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The simulation of VLSI circuits falls beyond the capabilities of
conventional circuit simulators like SPICE. On the other hand, con-
ventional] logic simnlators can only give the results of logic 1levels
“1"” and "0” with the attendant loss of detail in the waveforms. The
aiv of developing large-scale circuit simulation is to bridge the gap

between conventional circuit simulation and logic simulation.

This research is to investigate new approaches for fast and
re': _sely accurate time-domain simulation of MOS LSI snd VLSI cir-
cuits. New techniques and new algorithms are studied in the follow-
ing areas: (1) analysis sequencing (2) nonlinear iteration (3) modi-
fied Gauss-Seidel method (4) latency criteria and timestep control
scheme . The developed methods have been implemented into a simula-

tion program PRENMOS which could be used as a design verification tool

for MOS circuits.
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CHAPTER 1

Introduction

Improvements in semiconductor processing have actually
accelerated the complexity of VLSI chips which potentially have hun~
dreds of thousands of transistors. To deal with this complexity two
cancepts are generally applied: decomposition, which is the process
of breaking a problem into manageable pieces, and abstraction, which
is the technique of hiding unnecessary detail. Applying these two
principles in VLSI design results in a multi-level, hierarchical
approach to the design of a complex chip [1]. The set of design

verification tools corresponding to the levels of the hierarchy is

. shown im Fig. 1.1 [2].

Functional simulators are used at the initial design phase to
verify the algorithms of the digital system to be implemented. Once
the design meets these criteria for the behavioral completeness, an
RTL (Register Transfer Level) simulator could be used to verify the
potential implementation of the structure, With each RIL wodule
further partitioned into low-level logic building blocks, the logic

design is validated by a logic simulator such as MNOSSIM or SALOGS
[3 '4] .

The gate level design is implemented into integrated circuits by
transistors and associated interconnmections. For the analysis of

small circuit blocks, circuit simulators, such as SPICE2 (5], have




Functional Analysis

¢ t

Registor Transfer Level Simulation
¢ t

Logic Simulation
¢ t

Large—~Scale Circuit Simmnlation
+ *

Circuit Simulation
+ t

Device Simulation
4

Process Simulation

Fig. 1.1 The Hierarchy of Design Verification Tools,

proved effective by providing accurate voltage and current waveforms.
The larger blocks may be anzlyzed in less detail by using a ‘large-

scale’ circuit simulator such as MOTIS, MOTIS-C, or MOSTAP [6,7,8].

For VLSI design, there are some major constraints such as die
size, speed and power, which are taken into comsideration atleach
level, often forcing a designer to backtrack when a constraint cannot
be met at &2 lower level. A number of simulations are required before
the design is completed. The cost of simulation is expensive, espe-

cially for circuit simulation which can accurately predict circuit

performance. As the size of the circuit increases, eventuoally the




cost of conventional circuit analysis becomes prohibitive, There~
fore, the large-scale circnit analysis in which some relaxation tech-
niques are used, is developed to reduce the execution time and memory
requirements but still provide adequate information about circuit

performance.

This research is concerned with the development of numerical
methods and schednling techniques for fast and relatively accurate
time~domain simulation of MOS LSI and VLSI circuits. The goal is
that the developed methods and techriques could be implemented in a
simulator which could be unsed as a design verification tool] for MOS

circuits.

The basic approach ip most ‘large-scale’ circuit simulators is,
firstly, the partitioning of the circuit into smaller subcircnits,
and then, the analysis of these subcircuits in a certain sequence [8,
9, 10, 11, 12]. By using anzlysis sequencing or selective trace
techniques, one may take advantage of the latency properties of the
subcircuits in both time and space to reduce the computation time
(13, 14]. In this research, MOS circuits are decomposed into ‘'one-
way’ subcircuits in the DC semse [3, 8] (i.e., the circuit is assumed
to be in steady-state with its capacitors open-circuited). In prac-
tice, this partitioning approach produces subcircuits of relatively
small sizes and sparse matrix techniques are not necessary. By prop-
erly ordering the circuit variables, the circuit equations can be put
in an ‘slmost’ lower block triangular form with the upper triangular

nonzero terms accounting for any feedback that might exist among the




subcircuits. Traditionally, the Gauss-Seidel method has been used to

decouple the feedback terms by assigning previons values to the
current ‘unsolved’ variables [8, 15]. However, this approach suffers
from accuracy probliems. Furthermore, as will be shown f;ter in this
thesis, when floating capacitors exist among the subcircuits, the
Gauss—Seidel method will not be comsistent and thus not comvergent.
A 'modified’ Gauss-Seidel-Newton method is then introduced to solve
the circuit equations and to decouple the feedback terms during the
analysis process. The proposed technique, which is based on the use
of a forward predictor to estimate the values of the yet unsolved
variables in feedback loops, is more accurate than the standard
Gauss-Seidel method, without requiring much additional computation,
This modified Gauss~Seidel method is shown to be consistent, stable
and convergent. As far as apalysis sequencing is concerned, a pro-
cedure is described in this dissertation, which is different from
ones previously proposed in that it schedules omnly those ’‘relevant’
subcircuits that directly or indirectly affect the output. This
approach is combined with a latency technique to further increase the

speed of simulation.

An experimental program PREMOS (PREdiction~based simulator for
NOS circpits) is developed to implement and test the new algorithms
and new schemes in this research. This program is mainly for the
time-domain analysis of VLSI MOS digital circuits. It has been shown
that PREMOS can produce simulated results whose accuracy is close to

that of conventional circuit simulation, whereas the computational

-— 4
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speed is generally withia the range of five times slower than that of
timing simnlators such as MOTIS-C [6, 7). The speed and circuit-size
capability of MOTIS-C have been claimed to be over two orders of mag-

nitude greater tham SPICE2 [7]. Hence, PREMOS also has much greater

speed and circuit-size capability than SPICE2.

Chapter 2 describes briefly the analysis techniques used in con-
ventional circuit anslysis and large~scale circuit analysis. In

Chapter 3 the analysis sequencing procedures are explained and the

idea of scheduling only 'relevant’ parts is studied. The nonlinear
DC analysis methods sdopted in the solution algorithms are discussed
in Chapter 4. Chapter 5 introduces the modified Gauss~Seidel method
and provides the nomerical study of the wmethod. In Chapter 6, i
latency criteria and a timestep control scheme are described.
Chapter 7 describes the structure of the program PREMOS and gives
some simulation examples. In the final chapter, Chapter 8, the con-

clusions are presented and the areas for future work are pointed out.

There are five appendices. Appendix 1 describes MOS device
modeling and capacitor modeling. Appendix 2 contains the input

descriptions for circuit elements and their models in the program

PREMOS . The control commands and the data structure used in PREMOS
are given in Appendix 3 and Appendix 4, respectively. Appendix 5

contains an input data file to PREMOS for an example studied in

Chapter 7.




CHAPTER 2

Large-Scale Circuit Simulation

2.1. Introduction

The simulation of LSI and VLSI circuits in their entirety falls
beyond the capability of conventional circuit simulators. On the
other hand, conventional logic simulators cam only give the results
in terms of logic 1levels ”"1”, "0” or “unknown"” with the attendant
loss of detail in the waveforms. In recent years, wmany techniques
have been proposed to bridge the gap between circuit simulation and
logic simulation. The aim is to obtain a circuit-level type simula-
tion with computational speeds approaching that of logic simulation.
The analysis technmiques used in ’conventional’ circuit simulation and
'large-scale’ circuit simulation are described in Sections 2.2 and
2.3, respectively. In Section 2.4, a discussion on prqblen areas

with the previous methods is given,

2.2. Conventional Circuit Anslysis

The equations that describe an integrated circuit model are gen-

erally a set of nonlinear (stiff) algebraic-differential equations of

the following forml:

lln the sequel we use the lower case, such as x to denote a vec-
tor, X, the ith element of x and upper case X a matrix.




£ (x, 2, t) =0, x(0) = x, (2.1)

Using an implicit integration formula, such as the backward Euler
formula, the trapezoidal rule, or one of Gear’'s formuls, (2.1) is

approximated at every time point t by a set of nonlinear algebraic

equations of the form:
g ) =0 (2.2)

Eq. (2.2) is usually solved by using a modified Newton's method. At
every iteration in the Newton'’s method, the linecarized equations that

bave to be solved are of the form:

Ax=b {(2.3)

A number of iteratiors may be necessary before the process con-
verges to a solution of (2.2). At every iteration, function and
Jacobian evaluations to construct the matrix A in (2.3), as well as
LU decomposition and solution, are repeated. In practice, the matrix
A is sparse and sparse matrix solution techniques can be used to
reduce the computational requirements. The fundamental algorithm of

circuit analysis can be summarized as follows:

BEGIN
BEGIN
X = [ Voltages, Currents]
TIME = Start Time
H = Initial Timestep
END (initislization)
TIME = TIME + H
WHILE (TIME < End Tiwme) DO
BEGIN
Discretize the differential operators by using an
integration formula

\‘~“wm.h‘j




REPEAT
BEGIN
k=1
Evaluate linear models for circuit elements at the
operating points and form the circuit matriz A
and the source vector b
Solve linear equations AX = b
END
UNTIL (convergence achieved) {dc loop}
IF the local truncation error (LTE) is smaller than
the tolerance
THEN
BEGIN
Compute new timestep H
TIME = TIME + H
END
ELSE
BEGIN
TIME = TIME - H
Compute revised timestep H
TIME = TIME + H
END
END {time loop}
END

For large-scale circuits, sparse matrix techniques alone do not
produce simulation results in a reasonable time. To improve the
speed of computation, tearing or decomposition together with 1latency
detection and exploitation are used [12, 13, 14]. Depending on the
computer algorithm implemented and om the circait being analyzed,
decomposition and latency checking could reduce the amount of compu-
tation two to five times [14]. In order to gain more computational

speed, additional algorithms are needed, as described in the next

section.




2.3. Large-Scale Circuit Apalvsis

The basic idea in many 1large-scale circuit simulators s,
firstly, the partitioning of the circuit into smaller subcircuits,
and then, the analysis of these subcircuits in a certain sequence. A
number of algorithms have been proposed for the simulation of parti-

tioned circuits using analysis sequencing.

2.3.1. Point Gsuss-Jacobi Algorithm

In this algorithm, the componments of x in (2.3) are obtsined onme

at a time by solving a sequence of scalar equations; i.e., at time

tn+1' the kth component of x“+1. x{*l. is found by solving the scalar
equation:
n .n n n ny .
'k (xl. !25 see o xk_la xk. !k+1v ese » x‘) 0 (2.4)

Eq. (2.4) can then be solved using a Newton method. In MNOTIS and

NOTIS-C [6, 7], a one-step regula~falsi iteration is used [16].

To illustrate this algorithm further, we partition the matrix A
in (2.3) into the form

A=L+ D + U (2.5)
where L and U are strictly lower and strictly upper triangular
matrices and D is a diagonal matrix, as shown in Fig. 2.1, Li and U;
stand for the ith row of the triangular matrices L and U. The point

Gauss-Jacobi algorithm is described as

BEGIN
BEGIN
X = [ Voltages ]
TIME = Start Time
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A=_+D+U

Fig. 2.1 A=L +D + U,
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H = Initial Timestep
END (initialization]
TINE = TINE + B
n=1
WBILE (TIME < End Time) DO
BEGIN
Discretize the differential operators by using an
integration formula
FOR node i, i=1 TO = DO
BEGIN

Evaluate linear models for noalinear devices which
are fanouts of ith node

Form the row circuit matrix Dii' Li and

U,, and the current sonrce b;
Solve linear equation

= - a _ n
DiyX; = b ~ L% - 0%

END {sweep m nodes]
Compute new timestep H
TIME = TIME + H
n=1n+1
END {time loop}
END
Since most automatic timestep comtrol schemes are expensive for

large~scale circuit simulation, fixed timestep during analysis has

been used in some simulators like MOTIS and MOTIS-C.

2.3.2. Point Gauss-Seidel Algorithm

In this algorithm, the Gauss-Seidel technique is used to solve
(2.3). At every iteration, one solves a sequence of scalar equations

of the form:

n+l n+l n+l n ny .
lk (xl . xz s s xk_lv xkp xk+1' vee x-) 0 (2.6)

The above equation could be solved by using Newton’s wmethod. In

SPLICE [15] only one iterationm is made.
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Using the same expressions Li' U; and D;; as in the last sec-

tion, point Gauss~Seidel algorithm counld be described as follows :

BEGIN
BEGIN
X = [ Voltages ]
TIME = Start Time
H = Initial Timestep
END (initialization}
TIME = TIME + H
n=1
WHILE (TIME < End Time) DO
BEGIN
Discretize the differential operators by using an
integration formula
FOR node i, i=1 TO m DO
BEGIN
Evaluate linear models for nonlinear devices which
are fanouts of ith node
Form the row circuit matrix Dii' L; and

U., and the current source b;
Solve linear equation

D, X =b, -L X" ~pgxn
ii i i ii i
END (sweep m nodes)
Compute new timestep H
TIME = TIME + H
n=n-+1

END (time loop}
END

2.3.3. Block Gausg-Seide}-Newton Ajgorithm

From the network point of view, the point Gauss-Jacobi and the
point Gauss-Seidel methods are equivalent to decomposing the network
at every node. In the block Gauss-Seidel-Newton algorithm, the net-
work is decomposed into subcircuits, which may consist of more than
one node, A Gauss-Seidel-Newton method is then used t¢ solve the
partitioned system of equations, which now becomes a sequence of sub-

circuit equations, rather than scalar equations, of the form:




i
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n+l _n+l a+l n ny .
B (x1 P XU eee s KT Bl Bpae see s x) =0 (2.7)

where the X, is now a vector, Note that a modified Newton-Raphson

method could be used in solving each subcircuit.

In this algorithm, the matrix A is partitioned into the form
A=L'+D"+ U’ (2.8)
where L’ and U’ are strictly lower block and strictly upper block
triangular matrices and D’ is the block diagonal matrix (Fig. 2.2).

Here, L; apd U] represent the ith block matrices of the L' and U’,

respectively. D/. js the ith block diagonal matrix. The block

Gauss-Seidel-Newton algorithm can be described as follows :

BEGIN
BEGIN
X = [ Voltages ]}
TIME = Start Time
H = Initial Timestep
END (initialization]
TIME =~ TIME + B
n=1
WHILE (TIME < End Time) DO
BEGIN
Discretize the differential operators by using an
integration formula
FOR subcircuit i, i=1 TO = DO

BEGIN
REPEAT
BEGIN
Evaluate lirear models for nonlinear devices of
ith subcirc:uit
Form the block circuit matrix D;i, L and
U{, and the current source vector bf
Solve linear equations
] -v_tll"’l._'ll
Diixi bi Lixi uixi
END

UNTIL (nonlinear converged) {dc loop for kth subcircuit)

END {sweep m subcircuits)
Compute new timestep H




A= L'+D'+ U

Fig. 2.2 A=L' +D’' + Vy"’. ‘
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TIME = TIME + H
a=ga+1
END {time loop)
END

2.3.4. Yaveform Relazation Method

For the three algorithms described above, the circuit analysis
proceeds by small timesteps at the global level, as is done in con-
ventional circuit simulation. In the waveform relaxation method, the
waveforms are obtained for a time interval at the subcircuit level
and a sumber of waveform iterations are them taken to converge to the
solution [17]). Either the Gauss-Jacobi method or the Gauss-Seidel
method could be used in the waveform relaxation algorithm. The

Ganss-Seidel waveform relaxation algorithm can be described as fol-

lows:
BEGIN
X = [ Voltages, Currents ]
a=1
WHILE (8" < Tolerance) DO
BEGIN
FOR subcircuit i, i=1 TO m DO
BEGIN
FOR time t=0 TO t=End Time DO
BEGIN
Solve nonlinear equations
a+l _ n+1 n+l ¢yn+l on n
Ii fi(x1 .....xi_l.xi .xi*l.....x )

and xg*‘<o> ~ x2(0)

END
END {sweep m subcircuits)

87*1l « max max | XP*1(e) - xP(0) |
i t
n=n+1
END {waveform iteration loop]

END
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The waveform relaxation method is attractive since the subcircuits
are analyzed independently and thus different timesteps could be
used. However, the method suffers from convergence problems when
strong feedback exists, Furthermore, s number of iterations are
needed for the waveforms to converge to the solution and a large

memory is required to store the entire waveforms at each iteration.

2.4. Problems with The Provious Methods

In general, the 1large~scale circuit simulation algorithas
described above have the following features in common:
(1) decomposing the entire circuit into small subcircuits and
adopting the circuit analysis for each subcircuit sequentially
(2) using relaxation methods in solving the circuits

(3) using simplified device models for circuit elements.

It is obvious that there are some tradeoffs between the speed of
simulation and the accuracy of the simulated results, which depend
upon the accuracy requirement, The problems and the impacts for
large-scale circuit simulation are discussed in the following :

(i) circuit decomposition

As the size of circuit increases, the time required to solve the
circuit equations increases very fast and .rapidly becowes the dom-
inant cost of the analysis in conventional <circuit analysis [15].
Decomposing the circuit into small subcircuits and analyzing the cir-

cuit at subcircuit level reduces the computation time because it now
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1

grows almost linearly with circuit size. As the average size of the

E S et o v —oen

subcircuits is reduced, the growth in total computation time becomes

more linear. For example, the sobcircuit size in {6, 7] is always

one., However, if the size of each subcircuit is forced to be one,

then the interactions among the subcircunits may be strong, which
! could affect the accuracy of the one-iteration Gauss-Jacobi or
Gauss-Seidel approach. This problem is discussed in Chapter 4.

(ii) device modeling

There are generally two forms for representing device charac-
teristic models: functional form and tabular form. The former is
generally used in circuit simulation, where nonlinear model equations
and parameters are employed to describe the operations of the dev-
ices. The latter is often used in timing simulation and piecewise-
linear analysis methods. The tabular models could be in one dimen-
sional or two dimensional form [6, 7, 8, 18]. Depending on different
requirements, either one or a combination of these two approaches can

be used for device modeling. In Appendix 1, both MOS device modeling

and capacitor modeling for VLSI circuits are discussed.

