60): (or oooo 00 (o oooooos buffer)) => (or slu(2 3} e0)
.. found previous failure
. fail on transform(64.60)

... cutoff reached.

... fail on transform(64.80)

... cutoff reached.
.. fatl on trnnsforng 64.80

.2

<
iy
.,
i~

£
S

-
¥

>
'y
" a

applying con-unfold to (¢ 0000&05 buffcr;
transform(64.60): (+ (+ 0000008 0777727) buffer) => (or slu(2 3} «0)

& No takers!
. .o cutoff reached.
§ fail on transform 3
* 0000 06 buffer l
+ 0000004 0000001) buffer) => (or alu(2 3) e0)

3 applying con-unfold to
o~ transform(64.60): (+
Ee"- No takers!
. ... Gutoff reached.
.o fail on transform(64.80)
... cutoff reached
. fail on transform(64.

essible: elux.aly o

transform(64.60):

(:a.,a;:as*.:n.,; ¢ Mer

sppiyin
search

fetch uocoMpos1

64,60

3.00)alu.minus(

slu.ng.buf(

ion
+ (<= aluf2 3!

3. 00)alu. p1u|

Wz 11

(* (+ ac buffer

carryin)

. 14 v .u'f.rg;.oo elu. xor(’7,00)nlu.|ninot(63.00)

” feasible: 8lu.plus » (<= &

o N S i e, RN B, B S e AP P AL SN 4 S Y R LA L33 ST AL 4ol e B P 050 W 175 T, K, R L S Lt

Selected Examples . 181

lrlnlonhu lﬂ‘ (¢ 0000006 buffer) =» ‘0 (+ ac duffer) carryin)
plusig(00): IIIGD-II(II M‘lu-u'o
applying plusid: $1 :: & + 0000008 buffer)

transform(62. “&n)(. ooonoo (0 oo 000. suffer)) =» (¢ (¢ sc duffer) carryin)

pluscommut pluuuo:zs
applying pluscommut: (o a sb 9000000 (+ 0000008 buffer) z
trensform(62, 60& (0 (¢ 000! WI bu"nr) 0000 - ‘0 (¢ sc buffer) carryin)
pluscommut(42 o)lluu“u(62.168)operandmatch
decomposing by ope
trnnlorn’ 9. 00) ooooon -: urryh
» .lyin! fetch decompest
u:ru nI(l 00‘ (< lﬂ"ll 0000000)
corry.
un{ou' curry 0 * (<= urrﬂn ouuoo)
... Success on search(0.0 0.00
uccess on transform(0. II) -m 0.00
L l.rnllorn(62. Iu& (¢ 0000008 buffer) => (+ sc aa
pluscommut(42.00)con-unfole(51.00 “l'tlfl‘ll(81.00)operandmatch(42.00)
decomposin ! and
transform{ 82.60): CCO0008 =>» ac
ualylnr feteh ¢ 1tien

5...'.

compes
search(62.60): (<~ sc 0000008)
ac.lo(42.00)ac.hi(44.00
fessibie: ac.lo * (<~ ac{d 9909) sniftie(2 3})
trensform(§7.80): 0000 os -a shiftie(2 3)
saplying fetch decompo
search I‘I.") < smulo 2 3) “lll
smn pass(37.00)shlo. ;-ru u 00
feasible: shlo.pass *» (<- o2
transform(57.6C): 00 uou -: nlu
applying fetch decompos
search(§7. “): <= llu- ! l) ooum;
slux.alu(63.00)alux.or
feasidle: slux.or = (<= I } (or sluf2 3} e0))
3} o0

“;lsl:l .00 ;hh .preg(#8.00)

:ru:::o;n(§7.60): 0000” £> (or slu{2
or .0
applying or1:l $1 :: (or 0000000 818 to 0000008
trensform(57. ou; sor 0000000 0000008) => (or l‘lu(! 3) o0)
orcommut(49.06)or d(§8.26)operandmatch(30,.00)
decomposing by operen
transform{ 2. 20) ooooono > aluf2 3)
j(using previous result
. Succass on transform ! 22& with 2.90
lrll‘l'.l‘m(§5.40): 000000
wolyin! fetch dccomoﬂu on

search(55.40): (<= @0 000P00S)
1d.e0(28.00
feasible: 1d.e0 = (<- 0034 9999} nlo{! 3))
transform(35.40): 0000005 => salu(
applying fetcr adecompasition
uarcn 55. nu-» <- esluf2 2 occuou)
es's.plus(28 0 Jealu.minus 31. 2
feasible: ealy. pius - (<= ealuf2 11} ;0 ea(2 .l) tb(!)
trlnsfnrm‘ 82, lu Q206008 > (+ ea{? 3} e0(2
con-unfold(17 ‘)ulurylm 4.00
appiying con- un'o s to 0000005
transform(52,4 {* GO0000E 0777777) =» (¢ ea(2 3} usz 3))
- con-unfoid(26, ou)pluscmu(34.0G)operandnateh(i
cecomposing by operard
trensform(1.26); 0777777 '> on(z 3)
applying fetck d-comno-
search{ 1.26 (<- eb(2 !\ 0177771)
eb.ones(1.
feasidle: !h ones = (<~ edn(2 u) 0771111)
+.. SUCCeESs on search(1.2 ‘ 1.00
... success on transform(1.20) -mn 1.00
transform(51.14): 000000 -> en(2 3}
applying fetch decomposit
surca? 51, u& (c- u‘! 33 00000 ;
ea.con(16.00)es. 9.0 zu 01(9 00)-1 e2(29.00)
feasible: es.con - <=
transform(0.00): 000
attempting cgn:uﬂ utcl
it's a match
... 3uUCCESS nn Lrnﬂens .00) with 0 00
. success on search(51.14) with 16.0
. success on trlni'orms 61.14) with 18, 00
... SUCCESS On transform l 40) mtn 17.00
... Success on trcns'orm(z with 17.00
. success on search(56.40 \ﬂl 20.00
... Success on trlni'oms 55.4 -!th !0 00
success on sesrch(§6 0& -nh
..+ SUCCESS On t.unﬂomg 55.40) with 20 00
... SuCCess on ll‘lﬂlfcﬂllg 7.
... SUCCOSS oOn trlnsfoman 7.80 -nu 22.00

W ... success on sesrch(57 3 with 22.00
. success on transform H [] z -H.h 22 00
g «.. SUCCESS On search(&57. wit

... success on transform(67. o) with 2!.00
... SUCCESS on search(62.60) with 27.00
. success on !runuom oz.n) with 27.00
... SUCCESS ON !.rln'oms .60) with 27,0
. success on transform(82, lO) with 27,00
«.. SUCCESS ON tnnnurns 2.60) with 27.00
+4. SUCCESS ON truns!om 2.6 ‘-H.I 27.0
... SUCCESS On scarch(n wit
. success on v.rlnsform& 64, 0) -mn !! u
+++ SUCCESS ON search(684 ua -H.h !!

:
o, e ety e e

- +as SUCCESS ON trlnlom& 64.8 2

P .. SUCCESS On search(64 n‘ wit ! 0

R~ +v. SUCCESS ON r.r-u'nrms 64.0 -n.l n.oo

o .s. tuccess on search(09.60) witl

Rre 63 r 5 enamined.

,,x', Waximui search depth: 20

H‘:':' i

| /5 |
.t ‘

—

| &
3

1

1

E,K_"j: T BB T g 0 6 Ml U I T e Wi R R T R AT TS AT A A e T Lt

r‘I

N

152 Local Microcode Generation and Compaction .

Maximum axiom depth: 4
Approximete enacution time: 48.33 seconds

ealu.plus e8.com 0000008 (0)
slux.or e'%W.0 (1

sc.l0 shlo. slun.alu elu.plus carry.0 (2)

In this example, the search fails at first but succeeds on the second try.

seerch(18.90): (<- fbus 01111703
fbus.and(13.00)fbus.or(13.00 .Ill-lol's ﬂ.“z
feasiule: fhus.and = r- fous(2 11) (end sreg breg))

tu:::oﬂ:(:3.90): 0777778 <> (and sreg bre3)

an i

.pply‘u andig: $1 :: {(end 0777777 $1) to 0777778

transform(13.90): (snd 0777777 0777778) => (and areg breg)

andcommut(8.00)anald(XJ.WI
agpiying endcommut: (&nd $1 !% :: (ang $2 $1) to (snd 0777777 0777778)
t~ansform(13.90): (eng 0777776 3777777) => (and areg breg)

sndcommyt(8.30)en3td(13.00)opersndmaten(8.00) &
decompasin

by operan
trlnl'e-ﬂ? 2.14): 0777777 => breg
applytng fotch decomposition
l:lrcn? z.{l :08;- sreg 3771777)
reg.ones(2.
feasiole: bdreg.ones s (<- nr-g‘l l:li 0277777)
... Success on sesrch(!.74} with .00
... success on trensform(2.74) with 2.00
transform(11.16): 0777778 <> areg
wpplying fetch decomposition
search{ l‘.ilg)ango areg 0777778)
ereg.Tase 7!
b 'nsta!o: areg.mesk = (<- areg(8 ll; (end %mask (rot scwntp It tlatch(7 8})))
tunlf?rg(o:.lc): 0777776 «> (erd 7mask (rot scount(? 8} tlatch(? 8}))
ano‘a{ 9.
aoalylng Sndtg: S1 :: (and 9777777 $1) to 0777778
transform(9.1C): (and 0777777 0777776) => (end %mask (rot scount(? 8} tiatch(? e)))

ardcorut{ 9.00
l and $2 $1) to (and 0777777 0777778

R AR RS

e

P e

)
eoplying engcommut: (ard $1 $2) ::
| transferm({ 9.16): (end 077777 0777777) => (and %mask (rot scount(? 8} tlatch(7 8}))
! apgrorryt(9.0C)operanimatch(9.00)
gdecorocsing by cperand
crarsform(0.00): 0777776 => W%mask
stiemptirg constant match
112°s a match!!
... success on trersform(0.9C) with 0.00
transform{ 9.16): C777777 »> (rot scount{7 8} tlatch(? 8})
retia(9.09)
acplying rotid: S1 :: iru\‘. 9690000 $1) to 0777777
transform(9.13)., {rot 0005000 0777777) => (rot scount({? 8} tlatch{? &})
speraramatch(9.00)
jecompos’ng Oy operand
Lrlnfom? 2.72): 0600200 => scount{? 8)
ap2lying fetch decompositton
search(2.02): f<- scount{7 8) 3000GG0)"
shif:(2.C0
feasible: shift « («- sccunt{4 9} Xwild)
treansform(0.00): 0000000 => Zwild
attempting constant match
it's a matchil
‘... success on lunfoms nAooa with 0.00
. success on search(2.02) with 2.00
. succass on transform(2.02) with 2.00
ansform(7.15): 0777777 => tlatch(7 8}
pplying fetch decomposition
search(7.15): (<- tlatch(7 8) 0777777)
14.t1(7.00
feasible: 1d.t) = (<- tlatch(® “991 sbus(8 0})
transform(6.16). 0777777 <> abus{b 8)
zpplying feich decomposition
ulrchg 6.“‘: 8<- abus{5 8} 0777777)
abus.fbus(8.0
N feasible: abus.lbus = (<= abus{5 12} fous(2 3})
o transform(3.16): 0777777 -> fous(2 3)
" applying fetch decomposition
- search{ 3.15): (<- fbus(2 3} 02777177)
74 fbus.ones(3.00)
. feas'ble: fhus.ones = (<- fbus{2 11} 0777777)
1 ... squeezed out.
. cutoff resched.
... fail on search(3.“‘
... 781l on transform(3.19%)
.+, cutoff reached,
... fatl on search(l.ilg
. fail on transform(6.18)

t

- -

‘e ... CUtOT? reached.
N oo Tatl on search(1.Ilz
= «.. fat) on transform(7.18)
- ... cutoff resched.
i ... fatl on transform(9.10)
... cuteff reached. .
... Tail on trensform(9.18
spplying andcommuyt: (and $1 § ; :: (and $2 $1) to (and 0777778 02777177
transform{ 9.16): (snd 0777777 0777778) => (and %mask (rot scount(7 § tlateh(? 8}))
... found previous failure
... fail on transform(9.16)
... Cutof? resched.
.e. a1l on transform(9.18)
.+ cutoff resched.

¥

Dag

N T A RS T AT

L el M M N e L T B e TS Dt e -\I._‘!_'»;;:}*

N Selected Examples - : 183
13
.
a
3 ... fadl on transform(9.16)
[.v. Cutoff resched.
. ... fall on transform(9.16)
5 -+r Cutoff reached.
... Tall on search(11.18

... fall on trlnlfsr-(1. !
" applying anccommut: (and $1 $2) :: ‘lll $2 $1) to (sad 07777768 0777777) 5
.. transform(13.90): (and 01711 107 7776) => (and areg breg)
k. ... Tound previous ru'lnr .
k ... fail on transform(1 '0)
g « applying angid: $1 :: (and 0777777 §1) to (sme 0777778 0777777)
B transform(13. ao* (cnd 01771" ’Sui Q777776 0777777)) => (and sreg breg)
I andassoc2(8.00)andcommut
B

applying sndassoc?: (ard 1 ud $2 !Jn :: (and (eva) (end $1 $2)) $3) to (snd 0777777 (ane 0777776 0777777

transform{ 13.90): (and 0777778 0777777) => (and areg breg)

-v. found previous feilure

- ... Ta1? on trensform(13.90
palying ardcommut: (and $1 §2) :: (and $2 Slz °";ln¢ 0777777 (and 0777776 0777777))

g

transform{ 13. 90) ano (anu 771778 02777117 771) *> (and areg brag)
an 8.90; b (.oﬂ)ununuuc (13 I
wplying andassoc: (snd hu ; ; (and $1 (eval (ane $2 $3))) to {end (and 0777778 0777777) 07777
transforn(13.90): {and 01"110 07777 1) -:- (end areg dreg)
... found previous failure
... Tail on transform(13.90)
decompos:n hy cperand
transform <4): 0771771 > breg
(using puv'o.ll resulit
.. sutcass cn tunu:mns 2.04) with 2.0
trans’ar o(11.88): (and O 11:10 C1717277) -’ areg
apolying fetch decomposit
search(11.88): (<= areg (ln 0777778 0177777))
No takers!
... cutoff resched.
... a1l on search(11.80
. fail on transform(11.8 z

B AR e
e

Ar'

I«
|

arplyirg andcommut: (end S1 $2
U'IFS'CH"!(13.90): (and 07777
.. found previous failure
+v. T311 on transform(13.90)
o0 GUS’Y resched.
... fa!l on trensform(13.90)
. cutsff roached.
i 5 fa1) on transform(13.90)
| ... cutof? resches
| ... T311 op 'runl!o'n(13.9 ;
lepplying ar1:3: 1. (and 0777777 81) te sund 9777777 0777718)
| trensform{ 3. DD : {ana 0777777 Stna 0777777 G177776)) => (and areg Sreg)
ungassocs!(8.00 arqumul§ 13.92
asriy'ng :ngassocs: (amd S1 (ang 31) :: (2rd (eval (and $1 $2)) $3) to (eng G777777 (end 0777777 Q777778))
tren<fo-m(13.0C). (and 3777777 0111116) > (*nd areg breg)
. fuuna previovs failyre
... fail or tressform(13.99
appiy ng anaccmrut: (end §1 §2) :: ;u nd $2 €1) to [an2 0777777 (ar3 0777777 0771778))
te !rs'nrr', 13.9C): (anc (andg 0777777 C777778) G77 777) *> (and 3reg breg)
ardessoc{ 3.C0)arccommut(13. Go)onrnumucn' 13.00)
soriy'rg e"ndasssc: (2rg (and S1 §2) €3) :: (and S1 (eval (and S2 $3))) to (and (and 0777777 Q777778) 977171777
trensforn(13.30): (and 0777777 0777776) => (and areg breg)
voa R0 ‘nJ previous feilyre

(and $2 $1) to ;Illd (and 0777778 0777777) 07777177)
7 (md 0771770 0777777)) =» (erd srej oreg)

