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I

The simulation of VLSI circuits falls beyond the capabilities of

conventional circuit simulators like SPICE. On the other hand, con-

ventiona logic simulators can only give the results of logic levels

'1" and "01 with the attendant loss of detail in the waveforms. The

aim of developing large-scale circuit simulation is to bridge the gap

between conventional circuit simulation and logic simulation.

This research is to investigate new approaches for fast and

re1v., ely accurate time-domain simulation of NOS LSI and VLSI cir-

cuits. New techniques and new algorithms are studied in the follow-

ing areas: (1) analysis sequencing (2) nonlinear iteration (3) modi-

fied Gauss-Seidel method (4) latency criteria and timestep control

scheme. The developed methods have been implemented into a simula-

tion program PREMOS which could be used as a design verification tool

for NOS circuits.
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CHAPTER 1

Introduction

Improvements in semiconductor processing have actually

accelerated the complexity of VLSI chips which potentially have hun-

dreds of thousands of transistors. To deal with this complexity two

concepts are generally applied: decomposition, which is the process

of breaking a problem into manageable pieces. and abstraction, which

is the technique of hiding unnecessary detail. Applying these two

principles in VLSI design results in a multi-level, hierarchical

approach to the design of a complex chip [1]. The set of design

verification tools corresponding to the levels of the hierarchy is

shown in Fig. 1.1 [2].

Functional simulators are used at the initial design phase to

verify the algorithms of the digital system to be implemented. Once

the design meets these criteria for the behavioral completeness, an

RTh (Register Transfer Level) simulator could be used to verify the

potential implementation of the structure. With each RIL module

further partitioned into low-level logic building blocks, the logic

design is validated by a logic simulator such as MOSSIM or SALOGS

[3,4].

The gate level design is implemented into integrated circuits by

transistors and associated interconnections. For the analysis of

small circuit blocks, circuit simulators, such as SPICE2 [5], have



2

Functional Analysis
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Registor Transfer Level Simulation

4 t

Logic Simulation
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Circuit Simulation

4 t

Device Simulation

4 t

Process Simulation

Fig. 1.1 The Hierarchy of Design Verification Tools.

proved effective by providing accurate voltage and current waveforms.

The larger blocks may be analyzed in less detail by using a 'large-

scale' circuit simulator such as MOTIS, MOTIS-C. or MOSTAP (6,7,8].

For VLSI design, there are some major constraints such as die

size, speed and power, which are taken into consideration at each

level, often forcing a designer to backtrack when a constraint cannot

be met at a lower level. A number of simulations are required before

the design is completed. The cost of simulation is expensive, espe-

cially for circuit simulation which can accurately predict circuit

performance. As the size of the circuit increases, eventually the
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cost of conventional circuit analysis becomes prohibitive. There-

fore, the large-scale circuit analysis in which some relaxation tech-

niques are used, is developed to reduce the execution time and memory

requirements but still provide adequate information about circuit

performance.

This research is concerned with the development of numerical

methods and scheduling techniques for fast and relatively accurate

time-domain simulation of MOS LSI and VLSI circuits. The goal is

that the developed methods and techniques could be implemented in a

simulator which could be used as a design verification tool for MOS

circuits.

The basic approach in most 'large-scale' circuit simulators is,

firstly, the partitioning of the circuit into smaller subcircuits,

and then, the analysis of these subcircuits in a certain sequence [8,

9, 10, 11, 121. By using analysis sequencing or selective trace

techniques, one may take advantage of the latency properties of the

subcircuits in both time and space to reduce the computation time

(13, 14]. In this research, MOS circuits are decomposed into 'one-

way' subcircuits in the DC sense [3, 8] (i.e.. the circuit is assumed

to be in steady-state with its 6apacitors open-circuited). In prac-

tice, this partitioning approach produces subcircuits of relatively

small sizes and sparse matrix techniques are not necessary. By prop-

erly ordering the circuit variables, the circuit equations can be put

in an 'almost' lower block triangular form with the upper triangular

nonzero terms accounting for any feedback that might exist among the

L__is ,
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subeircuits. Traditionally, the Gauss-Seidel method has been used to

decouple the feedback terms by assigning previous values to the

current 'unsolved' variables [8, 15]. However, this approach suffers

from accuracy problems. Furthermore, as will be shown later in this

thesis, when floating capacitors exist among the subcircuits, the

Gauss-Seidel method will not be consistent and thus not convergent.

A 'modified' Gauss-Seidel-Newton method is then introduced to solve

the circuit equations and to decouple the feedback terms during the

analysis process. The proposed technique, which is based on the use

of a forward predictor to estimate the values of the yet unsolved

variables in feedback loops, is more accurate than the standard

Gauss-Seidel method, without requiring much additional computation.

This modified Gauss-Seidel method is shown to be consistent, stable

and convergent. As far as analysis sequencing is concerned, a pro-

cedure is described in this dissertation, which is different from

ones previously proposed in that it schedules only those 'relevant'

subcircuits that directly or indirectly affect the output. This

approach is combined with a latency technique to further increase the

speed of simulation.

An experimental program PREMOS (PREdiction-based simulator for

NOS circuits) is developed to implement and test the new algorithms

and new schemes in this research. This program is mainly for the

time-domain analysis of VLSI MOS digital circuits. It has been shown

that PREMOS can produce simulated results whose accuracy Is close to

that of conventional circuit simulation, whereas the computational
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speed is generally withia the range of five times slower than that of

timing simulators such as NOTIS-C [6, 7]. The speed and circuit-size

capability of XOTIS-C have been claimed to be over two orders of &ag-

nitude greater than SPICE2 [7]. Hence, PREMOS also has much greater

speed and circuit-size capability than SPICE2.

Chapter 2 describes briefly the analysis techniques used in con-

j ventional circuit analysis and large-scale circuit analysis. In

Chapter 3 the analysis sequencing procedures are explained and the

idea of scheduling only 'relevant' parts is studied. The nonlinear

DC analysis methods adopted in the solution algorithms are discussed

in Chapter 4. Chapter 5 introduces the modified Gauss-Seidel method

and provides the numerical study of the method. In Chapter 6,

latency criteria and a timestep control scheme are described.

Chapter 7 describes the structure of the program PREMOS and gives

some simulation examples. In the final chapter, Chapter 8, the con-

clusions are presented and the areas for future work are pointed out.

There are five appendices. Appendix 1 describes MOS device

modeling and capacitor modeling. Appendix 2 contains the input

descriptions for circuit elements and their models in the program

PREMOS. The control commands and the data structure used in PREMOS

are given in Appendix 3 and Appendix 4, respectively. Appendix 5

contains an input data file to PREMOS for an example studied in

Chapter 7.
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CHAPTER 2

Large-Scale Circuit Simulation

2.Introduction

The simulation of LSI and VLSI circuits in their entirety falls

beyond the capability of conventional circuit simulators. On the

other hand, conventional logic simulators can only give the results

in terms of logic levels "1'", "0" or "unknown" with the attendant

loss of detail in the waveforms. In recent years. many techniques

have been proposed to bridge the gap between circuit simulation and

logic simulation. The aim is to obtain a circuit-level type simula-

tion with computational speeds approaching that of logic simulation.

The analysis techniques used in 'conventional' circuit simulation and

'large-scale' circuit simulation are described in Sections 2.2 and

2.3, respectively. In Section 2.4, a discussion on problem areas

with the previous methods is given.

2.2. Conventional Circuit Aalysis

The equations that describe an integrated circuit model are gen-

erally a set of nonlinear (stiff) algebraic-differential equations of

the following form':

1In the sequel we use the lower case, such as x to denote a vec-
tor, xi the ith element of x and upper case I a matrix.
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f (z . t) 0. x(O) = z (2.1)

Using an implicit integration formula, such as the backward Euler

formula, the trapezoidal rule, or one of Gear's formula, (2.1) is

approximated at every time point tn by a set of nonlinear algebraic

equations of the form:

S (zn) - 0 (2.2)

Eq. (2.2) is usually solved by using a modified Newton's method. At

every iteration in the Newton's method, the linearized equations that

have to be solved are of the form:

A x - b (2.3)

A number of iteratiops may be necessary before the process con-

verges to a solution of (2.2). At every iteration, function and

Jacobian evaluations to construct the matrix A in (2.3). as well as

LU decomposition and solution, are repeated. In practice, the matrix

A is sparse and sparse matrix solution techniques can be used to

reduce the computational requirements. The fundamental algorithm of

circuit analysis can be summarized as follows:

BEGIN
BEGIN
X - [ Voltages, Currents]
TIE Start Time
H - Initial Timestep

END (initialization)
TIME - TIME + H
WHILE (TINE < End Time) DO

BEGIN
Discretize the differential operators by using an
integration formula
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REPEAT
BEGIN
k-I
Evaluate linear models for circuit elements at the
operating points and form the circuit matrix A
and the source vector b
Solve linear equations AX - b

END

UNTIL (convergence achieved) (dc loop)
IF the local truncation error (LTE) is smaller than
the tolerance

BEGIN
Compute new timestep H
TIME - TIME + H

END

ELSE
BEGIN

TIME - TINE - H
Compute revised timestep H
TIME - TINE + H

END
END (time loop)

END

For large-scale circuits, sparse matrix techniques alone do not

produce simulation results in a reasonable time. To improve the

speed of computation, tearing or decomposition together with latency

detection and exploitation are used [12, 13, 141. Depending on the

computer algorithm implemented and on the circuit being analyzed,

decomposition and latency checking could reduce the amount of compu-

tation two to five times [14]. In order to gain more computational

speed, additional algorithms are needed, as described in the next

section.
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.. Lgln-Scale Circuit Analysis

The basic idea in many large-scale circuit simulators is,

firstly, the partitioning of the circuit into smaller subcircuits,

and then, the analysis of these subcircuits in a certain sequence. A

number of algorithms have been proposed for the simulation of parti-

tioned circuits using analysis sequencing.