(iii) nonlinear iterations

Most circuit simulation programs use the (modified) Newton-
Raphson algorithm to determine the solution of nonlinear system of
algebraic equations, The criterion for the convergence of the itera- A
tive solutions is the requirement that the vector of circuit vari-

bles X, +1 8grees with the prior solution Xy within a specified

tolerance. For large-scale circuit analysis, it is rather expensive

, | y
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to use the same convergence criterion in conventional circuit simula-
tion. In (6, 7], only one iteration is taken at each timepoint. In
(8], a relaxation method is used to reduce the number of nonlinear
iterations. More on this topic is discussed in Chapter 4,

(iv) timestep control scheme

In conventional circuit simulation, the timestep is usually con-
trolled by the 1local truncation error (LTE) [5]. For large-scale
circuit simulation, it is too costly to use the LTE timestep control
scheme. Some of the existing techniques use a fixed timestep scheme
[6, 7). A simple variable timestep control scheme, where the inter-
nal timestep changes according to circuit activity, is adopted in
{18]. In [8], an iteration count timestep control scheme is used.
In Chapter 6, more exploitation of the timestep control scheme is
done.

(v) accuracy

From the accuracy point of view, it has been found that both the
Gauss~Jacobi and the Gauss-Seidel methods teand to prodace a response
that lags behind the actual response. In Chapter 5, a modified
Gauss-Seidel method is described to solve the partitioned system of
equations, It is shown, by examples, that the new method is more
accurate than the standard Gauss-Seidel method. The proposed modi-
fied Gauss-Seidel method is proved to be consistent, stable and con-

vergent.
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CHAPTER 3

Analysis Sequencing

3.1. Introduyction

In order to analyze a large—scale circuit, the entire circuit is
usually partitioned into smaller 'one-way' subcircuits at first, and
then, these subcircuits are analyzed in a certain sequence [9]. To
create ‘'one-way' subcircuits requires, in genmeral, the introduction
of some approximations, For MOS circunits, 'one-way’' subcircuits are
created by decoupling the gate~to-drain capacitance. To allow the
sebcircuits to be analyzel independently in sequence, a scheduling
scheme is followed. This scheduling process is called analysis

sequencing.

By properly defining the subcircuits in combinational logic cir-
cuit, the overall circuit equations can be ordered into a lower
block-triangular form (LBT) [12], so that analysis sequencing can be
applied most efficiently. In general, when there is feedback among
the subcircuits, such as in sequential circuits, the circuit equa-
tions cannot be ordered into a lower block-triangular form unless the
sizes of the subcircuits are incressed to include the feedback (9].
Alternatively, the (block) Gauss-Jacobi or (block) Gauss-Seidel tech-
nique may be used to decouple the equations for analysis sequencing
and to keep the sizes of the subcircuits relatively small. This

decoupling in effect ’'breaks’ the feedback in the analysis sequencing

e a e b
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procedure.

In Section 3.2, some mathematical properties on directed graphs
are discussed. Section 3.3 summarizes previous work on ‘levelizing’
the vertices in an acyclic directed graph. Two new algorithms based
on programming data structures are developed in this thesis and
described in Section 3.4; one algorithm uses a stack and the other a
quene. Examples are shown to compare the differences between these
two slgorithms. Si;;e in many cases, feedback may exist in the net-
work, an algorithm for checking feedback paths is studied in Section
3.5. In addition to latency and selective trace (or event driven),
an important idea for further saving of CPU time and memory is to
schedule only those subcircuoits that directly or indirectly affect
the outputs in the circuit analysis. This concept of scheduling only
‘relevant’ subcircuits together with a corresponding algorithm are
described in detail in Section 3.6. An algorithm for analysis
sequencing using parallel processing is proposed in Section 3.7. The

last section, Section 3.8, gives the conclusions.

3.2. Mathematical Properties

A circuit which is composed of unilateral subcircuits can be
represented by a directed graph G(V,E), where each vertex in V
corresponds to each subcircuit and each edge in E corresponds to each

signal 1line from fanout to fanin. The mathematical properties of

directed graphs can be found in many books on graph theory, such as
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[19, 20, 21]. To simplify the description of the scheduling algo-
rithms proposed in this thesis, the following definitions and deriva-

tions are given :

Defipition 3.1 :

Given a vertex v of G(V,E), the set of fanin vertices and fanout

vertices of v are defined as

fin(v)={ w e V| (w,v) €E}
fout(v)={ we v/l (v,w) €E} (3.1)

The number of fanin and fanout vertices of v are defined as nfin(v)

and nfout(v), respectively.

The adjacency matrix X = [‘ij] of the directed graph G(V,E) is

defined as a n by n matrix whose element

xij=1 if there is an edge directed from ith vertex to jth
vertex

=0 otherwise.

A.directed graph and its adjacency matrix are shown in Fig. 3.1. It
is easy to observe the following two properties :

1. ofin(v) is the sum of the column of corresponding vertex v,

2. nfout(v) is the sum of the row of corresponding vertex v.
Note that any set of parallel directed edges in G(V,E) will be
treated as one edge, without affecting the analysis sequencing. If X
is the adjacency matrix of G(V,E), then the transposed matrix xT s
the adjacency matrix of a directed graph GR(V.E) obtained by revers-

ing the direction of every edge in G(V,E). The following relation

can be derived.




Fig. 3.1

(a)

5 ]

110 1

2 0 1

3 0 1 1

X = 4 01

5 0

6 01

7 0
h— -

(b)

(a) A Directed Graph.
(b) The Adjacency Matrix X.
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Lemms 3.1 [19] :
nfin(v) in GR(V,E) equals nfout(v) in G(V,E) and nfout(v) in
GR(V,E) equals nfin(v) in G(V,E).

For the directed graph G(V,E) with no feedback 1loops (i.e.,
G(V,E) is acyclic), the analysis sequencing is to reorder the rows
(columns) in the corresponding adjaceacy matrix X and make the matrix

X upper triangular. For illustration, the following definitions are

made.
Refinition 3.2 :

Vertex v; in G(V,E) is a predecessor of vertex vj if and only if

there is a directed path from v, to v If v; is a predecessor of

v, . .
j? then vJ is a sucessor of vi.

Definjtion 3.3 :

A linear ordering is called a topological order if it has the
property that if V. j5 a predecessor of vj in the network, then v;
precedes V; in the linear ordering.

For an acyclic directed graph, the analysis sequencing is to

arrange the vertices in a topological order and the following theorem

is obtained.

Theorem 3.1 [19] :
The vertices in a directed graph can be arranmged in a topologi-

cal order if and only if the directed graph is acyclic.
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In general, when feedback loops exist in the directed graph, the
graph is no longer acyclic. In this case, analysis sequencing pro-
cedures need to be extended to check for the feedback paths and to

schedule the analysis of the subcircuits in the proper sequence.

3.3. Previous York

Over the past few years, two methods have been proposed for
sequencing the vertices of general directed graphs which are not
necessarily acyclic. One method is to construct a new acyclic
directed graph G’ first by contracting the vertices in each strongly
connected component of the origimal graph G into a new vertex in G’
[91. Tarjan's nliorithn [22] could be used to find the stromgly con-
nected components of G in linear time complexity. The vertices in G’

are then levelized and scheduled by Algorithm 3.1 given below,

Algorithm 3.1 (9]
The notation nu(vi) is the updated number of fanin vertices of
v, after all the scheduled vertices have been removed.
Part I : (assignment of vertices of G'(V,E) to levels)
BEGIN
Assign input vertices of G’(V,E) to level 0; 1
k «0;
L. FOR each vertex v in level k DO
FOR each vertex w € fout(v) DO

BEGIN
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nfin(w) ¢ nfin(w)-l
IF ofin(w)=0 THEN
assign w to level k+1;
END
IF level k is not empty THEN
GO TO L;
k & k+l

END

Part II : (scheduling the analysis of the subcircuits)
BEGIN
k «1;
L. FOR each vertex v of G'(V,E) at level k DO
time analysis of corresponding subcircuits;
IF level k is non-empty THEN
GO TO L;

k & k+1;

Algorithm 3.1 is illustrated by the following example :

Example 3.1 :

For the directed graph G'’(V,E) shown im Fig. 3.2, Algorithm 3.1

levelized it with depth 8 :




Fig. 3.2 Directed Graph G'(V,E).




Remazk 3.1 :

The principle of levelizing the vertices is that a vertex v is
in level k if all the vertices of fin(v) belong to levels numbered
from 0 to k-1. The depth of an acyclic directed graph is the maximua

value of levels [23].

Remazk 3.2 :

In large-scale circuit analysis, one should try to keep the size
of the subcircuits small in order to make the total analysis time
linearly proportional to the size of the entire circuit. However,
the sizes of the subcircuits ( or vertices ) after contractionm in
Algorithm 3.1 could become too large for the analysis to be effi-
cient, For example, a N-stage ring oscillator would be contracted

into one subcircuit instead of N subcircuits.

Another method [8] deals with the directed graph G(V,E) directly
withoot contracting it as is done in Algorithm 3.1. When a feedback
loop is found, the loop is broken. Levelizing the vertices in this

way is performed by using the following algorithm.

Algorithm 3.2 (8]

For describing the algorithm, the following notations are

—
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defined :

adj(v) : set of adjacent vertices corresponding to the set of
the incoming edges of vertex v.

la(v) : label of vertex v.

Proceduge :

1. Set la(v,)=0 for each vertex v; of G(V,E)

2, la(vi)-l for each vertex v; which corresponds to an input

signal terminal,
k=1,
3. k=k+1,
Choose a vertex v, where la(v;)=0 and 1a(v;)£0 for all v,

€ ndj(vj), If there is no such vertex, choose a vertex v, comnect-

ing to a vertex which has the lowest label. ln(vj).k,

4. Repeat step (3) until all the vertices in G(V,E) are labeled.

Remark 3.3 :
The level in Algorithm 3.1 is equivalent to the label in Algo-

rithm 3.2, except the label inm Algorithm 3.2 starts from one instead

of zero.

Remark 3.4 :

It is claimed in [8] that Algorithm 3.2 can find all feedback
loops which will be cut during the analysis sequencing. But, as
shown in the following example, Algorithm 3.2 sometimes fails in

identifying the proper feedback loops.

Exseple 3.2 :
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For the directed graph shown in Fig. 3.3, it is obvious that
(7.3) is the feedback path that should be identified., The correct

sequence for this directed graph is as follows :

Label : 1 2 3 4

-~ W

But by using Algorithm 3.2, the following sequence could be produced

.
.

Label : 1 2 3 4 5 6

In the next section, a more accurate algorithm for identifying the

feedback paths will be given.

3.4. New Algorithms Suitable for Computer Implementation

E In the computer implementation of scheduling algorithms data
| structuring is important, particularly when multi-processor computer
i configurations are to be taken into comsideration. In this section,
two scheduling algorithms based on two different data structures are

described. The first is based on a stack and the second on a queue.

For a single processor computer, both algorithms will have the same
performance since only one task can be carried out at any given time.
However, for a multi-processor computer, the second algorithm, whose

data structure is based on a queue, is more efficient than the first

— ‘ . y
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Fig. 3.3 A Directed Graph.

algorithm,
Definition 3.4 :

A stack is a linear list for which all insertions and deletions
{(and osually all accesses) are made at one end of the list. So the

stack is a last-in-first-out ("LIFO”) list [24].
Defipjtion 3.3 :

A queue is a linesr list for which all insertions are made at
one end of the 1list; all deletions (and usually all accesses) are

made at the other end. So the queue is a first—in-first-out ("FIFO")

list [24],
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In [25]), a topological sorting algorithm based on stack is pro-
posed. The computing time is O(|VI+IEl), which is linear in the size
of the problem. The following algorithm performs analysis sequencing

using the stack data structure,

Algorithm 3.3

The notation s(i), i=1,m, is the sequence of anmalyzing vertices

Vj, j=1,m, for the entire directed graph G(V,E).

xRyt ~+ s mouabtensubiesmaieen bl BT oo sl Al ety

BEGIN
k=1
FOR each vertex v; in G(V,E) DO
BEGIN
nu(v,)=nfin(v;)
IF no(v_ )=0
THEN push the vertex v; into the stack S
END
REPEAT
IF the stack S is not empty
THEN
BEGIN
pop out vj from the stack S
s(k)=v,
k=k+1
FOR each vertex v; in fout(vj) DO
BEGIN
nu(v.)=nu(v;)-1
IF nu(vi)zo
THEN push v, into the stack S
END

END
ELSE
BEGIN
check the feedback path
(see the Algorithm 3.5)
push the associated vertex into the stack S

END
UNTIL all vertices in G(V,E) are scheduled (k)m) ﬂ
END

Ezawple 3.3 :

For the directed graph in Fig. 3.2, Algorithm 3.3 gives the




following sequence :

6 5 12 4 11 3 2 10 16 9 15 18 14 19
20 1 8 13 7 17 21 24 23 26 28 22 25 27

Fig. 3.4 shows the flow of this sequence.

Algorithm 3.4 is similiar to Algorithm 3.3 except that Algorithm
3.4 is based on the queué instead of the stack. In the implementa-

tion, a circular queue is used to prevent memory overrun,

Algorithm 3.4

BEGIN
k=1
FOR each vertex v; in G(V,E) DO
BEGIN
nn(vi)=nfin(vi)
IF nu(vi)ao
THEN push the vertex v, into the queue Q
END
REPEAT
IF the queue Q is not empty
THEN
BEGIN
pop out v. from the queue Q
s(k)=v,
k=k+1 J
FOR each vertex v, in fout(vj) DO
BEGIN
nn(vi)=nn(v.)-1
IF nu(vi)=0
THEN push v, into the queue Q
END
END
ELSE
BEGIN
check the feedback path
(see the Algorithm 3.5)
push the associated vertex into the queune Q
END
UNTIL all vertices in G(V,E) are scheduled (k)m)
END
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Fig. 3.4 The Sequence Given by Algorithm 3.3 for the Directed
Graph in Fig. 3.2.
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Algorithm 3.4 is illustrated by Example 3.4,

Example 3.4 :
For the directed graph in Fig. 3.2, Algorithm 3.4 gives the fol-

lowing sequence :

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24 25 26 27 28

The flow diagram of this sequence is shown in Fig. 3.5.

Remark 3.5 :

Comparing the sequences shown in Fig. 3.4 and 3.5, it can be
seen that the algorithm based on the stack generates the sequence by
using depth~first search, while the algorithm based on the queue con-
structs the sequence by selecting all the vertices at one level and

advancing level by level,

3.5. Di ion on Checking Feedback Path

For the acyclic directed graph, the vertices can be arranged in
a topological order by any amalysis sequencing procedure. But it is
possible that there exist feedback loops in many networks. As stated
in Section 3.3, the feedback loops can be avoided by contracting the
strongly conmected component into a r~v vertex and the new con-
structed directed graph is then acyclic [9]. In some cases, this
approach may not be efficient since the new generated subcircuit

could be very large. For solving large-scale networks, the Gauss-
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Fig. 3.5 The Sequence Given by Algorithm 3.4 for the Directed
Graph in Fig. 3.2,

P
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Seidel technique is widely used; this technique is equivalent to

breaking the feedback paths [8, 15]. Thus it is necessary to check

and identify the feedback paths in the graph. Furthermore, as the
predictor method [see Chapter 5] will be adopted to predict the vol-
tage on the feedback loop, it is necessary to store information con-

cerning the feedback checking.

In Algorithm 3.3 (Algorithm 3.4), the stack (the queue) stores
the ‘unscheduled’ vertices whose fanmin vertices have been scheduled.
Thus the vertices in stack (quene) are ready tasks for sequencing
[26]. If there are feedback loops in the network, an empty stack or
empty queue would result before all the vertices in the analysis
sequencing procedures have been scheduled. It is assumed that all
feedback paths are single; i.e., that only one feedback path enters a
vertex, and that no feedback enters the input vertices (in general,
input vertices correspond to independent sources). It is straight-

forward to obtain the following lemma.

Lemms 3.2 :

In a directed graph G(V,E), a vertex v with single feedback
path entering it is identified if

(1) nu(v) = 1 at the point of sequencing, and

(2) nfin(v) > 1.

Fig. 3.6 shows a directed graph with a single feedback path and
its adjacency matrix X. After the input vertices vy and v, are

scheduled, the associated rows and columns of Y1 and vy are removed




(a)

1
2
3
X= 4 01
s
6
7

(b)

Fig. 3.6 (a) A Directed Graph with a Single Feedback Path.
(b) The Adjacency Matrix X.
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from X. The modified matrix becomes

3 4 5 6 1

3o 1 1
4 o 1

X' =5 0
6 0 1
711 0

It is clear that the sum of each column equals to the number of
fanins at this point; that is ““(73)-nn(v4)=nu(v5)=nn(v6)=1. By
applying the above Lemma, we have two candidates, V3 and v, Both

have the same number of original fanins as two. Which one should be

scheduled next? Obviously v; is the answer. In the fellowing, a new

algorithm for checking feedback path is listed :

Algorithm 3.5

In Algorithm 3.5, a depth~first search is carried out for find-
ing the single feedback path (v’,v) from v’ to v. The stack or queue i

is empty at the outset.

The notation lab(vi) is defined as

lab(vi)-l if vy is visited

=0 elsewhere

- _:#'“‘“

BEGIN :
search the set of vertices V_, where for each vertex *
v in V du(v)=1 and nfin(v)>1.