T

ELRA A e S

i a'v on tregnsform(13,90)
| ‘t..c'rposlr; by operand
transfor={ 2.04,: 0777777 => breg ¥
(as'rg nr'viou resuit)
... Success on 'rlnuorms 2.04) w 00
transform{ 11.86): (and 0777777 017177IJ > areg
applyin 'otcn u-conoollu
search({ 11 (<= sreg (lnd 0777777 0777778))
5 No uuﬂl
v.. cutoff reached.
«.. Tatl on search(11.88
.. fail on trcn:fum(ll 8
applying andcommut: 1.82) :: (and $2 $1) to slnd (end 0777777 0777778) 0777777)
trlnﬂorm(13.90): mul 01111 7 (lnd 0117711 0777778)) <> (and areg breg)
. found previous failure
... Tail on transform(Il 90)
.. cutnff reached.
.. fai1l on transform(13.90)
+.. CUtEff reachesd.
. fa1) on transform(13.90)
. cutoff reached.
voo Tall on transform(13.90)
«vo GUtoff reached.
.. Tatl on transform(13.90)
feasidble: fous.or * (<= fbus(2 11} (or areg breg))
transform(13.90): 0777778 => (or areg breg)
No takers!
. gutoff reached.
.. Ta1l on transform(13. Ml
fessible: fous.xor = (<- fbus 11} (xor @
trensform(13.90): 0777778 -t (xor areg lu.)
No takers!
... GUtOf! resched.
... Tail on transform(13.90)
«ee GUtOff r
... fail on se el(10.90)
43 nodes exsmined.
Maximum search depth: 17
Manimum axiom depth:
Approximate unuuu time: 12.00 seconds

search(21.97): (<= fobus 0777770
fbus.ado(21.00)fbus.bma(21.00 fbul and(13.00)fbus.or(13.00)fbus.xor(13.00)
feasible: fbus.and = s« fous(2 11) (snd ereg breg))

transform(18.97): 0777770 =» (and areg breg)

andid(6.00)

g breg))

Local Microcode Generation and Compaction

applying andid: $1 :: (and 0777777 $1) to 0777778
transform(i8.97): (and 0777777 0777778) => lld -rn breg)

andcommut(6.00 an 19(13.00)o

applying andcommut: (and $1 ?;
transform(18. 37; and 07777
endcommut(8.00

+ g

o

nrndﬂluhs
$1) lo (and 0777777 0777778)
6 0777777) > ul areg bdreg)
mum(13.00)operandmatch(8.00)

hy operan

3. :|7) 0117111 > breg

|(using previous result)
. success on t.ruuroms 3.37) with 2.00

-

transform{ 15.60): wnn

LR R)

l> areg
fn.:h decompositio
15.60): (<= sreg 0111110)

6.00
:01!1:::“"' .mask * (<- areg(8 15) (and Xmask (rot scount(? 8, mm-fr))))
l::::;arl;(";).w): 0777776 <> (and %mask (rot scount{? 8} tlatch(? 8)})

‘.'- 'y

angcommut(9
sppiying andcommut: (snd $

LR K16

applying con-unfold to
transform(13.60): (en

ying andid: $1 :: (end 0777777 $1) to 0777776
rensform(13, 60; (uu 0777777 0171 76) => (and Xmask (rot scoust{7 8} tlatch(? 8}))
con

nfnld l .2
; sud $2 $1) to (ud 0777777 0777770)
transform(13.60): (ana 0277776 07177 77) => (and %m n (rot scoumt(? I) tistch(7 8}))
sndcommut(9.00)cor -un!oll(10.23)operandmatch(9.00)
decomposing by opera
tr.n;forn? 0.00): 017171' > Ymask
j(using previous result)
... success on transform(0.0C) with 0.0
tran:;om(oa:)l .80): 0777777 => (rot uount(! @) tlatch(? 8})
rot
pplying rotid: $1 :: (rot 0000000 $1) to 0777777
I!r-nsfom(13. on) rot 0000000 0777777) > (rot scount(7 8} tlatcn(? 8})
operandmatch(9
| decomposing by on erand
transform{ 2.45): 0000000 => scount(? 8)
(using previous resul
... SUCCESS OD lr-nsl’nrns 2. tl' with 2.00
transform(11.18): 077777 -n tiaten(? 8)
Ipply!n? fetch cecomposition

:lrcl‘l uogg) (<= tiatch(7 8) 0777777)
d.t .
feastnle: 1d.t] = (<= tlatch{6 9999 lbun(b 8})
transform(1C.15): 9777777 -> abus{8 &
Ipplylng fetch uccomposn

seacch(19.18): (<- lbul(5 L} 0711171)
abus.fous(6.00)apus.dram(g
feesiblo: abus.fbus = (<- &b ul‘ “l fous(2 3})
trensform(7.15): 0777777 -» dus
up'lytrg fet.r.h decomposit
search{ <= rbu;(z 3) 0777777)
fhus. oras(
fezsibla: ’.nu ones ° (<~ fous(2 11} 0777777)
... Sgucaezed out.
. cutofi reached.
... fail on search(7.16
... fet)l on transform(7.15
eesible: ebus.oram = (<- ebus{5 12} oram(4 5)[dddr(l l %wil4])
transfora(7.15): 0777777 <> cram{4 5)[dadr{4 5} %w
applyirg fetch cecomposition
searchi{ 7.15): (<- dram{4 5)}[dac~(4 S} %wild] 0777777)
| No texersi
. cutoff reached.
... Tail on search(7. 15&
.. Tail on transform(7,16)
... Cutoff reached.
... fail on search(10. u&
... fail on transform(10.18)
. cutoff reached.
... fall on search(11. 1ll
«.. Pail on transform(11.185)
+oo Cutoff reached.
+.. fa1l on transform(13.60)
..+ cutoff reached.
... fa1l on transform(13.60
applying andcommut: (and S1 $2) :: to (enad 0777776 0111111z
:r.nuorm(13.60): (and 0777777 01 7770) -» ang %mask (rot scount{7 8} tletch(? 8}))
found previous ’u1'lur'

... fatl on transform)
applying :on-unfola to ene 0777778 Q77777 ;
(rot 0000017 0077777) 0777777) > (and %nask (rot scount{7 8} tlatch(? 8}))
sndcommut(10

transform(13. 60 {an
aoplying u\ﬂcolnul and $1 $2) :: (and S2 $1) to ;lllﬂ (rot 0000017 0077777) 0171111l
transform(13,60): (and 0777777 (rot 0000017 0077777)) <> (and %mask (rot scount(7 8} tlstch(7 8}
andcommut(10.23)operandmatch(12,2 c
applying andcommut: (and S1 § g 2 §1) to ;nnd 0777777 (rot 0000017 0011111)&
transform(13.60): (and (rot 0000 7 0011777 0777777) => (and %mask (rot scount{” 8) tlatch(?
. found previous failure
. fail on transform(13.60)
decomposin by operand
transform(0.00): 0777777 => Xmask
attempting constant match
".’l . matchtl
uccess on transform(0.00) with
trullora(13.60): (rot 0000017 0011"7) » (rot scount(7 8} tlatch(7? 8})
No takers!
cutoff reached.
... fail on transform(13.60)
cutoff reached.

, fail on ;ruafoﬂl(13.00)
... cutoff reache
oo Tatl om truu!qru(13. M).
... cutoff resc
v.. fail on trunlfornl

ans 971777 01991 8
0777777 (rot 0000017 0077777)) #> (and Xmask (rot scount(? 8) tlatch(? 8}))

Selected Examples ; : 155

... Tound previous failure
«o. fall on transform(13.60)
«s. CUtoff reached.
«.. fall on transform(13.80)
.+. Cutoff reached.
++. fall on transform(13.60)
..+ Cutoff reached.
... T811 on search(Il.oo‘
... fatl on transform(16.6
applying andcommut: (amd $1 $2) :: ;-nl $2 $1) to (amd 0777778 0777777)
transform(18.97): {and 0777777 0727776) => (and areg breg)
... found previous fafilure
... fa1) on transform ll.ﬂ;
applying anaid: $1 :: (arg 0777777 $1) w0 (end 0777776 07771777)
'.rlulormi 18.97): (ana 0777777 sud 0777776 0777777)) => (and areg breg)
andessoc2(8.00 lnﬂ“ﬂut§ 13.00)
applying andassoc2: (and 31 (and $2 ll“ i (and (eval (end $1 52)) $3) to (snd 0777777 (snd 0777778 0777777
transforn(16.97): (ard 0777776 0777717) > (and areg breg)
... fourd previous failure
... Tall on transform(18.97
pplying andcommut: (end S1 S2) :: SIIG $2 $1) to _(and 0777777 (and 0777778 0777777))
transform(18.97): (and (end 0777776 0777771) 077 777) => (and areg breg)
ardassoc(8.00)andcommut(13.00)operandmatch(13.00
®pplying andessoc: (and (ang $1° S2 s:; :: (and S1 (evel (and S2 $3))) te (snd (and 0777776 0777777) 07777
transform(18.37): (and 0777778 0777777) > (and areg breg)
++. found previous failure
++o Tatl on transform(18.97)
decompos‘ng Dy operand
transform(2.26): 0777777 => breg
(usiry orevious result)
... SUCCOSS ON trll!'ﬂrll‘ 2.26) with 2.00
transforn(18.71): (and 0777778 0777777) => areg
applying fetch decomposition
oerch(18.71): év areg (and 0777776 0777777)) fj
areg.mask(11.00) :
feas‘die: rlg.muk ® (< lra”l u; ;Illd %mask (rot scount{7 8} tlatch{? l)))z
trersformy 14.71): (and 0777776 0777777) => (and Zmask (rot scount(7 8} tlatc {? 8}))
aracormul! 9.CCjcon-unfold(10.23)operandmatch(9.00)
cecomposing by operana
t'snsferﬂ? C.2C): 0777776 <> imask
|{usirg previous result)
... SUCCESS ON ll‘lﬂs’ul‘m; 0.00) with 0.00
iransform(14.71): 3777777 <> (rot scount{? 8} tlatch(7 8})
rouus 3.00)
pplying rot'd: S1 :: (rot 0000000 81; to 0777777
transform(14.71): (rot 0000000 0777777) => (rot scount(7 8} tlsten(? 8))
operandmatch(9.00)
gecomtosing by operand
traﬂ:!orm? 2.85): 0000000 => scount(7 8)
1 (using previcus result)
.. Success on tr.nsfoms z.l.'ae with 2.00
transform{ 12.16): 0777177 <> tlaten(? 8)
appiying fetch ecomposition
urch{ 12.18): (<- tlatch{? 8} 0777777)
t1{ 7.00)

14,
feasible: 1d.t1 = (<- tlatch{3 9999} abus(5 @})
t-ansform(11.16): 0777777 <> abus{§ &)
applying fetch decomposition
sur:n? 11.16): (<= abus(5 Oz 07772777)
abus.fbus{ 6.00)adus.drar{ 8.00
fezsible: abus.fous = ;0 |bu|$5 !2; fous(2 3})
transforn(8.16). 0777777 »> fous{2 3}
2pplyina fetch secomgosition
s:lrcn(B.za;:os;- fous{2 3) 0777177)
bus.ones 7
feesible: fbus.ones = (<- fbus(2 11) 0777777)
+.. SQUEEZEO OUtL,
«o. Cutoff reached.
6 Plln on su;cn(ai‘lg)
... fail on trensform(8.
essible: abus.dram = i- nuss& 12} dram{4 bi[uur(o 8} wild])
transforn(8.16): 0777777 => dram{4 5)[dadr{4 5} wild
applying fetch ocecomposition
search(8.18): (<- dram(4 5)[dadr(4 6} %wild] 0777777)
No taxers!
I <o+ CUtoff resched.
) <. a1l on search(0.103
« <o Ta1l on transform(8.18)
) «.. Cutoff reached,
-+, a1l on search(H.ﬂg
. a1l on transform(11.16)
. cutoff reached.
s = .. Tafl on search(u.uz
B <.« fail on transform(12.18)
i «.. CUtoff reached.
++. fa1l on transform(14.71)
... Cutoff reached.

b ... fa!) on transform(14.71
L= applying andcommut: (and $1 $2) :: (and $2 51? to (and 0777776 0777777)
k- transform(14.71): (and 0777777 0777778) => (and %mask (rot scount(? 8} tlatch(7 8}))
A andcommut(9.00)con-unfold(10.23)
i plying andcommut: (and § 32; 33 ;anu $2 $1) to (and 0777177 07771"‘
Y. transform(14.71): (and 0777778 0777777) => (and Zmask (rot scount(? 8} tiaten(? 8)))
| ... found previous fatlure
i . fatl on transform u.u;
fe s tpplying con-unfold to (and 0777777 ormnz
| transform(14.71): (and 0777777 (rot 0000017 0077777)) => (snd Xmask (rot scount(? 8} tlaten(? 8)
r. andcommut(10 23)operangmstch(12.70
b . applying andcommut and §1 $2) :: iuu! $2 Sl; to slné 0777777 (rot 0000017 0077777))
o transform(14.71): (and (rot 0000017 0077777) 077 777) => (and %mask (rot scount{? 8} tlaten(?
bos angcommut(10.23)
| ¥ applytng andcommut: (end $1 S!; 1: (and 82 $1) to (and (rot 0000017 0077777) 0711177l
B transform(14.71): (and 0777777 (rot 0000017 0077 77)) *> (and %mask (rot scount(7 8} tlateh(
,_._»' |... found previous fatlure i
| 5.3
R

i . L e 2 L IR LI N Sy =
e i o e B S PV " o - RPURAE S SPUESIR NNE . i

SRR,

B A D N NS N S T S e i Y T

: 156 - : Local Microcode Generation and Compaction

|... fail on transform(14.71)

... cutoff reached.

... fatl on transform(14.71)
decomposing by operand
transform(0.00): 0777777 => Imask

(ulinn previons resyilt)

ccess on transform 00) w 2

t.;:nlfnrn(14.71): (rot 0 000" 0011111’) -> (rot scount{? 8) tlatch(7 8})

... cutoff reached,
... fatl on transform(14.71) |
... cutoff reached. .
... fall on transform(14.71)
... cutoff reached.
... fail on transform(14.71
applying son-unfold to (and 0777778 077777 ;
transform(14.71): (end (rot 0000017 0077777) 0777777) => (and %mask (rot scount(? 8) tistch(7 8)))
... found previous failure -
.v. foi)l on transform(14.71)
... CUta’f reached.
... fail on trensform(14.71)
... cutoff reachad.
... fail on search(16.71
.. tall on transform(16.7 i

applying anacormut: (end $1 $2
wransform(18,97): {and 067777
.+. founa grevious failure
.. fati on transferm(18.97)
. cuto’f reschad.
... fa!) on transform(18.97)
... cutoff reached.
... fail on trensform(18.97)
. cutoff reached,
oo fatl or 'runlform(;
{apply‘ng anaic: $i :: nnﬂ 011 777 S1) to (and 0777777 0777778)
| .rarsf.;-n 18.37): (ang ‘177777 sunu Q777777 0777776)) => (and areg breg)
lnussoc (e.ce unuomm' 3.00)ancta{ 17.00)
| acoly'rg anoassoc2: (and h uu $2 S3)) :: (and (eval (and S1 $2)) $3) to (and 0777777 (and 0777777 0777778))
. t-srsform!{ :8.97): (ana 3777777 0777776) => (and ereg breg)
i ... found arovious fatlure
... fa1) ¢n transform(18.97
sop'y'rg aryzommut: (and S1 S2) :: ;um $2 $1) o ;ua 0727777 (ang 0777777 0777778))
transform! 18.57): (and (any 2777777 0777775) 0717117) > (and sreg breg)
s1550c(5 02)anvcomrut(13.C3 opernndmat.cn(13.4¢0
ol lr; ersassoc: (ard (and St S2 sa; (ang S1 (evs) (and $2 $3))) to (and (and 0777777 0777776) 071771777
lz arsform! 18, 31) (en¢ 0777717 02777 H) *> (and areg breyg)
... Yound nrevious Fungr.
! . fa1" on iransform(18.97)
7acsira by oserand
1 { 2.28): 0777777 > Lreg
{4sina previous resuly)
... suitass on lflnl'aﬂl'; with 2.90
trersfort{ 28.71): {and O 77711 0117770) > are)
guply'ng "otch d-co*wsﬂ.i
saercn{ 1€, g ;<- areg {end 0777777 0777778))
| sreg.vask{ 1
‘ femrsidle: are -nuk s (e- 2 ”8 i5 ;and %mask (rot scount{7 8} tlatch{? l)))g
! trans”arm, 1 (ara '711 7 0777776) => {&nd %mask (rot scount{7 8} tlatch(7 8}))
! anscommut(3. "zfcon unfaid(10.23)
2ppTying dndcommut: (and Si SI) :: (and S2 S1) to (amd 0777777 0777776)
traisfarn(18.7%;: len: 3777776 0797777) «> (and Zmask (rot scount{7? u} tiatch(? 8}))
eracomm ur.(S. ..f:on-un!old(10.23)operancmatch($.00)
geccmpostng oy operand
tr ans'orm? 0.60): 077777€ => Xmask
|(using pnv'ou: result)
... SUCCEsS on trunﬂnrms 0.00) with 0.0
Lrln:fuﬂ;(o;g .T1): 0777777 > (rot scountu 8) tiatch(7 8})
rotid
applying rotid: $1 :: (rot 0000000 St; to 0777777
transform(15, 11) grnt 0000000 0777777) > (rot sceunt(7 8} tlatch(7 8))
operandmatch(9
decomposing by o !FIIW
transform(2. li) 0000000 => scount(7 8)
(using previous result)
... SUGCESS On transform ""f with 2.00
transform(13.06): 0777777 «> tiatch(? 8}
... found previous fatlure
«v. fai! on transform(13.08)
... CUtoff reached.
... fa1l on transform(18.71)
.. cutoff reached.
.. fa1l on trlnror-n(18. Hi