... Point Gauss-szi &lurith

In this algorithm, the components of x in (2.3) are obtained one

at a time by solving a sequence of scalar equations; i.e., at time

tn+1 , the kth component of xn+
l . 

1n+l
, is found by solving the scalar

equation:

gk (x, 1 _' k ... P 1 _is XD) i0 (2.4)

k 2k k k~l'

Eq. (2.4) can then be solved using a Newton method. In NOTIS and

XOTIS-C [6, 7]. a one-step regula-falsi iteration is used [16].

To illustrate this algorithm further, we partition the matrix A

in (2.3) into the form

A - L + D + U (2.5)

where L and U are strictly lower and strictly upper triangular

matrices and D is a diagonal matrix, as shown in Fig. 2.1. Li and Ui

stand for the ith row of the triangular matrices L and U. The point

Gauss-Iacobi algorithm is described as

BEGIN
BEGIN
I - ( Voltages ]
TINE - Start Time
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00 

0
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H - Initial Timestep
END (initialization)

TaM - TiE+

WNILE (TIME ( End Time) DO
BEGIN

Discretize the differential operators by using an
integration formula
FOR node i, i-1 TO a DO

BEGIN1 Evaluate linear models for nonlinear devices which
are fanouts of ith node
Form the row circuit matrix D21 , Li andI U., and the current source b
Solve linear equation

D X, Wb ~LIn -U In

END (sweep m nodes)
Compute new timestep HI TIME - TINE + H

EDEND (time loop)

Since most automatic timestep control schemes are expensive for

large-scale circuit simulation, fixed timestep during analysis has

been used in some simulators like MOTIS and NOTIS-C.

Po. inti kaus-fSel Alitorithm

In this algorithm, the Gauss-Seidel technique is used to solve

(2.3). At every iteration, one solves a sequence of scalar equations

of the form:

n+ ++1 n
Uk 21 +1 ,nl . , ** * ) (2.6)

The above equation could be solved by using Newton's method. In

SPLICE [15] only one Iteration is made.
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Using the same expressions Lit U1 and Dii as in the last sec-

tion. point Gauss-Seidel algorithm could be described as follows

BEGIN
BEGIN
I - [ Voltages1
TIME - Start Time
H - Initial Timestep

END (initialization)
TINE -TINE + H
n =1

WHILE (TINE < End Time) DO
BEGIN

Discretize the differential operators by using an
integration formula
FOR node i, i-1 TO m DO

BEGIZN
Evaluate linear models for nonlinear devices which
are fanouts of ith node
Form the row circuit matrix Dilp Li and
U., and the current source b
Solve linear equation

D I, ab ~LXn"*l U. n

END (sweep m nodes)
Compute new timestep H
TIME - TIME + H
n-n + 1

END (time loop)
END

2,J.j. Bigck Gau-Seidlj-_&vLqp Algorithm

From the network point of view, the point Gauss-.3acobi and the

point Gauss-Seidel methods are equivalent to decomposing the network

at every node. In the block Gauss-Saidel-Newton algorithm, the net-

work is decomposed Into subcircuits, which may consist of more than

one node. A Gauss-Seidel-Newton method is then used to~ solve the

partitioned system of equations. which now becomes a sequence of sub-

circuit equations, rather than scalar equations, of the form:
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Xk'0+1 'k' X+ ... ,nl x n) . 0 (2.7)

where the x . is now a vector. Note that a modified Nevton-Raphson

method could be used In solving each subcircuit.

In this algorithm, the matrix A is partitioned into the form

A - L' + D' + U' (2.8)

where L' and U' are strictly lover block and strictly upper block

triangular matrices and D' is the block diagonal matrix (Fig. 2.2).

Here. L i and U! represent the ith block matrices of the L' and U'.

respectively. Dii is the itb block diagonal matrix. The block

Gauss-Seidel-Newton algorithm can be described as follows

BEGIN
BEGIN
I - I Voltages$
TIME - Start Time
I a Initial Timestep

END (initialization)
TIME- TINE + H
nini
WHILE (TINE < End Time) DO

BEGIN
Discretize the differential operators by using an
integration formula
FOR subcircult I, i-l TO m DO
BEGIN

REPEAT
BEGIN

Evaluate litear models for nonlinear devices of
ith snbcirf.ut
Form the block circuit matrix D!1 ,L n

and the current source vector bjl
Solve linear equations

D;11, - bi - L;17+' - DUin

END
UNTIL (nonlinear converged) Wec loop for kth subcircuit)

ENID (sweep m subcircuits)
Compute new timestep H
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A= L!+ D'+ U'

Fis. 2.2 A -Ll + D' + U'.



TIME - TINM + H

END (time loop)
ED

Wa.efor ReLZLUIlaxatin MetkhiL

For the three algorithms described above, the circuit analysis

proceeds by small timesteps at the global level. as is done in con-

ventional circuit simulation. In the waveform relaxation method, the

waveforms are obtained for a time interval at the subeircuit level

and a number of waveform iterations are then taken to converge to the

solution [171. Either the Gauss-Jacobi method or the Gauss-Seidel

method could be used In the waveform relaxation algorithm. The

Gauss-Seidel waveform relaxation algorithm can be described as fol-

lows:

BEGIN
I w[Voltages, Currents

WHILE On3 < Tolerance) DO
BEGIN
FOR subcircuit I. i-i TO m DO

BEGIN
FOR time t-0 TO t-End Time DO

BEGIN
Solve nonlinear equations

n+1 f (ail n+1 Xn+ z"1"
I I 1 '* i-10 1 i+l

and X1 1 (0) - 17(o)

ED
END (sweep a subcircuits)

b+ - max max I 11+1(t) - In(t)
i t

END (waveform iteration loop)
END
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The waveform relaxation method is attractive since the subcircuits

are analyzed independently and thus different timesteps could be

used. However, the method suffers from convergence problems when

strong feedback exists. Furthermore, a number of iterations are

needed for the waveforms to converge to the solution and a large

memory is required to store the entire waveforms at each iteration.

.d. Problems witj. Th Previous Methods

In general, the large-scale circuit simulation algorithms

described above have the following features in common:

(1) decomposing the entire circuit into small subcircuits and

adopting the circuit analysis for each subcircuit sequentially

(2) using relaxation methods in solving the circuits

(3) using simplified device models for circuit elements.

It is obvious that there are some tradeoffs between the speed of

simulation and the accuracy of the simulated results, which depend

upon the accuracy requirement. The problems and the impacts for

large-scale circuit simulation are discussed in the following

(i) circuit decomposition

As the size of circuit increases, the time required to solve the

circuit equations increases very fast and .rapidly becomes the dom-

inant cost of the analysis in conventional circuit analysis [151.

Decomposing the circuit into small subcircuits and analyzing the cir-

cuit at subcircuit level reduces the computation time because it now
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grows almost linearly with circuit size. As the average size of the

subcircuits is reduced, the growth in total computation time becomes

more linear. For example, the subcircuit size in [6, 7] is always

one. However, if the size of each subcircuit is forced to be one,

then the Interactions among the subcircuits may be strong, which

could affect the accuracy of the one-iteration Gauss-Jacobi or

Gauss-Seidel approach. This problem is discussed in Chapter 4.

(ii) device modeling

There are generally two forms for representing device charac-

teristic models: functional form and tabular form. The former is

generally used in circuit simulation, where nonlinear model equations

and parameters are employed to describe the operations of the dev-

ices. The latter is often used in timing simulation and piecewise-

linear analysis methods. The tabular models could be in one dimen-

sional or two dimensional form [6, 7, 8, 18]. Depending on different

requirements, either one or a combination of these two approaches can

be used for device modeling. In Appendix 1, both MOS device modeling

and capacitor modeling for VLSI circuits are discussed.

(iii) nonlinear iterations

Most circuit simulation programs use the (modified) Newton-

Raphson algorithm to determine the solution of nonlinear system of

algebraic equations. The criterion for the convergence of the itera-

tive solutions is the requirement that the vector of circuit vari-

*.bles Xk+1 agrees with the prior solution xk within a specified

tolerance. For large-scale circuit analysis, it is rather expensive
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to use the same convergence criterion in conventional circuit simula-

tion. In [6, 7], only one iteration is taken at each timepoint. In

(8]. a relaxation method is used to reduce the number of nonlinear

iterations. More on this topic is discussed in Chapter 4.

(iv) timestep control scheme

In conventional circuit simulation, the timestep is usually con-

trolled by the local truncation error (LTE) [5]. For large-scale

circuit simulation, it is too costly to use the LTE timestep control

scheme. Some of the existing techniques use a fixed timestep scheme

[6, 7]. A simple variable timestep control scheme, where the inter-

nal timestep changes according to circuit activity, is adopted in

[18]. In [8], an iteration count timestep control scheme is used.

In Chapter 6, more exploitation of the timestep control scheme is

done.