L choose a vertex Vi in V, with lab(v;)=0
BEGIN

FOR each vertex v, in fout(v;) DO
BEGIN J
IF lab(v.)=0
THEN J

A - 4




BEGIN
lab(v,)=1
push j into the queue Q”
END
END
L” pop out the vertex V. from the queue Q"

FOR each vertex A% in fout(v.) DO
BEGIN J

IF v =y
THEN éO TO L' {feedback path is found]
ELSE
BEGIN
IF lab(vk).o
THEN

BEGIN
lab (Vk) =1

push v, into the queue Q"
END

END
END
IF the queue Q" is NOT empty
THEN GO TO L”
ELSE GO TO L
END {L}
L' BEGIN
VeV,
vi=y,
(v'.a) is the feedback path
END
END

Example 3.5 illustrates the procedures given in this algorithm,

Exswple 3.3 :

Consider the directed graph in Fig. 3.6, where a feedback path
exists from vertex 7 to vertex 3. After vertex 1 and 2 are scheduled
by using Algorithm 3.3 or Algorithm 3.4, vertex 3 and 4 are selected
as candidates for the possibility of having feedback paths entering
them. Following Algorithm 3.5, two possibilities exist :

(1) If vertex 4 is chosen first, then vertex 4 and 5 are marked

and the search ends at vertex §S. Therefore, no feedback path enters

. e i‘
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vertex 4. Vertex 3 is selected next; and the search proceeds through
vertex 6 and 7 and terminates back at 3. Therefore, a feedback path
exists from 7 to 3. Further search will bypsss 4 since it has
already been marked ‘old’.

(2) 1If vertex 3 is chosen first, vertex 4, 6, 5 and 7 are
visited and marked sequentially before the search terminates back at

vertex 3, which again indicates a feedback path from 7 to 3.

Remark 3.6 :
Since each vertex is labeled at most once and each edge is exam-

ined at most once, the time complexity for this algorithm is

oclvi+lED).

Remerk 3.7 :
If there is no feedback loop in the network, then Algorithm 3.5

would not take any computation time in checking feedback.

Remark 3.8 :

For arbitrary networks, this algorithm may not be satisfactory
in identifying minimal feedback loops as other complex algorithms do
[27]). However, general algorithms are not cost effective because the
complexity grows exponentially with the size of tae network {27].
Algorithm 3.5, on the other hand, is cost effective for digital elec-

tronic networks, where the feedback loops are generally regular and

simple.
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3.6. Analvsis Sequencing for Relevant Parts

For most digital circuits, oanly a small portion of the entire
circuit is active at any time. Latency and selective trace (or event
scheduler) techniques have been used to take advantage of this fact
and save CPU time and memory storage [13, 14). Latency exploitation
apounts to identifying the inactive parts of the circnit at each
timepoint in the solution process and bypassing them at that
timepoint. In contrast, the selective trace technique depends on
finding the active parts and snalyzing them in the proper sequence.
Beyond these two techniques, a new technique which could save addi-

tional computation time and memory is described next.

In many cases, especially in digital circuits, the output of
interest may be directly or indirectly affected by only a subset of
the subcircuits in the system. These subcircuits will be referred to
as the ’'relevant’ parts of the system. During the simulation, it is
only necessary to analyze the relevant parts even if the remaining
parts of the system are active. For example, Fig. 3.7 (a) shows the
entire circuit to be analyzed, which has been partitioned into seven
unilateral subcircuits. If one is only interested in the output of
subcircuit 7, them, instesd of all seven subcircuits, only four sub-
circuits 1, 2, 4 and 7 need to be scheduled and analyzed (Fig. 3.7
(b)). Similiar results can be obtained as shown in Fig. 3.7 (¢) and
(d) if the ountput of subcircuit 6 only, or subcircuit 5§ only, are of
interest. The concept of analyzing only 'relevant’ parts is similiar

to the concept of ’'segementation’ in logic simulation [27].
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Fig. 3.7 An Illustrative Circuit.
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This approach can be combined with either a latency technique or
& selective trace technique to further increase the speed of simula-
tion. For the large-scale circuit simulation, an efficient slgorithm
of scheduling the relevant parts is given below. First, the sequence
of anmalysis is constructed for the G(V,E) corresponding to the entire
circuit by wusing Algorithm 3.3 or Algorithm 3.4, Second, the ver-
tices associated with the relevant parts are found and labeled by
tracing backward from the outputs of interest to the inputs.
Finally, the nonrelevant vertices are deleted from the sequence of

analysis. Then the remaining sequence identifies the relevant parts.

Algorithm 3.6

This algorithm is to sequence the vertices of the relevant parts

only.
To describe the algorithm, we use the following notations :

ler(i), i=1,m', : the sequence of analyzing vertices vj, j=1,m’,

of the relevant parts only.

lbk(vi) =1 if v; is in the relevant set

= (0 elsewhere.

The algorithm is composed of three parts :
Part I : (analysis sequencing for the directed graph G(V,E)

which corresponds to the entire circmit)

BEGIN
k=1
FOR each vertex v; in G(V,E) DO
BEGIN

n“(Vi)=nfin(vi)
IF nu(v,)=0
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THEN push the vertex vi into the queue Q

END
REPEAT
IF the quene Q is not empty
THEN

BEGIN
pop out Vj from the quene Q
s(k)=v,
k=k+1 J
FOR each vertex V; in fout(vj) DO

BEGIN
““(Vi)-nn(vi)-l
IF nu(vi)so
TEEN push V; into the queune Q
END
END
ELSE

BEGIN
check the feedback path
(see the Algorithm 3.5)
push the associated vertex into the queue Q

END

UNTIL al]l vertices in G(V,E) are scheduled (k)>m)
END

Part IT : (identifying the relevant vertices by tracing them

backward from the vertices Voi» i=1.,m"”, whose voltage values are of

interest)

Reverse every edge in G(V,E) and obtain GR(V,E). Since fin(v)
and fout(v) in G(V,E) are fout(v) and fin(v) in GR(V,E). let

finx(v)=fout(v) and foutx(v)=fin(v).

BEGIN
FOR each vertex Yoi DO
BEGIN
push the vertex Voj into the queue Q'
lbk(voi)al
END
REPEAT
BEGIN
pop out the vertex v. from the queue Q'
IF nfin(v )0
THEN
BEGIN
FOR each vertex v, in fontR(Vj) DO




BEGIN

IF lbk(vi)-o
THEN

BEGIN
push v. into the queue Q'
lbk(vi)-1

END

END
END
END
UNTIL the queue Q' is empty

END

Part III : (deleting nonrelevant vertices from the sequence

obtained in Part I and giving the sequence of the relevant set only)

BEGIN
k=0
FOR i=1 TO m DO
BEGIN
IF 1bk(s(i))=1
THEN
BEGIN
k=k+1
ler(k)=s(i)
END
END
END

3.7. Extension to Multiprocessor Computer

First, we assume that the analysis time for each vertex is the
same and that the directed graph is acyclic. If there is no limita-
tion on the number of processors or if the number of processors
available is not less than the maximum number of processors required
for each level of the sequence, then the minimum computation time is

obtained.

P




Lemma 3.3 :

If an unlimited number of processors are available or if the
number of processors available is not less than the maximum number of
processors required, then the minimum completion time of the solution
process is the number of levels, which is the length of longest path

in the directed graph.

For example, for the directed grapbh in Fig. 3.2, the minimum

completion time is 9.

When the number of processors required is too large, many of
them will be idle most of the time, which is not economical. In
practice, there is always a limit on the number of processors avail-
able in a multi-processor computer system. Therefore, we will con-
sider pnext the case when a limited number of processors are avail-

able.

In recent years, many scheduling strategies have been proposed
to process the task directed graph with the number of processors
available [28]. These strategies show different levels of complexity

and give different degrees of processor utilization,.

Reverse each edge in G(V,E) and obtain the reversed graph
GR(V.E). The level number assigned by Algorithm 3.1 to a vertex v in

GR(V,E) is levR(v).
Defipition 3.6

The rank r(v) of a vertex v is defined to be




r(v) =D -~ levx(v)

where D is the depth of the directed graph G(V,E).

Example 3.6 :

The rank sequence for the directed graph in Fig. 3.2 is

rank 0 1 2 3 4 5 6 7 8
2 1 8 6 17 21 22 25 27
3 1 7 20 23 26 28
4 12 13 24
5 14 18
9 15 19
10 16

The rank number is the latest time that a vertex must be

scheduled to have the minimum completion time for the directed graph.

A ready task has been defined to be the vertex v for which the
vertices in fin(v) have all been scheduled. The strategy followed is
to schedule the vertex with the smaliest rank number among all the

ready tasks.,

Example 3.7 :
For the directed graph shown in Fig. 3.2, if the number of pro-

cessors available is p=3, the sequences by using the above stategy

are

p=3
sequence 1 2 3 4 5 6 1 8 9 10 11

2 4 10 12 16 13 17 21 22 25 27
1 s 8 14 6 18 20 23 26 28
3 9 11 15 71 19 24
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If the strategy is to schedule the one with the smallest 1level
number instead of that with the smallest rank among the ready tasks,
then the total completion time may be longer. The reason for this is
that the level number canm be smaller than the rank number, which way

delay the scheduling of key vertices. This phenomenon is shown in

the following example.

Ezample 3.8 :

p=3
sequence 1 2 3 4 5 6 7 8 9 10 11 12

1 4 7 10 13 16 17 20 21 22 25 27
2 5 8 11 14 18 23 26 28
3 6 9 12 15 19 24

It can be seen that the completion time is 12 rather than 11 as

in the previous example.

The time to finish all the tasks (the schedule length) provides
a measure of processor utilization. For the strategy of scheduling
based on the smallest rank number, the ratio of the schedule length
and optimal schedule is bounded by 4/3 for two processors and 2 -

1/(p-1) for p > 2 processors.

There are several slgorithms which give the schedunle length
closer to the optimal, for example, the Coffwman-Graham algorithm
[29]. The ratio of its schedule length and the optimal is bounded by

2 -~ 2/p where p is the number of processors. These algorithms have

more complex strategies.
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In practice, the analysis time for each vertex (subcircuit) can-
pot be the same and the number of processors available may be vari-
able. Omne processor should be assigned for the sequencing task. It
is assumed that this sequencing processor is efficient enough anmd it
will not delay any task of amalyziang the vertex (subcircuit). Algo-

rithm 3.7 below gives one example of such kind of algorithm.

Algorithm 3.7
BEGIN
k=1
FOR each vertex vi in G(V,E) DO
BEGIN
ﬂu(vi)snfin(vi)
IF nn(vi)so
THEN push the vertex v, into the queue Q
END
REPEAT
IF the queue Q is not empty
THEN

BEGIN
the number of processors available is p
the number of ready tasks in the queune Q is g
IFq>p
THEN n=p
ELSE n=q
k=0
REPEAT {analyze these n vertices on n processors)
pop out Vj from the queune Q
k=k+1
FOR each vertex vy in fout(v;) DO
BEGIN J
nu(Vi)=nn(vi)-1
IF nn(vi)so
THEN push v, into the queue Q
END
UNTIL k=n
END
UNTIL all vertices in G(V,E) are scheduled (k)m)
END
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3.8. Discuyssion

In this chapter, different applications of amalysis sequencing
were discussed. As the task of sequencing needs to be done only once
before analyzing the circuits, it will require a small portion of the
total computation time, It is worthwhile to implement the sophisti-
cated algorithms which could save computation time and increase cthe
accuracy on the simulated results. In PREMOS, Algorithms 3.4, 3.5

and 3.6 have been implemented and the results are very satisfactory.

The scheduling algorithms for multi-processor computers depend
on the characteristics and the structure of the computer and on the
type of simulator being implemented. It has been shown in [23] that
the speed of logic simulation could be increased more than several
hundred times by using logic processors and array processors. For
large-scale circuit simulation, the study of sequence scheduling on a

multi-processor computer is & promising area of research.
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CHAPTER 4

Nonlinear Analysis Methods

For the circuits containing nonlinear elements, both DC analysis
and transient amalysis require solving sets of nonlinear algebraic

equations of the form
8 ) =0 (4.1)

as described in Chapter 2. Eq. (4.1) is usually solved by using a
modified Newton-Raphson’'s method. In large~scale circuit analysis,
the entire circuit is partitioned into smaller subcircuits and non-
linear analysis is performed at the subcircuit level, which could
provide savings in CPU time. In Section 4.2, different ways of
decomposing an electronic circuit into subcircuits are discussed. DC
analysis is necessary to provide the operating points at initial
timepoint and is also used at every timepoint during the numerical
integration procedure. Initial DC analysis in large-scale circuit
simulation is described in Section 4.3, In Section 4.4 it is shown
that solving the partitioned nonlinear subsystems sequentially takes
much less effort than solving the entire system without partitioning.
A new modified Newton'’s method for the DC analysis of MOS transistor

circuits using a 2-element companion model for the MOS transistor

(see Appendix 1) will be described in Section 4.5. The convergence
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properties of the new technique are investigated in Section 4.6, The

discussion and conclusion are given im Section 4.7.

4.2. Decomposition

In macromodeling approaches such as in MOTIS [6] and MOTIS-C
[7], each subcircuit corresponds to a logic element such as a2 NAND,
NOR or transfer gate. Generally this approach does not give good
accuracy because interactions among logic elements by transfer gates
and series drive transistor effects are not modeled sufficiently.
Recently, two approaches have been proposed to decompose circuits
into unilateral subcircuits. The first is to decompose the circuit
into subeircuits based on a clostering algorithm applied to the cir-
cuit model in steady state; i.e. with all capacitors open-circuited.
This approach works well for MOS circuits since in steady state the
gate is not affected by the source or drain voltage. This approach
has been used in MOS timing [8] and logic simulation [3]. For gen-
eral circuits containing bipolar transistors, further approximations
are needed to obtain this type of ’'one-way’ circuit decomposition
[9]. Note that in this decomposition approach, subcircuits composed
solely of transfer gates are avoided. The second approach of circuit
decomposition is modular partitioning, where the circuit is composed
of identifiable modules or subcircuits [30]. In the program PREMOS,
a number of subcircuit types have been selected as primitive modules,

which have the ‘one-way’ property.
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4.3. Initial DC Anslvais

After the procedures of decomposition and analysis segquencing
are completed, the DC analysis at the initial time point is done to
give appropriate initial values of voltages or currents for the tran-
sient analysis. At this initial DC analysis, all capacitors are
open~circuited and their values are assumed zero. Some node voltages
could have been preset as the initial guess. Instead of solving the
entire circuit, the DC analysis is processed sequentially at the sub-
circuit level following the analysis sequence. Although this
approach is a relaxation one compared to conventional circuit simula~
tion, it could generally provide relatively accurate DC levels with
reduced computational efforts. Some modification to Newton's method
have been used in evaluating the DC levels at each subcircuit: (1) if
the evaluated node voltage exceeds 2 Vecc, where Vcc is the power sup-
ply, then it is only recorgnized as Vcc; (2) if the computed value of
node voltage is Iess tham -Vcc, then it is set to O. The objective

is to prevent any large change of node voltage solution.

4.4. Discussion on The Convergence Rates

In this section, we want to illustrate that, by using the
Newton-Raphson method, solving the partitioned nonlinear subsystems

sequentislly takes less effort than solving the entire system. Most

of the theorems and definitions mentioned below are found in [16, 31,

32].

el
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The spectral radius p(A) of the n by n matrix A is defined as

the maximum of the moduli of the eigenvalues of A; i.e., if

{li]i-l,n is the set of eigenvalues of A, then

p(A) = max | A | (4.2)
1<i<n

We consider the iterative method as a completely consistent
linear stationary method of first degree, which may be expressed in

the form

a(n*l) o g o(0) 4 n=60,1, 2, ... (4.3)

where G is the real n by n iteration matrix and Xk is an associated

known vector.

Theorem 4.1 [32]
The iterative method (4.3) is convergent if and only if the

spectral radius p(G) is less than onme, i.e., p(G) < 1.
We define the rate of convergence, R, by
R(G) = - log p(G) (4.4)

Theorem 4.2 [32]

Let the block triangular matrix T be partitioned. Then

D
AT =10 K(Tii) (4.5)
i=]1
where T.. jis the block diagonal matrix and A(T) and A(T;;)

represent the set of eigenvalues of T and ‘1‘ii respectively.
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Let the iteration matrix G be partitioned into the block lower tri-

angular form, VWe could obtain the following theorem:

Theorem 4.3 :
The convergence rate of the iteration matrix G is the wminimum

of that of the block diagonal submatrix Gii’ i.e.,

R(G) = min R(G. ) (4.6)
i ii

Proof :

It follows from Theorem 4.1 and Theorem 4.2.

For the system whose iteration matrix can be represented in the
lower block triangular form, the number of iterations required for
the entire matrix to converge would depend upon the maximum of that
smong all of its block diagonal submatrices. In practice, for many
of the subvectors u., few iterations are needed to reach steady
states, Vhen the subsystems are solved independently in a certain
sequence, the number of nonlinear iterations required to solve each
subsystem depends upon its own rate of convergence. By using such arn
spproach, the computation time could be reduced significantly. For
the general systems whose iteration matrix is not in the block lower
triangular form, the block Gauss-Seidel-Newton algorithm [16] could
be used effectively provided that the coupling among the subsystems
is not very ‘'strong’. Thus, to solve large-scale nonlinear system,
the basic approach is, first, partition the entire system into sub-

systems, and then, analyze the subsystems in the proper sequence.
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4.5. Numerical Properties of The Mixed Method

In conventional circuit analysis, 3-element companion models of
static MOS transistors (Fig. 4.1) are generally used for representing
the nonlinear operations of the device. In our approach, we assume
that the gate-to-source voltage is given and thus use a 2-element
companion model (Fig. 4.2) to evaluate the Jacobian matrix at each
iteration, For the Gauss-Seidel algorithm with analysis sequencing,
the fan-in gate voltage of pass transistor is known but the
corresponding source (or drain) voltage may still be unsolved. If we
gse 2-element MOS transistor models by setting the munknown source
voltage initially equal to its value at previous iteration. the algo-
rithm will no longer be the standard modified Gauss-Seidel method.
It could be considered as a modified version of Newton-Raphson's
algorithm at the subcircuit level. In the following, the results of
using the 2-element model and the 3-clement model for both Newton's
algorithm and the standard Gauss-Seidel slgorithm are compared. The
convergence rate of the DC iteration is also discussed.