:: (and $2 $1) to (and (emnd 0777776 0777777) 0777717)
7 (and 0777776 0777777)) => (avd areg breg)

0

A E

g2

T~ it
%
s

applying andcommut: (and $1 §2
transform(15.71): (and 07777
found previous failure
. fatl on transform(15.71
appiying con-unfold to (ang 0777778 0111717;
transform(18.71): (and (ro! uoooon 0077777) 0777777) > (and %mask (rot scount(? 8} tlatch{? 8}))

andcommut(10. 23)|nd1d(14
) spplying andcommut: (and $2 $1) to ;nnu (rot 0000017 0077777) 0777777 l
B transform(18, ‘Hg |nu 01171 1 ret 000001.1 0077777)) => (and %mask (rot scount(7 8} tlatch(? 8)
45 andcommut(10.2)ournnumntcns
applying andcommut: (and 8 and ;lnﬂ 0777777 (rot 0000017 0077777) z
trensform(16.71): (and (rot 000017 0017777 011 777) => (and %mask (rot scount(7 8} tlatch(?
.+. found previous faily
... f811 on transform(!l n)
decomposing by operand
transform(0. 00) 0777777 > Imask
. (using previous result)
.. success on transform(0.00) with 9.00
t;lnsfom(16.71): (rot 0 00017 0077777) => (rot scount{? 8} tlatch(? 8))
o tekers!
+es CUtOff reached.
. fail on transform(16.71)

d $2 $1) to (and 0777776 B717711z
7 01 7110) - ZIIId Imask (rot scount{? 8} tlatch(? 8}))

Copy availabl: io D.il cazs net
pemmit fully legible reprocuciion

il il i cididbicinibellt il

S ’ Selected Examples 157

o ... cutoff reached.
- .. fail on transform(15.71;
b applying andtd: $1 :: (and 0777777 $1) to (and (rot 0000017 0077777; 0777777)
= transformg 13.;3 : (and 0777777 (and (rot 0000017 0077777) 0777777)) => (and %mask (rot scount(?
andassoc2(9.

applying andassocZ: (and $1 (and $2 $3)) :: (and (eval (and $1 $2)) $3) to (and 0777777 (and (ro
trans;orm(15.7}): :ng‘0777770 0777777) => (and %mask (rot scount{7 8} tiatch{? 8}))
... found previous failure
. fui} on transform(18.71)
. cutoff reached.
.. fai) on transform(15.71)
... cutoff reached.
. fat) on transform({ 13.71)
. :u:?ff rolchog. 15.71
. fail on transform .
applying con-unfold to %nnd 07;7177 0777718)
transform(15.71): (and 0777777 (rot 0000017 0077777)) => (and Amask (rot scount(7 8} tlatch{7 8}))
. found previous failure
. fail on transform(15.71)
... cutoff reached,
.. fail on transform(15.71)
. cutoff reached.
; :?11 on sll;ch(1267;
... fat) on transform .
applytng andcommut: ang $1 52; :: (and $2 $1) to [and (and 0777777 0777776) 0777777)
transform(18.97): (and 0777777 (and 0777777 0777776)) => (and areg breg)
. found previous fatlure
. fai) on transform(18.97)
. ;ut?ff r.lcncg. (18.97
... fail on transform .
applying andid: $1 :: (end 077;777 $1) to ;and 0777777 ;cnd 0777777 0777778))
transform(18.9;%; {and 07777;; ésnd 0777777 (and 0777777 0777778))) => (and areg breg)
andassoc2(13. andcommut .
applying gndlssocZ: sund s§ (and $2 $3)) :: (and (eval (and $1 $2)) $3) to (and 0777777 (and 0777777 (and 07
transform(18.97): (and 0777777 (and 0777777 0777776)) => (snd areg breg)
. ;o??d prev1ou§ f|21ggng7
. fail on transform .
applying andcommut: (s3nd S1 §2) :: ;and $2 $1) to (and 09777777 (and 9777777 (and 0777777 0777778)))
transform(18.97): (and (and 0777777 (and 0777777 0777776)) 0737777) => (and areg breg)
andassoc{ 8.00)andcommut(17.00)ooerandmatch(17.00)
applying ardassoc: (ano {and S1 $2) S3) :: {and S1 (eval (and $2 $3))) to (and (and 0777777 (and 0777777 O
transform{ 18.97): (and 0777777 0777778) => (and areg breg)
. foundq previous failure
. fail on transform(18.97)
decomposing by cperand
transform(2.05): 0777777 «> breg
(us i prev‘:u:r::::;f% 2.08) with 2.00
... success o m(2. .
trlﬂsform('ls.QZ): (ano 2$77777 (and 0777777 0777778)) =*> areg
applying ‘etch decomposition
search IGiQZ%:Oé;- areg (and 0777777 {&nd 0777777 0777778)))
areg.mask(12.
felgib!e: lro%.musk o (<= cregsa 15} (and %mask {rot scountf? 8} tlatch(7 8})
: 9

))
transfarm(14.92): (and 0777777 (ano 0777777 0777718)) => (and %mask (rot scount(7 8} tlatch(7? 8}))
andcommut(10.59)andid(14.19)
applying andcommut: (ana $1 szg :: (and $2 $1) to (and G777777 (and 0777777 0777776);
trenstorm(14.92): (and (and 0777777 0777776) 0777777) => (and X%mask (rot scount{7 8} tlatch{? 8}))
angcommut{ 10.59)andia{ 14.19
epolyirg andcommut: (and 51 $2) :: (and $2 $!) to (and (anc 0777777 0777778) 07777773
trarsform{ 14.92): (ard 9777777 (and 0777777 0777776)) => (and %mask (rot scount{7 8} tlatch{(7 8}
i founc previous failure
j ... fai! on transform(14.92)
appiying andid: $1 :: (ana 0777777 $1) to (and (and 0777777 0771778; 0777777)
transform(14.92): (and 0777777 (and (and 0777777 0777776) 0777777)) => (and %mask (rot scount(?
andsommut{ 14.18)
applying andcommut: Eand $1 82) :: (and $2 $1) tu (and 0777777 ;and (and 0777777 C717778) 0777717
transform(14.92): (and (and (any 0777777 0777776) 0777777) 07777717) => (and %mask (rot scount{
andassoc{ 10.59
applying andassoc: (and (and $3 $2) $3) :: ;and $1 ;evnl (and $2 $3)})) to (and (and (and 02777
transform(14.92): (and (and 0777777 Q777776) 0777777) => (and X%mask (rot scouni{7? 8} tlatch{
l... found previous failure
. fail on transform(14.92)
. cutoff reached.
. fall on transform(14.92)
. cutoff reached.
.. fail on transform(14.92)
. cutoff reached.
... fail on transform(1‘.92;
applying andid: $1 :: (and 0777777 $1) to {and 0777777 ;nnd 0777777 0777776))
transform(14.92): (and 0777777 (and 0777777 (and 0777777 0777776))) => (and %mask (rot scount{? 8}
angassoc2(10.59)andcommut{ 14.19
apolying andassoc2: (and $1 (and $2 $3)) :: (and (eval (and $1 $2)) $3) to (and 0777777 s.nd 077717
transform({ 14.92): (and 9777777 (and 0777777 0777776)) => (and %mask (rot scount{7? 8} tlatch{7 8)
found previous failure
... fail on transform{ 14 92
soplytng andcommut: (and $1 S2) :: (and $2 $1) to (and 0777777 (and 0777777 (and 0777777 0777776;)
|transform(14.92); (and (and 0777777 (and 0777777 0777776)) 0777777) => (and imask (rot scount{
andcommut(14.19)
spplying andcommut: (and $1 $2) :: (and $2 $1) to (and (and 0777777 (and 0777777 0777778)) 07777
transform({ 14.92): (and 0777777 (and 0777777 (and 0777777 0777776)})) => (and %mask (rot scount(
found previous failure
. fai) on transform(14.92)
. cutof? reached.
. fail on transform(14.92)
. cutoff reached.
. fai) on transform(14.92)
. cutoff reached.
. fail on transform(14.92)
. cutoff reached.
... fatl on sesrch(10.92%
... fail on transform(16.9
applying andcommyt: sand $1.82) :: (and $2 $1) to (and ;und 0777777 (and 0777777 0777776)) 071771777)
transform(18.97): (and 0777777 (and 0777777 {(and 0777777 0777776))) => (and areg breg)
found previous failure

ryery

B~

.

Gl gk Ak 0\

.. cutoff reached.
. fail on transform(18.97)
... cutoff reached.
. fai) on transform(18.97)
.. cutoff reached.
... fail on transform(18.97)
decomposing by operand
transform(6.82): (777777 «> sreg
applying fetch decomposition
sonrch? 6.82): 5<- areg 0777717)
areg.mask(8.00)
feasible: areg.mask = (<= urogf& 18
transform{ 4.82): 0777777 «> (and Xmask (rot scount{7 8} t
No takers!
. cuteff reached.
. fail on transform(4.82)
. cutoff reached,
... fail on reh(6.322
... fafil on transform(6.82)
. cutoff reached.
. fail on transform(18.97)
cutoff reached.
. . fa!l on transform({ 18.97)
feasidble: fbus.or = {<- fhus{2 11} (or areg breg))
transform(18.97): 0777776 <> (ar areg breg)
orid{ 16.00)
applytinqg orid: $1 :: (or 0000000 $1) to 0777778
trlnsfurms 18.97;: (or 0000000 0777776) =»> (or arag breg)

orcamsut 12.00‘6porlndmatch 16.00)
$2) :: (or $2 $1) to (or 000000? 0777778)

| ... fail on transform(13.97)

(and %mask (rot sC'unt$7t!z{;1=;§g(7 8})))
atc

applying orcommut: (or $1 $2
transform(18.97): {or 0777778 0000000) => {or areg breg
orcommut({ 16.00)operasndmatch(12.00)
decomposing by operand
trlnsform? 9.49): 0777776 <> areg
. found previous failure
. fail on transform{ 9.49)
applying orcommut: (or $1 8$2) :: (or $2 $1) to (or 0777776 0000000)
tracsform(18.97): (or 0000000 0777776) > (or sreg breg)
. found previous fstlure
. fail on transform{ 18.97)
.. cutoff reached.
... fall on transform(18.97)
decomposing by operana
tr!nsform? 6.82): 0000000 => areg
apoly\n9 fetch decomposition
sesarch{ 6.82 :os;- areg 0000000)

areg.mask(
feasible: areg.mask = (<- areg{8 18) (and ¥%mask {rot scount(7 G‘(tlltcﬁ(7 83)))

transform{ 4.82): 0002000 => flnd %mask (rot scount{7 8} tlatch{7? 8}))
zeroard((.44)
appiying zeroand: €000000 :: (and 0000000 777) to 9000000
transform(<+ 82): 5and 0000000 777) =» (and Xmask (rot scount{? 8} tlatch(7 8}))
operanamatch(0.00)
decomposiag by operand
transform{ 0.00‘: 0000000 =» Xmask
l jattempting cerstant match
it's & match!t
' success on trlnsforms 0.00) with 0.00
i ... success on transform(4.82) with 0.00
H . success un transform{ 4.82) with 0.00
syccaess on search{ 6.32) with 2.00
... success on transform(6.82) with 2.00
transform{ 12.15): 0777776 =» breg
applying fetch decomposition
search(12.15): §<- breg 0772778)

breg.con(10.00
feasible: breg.con = {<- breg{4 13) (@2 0000010 conhi{d 4? conlogs 4}))
[}

transform{ 10.15): 0177778 => (8270000010 conhi{3 4} conio{3 4}
con-unfold(8.00)
appiying con-unfald to 0777778
transform(10.15): (82 0000010 0000377 0000378) => (82 0000010 conhi{3 4} conlo(3 4})
operandmatch({ 8.00)
decomposing by cperand
transform{ 5.07): 0000377 => conhi{3 4) -
applying fetch decomposition
saarch! 5.07): (<= conhi{3 4} 0000377)
1d.conhi{ 4.00)
feasible: 1d.conhi = (<~ conhi1{0 9999} Xwild)
transform(0.00): 00C0377 => Xwild
attempting constant match
jit's a matcht!
success or transform$ 0.00) with 0.00
. success on search(5.0 ; with 4,00
... success on transform(5.07) with 4.00
transform{ 5.37): 0000376 => conlo{d 4}
applying fetch decomposition
search(5.07): (<- conlo(3 4} 0000378)
1d.conlto{ 4.00)
feasible: 1d.conlo » (<~ conlo{0 9999) Xwild)
. squeezed out.
. cutoff reached.
. fail on search(5.07
fat) on transform(5.07)
. cutoff reached.
... fa1) on transform(10.16)
. cutoff reached.
fat) on transform(10.18)
. cutoff reached.
.. f811 on search(12.15;
... fa1l on transform(12.18)
. cutof! reached.
... fail on transform(18.97)
. cytoff reached.

