

CMU-CS-82-153

Local Code Generation
and Compaction in

Optimizing Microcode Compilers

Steven R. Vegdahl

December 1982

* Computer Science Department
Carnegie-Mellon University

Accession For
NTS -GRA&I Pittsburgh, PA 15213

DTIC TAB
Unannounoed El
Justifioation

____ _ ___ _ Submitted to Carnegie-Mellon University
'Distribution/ -in partial fulfillment of the requirementsAilbiton e for the degree of Doctor of Philosophy.. Availability Codes_

Avail and/or

Dist Special

P. Copyright) 1982 Steven R. Vegdahl

This work was supported in part by the Fannie and John Hertz Foundation and in part by the

Defense Advanced Research Projects Agency (DOD), ARPA Order No. 3597, monitored by
.the Air Force Avionics Laboratory Under Contract F33615-78-C- 1551.

The views and conclusions contained in this document are those of the author and should not

be interpreted as representing the official policies, either expressed or implied, of the Defense
Advanced Research Projects Agency or the US Government.

____ . - -. "---

UNCLASSIFIED
-SECURITY CLASSIFICATION OF i4s PAGE ,.-noi. Enteed)

READ INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
I. REPORT 4UMlqER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

CMU-CS-82-1 5 3]__-'._-:""_""
4. TITLE (an$ Sbt tle) S. TYPE OF REPORT A PERIOD COVERED

LOCAL CODE GENERATION AND COMPACTION IN Interim
OPTIMIZING MICROCODE COMPILERS

6. PERFORMING ORG. REPORT NUMBER

?. AUTHOR(e) S. CONTRACT OR GRANT NUMERIa)

STEVEN R VEGDHAL F33615-78-C-1551

S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

*, i Carnegie-Mellon University AREA I WORK WUX.JUMS.R-

Department of Computer Science
Pittsburgh, Pennsylvania 15213

I1 CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Defense Advanced Research Projects Agency
1400 Wilson Blvd PAGs
Arlington, Virginia .'

14. MONITORING AGENCY NAME & ADORESS(l# different frm Controlll n Office) IS. SECURITY CLASS. (oWTlm eport)

Air Force Office of Scientific Research (NM)
Bolling AFB, DC 20332

15a. DECLASSI FICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of Ohle Reporl)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the ,blirtract entered In Block 20. II dllerent from Report)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS lContinue on eoerse side It necessary and identify by block number)

20 AsS RS ACT fContinue on reverse aid. If necessary and Identify by block number).

Horizontal microarchitectures often have features that make it difficult for a compiler to

produce good object code from a high-level language. Although the problem of compacting

microcode into a near-minimal number of microinstructions has received a great deal of

attention, other phases of the compiler have not been studied as thoroughly. This dissertation 0

explores methods of generating quality microcode for horizontal microarchitectures,

compacting the microcode, and the interaction between code generation and compaction.

DD 1 1473 EDITON OF I NO' 65 IS OBSOLETE UNCLSSIFIED
SECu~iTY CL*SS:yC IC&A,ON C THIS P AGE ruhn Da.Tt En!'rrd)

SECURITY CLASSIFICATION Or THIS PACG When Dole ntere"d)

There are often several code sequences that perform the same computation for a given

P I microarchitecture. If the code generation and compaction phases of the compiler are

executed sequentially, the code generator may not be able to determine the best code,

because a code sequence that compacts well in one situation may contain several

bottlenecks in another. This dissertation explores three methods of coupling the code

generation and compaction phases of the compiler, and concludes that subtle micromachine

features make it very difficult to produce good code unless the code generator actually

produces several candidate code sequences that are compacted and compared with one

another.

This dissertation also explores machine.independent methods of generating microcode.

One aspect of the code generation problem-that of generating constants "intelligently"-is

discussed in detail. A technique called constant unfolding is presented that can be used to

produce code sequences that generate constants in "unusual" ways during execution; such

code sequences often lead to more compact code when the literal field of the microinstruc-

41 tion is a bottleneck.

The classical microcode compaction problem is also examined. We show that this NP-hard

problem can be solved in polynomial time if the number of registers in the micromachine is

bounded, and use this result to argue that the problem is not general enough. A heuristic

algorithm is presented for solving the general problem.

V~

i

* -

[.sCRT LASPCT1 .

Abstract

Horizontal microarchitectures often have features that make it difficult for a compiler to

produce good object code from a high-level language. Although the problem of compacting
microcode into a near-minimal number of microinstructions has received a great deal of
attention, other phases of the compiler have not been studied as thoroughly. This dissertation

explores methods of generating quality microcode for horizontal microarchitectures,

compacting the microcode, and the interaction between code generation and compaction.

There are often several code sequences that perform the same computation for a given

microarchitecture. If the code generation and compaction phases of the compiler are

executed sequentially, the code generator may not be able to determine the best code,

because a code sequence that compacts well in one situation may contain several

bottlenecks in another. This dissertation explores three methods of coupling the code
gene, ation and compaction phases of the compiler, and concludes that subtle micromachine

features make it very difficult to produce good code unless the code generator actually
produces several candidate code sequences that are compacted and compared with one

another.

This dissertation also explores machine-independent methods of generating microcode.

One aspect of the code generation problem-that of generating constants "intelligently"-is

discussed in detail. A technique called constant unfolding is presented that can be used to
produce code sequences that generate constants in "unusual" ways during execution; such

code sequences often lead to more compact code when the literal field of the microinstruc-

tion is a bottleneck.

The classical microcode compaction problem is also examined. We show that this NP-hard

problem can be solved in polynomial time if the number of registers in the micromachine is

bounded, and use this result to argue that the problem is not general enough. A heuristic

algorithm is presented for solving the general problem.

..

!a

'..

I:.

-,

~ill

Acknowledgements

I wish to thank my advisor, Anita Jones, for much helpful guidance and encouragement
during the course of this research. I would also like to thank the rest of my committee, Rick
Cattell, Joe Newcomer and Guy Steele for their many helpful suggestions on improving this
manuscript. I am especially grateful to Guy and his wife Barbara for their emotional support
during times when the completion of this dissertation seemed an endless task.

I wish to acknowledge the following teachers, professors, and employers who played key
roles in my scholastic development during my grade school, high school, or college years:
Bill Wright, Maxeye Hanley, Francis Brewer, Ron Henley, Bill Colescott, and Don Knuth.

I am also grateful to the Fannie and John Hertz Foundation for its financial support during
my years at CMU.

I wish to express my appreciation to the National Football League Players Association for
going on strike during the final stages of the preparation of this manuscript, thereby
permitting additional work on Sunday afternoons and Monday nights.

Finally, I wish to thank my wife Jeannie for much-needed love and emotional support.

4. Iv

-t -

*0

0, z

Si

6

I-

qV

Table of Contents

1. Introduction

1.1. Horizontal Microcode 1
1.2. Motivation 2
1.3. This Research Effort 4
1.4. Organization of the Dissertation 5

2. Issues in Microcode Optimization 7

2.1. Differences between Microcode and Traditional Architectures 7
2.1.1. Horizontal instruction format 8
2.1.2. Cost of main memory access 10
2.1.3. Timing issues 10
2.1.4. Large number of storage classes 10

2.2. Optimization Issues Affected by Microprogrammed Target Machines 11
2.2.1. Register allocation 11
2.2.2. Flow analysis 12

2.2.2.1. Volatile registers 12
2.2.2.2. Delayed instructions 12

2.2.3. Local code generation 13
2.2:4. Use of constants 13
2.2.5. Compaction 14

2.2.5.1. Complexity of the compaction problem 14
2.2.5.2. Compaction in the presence of volatile registers 15

2.2.6. Evaluation order determination 15
2.2.7. Short-circuit evaluation 16

2.3. Summary 16

3. Previous Work 17

3.1. Compaction 18
3.1.1. Compaction within a basic block 18

3.1.1.1. Heuristic searches 19
3.1.1.2. Greedy algorithms 20
3.1.1.3. Iterative methods 21

3.1.2. Compaction involving multiple basic blocks 21
3.1.2.1. Ad hoc methods 21
3.1.2.2. Trace scheduling 22
3.1.2.3. Compaction involving loops 22

3.2. Micromachine Models 23
3.2.1. Conflict determination 24
3.2.2. Data dependency considerations 24

.

i...

3.2.2.1. Polyphase instructions 25
3.2.2.2. Delays 25
3.2.2.3. Volatile registers 25

3.2.3. Microoperation semantics 25
3.3. Register Allocation 26
3.4. Code Generation 27

3.4.1. Simple code generation systems 28
3.4.2. Code generation with limited optimization 28
3.4.3. Code synthesis from ISP 28

3.5. Summary 29

* 4. Scope of this Research 31

4.1. The Central Problem 31
4.1.1. Some examples 31

4.1.1.1. Increment by two 31
4.1.1.2. Loop testing 33
4.1.1.3. Volatile register compensation 33

4.1.2. Summary 35
4.2. Related Issues 35

4.2.1. Machine model 35
4.2.2. Microcode compaction 35
4.2.3. Constant generation 36
4.2.4. Code generation 36

4.3. Problems Not Addressed 36
4.3.1. Register allocation 37
4.3.2. Other phase-coupling problems 37
4.3.3. Flow analysis 37
4.3.4. Interblock compaction 37
4.3.5. Machine model 38

4.4. Research Methodology 38
4.4.1. Coupling methods 38

4.4.1.1. Ignoring the problem 38
4.4.1.2. Educated guessing 38
4.4.1.3. Iteration 39
4.4.1.4. Multiple choices 39
4.4.1.5. Performing the phases in parallel 39

4.4.2. Coupling methods to be tested 40
4.4.2.1. And/Or 40
4.4.2.2. Iteration 41
4.4.2.3. Squeeze 41

5. Micromachine Model 43

5.1. Overview 43
5.2. Components of the Micromachine 44

5.2.1. Storage resources 44
5.2.2. Microoperations 46

5.2.2.1. Operators 46
5.2.2.2. Constants 46
5.2.2.3. Storage resources 47

~vii

5.2.3. Conflict classes 49
5.2.4. Control flow 49

, 5.3. Observations about the Model 51
5.3.1. Limitations of the model 51

5.3.1.1. Conflict classes 51
5.3.1.2. Timing 52
5.3.1.3. Dynamic modification of control store 53
5.3.1.4. Two-level microcode 53

p 5.3.1.5. Microsubroutines 53
5.3.2. Effectiveness of the model 53

6. Microcode Generation 55

6.1. Overview 55
6.2. Nondeterministic Code Generation Algorithm 56

6.2.1. Data structures 56
6.2.2. The algorithm 58
6.2.3. An example 60
6.2.4. Data dependency and control flow information 62
6.2.5. Constant unfolding 65

6.2.5.1. The basic mechanism 65
6.2.5.2. An extension 67
6.2.5.3. An implementation note 70
6.2.5.4. Summary 71

6.2.6. Summary 71
6.3. Deterministic Code Generation Algorithm 72

6.3.1. Search depth 73
6.3.2. Pruning and ordering the search 74
6.3.3. The evaluation function 74

6.4. Results 75

7. Compaction 77

7.1. Fisher's Compaction Algorithm 77
7.2. The Volatile Register Problem 78
7.3. The Data Dependency Problem 80

7.3.1. Complexity revisited 82
7.3.1.1. A polynomial-time algorithm 82
7.3.1.2. An example 84
7.3.1.3. Main memory references 86
7.3.1.4. More complex machine models 87

7.3.2. Our solution 88
7.4. The Intrablock Compaction Algorithm 90
7.5. Summary 90

8. Coupling Code Generation and Compaction 91

8.1. Illustrative Problems 91
8.2. And/Or Method 94

8.2.1. Modifications to the code generation and compaction routines 94
8.2.2. Examples 96
8.2.3. Evaluation 97

8.3. Iteration 99

viii

8.3.1. Post-compaction analysis 100
8.3.2. Examples 101
8.3.3. Evaluation 102

8.4. The Squeeze Method 103
8.4.1. Modifications to code generation routine 104
8.4.2. Examples 104
8.4.3. Evaluation 105

8.5. Combining Methods 106
8.6. Summary 107

9. Conclusions 109

9.1. Contributions 109
9.2. Future Work 110

Appendix A. Deterministic Code Generation Algorithm 113

A.1. Data Structures 114
A.2. The Algorithm 115

A.2.1. Search cutoff 115
A.2.2. Beginning the search 115
A.2.3. Allocating costs among sub-searches 115
A.2.4. Node ordet ing and selection 116
A.2.5. Caching search results 117

A.3. Limiting Search Breadth 117
A.4. Specification of the Algorithm 118
A.5. An Example 120

Appendix B. The Evaluation Function 123

B.1. Some Definitions 124
B.2. Data Structures 125

B.2.1. Distance tables 125
B.2.2. Caches 127
B.2.3. Other data structures 127

B.3. The Evaluation Function Algorithm 127
B.3.1. The distance function 128
B.3.2. Associative distance 130
B.3.3. Size-based distance 130

B.4. Examples 131
B.4.1. Sample micromachine 131
B.4.2. Examples of the evaluation function in action 132

B.5. Shortcomings of the Evaluation Function 135

Appendix C. List of Axioms Used in Experiments 137
Appendix D. Kmap Machine Description 139

Appendix E. Puma Machine Description 143

Appendix F. Selected Examples 149

References 171

Index 179

.S

;~. ,~~~~ ~~~~~~~~~~~ . • '"- ." o" . . . o. - . , . o.,.. o . - -. - -° -.. . -° -

F°- ix

List of Figures

Figure 1-1: Horizontal microinstruction that performs an add and shift. 2
Figure 2-1: Typical horizontal instruction format. 8
Figure 2-2: Horizontal control word controlling typical hardware resources. 9
Figure 2-3: Instruction sequence made illegal by delayed execution. 13
Figure 3-1: Shortening of loop by pushing uOp into previous iteration. 23
Figure 4-1: Micromachine with ALU and counter. 32
Figure 4-2: Micromachine with register file and volatile register. 34
Figure 6-1: Example of Code Generation. 61
Figure 6-2: Example of with Search with Data Dependency. 63
Figure 6-3: Data links resulting from search in Figure 6-2. 64
Figure 6-4: Data links between POps after transitive closure. 64
Figure 6-5: Search with constant unfolding. 66
Figure 6-6: Search with constant unfolding on a subexpression. 68
Figure 6-7: Constant unfolding used to avoid ALU pOps. 69
Figure 6-8: Three methods of performing a masking operation. 70
Figure 7-1: POps with non-zero volatile data dependencies. 79
Figure 7-2: Bundles created from juOps in Figure 7-1. 80
Figure 7-3: Compactions of bundles in Figure 7-2. 80
Figure 7-4: pOps with different data antidependencies. 81
Figure 7-5: Data dependency graph cast as set of chains. 83
Figure 7-6: Data dependency graph with conflicts. 85
Figure 7-7: Matrix-graph before modifications for constraints. 85
Figure 7-8: Matrix-graph after modifications for constraints. 86
Figure 7-9: Optimally-compacted uOps. 87
Figure 7-10: Dependency graph before serialization. 88
Figure 7-11: Illegal serial orderings of FIOps. 89
Figure 8-1: Using the constant register to produce a constant on the fbus. 92
Figure 8-2: Using a mask to produce a constant on the fbus. 93
Figure 8-3: An And/Or tree. 95
Figure 8-4: Illustration of cutoff being reduced with search breadth. 98
Figure 8-5: Example of transform function. 99
Figure 8-6: Redundant version of transform in Figure 8-5. 99
Figure A-1: Two And/Or trees with different costs. 114
Figure D-1: Sketch of the Kmap microarchitecture. 139
Figure E- 1: Sketch of the Puma microarchitecture. 144

U -

V
F' x

I-

J xi

List of Tables

Table 8-1: Summary of first iteration coupling example. 102
Table 8-2: Summary of second iteration coupling example. 102
Table 8-3: Summary of third iteration coupling example. 102
Table 8-4: Summary of first combination experiment. 106
Table 8-5: Summary of second combination experiment. 107
Table 8-6: Summary of third combination experiment. 107
Table B-1: jAOp expressions. 131
Table B-2: Operator-operator table. 131
Table 8-3: Resource-resource table. 132
Table B-4: Operator-resource table. 132
Table B-5: Literal-resource table. 132
Table B-6: Pattern-resource table. 132

-°

S t -.

Introduction1

Chapter 1
Introduction

In 1951, Maurice Wilkes introduced the concept of microprogramming at the Manchester

University Computer Inaugural Conference [Wilkes 511. At that time, however, the cost of
memory was sufficiently high that microprogramming was not used seriously in practice until
more than a decade later with the implementation of the IBM 360 series machines [Fagg 641.

Since that time, the cost of memory, with its highly regular patterns, has decreased at a rapid
rate, making it more attractive to implement digital systems in microcode. At the same time,
programmers have demanded more complex computer architectures, which would be quite

cumbersome to implement completely in hardware. Thus, microcode offers a number of
advantages to both the hardware designer and the programmer:

Flexibility Many decisions can be delayed much further in the design process.

Extensibility Once an architecture is on the market, it can be extended with additional
microcode, perhaps to tailor a machine to a special application.

Cost The number of components (and types of components) can be reduced by
implementing a digital system in microcode; the information density in the
control memory is much higher than in combinatorial logic.

Simplicity Many complex instructions, such as table translation and string com-
parison, are simpler to implement in microcode than in hardware.

The trend toward VLSI implementation of digital systems is expected to increase the use of

microprogramming. The use of microcode rather than digital logic decreases hardware

complexity, and increases functionality and flexibility. According to Parker and Wilner (Parker

81], "It is universally agreed that future single-chip processors will be microcoded."

1.1. Horizontal Microcode

The desire for high performance has led many micromachine designers to choose a

horizontal instruction format [Husson 70, Salisbury 76], which is to say that for each machine

resource there exists a field in the microinstruction that is wired to the control lines of the

resource during the execution of that microinstruction. A vertical (i.e., traditional) machine

instruction, on the other hand, specifies only a single operation to be performed. A vertical

architecture may therefore be considered a degenerate case of a horizontal one.

. ° ° ,.. .'.,,. .,,,.,..,. ,

2 Local Microcode Generation and Compaction

Consider an example on a PDP. 11. It takes three instructions to add two registers together,

shift the result left one bit, and store the result in a third register:.
NOV R2,R3
ADD R1, R3
ASL R3

" In a horizontal architecture, it may be possible to compute the result in a single instruction
because the shifter, the ALU function, and data paths are independently controlled. Figure

1-1 depicts a horizontal microinstruction format in which the shifter, ALU, and various
registers are independently controlled, performing the above operation in single instruction.

abus bbus ALU fcn. shift count ALU dest

R1i R2 ADD 1 R3

Figure 1-1: Horizontal microinstruction that performs an add and shift.

There may also be additional fields that allow the programmer to specify branching conditions

*or to control external devices.

Although the term horizontal technically refers to an instruction format with no encoding, a

typical "horizontal" microinstruction format is a mixture of non-encoded and encoded fields.
This often occurs because a particular resource or operation will be used so infrequently (in

the designer's view) that the cost of an independent field is not justified. An example
commonly found in microarchitectures is that of a branch address. It is not expected that a

branch will occur during every instruction; similarly it is not expected !hat a every instruction
will need literal (constant) data. In many microarchitectures, then, the branch-address field

may specify literal data during microinstructions in which it is not specifying a branch

address.

1.2. Motivation

Until recently, the production of microcode could be characterized by the following

observations:

* The microcode was written by someone who was of necessity intimately familiar
with the machine to be programmed-possibly the hardware designer.

* Once the microcode was written and tested, it was written onto a ROM, and not
modified unless it was necessary to replace the ROM in order to remove a latent
microcode bug.

* The size of the control store was relatively small, thereby bounding the-complexity
of the microprogram.

L

Introduction 3

In the 1970's, however, it became increasingly popular to design machines that are

programmed according to a different scenario [Nanodata 72, Fuller 76]. Microprogramming

thus began to develop many of the same software engineering problems that traditional

programming has had for the past two decades [Davidson 78]. In particular:

A microprogrammer does not want to become familiar with the machine by
studying circuit diagrams. It is desirable to free the programmer from having to
learn the machine in extreme detail. At the very least, a tutorial describing the
microarchitecture should be available. Ideally, the microprogrammer should be
freed from understanding such details as propagation delays and data path
routing.

* Microcode is frequently modified because many control stores are now writable.
Thus, tools for reliably maintaining firmware are necessary. This can be
especially important when a user desires to modify or extend "house-written"
microcode, but keep it consistent with the rest of the system.

* As memory becomes less expensive, the size of control stores increases. Even
"expert" microprogrammers are finding that the size and complexity of the
microcode to be written and maintained is becoming too large [Jones 80].

In addition to the above problems which have analogues in macroprogramming, horizontal

microprogramming also lends itself to pipelining. It is not uncommon to have parts of three or

four unrelated computations being performed during a single microinstruction. For example,

one microinstruction might contain a conditional branch on a comparison from the previous

cycle, an addition being performed in the ALU, a main memory reference being initiated, and

data from a register file being read onto a bus in preparation for being fed into the shifter on

the next cycle. Such overlapping tends to make the code difficult to understand and maintain.

As user-microprogrammable machines become more common and control stores become

larger, the effort required to produce and maintain microprogrammed systems increases. As

a result, it is desirable to develop more powerful tools for the task. Researchers in firmware

engineering have made progress in several areas.

Microprogram verification [Patterson 76, Carter 78], can be helpful in detecting inconsis-

tencies that may be introduced during the production and maintenance of microprograms.

Still, this approach does not free the programmer from writing microcode at the machine

level.

The compilation of programs from a high-level language (HLL) has been quite successful in

facilitating program development and maintenance in traditional software systems, so it

seems reasonable to approach microcode in the same manner. HLL microprogramming does

have drawbacks, however:

e Language requirements for microprogrammed machines may differ from those of
traditional machines just as system implementation languages tend to differ from

. . . . n 7=nm "• n iN " I m mA

4 Local Microcode Generation and Compaction

application languages. For example, the pipelining that is possible in many
microarchitectures can make it attractive to specify which branch of an
if-then-else is most frequently executed (Fisher 81a]. DeWitt [DeWitt 761,
Dasgupta [Dasgupta 78], and Patterson [Patterson 79] are among those who
have explored solutions problems in the area of microprogramming languages.

* . When a high-level language is used a compiler is necessary to translate the
program into machine language. Because speed is often the motivation for
putting a function into microcode in the first place, an optimizing compiler is
desirable. There is still much work to be done in the area of horizontal
microprogram optimization. This dissertation will explore several aspects of
horizontal optimization.

* Validation of microprograms, which is sometimes done using oscilloscopes and
logic analyzers, can be quite difficult. Code motion and other optimizations
performed by a HLL compiler may compound this difficulty. There is certainly a
need for microprogram validation/debugging tools.

Microcode compaction has been attempted with moderate success by a number of
researchers [Yau 74, Tsuchiya 74, Dasgupta 76, DeWitt 76, Tokoro 78, Mallett 78, Wood 79a,

Fisher 79, Ma 80, Landskov 80, Poe 80]. Compaction algorithms have typically assumed that

the object code has been generated (either by a compiler or by hand), but has not been

compacted. The goal, then, is to rearrange the given object code into as few instructions as

possible without changing the semantics of the program. Although the problem is NP-hard

(as will be shown in Chapter 2), a number of linear or near-linear algorithms have been

devised that produce less than optimal results, but nevertheless appear to compact

, •microcode quite well. Unfortunately, these algorithms exhibit a dependence on the initial

ordering of the source code, as will be shown in Chapter 7.

1.3. This Research Effort

* While much work has been done in the area of compacting already-generated microcode,

O relatively little attention has been paid to the problem of generating high quality microcode.

Previous work assumed that the code had already been generated-either by hand, or by a

previous phase of the compiler. In cases where a code generator actually exists (and the

details of the generator are given), there is little evidence that an attempt was made to
produce good code-the authors were concentrating on the compaction problem [Mallett 78,

Fisher 79, Poe 80]. This dissertation concerns itself with certain aspects of the code

generation process itself-in particular, generating code that is conducive to being com-

pacted well.

*I Because is it generally agreed that the compilation process is too complex to perform in a

single step (Aho 77, Leverett 79], we are presuming a compiler that consists of a number of
steps, or phases. The premise on which this thesis is based is that the code generation and

6l

Introduction 5

compaction phases of the compiler cannot be separated if good code is desired; the two

phases must be performed together, iteratively or in some other manner that allows the code

generator some knowledge of how the code is being compacted. We have built code

generation and compaction phases as part of this research effort, and have demonstrated

that their coupling can improve code quality.

Other issues relating the generation of "packable" microcode are also discussed, but only

to the degree that they relate to the primary topic. The intelligent generation of literals in

microarchitectures has some potential benefits and is discussed in moderate detail.

The techniques described in this dissertation have been implemented in Pascal and have

run on a DEC VAX- 11/780 [Strecker 78]. Appendices A and B are devoted to the details of

the implementation, and may be skipped by the casual reader.

1.4. Organization of the Dissertation

The first four chapters are of an introductory nature. Chapter 2 is an overview of the key

issues in microcode optimization as we see them. The chaptar is more or less a reply to the

question: Why is microcode optimization different from traditional optimization? Chapter 3 is a

review of previous work done in the field of microcode optimization; it describes the current

state of the art in terms of the issues discussed in Chapter 2 and sketches the recent work by

several researchers in the field. Chapter 4 describes in detail the issues addressed in this

dissertation. In addition, it describes important related problems not addressed, along with

the reasons for not addressing them. The chapter concludes with an brief description of the

three techniques for coupling code generation and compaction that are considered in this

dissertation.

Chapters 5 through 8 describe the work we have performed. Chapter 5 is a discussion of

the micromachine model used in the implementation. It includes a discussion of the important

features of microarchitectures that the model fits, as well as examples of micromachines

which do not fit the model and the reasons for excluding them. It concludes with a discussion

of the ramifications of the model for some of the issues stated in Chapter 2. Chapter

6 describes the heuristic search algorithm used in implementing the code generator. The

chapter first describes the algorithm nondeterministicall/ and then discusses the pruning

mechanisms used that enabled it to run on a deterministic machine. In Chapter 7 we show

that the commonly accepted compaction model is insufficient in at least two respects, and

then present our algorithm, which solves a more general problem. Chapter 8 describes the

three methods used to couple the code generation and compaction phases of the compiler

and presents the experimental results for each method. The chapter concludes with a

description of an attempt to combine the techniques.

Local Microcode Generation and Compaction

Finally, Chapter 9 evaluates the research and summarizes what we believe to be its major

contributions. Recommendations are also made for promising avenues of future research.

.4

Issues in Microcode Optimization 7

Chapter 2
Issues in Microcode Optimization

Over the past two decades, compiler writers have developed code optimization techniques
that have been used in the production of a number of high-quality compilers [Lowry 69, Wulf
75, Kernighan 78]. In considering the problem of producing high-quality microcode, it is
natural to try using the body of optimization knowledge that exists for traditional compilers. A
number of microcode compaction systems assume that there exists an optimizing compiler

that produces object code suitable for input to the compaction phase [Tokoro 78, Fisher 79,
Poe 80].

If microarchitectures were sufficiently similar to traditional architectures, the idea of using a

traditional optimizig compiler before doing the compaction would be a good one. Unfor-
tunately, such architectures have characteristics in which many traditional optimization
techniques either are ineffective, or require modification.

The scope of this chapter is much broader than that of the dissertation, including such
issues as flow analysis, register allocation and short-circuit evaluation. We begin by

discussing the key differences between microcode and traditional architectures. Following
this, a number of traditional optimization techniques are evaluated with respect to their
suitability for use in an optimizing microcoae compiler.

This chapter has two purposes. The first is to acquaint readers, familiar with traditional

architectures, with some of the optimization issues that arise when a horizontal architecture is

considered, in order to give them a foundation from which Chapters 3 and 4 can be
understood. The second is to bring the issues to the attention of researchers in the area of
microcode optimization, many of whom have thus far concentrated on the issue of microcode

compaction.

2.1. Differences between Microcode and Traditional Architectures

Most compiler optimization research has assumed a target architecture that is both
macro-the instructions are stored in the main memory of the machine-and vertical--each

instruction performs a single operation. The architectures that we are considering, on the

8 Local Microcode Generation and Compaction

other hand, are micro-the instructions are kept in a high-speed local memory-and

horizontal. We intend to describe how each of these aspects affects compiler optimization.

The discussions in this chapter apply to vertical microarchitectures [Digital 78] and horizontal

macroarchitectures [FPS 82] to a lesser extent.

Our research has led us to conclude that there are four major differences between

horizontal microarchitectures and vertical macroarchitectures. First, the instruction format of

a horizontal architecture allows independent computations to be performed during the same

instruction. Next, the cost of a main memory access is more expensive on a micromachine,

relative to the cost of instruction execution. Third, microarchitectures often require the

programmer or compiler to be concerned with low-level timing details. Last, horizontal

microarchitectures tend to have a large number of heterogeneous registers.

2.1.1. Horizontal instruction format

Traditonal machine architectures have what is known in the microprogramming literature

as a vertical instruction format, while microprogrammable architectures that we are consider-

ing have a horizontal instruction format. The term horizontal came to be used because the

instruction in such a machine has a large number of bits; that is to say, the instruction is

typically a very wide (or horizontal!) one (see Figure 2-1).

branch cond xlatch ALU fcn reg index ylatch

abus bbus carryin constant

Figure 2-1: Typical horizontal instruction format.

The term vertical was then used to describe instruction formats that are not horizontal-the

traditional instruction format in which there is an opcode and (possibly) one or more

operands.

In a purely horizontal, or non-encoded, instruction format, the microinstruction (Al) is

divided into a number of independent bit fields, where each field directly controls a machine

resource. For example, the 1I in Figure 2-2 contains seven fields. The first controls the ALU

function; the second is the "count" input to the shift unit; the third and fourth serve as

selectors for the ALU data input; the fifth selects a register from the register file reading or

writing; the sixth specifies whether the register file is to be written; the seventh selects a

condition for micro-branching. During the execution of every /l, each resource is controlled

separately.

In microprogramming literature, the contents of an individual field of the Al is called a

a

Issues in Microcode Optimization 9

ALU shift abus bbus reg branch

fcn count source source reg # write cond

I -III II

I

MUX MUX , - regiter

file

Figure 2-2: Horizontal control word controlling typical hardware resources.

microoperation (/uOp). Because each pOp is an independent field, the AOp is logically the

atomic unit of execution. A microcode generator, then, produces pOps, which are then

compacted into is, which are physically the atomic unit of execution. Vertical architectures

do not have a distinction between logical and physical atomic execution units.1

This distinction makes it necessary to compact the uOps into F1s after they have been

produced. It is, of course, not generally possible to place all pOps into the same pI, because

two pOps may require the use of a common hardware resource or pI field; data dependencies

may also dictate that one pOp precede another. The compaction problem has been given a

great deal of attention by researchers, and near-linear time algorithms have been discovered

that usually do a good job compacting a pOp sequence into Ils for some microarchitecture

models.

A horizontal instruction format also makes it difficult to predict the cost of a pOp. When

compiling for a vertical target architecture, it is relatively easy to estimate the cost of adding a

particular instruction to an existing code segment. The insertion of an ADD #3, RO PDP-1 1

instruction into a segment of code increases its execution time by a fixed amount and

increases program size by two words. This cost of adding a pOp to a segment of code on a

horizontal machine is not as easy to predict because other pOps may or may not be able to

execute in parallel. The incremental cost of a pOp may be zero-if it can fit into an otherwise

1Several traditional machines do have instructions that are in some ways horizo"" T PDP-8 and HP-2100

each have a special instruction in which several independent actions may be applied to the , cumulator. POP-11
instructions that use the auto-increment addressing mode may be considered "horizontal" in the sense that the
auto-increment can be either invoked or not when a register indirection is occurring.

10 Local Microcode Generation and Compaction

unused jIL field-or large-if it requires one or more pis to be added. It is generally not

possible to determine such costs until the code has been compacted.

Thus a compiler for a vertical architecture can generally assume that the cost of an

instruction is independent of the instructions surrounding it in the program. With these

estimates, it is able to make intelligent decisions about whether or not to perform a code
motion, how to allocate registers, and so forth. Such estimates are more difficult to make

when compiling for a horizontal architecture because the cost is less predictable.

2.1.2. Cost of main memory access

The cost of accessing main memory is generally much greater on a micromachine than the

- cost of instruction execution. Macromachines tend to make one or more main memory

references per instruction just to read the instruction itself; micromachines, on the other

hand, typically fetch instructions from a high-speed internal memory. This difference is likely

to affect compiler optimization strategies, such as register allocation, that might assume a

main memory reference is relatively inexpensive.

2.1.3. Timing issues

The programmer of (or compiler for) a microarchitecture produces code that interacts more

closely with the hardware than does code for a macroarchitecture. In particular, there are

often timing constraints that require a programmer to be very careful in placing UOps into Ids.

* Many microarchitectures have polyphase execution-in other words, different FOps can be

executed during different clock phases within the 1 I; thus the execution of two POps in a

particular pl may or may not overlap. In addition, certain uOps may take longer than one pI

cycle to execute, resulting in a situation where one p1 begins execution before all UOps in the
previous I have completed. Finally, volatile registers-those registers that lose their values

after a short period of time, such as one microcycle-are also common in micromachines.

2.1.4. Large number of storage classes

A typical macroarchitecture has a main memory, registers-some perhaps with special

designations such as "stack pointer", "index register" or "program counter"-and possibly a

processor status word and condition-code bits, with data being stored only in memory and

registers. Microarchitectures, on the other hand, tend to have latches and registers of various

lengths scattered across the machine. The Cm* Kmap [Ousterhout 78] has three 16-bit

latches, one 12-bit latch, one 7-bit latch, two 4-bit latches and three 16-bit register banks

along its various data paths; in addition it has several registers that contain'data sent to/from

main memory and external devices. The Puma [Grishman 781 has two 20-bit register banks,

Issues in Microcode Optimization 11

I L two 60-bit register banks, four 60-bit latches, one 20-bit latch and three 12-bit latches in

addition to registers for external communication. Research in compiler optimization suggests

that a large number of register classes tends to make register allocation more difficult [Kim

79, Leverett 81].

2.2. Optimization Issues Affected by Microprogrammed Target
Machines

The previous section described several features commonly found in horizontal microar-

chitectures that make them difficult to program. The discussion in this section focuses on the

how a horizontal microarchitecture affects the applicability of a number of traditional

optimization techniques.

2.2.1. Register allocation

The problem of register allocation arises in compiler optimization because there exist

memory hierarchies within a machine architecture. Certain storage locations-usually called

registers-are cheaper to access (in time or in space) than others. There may also be

machine instructions in which the sources and/or destinations are limited to a certain class of

storage locations, or to one location. It is the job of the register allocator to bind program

variables and compiler-created variables to storage locations. Sometimes a copy of a storage

location is rebound (temporarily) to another storage location to take advantage of access

frequency in a particular program segment.

Three features discussed in the previous section affect the problem of register allocation. It

was mentioned in Section 2.1.4 that horizontal microarchitectures tend to have a large

number of storage classes, which makes register allocation more difficult.

In addition, register allocation can be affected by the higher cost of accessing main

memory; the amount of main-memory traffic can easily become a dominating factor when

allocating registers for a micromachine. The microcode register allocation schemes designed

by Kim and Tan [Kim 79] and DeWitt [DeWitt 76] are based on the premise that main memory

traffic should be minimized.

Finally, register allocation can be affected by the difficulty of predicting the cost of a /Op.

In order to do a good job allocating registers, it is necessary to balance several costs. For

example, if a compiler-created variable contains the result of an intermediate computation,

the decision of where to place the variable should take into account costs that include

[Leverett 81]:

* The cost of accessing the variable in main memory versus the cost of accessing it
in a register.

12 Local Microcode Generation and Compaction

.. e The cost of dedicating a register to the variable during the time in which it is live;
that is to say, the cost of requiring other variables, which otherwise could have
been in a register, to reside in main memory.

" The cost of not storing the value of the variable at all, but rather recomputing its
value whenever it is used. This cost may be small if the variable is used
infrequently.

For vertical architectures, reasonably accurate estimates of these costs can be computed by

examining the code sequences that perform each task. In a horizontal architecture, however,

the estimates of these costs are more difficult to derive.

* 2.2.2. Flow analysis

Flow analysis is "the transmission of useful relationships from all parts of a program to the

places where the information can be of use" [Aho 77]. Such information is necessary in

compiler optimizations such as code motion, common subexpression elimination and register

allocation [Cocke 70]. Flow analysis may be performed at many stages during the compilation
process-in particular, on both source and object code. If a microprogram is being written in

a traditional language such as Pascal, flow analysis at the source level will be identical to

source-level flow analysis in a traditional compiler. Object-code flow analysis, however, deals
with the physical resources of the target machine; the presence of volatile registers and

*delayed instructions in a micromachine can make this analysis more difficult.

2.2.2. 1. Volatile registers

A volatile register is one whose value is implicitly destroyed after a short amount of time.

This has an impact on flow analysis because live data in a volatile resource must be used or

transferred to another storage location before the volatile resource loses its data. In a

traditional compiler. the data in a storage location can be assumed to be preserved until

another instruction explicitly overwrites it. In order to perform flow analysis correctly for a

micromachine, it may therefore be necessary to take into consideration the relative distance
0 between jOps, not just the effects of intervening instructions.

2.2.2.2. Delayed instructions

Some microarchitectures have ItOps whose effect is delayed for several Uls beyond the

execution of the /l in which they occur. This can cause ambiguity in the specification of
whether a storage location is dead or live. Instructions in traditional architectures are

(logically) executed serially; between the execution of two instructions, each storage location

is in a well defined state. On some micromachines (e.g., PDP.11/40E [Fuller 76]) the full

effect of a j1 may not be realized before the next t.I begins execution.

In this case, there exist two different times at which a storage location may be considered to

become dead: when the ILI that uses the resource has been executed, or when the storage

* Issues in Microcode Optimization 13

first microinstruction latchedtime

memory reference initiated

1 second microinstruction latched

I-, MData register overwritten

lL memory reference completed third microinstruction latched

Figure 2-3: Instruction sequence made illegal by delayed execution.I
location has been physically read. Consider the example depicted in Figure 2-3. #1 1

contains the uOp that initiates the memory access MEM[mAddrReg]<-mDataReg, but

because of bus timing, the value of the mDataReg is not used until the following jLI. If it were

assumed that the /ls were executed in a strictly serial fashion, then the /1 2 could contain a

pOp which overwrites mataReg, resulting in the wrong data being written to memory.

2.2.3. Local code generation

Although there are many aspects of code optimization, the ability of the code generator to

produce high-quality local code is very important [Leverett 79]. Even after other optimization

techniques have been applied, there are usually several ways to use an instruction set to

produce the same computation. Some macromachines, for example, have addressing modes

by which an address computation may be made cheaply; others have special-case instruc-

tions for setting a storage location to zero or for incrementing it by one; still others have

multiple-action instructions such as subtract one and branch if zero. It is important for the

code generator to take advantage of such instructions in order to generate code of minimum

cost. Because these costs are less predictable for a microarchitecture until the microcode is

compacted, we believe that the code generation problem for horizontal machines is more

difficult. The coupling of code generation and compaction is a major topic of this

dissertation.

2.2.4. Use of constants

The translation of constants from a source language into machine instructions can also be

more difficult for horizontal target architectures. Macroarchitectures tend to have a

"standard method" for generating constants (e.g., an immediate addressing mode). Com-

pilers for such architectures sometimes also perform transformations such as constant

folding and special casing-replacing an addition of the constant "1" with an increment

instruction, for example.

14 Local Microcode Generation and Compaction

The production of good microcode can require creativity in generating constants. It is

often not feasible to use main memory to store constants needed in the microprogram

because it is too expensive to access. Similarly, the specification of a constant in the #1 is

often expensive because it usually requires a large number of bits that may also be needed for

*: other purposes.

A micromachine may have a collection of hardwired constants. It is often worthwhile to

formulate a "difficult" constant in terms of hardwired ones. A micromachine with a shifter

and the constant "1" hardwired into it may generate the constant "8" by left-shifting the "1"

* by three. This type of optimization might be thought of as constant unfo/ding-transforming a

constant into a constant expression: the key to producing such a code sequence is the
recognition of the fact that "8" can be expressed as "1 leftshift 3". Constant unfolding is

discussed further in Section 6.2.5.

*: 2.2.5. Compaction

A horizontal instruction format requires that 1LOps be compacted into pIs. The necessity of

compaction is probably the most obvious difference between compilers for vertical and
horizontal machines, so it is not surprising that a great deal of attention has been paid to this

aspect of microcode optimization. Although progress in the area of pOp compaction will be

discussed in detail in Chapter 3, a short analysis of the complexity of the problem and two

other issues will be covered in this section.

2.2.5. 1. Complexity of the compaction problem

DeWitt [DeWitt 76] proved that the classical microcode compaction problem is NP-hard2 by
restricting it to the unit-execution-time scheduling problem. Here is an alternate proof, which

is based on the NP-hardness of the graph-coloring problem [Garey 79].

We restrict the compaction problem by assuming that there are no data dependencies

* between the pOps. Each pOp is represented by a node in the color-graph; each conflict

between two pOps is represented by an arc between two nodes; each pI is represented by a

color. The problem of placing pOps into a minimal number of jIs such that no pair of

conflicting pOps are in the same pl is isomorphic to the graph-coloring problem: that of

*1 coloring nodes with a minimal number of colors such that no pair of connected nodes has the

shme color.

2NP-hard denotes the class of problems that are at least as hard as any problem in NP. DeWitt claimed that the
compaction problem is NP-complete (i.e., both NP-hard and in NP), but did not make the distinction between the
decision problem and the optimization problem. The decision problem, which specifies a constant K and asks
whether a given set of pOps can be compacted into a sequence of K or fewer Ils, is certainly in NP. The optimization
problem, however, asks for the minimum number of pIs into which the POps can be compacted; whether or not this is
in NP remains an open problem (Garey 791.

I

0 Issues in Microcode Optimization 15

This result may be somewhat misleading, however, because in practice, 1LOps do have data

interdependencies. In Chapter 7, it is shown that the problem can be solved in polynomial

*time if the number of registers in the micromachine is bounded; this result is used to argue

that the classical microcode compaction problem is not properly formulated. The correctly

formulated problem is indeed NP-hard.

2.2.5.2. Compaction in the presence of volatile registers

Because a microarchitecture may have volatile registers, it is sometimes necessary to force

a group of jOps to reside in the same u1. Mallett [Mallett 78] called such a group of pOps a

bundle and treated each as a single pOp during compaction. Some machines, however,

cannot be modeled by single-instruction bundles. If data in a volatile resource is destroyed

during the middle of a pI, it may be necessary to place certain pOps a fixed number of ils

from one another [Poe 81]; in other words, a bundle might span several pls. If interblock

compaction is performed, it may even be necessary for a bundle to straddle a basic block

boundary (i.e., to be divided between two Is in which either the first contains a branch

instruction or the second is a branch target).

2.2.6. Evaluation order determination

Before register allocation is perfo'med, a compiler must determine the order in which

program statements are evaluated, and even the order in which subexpressions within an

expression are evaluated. If such an ordering is not performed, the register allocation phase

will not know the number of compiler-created variables that are necessary at a given point in

the program to hold temporary results. The purpose of evaluation order determination in

optimizing compilers has traditionally been that of minimizing the number of registers

required for the evaluation of a given expression or the execution of a given block of code.

For horizontal architectures there is an additional factor that may take precedence over

register minimization: the evaluation order puts constraints on how pOps may be compacted.

6 It is therefore possible that a "poor" choice of evaluation order may force pOps to be

compacted together that "don't fit very well together." There is thus a circular interdepen-

dence among the four tasks, evaluation order determination, register allocation, code

generation, and compaction:

* Register allocation must know the storage requirements for temporary variables,
and is therefore dependent on the evaluation order of expressions.

e Code generation is dependent on register allocation because references to
different storage classes are likely to be accessed using different sequences of

4 11FOps.

* Compaction is dependent on code generation because pOps cannot be com-
pacted until they are generated.

*Q 16 Local Microcode Generation and Compaction

* It is highly desirable that the task of determining evaluation order make use of
compaction information in ordering expressions so that the final ordering of code
"fits together well".

2.2.7. Short-circuit evaluation

Short-circuit evaluation is an optimization often performed by traditional compilers on

boolean expressions such as

et or (e. and 93)

If the subexpression e1 is true, there is no need to evaluate the e2 and e3 (assuming no

side-effects); similarly, if e2 is false, it is not necessary to evaluate e3 . It is also possible to

perform short-circuit evaluation on a numerical expressions-special-casing multiplication by

zero, for example. On a traditional machine, however, such an "optimization" is not

S. attractive: program space and execution time would both be increased, except in one case

(i.e., first expression evaluates to zero). In a horizontal machine, however, it is possible that

gIOps to test for the value zero and to perform a conditional branch could be added with no

space or speed penalty. The net result in this case would be a program that is occasionally

faster-but never slower-than the same program without the optimization. Such an

optimization might also be done for other operators or functions, such as min when there is a

known lower bound on the range of expression values. In short, a horizontal target

architecture increases the scope of feasible short-circuit evaluation optimizations.