(v) accuracy

From the accuracy point of view, it has been found that both the

Gauss-Jacobi and the Gauss-Seidel methods tend to produce a response

that lags behind the actual response. In Chapter 5, a modified

Gauss-Seidel method is described to solve the partitioned system of

equations. It is shown, by examples, that the new method is more

accurate than the standard Gauss-Seidel method. The proposed modi-

fied Gauss-Seidel method is proved to be consistent, stable and con-

verSent.
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CHAPTER 3

Analysis Sequencing

1..Introduction

In order to analyze a large-scale circuit, the entire circuit is

usually partitioned into smaller 'one-way' subcircuits at first, and

then, these subeircuits are analyzed in a certain sequence [9]. To

create 'one-way' subcircuits requires, in general, the introduction

of some approximations. For NOS circuits, 'one-way' subcircuits are

created by decoupling the Sate-to-drain capacitance. To allow the

subcIrcuits to be analyzed independently in sequence, a scheduling

scheme is followed. This scheduling process is called analysis

sequencing.

By properly defining the subcircuits in combinational logic cir-

cuit, the overall circuit equations can be ordered into a lower

block-triangular form (LBT) [12], so that analysis sequencing can be

applied most efficiently. In general, when there is feedback among

the subcircuits, such as in sequential circuits, the circuit equa-

tions cannot be ordered into a lower block-triangular form unless the

sizes of the subcircuits are increased to include the feedback (9].

Alternatively, the (block) Gauss-Jacobi or (block) Gauss-Seidel tech-

nique may be used to decouple tho equations for analysis sequencing

and to keep the sizes of the subcircuits relatively small. This

decoupling in effect 'breaks' the feedback in the analysis sequencing
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procedure.

In Section 3.2. some mathematical properties on directed graphs

are discussed. Section 3.3 summarizes previous work on 'levelizing'

the vertices in an acyclic directed graph. Two new algorithms based

on programming data structures are developed in this thesis and

described in Section 3.4; one algorithm uses a stack and the other a

queue. Examples are shown to compare the differences between these

two algorithms. Since in many cases, feedback may exist in the net-

work, an algorithm for checking feedback paths is studied in Section

3.5. In addition to latency and selective trace (or event driven),

an important idea for further saving of CPU time and memory is to

schedule only those subcircuits that directly or indirectly affect

the outputs in the circuit analysis. This concept of scheduling only

'relevant' subcircuits together with a corresponding algorithm are

described in detail in Section 3.6. An algorithm for analysis

sequencing using parallel processing is proposed in Section 3.7. The

last section, Section 3.8. gives the conclusions.

1.4. Mathematical Pronerties

A circuit which Is composed of unilateral subcircuits can be

represented by a directed graph G(V,E), where each vertex in V

corresponds to each subcircuit and each edge in E corresponds to each

signal line from fanout to fanin. The mathematical properties of

directed graphs can be found in many books on graph theory, such as
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[19, 20, 21]. To simplify the description of the scheduling algo-

rithms proposed in this thesis, the following definitions and deriva-

tions are given

Definition 1 .l

Given a vertex v of G(VE), the set of fanin vertices and fanout

vertices of v are defined as

fin(v)=( w e V I (wv) e E J
font(v)=[ w e V (vw) e E 1 (3.1)

The number of fanin and fanout vertices of v are defined as nfin(v)

and nfout(v), respectively.

The adjacency matrix X - [xij] of the directed graph G(V,E) is

defined as a n by n matrix whose element

x ij1 if there is an edge directed from ith vertex to jth
vertex

=0 otherwise.

A.directed graph and its adjacency matrix are shown in Fig. 3.1. It

is easy to observe the following two properties :

1. nfin(v) is the sum of the column of corresponding vertex v.

2. nfout(v) is the sum of the row of corresponding vertex v.

Note that any set of parallel directed edges In G(V,E) will be

treated as one edge, without affecting the analysis sequencing. If X

is the adjacency matrix of G(VE), then the transposed matrix XT is

the adjacency matrix of a directed graph GR(vE) obtained by revers-

ing the direction of every edge in G(V,E). The following relation

can be derived.
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(a)

12 3 4 567_

1 0 1
2 0 1
3 0 1 1

1- 4. 0 1
5 0
6 0 1
7 0

(b)

Fig. 3.1 (a) A Directed Graph.
(b) The Adjacency Matrix X.
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afin(v) in G1 (V.E) equals nfout(v) in G(V.E) and nfout(v) in

GR(V°E) equals nfin(v) in G(VDE).

For the directed graph G(V.E) with no feedback loops (i.e.,

G(V,E) is acyclic), the analysis sequencing is to reorder the rows

(columns) in the corresponding adjacency matrix X and make the matrix

X upper triangular. For illustration, the following definitions are

made.

Definition 3.2

Vertex vi In G(V.E) is a predecessor of vertex vj if and only if

there is a directed path from vi to vj. If vi is a predecessor of

V., then vi is a sucessor of vi .

A linear ordering is called a topological order if it has the

property that if v i is a predecessor of vj in the network, then v i

precedes v. in the linear ordering.

For an acyclic directed graph, the analysis sequencing is to

arrange the vertices in a topological order and the following theorem

is obtained.

Theorem 1.1 [19]

The vertices in a directed graph can be arranged in a topologi-

cal order if and only if the directed graph is acyclic.
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In general, when feedback loops exist in the directed graph, the

graph is no longer acyclic. In this case, analysis sequencing pro-

cedures need to be extended to check for the feedback paths and to

schedule the analysis of the subcircuits in the proper sequence.

i. . uPrvious Work

Over the past few years. two methods have been proposed for

sequencing the vertices of general directed graphs which are not

necessarily acyclic. One method is to construct a new acyclic

directed graph G' first by contracting the vertices in each strongly

connected component of the original graph G into a new vertex in G'

[9]. Tarjan's algorithm [22] could be used to find the strongly con-

nected components of G in linear time complexity. The vertices in GI

are then levelized and scheduled by Algorithm 3.1 given below.

Alsoriths 14 (9]

The notation nu(vi) is the updated number of fanin vertices of

v, after all the scheduled vertices have been removed.

Part I : (assignment of vertices of G'(VE) to levels)

BEGIN

Assign input vertices of G'(VE) to level 0;

k +- 0;

L. FOR each vertex v in level k DO

FOR each vertex w e fout(v) DO

BEGIN
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IF afin(w)u'O MUT

assign v to level k+1;

END

IF level k is not empty 7 REN

GO TO L;

k (- k+1

END

Part 11 (scheduling the analysis of the subeircuits)

BEGIN

k 4-1;

L. FOR each vertex v of G'(VJE) at level k DO

time analysis of corresponding subcircuits;

IF level k is non-empty TEEN

GO TO L;

k 4-- k+l;

END

Algorithm 3.1 is Illustrated by the following example

Exmple 2.j

For the directed graph G'(VE) shown In Fig. 3.2, Algorithm 3.1

levelized It with depth 8
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13 2154 5

7 8 91 8 12

Fig. 3.2 Directed Graph G'(V,E).
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Lavel 0 1 2 3 4 5 6 7 8

1 7 13 17 20 21 22 25 27
2 8 14 18 23 26 28
3 9 15 19 24
4 10 16
5 11
6 12

The principle of levelizing the vertices is that a vertex v is

in level k if all the vertices of fin(v) belong to levels numbered

from 0 to k-i. The depth of an acyclic directed graph is the maximum

value of levels [23].

Remak .4:

In large-scale circuit analysis, one should try to keep the size

of the subcircuits small in order to make the total analysis time

linearly proportional to the size of the entire circuit. However,

the sizes of the subcircuits ( or vertices ) after contraction in

Algorithm 3.1 could become too large for the analysis to be effi-

cient. For example, a N-stage ring oscillator would be contracted

into one subcircuit instead of N subcircuits.

Another method [81 deals with the directed graph G(VE) directly

without contracting it as is done in Algorithm 3.1. When a feedback

loop is found, the loop is broken. Levelizing the vertices in this

way is performed by using the following algorithm.

AlLitm 1.;. (81

For describing the algorithm, the following notations are
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defined

adj(v) : set of adjacent vertices corresponding to the set of

the incoming edges of vertex v.

la(v) : label of vertex v.

Procedure :

1. Set la(vi)=O for each vertex vi of G(VDE)

2. la(vi)-l for each vertex vi which corresponds to an input

signal terminal.

k-1.

3. k-k+l.

Choose a vertex v. where la(vj)=O and la(vi)AO for all vi

e adj(v.). If there is no such vertex, choose a vertex vj connect-

ing to a vertex which has the lowest label. la(v.)=k.

4. Repeat step (3) until all the vertices in G(V,E) are labeled.

Remark 1.3

The level in Algorithm 3.1 is equivalent to the label in Algo-

rithm 3.2, except the label in Algorithm 3.2 starts from one instead

of zero.

Reark l._J

It is claimed in [8] that Algorithm 3.2 can find all feedback

loops which will be cut during the analysis sequencing. But, as

shown In the following example, Algorithm 3.2 sometimes fails in

identifying the proper feedback loops.

I II2



29

For the directed graph shown in Fig. 3.3, It is obvious that

(7,3) is the feedback path that should be identified. The correct

sequence for this directed graph is as follows

Label 1 2 3 4

1 3 4 5
2 6 7

But by using Algorithm 3.2, the following sequence could be produced

Label 1 2 3 4 5 6

1 4 5 3 6 7
2

In the next section, a more accurate algorithm for identifying the

feedback paths will be given.

a.&. Now AlLorithms Suitable for Computer Implementation

In the computer implementation of scheduling algorithms data

structuring is important, particularly when multi-processor computer

configurations are to be taken into consideration. In this section.

two scheduling algorithms based on two different data structures are

described. The first is based on a stack and the second on a queue.