Local Microcode Generation and Compaction

Selected Examples : 159

. fail on transform(18, 912
vclxtblc fbus.xor = ;<- fbus 11} (xor areg breg))
trlusforms 18.87): 0777778 > (xor areg breg)
lor‘dg 12.00)
applying aorid: $1 :: {aor 0000000 51; o 0777778
transform(18.97): (xor 0000000 0777778) <> (xor areg breg)
xorcommut(12.00)operandmatch(12.00)
decomposing by operand
transform(2.36): 0000000 => ®
(using previous result)
... success on transform(2.38) with 2,00
transform(16.61): 0777776 ~> breg
applying fetch decomposition
lctrch? 16.81): (<~ breg 0777778
breg.fbi(16.00)breg.con(10.00
feasible: breg.con = §<- breg({4 13} (82 0000010 conhi(3 4‘ conlog 4}))
transform(1 .01): 77776 => (92 0000010 conhi{3 4} conlo(3 4}
con- un!old(8.0
applying con- ur!old to 077777
transform(14.61): (82 00000!0 0000377 0000376) «> (@2 0000010 conh1{3 4} conlo(3 4})
opersndmatch(8.00)
decomposing by operand
transform(7. 30) 0000377 o> conhi{3 4}
(using nrevious result)
success on transform(7.30) wtth 4.00
transform(7.30): 0000378 > conto(3
applying fetch decomposition
search{ 7.30): (<~ conlo(3 4} 0000378)
1d.conlo{ 4.00)
feasible: 1d.conlo = (<- conlo{0 9999} %Awild)
.. Snueezed out.
. cutoff reached.
. Tail on search(7. 303)

fail on transform(7
. cutoff reeched.
. f31) on transform{ 14.61)
... cutoff reached.
... fat)l on transfcrm(14.01)
easible: bdreg.fbl = ;<- breg(4 13} rblltch(l 4})
transform(14.61): 0777776 -> folatch{3 4)
applying fetch decompos‘t‘
selrchg 14.61 {<- fblatch{3 4} 0777778)
1d.fb1{ 14.0)
feasible: 1d.fbl « (<~ fblatch(3 9999} fous{2 3})
transform(13.61): 0777776 => fhus{2 3)
|app1y1n fetch decomposition
search(13.681): (<= fous{2 3} 0777778)
. tound previous failure
... fat) on search(13.61)
|... fat! on traasform{ 13.61)
. cutoff reached.
. 7811 on search(14, a:z
... Tail on transform(14.681)
. cutoff reached.
.. f&1l on search(16.61;
... fail on transform(16.8
apolying xorcomnmut: §xor $1 §2) :: (xor $2 $1) to (xor 0000000 0777778)
transform(13 97): (xor 0777776 0000000) => (xor areg breg)
rorcommut{ 12.C0)operanamatch(12.00)
decomposing by operand .
transform(9.49): 0777778 =»> areg
found previous fl!!uro
. fail on transform(9 ‘9)
spplying xorcomaut: (xor $1§ 2) ;xo' $2 $1) to (xor 0777776 0000000)
transform(18.97): (xor 0000000 0777776) => (xor aceg obreg)
. found previous failure
... fail on transform(18.97)
. cutoff reached.
. fail on transform(18.97)
. cutoff reached.
... fail on transform(18.97)
.. cutoff reached.
... fail on transform{ 14, 97;
feasible: fbus.add = (<- fbus{2 11} (+ (+ arag breg) carrytn))
transform(18. 976 0777778 -> 80 (+ are a?g carryin)
con-unfald(.:2.00)plustd O)pacary 00)
applying con- unfold to 0 7777
lrunsrorms 18.97 (¢ 0777777 0277777} > so i# areg breg) carcyin)
plusid({ 10.00)p uscummutl 12.C0)con-unfol 2 50;
applying plusid: $1 :: (+ 0000000 $1) to 'o 0777777 0727777)
transform(18.97)- (+ 00000GY (¢ 0777777 0777777)) > {+ (4 areg breg) carryin)
pluscommut('0.00)plusassoc2(12 00);3cary11d(18.00
applying pluscommut: (+ $1 $2) (+ $2 $1) to (+ 0000000 (¢ 0777777 0777777))
transform(18.97): (% (+ 0717777 0777777) 0000000) => 3 + areg brag) carryin)
pluscommut{ 10.00)plusassoc(12.00)operandmatch(10.0
decomposing by operand
trunsform? 2.69): 00000CO <> carryin
applying fetch decomposition
soarch? 2.69&: (<= carryin 0000000)
carry.0(2.00)
feasible: carry.0 » (<~ carryin{0 9; 0000000)
success on search{ 2.69) with .00
... success on transform(2.69) with 2,00
transform(16.28): (¢ 07772777 0777777} => {+ areg breg)
pluscommut{ 8.00)p3carylid(16.0C)operandmatch(8.00
decamposing by operand
transform(3.04): 0777777 => breg
(using previous result)
success on transform; 3.04) with 2.00
trensform(13.25): 0777777 +> areg
applyin fctch decomposition
10|rch? 13.25): (<- arsg 0777777)
areg.mask(6.00)
feasible: areg.mask = (<- areg{8 15} {and %mask (rot scount(? 8) tlatch(7 8})))

T R T I e 'T

T T S R P T

g

I gant

¢

160 Local Microcode Generation and Compaction

transform(11.28): 0777777 «> (and Amask (rot scount{? 8) tlatch{7 8}))
No takers!
. cutoff reached.
.. fa1i) on transform(11.28)
. cutaff reached.
|... fail on search{ 13.25
... fail on transform(13.2
applying pluscommut: (+ §1 $2) :: (+ $2 S1) to (+ 0777777 07771777)
transform(16.28): (+ 0777777 07777177) => (+ areg breg)
. found previous failure
. fail on transform(16.28)
applying p3carylia: S1 : ; (eval (+ 0777777 $1)) 0000001) to (+ 0777777 0777777) -
transform(16.28): (+ 077 775 0000001) => (+ areg breg)
pluscommut(16. OO)DJClrylid; 16.00)
spplying pluscommut: (¢ 31 $2) :: ;0 $2 $1) to (+# 0777775 0000001)
transform(16.28): (¢ 0000001 0777778) => (+ are brus
pluscommut(16.00)p3caryiid(16. oo)oporlndmltch? 18)
decomposing by operand
transform(6.08): 0000001 => areg
applying fetch decomposition
search(6.08): (<~ areg 0000001)
areg.mask(8.00)
feasible: areg.mask = (<- areg{® 15&m(nnu %mask (rot scount$7 8) tlutch(7 8})))
transform(4.08): 0000001 =»> (and Xmask (rot scount(7 8} tlatch{7 8}))
No takerst
cutoff reached.
fail on transform(4.08)
. cutoff reached.
... fail on search{ 8.08
. fai) on transform{ 8.0 i
000

N Zbh Al s g —vrdf| "V‘-vvﬁva

applying pluscommyt: (+ $1 $2
transform(16.28): (+ 077777
found previous failure
... fatY on transform{ 16.28)
applying p3carylid: $1 ;: ;0 (eval (+ 0777777 $1)) 0000001) to (+ 0000001 0777775)
transform(16.28): (+ Q777775 0000001) => (+ areg breg)
. found previous failure
. fail on transform(16.28)
. cutoff reached.
... fail on transform(18.28)
applying p3caryliid: §1 :: (+ (eval (+ 0777777 $1)) 0000001) to (+ 0777776 0000001)
trarsform(16.28): (+ 0777775 0000001) => (+ areg breg)
. found previcus failure
. fai) on transform(16.28)
. cutoff reached.
. fa1l on transform(16.28)
. cutoff reached.
... fail on transform(18.28)
applying pluscommut: (+ $1 $2) :: (+ $2 $1) to (+ (+ 0777777 J777777) 0000000)
jtransform(18.97): (+ 0LOOOGO (0 0777777 0777777)) => (+ (+ areg breg) carrytn)
. found previous fallure
’ ... fat) on transform{ 18.97
applying piusassoc: 50 + 81 $2) $3) :: (+ $1 (eval (+ $2 $3))) to (+ (¢ 0777777 0777777) 0600000)
lransform(18.97): (+ 0777777 0777777) > (+ (+ areg breg) carryin)
found previous fatiure
. fa)l on transform(18.97)
. cutoff reached.

+ §2 $1) to (+ 0000001 0777778)
001) => (4 areg breg)

- ... Ta1l on transform(13.97
apolying plusassoc2: (+ S1 ;0 2. 83)) :: (+ (eval (+ S1 S2)) S3) to (+ 0000000 (+ 0777777 0777777))
Lran:'ormk 18.97): (+ 0777777 0777777) => (+ {+ areg breg) carryin)

‘ouna previous failure
... fail on transform{ 18.97)
appiyirg pdcarylid: $1 :: ;‘ eval (+ 0777777 $1)) 0000001; to {+ J000000 (+ 077?777 0777777))
transform(18.57): (+ 0777775 0000001) => (+ (+ areg breg) carryin)
con-unfoldg(10.00)p3carylid(16. 00)00erandmalcn(lg aQ)
applyag cor-unfold to 50 0777775 0000001
transform(18.97): (+ (+ 0777776 0777777) 0000001) => gb (+ areg bdreg) carryin)
plusassoc(16.00)p3carylid(16.00)operandmatch(10.00
decomposing by operand
transform(2.69): 0000001 => carryin
applying fetch cdecompaosition
search{ 2.69): (<- carryin 0000001)
carry.1(2.00)
feasible: carry.1l » (<- clrry1n(0 92 0000001)
|... success on search({ 2.69) wi 00
... Suctess or lrlnsforms 2.69) -1th 2.00
teansform(16.28): (+ 0777778 0777777) «> (¢ areg breg)
p3carylia(16.00)pluscommyt(16.13
8pplytag p3carylid: §1 :: (+ (eval (+ 0777777 $1)) 0000001) to (+ 0777776 0777777)
transform(16.28): (& 0777774 (000001) => (+ are breg
pluscommut(16. 00)D3CIry11d(16. Oo)oporandmntcn?)
decomposing by operand
transform(6.08): 0777774 > areg
applying fetch decomposition
search(6.08): (<~ areg 0777774)
areg.mask(6.00)
feasible: areg.mask - ;<- areqg(8 15) (and %mask (rot scount$7 8} Llntch(7 8})))
transform(4.08): 0777774 => (ana %mask (rot scount{? 8} tlatch(7 8}))
No takerst
cutoff reached.
f3i1l on transform(4.08)
. cutoff reached.
fatl on search(o.oez
... fatl on transform(6.0
aoplying pluscommut: (+ $1 $2) :: ;0 $2 $1) to {+ 0777774 0000001)
transform{ 18.28): {(+ Q000001 0777774) «> (+ asreg breg)
pluscommut(16.00)operanomatch(16.00)
decomposing by operand
. transform(6.08): 0000001 => sreg
. found previous failure
... fai) on transform(6. Odg
applying pluscommut: (+ $1 $2) :: (+ $2 $1) to (+ 0000001 0777774)
transform({ 16.28): (¢ 0777774 0000001) «> (+ areg breg)
found previous failure

W

L0 AN A gui SRS S SN o

L e

Selected Examples 161

... fatl on transform({ 16.28)
. cutoff reached.
.. fail on transform(16.28)
epplying pl3carylid: §1 :: ;0 eval (+ 0777777 $1)) 0000001) to (# 0777774 0000001)
transform(16.28): (+ 0777774 0000001) => (+ areg brag)
. found previous failure
. fadl on transform(18.28)
. cutof? reached.
.. fail on transform(18.28)
applying pluscommut: (+ $1 $2) :: ;0 $2 $1) to (+ 0777778 0777777)
transform(1€.28): (+ 0777777 0777778) => (+ areg brag)
pluscommut(8.00)con-unfold(16.13)
applying pluscommut: (+ $1 Zg st ;* $2 $1) to (+ 0777777 0777778)
transform(16.28): (+ 0777778 Q777777) => (+ areg breg)
. foung previous fatlure
.. fail on transform(16.28
applying con- unfold to (+ 0777777 0777778)
transform{ 16.28): (+ 0777777 (+ 0777777 07717777)) > (+ areg breg)
plusassoc2(8.0
applying plusassoc2: (+ $1 ;0 $2 83 ; it {+ (evel (+ $1 $2)) S3) to (+ Q777777 (+ 0777777 0777777))
transform(16.28): (+ 0777776 0777717) => (+ areg brag)
... foune previous failure
. fail on transform(16.28)
. cutoff reached.
. fail on trensform(16.28)
... cutoff reached.
... fa1) on transform(16.28)
. cutoff resched.
... fail on transform 16.2!;
applying plusassoc: (¢ (+ $1 $2) $3) :: (+ 51 (eval (+ $2 $3))) to gt {+# 0777776 0777777) 0Q000001)
trunsformg 18. 97{ + 0777776 0000000) => (+ (+ urca breg) carryin
plustd(14.00)pluscommut(16.00)operandmatch({ 16.0
applying plusid: $1 :: (+ 0000000 51; to (+ 0777776 0000000)
transform(18.97): (4 0000000 (+ 0777776 0000000)) => (+ (+ areg breg) carryin)
pluscommut{ 14.00)
appiying pluscommut: (+ S$1 sz; st s» $2 $1) to (+ 0000000 Eb 0777776 0000000))
transfarm(18.97): (+ (+ 0777776 000000) 0000000) => (+ (+ areg breg) carryin)
pluscommut(14.00)operandmatch(14.00)
decomposing by operand
transform{ 2.18): 0000000 => carryin
|(using previous result)
.. Success on transform; 2.18) with 2.00
transform{ 16.79): (+ 0777776 0000000 => (+ areg breg)
pluscommut(16.18)operandmatch(12.00)
decomposing by operand
transform(8.39): 0777776 => areg
found previous failure
fail on transform(8 39{
applying pluscommut: (+ § ;* $2 $1) to (+ 0777776 0000000)
jtransform(16.79): (+ 0000000 077 176) => (+ areg breg)
| p!uscommutg 12.00)
acplying pluscommut: (+ $1 $2) :: (+ $2 $1) to (+ 0000000 0777778)
transform{ 16.79): (+ 0777776 0000000) *> (+ areg breg)
. found previous fatlure
. fai) on transform(16.79)
cutoff reached.
. fail on transform(16.79)
cutoff reached.
... fail on transform(18.79)
applying pluscommut: (+ $1 S2) :: (+ $z $1) to (+ (+ 0777776 0000000) 0000000)
transform(18.97): (+ 0000000 (+ 0777776 0000000)) => {(+ (+ areg breg) carryin)
. found previous failure
. fai)l on transform(18.97)
. cutoff reached.
. fail on transform(18.97)
. tutoff reached.
... fat} on transform(18.97)
decomposing by operand
transform(2.08): 0000000 -» carrytin
I (using previous result)
... success on transforms 2.08) with 2.00
transform(16.89): 0777776 => (+ areg breg)
No takerst
cutoff reached.
fail on trnnsform(16 09

applying pluscommut: (+ § ;0 $2 $1) to (# 0777776 0000000)
:ransforms 18.97): (+ 000000 077 776) => (+ (+ areg breg) carryin)
con-unfold(10.00

applyting con-unfold to (+ 0000000 0777778)
transform(18.97): (+ 0000000 (+ 0777777 0777777)) => (+ (+ areg breg) carryin)
. found previous failure
. fat) on transform({ 18.97)
cutoff reached.
y... fail on transform(18.97)
. cutoff reached.
... fai) on transform(18.97)
applying pdcarylid: $1 :: ;o (eval (+ 0777777 $1)) 0000001) to (+ (+ 0777776 0777777) 0000001)
transform(18.97): (4 0777775 0000001) => (+ (+ areg breg) carryin)
found previous failure
fail on transform(18.97)
. cutoff reached.
. fail on transform(18.97)
decomposing by operand
transform(2.08): 0000001 > carryin
(using previous result)
... success on transform(2.08) with 2.00
transform(16.89): 0777775 «> (+ areg breg)
plusiag{ 12.00)
applying plusid: $1 :: (+ 0000000 $1) to 077777%
transform(16. 89% 80 0000000 0777775) => (+ areg breg)
operandmatch(12.0
decomposing by operand
transform(2.25): 0000000 => sreg
| (using previous result)

P‘ 162 Local Microcode Generation and Compaction

- |... sSuccess on trnnsformg 2.25) with 2.00
- transform(14.83): 0777778 => breg
P applying fetch decomposition
4 scurcn? 14.63): (<= breg 0777778)
p . oreg.con(10.00)
. feasible: nre .con = §<- breg({4 13} (82 0000010 conhi{3 4} conlo{d 4}))
7 transiorms 63& 0777775 <> (82 0000010 conhi{d 4) conlof{d 4}
!.'i con-unfold(8.0

applying con- unfold to 0777778
transform(12.63): (@2 0000010 0000377 0000375) =» (@2 0000010 conhi(3 4} conlo{d 4})
operandmatch(8.00)
decomposing by operand
3 transform? 6.32): 0000377 => canhi{3 4}
- (using previous result)
N ... success on transform(8.32) with 4,00
. transform(6.32): 0000375 => conlo{3 4}
4 applying fetch decomposition
search{ 6.32): (<- conlo{3 4} 0000375)
1d.conlo{ 4.00)
feasible: 1d.conla « (<~ conlo{0 9999} %wild)
... Squeezed out.
. cutoff reached.
. fatl on search(6.32;
.. fa1l on transform(6.32)
. cutoff reached.
. fail on traasform{ 12,83)
. cutoff reached.
- ... fai) on transform{ 12.63)
b ... cutoff rcached.
.. T311 on search(14,83)
.. Tail on transfarm(14.63)
. cutoff reached.
. fail on transform(18.89)
. cutoff ‘eached.
... fai) on transform({ 18.89)
applying p3carylid: St :: (+ éova] g+ 0777777 $1)) 0000001) t (+ 0777775 0000001)
transform(18.987): {+ 077777 0000001) => (+ (+ 2zreg breg) carryin)
. found previous failure
. fail on transform(18.97)
. cutoff reached.
. fail on transform(18.97)
cutoff reached.
... fail on transfcrm(18. 97)
applying pluscommut: (+ $1 32 (+ 82 S1) to (+ 0777777 0777777)
transform({ 18.37): (+ 0717777 077:777) =>» (+ (+ areg breg)} carryin)
. found previous failure
1 ... fai) on trunsform? 18.97