2.3. Summary

A major problem with generating quality code for a microarchitecture is that it is often

difficult to estimate the cost of an instruction (i.e., a 1LOp). This problem affects aspects of

optimization such as register allocation, code generation, and short-circuit evaluation. In

addition, other characteristics of microarchitectures, such as volatile resources and the high

cost of main memory accesses, may also have an impact on optimization.

S

.0 - <

Previous Work 17

Chapter 3
Previous Work

In the past decade, significant progress has been made in the area of compilation for

microprogrammed target architectures. This chapter is an overview of the progress in the

following areas:

* Microcode compaction, the packing of ILOps into Ids, attempting to minimize the
number of tLIs in the program.

* The formulation of a micromachine model that covers a large class of
microprogrammable machines but is simple enough that reasonably efficient
algorithms can be effective.

e The allocation of registers to program variables and compiler-created variables in
microarchitectures.

* Microcode generation, the production of pOps from high-level or intermediate-
level programs.

A great deal of effort has been put into the development of effective compaction

algorithms, particularly in compacting /iOps within a basic block. Several authors have

concluded that the problem of efficiently-usually optimally-compacting microcode within a

basic block is a solved problem [Fisher 81b, Davidson 81]. This conclusion, however,

assumes a simple (and usually unrealistic) view of the microarchitecture and the data

relationships among pops, as will be shown in Chapter 7. There also remain unsolved

problems in the area of global (i.e., interblock) compaction.

The development of a reasonably general model has also progressed, although there still

exist areas in need of further refinement, particularly in the area of micromachine control

4 structures. Register allocation and code generation have received relatively little attention.

The purpose of this chapter is to give an overview of work in the area of compiler

optimization for horizontal target architectures. Its scope is therefore wider than that of the

subsequent chapters. We include such topics as register allocation and interblock cor .pac-

tion for completeness.

18 Local Microcode Generation and Compaction

3.1. Compaction

Because several ItOps may be executed during a single u1 on a horizontal microar-

chitecture, it is desirable to compact them as tightly as possible in order to minimize the

execution time of-and the space taken by-the microprogram. Most research to date has

been limited to the compaction of FOps within a basic b/ock-a sequence of jJs with a single

entry and exit point. These intrablock algorithms are discussed in Section 3.1.1, while

research in the area of interb/ock compaction is discussed in Section 3.1.2.

In this section, a simplified model of a microarchitecture is used so that the reader can

understand the algorithms without being concerned with low-level machine details; issues

Iregarding more complicated models are discussed in Chapter 5. The simplified model chosen

for the discussions in this section is:

A microprogram is a sequence of pIs, each containing zero or more FOps. The
following relations are defined between fOps:

* Two tLOps may conflict. Conflicting [LOps may not be executed concur-
rently.

e A /LOp may require data that is produced by another /.Op. If this is the
case, then the former is said to be data dependent on the latter.

* A fLOp may destroy data that is required by another tLOp. If this is the case,
then the former is said to be data antidependent on the latter [Banerjee 79].

For the purposes of this discussion we shall use the term data dependency when
referring to either a dependency or an antidependency, because current compac-
tion algorithms treat them in the same manner; in Chapter 7 it is argued that such
treatment is a mistake.

A legal microprogram contains pls whose FOps satisfy the following constraints:

* Two conflicting ILOps may not reside in fhe same jl1.

* If a pOp is data dependent on another JLOp, the former must be placed in a
4 ; later t 1 than the latter.

The classical microcode compaction problem [Landskov 80] is that of finding a
legal microprogram of minimal size.

3.1.1. Compaction within a basic block

With this simplified machine model in mind, let us consider the problem of compacting

* FLOps minimally within a basic block. Because the problem is NP-hard, one might expect all

. compaction algorithms to consider a large number of fLOp orderings; surprisingly, many of the

algorithms are linear or near-linear. Three different strategies have been used in addressing

this problem:

I

Previous Work 19

e Heuristic searches with backtracking [Winston 77]. Each fOp is potentially
placed into (and removed from) several different fIs during the compaction.

9 Greedy algorithms, which consider the placement of each fLOp only once.

e Iterative algorithms, in which each tLOp is considered once during each iteration,
but which continues compaction until a solution converges.

3. 1. 1. 1. Heuristic searches

One of the earliest published methods for compacting microcode was presented by Yau,

Schowe and Tsuchiya [Yau 741. The algorithm is quite simple, as it performs an exhaustive

search with backtracking. For clarity, a nondeterministic version is presented here:

1. Determine data dependencies amo'ng FLOps based on resource usage.

2. Compute the data available set, which is the set of IFOps that have not been
assigned to a 1I, and which are data dependent only on FLOps which have been
already been assigned to a IL.

3. Choose (nondeterministically) a /AOp from "he data available set. If it does not
conflict with the current id, add it to the current jil; otherwise create a new JLI and
place the tOP there, making the new IL the "current ul".

4. Repeat steps 2 and 3 until all FLOps have been assigned to FLIs.

Although the algorithm runs in exponential time, and is therefore not practical, it is important

historically because many of the current compaction algorithm- re based on it.

Yau et al. also proposed two pruning methods in order to reduce the search time. The first

pruning method only considers in step 1 FLOps which do not conflict with the current PI, if any

such IjOps exist. This guarantees that each FLI will be complete-a new IlI will not be created

until it is impossible to add a fLOp to the current one. For the simple micromachine model, this

pruning method is perfectly reasonable; for more complex machine models, however, such an

approach is insufficient (see Chapter 7). The second pruning method, which prunes all but

one branch at each node (i.e., backtracking is not performed), is presented in 3.1.1.2.

The compaction algorithm of DeWitt [DeWitt 76] is a variation of the one described above.

(His algorithm also performs register allocation, which is being ignored in this discussion.)

The FLOps are ordered using an evaluation function [Winston 77] that is a weighted sum of the

number of FLOps in the jIL, the number of operands it loads, and the number of new ILOps

which become data available when the [LOp is inserted. The search is pruned using upper

and lower bounds on the number of fLIs in the minimal.length program; these bounds are

computed using conflict and data dependency information.

Mallett's experiments [Mallett 78] suggest that both of these algorithms are too slow to

perform well in practice. We shall therefore turn our attention to polynomial.time algorithms

in the rest of this section.

20 Local Microcode Generation and Compaction

3. 1.1.2. Greedy algorithms

A greedy algorithm is an algorithm that generates an approximate solution to an (often)

intractable problem by doing a linear-time partial search through the problem space,

choosing the locally optimal solution at each point [Horowitz 78]. Current greedy algorithms

' in the area of microcode compaction fall roughly into two classes. The first class includes
versions of Yau's exhaustive algorithm that prune the search tree to one branch at each node.

Algorithms in the second class first identify and place "critical" pOps, and then "fill in the

*i holes".

Greedy versions of the exhaustive search have been suggested by Yau et a/. [Yau 74,

Mallett 78], Wood [Wood 79a], and Fisher [Fisher 79]. Except for the method of initially

ordering the AOps, all are essentially the same algorithm:

1. Determine data dependencies among tLOps based on resource usage.

2. Order the operations according to an evaluation function.

3. Compute the data available set-the set of tLOps that have not been assigned to a
I. and that are data dependent only on stOps which have been already been

assigned to a JI.

4. Choose the 1LOp from the data available set whose value (as determined by the
evaluition function) is the largest among the AOps that do not conflict with the
current 1d, and place it into the current I. If no such pOp exists, create a new
(empty) LIt-which becomes the current pl-before placing the tLOp.

5. Repeat steps 3 and 4 until all 1AOps have been assigned to Als.

Yau oi at. and Wood weight each j.Op according to the number of (direct or indirect)

descendents in the data dependency graph. Fisher based his choice on experiments that

tested twelve ordering strategies, and concluded that ranking the .LOps according to their

height in the data dependency graph was among the most promising. Poe [Poe 80] is basing

his work on Fisher's conclusions and is also using graph height to order the UOps in the

.4 compaction process.

A variation of the algorithms above is the linear pairwise comparisons algorithm, proposed

by Dasgupta and Tartar [Dasgupta 76]. This algorithm differs from the ones previously

discussed in that it scans de. jLOps strictly in order of weight (in this case, source order). Data

and conflict constraints are used only to bound the placement of JLOps, which are placed in

the earliest possible pl. Its heavy dependence on the (arbitrary) order of the pOps in the

uncompacted source code makes this algorithm rather unattractive.

The critical path partitioning algorithm by Tsuchiya and Gonzales [Tsuchiya 74] uses the

data dependency graph to identify critical pOps-operations which fall on a longest path of

the graph. The critical pOps are placed in is first, with subsequent pOps being placed later;

41

Previous Work 21

new pIs are created when necessary. When conflicts require one of two gFOps to be delayed,

the one with the fewest successors in the dependency graph i,3 chosen. Tokoro et al. [Tokoro

81] also use a version of this algorithm.

3. 1. 1.3. Iterative methods

Gosling's iterative expansion compaction algorithm uses a somewhat different

approach (Gosling 81]. Instead of beginning with an "empty" basic block and placing JAOps

until all have been placed, the algorithm begins by placing all YOps into a single UI at the

beginning of the block and successively moving them forward until all constraints are

satisfied:

Compute the dependency relations among the pOps.
Place all ILOps into the first lI.
Wh i l e there is still a (data or conflict) violation do

For each .Op do
If thisLOp is causing a violation then

move it to a later time such that it causes no violation, if possible.

When there is a choice of two or more /tOps to move, the current implementation chooses the

one that was later in the initial ordering of /tiOps. This causes the algorithm to have some of

the same weaknesses as the basic pairwise comparisons algorithm of Dasgupta and

Tartar [Dasgupta 76]. An obvious extension would be to order the pOps "intelligently" before

compaction. The worst-case execution time of the iterative expansion algorithm is quadratic

in the number of uOps. although its performance is nearly linear in practice.

3.1.2. Compaction involving multiple basic blocks

Interblock compaction algorithms have bean the subject of only a limited amount of study.

Most techniques that have been considered involve first compacting the basic blocks

separately, and then recognizing individual situations in which a pOp (or group of pOps) may

be moved between blocks. Dasgupta [Dasgupta 77], Wood [Wood 79b], Poe [Poe 80], and

Tokoro et al. [Tokoro 81] have proposed such methods. Fisher [Fisher 79, Fisher 81a]

developed another technique, trace scheduling, that performs both interblock and intrablock

compaction simultaneously.

3. 1.2. 1. Ad hoc methods

Dasgupta [Dasgupta 77] and Wood [Wood 79b] have considered movement of pOps

between pairs of basic blocks that surround an if-then-else or case construct that has no data

dependencies involving the pOps being moved.

The strategy being developed by Tokoro et al. [Tokoro 78, Tokoro 81] uses a set of rules to

determine when pOps may be moved among neighboring blocks; pOps can potentially move

long distances when these rules are applied recursively. The usefulness of their algorithm

22 Local Microcode Generation and Compaction

- has yet to be proven, however, because the algorithm does not specify the order in which the

* interblock motions are attempted or how it is determined whether a legal motion is desirable.
The only data that has been published about the algorithm's performance is based on hand

simulations.

Poe (Poe 80] suggested a technique in which each compacted basic block is examined for
"holes". When a hole is found, an attempt is made to find a pOp from another block to fill it.
As with the algorithm of Tokoro et al., the overall methodology was been reported without

experimental results.

3. 1.2.2. Trace scheduling

The method that has thus far shown the most promise for interblock compaction is that of
trace scheduling, which was introduced by Fisher [Fisher 79, Fisher 81a]. A multiblock
compaction problem is transformed into a series of basic-block compaction problems in such

a way that their solution will result in an effective interblock compaction:

1. Rank each basic block according to the expected number of times it will be
exec-ited. Presumably this is determined by "hints" in the source code, or by
feedback from execution profiles.

2. Use the rankings to trace a "most common path" through the microcode.
Append the basic blocks in this trace together, adding artificial arcs to and from
branch pOps in the data precedence graph; these arcs represent data depen-
dency relations between ILOps that are included in the trace and those in other
basic blocks.

3. Compact the trace as if it were a basic block.

4. [Bookkeeping step.] Duplicate all instructions that were moved backward past
"join" boundaries in the previous step. Create new basic blocks to hold these
MOps and insert these new blocks in front of the respective off-trace blocks that
directly join blocks in the trace. This prevents off-trace paths from "losing"
11Ops.

5. Repeat with other "common" traces, preserving pOps in any basic block which
has already been part of a trace.

Trace scheduling has thus far shown the most promise of any the interblock compaction

-. technique. First and foremost, it is the only one that has been implemented to compact
microcode successfully. Secondly, the order in which blocks are compacted causes the most

frequently executed blocks to be compacted most tightly. Thirdly, it performs intrablock and
interblock compaction in parallel, allowing individual blocks to be compacted with a more
"global" view. Finally it subsumes many ad hoc interblock pOp motions.

3. 1.2.3. Compaction involving loops

The horizontal nature of a microarchitecture makes it quite conducive to being
programmed in a pipelined fashion. This often results in a large payoff if 1LOps at the

Previous Work 23

beginning of a loop can be "rolled back" into the end of the (previous iteration of the) same

loop. Consider the three-/d loop in Figure 3-1a. It may be possible for the "load operands"

.,Op in the first j1 to be executed in the last ILI of the previous iteration of the loop, thereby

reducing the size of the loop by one Jl, as is shown in Figure 3-1b.

load operands

!oad operands
subtract

branch sub t subtract

load operands branch

(a) (b)

Figure 3- 1: Shortening of loop by pushing IzOp into previous iteration.

Discussions of loop compaction appear in papers by Fisher LFisher 79, Fisher 81a] and Poe

[Poe 80]. Both consider compacting a loop as a basic block before compacting other blocks;

then the loop is treated as a "large 1LOp", with limited involvement in the rest of the

compaction process. There is little discussion anywhere about rolling a loop back into itself.

3.2. Micromachine Models

In the previous section, several microcode compaction algorithms were discussed using an

intentionally simple model of a micromachine. This section discusses the development of

* more realistic machine models.

Because most microcode optimization research has been directed toward the problem of

compaction, micromachine models have generally been defined in terms of the two

fundamental compaction constraints, juOp conflicts and jiOp data dependencies. Other

* aspects of the micromachine model, such as /LOp semantics, have not been addressed to as

great an extent. On the other hand, models have been developed that are so general that they

encompass almost anything that could be characterized as a digital system [Barbacci 77,

Hansen 80]. While general models may be useful for other purposes (e.g., simulation) it is not

6 likely that they characterize microarchitectures in a manner that would be useful for

producing optimized microcode; we therefore do not consider them in our discussions.

,@

- 24 Local Microcode Generation and Compaction

*. 3.2.1. Conflict determination

Early algorithms simply assumed that there exists a way to determine whether two pOps

could be legally placed in a pl [Yau 74]. Although simple, this assumption is still largely

"- valid [Fisher 79] because most current compaction algorithms treat conflict determination as

"'* a "black box" subroutine. The remainder of this section is a discussion of the history of LOp

conflict models.

Tsuchiya and Gonzales [Tsuchiya 74] pointed out that FiOps often conflict because they

use a common machine resource. Dasgupta and Tartar [Dasgupta 76] noted that even when

-" two pOps apparently use a single resource incompatibly, that it may still be possible for them

to reside in the same word if each uses the resource during a different phase of a polyphase

jil cycle. Although the inclusion of polyphase machines in the model affects conflict

determination, its major effect is in the area of discovering data dependencies (see Section

3.2.2).

It is also possible for two apparently independent FAOps to conflict because of the format of

the tl. DeWitt [DeWitt 761 developed an extensive model of a micromachine control word in

which ILOps using I-1 common fields only conflict with one another if they use different values

in their common fields; the model of Sint [Sint 81] also takes field values into account. The

models of Gosling [Gosling 31] and Fisher [Fisher BaJ do not compare field values; this

simpler view is less general, but allows conflicts to be determined using a bit vector.

Fisher [Fisher 79] also presented a clever method that allows field values to be encoded as bit

vectors thit "b uve" as simple conflicts.

With the exception of a model extension suggested by Fisher [Fisher 79], the machine

models proposed thus far assume that 1LOp conflict is a binary relation; that is, given any two

ILOps, it can be determined whether they may reside in the same Fl. Hardware considera.

tions, such as fan-out, may make this assumption -narcurate-a bus may exist that may be

0 read by no more into two resources sir,'ultaneously; three pairwise compatible ILOps that read

the bus may cause unstable signals to be generated if executed concurrently. This situation

occurs rarely in practice, however, so it is probably not of great importance.

3.2.2. Data dependency considerations

In the previous section, it was suggested that conflict determination can generally be

isolated from the rest of the compaction process. Unfortunately, the determination of data

" dependencies cannot be so isolated; the manner in which data dependencies are modeled

* can have a profound effect on compaction. Our simple micromachine model states that if a

pOp is data-dependent on another pOp, the former must be in a later jil than the latter.

Previous Work 25

3.2.2. 1. Polyphase instructions

Dasgupta and Tartar [Dasgupta 76] included in their model the possibility that a given jOp

may only be active during a portion of a I. On such a machine, it may be possible for two

pOps to reside in the same jI even when one is data dependent on the other; this can happen

when one tLOp executes during an earlier subphase of the tLI than the other.

This led to a concept that they called conditional disjointness (>_ter called weak

dependence, and most recently non-strict dependence)-a dependency relation in which a

AOp may coincide with, but not precede, a t.Op on which it is data dependent. Previous

models had required data dependent ILOps to be at least one 1AI apart.

3.2.2.2. Delays

The model of Mallett [Mallett 78] includes microarchitectures with pOps that require more

than one microcycle to complete. Such tLOps are rather commtn; references to main

memory, or complex operations like multiplication, often last longer than a single microcycle.

Such "long" operations are generally handled in the compaction phase by inserting dummy

MOps into the instruction stream [Davidson 811.

3.2.2.3. Volatile registers

Mallett also addressed the issue of volatile regsters (sometimes called transitory data

resources) [Mallett 78]. A volatile resource is one which holds its data for only a short period

of time, typically one microcycle.

A /Op that reads data from a volatile resource must read it before the data is lost. Mallett

therefore introduced the concept of a bundle, which is a set of MOps that mu.1t reside in the

same [I because they pass data via volatile resources. In order to enforce the coresidency

restriction, each bundle is treated as a single ILOp during compaction.

Unfortunately, bundles as defined by Mallett do not successfully model a volatile register

whose lifetime extends into the next td. This subject will be discussed at length in Chapter 7,

because it has a non-trivial impact on the compaction problem.

3.2.3. Microoperation semantics

The formalization of pOp semantics has received relatively little attention until recently.

This is largely due to fact that most microprogram optimization research has been limited to

studying the compaction problem; semantics were modeled only as far as resource

usage [Sint 811. Another reason is probably that the semantics of a POp-apart from timing-

are basically the same as those of an instruction for a traditional machine. Several research

efforts in microcode generation have used an existing language, such as ISP [Barbacci 77,

Mueller 80a, Mueller 80b, Ulrich 80] or YALLL [Patterson 79, Sint 81], to describe the functional

behavior of a t&Op.

26 Local Microcode Generation and Compaction

• The recent work of Sint [Sint 81) is directed at both the code generation and compaction

problems and appears to be reasonably general. The usefulness of the model for code

generation will be seen as her research progresses.

3.3. Register Allocation

The issue of register allocation for microarchitectures has received a moderate amount of
attention. DeWitt and Ma and Lewis base their algorithms on the premise that memory

references are extremely expensive; memory-register traffic should thus be minimized at all

costs. The effort by Kim and Tan attempts to balance the cost of memory-register transfers

with other costs.

DeWitt [DeWitt 76] and Ma and Lewis [Ma 80] each assume that the registers in a

I= microarchitecture are homogeneous, and that uncompacted object code has already been

generated. Unbound variables are, of course, named symbolically.

1 DeWitt performs register allocation in parallel with branch-andbound compaction. Some

of the branches of his heuristic search involve attempting different register/variable bindings,

including the insertion of instructions to swap variables between registers and memory. A set

of rules is used to prune the search tree, preventing known non-optimal paths from being

travcrsod. Because his experiments were conducted only on small examples, no evidence is

presented to indicatc that this method is computationally feasible.

Ma and Lewis divide the variables into local/global and dirty/clean classes. If at any point

a free register is needed in a basic block, another variable is preempted according to its

priority, where the eight priorities are defined by the cartesian product of whether the variable

is dirty or clean, local or global, and used or unused in the current basic block. When it is

determined that memory-register transfer is necessary, additional tFOps are inserted into the

object code. Compaction is performed as the final step.

The algorithm of Kim and Tan [Kim 791 includes microarchitectures with heterogeneous

registers; allocation is performed among registers classes as well as between the registers

and main memory. Costs are balanced between the generation of "optimal" local code,

swapping registers in and out of memory, and moving registers between classes within the

a micromachine. The algorithm itself has four major steps:

" Given the generated object code, with symbolic names for variables, perform flow
analysis to determine the portions of the program (if any) where the number of
live variables exceeds the number of registers.

i e For each such portion of the program, attempt to reduce the number of live
variables by applying semantics- preserving transformations.

* If excessive variables still remain after attempting code transformations, insert

".

I

Previous Work 27

load and store instructions to reduce the number of live variables assigned to

registers.

. Assign the variables to registers. It may be necessary at this point to insert
register-register transfer instructions in order to move variables into the ap-
propriate register class when they are needed-moving a variable involved in an
addition into a register which feeds the ALU, for example. An attempt is made to
minimize the cost of these transfers. Different combinations of register-register
transfer operations and additional load/store instructions are generated, the one
with the lowest cost being chosen.

They discuss in detail the methods of cost computation and selection of registers for
,spilling" to main memory.

Memory traffic is reduced by flagging portions of the code that require more active

variables than there are registers; for such portions of code, a request is made to the code

generator to find an alternate sequence which uses fewer registers. If that fails, a variable is

swapped out to memory. Because the registers are heterogeneous it may also be necessary

to swap data among registers-if the register freed up is of the "wrong" class, for example.

An attempt is made to balance the costs of swapping to memory and shuffling registers.

Although they do not specify whether the target machine is horizontal, the emphasis on

reduction of registor-memory traffic and the handling of heterogeneous register classes

makes this algorithm an attractive one for microarchitecture register allocation.

3.4. Code Generation

The major goal of microprogram optimization research is the efficient compilation of

microcode from a high-level language. Unfortunately, much of this research been limited to

the compaction problem, because "horizontalness" is the most striking difference between

micro- and macro- architectures. Tokoro et al. [Tokoro 78], Wood [Wood 79a], Fisher [Fisher

79, Fisher 81a], and Poe [Poe 80] all presume as a front end to their systems an optimizing

compiler that performs all classical compiler optimizations.

This section surveys research efforts that have attempted some form of code generation.

None of the systems generate code with the quality of traditional optimizing compilers; many

do no optimization at all. If nothing else, this illustrates that there is much work to be done in

this area.

Two efforts, the EMPL [DeWitt 761 and Strum [Patterson 76] systems, did not describe their

code generation techniques in sufficient detail to be reported here. These two systems are

probably not directly relevant to this work as the EMPL system had not been completed at the

time it was described, and the Strum code generator made no attempt to optimize code.

28 Local Microcode Generation and Compaction

3.4.1. Simple code generation systems

As far as could be discerned from their examples, statements in the SIMPL [Ramamoorthy

74] and MDL [Wood 79a] language compilers correspond in a one-to-one manner to JtOps in

the target machine. The translation process, then, is largely one of matching statements with

* pOps. Both compilers understand if and while constructs, and produce branch FOps and

labels when control constructs are encountered.

The MUMBLE language [Gosling 81] is largely at the same level as SIMPL and MDL in that

program statements correspond to pOps on an almost one-to-one basis. The MUMBLE

compiler also contains a graph that represents the data paths of the target machine. If a

register-transfer is specified between two registers that are not directly connected, the

compiler searches the graph and produces uOps which perform the complete transfer.

Language semantics in the MDIL [Ma 80] and MIMIOLA [Marwedel 81] systems are defined in

terms of the target machine using a macro table. When the compiler encounters a statement

in the language, its macro is expanded into machine code.

3.4.2. Code generation with limited optimization

The PL/MP microcompiler [Tan 78] uses a series of templates that associate patterns in the

intermediate language with machine language coastruct3. The templates are ordered in such

a way that special cases (e.g., add indirect) are tried before general cases (e.g., add).

Versions of the YALLL compiler [Patterson 791 have been implemented for two different

micrcarch;tectures. Simple optimizations are performed, such as the replacement of an

"add" pOp with an argument of "1," by an "increment" pOp.

3.4.3. Code synthesis from ISP

Ulrich [Ulrich 80] and Mueller [Mueller 80a, Mueller 80b] have each explored the synthesis
of microcode from ISP [Barbacci 77] in a machine-independent fashion using "unconven-

tional" techniques. The ISP statements that were used as -source code" were also quite

short. Neither one attempts to produce optimized code or to compact pIs; neither system has

yet been shown to be fast enough to be practical.

The system of Ulrich uses symbolic execution techniques. The ISP language is used both

as source code and to describe the micromachine semantics. First, a goal is set up by

symbolically executing the source ISP statement. Then different sequences of JiOps are

symbolically executed until a sequence is found that achieves the goal. The current

implementation produces correct, albeit inefficient, code.

Mueller attempts to derive microcode using theorem-proving techniques. Micromachine

Previous Work 29

semantics are specified in a dialect of ISP by defining each UOp in terms of the way it modifies

the state of the machine. The first phase of the translation process formulates the source

Iprogram as a symbolic assertion. Next, a theorem-proving process is invoked to verify the

existence of a computation which satisfies the assertion. The microprogram is then extracted

directly from the proof. At the time of this writing, only a nondeterministic algorithm is

implemented; in other words, human intervention is required to guide the program through
the search space.

3.5. Summary

Although algorithms for solving the classical microcode compaction problem have been

developed that appear to perform well in practice, the problem itself does not address the

issue of dealing with data antidependencies. Interblock compaction is understood to even a

lesser extent, particularly the problem of compacting a loop that "wraps around itself"; details

of j'Op timing may also complicate the flow analysis necessary to perform interblock

compaction.

The development of micromachine models has progressed slowly, but a recent model by

Sint [Sint 81] appears to be a reasonable compromise between completeness and utility;

because her research effort is in progress, final judgement must be reserved until later.

Research in other phases of optimizing micromachine compilers has progressed much

more slowly. Although moderate progress has been made in the area of register allocation,

the st-ate of the art in most phases (e.g., code generation) seems to be limited to the

techniques used in traditional optimizing compilers.

Scope of this Research 31

Chapter 4
Scope of this Research

This chapter defines the set of problems addressed by this dissertation and introduces

methods by which the research was performed. First, the central problem-coupling the code

generation and compaction phases of compiler for a horizontal microarchitecture-is

described. Then three issues are discussed that are closely related to the central problem;

these are addressed to a lesser extent in the dissertation. Following that, the scope of this

dissertation is delimited by describing related problems that are not addressed. Finally, the

research methodology is described.

4.1. The Central Problem

This dissertation describes the exploration of three methods by which the code generation

and compaction phases of a compiler for a horizontal target microarchitecture can be

coupled. The task of the code generator in an optimizing compiler is that of producing

high-quality machine code that preserves program semantics, where quality is defined as a

function of time and space costs. As was discussed in Section 2.1.1, these costs are difficult

to estimate for horizontal machines until after compaction is performed. The central issue

that this dissertation explores is then, How can compaction information be used to increase

the effectiveness of the code generator?

4.1.1. Some examples

In order to demonstrate that such a problem may arise in a real program, three examples

are given. The first involves the addition of a small constant to a register. The second

involves generating a test for a loop, while the last involves the interaction of jOp conflicts

and a volatile resource.

4. 1. 1. 1. Increment by two

For our first example, consider a situation in which the code generator is required to add

the constant "2" to a register on the micromachine sketched in Figure 4-1. An obvious code

sequence to perform this operation is one that gates the register onto one input of the ALU

PREVIOUS PAGE

IS BLANK

32 Local Microcode Generation and Compaction

constant register
file

AMUX

Figure 4-1: Micromachine with ALU and counter.

* the constant "2" onto the other, sets the ALU function input to add, and then stores the result

back into the register. Such a code sequence would probably require one or two [Lis,

depending on pOp timing.

Another possibility would be to move the register value into the counter, increment the

counter twice, and move the counter value back into the register. This sequence would take

at least two /ls, and possibly three or four.

In deciding which of these sequences to produce, the code generator might consider the

following:

e If surrounding code uses the ALU heavily, but does not use the counter, it is
possible that the second sequence can be done for "free"-that is to say, using
holes in existing jLIs.I

* If neither the ALU or counter is overloaded, the first sequence is probably both
faster and more compact.

* It is possible that, due to jtl field contention, an additional III or two will have to be
inserted in order to produce the constant "2" for the first sequence.

* It is possible that the compaction algorithm can arrange for a prior jAOp sequence
to leave a constant "2" in a scratch register, making the first sequence more
attractive. On the other hand if the constant "-2" could be left in a scratch
register, the shortest code sequence might be one in which the ALU performs a
subtraction.

Scope o this Research 33

4. 1.1.2. Loop testing

ram The second example involves conditional branching on a micromachine in which the

computation of branch conditions is overlapped with the fetching of j.ls from the control store
[Fuller 76, Ousterhout 78, Rosen 79J3 In such a machine, a conditional branch may require

several jicycles to complete; it may be necessary to place the MAOps that initiate the

conditional branch several .is before the actual branch is performed. A typical comparison
and branch sequence on the Kmap, for example. takes three /ls. During the first tL1 the ALU
inputs are loaded with the values to be compared. The second .LI uses the ALU to perform a
comparison and to generate condition codes, which are used by the third tL1 to perform the

conditional branch.U
Given such an architecture, consider a program containing a loop that is to terminate when

the counter reaches the value 50. The code produced in this loop would then include:

1. A pOp that increments a counter.

2. ILOps that read the counter (and value 50) into the ALU for comparison.

3. A .uOp that branches on the condition generated by the ALU.

The iPOps to be compacted would include data dependencies between the .Ops in 1 and 2. It

is possible, however, that the code for the loop could be compacted more tightly if JAOp 1 were
somehow allowed move past those in 2. If the code generator and packer were working
together, it might be recognized that the order in which 1 and 2 are executed could be

reversed, if the the key value were changed from 50 to 49, resulting in a semantically
equivalent, but shorter, j#I sequence. If the remainder of the loop could be compacted even

more tightly, this lag might even be two iterations, requiring a comparison with the value 48.
The code generator, which is responsible for producing the /AOp sequence, does not have

enough information before compaction to determine which value to use.

4.1.1.3. Volatile register compensation

* As a final example, consider the following simplification of a problem that occurred when

the author was writing microcode for the STAROS operating system [Jones 79, Vegdahl 81].
The micromachine, shown in Figure 4-2, has the following hardware constraints:

e The V-register is volatile, losing its data at the end of each td.

S* JLOps that load the D-register and V-register execute during the first sub-
microcycle of the #p1; ItOps which load the register file, A-register, and F-register
execute during the second sub-microcycle. It is thus possible for data to be
moved from the A-register to Reg[O] during a single jil, but it takes two #Is to
move data from Reg[O] to the V-register.

3This example'involves interblock compaction, which is not directly addressed in this dissertation. It is included as
an illustration of the general problem.

34 Local Microcode Generation and Compaction

* The register file is read and written during the same sub-microcycle, and thus
cannot be read and written during the same lI.

6
register register

W h c i dfile

Ilia

Figu re 4.2: Microt,'achine with register file and volatile register.

With this machine in mind, consider the problem of moving data in the A-register to Reg[1],

and the data from Reg[O] into the D-rcyister. The straightforward code sequence for this

would be

Areg -> Vreg; Vreg -> Reg[l] move data from Areg to Reg[11
Reg[O] -> Areg move data from Reg[O]
Areg -> Dreg to Dreg

This sequence can be compacted into three pLs. The first two tLOps must reside in the same

F&l because the V-register is volatile; the second and third 1LOps may not reside in the same JI
because they both access the register file, while data dependencies require the fourth 1LOp to

follow the third.

Note that if the V-register were not volatile, the second and third FOps could be

interchanged, allowing the sequence to be packed into two fils:
4 Areg -> Vreg; Reg[O] -> Areg

Vreg -> Reg[1]; Areg -> Dreg
This can be simulated by using the F-register to hold the data for one cycle:

Areg -> Vreg; Vreg -> Frog; Reg(O] -> Areg
Frog -> Vreg; Vreg -> Reg[l]; Areg -> Dreg

4! We see then, an unusual situation in which the execution time of a sequence can be

*shortened by inserting additional 1Ops. It is highly doubtful that the code generator in an
optimizing compiler would produce this sequence, in which the data traverses an

L extraneous" data path, unless compaction were considered.

Scope of this Research 35

4.1.2. Summary

The above examples illustrate that it is potentially profitable to couple code generation and

compaction. A solution to the first example would involve primarily analysis of resource

bottlenecks (ALU, counter), while a solution to the the second depends more on the ability of

the two phases to share timing information; the last example has some elements of both.

We do not mean to suggest that this dissertation presents methods for effectively dealing

with all three of the above problems; rather, several methods of coupling the phases are

explored, leaving the reader the opportunity to judge their strengths and weaknesses. The

procedure used in these experiments is outlined in Section 4.4.

4.2. Related Issues

In addition to the problem of coupling compaction and code generation, several other

issues relevant to microcode generation are explored here. The development of an adequate

micromachine model and code generation and compaction algorithms are necessary

prerequisites for the study of the coupling problem. We also explore a technique for

generating micromachine constants more intelligently because it appears to be promising.

4.2.1. Machine model

Previous research in the areas of microcode compaction and microcode generation has

produced a number of micromachine models. Unfortunately, the compaction research has

produced micromachine models that are too simplified to characterize pOp semantics

adequately; similarly, microcode generation research has tended to ignore timing and

resource-conflict issues. The machine model presented in Chapter 5 incorporates machine

semantics and timing. We do not mean to imply, however, that our model encompasses all

microarchitectures; examples of machines that do not completely fit the model are given in

Section 4.3.5.

4.2.2. Microcode compaction

Although the problem of microcode compaction has received much attention, we became

r convinced during the course of this research that further work is needed. The data

dependency models used as a basis for current compaction techniques are not adequate. As

a result, the solution space is severely restricted; even the exhaustive compaction algorithms

consider only a small subset of legal .Op orderings.

In addition, the machine models under which most compaction algorithms have been

developed do not allow volatile resources to hold data across i boundaries. When this

ii i
: - - '] " - -. .: " ."

4 36 Local Microcode Generation and Compaction

feature is introduced to the model, current compaction techniques appear to be inadequate.

Examples of this problem are given in Chapter 7.

*4.2.3. Constant generation

When translating microprograms that contain constants, the compiler must produce one or

more AOps that bring the constant into the micromachine. Possible ways of doing this

include:

* Reading the constant in from main memory. This method has a number of
shortcomings, not the least of which is that it is likely to be quite slow.

" Reading the constant from the literal field of the Al. This is the most straightfor.
ward method of producing a constant in most microarchitectures. It can be
somewhat expensive, however, because such fields in the jI tend to be quite

wide; one fourth of a 64-bit control word is used to specify a 16-bit constant.
Consequently, the literal field is usually overloaded, resulting in constraints on the
number of AOps that may be executed during a Al in which a constant is
specified.

" Producing the constanit "creatively". Most microarchitectures have a number of
constants "built in" to the machine; these may include masks, small positive and
negative integers, and constants that the designers knew would be required for
the "primary" application. It may be possible to combine these built-in constants
to produce other constants. In the (hand-coded) STAROS microcode [Vegdahl
811, such creative mc(thods were used several dozen times.

This research effort addresses the problem by performing constant unfolding during the

process of Gode generation. An attempt is made to express "difficult" constants in terms of
"easy" ones in the hope that otherwise unused (or lightly used) resources can be used to
remove some of the "constant generation" burden from overloaded fields in the Al.

4.2.4. Code generation

The code generation algorithms in this research are based on the code-generator

generation algorithms of Cattell [Cattell 78]. Several modifications were made in order to

increase the depth of a feasible search. The complexity of the evaluation function for the
heuristic search was increased; additionally, the method of ordering the search was modified

and a constant unfolding mechanism was added.

4.3. Problems Not Addressed

Because of the need to limit the scope of this dissertation, many interesting and important

issues relevant to optimized microcode production are not addressed. This section sketches

some of the problems that we chose not to address because they did not appear to be as

closely related to the phase-coupling problem a!, those described in the previous section.

6

Scope of this Research 37

4.3.1. Register allocation

The problem of register allocation for traditional compilers has been studied by many

researchers, including several that have directed their efforts toward microarchitectures (Kim

79, Ma 80]. While it is the author's belief that there is still much work to be done in the area, it
is deemed to be outside the scope of this dissertation. The "variables" given as input to the

code generation phase are assumed to be the names of machine resources; when a register

is needed for an intermediate value, register allocation is done "on the fly".

4.3.2. Other phase-coupling problems

The reader might have guessed that the code generation and compaction phases are not

the only ones that should be coupled in an optimizing microcode compiler. It has been

demonstrated, for example, that register allocation and compaction are another pair of tasks

that can benefit from communicating with one another [DeWitt 76]. Similarly, for reasons

stated in Chapter 2, redundant expression elimination and compaction fall into this category.
It also appears that there is a strong interaction between evaluation order determination and

compaction; this issue is discussed in Chapter 7. Writers of optimizing compilers for

traditional machines also face many of the same issues [Leverett 79].

This dissertation focuses on one particular phase-coupling problem in the interest of

making the task manageable. It may be possible to generalize this research to some of these

other problems at a later time.

4.3.3. Flow analysis

Flow analysis, which can become quite complicated in the presence of unusual timing

features (see Section 2.2.2), will be performed only in as much as needed to determine data

dependency relationships among pOps for the purpose of compaction.

* 4.3.4. Interblock compaction

When this project began, we hoped to address the problem of interblock compaction. This

topic is outside the scope of the current research effort because of the complex flow analysis
it requires, and because unresolved issues in the area of intrablock compaction were

discovered.

SJ

38 Local Microcode Generation and Compaction

4.3.5. Machine model

In order to do an effective job at producing and compacting code, we have excluded

several microarchitecture characteristics from our model, including:

- - Two-level control stores: Nanodata QM-1 [Nanodata 72], MIT Scheme Chip
[Holloway 791.

o/pis with variable-length execution times: PDP- 11/40E (Fuller 76].

o Subroutines: many micromachines, including the PDP-11/40E [Fuller 76], OM
[Johannsen 78], Kmap [Ousterhout 781, and Perq [Rosen 79].

Limitations of the model are discussed in Chapter 5.

4.4. Research Methodology

This section sketches the method by which the issues described in Section 4.1 are

explored. We begin with a general discussion of techniques for handling problems of phase

coupling, and then present an overview of the three coupling methods that have been

explored as part of this research effort.

4.4.1. Coupling methods

As was demonstrated in Section 4.1, when the code generation and compaction phases oi

a microcode compiler are performed sequentially, many optimizations may be missed. In

Section 4.3.2 it was mentioned that there exist phase-coupling problems for compilers in

general. This section describes a number of possible techniques for dealing with the
problem, of which a subset have been tried as a part of this research effort.

4.4.1.1. Ignoring the problem

*. Although obvious, the "technique" of doing nothing is probably quite appropriate in a

number of situations. A small amount of efficiency gained in the final code may not warrant

* the additional compiler-writing effort or compile-time [Aho 77]. In addition, an algorithm in
which no coupling is done can serve as a benchmark for comparison with other methods.

4.4.1.2. Educated guessing

The method of educated guessing involves performing the phases sequentially, but using

* heuristics in the first to "guess" what the other phase is going to do; it then performs its task

using the "knowledge" it has about the second phase.

This technique has been used by the PQCC group [Leverett 79, Leverett 81J in resolving the

coupling problem between the register allocation and code generation phases of the

compiler. The register allocation phase performs an initial code generation in which it
predicts the final code that will be generated; this allows it to "know", for example, how many

ej

r7,

Scope of this Research 39

compiler-created variables will be required for code generation in any given block. This

information is then used to make register-assignment decisions.

4.4.1.3. Iteration
Rather than require one phase to make a guess about the behavior of another, it may be

appropriate to execute the phases alternately allowing each the opportunity to use the
information generated by the previous invocation of the other. This has been shown to be an

effective method of dealing with the subphases in object-code optimizers [Wulf 75, Leverett

791.

While this method appears to be appropriate for phases which open up optimization

opportunities for one another, it may be quite ineffective in a case where one phase makes a

decision that prevents the other phase from performing an optimization; in other words, a

poor decision in the first iteration may be propagated into subsequent iterations [Leverett 79].

4.4.1.4. Multiple choices

In situations where one phase detects a potential optimization, but it is the responsibility of

another phase to decide whether the optimization is desirable, a scheme might be tried
whereby the first phase, rather than performing the optimization(s) it deems best, passes a list

of choices to the second. It is the responsibility of the second phase to select the appropriate

set of optimizations.

This technique is used in the FLOWAN and DELAY phases of the PQCC project; the existence

of such choices is also permitted to a limited extent in the microcode compaction a!gorithms
developed at the University of Southwestern Louisana (Mallett 78, Landskov 80].

4.4.1.5. Performing the phases in parallel

If two phases are highly interrelated, it may be reasonable to incorporate them into the

same phase. The Hearsay speech understanding system [Erman 78] used the concept of a

blackboard, a database common to all phases of the translation process from which any
process could read and onto which any could write.

One might also imagine a scenario in which one phase served as a "master" over the other,

calling it as a subroutine. A flow analysis phase might be designed as a slave to a number of

other modules, each of which requires flow information.

DeWitt [DeWitt 761 designed a microcode compaction and register allocation system in

which the two phases called one another recursively. In this case, each phase acted, in some

sense, as a master over the other.

-

40 Local Microcode Generation and Compaction

4.4.2. Coupling methods to be tested

The research for this dissertation has been carried out in four phases:

* The creation of a micromachine model that is well suited to both code generation
and compaction.

* The development of a machine-independent microcode generation system. The
code-generator generation algorithms of Cattell [Cattell 781 serve as a basis for
the machine-independent code generation in our system.

* The extension of the list scheduling compaction algorithm of Fisher [Fisher 79] to
encompass a more complex micromachine model and a more general notion of
data dependency.

* The development and testing of three strategies for coupling the code generation
and compaction phases of the compiler. In the terminology of Section 4.4.1, one
is multiple choice, one is iterative, and one is parallel.

The micromachine model is presented in Chapter 5, while code generation and compaction

are the subjects of Chapters 6 and 7. The remainder of this chapter briefly describes the three

coupling methods, which will be discussed at length in Chapter 8.

4.4.2. 1. And/Or

The first coupling technique, which we will subsequently call And/Or, falls in the category

of "multiple choice" methods listed above. The code generator, rather than producing a

single sequence of pOps, produces an And/Or tree [Winston 77] from which the compaction

phase can choose /LOps as it compacts them. An And/Or tree is a tree in which each interior

node is marked either And or Or, and the leaf nodes are, in our case, /Ops. A solution to a

tree consisting of a single leaf is simply the /LOp named by the leaf, while a solution to a tree

whose root is an And node consists of a solution to each of its sons; similarly, a solution to a

tree whose root is an Or node consists of a solution to any one of its sons.

This coupling method relies on the conjecture that there generally exist only a few uOp

sequences that need to be considered; if the code generator can produce them, then the

compaction phase has all the information necessary to produce "optimal" code.

This method is used to a limited extent by Mallett [Mallett 78] and the microcode research

group at the University of Southwestern Louisana [Davidson 81]. The notion of a version-a

group of semantically equivalent ILOps, one of which must be selected by the compaction

phase-was introduced. A version is equivalent to an And/Or tree with maximum depth of

two (an And node at the root and Or nodes at the second level) in which all /Ops in a version

must execute during the same/jd.

The And/Or method is not without its problems. The code generator is complicated by the

need to produce multiple "correct" sequences rather than just one, and the compaction

L Scope of this Research 41

phase must consider an And/Or tree rather than a simple code sequence. Chapter

8 discusses these problems and their solutions in detail.

4.4.2.2. Iteration

Consider the following view of microcode optimization:

A typical block of microcode contains one or more groups of jOps that cause
bottlenecks; that is to say, the removal of such a fOp would reduce the total
number of ,Lls required. For example, let us assume that every jIL contains a LOp
that uses resource X. If one such jiOp is removed, it may be possible to move the
pOps in its .I into surrounding tls, thereby reducing the code size by one I. On
the other hand, the removal of some other uOp would not reduce the code size
because the /LOps which use resource X would still be required to reside in
separate Is. The code generator, in order to do a good job, should attempt to
avoid generating code sequences containing these pOps, preferring pOps that are
less likely to be involved in bottlenecks.

The iteration method of coupling attempts to produce code that minimizes bottlenecks due

to these high-conflict pOps. The code generator uses a table of LOp costs to produce what it

believes is optimal ccde; that is to say, an attempt is made to minimize the sum of the pOp

costs. The compaction phase then compacts the pOps into uls, which are analyzed for

bottlenecks. The cost tables are updated, increasing the costs of pOps that are involved in

bottlenecks; the process is repeated, with the code generator using the updated cost tables.

This method is attractive because it disturbs neither the code generation or compaction

phases as such. It involves only the addition of an analysis phase to update the cost tables,

and a loop to cause the phases to be repeated. The questions of how to update the tables is

discussed in Chapter 8.