(i) the algorithm with the 3-element companion model

For the test circuit shown in Fig. 4.3, the nodal equations of
the equivalent circuit using a 3-element model for the MOS device
(Fig. 4.4) are

gl(vl—vcc)-11+32v1+gn2v3+12+33(vl-v2)+gm3(v‘—v2)+13 =0 4.7)
ss(vz-vl)-is-gns(v4-v2) =0 (4.8)

The sbove two equations can be represented in matriz form as

o




QmVgs _
Go—— DA ?clds

Fig. 4.1 3-Element Companion Model for MOS Transistor.

D

CO— C‘ io'. Qs

Fig. 4.2 2-Element Companion Model for MOS Tramsistor.
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Fig. 4.3 Test Circuit.
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Fig. 4.4 Equivalent Circuit for Fig. 4.3 Using the 3-Element Model. #
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51782783 THa37E3 ([ V1| | B1Vec"MiTM2 T s a3 Basve|
L Bn3*83 | V2 13%8n3Vs |
;
or i
i
Ml A = I 1

Solving (4.9) with the standard Gauss-Seicel method, we obtain

o . j
818,783 O i} _ ] 81Veet i1l s B0V 83V 4 (B3 tEy) V) &
j
“83 Bn3*83 || V2 13%8n3"4 ‘
{
(4.10) |

or

% v.o= Ii

(ii) the algorithm with the 2-element companion model

If we use the 2~eclement companion model for the MOS device and

j take the previous value of the source voltage V, in evaluating the
model of T3, then the corresponding nodal equations of the equivalent

circuit (Fig. 4.5) become

B,+8,+3 -8 v g, v +i'-i’~i.
1 °2°°3 3 1 - 1¢cec "1 "2 73 (4.11)
83 &3 || V2 i3
or
i Mz v = 12

where
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Fig. 4.5 Equivalent Circuit for Fig. 4.3 Using the 2-Element Model.

e s v rm—

v Aottt CrBum o




62
i1=4
i3 = i3 * 8mov3
i§ = i3 + ga3v4 - g-3vg
and vg is the valoe of v, at previous iteration.

In order to solve the above equations by using the standard Gauss-

Seidel method, (4.11) should be modified to

8,%8,%8 0 v g,v_ til~il-il+g.v
1°2°°3 1 - 1¢e "1 "2 73 ®3 g (4.12)
83 g3 || V2 3
or
Mi v = Ji
where

. .

11=31

: ! .

12 = iy *+ ggyv3

'Og . - p
13 = i3 * 8p3V4 ~ Bp3V32
and vP

3 is the value of v, at previous iteration.

In the following, four methods are compared. Method 1, whose
iteration matrix is Ml in (4.9), represents the conventional Newton-
Raphson method using the 3-element companion model. Method 2 with
iteration formula (4.10) is the standard Gauss-Seidel method using
the 3-clement mode]l. Method 3 represented by (4.,11) is the modified
Newton’s method with the 2-element model. Method 4 with iteration
formula (4.12) is the standard Gapss—-Seidel method using the 2~

element companion model.
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Table 4.1 Rate of Comvergence.

Initial Guesses No. of DC Iterations Required
(vis vy, Vs V4)

(w/1)®* of T1,T2 T3 Method 1 | Method 2 | Method 3 { Method 4

(1) 1.01.0 5.05.0
(4, 6, 4) 11 17 11 17

(2) 1.01.0 5.0 5.0
(4, 10, 1) 19 20 19 20

(3) 1.01.0 5.05.0
(4, 10, 2) 13 15 13 15

(4) 1.01.0 5.0 5.0
(4, 10, 4) 10 14 10 14

(5) 4.53.51.05.0
(4, 6, 4) 77 17 72 72

(6) 4.53.51.05.0
(4, 10, 1) 141 141 137 137

(7) 4.53.51.0 5.0
(4, 10, 2) 104 104 100 100

(8) 4.53.51.05.0
(4, 10, 4) 17 77 72 72

¢In this table, (w/1) means the ratio of channel width w to
channel length 1 of the MOS transistor.

Table 4.1 shows the rate of convergence of these four iterative
methods, where the same criterion for convergence is applied. The
number of iterations required for convergence depends upon the ini-
tial guess. The initial guesses are shown on the left-hand side of

Table 4.1. To compare these four methods, an initial guess far frowm

the solation is selected and a very strict criterion for convergence
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is set. This gives one of the reasons why the number of DC itera-

tions is large. The other reason is that the body effect is not
taken into account in MOS device modeling, which could result in
small convergence rate. According to the results shown in Table 4.1,
the following points could be made

(1) Method 3 has the minimum number of iterations required in all
cases,

(2) The Gauss-Seidel method takes more or the same number of itera-
tions compared to the Newton’s method, and there is also a little
discrepancy between the solutions.

(3) It was found that the smaller the w/1 ratio of T3, the more the
number of iterations required to reach the solution. This can be

explained from the matrix structure: the smaller the 83, the smaller

the convergence rate.

4.6. The Number of Iterations Regquired To Achieve Convergence

In this section, a comparison is msde between the analysis
results obtained by using different methods for a fixed preassigned
number of iterations. During transient analysis, the initial guess
at any time is chosen as the previous value. Since the timestep is
either small enough or controlled by the local truncation error, the
initial guess is assumed to be close to the correct solution. There-
fore, in practice, it is not necessary to go through as many itera-

tions as shown in Table 4.1 to converge to the solution. Depending

—.——.—.———-———————d
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upon the operating points, different numbers of iterations are
required for convergence. In 1large—scale circuit analysis, the

number of iterations could be limited to save the computation efforts

in evaluating device models and in solving the n;trix equations pro-
vided the analysis results are reasonably accurate, In Table 4.2,
| the solutions after 3 iterations using the four different methods at
| different operating points are shown, where ’'final solution’ means

the solution by using Newton’s method (Method 1).

E From Table 4.2, the following observations can be made: .
(1) Even with 3 iterations, the solutions for these four methods
are good enough to satisfy the accuracy requirements of large-scale
circuit simulation.
(2) From the accuracy point of view, Method 1 and Method 3 are

better than Method 2 and Method 4. After considering the efforts in

evaluating the device models, Method 3 seems to be the best choice.

In PREMOS, there are a number of modular subcircuits which are
primitives for the entire circuit. By studying the structures of the
subcircuit equations and after performing a large number of DC
analyse of the individual subcircuits, a fixed number of iterations
was selected for each type of subcircuit, which gave reasonably accu-
rate results under a wide range of imitial conditions. By assigning
a fixed number of iterations to different subcircuits, we could elim-
inate checking for convergence and having to compute unnecessary

additional iterations, and thus reduce the computational require-

ments.

— 4




Table 4.2 Analysis Results.

Initial Guesses The Values of v, and \2)
(Voo Voo Vo, V) (v,, v,) After 3 Iterliions
1 2" '3 4 F nllz
w/1l of T1,T2 T3] Solution | Nethod 1 Method 2 Me thod 3 Method 4
(1)
0.3 0.3 5.05.0 0.20624 0.20655 0.21352 0.20656 0.21352
(4, 10, 8) 0.20624 0.20681 0.21467 0.20681 0.21468
(2)
0.3 0.3 5.0 5.0 0.20624 0.20674 0.20979 0.20674 0.20979
(4, 10, 4) 0.20624 0.20766 0.21169 0.20767 0.21170
(3)
0.3 0.3 5.0 5.0 0.35008 0.34926 0.34545 0.34926 0.34545
(4, 6, 4) 0.35007 0.34844 0.34396 0.34845 0.34397
(4)
4.9 3.9 1.0 5.0 4.9966 4.9917 4.9912 4.9914 4.9914
(4, 10, 8) 3.9117 3.9230 3.9230 3.9256 3.9256
(5)
4.9 3.9 1.0 5.0 4.9966 4.9929 4.9927 4.9928 4.9928
(4, 10, 4) 3.9687 3.9134 3.9134 3.9143 3.9143
(6)
4.9 3.91.0 5.0 4.9979 4.9941 4.9939 4.9940 4.,9940
(4, 6, 4) 3.9687 3.9134 3.9134 3.9143 3.9143

4.7. Discussion and Conclusion

The efforts required to evaluate the 3-element device model cost
at least twice as much as that required to evaluate the 2-element

device model, It has been shown that the new iteration method with

4
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the 2-element device wmodel gives the same or a better convergence
rate compared to that of the conventional 3-elewent model. Further-

more, comparison of the accuracy after 3 iterations indicates that

the analysis results with this new iterative method is acceptable and

is still comparable to the conventional Newton's method using the 3-

element model. Of course, since convergence is not being checked, it

is conceivable that under certain conditions, the results could be
inaccurate, More theorectical study on this mnonlinmear iteration

method needs to be carried out.

To set a fixed number of iterations for different types of sub-
circuits seems to be an empirical approach. Such concepts have been
implicitly used in several large-scale circuit simulators, such as
using only one iteration in timing simulators [6, 7]. It is not easy

to decide the optimal pumber of iterations required. Even for cer-

tain types of subcircuits, there are many factors involved, such as
the device sizes, operating points, etc. To evalunate the number of
iterations required for each subcircuit, we could have a customized
formula which gives different weights to the key factors involved.
For simple single-node subcircuits, like inverters or NOR gates, one
iteration has been found to give fairly good results. In general,
for MOS circuits consisting of two to four nodes, three iterations

seem to be sufficient to solve the subcircuit. 4
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CHAPTER 5

The Modified Gauss-Seidel Method

In the standard Gauss-Seidel method, any feedback loop is decou-

pled by assuming that there is no change in the feedback loop over
the integration timestep. Since previous values are used for the
‘unsolved’ variable, errors are introduced. Traditionally, these
errors could be reduced by some relaxation techniques such as the
Newton-Gauss—-Seidel method [16]. However, in large-scale circuit
analysis, a one-sweep approach is desired to minimize the computation
time, To increase the accuracy of the analysis with only one sweep,
it has been found in this research work that explicit formulas could
be used to predict the ’'unsolved’ variables when feedback loops exist
in the system. Section 5.2 introduces a modified Gauss-Seidel method

using prediction. The numerical properties of the method are dis-

cussed in Section 5.3. In Section 5.4, a numerical method is used to
estimate the order of convergence for the proposed modified Gauss-
Seidel method. In Section 5.5, a test for checking the presence of
parasitic oscillatory components in the solution is discussed. The {

chapter concludes with the conclusion and discussion in Section 5.6.
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2.2. Modified Gauss-Seidel Method

Using the Gauss-Seidel method in analyzing a circuit, the ’'feed-
forward’ interdependence among the subcircuits is accounted for by
the analysis sequencing procedure. The 'feedback’ interdependence,
on the other hand, which is wusually caused by feedback loops or
floating capacitors or any other bilateral element connecting two
subcircnits, is taken care of by using previous values. In this
chapter, we introduce a new technique, the modified Gauss-Seidel
method. This technique uses a forward predictor to evaluate the node
voltages on the feedback loops (or the other node of a floating capa-
citor), rather than the previously computed values, when solving the
associated subcircuits. Firstly, we consider the method using a
first-order predictor with the backward Euler integration formula.

(i) feedback loops

Consider the configuration shown in Fig. 5.1, the nodal matrix

for conventional circuit simulation will be

Y11 8y V1 B
Y21 Y22 Va i
Y32 Y33 ve b =133 (5.1)
L Yan-g Yavd Lvyd Ly

where 8, is the transconductance at the operating point in the MOS

device model.

b ! v
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If one uses the standard Gauss-Seidel method, the 8y, term in the
upper triangular part caused by the feedback is moved to the right-
hand side as shown in (5.2), where the term 8yVy Uses the value of vy

computed at s previous iterationm step.

o -~ ~ - . l=. - -
yll V1 "1 J]. B‘VN
Y21 722 \p) J2
Y32 y33 V3 = is (5.2)
L Tan-1 Tand Lvnd Ly J

Note that the voltage VN is also one of the controlling voltages
which determines Y11 during each iteration when solving the whole
matrix, Thus, both Y11 and ji are affected by the value of vy In
the proposed approach, the value of vy is first predicted at the
present time point by using previous points vé") and v&“‘l) according
to the following formula

v _ (n-1)

(n).,.h ( N N )
n

hn-1

{n+1) =
vN guess vN

(5.3)

where hn and h, _; represent the present and the previons time steps,

respectively.

A test program in which the above technique is implemented has
been used to simulate a 3-stage ring oscillator (Fig. 5.2), which is
a critical example of simulation with a feedback path. The timestep

is variable and controlled by the local truncation error at each

timepoint during the snalysis. The results obtained are shown in
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Fig. 5.3, where it can be seen that the new approach produces more
accurate results than the standard Gauss—-Seidel method in about the
same amount of computation time.

(ii) floating capacitors

The proposed method can also be used to take into account the
feedback effects of floatimg capacitors. For the circuit shown in

Fig 5.4, the nodal equation in matrix form is

Y11 -¢/h vy jl
Ta Y22 V2 | T} 2 (5.4)
Using the proposed method, the value of the vy is predicted by
V3 guess in solving the equation
1171 7 OBV phess T ) (5.5)
Then
= '1 : 6
ATt PP S PR CTL YA SO (5.6)
where

Jm) _(a-1)
LI L W 3 ) (5.7

3 guess 3 hn-l

As shown in Fig. S.7 (a) and (b), this method produces more
accurste results than the standard Gauss-Seide] method when compared
with the circuit simulation obtained by solving the entire matrix
without partitioning. In all cases, the backward Euler formula is

used for nuwerical integration and a local truncation error timestep

e

. A —. =~ s e au-d“




4
@
E
S -
3]
o
S
©°
>
2 -
—*
120
FP-7534

A : Solving The Entire Matrix Without Partitioning
B : The Proposed Modified Gauss-Seidel Method
C : The Standard Gauss-Seidel Metkod

Fig. 5.3 Response of circuit of Fig. 5.2.
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Fig. 5.5 (a) Voltage Responses V(1) for Fig. 5.4 with the
Backward Euler Integration Formula,
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control scheme with the absolute tolerance 1.0e-3 is employed during
the integration process. With the same criterion used for checking
the convergence of the nonlinear iterations and the same tolerance on
the local truncation error, the number of total timepoints in this
example is 427 for the circuit simulation, 398 for the standard
Gauss-Seidel method and 419 for the modified Gauss-Seidel method.
Since these three methods require aboat the same number of solution
timepoints for transient analysis, they seem to have the same order

of accuracy.

The modified Gauss-Seidel method has also been applied using the
trapezoidal integration formula. In this case, the corresponding
second~-order predictor to be used for the ‘unsolved’ variables v, on

the feedback loops (or the other node of a floating capacitor) is of

the form
vh)_vmd) y 1) (n=2)
vntl) o () oy [(3/2) (A (1/2) (— 4 )]
i guess i n h h
n-1 n-2
(5.8)

For the bootstrap capacitor circuit given in Fig., 5.4, the simnlated
results shown in Fig. 5.6 indicate that this second-order method is
also more accurate than the standard Gauss—Seidel method. In these
simulations, the timestep is determined by a local truncation error
timestep control scheme in which the absolute tolerance is €, =
1.0e-12 and the relative tolerance €. = 1.0e-4 [5]: The total

number of timepoints in this example is 140 for the circuit simula-

tion, 117 for the standard Gauss-Seidel method and 127 for the modi-
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fied Gauss-Seidel method. Generally, with the same accuracy require-
ment, the analysis nusing the trapezoidal integration formula takes

fewer timepoints than the backward Euler formula.

In summary, the modified Gauss-Seidel method is used to solve
the partitioned system of equations, which now becomes a sequence of

subsystem equations of the form :

gk(x;+1,°".x::i.xk .x;+1."'.x; )=0 (5.9)
where
x;= x? + hi? (5.10)

in conjuction with the backward Euler integration formula, and

x* = 1% + b[(3/2)i" - (1/2):%71) (5.11)
1 1 1 1

with the trapezoidal integration formula, For a nonlinear system,

eq. (5.9) is then solved vsing Newton’s method.

§.3. Numerical Properties of The Predictor Method

To study the numerical properties of an integration method, a
linear time—invariant zero-input asymptotically stable system of dif-
ferential equations is chosen as the test problem, which is usually

of the following form :
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x = Ax

x(0) = T, (5.12)

where A € RP'I® 4pd the set of eigenvalues of A, o(A), is in the
open left half plane. Since floating capacitors could exist in the

circoit, the test problem for the modified Gauss-Seidel method should

be of the form :

Cx = Ax

£ = Clax = A'x (5.13)

where C represents the capacitance matrix and is considered to be
nonsingular, The eigenvalues of C 1A, o(C”1A), are assumed to be

in the open left plane. Let C = L+D+U where L is strictly lower tri-
angular, D is diagonal and U is strictly upper triangular matrix.
Similiarly, we have A = L’ + D' + U’ where L', D’ and U’ are defined

in the same way as L, D and U,

Since either the backward Euler or the trapezoidal formula could
be used to discretize the derivative operator, our discussion is

separated into two parts:

(i) The modified Gauss-Seide] algorithm with the backward Euler

integration formula

The backward Euler formula is given as

4 = (1/h)(xk+

K+l -x.) (5.14)

1 k

where h =t ., - t, and k subscript refers to a particular time. By




applying the predictor formula

+ hi (5.15)

e v st A e

with the backward Euler integration formula to the test system

(5.13), the following recursive relations are obtained:

[(D+L) - B(D'+L") )z, 4 = Cx, - Uz,  + BU'x

ka - U[xk + hxk] + hU [xk + hxk]

= - "1 ’ "1
ka U[xk + hC Axk] + bU [xk + hC Axk]
= [(C-U) + h(U’'-UC1A) + hzu'c‘lA]xk (5.16)
xk+1 = MB(h)x‘ (5.17)

where T and ik are assumed to be exact and the companion matrix

Mg (B) = [(C-D) - h(A-U) 173 [(c-U) + n(u'-vc~1a) + n2u'cTlA]l  (5.18)

To study the numerical properties of the integration algorithm

described in (5.17), the following definition is used (33].
efipnition 5.1 :

An integration algorithm is consistent and zero-stable if its
companion matrix M(h) can be expanded in power series as a function

of the stepsize h as

M(h) = I + hA’ + 0(n?) (5.19)

Theorem §.1 :

The modified Gauss-Seidel algorithm with the backward Euler
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integration formula is consistent and zero-stable.