[ant aun e amn)

applying con-unfold to (+ 0777;77 0777777;
transform(18.97): (+ (+ COCO0NO 0777777 0777777) => (+ (+ areg breg) carryin)
pluscnmmu.g 12.80)plusig '6 40)con-unfold(18.4
. applying pluscommut. (+ SZ; it (+ S2 $1) to (* (+ 0000000 0777777) 0777777)
transform{ $8.97): (+ 077777 (+ 0000000 0777777)) => (+ (+ areg breg) carryin)

plusassuc2i 12.00)pluscommut(12 8
appiying plusaesoc2. (+ $1 st ;7 {(+ (eva) (+ 81 SZi) $3) to (+ 0777777 (+ 0000000 0777777))

p- |transform(18.97): (+ 07177777 0777)} => (4 (* areg breg) carryin)
; | ... found previous failure
3 | ... fay} on transform({ 18.97)
applying oluscommut: (+ $1 §2) :: (+ $2 $1) to {+ 0727777 (+ 0000000 0777777))
'lrlnsform(18.97): (¢ (+ 0000000 3777777) 0777777} «> (+ (+ sreg breg) carryin)
L \ fourd previous failure
| ... fail on trarsform({ 18.97) °
4 . cutoff reachen.
s .. fail on transtorm({ 18.97)
. aon‘y'rg plusid: $1 :: (+ 00030C0D S1) to (+ (+ 0000000 0777777} 0777777)
transform(18.97): (s 000GA00 (+ (+ 0000000 0777777) 0777777)) > {+ (+ areg breg) carryin)
plusassoc2(12 09)pluscommut(16.40
applying plusassocd: (+ §1 ;0 $2 $3)) :: (¢ (eval (+ $1 $2)) $3) to (+ 0000000 (+ (+ 000000G 0777777) 077777
trapsform(18.97): (¢ 0777777 0777777) => (4 (+ areg breg) carryin)
{ . found orevious failure
b .. fatl on transform{ 18.97)
3 applying pluscommut: (+ $1 $2) :: (+ $2 $1) to (4 0000000 (+ (4 0000000 0777777) 0777777))
| jtransform(18.97): (¢ (» (+ 0000000 0777777) Q777777) 0000000) => (+ (+ areg breg) carryin)
‘ plusassos(:2.80]aluscommut§ 18.40}
1 acply ng plusassos: 50 + §1 852) $3) ;0 $1 (eva) (+ $2 $3))) to (+ (+ (+ 0000000 07°7777) 0777777) 0000
{ transform(18 G7) + ?* 0000060 0777777) 0777777) => (+ (+ areg breg) carryin)
i ‘ound previnus fallure
. | .. faty om transform(18 .97)
9 awply'ng oiuscommar: (& §1 $2) :: (e $2 $1) t 5‘ so (+ 0000000 0777777) 4777777} oooooooz
s transform(18.97} (¢ 0000000 (e ?0 000000 07 7717) 0777777)) => (+ (4 areg breg) carryin)
found prev'ous fallure
fa:1) on transform(18.97)
. cutoff resched.
° . fa'l on trarsform{ 18.97)
cutof’ reached.
fa)’ on transform(18.97)
s apply'nrg con-unfold to S‘ {+ 2000000 Q?77777) 0777177)
transform(18 970 (e [# 3245000 0777777) (¢ 0000000 0777717)) => (+ (+ 8sreg breg) carryin)
' plusassoc?2! 12 ')Oacusc:mu(16 40
applying plusassoc2 (+ 31 (s $2 $3)) :: (+ (eval (+ $1 $2}) $3) to (+ (+ 0000000 0777777) (+ 0000000 077777
F Jtransform($8.97). (¢ 8777777 0777777) «> (¢ (¢ areg breg) carryin)
| . found oreviocus fallure

{ ... fatl gn transform({ 18.97}
apoiytng pluscommut (+ $1 $2) : (+ $2 $1) to (+ (e 0000000 0777777) st 0000000 0777777))
jtransform(18 .37). (+ (+ 3000000 0777777} (+ 00Q0000 0777777)) > (4 (+ areg breg) carryin)
| found previous failure
b | ... fai)l on transform{ 18.97)
cutoff reached.
. fa1) on transform(18.97)

F ... cutoff reached.
® ... fai)l on transform(18.97)
3 ... cutoff reached.
... fai) on transform(18.97

applytng p usid: $1 :: (+ 0000000 $1) to 0777778
4 transform({ 18.97): (+ 0000000 0777778) => (+ (¢ areg breg) carryin) -
3
3
3
b
]

Selected Examples

. found previous failure
... fail on transform(18.97)
applying plcarylid: St :: (+ (eval (+ 0777777 §1)
transform(18.97): (¢ 0777775 0000001) => (+ (+
I.A. found previous failure

Pl nt KL

fail on transform(18.97)
. cutoff reacheo.
. fail on transform(18.97;
fessible: fbus.bma = ;<- fous{2 11} (+ (+ (not areg
transform(18.97): 77776 =~ (+ (+ (not areg) bre
con-unfold(14. oo)olus1n§ 16.00)con-unfold(18.02
spplying con-unfold to 0777778
teansform{ 18.97): (not 0000001) => (+ (+ (not
plusid{ 12.00)con-unfold{ 16.4
applying plusid: S1 :: (+ 0000000 $1) to (not
transform(18.97): (+ 0000000 {not 0000001))
pluscommuts 12. 00)plusid§112 .20)con- unfoldg

rer.oe.v

8
0

- applying pluscommut i [+ 82 t
transform(18.97): (+ (not 0000001) 0000000)
pluscommut(12.G0)plusid(12.20)operandmatc
decomposing by operand
transform(2.38): 0000000 => carryin
(using previous result)
... success on transform(2.36) with 2.0
transform(16.61): {aot 0000001) <> (+ (no

plusid(12.9C)con-unfold(16. 163
applying plus:id: $1 :: (+ 0000000 $1) to
transform(16.61): (+ 0000200 (not 00000
pluscommut(12.00
applying alusconmut (* $1 . 82) :: (+ 82
transform(1.6 (+ (nov 0u00001) 00
pluscommut{ 12

decomposing by operand
transform{ 8. 30) (not 0000001) => (
operandmatch{ &

decomposing dy oporund
transform(8.30): 0000001 => areg
applying feitch decamposition
|search(8.3C): (<- areg 0000001)
areg.mask(6.0C)
{feasible: areg.mask = (<- areg
transform{ 6.30): 0000001 =>
No takers!
. cutoff reached.
. fail on transform{ 6.30)
cutoff reached.
3

... fail on search(8.30
.. tati on transform(8.3
. cuteff reached.
. fail on trarsform(8.30
applying pluscommut: (+ $1 $2) :: (+
traastorm{ 16.61): (+ 0003000 (not ©
found previous failure
. a1} on transform(16.81)
. cutntf reached.
... fasi on transform(16.61)
. cuta’f reached.
. fail an transform(16.61)
applying con-unfold to (not 0000001)
transform{ 16.67;: (not (+ 0000003 00000
No takers! -
. cutoff reached.
. fai) on transform(16.81)
. cutoff reached.
fai) on transform(16.61

i applying pluscommut: (+ $1 $2) :: (+ $2 $1)
4 jtransform{ 18.97): (+ 0000000 (mot 0000001
} . found previous faflure
L . fail on transform? 18.97)
L applying plustd: $1 :: (+ 000000C $1) to (+
transform(i8.97): (+ 0000000 (+ (not 0000
3 pluscommut({ 12.20)con-unfoid(14.80
applying pluscammut: (+ $1 $2) (+ §2
transform{ 18.97):
. plusassoc(12.00)pluscommut(12.20)oper
8spplying plusassoc: {+ (+ $1 $2) $3) ::
I transform{ 18.97): (+ (not 0000001) 00
3 ... found previous failure
l... far! on transform(18.97)
4 applying pluscommut: (+ S1 $2) :: (+ $2
b transform(18.97): (+ 0000000 (+ (not
1 ... found previous failure
L I,.. fa1) on transform(18.97)
b decomposing by operand
. transfor:a(2.18): 0000000 => carryin
r | (using previous result)
. ... success ~~ transform{ 2.18) with
b transform(16 79): (¢ (not 0000001) 00
'.4. found previous failure
° ... fa1l on transform{ 16.79)
b ... cutoff reached.
§ .. fa*1l on transform(18.97)
apply'ag con-unfold to E* 0000000 (+ Enot
t transform(18.97): (+ (not 0777777) (+ (
piuscommut(14.60)plusassoc2(16.00)
b acolying pluscomaut: (+ 8§1 $2) ::
transform(18.97): (+ (* {not 0000001}
.’ ipiusassoc(12.00
apply'ng plusassoc: é‘ s* $1 $2) ssg
transform({ 18.97): (+ (not 0000001
found pravious fallure
fat) on transform(18.97)
cutoff reached.
b fatt on transform(18.97)

P

- $1) to (+ 0000000 (+
(+ (+ {not 0000001) 6000000} 0000000

(+ §2 $1)

163

)} 0000001
areq breg

to 9777778
carryin)

) obreg) cnrry'n))
g) carryin)
reg) breg) carryin)

000001)
> (0 (+ (not areg) breg) carryin)

12.8

o (+ 0000000 (not 0000001
> (+ (+ (not sreg) breg
h(12.00)

g)clrryin)

0
t areg) breg)

Snul 0000001)

1)) > (+ (not areg) breg)
$1) to (+ 0000000 (not C000001))
00000) => (4 (not areg) breg)

O)uperundmltch(12.00)

not areg)

78
atc

(;1;!:5(7 8})))

(and %mask (rot scount
ask (rot scount{7 8} t

IDG Lﬂ ? k

$2 $1) to (+ (not 0000001) 0000000)
000001)) +> {+ (not areg) dreg)

01)) =«» (+ (not arag) brag)

to (+ (not 0000001) 0000000)
)} *> (*+ (+ (nct areg) breg) carryin)

}

(not 0000001
001) 0000000)

0000000)
*> (+ (+ (not areg) breg) carryin)

Enct 0000001) 0000000))
andmatch({ 14.0C

+ (+ (not areg) breg
(+ $1 (eval [+ $2 $3))) to (+ (+ (not 0000001) 0000000) 0000000)
00000) »> (+ 20 (not areg) breg) carryin)

$1) to (+ {+ (not 0000001} 0000000) 0000000)
0000001) 0000D00)) => (+ (+ (not areg) breg) carryin)

= carryin)

2.0
00000) > (+ (not 1reg) breg)

0000001) 0000000&)
not 0000001) 0000008)) => (¢ (+ (not areg) breg) carryin)

énat 2000001) 0000000

+ (+ (not areg) breg
+ $2 $3))) to (+ {(+ {not 0000001) 0000000) (not O
+ (not areg) breg) carryin)

ta (+ (not 0777777) (+
0000000} (not 0777777)) =>

{

g)
carryin)

i {+ $1 (eval
0000000) »> (+

—TTYTT T YT YTy

T Y

—
'

164 Local Microcode Generation and Compaction

applying plusassoc2: (+ $1 (+ $2 $3)) :: (+ (eval (+ §1 SZ;) $3) to (+ (not 0777777) (+ (not 0000001) 00
transform{ 18.97): (+ 0777778 0000000) *> (+ (+ (not areg) breg) carryin)
can-unfold({ 12.00)aoperancmatch(16.00)
applying con-unfold to }0 0777776 0000000
transforn(18.97): (+ (+ 07772777 0777777 0000000) »> (+ (+ (not areg) breg) carrytin)
con-unfolg(12.80)operandmatch(12.00)
decomposing by operand
transform{ 2.36): 0000000 =» carrytn
|{using previous result)
... success on transform(2.36) with 2.00
transform(16.61): (+ 0777777 07277777) => (+ (not areg) breg)
con-unfolid(4.00)operandmatch(°.00
applying con-unfald to i# 07777/7 0777777
transform(16.61): (+ (not 0000000) 0777777) => (+ (not areg) breg)
pluscommut(4. 00)oparandmalch(4.00)
decomposing by opera
transform? 8. 30) (not 0000000) => {not areg)
operandmatch(2
decomposing by operlnd
transform(8.30): 0000000 »» areg
(using previous rasult)
success on transform(8.30) with 2.00
... success on transform(8.30) with 2.00
transform(8.30): 0777777 => brag
(using previous result)
. success on transform{ 8.30) with 2.00
success on transform(16.61) with 4.00
success on transform(16.61) with 4,00
. success on Lrans!orms 18.97) with 8.00
. success on transform(18.97) with 8.00
success on Lransforms 18.97) with 6.00
. succass on transform(18.97) with 6.00
. success an transform(18.97) with 6.00
. success on transform(18.97) with 6.00
success on transform(18.97) with 8.00
success on transform(18.97) with 6,00
success on search(21.87) with 8.00
253 nodes examined.
Mayimum search depth: 17
Maximum axiom depth: 9
Approximaie execution time: 116.68 seconds

Comoacting:
areg.mask 0000000 breg.ones (0)
fbus.bma carry.0 (lg

In the final trace, the And/Or and iteration strategies are used together.

search(45.60): S; 8<- dram{ dadr 0000000] Yincwd) (<- fbus 0000007))
decomposition{ 38.00)
search(20.40): (<- dram{dadr 0000000] Tincwd)
V¢.dr.aset(17.00)1d. d..acl (:7.00
feas.tle. lg.dr.aset = (<- dram{3 9999)}[dadr{2 3} %wild] (or dmask{1 2} abus))
transform{ 0.00)}®: dram{3 9999}[dadr{2 3} %wild] => dramédadr 0000000
transfoma(0.00): 0000000 => Zwild
attempiing constant match
it’s a matchlt
|... success on transform{ 0.00) with 0.00
.. success on transform(0.00) with 0.00
transform(18.40): Vincwd => (or dmask{l 2} abus)
ord(7.00)
applying orid: $1 :: {or 0000000 $1) to lincwd
transform(18.40): (or 0000000 lYincwd) => {or dmask{l 2} abus)
operandmatch(7.00)
decomposing by operand
transform{ 0.00): 0000000 => dmask{1l 2}
applying fetch decomposition
search{ 0.00): (<- dmask{1 2} 0000000)
1d.emask(0.00)
feas'ble: 1d.dmask = {<- amasxgo 7} Xbitset)
transform(0.00): 0000000 +> %bitset
attempting constani match
it's a match!!
syccess on transform(0.00) with 0.00
success on search(0.00) with 0.00
... success on transform(0.00) with 0.00
transform{ 18.40): lincwd => abus
applying fetch decompositton
search(18.40): {<- abus lincwd)
jabus.linc(7.00)
|feas'ble: abus.linc = {<- abus{5 12} \1ncua(l s}
|... success an search{ 18.40) with .00
success on transform(18.30) with 7 00
success on transform(18.40) with 7.00
.. success on transform{ 18.40) with 7.00
feasible 1¢.dc.aclr = (<- dram{J 9999}{dadr{2 3} %wild] (and (not dmask{l 2}) abus))
transform(0.030}%: dram{3 9999}{aadr{2 3} %wild] => aramédadr 0000000)
{(using previous result}
success on transform(0.00) with 0.00
transform(15.14): lincwd => (and (not dmask{1l 2}) abus)
No takers!
cutoff reached.
fail on Lransforms 15.14)
... success on search{ 20.40) with 9.00
search(25.20): (<- fbus 6000007)
fous.and(21.00)fbus.or{ 21.00)fbus.xor(21.00)
feas:ble: fbus.ang = (<~ fhus{Z 11} (and areg breg))
transform(22.20): 0000007 <> (and areg breg)
andid(12.00)
applying andid: $1 :: (and 0777777 $1) to 0000007