4.4.2.3. Squeeze

The third coupling method involves actually performing the phases in parallel. This is

achieved by setting the code generator as master over the packer. Before the code is

* compacted, constraints are placed on the "shape" on the final code; for example, it might be

specified that the final code must be compacted into two [is, and that the ALU may not be

used during the second. The code generator calls the compaction phase whenever it

considers a pOp; if the pOp cannot be compacted subject to the initial constraints and the

* already generated pOps, the code generator searches for alternate code sequences.

With this method, the packer acts as an additional cutoff criterion, pruning the search tree

as the code generator attempts to find a code sequence. It is hoped that this method can be

extended to the area of producing code for tight loops. The first constraint placed on the final

* code could be "all pOps must fit into one IL". If that failed to produce a solution, a search

could take place with a two-instruction constraint, and so forth. Although this coupling

method appears to be quite simple, we encountered a number of problems, which are

discussed in Chapter 8.

6

* 42 Local Microcode Generation and Compaction

0

0

S.

Micromachine Model 43

Chapter 5
Micromachine Model

Before we can produce a machine-independent microcode generator, we must define

precisely what we mean by the term micromachine. Cattell has noted that the definition of

such a class of machines requires tradeoffs between generality and feasibility (Cattell 78]:

We walk a fine line in making a rigorous definition of a machine in this chapter.
On the one hand, we want to include all the machines commonly classified as
computers. On the other hand, we want a formal definition that restricts the class
of machines enough to make it feasible to automatically generate software. Any
useful model must therefore strike a compromise between generality and
feasibility.

This chapter defines what a micromachine is for our purposes. First the major machine

components are discussed informally; then a formal description of the model is presented.

Finally, observations are made about the generality and feasibility of the model.

5.1. Overview

The machine model described here is based on that of Cattell, but differs in a number of

respects, largely due to differences between macro and micro architectures. The model of

storage resources is simpler because horizontal micromachines typically do not have

complex addressing modes, which are common in macroarchitectures. The model has been

extended, however, to include information about timing and pOp conflicts-that is, the

determination of whether two ILOps can reside in the same IL.

Our micromachine definition has three major components:

* Storage resources are the locations in the machine where data can be stored
(e.g., a register) or along which data can be moved (e.g., a bus).

* Microoperations (pOps) are the operations available on the machine to move and
transform data.

* Conflict classes specify which AOps may reside together in a single Al.

Storage resources include busses, latches, register files, and the main memory of the

macromachine. The capacity of a storage resource is specified by a bit length and a rank.

The indices of an array storage resource are defined by the pOp semantics.

44 Local Microcode Generation and Compaction

j;Ops correspond roughly to the Machine-Operations (M-ops) of Cattell. The semantics of a

* jOp are defined by an expression, which is represented as a tree; a JAOp expression may

contain operators, names of machine resources, constants, and constant pattern names.
, iTiming information, which accounts for such features as bus delays and clock phases, is also

, included.

The text representation of a jiOp expression is written in a parenthesized, prefix, LISP-like

notation, whose atoms are operators, resources names, and constants. The expression

((- fbus(3 12) (+ (+ areg(2 5) breg(1 6)) 1)))

for example, specifies that the fbus is to be assigned the value of the sum of areg, breg, and
*the constant "1". The numbers in braces specify timing information, which is discussed in

SI 5.2.2.3.

The final component of our machine model is the method of determining whether two jOps

can reside in the same I. Several authors have previously examined this problem [DeWitt 76,
Landskov 80], and have included in their models such details as when tLOps using a common

field might happen to have compatible bit patterns. We have adopted a simpler approach in

which the machine description contains a number of conflict classes. Typically, a conflict

class corresponds to a field in the ul, or to a machine resource. Two JFOps that belong to a

common conflict class may not reside in the same j I. A jOp may belong to several conflict

classes.

Although the JLOp conflict model is not as general as it might be, we do not see this as a

serious problem. All 1LOp compaction algorithms we have encountered treat conflict

determination as a "black box" subroutine, in which a tLOp and a partially-filled ILI (or two
AOps) are passed in, and a boolean result-"does conflict" or "does not conflict"-is

returned. It should thus be relatively easy to extend the model so that it embodies a more

general notion of fLOp conflicts. During implementation, the "conflict class" model has

allowed us to represent conflicts as a bit vector. Additionally, it has allowed us to ignore the

explicit bit representation of the FIOp, and to produce purely symbolic code.

5.2. Components of the Micromachine

*l The previous section gave an overview of the micromachine model being used in this

research effort. In this section, each component of the model is described more precisely.

5.2.1. Storage resources

The processor state consists of a collection of storage resources. A storage resource is a

set of one or more words, each with a fixed number of bits, and is defined in terms of the

following components:

' T . ,- . : . ' .-'. . . - -:---: --- -- '.---- - -i . " -

,0 Micromachine Model 45

9 A name. This is the alphanumeric string representing the storage resource.

* A bit length. This is a positive integer that specifies the word size (in number of
bits) of this resource.

I.

-. * A rank. A storage resource consisting of a single word has rank zero. A storage
resource that is comprised of more than one word-and therefore must be
indexed-has a rank equal to the number of indices that are required to access it.
In principle, any multi-word storage resources could be defined to have a rank of
one by concatenating its address bits, but we find that allowing multiple indices in
our notation is more convenient, and simplifies the heuristic search during code
generation.

The size (in words) of a storage resource is never explicitly stated in our model. Instead, it is
ginferred from the ranges of its indices, as specified in uOp definitions.

There are two resources of rank zero that that the code generator handles in a distinctive

manner. The first, called the micro-address register (MAR), has special semantics with

respect to program execution. The value of this resource at any time determines the ILI that is

=currently being executed. An assignment to this resource causes a branch to be taken,
interrupting the default flow of program control; this is discussed further in Section 5.2.4.

The second "special" resource is the undefined resource, which is written in the
tree-notation as "?". This resource contains a "random" value, and is used to specify that

unknown or arbitrary data is assigied to a register or bus. For example, the "and" function in

an ALU might specify that the value of the carry out is undefined.

All other storage resources are divided into the two categories temporary and permanent.

A temporary resource is one that may be used to compute or store intermediate results-in

other words, a value held in such a resource does not need to be preserved during a

computation. Permanent resources, on the other hand, may not be modified, except as

explicitly specified by the source program.

In our model, the instruction memory is assumed to remain unchanged during program

execution; its contents may therefore be ignored for the purposes of defining machine state.
The contents of the MAR effectively defines the 1AI that is being executed; the job of the

compiler is to bind non-conflicting .Ops to potential values of the MAR.

4l

41

4J

46 Local Microcode Generation and Compaction

5.2.2. Microoperations

A microoperation (/±Op) has the following components:

* A name, which is an alphanumeric string that is used to refer to the uOp.

* A conflict class list, which is a list of the conflict classes to which this UOp
belongs.

* An expression that describes the effect of the uOp on the storage resources of
the machine.

o Optionally, a list of constant bindings, which specify particular constant values for
parametrized /tOps. For example, a shift itOp may require a shift count
parameter.

We now proceed to describe the expression tree; its interior nodes are operators, while its

leaves are either constants or resource names.

5.2,2. 1. Operators

An operator is represented by a character string and is the leftmost symbol in an

expression. The semantics of most operators are defined by axioms (see Section 6.2.1),

which are used during code generation to transform the program tree. A few operators,

however, have semantics that are explicitly understood by the compiler itself-one may

consider the "axioms" for these operators to be represented directly in the compiler code.

Examples of such operators are "it" (conditional), ",-" (assignment), ";" (sequencing), and

"loop" (iteration); such operators are understood specially by the compiler because they

involve side-effects or control flow. The representation of axioms is described in Section

6.2.1.

In the future, concatenation and shift/rotation operators may be added to the list of

operators understood by the compiler. Presently, the compiler does a poor job (i.e., is usually

unsuccessful) in compiling code that requires multiple shift and concatenation operations

because the evaluation function cannot predict the outcome of such operations to a depth of

greater than one. This subject is discussed further in Section 6.4 and in Appendix B.

5.2.2.2. Constants

There exist two types of constants that may be leaf nodes of an expression. The simplest is

a literal constant, which is an integer value that is represented in the program text in either

decimal or octal-an octal number is specified if the leading digit is a zero. For example, the

expression

(<- areg (and 0777 rbus))

specifies that all but the lowest nine bits of rbus are to be masked off, the value being stored in

areg.

The second type of constant that may appear in the program text is a constant pattern,

6l

Micromachine Model 47

which is represented in the program text as a "s" character, followed by an alphanumeric

string (e.g., %wl 1 d). A constant pattern represents a set of constant values, and will match

any literal constant that belongs to its set, or another constant pattern of which it is a

superset. For example, the expression

(- areg (and %mask rbus))

specifies a pOp which may assign to areg the rbus value "anded" with any value that matches

the pattern %mask. One special pattern, %w1 1 d, represents the set of all constants, and will

match any literal constant or constant pattern. In the current implementation, each constant

pattern is associated with a matching routine that determines whether any particular constant

matches the pattern.

When a FOp is first selected by the code generator, the constant patterns in its expression

are unbound-that is to say, there are no particular values associated with any of its patterns.

When the code is compacted, however, specific literal values are associated with each

pattern. Thus, a ILOp may or may not have a list of constant bindings associated with it,

depending on the stage of the compilation process. An unbound /LOp is denoted by its name;

a bound FOp is denoted by its name, followed by a list of literal values that represent bindings

to the constant patterns in its expression. For example, if a ILOp with the name shiftmask has

the expression
(<- areg (and %mask (shtft %wild breg)))

the unbound version of the ILOp would be represented by
shlftmask

while a bound version might be represented by

shlftmask 0777700 6

where the "0777700" corresponds to %mask and the "5" to %wl ld. A JkOp whose expression

contains no constant patterns is always considered to be bound.

5.2.2.3. Storage resources

A storage resource in an expression is represented by the resource name, timing

information, and list of indices whose length is equal to the rank of the resource. The general

form of a reference to a resource in an expression is

<name>(<early time> <late tlme>}[<index1> <index> ...]

The indices and their surrounding brackets are required for resources whose rank is

greater than zero; the number of indices must be equal to the rank of the resource. The value

of the index expressions is used to select the particular word in the storage resource that is to
be accessed. If a resource has rank zero, the square brackets must be either empty or

omitted.

Timing information, which consists of a pair of integers written between braces, is required

-w-v-.--"-..- -o-.

48 Local Microcode Generation and Compaction

for all references to storage resources. The integers refer to times relative to the beginning of

p1 in which their #Op is placed. Our model assumes that all p1 have identical execution times,

.V which, for the purposes of this dissertation, we will (arbitrarily) choose to be ten time units.

These time units represent discrete event points during the execution of a /1, and do not

necessarily correspond to uniform time intervals.

When a resource name appears as the destination of an assignment statement, the integers

in the braces indicate the range of time that the resource will contain valid data. In other

cases (i.e., when a resource appears as a source), the integers indicate the time in which the

data must be valid in order for the lI to execute properly. For example, the statement

a(<- reg(3 8) breg(2 4))

specifies that if the value of breg is stable between times 2 and 4, it will be latched into areg,

remaining stable there between times 3 and 8. (Remember that all times are relative to the

beginning of the pI in which the pOp is placed). It is the responsibility of compiler to

guarantee that stability constraints are satisfied.

An asterisk, "*", denotes infinity and is used when an assignment is to be made to a

non-volatile resource. Thus, the expression

(<- qreg(3 0} breg{2 4))

indicates that qreg will be assigned the value of breg (assuming that breg is stable between

times 2 and 4), and will hold that value until the next explicit assignment is made to qreg.

If a resource appears in an index expression (i.e., inside square brackets), it is treated as a

source even if it appears as part of the destination of an assignment statement. The

expression
(<- regflle(7 *}[reglndex(4 8)] regftle2(6 8}[regldx2(1 7)])

indicates a transfer in which the indices must be stable before the source itself.

The specification of timing information in this manner allows a broad range of

* micromachine timing features to be represented:

* A volatile register whose value remains stable partly into the next J1:

(<- areg(8 14) breg (3 8))

* A resource whose value must be stable even before the /l begins execution (to
* account for a propagation delay, for example):

(<- qreg(6 *) breg{-2 7))

* A IOp whose execution does not complete until several /ls later:

(<- qreg(26 *) (times areg(5 13) breg(6 13)))

* e A resource whose value remains stable for more than one p1, but not forever:

(<- areg(5 21) breg (3 6))

0

• _ . • . -... -

, Micromachine Model 49

5.2.3. Conflict classes

Conflict classes have two purposes. First, they are used as the basis for determining

whether two pOps may reside in the same pl. The rule for determining this is simple: two

u-Ops that have a conflict class in common may not reside in the same I; jLOps that have no

conflict class in common may reside in the same ILI.

Second, conflict classes define the cost of each juOp. Each conflict class is assigned an

integer cost as part of the micromachine specification; the cost of a ILOp is computed by

adding together the costs of all conflict classes to which it belongs.

It should be emphasized that costs are defined for the pOps solely for the purpose of

Uguiding the heuristic search during code generation. A jLOp has no intrinsic cost of its own;

rather it is the ILI whose cost iS well defined. A jOp is a subset of a jil, but there is no precise

way to allocate the cost of the FIL over its pOps: at code generation time, it is not known which

Is will contain which pOps. Our goal is to minimize the number of Ids, not necessarily the
V number of pOps or conflict classes.

There are a number of possible methods for assigning a cost to a particular conflict class;

three that might be considered are:

* Assign the value 1 to each conflict class. The cost of a ItOp is then the number of
conflict classes it is in, which might be a rough measure of the probability of
conflicting with another 1.Op.

* Assign a value to a conflict class that is equal to the number of bits in the jI word
it represents. This would cause the cost of a tLOp to be the number of bits it

Iirequires in the I.

* Assign a value to a conflict class based on one's expectation that the conflict
class will become a bottleneck during compaction.

We have more or less adopted the third approach; this results in the "high-conflict" pOps

0 (based on our estimates at machine-definition time) being considered the most expensive by

the code generator.

A final comment about the cost of conflict classes: the iteration coupling method modifies

the conflict class cost tables in its attempt to induce the code generator to produce better

• code. Thus, even if the user's estimate of such costs is particularly bad, the compiler has

some hope of compensating for it.

5.2.4. Control flow

0 Micromachines differ greatly in the way conditional branching is performed. The control

flow of some micromachines is similar that of a typical macromachine-the MAR acts as a

program counter and is incremented unless an explicit branch LOp is executed, in which case

50 Local Microcode Generation and Compaction

a branch may be taken depending on the value of a condition code or machine register. In

others, the)1 contains one or more explicit destination addresses-the MAR is therefore

never incremented. The Puma instruction format [Grishman 78] has a true and false branch

address in each ItL-a condition select field in the jd specifies a condition to test, which is

used to select the address of the next Id. The PDP-I 1/40E and Kmap [Fuller 76, Ousterhout

78] each have a single next address field in the ILI; conditional branching is performed by

ORing condition code values into the lower bits of the MAR before the next / 1 is fetched.

Many such schemes cause restrictions on the relative placement of Ids in the control store.

In this dissertation, we wish to avoid issues of placement algorithms in the control store and

of characterizing methods by which individual machines perform conditional branching.

U Such issues have been investigated by others [Fisher 80, Meyers 80, Sint 81] and we believe

that most (if not all) of these problems can be handled by a postprocessor to the compiler

(e.g., at microassembly time) if code is generated symbolically. We have therefore elected to

abstract the conditional branching mechanism by introducing the nondeterministic flow

operator.

The flow operator, unlike most operators, does not represent a single function; rather, it

represents the class of injective (i.e., invertible) functions that map integers to integers. When

used as the source operand of an assignment statement, the domain of the class of functions

* is the range of its argument, and the range of the class of functions is identical to the range of

possible values of the destination of the assignment.

For example, let us assume that the MAR is a ten-bit register; then the flow operator in the

expression
(<- MAR (flow (> a b)))

represents any member of the set of functions that map {0,11 injectively to {0, 1, .. 1023}. 4 If

the functions f1 through f 4 are defined as

*Y -1 0 234; 1 1 (1) - 235,Yo) -2 f(1) -11
f 3 (0) - 18; f3(1) - 3486
f4(0) - 20; f4(1) - 20

then functions ft and f 2 fall into the class represented by the operator flow in the above

example, but functions f3 and f 4 do not; the range of f 3 is not a subset of [0,1, ... 1023),

while f 4 is not irijective.

The flow operator allows conditional execution to be expressed (by assigning to MAR),

without having to specify the absolute addresses or the low-level details of how the branch is

4 The greater than function, represented by the operator "Y', returns a boolean result; hence the domain of flow in
this instance is (0,1).

Micromachine Model 51

effected. The concept that we wish to embody is that the MAR is assigned one of n distinct

values that depends only on the value of the flow expression specified in the uOp. The n

values are given symbolic names, and it is expected that a postprocessor will bind the

symbols to absolute addresses in the control store.

The use of the flow operator also allows certain axiomatic simplifications to be easily

recognized:
(flow (not X))

can be simplified to

(flow X)

representing the fact that the sense of a branch may be reversed. The use of axioms in

conjunction with the flow operator is discussed more fully in Section 6.2.1.

5.3. Observations about the Model

We now begin a discussion of the generality and feasibility of the model. We first list a

number of features found in existing micromachines and discuss reasons for not including

them. Then we argue that the model is useful for the task of performing local code generation

and compaction.

5.3.1. Limitations of the model

The micromachine model described in this chapter is not entirely general. Part of this is

due to the fact that certain aspects of microarchitectures are not relevant to our problem

domain. Other micromachine features are excluded or simplified because doing so

decreases the difficulty of the implementation (e.g., fewer bookkeeping steps in the algorithm)

even though we are aware of no fundamental problems of including them in the model. Still

other features are ignored because they do introduce fundamental problems, but we felt their

inclusion would make the problem too difficult. There are undoubtedly other features of
which we are simply unaware, or that will be present only in future micromachines.

5.3. 1. 1. Conflict classes

One micromachine characteristic that our model does not incorporate is the possibility that

the IL bit encodings of two partially-overlapping tLOps are compatible; thus two pOps that

conflict in our model might be legally representable in the I. In the Puma [Grishman 78], for

example, the literal field overlaps several other functions. If the constant we want to generate
happens to have the "right" bits set, however, it is possible to use the literal field in addition to

one or more of the other pOps.

As mentioned in Section 5.1, we do not see this as a problem for compaction algorithm to

handle, because it treats conflict determination as a "black box" subroutine. By adding the

e 52 Local Microcode Generation and Compaction

appropriate information to the data structures and modifying the algorithm to perform the
" necessary bookkeeping, the compaction algorithm could be modified to handle the more

complex model.

Unfortunately, we are also interested in coupling the code generation and compaction
phases of the compiler. Some of the algorithms make use of the conflict class abstraction in

*making estimates of the local cost of a juOp. It is not obvious that the coupling algorithms

could cope with this extended conflict model without a prohibitive amount of bookkeeping.

5.3.1.2. Timing
Although the model can handle a large class of jI timings, certain timing features are not

qi included. For example, the execution time of a pl on the PDP-11/40E depends on the

particular 1LOps resident in the juI [Fuller 76]; our model assumes that all j&ls have identical
execution times. In order to extend the model to include such a feature, it might be necessary
to express timing information from two different frames of reference. For example, if a main
memory reference takes 750 nanoseconds, and pis take either 250 or 500 nanoseconds, the

time between the initiation and completion of a memory reference may be two or three ds,

depending on the particular ILOps that are present. This constraint cannot be easily

expressed in our notation.

Another assumption made by the model is that a storage resource changes its state
instantaneously without going through unstable states. Initially, our solution to this problem
was to be "pessimistic" while writing the machine description. If areg, during an assignment
from breg, was unstable from time 2 to time 4, we would write the machine description

specifying that the data did not arrive until time 4:

(<- areg(4 0} breg(O 4})
Unfortunately, this expression does not reflect the fact that the previous value in areg could
have been destroyed as early as time 2. A compaction algorithm that "trusts" the above

expression, and counts on the fact that areg will hold its value until time 4, might introduce a
timing bug into the program. In retrospect, it would have been better to have three

components of timing information, instead of two:

o The earliest time the assignment might cause the old value to be destroyed.

I * The earliest time that the new value is guaranteed to be stable.

* The latest time that the new value is guaranteed be stable, assuming no further
assignments are made to the resource.

Although our current model assumes that the first two of these are identical, we have opted to
4 leave the system as it is. We felt that making such a change to the model would make a

difference in only a few micromachines, and was therefore not worth the effort of modifying

the machine descriptions, data structures, I/O routines, and compaction algorithm, even
though the modification is trivial conceptually.

I

0

Micromachine Model 53

A third shortcoming of our model with respect to timing is in the handling of asynchronous

logic [Syiek 80, McCreight 80]. The model assumes that each JLOp assigns data to a resource

at an exact time during the FI. If data along a certain path were not clocked, but rather
propagated asynchronously, the timing specification of the JLOp would be "whenever the data

arrives." The notion of a jAOp whose timing is determined by the arrival of its data is not
represented in our model. We consider compilation for such machines to be beyond the

scope of this dissertation.

5.3. 1.3. Dynamic modification of control store

Our model assumes that the control store is read-only and therefore cannot be modified by
the program. We do not see this as being overly restrictive because we believe that

self-modifying programs should be avoided anyway. Some micromachines, however, allow

the control word to be modified after it is read from the control store by allowing additional

bits to be ORed into it [Fuller 76]. It may even be the case that this is the only way to address a
register file dynamically, or to perform some other task. Our mcdel fails to account for this

feature, even though it may be important for some machines. Our philosophy has been to

generate code symbolically; the inclusion of this feature would require detailed knowledge of
the bit-encodings and placement of jiOps. It is still possible to include important special

cases (e.g., dynamic register file addressing) by prespecifying to the compiler a sequence of
p"Ops that performs the task.

5.3. 1.4. Two-level microcode

We are aware of micromachines that have two levels of control store [Nanodata 72,

Holloway 79], often called microcode and nanocode. There is no way of specifying such

machines in our model; we consider such machines to constitute a completely different class

of computing engines.

5.3. 1.5. Microsubroutines

As the emphasis of our work is on the generation of local microcode, we have chosen to

ignore subroutine calls, stack/display management, parameter passing, and other related

issues. We believe that there are difficult and important problems in this area, but we

consider them to be beyond the scope of this dissertation.

5.3.2. Effectiveness of the model

Although the model excludes a number of micromachine features, we believe that it is quite

useful for performing local code generation and compaction for a large class of horizontal
micromachines. Cattell [Cattell 78] has already demonstrated that a similar model can be

used for gpnerating code for macroarchitectures.

We also believe that the timing and conflict information also facilitates compaction. Our

0 54 Local Microcode Generation and Compaction

model choice allows us to represent conflicts as bit-vectors. It can thus be determined

whether two pOps may reside together in a Id by performing a bit-mask operation.
The timing constraints between JLOps can be determined by subtracting the corresponding

components of the source and destination timing information pairs, and then dividing the

results by the number of time units in a [I. If ILOp A:

((- areg(8 15) breg(7 9))

produces data for jAOp B:

(<- xreg(3 *} (+ areg(O 3) 1))

then the timing constraint between the pOps is determined by considering the timing pairs of

the common resource, areg. JLOp B requires areg to be valid between times 0 and 3, relative

to its IL, while jLOp A guarantees stability only between times 8 and 15-that is to say from

time 8 of the current pl through time 5 of the next ,ii. Thus, the pOps are "timing-compatible"

only if [LOp A executes exactly one pI before pOp B. More formally, the range of legal I

offsets between pOps is computed by subtracting corresponding components of the timing

"* pairs, dividing by the number of time units in a pl (which for our purposes is 10), and rounding

down or up. Thus, the earliest that pOp A can be placed with respect to pOp B is

L(dest.early - source.early)/10J = L(0- 8)/10J = - 1

or one IL before pOp B. Similarly, the latest pOp A can be placed is

[(dest.Iate - source.Iate)/101 = [(3- 15)/10] = - 1

or one pI before ipOp B. Thus the timing information in this example has allowed us to

determine that IOps A and B must be exactly one IL apart.

We believe that this timing model is quite useful. It allows us to compute the relative

placement of pOps in Is, while at the same time allowing a wide range of micromachine

timing constraints to be specified.

6

a

e Microcode Generation 55

Chapter 6
ME Microcode Generation

This chapter describes the heuristic search that performs code generation, which is based

Uon the code-generator generator algorithm of Cattell [Cattell 78]. Because our primary goal is

to discover unusual code sequences that will compact well under special circumstances, we
have rejected the approach of using predefined templates as our only means of generating

code, as some microcode compilers have done [Patterson 79, Ma 80]. We wish to use
* information from the compaction process to increase the power of the code generator. If we

were limited to predefined templates, it would be necessary to specify these unusual code

sequences in advance.

We view the code generator as a testbed for experimenting with methods of coupling code

generation and compaction. This testbed mentality led us to lean very heavily in the direction

of flexibility over speed. The model we have selected provides such flexibility by allowing the
* -"intelligence" of the code generator to be increased by adding new axioms.

The remainder of this chapter describes the code generator. We begi., with an overview of
the code generation algorithm in order to familiarize the reader with the basic concepts.

Then, a nondeterministic version of the algorithm is described so that it can be understood
without having to consider issues such as ordering and pruning the search. Finally, the

problems of making the algorithm deterministic are addressed, and a summary of its

effectiveness is given.

6.1. Overview

The code generation algorithm is based on an artificial intelligence technique called

backward chaining means-ends analysis (MEA) [Winstu, i 77], which presumes an initial state

(the situation before the solution is applied) and a goal state (the desired state). A set of
transformation rules is available that transform states to other states. The backward-chaining

MEA method may be summarized as follows:

1. The current state is initially defined to be the goal state.

2. If the current state is identical to the initial state, then the algorithm terminates.

.

56 Local Microcode Generation and Compaction

3. Otherwise, compute the difference between the current state and the initial state,
and use this difference to select a transformation rule. Apply the selected
transformation rule to compute a new current state; then go back to step 2.

For code generation, the goal state corresponds to a source-language expression for which a

E. code sequence is desired, the initial state to the null expression, and the transformations to

machine instructions (pOps) and axioms. Thus the code generation process is one in which

uOps and axioms are successively applied to the goal state until it becomes null. The pOps

that are selected during a successful search are those that together satisfy the goal

expression.

This process is implemented by two functions, search and transform. Search takes a single

argument (a goal expression) and attempts to transform it into the null expression by applying

decompositions and uOps. Transform takes two expression arguments and attempts to

transform one into the other by applying axioms. The two functions call each other

recursively, and together implement a depth-first heuristic search with backtracking.

In order make this otherwise exponential algorithm practical, it is necessary to introduce

ordering and pruning mechanisms into the search. Selecting the order in which to visit the

nodes amounts to ranking the applicable axioms in transform and ranking feasible ILOQj nd

decompositions in search. The most important component of this process is the evb:,. n

function, which computes a "distance" between two expressions-that is to say, it estimates

the cost of transforming the first expression into the second. The evaluation function is used

in conjunction with other heuristics to guide the search.

6.2. Nondeterministic Code Generation Algorithm

This section describes the basic code generation algorithm nondeterministically, ignoring

the issues of ordering and pruning the search, which are discussed in Section 6.3. First, the

data structures used by the nondeterministic version of the algorithm are described. Then,

the algorithm itself is presented, followed by an example. Finally, two extensions to the

algorithm-the collection of data dependency information and the use of constant unfolding

axioms-are discussed.

* 6.2.1. Data structures

The nondeterministic algorithm makes use of two data structures: a list of .lOp definitions,

which defines the semantics of each 1LOp, and a list of axioms, which specifies the

transformations that may be applied to expressions during the code generation process. The

*LOp definitions were presenfed in Chapter 5 and will not be discussed further here except to

say that relevant portions of a pOp's definition are its name and the expression that specifies

its semantics.

I
Microcode Generation 57

An axiom is defined by two expressions that together specify an equivalence-preserving

transformation on expression trees. An axiom expression differs from an expression as

defined in Chapter 5 in that its leaves may be axiom parameters as well as resources or
constants. An axiom parameter is represented by a "$" followed by an positive integer. The

additive commutativity and additive identity axioms, for example, may be represented by

(+ $1 S2) :: (+ $2 $1)
and

$1 :: (+ 0 $1)

Whenever a goal is encountered that "matches" the first expression during the search

process, it may be replaced with the second expression, where each axiom parameter is
Sq replaced by the subexpression that matches it in the first expression.

The axioms in our system are unidirectional-that is to say, the left side is always

transformed into the right side, not vice versa. One reason for this is that we allow the

pseudo-operator eval to be present on the right side of an axiom definition. This operator

specifies that constant folding should be attempted when an expression is transformed by an
axiom. During the application of an axiom, the eva/ operator specifies that its operand should

be replaced with its value whenever it evaluates to a constant; in other cases, the eval

operator is simply removed. Thus, the associative axiom
(+ S (+ $2 $3)) :: (+ (oval (+ $1 $2)) $3)

transforms
(+ 4 (+ 2 areg)) into (+ 6 areg)

but transforms
(+ areg (+ 4 2)) into (+ (+ areg 4) 2)

A second reason for using unidirectional axioms is the presence of the flow operator.

Remember from Chapter 5 that this operator is used to specify a flow result (e.g., a branch

condition), and thereby represents a whole class of functions. We wish to have axioms that

can specify certain properties of flow, such as the fact that identity and complementation

satisfy the requirements of the flow operator:

(flow $1) $1
and

(flow $1) :: (not $1)

The converses of these axioms are not true because the left side of an axiom must always be

at least as general as the right side.

The examples later in this chapter will illustrate the use of axioms in the code generation

process. Appendix C lists the axioms used during our experiments.

- 58 Local Microcode Generation and Compaction

6.2.2. The algorithm

The code generation algorithm consists of the two mutually recursive functions, search and

transform. The search function begins with a goal expression, and returns a tree of jOps that

satisfies the goal. The transform function takes two expressions, goal and current, and

*returns a tree of jiOps that transforms goal into current. Typically, search is invoked for
"statement" expressions (e.g., assignment, conditional, sequencing) and transform for

arithmetic and logical expressions (e.g., plus, and). We denote a call to search by

search: (goal>

and a call to transform by

transform: <goal> a> (current>

In this discussion, we suppress information about determining the order in which the pOps

are executed. Issues regarding the compaction of LOps into Ids are discussed in Section

5.3.2 and in Chapter 7. The collection of control flow and data dependency information-

which is used during compaction-is discussed in Section 6.2.4. For the purpose of this

discussion, the reader may assume that control flow and data dependency information is

automatically generated.

The search function usually chooses a pOp that is semantically close to the goal, and then

invokes transform to resolve any differences between the goal and the 1Op. In cases where

the outermost operator is sequencing (;), conditional (if) or repetition (loop), a decomposition

may be performed instead, resulting in one or more recursive invocations of the search

function. Search, then, is defined as follows:

* A feasible pOp may be chosen whose outermost operator matches the goal.
Transform is then invoked on each operand. When the outermost operator is an
assignment, the transformation between the destination operators-but not their
indices-is reversed. For example,

search: (<- w x)

* becomes (after choosing feasible pOp: (,- y (+ u z)))

transform: x > (+ u z)
transform: y -> w Here we transform the feasible operand into the

goal operand, because of the assignment statement.

returning the pOp (- y (+ u z)), plus any pOps generated by the two calls to

, transform.

" If the outermost operator of the goal is the sequencing operator, the search may
be decomposed into its component parts. For example,

search: (; ((- a 0) (<- w x))

• becomes

search: (<- a 0)
search: (<- w x)

returning any pOps generated by these two calls.

Microcode Generation 59

* If the outermost operator of the goal is the conditional operator, the search may
be decomposed into its component parts, one of which is the movement of a flow
result to the micro-address register (MAR). For example,

search: (if (> a b) (<- x 0) (<- x b))

becomes

transform: (flow (> a b)) > MAR
search: (<- x 0)
search: (<- x b)

returning any pOps generated by these three calls.

, If the outermost operator of the goal is an iteration operator, the search may be
decomposed into its component parts; again, one of these is the movement of a

qflow result to the MAR. For example,

search: (loop (<- a (+ a 1)) (> a 10) (<- x (x 3)))

becomes

search: (<- a (+ a 1))
transform: (flow (> a b)) > MAR
search: (-" x (* x 3))

returning any pOps generated by these three calls. (The loop operator defines a

generalized looping construct whose operands are executed sequentially; an exit
is taken from the loop when the second operand evaluates to true.)

The transform function transforms one expression into another:

* If the expressions are identical, or goal is the undefined resource (see Section
5.2.1), as in

transform: (+ a b) w> (+ a b)

return an empty list of pOps.

9 If current is a constant pattern, and goal is a "compatible" literal constant or
constant pattern, as in For example,

transform: 123 -> %wild

return an empty list of pOps.

* If both expressions are identical storage resources, but with non-identical
indices, transform may be called on the indices. For example,

transform: regf1le[3] -> regflle[regindex]

becomes

4 transform: 3 -> regindex

When the call to transform had resulted from the matching of assignment
statement destinations, the transformation is reversed. This is implemented by
setting the reverse index flag-a boolean parameter-when the transform func-
tion is called.

* 60 Local Microcode Generation and Compaction

e If current is a storage resource, the fetch decomposition may be applied:

transform: (+ a b) > c

becomes

search: ((- c (+ a b))

. If both operands are expressions with identical outermost operators, transform
may call itself recursively on corresponding operands. Thus,

transform: (+ a (- b c)) > (+ (or x z) y)

* "becomes

transform: a > (or x z)
transform: (- b c) -> y

returning any AOps generated by either call.

• An axiom may be applied to goal, followed by a recursive call to transform:

transform: x -> (+ y z)

becomes (after applying the additive identity axiom)

transform: (+ 0 x) > (+ y z)

Although the search and transform functions may seem complex, most of this complexity is

due either to special knowledge the program has about certain operators, such as

assignment or if. or to special casing on operand type (when the second operand of transform

is a constant, for example). During any particular invocation of search or transform, there are

normally only one or two choices that apply.

6.2.3. An example

To illustrate how the different portions of the algorithm work together, let us presume a

hypothetical machine with the following pOps:

AluPlus: (<- ALUoutput (+ aSide bSlde)) performs an addition in theALU
ASmal1Num: (<- aSide ,smallNum) sets "A" input of ALU to an

integer between 0 and 15
* BranchZero: (<- MAR (flow (- ALUoutput 0))) performs conditional branch on

whether ALU result is zero
BReg: (<- bSide reg[regldx]) loads "B" input of ALU with a

value from the register file
ClearCounter: (<- counter 0) sets counter to zero
IncCounter: ((- counter (+ counter 1)) increments counter

* SetRegldx: (<- regidx %wild) specifies value of register file
index

and let us assume that the additive identity axiom, $1 :: (+ 0 $1) is also available.

S

a Microcode Generation 61

search: (if (- reg[1] 0)
(<- counter 0) ((- counter (+ counter 1)))

apply if decomposition, dividing problem into 3 parts
decide to oerform test by qettino reafll onto ALUoutout
transform: (flow (- reg[1J 0)) a> MAR

apply fetch decomposition
search: (<- MAR (flow (a reg[1] 0)))

select feasible POp, BranchZero: (- MAR (flow (z ALUoutput 0)))
transform: (flow (- reg[1] 0)) => (flow (a ALUoutput 0))

decompose on operand-by-operand basis
transform: (- reg[l] 0) -> (- ALUoutput 0)

decompose on operand-by-operand basis
decide to aet ref[I/onto ALUoutout by addino0
transform: reg[l] -0 ALUoutput

apply fetch decomposition
search: (<- ALUoutput reg[1])

select feasible 1iOp, AluP/us: (- ALUoutput (+ aSide bSide))
transform: reg[1]-=> (+ aSide bSlde)

apply additive identity axiom
transform: (+ 0 reg[l]) => (+ aSide bSlde)

decompose on operand-by-operand basis
fird code to out 0 onto aSide
transform: 0 -> aSide

apply fetch decomposition
search: (<- aSide 0)

select feasible pOp, ASmallNum: (- aSide %smallNum)
transform: 0 => %smallNum constants match

find code to out rea[1 onto bSide
transform: reg~1] -> bSlde

apply fetch decomposition
search: (<- bSide reg[l])

select feasible 1LOp, BReg: (- bSide reg[regidxJ)
transform: reg[l] => reglregldx]

transform indices
transform: 1 -> regldx

apply fetch decomposition
search: (<- regldx 1)

select feasible ItOp, SetRegidx: (,- regidx %wild)
transform: I -> %wild constants match

find code to clear counter
search: (<- counter 0)

select feasible POp, ClearCounter: (.- counter 0)
find code to increment counter
search: (<- counter (+ counter 1))

select feasible jLOp, IncCounter: (-- counter (+ counter))

Figure 6-1: Example of Code Generation.

62 Local Microcode Generation and Compaction

Figure 6-1 shows a sequence of calls5 to search and transform that produces the following

jItOps to test reg[1], claring counter if it is zero, and incrementing it otherwise:

SetRegtdx 1 set register file index to 1
BReg read indexed register value onto "B" ALU input
ASma1lNum 0 set "A"ALU input to 0
AluPlus add ALU inputs together
BranchZero perform conditional branch based on whether sum was 0

Compaction phase and/or postprocessor determines the branch sense,
and inserts any branches necessary after the next two j.Ops

ClearCounter control passes here if sum was O-clear counter
IncCounter control passes here if sum was not 0-increment counter

6.2.4. Data dependency and control flow information

Although the code generation algorithm just described generates code for a large number

*, expressions, we found it necessary to enhance the algorithm in two ways. The first

* .enhancement, discussed in this section, enables the code generator to produce data

dependency and control flow information. The second is an extension that increases the

power of the algorithm when dealing with constants in the source program, and is discussed

in Section 6.2.5.

The algorithm presented in Section 6.2.2 produces a tree of uLOps that is semantically

equivalent to a given goal expression, but does not specify data dependency or control flow

infQrmation. Thus, it is not necessarily possible to determine the relationships between #pOps

in the final code by examining the algorithm's output. In order to make this information

available later, the algorithm both creates a flow graph-a directed graph in which every basic

block is represented by a node and each branch between basic blocks by an arcs-and

inserts data dependency links between/uOps.

New nodes in the flow graph are created during the search routine whenever an if or loop

* decomposition is performed. This is implemented by attaching a label to each 11Op identifying

the linear block of code into which it is to be placed, and linking together the linear blocks

whenever an if or loop decomposition is performed. We assume that a postprocessor is

responsible for binding the labels and Ids to absolute storage locations, and for inserting any

* unconditional branches necessary to enforce control flow constraints.

Data dependencies between ILOps are maintained by associating with each instance of a

1LOp a copy of the expression that defines its semantics. Data dependency links are placed

between the atomic components (resources and constants) of these expressions in the
0 following situations:

5In this and later examples, "null" transformations (e.g., areg => areg) are suppressed.

Microcode Generation 63

* Whenever an exact match occurs during a call to transform, data dependency
links are created between the respective atoms of the two expressions.

C Whenever a constant match occurs between two compatible constants during a
call to transform, a data dependency link is placed between the two constants.
Typically, this link specifies a binding between a literal and a constant pattern. A
pseudo-LOp representing the literal is passed back as the result of the transform
function.

9 The sequence decomposition (when the outermost operator is ";") gives rise to
certain implicit data dependencies. For example, there is an implicit dependency
involving b in the expression

(; ((- b 25) (<- a b))

Whenever the search function applies a sequence decomposition, data depen-
dency links between such resources are created.

* At the end of a call to search or transform, a transitive closure is performed on
data dependencies to account for the fact that the search often involves
intermediate expressions.

It is the responsibility of the compaction phase to guarantee that the JLOps are compacted in

such a way that no data dependencies are violated.

search: (; (<- bi 25) (<- a. b,))
apply sequence decomposition-this includes setting up
a data dependency between b1 and b2

search: (<- b1 26)
select feasible POp, bWild: (- b3 %wild 3)-we make a copy
of the expression, to distinguish this instance of 'b'and %wild
from all others that may be generated.

transform: b > b1
here, we place a data dependency link between the two b's

transform: 26 > %w1ld 3
in this case, we create a pseudo-POp representing the literal 25, and
create a data dependency link to this instance of the pattern %wild

search: (<- a. b,)
select feasible POp, cB: (-- c4 b4)

transform: b, 2> b4
again, just place a data dependency link between the two b's

transform: c4 > a
apply fetch decomposition

search: (<- a, c4)
select feasible tOp, aC: (,- a5 c 5)

transform: c4 => C5
place a data dependency link between the two c's

transform: a, -> a,
place a data dependency link between the two a's

Figure 6-2: Example of with Search with Data Dependency.

As an example, let us consider the search in Figure 6-2. We have subscripted resource and

64 Local Microcode Generation and Compaction

pattern names in the example to distinguish between instances of the same atom. It can be

seen that data dependencies are placed between references to various patterns and

resources as the search progresses; the resulting structure is shown in Figure 6-3.

aC cB bWild pseudo

(- a5 C. <- C4 b4 <- %wild, 2

I
(-a 2 <- 25

Figure 6-3: Data links resulting from search in Figure 6-2.

At the end of the search, a transitive closure is taken on the data links. This causes all data

dependencies between pOps to be expressed as direct links between atoms in their

expressions. The resulting structure is shown in Figure 6-4.

aC cB bWild pseudo

< - a5 05 (- C4 b4 <-b %wild3 25

Figure 6-4: Data links between jLOps after transitive closure.

Thus, a result tree returned by search or transform consists of a tree of ILOps, each linked

to an expression that describes its semantics, where a data dependency between two J/Ops is

represented as a link between atoms of their corresponding expressions.
I

S Microcode Generation 65

6.2.5. Constant unfolding

A source program often contains literals (constants) that the compiler must generate during
.. the translation process. A macromachine typically has a standard method for generating

constants, such as an immediate addressing mode. The "standard" method of generating a

constant on a horizontal micromachine is often to use a literal field in the LI. Such a field,
however, is often used for other purposes as well; it is expected that a constant will not be

needed during every I, yet it requires a fairly wide field in the jI to contain the constant-a
32-bit field for a 32-bit machine, for example. This overloading of the literal field leads to jAOp

conflict restrictions like "a constant cannot be used during the same cycle as a conditional

branch" or "a constant cannot be used during a main memory operation."

It is our experience that such restrictions can make the literal field a bottleneck during

microcode compaction. We have therefore added to the code generation algorithm a

mechanism for discovering methods of generating constants in "unusual" ways by taking

advantage of constants that are built into a machine's hardware.

Generating constants intelligently is more difficult for micromachines than for mac-

romachines. The cost of generating a constant on a macromachine is typically no more than

one word of code (space) and one memory reference (time); there is thus a fairly tight bound

on the complexity of any solution that is better. For micromachines, however, it is possible for

an arbitrarily complex solution to be optimal in a given situation, as long as its jFOps fill

"holes" in pIs that would otherwise be vacant.

The original goal of our research in this area was that of building a mechanism that would

allow code sequences to be generated that would avoid using the literal field of a jI. We were

surprised to discover that this mechanism is capable of discovering optimizations beyond

those originally envisioned.

6.2.5. 1. The basic mechanism
The basic mechanism for generating constants is the application of constant unfolding

axioms during the search. A constant unfolding axiom replaces a constant by a constant

expression of equal value. The goal is to make use of constants that are hard-wired into the
micromachine, replacing difficult-to-generate constants with expressions involving only
hard-wired constants. Constant unfolding axioms are applied during the transform function in

the same way other axioms are applied.

As an example, let us consider the problem of adding the value "8" to a register R, given a

micromachine in which "masking" constants (e. J, 1, 3, 7, 15) are built into the machine.

The straightforward method of performing tle operation would be to generate the constant

"expensively" (using the literal field), gating it to one input of the ALU, and to place the value

of R at the other input.

*66 Local Microcode Generation and Compaction

decide to compute result by adding 8 on bSide. R on aside. with carry 0
search: (<- R (+ R 8))

select ji~p: (.- R AL~ioutput)
transform: (+ R 8) 0> ALUoutput

apply fetch decomposition
search: (<- ALUoutput (+ R 8))

select ILOp: 4- ALUoutput (+ (+ aSide bSide) carryin))
transform: (+ R 8) 0> (+ (+ aSide bSlde) carryln)

apply additive identity axiom
transform: (+ (+ R 8) 0) 0> (+ (+ aSide bSlde) carryln)

decompose on opera nd-by-operand basis
select code to put 0 in carr yin. R on aSide
transform: 0 -> carryIn

apply fetch decomposition
search (<- carryln 0)

select p~p: (i- carryln 0)
transform: (+ R 8) 0> (+ aSide bSide)

decompose on operand-by-operand basis
transform: R 0> aSide

apply fetch decomposition
search: (<- aSide R)

select p~p: (.- aSide R)
decide to put 8 on bSide by adding 1 and7
transform: 8 -> bWde

apply constant unfolding axiom
transform: (+ 1 7) -> b~lde

apply fetch decomposition
search: (<- bSide (4- 1 7))

select tLOp: (- ALUoutput (+ 1 bSide))
transform: ALUoutput 0> bWde

apply fetch decomnposition
search: (<- bSide ALUoutput)

select jIOp: (- bSide ALUoutput)
select code to get 7 onto bSide
transform: 7 0> bWde

apply fetch decomposition
search: (<- bWde 7)

select ji~p: (- bSide %MaskConstant)
* transform: 7 -> %MaskConstant

7 matches the %MaskConstant pattern

Figure 6-5: Search with constant unfolding.