For a single processor computer, both algorithms will have the same

performance since only one task can be carried out at any given time.

However, for a multi-processor computer, the second algorithm, whose

data structure is based on a queue, is more efficient than the first
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21

3

6 4

7 0
PP-6729

Fig. 3.3 A Directed Graph.

algorithm.

Definition .:

A stack is a linear list for which all insertions and deletions

(and usually all accesses) are made at one end of the list. So the

stack is a last-in-first-out ("LIFO") list (24].

Definition j.:

A queue is a linear list for which all insertions are made at

one end of the list; all deletiots (and usually all accesses) are

made at the other end. So the queue is a first-in-first-out ("FIFO")

list [24].
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In [25]. a topological sorting algorithm based on stack is pro-

posed. The computing time is O(IV1sIEI) which is linear in the size

of the problem. The following algorithm performs analysis sequencing

using the stack data structure.

Algorithm )..

The notation s(i), i-l.m. is the sequence of analyzing vertices

vi, j-1,m. for the entire directed graph G(V,E).

BEGIN
k-1
FOR each vertex v. inG E)D

BEGIN ~ * (,)D
nu(v ) -ni()
IFnu( v 1)-O

EN EEN push the vertex v I into the stack S

REPEAT
IF the stack S is not empty
THEN

BEGIN
POP Out v- from the stack S
s(k)-v. i
k-k+1
FOR each vertex v.i in fout(v.) DO

BEGIN
nU(V1)=nu(v )-
IF nu(v 1)-0

EDTHEN push vi into the stack S

END
ELSE

BEGIN
check the feedback path
(see the Algorithm 3.5)
push the associated vertex into the stack S

END
UNTIL all vertices in G(V,E) are scheduled Wkm)

END

Examople 3.3

For the directed graph in Fig. 3.2, Algorithm 3.3 gives the
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following sequence

6 5 12 4 11 3 2 10 16 9 15 18 14 19
20 1 8 13 7 17 21 24 23 26 28 22 25 27

.4

Fig. 3.4 shows the flow of this sequence.

Algorithm 3.4 is similiar to Algorithm 3.3 except that Algorithm

3.4 is based on the queue instead of the stack. In the implementa-

tion, a circular queue is used to prevent memory overrun.

Alxorithm 3.4

BEGIN
k=l
FOR each vertex v i in G(V,E) DO

BEGIN
nu(v.)=nfin(vi)

IF nu(vi)=0
THEN push the vertex vi into the queue QEND

REPEAT
IF the queue Q is not empty
THEN

BEGIN
pop out V. from the queue Q
s(k)=v.
k=k+l a
FOR each vertex v i in fout(v.) DO
BEGIN a

nu (vi) =nu (v -1
IF nu (vi)=0
THEN Push v i into the queue Q

END
END

ELSE
BEGIN

check the feedback path
(see the Algorithm 3.5)
push the associated vertex into the queue Q

END
UNTIL all vertices in G(V,E) are scheduled (k>m)

END
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7 rp in Fig. 3.2
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Algorithm 3.4 is illustrated by Example 3.4.

Examplet )._4 :

For the directed graph in Fig. 3.2D Algorithm 3.4 gives the fol-

lowing sequence :

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24 25 26 27 28

The flow diagram of this sequence is shown in Fig. 3.5.

Remark 3.3 :

Comparing the sequences shown in Fig. 3.4 and 3.5, it can be

seen that the algorithm based on the stack generates the sequence by

using depth-first search, while the algorithm based on the queue con-

structs the sequence by selecting all the vertices at one level and

advancing level by level.

J.. Discussion on Checking Feedback Path

For the acyclic directed graph, the vertices can be arranged in

a topological order by any analysis sequencing procedure. But it is

possible that there exist feedback loops in many networks. As stated

in Section 3.3, the feedback loops can be avoided by contracting the

strongly connected component Into a r -' vertex and the new con-

structed directed graph is then acyclic (9]. In some cases, this

approach may not be efficient since the new generated subcircuit

could be very large. For solving large-scale networks, the Gauss-
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12

FP 6731

FIg. 3.5 71e Sequence Given by Algorithm 3.4 for the Directed
Graph in FIg. 3.2.
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Seidel technique is widely used; this technique is equivalent to

breaking the feedback paths [8. 15]. Thus it is necessary to check

and identify the feedback paths In the graph. Furthermore, as the

predictor method [see Chapter 5] will be adopted to predict the vol-

tage on the feedback loop, it is necessary to store information con-

cerhing the feedback checking.

In Algorithm 3.3 (Algorithm 3.4). the stack (the queue) stores

the 'unscheduled' vertices whose fanin vertices have been scheduled.

Thus the vertices in stack (queue) are ready tasks for sequencing

[26]. If there are feedback loops in the network, an empty stack or

empty queue would result before all the vertices in the analysis

sequencing procedures have been scheduled. It is assumed that all

feedback paths are single; i.e., that only one feedback path enters a

vertex, and that no feedback enters the input vertices (in general,

input vertices correspond to independent sources). It is straight-

forward to obtain the following lemma.

Lemma -.2 :

In a directed graph G(VE), a vertex v with single feedback

path entering it is identified if

(1) nu(v) = 1 at the point of sequencing, and

(2) nfin(v) > 1.

Fig. 3.6 shows a directed graph with a single feedback path and

its adjacency matrix X. After the input vertices v, and v2 are

scheduled, the associated rows and columns of v, and v2 are removed
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(a)

1 23 4 56 7

1 0 1
2 0 1
3- 0 1 1

X 0 1
5 0
6~ 01

7 0

(b)

Fig. 3.6 (a) A Directed Graph with a Single Feedback Path.
(b) The Adjacency Matrix X.
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from 1. The modified matrix becomes

3 4 5 6 7
3 0 1 1

4 01

6 0 1

7L1 0

It is clear that the sum of each column equals to the number of

fanins at this point; that is nu(v3)-nu(v4 )=nu(vS)=nu(v6 )=l. By

applying the above Lemma, we have two candidates, v3  and v4. Both

have the same number of original fanins as two. Which one should be

scheduled next? Obviously v3 is the answer. In the following, a new

algorithm for checking feedback path is listed

In Algorithm 3.5, a depth-first search is carried out for find-

ing the single feedback path (vl,v) from v' to v. The stack or queue

is empty at the outset.

The notation lab(vi) is defined as

lab(vi)=l if vi is visited

-0 elsewhere

BEGIN
search the set of vertices Vo, where for each vertex
v in V 0u(v)-1 and nfin(v)>l.

L choose a vertex v. in Vo with lab(vi)-O
BEGIN
FOR each vertex v. in fout(v i) DO
BEGIN u

IF lab(v.)=O
MEN
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BEGIN
lab(v.)-l
push ' into the queue Q"

END
END

pop out the vertex vj from the queue "
FOR each vertex vk in fout(vj) DO
BEGIN

IF v -
ToN 60 TO L' (feedback path is found)
ELSE

BEGIN
IF lab(Vk)=0
THEN
BEGIN

lab (vk) 1
push vk into the queue 0"

END
END

END
IF the queue Q" is NOT empty
THEN GO TO L"
ELSE GO TO L

END (L]
L' BEGIN

viny.

V 1sV.
(v',J) is the feedback path

END
END

Example 3.5 illustrates the procedures given in this algorithm.

Consider the directed graph in Fig. 3.6, where a feedback path

exists from vertex 7 to vertex 3. After vertex 1 and 2 are scheduled

by using Algorithm 3.3 or Algorithm 3.4, vertex 3 and 4 are selected

as candidates for the possibility of having feedback paths entering

them. Following Algorithm 3.5, two possibilities exist :

(1) If vertex 4 is chosen first, then vertex 4 and 5 are marked

and the search ends at vertex 5. Therefore, no feedback path enters
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vertex 4. Vertex 3 is selected next; and the search proceeds through

vertex 6 and 7 and terminates back at 3. Therefore, a feedback path

exists from 7 to 3. Further search will bypass 4 since it has

already been marked 'old'.

(2) If vertex 3 is chosen first, vertex 4. 6. 5 and 7 are

visited and marked sequentially before the search terminates back at

vertex 3, which again indicates a feedback path from 7 to 3.

Reark 3.6

Since each vertex is labeled at most once and each edge is exam-

ined at most once, the time complexity for this algorithm is

O(IVI+IEI).

If there is no feedback loop in the network, then Algorithm 3.5

would not take any computation time in checking feedback.

Remurk .8:

For arbitrary networks, this algorithm may not be satisfactory

in identifying minimal feedback loops as other complex algorithms do

[27]. However, general algorithms are not cost effective because the

complexity grows exponentially with the size of the network [27].

Algorithm 3.5. on the other hand, is cost effective for digital elec-

tronic networks, where the feedback loops are generally regular and

simple.
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j.6. Analysis Sepuencing for Relevant Parts

For most digital circuits, only a small portion of the entire

circuit is active at any time. Latency and selective trace (or event

scheduler) techniques have been used to take advantage of this fact

and save CPU time and memory storage [13, 14]. Latency exploitation

amounts to identifying the inactive parts of the circuit at each

timepoint in the solution process and bypassing them at that

timepoint. In contrast, the selective trace technique depends on

finding the active parts and analyzing them in the proper sequence.