Selected Examples 165

transform(22.20): (and 0777777 0000007) => (and areg breg)
r andcommut(12.09)andid(20.00)
applyirg andcommut: (and $1 $2) :: (ano $2 S1) to (and 0777777 0000007)
transform(22.20): (and 0000007 0777777) => (and areg breg)
o anucammut{ 12.00)andid(20.00)operandamatch{ 12.00)
c decomsosing by operand
4 transform{ 2.53): 0777777 => breg

a |applying fetch decomposition
- search{ 2.53): (<- breg 0777777)
- breg.ones(2.00)

feasible: breg.ones =« {<- breg§4 13} 0777777)
success nn search(2.53) with 2.00

. success on transform{ 2.53) with 2,00

transform(19.67}: 0000007 => areg

. applyrng fetch decomposition
search{ 19.67): (<- areg 0000007)
areg.mask(10.00)
" feasihle: areg.mask = {«<- areg/8 15} (and %mask (rot scount{7 8} tlutch§7 8})))
transform(17.67): 0DU00QG7 => (and %mask (rot scount{7 8} tlatch{7 8})

andid{ 11.00)

applying andid: $1 :: (and 0777777 $1) to 0000007

L ftrensform(17.67): (ang 0777777 0000C07) => (and %mask (rot scount{7 8} tlatch{7? 8}))

| andcommut({ 11.00)

agplying andcommut: (and $1 $2) :: (and $2 S$1) to (and 07777277 0000007)
transform(17.67): (and 0000G07 0777777) => (and %mask (rot scount{7 8} tlatch{7 8}))
anacemmut(11.00)cperancmatch{ 11.00)

| decomposing by operaand
4 transform{ 0.00): 0000007 => Ximask
' lattemgting constant match
} I "t's a match!l
9 | success on lransform; 0.00) with 0.
transfarm{ 17.67): 0777777 »> (rot scount(7 8} tlatch{7 8})
8 rotid(3.00)
3 app'ying rotid: $1 :: (rot 0000000 $1) to 0777777
transfarm{ 17.67): {rot 0000000 0777777, => (rot scount{7 8} tlatch{7 8})
aperaramatch(9.00})
decomposing by operand
trarsform{ 2.84): 0000000 => scount{7 8}
anplying fetch decomposition
2 ' searchl{ 2.24): (<- scount{7 8} 0000000)
$ shift{ 2 60)

| fea.ib'c. shift = [<- scount{4 9} Xwild)
| traasform(0.00;: 0000000 => %wild
{us ng previous result)
| .. success on Llranstorm({ 0.00) with 0.00
| success or search(2.84) with 2.00
success on transtorm(2.&.) with 2.00
| transform(13.83): 2777777 «. tlatch(? 8}
| atpiysng foich derumposition
< © Useaton{ 13845 (<= tiatch(7 8} 0777777)
j, i 10,115 1T)
(fessibe: 10.%1 = (<- tlatchi& 39939} abusy5 8)})
trensform(33.83): 5777777 s> apbus{b 6}
4op1y|ng feL k decomposition
P search’ 3. 83) (<~ apus{% 6} 0777777}
5 'abus.;pr(1Z2.030)adbus. fbus\ 5.00)abus. drams 4.00)

fersid’e. acus.fbus » (<- abus{5 12} fbus{2 3})
[tracsform(10.83)- 0777777 +> fbus{2
! apolying fetch gecomposttion

search{ 10.83): («- fbus{2 3} 0777777)
fous.ones(3 00)
feasible: fbus.ones = (<- fous{2 11} 0777777)
success on search(10.83) with 3.0
! ... success on transform(10.83) with 3, 00
feastble: abus.dram = $<- abus{5 12} dram{l 5)[daar(4 5 *wiid])
transform(8.62): 0777777 => dram{4 5}7dadr{4 5} Xui
gnpiying fetch decomposition
search(8.62): (<- uram{4 5}[dadr{4 5} %wild] 0777777)
1d.d.fbus(5.00)
3 feasible: 1d.d.fbus » (<- dram{8 9999}{dadr{2 3} %wild] fbu!g
transform({ 0.00)*: dram{8 3999}[dadr{2 3} %wtlo] => dram{4 }[uadr(l 5} %wild]
can't allocate resource!l
fail on transform(0.00)
[... cutoff reached.
[] ... fail on search(8.62)
fai' on transfrrm(8.62)
|... success on search(13.83) with 6.00
success on :ransformé 13.33) with &.00
succcss on search(14.83) with 7,00
3 ... success on transform(14.83) with 7.00
success on transtorm{ 17.67) with 9.00
[... success on transform(17.67) with 9.00

app'ying anccommur: (and $1 S$2) :: (and $2 $1) to (and 9000007 0777777)
wransfcrm: 14 84): (ang 2777777 0000007) => (and *mask {rot scount{7 8) tlatch{7 8}))
(... found previous failure
... fatl on transform(14.34)
' success on transform(17.67) with ¢.00
success or trarsform{ 17.67) with 9.00 R
success oan transformi 17.67) with 9.00
- success on search{ 13.67) with 11.00
{... success on trarsform(19.67) wrth 11.00
3sply'ng andcommut: (ard $1 $2) :: {and $2 §1) to (and 2000007 0777777)
trarsfarm(19.65): (and 0777777 0030007} > (and areg dreg)
foung previous failure
farr on transform(18.65)
saccess on transform(27.20) with 13,00
success on transform{ 22.20) with 13.00
success of transformf 22.20) with 13.00
‘eas h'e: ‘bus.or * [<- fhus(2 11% (or areg breg))
“-arsfien(18.17): 0000007 > (or areg breg)
3- 1 16309

10z y'm1 or‘d $i :: (or 3000000 S1) to 0000007
nsfiom J17): (er 3000000 0000007) > (or areg breg)
‘":o*mulé 6.00)

"‘ilIIllllI-lIIlIIIiIlilllll.lI-II.Il.lIII-lI.l.lI.I-II.II.lI.lI.l-II.I.I..lI.l...'II.lI......l..ll......ll..l‘

—

T

166 Local Microcode Generation and Compaction

applying orcommut: (or $1 $2) :: (or $2 $1) to {(or 0000000 0000007)
transform, 18.17): (or 0000007 0000000) => (or areg breg)
orcommut(16.00)operandmatch(16.00)
decomposing by opersnd
transform? 6.60): 0000000 => breg
lapplying fetch dacomposition
sear:hz 6.60): (<= breg 0000000)
breg.fo1(6.00)
feasible: breg.fbl = (<- breg{4 13} fblatch(3 4})
transform(4.60): 0000000 => fblatch{3 ¢}
applying fetch decomposition
search? 4.60): (<- fblatch{3 4} 0000000)
1d.761(4.00)
feasidle: 1d.fb1 = (<- fblatchss 99993 fous{2 3})
transform(3.60): 0000000 => fpus{2 3}
| applying fetch decomposition
search{ 3.60): (<- fbus{2 3} 0000000)
fous.zero(3.00)
feasible: fbus.zero = (<- rbussZ 113 0000000)
success on search(3.60) with .00
success on transform(3,6C) with 3.00
succass on search(4.60) with 4,00
success on transform{ 4.60) with 4.00
success on search{ 6.60) with 8,00
... success on transform{ 6.60) with 6.00
transfarm{ 11.57): 0000007 =»> areg
| (using previous resuit)
{... success on transform(11.57) with 11.00
success on transform{ 18.17) with 17.00
sucsess on transfarm({ 18.17) wit. 17.00
SuUCcess on :ransformg 18.17% with 17.0°
success on search{ 25.20) wit 16.00
success on search(45.60) with 25.00
51 nodes examined. -
Maximum search depth: 18
Maximum axiom depth: §
Approximate execution time: 1.89 seconds

Compacting set 0:
abus.linc (0}
3.t) abus.fous fbus.ones breg.ones areg.mask 0000007 shift 0000000 1d.dmask 000000 1d.dr.aset 0000000 (1)
fous.and (2)
s1ze 3, spread 18, cost 25

Compacting set 1:
1d.fb1 fbus.zero abus.ltac (0)
1d.tY abus.fbus fbus.ones breg.fdl areg.mask 0000007 shift 0000000 1d.dmask COQ0O00 1d.dr.aset 0000000 (1)
fous.or (2)
... slze 3. spread 20, cost 29

Modifying tables:
inner product s 7
fbus: 3, 1 = 8
tlatch: 1, 1 => 3
abus: 3, 1 > 8
carryoutl: 0, 1 =>
carryout2: 0, 1 >
carryoutd: 0, 1 =>

oao

sea~ch(57.606): (: (<- dram{dadr 0000000] Vincwd) (<- fbus 0000007))
secorpusition(48.00}
search{ 26.43): {<- oram{dadr 0000000] Tincwd}
Y4.37.as21(22.00)ld.dr.acir(22.
feastcle: 1d.dr.aset = (<- dram(a 3909){daur(z 3} %wild] (or dmask{l 2} abus))
transform(0.00)*: dram{3 9999)}{dadr({2 3} %wild] => dram[dadr 0000000
traasform{ 0.00}: 0000000 »> Xwilg
|attempting corstant match
1t's a match!t
success on transform{ 0.00) with 0.00
_.. success on transform(0.00) with 0.00
transform(24.40): lYincwd => (or dmask{1 2} abus)
orid(12.00)
applying orid: $1 :: (or 0000000 $1) to lincwd
transform(24.40): (or 0000000 lincwd) => (or dmask{1l 2} abus)
aparandmatch(12.00)
decomposing vy wpaerand
trarsform{ 0.00): 0000000 <> dmask(l 2}
applying fetch decomposition
search{ 0.09): {<- dmask{1l 2} 0000000)
1d.dmask{ 0.00)
feasible: 1d.dmask » (<- dmask{0 7} %Xbitsaet)
transform(0.00): 0000000 <> Xbitset
, | attempting constant match
it's a matchi!
| success on trapsform(0.00) with 0.00
|... success on search(0.00) with 0.00
success on transfyrm(0.00) with 0.00
transform(24.40): 'incwo => abus
applyng fetch decomposition
search(24.40): (<- abus lincwd)
abus.linc(12.00)
feasible: abus.linc <« (<~ abus{5 12) \!ncwd(l 5})
|... success on search{ 24 .40) with .00
success on transform(24.40) with 12 00
success on transform(24 40) with 12.00
success on transform(4. 4u) with 12.00
feastbic- Yd.dr. aclr = (<= aram¢) 9999)[dadr{2 3} %wi1ld] fand (not omask{] 2}) abus))
transform(0.90)%: dram{3 3799}(dadr{2 3} %wild] => uramtdaur 0000000]
i{using previous resuit)
.. success on transform(0 00) with 0.00
transform{ 20.18): lincwd *> (ard (not omask{l 2}) abus)
No takers!
cutoff reached.
fail on transform{ 20.18)

PV TN T

PE——

T Pp——

v

Selected Examples

... Success on search(26. 403 with 14,00
search(31.20): (<- fbus 0000007
fbus.and(26.00)fbus.or(26. 00)fbus xor{ 26.00)
feasible: fbus.and = (<= fbus{2 11} (and areg breg))
transform(23,20): 0000007 => (and areg breg)
andid(12.00)
applying andid: 81 :: (and 0777777 Sl& to 0000007
transform(23, 20) (and 0777777 0000007) => (and areg breg)
andcommut(12.00)
applying andcommut: (and S1 $2) :: (and $2 $1) to (and 0777777 0000007)
transform{ 23.20): (and 0000007 0777777) > (and areg breg)
andcommut{ 12.00)operandmatch(12.00)
decomposing by operand
transform? 2.58): 0777777 => breg
applying fetch decomposition
search(2.58): (<- breg 0777777)
oreg.ones{ 2.00)
feasible: breg.ones = (<= breg&A 132 0777777)
. success on search{ 2.58) with 00
... success on trunsform; 2.58) with 2.00
ransform({ 20.62): 0000007 => areg
applying fetch decomposition
search(20.62): (<- areg 0000007)
areg.mask(10.00)
feasible: areg.mask = (<- areg{8 15} (any %mask (rot scount{7 8} t1atch§7 8})))
transform(lg 62): 0000007 => (and %mask (rot scount{7 8} tlatch{7 8})
No takers!
. cutoff reached.
. fail on transform(18.82)
. cutoff raached.
.. a1l on search(20.622
... fail on transform(20.6
appiying andcommut: (and $1 $2} :: (and $2 $1) to (and 0000007 0777777)
transform(23.20): (and 0777777 0000007) => (and ureg breg)
found previous fatlure
. fail on transform(23.20)
. cutoff reached.
. fail on transform(23.20)
cutoff reached.
fail on transform(23.20)
. cutoff reached.
. fail on transform(23.20)
feasible: fous.or < («<- fbus{2 11} (or areg breg))
transform(23.20): 0000007 => (or areg breg)
No takers!
. cutoff reached.
... fat) on transform(23.20)
feasibla: fbus.xor = (<- fbus{2 11} (xor areg breg))
transform(23.20): 0000007 <> (xor areg breg)
No takers!
... cutoff reached.
... fai) on transform(23.20)
. cutoff reachad.
. fatl on search{ 31.20)
cutoff reached.
fatl on search(57.60)
25 nodes examined.
Mgvimum search depth: 8
Max‘mum axiom depth: 3
Approx:nate axecution time: 1.53 seconds
searcht £3.38): (<- dram[dadr 0000G00) Tincwd) (<~ fbus 0000007))
gaccposition(48.00
sea“.ti 27 (4): (<- uram[daur 00000007 lincwd)
tg aroasety 22.00)19.dr.acir(22.00)
feas'ble. id.dr . aset = {<- dram{3 3999}[dadr{2 3} %wild] Eor dmask{1 Z} abus))
transfarm(0.00)®: dram{3 9999}(dadr(2 3} %wild] => dram(dadr 0000000
j(us ng previous result)
.. success on transform(0.00) with 0.00
transform{ 27.04): lincwd «> {or umask{l 2} abus)
artd(12.00}
apolying ortd: $1 :: (or 0000000 $1) to lincwd
transform(27.04): (or 0000000 iincwd) => (or dmask{1l 2} abus)
orid(24.00)operandmatch(12.00)
decomposing by operand
transform{ 0.00): 0000000 -» dmask{1l 2}
{using previous resuslt)
.. success on transform(0.00) with 0.00
transform(27.04;: lincwd => asbus
gpolying fetch decomposition
search{ 27. 0!% (<~ abus lincwd)
|aous.linc{ 12.00)
|fcus'. e: abus.linc » (<= abus{5 12} lincwd{4 §})
|... .cess on searcn{ 27.04) with 12.00
success on transform{ 27.04) with 12.00
success on transform(27.04) with 12,00
... success on transform(27.04) with 12.00
feas'ble: 1d.dr.aclr = (<- dram{3 9999)([dadr{2 3} %wild] Eand (not dmask{1l 2}) abus))
transform(0.00)*: dram{3 9999}(dadr{2 3} %wild] => dram{dadr 0000000)
{{us ng previous result)
.. success on transform(0.30) with 0.00
transform(22.39): lincwd => (and (not dmask{1 2}) abus)
No takers!
. cutoff reached.
fail on transform(22.39)
... success on search{ 29.04) with 14,00
search(34.32): (<- fbus 0000007)
fbus.and{ 26.00)fbus.or(26, Oo)fbus xor{ 26.00)
feasible: fbus.and = (<- fhus{2 11} (and areg breg))
trarsform(26.32}: 0000007 -> (and areg breg)
andid(12.00)
apptying andid: $1 :: (and 0777777 $1) to 0000007
|transform{ 26.32): (and 0777777 0000007) =~> (and areg breg)
| andcommut(12.00)operandmatch(24.00)