Proof :

The companion matrix Mp(h) in (5.18) can be further expanded as

IB(h)

(X - h(c-0)~1(A-u" 1721 + n(c-) "1 (u’-vc™1A) + n2(c-v)~lu'cia)

(I + n(c-0)~1(A-U") + 0(b2)] [I + h(c-U)"1(u’-vCc~1a) + 0(1?)]

I+ n(c-0)"1(a - uc1A) + 0(n2)

I + hC 1A + 0(n?)

I+ hA' + O(h2) (5.20)

where I is the identity matrix. Following Defimition 5.1, this algo-

rithm is consistent and zero-stable.

Theogem 3.2 :

If a linear multistep method is consistent and zero-stable, then

it is comvergent.

The proof of Theorem 5.2 can be found in many numerical books such as

[34].

Theozem 5.3 :

The modified Gauss-Seidel algorithm with the backward Euler

integration formula is convergent.

Proof :

It follows from Theorem 5.1 and Theorem 5.2,
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Let x(t) be the exact solution at t. The local truncation error

(LTE) is given by:

LTE = b x(e ) -z, | (5.21)

If the order of the accuracy of the local truncation error is p+1,

which means LTEk+1 = o(hp+1). then the method is of order p.

Theoresm 5.4 :

The modified Gauss—Seidel algorithm with the backward Euler

integration formula is a first-order algorithm.
Proof :

The Taylor series expansion for X is

» 2
x, = x(tk+ ) - hx(tk+1) + 0(h")

k 1

. 2
= x(tk+1) - hA x(tk+1) + 0(h™) (5.22)

Substituting (5.22) into our local truncation error computation, we

get

LTEk+1

| x(tk+1) ik |

- ' 2
| x(e ) - [T+ 1A +0d)]x, |

| (I -101+8A" +0mH)III - nAa' + O(hz)]}x(tk+1) l

0(h2) (5.23)

Therefore, it is a first order algorithm.

Although we have considered D and D' to be diagonal matrices,

the above properties can be extended to the case where D and D' are
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block diagonal matrices.

If we now consider the standard Gauss-Seidel algorithm with the

backward Evler formula and apply it to the test system (5.13), we get

[(D+L) - h(D'+L')]xk+1 = ka - ka + hU'xk : (5.24)

x = MGs(h)xk (5.25)

k+1

where
Moo (h) = [(D+L) - R(D'+L*)]1~1[(C-U) + BU‘]

Using the binary expansion, Mgs(h) can be expressed as :
Mog(h) = I+ n(c-0) 1A + o(n2) (5.26)

Thus, we can conclude that the standard Gauss-Seidel algorithm is not

consistent when floating capacitors exist in the circuit.

For Gauss-Jacobi method, the same arguments can be made by

deriving the companion matrix
Mo (B) = I+ 5071A + 0(n2) (5.27)

which also indicates that the Gauss-Jacobi algorithm is not con-

sistent when floating capacitors exist in the circuit.

(ii) The modified Gauss—Seide]l algorithm with trapezoidal formula

The trapezoidal formula

i, % @B(x . -x) - & (5.28)

applied to the test system (5.13) yields

o v
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ka+1 - (h/2)Axk+1 = ka + (h/2)xk (5.29)
The predictor for the trapezoidal integration formula has the follow-
ing form:

ke1 S %t h[(3/2)ik - (1/2)ik-1] (5.30)

(5.30) is an explicit second-order Adams-Bashforth formula. Applying

this predictor method to (5.29), we obtain

(D+L)xk+1 - (l:/i.’)([)'-t'l.')xk_*1 = ka - ka+1 + (h/2)xk + (h/2)U'xk+1

Cx, - Ulx, + 30/2)%, - (B/2)& _ ]

+ (h/2)ik + (h/2)U’[xk + (3h/2)ik - (h/Z)ik_ll

(5.31)

Assuming N and X to be exact, (5.31) can be written as

follows :

- - =1 = - . -1
(c U)xk+1 (h/2) (A-U )xk+1 (c U)xk + (h/2) (A+U'~-3UC A)xk

2 ] -1 ‘1 - 2 ' “1
+ (GRY/)UICT AR, + (0/2)UCTMAx, - (n¥/4)urcTlax

(5.32)

and
Lt [(c—u)—(h/z)(A—U-)l‘lt(c—m+(h/2)(A+n'-3UC'1A)+(3h2/4)u'c'1A]xk

+ [(C-U)—(h/Z)(A-U')]—l[(h/Z)UC'lA-(h2/4)U'C'lA]xk_l

= [I -~ (8/2) (c-U) "L (A-0") 1711 + (n/2) (c-U)~1(a+U’'-3UC1a) +

32/ (c-mylurc Al 4 1 - b/2) (- (a-u) 71

[(b/2) (c-0)"tyc~ia - (n2/4) (c-m)turctale (5.33)




Theorem 5.5 -

The modified Gauss-Seidel algorithm with the trapezoidal

integration formula is consisvent and stable.

Proof

Assuming X, and x; 1 are exact, the Taylor series expansion for x;_,

is

= - h3 2 ] 3
xk-l X hxk + (h /2)xk + 0(h”)

(I - A’ + (h2/2)(A")2 + 0(h3)]xk (5.34)

il

Since the timestep h is small, we could also have the following

binary expansion

(I-(h/2) (C-1)"1(A~0") 171 = 1 + [(n/2) (c-U) "1 (A-U")]

+ [(2/4) ((c-1) "1 (a-0"))2] + 0xd) (5.35)

Substituting (5.34) and (5.35) into (5.33), we obtain

X

' 2
k+1 [I + bA' + O(h )]xk

i

M.r(h)xk (5.36)

Following Definition 5.1, this sigorithm is consistent and stable.
Theorem 5.6

The modified Gauss-Seidel algorithm with the trapezoidal

integration formula is convergent.

Proof
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It follows from Theorem 5.5 and Theorem 5.2.

Iheorem 5.7 :
The modified Ganss-Seidel algorithm with trapezoidal integration

formula is of second-~order.

Proof :

Assume Xy and xp 4 are exact and expand them into Taylor series

expansion

- (=ind (§)
xk+1_i S——ﬂ— X J (tk'l'l)

i=0
—in)d -1
=j§d-—i-§¥l- (€ ayix(ey, ) (5.37)

where i=1, 2. Substitoting (5.35) and (5.37) into (5.33), we obtain

the local truncation error

LTE, , = | 2ty 4) - X |

= 0(nd) (5.38)

Hence, the proposed algorithm is of second order.

3.4. Qrder Jest

In this section, we use a numerical test to verify the order of
convergence of the modified Gauss-Seidel algorithm with the backward
Euler integration formula. Assume that the numerical solution X s

related to the exact solution x(tn) through the relation

x, = x(tn) + hP C(tn) (5.39)
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where p is the order of convergence. Since the dependency of C(tn)
on the timestep h is of 0(hP*1l), the order of convergence for the

given system can be approximated by the following formula [36]

p = log ( B ) / log2 (5.40)

For the linear circuit in Fig. 5.7, the order of convergence
found by using the above formula is given in Table 5.1, At initial
time (or time=0), V(1) = 5 V and V(2)= 0 V. Since the formula (5.40)
is more valid at a smaller timestep, it cam be verified that the
value of p is closer to one as the timestep h gets smaller ip Table
$.1. For the bootstrap capacitor circuit shown in Fig. 5.4, the
results of these tests are listed in Table 5.2. Becavse there are
nonlinear devices in this circuit, a number of iterations are
required at every timepoint. The input waveform at V(1) is a step
function falling from 5V to OV in the time interval 20ns to 30ns.
From Table 5.2, it is observed that the order of convergence of the
modified Gauss-Seidel method is about one at 24 ns and approaches one

at 28 ns with a decreasing timestep.

3.5. Accuracy Test

Applying the nodal anmalysis to the test circuit of Fig. 5.8, we

obtain
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Fig. 5.7 Test Circuit (¢) = ¢, = €3 =1, g =8, =1).

Table 5.1 Order of Convergence for the Circuit in Fig. 5.7.

Measured Point p (h=2.0) p (h=1.0) p (b=0.5)
V(1) 0.74 1.00 1.01
time=10
V(2) 0.983 0.926 0.951
V(1) 2.40 1.90 1.53
time=40
V(2) 2.26 1.84 1.49




Table 5.2 Order of Convergence for the Circuit in Fig. 5.4.

=

Fig. 5.8 Test Circuit.

Measured Modified
Point Gaunss~Seidel Method
V(4) p (h=lns) p (h=0.5ns)
at 24 ns 1.101 1.147
at 28 ns 0.689 0.715
g3
| , | @
C3
— 91§ 3oV Gm¥1 §92 -
—
I M
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©1Vy T 8ty ¢t €a(¥y = ¥y) + g3(vy -~ vy) =0 (5.41)

These node equations can be represented in the following matrix form

c,+c -c v 8.8 8.-8 v
173 3 1 . 1°3 p 73 1 -0 (5.43)
~3 c*e3 Il V2 Bp83  83%83 || v
(5.43) can be rewritten in normal form
v v
.1 = A 1 (5.44)
V2 V2

where

A(l.l)t(-(c2+c3)(31+s3)-03(g--33))/DE
A(1.2)-(-(c2+c3)(gp—gs)-c3(32+s3))/DE
A(2.1)-(-(c1+c3)(z-—sa)-c3(31+33))/DE
A(2.2)=(-(c1+c3)(32+33)-c3(gp-33))/DE
and

DE-c1c2+c3(c1+c2)

The eigenvalues of the matrix A, 11 and A;, can be obtained
by solving the characteristic equation of A. The absolute ratio of

11 and A,, which are given in Table 5.3, shows the stiffness of

the test system (5.44) associated with the set of element values. By

applying the backward Euler formaula
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X - X__
£ - —Dnzl (5.45)
b
to (5.43), we obtain
[(c1+c3)/h ta vy ‘-cslh + 5, = 83 ][vl] .
~e3/b + g, -8y (cgteg)/b + g5 + 83 JLvy
-(c,*+c,)/h c,/h v
[ 173 8 ][ 1] =0 (5.46)
¢3/b =(c,+cz)/h Yy A n-1
(i) Standard Gauss-Seidel Method
Using the standard Gauss-Seidel method in (5.46), we obtain
l:(c1+c3)/h i TER 0 ][vl] .
VAR S (cgteg)/h + gy + 83 dLvy dy
~{¢c,+¢c,)/h 8. -8 v
[ 173 p 73 ][ 1] =0 (5.47)
c3/h -(c2+c3)/h vy ot

Assume a solution of the form v n'Aizn and v, n-Azz”. where A;, Ay #

0. Thean /Z /) is transformed into

[i((c1+c3)/b +.1+33)-(c1+c3)/h ‘p-'S ] AI} -
(-c3lh +g.-g3)+c3/h z((cz+c3)/h +;2+z3)-(c2+c3)/h Az
(5.48)

To obtain a nonzero solution the matrix in (5.48) must be singular.

Thus the corresponding characteristic polynomial can be expressed as

Pz2 +Qz +R =0 (5.49)

where




4PR ) 0 ,then the roots are real; otherwise, they become complex,
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P-((c1+c3)lh +;1+;3)((c2+c3)/h +;2+|3)
Q-((e1+c3)lh)((c2+c3)/h +;2+¢3)-((c2+c3)/h)((c1+c3) +|1+;3)
_-(-czlh +;--33)(xp~33)
R-((c1+c3)/h)((c2+c3)/h)-(e3/h)(39-33)

The sofficient and necessary condition for the nonexistence of
oscillatory parasitic components in the computed solution is that the
roots of (5.49) are real and positive, Critical timestep hcrit is
defined as the maximum timestep at and below whick all roots of the

associated characteristic polynomial are real and positive, If a2-

Whether the roots are positive will depend on the circuit parameters;
for example, when 8, - g3 = 0 in the given test circuit, the roots
are always real and positive and thus there is no limit on hcrit; In
general, a table 1look-up method can be used to find hcrit if it
exists. For each set of element values shown in Table 5.3, the

correspondent & is infinite in the cases #1 to #10 and at least

crit
larger than 1.0e+4 for #11 and #12,

(ii) Modified Gauss-Seidel Method

By applying the modified Gauss-Seidel method in (5.46), we

obtain




[(c1+c3)/h 8,48 O ]['1] .
-cslh *8,"83 (c2+c3)/h +8,84

V2<n
[ - - -
(ey+eg)/h c3/h +2g 2;3][v1] .
Lcslh -(c2+c3)/h vy o1
K c./h -g_+3 v
L 3][ 1] =0 (5.50)
Lo 0 voda-2
Assume a solution of the form Y1n® Al‘n and Vo n " Az‘n , Where Al'
Az * 0. n’n
2 .
z2%((c,+c,)/h +g.+g.) z{(~c,/h +2g -23.) A
-z({c1§c3)/h)1 3 +03/h -8 p+333 1
P =0 (5.51)
z(-c./h +g -g.) z{{c,+¢c,)/h +g,+g.) A
scim =3 ~de e ym? 3 2

Again, tiis matrix must be singular. Thus, the following charac~

teristic polynomial can be obtained :
P23 + 2 + Rz +8=0 (5.52)
where
P-((c1+c3)/h f31+s3)((c2+c3)/h +;2+33)
Q'-((c2+c3)/h)((c1*c3)/h +;1+33) - ((c1+c3)/h)((c2+c3)/h +32+33)
-(-ca/h +2;p-253)(-c3/h +g.-|3)
R-((c1+c3)/h)((c2+c3)/h) - (c3/h)(-c3/h +2gp-233)
-(-calh +g.-33)(c3/h -3p+33)

s-(cslh)(cslh -3p+13)

The sufficient and necessary condition for the nonexistence of

oscillatory parasitic components in the computed solution is that the

Ve et X s
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roots of (5.52) are real and positive. Given the set of element

values, if the critical timestep hcrit exists then at hcrit we have

GSd+r2=0 (5.53)

where

s —B - 3
R s

3p
=z l(OR. - 3.8y - 1 (0,3
r 3 ( Pz 3 P ) 37 ( P )

) § 4 q3+r2 < 0 then all the roots are real, otherwise a pair of conju-
gate roots exists [37]. VWhether the the roots are positive will
depend on the circuit parameters, Therefore, a table look-up method

can be used to find the h .. by observing the tramsistion of the

43+r2 from pegative to positive with increasing timestep h.

In Table 5.3, the hcrit is listed at different element values

for the modified Gauss-Seidel method. 11 and A, are two eigen-
values of the test system (5.44). The following conclusions can be
made from this table:

(1) The effect of increasing the floating capacitor ¢; is to

decrease the hcrit' and vice versa. %
(2) Increasing the conductance 8; slightly lowers b ...
(3) Decreasing tke conductance g, slightly increases Berite
(4) The effects of g on the h ., is more critical than the other 4

parameters in the circuit, The larger 8, is, the smaller b i, is.

(5) The existence of the transconductance of the feedback current,

lp. has a positive effect of increasing hcrit'

o i‘-
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Table 5.3 hcrit for the Modified Gauss—-Seidel Method.

#oley o o5 8y 8y 85 s, 8, Byngl by,
ol 1 101 o001 0 1 0 0 9.2
1|1 1 1 o001 o 1 0 0 0.9
2 |1 1001 001 0 1 0 0 95
3] 1 101 101 o0 1 o0 0088 6.3
4 |1 1010101 0 1 0 0158 8.6
s 11 101 0 1 0 1 0 0 6.4
6 ] 1 101 000 o0 1 0 0 9.9
7]1 101 0 0 0 1 0 0 10
$ ] 1 101 o001 o0 10 0 0 0.9
9 | 1 101 001 0 01 o0 0 64
10 |1 101 001 0 0 0 0 320
m | 1 101 001 0 1 1 0.7542 or
12 | 1 101 001 0 1 01 0.5353 o

#s pgeans hcrit at least larger than 1.0e+4

For MOS inverter circuit, whose companion cirfcuit model is

described in Fig. 5.9 but with gp =83 = 0, the small signal gain can

be expressed as
Av = v2/v1 = gm/s2

The typical value for g is 0.7e~3, and that for g, is from 0 to

2.0e-3. From the above table, we could figure out the range of the

hcrit for simulating the imverter circuit.