Beyond these two techniques, a new technique which could save addi-

tional computation time and memory is described next.

In many cases, especially in digital circuits, the output of

interest may be directly or indirectly affected by only a subset of

the subcircuits in the system. These subcircuits will be referred to

as the 'relevant' parts of the system. During the simulation, it is

only necessary to analyze the relevant parts even if the remaining

parts of the system are active. For example, Fig. 3.7 (a) shows the

entire circuit to be analyzed, which has been partitioned into seven

unilateral subcircuits. If one is only interested in the output of

subcircuit 7, then, instead of all seven subcircuits, only four sub-

circuits 1, 2, 4 and 7 need to be scheduled and analyzed (Fig. 3.7

(b)). Simillar results can be obtained as shown in Fig. 3.7 (c) and

(d) if the output of subcircuit 6 only. or subcircuit 5 only, are of

interest. The concept of analyzing only 'relevant' parts is similiar

to the concept of 'segementation' in logic simulation [27].
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2 2

34 4

56 7 7

(a) (b)

22

6 5

(C) (d)

FP- 67 32

Fig. 3.7 An Illustrative Circuit.
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This approach can be combined with either a latency technique or

a selective trace technique to further increase the speed of simula-

tion. For the large-scale circuit simulation, an efficient algorithm

of scheduling the relevant parts is given below. First, the sequence

of analysis is constructed for the G(VE) corresponding to the entire

circuit by using Algorithm 3.3 or Algorithm 3.4. Second. the ver-

tices associated with the relevant parts are found and labeled by

tracing backward from the outputs of interest to the inputs.

Finally, the nonrelevant vertices are deleted from the sequence of

analysis. Then the remaining sequence identifies the relevant parts.

Algorithm J.6

This algorithm is to sequence the vertices of the relevant parts

only.

To describe the algorithm, we use the following notations

j lct(i), i-1.m, : the sequence of analyzing vertices v., jne,

of the relevant parts only.

lbk(v i) - 1 if vi is in the relevant set

- 0 elsewhere.

The algorithm is composed of three parts

Part I : (analysis sequencing for the directed graph G(V,E)

which corresponds to the entire circuit)

BEGIN
k-1
FOR each vertex v, in G(V,E) DO

BEGIN
nu(vi)=nfin(v.)
IF nI(vi)= 0
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EDTHEN push the vertex v. into the queue Q

REPEAT
IF the queue Q is not empty
THEN

BEGIN
POP Out v i from the queue Q
s(k) v.
k-k+1
FOR each vertex v. in fout(vj) DO
BEGIN

nu(v.i)-nu(v.)-lIFn(vi.0 1

END THE Ps into the queue Q

END
ELSE
BEGIN

check the feedback path
(see the Algorithm 3.5)
push the associated vertex into the queueQ

END
UNTIL all vertices in G(V,E) are scheduled Wkm)

END

Part II :(identifying the relevant vertices by tracing them

backward from the vertices v oil i=l~m"D whose voltage values are of

interest)

Reverse every edge in G(V,E) and obtain GR(VE). Since fin(v)

and fout(v) in G(VE) are fout(v) and fin(v) in G (VE), let

finR (v)-fout(v) and foutR(v)=fin(v).

BEGIN
FOR each vertex v OiDO

BEGIN 0

push the vertex v o1 into the queue Q'
lbk(v Oidm

END
REPEAT

BEGIN
pop out the vertex v.i fromtequeQ
IF nfln(v.# m th)qeu0

BEGIN
FOR each vertex v. iin fout R(v DO~E
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BEGIN
IF lbk(vi)=O
TEEN

BEGIN
push v. into the queue Q
lbk (v i) =

END
END

ED END

MNIL the queue Q' is empty
END

Part III .(deleting nonrelevant vertices from the sequence

obtained in Part I and giving the sequence of the relevant set only)

BEGIN
k=O
FOR i-1TO m DO
BEGIN

IF lbk(s(i)M-
THEN
BEGIN

k=k+l
lcr(k)=s(i)

ED END
END

i..Extension jo_ Multiprocessor Computer

First, we assume that the analysis time for each vertex is the

same and that the directed graph is acyclic. If there is no limita-

tion on the number of processors or if the number of processors

available is not less than the maximum number of processors required

for each level of the sequence, then the minimum computation time is

obtained.
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Lemma 3.3

If an unlimited number of processors are available or if the

number of processors available is not less than the maximum number of

processors required, then the minimum completion time of the solution

process is the number of levels, which is the length of longest path

in the directed graph.

For example, for the directed graph in Fig. 3.2, the minimum

completion time is 9.

When the number of processors required is too large, many of

them will be idle most of the time, which is not economical. In

practice, there is always a limit on the number of processors avail-

able in a multi-processor computer system. Therefore, we will con-

sider next the case when a limited number of processors are avail-

able.

In recent years, many scheduling strategies have been proposed

to process the task directed graph with the number of processors

available [28]. These strategies show different levels of complexity

and give different degrees of processor utilization.

Reverse each edge in G(V,E) and obtain the reversed graph

GR(V,E). The level number assigned by Algorithm 3.1 to a vertex v in

GR(V,E) is levR(v).

Definition 3.6 :

The rank r(v) of a vertex v is defined to be
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r(v) = D - 1evR(v)

where D is the depth of the directed graph G(V,E).

Examole 3.6

The rank sequence for the directed graph in Fig. 3.2 is

rank 0 1 2 3 4 S 6 7 8

2 1 8 6 17 21 22 25 27
3 11 7 20 23 26 28
4 12 13 24
5 14 18
9 15 19

10 16

The rank number is the latest time that a vertex must be

scheduled to have the minimum completion time for the directed graph.

A ready task has been defined to be the vertex v for which the

vertices in fin(v) have all been scheduled. The strategy followed is

to schedule the vertex with the smallest rank number among all the

ready tasks.

Example 3.7

For the directed graph shown in Fig. 3.2, if the number of pro-

cessors available Is p=3 , the sequences by using the above stategy

are

p=3
sequence 1 2 3 4 5 6 7 8 9 10 11

2 4 10 12 16 13 17 21 22 25 27
1 5 8 14 6 18 20 23 26 28
3 9 11 15 7 19 24
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If the strategy is to schedule the one with the smallest level

number instead of that with the smallest rank among the ready tasks,

then the total completion time may be longer. The reason for this is

that the level number can be smaller than the rank number, which may

delay the scheduling of key vertices. This phenomenon is shown in

the following example.

p=3

sequence 1 2 3 4 5 6 7 8 9 10 11 12

1 4 7 10 13 16 17 20 21 22 25 27
2 5 8 11 14 18 23 26 28
3 6 9 12 15 19 24

It can be seen that the completion time is 12 rather than 11 as

in the previous example.

The time to finish all the tasks (the schedule length) provides

a measure of processor utilization. For the strategy of scheduling

based on the smallest rank number, the ratio of the schedule length

and optimal schedule is bounded by 4/3 for two processors and 2 -

1/(p-1) for p > 2 processors.

There are several algorithms which give the schedule length

closer to the optimal, for example, the Coffman-Graham algorithm

1291. The ratio of its schedule length and the optimal is bounded by

2 - 2/p where p is the number of processors. These algorithms have

more complex strategies.
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In practice, the analysis time for each vertex (suboircuit) can-

not be the same and the number of processors available may be vari-

able. One processor should be assigned for the sequencing task. it

is assumed that this sequencing processor is efficient enough and it

will not delay any task of analyzing the vertex (subcircuit). Algo-

rithm 3.7 below gives one example of such kind of algorithm.

A1lQ.o~r 1.7.

BEGIN
k-1
FOR each vertex v Iin G(VE) DO

BEGIN
nu(v1)=nfIn(v.)
IF nu(v.)..O

E1DTHEN push the vertex vi into the queue Q

REPEAT
IF the queue Q is not empty
THEN
BEGIN

the number of processors available is p
the number of ready tasks In the queue Q is q
IF q > p
THEN u-p
ELSE n-q

k-0
REPEAT (analyze these u vertices on n processors)

POP Out v.i from the queue Q
k=k+l
FOR each vertex v I in fout(v.) DO
BEGIN

nu(v,)m-nu(v.)-1
IF an(v,.o

EDTHEN push vi into the queue Q

UNTIL k-n
END

UNTIL all vertices in G(VE) are scheduled Wkm)
END
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.- Discussion

In this chapter, different applications of analysis sequencing

were discussed. As the task of sequencing needs to be done only once

before analyzing the circuits, it vill require a small portion of the

total computation time. It is worthwhile to implement the sophisti-

cated algorithms which could save computation time and increase the

accuracy on the simulated results. In PREMOSo Algorithms 3.4. 3.5

and 3.6 have been implemented and the results are very satisfactory.