* Figure 6-5 shows how constant unfolding can be used to generate this alternate code
sequence:

Microcode Gene-ation 67

(<- bSlde %MaskConstant) 7 put constant 7on B input to ALU
(<- ALUoutput (+ 1 bSide)) increment the 7, getting 8onALUoutput
(<- bSide ALUoutput) swing the 8 back to the B input
((- aSide R) place value of register R in A input
((- carryIn 0) set carry-in value to 0
((- ALUoutput (+ (+ aSide bStde) carryIn))

use ALU again, computing R + 8 + 0
((- R ALUoutput) store result back in register R

This sequence does not use the literal field of any/pJ. The ALU, however, is used during two

cycles.

6.2.5.2. An extension

The above method can be useful when it is necessary to produce a constant explicitly. The

mechanism can be extended, however, by applying its axioms to subexpressions. This can

allow a constant in the source program to be unfolded and combined with other expressions,

often resulting a code sequence in which the constant is never explicitly generated during

execution. Figure 6-6 shows how the application of constant unfolding at the subexpression

level can improve the code sequence generated in Figure 6-5:

((- bSlde XtMaskConstant) 7 place constant 7ontoBALUinput
(<- aSide R) place value of register R onto A ALU input
((- carryIn 1) set carryln to 1
((- ALUoutput (+ (+ aSide bSide)) carryln)

compute value R + 7 + 1 in ALU
((- R ALUoutput) store value back into register R

This sequence not only avoids using the literal field, but also uses the ALU during only one l.

This is a result of performing constant unfolding at the subexpression level so that the

associativity axiom can bring the "1" portion of the unfolded constant into a position where it

can be matched with "carryln". This follows a pattern that will also be seen in the remaining

examples:

" First, a constant unfolding axiom is applied to a subexpression.

" Then, another axiom-usually associative or distributive-is applied to the entire
expression, causing portions of the unfolded constant to be combined with other
portions of the expression.

" The portions of the unfolded constant are matched with different (and perhaps
distant) pOps, often generating a code sequence in which the original constant is
never generated explicitly.

As another example, consider the problem of adding the constant "2" to a register on a

machine that has a counter. Again, the straightforward method of doing this would be to use

the literal field of the IL to generate a "2", and to use the ALU to perform the addition. An

alternate method would be to load the value into the counter and increment it twice, as can be

seen in Figure 6-7. The resulting code,

0 68 Local Microcode Generation and Compaction

deci. 3 to use ALU to perform addition
search: (<- R (+ R 8))

select jLOp: (- R ALUoutput)
transform: (+ R 8) => ALUoutput

apply fetch decomposition
search: (<- ALUnutput (+ R 8))

select jiOp: (-- ALUoutput (+ (+ aSide bSide) carryin))
unfold constant, and use associativity to match up correspondina parts
transform: (+ R 8) > (+ (+ aSide bSlde) carryln)

apply constant unfolding axiom
transform: (+ R (+ 7 1)) > (+ (+ aSide bSide) carryln)

apply additive associativity axiom
transform: (+ (+ R 7) 1)) => (+ (+ aSide bSlde) carryln)

decompose on operand-by-operand basis
U find aOns to load ALU inputs

transform: 1 => carryln
apply fetch decomposition

search (<- carryln 1)
select POp: (- carry/n 1)

transform: (+ R 7) => (+ aSide bSde)
decompose on operand-by-operand basis

transform: R => aSide
apply fetch decomposition

search: (<- aSide R)
select j.Op: (- aSide R)

transform: 7 => bSide
apply fetch decomposition

search: (<- bSide 7)
select jIOp: (- bSide %MaskConstant)

transform: 7 => %MaskConstant
7 matches the %MaskConstant pattern

Figure 6-6: Search with constant unfolding on a subexpression.

((- counter R)
(<- counter (+ counter 1))
((- counter (+ counter 1))

* (<- R counter)

completely avoids using the ALU. Again, performing constant unfolding at the subexpression

level is critical in discovering the code sequence.

Another example of the use of constant unfolding in discovering nonstandard methods of

* generating constants is the problem of performing a masking operation.6 Let us hypothesize

a machine which has built-in masking constants of the form (2
n - 1) and their complements-

in other words, the (binary) constants 0, 1, 11, 111, etc. and 11111111, 11111110, 11111100,

etc. Thus any number of high (or low) bits may be masked off using an "easy-to-generate"

0 constant. Let us then consider the problem of generating the expression:

6 1n this example, binary notation is used for clarity 8-bit data is assumed so that binary constants can be written in
reasonable space.

S|

Microcode Generation 69

decide to use counter to increment
ci search: (<- R (+ R 2))

select POp: (.- counter (+ counter 1))
transform: counter -> R

apply fetch decomposition
search: (<- R counter)

select .LOp: (4- R counter)
unfold constant, and match "outermost" 1
transform: (+ R 2) => (+ counter 1)

apply constant unfolding axiom
transform: (+ R (+ 1 1)) -> (+ counter 1)

apply additive associativity axiom
transform: (+ (+ R 1) 1)) > (+ counter 1)

decompose on operand-by-operand basis
find code to increment aoain, and to store result
transform: (+ R 1) => counter

apply fetch decomposition
search: (<- counter (+ R 1))

select ILOp: (- counter (+ counter 1))
transform: (+ R 1) => (+ counter 1)

decompose on operand-by-operand basis
transform: R > counter

,pp/y fetch decomposition
search: (<- counter R)

select i&Op: (- counter R)

Figure 6-7: Constant unfolding used to avoid ALU MOps.

(and 00111000 reg)

In this case. the constant 00111000 may be unfolded in three ways, each unfolding resulting

in a different code sequence. It may be expressed as the bit product of two masks and then

transformed by an associativity axiom,

(and CU111000 reg) -> (apply constant unfolding)
(and (and 11111000 00111111) reg) => (applyassociativity)
(and 11111000 (and 00111111 reg))

* resulting in a code sequence in which reg is first masked with 00111111 and then by

11111000. Alternatively, we may express the constant as a rotated mask and then apply a

distributive axiom,
(and 00111000 reg) > (apply constant unfolding)
(and (rotLeft 3 00000111) reg) => (applydistributive law)
(rotLeft 3 (and 00000111 (rotRight 3 reg)))

resulting in a code sequence in which reg is rotated right by 3, masked and rotated back.

Similarly, we may express the constant as a mask rotated in the opposite direction and apply a

distributive axiom,

(and 00111000 reg) > (apply constant unfolding)
(and (rotRight 2 11100000) reg) > (apply distributive law)
(rotRlght 2 (and 11100000 (rotLeft 2 reg)))

0 70 Local Microcode Generation and Compaction

Method 1

10 0 0 0 @ 0 S a original bitstring

mask high 2 bits

I © 0 Q-@ after masking high bits

mask low 3 bits

I Q 0 final result

Method 2

@ @ @- o original bitstring

rotate right 3

0 afterfirt rotation
I mask high 5 bits UUUU) F O Q after mask

rotate left 3

0 0 final result

Method 3

~ 0 ~ (original bitstring
rotate left 2

@Q@ aC @(D (3 after first rotation

mask low 5 bits

1 0 Q D0 after mask
rotate right 2 N~.

I. -0-©©final result

Figure 6-8: Three methods of performing a masking operation.

causing reg to be rotated left by 2, masked and rotated back. Diagrams illustrating the three

code sequences discussed for this problem are shown in Figure 6-8.

Our final example illustrates the use of constant unfhlding in conjunction with a distributive

law and strength reduction, in "discovering" that a multiplication by the constant "3" is

equivalent to a shift and add:
(* 3 x) -> (apply constant unfolding)
(= (+ 1 2) x) 0> (apply distributive law)

* (+ (4 1 x) (0 2 x)) => (apply identity and strength reduction axioms)
(+ x (shiftLeft 1 x))

6.2.5.3. An implementation note

We have found that the analysis necessary for doing an effective job of unfolding constants

has been difficult to formalize; such axioms can be expressed in the same way that other

axioms are expressed, but it is sometimes necessary to introduce new axiom parameters on

right side of the definition. This would make it necessary for the axiom mechanism to make a

K b • .-G

Microcode Generation 71

nondeterministic choice for unbound variables. For example, an axiom that unfolds a

constant into a sum of two others might be expressed as:

$1 :: (+ S2 (eval (- $1 $2)))
When the constant is unfolded, a value must be chosen for $2.

For this reason, the current implementation requires that the set of constant unfolding

axioms be represented by a routine in the code itself. This routine takes two operands: if the

first is a constant, it returns a list of constant expressions whose values are identical to the
first operand, but that are "good candidates" for matching the second operand. If the first

operand is an expression, it attempts to unfold any constant suboperands, and returns a list of

expressions that are equivalent to the first operand, but with one of the constant suboperands

unfolded. Currently, it is necessary to write for for each target microarchitecture a new
routine that "knows" about generating constants for that particular architecture. We hope
that methods for making such analysis machine-independent can be developed in the future.

6.2.5.4. Summary

We have found that constant unfolding axioms lead to discovering code sequences that

generate constants in non-standard ways. In particular, their application at the subexpression

level is a quite powerful, and can lead to the discovery of code sequences that could not

otherwise be discovered by the code generator.

We have not attempted to apply constant unfolding axioms to subexpressions whose depth

is greater than one. According to our experience, this is not necessary, as we have never

encountered a situation in which the unfolding of a constant at a greater depth would have
increased the effectiveness of the code generator.

6.2.6. Summary

In order to make the formalism of Cattell suitable for micromachine target architectures we

have modified his algorithms to fit our machine model. In addition, we have added

mechanisms for keeping track of data dependencies between 11Ops, and for performing

constant unfolding.

We are now ready to present the final version of the nondeterministic code generation

algorithm:

Search(goal) =

e A feasible [LOp may be chosen whose outermost operator matches the goal.
Transform is then invoked on an operand-by-operand basis, returning all JiOps
from all such calls to transform. If the outermost operator is an assignment, the
transformation between the destination operators is reversed, with the reverse
index flag being set.

0 72 Local Microcode Generation and Compaction

* If the outermost operator of the goal is a sequencing operator, the search may be
decomposed into its component parts, and data dependency links added
between certain references to resources in the original expression.

* If the outermost operator of the goal is a conditional or iteration, the search may
be decomposed into its component parts, one of which is the movement of a flow
result to the MAR. New flow graph nodes and links are also generated.

Transform(goal, current)

If the operands are identical constants or resources, place a data dependency
link between goal and current; the operands are identical expressions recursively
call transform on corresponding suboperands. Return an empty list, signifying
that no I.Ops are necessary to transform the first operand into the other.

* If current is a constant pattern, and goal is a "compatible" literal constant or
constant pattern, place a data dependency link between goal and current, and
create and return a pseudo-pOp (as defined in Section 6.2.4) whose operand is
goal.

o If both expressions are identical storage resources with non-identical indices,
transform may be applied to the indices; if the call had been made with the
reverse index flag, the sense of the transformation is reversed.

* If current is a storage resource, the fetch decomposition may be applied,
resulting in a call of the form:

search: (<- current goal)

* If both operands are expressions with identical outermost operato's, transform
may call itself recursively on an operand-by-operand basis, returning all JEOps
generated by any of the calls.

* An axiom may be applied to goal, followed by a recursive call to transform the
modified goal into current.

* If goal or one of its suboperands is a constant, a constant unfolding axiom may be
applied to goal, followed by a recursive call to transform the modified goal into
current.

6.3. Deterministic Code Generation Algorithm

Because the nondeterministic algorithm requires exponential time when run on a

* uniprocessor, it is necessary to limit the number of nodes that are examined during the

search. Initially, we considered using heuristics similar to those used by Cattell [Cattell 78].

In his system, a predetermined integer, the depth limit, specified the maximum depth in terms

of number of recursive calls to the search and transform functions. No other pruning or

0 ordering was performed on axiom applications. The feasible instructions were ordered by

performing some simple expression comparisons, and were pruned using a breadth limit-an

upper bound on the total number of nodes searched at or below any given level in the search

tree.

0

Microcode Generation 73

I> Our experiments have convinced us that the mechanisms developed by Cattell are not

sufficient for generating microcode. Our heuristic searches tend to be deeper than his,

because our code generator must produce longer instruction sequences. This is partially due

to the difference in machine architectures; our algorithm must discover longer code

sequences because our "instructions" are 1LOps, each of which tend to change the state of

the machine in only a small (micro!) way.

Another reason that our searches tend to be longer is that our task is that of a code

generator, while his was that of a code-generator generator. Input to his algorithm tends to

be a set of reasonably simple expressions, resulting in code sequences of one to three

instructions in length. Input to our system can be a block of code, sometimes requiring the

production of a dozen or more LOps.

The requirement of a greater search depth has its obvious drawbacks. Because the time

complexity is exponential in search depth, we must either accept the exponential time
increase or develop a searching strategy that performs more pruning. Experiments have

convinced us that the former approach is not feasible; we have therefore introduced a more

complex searching strategy and evaluation function.

The remainder of this section discusses the important issues that arose as we implemented

the code generation system, and outlines our solutions. A detailed discussion of the

deterministic algorithm may be found in Appendix A; details of the evaluation function

algorithm are given in Appendix B.

6.3.1. Search depth

One of the major questions we faced in building the system was that of defining what was

meant by the term search depth. In Cattell's system, depth is defined simply by the number of

recursive calls to the search and transform functions. In our system, however, it is sometimes

* necessary for the depth of the search (by this definition) to reach 20 or more; we certainly

cannot afford to examine all nodes in the search tree at that depth!

Instead we define the depth of a node in the search tree to be the sum of the costs of the

tLOps that lie along the path that connects it with the root. A search may therefore be quite

deep (in the number of calls) as long as it selects only inexpensive FOps.

In order to approximate a breadth-first search-which has a number of attractive

properties-without incurring the storage costs that are typically associated with a breadth-

first search, we use the iterative deepening [Slate 77]. When a search is started, it is passed a
"cutoff" value that defir'es the depth beyond which it is not allowed to examine nodes; this is

implemented by reducing the cutoff whenever a IOp is selected during the search. If the

74 Local Microcode Generation and Compaction

search terminates without having found a solution, the cutoff is increased and the search is

retried, the process being repeated until a successful solution is found.

When a search is passed a particular cutoff value, our intention is that the search will find a

solution only if one exists whose total cost is not greater than the cutoff. Unfortunately, a

search can be partitioned into subsearches (e.g., operand-by-operand decomposition),

leading to a situation where the total cost can exceed the cutoff. In order to remedy this

situation, the cutoff value is divided among the subsearches whenever such an occasion

arises. Our experiments suggest that the search is most effective when such an allocation

heavily favors the subsearches that are deemed (by the evaluation function) likely to be the

most expensive.

6.3.2. Pruning and ordering the search

The evaluation function (see Section 6.3.3) is used as the primary method of pruning the

search and determining the order in which nodes are examined. A path along the search tree
is pruned whenever its cost-as estimated by the evaluation function-exceeds the cutoff

value; nodes in the search tree and examined in ascending order of cost, again as estimated

by the evaluation function.

A small number of other pruning mechanisms are also employed, primarily because

experiments indicated that the evaluation function often allows axioms to be applied so

profusely that the search explodes exponentially. Most of these heuristics are ones that

require primary operators or destinations (for assignment statements) to match; one heuristic

limits to three the number of axioms that may be applied at any node in the search tree.

We also introduced a caching mechanism that has proven to be useful in pruning the

search: if a particular search has already failed at the current depth, the path is aborted
immediately. The caching mechanism also acts as a memo function [Michie 68]: a previously

successful search need not be repeated.

6.3.3. The evaluation function

The purpose of the evaluation function is to give an estimate of cost of transforming the

machine from one state into another. Its parameters are two expressions, a goal expression

and a current expression. The evaluation function recursively compares various subexpres-

sions of the goal and current expressions, and uses "distance tables"-generated from the

machine definition and axioms-to arrive at the final estimate. An extensive description of the

evaluation function is given in Appendix B.

0
Microcode Generation 75

6.4. Results

We conclude from our experiments that the system does a reasonably good job of
producing microcode for source expressions that only require data to be moved along busses

and through ALU's and masks, and constants to be generated. We were particularly pleased

to find that it performed quite well on a subset of the Puma microarchitecture the first time
that we tried it, and even discovered one code sequence that was better than we had
anticipated. In addition we feel the "discovery" that incrementing a counter three times is

equivalent to adding the constant "'3" was impressive.

Our system is able to perform searches that are much deeper than those performed by the
U prototype implemented by Cattell, but is also slower. It has produced a successful search to a

depth of 28 calls to search or transform, and has applied axioms in a successful search to a
depth of 11. Cattell's system, which used a much simpler evaluation function, searched to

maximums of 8 and 3 respectively. We by do not mean to imply that our system will always be
Q successful in searches as deep at 28 and 11; more typical search depths are 13 and 4. As far

as execution time is concerned, Cattell's system, which was written in SAIL, typically

examines 200 nodes in the search tree per second when running on a DEC KL-10 [Bell 78];

our system, which was written in Berkeley Pascal, examines about 30 nodes per second when
running on a DEC VAX/ 11-780 [Strecker 78].

Our experience is that the major reason for "exponential blowup" of the search is the

profuse application of axioms. One of the major reasons for this is probably that we do not

consider axioms to increase the depth of the search for the purpose of pruning it. From
studying traces of searches in our system, we believe that the caching mechanism is the

single most important factor in limiting the otherwise profuse application of axioms.

We feel that the greatest shortcoming of our system is that the evaluation function has very

little "understanding" of rotation, shifting, and bit extraction. More than two months were

spent attempting to incorporate such knowledge into the system, but the effort was not
successful. One of the reasons for our failure is that it appeared to us that it was necessary

(at least logically) to have separate distance tables fGr each combination of rotations and bit

lengths-an increase by a factor of 256 in the size of the distance tables for a 16-bit machine.

We hope that this problem will be addressed more successfully in the future.

• + i-+ '..+i . i - • ;*. y* - _-- . - - - --r~

*76 Local Microcode Generation arid Compaction

I

Compaction 77

Chapter 7
Compaction

At the beginning of this research effort, our plan was to take the best microcode

compaction algorithm available-which we believed to be that of Fisher [Fisher 791-and to

extend it to perform interbiock compaction, particularly emphasizing the compaction of loops.
As the research progressed, it became clear that there were still unsolved problems in the

area of intrablock compaction; in particular, there are a large number of important code
movements that current compaction algorithms do not consider. We also encountered

problems in formalizing the interblock compaction constraints (see Section 2.2.2) because
our micromachine model was more complex than that used by Fisher. As a result, we have
limited our study to that of intrablock compaction.

We begin this chapter by reviewing Fisher's intrablock compaction algorithm, and then
discuss two problems that his algorithm does not address; we believe that the second of

these-the data dependency problem-is of fundamental importance. Finally, we present our

compaction algorithm.

7.1. Fisher's Compaction Algorithm

The intrablock compaction algorithm of Fisher [Fisher 79], which compacts a linear

sequence of u~Ops into Idls, consists of the following steps:

1. Determine the data dependencies among t&Ops based on register usage. A data
dependency exists between two 1&Ops A and B, where A precedes B in the
original sequence, if A writes a register that B uses-ensuring that data is not
read from a register before it is written-or if A reads or writes a register that B
writes-ensuring that data in a register is not overwritten until all tLOps that
require its value have read it. The dat4 dependencies in the latter group are
actually data antidependencies [Banerjee 791; as will be shown in Section 7.3,
many important optimizations are missed because the algorithm treats them as
data dependencies.

2. The height of each IAOp in the dependency graph is computed.

3. The data available set-thoseujOps that have not been placed in a jul, but that are
data dependent only on IL0 ps that have already been placed in a Ipl-is
computed.

78 Local Microcode Generation and Compaction

4. The 1LOp from the data available set whose height is the largest among the 1AOps
that do not conflict with the current IL is placed in into the current . If no such
ILOp exists, a new ILI-which now becomes the current LI-is created, and the
1&Op from the data available set with the greatest height is placed into it.

5. Steps 3 and 4 are repeated until all POps have been placed into jls.

We are unable to use this algorithm without modifications for our machine model and

compiler. One problem is that the algorithm assumes that the values of volatile registers do

not extend across FIL boundaries; another is that data dependencies are not handled in a

general manner.

7.2. The Volatile Register ProblemI
The algorithm just described makes the assumption that at the end of every ,l, the values of

all volatile registers become undefined; thus data dependency constraints such as "jiOp A

must precede IAOp B by exactly one jIL" are not accounted for. Either two POps must reside in

the same fI--due to data being transmitted via a volatile register-or the second I&Op may

follow the first by an arbitrary number of tIls-in cases where data is transmitted via a

non-volatile register. In the first case, the necessary simultaneous AOps are combined and

treated as a single tLOp (called a bundle) during compaction. In the second case, the JLOps

are treated as separate, but there is no upper bound on the distance between them; this
rc guarantees that they can be compacted without backup.

When constraints are introduced that require two jIOps to be a fixed distance apart, the

notion of a bundle must be extended to include groups of ILOps that do not all reside in the

same pl, but whose placement relative to one another is fixed. The obvious extension of the

algorithm is to map all data dependencies between pOps to data dependencies between

bundles, and to map all conflicts between IiOps to conflicts between bundles, taking care to

account for the relative placement of any pOp within a bundle in all cases; the location of a

bundle is defined to be the II in which its earliest pOp(s) resides. Before such an extended

bundle is assigned to a contiguous set of pls, it is necessary to check conflicts with each AI.

This extension, which was first proposed by Poe et al. [Poe 81], is the one that we use in our

compaction algorithm.

• During the latter stages of this research, we discovered a problem with this algorithm that

arises because the presence of multi-pI bundles makes it possible for a bundle to be

scheduled in an earlier IL than a bundle on which it is data dependent! Consider an example

having the following constraints:

4 Bundle 1 pOps A, B, C and D each belong to conflict class X, and must reside in
consecutive Is.

I

, Compaction 79

Bundle 2 ILOp E belongs to conflict class Y, and must not precede /LOp D.

Bundle 3 tLOp J belongs to conflict class X, and must follow tiOp D.

Bundle 4 tLOps F, G and H all belong to conflict class Y, and must reside in
consecutive tds. In addition, 1LOp H may not precede 1LOp J.

The 1LOps are shown in Figure 7-1; the bracketed numbers along each dependency arc

indicate the minimum and maximum relative placement between the two JAOps. Figure

7.2 shows the same tLOps, grouped into bundles. Notice that the minimum relative placement

between bundles 3 and 4 is negative.

* x Y

A

(1,11I

BF

* [1,1]

Figure 7-1: jIOps with non-zeto volatile data dependencies.

The proposed compaction algorithm would first place bundle 1 in .ul 1; no bundles would be

placed in jLs 2 and 3 due to conflicts and data dependencies. When the algorithm reached ILI

4, bundle 2 would be placed there. Bundles 3 and 4 could then be placed in tl 5. The

* resulting compaction, shown in Figure 7-3a, would have length 7.

Unfortunately, this compaction is non-optimal because the algorithm cannot anticipate the

effect of a data dependency with a negative offset. A compaction of length 6 could have been

obtained if the placement of bundle 2 had been delayed until after bundle 4 were placed in II

• 3, as shown in Figure 7-3b. In order to obtain the optimal compaction, the algorithm must be

modified to perform something similar to lookahead or backtracking.

80 Local Microcode Generation and Compaction

X [3,oo] Y

2[4,oo /

[-2, co]4

q Figure 7-2: Bundles created from pOps in Figure 7-1.

X Y X Y
A A
aq BI

c c F

D [E D G

J IJ H
G E

H

(a) (b)

Figure 7-3: Compactions of bundles in Figure 7-2.

We therefore conclude that current intrablock compaction algorithms may do a poor job in

the presence of constraints such as "must precede by exactly one", largely because it is

sometimes necessary to consider juls that are not complete (see 3.1.1.1) in order find the

optimal solution, as was the case in the above example. Still, we are content to use the

near-linear algorithm just described because we have devoted most of our research effort to

other tasks. An extension of the chain-matrix compaction algorithm, presented in Section

7.3, can solve this problem in polynomial time, but the degree of the polynomial may be quite

high.

7.3. The Data Dependency Problem

An even more serious problem than the one just discussed is that current compaction

algorithms treat data antidependencies as data dependencies. Remember from Chapter

3 that a data antidependency is a constraint in which one LOp must precede another because

the second destroys data that is read or written by e first.

Compaction 81

Current compaction algorithms accept a linear sequence of flOps as input, and compute

antidependencies solely on the basis of that linear order. This prevents such an algorithm
from ever changing the order in which two ILOps that write the same register are executed.

As an example of this problem, consider compacting the 1LOps

B -A (1)
X<- B (2)
C- X (3)
X(- D (4)
E<-X (5)
F<- E (6)

Data dependencies are placed among ILOps 1, 2 and 3, and among ILOps 4, 5 and 6; in

addition an data antidependency is placed between tLOps 3 and 4 because of their common

use of register X, as is shown in Figure 7-4a.

B+-A

X'-B X+-D

C+.XE+-XB<-A
*

(a) (b)

Figure 7-4: POps with different data antidependencies.

This results in a tLI sequence of length six because each tLOp is data dependent-or

antidependent-on its immediate predecessor. It is possible, however, to compact this

sequence into four uls if a different ordering is considered for the use of register X, as is seen

in Figure 7-4b. Current compaction algorithms-even exhaustive searches-fail to consider

such LOp movement.

82 Local Microcode Generation and Compaction

We found this problem mentioned only once in the literature, and even then it was

dismissed as unimportant [Fisher 81b]:

As long as data precedence is not violated, a compacted microprogram will
preserve its data integrity. A few integrity-preserving compactions that do violate
precedence can sometimes be obtained by moving each write /tOp and its
associated reads as a group, but this is widely regarded as an excessively
complicated technique offering little gain.

We believe this to be a misconception, which we suspect is due largely to the manner in which

compaction algorithms have been tested. In some cases [Mallett 78], the test is based on an

abstract machine model in which daLa dependencies and tI conflicts are assumed to be the

II only constraints; data antidependencies are not considered. In other cases [Fisher 79], JFOps

for a real micromachine are produced by taking hand-written code and uncompacting it; in

this case the antidependencies-as determined by the original programmer-are (unwittingly)

passed to the compaction algorithm.

In our compiler, tLOps are passed to the compaction phase in the form of a dependency

graph in which data antidependencies-and hence the orderings for temporary registers-

have not yet been determined. We have no choice but to develop a method for determining

the data antidependencies before-or in paralle! with-compaction.

7.3.1. Complexity revisited

We now turn our attention to the problems of compacting microcode with and without

predetermined data antidependen es. It is our contention that the problem of optimally

ordering the pOps-and thereby determining the antidependencies-is the more difficult

problem. We support this contention by proving (informally) that the compaction problem-

once data antidependencies are specified-can be solved optimally in polynomial time.

Because the general compaction problem is NP-hard, we conclude that the determination of

antidependencies is likely the more difficult problem.

7.3. 1. 1. A po!ynomial time algorithm

We base our proof on the commonly-accepted classical microcode compaction model

[Fisher 79, Landskov 80]. The following propertiE.s are especially important:

* Two jFOps that conflict may not be placed in the same td.

* If one .Op is data dependent on another, the former may not precede the latter.

* The micromachine contains v registers, where v is a small constant. Two ilOps
that write the same register may not reside in the same iil.

Our proof depends particularly on the last item: the number of registers in the micromachine

bounds the breadth of a data dependency graph to which antidependencies have been

added. NP-hardness proofs of the compaction problem have assumed that the breadth of the

graph could be arbitrarily large.

Ka Compaction 83

We now state the theorem, and sketch a proof.

";e 'm 1: An optimal solution to the classical microcode compaction
pr:.U. e,; can be discovered in time polynomial in the number of JzOps, where the
deie oe of the polynomial is equal to the number of registers in the micromachine.

We (informally) prove the theorem by sketching the chain-matrix compaction algorithm,

which computes an optimal schedule in polynomial time. The overall strategy of the algorithm

is to create a graph in the shape of a v-dimensional matrix, whose arcs represent legal Jds; the

optimal solution is then determined by finding the shortest path in the matrix-graph from the

origin to the node at the opposite corner.

This is accomplished by first dividing the FOps into v disjoint sets, called chains, according

to the register each writes; if a jLOp writes more than one register, it may be placed in the

chain corresponding to either. According to the formulation of the problem, any two JOps

that write the same register have, either directly or indirectly, a strict data dependency

between them; thus, the data dependencies completely determine the order in which the

elements of each chain are executed. The data dependency graph is therefore necessarily a

set of v totally ordered chains, whose nodes may also have other data dependencies as well.

An example of such a set of chains is shown in Figure 7-5. Data dependencies are

represented in the figure by arcs (with the data dependencies belonging to chains are in bold

face) and ILOps are represented by nodes.

• , .. -

regjter 1\ reAister 2 regjter 3 register 4'" %
I%

' I ' I

Figure 7-5: Data dependency graph cast as set of chains.

The compaction is performed by creating a graph in the shape of a v-dimensional matrix-

one dimension for each chain-in which element <k,, k2l kv> of- the matrix represents a
partially completed sequence of uiOps in which the first k, ILOps from chain 1 have been

84 Local Microcode Generation and Compaction

compacted, the first k2 pOps from chain 2 have been compacted, and so forth. Directed arcs

between elements of the graph represent /Is; the distance of an arc along any dimension

must be either zero or one; an arc in the direction (1, O, 0,... ,O> represents the pI containing

only a pOp from chain 1, <1, 1,0,0, 0> represents the pl containing pOps from chain 1

and 2, and so forth. Each arc representing a II that violates a conflict constraint is removed;

likewise, each node of the matrix graph representing a set of pOps that violates a data

dependency-that is to say, one that represents a situation where a pOp is compacted

without one of its predecessors having also been compacted-is removed, along with any

connected arcs.

At this point the problem is reduced to finding the shortest path from 0, 0... .0> to

<f, f, f'>, where the f4 are the lengths of the respective chains. Dynamic programming

solutions to this problem are well known [Aho 74], and can be computed in time polynomial-
in this case linear-in the number of nodes and arcs in the graph. If n is the total number of

-Ops, then the number of nodes in the matrix is certainly bounded by nv, while the outgoing

degree of any node is bounded by a constant-namely 2v. Thus the complexity of the

algorithm is O(nV), where v is the number of registers in the micromachine.

7.3.1.2. An example

As an example, consider the pOps in Figure 7-6.7 The solid lines represent data

dependencies, while the dotted lines represent conflicts. The data dependency arc marked

with an "=" denotes a non.strict dependency-that is, a dependency in which the pOps are

allowed to reside in the same pI . Strict dependencies are "implemented" by a non-strict

dependency and a conflict. The bold lines represent strict dependencies between elements

of a chain. The matrix-graph for this problem, shown in Figure 7-7, has been augmented with
;. markings that illustrate the mapping from the original problem. The node marked X

represents a li sequence into which uOps A, B and E have been compacted, the arc marked

Y represents the IL containing pOps C and F, and the arcs marked Z each represent the J I

L;ontaining only pOp G. In order to include conflict and data dependency information in the

matrix-graph, arcs representing illegal pIs, and nodes representing sets of pOps that violate

data dependency, are removed. This means that 7 arcs,

(AE) (BE) (BF) (C,E) (CG) (CH) and (D,G)

and 8 nodes are deleted. The node in the bottom-left corner, for example, is removed

because it represents /is containing pOps A, B, C, and D, which violates the constraints that
* C must not precede E and that D must not precede G. Figure 7-8 shows the modified

7We use an example with only two chains because a matrix of dimension two is much easier to depict on paper
than one of higher dimension.

eS

Compaction 85

A - E

Figure 7-6: Data dependency graph with conflicts.

E F G H

Figure 7-7: Matrix-graph before modifications for constraints.

matrix-graph, in which each node is also marked with its distance from the origin. A minimal
path-shown in bold face-is produced by following arcs from the final state (i.e., bottom-

I E

88 Local Microcode Generation and Compaction

E F G H

-" D

Figure 7-8: Matrix-graph after modifications for constraints.

right corner) that always reduce the distance by one. The resulting #1 sequence is shown in

Figure 7-9.

We conclude from Theorem 1 that although the local microcode compaction problem is

NP-hard, the addition of a "complete" set of antidependency arcs to the dependency graph

constrains the breadth of the graph so severely that problem can be solved in polynomial

time. A corollary is that the determination of the initial ordering of pOps for the purpose of

determining antidependencies is NP-hard and is therefore likely a more difficult problem than

* that of compaction with predetermined antidependencies.

7.3.1.3. Main memory references

Before proceeding any further, we wish to address the question of references to an

arbitrarily large external memory. If each memory location is considered to be a register, the

algorithm is again exponential. We answer this by observing that writes to external memory

are typically performed on micromachines by first loading the data and memory address into
"memory data" and "memory address" registers, and then performing the actual transfer.

I The order in which writes are made to main memory is thus completely determined by the

order of the pOps that write the micromachine registers that hold the data and address; this
allows the external memory to be treated as a single register. The result does not apply to
machines in which data may be written to main memory without first being loaded into a

register.

Compaction 87

,E
• .-

Flgu re 7-9: Optimally-compacted iOps.

7.3.1.4. More complex machine models

The chain-matrix algorithm-and hence the complexity result-can also be applied to
slightly more complex micromachine models, two of which we will mention here. The first
extension allows the data dependency discussed in Section 7.2, ",&Op A must precede ;LOp B
by exactly one cycle," to be expressed. Because a node in the matrix-graph represents a set
of 1SOps, the restriction "may follow by no more than one jdl" can be enforced by removing all
arcs that originate from nodes (puls) "containing" 1pOp A, but whose destinations do not

"contain" ,LOp B. The addition of a strict data dependency between the jLOps can be used to
guarantee that puOp B follows pLOp A. Together, the two restrictions satisfy the original
constraint. A dependency of the form "LOp A must coincide with LOp B, or precede it by
exactly one cycle" may be modeled in an analogous manner, using a non -strict dependency.

The algorithm can also be extended to micromachines that allow some registers to be

written twice during the same microcycle. This is done by allowing the arcs in the

matrix-graph to have a length of two along dimensions that correspond to those registers.

88 Local Microcode Generation and Compaction

7.3.2. Our solution

Because our compaction algorithm begins with a data dependency graph of gOps instead

of a linear sequence of uOps, we must ensure that overlapping uses of a register do not

occur. We have considered two methods of performing this task. The first was to develop a

completely new compaction algorithm that accounts for register conflicts as it compacts the

i Ops. Although we suspect that this approach will ultimately lead to the best solutions, we

reject it for our system because such an algorithm would almost certainly entail heuristic

search and backtracking; its development alone would require a substantial research effort.k.rt.

Instead, we adopted a second approach: that of pre-serializing the graph using a simple

heuristic, thereby making it amenable to a compaction algorithm in which the antidepen-

dencies are assumed to be specified.

In general, a dependency graph specifies only a partial ordering, while the equivalent of a

total ordering is needed to compute a complete set of antidependencies. Our approach is to

give commonly-used registers the highest priority, allowing infrequently-used registers to be

hold their values for longer periods of time. For he purpose of defining priority, we consider

volatile registers to be used "infinitely often", thereby guaranteeing that each use of such a

register is localized. Thus the serialization algorithm ranks all registers-first according to

volatility, and then according to frequency of use-and then ranks the POps by iteratively

* oinding dependent pOps together in order of the priority of their dependency.

As an example, consider the data dependency graph in Figure.7-10, where the nodes

represent MOps, and where each dependency (arc) is marked with its "ranking"; the dummy

JLOQPs .o and XF have been added to indicate registers that are live at the beginning or end of

the sequence.

5
A B

7 6,2

-.
E D

81

XF

* Figure 7-10: Dependency graph before serialization.

*First, D is placed before XF and B is placed before D because the dependencies between

those pairs are of the highest priority.

Compaction 89

Then C, based on its dependency with D, is placed next to B, which is the closest available

position before D.
-.i~i ..-,X o . C 8 O Xe

0 FX

The next dependency, which is between X0 and B, is ignored because B has already been

placed. The remaining I&Ops, A and E are placed between X0 and C.
Xo A E C O O XF

Because this algorithm does no backtracking, it is possible for an illegal serialization--one

in which a register is required to hold two distinct values simultaneously-to be produced.

One reason is that it is possible for a code generator to produce code for which no legal

serialization exists (Figure 7.1 la); we have produced (by hand) cases where the algorithm

would even fail to find a serialization that exists (Figure 7-1 lb). The algorithm checks for such

inconsistencies, but gives only a warning if one occurs. We do not examine the problem

further in this dissertation because such a situation has never occurred during our

experiments, and because we suspect that "higher-level" issues, such as register allocation,

are also involved.

xo -

reg Y reg X

regx , regx

reg y reg

*'M

regy regx

XF

(A) (B)

Figure 7-11: Illegal serial orderings of FLOps.

90 Local Microcode Generation and Compaction

7.4. The Intrablock Compaction Algorithm

We now present the algorithm that compacts a dependency graph of FIOps into FlIs.

1. First, the serialization algorithm described in Section 7.3.2 is used to place the
pAOps into a linear sequence that satisfies the data dependency constraints.

". Then antidependencies are placed between any two pOps in which the first
precedes the second in the linear list and reads or writes a register that the
second writes. From this point on, data dependencies and antidependencies are
treated identically.

3. Next, the pOps are mapped into bundles. Any two uOps that are required,
according to the data dependency graph, to reside a constant distance apart are
placed into the same bundle. Data dependencies between pOps in different
bundles are mapped into data dependencies between their respective bundles in
a way that accounts for the relative position of each pOp within its bundle.
Conflicts from all pOps in a bundle are mapped into the bundle's conflict list;
again the relative position of the each pOp is taken into account.

4. Finally, the height of each bundle in the data dependency graph is computed in
the obvious way, and the compaction algorithm of 3.1.1.2-modified to handle
multi-.I bundles as described in Section 7.2-is applied, where bundle height is
used as the evaluation function, with the highest bundles placed first.

7.5. Summary

The major result of this chapter is not a new compaction algorithm, but rather a

demonstration that previous intrablock compaction algorithms are inadequate because they

rely on the order in which the pOps are placed in the source code to determine the placement

of data antidependencies. We have shown that the complexity of the problem solved by such

algorithms is polynomial in the number of pOps, and have therefore concluded that the

difficult part of the compaction problem is the initial placement of the data antidependencies.

-"We therefore do not consider intrablock compaction to be a solved problem, as seems to be

the general consensus among researchers in the field [Davidson 81].

We have also presented a modest extension to the intrablock compaction algorithm of
Fisher that addresses the data dependency problem and handles volatile registers in a more

general--but still inadequate-manner. It certainly will not always produce optimal code, but

* 4it has performed well in our limited experiments.

a

0i

".7.

Coupling Code Generation and Compaction 91

Chapter 8
Coupling Code Generation and Compaction

This chapter describes the methods by which we attempted to couple the code generation
and compaction phases of the compiler. Each method succeeded-that is, produced better

code than without coupling-in some situations, but failed in others; sometimes the coupling

perturbed the search so severely that no code was produced at all.

Recall from Chapter 4 that three methods of coupling were tested. The first requires the

compaction phase to select one of several of code sequences that have been produced by
the code generator. The second involves a feedback loop between the two phases, while the

third requires the code generator to "call" the compaction phase as a subroutine, using

information returned to prune the heuristic search.

The first section describes three example problems-along with their solutions-used in

this chapter to illustrate the strengths and weaknesses of each method. The next three

sections describe the coupling methods, reporting their behavior on the three "test
problems", and give summaries of their effectiveness. Finally, an attempt to combine two of

the coupling methods is described.

8.1. Illustrative Problems

The example problems used in this chapter are all from the Kmap [Ousterhout 78]

microarchitecture. (A sketch of the Kmap may be found in Appendix D.) Due to the length of

the heuristic searches described in this section, it is not feasible to present them in the text.

Traces of some, however, along with examples from the Puma [Grishman 78] microar-

chitecture, may be found in Appendix F.

So that the reader may better understand the examples in this chapter, we first discuss

relevant features of the Kmap. The two ALU data inputs are areg and breg; there do not exist,

however, ALU functions "select areg" or "select breg". The "normal" way to move the areg

value to the fbus (i.e., ALU output) is to put the constant "-1" in breg, using the breg.ones

juOp, and to set the ALU function to AND. Similarly, the value of breg may be passed to the

fbus by placing the constant "0" in areg and setting the ALU function to OR. This is more

92 Local Microcode Generation and Compaction

difficult for the heuristic search to discover, however, because there is no FOp that explicitly

sets areg to zero. Instead, the AOp
(<- areg (and %mask (rot scount tlatch))

is used, requiring the search to apply the axiom "zero ANDed with anything is zero" and to

.*' recognize that %mnask pattern matches "0".

The first problem we will consider is that of producing the constant "-2" on the fbus. It was

chosen largely because it was the only example in which the squeeze method outperformed

the others. We find it an interesting task, because the optimal solution is quite difficult to

discover.

The first sequence (see Figure 8-1) takes advantage of the fact that the constant register is

directly connected to breg. The constant register is loaded, and the value is then moved to

breg. A zero is placed in areg and an OR ALU function causes the value to appear the fbus.

mask
ROM

SCns ant

k:: I Areg II Brag I

* Figure 8-1: Using the constant register to produce a constant on the fbus.

The use of the constant in the Kmap tends to make the literal field a bottleneck because two

*., FOps-that both use the literal field-are required to load the constant-one for the high half,

and one for the low half.

Another sequence, which is the one generated without coupling, produces the constant in

areg using the "-2" mask (see Figure 8-2). This requires a "-1" to be placed in tlatch, having

been routed from the fbus via the abus. We remark that this sequence requires the fbus to be

* 41used during two pIs-one with the ALU function ONES, the other with the function OR.

The best method for producing the constant, however, is to perform a subtraction using the

6o

S .-.-.

Coupling Code Generation and Compaction 93

::': '1abus -1
mask I tatch I
RUM

:"-7: shifter X

-2

I Areg II Breg

-2 - fbus -1

Figure 8-2: Using a mask to produce a constant on the fbus.

IAOp(<- fbus (+ (+ (not areg) breg) carryin)). When the carryin is set to zero,

this ,Op is effectively breg -areg - 1. Because breg can be easily set to "-1", and areg to

'"0", a "-2" can be produced on the fbus in this way without using any resource for more than

one cycle. Unfortunately, discovering this sequence requires a number of axioms to be
applied; specifically, the constant "-2" must be unfolded, through the repetitive application of

axioms and selection of uOps into

(+ (+ (not (and 0 (rot scount tlatch))) -1) 0)

which is quite difficult to discover.

The second and third examples require code to be generated that places the constant "7"

on the fbus, while performing an additional task. In the second example the additional task is

that of moving data from incwd to a word in the dram (data ram); in the third example, a word

must be copied from the dram to a gpr (general purpose register).

There are two basic ways to produce the constant "7" in the Kmap; the first, which uses the

constant register, has the drawback that it requires the literal field to be used during two Uls

while both halves of the constant register are loaded. This can produce poor code if other

operations that use the literal field-such as loading dram or reading incwd-are nearby,

because the literal field will be a bottleneck. The second method of generating a "7" is to use

the mask unit, as "7" is one of the available masks. As in the first example, this requires the
production of a ".-1" from the fbus; thus, the method "overloads" the fbus.

In both cases, the code sequence using the mask was produced by the code generator in

I

94 Local Microcode Generation and Compaction

the absence of coupling. We would expect that with coupling, the constant register would be

used in the latter case, as the literal field is otherwise free.

8.2. And/Or Method

The And/Or method of coupling the two phases requires the code generator to produce

. several code sequences so that the compaction phase can select the one that produces the

shortest pl sequence. This is implemented by modifying the search and transform routines to

return an And/Or tree [Winston 77] of pOps. Recall from Chapter 4 that an And/Or tree is a

tree in which each interior node is marked either And or Or; a solution to a tree whose root is

marked And consists of solutions for all of its sons, while a solution to a tree whose root is
marked Or consists of a solution for any of its sons. Because an And/Or tree represents a set

* of solutions, it is the responsibility of the compaction routine to choose the solution that

produces the smallest final code.

8.2.1. Modifications to the code generation and compaction routines

Recall that the code generation algorithm in Chapter 6 produces a degenerate And/Or

* tree-in which all interior nodes are And nodes-representing only a single solution

.- consisting of all pOps in the tree. The And/Or coupling method considers trees in which Or

nodes are also present; this requires both that the code generator be modified so that it
produces such trees, and that the compaction routine be modified so that it accepts them as

input.

Enabling the code generator to produce multiple solutions is reasonably straightforward.
The search and transform routines are modified so that each continues searching even after a

*solution is found; two or more solutions for a given subproblem are placed under an Or node
in the And/Or tree. Thus, each recursive call to search or transform has the potential to

produce an Or node in the tree.

The modification to the compaction routine is more difficult. Although in theory a

compaction could be attempted for every combination of uOps in the set of solutions

specified by the And/Or tree, the number of solutions grows exponentially with the depth of

the tree; such an approach is therefore acceptable only for small trees. We have adopted a

• hill-climbing strategy [Winston 77] that considers each leaf node at least once, but does not

consider all combinations of pOps.