T A
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Fig. 5.9 (a) An MOS Inverter Gate.
(b) Companion Circuit Model for (a).
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5.6. Discussion

The modified Gauss-Seidel method discussed in this chapter is
used to solve the circuit equations and to decouple the feedback
terms during the analysis. The technique of using a forward predic-
tor to estimate the values of the yet unsolved variables in the feed-
back loops was found to be more accurate than the standard Gauss-
Seidel method, without requiring much additional computation. Pro-
vided the timestep is less than a critical maximum timestep hcrjt
associated with the set of element values, the accuracy test proves
that no oscillatory parasitic components are presented in the com-
puted solution. In general, for a wide range of element values, the
associated b .. is relatively large. So this klgorithm is reason-

ably accurate,




CHAPTER 6

Latency and Time-Step Control Scheme

During the ansalysis of large-scale partitioned networks, a large
portion of the subnetworks is mnot active at any given time. This
temporary inactive behavior of a subnetwork is defined as 'latency’
[13, 38]. The latent status of a subsystem can be established by
monitoring the changes of all its stimuli and all its responses to
ensure their being within certain predetermined errors. Once the
latent status of a subsystem is established, the analysis of that

latent subsystem can be bypassed, and thus provide savings in CPU

time,

In [14], the latency at the subnetwork level was exploited and
four schemes of determining the latency in time were proposed. For
the one-way macromodelling approach, all subcircuits are unilateral
and each subcircuit can be identified as an 'event’'. Therefore, we

can take maximum advantage of the latency in time to achieve computa-

tional effiency.
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6.1.2. Latency Scheme for The S.twork Composed of Unilaters] Subpet-
works

For the subnetwork N, let the fanin node voltages be deroted by
Vig p=1,2,... , the internal node voltages of Nk be denoted by
P

vok » q‘l.z;.-o [
q

Latency Scheme :

A subpetwork Nk is considered to be latent at time t_ if

(1) I vikp(tn) - Vikp(tn_l) I < 81
2) | vokq(tn) - Vokq(tn-l) I < 2

p=10 2;--- q=1. 20--. (6-1)

The subnetwork N, will remain latent at time t ., as long as

' vikp“nﬂ) - vikp(tn) I <oy

p=1,2,... (6.2)

6.1.3. Examples

The latency scheme described in Section 6.1.2 has been success-
fully implemented into the program PREMOS., The results of applying
this latency scheme to the transient analysis of 2-bit adder,
binary-to~octal decoder and 10-stage inverter chain are given in

Table 6.1. The data in Table 6.1 corresponds to the error tolerance

81=1.0e-2 and 32=1.0e-3.




Table 6.1 Simulation Data for Transient Analysis.

Chain (Fig. 6.3)

Circuits With Without Percentage
Latency Latency Savings
2-Bit Full Adder 18,050 sec | 25.867 sec 30.2 %
(Fig. 6.1)
Binary-to-Octal 11.417 sec | 17.583 sec 35 %
Decoder (Fig. 6.2)
10-Stage Inverter 3.850 sec 6.417 sec 40 %
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6.1.4. Discussion

The latency described above is at the subnetwork level. This

latency principle could be applied to any cluster of subnetworks in a

large network., In [13]), a multilevel 1latent path algorithm is
presented and latency is exploited with modularities. For the pro-
grams having a multilevel macromodel structure, this approach could

achieve more computationsl savings.

Analysis sequencing for the relevant parts has been discussed in
Chapter 3. During the simulation, only the relevant parts of the
circuit need to be analyzed even when the remaining parts are active,
In PREMOS, this approach combined with the latency technique is

employed to provide more savings in computation and in memory.

6.2. Time-Step Control Scheme

§.2.1. lIntroductjop

In circuit simulation, the stepsize is in general determined by
the local truncation error. The local truncation error of a numeri-

cal integration algorithm for solving the initial~value problem

= f(x,t), x(0) = x, (6.3)
is defined as

ep(t ) = Izt ) - x | (6.4)

where ‘(tn+1) is the exact solutionm x(t) to Eq. (6.3) evaluated at




106

t=t +1, and x .4 is the corresponding numerical solution obtained at
the same time t=t .. =t + h, provided that in using the numerical

integration algorithm we assume that xn-x(tn) is the exact solution

at t=t . 1In other words, the local truncation error is the error

sade in one timestep.

The tolerance on the local truncation error is defined as
T = hn ED : (6.5)

where ED is the absolnte value of the error allowed per unit time.
In (6.5), ED is an absolute tolerance. In practice, however, rela-
tive tolerances sre more meaningful. A larger ED is allocated for
the fast transient part and a smaller ED for the slower transient

part, After adding a relative tolerance, UT in (6.5) becomes

UT = hn(erlinﬂl +e) (6.6)

In (6.6), ¢ is the relative tolerance and ¢, is the absolute

tolerance.
For the backward Euler integration formula, the local truncation

error is evaluated by
2

h (1]
'T(tn+1) = - -in- x(%) (6.7)

where t, % S tyyy. The second derivative X(¢) in (6.7) can be

approximated by using the divided difference fozmula

2(¢) = 2 DD2 (6.8)

and
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a4l ~ *a - xn T Xa-1
hn hn-l
hn + hn_

pD2 =

(6.9)
1

If the local trumcation error for timepoint t,+3 is considered satis-
factory (less than the allowable tolerance), the new timestep hn+1 to
compute the timepoint t _, is increased. This feature allows the

solution to be found within the specified accuracy in fewer
timestops. On the other hand, ,if the local truncation error is too
large, then the timepoint t +1 is recomputed by using the reduced
step-size, Therefore, the LTE at each timepoint is maintained within

the specified bounds.

$.2.2. Relaxed Yersion of Time-Step Control Scheme

For the timestep control scheme described inm the 1last section,
if the old iiHO‘tOP b, is rejected, the solution at t .5 needs to be
evaluated again at the newly reduced timestep hn' Generally, this
re—evaluoation adds to the overhead needed for the timestep control
scheme and increases total computation time. Also, due to the inac-
curacy of the divided difference approximation to :(C). some
undesirable situations can occur if one does not implement the

timestep control properly [5, 14].

In large-scale circuit simulation, most of the current programs
either use a fixed timestep or a variable timestep controlled by the
circuit activity (the maximum voltage variation) [18]. To have an
accurate and efficient timing amalysis, it may be worthwhile to have

the timestep controlled by the local truncation error. However, some
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modifications need to be done in order to reduce the overhead
required in the implementation, The desired features for a new

timestep control scheme are described in the following:

(1) The next timestep b .1 is controlled by the local truncation
error evaluated at the present timepoint tn+1' This timestep is
dccepted all the time, even when it is judged to be too large.

(2) The increased timestep is double the present one and the
reduced timestep is half. As shown later, this scheme ensures that
the local truncation error is generally within a reasonable range of

the specified tolerance even though there is no rejection of

timesteps.

The timestep control algorithm is as follows :

BEGIN
BEGIN

X = node voltage at present timepoint t
X -1 = node voltage at previous timepoint th-1
h =t -t

n-1 n n-1

h =t -t

n-2 n-1 n-2

a = hn/hn-l where h, is the next timestep
facmax=0.0

END {inilization)
FOR each node voltage x, DO
BEGIN

ed = epa + epr * linl

factor = |(x - x __)l/ed
facmazx = lax?fncnlx. factor)
END (finding the maximum of LTE/UT)
BEGIN
emax = facmax * h / (h + h
IF (emax > 1.2) n-1 n-1 -2
THEN a = 0.5
ELSE
BEGIN
IF (emax ¢ 0.4)
THEN a = 2.0
ELSE a = 1.0

)
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END
END

hn =3 hn_1

END

It should be noted that in the above algorithm the upper limit
of the local truncation error for reducing the timestep is 1.2 hn ED,
and the lower limit for increasing the timestep is 0.4 hn ED.
Although there is no rejection of the timestep at any timepoint, the
test equation below shows that the 1local truncation error stays

within the desired tolerance.

Let us consider the test equation

X = Ax (6.10)
where A is negative. The exact solution of (6.10) is
x = x ert (6.11)
o

where L is the solution at time zero. Applying the backward Euler

integration formunla to (6.11), we obtain

= —_—r—
X" % [ 1- b ] (6.12)

Consider the sitpation h . = h ., = b and b, = a h, where a could be

2,1, or 0.5. From Eqs. (6.12), we obtain

2
LTE pD2 b 2a 1

ntl Lk S P (6.13)
LTE DD2 n? a+l 1 + -Ab

n n n-1 -A

There are three cases to consider, depending on the value of a :
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(1) ¢ = 2
From (6.13), LTE _, is evaluated as
LBy = _1!35_ 1+(2i/(-x)) LTE, (6.14)
Since L'IEn £ 0.4 hn—l ED , then
LTE ,, < -332- 1+(2i}(_1)) h ED <1.2h ED (6.15)

(2) a=1

At the previous timepoint t,, LTEn £1.2 h, 4 ED. The following

relation can be easily derived :

—_r
LTE w1 £ Tv@/ (A B B ¢ 1.2 b ED (6.16)

(3) a =05

In this case, LTE is just greater than 1.2 h, _, ED and LTE _; <
1.2 b _, ED, where h _y=h _,. LetLTE =m * (1.2 b _; ED). Ve
assume that the second derivative x(Z) is continuons and varijes
slowly for most of the circuits. This is generally true, especially
for digital circuits. Therefore, the value of m is assumed to be

less than 3.6, Then, we obtain

- B 1
MEh1 ™ 73 Te(0.58/(A) Pp ED ¢ 1:2 B, ED (6.17)

In summary, this new algorithm gives the required accuracy for

the given test equation.

With A=-10, X,=1 and h=0.01, Table 6.2 shows the results of

Backward Euler integration with a fixed timestep. For the new
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Table 6.2

Time

.0000e+00
.1000e-01
.2000e-01
.3000e-01
.4000e-01
.5000e-01
.6000e=01
.7000e-01
.8000e-01
.9000e~-01
.1000e+00
.1100e+00
.1200e+00
.1300e+00
.1400e+00
. 1500e+00
.1600e+00
.1700e+00
.1800e+00
.1900e+00
.2000e+00
.2100e+00
.2200e+00
.2300e+00
.2400e+00
.2500e+00
.2600e+00
.2700e+00
.2800e+00
.2900e+00
.3000e+0Q0
.3100e+00
+.3200e+00
.3300e+00
.3400e+00
.3500e+C0
.3600e+00
.3700e+0Q0
.3800e+C0
.3900e+00
.4000e+Q0
.41C0e+00
.4200e+00
.4300e+00
.44C0e+C0
.4500e+C0

Numerical Solution Obtained by Using
with A=-10, X =1 and h=0.01.

Exact Sol.

.1000e+01
.9048e+00
.81ETe+00
.T408e+00
.6T703e+00
.6065e+00
.5488e+00
.4966e+00
.B493e+00
.4066e+00
+3679e+00
.3329e+00
.3012e+00
.2725e+00
.2466e+00
.2231e+00
.2019e+00
.1827e+0Q
.1653e+00
.1496e+00
.1353e+00
.1225e+00
.1108e+00
.1003e+00
.9072e~-01
.8208e-01
.T427e=-01
6721e=01
.6081e¢~01
.5502e-01
.4979%e-~01
.4505e=~01
.4076e=01
.3688e-~01
+3337e~01
.3020e~01
.2732e~01
24T2e~01
.2237e~C1
.2024e-01
.1832e~-01
.165Te=01
.1500e-01
.1357e-01
.1228e-C1
d117e=01

Bk Euler
.1000e+01
.9091e+00
.826 ie+00
.7513e4C0
.6830e+00
.6209e+00
.56 i5e+00
.5132e+00
.4665e+00
4241e+00
.3855e+00
.3505e+C0
.3186e+00
.289Te+00
.2633e+C0
.23%4e+00
.2176e400
.1978e+00
.1799e+00
.1635e+00
.1486e+00
.1351e+00
.1228e+00
.1117e+00
.1015%e+00
.9230e~01
.8391e~01
.7628e=~01
.6934e~01
.6304e~01
.5731e~01
.5210e~01
LU4736e~01
.4306e~01
.3914e-01
.3558e-01
.3235e-C1
.2941e-01
.26T3e=C1
.2430e-01
.2209e~01
.200%e~01
.1826e~01
.1660e-01
.15C%e~01
.1372e-C1

Glb Err.
.0000e+00
.4253e-02
.TT16e-02
.1050e-01
.1269e-01
-143Ge-01
.1566e-01
.1657e-01
.1718e-01
.1753e-01
.1766e-01
.1762e-01
.1T44e-01
.1713e-01
.1673e=-01
.1626e-01
+1573e=01
.1516e-01
.1456e~01
.1394e-01
.1331e-01
.1267e~01
.1204e-01
.1142e-01
.1081e~01
.1021e=01
.9632e-02
.9072e-02
.8533e-02
.8016e-02
.T521e=02
.70U4%e-02
.6600e-02
.617T4e=-02
.5769%e-~02
.5387e~02
.5025e~02
.4685e-02
JAU36ke-02
.4063e-02
.3779e-02
.3514e-02
.3265e-02
-.3032e-02
-.281%e~02
-.26 10e=-02
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Fixed Timestep

LTE
.0000e+00
A253e=02
.3867e-02
.3515e~02
.3196e-02
.2905e~-02
.2681e~-02
.2401e~02
.2183e-02
.1984e~02
.1804e~02
.1640e=-02
.1491e-02
.1355e-02
.1232e-~-02
.1120e~02
.1018e~02
.9257e~03
.8415e~03
.7650e-03
.695%5e~03
.6323e~03
.5TuBe~03
.5225e-03
.4750e-03
.4318e-03
.3926e-~03
.356%e-03
.22484e-03
.2950e~03
.2681e~03
.2438e-03
.2216e-03
.2015e-03
.1831e-03
.1665e-C3
.1514e-03
.1376e-03

-.1251e-03
-.1137e-03

.1034e-03

-.9398e-04

BS5Uhke-Cl
.T767e-04
.7061¢~04

-.641Ce~0M
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.4600e+00
.4700e+00
.4800e+00
.4900e+00
.5000e+00
.5100e+00
.5200e+00
.5300e+00
.5400e+00
.5500e+00
.5600e+00
.5700e+00
.5800e+00
.5900e+00
.6000e+00
.6100e+00
.6200e+00
.6300e+00
.6400e+00
.6500e+00
.6600e+00
.6700e+00
.6800e+00
.6900e+00
.7000e+00
.7100e+00
.T200e+00
.7300e+00
.T400e+00
.T7500e+00
.7600e+00
.7700e+00
.T7800e+00
.7900e+00
.8000e+00
.8100e+00
.8200e+00
.8300e+00
.8400e+00
.8500e+00
.8600e+00
.8700e+00
.8800e+00
.8900e+00
.9000e+00
.9100e+00
.9200e+00
.9300e+00
.9400e+00
.9500e+00
.9600e+00
.9700e+00
.9800e+00
.9900e+00
.1000e+C1

.1005e-01
.9095e=02
.8230e~-02
.TUU4Te-02
.6738e-02
.6097e=-02
.5517e=-02
.4992e-02
.4517e-02
.4087e-02
.3698e-02
.3346e-02
.3028e-02
.2739e~02
.2U479e~02
.2243e-02
.2029%e-02
.1836e-02
.1662e-02
.1503e=-02
.1360e~02
.1231e~02
.1114e-~02
.1008e~02
.9119e~03

.8251e~03

.T466e~03
.6755e~03
.6113e~-03
.5531e-03
.5005e-03
JA528e-03
.4097e-03
.3707e-03
.3355e-03
.3035e-03
.27T47e-03
.2485e-03
.2249e-03
.2035e-03
.1841e-03
.1666e-03
.1507e-03
.1364e~03
.1234e-03
.1117e-03
.1010e-03
.9142e-04
.8272e~-04
.T485e~04
.67T3e-04
.6128e-04
.5545e-04
.5017e=-04
.45u0e-0Hl

.1247e-01
.1134e-01
.1031e=01
.9370e-02
.8519e-02
.7T44e-02
.T040e~02
.6400e-02
.5818e=-02
.5289e-02
.4809e-02
4371e=02
.3974e-02
.3613e-02
.3284e-02
.2986e-02
.2714e=02
.2U468e-02
2243e-02
.2039%e-02
.1854e~02
.1685e-~02
.1532e-02
.1393e-02
.1266e-02
.1151e=-02
.1046e-02
.9513e=-03
.8649e-03
.7862e-03
.7148e=-03
.6498e-03
.5907e-03
.5370e~03
.1882e=-03
.4438e~-03
.4035e-03
.3668e-03
.3334e-03
.3031e-03
.2756e-03
.2505e-03
.2277e~03
.2070e~03
.1882e-~03
-1711e=03
.1556e=~03
.1414e~03
.1286e~03
.1169e-~03
.1062e~03
.9658e~04
.8780e~-04
.7982e-04
.7257e-Cl

.2420e=~02
.2243e~02
.2078e=-02
.1924e~02
.1781e-~02
.16U4Te=02
. 1524e-02
.1409e~-02
.1302e~02
.1203e-02
.1111e~-02
.1025e~02
.9464e-03
.8733e-03
.8055e-03
.T428e-03
.6848e-03
.6312e-03
.5816e-03
.5358e-03
.4935e-03
As544e-03
4184e-03
.3851e-03
.3543e~03
.3260e-03
.2999e-03
.2758e-03
.2536e-03
.2331e=-03
.2143e-03
.1969e-03
.1810e-03
.1663e-03
.1527e=-03
.1403e-03
.1288e-03
.1183e-03
.1086e-03
.9966e-04
.9146e-04
.8393e-04
.T701e=04
.T065e-04
.6481e-04
.594le~04
.5U451e-04
.4999e-04
.4583e-04
.4202e-04
.3851e~-04
.3530e~04
.3235e-04
.2965e-04
2T 17e=Cl
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.5835e-04
.5305e-04
.4823e-04
Lu38Le-04
.3986e~04
.3623e-04
.3294e-04
.2995e-04
.2722e-04
.2475e=-04
.2250e=04
.2045e-04
.1859e-04
.1690e-04
.1537e-04
.1397e-04
.1270e=-04
.1155e=-04
.1050e-04
.9541e-05
.86Tl4e~05
.7885e-05
.T169e-05
.6517e~05%
.5924e-05
.5386e=~05
.4896e~05
LUlU51e~05
.4046e-05
.3679%e-05
.3344e-05
.3040e~05
.2764e~05
.2513e~05
.2284e-05
.2076e~05
.1888e~05
.1716e~05
.1560e-05
.1418e-05
.1289%e-05
.1172e-05
.1066e-05
.9687e-06
.B806e-06
.8006e-06
.7278e=-06
.6616e~06
.6015e~06
.5468e-06
.4971e-06
.4519e-06
.4108e-06
.3735e-06
.3395e-C6
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timestep control scheme, the corresponding results are shown in Table

6.3.