The scheduling algorithms for multi-processor computers depend

on the characteristics and the structure of the computer and on the

type of simulator being implemented. It has been shown in (23] that

the speed of logic simulation could be increased more than several

hundred times by using logic processors and array processors. For

large-scale circuit simulation, the study of sequence scheduling on a

multi-processor computer is a promising area of research.
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CHAPTER 4

Nonlinear Analysis Methods

~..Introduction

For the circuits containing nonlinear elements, both DC analysis

and transient analysis require solving sets of nonlinear algebraic

equations of the form

a (Zn) - 0 (4.1)

as described in Chapter 2. Eq. (4.1) is usually solved by using a

modified Newton-Raphson's method. In large-scale circuit analysis,

the entire circuit is partitioned into smaller subcircuits and non-

linear analysis is performed at the subcircuit level, which could

provide savings in CPU time. In Section 4.2, different ways of

decomposing an electronic circuit into subcircuits are discussed. DC

analysis is necessary to provide the operating points at initial

timepoint and is also used at every timepoint during the numerical

integration procedure. Initial DC analysis in large-scale circuit

simulation Is described in Section 4.3. In Section 4.4 it is shown

that solving the partitioned nonlinear subsystems sequentially takes

much less effort than solving the entire system without partitioning.

A new modified Newton's method for the DC analysis of NOS transistor

circuits using a 2-element companion model for the NOS transistor

(see Appendix 1) will be described in Section 4.5. The convergence
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properties of the new technique are Investigated in Section 4.6. The

discussion and conclusion are given in Section 4.7.

J._. Decomnositign

In macromodeling approaches such as in NOTIS [6] and MOTIS-C

[7], each subcircuit corresponds to a logic element such as a NAND,

NOR or transfer gate. Generally this approach does not give good

accuracy because interactions among logic elements by transfer gates

and series drive transistor effects are not modeled sufficiently.

Recently, two approaches have been proposed to decompose circuits

into unilateral subcircuits. The first is to decompose the circuit

into subeircuits based on a clustering algorithm applied to the cir-

cuit model in steady state; i.e. with all capacitors open-circuited.

This approach works well for NOS circuits since in steady state the

gate is not affected by the source or drain voltage. This approach

has been used in NOS timing (8] and logic simulation [3]. For gen-

eral circuits containing bipolar transistors, further approximations

are needed to obtain this type of 'one-way' circuit decomposition

(9]. Note that in this decomposition approach, subcircuits composed

solely of transfer gates are avoided. The second approach of circuit

decomposition is modular partitioning, where the circuit is composed

of identifiable modules or subcircuits (30]. In the program PREMOS,

a number of subcircuit types have been selected as primitive modules.

which have the 'one-way' property.
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After the procedures of decomposition and analysis sequencing

are completed, the DC analysis at the initial time point is done to

give appropriate initial values of voltages or currents for the tran-

sient analysis. At this initial DC analysis, all capacitors are

open-circuited and their values are assumed zero. Some node voltages

could have been preset as the initial guess. Instead of solving the

entire circuit, the DC analysis is processed sequentially at the sub-

circuit level following the analysis sequence. Although this

approach is a relaxation one compared to conventional circuit simula-

tion, it could generally provide relatively accurate DC levels with

reduced computational efforts. Some modification to Newton's method

have been used in evaluating the DC levels at each subcircuit: (1) if

the evaluated node voltage exceeds 2 Vcc, where Vcc is the power sup-

ply, then it is only recorgnized as Vcc; (2) if the computed value of

node voltage is less than -Vcc, then it is set to 0. The objective

is to prevent any large change of node voltage solution.

~D iussion ueu a W Conlite.Rate s

In this section, we want to illustrate that, by using the

Newton-Raphson method, solving the partitioned nonlinear subsystems

sequentially takes less effort than solving the entire system. most

of the theorems and definitions mentioned below are found in [16, 31.

32].
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The spectral radius p(A) of the a by a matrix A is defined as

the maximum of the moduli of the eigenvalues of A; i.e., if

iinl,D is the set of eigenvalues of A, then

p(A) - max I 1 [ (4.2)
1(i(n

We consider the iterative method as a completely consistent

linear stationary method of first degree, which may be expressed in

the form

u(n + l ) = G u(n) + k n - 0, 1, 2 ... (4.3)

where G is the real n by n iteration matrix and k is an associated

known vector.

Theorem -4. (32]

The iterative method (4.3) is convergent if and only if the

spectral radius p(G) is less than one, i.e., p(G) ( 1.

We define the rate of convergence, R, by

R(G) = - 1og p(G) (4.4)

Theorem 1.2 [32] :

Let the block triangular matrix T be partitioned. Then

n
X(T) - U X(Ti) (4.5)

1=1

where Tii is the block diagonal matrix and X(T) and X(Tii)

represent the set of eiSenvalues of T and Tii respectively.
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Let the iteration matrix G be partitioned into the block lower tri-

angular form. We could obtain the following theorem:

Theorem .

The convergence rate of the iteration matrix G is the minimum

of that of the block diagonal submatrix Gii, i.e.,

R(G) = min R(Gii) (4.6)
i

Proof

It follows from Theorem 4.1 and Theorem 4.2.

For the system whose iteration matrix can be represented in the

lower block triangular form, the number of iterations required for

the entire matrix to converge would depend upon the maximum of that

among all of Its block diagonal submatrices. In practice, for many

of the subvectors ui, few iterations are needed to reach steady

states. When the subsystems are solved independently in a certain

sequence, the number of nonlinear iterations required to solve each

subsystem depends upon its own rate of convergence. By using such an

approach, the computation time could be reduced significantly. For

the general systems whose iteration matrix is not in the block lower

triangular form, the block Gauss-Seidel-Newton algorithm [16] could

be used effectively provided that the coupling among the subsystems

is not very 'strong'. Thus, to solve large-scale nonlinear system,

the basic approach is, first, partition the entire system Into sub-

systems, and then, analyze the subsystems in the proper sequence.
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J.3. Numerical Pronerties of The Mixed Method

In conventional circuit analysis, 3-element companion models of

static MOS transistors (Fig. 4.1) are generally used for representing

the nonlinear operations of the device. In our approach, we assume

that the gate-to-source voltage is given and thus use a 2-element

companion model (Fig. 4.2) to evaluate the Jacobian matrix at each

iteration. For the Gauss-Seidel algorithm with analysis sequencing,

the fan-in gate voltage of pass transistor is known but the

corresponding source (or drain) voltage may still be unsolved. If we

use 2-element NOS transistor models by setting the unknown source

voltage initially equal to its value at previous iteration. the algo-

rithm will no longer be the standard modified Gauss-Seidel method.

It could be considered as a modified version of Newton-Raphson's

algorithm at the subcircuit level. In the following, the results of

using the 2-element model and the 3-element model for both Newton's

algorithm and the standard Gauss-Seidel algorithm are compared. The

convergence rate of the DC iteration is also discussed.

(i) the algorithm with the 3-element companion model

For the test circuit shown in Fig. 4.3, the nodal equations of

the equivalent circuit using a 3-element model for the MOS device

(Fig. 4.4) are

g cv- )-il+g2V mv3+i2+g (V-V)34-v2+v
&(1cc - 1 +22 v1+g3 2 v3 i2+3 (v1V2 )m3 (v4-2 )+i 3 = 0 (4.7)

g3 (v2 -v1 )-i3-gm3 (v4 -V2 ) W 0 (4.8)

The above two equations can be represented in matrix form as
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gmvgS

GO §o ds

OS

Fig. 4.1 3-Element Companion Model for MOS Transistor.



*M1

M3

M2

Fig. 4.3 Test Circuit.
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'C c

~g~1ogm 3(V4-VZ)

g3

0 - .2 i2 g9m2V3

F~ig. 4.4 Equivalent Circuit for Fig. 4.3 Using the 3-Element Model.
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[91+82+S3 58m3 5 3 vi 1 - 1vc iI -i352v3a~4 49

1S m 2 J L 13 v~4

or

M 1  v = 1

Solving (4.9) with the standard Gauss-Sei..l method, we obtain

9 1 g 2 9 g. 3 l3  [c2  =+ ' l1 2 1 3 5 2V 3  5 l 3 V 4 + ( 5 3 + 3 ) v p21

(4.10)
or

Mi

(ii) the algorithm with the 2-element companion model

If we use the 2-element companion model for the MOS device and

take the previous value of the source voltage v 2 in evaluating the

model of T3, then the corresponding nodal equations of the equivalent

circuit (Fig. 4.5) become

5lg * 3- 3 1 g i c c 1 -i - ( 4 1 1 )

-g f' *3 J 213

or

M 2  V =2

where
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vcc

3

Fig. 4.5 Equivalent Circuit for Fig. 4.3 Using the 2-Eleuent Model.
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12 = i2 + 9.2v3

3= + Sm~v4 - 3WV2

and VP is the value of v2 at previous iteration.

In order to solve the above equations by using the standard Gauss-

Seidel method, (4.11) should be modified to

[g 1 ; 2 +g o]vi] [ ~ 0 +e...'..'+~v~](4.12)

or

2 V

where

12 = i2 + g.2v3

= i 3 + gm3 V4 -gm3v

and vP is the value of v2 at previous iteration.

In the following, four methods are compared. Method 1, whose

iteration matrix is M1 in (4.9), represents the conventional Newton-

Raphson method using the 3-element companion model. Method 2 with

iteration formula (4.10) is the standard Gauss-Seidel method using

the 3-element model. Method 3 represented by (4.11) is the modified

Newton's method with the 2-element model. Method 4 with iteration

formula (4.12) is the standard Gauss-Seidel method using the 2-

element companion model.
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Table 4.1 Rate of Convergence.