Initially, the cheapest sequence of jOps, according to the pOp cost table, is selected; we

will call this sequence the primary sequence. Then a set of secondary sequences are
combuted from the primary sequence. A secondary sequence is a group of pOps that differs

from the primary sequence "in only a few pOps". More precisely, a group of pOps is a

Coupling Code Generation and Compaction 95

secondary sequence if it can be transformed into the primary sequence by changing the

; •selection of exactly one Or node in the And/Or tree. The primary sequence and each of the

secondary sequences are compacted. The sequence that compacts most tightly is chosen as
* -the new primary sequence, and the process is repeated until no secondary sequence can be

found that is better than the current primary sequence. Ties are broken by first comparing the

number of subcycles used by each sequence and then the total cost of the /AOps as defined

by the pOp cost tables.

As a simple example, let us name the LOps ml through m6, and assume that the And/Or
tree, shown in Figure 8-3, is ordered so that the left-most operands are the ones considered

least expensive.

UN

Figure 8-3: AnAnd/Ortree.

The primary sequence is

ml m2 m4

where all right sons of OR nodes are pruned away. The two secondary sequences,

ml 3 m4 and ml m2 m5 m6

are computed by reversing the sense of the first and second OR nodes respectively. Let us

assume that the sequence
0 ml m2 m5 m6

compacts most tightly. Then it becomes the new primary sequence, and the secondary

sequences are
ml m2 M4 and ml 3 m6 m6

0 In practice, there would be more than two OR nodes, and this process might continue for

several iterations.

- 96 Local Microcode Generation and Compaction

8.2.2. Examples

In the first example,

?(<- bus -2)

the search examines 64 nodes and finds the following code sequences:

1. Loading the constant register with "-2", gating it onto breg, masking areg with
zero, and performing an OR operation in the ALU.

2. Moving a "-1" from the fbus to tatch, masking it with a "-2" into areg, putting
"-1" on breg and performing an AND operation in the ALU.

3. Same as (2), except that a gpr is allocated and used to pass the "-1" from the
fbus to tatch.

4. Same as (2), except that a zero is placed in breg (via the fbus and fblatch), and an
OR is performed in the ALU.

The first sequence is initially chosen as the primary sequence, but after all compactions are

attempted, it is discovered that the second requires one less pl. A second iteration with (2) as
* :the primary sequence uncovers no new sequences, so (2) is selected as the best sequence.

Without more powerful heuristics in the code generator, the optimal (subtraction) sequence

was not found.

In addition, the And/Or method did not discover the sequence using the constant register

until after we "precompiled" the solution to

((- areg 0)
This same precompilation was also necessary for the other And/Or examples described in

this section.

In the second example, the source statements

(; (<- dram(dadr 0] lncwd) (<- tbus 7))
are compiled and compacted. In the Kmap, both accessing fincwd and writing the dram

* require the use of the literal field of the td; one would thus expect a poor compaction from a

sequence that generates the "7" by loading it into the constant register because it uses the
literal field for two cycles. On the other hand, loading a gpr from the dram does not require

the literal field to be used.

- Only one sequence is found to move data from /incwd to the dram, but five are produced to

put the constant "7" on the /bus:

1. Use the constant register to generate the "7", setting areg to "0", and setting the
ALU function to OR.

* 2. Use the mask to generate the "7", fetching a "-1" from the fbus, as was done in
the previous example, and setting breg to "-1," and the ALU function to AND.

3. Same as (2), but using a gpr to store the "-1" for one or more cycles.

Coupling Code Generation and Compaction 97

4. Same as (2), but putting a "0" in breg (via fbus and Iblatch), and setting the ALU
function to OR.

5. Same as (4), but using a gpr to store the "-1" for one or more cycles.

Initially, the sequence that uses the constant register is chosen as the primary sequence, but

is replaced on the next iteration because it requires 5 cycles to compact, while all of the

others require only three; this is, of course, due to the heavy use of the literal field. Sequence

(2) is finally chosen as the best sequence.

The third example,

(; ((- gpr[2] dram[dadr 0]) (<- fbus 7))

is a different matter. In this case the first source statement does not use the literal field of the

ji1, but rather uses the fbus for an additional cycle; thus, the constant register is used to

generate the "7".

8.2.3. Evaluation

The And/Or method of coupling the phases appears to be an effective one. Once the

And/Or tree has been generated, the compaction phase seems to have little trouble selecting

a good sequence. In particular this method has performed well in situations similar to that

described in 4.1.1.3. We remark, howev3r, that all of our experiments have been moderately

small (e.g., 100-200 nodes); we would not necessarily expect the hill-climbing to perform as

well with a larger tree-say several thousand nodes-as input.

The major difficulties appear to be in controlling and directing the code-generation

process. One problem we have encountered has been excessive searching even after

acceptable solutions have been found. Because the evaluation function often overestimates

the difficulty of producing code for a particular expression, it is possible for the search and

transform routines to "waste" a large amount of time attempting to find additional solutions

that may not even exist. In order to contain thesearch, we have introduced a global search

parameter that we call the foundfactor, which is typically a real number in the range (0, 1).

Whenever a code sequence is found that satisfies a particular invocation of search or

transfom, the cutoff is multiplied by the foundfactor; additional solutions are thus required to

satisfy a more stringent cutoff. If a second solution is found, the cutoff is again multiplied by

the foundfactor, further limiting the depth of a search for a third sequence.

We have generally set the initial search cutoff to be 1.2 times its estimated cost as

determined by the evaluation function. A foundfactor of 0.84-so the product of the two is

slightly greater than 1.0-has generally performed well in our experiments. This tends to

allow at least two solutions to be found at any given level of the search. Figure 8-4 illustrates

the effect of the foundfactor on the search.

98 Local Microcode Generation and Compaction

il..2

121.008 1.008 0.847

Figure 8-4: Illustration of cutoff being reduced with search breadth.

One of the shortcomings of And/Or method is that occasionally a simple solution is found,

but the search continues, attempting to find more complicated solutions. This was made

painfully clear during an experiment in which a search for the subgoal,
(<- fbus 0)

was passed a relatively large cutoff. In the Kmap microarchitecture, there is an explicit pOp

that performs the function of setting the fbus to zero. The large cutoff, however, allowed the

search to continue to find "better" solutions, such as

((- fbus (and (and 0 (rot scount tiatch)) breg))
and

(<- fbus (+ (+ (and 0 (rot scount tiatch)) (not -1)) 0))

. Cattell addressed this problem by introducing a breadth limit; when the number of nodes
traversed in the search tree during a search for an additional solution exceeded a predefined
limit, it was terminated. We have had difficulty directly applying his solution to our system,

because the breadth limit was defined to be a function of the depth; in our system, there is

little correlation between the absolute depth of the search and the amount of work to which

we are willing to expend in finding a solution.

Another problem we encountered with the And/Or method was that of finding redundant
solutions, which can happen when the order in which axioms are applied is reversed. Figures
8-5 and 8-6, for example, show two nondeterministic searches that find the same solution to a
problem. In many cases, the order in which the ILOps are generated is different, so such
redundancy does not become apparent until the search is completed. Such redundant

solutions may cause the cutoff to be reduced to the point that other unique solutions are
missed. Although certain features of the searching strategy-requiring destination operands

to match when considering a feasible AOp, for example-reduce the number of duplications,
it is not uncommon for our system to discover the same sequence of p.Ops in four or five

different ways.

4"

KI

Coupling Code Generation and Compaction 99

transform: (+ 0 breg) -> (+ (+ areg breg) carryin)
apply commutativity axiom

transform: (+ brag 0) > (+ (+ areg brag) carryin)
decompose by operand

transform: 0 -> carrytn
results in ILOp: carry.0

transform: brag a> (areg breg)
apply identity axiom

transform: (+ 0 brag) -> (+ areg breg)
decompose by operand

transform: 0 > areg
results in piOp: areg.mask 0

Figure 8-5: Example of transform function.

I. transform: (+ 0 brag) > (+ (+ areg breg) carryin)
apply identity axiom

transform: (+ 0 (+ 0 breg)) > (+ (+ areg breg) carryin)
apoly commutativity axiom

transform: (+ (+ 0 breg) 0) > (+ (+ areg breg) carryin)
decompose by operand

transform: 0 => carryin
results in jiOp: carry.0

transform: (+ 0 brag) > (+ areg brag)
decompose by operand

transform: 0 => areg
re.ults in [pOp: areg.mask 0

Figure 8-6: Redundant version of transform in Figure 8.5.

An inherent problem with the And/Or strategy is that the code generator receives no

feedback from the compaction phase; it must therefore be "intelligent" enough to create all

possible code sequences that might compact well in a given situation. In the first example,

the code generator in fact did not find the best .olution, because it required the application of

more axioms than did other solutions. We see this as the most fundamental problem; if the

code generator is good enough-a big if-we believe that the And/Or method can be used to

produce high-quality compacted microcode.

8.3. Iteration

The iteration method requires neither the code generation nor compaction phases to be

modified; rather, a post-compaction analysis is performed on the compacted microcode to

0e determine which uOps are responsible for causing bottlenecks. The cost tables, which are

used by the code generator to guide the search, are then modified so that "bottleneck-prone"

jIOps are assigned a higher cost, and the search is repeated. The idea is to encourage the

code generator to use/uOps that are less likely to conflict with other ILOps.

100 Local Microcode Genei ation and Compaction

8.3.1. Post-compaction analysis

The post-compaction analysis consists of two phases. The first is the determination of

which conflicts are most often involved in bottlenecks. The second is the updating of the

contfict cost tab!es, which are in turn reflected in the jOp cost tables and distance tables.

Our first attempt at post-compaction analysis was to count the number of times that a

conflict was present in the)LOps produced by the code generator, and increase the cost of

the conflict(s) that appeared the most frequently. This strategy had the drawback, however,

". that conflicts appearing frequently were penalized, rather than ones that might have caused

local bottlenecks.

'This led us to change our approach: instead of counting the conflicts, the ,Ops are first

divided into bundles-a set of ILOps that is compacted as a group (see 2.2.5.2). Then, one of

the bundles is removed, and the remaining bundles are compacted; if this "modified"

microccde compacts more tightly. we assume thi.t the removed bundle must have contained a

UtIleneck. Following this. the bundle is returned to its original place, and another bundle is

chcsen for removal; this process is performed for each bundle. Each conflict contained in

any bottionecl. -prone" bundle becomes a candidate for having its cost increased.

!-i determining the quontity to add to each conflict, we have taken the approach that the

cum of the conflicts' costs should increase by constant amount-in our experiments 10

units-during each iteration; there is Zherefore a finite amount of "cost" to be allocated

amo:-n, conflicts that are involved in bottlenecks. This cost is allocated in proportion to the

product of the conflict's current cost and totai number of ids "saved" during compactions in

wiich a bundle containing the conflict was "missing". In the current implementation, these

costs are represented by integers, so the computations are only approximate.

As an examplo, let us assume that conflicts involving

alu (cost 5)

regfllo (cost 3)
* sh fter (cost 6)

literal (cost 8)

ex i.st, and that three bundles have been produced by the code generator, containing the

conflicts

*1 [alu literal]
(;hifter]

and
Calu regfllej

respectively. Let us further assume that when the code is compacted without the

*I [alu literal] bundle, two Als were saved, that none were saved when the [shifter]

bundle was removed, and that one was saved when the (alu regfile] bundle was

6I 1 ". ...

Coupling Code Generation and Compaction 101

removed. If we desire to add a cost of 10 to the set of conflicts, the alu conflict is increased by

4, and literal conflict by 5, and the regfile conflict by 1; these increments are computed as

follows:

conflict orig. cost pIs saved product proportion X 10, rounded

alu 5 3 15 0.44 4
regfile 3 1 3 0.09 1
shifter 6 0 0 0.00 0
literal 8 2 16 0.47 5

In addition to the modification of conflict, 1LOp, and distance tables, the caches must also be

;- flushed, so that information based on the old table values is not present.

8.3.2. Examples

The examples illustrate the reasons that we found this coupling method rather disappoint-

ing. Before we present the examples, however, we wish to define some terminology so that

two different types of iteration are not confused. When a search is initiated, it is passed a

cutoff that is computed by multiplying its "expected cost" (as determined by the evaluation

function) by a small factor such as 1.2. If the search terminates in a failure, this factor is

increased and the search is attempted again. We shall call these failure-induced repetitions

subiterations.

At a higher level, we speak of iteration to mean the cycle in which code is generated, code

is compacted, tables are updated, code is generated, and so forth. The purpose of this

iteration is to improve code that has already been successfully generated; we call these

improvement-induced repetitions iterations. Therefore the statement "the first iteration

required only one subiteration, but the second required three," means that the search using

unmodified tables was successful the first time, but that it took three searches (with

successively greater cutoffs) in order to find a code sequence after the tables were modified.

In the first example, where the constant "-2" is to be placed on the fbus, the algorithm

found a 2-j1 solution-using the mask unit-on the first two iterations, and then found a 3.;1

solution-using the constant register-on the next two iterations. On the fifth iteration, no

solution was found after the first two subiterations, and the third gave indications of taking a

very long time, at which point we manually terminated the search. Table 8-1 summarizes its

performance on the first example. The distressing result is that as the tables become

"better", the cost of finding a solution increases, and the quality of the solution decreases.

In the second example (see Table 8-2), where it is undesirable to use the constant register

because of literal ield conflicts, a 3.j1 sequence is generated on the first iteration. On the

second iteration, the algorithm perceives the fbus as a bottleneck, and the task of constant

generation is assigned to the constant register, resulting in a 5.pI sequence. On the third

102 Local Microcode Generation and Compaction

total #
iteration subiterations nodes # j.ls comments

* (1) 1 23 2 uses mask
(2) 2 34 2 same as (1)
(3) 2 41 3 uses const. reg.
(4) 3 61 3 same as (3)
(5) 2 333 '? no solution after 333 nodes

Table 8-1: Summary of first iteration coupling example.

iteration, the sequence using the constant register is again found, but at greater search cost.

Finally, the solution using the mask unit and fbus is rediscovered on the fourth iteration.

total #
iteration subiterations nodes # julS comments

(1) 1 34 3 uses mask
(2) 2 57 5 uses constant register
(3) 3 68 5 same as (2)
(4) 4 114 3 same as (1)

* Table 8-2: Summary of second iteration coupling example.

In the third example (see Table 8-3), the goal of putting a "7" on the fbus should be

Sachieved using the constant register. as the literal field is otherwise unused. In this case, as in

the previous examples. the solution using the mask is generated on the first iteration; in this

example, however, an identical search is performed during the second iteration. Finally the

solution using the constant register is found on the third (and again on the fourth) iteration,

decreasing code size from 4 to 3/jds.

total #

O iteration subiterations nodes # jAls comments

(1) 1 49 4 uses mask
(2) 1 49 4 same as (1)
(3) 2 73 3 uses constant register
(4) 2 73 3 same as (3)

Table 8-3: Summary of third iteration coupling example.

8.3.3. Evaluation

0 ,We found these results rather discouraging, as we had hoped for a quick convergence to a

good solution in most cases. More than one code sequence was found for each input

4

Coupling Code Generation and Compaction 103

expression, but the convergence to good solutions was not impressive. Furthermore, the
amount of time spent finding a solution tended to increase with each iteration; one would
have hoped that the finding a solution would become easier as the cost tables became

"better".

We have two theories for the reason that the cost increases with each iteration. The first is

that when the cost of some jOps is increased, the initial estimate of the cost of the search-
and hence its depth-is also increased. Thus, a search is allowed to go deeper if it involves
only uOps whose costs did not increase; in many cases such searches are fruitless anyway.
The other theory is that there are many times when it is impossible to generate code that

completely avoids using a "high-cost" conflict, so the goal becomes one of minimizing its

use; if a particular conflict is assigned an extremely high cost, the distinction between the
costs of other conflicts can become "noise", causing the evaluation function to become less

effective.

Another shortcoming of the iteration coupling method is that it often fails to distinguish
between local bottlenecks and global bottlenecks. In a tL1 sequence of moderate-to-large
length, for example. it may be the case that the insertion of a particular conflict will cause the
number of /Lls to be increased if added to near the beginning-but not the end-of a/p1
sequence. This coupling method assigns a single cost to the f±Op over the entire segment,
potentially causing poor code to be generated in the presence of local bottlenecks.

We conclude that iteration coupling is not sensitive to subtle features of the microar-
chitocture, features that often determine how well code compacts. We also remark that this
method as-'umes that jil conflicts are modeled by conflict classes; this assumption is false for
some microarchitectures. The consequence is not that the method will fail to work, but that it
will be necessary to make some simplifying assumptions about the architecture, causing its

feedback to be even less accurate.

The one positive thing we have io say about iteration coupling is that it does produce a
number of different sequences, even if some of them them were worse than the one originally

generated. As evidence that this method has some merit, we point out that it was able to
discover the sequences using the constant register without requiring precompilation of the

expression
(<- areg 0)

8.4. The Squeeze Method

The third and final coupling method that we tested is the squeeze method, given its name

because the code generator is required to "squeeze" all of the/jOps into a certain number of

partially-filled ids as it produces them. Originally we had planned to perform a complete

104 Local Microcode Get'eration and Compaction

compaction each time a pOp was considered, but the cost of setting up the compaction,
mapping the jOps into bundles, and compacting the code was too great to perform in an

inner loop of the algorithm. Ideally, it would be nice to have an incremental compaction

algorithm.

8.4.1. Modifications to code generation routine

Instead of performing the compaction each time, we approximate a compaction by keeping

a count of the number of times each conflict is used. When code is to be generated,

constraints such as "the ALU may only be used during three pis" are specified. This is quite

easy to implement: an array of integers keeps track of the number of times each conflict is

used. Whenever a pOp is added, the array elements corresponding to each of its conflicts is
incremented; similarly, whenever a pOp is removed-as a result of an unsuccessful search,

:. for example-the same array elements are decremented. This "squeeze array" is used as an

additional search cutoff- whenever the addition of a pOp causes the count for any conflict to

* - exceed its limit, the pOp is immediately removed from consideration as a candidate.

8.4.2. Examples

The first example-that of putting "-2" on the fbus-illustrates the only success we had
*with the squeeze method. Previously, it was noted that the best method of putting a "-2" on

the fbus was to use put a "-1" in breg, "0" in areg and to set the ALU/carry so that

breg-areg-1 is computed. Because there are a number of other solutions that do not

require as many axioms to be applied, the And/Or and iteration coupling methods never

found this solution. In performing this experiment with the squeeze method, we added the
requirement that no conflict could appear in the solution more than once;8 thus solutions

found by previous methods would necessarily be pruned in this case, because each requires
the use of some resource for more than one cycle.

* During the first subiteration, the cutoff was small enough so that only the AND, OR, and

XOR ALU operations-not subtraction-were considered; this search ended in failure after

examining 43 nodes in the search tree. After the cutoff was increased by 30%, the search

* considered 5 ALU operations-including subtraction-resulting in a search that found the

solution after examining 253 nodes-a number that we believe borders on being excessive.

In the second example code is to be generated for the expression

(; ((- dram[dadr 0] llncwd) (<- fbus 7))

8 We chose this restriction for the problem because we knew a priori that there exists a solution that satisfies it. In
a full compiler, the issue of determining such "shapes" would be an issue, but we do not address it here.

• , ,*

Coupling Code Generation and Compaction 105

in which no conflict is allowed to appear more than twice. In this case, the successful search

is able to generate code without ever having to prune the search using the "squeeze"

heuristic, because even the search without coupling found a sequence that did not use any
conflict more than twice. The fact that optimal code is generated is therefore not indicative of

the usefulness of the squeeze strategy.

The squeeze method never found a solution for the third example,

(; ((- gpr[Z] dram[dadr 0]) (<- fbus 7))

In this case, code was generated first for the expression

((- fbus 7)

which consists of the pOps that use the fbus twice. After that subsearch returned

successfully, the search was required to find a solution to

(<- gpr[2" dram[dadr 0])

without using the fbus -a task that is impossible. If the order of the subsearches had been

reversed, a solution could have been found rather quickly that used the constant register to

generate the "7"; unfortunately, the evaluation function had no way of determining which

subgoal was more "flexible".

0.4.3. Evaluation

We conclude from our experiments that this method can be of use in special situations, but

that it is generally not very effective. The most fundamental problem is that the evaluation

function has no knowledge about the "squeeze cutoff", and therefore guides the search in

many "promiging" directions that become "surprising" dead-ends. Judging from our

experience, it is very important that the evaluation function be a reasonably accurate

reflection of the search itself. Although this method found the optimal solution in the first

example, its weakness became evident when the window was expanded to two or three ills.

Another drawback of the squeeze method is that it requires the "shape" of final code to be

guessed before the code is generated. For the last two examples, we also tried invoking the

search routine with code space requirements that were too stringent, hoping that such

searches would terminate very quickly. Unfortunately, axioms were applied profusely, and the

search was time-consuming and ineffective.
0

Still another problem-exemplified by the third example-is that the order in which two or

more conjunctive subgoals are examined can determine whether the search fails or

succeeds. If a solution to the "flexible" subgoal is generated first, it is possible that no

solution will ever be found because the code generator will insist on generating code for the

"inflexible" subgoal that fits into an incompatible "shape". It is not clear to us that it can

always be determined which of two subgoals might be more adaptable to a solution by an

0"

106 Local Microcode Generation and Compaction

alternate j&Op sequence. We have not explored the possibility of rating subgoals with respect

to the number of different possible code sequences they might generate.

8.5. Combining Methods

In this section we briefly describe experiments in which the And/Or and iteration methods

were combined and applied to the three examples that have been used in this chapter. We

found that the squeeze method was difficult to combine with either of the other two: we did

not combine it with And/Or because conflict counting cannot be performed in a straightfor-

ward manner when multiple solutions are generated. The iteration method requires feedback

._ from successful searches; we therefore did not combine iteration and squeeze because the
*"philosophy" behind the squeeze method is that the search should be so constrained that any

solution found will fit into the minimum space. It therefore does not make much sense

combine these two methods unless one of them is altered.

The And/Or and iteration methods, on the other hand, are quite easy to combine. All that is

**' needed is to use the And/Or method as we normally would, and then perform the

post-compaction analysis, table update, and iteration that is always done for the iteration

method.

Although the optimal sequence for putting "-2" on the fbus was not discovered, the

solutiun involving the constant was found without precompiling the

((- areg 0)

Aequence that was necessary when the And/Or method was used alone; in addition, a

sequence using the XOR ALU operation was found-one that had not been found when either

method was used alone. A summary of this search is given in Table 8.4.

total # minimum
iteration subiterations nodes # Ids comments

0 (1) 1 38 2 2 solutions, using mask
(2) 2 46 2 1 solution, using mask
(3) 2 55 3 2 solutions, using constant register
(4) 3 76 3 same as (3)
(5) 2 235 no solution after 235 nodes

Table 8-4: Summary of first combination experiment.

The second and third examples, whose summaries are given in Tables 8-5 and 8-6, gave

similar results. The use of iteration in addition to And/Or generated all of the code sequences0
found previously and new ones as well-all without the need for precompiling the "0 to areg"

sequence.

- -

Coupling Code Generation and Compaction 107

total # minimum
iteration subiterations nodes # FIs comments

(1) 1 51 3 2 solutions, using mask
(2) 2 81 5 2 solutions, using constant register

Table 8-5: Summary of second combination experiment.

total # minimum

iteration subiterations nodes # t.Is comments

(1) 1 109 4 10 solutions, using mask
(2) 2 94 4 2 solutions, using mask
(3) 2 141 3 4 solutions, using constant register

Table 8-6: Summary of third combination experiment.

8.6. Summary

Based on the experiments that we have performed, we must conclude that the And/Or

method is the most effective of the three for generating code that compacts well, but that the

combination of the And/Or and iteration methods appears to be even more effective. We

believe that And/Or is the best of the three because neither of the other methods actually

attempts to compact different combinations of FtOps. Our experiments have convinced us

that subtle characteristics of microarchitectures-timing, for example-are often critical in

determining whether two sets of juOps will compact together well. Methods that do not

actually attempt such compactions are likely to overlook many of these subtleties.

One problem that we have not yet resolved with the And/Or method is that of preventing

the search from continuing to examine hundreds of nodes in the search tree looking for

non-existent or highly inefficient solutions, while at the same time, giving all nodes of the

search tree a "fair shake" in attempting to find alternate solutions that may lead to a better

compaction. Although Cattell used a breadth limit to limit the search, his limit was based on

the search depth. Because our search is pruned in a more flexible manner, we see no

obviously "right" way of incorporating a breadth limit; still it seems that such will be necessary

in order to control runaway searches.

We were disappointed that the squeeze method did not generally seem to do well,

particularly since it was the only method to find the optimal solution to the first example. In

retrospect, the squeeze method appears to apply too much "brute force", and will be

applicable only in extremely "tight" situations.

108 Local Microcode Generation and Compaction

6!

I IConclusions 109

Chapter 9
Conclusions

As a result of this research effort, we conclude that the code generation and compaction

phases of a compiler can be coupled in such a way that microcode is produced that is of
higher quality than that produced by a compiler in which the phases are executed

sequentially. In addition, we believe that micromachine features make it necessary to attempt
compaction on several feasible [LOp sequences in order to determine which compacts into
the smallest number of jpds.

In the first section of this chapter, we discuss what we believe are the major contributions

of this dissertation in the area of optimizing compilers for horizontal target architectures.

Following that, we discuss the limitationo of our work and suggest promising areas for future

research.

9.1. Contributions

We helieve that the major contributions of this dissertation are:

" The development of a micromachine model that expresses both semantics and
timing information in a flexible-but useful-manner.

" An extension of the code-generator generator work of Cattell [Cattell 781 with
more powerful heuristics that enable successful searches at a depth ap-

0 proximately three times greater than the original implementation.

" A demonstration that constant unfolding is a useful optimization technique for
horizontal target architectures.

" The discovery of a polynomial-time algorithm for optimally solving the classical
microcode compaction problem for any real micromachine-a problem
previously thought to be NP-hard-and subsequent analysis that suggests that
the problem of originally ordering the tLOps-previously considered secondary-
is both more difficult and more important.

* The testing of three methods of coupling code generation and compaction, and
the conclusion that presence of micromachine features makes it highly desirable
to compact a number of different semantically equivalent code sequences before
selecting the final code.

L-

* 110 Local Microcode Generation and Compaction

We believe that the manner in which timing constraints are specified here is significantly

better than in other models we have seen because each resource is treated separately with

respect to timing. Other models treat all data inputs to a given FOp identically, and therefore

* .cannot express requirements such as an address having to be stable for one subcycle before

data during a write operation.

The ability to perform successful searches in which axioms are applied at depths of ten or

greater is a significant improvement over the implementation by Cattell, an implementation

that itself was quite impressive. We believe that such an improvement was necessary in order

to extend his algorithms to the domain of horizontal microcode; still, we often wished during

our experiments that the evaluation function was yet more accurate.

The demonstration that constant unfolding is effective is perhaps the result with which we

are the most pleased. Our microprogramming experience had previously convinced us that

the generation of constants in the "standard manner" often results in poor-quality code. We

are therefore happy to report that constant unfolding has been successfully performed, and
*i has led to code improvement in a number of cases. The discovery that constant unfolding

could be extended by applying it to subexpressions, thereby subsuming a number of ad hoc

optimizations, is evidence that such an optimization may even be useful in compilers (or

compiler-compilers) for macroarchitectures.

Perhaps the most significant result is that the classical microcode compaction problem

does not model data relationships between [LOps in a general manner, and therefore fails to
acknowledge many semantics-preserving orderings of Ops. We hope that our arguments

that determining the initial ordering of the FOps is the more important problem will cause

researchers in the area to direct their attention towards this more challenging problem.

Finally, the original goal of our research-that of testing phase-coupling methods-has

been moderately successful. We believe that we have given convincing arguments that the

coupling problem should be addressed in an optimizing microcode compiler, and have
0 presented results indicating that the And/Or method shows particular promise for future

compilers.

9.2. Future Work

Although we believe that our research effort was generally successful, there were a number

of areas that we did not have time to explore, or in which we simply failed to make headway.

Perhaps the most critical is in the area of automatically producing code that intelligently

* performs rotations, shifts, and bit extractions. Our evaluation function does not "understand"

the semantics of such operations, and consequently the heuristic search rarely finds code

S

Conclusions 111

sequences that depend on such operators. One of the major problems we encountered in
* ,attempting to incorporate such knowledge into our evaluation function is that it appears that

logically we need a separate distance table for every combination of rotation, shift, and bit
length; the size of such a set of tables would be prohibitive. Cattell noted that the
understanding of such operators was beyond the scope of his system; based on our
reasonably intense (and extremely frustrating) effort to incorporate such understanding into
our system, we consider this problem to be exceedingly difficult. Our problem is compounded
by the fact that microprograms tend to perform a great deal of shifting and masking; a
machine-independent microcode generation system must handle rotations, shifts, and bit

extractions.

Another area that warrants further study is that of incorporating some sort of breadth limit
into our algorithm in order to guarantee that all subsearches terminate in a reasonable
amount of time. We are reluctant to adopt a strategy that makes the breadth limit a function of
search depth because the current depth of a subsearch has little correlation with the amount
of effort we are willing to expend in finding a solution; rather, the search cutoff serves that
function. Our simple minded attempts to make search breadth a function of the search cutoff
have thus far not been effective.

We explored only three methods of coupling the code generation and compaction phases
of the compiler. Although we had moderate success, we must certainly not rule out the
possibility that some other method of coupling the phases might prove to be the most
effective. In particular, methods that actually perform compaction on several code sequences
seem worthy of investigation.

More generally, further work is needed in developing coupling methods among other
phases of the compiler. The research of DeWitt [DeWitt 76] suggests that register allocation
and compaction should be coupled. We have also argued in Section 2.2.6 that evaluation
order determination is integrally tied to compaction. Additionally, several other optimization

* problems mentioned in Chapter 2 warrant further study.

Although constant unfolding has been quite successful, it is likely that it will not be practical
to apply constant unfolding axioms at compile time for a production compiler. We suggest
that it might be appropriate to develop techniques for analyzing a microarchitecture at

• compiler-compile time in order to discover "unusual" ways of producing various combina-
tions of constants (or constant classes), storage resources, and operators, so that most of the
constant unfolding work is performed only once for a given microarchitecture.

Similarly, the time required for the heuristic search to generate code may make the entire
code generator impractical for production compiler. We anticipate that it will be necessary to
precompile most common sequences, letting the compiler spend most of its time searching

. 112 Local Microcode Generation and Compaction

for unusual sequences that might compact well in a particular program. Such a strategy,

however, gives rise to new problems. It must somehow be decided what a "common"

sequence is; research suggests that this problem is quite difficult [Cattell 78]. Furthermore, if

. any searching at all is done at compile time, methods must be developed for determining

source expressions that warrant further searching and how much search time the compiler

should spend for a particular subproblem.

As we have stated before, we-unlike many others-do not believe that the intrablock

compaction problem is solved. Further research is necessary to develop compaction

algorithms that consider partial orders other than the one implied by the ordering of the JAOps

*that are passed to the compaction phase. This will certainly be true in a production compiler,

where the pLOps are passed to the compaction phase in the form of a graph rather than as a

sequential list.

We suggest that dynamic programming may prove to be useful in compacting microcode,

particularly after the ordering of register usage has been determined. Although the

coi:)1exity o! the chain matrix compaction algorithm is, in theory, a polynomial whose degree

is the number of registers in [lie micromachine, we suspect that in practice the complexity will

be much lower if the algorithm is optimized so that it does not create portions of the

matrix-graph that are subsequently removed. In addition, preliminary study indicates that

dynamic programming shows promise for compacting tight loops.

Finally, the classical microcode compaction problem contains several other scheduling

problems as specir.J cases. It may therefore be worthwhile to apply it to other situations in

which the "breadth" of the partial order is small.

.S

0

Deterministic Code Generation Algorithm 113

Appendix A
Deterministic Code Generation Algorithm

This appendix discusses in detail the ordering and pruning mechanisms that allow the code

generation algorithm to run on a deterministic machine. Because the evaluation function is

so complex, we treat it separately in Appendix B; for the purpose of this discussion, the reader
can assume that the evaluation function compares two operands and returns a value that
represents the cost of transforming the first into the second.

Research in artificial intelligence has demonstrated that a depth-first searching strategy is
highly dependent on the order in which the nodes of the search tree are examined, whilp R

breadth-first searching strategy is not [Nilsson 80]. If a depth-first strategy is used, it is

possible for an enormous amount of time to be spent searching down dead-end paths of the

search tree, even when a shallow solution exists. A breadth-first search is guaranteed to find

a shallow solution before it finds a deep one.

Although a breadth-first search appears to be attractive, it is probably not practical:

o In a breadth-first search, all nodes are expanded in parallel; thus the search
requires an amount of Space that is exponential with respect to its depth. A
depth-first search requires only linear space.

The search depth should not be defined by the number of nodes examined, but
rather by the cost of the /Ops generated along the path. If this is the case, then
the application of an axiom during the search would not increase the "depth" of
the search. This could give rise to arbitrarily long paths of depth zero in the
search tree. For example, the repeated application identity axiom could lead to
the path:

x > (+ 0 x) -> (+ 0 (+ 0 x)) > ...

Clearly, a search that expands such a path until its cost became non-zero would
be ineffective.

* The most shallow solution is not necessarily the least expensive; the cost of a
AND node in the search tree is the sum of the costs of its sons rather than their
minimum. The two And/Or trees in Figure A-1 demonstrate this; the depth of a
solution to the tree on the left is 5, but the total cost is 45 because the AND node
requires that the costs be summed. Conversely, the depth of a solution to the tree
on the right is equal to its cost, 10.

... •,,..4 t n I

114 Local Microcode Generation and Compaction

AND OR

Figure A-1: Two And/Or trees with different costs.

We use the iterative deepening [Slate 77] technique to approximate a breadth first search.

First, a depth-first search is attempted with with a shallow depth limit. If no solution is found,

the search is repeated with progressively greater depth cutoffs until a solution is found. In

!*. addition, we have added a caching mechanism, which has proven useful in pruning the

search in a several ways.

The remainder of this appendix is organized as follows. First, the data structures used by

tha deterministic algorithm are described. Next follows by a detailed discussion of the basic

searching strategy. Then descriptions are given of additional mechanisms for limiting the

*search breadth. Finally, an example is presented, illustrating how the pruning and ordering

* mechanisms work.

A.1. Data Structures

The deterministic search algorithm uses two data structures in addition to those used by

the nondeterministic algorithm. The first is a table that defines a cost for each ILOp. The

second is a cache that stores the results of previous searqhes. The tLOp cost table is a

one-dimensional array that specifies an integer cost for each POp; as was discussed in

Chapter 5, the cost of a IOp is initially computed by summing the cost of the conflict classes

to which it belongs.

As juOps are generated during the heuristic search, the sum of their costs (which defines
the search depth at any given node in the search tree) is accumulated. If the depth along a

search path exceeds a preset limit, the search path is pruned.

*41 The cache, which records the results of all previous calls to search and transform, contains

two fields for each entry:

9 A cache cutoff, which is the greatest depth at which a search/transform has been
attempted with a particular set of arguments.

* i* A result, which is a tree of tLOps that resulted from the search at that depth.

The cache is used to prune the search in several ways, and is discussed further in Section

A.2.5.

6

Deterministic Code Generation Algorithm 115

A.2. The Algorithm

The code generation algorithm is a further specification of the nondeterministic algorithm

presented in Chapter 6, and resolves the following questions:

e At what cost (depth) should the search be attempted at the top level? What action
should be taken if no solution is found?

e How should the search be bounded? In other words, how should it be decided
that a path is no longer worth pursuing?

9 In what order should the nodes be examined?

* How should the cost be allocated when a search is decomposed into several
subsearches?

In this discussion, we assume that the code generation algorithm is satisfied with a single

solution, and therefore terminates the search when it finds a solution. Extensions that allow

the search to generate multiple solutions are discussed in Chapter 8.

A.2.1. Search cutoff

The primary method of pruning the search is through the use of a search cutoff; whenever

search (or transform) is called, it is passed a cutoff that specifies the cost above which a

solution i3 unacceptable. Any search path is immediately pruned that would, according to the

evaluation function, exceed the cutoff; thus only paths that "show promise" are pursued.

The cutoff is normally passed without change down the search tree. In two instances,

however, the cutoff is modified. First, the cutoff is divided among subsearches when a search

is decomposed (see A.2.3). Secondly, whenever a pOp is selected on a particular search

path, the cost of the jOp is subtracted from the cutoff.

A.2.2. Beginning the search

When the code generator is invoked to produce code for a particular expression, the

evaluation function estimates the cost of producing of code for that expression. The initial

cutoff is determined by multiplying this estimate by a prespecified constant (e.g., 1.25) in

order to account for the fact that the evaluation function is often too optimistic in its estimates.

If the search with the initial cutoff is unsuccessful, it is increased-again by multiplying by a

prespecified constant-and the search is retried. This process is continued iteratively until

either a solution is found or a time limit is exceeded.

A.2.3. Allocating costs among sub-searches

There are a number of circumstances in which a search is decomposed into subsearches.

116 Local Microcode Generation and Compaction

If exprl is divided into expr2 and expr3 during a search whose cutoff is 100, we must

determine the values x and y in
search(120): expri

decompose search:
search(x): exprZ
search(y): expr3

" In this case, it is necessary to determine new cutoffs for each of these subsearches. During

the course of our research, we have tried four different methods for determining such cutoffs:

1. Pass the cutoff directly to each subsearch. The values for x and y would then
both be 120 in the above example.

2. Use the evaluation function to determine minimum requirements for the search,
and divide the "slack" evenly among the subsearches. Assuming that the
evaluation function "rated" expr2 at 40 and expr3 at 30, x and y would then be 65
and 55, respectively, the slack of 50 being divided evenly between expr2 and
expr3.

3. Divide the cutoff so that each subsearch receives slack in proportion to its
evaluation function rating. In this case, the cutoff for expr2 and expr3 would be
68.6 and 51.4, respectively.

4. Divide the cutoff so that each subsearch receives slack in proportion to the
square of its evaluation function rating. In this case, the cutoff for expr2 and
expr3 would be 72 and 48, respectively.

The last three of these methods have the advantage that they guarantee that the total cost of

p.Ops will be less than the cutoff, and will prune the search more quickly if the evaluation

function has been overoptimistic. Although method 3 might in some sense seem the

"fairost", we have found that 4 is the most effective. It appears that this is because the

evaluation function is most accurate when its result is small, so a policy of assigning most of

the slack to those expressions whose evaluation function is large accounts in some manner

for the fact that those expressions probably need more slack due to an inaccurate estimate by

the evaluation function. An exception to this policy occurs in the case where a search is

* decomposed and the sequencing operator (;) is the outermost operator. In this case, the

searches are really independent, and the slack is distributed proportionally (i.e., method 3).

A.2.4. Node ordering and selection

* There are a number of points in the search where a nondeterministic choice must be made.

In the transform function for example, it is possible that several axioms and constant
unfolding axioms and the operand-by-operand decomposition are all applicable. In such a

case, the evaluation function is used to rank each potential choice. The lowest-valued choice

is attempted first, then the second, third, and so forth, until either the search completes

successfully, or all choices have been exhausted. In the former case, search/transform

returns successfully; in the latter, unsuccessfully.

a

Deterministic Code Generation Algorithm 117

A.2.5. Caching search results

We have found that the evaluation function alone does not adequately bound the search,

and have therefore added a caching mechanism. The result of each call to search or

transform for a given set of arguments is recorded, along with the highest cutoff value with
which it was called. The cache is used for pruning the search in three situations:

* When a search is attempted on a result for which a prior result exists that satisfies
the cutoff criterion, the previously computed result is used immediately.

* When an identical (unsuccessful) search has already been completed with a
cutoff whose value is greater than or equal to the present cutoff, the local search
is immediately terminated.

U . When an identical search is already in progress, the search is terminated
immediately. This often happens when a search calls itself indirectly as a result of
the application of two or more axioms that "cancel each other out" (e.g., two
commutative axioms applied consecutively).

The transform cache is also used by the evaluation function; this will be discussed in

Appendix B.

A.3. Limiting Search Breadth

In addition to using the evaluation function and cache for pruning the search, we have

introduced a number of other rules for limiting the breadth of the search. The first rule

requires that a feasib!e AOp whose semantics are defined by an assignment statement have

the same destination operand as the goal (not counting indices). This avoids a great deal of

redundancy resulting from the the selection of /Ops in different orders during the search. For

example, the solution

(-b a)
(-c b)

((- d c)

of (<- d a) could be discovered in five different orders by the heuristic search. With the

"matching destination" rule, only one of these orderings is considered.

The other three rules for limiting search breadth are included as a result of experiments that

led us to conclude that the application of axioms often causes the search breadth to increase

in an unmanageable manner. First, an axiom may be applied only if it causes the outermost

operators of the new expressions to match. Secondly, an axiom or constant unfolding axiom

may not be applied if introduces an operator that is not already present in either the goal or

current expression. Finally, the total number of axioms and constant unfolding axioms

applied at any node in the search may not exceed a predefined limit, which is a function of

search depth (in terms of number of axioms applied), and was introduced after experiments

aI

- 118 Local Microcode Generation and Compaction

' revealed that the eager application of axioms often causes enormous amounts of time to be

*. spent following "ridiculous" paths.

Pruning mechanisms carry with them the danger that branches leading to good solutions

*" might also be lost. This has in fact happened ouring our experiments, but we see no way of

. avoiding it. Unless the evaluation function is perfect or an exhaustive search of the solution

* space is feasible, we must accept the fact that some good solutions will be missed.

A.4. Specification of the Algorithm

We are now ready to present the deterministic version of the code generation algorithm.

Search(goal)

1. If a failure is found in the search cache, and the cache cutoff is as least as large
as the search cutoff, return a failure.

2. If a success if found in the search cache, and the search cutoff as least as large
as the cache cutoff, return the result from the cache.

3. Otherwise, mark the cache entry as a failure (so that this call to search will not
directly or indirectly call itself with an identical argument) and use the evaluation
function to select the decompositions (for sequencing, iteration and looping
operators) and feasible)AOps that have values less than the search cutoff.
(Feasible MOps whose definitions are assignment statments must have destina-
tions that match the destination of the goal. Furthermore the cost of such a jOp
is added to the value of evaluation function.) Then in order of evaluation function
rating, perform the following to each decomposition or feasible ftOp until a
successful search is found or all selected feasibles and decompositions have
been tried:

" If the selection is a feasible .Op, transform on the respective sources and
destinations, with the cost of the pOp being subtracted from the cutoff. If
the outermost operator is an assignment, the transformation between the
destination operators is reversed, and the reverse index flag is set.

" If the selection is a decomposition, the search is decomposed into its
component parts. If the outermost operator of the goal is a sequencing
operator, data dependency links are added between certain references to
resources in the original expression. If the goal expression is a conditional

* or iteration, new flow graph nodes and links are generated.

In all cases, the cutoff is divided among the search and transform functions in the
manner described in Section A.2.3.

4. Finally, the search cache is updated to reflect the result of this call to search.

4

I

Deterministic Code Generation Algorithm 119

Transform(goal, current) =

1. If a failure is found in the transform cache, and the cache cutoff is as least as
large as the search cutoff, return a failure.

2. If a success is found in the transform cache, and the cost search cutoff as least
as large as the cache cutoff, return the result from the cache.

3. If the operands are identical or if goal is the undefined resource, return an empty
list, signifying that no ILOps are necessary to transform the first operand into the
other. If the operands are identical constants or resources, place a data
dependency link between goal and current; if the operands are identical
expressions, recursively call transform on each pair of suboperands.

4. If current is a constant pattern, and goal is a "compatible" literal constant or

constant pattern, place a data dependency link between goal and current, and
create and return a pseudo-pOp whose operand is goal.

5. If both expressions are identical storage resources, but with non.identical
indices, apply transform to the indices; if the reverse index flag is set, reverse the
sense of the transformation.

6. If current is a storage resource, and step 5 does not apply or did not succeed,
apply the fetch decomposition:

search: (<- current goal)

Otherwise, mark the cache entry as a failure (so that this call to transform will not
directly or indirectly call itself with identical arguments) and use the evaluation
function to select axioms and constant unfolding axioms that result in goal
expressions that are "rated" below the cutoff value, eliminating any that fail to
satisfy the criteria of Section A.3. If the outermost operators of goal and current
are identical, and the operand-by-operand decomposition is rated below the
cutoff, also include it in the list of feasible axioms. Then in order of evaluation
function rating, with the decomposition taking precedence if there is a tie,
perform the following to each decomposition or axiom until a successful search is
found or all selected axioms and decompositions have been attempted:

" If an operand-by-operand decomposition is selected, call transform recur-
* sively on an operand-by-operand basis, returning all [LOps generated by

any of the calls.

" If an axiom or constant unfolding axiom is selected, apply it to the goal and
attempt to transform the modified goal into current.

In all cases, the cutoff is divided among the search and transform functions in the
manner described in Section A.2.3.

7. Finally, the transform cache is updated to reflect the result of this call to
transform.

* 120 Local Microcode Generation and Compaction

A.5. An Example

As an example of the algorithm in action, let us consider a problem on the Puma

micromachine [Grishman 78]. (A description and sketch of the Puma may be found in

Appendix E). The problem is to add the constant 5 to the buffer register, and to store the

result in the AC register. The problem is especially interesting because the Puma has two

ALUs: an exponent ALU (EALU) and a normal ALU. The literal field of the JLI is directly

connected only to the former, while the buffer register is directly connected to the latter; the

. presence of two ALUs, neither of which is "obviously" the right one to use, makes the job of

discovering the best code sequence more difficult.