In both Table 6.2 and Table 6.3, the first column of data is the
time point, the second column the exact solution, the third column
the solution using the backward Euler formula, the fourth the global
error and the fifth the estimated local truncation error. It can be
seen that, by using the fixed timestep scheme, the order of global
error varies from -1 to -4, and the order of local truncation error
from -2 to —6; which indicates that in some time intervals the step-
size is too 1large and in other intervals the stepsize is unneces-
sarily small, On the other hand, by using the new timestep control
scheme, the order of the global error and the local truncation error
are kept within the range from -2 to -3 and the range from -3 to -4,

respectively.

6.2.3. onclusion

Dynamically varying the timestep is necessary for the timing
analysis program to evaluate the simulated results accurately and
efficiently. To ensure an accurate transient analysis, the timestep
must be controlled to produce an acceptable amount of local trunca-
tion error at each timepoint. In this chapter, a new algorithm of
timestep control is proposed, in which the next timestep is predicted
using the LTE at the present timepoint and no timestep is rejected.
The PREMOS program employs the Backward Euler integration with the

LTE timestep control described in this chapter.
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Table 6.3 Numerical Solution Obtained by Using New Timestep Control
Scheme with A=-10, x,=1, epa=0.01 and epr=0.05.

Time

.0000e+00
.5000e~02
. 1000e-01
.1500e=01
.2000e~-01
.2500e-01
.3000e-01
.3500e-01
.4000e=-01
.4500e~-01
.5000e=01
.5500e=-01
.6000e-01
.6500e-01
.7000e-01
.7500e=01
.8000e=-01
.8500e=-C1
.9000e=-01
.9500e~-01
.1000e+00
. 1050e+00
.1100e+00
.1150e+00
.1200e+00
. 1250e+00
. 1300e+00
. 1350e+00
.1400e+00
. 1450e+00
.1500e+00
.1550e+00
.1600e+00
.1650e+00
. 1700e+00
. 1750e+00
.1800e+00
.1850e+00
.1900e+00
.1950e+C0
.2000e+00

Exact Sol.

.1000e+01
.9512e+00
.9048e+00
.8607e+00
.8187e+00
.7788e+00
.T408e+00
.T047e+00
.6703e+00
.6376e+00
.6065e+00
.5769e+00
.5488e+C0
.5220e+00
.4966e+00
.4724%e+00
.4493e+00
42T4e+00
.4066e+00
.3867e+00
.3679e+00
.3499e+00
.3329e+00
.3166e+00
.3012e+00
.2865e+00
.2725e+00
.2592e+00
.2466e+00
.2346e+00
.2231e+00
.2122e+00
.2019e+00
.1920e+00
.1827e+00
.1736e+00
.1653e+00
.1572e+00
.1496e+00
.1423e+00
.1353e+00

Bk Euler
.1000e+01
.9524e+00
.9070e+00
.8638e+00
.8227e+00
.7835e+00
.TU62e+00
.T7T107e+00
.6T768e+00
.6446e+00
.6139e+00
.5847e+00
.5568e+G0
.5303e+00
.5051e+00
.4810e+00
.4581e+00
.4363e+00
.4155e+00
.3957e+00
.376%e+00
.3589e+00
.3418e+00
.3256e+00
.3101e+C0
.2953e+00
.2812e+00
.2678e+00
.2551e+00
.2429e+00
.231l4e+00
.2204e+00
.2099e+00
.19G69e+00
.1904e+00
.1813e+00
.1727e+00
.1644e+00
+1566e+00
.1491e+00
.1420e+00

Glb Err.

.0000e+00
.1152e=02
.2192e-02
-.3130e-02
=-.3972e-02
.4T725e-02
-.5397e-02
.5993e-02
.6519e-02
.6981e-02
-.7383e-02
.7729e-02
-.8026e-02
.8276e-02
.8483e-02
.8651e-02
-.8783e-02
.8882e-02
-.8951e=-02
.8993e-02
.9010e-02
.9005e-02
.8979e-02
.8935e-02
.88TUe-02
-.8798e-02
.8709e-02
.8608e-02
.8497e-02
.8376e-02
.8247e-02
.8112e=02
.7970e=02
.7823e-02
.7671e=02
.7516e=-02
.735%e-02
.7198e=-02
.7037e=02
.68T4e=02
-.6710e=-02

LTE
.0000e+00
.1152e-02
.1097e-02

-.1044e-02

.9947e=-03
.9474e-03
.9023e~-03
.8593e-03
.81E4e=-03
.T794e=-03
.T423e~03
.T06%9e-03
.6733e-03
.6412e-03
.6107e-03

-.5816e-03

.553Ge=-03
.5275e-03
.5024e-03
.4785e-03
.U4557e-03
.4340e-03
.4133e-03
.3936e-03
.3749e-~03
.3571e=-03

-.3400e-03

.3239e~03
.3084e-~03
.2937e~03
.2798e~03
.2664e~03
.2538e-03
.2417e-03
.2302e~-03
.2192e~03
.2088e~02
.1988e~03
.1894e~C3
.1803e~03
<1717e~03

R




.2050e+00
.2100e+00
.2150e+00
.2200e+0Q
.2250e+00
.2300e+00
.2350e+00
.2400e+00
.2450e+00
.2500e+00
.2550e+00
.2600e+00
.2700e+00
.2800e+00
.2900e+00
.3000e+00
.3100e+00
.3200e+00
.3300e+00
.3400e+00
.3500e+00
.3600e+00
.3700e+00
.3800e+00
.3900e+00
.4000e+00
.4100e+00
.4200e+00
.4300e+00
A4400e+00
.4500e+00
.4700e+00
.4900e+00
.5100e+00
.5300e+00
.5500e+00
.5700e+00
.6100e+00
.6500e+00
.T7300e+00
.8100e+00
.9700e+00
.1000e+01

.1287e+00
.1225e+00
.1165e+00
.11082+00
. 1054e+00
.1003e+00
.9537e-01
.9072e-01
.8629e-01
.8208e-01
.7808e-01
.Th2Te~01
.6T721e-01
.6081e~01
.5502e-01
.4979e-01
.4505e=01
.4076e-01
.3688e~01
.3337e~01
.3020e<~01
.2732e=01
.24T2e-01
.2237e~01
.2024%e~01
.1832e-01
+1657e~01
.1500e~01
«1357e~01
.1228e-01
.1111e-01
.9095e~02
.ThhT7e-02
.6097e-02
.4992e-02
.4087e-02
.3346e-02
2243e=-02
.1503e-02
.6755e=03
.3035e=03
.6128e=-04
.4540e-04

.1353e+00
.1288e+00
.1227e+00
.1169e+00
.1113e+00
. 1060e+00
.1009e+00
.9614e-01
.9156e-01
.8720e-01
.8305e~01
.7910e-01
.T191e-01
.653Te=01
.5943e~01
.5402e-01
.4911e=-01
Al465e-01
.4059e-01
.3690e~01
.3354e-01
.3050e-01
.2772e-01
.2520e=01
.2291e-~01
.2083e-01
.1894e-~01
.1721e=-01
.1565e=01
.1423e-~01
.1293e~01
.1078e~01
.8981e~02
.T484e~-02
.6237e~-02
.5197e-02
.4331e-02
.3094e-02
.2210e=-02
.1228e-02
.6820e-03
.2623e-03
.2018e-03

-.654Te=02
-.6383e-02
-.6220e=-02
-.6058e~-02
-.5897e-02
-.5738e-02
-.5580e-02
.S5824e-02
.5270e-02
.5119e-02
.1970e=02
4823e-02
4700e=-02
.4559e-02
.4403e~-02
.4237e=02
.4063e-02
.3886e=-02
.3706e=-02
.3526e-02
.3347e=02
.3171e-02
.2999e-02
.2832e-02
.2669e-02
.2513e-02
.2362e-02
.2218e-02
.2080e-02
.1949e-02
.1824e-02
.1682e=-02
. 1535e=02
.1388e=-02
.1245e~02
.1111e=02
.9852e~03
.8508e=~03
.T064e~03
.5521e~03
.3785e~03
.2010e~03
.1564e~03

e —————

-.1636e=-03
=.1558e-03
-.1484e-03
-.1413e=03
-.1346e-03
-.1282e-03
-.1221e=03
-.1162e=03
-.1107e=03
-.1054e=-03
-.1004e=-03
~.9564e-04
-.3364e-03
+3059e-03
.2780e-03
.2528e-03
.2298e-03
.2089e-03
.1899e-03
.1726e=-03
.1569e=03
.1427e~03
.1297e-03
. 117%e-03
.1072e-03
.9745e-04
.8859e-04
.8054e~04
.7322e-04
.6656e-04
.6051e=04
.1889e-03
.1574e=03
.1311e-03
. 1093e=-03
-.9108e-04
.7590e-04
.1904e-03
.1360e-03
.2347e=-02
. 1304e=-03
.1246e-03
.T453e-05

}
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CEAPTER 7

The PREMOS Program

1.1. Istroduction

PRENMOS (PREdiction-based simulator for MOS circmits) is an
experimental simulator program for VLSI MOS digital circuits. The
object of the program is to close the gap between conventional cir-
cuit simulation and 1logic simulation. This program is faster than
conventional circuit simulators because it uses a Gauss-Seidel cir-
cuit simulation scheme and employs built-in models for the subcir-
cuits. Although it is slower than 1logic simulators, it generates

more accurate electrical waveforms than the logic levels produced by

logic simulators,

In PREMOS, & modified block Gauss—Seidel-Newton algorithm is
used instead of the standard point Ganss-Jacobi algorithm used in
MOTIS and MOTIS-C. Compared with MOTIS and MOTIS-C, the accuracy of
the results is improved at three levels: (1) circuit analysis is used
to solve the unilateral subcircuit equations, (2) multi-nonlinear
iteration is used at each time point, and (3) the predictor method is
used for solving the feedback interdependence, In addition, an
apalysis sequencing algorithm based on relevant parts is used to
improve the speed of the simulation. Because of the additional
iterations, PRENOS is generally about five times slower than that of

MOTIS~C, whereas the speed and circuit-size capability of MOTIS-C
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have been claimed to be over two orders of magnitude greater tham

those of SPICE2 [7].

PREMOS evolves from MOTIS-C but has different data structures
and new analysis algorithms. It is written in FORTRAN and contains

more than 3000 statements at the present time.

1.2. The Input Processing

The input processor reads and processes the model file of MOS
t devices, and the input data file containing the description of cir-
cuit elements and control statements, There are a number of bnilt-in
models for the partitioned subcircuits in this program. A list of
circuit elements and their corresponding models is shown in Appendix
2. The control statements are listed in Appendix 3. The input pro-
cessor constructs the internal node table and the 1linked 1lists for
the structure of the circuit. The data structures for subcircuit
models are shown in Appendix 4. The data generated are passed to the

analysis part of the program through disc files.

The subroutine EROR performs error checking when input data are
read. If an error exists, the program stops with the error messages

printed out.
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1.3. The Anslvsjs Coge

The analysis core of the program includes two phases: analysis

sequencing phase and analysis phase. They are described respectively

in this section.

1.3.1. Analvsis Sequencing Phase

Before the transient analysis is performed, the sequence of
analyzing the subcircuits is generated in this phase. First, the
linked list of the corresponding directed graph is constructed.
Algorithm 5 mentioned in Chapter 3 is then executed to provide the
analysis sequence, During the sequencing procedures, the feedback
paths and the floating capacitors are identified. Finally, the sub-~-
circuits that do not belong to the relevant set are deleted from the

sequence.

1.3.2. Analysis Phase

Following the analysis sequencing, each scheduled subcircuit is
identified and 1linked to its models. Initially, device sizes and
node tables are resd out by means of the pointers in the model map.
If feedback paths or floating capacitors exist, the associated node
voltages are predicted. If a subcircuit has been declared latent at
a previous timepoint and its fan~in node voltage changes are less
than some certain limit, the subcircuit is bypassed during the
analysis. At each nonlinear iteration, the device models are

evaluated and the subcircuit matrix is formed. In solving the
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matrix, no sparse matrix technique and no reordering scheme in the LU
factorization process are used since the size of the subcircuit is

usually small. The nonumber of nonlinear iterations is specified by

the vser. The timestep canm be either comtrolled by local truncation
error as described in Chapter 6 or fixed, depending on the user’s

option.

1.4. The Qutput Processing

The output from the program is written in a disc file, which
could be read by the output processor. The output data is sent to
either the line printer or the plotting terminal through the output
processor. Hard copies of the plots of the waveforms selected can

also be produced on an X-Y plotter.

1.3. Simulated Examples

In this section, four examples of <circuit simulations using
PREMOS are presented. Example 1 illustrates the timing analysis of a
PLA circuit, The input data file is also included. Example 2 and
Example 3 are given to show the improvements in the accuracy of the
simulated results by using the predictor methkod. The comparisons
with SPICE2Z and MOTIS~C are also included in these two examples.
Example 4 shows the effect of analyzing only the relevant parts on

reducing the simulation time,
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1.5.1. PLA Cigeuit

The circuit diagram of a programmable logic array (PLA), which
is used to implement a traffic light controller, is shown in Fig. 7.1
[39]. This PLA circuit which is composed of about 150 MOS transis-
tors can be partitioned into 42 unilateral subcircuits or circuit
olements. The input data file used for circuit simulation by PRENOS,

is included in Appendix §.

The input and output waveforms for this example simolated by
PRENOS are shown in Fig. 7.2. The total analysis time is 12.450
seconds, compared with 5.567 seconds taken by MOTIS-C. Table 7.1,

which can be found in [39], is given to verify the simulated results.

1-5.2. Bootstrap Capacitor Circuit

The bootstrap capacitor circuit in Fig. 7.3 has become very
popular in MOS digital circuit design for fast switching operations
and large driving capability. The simulated results are shown in
Fig. 7.4, where it can be seen that the modified Gauss-Seide] method
used in PREMOS is more accurate than the standard Gsuss-Seidel method
(represented by PREMOS without predictor) and the Gauss-Jacobi method
used in MOTIS-C. 1In this comparison the exact solution is what

SPICE2 produced.

In this example, the analysis time is 17.60 seconds for SPICE2,
1.017 seconds for PRENOS with predictor, 1.200 seconds for PREMOS
without predictor and 0.467 seconds for NOTIS-C, Both PREMOS and

MOTIS~C use a fixed timestep scheme with a 0.5 ns timestep. PREMOS
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° and FLl

» ST, HL,, BL_, FL

. R
in9Fu. 7.1,

{

Output Waveforms R
for the PLA Circui

Fig. 7.2 (b)
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Table 7.1 Encoded State Tranmsition Table for the Light Controller.

Stored during ¢, in In-register

Stored during ¢, in Out-register

inputs Present Next Outputs
state state
C TL TS| Y.V, ) (99 4 ST HL, HL, FL, FL,
0 X X 0.0(HG) 0.0 (HG) 0 0 0 1 0
X X ] 0.0(HG) ]0.0(HG) 0 0 0 1 0
1 1 X 0.0(HG) 0. 1 (HY) 1 0 0 1 (\]
X X 0 0.1(HY) 0.1tHY)» 0 0 1 I 0
X X 1 0. 1(HY) 1. 1L(FG) 1 0 1 1 0
1 0 X 1. 1{FG) 1. 1HFG) 0 1 0 0 0
0 X X 1. 1L4FG) 1.LO(FY) ! i 0 0 0
! X 1. 1(FG) 1.01FY) 1 1 0 0 0
X 0 1.O(FY) 1.O(FY) 0 1 0 0 1
1 1.0(FY) 0.0(HG) ! ] 0 0 1

Product
terms

R,
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Fig. 7.3 Bootstrap Capacitor Circuit.
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uses three nonlinear iterations at each timepoint.

1.5.3. One-Bit Register

The block diagram and circuit schematic of a one-bit register
circuit are shown in Fig. 7.5. This design has a memory function. A
feedback path exists from the output of S2 to the input of S1. As
shown in Fig. 7.6, by comparing the results to SPICE2 results, it can
be seen that PREMOS with predictor produces more accurate results

than both PREMOS without predictor and MOTIS-C.

In this example, the anslysis time is 19.05 seconds for SPICE2,
1.267 seconds for PREMOS with predictor, 1.000 seconds for PREMOS
without predictor and 0.433 seconds for MOTIS-C. Both PREMOS and
MOTIS-C employ a fixed timestep of 0.5 nanoseconds in the transient
analysis. In PREMOS three nonlinear iterations are nused at each

timepoint.

1.5.4. Binary~to-Octal Decoder

A block diagram of the binary-to-octal decoder circuit is shown
in Fig. 7.7. In this example only the subcircuits that directly or
indirectly affect the output are analyzed during the solution pro-
cess., The analysis results of selecting one, two, four or eight out-
puts are shown in Table 7.2. Because of the overhead involved in the
simulation, the total CPU time taken in each case is not in propor-

tion to the number of relevant subcircuits.

———————

.
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Fig. 7.5 (a) Block Diagram 4
{b) Circuit Schematic of One-Bit Register.
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Table 7.2 Simulation Data for the Circuit in Fig. 7.7.

No. of Relevant Analysis Time

Output Requested | Subcircuits ( seconds )
12345678 17 11.167
1234 11 8.933
56178 12 9.200
12 6 6.817
34 7 7.183
56 7 7.100
78 7 7.133
1 3 5.333
2 4 5.817
3 4 5.800
4 5 ' 5.883
5 4 5.567
6 5 5.967
1 5 5.683
8 6 6.650
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CHAPTER 8

Conclusions

The sim of large-scale circuit simulation is to bridge the gap
between coaventional circuit simulation and logic simulation. In the
experimental program PREMOS developed as part of this dissertation,
the subcircuits are analyzed at the transistor level by using
Newton’s method as is dome in conventional circuit simulation; but
the signal propagation from subcircuit to subcircunit, which deter-
mines the analysis sequence of these unilateral subcircuits, is simi-
liar to that used in logic simulation. The transistor level simula-
tion in the subcircuits provides the detailed waveforms. The
analysis sequencing combined with latency checking reduces signifi-

cantly the smount of computation time and memory requirements.