Initial Guesses No. of DC Iterations Required
(vI P v2' V3 . v4)

(w/l)* of TIM T3 Method 1 Method 2 Method 3 Method 4

(1) 1.0 1.0 5.0 5.0
(4, 6. 4) 11 17 11 17

(2) 1.0 1.0 5.0 5.0
(4, 10, 1) 19 20 19 20

(3) 1.0 1.0 5.0 5.0
(4, 10, 2) 13 15 13 15

(4) 1.0 1.0 5.0 5.0
(4. 10, 4) 10 14 10 14

(5) 4.5 3.5 1.0 5.0
(4, 6. 4) 77 77 72 72

(6) 4.5 3.5 1.0 5.0
(4, 10, 1) 141 141 137 137

(7) 4.5 3.5 1.0 5.0
(4, 10, 2) 104 104 100 100

(8) 4.5 3.5 1.0 5.0
(4, 10, 4) 77 77 72 72

*In this table, (w/i) means the ratio of channel width w to
channel length I of the MOS transistor.

Table 4.1 shows the rate of convergence of these four iterative

methods, where the same criterion for convergence is applied. The

number of iterations required for convergence depends upon the ini-

tial guess. The initial guesses are shown on the left-hand side of

Table 4.1. To compare these four methods, an initial guess far from

the solution Is selected and a very strict criterion for convergence



64

is set. This gives one of the reasons why the number of DC itera-

tions is large. The other reason is that the body effect is not

taken into account in NOS device modeling, which could result in

small convergence rate. According to the results shown in Table 4.1,

the following points could be made :

(1) Nethod 3 has the minimum number of iterations required in all

cases.

(2) The Gauss-Seidel method takes more or the same number of itera-

tions compared to the Newton's method, and there is also a little

discrepancy between the solutions.

(3) It was found that the smaller the w/l ratio of T3, the more the

number of iterations required to reach the solution. This can be

explained from the matrix structure: the smaller the 93" the smaller

the convergence rate.

I.J. The Number ol Iterations Reguired _o Achieve Convergence

In this section, a comparison is mode between the analysis

results obtained by using different methods for a fixed preassigned

number of iterations. During transient analysis, the initial guess

at any time is chosen as the previous value. Since the timestep is

either small enough or controlled by the local truncation error, the

initial guess is assumed to be close to the correct solution. There-

fore, in practice, it is not necessary to go through as many itera-

tions as shown in Table 4.1 to converge to the solution. Depending
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upon the operating points, different numbers of iterations are

required for convergence. In large-scale circuit analysis, the

number of iterations could be limited to save the computation efforts

in evaluating device models and in solving the matrix equations pro-

vided the analysis results are reasonably accurate. In Table 4.2,

the solutions after 3 iterations using the four different methods at

different operating points are shown, where 'final solution' means

the solution by using Newton's method (Method 1).

From Table 4.2, the following observations can be made:

(1) Even with 3 iterations, the solutions for these four methods

are good enough to satisfy the accuracy requirements of large-scale

circuit simulation.

(2) From the accuracy point of view, Method I and Method 3 are

better than Method 2 and Method 4. After considering the efforts in

evaluating the device models, Method 3 seems to be the best choice.

In PREMOS, there are a number of modular subcircuits which are

primitives for the entire circuit. By studying the structures of the

subcircuit equations and after performing a large number of DC

analyse of the individual subcircuits, a fixed number of iterations

was selected for each type of subcircuit, which gave reasonably accu-

rate results under a wide range of initial conditions. By assigning

a fixed number of iterations to different subcircuits, we could elim-

inate checking for convergence and having to compute unnecessary

additional iterations, and thus reduce the computational require-

ments.
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Table 4.2 Analysis Results.

Initial Guesses The Values of v and v2
(vi a v2, , v4 v (v v2) _ After 3 Iteralions

w/l of T1.T2 T3 Solution Method 1 Method 2 Method 3 Method 4

(1)
0.3 0.3 5.0 5.0 0.20624 0.20655 0.21352 0.20656 0.21352
(4, 10, 8) 0.20624 0.20681 0.21467 0.20681 0.21468

(2)
0.3 0.3 5.0 5.0 0.20624 0.20674 0.20979 0.20674 0.20979

(4, 10. 4) 0.20624 0.20766 0.21169 0.20767 0.21170

(3)
0.3 0.3 5.0 5.0 0.35008 0.34926 0.34545 0.34926 0.34545

(4, 6, 4) 0.35007 0.34844 0.34396 0.34845 0.34397

(4)
4.9 3.9 1.0 5.0 4.9966 4.9917 4.9912 4.9914 4.9914

(4, 10, 8) 3.9777 3.9230 3.9230 3.9256 3.9256

(5)
4.9 3.9 1.0 5.0 4.9966 4.9929 4.9927 4.9928 4.9928

(4, 10, 4) 3.9687 3.9134 3.9134 3.9143 3.9143

(6)
4.9 3.9 1.0 5.0 4.9979 4.9941 4.9939 4.9940 4.9940

(4. 6, 4) 3.9687 3.9134 3.9134 3.9143 3.9143

_4. Discussion and Conclusion

The efforts required to evaluate the 3-element device model cost

at least twice as much as that required to evaluate the 2-element

device model. It has been shown that the new iteration method with
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I the 2-element device model gives the same or a better convergence

rate compared to that of the conventional 3-element model. Further-

more, comparison of the accuracy after 3 iterations indicates that

the analysis results with this new iterative method is acceptable and

is still comparable to the conventional Newton's method using the 3-

element model. Of course, since convergence is not being checked, it

is conceivable that under certain conditions, the results could be

inaccurate. More theorectical study on this nonlinear iteration

method needs to be carried out.

To set a fixed number of Iterations for different types of sub-

circuits seems to be an empirical approach. Such concepts have been

implicitly used in several large-scale circuit simulators, such as

using only one iteration in timing simulators (6, 71. It is not easy

to decide the optimal number of iterations required. Even for cer-

tain types of subcircuits, there are many factors involved, such as

the device sizes, operating points, etc. To evaluate the number of

iterations required for each subcircuit, we could have a customized

formula which gives different weights to the key factors involved.

For simple single-node subcircuits, like inverters or NOR gates, one

iteration has been found to give fairly good results. In general,

for NOS circuits consisting of two to four nodes, three iterations

seem to be sufficient to solve the subcircuit.



68

CHAPTER 5

The Modified Gauss-Seidel Method

i.4. Introduction

In the standard Gauss-Seidel method, any feedback loop is decou-

pled by assuming that there is no change in the feedback loop over

the integration timestep. Since previous values are used for the

'unsolved' variable, errors are introduced. Traditionally, these

errors could be reduced by some relaxation techniques such as the

Newton-Gauss-Seidel method [16]. However, in large-scale circuit

analysis, a one-sweep approach is desired to minimize the computation

time. To increase the accuracy of the analysis with only one sweep,

it has been found in this research work that explicit formulas could

be used to predict the 'unsolved' variables when feedback loops exist

in the system. Section 5.2 introduces a modified Gauss-Seidel method

using prediction. The numerical properties of the method are dis-

cussed in Section 5.3. In Section 5.4, a numerical method is used to

estimate the order of convergence for the proposed modified Gauss-

Seidel method. In Section 5.5, a test for checking the presence of

parasitic oscillatory components in the solution is discussed. The

chapter concludes with the conclusion and discussion in Section 5.6.
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.. Modified Gauss-Sil Method

Using the Gauss-Seidel method in analyzing a circuit, the 'feed-

forward' interdependence among the subcircuits is accounted for by

the analysis sequencing procedure. The 'feedback' interdependence,

on the other hand, which is usually caused by feedback loops or

floating capacitors or any other bilateral element connecting two

subcircuits, is taken care of by using previous values. In this

chapter, we introduce a new technique, the modified Gauss-Seidel

method. This technique uses a forward predictor to evaluate the node

voltages on the feedback loops (or the other node of a floating capa-

citor), rather than the previously computed values, when solving the

associated subcircuits. Firstly, we consider the method using a

first-order predictor with the backward Euler integration formula.

(i) feedback loops

Consider the configuration shown in Fig. 5.1, the nodal matrix

for conventional circuit simulation will be

-Yll m -V IJ jiV 1
Y21 Y2 2  v2 J2

Y3 2 Y3 3  v3  3 (5.1)

YNN-1 YNN vN "N

where gm is the transconductance at the operating point in the MOS

device model.
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Fig. .1A N-Stage Feedback Circuit.

4V VH

~25ns -

Fig. 5.2 3-Stage Ring Oscillator.
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If one uses the standard Gauss-Seidel method, the g. term in the

upper triangular part caused by the feedback is moved to the right-

hand side as shown in (5.2), where the term gMvN uses the value of vN

computed at a previous iteration step.

y1i 1 Jl'Jl-gmVN

Y21 Y2 2  v2 j2

Y32 Y33 v3 j3 (5.2)

YNN-I YNN 'N -JN

Note that the voltage vN is also one of the controlling voltages

which determines yll during each iteration when solving the whole

matrix. Thus, both Yll and Jl are affected by the value of VN. In

the proposed approach, the value of vN is first predicted at the

present time point by using previous points v' n ) and V n - l ) according

to the following formula

,(n) (n-1)
v(n+ l ) ivn) + h ( N N (5.3)
N guess n hn_ 1

where hn and hn.I represent the present and the previous time steps,

respectively.

A test program In which the above technique is implemented has

been used to simulate a 3-stage ring oscillator (Fig. 5.2), which is

a critical example of simulation with a feedback path. The timestep

is variable and controlled by the local truncation error at each

timepoint during the analysis. The results obtained are shown in
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Fig. 5.3, where it can be seen that the new approach produces more

accurate results than the standard Gauss-Seidel method in about the

same amount of computation time.