The initial call, with a cutoff of 69.60,

search(69.60): (<- ac (+ 0000005 buffer))

is followed by a few calls to search and transform that discover ,1Ops (with a total cost of 5)
that move the final answer from the ALUX register to the AC. At this point, the problem has

been reduced to

search(64.60): (<- alux (+ 0000005 buffer))

and a decision must be made about which ALU should be used. From the perspective of the

heuristic search, the decision takes the form of deciding which of the feasible instructions

alux.or - (<- alux (or alu o0)) or alux.alu - (<- alux alu)

should be selected next. The evaluation function predicts that alux.or is likely to be less

expensive, so it is selected and the "OR identity" axiom is applied, resulting in the call
transform(64.60): (or 0000000 (+ 0000005 buffer)) -> (or alu eO)

This, in turn, results the operand-by-operand decomposition,

transform(2.02): 0000000 -> alu
and

transform(62.58): (+ 0000005 buffer) > e0
with most of the cutoff value being assigned to the latter task. A JLOp that computes a zero in

the ALU is found immediately, but after expending a moderate amount of effort, the search for

a solution to the latter task returns with failure; as it turns out, it is impossible to move the

value of the buffer register unmodified to an EALU input.

After this failure, the search backtracks to the point where the alux.alu pOp is considered.

* This leads to the selection of a IOp

alu.plus - (<- alu (+ (+ ac buffer) carryin))

which results in the call

transform(62.60): (+ 0000006 buffer) > (+ (+ ac buffer) carryin)

After applying the additive identity axiom and finding a ILOp that sets carryin to zero, the

problem is reduce to that of transforming the constant "5" into AC. Again the JLOps that move

the value of ALUX to AC are easily discovered, so the problem becomes

Deterministic Code Generation Algorithm 121

[" search(57.60): (<- alux 0000005)

Again alux.or is selected ahead of alux.alu. This time, however, the subproblens become

(after the "OR identity" axiom is applied)

transform(2.20): 0000000 *> alu
and

transform(55.40): 0000005 => 90
*The solution to the first of these problems is read from the cache; the second results in the

pOp

ealu.plus * ((- ealu (+ ea eb))

being selected (after finding the ILOp that moves data from ealu to eO). This, reduces the
problem to transforming the constant 5 into the sum of the two ALU inputs:

transform(52.40): 0000006 => (+ ea eb)

In this situation, the author expected the additive identity axiom to be applied, and a zero to

moved to one input from another part of the machine. Instead, a constant unfolding axiom

was applied that allowed the "-1 "-which is directly connected to one of the EALU inputs-to
'0be used: thus the code that was discovered set the literal field to "6", and added it to the "-1"

causing a "5" to be produced, thereby completing the search.

The entire search examined 63 non-trivial nodes in 48.33 seconds, with a maximum search

depth of 28 nodes, and a maximum depth in applied axioms of 4. The resulting code is:

ea.con 6 load constant 6 into "A " input of EALU
eb.ones load all ones into "B" input of EALU
ealu.plus perform an addition in EALU
Sd. eO load.register EO with the output of EALU
alu.0 set ALU function to "zero"
al ux.or "OR" constant 5 with the zero from ALU output
s h lo. pass pass constant 5 through shifter without shifting
ac. 1o load the AC with the constant 5 from shifter
carry.0 set the ALU carr, input to 0
al u.plus add the values in the BUFFER and AC together
al ux. al u do not "OR" the value of EO with ALU output

* shlo. pass pass final result through shifter without shifting
ac. o1 load the AC with the final result from shifter

r.

0e

122 Local Microcode Generation and Compaction

q

I

I

I

I

s .,_,':, - , - , '." ' . I _.. , / . _ . .. ,. , -- - -. - -.- ; -' -- - -

The Evaluation Function 1230

Appendix B
The Evaluation Function

This appendix describes the evaluation function that is used to guide the heuristic search.

It is our hope that someone who understands its contents will be able to reproduce (and

probably improve upon) the code generator; there are therefore necessarily many details. A

casual reader may wish to ignore this appendix altogether.

Nilsson [Nilsson 80] claims that the evaluation function is a critical component of any

heuristic search. We certainly agree with his assessment; More time was spent testing and

modifying the evaluation function than any other single component of the microcode

generation system because the entire search depends on its estimates being reasonably

accurate.

The evaluation function in our system compares two expressions and estimates the cost of

transforming the first into the second. It is important that the evaluation function take into

account the overall searching strategy, the tLOps available on the target architecture, and the
axioms that are available for performing transformations. The success of code generation

process is largely dependent on the accuracy with which the evaluation function reflects the

heuristic search.

The evaluation function makes use of a number of distance tables, which contain estimates

of the cost of transformations or data movements between storage resources, operators and

0 constants. When two atomic operands (a storage resource or constant) are compared, the

evaluation function generally performs a table lookup. When one or both of the operands is

an expression, portions of the expression are compared in different combinations to arrive at

an estimate of the "distance" from one expression to another. This generally involves
* recursive calls to the evaluation function; the distance tables are therefore ultimately used in

all cases.

In order to increase the efficiency of the evaluation function, we have introduced a cutoff

parameter, which allows the computation to be terminated early in many cases. The cutoff is

* useful because it is often the case that the search and transform functions are only interested

in a solution whose value is below a certain threshold. In such cases, the evaluation function

124 Local Microcode Generation and Compaction

computation is terminated as soon as it determines that its value is above the cutoff

*, threshhold. Measurements suggest that the use of this cutoff increases the speed of the

evaluation function by about a factor of two.

The remainder of this section is organized as follows: Some preliminary definitions are

*. given, followed by a description of the data structures that are used. Then, the algorithm itself

* is described, followed by detailed examples. Finally, the evaluation function is analyzed in

terms of its effectiveness, with particular emphasis on its known shortcomings.

B.I. Some Definitions

Before discussing the evaluation function itself, we wish to define a few terms that will be

I used throughout the section. For these definitions, we will assume that X and Y are

expressions as defined in Section 5.2.2, and that E is the expression

(+ 4 (and %mask (rotate abus regfile[23])))

The first few definitions are quite simple. Atoms(E) represents the set of all atomic

operands of E (i.e., storage resources and constants, excluding indices): "4", "%mask",

"abus" and "regf ile". SubOpds(E) are the top-level operands of E: "(and %mask ...)"

and "4". Operators(E) are the operators in E: "+", "and" and "rotate", while Size(E) is the

total number of operators and atoms in E, excluding indices, which in this case is seven.

Finally, the outermost operator of an expression is the operator in the leftmost position as it is

•itten; OuterOp(E) is "+".

The other terms deal with properties of the operators themselves, or define data sfructures

used by the evaluation function. The index cost of an indexed storage resource (e.g.,

regf 119[23]) is the cost of transforming the actual index (e.g., 23) into an operand that

actually indexes the resource in a pOp definition. Thus, if there were a pOp with the

semantics

(<- abus (regftle [regldx]))
U

then IndexCost(regfile[23]) would be the cost, as estimated by the evaluation function, of
transforming 23 into regidx. If more than one such expression occurs in the pOp definitions,

the smallest value is used.

* The table cost between two operands/atoms, denoted X74Y, is the cost of transforming or

moving the first to the second as determined by a table lookup. A discussion of the tables

may be found in Section B.2.1.

The data operands of an expression are those suboperands for which the operator may act

4 as an identity operator, given the proper values for the other suboperands. Thisinformation is

used by the evaluation function in estimating how data may be routed. For example, both

I

L 0The Evaluation Function 125

operands of the "+" operator are data operands, as zero may act as either the left or right

identity. The second (but not the first) operand of the "rotate" operator is a data operand
because rotate has a left identity but no right identity.

The identity cost of an operator is the difficulty, according the evaluation function, of

transforming the operator into the identity operator, and is found by table lookup, ident'tLop.

The identity depth of one expression within another is the sum of the identity costs of all

operators that are ancestors of the first expression in the second. It is an estimate of the cost

of transforming the first expression into the second by the application of identity axioms.

The pOp expressions of an operator are those expressions occurring in the 1Op definitions

that contain either the operator itself, or a "closely related" operator. the evaluation function

uses these expressions to determine whether a particular operation can be performed

anywhere on the micromachine.

Finally. we define the axiom factor, a "fudge factor" that is used to account for the fact that

an axiom often brings new operators and operands into the search. In transforming (not A)
into B, for example, one may have to account for the fact that the axiom

(not $1) :: (xor -1 $2)

introduces a new operator, XOR, and new literal, "-1". The axiom factor is a very rough

estimate of the the extra pOps that are necessary to generate these new additional constants
and operators. The axiom factor is defined as a percentage (currently 14%) of the cost of the

entire IL (i.e.. the sum of the costs of all conflicts) and is used to by the evaluation function to
multiply costs involving operator comparisons.

B.2. Data Structures

The evaluation function uses several data structures in performing its task. As was

mentioned earlier, there are a number of tables which estimate the distance between

0 constants, resources and operators. In addition to these tables, the evaluation function
makes use of a cache of previous results, lists of expressions involved in indexing resources,

and certain information about operators, such as which ones are commutative.

B.2.1. Distance tables

Five distance tables are used, four of which contain estimates of the cost of

transforming/moving some quantity to a storage resource. The resource-resource table

specifies the cost of moving data from any (storage) resource to any other. The

* operator-resource table gives the cost of performing a particular operation, and then moving

the data from that operation to the specified resource. The literal-resource table specifies the

cost of moving "commonly used" literals to the resource-in our implementation, such literals

6

* 126 Local Microcode Generation and Compaction

are defined to be the integers -1, 0, and 1. Finally, the pattern-resource table defines the

distance between any constant pattern and a particular resource. The other distance table is

the operator-operator table, which defines a how closely related a pair of operators is.

' Sample distance tables are given in Section B.4.1.

Once the values contained in these tables are computed, they remain fixed until the

micromachine definition or axioms are changed. The operator-operator table is computed in

four steps:

1. Initially the cost of each distance in the table is set to infinity, except that the
distance between an operator and itself is set to zero.

2. The "cost" of each axiom is computed by counting the number of operators and
* constants it introduces.

3. The distance from one operator to another is the minimum axiom cost in which
. the first operator occurs on the left side, and the second occurs on the right side.

The distance from the identity operator to any other operator is computed by
considering axioms of the form

$1 :: (op opdl opd2)

to be

(Ident $I) :: (op opdl opd2)

4. A transitive closure is taken on the entire table.

The "distance" from one operator to another is defined to be the product of their table value

and the axiom factor.

The resource-resource, literal-resource, operator-resource, and pattern-resource tables

are determined by considering all ILOps whose semantics are defined by an assignment

statement. The distance to the destination resource from any other resource (or literal,

pattern, operator) is computed by adding the cost of the /iOp and the identity depth of the

latter.

0 After the table entries have been computed, transitive closures are taken with the

resource-resource table to account for literals, patterns, operation resources that must pass

through intermediate resources. In addition, a transitive closure is taken on the

resource-resource table with respect to the operator-resource table to account for the

* application of axioms during the heuristic search.

Conceptually, there is one more table, the literal-pattern table, which contains the

"distance" from each literal and each pattern. This "table" is implemented in the code,

however, in order to save space-a 16-bit machine with 4 patterns would require 4.216 table
0 entries otherwise. For each pattern there exists a routine which determines whether a literal

matches, almost matches, or fails to match it.

.~~ .. --.. .

*The Evaluation Function 127

6.2.2. Caches

I -MillIn order to take advantage of the fact that the same expressions tend to be repeatedly

L- compared during a given search, the evaluation function maintains a distance cache, in which

previously computed values may be looked up rather than recomputed. The transform cache
is also used for operand pairs on which transform has already been called; when such a

cache entry is available, the evaluation function returns an exact value instead of an estimate.

8.2.3. Other data structures

Several other data structures are used in addition to the distance tables and caches. The
index table contains for each indexed storage resource a list of expressions that appear as

indices for that resource in the 1lOp definitions. It is used to determine the index cost of an

operand.

The operator-expression table contains the juOp expressions for each operator, and is used

*+ to determine a lower bound on the least expensive way to compute a given expression. The

commutativity and associativity vectors are bit vectors that specify whether a given operator is

commutaive and/or associative, and are computed by examining the axioms. Finally, the
data operand table specifies for each operator which of its operands are data operands.

B.3. The Evaluation Function Algorithm

We are now ready to present the algorithm itself, which computes a "distance" from one

operand/operator to another. We use the word distance loosely here because it is

unidirectional; it is used in the rest of this section for lack of a better term.

The evaluation function is actually a synthesis of three different functions. The distance

function (DF) compares suboperands and operators recursively and in different combina-
tions. The associative distance function (assocDF) compares operators and atomic

* operands, without regard for the structure of either expression. The size-based distance

function (sizeDF) is a function of the difference in the number of nodes in the expression tree.
The evaluation function is computed by taking the larger of the size-based distance function

and a weighted sum of the other two:

EF = Max(sizeDF, Min(DF, 0.9 x assocDF + 0.1 X DF))

The purpose of the weighting between the associative distance function and the distance

function is to break ties, which are often generated by the associative distance function.

128 Local Microcode Generation and Compaction

B.3. 1. The distance function

The distance function first checks the transform cache, returning the cost of the transform

if it finds that a successful transform has been attempted. If it finds an unsuccessful transform

with a high enough cutoff, it also returns returns a lower bound on the cost of the transform,

which it reads from the cache. If a result cannot be inferred from the transform cache, the

distance cache is checked. If no entry is found in the distance cache, the computation

depends on the types of operands that are being compared:

If the second operand is a constant, the first operand must be a "compatible" constant:

e Literal constant = > literal constant. If the values are equal, their distance is
0. If their values are "almost equal", which for our purposes means that the
former can be converted to the latter by adding or subtracting 1, or by
complementing or negating, their distance is defined to be a predefined positive
integer-currently ten times the axiom factor-signifying that the constants are
"close"; otherwise the distance is infinite.

e Literal constant = > constant pattern. If the literal matches the constant, the
distance is zero. If it "almost" matches, the distance is the predefined constant
described above; otherwise their distance is infinite.

* Constant pattern = > constant pattern. The distance is either zero or infinite,
depending on whether the first pattern is a subset of the second.

* Anything else = > literal constant or constant pattern. The distance is
defined to be infinite.

If the first operand is a constant or storage resource, and the second is something other

than a constant, the distance tables are used:

e Literal constant or constant pattern => resource. The pattern-resource
table is examined to determine the smallest distance to the resource from any
pattern that matches the first operand. If the first operand is a literal constant
between -2 and 2, the literal-resource table is also used to further minimize the
value. The index cost of the second operand is also added.

* Resource I => resource2. The resource-resource table is used to estimate the
cost of moving data from resource1 to resource2; the index cost of each operand
is then added.

*Literal constant, constant pattern or resource => expression. The
minimum over all atomic operands in the expression is taken of the distance from
the first operand to the given atomic suboperand plus the identity depth of the
atomic suboperand. If the expression evaluates to a constant, it is folded before
the comparison.

Mi n OF(o pdj, e) + IdentDepth(e)
e E expression

When the first operand is an expression, the computation is dependent on its outermost

operator and the type of second operand:

The Evaluation Function 129

9 (Flow opd) => anyOperand. When only a flow result is being passed, the value
computed is the smallest distance from any atomic suboperand of opd to the
second operand.

M i n DF(op, anyOperand)
op E Atoms(opd)

* Expression => resource. When the first opera.ad is an expression and the
second is a resource, lower bounds on the distance from expression to resource
are computed in two ways; the value returned as the distance is the largest of
these lower bounds. The first lower bound is computed by computing the
distance from each atomic operand in expression to resource, adding it to its
identity depth in expression, and selecting the largest such sum.

Max (al-Zresource) + IdentDepth(a)
a E Atoms(expression)

The second bound is computed by finding the smallest distance between
expression and any LOp expression of the outermost operator of expression, and
adding it to the distance from latter to resource.

OuterOp(expression) "- resource +

M i n DF(expression, e)
e E MuopExprs(OuterOp(expression))

(<-dst1 src1) => (<- dst 2 src2). The distance from src 1 to src2 is added to the
distance from dst2 to dst1 .

DF(src,, src2) + OF(dst2, dst1)

* Expression1 => expression 2. If the outermost operators are identical, the
distances are added together on an operand-by-operand basis.

T DF(SubOpds(expression)i), SubOpds(expression2)))
i E operand Index

If the operator is commutative, an attempt is made to reduce this amount by
performing the computations with the operands reversed. If, on the other hand,
the outermost operators differ, the sum of the minimum distances between each
suboperand of expression1 and any suboperand of expression2 is added to the
table distance between the operators.

OuterOp(expression)"4 OuterOp(expression 2) +

Min DF(x,y)
x E SubOpds(expression1) y E SubOpds(expression2)

Whether the outermost operators are identical or not, an alternative computation
is used when smaller than the above: the minimum of the distance from
expression 1 to any suboperation of expression2 plus the identity depth of the
latter.

Mi n IdentDepth(x) + DF(expression1,x)
x E SubOpds(expression 2)

130 Local Microcode Generation and Compaction

B.3.2. Associative distance

The associative distance function computes an "alternate distance" between two expres-

sions. Although we use the term associative, its purpose is more or less to compute distances

between all operators in the expression and between all resources/constants in the

expression without regard to parenthesization or order. Thus, it also accounts for other

axioms, such as distributive ones.

The associative distance between two assignment statements is simply the sum of the

associative distances between their corresponding operands, with the direction reversed for

the destination operands. Otherwise the associative distance from one operand to another is

the sum of four quantities:

1. The sum of the minimum distances from each "difficult" operator to any resource
in the second operand is computed. A "difficult" operator is one that appears in
the opd, but not in opd2, and cannot be removed from the first by the application
of an axiom without introducing additional operators.

Min o'tvr
o f difficult r E Atoms(opd2)

2. The maximum of the minimum distances from each resource or constant in opd1
to any resource or constant in opd2.

Max Min x y
x EAtoms(opd1) yEAtoms(opd 2)

3. The difference in size between opd, and opd 2, multiplied by the axiom factor.

4. A predefined constant, currently five times the axiom factor, to account for the
fact that the associative distance function ignores structure, and would therefore
tend to dominate other distance computations.0

B.3.3. Size-based distance

The purpose of the size-based distance computation is to introduce a penalty when the size

of the two operands differs greatly. It is computed by multiplying by the difference in size of

the two expressions by the axiom factor.

AxiomFactor x jSize(opd,) - Size(opd2) I

0

The Evaluation Function 131

B.4. Examples

In this section, a simple hypothetical micromachine is described, the associated distance

tables are presented, and a few examples are given to demonstrate how the evaluation

function works.

B.4.1. Sample micromachine

Table B-1 shows the expression for each jiOp in the hypothetical machine along with its

cost,

(<- areg gprl'%w1ld]) cost 4
((- areg fbus) cost 2
((- breg (and %mask blatch)) cost5
(<- breg %wild) cost5
(<- fbus (+ areg breg)) cost4
((- fbus (- areg breg)) cost 4
((- fbus (and areg breg)) cost4
(- fbus 0) cost4
((- gpr[%wld] fbus) cost2
(W- fblatch fbus) cost 1

Table B-l: pOp expressions.

while Table B-2 shows the relevant portion of the operator-operator table, derived from the

axioms in Appendix C. In this case, the table values are estimates of the "similarity" of two

operators.

and + - ident
and 0 00 00 00

+ 00 0 1 o0
- 0 2 0 00

ident 2 2 3 0

Table B-2: Operator-operator table.

The remaining tables assume that the axiom factor is two (2), implying that the "distance"

between a pair of operators is twice the table entry. Table B-3 is the resource-resource table;

the entries with an asterisk (0) are those derived directly from the pOps; the remaining entries

were computed by the transitive closure.

Table B-4 is the operator-resource table, B-5 is the literal-resource table, and B-6 is the

pattern-resource table.

The index table for the machine contains a single entry, Xwi I d, for the gpr resource. The

operator-expression table contains entries for three operators:
0P

132 Local Microcode Generation and Compaction

areg breg fbus gpr blatch
areg 0 1 8 a 10 9
breg 10 0 8 a 10 9
fbus 20 10 0 201
gpr 4 22 12 0 13

blatch 19 9 17 19

Table B-3: Resource-resource table.

areg breg fbus gpr blatch
and 6 50 40 6 5

+ 6 14 4 6 5
6 14 4 6 5

ident 8 7 6 8 7

Table B-4: Operator-resource table.

areg breg fbus gpr blatch
-1 15 50 13 15 14
o 12 4" 6 6
1 16 5 13 15 14

Table B-5: Literal-resource table.

areg breg fbus gpr fbatch
%wild 15 5 13 15 14
%mask 15 13 15 14

Table B-6: Pattern -resource table.

and (and %mask fblatch) (and areg breg)
+ (+ areg breg) (- areg breg)

(- areg breg) (+ areg breg)

B.4.2. Examples of the evaluation function in action

Let us consider the distance from

(+ 3 fblatch) to (+ areg breg)

on the machine just described. This is computed as specified in Section B.3:

1. The sum of the operand-by-operand distances is 24. The distance from "3" to
areg, 15, is found in the pattern-resource table; "3" matches both %wild and

• :: . " - ,... . . . - . • -

, The Evaluation Function 133

%mask, so the minimum distance is chosen-in this case they are identical. The
distance from fblatch to breg, 9, is found in the resource-resource table.

C2. Because "+" is commutative, the computation is also considered with the
operands reversed. The distance from "3" to breg is 5, while the distance from
fblatch to areg is 19. Again, the total is 24.

3. Next an attempt is made to use "+" in the second operand as an identity
operator. Its identity cost (4) is added to the distance from

(+ 3 fblatch) to areg

which is 23, resulting in a total of 27.

4. The same is also attempted with the other operand:

(+ 3 fblatch) to breg
resulting in a distance of 30, and a sum of 34.

5. Finally, the associative distance is attempted; in this case, the computation is
quite simple because there are no "difficult" operators, and the expression sizes
are identical: 10 (i.e., five times the axiom factor) is added to 9, the max/min
distance between atoms in the first/second operands, giving the result 19.

The distance function result is 24, the minimum of the first 4 computations. Because the

associative distance is smaller, the final result is 90% of 19 plus 10% of 24, or 19.5; the
size-based distance does not affect the result in this case because the expression sizes are

identical.

Next, consider a similar problem, the distance from

(+ 3 fblatch) to (- areg breg)

In this case, the outermost operators are different, so different computations are performed:

1. The three distances,
11+91 to "t-"

(3 to areg) min (3 to breg)
and

(fblatch to areg) min (fblatch to breg)

which are 2, 5, and 9, respectively, resulting in asum of 16.

2. Next an attempt is made to use "-" in the second operand as an identity operator.
Its identity cost (6) is added to the distance from

(+ 3 fblatch) to areg

which is 23, resulting in a total of 29.

3. The same is also attempted with the other operand:

(+ 3 fblatch) to breg

resulting in a distance of 30, and a sum of 36.

4. The associative distance is 25. As in the previous case, there are no difficult
operators, the max/min distance is 9, and the fixed constant is 10. Here, however
the distance from "+" to "-" (2) and a size difference penalty of 4 are also
added.

. . - . ,. . .

134 Local Microcode Generation and Compaction

The distance function result is 16, the minimum of the first three computations; this is also the

final result because the associative distance is larger and the size-based distance (4) is

smaller.

One might think it peculiar that the

(+ 3 fblatch) to (- areg breg)

distance is smaller than that of

(+ 3 fblatch) to (+ areg breg)

since the expression pairs are identical except that the former has more distant operators.

This anomaly is discussed in Section 6.5.

The next example,

(+ 3 fblatch) to areg

was a subcomputation in the previous two examples:

1. The first lower bound for the distance function is the maximum "distance plus,
identity depth" from "3" or blatch to areg. The distances are 15 and 19
respectively, and both identity depths are 4, so the result of this step is 23.

2. The second lower bound is the distance from "+" to areg (4) plus the smallest
distance from the expression to any member of the set MuopExprs(" + "). The
two members of this set are

(+ areg breg) and (- areg breg)

In the previous examples, we saw that second of these expression gives us the
smallest result, 16, so the value computed by this step is 22.

3. The associative distance is the sum of the distance from "+" to areg (6), the
maximum distance of "3" or fblatch to areg (19), the size-based distance (4), and
the fixed constant (10), or 39.

The largest of the first two results, 23, is selected as the distance function value; because the

associative distance is larger, and the size difference (4) is larger, 23 is selected as the final

result.

The attentive reader may have noticed that the evaluation of the distance from

(+ 3 fblatch) to areg

requires the evaluation of the distance from

(+ 3 blatch) to (areg breg)

and vice versa, because the former evaluation computes the distance from

(+ 3 fblatch)

to each element of MuopExprs(" +"). The caching mechanism ensures that indefinite
recursion does not occur by prohibiting any computation to be performed when an identical

computation is in progress.

The final example involves a resource with an index, estimating the distance from

. .

The Evaluation Function 135

9(- gpr[3] areg) to (<- fbus (and areg breg))

This distance is computed by adding the distances

(and areg breg) to areg
and

fbus to gpr[3]

The first of these is computed by adding the identity cost of the AND operation (4) to the

smallest distance from any suboperand of the expression to areg, which in this case is 0. The

second value is computed by adding table distance from fbus to gpr (2), to the index cost (0)

which is the distance from "3" to %wt 1 d. Thus the total value is 6.

B.5. Shortcomings of the Evaluation Function

Although we have found that the evaluation function is usually effective in guiding the

heuristic search, it should be evident from the examples that it computes only a rough

approximation of the true cost of performing the actual transformation. The next few

paragraphs discuss some of its weaknesses that became evident during experimentation.

A weakness mentioned previously is that the distance from
(+ 3 fblatch) to (+ areg breg)

was estimated to be greater than the distance from

(+ 3 fblatch) to (- areg breg)

This is because the evaluation function requires the operands to be matched in a one-to-one

correspondence when the outermost operators are identical-thus either "3" or fblatch must

be matched with areg-while the constraints are less strict when the operators are not

identical-both "3" and fblatch can be match with breg. A one-to-one correspondence is not

always possible when the outermost operators are different; the expressions may differ in the

number of suboperands, for example. Thus the estimate may be less accurate, and

sometimes lower, when the primary operators differ.

The evaluation function performs very poorly in the presence of expressions that include

rotation or bit extraction operators. Our heuristic searches, for example, are not able to

discover that a rotation by 8 can be performed by rotating by 5, and then later rotating by 3. It

appears to us that in order to handle rotation and bit extraction correctly, it would be

necessary to have b2 separate distance tables for every one that currently exists-where b is

the word length of the machine-in order to make estimates such as "the distance from

resource A, rotated by 7, field length 5". During the course of this research, we attempted to

approximate this information by adding 5 or 6 more tables, but the experiment was not

successful.

Another inaccuracy in the evaluation function is its use of the axiom factor and multiples

4 136 Local Microcode Generation and Compaction

thereof, to estimate the cost of unknown operations. In some cases the estimate is too high,

while in others it is too low.

The size-based distance can also be a cause of inaccuracy because it assumes that the

distance between two operands that differ greatly in size will be great. This is not true if there
*'. is an inexpensive JOp whose semantics are specified by a large expression. For example, if

the pOp
((- areg (and (+ %mask gpr[3]) (rot %wild fbus)))

had a cost of 2, the size-based distance would cause the total distance from

(and (+ %mask gpr[3]) (rot %wild fbus)) to areg

to be 14 (7 times the axiom factor), even though the transformation could be performed by the
qsearch at a cost of 2.

Because the evaluation function is often inaccurate, one might ask the question, Why not

improve it? We answer this by saying that we have improved it many times already-the

reader only need refer to the Section B.3 to verify that it is quite complex; it is necessary to

choose some stopping point in order to report on this research. The evaluation function

appears to be accurate enough to be able to guide a large number of relatively deep

searches.

..

Kmap Machine Description 139

Appendix D
Kmap Machine Description

This appendix contains the machine description of the Kmap micromachine [Ousterhout

78] that was used in many of the examples. A sketch of the machine is given in Figure D-1.

P dadr from memory

Sddtarai gpr's

"---'J 'F abuIs ms

tlatch m (bdr tblatch
- J sh ifter -br Ic o st n

Imbcr, * I-F bbus IF
~bbus

are

II I
fbus

I m

I

4

Figure D-1: Sketch of the Kmap microarchitecture.
T

The description is contained in three files. The first contains the names of all storage

.- -.. ..

p.,

140 Local Microcode Generation and Compaction

* resources in the micromachine. An asterisk (*) after a resource specifies that it is a

r permaonent resource-that is that it may not be used to store temporary results. The numbers

* parentheses specify the word size and rank respectively.

madr * (12 0) cxreg (8 0) lincwd (16 0)
* fbus (16 0) abus (16 0) breg (16 0) areg (16 0)
* gpr (16 1) dadr (12 0) dram 0 (16 2)

gpridx (5 0) tlatch (16 0) scount (4 0)
conhi (8 0) conlo (8 0) ccl (1 0) cc2 (1 0) ccl6 (4 0) carry (1 0)

* carryin (1 0) fblatch (16 0) mbdr (16 0) mbcr (16 0)
timeout (1 0) refctl (6 0) flaga (4 0) flagb (4 0) dmask (16 0)

The second file contains the names of all conflict classes, each followed by its cost.

fbus 3 gpr 6 eopl 2 eop2 2
shift 2 areg 2 tlatch I gpridx 0
cc2 2 cc2s 1 breg 2 ccl 2
ccls I fbl I flags 2 carry 2
dadr 2 abus 3 carryout 0 carryoutl 0
carryout2 0 carryout3 0

S. The third file contains the [Op definitions.

*°P ???(0 1) ???(0 ())
constoino ()

(<- ???f0 12 ???(0 1))
shift (shift}

(<- scoaut(4 9) %wild)
shift.fbus (shift)

(<- icount(4 9) fbus(3 4))
areg.mask fareg)

,(<- areg(8 15) (and %mask (rot scount(7 8) tlatch{7 8))))I O.t] I %latch}

(<- tlatch(6 *} abus(5 6))
fbus.add (fbus carryout2 carryout3)

(<- fbus{2 11) (+ (+ areg(0 1) breg(0 1)) carryin(0 1)))
carry.add (carryout carryoutl}

(<- carry{2 11) (c3 carryin(0 1) areg(0 1) breg{0 1)))
fbus.amb {fbus carryoutl carryout3)

(<- fbus{2 11) (+ (+ areg(0 1) (not breg(0 1))) carryin(0 1)))
carry.amb {carryout carryout2}

(<- carry(2 11) (c3 carryin(0 1) areg(0 1) (not breg(0 11)))
fbus.bma (fbus carryoutl carryout2)

(<- fbus(2 11) (+ (+ (not areg{0 1)) breg(0 1)) carryin(0 1)))
carry.bma (carryout carryout3}

(<- carry(2 11) (c3 carryinfO 1) (not aregO0 1)) breg(0 1)))
fbus.and {fbus carryoutl carryout2 carryout3}

(<- fbus(2 11) (and areg(0 1) breg(0 1)))
fbus.or {fbus carryoutl carryout2 carryout3}

*(<- fbus(2 11) (or areg{0 1) breg{0 1)))
fbus.xor {fbus carryoutl carryout2 carryout3)

(<- fbus(2 11) (xor areg(0 1) breg(0 1)))
fbus.zero (fbus carryoutl carryout2 carryout3}

(<- fbus(2 11) 0)
fbus.ones (fbus carryoutl carryout2 carryout3}

(<- fbus(2 11) -1)
ld.gpr (gpr)

(<- gpr(8 *)[gpridx(2 3)] fbus(4 5))
gpridx (gpridx)

(<- gpridx(O 9) %wild)
cc2.0 (cc2)

(<- cc2(l 9) 0)

*Krnap Machine Description 141

cc2.1 (cc2)
(<- cr.2(1 9) 1)

cc2.feven (cc2)
(<- cc2fl 9) (not fbus(0 11))

cc2.czero (cc2)
(-cc2(I 9) (not carry{O 1)))

cc2.fones (cc2}
(<- cc2(I 9) (bitand fbusf0 1)))

breg.gpr (breg gpr)
(-breg(4 13) gpr{5 6)Cgpridx(2 3))

breg.fbl (breg)
(-breg(4 13) fblatch[3 4})

brog.con (bIreg}
* (<- brey(4 13) (@2 8 conhif3 4) cofllo(3 4)))

breg.mbdr (breg)
(<- brag(4 13) mbdr(3 4))

breg.mbdlo (breg)
(-breg(4 13) (and 0777? mbdr(3 4)))

breg.ones (breg)
(<- breg(4 13) -1)

ccl.O (ccl)
(<- ccl(1 9) 0)

ccl.l (ccl)
(-ccl{1 9) 1)

ccl.fbusl5 {ccl)

ccI.abusl5 (ccl)
(<- ccl(1 9) (rot 15 abus(0 1)))

ccl.aOUsj4 (Cc!)

ccl.cr.g:5 'cci)
c-ccl(I1 g (rot 15 breg(0 11))

(-ccl(I 9) timeout(0 1))
CC16.r!ctl (Ccl)

(.ccl6f 1 i) refctl(0 1))
CC16.ani ((Ccl)

(,;- ccI6(1 9) (rot 12 abus(O 1)))
cclG.blo (ccl)

(<- cc16(I 9) breg(0 1))

(<- CC16i{l 9) fbus(O 1))
CClb.rlagb (ccl)

(<- c:16(. 9) flagb(0 1))
cc16.flaga (ccl)

(<- cc16(I 9) flaga(0 1))
ld~fbI (fbi)

(<- fblatch(3 *) fbus(2 3))
ld.flaga (flags)

(<- fiaga(4)fbus(0 1))
ld.flagb (flags)

(<- flagb(4 }(04 1 1 1 1 carry(0 1) cc2(3 4) ccl(3 4)))
* carry.0 (carry)

(<c- carryin(0 9) 0)
carry.1 (carry)

(<- carryin(O 9) 1)
carry.old (carry)

(<- carryin(1 9) carryfO 1))
Id.conhi (eopi eop2)

(<- conhifO 0) '/wild)
4 ld.conlo (eapl eop2)

(<- conlo(0) %wild)
Id.d.fbus (eopl)

(<- dram(8 *)[dadr(2 3) %wild] fbus{7 8))
Id.dr.aset (eapIj

(<~- dram(3 0)[dadr(2 3) %wild] (or dmask(l 2) abUiS(0 1)))
ld.dr.aclr (eapi)

(<- dram(3 0)[dadr(2 3) %wild] (and (not dmask(1 2)) abus(0 1)))
* lId.dmask 0)

(<c- dnlask(O 7) %bitsst)
Id.dadr.a (dadr)

(.dadr(1 0) atbus(O 1))

Ai 142 Local Microcode Generation and Compaction

ld.dadr.r (dadr)
(-dadr(1 0) fbus{O 1))

* abuS.gpr fabus)
(<- abus(5 12) gpr(2 3)(gpridx(2 3)])

abus.fbub (abus)
(<- abus(5 12) fbus(2 3))

* abus.edadr (abus)
(<- abus(5 12) (@2 12 (hizero tbus(2 3)) dadr(2 3)))

abus.mbcr (abus)
(<c- abus(5 12) mbcr(O 1))

abus.pmcc (abus)
(<- abus(5 12) (@5 1 1 1 12 0 carry(0 1) cc2(2 3) ccl{2 3) madr(0 1)))

abus.cxfl (abus)
(<- abus(5 12) (@3 4 4 cxreg(0 1) flagb(4 5) flaga(4 5)))

abus.dram (abus)
(<- abusf5 12) dram(4 5)[dadr(4 5) %wild])

ablus.3inc (abus eopl. eop2)
(<- abus(5 12) lincwd{4 5))

br.ccl (ccls)
(<- madr(6 15) (flow ccl(5 6)))

br.cc2 (cc2s)
(<- madr(6 15) (flow cc2(5 5)))

br.ccIB (ccls}
(-madr(6 15) (flow ccI6(5 6)))

Puma Machine Description 143

Appendix E
Puma Machine Description

This appendix contains the machine description a subset of the Puma micromachine

[Grishman 781 that was used in our experiments. This model is inconsistent with the real

machine in several respects. First, because our implementation assumed a maximum 16-bit

word size (for the purposes of constant-folding, etc.) we also assume a maximum 16-bit word

size, although the real machine has registers as wide as 60 bits. Secondly, many of the

"exotic" ILOPS for setting condition codes have been omitted. Thirdly, although the ALU in

the real machine is capable of both twos-complement and ones-complement arithmetic, our

implementation is only capable of handling the former; jiOps that perform ones-complement

arithmetic are therefore omitted. A sketch of the microarchitecture is given in Figure E-1.

The description is contained in three files. The first contains the names of all storage

resources in the micromachine. An asterisk (*) after a resource specifies that it is a

permanent resource-that is that it may not be used to store temporary results. The numbers

parentheses specify the word size and rank respectively.

mar 0 (10 0) cond (1 0) jfleld (3 0) kfM eld (3 0)
ifield (3 0) ealu (12 0) mq (16 () regoutput (16 0)
buffer (16 0) alu (16 0) carryin (1 0) ac (16 0)
ilatch (3 0) areg 0 (16 1) breg * (16 1) xreg * (16 1)
yreg (16 1) reginput (16 0) regidx (16 0) e0 (12 0)
el (12 0) e2 (12 0) alux (16 0) shiftlo (16 0)
cmrd (16 0) preg (16 0) shifthi (16 0) ea (12 0)
eb (12 0) mbus (16 0) ma (16 0) mem (16 1)

The second file contains the names of all conflict classes, together with the cost assigned to

each.

cc 2 reginput 0 reg 3 rldx 0
ilatch 1 buf 1 nomant 0 noexpo 0
noexpo2 0 mant 0 alu 2 carry 0
alux 0 shlo 0 shhi 0 ac 5
acl 0 ach 0 mq 2 lt75 6
11t73 5 lit79 5 ea I eb 1
ealu 3 preg 1 ma I io 1

* 144 Local Microcode Generation and Compaction

IxReg file SyReg fie aReg file bReg file

6

logi MData] A

EL hifter

- memory
:" I pc I
"El

Fiu e -1 SethOR h uamcorhtcue

IO

shftr .

II4

M A

Puma Machine Description 145

The third file contains the kLOp definitions.

flop (

const.bind (

branch (
(-mar(9 18) (flow cond(S 9)))

cc.j.O (cc)
(<- cond(8 9) (- jf'ield(0 1) 0))

cc.ealu.11 (cc)
(<- cond(8 9) (rot 11 ealu(8 9)))

cc.salu.4z (cc)
(<- cond(S 9) (- 0 (and 017 ealu(8 9))))

cc.mq.4g7 (cc)
(<- cond(B 9) (> (and 017 mq(8 9)) 7))

cc.mq.4g8 (cc)
(<- cond(8 0) (> (and 017 mq(8 9)) 8))

cc.reg.15 (cc)
(<- cond{8 9) (rot 15 regoutput(8 9)))

cc.buf.15 (cc)
(.cond(S 9) (rot 15 buffer(8 9)))

* cc.alu.15 (cc)
(<- cond(B 9) (rot 15 alu{8 9)))

cc.ac.15 (cc)
(<- cond(8 9) (rot 15 ac(8 9)))

cc.il .0 (cc)
(<- cond(B 9) ilatch(8 9)

cc.ii.1 (cc)
(<- cond(8 9) (rot I ilatch(8 9)))

cc.il.2 (cc)
(-cand(8 9) (rot 2 ilatch(8 9)))

cc.il.z (cc)
(<- cand(S 9) (~0 ilatch(8 9)))

cc.j.z (cc)
(<- cond(B 9) (~0 jfieldtB 19)))

ld.areg frog)
(<- areg(4 *)Cregidx(3 4)] reginput(3 4))
ld.breg frog)

* (c-breg(4)[Ci'egidx(3 4)] reginput(3 4))
Id.xreq freg)

(<- Areg(4 *)Cregidx(3 4)] reginput(3 4))
ld.yreg (reg)
(<- yreg(4 *)Cregidx(3 4)) reginput(3 4))

rd.areg frog)
(<c- regoutput(2 11) areg(0 1}[regidx(l 2)])

rd.breg frog)
(.regoutput(2 11) breg(0 1)[regidx(1 2)])

rd.xreg (rog)
(<- regoutput(2 11) xreg(0 1)[regidx{1 2)])

rd.yreg (reg)
(<- regoutput(2 11) yreg(0 1)Cregidx{l 2)])

ridx.con (ridx)

ridx.j (ridx)
(<- regidx(0 9) jfield(0 M)

ridx.k (ridx)
(<c- regidx(0 9) kfield(0 1))

ridx.il (ridx)
*(<- regidx(0 9) ilatch(0 1))

ridx.mq (rldx)
(<- regidx(0 9) mq(0 1))

Id.il (ilatch)
(dilatch(4 *) ifleld(0 1))

buf.reg (buf nomant noexpo)
(<- buffer(4 0) regoutput{2 3))

buf.mant (buf mant)
(<- burfer(4 0) (niant regoutput(2 3)))

reg.ac (reginput mant noexpo2)
(-reginput(1 10) ac(0 1))

F.146 Local Microcode Generation and Compaction

reg.pack (reginput nomant)
(-regioput(l 10) (pack ac(0 1) eO{O 1)))

alu.0 (alu)
(-alu(2 11) 0)

alu.ones {alu)

alu.ac (alu)

alu.buf (alu)
(-aluf2 11) (4 buffer(O 11 carryinfa 1j))

alu.ng.ac (alu)
(-c- alu(Z 11) (i. (not ac(0 1)) carryin(0 1)))

alu.ng.buf (alu)
(<- alu(2 11) (+ (not buffer(0 1)) carryin(0 1)))

alu.plus (alu)
(-.- alu{2 11) (1. (4. ac(0 1) buf'fer(0 1)) carryin(0 I)))

alu.minus (alu}
(valuJ2 11) (4 (i. ac(0 1.) (not buffer(0 I))) carryin(0 1)))

slu.or (nlu)
(<- alu(2 11) (or ac(0 1) buffer(O 1)))

a'u.xor {alu)

aluand {alu)
(<- aluf2 11) (and ac(0 1) buffer(0 I)))

* alu.andnot {alu)
(<c- alu(2 III (and ac(O 1) (not buffer(0 11)))

carry.0 (carry)
(<- carryin 0)

carry.! fcarry)
9-cirryin 1)

alux.alu (alux)
(-31Jx(2 11) alu(2 3))

alux.or (alux)
(<- a'UA(2 11) (or ilu(2 3) .0(0 1)))
slopass 'Oloa)

(-Shiftlo(2 11) 3lux(2 3))
shlo. cmrd (sihlo)

(-shif-lr(2 11) (or alux{2 3) cmrd(0 1)))
shiok (shlo}

(<- shiftlo(2 11) (or ailux(2 3) kfield(O 1)))

(.shiftlo(2 11) (or alux(2.3) preg(0 1)))

(<- sriifthi(2 11) mq(0 1))
mq.hi (niq ach)

mq.lo (mq acl)
(<- mq(4 0) shiftla(2 3))

ac.lo (ac acl)
(<- ac(4 0) shiftlo(2 3))

ac.hi (ac ach)
(<- ac(4 01 shifthi(2 3))

* niq.0 (niq ac7}
(<- niq(4 *) 0)

mq.anes (mq adl)
(-mq(4 0)-)

ea.con (ea 11t75 lit73 litl91
(-ea(2 11) %wild)

ea.eO (ea)
(<- ea(2 11) .0(0 1))

* ea.el (ea)

ea.e2 (ea)
(<- ea(2 11) e2(0 1))

eb.ones (eb)
(<- eb{2 11) -1)

eb.eO (eb)
(<c- eb(2 11) .0(0 1))

eb.el (9b)
(<c- eb(2 11) .1(0 1))

eb.e2 (eb)
(.- eb(2 11) 92(0 1))

*Puma Machine Description 147

eb.jk (eb)
(<- eb(2 11) (@2 8 jfield(0 1) kfield(O 1)))

ealu.plus (ealu)
(<- ealu(2 11) (+ ea(2 3) eb{2 3)))

ealu.nhinus fealu)
(-ealu(2 11) (- ea(2 3) eb(2 3)))

ealu.expo (ealu noexpo noexpo2)
(-ealu(2 11) (expo regoutput(2 3)))

Id.eO ()
(<- e0(4 0) ealu(2 3))
Id.el ()
(<- el(4 0) ealu(2 3)
Id.e2 ()
(<c- e2(4 .) ealu{2 3))
Id.preg (preg lit75)

(.preg(4 9) ac(O 1))
inc.preg (preg lit75)
(<- preg(4 0) (+ preg(0 1) 1))

dec.Dreg (prey lit75}
(<- pregj4 }) (- preg(0 1) 1))

ma.preg (ma lit/3)
(<- ma(4 0) preg(0 1))

n,.-tc (ma lit73)
(<- ma(4 0) ac{0 1))

write.init (io lit79)
(<- mtus{6 15) ac(5 6))

write.cont (10 ac cc)
(-mem.(4 0)[ma(0 1)] mbus(0 1))

rea'J.init (10 lit7g1
(<- moxis(7 161 inem(4 5}rma(6 7)3)

reaccorit (Io cc)
(-crnrd(4 *) o.bus{O 1)

*148 Local Microcode Generation and Compaction

U

0

0

S

0I

P Selected Examples 149

Appendix F
Selected Examples

This appendix contains three examples of the code generator and compaction routines in

action. The first is a complete trace of the Puma example described in Appendix A, which

discovers a code sequence that adds 5 to the buffer and stores the result in the AC. The other

two examples are for the Kmap micromachine; the first uses the squeeze strategy to put the

constant "-2" onto the fbus, while the third uses a combination of And/Or and iteration to

move /incwd to a location in the dram and to move the value 7 onto the fbus.