| aliid

M o g b an o o s o

P

w

W

A

T

168 Local Microcode Generation and Compaction

applying andcommut: (and $1 szz it sand $2 $1) to (and 0777777 0000007)
transform(26.32): (and 0000007 0777777) > (and areg breg)
andcommut(12.00)operandmatch(12.00)
decomposing by operand
trlnsform? 2.74): 0777777 => breg
applytng fetch decomposition
search? 2.74): (<- breg 0777777)
breg.ones(2.00)
feasible: breg.ones = (<~ broggl 132 0777177)
success on search{ 2.74) with .00
... success on transform(2.74) with 2.00
transform(23.58): 0000007 => areg
applying fetch decomposition
search(23.58): (<- areg 0000007)
areg.mask{ 10.00)
feasible: ureg .mask *» (<~ areg{8 15} (and %mask (rot scount{7 8} tlatch{? 8})))
transform(21.58): 0000007 <> (and %mask (rot scount{7 8} tlatch{? 8})
No takers!
. cutoff raached.
. fail on transform(21.58)
. cutoff reached.
. fail on search{ 23. 58&
... fail on transform(23.5
applying sndcommut: (and $1 § :: {and $2 §1) to (and 0000007 0777777)
transform(26.22): (and 0777777 0000007) => (&nd areg breg)
... found previcus failure
] . fail on transform(26.32)
. cutoff reached.
. fail on transform(28.32)
decomposing by aperand
transform{ 10.80): 0777777 =»> areg
applying fetch decomposition
search(10.80): («- areg 0777777)
areg.mask(10.00)
feastble: areg.mask = (<- areg(8 15} (and %mask (rot scount(? 8% tIatch(7 8})))
transform(8.80): 0777777 => (und Xmask (rot scount{? 8} tlatch(7 8}))
No takers!
cutoff reached.
fail on transform(8.80)
. cutoff reached.
fail on search(10.89)
. fail on transform{ 10.80)
cutoff reached.
... faii on transform(28.32)
. cutcff reached.
. fatl on transform(26.32

teasible: fbus.or = (<- fbusi2 11} (or areg breg))
transform{ 26.32). 0000007 <> (or areg breg)

orid(24.00)
applying arid: $1 :- (or 5009900 $1) to 0000007
transform(26.32): (or 2000000 G000Q07) => (or areg breg)
orcommuty 21.C0‘toperandmatch{ 24.09)
apply1n9 orcommut: {or $1 $2) :: {o~ $2 $1} to (or 000C000 000C007)
transform(06.32): (or 0000007 00600000) => (or areg breg)
orcommut(24.00)operandmatch(21.00)
de'cmaos1ng by operand
trarsform(12.4T): 0000007 »> areg
1... found previous fallure
... fail on transformg 12.42
apelying orcommut: (or $1 $2) :: (or $2 $1) to (or 0000007 0000000)
transform 26.32): (or 3000000 C000007) => (or areg breg)
| | foung previcus fajlura
}... fail on transform(28.32)
. cutoff reached.
farl on transfarm(26.32)
decomposing by operand
transform({ 10.80): 00C0000 => areg
applying fetch decomposition
search{ 10.80): (<- areg 0000000)
jareg.mask(10.00)
feasible: areg.mask = (<=~ areg{8 15} (and %mask (rot scount§7 8} t1atch(7 8})))
transform(8.90): 003C00C => (and %mask (rot scount{7 8} tlatch(7 8}))
zerosnd(0.89)
l applying- 2zeroand: 0000000 :: (and 0000000 ?77) to 0000000
transform(3.80;: (ang 0000000 ?77) =»> (and Xmask (rot scount{7 8} tlatch(7 8}))
operardmatcn! 0.00)
decomposing Jy operano
transform(0.00}: 0000000 => Xmask
attempting constant match
it's a matcivt!
[| ... succesc .. transform(0.00) with 0.00
success on transform(8.80) with Q.00
success on transform(8.80) with 0.00
success an search{ 10.80) with 2.00
success on transform(10.80) with 2.00
transform(15.52): 0000007 =»> breg
apply'ng fetch decomposition
searcn? 15.52): (<~ breg 0000007)
breg.con(14.00)
feasible: breg.con ~ (<- breg{4 13} (A2 0000010 conhi(3 l} conlo{3 4}))
transform, 13.52): 0000007 =» (@2 0UO0010 conhi{3 4} conlo(d 4}
con-unfold(8.00)
applying con-unfold to 0000007
transform(13.52): (@2 0000010 0000000 0000007) > (@2 0000010 conhi(3 4} conlo(3 4})
operanamatch(8.00)
decompasing by operand
jtransform(6.76): 0000000 »> conrhi{3 4}
applying fetch decomposition
I search{ 6.78): (<- conhi{3 4} 0000000)
| 1d.conhi{ 4.00)
feasible: 1d.conhi « 8<- conhi{0 9999) Xwild)
transform(0.00): 0000000 «> Rwilg
(using previous result)
I success on transform(0.00) with 0.00

Selected Examples

. success on search(6.76) with 4.00
... success on transform(6.76) with 4.00
transform(6.76): 0000007 »> conlo{3 4}
applying fetch decomposition
search{ 6.76): (<- conlo{3 4} 0000007)
1d.conlo{ 4.00)
feasivle: ld.conlo = (<= conlo§0 9999} %wild)
transform(2.0C): 0000007 »=> Xwild
attempting constant match
it's a matcht!
success on transform(0.00) with 0.00
success on search(6.76) with 4,00
success on transform(6.76) with 4,00
. success on transform(13.52) with 8.00
. success on transform(13.52) with 8.00
success on search(15.52) with 10.00
. success on transform({ 15.82) with 10,00
success on trunsforms 26.32) with 12.00
... success on transform(26.32) with 12.00
feasibla fbus.xor = {<- fbus{2 11} (xor areg breg))
transform(24.20): 0000007 «> (xor areg breg)
xortd(12.00)
applying xorid: §1 :: (xor 0000000 $1) to 0000007
S |trensform(24.20): (xor 00GO0O0O0 0000007) »> (xor areg breg)
4 operandmatch(12.00)
decomposing by operand
g transform{ 2.63): 0000000 => argg
r (using previous result)
‘ success on transform; 2.63) with 2.00
b transform{ 21.57): 0C00C07 +> breg
applyng fetch decomposition
search{ 21.57): (<- breg 0000097}
breg.con{ 14.00)
feasible: breg.con » (<- breg{4 13} (82 0000010 conhi{2 4? conlo{3 4}))
1 transform(19.57): 0600007 => (@2 0000010 conhi{3 4) conlo{3 4})
; con-unfold(8.00)
applying con-unfold to 0000007
transform(13.57): (@82 C000010 0000000 0000007) => (@2 0000010 conhi{3 4} conrlo(3 4})
3 operardmatch{ 8.00}
P\' decomposing by operand
| Lrunsfcrm? 9.78): 2000000 =» conhi{3 4}
> | applyirg fetch gecomposition
searcn? ©.78): (<=~ conhi{3 4} 0030000)
1d.conki{ 4.00})
feasible: 'd.corbi = (<- conhi{0 9999} Xwild)
transform(0.C0): 0000000 => %wild
| (using previous result)
|... success an transform(0,03) with 0.00
succass on search(9.78) with 4.00
| ... suzcess on transform{ 9.78) with 4.00
) itracsform(3.78). 0000007 »> conto{3 &
appiving fetch decamposition
search(9.78): (<- conlo{3 4) 0000007)
1d.conla(4.00)
feasible: Yd.conlo = (<- conlo{0 9999} %wild)
transform(0.00): 0000007 => Zwild
] (using previous result)
... success or transform(0.00) with 0.00
’ ... success on search(9.78) with 4.00
succacs on transform(9.78) with 4.00
success ~n lransform(19.57) with 8.00
success on transform(19.57) with 8.00
}... success on search(21.57) with 10.00
. success on Lransrormg 21.57) with 10.00
success on transform(24.20) with 12.00
success on transform{ 24.20) with 12.00
. success on search{ 34.32) with 20.00
success on search({ 63.36) with 34.00
56 nodes examined.
Maximum search depth: 11
Maximum zxiom depth: 3
Approximate executiorn time: 1.93 seconds

. Compacting set 0:

(] abus.linc (0)
id.dmask 0000000 1d.dr.aset 0000000 (1)
1d.conhi 0000000 (2}

p————

s id.conlo 0000007 areg.mask 0000000 breg.con (3)
fous.or (4)
4 ... stze 5, spread 38, cost 24

Compacting set 1:

abus.linc (0}

1d.dmask 0000000 ld.dr.sset 0000000 (1)
1a.canhd GJ00000 (2)

q ig.conlo 0000007 areg.mask 0000000 breg.con (3)
fbus.xor (4)

b ... size 5, spread 38, cost 24

K

- 170
A

Cougt R T Ty e

Local Microcode Generation and Compaction

]

3 e B

b References
[Aho 74]
[Aho 77)
[Banerjee 79]

[Barbacci 77]

[Bell 78]

[Carter 78]

[Cattell 78]

[Cocke 70]

References

Aho, A. V., Hopcroft, J. E., and Uliman J. D.
The Design and Analysis of Computer Algorithms.
Addison-Wesley, Reading, Massachusetts, 1974,

Aho, A. V., and Ullman, J. D.
Principles of Compiler Design.
Addison-Wesley, Reading, Massachusetts, 1977.

Banerjee, U., Shen, S., Kuck, D. J., and Towle, R. A.
Time and Parallel Processor Bounds for Fortran-Like Loops.
IEEE Transactions on Computers C-28(9):660-670, September, 1979.

Barbacci, M., Barnes, G., Cattell, R., and Siewiorek, D.
The ISPS Comguter Description Language.
Technical Report, Carnegie-Mellon University, August, 1977.

Bell, C.G., Kotok, A., Hastings, T.N., and Hill, R.

The Evolution of the DECSystem-10.

In Bell, C.G., Mudge, J.C., and McNamara, J.E. (editor), Computer
Engineering: A DEC View of Hardware Systems Design, chapter 21.
Digital Press, Bedford, Massachusetts, 1978.

Carter, W. C,, Joyner, W. H., and Brand, D.

Microprogram Verification Considered Necessary.

In Proc. National Computer Conference, pages 657-664. AFIPS, June,
1978.

Cattell, R. G. G.

Formalization and Automatic Derivation of Code Generators.

PhD thesis, Carnegie-Mellon University, April, 1978.

Updated version published under the same title by UMI Research Press,
Ann Arbor, 1982.

Cocke, J., and Schwartz, J. T.
Programming Languages and Their Compilers.
Technical Report, New York University, April, 1970.

172

[Dasgupta 76]

[Dasgupta 77}

[Dasgupta 78]

{Davidson 78]

[Davidson 81]

[DeWitt 76]

[Digital 78]

[Erman 78]

[Fagg 64]

[Fisher 79]

..........

Microcode Generation and Compaction

Dasgupta, S., and Tartar, J.
The Identification of Maximal Parallelism in Straight-Line Microprograms.
IEEE Transactions on Computers C-25(10):986-992, October, 1976.

Dasgupta, S.

Parallelism in Loop Free Microprograms.

In Gilchrist, B. (editor), Information Processing 77 (Proc. IFIP Congress
1977). North-Holland, Amsterdam, 1977.

Dasgupta, S.

Towards a Microprogramming Language Schema.

In Proc. 11th Annual Workshop on Microprogramming, pages 144-153.
IEEE, November, 1978.

Davidson, S., and Shriver, B. D.
An Overview of Firmware Engineering.
Computer 11(5):21-33, May, 1978.

Davidson, S., Landskov, D., Shriver, B. D., and Mallett, P. W.

Some Experiments in Local Microcode Compaction for Horizontal
Machines.

IEEE Transactions on Computers C-30(7):460-477, July, 1981,

DeWitt, D. J.

A Machine Independent Approach to the Production of Optimized
Horizontal Microcode.

PhD thesis, University of Michigan, June, 1976.

Digitél Equipment Corporation.
Microcomputer Processors.
Digital Equipment Corporation, Maynard, Massachusetts, 1978.

Erman, L. D., and Lesser, V. R.

The Hearsay- Il System: A Tutorial.

In Lea, W. A. (editor), Trends in Speech Recognition, chapter 16. Prentice-
Hall, Englewood Cliffs, New Jersey, 1978.

Fagg, P., Brown, J. L., Hipp, J. A., and Doody, D. T.
IBM System/360 Engineering.
In Proc. Spring Joint Computer Conference, pages 205-231. AFIPS, 1964.

Fisher, J. A.

The Optimization of Horizontal Microcode Within and Beyond Basic Blocks:
An Application of Processor Scheduling with Resources.

PhD thesis, New York University, October, 1979.

i) St

PEp——

References

[Fisher 80]

[Fisher 81a]

[Fisher 81b]

[FPsS 82)

[Fuller 76]

[Garey 79]

[Gosling 81]

[Grishman 78]

[Hansen 80]

[Holloway 79]

......................

Fisher, J. A.

2"-Way Jump Microinstruction Hardware and an Effective Instruction
Binding Method.

In Proc. 13th Annual Workshop on Microprogramming, pages 64-75. IEEE,
November, 1980.

Fisher, J. A.
Trace-Scheduling: A Technique for Global Microcode Compaction.
IEEE Transactions on Computers C-30(7):478~490, July, 1981.

Fisher, J. A., Landskov, D., and Shriver, B. D.
Microcode Compaction: Looking Backward and Forward.
In Proc. National Computer Conference, pages 95-102. AFIPS, 1981.

FPS Technical Publications Staft.
APAL64 Programmer’s Reference Manual.
Floating Point Systems, 1982.

Fuller, S. H., Aimes, G. T., Broadley, W. H., Forgy, C. L., Karlton, P. L.,
Lesser, V. R., and Teter, J. R.

PDP-11/40E Microprogramming Reference Manual.

Technical Report, Carnegie-Mellon University, January, 1976.

Garey, M. R., and Johnson, D. S.
Computers and Intractability: A Guide to the Theory of NP-Completeness.
Freeman, San Francisco, 1979.

Gosling, J.

Some Issues and Techniques for Microcode Compilers (unpublished
report).

1981,

Grishman, R.

The Structure of the Puma Computer System: Overview and the Central
Processor.

Technical Report C00-3077-157, New York University, November, 1978.

Hansen, 1., and Leszczylowski, J.

On Fundamentals of Computer-Aided Design of Firmware.

In Proc. 13th Annual Workshop on Microprogramming, pages 3-12. {EEE,
November, 1980.

Holloway, J., Steele, G. L. Jr., Sussman, G. J. and Bell, A.
The SCHEME-79 Chip.
Al Memo 559, MIT Artificial Intelligence Laboratory, December, 1979.

174

[Horowitz 78]

[Husson 70]

[Johannsen 78]

[Jones 79]

[Jones 80]

[Kernighan 78]

[Kim 79]

[Landskov 80]

[Leverett 79]

[Leverett 81]

Microcode Generation and Compaction

Horowitz, E., and Sahni, S.
Fundamentals of Computer Algorithms.
Computer Science Press, Potomac, Maryland, 1978.

Husson, S. S.
Microprogramming: Principles and Practice.
Prentice-Hall, Engiewood Cliffs, New Jersey, 1970.

Johannsen, D.

Our Machine, A Microcoded LSI Processor.

In Proc. 11th Annual Workshop on Microprogramming, pages 1-7. IEEE,
November, 1978.

Jones, A. K., Chansler, R. J., Durham, I., Schwans, K., and Vegdahl, S. R.

STAROS, A Multiprocessor Operating System for the Support of Task
Forces.

In Proc. 7th Symposium on Operating Systems Principles, pages 117-127.
ACM/SIGOPS, December, 1979,

Jones, A. K., and Gehringer, E. F., editors.
The Cm* Multiprocessor Project: A Research Review.
Technical Report CMU-CS-80-131, Carnegie-Mellon University, July, 1980.

Kernighan, B. W., and Ritchie, D. M.
The C Frogramming Language.
Prentice-Hall, Englewood Cliffs, New Jersey, 1978.

Kim, J., and Tan, C. J.

Register Assignment Algorithms for Optimizing Micro-Code Compilers—
Part 1.

Technical Report RC 7639, IBM Thomas J. Watson Research Center, May,
1979.

Landskov, D., Davidson, S., Shriver, B., and Mallett, P. W.
Local Microcode Compaction Techniques.
ACM Computing Surveys 12(3):261-294, September, 1980.

Leverett, B. W., Cattell, R. G. G., Hobbs, S. O., Newcomer, J. M., Reiner,

A. H., Schatz, B. R., and Wulf, W. A,

An Overview of the Production Quality Compiler-Compiler Project.

Technical Report CMU-CS-79-105, Carnegie-Mellon University, February,
1979.