The analysis sequencing procedure which includes checking and
identifying feedback loops has been presented in Chapter 3. The pro-
cedure schedules only those subcircuits that directly or indirectly
affect the output, Combined with latency checking, this ’‘segmenta-
tion’ approach achieves a further increase in speed. The amount of

increase depends on the circuit being analyzed.

In Chapter 4 we discuss initial DC analysis in large-scale cir-
coit simulation and compare the different algorithms using 2-element
and 3~element companion models for the MOS transistors. It is found

that the 2-element model of the MOS transistor is suitable for




J

133

large-scale circuit simulation from the point of convergence rate,
The analysis results also show that using a small fixed number of

iterations produces DC solutions close enough to those aobtained after

much more iteratioms, provided the initial guess is a good approxima-

tion.

In n:i;g the standard Gauss-Seidel method for solving the parti-
tioned circuit, the feedback loop is decoupled by assuming that there
is no change in the feedback loop over the integration timestep. In
this thesis, a 'modified’ Gauss-Seidel method is proposed, where
explicit formulas are used to predict the 'unsolved’ variables in the
feedback 1loops. As a result, the accuracy is improved without
requiring much additional computation. It has been shown that the
method is consistent, stable and con?ergent. It has also been shown
that no parasitic oscillatory component appears in the solution if

the timestep is smaller than a critical timestep.

As the entire circuit is partitioned into ‘one-way’ subcircuits,
which can be easily identified as an 'event' during the simulation,
latency detection and exploitation is used to provide additional com-
putational savings. The latency criterion for PREMOS is described in
Chapter 6. In the same chapter, a timestep control scheme based on
the local truncation error is discussed. It should be noted that the
proposed timestep control scheme does not reject the present timestep

even when the LTE bound is exceeded.

The program PREMOS is described ir some detail in Chapter 7. It

is written for wuse on VAX 780/11 UNIX operating system. Several
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simulation examples are given to show the validity of using the new

algorithms and schemes.

PREMOS could be used for the timing analysis of MOS integrated
circuits in hierarchical design. For general purpose usage, more
enhancements on the program must be dome. The input processor should
be able to expand the macro or nested subcircuits. Furthermore, the
capability of partitioning the circuit automatically should be added.
In this way, the program could be used for verifying the circuit
extracted from the layout. For other IC technologies like CMOS and
IzL. which counld have unilateral gates (subcircuits) formed easily,
the analysis techniques used in PREMOS can be applied to develop

similiar kinds of simulators.

As described in [23], the speed of 1logic simulation could be
increased more than several hundred times by using logic processors
and array processors. Similiarly, it could be possible to implement
decomposition algorithms in hardware and analyze ‘one-way'’ subcir-
cuits by using multi-processors to gain orders of magnitude in execu-
tion time for the next gemeration circuit simulators [12]. Further

research on this kind of simulation machine could be promising in the

future,
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Appendix 1

MOS Device Modeling and Capacitor Modeling

In conventional circuit analysis, the MOS device model shown in
Fig. Al.1(a) 1is generally used (the charge storage effects are not
showa here). The three values of 8y 8gg and i, are calculated for
each DC iteration. The substrate bias effect is included into the
changes of the threshold voltages. For large-scale circuit analysis,
the MOS device model for the enhancement transistor could be simpli-
fied further as shown in Fig. A1.1(b). Only two values, Byg and i,
need to be calculated at each DC iteration.

Recently, short—channel MOS devices are becoming widely used and
“second~order” effects such as mobility reduction, channel length
modulation and substrate bias effects are becoming increasingly
important in deriving device models. In order to obtain accurate
simulated results, these effects should be taken into account. The
MOS device modeling work in PREMOS is based on curve-fitting empiri-
cal curves of DC characteristics, with the emphasis on matching the
saturated points and the conductances in the saturated regions for

different vGS'

The modeling equations are

1 + AV

1 = KP ¢
1+ n(ezs- VT)

DS

- - -v2
V.JV 3 vDS) (Al.1)

* ((vGS T 'DS

for operation in linear region




Fig. Al1.1 (a) MOS Transistor Model in Conventional Circuit
Analysis.

so—— ®io %gds

S

Fig. Al1.1 (b) MOS Transistor Model in Large-Scale Circait
Analysis.




1 +V

I =KpP * * (V. - V)2 (A1.2)
DS T+ nVegm Vo) GS ~ 'T

for operation in saturation region and

VT = vTO + AVT (A1.3)

where
KP = intrinsic transconductance (= BoCoW/Logg)

A = channel length modulation parameter

n = mobility reduction parameter

VTO = threshold voltages whexre the DC curves are measured

AVT = threshold voltage change from VTO due to substrate bias

voltage change

AVT is represented in tabular form as a function of the source-to-

substrate voltage vSB'

The extraction of the DC model parameters from the physical dev-
ice can be dome by using curve-fitting techniques in a straightfor-

ward manner. A special computer program can be developed for this

purpose.,

The capacitance at each node in LSI or VLSI circuits consists of
two types (1) voltage-dependent capacitance formed by MOS devices,
which includes gate capacitance and diffusion capacitance and (2) the
interconnect capacitance. In the scaling down technology, the latter
plays an increasingly important role in the circuit behavior, The
features and modeling of these capacitances are described below:

(1) The voltage-dependent capacitance: gate capacitance and diffu-

sion capacitance.
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The voltage-dependent relation of gste capacitance for NOS
transistor is shown in Fig. A1.2 [40]. For the diffusion capacitance
¢, the voltage—-dependent relation can be expressed as

o

c = (Al1.4)

a1 - "/vbi)e

where
cjo = diffusion capacitance at zero junction voltage
v = junction voltage

Vpi = junction contact potential

e = grading coastant

In large-scale circuit simuolation, it is rather expensive to calcu-
late these voltage-dependent capacitances at every iteration. So
these capacitances will be lumped together and approximated by a
linear capacitance. The value of this linear capaeifance depends on
the device size and on the processing parameters., This value could
be experimentally determined as a function of device size and gate
oxide capacitance.

(2) Modeling of the intercomnnection capacitance.

Poly and metal capacitances are usually calculated by applying
the parallel-plate formula., However, present scaling—-down technology
produces interconnection conductors that sre comparable in dimension
to the thickness of the oxide, so the parasitic capscitance of vari~-
ous interconnections can no longer be treated as capacitance of
infinite parsllel plates becaunse of fringing field effects. For

today’s interconnection system, an error of a factor of two could
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result due to fringing fields alome! It is necessary them to correct

o v e

the capacitance from the parallel-plate formula by a correction fac~—
tor. The correction factor ¢/c_ could be evalusted either experimen-
tally with test chips or kheorecticnlly. where

¢ = the interconnect wiring parasitic capacitance per unit

length

€, = the capacitance per unit length from the parallel-plate

formula [41, 42].

Thas, the magnitude of the intercomnection capacitance Cintcon Can be

obtained from

c = ¢ *L ® (Correction Factor) (A1.5)
intcon 0




Appendix 2

Input Descriptions for Circuit Elements and Their Models

The following types of subcircuit models have been implemented

in the program PREMOS:

NAND2:

NOR2 :
ANDOI:
ORANI:
TRANS:

TRANP:

PUSPL:

LATCH:

SOURC:

2-input
2-input
n-input
n-input
n-input

NAND gate (Fig. A2.1)

NOR gate (Fig. A2.2)

AND-OR-Inverter (Fig. A2.3)

OR-AND-Inverter (Fig. A2.4)

NOR gate with nt Transfer Gates (Fig. A2.5)

TRANS except node tnt is taken as input

Push-Pull Inverter (Fig. A2.6)

Latch Gate (Fig. A2.7)

Clock (Voltage Source) Model

Model is described as

MODEL (mdnam) (type) (parameters)

for example,

MODEL w1l NAND2 (1 0.2 10f 20f 100f)

MODEL is the keyword for model description. mdnam is a user-

defined name for the model. The type field specifies the model type.

The available model types and their associated model parameters are

listed in the following table:

TYPE

NAND2

PARAMETERS

wla wll ca c¢i ¢l

e R
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Fig. A2.1 2-Input NAND Gate.
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Fig. A2.7 Latch Gate.




NOR2 wlo wll co ¢l

ANDOI wla wlo wll ca co ¢i ¢l na no
ORANI wlo wla wll co ca ¢i ¢l no na
TRANS wlo wll wlt co ¢l ¢g ct no nt
TRANP wlo wll wlt co cl cg ct no nt
PUSPL wla wll cal ca2 ¢l

LATCH wia wll ca cl

SOURC vl vO t0 tr t1 tf

The circuit is described as
{name) (nodes) (mdnam)
for example,

N1 1 2 3 4 NAND2

"name” is the name of the circuit element. The nodes field con-
tains the node numbers describing the circuit connection. The order
of the node numbers for each type of the subcircuit is listed in the
table below:

TYPE ORDER OF NODE NUMBERS

NAND2 al a2 il

NOR2 ol o2 1

ANDOI al a2 ,.. 01l 02 ... 1 il 12 .., i(na-1)

ORANI ol 02 ... al a2 ... 1 i1 i2 ... ina
TRANS ol 02 ,.. 11 tl ... gnt tnt
TRANP ol 02 ,.. 1 g1 t1l ... gnt tnt
PUSPL al a2 1

LATCHE al a2 11 12
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Appendix 3

Control Commands Used in Experimentsl Program PRENOS

TIME :

General Form TIME Tstop Tstep Dtmin
Tstop : the length of the analysis

Tstep : output primt step |

Dtmin : minimum interpal timestep

PRESET :

General Form PRESET (n1,vl) (n2,v2) ...
nl,n2,... : node number

vl,v2,... : preset pnode voltage

PLOT :

General Form PLOT nl n2 03 ...
SEND :

General Form SEND nl n2 n3 ...

The SEND command sllows the user to generate the data file
plfile.dat which contains the analysis results on node nl,
n2 ... . The file plfile.dat is used as the input data for
the graphing program graph.f.

global elements :

General Form (type) (value)

The global elements are

(i) v+, the drain~ or the load-end supply source

(ii) v-, the source-— or the driver—end supply source




(iii) vbg, the back gate supply voltsge source

END :
General
DC :

General

Form

Form

END

DC

DC is the command requiring dc analysis.

CONTL :
General
laten :

ltstp :

lpred :

OPT :
General
itnan :
itnor
ittrs
itpul
itlch :
itao

itoa

Form

CONTL laten ltstp lpred

15

flag of having latency scheme or not; 1 (yes), 0 (no)

flag of having timestep control scheme or not;

1 (yes), 0 (no)

flag of having predictor scheme or not;

1 (yes), 0 (no)

Form

preset

: preset

! preset

: preset

preset

: preset

. preset

OPT itnan itnor ittrs itpul itlch itao itoa

number

number

number

number

number

number

number

of

of

of

of

of

of

of

de

de

de

dc

de

de

de

iterations
iterations
iterations
iterations
iterations
iterations

iterations

for

for

for

for

for

for

for

NAND2

NOR2

TRANS

PUSPL

LATCR

ANDOR

ORAND
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Appendix 4

Analysis Data Structures for Subcircuit Models

The internal data structures representing the model of the sub- p

circuit look like the following :

LINK f

LOC(ISUB) Number of Elements in This Field

Model Type

Pointer to Width List

Pointer to Node List

i,

Feedback Node §

Pointer to Floating Capacitor List

Others

The data structures for different types of subcircuits are

listed below:

NAND2
LOC +0: 6
+1: 1 WNAN2
+2: INAN2 INAN2 +0: w/1 (driver)
+3: IRAN2 +1: w/1 (load)

+4: 0 or node number
+5: 0 or IFCAP NAND2

IRAN2 +0: 1st jivnput node




+1:

2nd input node

+2: internal node
+3: output node
NOR2
LOC +0: 6
+1: 2 WNOR2
+2: INOR2 INOR2 +0: w/1 (driver)
+3: IROR2 +1: w/1 (load)
+4: 0 or node number
+5: 0 or IFCAP NOR2
IROR2 +0: 1st input node
+1: 2nd input node
+2: output node
ANDOI
LOC +0: 6
E +1: 7 WAND
‘ +2: IRAND IRAND +0: w/1 (driver of AND)
+3: IAND +1: w/1 (driver of OR)
+4: 0 or node number +2: w/1 (load)
+5: 0 or IFCAP
NAND
IAND +0: na
+1: no
+2 -~ +(na+l): al -- ana
+(na+2) -— +(na+no+l):
- ——




ORANI
LOC +0: 6
+1: 8
+2: IROR
+3: IOR
+4: 0 or node number

+5: 0 or IFCAP

TRANS
LOC +0: 6
+1: 4
+2: IRTFR
+3: ITRF

IOR

154

ol -- ono
+(na+no+2): output node
+{(na+no+3) -~ +(na+no+na+l):

i1 -- i(npa-1)

YOR
IROR +0: w/1 (driver of OR)
+1: w/1 (driver of AND)

+2: w/1 (load)

NOR

+0: no
+1: na
+2 -~ +(no+l): ol ~- ono
+(no+2) -- +(no+na+l):

al -- ana
+(no+na+2): output node
+(no+na+3d) -~ +(no+2na+2):

il -- ine

WIFR
IRTFR +0: w/1 (driver)

+1: w/1 (load)

e e A g < n S ¢ b o0




PUSPL

+4: 0 or node number

+5: 0 or IFCAP

LOC +0:

+1:

+2:

+3:

+4:

+5:
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+2: w/1 (transfer gate)

NTFR

ITRF +0: no

6
5
IWPUL
INPUL

0 or node number

0 or IFCAP

+1: nt

+2 - +kjor+1): ol —- ono
+(jor+2): load node 1
+(jor+3): gate node gl

+(jor+4): source node tl

+(jor+2nt+l): gate node gnt

+(jor+2nt+2): output node tnt

WPUL
IWPUL +0: w/1 (driver)

+1: w/1 (load)

NPUL
NPUL +0: driver gate node
+1: load gate node

+2: output node

A
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LATCH
LOC +0: 6
+1: 6 WLH E
+2: IWLCH IVLCH +0: w/1 (driver)
+3: ILCH +1: w/1 (load)
+4: 0 or node number
+5: 0 or IFCAP NLH
ILCH +0: 1lst gate node
+1: 2nd gate node
+2: 1lst output node
+3: 2nd output node
SOURC
LOC +0: 4
+1: 3 NSOR
+2: IVSC IVSC +0: node number
+3: IRVSC +1: 0
+2: 1
WSOR
IRVSC +0:
+1: TIME
+2: VHIG

For floating capacitors, the data structures are:




CAPCR

NCAP

IFCAP +0: Node 1

+1: Node 2

CCAP
IFCAP +0: capacitor value

The order of node 1 and node 2 must coincide with the sequence

analysis so that the modified Gauss-Seidel method can be applied.
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Appendix §

Input Data File for The PLA Example

The input data file for simulating the PLA circuit in Fig. 7.1

by PREMOS is contained in this appendix.

PLA finite~-state machine implementing the light controller
$subcircuit model card

model inv nor2 (5§ 1 10f 100f)

model nor3 andoi(5 5 1 10f 10f 10f 100f 0 3)
model nor4 andoi(5 5 1 10f 10f 10f 100f O 4)
model notrl trans(5 1 2 10f 100f 10f 50f 1 1)
model notr2 trans(5 1 2 10f 100f 10f 50f 2 1)
model notr4 trans(5 1 2 10f 100f 10f 50f 4 1)
model notrS5 trans(5 1 2 10f 100f 10f 50f 5 1)
model clkl source (4 1 10n 5n 10n 5n)

model clk2 source (5§ O 5n 5n 5n 5n)

* AND plane

x1 11 17 19 1 nor3

x2 13 17 19 2 nor3

x3 12 14 17 19 3 noré

x4 15 18 19 4 nor3

x5 16 18 19 5 nor3

x6 12 13 18 20 6 nor4d

x7 11 18 20 7 nor3

x8 14 18 20 8 nor3

x9 15 17 20 9 nor3

x10 16 17 20 10 nor3

* OR plane

x11 56 7 89 21 56 28 notr5
x12 3 4 56 22 56 29 notr4
x13 3 57 8 10 23 56 30 notr$
x14 6 7 8 9 10 24 56 31 notr$
x15 4 5 25 56 32 notr2

x16 1 23 4 5 26 56 33 notrs
x17 9 10 27 56 34 notr2

* output registers

x18 28 35 55 49 notrl

x19 29 36 55 48 notrl

x20 30 30 37 inv

x21 31 31 38 iav

x22 32 32 39 inv

x23 33 33 40 inv

M‘
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x24 34 34 41 inv

® input buffers

x25 57 42 55 45 notrl
x26 58 43 55 46 notrl
x27 59 44 55 47 notrl
¢ input registers

x28 45 45 50 inv

229 46 46 51 inv

x30 47 47 52 inv

x31 48 48 53 inv

x32 49 49 54 inv

x33 50 50 11 inv

x34 45 45 12 iav

x35 51 51 13 iav

x36 46 46 14 iov

x37 52 52 15 inv

x38 47 47 16 inv

x40 53 53 17 inv

x4]1 48 48 18 inv

x42 54 54 19 inv

x43 49 49 20 inv
*input sources
val 55 0 clkl
va2 56 0 clkl
va0 57 0 clk2
vbO 58 0 clk2
vc0 59 0 clk2

-0

opt 113111
contl 1 01
preset (35,5) (36.,5)

time 120mn 1n

plot 55 56 42 43 44 35 36
plot 37 38 39 40 41 9 10
plot 1 23456178

send 55 56 42 43 44 35 36
send 7 9 37 38 39 40 41
v+ S

end
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