The integers in braces denote the timing information as described in Chapter 5. Resource

names without timing information are assumed by this implementation to have a timing value

of (0 1}.

The timings listed after the heuristic searches in this section are not particularly accurate

because the runs were made at time when the system was moderately loaded; paging and

other overhead is: Jluded in the times listed.

search(69.60): (i- ac (+ 0000005 buffer))
ec.lo(58.00)ac.hi(60.00)
feasible: ac.o (i- ac(4 9909) shiftlo{2 3)
transform0 64.60): (0 0000005 buffer) *> sh ttlo(2 3)
apolying fetch decomposition

search (64.60): (<- shiftlo{2 3) (+ 0000005 buffer))
shlo.pass(53.00)shlo.cmrd(59.03)shlo.k(59.03)shlo.preg(59.03)
feasibe: shlo.pass (<- shiftlo(2 11) alux(2 3)
transform(64.60): (+ 0000005 buffer) - alux{2 3)
applying fetch decomposition
search(64.0): (-n alux{2 31 (4 0000005 buffer))

0 alux.alu(52.00)alux.or(50.13)
feasible: alux.or - (<- alux{2 11) (or alu{2 3) .0))
transform(64.60): (+ 0000005 buffer) -in (or slu(2 3) a0)
orid(56.00)con-unfold(58.70)con-unfold(58.76)
applying ortid: SI :: (or 3000000 $) to (4 0000005 buffer)
transform(64.60): (or 0000000 (+ 0000005 buffer)) -> (or alu{2 3) @0)
orcommut(58.76)operandmatch(56.00)
decomposing by operand
transforra(2.02): 0000000 - alu(2 3)
ealyin9 fetch decomposition
search 2.02: (<- alu{2 3) 0000000)

feesibie: a
1
u. O (in- elu{2 II) 0000000)

... success: on Pserch(2.02) with 2.00
.,, success on transform(2.02) with 2.00

transform(62.58): (+ 0000005 buffer) -) @0
applying fetch decomposition
search(62.58): (i- 90 (4 0000005 buffer))
ld.e (54.00)
feasible: ld.eO @ (- .0(4 9999) ealu{2 3))
transform(62.58): (+ 0000005 buffer) -n ealu(2 3)
aoplying fetch decomposition
searc 62.58): (<- elu'2 3) (+ 0000005 buffer))

eahuplus(58.00)ealu.mnus(62.00)
feesi ble: ahplus -(i- eolu{2 11) 4 eaJ2 3)(ebJ2 3))
transform) 59.58): (4 000 005 buffer) > (ea2 3) eb{ 3))
01uscommut(57.00)operanamatch(55.00)
decomposnq by oerand

transform(16.68): 0000005 ") ea(2 3)
lapplying fetch decomposition

Selected Examples 157

cutoff reached.

fail on transform(15.71)
a pplytng andid: $1 :: (and 0777777 SI) to (and (rot 0000017 0077777J 0777777)
transorm(15.71): (and 0777777 (and (rot 0000017 0077777) 0777777)) -- (and mask (rot scount(7
and soc2(9.00)

applying andessoc2: (and $1 (and $2 $3)) :: (and (eva1 (and SI 52)) S3) to (and 0777777 (and (to
transform(15.71): (and 0777776 0777777) -> (and mak (rot scount{7 8) tlatch{7 8)))

.,found previous failure

* .. fail on transform(16.71)
... cutoff reached.
... fail on transform(16.71)

.. cutoff reached.

.. fail on transform(15.71)
cutoff reached.
fail on transform(15.71)

applying con-unfold to (and 0777777 0777776)
transform(16.71): (and 0777777 (rot 0000017 0077777)) -> (and %mask (rot acount(7 8) tlatch(7 8)))

. found previous failure

.. fail on transform(15.71)
.,. cutoff reached.
... fall on tranform(15.71)

,.. cutoff reached.
.. fall on search(16.71)
fail on transform(1.71)

applyng andcomut: and 51 2) :: (and S2 SI) to (and (and 0777777 0777776) 0777777)
transform(18.97): (and 0777777 (and 0777777 0777776)) -> (and arag brag)

found previous afalure
.fa odn transform(18.97)

cutoff reached.
fail on transform(18.97)

applying andd: $I :: (and 0777777 $1) to (and 0777777 (and 0777777 0777776))
transform 18.97): (and 0777777 (and 0777777 (and 0777777 0777776))) -> (and areg brag)
andasoc2(13.00)andcommut(17.00)
applying andassor2: (and S1 (and S2 $3)) :: (and (aval (and SI S2)) S3) to (and 0777777 (and 0777777 (and 07
transform(18.07): (and 077777.7 (and 0)77777 0777776)) -' (and crag brag)
... found previous failure
... fall on transform(18.97)

applying andcommut: (snd 1 52) :: (and $2 SI) to (and 0777777 jand 0777777 (and 0777777 0777776)))
transform) 18.97): (and (and 0777777 (and 0777777 0777776)) 07 7777) -> (and crag brag)
and soc) 8.O0)andcommut(17.00)ooorandmatch(17.00)
applying ardassoc: (sno and Si $2) S3 %a nd ((and S2 S3))) to (and (and 0777777 (and 0777777 0
transform(18.97): (and 0777777 0777776) -> (and creg brag)
... found previous failure

fail on transform(18.97)
decomposIng by operand
transform(2.05): 0777777 -> brag

(using previous result)
... success on transform(2.05) with 2.00

traoform(16.02): (and 0777777 (and 0777777 0777776)) -> arag
applying 'etch deconposition
search) 16.92): (v- argo (and 0777777 (and 0777777 0777776)))
sag.mask(12.0)
feasible: are.mask (<- areg(8 15) (and Xmask trot scount(7 8} tlatch(7 8))))
trsnsform(14.92): (and 0777777 (and 0777777 0777778)) -> (and %mak (rot scount{7 8) tlatch(7 8)))
anocommut(10.9)andid(14.19)
applying sndcomnut: (sno $I $2) :: (and $2 SI) to (and 0777777 (and 0777777 0777776))
transform) 14.92): (and (and 0777777 0777776) 0777777) - (and mas (rot scount(7 8) tlatch{7 8)))
anacommut(10.59)andid(14.19)
epun yirg andcomnwt: (and $1 $2) :: (and S2 $:) to (and (nd 0777777 0777778) 0777777)
transform(14.92): (and 0777777 (and 077777' 0777776)) -> (and %mask (rot scount{7 8) tlatch(7 6)

founc previous failure
fo: on transform (14.02)

a.ooyin r ndid $1 :: (ano 0777777 $1) to (and (and 0777777 0777778) 0777777)
transform(14.92): (sand 0777777 (and (and 0777777 0777776) 0777777)) -> (and %mask (rot scount{7
andcommut(14.19)

applying andcommut: (and SI S2) :: (and $2 Si) to (and 0777777 (and (and 0777777 0771776) 077777
transform 18.92): (and (and (an 07 7 777 7) 077777) 0777777) ,> (and %mask (rot scount(

andasoc (10.19)
applying andassoc: (and (and S1 $2) S3) :: (and S1 (eval (and S2 $3))) to (and (and (and 07777
transform(14.92): (and (and 0777777 0777776) 0777777) -> (and %Mask (rot scount(7 8) tlatch(

found previous failure
ofl on transform(14.02)

. utoff reached.
... fall on transform(14.92)
. cutoff reached.

fail on transform(14.02)
.. cutoff reached.
.. fall on transform(14.02)

applying andId: S1 :: (and 0777777 SI) to (and 0777777 (and 0777777 0777778))
transform(14.92): (and 0777777 (and 0777777 (and 0777777 0777776))) -> (and %mask (rot scount(7 8)
anoassoc2(10.59)andcommut(14.19
apolying andassoc2: (and $1 (and S2 $3)) :: (and (oval (and S1 $2)) $3) to (and 0777777 (and 07777
transform(14.92): tand 0777777 (and 0777777 0777776)) -> (and Imask (rot scount(7 8) t tch{7 6)
... found previous failure
I fall on transform(14 92)

noplying andcommut: (and S1 52) :: (and $2 SI) to (and 0777777 (and 0777777 (and 0777777 0777776))
Itransform(14.92): (and (and 0777777 (and 0777777 0777776)) 0777777) -> (and Lmosk (rot scount(7
andcommut(14.19)
applying andcommut: (and $1 $2) :: (and $2 SI) to (and (and 0777777 (and 0777777 0777776)) 07777
transform(14.92): (and 0777777 (and 0777777 (and 0777777 0777776))) -> (and %mask (rot scount{
... found previous failure
... fail on transform(14.02)

cutoff reached.
fal on transform(14.02)

cutoff reached.
fail on transform(14.92)

cutoff reached.
fail on transform(14.92)

cutoff reached.
fall on soarch(1.92)

fail on transform(16.92)
applying andcommut: (and S1 12) :: (and S2 $I) to (and (and 0777777 (and 0777777 0777776)) 0777777)
transform(18.97): (and 0777777 (and 0777777 (and 0777777 0777776))) -> (and crag brag)
... found previous failure

* 158 Local Microcode Generation and Compaction

f.il on transform(1.97)
.cutoff reached.

S... cutoff reached.
'-""-... fail on transform(18.07)

... cutoff rece.

.fail on transform(16.07)
decompoalng by operand
transform(8.82): 0777777 -. aag
applying fetch decomposition
search(6.82): S<- arog 0777777)
ar:g.mask(6.0)

*. . feasible: areo.meSk - (u- arag{8 181(and ?mask (rot sc-a ntJ7 latch{7 8)))
transform(4.82): 0777777 -> (and Snesk (lOt scount7 6) tiatch(7 8))
NO takers
... cutoff reached.
* fall on transform(4.62)
. cutOff rached.
fail on s'arch(6.82)

.. fall on transform(6.82)
toff reached.

I... !il on transform(18.97)
cutoff reached.
fl on transform(18.97)

feasible: fbis.or - (<- fbs(2 11) (or ra brag))
transform(18.97): 0777776 -> (or areag brag)
orid(16.00)
applying orid: S1 :: (or 0000000 $1) to 0777776
transform(18.97): (or 0000000 0777776) -* (or creg brag)
lorconnut(12,00)operandmatch(16.00)
iapplying orcommut: (or $1 S2) :: (or $2 $1) to (or 0000000 0777776)
transform(18.97): (or 0777776 0000000) - (or areg breg)

•~ ~ " oroomut(16.O00oaerandmetch(12.00)

decomposing by operand
transform(9.49): 0777776 -> &rag

.. found previous failure

... fail on transform(949)
applying orcommut: (or 51 S2) :: (or $2 SI) to (or 0777776 0000000)
trarsform(I8.97): (or 0000000 0777776) . (or srag brag)

found previous failure
fall on transform(16.97)

cutoff reached.
fail on transform(18.97)

decomposing by operand
trqnsform(6.82): 0000000 - areg
apolyln fetch decomposition
search 8.82): (s- areg 0000000)
reg.mask(0.00)

feasible: are.mask - (<- areg(8 181 (and %mask (rot scount(7 8) tlatch(7 8))))
transform(4.82): 00000 -> tend %mask (rot scount(7 8) tlatch{7 8))
zeroad(0.44)
applying zeroand: COOOOO :: (and 0000000 ???) to 0000000
transform(4 82): (and 0000000 ???) -> (and %miesk (rot acoun(7 8) tlatch{7 6)))
operandmatch(0.00)
detomposn 9 by operand
transformn(0.00: 0000000 "> %mask
attempting constant match
it's a natch!

.s cc essnl "transformO 0.00) with
.... UcsCeSS on tra1nsform(.,82) with 0.00
.. scess vn transform(4 8i) with 0.00

s sucCCcas on search(6.82) with 2.00
.uccess on transform(6.82) with 2.00

transform(12.15): 0777778 > brog
applying fetch decomposition
search(12.15): (<- brag 0777776)
breg.con(10.00)
feasible: brag.con - '<- breg(4 13) (02 0000010 conht{3 41 conlo{3 4)))
transform(10.15): 077776 -. (82 0000010 conhi(3 4) conlo(3 41)
con-unfold(8.00)
applying con-unfold to 0777776
transform(10.15): (92 OOUOO 0000377 0000376) -> (92 0000010 conhi(3 4) conlo(3 4))
operandmatch(8.00)
decomposing by operand
traniform(5.07): 0000377 -> conhi(3 4)
applying fetch decomposition
search? 5.07): (C- conhi{3 4) 0000377)
ld.conhi(4.00)
feasible: ldconhi • (hi <-conhi(9099) %wild)
transforn(0.00): 0000377 I Iwild
attempting constant match
lit's a matcht!

transform(0.00) with 0.00
... success on search(5.07) with 4 .00
. success on transform(5.07) with 4.00

transformt 5.07): 0000376 -> conlo(3 4)
applying fetch decomposition
search(5.07): (<- conlo(3 41 0000376)
ld.conIo(4.00)
feasible: ld.conlo (<- conlo(O 9999) %wild)

squeezed out.
cutoff reached... :lo earch(5,07)

fa on transform(8.07)
... cutoff reached.... fall on transform(10.18)

... cutoff reached.
.'. fall on transform(10.16)
cutoff reached.

..,1 o :e r c h (1 2 1 5 1)
fail on transform(12.16)

. cutoff reached.

.. fail on transform(18.97)
.. cutoff reached.

0

k-

Selected Examples 159

,fail on traeaform(16.97
feasible: fbus.xor j < b us{ 2 11) (xor arag brag))
transform(16.07); 0777776 *> (nor arg brag)
:arid(12.00)
p ng sorid: S :: (nor 0000000 S) to 0777776
transform(18.97): (nor 0000000 0777776) .> (nor arag brag)
xorcommut(12.00)operandmatcb(12.00)
decomposing by operand
transform(2.36): 000000 -. crag

(using previous result)
... success on transform(2.36) with 2.00

transform(16.61): 0777770 -> brag
applying fetch decomposition
search(16.61): (<- brag 0777776)
brag.fbl(16.O0)breg.eon(10.00)
feasible: brag.con, (<- brag(4 13) (02 0000010 conhl{3 4) conlo{3 4)))
transform(14.61): 0777776 -> (02 0000010 conhi(3 4) coalo(3 4)
con-unfold(8.00)
applying con-unfold to 0777776
transform(14.61): (@2 0000010 0000377 0000370) -> (@2 0000010 conhi(3 4) conlo{3 4))
operandmatch(6.00)
decomposing by operand
transform(7.30): 0000377 - conhliC3 4)

(using previous ranult)
... success on transform(7.30) with 4.00

transform(7.30): 0000376 -> conlo(3 4)

applying fetch decomposition
search(7.30): (<- conlo{3 4) 0000376)
ld. onlo(4.00)
feasible: ld.conlo -(. conlo{O 9999) %wild)

squeezed out.
c..,cutoff reached.
fail on saarch(7.30)

cutoff reached

fail on transforl(14.61)
... cutoff reached.
.., fail on transform(14.61)

easlble: breg.fbl - (-- brag(4 13) fblatch(3 4))
Itransform(14.61): 0777776 -> fblatch{3 4)
applying fetch decomposItion
search(14.61): (<- fblatch(3 4) 0777776)
ld.fb1(14.00)
feasible: ld.fbl - (f- blatch{3 9999) fbua{2 3))
transform(13.81): 0777776 -> fbus{2 3)
Iapplyin? fetch decomposition
s arch 13.611: (c- fbus(2 3) 0717778)
... found privioUs failure

I 13.61)
I ... fail on tra.sform(13.61)
S .. utoff rached.

on soarch(14.61)
fall on transform(14.0

.. cutoff reached.
f. fat1 on search(16.81)

. fall on transform(16.61
soolying xorcornnut: (xor 1 2) :: (nor $2 $I) to (xor 00000 0777776)
transform(13 47): (xor 0777776 0000000) -> (xor arg brag)
Aorconarut(12.0)operanamatch(12.00)

transform(9.491: 0777776 -> areag
... found previocs failure
... fail on transform(9.49)

apolymng norcommut: (nor $1 S2) :: (nor $2 Si) to (nor 0777776 0000000)
transform(18.97): (nor 0000000 0777776) "> (xor areg oreg)

found previous failure

f n tr ;fioj,1.97.fi on transform(18.97)
cutoff reached.
fail on trnsform(1.97)

.cutoff reached.
. fail on transform(10.97)

feasible: fbus add (- fbus(2 11 (4 (4 areg brag) carryin))
4 trans1bform(189: 077776 -> (+ (+ arepbrog) carryln)

con-unfold(.2. 0)plusid(18. 00)3cart td(16,00)

aoplyl;] con-unfold to 077716
transform(1697): (+ n777777 0777777) -> (4 (4 arag brag) carryin)
piusid(0 lp uscommut(tZ.00)con-unfold(2.00)
apply;ng plusid: Si :: (4 0000000 SI) to (4 0777777 0777777)
tranaform(16.97)- (4 0000000 (4 0777777 0777777)) ., ((4 areag brag) carryin)
pluscommut(!.00)plusassoc2(12.00)p3carytid(16.00)
applying oluscommut: (4 $1 S2) :: (4 $2 $1) to (+ 0000000 (4 0777777 0777777))
transform(18.97): (4 (4 0717777 0777777) 0000000) -> (+ (4 agebreo) cerryin)
pluscommut(1O.00)plusassoc(12.00)operandmatch(10.00)

decomposing by operand
transform(2.69): 0000000 - carryin
applying fetch decomposition
search(2.69): (.- carryin 0000000)
carry.0(2.0)
feasible: carry.0 - (<- carryn {0 91 0000000)

success on search(2.69) with .00
..,success on transform(2.69) with 2.00

transform(16.28): (4 0777777 0777777) - (4 arag brag)
pluscommut(8.00)p3carylid(16.00)operandmatch(

8.00)

decomposing by operand
transform(3.04): 0777777 -2 brag

(using previous result)
... success on transform(3.04) with 2.00

transform(13.25): 0777777 - arag
sppyin fetch decomposition
search(13.25): (.- areg 0777777)
areg.rnask(6.00)
feasible: areg.mask - (4- areg{8 15) (and %nask (rot scount{7 6) tlatch(7 6))))

., -- | | - - *

a 160 Local Microcode Generation and Compaction

tranofors(11.21): 0777777 - (and mlask (rot scount(7 0) tlatch(7 8)))
No takersi

cutoff reached.
, fail an transform(11.26)

...'Cutoff reached.
fel on search(13.25)... fail on transform(13.2S)

applying pusCommut: (* $1 S2) :: J$ S1) to (+ 0777777 0777777)
transform(16.28): (+ 0777777 0777777) -> (+ 4reg berg)
... found proaiOus failure

fail on transform(16.26)
applying p3caryli': S :: ((aal (4 0777777 SI)) 0000001) to (+ 0777777 0777777)
transform(16.28): (+ 0777775 0000001) -> (areg brag)
oluscommut(18.00)P3carylid(16.00)
applying pluscommut: (* $1 $2) (4. S2 $I) to (4 0777775 0000001)
trnsform(16.28): (4 0000001 0777775) .> (+ are brag)
Plusommut (16.00)p3carylid(16.00)operandmatch 16.
decomooatn? by operand
tran$form(6.06): 0000001 - areg
applying fetch decomposition
search(6.08): (- areg 0000001)
areg.mask(6.00)
feasible: areg.mask • (<- arag{ 15 (en %ask (rot scount17 8W tIatch(7 8)))
transform(4.08): 0000001 *> (and 5In(sk (rot scount(7 8) t atch{7 8))

No takersl
cutoff reached.
fail on tranesform(4.08)

,.. cutoff reached.
fail on search(0.06)

. . fail on transform(8.08)
applying plscommut: (+ SI S2) :: (4 $2 SI) to (4 0000001 0777775)
transform(16.28): (+ 0777776 0000001) - (+ creg brag)

found previous failure
... fail on transform(16.26)

applying p3carylid: Si :: (4 (ova1 (, 0777777 $1)) 0000001) to (4 0000001 0777778)
transform(16.28): (4 0777775 0000001) -> (+ areg brag)

found previous failure
. . fail on tranform(16.28)
c utoff reached,J. fail on transform(16.28)

apolying p3ca-syd: SI :: (4 (aval (+ 0777777 $1)) 0000001) to (+ 0777775 0000001)
transform(16.28); (a 0777775 0000001) -> (4 arag breg)
... found previous failure
,.cutoff reached.
.. fail on transform(16.28)
.............fail on t ran frm 18.28)
cutoff reached.

... fail on transform(16.28)
applying oluscommut: (+ $1 S2) :: (4 S2 $1) to (+ (+ 0777777 0777777) 0000000)
Itransform(18.97): (+ OUOOO0O (4 0777777 0777777)) -> (4 (+ areg brag) carryin)

found previous failure
i fal on transform(18.07)
applying pIusaSSOC: (I (I SI £2) S3) :: (+ 11 (eve (S2 S3))) to (4 (4 0777777 0777777) 0000000)
transform(10.07): (+ 0777777 0777777) , (4 (4 areg breg) c€rryin)

f ound previous failure
fall on transform(18.97)

... cutoff reached.
... fail on transform(18.07)

trani orm(18.97): (4 0777777 0777777) -> (. (+ areg brag) carryin)

. ojaouraavious failure
... fall on transform(18.07)

applying o3carylid: $1 :: (+ (val (+ 0777777 $1)) 0000001) to (+ 2000000 (4 0777777 0777777))
transform(18.97); (+ 0777775 0000001) "> (+ (+ areg breg) carryin)
con-unfold(10.001p3carylid(16.00)ooerandmatcb(1j.00)
aplying con-unfold to (+ 0777775 0000001)
transform(15.97): (4 * 0777776 0777777 0000001) -> (+ (4 areg brag) carryin)
plusassoc(16.00)p3csrylid(16.00)operandmatch(10.00)
decomposing by operand
transform(2.69): 00001 *. c.rryln
apolyIng fetch decomposltion
search(2.69): (a" carryIn 0000001)

rry~t(2.00)
ifearsible: carry.1 (<- carryin(O 0) 0000001)
I... success on search(2.69) with 2.00,.success on transform (2.69) with 2.00

tlansform(16.28): (+ 0777776 0777777) • areg brag)
p3carylid(1t100)pluocommut(16,13)
applying p3carylid: $1 :: ((val (. 0777777 $1)) 0000001) to (4 0777776 0777777)transform(16.28): (. 0777774 0000001) > (+ are9 brag)

pluscommut(16.00)p3carylld(16.00)operandmatch 16.00)
decomposing by operand
transform(6.08): 0777774 - areg
applying fetch decomposition
search(6.08): (.- arag 0777774)Sareg.mask(6.00)
feasible: areg.mask . (<- ag{8 15) (and laask (rot scount(7 8) tlstch(7 81)))
transform(4.08): 0777774 ,> (and I5mask (rot scount{7 8) tlatch(7 81))
No takersi

cutoff reached.
fail on transform(4.08)

c. CUt 0ff, r.schd.

f ail on search(8.08)
• 1 on transform(8.08)

applying pluscommut: (# 11$2) :: (a $2 $1) to (+ 0777774 0000001)
transform(16.28): (# 0000001 0777774) -> (a srag brag)
pluscommut(16.00)operanomatch(

160.00)

decomoosing by operand
transform(6.08): 0000001 - creg

found previous failure
fail on transform(6.08)

applying pluscommut: (* S1 $2) :: (52 $I) to (+ 0000001 0777774)
transform(16.28): (+ 0777774 0000001) ,> (areg brag)
... found previous failure

I m kM • m°•- •='

Selected Examples 161

fail on transform(16.20)
.*Cutoff r ahd.

fal o a t.aform(16.28)
applyin g p3c arylid: S1 t: *4 (Val (40177777 M1)) 000000i) to (4. 0777774 0000001)
transform(16.28): (* 077 774 0000001) &r(4 arg brag)

..found previous failure
fa9il on transform(16.26)

cu toff reached.
..fall on transform(16.26)

applying p luscoonaut: (+. $i $2) :(4S2 $I) to (+ 0777776 0777777)
transform) 16.28): (+ 0777777 077 776) -> (+ arag brag)
pluscnminut(8.00)con-unfold C 16.13)

appyig luconmu: ~ i 21 :(1 to,(+ 0777777 0777776)
transform) 10.28)u: (077778 077777) +~ (are brag)

*... found previous failure

*... fail on tran sfori 16.278)7 7776applying 0777777d t 0 776
Truansorm(216.28): (+ 0777777 (+ 0777777 0777777)) -3- (+ arag brag)

ppin luoao 2 (4 I () S2 S3))::((evalg(4. SI S2)) S3) to (+ 0777777 (+ 0777777 0777777))
tranform 18.28): (4 0777776 0777777) (+an om sao2 (+ Sra rag

..found previous failure

..fail on transform(C 16.26)
..cutoff reached.
..fall on transform(16.28)

..cutoff reached.

..fail on transform(16.26)
..cutoff reached.

.. fall on transform +16.j26
applying plusassoc: (.+ 91SI) $3) :: (+ $I (oval (+ S2 $3)))rto C. (4 0777776 0777777) 0000001)
tranf r 18697):sc+ 0777776 0000000) * (+ .ae brag) carryin
plusid(r 1 0pl uconanut(16.00)operaldinac (160)
plying plusid: $1 : (4. 0000000 91) to (4. 0777776 0000000)
transform(,18.97): (40000000 (4. 07 7776 0000000)) v (+ (4 rag brag) carryin)
p uscmnut(14.00)
applying pluocomiut: (+ SI S2) ::(4 S2 SI) to (+ 0000000 (40777776 0000000)1)trnnsform(18.97): (+ (+ 0777776 0000000) 000000 ((ag brag carryin

pluscommut(14.00)operandmatch(14.00)

ecooing by operand
* trosform (2.16): 000000 .> cerryin

(ing previous result)
.success ongtransform) 2.18) with 2.00

transform 16.79): (~ 077 776h 0000000) > (+ &rag brag)
pluscommut(16.18)operandmatch(12.00
decomposing by operand
transform(8.39): 0777778 - &rag

..found previous failure
' fail on transform(8.39)

applying pluscommut: (+ $1 S2) :: (+ $2 $1) to (+ 0777776 0000000)
Itransform(16.79): (4 0000000 0771776) a.(rag brag)
Ipluscommu t(12.00)
a CPI y img p~ uncoonnut: (+ SI S2) :: (4 $2 $1) to (+ 0000000 0777776)
transform(18.70): (4 0777776 0000000) > (4 rag brag)

..found previous failure

..f ail on transform(16.79)
..c utoff reached.

.. fail o n tran.sform) 18.7g)
cuto0f f reached.

tra ilantfnsor(m(.9

found previous fai1lure

fail on tasfrm 18.97)
cutoff reached.
fail on transform) 18.g7)

..cutoff reached.
I.falon tranaform(16.97)

dcmoi? by ope ran d
tasom 2.08): 0000 000 -v carpyin
P uigprevious result)
success on trans'form 2.8 ih 2.00

transform) 16.89) : 077777 A~ !(+) crag breg)
takrs I
cutof reachehd.
filon transform) 16.8ga ligplusconnu t : (4 +I 512 S: 4 2 SI) to (40777776 0000000)transform(18.07): (4 0 77178) *v (+ (4 crag brag) carryin
1 -Ufod(10.00

a ligrcon-unfo d to 8+ 0000000 07777786)077))-(+(&rgba)cryn
transformn(18.97): (+ 000000 (* 0777777 0777)* 4(rgba)cryn

..found previousa f ailure

f. ail on transform 18.97)

cutoff repached.
fail on transform(18.97)

applying p3carylid: SI :: 4 ea 40777777 51)) 0000001) to (+ (4 0777778 0777777) 0000001)
transform(18.97): 1+07*,e 00*00) .. (+ (+ areg brag) carryin)

found previous failure
fail on transform(18.97)

..cutoff reache0d.

..fail o n transform(18.97)
decomposing by operand
transformn(2.08): 0000001 -> carryin

(using previos result)
... success on transform(2.08) with 2.00

* transform(16.69): 0777775 -> (+ areg brag)
piusid(12.00)
applying plusid: S1 : - 0000000 S1) to 0777775
transform(:6.89): .0000000 0777775) v(+ arag brag)
operandmatch(12.0
dacomposin g by operand
t ransfo rm(2.25): 000000D0 Br ag
I(using previous result)

162 Local Microcode Generation and Compaction

I... SUCCESS On transform(2.25) with 2.00

transform(14.63): 0777775 -: brag
applying fetch decomposition
search(14.63): (<- breg 0777775)
oreg.con(10.00)
feasible: breg.con - (4- brag{4 13) (@2 0000010 conhl{3 4) conlo{3 41))
transforml 22,03): 0777775 -> (92 0000010 conhi(3 4) conlo(3 4)
€oan-unfold(0,00)

applying con-unfold to 0777775
"transform(12.63): (92 0000010 0000377 0000375) -> (02 0000010 conhi{3 4) conlo(3 4))
I operanumatch(5.00)
decomposln? y operand
transform(6.32): 0000377 -> conhl(3 4}

(using previous result)
... success on transform(6.32) with 4.00

transform(6.32): 0000375 *> conlo(3 4)
applying fetch decomposition
search(6.32): (a- conlo(3 4) 0000375)
ld.conlo(4.00)
feasible: ld.conlo - (<- conlo{O 9999) %wild)

squeezed out.
cutoff reached.
fail on search(6.32)

fail on transform(6.32)
Cutoff reached.
fail on transform(12.83)

c utoff reached.
fil on transform 12.63)

cutOff reached.
,.fail on search(14.63)

.fill on transform(14.63)cutoff reached.f ail on transform(10.89)

... cutoff -eached.

... fall on transform(16.89)appiltng p3carylid: SI :: (4 (eva1 (4 0777777 SI)) 0000001) t (4 0777776 0000001)
transform(18.97): (+ 0777775 0000001) - ((#- areg brag) carryin)
... found previous failure
... fail on transform(18.97)
cutoff reached.

... fail on transform(18.97)
... cutoff reached.
.. fail on trinsfcrm(18.07)

applying pluscommut: (+ $1 S2) :: $2 S1) to (+ 0777777 0777777)
transform(18.07): (+ 0717777 077,777) -> (+ (+ areg brag) carryin)
... found previous failure

fail on transform(16.97)
applying con-unfolI to (+ 0777777 0777777)
transform(18.97)! (4 (+ 0000000 0777777) 0777777) -> (+ (+ stag breg) cerryin)
pliscommut(12.80)plusid(6.40)coo-unfold(16.40)
spplylng p uscomm" t. (. S1 S2) :: (S2 $5) to (4 (+ 0000000 0777777) 0777777)
transform(8.97): (+ 0777777 (4 0000000 0777777)) -> (+ (+ areg brag) carryin)
plusassuc2(12.00)pluscommut(12.80)
sppiying plus soc2. (+. 2 (+ 52 S3)) :: (+ (eva 1 (+ S S2)) $3) to (+ 0777777 (+ 0000000 0777777))
Itransform(18.97): (+ 0777777 0777777) *-> ((creg brag) carryin)
... found previous failure
... fail on transform(18+97)

soplying 0luscolmut: (+ S1 $2) :: (+ 62 $1) to (+ 0777777 (4 0000000 0777777))

1transform(18.97): (+ (- 0000000 a777777) 077777) -> (+ (+ areg breg) carryin)
- fourd preiVous failure

I fail on transform(18.97)
tOff reached.

... ton transform(18.07)
soolyirg olusid: SI "l ("00 0co SI) to (+ (+ 000000 0777777) 0777777)
transform(18.97): (+ 0001000 ((+ 0000000 0777777) 0777777)) -> (* (+ areg brag) carryin)
plusassocZ(12 00)pluscommut(16.40)
applying slusassoc2: (+ $1 ($ 52 63)) :: ($ (eva

1
($1 S2)) $3) to (+ 0000000 (+ (+ 0000000 0777777) 077777

transform 18.07): (0 1777777 0777777) l (4 (4 arag brag) carryin)
... a Ofln oreviOs failure
.. fal onf transform(1897)

applying pluscommut: (+ S1 S2) :: (S $2 $I) to (0000000 (+ (+ 0000000 0777777) 0777777))
1transform(18.97): (* (- (+ 0000000 0777777) 0777777) 0000000) -a (4 (4 areg brag) carryin)

plusassoc(:2.80)pluscommut(18.40)
noly'ng plusassoc: 1 * 1 621 53) :: S 2 (Sa (62 63))) to (+ (+ (* 0000000 07'7777) 0777777) 0000
transform(18 97) 0 07 77 777777) l((+ arag brag) carryin)I o isd previoul failure

* l e
'

on t1 insform(18.97)

atp'yng on cotut +. 6
1

,7) -: (a 71) tO ((a(0000000 0777777) 0777777) 0000000)
transform(18.97) (4 0000000 0 (a 0000000 0777777) 0777777)) -> (a (areg brag) carry n)

found pgreious failure

all on transform(16.97)
.f. Cuto ff rea ched.f.'i

+
on tr ansforfm(18.97)

c UtOf
e

each ad
f l on transform(18 97)

OD-ly.,,g con-unfolo to * 000000 0777777) 0777777)

trarSform(18 971 () * 3:t000 0777777) (# 0000000 0777777)) - (+ (+ amp bre) carryin)
0USlssoCDso 17 30i:jScclis t(16 to

aOPlyng D)uss ssocZ (' $(+ 526 $3)) :: (. (aval (+ $1 62)) S3) to ((4 0000000 0777777) (+ 0000000 077777
transform(8.91) (+ 0777777 0777777 - (+ (+ areg Oreg) carryin)
I foundo revious failure

fall on transform 16 97)
aplying PluScOmmut (+ S1 62) 2: ($ 1 $O) to (+ (+ 0000000 0777777) 0000000 0777777))
itransform(18 37). (a (+ 1000000 0777777) (. 0000000 0777777)) -> (+ (+ areg brag) carryin)

found previous failure
fall on transform(18.97)

.. cutof
1
f reached.

... fail on transform(108.97)
cutoff reached.f a. Is I l p n t , r , n f r .(1 8 .9 7)

cutoff reached.
LD.ifall on transform 18.97)
up lyg I 'sd: $1 :: (0000000 61) to 0777776
transform(:8 97): (+ 0000000 0777776) -, (+ (* areg brag) carryin)

6

-Selected Examples 163

found previous failure
fall on transform(18.;97)

applying p3carylid: SI :: C.(oval (+0777777 Si)) 0000001) to 0777776
transform) 18.97): (*. 0777775 0000001) ~(4 (areq brag) carryin)

found previous failure
fail on transform(18.97)

fesbe rOsbj- ; 111.(((not arag) breg) cerryin))
transform(18.97): 77 ;.*(. (ot areg),breg) carryin)

:a-nfl) I40)pul 6. cunfold(18.02)
applying con-1unfold to 0 777760
transform) 18.97): (not 0000001) - (4 (4. (not &rag) brag) carryin)

* (olusid(12.00)con-unfold(16.40)

transform) 18.97): (.0000000 (not 0000001)) "v (4. (+ (not &rag) brag) carryin)

p1lcoismut(12.00)plusid(12.20)con-uifOld 1280
apying p1 uscoannut: (+ St S2): (+. $2 Si) to 2(40000000 (not 0000001)
transform(18.97): (4. (not 0000001) 0000000) -> (. (+ (notae) rg carryle)
plusconnut(12.00)plusid(12.20)operandmatth(12.00)

0:0:posn? by operand
tranIfrm(2.36): 0000000 -. carryin

(using previous result)
.success on transform(2.36) !ith 2.0

transform) 16.61): (noat 0000001)* ((nt arag) brag)
plusid) 12.0)con-jnfold(16.16)
applying plus~u: $1 :: (4+ 0000000 S1.) to (not 0000001)
t~ransformn(16.61) (4. 0000900 (not 0000001)) *> (4 (not areg) brag)
plusconanut(12.00)
applying pluscoinnut: (4. S1 $2) :: (+ $2 $1) to (40000000 knot 0000001))
transform) 1U.61) (4(~ C 012 0000000) *n(4 (not arag) Drag)

plUSC 0 Ilnut 12. 0)ojperndnatch(1. .00)
aPcompon 'I' b1y oprand
transform(8.30); (nt 0000001) -> (not arag)
operadmatch) 8.00)
decomposing by operand
transform(8.30): 0000001 *> crag

hlyn fet~ch decomposition
earch 8.3G): (n- sing 0000001)

feasible: aragmask (.- si~ng{815) (and lmaskh (rot scount{ 7 8 tlatchIi{ 8))))
transform(6.30): 0000001 - ad Ims rot scount{7 8) tl Iec (78)))

I No ters I
cNof raached.
feil on transform(6.30)

cutoff reached.
--afell on search(8.30
f11 on transform(8.30

Icutoff reache~d. 83~: 4 2S)t .(o 000)0000
applying pluscommut: (4.1$:(2 1 o(nt0000)0000
translors-(16.02): (11 0003000 (not 0000001)) *v (+ (not crag) brag)

fon rvios falrniI.

fa I on t ansform(18.61)

apl y, q con-unf ld to (not 0000001)
trinsform(16.61): (not (+ 0000000 0000001)) * (4(not arag) brog)
filo taKers!

c utoff reached.
f ai o n tra nsform) 18.61)
t. cuof reached.
faon transform(16.61)

applying pluscommut: (4 S1 i2) ::(S2 $I) to (+. (not 0000001) 0000000)
(ltransform(18.97); (+ 0000000 (not 0000001)) *v (4 (4 (nct crag) brag) carryin)I found previous failure

fail1 on transform(18.97)
applying luid: S1 ::(000000 $I) to (+ (not 0000001) 0000000)
transform) 18.97): (4. 0000000 (4 (not 0000001) 0000000))* (((not Crag) brag) carryin)
pluscommut) 12.20)con-unfold(14.60)
applying piuscommut: (+ SI $2) :: (+ S2 $1) to (+ 0000000 (4 nt 0000001) 000 000)aryn
transform) 18.97): (+ (4. fnot 0000001) 0000000) 0000000) - n(+ (not crag) breg)cry)

* I plusasscic(12.00)plusconsnut) 12.20)operandinatch) 14.00)
apligplsasc (8, (, 7): 52+ i3) ;:r 1(oa 2 Sd)) to (+ (+. (not 0000001) 0000000) 0000000)

transform 1(9) (+ (not 000001) 0000000) +v (4 + (not sing) breg) carryin)I:foundoprevious failure
fail on tr nsform(18.97)

apply ing oluscummut: (4. SI S2) S:(4 2 SI) to (4 (4. (not 0000001) 0000000) 0000000)
transform(18,97): (+ 0000000 (+ (not 0000001) 0000000)) -> (4 (4 (not crag) brag) carryin)

!ound,,Previou failure
!'i o trnfrm 18.97)

de coinposing by oper an d
t ran sfori) 2.18): 0000000 - carryin
I (using previous result)
I I... success -transform) 2.18) with 2.00
t ransform) If 79): (4. (not 0000001) 0000000) -(4(not 2reg) brag)

found previous failure
fail on tansfrm 18.79)

f.,! on transform) 18.97)
appyn co-unfol d to 40000(nt 0000001) 0000000)I transform)n 18.97);(4 nt 0777 (4 (not 0000001) 0000 00)) v (((not areg) brag) carryin)

piuscommut) 14. 60)plusassoc2(16.00)
alying pluscomnut: (4 S1 $2) :: (+ $2 $I) to (+ (not 0777777) (4. (not 7000001) 0000000)
transform)(18.97): (4. (4. (not 0000001) 0000000) (not777) +n (, ((not areg) oreg) carryin)

* !piusassoc) 12.00)
epplyng plusassoc: ((4$1 17) S3):($1 (anal (4 S2 $3))) to (4. (4. (not 0000001) 0000000) (not 0
trantsform) 18.97): (4+ (not 0000001) 0000000) - (4 (+ (not arag) brag) carryin)

... ound previous failure

- fall on transform) 18.97)
..cutof f reahd

fal on tansfoI(18.97)

L

164 Local Microcode Generation and Compaction

applying plusansoc2: (1. $1 (4 S2 $3)) (4 + a 45 O)5)t 4(o 0777777) (4. (not 0000001) 00
transform) 18.97): (4. 0777778 0000000) *> (4 (4 l(not eareg) bin9e))carryin)
Icon-unfold(12.00)operandmatch(18.00)apyn con-unfold to (4 0777770 6000
transform) 1.7:((40777077 77 0000000) . (4. (4. (not arag) breg) carryin)
sc on -unfold(12.80)operandmatch(12.00
decomposin? by operand

tnfom2.38): 0000000 -v cainryin

1(using previous result)
..success on transform(2.38) with 2.00

t ransfuorm) 16.61): (+ 0777777 0777777) * (4. (not &rag) brag)
c on -unfold(4.00)operandmatch) 7.00)
applyin, o-ufl to (.0777717 0777777)

tnfo 16.61) +4 not 0000000) 0777777) -> (+ (not areg) brag)
p puscommut) 4.0 0)oparandmatch(4.00)
Idecomposing by operand

transform) 8.30): (not 0000000) -> (not areg)
operandmatch(2.00)

6=d decomposing by operand
t ransfo0rm) 8.30): 0000000 -> areg
I(using previous result)
:.. success3 on transform(8.30) with 2.00
suoccesson transfrm) 8.30) with 2.00

transfrm 830): 0777777 -> brag
(using previous result)

sucs ntransform 16.31) with 4.00
u cs ntrnsform(16.61) with 400

success on transform) 8.301) with .00
c e transform ,18.97) with 6.00

...sucessoonrans orm(8.97) with 60
sucsson traflform ,18.97) with 6. 00

s uc cus ontr f m 8.97) with 6
success o, transform(18.97) wi th 8.00

...suces 2n1.97)frm 18.97) with 60
...sucessontransform)(18.97) with 6.00

253 nodes xmnd
Mos,,mum ser h dpth: 17
Maximum axi om depth: 9

0 Approximate execution time: 116.68 seconds

Compacting:
aregmauk 0000000 bras .ones (0)
f bus bma carry.0 (1I

In the final trace, the And/Or and iteration strategies are used together.

search(45.60):)) dramp.dadn 0000000) lincwd) I<- fbus 0000007))
decomposit ion)(8.0
search(Z0.40): (-~ dram):d 5dr 0000000) iincwd)

~eas.cle. Idoraset - (-~ dra"(3 999)[d adr{2 31 %wild] (or dm5alc(102) &bus))
tr an sforrm) 0.00)*: dram , 3 9999}[dadr{2 3) %wld . cda dr 0 0000 0
trarsfor:i(0.00): 0001000 -> 11*110

accemptixg constant match
:~it" a matchirl tasom(00)wih00

success on transform) 0.00) with 0.00
tran"sform) 18.40): linced .>(or dmask(l 21 abus)
or 'd(7.00)
applying orid: SI :: (or 0000000 S1) to lincwd
tra nsform) 18.40): (or 0000000 lincwd) *> (or dmask{1 2) Shus)
ocerandatch) 7.00)
detomposin 9 by operand
tran storm) 0.0): 0 000000 -> dmask(1 2}
applying fetch decomposition
search) 0.00):) in dmask{1 21 0000000)
lddmask) 0.00)
'gas 'b: lddmno * - dmeas(7) %bitst)
transform 0.00): 00000 -> bi tact
attemptingtcoxotatmth
its a l mach t sah

. s cs on nfr(0.00) with 0.00
transform) 18.40): lmncwd -> Sbus

app ?i laftch decomposition
search 16.40): (. &bus listed)
abus lint) 7.00)
Ifnas'51e: abus int - I.- abus(5 12) lincwd{4 5))

* ... ucce ss on ta surh(18.40) with 7.00

sucscess on transform) 18.40) with 7.00

feas 'bln id~dr acir . drumf3 9999}dadr(2 3) %wild] (nd (not dm,$jk(1 2)) sbus))
transform(0.0: dram(3 99991[dadr(2 3) %weld) - dram) adr 0000000

(using previous result)

* s uccesa on transform) 0.00) with 0.00
transform) 15.14): llncwd -~ (and (not dmask(1 2)) abus)

..cutoff reached.
0 ... fail on transform 18.14)

... c o e r h(40)with 9.00
search(25.20): (x- fbus 0000007)
fbus.and) 21.00)fbus.or) 21,00)fbus.xor) 20.00)
feasrble: fbasand (.- fbUS(2 11) (Sf4 crag brag))
transformi 22.20): 0000007 - (and ereg brag)
andld) 12.00)
applyin"g andid: 51 : (and 0777777 11) to 0000007