Leverett, B. W.
Register Allocation in Optimizing Compilers.
PhD thesis, Carnegie-Mellon University, February, 1981.

e an o 4

Ll am an ae o0 4

References

[Lowry 69]

[Ma 80]

[Mallett 78]

[Marwedel 81]

[McCreight 80]

[Meyers 80]

[Michie 68]

[Mueller 80a]

[Mueller 80b]

[Nanodata 72]

175

Lowry, E., and Medlock, C. W.
Object Code Optimization.
Communications of the ACM 12(1):13-22, January, 1969.

Ma, P. Y., and Lewis, T. G.

Design of a Machine-Independent Optimizing System for Emulator
Development.

ACM Transactions on Programming Languages and Systems 2(2):239-262,
April, 1980.

A revision was published under title “On The Design of a Microcode
Compiler for a Machine-Independent High-Level Language” in the May
1981 issue of IEEE Transactions of Software Engineering.

Mallett, P. W.
Methods of Compacting Microprograms.
PhD thesis, University of Southwestern Louisiana, December, 1978,

Marwedel, P.

A Retargetable Microcode Generation System for a High-Level
Microprogramming Language.

In Proc. 14th Annual Workshop on Microprogramming, pages 115-123.
IEEE, December, 1981.

McCreight, E. M.
Personal Communication.
1980,

Meyers, W. J.

Design of a Microcode Link Editor.

in Proc. 13th Annual Workshop on Microprogramming, pages 165-170.
IEEE, November, 1980.

Michie, D.
“Memo” Functions and Machine Learning.
Nature 218:19-22, April, 1968.

Mueller. R. A,
Automated Microprogram Synthesis.
PhD thesis, Univerisity of Colorado, 1980.

Mueller, R. A. .

Formalization and Automated Synthesis of Microprograms.

In Proc. 13th Annual Workshop on Microprogramming, pages 45-53. |IEEE,
November, 1980.

Nanodata Computer Corp.
QM-1 Hardware-Level Users Manual.
Nanodata Computer Corp., Buffalo, New York, 1972,

o, W e VB L.

) 176 Microcode Generation and Compaction

[Nilsson 80] Nilsson, N. J.
i Principles of Artificial Intelligence.
Tioga, Palo Alto, California, 1980.

[Ousterhout 78] Ousterhout, J. K.
Cm* Kmap Microprogramming Manual and Debugger Manual.
Carnegie-Mellon University, 1978.

m [Parker 81] Parker, A. C., and Wilner, W. T.
- Microprogramming—The Challenges of VLSI.
! In Proc. National Computer Conference, pages 63-68. AFIPS, 1981.

[Patterson 76] Patterson, D. A.
u STRUM: Structured Microprogramming System for Correct Firmware.
i IEEE Transactions on Computers C-25(10):974-985, October, 1976.

[Patterson 79] Patterson, D. A., Lew, K., and Tuck R.
Towards an Efficient, Machine-independent Language for
Microprogramming.
S In Proc. 12th Annual Workshop on Microprogramming, pages 22-35. |EEE,
i November, 1979.

[Poe 80] Poe, M. D.
Heuristics for the Global Optimization of Microprograms.
In Proc. 13th Annual Workshop on Microprogramming, pages 13-22. IEEE,
December, 1980.

[Poe 81] Poe, M. D., Goodeall, R.. and Steely, S. Jr.
Issues of the Design of a Low Level Microprogramming Language for
Global Microcode Compaction.
In Proc. 14th Annual Workshop on Microprogramming, pages 88-94. |EEE,
y October, 1981.

[Ramamoorthy 74]
Ramamoorthy, C. V., and Tsuchiya, M.

' o A High-Level Language for Horizontal Microprogramming.
1 IEEE Transactions on Computers C-23(8):791-801, August, 1974.
’,
[Rosen 79] Rosen, B.
PERQ Microprogrammers Guide.
F ® Three Rivers Computer Corporation, 1979.
[Salisbury 76] Salisbury, A. B.
Microprogrammable Computer Architectures.
American Elsevier, New York, 1976.
)

v
i

PP

) A
- .

™

References

[Sint 81]

[Slate 77)

[Strecker 78]

[Syiek 80]

[Tan 78]

[Tokoro 78]

[Tokoro 81]

[Tsuchiya 74]

[Ulrich 80]

177

Sint, M.

MIDL—A Microinstruction Description Language.

in Proc. 14th Annual Workshop on Microprogramming, pages 95-106.
IEEE, October, 1981,

Slate, D.J., and Atkin, L.R.

Chess 4.5—The Northwestern University Chess Program.

In Frey, P.W. (editor), Chess Skill in Man and Machine, chapter 4. Springer-
Verlag, New York, 1977.

Strecker, W.D.

Vax-11/780—A Virtual Addressing Extension of the DEC PDP-11 Family.

In Proc. National Computer Conference, pages 967-980. AFIPS, 1978,

Also published in *Computer Structures: Principles and Examples'” by
Siewiorek, Bell, and Newell; McGraw-Hill, 1982.

Syiek, D. A.
Personal Communication.
1980.

Tan, C. J.

Code Optimization Techniques for Micro-Code Compilers.

Technical Report RC 6936, IBM Thomas J. Watson Research Center,
January, 1978.

Tokoro. M., Takizuka, E., Tamura, E. and Yamaura, |.

A Technique of Global Optimizat’ + ->f Microprograms. .

In Proc. 11th Annual Workshop v.. Microprogramming, pages 41-50. |EEE,
1978.

Tokoro, M., Tamura, E., and Takizuka, T.
Optimization of Microprograms.
IEEE Transactions on Computers C-30(7):491-504, July, 1981.

Tsuchiya, M., and Gonzalez, M. J.

An Approach to Optimization of Horizontal Microprograms.

In Proc. 7th Annual Workshop on Microprogramming, pages 85-90. IEEE,
October, 1974,

Also published in IEEE Transactions on Computers (Oct. 1976) under the
title *‘ Toward Optimization of Horizontal Microprograms’'.

Ulrich, J. W.

The Derivation of Microcoede by Symbolic Execution.

In Proc. 13th Annual Workshop on Microprogramming, pages 38-42. [EEE,
November, 1980.

-

e e i e b A S A T .¥

178 Microcode Generation and Compaction

[Vegdahl 81] Vegdahl, S. R., and Jones, A. K.
STARQOS Microcoue Wizard's Manual.
Technical Report, Carnegie-Mellon University, 1981.

[Wilkes 51] Wiltkes, M. V.
The Best Way to Design an Automatic Calculating Machine. -
in Manchester University Computer Inaugural Conference. Ferrante,
London, July, 1951,

[Winston 77) Winston, P. H.
Artificial Intelligence.
! Addison-Wesley, Reading, Massachusetts, 1977.

{ [Wood 79a] Wood, W. G.
The Computer Aided Design of Microprograms.
PhD thesis, University of Edinburgh, November, 1979.

L [Wood 79b) Wood, W. G.

1 Global Optimization of Microprograms through Modular Control
Constructs.

in Proc. 12th Annual Workshop on Microprogramming, pages 1-6. |EEE,
November, 1979.

h [Wulf 75] Wulf, W. A., Johnsson, R. K., Weinstock, C. B., Hobbs, S. O. and Geschke,
b C. M.

1 The Design of an Optimizing Compiler.

American Elsevier, New York, 1975.

On Storage Optimization of Horizontal Microprograms.
In Proc. 7th Annual Workshop on Microprogramming, pages 98-106. |EEE,
Qctober, 1974,

«P [Yau 74] Yau, S. S., Schowe, A. C., and Tsuchiya, M.

et
PR E I

”-

- . . 4 - - - R AL T A e e e . . oy
PSR AD AR e WA AR NSNS A PO IO IO L LR Rt)
Index 179

And/Or coupling strategy 40, 94, 108, 107, 110, 149
And/Or tree 40,94

Assignment statement 58, 71, 129, 130
Associative distance function 130, 133
Associativity 67, 127

Asynchronous logic 53

Atomic execution 8

Atoms of an expression 124

Axiom factor 125, 128, 130, 131

Axiom parameters 57

Axioms 57, 60, 72, 75, 118, 137

Basic block 18
Bit extraction 75, 110, 135
Bottlenecks 41,99

local 100, 103
Branch-address field 2
Breadth limit 72, 97, 107, 111, 117
Breadth-first search 73, 113
Bundles 15, 25, 78, 90, 100

Cache cutoff 114, 118
Cache, distance 127, 128
Cache, search 117, 118
Cache, transform 117, 118, 127, 128
Caches 74, 114, 117
and indefinite recursion 134
flushing of 100
Cattell, R.G.G. 36, 43
Chain-matrix compaction algorithm 79, 83, 112
Chains 83
Classical microcode compaction problem 18
complexity of 14, 83
Code generation 4, 27, 55
local 13
Commutativity 127, 129, 133
Compaction 4, 14, 77,90, 94, 112
incremental 103
interblock 21,37
with loops 22, 112
with main memory references 88
with volatile registers 15, 78, 87
Complete pl 19,79
Conditional disjointness 25
see also non-strict data dependency
Conflict classes 44, 48, 49, 103
limitations of 51

* Data available set 19, 20, 77

Conflicts 18, 24, 53, 82, 84, 100, 104
binary 24
Constant generation 13, 38
see also constant unfolding
Constant pattern 46, 59, 128
Constant unfolding 14, 38, 65, 72, 92, 110, 111, 118
with subexpressions 67
Constants 48
in main memory 14
literal 46, 128
unbound 47
Control flow 49, 62

Cost of a uOp

difficulty of defining 9, 11, 13, 31, 49
Cost tables, uOp 41,99, 114
Costs. allocation to subsearches 115
Cougling of compiler phases 4, 31, 37, 91, 110, 111
Critical path partitioning compaction algorithm 20
Cutoff 73

cache 114, 118

evaluation function 123

see also search cutoff

Dasgupta, S. 3, 20,21,24,25
Data antidependency 18, 80, 90

Data dependency 18, 35, 62, 72, 77, 80, 82, 84, 110
graph, height of uOps in 77,80
non-strict 25, 84, 87
with negative offset 79

Data operands 124

Delayed execution 10, 12, 25, 48

Depth limit 72

Depth-first search 113

Deterministic algorithms 72

DeWitt, D.J. 3, 11, 14, 19, 26, 39, 111

Distance cache 127, 128

Distance function 128
associative 130, 133 i
size-based 130, 136

Distance tables 100, 110, 123, 125

Distributive axioms 67

Dynamic modification of uls §3

Dynamic programming 84, 112

Educated guessing coupling strategy 38
Eval operator 57
Evaluation function 20, 74, 105, 116, 123, 127

T -y
- .-, b ‘ N - -t .
YL A S S R S N T T At T e et

s T e S N T St VL e S i el ndit Se R MO et et et e L e
PN PR NN SRS A s > pCarm 7
' : : B R B A B O T T T L T R R L R A e

180 A Microcode Generation and Compaction
cutoff 123 Micro-address register (MAR) 48, 50, 72
weaknesses of 135 Microcode, advantages of 1
Evaluation order 15 Microinstructions (uls) 8
Exhaustive search 19 Microoperations (1Ops) 8, 44, 46
Expressions 46, 55, 123, 129 Microprogramming languages 3
§Op 125 . MIMOLA 28
Extraneous data path 34 Models, micromachine 23, 35, 38, 43, 109
generality of 23, 43
Feedback 98 Mueller, R.A. 28
Fetch decomposition 59, 118 Multiple choices coupling strategy 39
Fisher, J.A. 20, 22,23,77 MUMBLE 28
Flexibility of a subgoal 108
Flow analysis 12, 37 Nanocode 53
Flow operator 50, 57,72, 129 Nilsson, N.J. 123
Flow, control 49, 62 Non-strict data dependency 25, 84, 87
Foundfactor 97 Nondeterministic algorithms 19, 56, 116
] NP-complete problems 14
. Gonzales,M.J. 20, 24 NP-hard problems 4, 14,82
N Gosling, J. 21
N Graph-coloring problem 14 Operand-by-operand decomposition 60, 72, 118
N Greedy algorithms 20 Operator-expression table 127
. Operator-operator table 125, 131
Hill-climbing 94, 97. Operator-resource table 128, 131
Harizontal instruction format 1,8 Operators 48, 124
Optimization, traditional 7
Identity cost 125, 133
Identity depth 125, 126, 129 Pac-Man 70
Identity operator 125, 126 Parallel phases coupling strategy 39
Indefinite recursion 134 Parker, A.C. 1
index cost 124, 127, 128 Pattern-resource table 126, 128, 131
Index table 127, 131 _ Patterson,D.A. 3
Indexing a storage resource 45, 59 PDP-11/40E 49, 52
Initial search cutoff 97, 115 Phases of a compiler 4
ISP 25,28 coupling of 37, 4, 31,91, 110, 111
iteration coupling strategy 39, 41, 99, 106, 149 Pipelining 3, 22
\terative deepening 73, 113 PL/MP 28
lterative expansion compaction algorithm 21 Poe,M.D. 20,22,23,78
N Polynomial-time algorithms 82
. Kim,J. 11,28 Polyphase execution 10, 24, 25
- Kmap 10, 32, 49, 91, 97, 139, 148 register written twice during cycle 87
X PQCC 38
- Languages, microprogramming 3 Pruning of a heuristic search 74, 117
L‘i Lewis, T.G. 26 Pseudo-gOp 63,72, 118
- Linear pairwise comparisons compaction algorithm 20 Puma 10, 49, 75, 120, 143, 149
» Literal field of a ul 36, 65, 92, 93, 96, 101
: Literal-resource table 126, 131 Rank of a storage resource 45
rfl- Loops 33 Redundant solutions 96
. compaction involving 22, 112 Register allocation 11, 26, 37
g Registers
a Ma,P.Y. 28 heterogeneous 28
o Macro tables 28 homogeneous 28
9 Macroarchitectures 7 number in micromachine 82
p Main memory references see also storage resources
- and compaction 88 Resource-resource table 126, 128, 131
3 costof 10, 11 Reverse index flag 50, 71,72, 118
. Mallett, PW. 15, 19, 25, 40 Rotation 75, 110, 135
MDIL 28 ' .
MDL 28 Schowe, A.C. 19
Means-ends analysis 58 Search
Memo function 74 breadth-first 73, 113

LI PSSP RPPUION W S PO I PRt L e e e . e e m

- B LA - [Ngdl! CRadC i i) U e N .
A T I BRI T, 5.4 3 ACUA WACK UMW SR FRL I e WACIPOC PRI

Y)

Index

decompasition of 115, 118
depth 73,75, 110, 113
depth-first 113
ordering of 74
pruning of 74, 117
Search cache 117, 118
Search cutoff 73, 111, 115, 118
initial 97, 115
Search function 58, 71, 94, 118, 123
Sequence
primary 94
secondary 94
Serialization algorithm 88, 80
Serialization, illegal 89 -
Shape 105
Short-circuit evaluation 16
SIMPL 28
Sint, M. 26
Size-based distance function 130, 136
Slack 116
Southwestern Louisiana, University of 40
Squeeze coupling strategy 41, 103, 107, 149
Storage classes 10
Storage resources 43, 47, 128
bitlength 45
indexing 45, 59
permanent 45
rank of 45
temporary - 45
see aiso registers
Subroutines 53
Subtie features of a micromachine 103, 107
Symbolic execution 28
Table cost 124
Tan,C.J. 11,28
Yartar, J. 20,24,25
Templates 28, 55
Theorem proving 28
Timing constraints 10, 47, 54, 100
limitations in model 52
Tokoro, M. 20, 21
Trace scheduling compaction algorithm 22
Transform cache 117, 118, 127, 128
Transtorm function 59, 65, 94, 118, 123
Transitory data resources 25
see also volatile registers
Tsuchiya, M. 19, 20, 24
Two-level microcode 53

Ulrich, JW. 28

Undefined resource 45, 59, 118
Unit-execution-time scheduling problem 14
Unstable atates 52

Verification, microprogram 3

Versions 40

Vertical hstruction format 1,8

VLSI 1

Volatile registers 10, 12, 15, 25, 33, 35, 78, 88

181

Weak dependence 25
s69 also non-strict data dependency
Wilkes,M.V. 1
Wiiner, W.T. 1
Wood, W.G. 20, 21
Wiritable control store 3

YALLL 25,28
Yau,S.8. 19,20