Selected Examples 165

transform(22.20): (and 0777777 0000007) -> (and areg breg)
andcommut(12.00)andld(20.00)
applyirg anacommut: (and S1 S2) :: (ano S2 Si) to (and 0777777 0000007)
transform(22.20): (and 0000007 0777777) *> (and areg breg)
anjcommut(12.00)andld(20.00)operandmatch(12.00)

reconsomn by operand
transform 2.53): 0777777 -> brag
(apDlying fetch decomposition

search(2.53): (- breg 0777777)
breg.ones(2.00)
feasible: breg.ones . (<- breg{4 03) 0777777)

success on search(2.53) with 2.00
... success on transform(2.53) with 2.00

transform(19.67): 0000007 -> areg
apOly'ng feth decomposition

Seprch(19.67): (<- areg 0000007)
areg.mask(10.00)
feasible: areg.mask * (n- aregr8 15) (and %mask (rot scount(7 8) tlatch{7 8))))
transform(17.67): 00U0007 -> (and %mask (rot scount{7 8) tlatch{7 8}))
andid, 11.00)
applying andld: $1 ;: (and 0777777 S) to 0000007
Itransformt 1/.67)- (and 0777777 0000C07) -> (and %mask (rot scount(7 8) tlatch{7 8)))
andcommut(11.00)
applyin andCommut: (and $1 S2) :: (and $2 S1) to (and 0777777 0000007)
transform) 17.67): (and 0000007 0777777) -> (and ..ask (rot scount(7 8) tlatch{7 8)))
andcommut(1.00)cperandmatch(01.00)
decomDosin? oy operand
trensform 0. 0): 0000007 -> Xlask
attempting constant match
I t's a ratchil
1. . success on transform(0.00) with 0.00
transforn(17.67): 077777 -> (rot scount{7 8) tlatch{7 8))

,tid) 4.00)
aop'yn , rotid: $1 :: (rot 0000000 $1) to 0777777
trans'orrm(17.67): (rot O0000U 0777777J -> (rot scount{7 8) tlatch(7 8))
operanomatch(9.00)
decomposing by operand
trarsfrim(2.64): 0000000 -> scount{7 8}
auolyir? fetch decomposition
search Zj4): (s- scount(7 8) 0000000)
shift/ 2 .0)
fea~ihl. shift - <- scourt{4 9) %wild)
Lraosform(0.00 : 0000000 - %wlld
(us ,g previous result)

success r tr3ansform(0.00) with 0.00
S uccess or search(2.84) with 2.00

1 511ccess on transform(2.&.) with 2.O00

1 trnnsformi 14.83). 0777777 .- tlatch{7 8)
I I 4~iJ0n """n Jerjnoositino

sea.cli) '.50,: ('- tatch(7 8) 0777777)

feas : l b t (- tlatch:6 9999) abus{s 6)
Ltrsform(13.83): 0777777 -> aous{5 6)
aplyin? fetch decomposition

search! 383): - s fO 6) 0777777)
as.7pr) 1.10)aous.fbus(6.0O)abus.dram(8.00)

Versib'e. aoUSfus - (<- aus(5 12) fbus{2 3))
trnrsform(i 0,!)0 0777777 1 fbs2 3)

acp3y'nq I etch jecomposit on
T searr(10.3): (,- fbus(2 3) 0777777)

i ftus.ones(3 001
feasible: fbus.ones • (<- fbus{2 11) 0777777)

I ... success on search(10.83) with 3.00
S . .. success on transform(10.83) with 3.00
feasible abus .ad abus{5 12) dram(4 5}[dadr(4 5} %wl'dj)
transfor 8.621: 077 777 => dram(4 5)rdadr{4 5) %wildsdimplyrnO fetch Oecomposit~on

search(8.62): (<- dram{4 5)[dadr{4 5) %wild] 0777777)
ld.d.fbus(5.00)
feasible: Id.d.fbus • (o- dram(8 9999)[dadr(2 3) %wild] fbus(7 8)
transform(0.00)(: dram(8 999)[dair(2 3) %wlld] -] dram{4 5)1adr(4 5) %wlld]

can t allocate resourcel
fail on transform(0.00)

cutoff reached.
. fai l on search(8.62)
fail on transf rm(8.62)

success on search(13.83) with 8.00
,, s e s on trals~form(13.83) with 8.00suc ss on se r h 14.83 with 70

.. ssuccess on trarsforn(1d.83) with 7.00
succaEss on transtori (17.67) with 9.00

Success on transforo(17.67) with 9.00
aoP'y n1 odCO-,cmmu: (and St 52) :: (and S2 S1) to (and 0000007 0777777)
trfnsrorm(14 84): (and)777777 0000007) -> (and %mask (rot scount(7 8) tlatch{7 8))
i... found nrervous falIure
... fail on transfor(14a84)

* . success on transform(17.67) with 9.00
.. success or trasform(17.67) with 9.00
success on transfotm 17.67) with 9.00

success on search(19.67) with 10.00
siccess on trarsform(19.67) with 11.00

aoy i andcOmmut: (and S $2) : : (and $2 S1) to (and 0000007 0777777)
trarsform(10.05): (and 0777777 0000007) ,> (and areg breg)

founO orevous failure
a, on transform) 18.65)

siccess on transform(27.20) with 13,00
s ,ccess on transfori(22.20) with 13.00

sutccess or transfor,(22.20) with 13.00
eas'me 'busor • <- fbus(2 11) (or areg brag))
< rns'ari (18.17): 0000007 ,- (or areg breg)
:''1; 1.0 0)
ioc fprn orid: SI : (or 3000000 $1) to 0000007

t ,,; (18.17). (or 0000000 0000007) -> (or areg breg)
J :~ u (10.00)

* $) :166 2 Local:Microcode Generation and Compaction

I ppyig rcmmt:(r 1 2) (o $ $)0o(o000000OO007

tranfornk 1.17: (re 00007000 0) - rae rg

oromut 6.0)pradmtbre{ 13.0) btc(4)
de0010000n by opertand

applyinfec decomposition
search 60): (- rag at000000) 0000

ldreg fbl(.00)
feasibl: ldr~ fbl) fblttch (3 9999) fbus{2))
transfrm 3.60): 0000 > fa h(2)
I ppiyin fetch dcomposition

r ch) 3.60): <- fbus{2h() 0000000)
Slud. zero)4 3.00)
feasible: fbus ro (x fbath us (2 1 000000))

r success on60 sea0c0).60) it b 3.00

su ces on 0) -rfh 4.60) 00t 00)
Iu sozeron 3. nsom)3600w) 30

success on search 3.60) with .00
.. success on transform 360) with .00

.. Usuccess on transform (11.6) with 11.00

.succe s on transform 1.7) w ith. 1.00
..sceson transform(18.17) with 17.00

scCsonsearch (dept0: 09h 250

Maxium aiomdepth:5
* Approximate execution time: 1.89 seconds

Compacting set 0:

ad.t abusfous fbusones bregones aregmeok 0000007 shift 0000000 Id.dmask 0000000 Id.dr.aset 0000000 (1)

fbuseand (2)
..siz e 3. spread 08. cost 25

Compacting set 1:
Id.fbl fbus.ze~o ebusliec (0)
ld.t' nsusfx flusones brag. fbl areg.niask 0000007 shift 0000000 ld.dmask 0000000 ld.dr.aset 0000000 (1)
fbus. Cr (2)bu

.. sI z 3. spread 20. cost 29

Modifying tables:
inner product Is 7Cfbus: 3. 1 - 8
tiatch: 1, 1 -- 3
Sbus; 3. 1 -> 8
carryoutl: 0, 1 -n 0
carryout2; 0. 1 *m0
carryojt3: 0. 1 0

iea-cr(17.60): : .- dram~dadr 0000000] lincwd)).-fbuo 0000007))
ie~~uit'dn(48.00)

searc' ~4) u rmdd 0000000] linced)

I J. -asct (22.00)ld.dr.aclr) 72.00)
ftea.;cle: Id~oraset -(u- dram{3 399g)[dadr(2 31 %wild] (or dmask{0 2) abus))
trdrsforr(0.00)4; dram{3 999(djdr(2 3) %wi d] *> dram(dadr 0000000]
transform) 0.00): 0000000 -v %0db
Ixattempting const ant mat Ch
Ito s m at chlI
... success on transform(0.00) with 0.00

-s uccess on transform) 0.00) with 0.00
transfo0rm) 24.40): lincwd *> (or dmask(l 2) abut)
0 rid(12.00)
apnifing orid: $1 : : (or 0000000 $1) to lilcwd
transform) 24.40): (or 0000000 lincad) -> (or dmask{1 2) abut)
operandmach 12.00)0 decompiosin? oy operand
transform 0. 0~): 000000 -x dmask{1 2)
apolyin g fetch decop 'itonseach(00) (u- mask(1, 2) 0000000)

IId.dmask(0.00)fesbe dLak-(ms()%ist
I ransform) 0.00): 0000000 -> Xbltset

I atempingconstant match
it'emptamatch!

s15ucceas s on transform) 0.00) with 0.00
success on search) 0.00) with 0.000 . success on transfurm(0.00) with 0.00

tranisform) 24.40) li ewd - abut
ipplying fetch decomposition
search) 24 40): (x- asus 1 incwd)
abUs. Ilet) 12.00)
feasible : asuslinc ax bxs(5 12) lincwd(4 6))

u suce ss on seorch(74.40) with 12.00
success on transfu-,r 24.40) with 02.00

s uccess on transfori) 2' 40) with 02.00
success on tranSfori) -4 4:.) with 12.00

fe s!,. i.jruacir ,ir'mi3 9999)[dadr(2 3j wild) iad(o iask(I 2)) sbus))
* trnsfom) OO6x ro) 39})dadr(2 3) %wild] !,w ramn~gadr 0000000)0

(using previous result)
- suctess on transformr(0 00) with 0.00

t ran sform) 20.18): lincwd -n (ard (not dmask{1 2)) Sbus)
No takers!

..cutoff reached.
..fail 3n transform) 20.18)

Selected Examples 167

... success on search) 26.4N with 14.00
search(31.20): (i- fbus 0000 07)
fbus.and(26.00)fbus.or(26.00)fbus.xor(26.00)
feasible: fbus.and (<- fbus{2 11) (and arag brag))
transform) 23.20): 0000007 -> (and areg brag)
andid(12.00)

applying andid: SI :: (and 0777777 31) to 0000007
transform(23.20): (and 0777777 0000007) -> (and areag brag)
andcommut(12.00)
applying andcommut: (and $1 S2) :: (and S2 SI) to (and 0777777 0000007)
transform(23.20): (and 0000007 0777777) -> (and arag brag)
anocommut(12.00)operandmatch(12.00)
decomposing by operand
transform(2.58): 0777777 -> brag
lapplying fetch decomposition
I search) 2.58): (<- breg 0777777)

breg.ones(2.00)
feasible: breg.ones - (<- brag 4 13) 0777777)

success on search(2.58) aith 2.00

success on transform(2.58) with 2.00
transform(20.82): 0000007 -> creg
japplying fetch decomposition

search (20.62): (<- areg 0000007)
areg.mask(10.00)
feasible: areg.mask (<- areg{8 15) (and %mask (rot scount(7 8) tlatchj7 8))))
transform(1 .62): 0000007 -> (and %mask (rot scount{7 8} tlatch{7 8}))
No takerst

... cutoff reached.

... fall on transform(18.82)
cutoff reached.
fail on search(20.62)

... fail on transform(20.62)
applying andcomnut: (and Si $2) :: (and $2 SI) to (and 0000007 0777777)

transform(23.20): (and 0777777 0000007) -> (and areg brag)
SI:: found previous filure

a on transform(3.20)
... cutoff reached.
... fall on transform(23.20)

... cutoff reached.

... fail on transform(23.20)
... cutoff reached.
... fail on transform(23.20)

feasible: fous.or (<- fbus(2 11) (or areg brag))
transform(23.20): 0000007 - (or areg brag)
No taersi

c utOff reached.
.. ii on transform(23.20)

feasibla: fbus.xor - (.- fbus(2 11) (nor arag brag))
transform(23.20): 0000007 -> (xor ag brag)
No takersl
.. utoff reached.
... fall on transform(23.20)

... cutoff reached.

... fall on search(31.20)
CUtoff reached.
fail an search(57.60)

25 noues eusmnd.
Mnyinun search depth: 8
Maxmum &Aaom depth: 3
Aproxinate execution time: 1.53 seconds

s.arr: F3.38 : (i- dram(dadr 0000000] lincwd) (<- fbus 0000007))
-inc or $ (on(48.00)
sea*f'

r
541 <- oam[dadr 0000000] llncwj)

io Jr aset(42.00)ld.dr.aclr(22.00)
feas'ble. la.dr.aset (<- dram(3 9999}[dadr(2 3) %wild] (or dmask(1 2) ebus))
transform(0.00)-: dram{3 9999)[dadr(2 3} %wild -. dram dadr 0000000]
l(using previous result)
- success on transform(0.00) with 0.00

transform(27.04): lincwd -> (or dmask{1 2) abus)
arid(12.00)
epilying arid: $1 :: (or 0000000 $1) to lincwd
transform(27.04): (or 0000000 lIncwd) -> (Or dmask(1 2) abus)
orid(24.00)operandmatch(12.00)
aecomposin9 by operand
transform) 0.00): 0000000 - dmask{1 2)

g ((using previous result)
success on transform(0.00) with 0.00

transform(27.04): lincwd "- cous
anolyl g fetch decomposition
search) 27.04): (<- abus lincwd)
Iaous.linc(12.00)
Ifeasi e: abus.linc - (< abus(5 121 lincwd{4 5))

s: .LCss on search(27.04) with 12.00
success on transform(27.04) with 12.00

I ... success on transform(27.04) with 12.00
... success on transform(27.04) with 12.00

feasible: Id.dr.aclr (<- Jram(3 gggg}[dadr(2 3 ild] (and (not dmask{1 2)) abus))
transform(0.00)-: dram{3 9999}[dadr(2 3) %wild -> dramf dndr 0000000)
l(using previous result)
... success on transform(0.30) wlth 0.00

transform(22.39): llncwd - (and (not dmask(I 2)) abus)
No takersi
.. cutoff reached.
... fall on transform(22.39)

... success on search(29.04) with 14.00
search(34.32): (<- fbus 0000007)
fOus.and(26.00)fbus.or(26,00)fbus.xor(26.00)
feasible: fbusand (<- fbus{2 11) (and sreg brag))
trarsform(26,32): 0000007 -> (and areg breg)
andldfl 12.00)
apply ng andid: SI :: (and 0777777 $1) to 0000007
Itransform(26.32): (and 0777777 0000007) -> (and crag brag)
I andcommut(12.00)operandmatch(24.00)

I

168 Local Microcode Generation and Compaction

plyig ancommut: nd NON b2)::7 ad $2 $1) to (and 06777777 0000007)

an oconeut) 12.00)o0perandmatCb(12.00)
decomposing by operand
transform) 2.74): 0777777 -> brag
applyin? fetch decomposltlon
snarc.. 2.74):, erg 0777777)
bregon(2.)(
feasible: bregones1 (<- bregJ4,13) 0777777)
..success on search 2.74) w Ith .00
success On transform(2.74) w ith 2.00

t ran Sform(23.58): 0000007 -> areg
aplyn fetch decomposition

search 23.58): (<n- areg 0000007)
areg.maak(10.00)

fesbe arn mak(?.ae{8)(mask sk(ro scount{7 8) tlatch 7 8))))
tnsform 2.68): 00007 > (and Xmask (rot scounc(7 8) 0la tc h{7 8)))
No. takers ')

cutoff1 reached.
ifaIlI on transform) 21.58)

cutoff reaced.
fail onsach) 3.8

fall onotranform(23.58)
applying andcoennut: (and $1 12) :: (and $2 Si) to (and 0000007 0777777)
transform) 28.32): (and 0777777 0000007) -> (and areg brag)I:found previu failure

oni tranfor 2 6.32)
ctoff reachd.
fall on transform(26.32)I decomposing by operand

t ransformt 10.80): 0777777 - areg
a pIyir g fetch decompoaltion
se a rch (10.60): (.n- areg 0777777)
areg. maski 10.00)
feasible: aregmask (- reg (8 15) (and %mask(ot cut{ 8)tah{ 8))
transform(8.80): 1 0777771n(ad> ms (rot scount 7 8) t st c h(7 8))))

cu to0ff reached.
failI on transform~(8.80))

..fail o n se archi(10.80)
..fall on transform'(10.80)
cutoff reached.

..fa": on transf orm) 28.32)
cuto~f rached.
fail aun transform(28.32)

feasnible: fbu. or (-fbus,2 11)(rsigbe)
transforn)(26.32). 000000. * (or areg b re)

.id(24.00)
app!yirg orid. Si :, (or oo000000 SI) to 0000007
transform) 26.321: (Or 00001OU 0000007) >n (or areq brag)
orcomrnut 21.20o!Oernmatchi 24.00)
aPplyin, orcrrnmut: (or 11 S2) :: (Ol $1 11) to (or 100000 0,000)
trsns'or(26,321: (or 00iOU00

7
0000000) -> (or arag brag)

orcommutk 24)0opelandmatch(21.00)
decomlosing by operand
tr3rlsfOrm(12.42): 0000007 -> arag
I.. found previous failure
I. ifailr onmtrursfomJ 12.42)
DoclYin o'rCOmmut: (or S- 5) ;: (or 52 $1)to(r0007 000)
L, aCsffoonid 26.32):s(orjj1000000 C000007) ton (or are 000 brag) 0

I Ofl pre
(oo araiurag

I.fall on trnnsform(28.32)
c cutoff reached.
I',1 on" tr ansform(26.32)

de-mpoigby operand

t ran Sorit 10.80): 00C0000 -> crag
colyn? fetch decompo sition,

searc) 1 0.80): (i- crag 0000200)
areig.nask(10.00)
feasible: aregmasic (a rag 8 15) (and %mask (rot scount(7 8) tlatc h(8))

trngisform(8.90): 000C000 -> (and %Mnask (rot scouvnt(7 8) tlatch{7 8)))781)

zeroaeu(0.89)
a pplyinguaeroand: 0000000 :: (and 0000000 ???) to 0000000

I ~tansform() 8.8U(: (and 0000000 77) -> (and imasK (rot scount(7 8) tlatch{7 81))

tpransfomt .07attempting constant match
is at ,aci
t i .. uccesr :. trnnsform(0.00) with 0.00

s.,ucc,,ess on transform) 8.80) with 0.00
success on transform(8.80) with 0.00

s uc cess o n search(10 80) with 2.00
..su ccess on transform) 10.80) with 2.00

t ransfo rm) 15.52): 0000007 ->n brag4 3fplying fetch decomposition
search) 15.52):)(- brag 0000007)
bineg Ccn) 14.00)
feasible: brmg. cn (a rn 13) (R2 0000000 conhi{3) 4) con loJ3 4)))
transform1l 13.52): 0000007 -, (1@2 0000010 conhi{3 4) coal1o(3 4))
con-unfold) 8.00)
applying Con-unfold to 0000007

tranlsform) 13.52): (VI 0000010 0000000 0000007) - (82 0000010 conhl(3 4) conlo(3 4)
operanamatch) 8.00)
decomposing sy operand

trans form(6.76): 0000000 - conth i(3 4)
sarch? .6:(-cni34 0000000)

Id lconhi(4.00)

feaible:m luconhi (a - conhl(J0i9999) %wild)

tranform 00) 00000 0n Old
(Using previo us res ult)

.. success on transform) 0.00) with 0.00

A Selected Examples 169

I ... success on search(8.78) with 4.00

9.. success on transform(.76) with 4.00
transform(6.76): 0000007 *> conlo(3 4)
apolying fetch decomposition
search) 6.76): (<- conlo(3 4) 0000007)
id.co nlo(4.00)
feasible: Id.conlo •(< conlojO gggg) %wild)
transform) 0.00): 0000007 -) wild

attempting constant match

it's a matchtl
P.... success on transform(0.00) with 0.00

... success on search(6.76) with 4.00
success otransform(6.76) with 4.00

ucc transforn(13.2) with 0.00
success on transform(13.52) with 8.00

success on search(15.52) with 10.00
.. success on transform(16.52) with 10.00

... str32),with 12.00
a..uccesson transfor(16.32) with 12.00

feasible fbus.xor - (<- fbus(2 01) (nor arag brag))
ransform(24.20): 0000007 -> (nor areg brag)
xorid(12.00)
spplying xorid: SO :: (xor 0000000 $1) to 0000007
Itransfom(24.20): (xor 0000000 0000007) *> (xor areag brag)
aperandmatch(12.00)
dec-jmoslng by operand
transform(2.63): 0030000 -n areg

(using previous result)
... success on transform 2.63) with 2.00

transform) 21.57): 3000 -> brag
applyn fetch decomposition
search) 21.67): (<- brag 0000007)
)breg.con(14.00)
feasible: breg.con * (a- breg(4 13) (@2 0000010 conhi{3 4) conlo{3 4)))
transform(19.57): 0000007 => (@2'0000010 conhi{3 4) con 10(3 4))
con-unfold(8.00)
applying con-jnfold to 0000007
transform(19.57): (@2 C000010 0000000 0000007) -> (@2 0000010 conhi{3 4) conlo(3 4})
oPeraromatch(0.00)
aecomposing by operand
transfcrm(9.78): 2000000 -> conht(3 4)
apolyirg fetch aecomposition
search(9.78): (x- conhi(3 4) 0000000)
1.onh(4.00)
feasible: d.corhi - (x- conhi{O 9099) %wlid)
transform(0.00): 0000000 -> %wild

(using previous result)
I. success on transform(0.00) with 0.00
succoss on search(9.78) with 4.00

success on transform(9.78) with 4.00
trar:sform(9.78). 0000007 - conlo(3 4)
aoplving fetch 9ecompoSIt'om
search (9.78): (<- conlo{1 4) 0000007)
li.conlo(4.00)
feesibla: Id.conlo - (x- conlo(O 9999) %wild)
tronsrorm(0.00): 0000007 - wild
!.(using previous result)

success or transform(0.00) with 0.00
... s, es on search(9.78) with 4.00
. s succss on transform(9.78) with 4.00
_sucss 70nsform(19.57) with 8.00

success on ransform(19.57) with 8.00
... success on ;earch(21.57) with 10.00

.. success on transform(21.57) with 10.00
success on transform(4.20) with 12.00

... success on transform(24.20) with 12.00
success on search(34.32) with 20.00
success on search(63.36) with 34.00

56 nodes examined.
Maximum search depth: it

Maximum axiom depth: 3
Approximate execution time: 1.93 seconds

Compacting set 0:
abuslint (0)
Id.dmask 0000000 ld.dr.aset 0000000 (1)
ld.conh 0000000 (2)
1d.conlo 0000007 areg.mask 0000000 breg.con (3)
fbus.or (4)

... size 5. spread 38. cost 24

Comnacting set 1:
abus.linc (0)
ld.dmrsk 0000000 (1)
loconhi 1000000 (2)

ld conlo 0000007 areg.mask 0000000 breg.con (3)
fbus.xor (4)

... size 5. spread 38, cost 24

170 Local Microcode Generation and Compaction

.'- .= i . / . i

References 171

References

[Aho 74] Aho, A. V., Hopcroft, J. E., and Uliman J. D.
The Design and Analysis of Computer Algorithms.
Addison-Wesley, Reading, Massachusetts, 1974.

[Aho 77] Aho, A. V., and UlIman. J. D.
Principles of Compiler Design.
Addison-Wesley, Reading, Massachusetts, 1977.

[Banerjee 79] Banerjee, U., Shen, S., Kuck, D. J., and Towle, R. A.
Time and Parallel Processor Bounds for Fortran-Like Loops.
IEEE Transactions on Computers C-28(9):660-670, September, 1979.

[Barbacci 77] Barbacci, M., Barnes, G., Cattell, R., and Siewiorek, D.
The ISPS Computer Description Language.
Technical Report, Carnegie-Mellon University, August, 1977.

[Bell 78] Bell, C.G., Kotok, A., Hastings, T.N., and Hill, R.
The Evolution of the DECSystem-10.
In Bell, C.G., Mudge, J.C., and McNamara, J.E. (editor), Computer

Engineering: A DEC View of Hardware Systems Design, chapter 21.
Digital Press, Bedford, Massachusetts, 1978.

[Carter 78] Carter, W. C., Joyner, W. H., and Brand, D.
Microprogram Verification Considered Necessary.
In Proc. National Computer Conference, pages 657-664. AFIPS, June,

1978.

[Cattell 78] Cattell, R. G. G.
Formalization and Automatic Derivation of Code Generators.
PhD thesis, Carnegie-Mellon University, April, 1978.
Updated version published under the same title by UMI Research Press,

Ann Arbor, 1982.

[Cocke 70] Cocke, J., and Schwartz, J. T.
Programming Languages and Their Compilers.

* Technical Report, New York University, April, 1970.

172 Microcode Generation and Compaction

[Dasgupta 76] Dasgupta, S., and Tartar, J.
The Identification of Maximal Parallelism in Straight-Line Microprograms.
IEEE Transactions on Computers C-25(10):986-992, October, 1976.

[Dasgupta 77] Dasgupta, S.
Parallelism in Loop Free Microprograms.
In Gilchrist, B. (editor), Information Processing 77 (Proc. IFIP Congress

1977). North-Holland, Amsterdam, 1977.

[Dasgupta 78] Dasgupta, S.
Towards a Microprogramming Language Schema.
In Proc. 11th Annual Workshop on Microprogramming, pages 144-153.

IEEE, November, 1978.

[Davidson 78] Davidson, S., and Shriver, B. D.
An Overview of Firmware Engineering.
Computer 11(5):21-33, May, 1978.

[Davidson 81] Davidson, S., Landskov, D., Shriver, B. D., and Mallett, P. W.
Some Experiments in Local Microcode Compaction for Horizontal

Machines.
IEEE Transactions on Computers C-30(7):460-477, July, 1981.

[DeWitt 76] DeWitt, D. J.
A Machine Independent Approach to the Production of Optimized

Horizontal Microcode.
PhD thesis, University of Michigan, June, 1976.

[Digital 78] Digital Equipment Corporation.
Microcomputer Processors.
Digital Equipment Corporation, Maynard, Massachusetts, 1978.

[Erman 78] Erman, L. D., and Lesser, V. R.
The Hearsay-II System: A Tutorial.

0 In Lea, W. A. (editor), Trends in Speech Recognition, chapter 16. Prentice-
Hall, Englewood Cliffs, New Jersey, 1978.

[Fagg 64] Fagg, P., Brown, J. L., Hipp, J. A., and Doody, D. T.
IBM System/360 Engineering.
In Proc. Spring Joint Computer Conference, pages 205-231. AFIPS, 1964.

[Fisher 79] Fisher, J. A.
The Optimization of Horizontal Microcode Within and Beyond Basic Blocks:

An Application of Processor Scheduling with Resources.
PhD thesis, New York University, October, 1979.

References 173

[Fisher 80] Fisher, J. A.
2n-Way Jump Microinstruction Hardware and an Effective Instruction

Binding Method.
In Proc. 13th Annual Workshop on Microprogramming, pages 64-75. IEEE,

November, 1980.

[Fisher 81a] Fisher, J. A.
Trace-Scheduling: A Technique for Global Microcode Compaction.
IEEE Transactions on Computers C-30(7):478-490, July, 1981.

[Fisher 81b] Fisher, J. A., Landskov, D., and Shriver, B. D.
Microcode Compaction: Looking Backward and Forward.
In Proc. National Computer Conference, pages 95-102. AFIPS, 1981.

[FPS 821 FPS Technical Publications Staff.
APAL64 Programmer's Reference Manual.
Floating Point Systems, 1982.

[Fuller 76] Fuller, S. H., Almes, G. T., Broadley, W. H., Forgy, C. L., Karlton, P. L.,
Lesser, V. R., and Teter, J. R.
PDP- 1 1/40E Microprogramming Reference Manual.
Technical Report, Carnegie-Mellon University, January, 1976.

[Garey 79] Garey, M. R., and Johnson, D. S.
Computers and Intractability: A Guide to the Theory of NP-Completeness.
Freeman, San Francisco, 1979.

[Gosling 811 Gosling, J.
Some Issues and Techniques for Microcode Compilers (unpublished

report).
1981.

[Grishman 78] Grishman, R.
The Structure of the Puma Computer System: Overview and the Central

Processor.
Technical Report COO-3077-157, New York University, November, 1978.

[Hansen 80] Hansen, I., and Leszczylowski, J.
On Fundamentals of Computer-Aided Design of Firmware.
In Proc. 13th Annual Workshop on Microprogramming, pages 3-12. IEEE,

November, 1980.

[Holloway 79] Holloway, J., Steele, G. L. Jr., Sussman, G. J. and Bell, A.
The SCHEME-79 Chip.
Al Memo 559, MIT Artificial Intelligence Laboratory, December, 1979.

6 174 Microcode Generation and Compaction

[Horowitz 78] Horowitz, E., and Sahni, S.
Fundamentals of Computer Algorithms.
Computer Science Press, Potomac, Maryland, 1978.

(Husson 70] Husson, S. S.
Microprogramming: Principles and Practice.
Prentice-Hall, Englewood Cliffs, New Jersey, 1970.

[Johannsen 78] Johannsen, D.
Our Machine, A Microcoded LSI Processor.
In Proc. 11th Annual Workshop on Microprogramming, pages 1-7. IEEE,

November, 1978.

[Jones 79] Jones, A. K., Chansler, R. J., Durham, I., Schwans, K., and Vegdahl, S. R.
STAROS, A Multiprocessor Operating System for the Support of Task

Forces.
In Proc. 7th Symposium on Operating Systems Principles, pages 117-127.

ACM/SIGOPS, December, 1979.

[Jones 80] Jones, A. K., and Gehringer, E. F., editors.
The Cm * Multiprocessor Project: A Research Review.
Technical Report CMU-CS-80-131, Carnegie-Mellon University, July, 1980.

[Kernighan 78] Kernighan, B. W., and Ritchie, D. M.
The C Programming Language.
Prentice-Hall, Englewood Cliffs, New Jersey, 1978.

[Kim 79] Kim, J., and Tan, C. J.
Register Assignment Algorithms for Optimizing Micro-Code Compilers-

Part 1.
Technical Report RC 7639, IBM Thomas J. Watson Research Center, May,

1979.

[Landskov 80] Landskov, D., Davidson, S., Shriver, B., and Mallett, P. W.
Local Microcode Compaction Techniques.
ACM Computing Surveys 12(3):261-294, September, 1980.

[Leverett 79] Leverett, B. W., Cattell, R. G. G., Hobbs, S. 0., Newcomer, J. M., Reiner,
A. H., Schatz, B. R., and Wulf, W. A.
An Overview of the Production Quality Compiler-Compiler Project.

0l Technical Report CMU-CS-79-105, Carnegie-Mellon University, February,
1979.

[Leverett 81] Leverett, B. W.
Register Allocation in Optimizing Compilers.

* PhD thesis, Carnegie-Mellon University, February, 1981.

6"

References 175

[Lowry 69] Lowry, E., and Medlock, C. W.
Object Code Optimization.
Communications of the ACM 12(1):13-22, January, 1969.

[Ma 80] Ma, P. Y., and Lewis, T. G.
Design of a Machine-Independent Optimizing System for Emulator

Development.
ACM Transactions on Programming Languages and Systems 2(2):239-262,

April, 1980.
A revision was published under title "On The Design of a Microcode

Compiler for a Machine-Independent High-Level Language" in the May
1981 issue of IEEE Transactions of Software Engineering.

[Mallett 78] Mallett, P. W.
Methods of Compacting Microprograms.
PhD thesis, University of Southwestern Louisiana, December, 1978.

[Marwedel 81] Marwedel, P.
*A Retargetable Microcode Generation System for a High-Level

Microprogramming Language.
In Proc. 14th Annual Workshop on Microprogramming, pages 115-123.

IEEE, December, 1981.

[McCreight 80] McCreight, E. M.
Personal Communication.
1980.

[Meyers 80] Meyers, W. J.
Design of a Microcode Link Editor.
In Proc. 13th Annual Workshop on Microprogramming, pages 165-170.

IEEE, November, 1980.

[Michie 68] Michie, D.
"Memo" Functions and Machine Learning.

* Nature 218:19-22, April, 1968.

[Mueller 80a] Mueller, R. A.
Automated Microprogram Synthesis.
PhD thesis, Univerisity of Colorado, 1980.

[Mueller 80b] Mueller, R. A.
Formalization and Automated Synthesis of Microprograms.
In Proc. 13th Annual Workshop on Microprogramming, pages 45-53. IEEE,

November, 1980.

* [Nanodata 72] Nanodata Computer Corp.
QM- 1 Hardware-Level Users Manual.
Nanodata Computer Corp., Buffalo, New York, 1972.

0 176 Microcode Generation and Compaction

[Nilsson 80] Nilsson, N. J.
Principles of Artificial Intelligence.
Tioga, Palo Alto, California, 1980.

[Ousterhout 781 Ousterhout, J. K.
Cm* Kmap Microprogramming Manual and Debugger Manual.
Carnegie-Mellon University, 1978.

[Parker 81] Parker, A. C., and Wilner, W. T.
Microprogramming-The Challenges of VLSI.
In Proc. National Computer Conference, pages 63-68. AFIPS, 1981.

[Patterson 76] Patterson, D. A.
STRUM: Structured Microprogramming System for Correct Firmware.
IEEE Transactions on Computers C-25(10):974-985, October, 1976.

[Patterson 79] Patterson, D. A., Lew, K., and Tuck R.
Towards an Efficient, Machine-Independent Language for

Microprogramming.
In Proc. 12th Annual Workshop on Microprogramming, pages 22-35. IEEE,

November, 1979.

[Poe 80] Poe, M. D.
Heuristics for the Global Optimization of Microprograms.
In Proc. 13th Annual Workshop on Microprogramming, page- 13-22. IEEE,

December, 1980.

[Poe 811 Poe, M. D., Goodell, R.. and Steely, S. Jr.
Issues of the Design of a Low Level Microprogramming Language for

Global Microcode Compaction.
In Proc. 14th Annual Workshop on Microprogramming, pages 88-94. IEEE,

October, 1981.

[Ramamoorthy 74]
Ramamoorthy, C. V., and Tsuchiya, M.

* A High-Level Language for Horizontal Microprogramming.
IEEE Transactions on Computers C-23(8):791-801, August, 1974.

[Rosen 79] Rosen, B.
PERQ Microprogrammers Guide.

* Three Rivers Computer Corporation, 1979.

[Salisbury 76] Salisbury, A. B.
Mic roprogrammable Computer Architectures.
American Elsevier, New York, 1976.

References 177

[Sint 81 Sint, M.
MIDL-A Microinstruction Description Language.

In Proc. 14th Annual Workshop on Microprogramming, pages 95-106.
IEEE, October, 1981.

[Slate 77] Slate, D.J., and Atkin, L.R.
Chess 4.5-The Northwestern University Chess Program.
In Frey, P.W. (editor), Chess Skill in Man and Machine, chapter 4. Springer-

Verlag, New York, 1977.

[Strecker 78] Strecker, W.D.
Vax-11/780-A Virtual Addressing Extension of the DEC PDP- 11 Family.
In Proc. National Computer Conference, pages 967-980. AFIPS, 1978.
Also published in "Computer Structures: Principles and Examples" by

Siewiorek, Bell, and Newell; McGraw-Hill, 1982.

[Syiek 80] Syiek, D. A.
Personal Communication.
1980.

[Tan 78] Tan, C. J.
Code Optimization Techniques for Micro-Code Compilers.
Technical Report RC 6936, IBM Thomas J. Watson Research Center,

January, 1978.

[Tokoro 78] Tokoro. M., Takizuka, E., Tamura, E and Yamaura, I.

A Technique of Global Optimizat; i -.4 Microprograms.
In Proc. 1 1th Annual Workshop v,. Microprogramming, pages 41-50. IEEE,

1978.

[Tokoro 81] Tokoro, M., Tamura, E., and Takizuka, T.
Optimization of Microprograms.
IEEE Transactions on Computers C-30(7):491-504, July, 1981.

[Tsuchiya 74] Tsuchiya, M., and Gonzalez, M. J.
An Approach to Optimization of Horizontal Microprograms.
In Proc. 7th Annual Workshop on Microprogramming, pages 85-90. IEEE,

October, 1974.
Also published in IEEE Transactions on Computers (Oct. 1976) under the

title "Toward Optimization of Horizontal Microprograms".

[Ulrich 80] Ulrich, J. W.
The Derivation of Microcode by Symbolic Execution.
In Proc. 13th Annual Workshop on Microprogramming, pages 38-42. IEEE,

November, 1980.

K 178 Microcode Generation and Compaction

[Vegdahl81] Vegdahl, S. R., and Jones, A. K.
STAROS Microcoue Wizard's Manual.
Technical Report, Carnegie-Mellon University, 1981.

[Wilkes 51] Wilkes, M. V.
The Best Way to Design an Automatic Calculating Machine.

In Manchester University Computer Inaugural Conference. Ferrante,
London, July, 1951.

[Winston 77] Winston, P. H.
Artificial Intelligence.
Addison-Wesley, Reading, Massachusetts, 1977.

[Wood 79a] Wood, W. G.
The Computer Aided Design of Microprograms.
PhD thesis, University of Edinburgh, November, '979.

[Wood 79b] Wood, W. G.
Global Optimization of Microprograms through Modular Control

Constructs.
In Proc. 12th Annual Workshop on Microprogramming, pages 1-6. IEEE,

November, 1979.

[Wulf 75] Wulf, W. A., Johnsson, R. K., Weinstock, C. B., Hobbs, S. 0. and Geschke,

C.M.
The Design of an Optimizing Compiler.
American Elsevier, New York, 1975.

[Yau 74] Yau, S. S., Schowe, A. C., and Tsuchiya, M.
On Storage Optimization of Horizontal Microprograms.
In Proc. 7th Annual Workshop on Microprogramming, pages 98-106. IEEE,

October, 1974.

Index 179

Index

Conflicts 18,24,53,82,84, 100, 104
* And/Or coupling strategy 40,94, 106,107, 110, 149 binary 24

And/Or tree 40,94 Constant generation 13, 36
Assignment statement 58,71,129, 130 see also constant unfolding
Associative distance function 130, 133 Constant pattern 46, 59, 128
Associativity 67, 127 Constant unfolding 14,3,65.72,92, 110, 111, 118
Asynchronous logic 53 with subexpresslons 67
Atomic execution 8 Constants 46
Atoms of an expression 124 in main memory 14
Axiom factor 125, 128, 130, 131 literal 46, 128
Axiom parameters 57 unbound 47
Axioms 57,60,72,75, 118, 137 Control flow 49, 62

-Cost of a jOp
Basic block 18 difficulty of defining 9, 11, 13,31, 40
Bit extraction 75, 110, 135 Cost tables, IOp 41,99, 114
Bottlenecks 41, 99 Costs, allocation tosubsearches 115

local 100, 103 Coupling of Compiler phases 4,31,37,91.110,111
Branch-address field 2 Critical path partitioning compaction algorithm 20
Breadth limit 72,97,107,111,117 Cutoff 73
Breadth-first search 73, 113 cache 114, 118
Bundles 15, 25, 78, 90, 100 evaluation function 123

see also search cutoff

Cache cutoff 114, 118
Cache, distance 127, 128 Dasgupta, S. 3, 20,21,24,25
Cache, search 117, 118 Data antidependency 18, 80, 90
Cache, transform 117, 118, 127, 128 Data available set 19, 20,77
Caches 74,114,117 Data dependency 18, 35,62,72, 77,80,82,84, 110

and indefinite recursion 134 graph, height of pOps in 77, 90
flushing of 100 non-strict 25,84,87

Cattell, R.G.G. 36,43 with negative offset 79
Chain-matrix compaction algorithm 79,83, 112 Data operands 124
Chains 83 Delayed execution 10, 12,25,48
Classical microcode compaction problem 18 Depth limit 72

complexity of 14,83 Depth-first search 113
Code generation 4, 27, 55 Deterministic algorithms 72

local 13 DeWitt, D.J. 3,11, 14, 19, 26,39, 111
Commutativity 127, 129, 133 Distance cache 127, 128
Compaction 4, 14, 77,90, 94, 112 Distance function 128

incremental 103 associative 130, 133
interblock 21, 37 size-based 130, 136
with loops 22,112 Distance tables 100, 110, 123,125
with main memory references 86 Distributive axioms 67
with volatile registers 15, 78,87 Dynamic modification of pis 53

Complete pI 19, 79 Dynamic programming 84,112
Conditional disjointness 25

see also non-strict data dependency Educated guessing coupling strategy 38
Conflict classes 44,48,49, 103 Eval operator 57

limitations of 51 Evaluation function 20,74,105, 116, 123,127

180 Microcode Generation and Compaction

cutoff 123 Micro-address register (MAR) 45,50,72
weaknesses of 135 Microcode, advantages of 1

Evaluation order 15 Microinstructions (pls) 8

Exhaustive search 19 Microoperations (pOps) 8, 44,48
Expressions 46, 55, 123, 129 Microprogramming languages 3

pOp 125 MIMOLA 28

Extraneous data path 34 Models, micromachine 23,35,38,43, 109
generality of 23,43

Feedback 98 Mueller, R.A. 28
Fetch decomposition 59, 118 Multiple choices coupling strategy 39
Fisher, J.A. 20,22,23.77 MUMBLE 28
Flexibility of a subgoal 105
Flow analysis 12. 37 Nanocode 53
Flow operator 50,57.72. 129 Nilsson, N.J. 123
Flow, control 49,62 Non-strict data dependency 25,84.87

Foundfactor 97 Nondeterministic algorithms 19, 56, 116
NP-complete problems 14

. Gonzales, M.J. 20, 24 NP-hard problems 4,14,82
"- Gosling, J. 21

Graph-coloring problem 14 Operand-by-operand decomposition 0.72, 118

- Greedy algorithms 20 Operator-expression table 127
Operator-operator table 125, 131

Hill-climbing 94,97 Operator-resource table 128, 131
Horizontal instruction format 1, 8 Operators 46, 124

Optimization, traditional 7

Identity cost 125, 133
Identity depth 125, 126, 129 Pac-Man 70
Identity operator 125, 128 Parallel phases coupling strategy 39

Indefinite recursion 134 Parker, A.C. 1
Index cost 124, 127, 128 Pattern-resource table 128, 128, 131

Index table 127, 131 Patterson, D.A. 3
Indexing a storage resource 45, 50 POP-11/40E 49,52
Initial search cutoff 97, 115 Phases of a compiler 4
ISP 25,28 couplingof 37,4,31,91,110,111
Iteration coupling strategy 39,41,99, 106, 149 Pipelining 3,22
Iterative deepening 73, 113 PL/MP 28

Iterative expansion compaction algorithm 21 Poe, M.D. 20, 22, 23, 78
Polynomial-time algorithms 82

Kim, J. 11, 28 Polyphase execution 10,24,25

Kmap 10,32,49,91,97, 139, 149 register written twice during cycle 87
POCC 38

Languages, microprogramming 3 Pruning of a heuristic search 74, 117

Lewis, T.G. 26 Pseudo-Op 63,72, 118
Linear pairwise comparisons compaction algorithm 20 Puma 10, 49,75, 120, 143,148

Literal field of a pI 36, 65, 92. 93, 96, 101
Literal-resource table 126, 131 Rank of a storage resource 45

Loops 33 Redundant solutions 96

compaction involving 22, 112 Register allocation 11, 28,37
Registers

i Ma, P.Y. 26 heterogeneous 25

Macro tables 28 homogeneous 28

Macroarchitectures 7 number in micromachlne 82

Main memory references see also storage resources
and compaction 86 Resource-resource table 126, 128, 131

cost of 10, 11 Reverse index flag 59,71,72, 118

Mallett, P.W. 15, 19, 25, 40 Rotation 75, 110, 135
MDIL 28
MDL 28 Schowe, A.C. 19

Means-ends analysis 56 Search
Memo function 74 breadth-fIrst 73, 113

Index 181

decomposition of 115, 118
depth 73,75,110,113 Weakdependence 25
depth-first 113 see also non-strict data dependency
ordering of 74 Wilkes, M.V. 1
pruning of 74, 117 Wilner, W.T. 1

Search cache 117, 118 Wood. W.G. 20,21, Search cutoff 73,111, 115, 118 Writable control store 3

*:i initial 97, 115
Search function 58,71,94, 118, 123 YALLL 25,28
Sequence Yau, S.S. 19, 20

primary 94
secondary 94

Serialization algorithm 88, 90
Serialization, illegal 89
Shape 105
Short-circuit evaluation 16
SIMPL 28
Sint, M. 25
Size-based distance function 130, 136
Slack 116
Southwestern Louisiana, University of 40
Squeeze coupling strategy 41,103, 107, 149
Storage classes 10
Storage resources 43, 47, 128

bit length 45
indexing 45, 59
permanent 45
rank of 45
temporary. 45

s also registers
Subroutines 53
Subtle features of a mlcromachine 103, 107
Symbolic execution 28

Table cost 124
Tan, C.J. 11,28
Tartar, J. 20,24,25
Templates 28,55
Theorem proving 28
liming constraints 10, 47, 54, 109

limitations in model 52
Tokoro, M. 20,21
Trace scheduling compaction algorithm 22
Transformcache 117, 118, 127,128
Transform function 59,65,94, 118, 123
Transitory data resources 25

see also volatile registers
Tsuchiya, M. 19, 20, 24
Two-level microcode 53

Ulrich, J.W. 28
Undefined resource 45,59, 118
Unit-execution-time scheduling problem 14
Unstable states 52

Verification, microprogram 3
Versions 40
Vertical kistruction format 1, 8
VLSI 1
Volatile registers 10, 12, 15, 25,33,35, 78,88