(ii) floating capacitors

The proposed method can also be used to take into account the

feedback effects of floating capacitors. For the circuit shown in

Fig 5.4, the nodal equation in matrix form isE -c/h] [v] l1
Y21 Y22 v 22 = 25.4)

-c/h Y32  Y3 3  v 3 Lj 3

Using the proposed method, the value of the v3 is predicted by

vg in solving the equation3guess

Yll - (c/h)v 3 guess = Ji (5.5)

Then

v, = (y 11 -(j + (c/h)v3 guess) (5.6)

where

(a) (n-i)

v(n+l) = v(n) + 3 (5.7)
3 guess 3 nhn 1

As shown in Fig. S.' (a) and (b), this method produces more

accurate results than the standard Gauss-Seidel method when compared

with the circuit simulation obtained by solving the entire matrix

without partitioning. In all cases, the backward Euler formula is

used for numerical integration and a local truncation error timestep
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V (3) A-

4-

0

011

0 40 80 120
Time (ns)

FP- 7534

A Solving The Entire Matrix Without Partitioning

B The Proposed Modified Gauss-Seidel Method

C The Standard Gauss-Seidel Method

Fig. 5.3 Response of circuit of Fig. 5.2.
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CI

C3

125 ns - ---- -

5 ns

Fig. 5.4 Bootstrap Capacitor Circuit with
C 1 =C 2 = c 3 = 13.2pf. c = 20.Opf.
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I v(1)

5-

4- A__

0
>2C

0 040 60 80 l00
Time (6S) FP-6?Z2

A Solving The Entire Matrix Without Partitioning

B The Proposed Modified Gauss-seieei Method

C The Standard Gauss-Seidel Method

Fig. 5.5 (a) Voltage Responses V(l) for Fig. 5.4 with the
Backward Euler Integration Formula.
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V (3)

4-

0

0 204I0s 0

Time (nS) FP-6725

A Solving The Entire Matrix Without Partitioning

B The Proposed Modified Gauss-Seidel Method

C The Standard Gauss-Seidel Method

Fig. 5.5 (b) Voltage Responses V(3) for Fig. 5.4 with the
Backward Euler Integration Formula.
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control scheme with the absolute tolerance 1.0e-3 is employed during

the integration process. With the same criterion used for checking

the convergence of the nonlinear iterations and the same tolerance on

the local truncation error, the number of total timepoints in this

example is 427 for the circuit simulation, 398 for the standard

Gauss-Seidel method and 419 for the modified Gauss-Seidel method.

Since these three methods require about the same number of solution

timepoints for transient analysis, they seem to have the same order

of accuracy.

The modified Gauss-Seidel method has also been applied using the

trapezoidal integration formula. In this case, the corresponding

second-order predictor to be used for the 'unsolved' variables vi on

the feedback loops (or the other node of a floating capacitor) is of

the form

(n) (n-1) (n-i) (n-2)
v!n+l) = v(n) + h C(312)( i )-(1/2)( i 1 )]
1 guess I n hn_ 1  hn 2

(5.8)

For the bootstrap capacitor circuit given in Fig. 5.4, the simulated

results shown in Fig. 5.6 indicate that this second-order method is

also more accurate than the standard Gauss-Seidel method. In these

simulations, the timestep is determined by a local truncation error

timestep control scheme in which the absolute tolrance is a =

1.0e-12 and the relative tolerance er = 1.0e-4 [5]. The total

number of timepoints in this example is 140 for the circuit simula-

tion, 117 for the standard Gauss-Seidel method and 127 for the modi-
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- V(1)
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Time (nS) FP-2675

A Solving The Entire Matrix Without Partitioning

B The Proposed Modified Gauss-Seidel Method

C The Standard Gauss-Seidel Method

Fig. 5.6 (a) Voltage Responses V(1) for Fig. 5.4 with the

Trapezoidal Integration Formula.
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020 40 60 80 100
Time (nS) FP-6724

A :Solving The Entire Matrix Without Partitioning

B :The Proposed Modified Gauss-Seidel Method

C ThIe Standard Gauss-Seidel Method

Fig. 5.6 (b) Voltage Responses V(3) for Fig. 5.4 with the
Trapezoidal Integration Formula.
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fied Gauss-Seidel method. Generally, with the same accuracy require-

ment, the analysis using the trapezoidal integration formula takes

fewer timepoints than the backward Euler formula.

In summary, the modified Gauss-Seidel method is used to solve

the partitioned system of equations, which now becomes a sequence of

subsystem equations of the form

1k(x +  ' 1k-1"k .. k.D n"1, )_0 (5.9)

where

zx. xn + hi" (5.10)

in conjuction with the backward Euler integration formula, and

x= x + h[(3/2)in - (1/2)i -1] (5.11)

i i 1 1

with the trapezoidal integration formula. For a nonlinear system,

eq. (5.9) is then solved using Newton's method.

3.J. Numerical Properties of Te Predictor Method

To study the numerical properties of an integration method, a

linear time-invariant zero-input asymptotically stable system of dif-

ferential equations is chosen as the test problem, which is usually

of the following form
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i = Ax

x(O) = x°  (5.12)

where A E Rn xn and the set of eigenvalues of A, a(A), is in the

open left half plane. Since floating capacitors could exist in the

circuit, the test problem for the modified Gauss-Seidel method should

be of the form

Ci = Ax

i - C-'Ax = A'x (5.13)

where C represents the capacitance matrix and is considered to be

nonsingular. The eigenvalues of C 1 A, o(C-1 A), are assumed to be

in the open left plane. Let C = L+D+U where L is strictly lower tri-

angular, D is diagonal and U is strictly upper triangular matrix.

Similiarly, we have A - L' + D' + U' where L', D' and U' are defined

in the same way as L, D and U.

Since either the backward Euler or the trapezoidal formula could

be used to discretize the derivative operator, our discussion is

separated into two parts:

(i) The modified Gauss-Seidel algorithm with the backward Euler

integration formula :

The backward Euler formula is given as

ik+ 1 = (1/h)(xk+1 - x k ) (5.14)

where h t k+1 tk and k subscript refers to a particular time. By
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applying the predictor formula

x ~X + hi (5.15)
k+1 k k

with the backward Euler Integration formula to the test system

(5.13), the following recursive relations are obtained:

E(D+L) - h(D'+L')Jxk~l Czk - Ux k+1 + bU'x k+1

= CMx - Utzx + hi k3 + hU'(x + hi k]

= Cx - Utz + hC'lAx kI + bU'[x k+ hC'lAX k]

= (C-U) + h(U'-UC1lA) + h2U'C'lA]x (5.16)

x k+1 =MB Wx1:(5.17)

where x k and i kare assumed to be exact and the companion matrix

M (h) = I(C-U) - h(A-1V)V1 ([(C-U) + h(U'-UC1'A) + h2U'C1'A] (5.18)

TO study the numerical properties of the integration algorithm

described in (3.17), the following definition is used (331.

Definition 5.1

An integration algorithm is consistent and zero-stable if its

companion matrix H(h) can be expanded in power series as a function

of the stepsixe h as

11(h) =I + hA' + 0(h2) (5.19)

Theorem 1.1

The modified Gauss-Seidel algorithm with the backward Euler
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integration formula is consistent and zero-stable.

Proof

The companion matrix %B(h) in (5.18) can be further expanded as

%B(h) - I - h(C-U)-l(A-lV)]F1 [I + h(C-U) 1'(U'-UC1'A) + h2 (C-U1fl1U'C1 A]

- (I + h(C-U)1'(A-U') + 0(h2)] [I + h(C-UY'l(U'-UC'lA) + 0(h2)]

- I + h(C-U) 1'(A - UC1lA) + 0(h2)

- I + hC 1lA + 0(h2)

- I + hAl + 0(h2) (5.20)

where I Is the Identity matrix. Following Definition 5.1, this algo-

rithm is consistent and zero-stable.

If a linear multistep method is consistent and zero-stable, then

it is convergent.

The proof of Theorem 5.2 can be found in many numerical books such as

134].

TheoremA

The modified Gauss-Seidel algorithm with the backward Euler

integration formula is convergent.

Proof

It follows from Theorem 5.1 and Theorem 5.2.
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Let x(t) be the exact solution at t. The local truncation error

(LTE) is given by:

LTEk+li x(t k+1) 1 k+1 (5.21)

If the order of the accuracy of the local truncation error is p+l.

which means LTEk+l -O(hP+ 1 ), then the method is of order p.

Theorem ffA

The modified Gauss-Seidel algorithm with the backward Euler

integration formula is a first-order algorithm.

Proof:

The Taylor series expansion for x k is

x= X(t k1) - hi(t k1) +0(h 2)

=x(t k1) - hA'x(t k1) + 0(b 2 (5.22)

Substitut Ing (5.22) into our local truncation error computation, we

get

LEk+1 xtk+1)- k+1

X I k~t ) - (I + hAl + 0(h2)]1 k

I(I - (I + hA' + 0(h2)][I - WA + 0(b2)]lX(t k+1

- (h2 ) (5.23)

Therefore, It is a first order algorithm.

Although we have considered D and D' to be diagonal matrices,

the above properties can be extended to the case where D and D' are
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block diagonal matrices.

If we now consider the standard Gauss-Seidel algorithm with the

backward Euler formula and apply it to the test system (5.13), we get

[(D+L) - h(D'+L')]xk+1 = Cxk - Uxk + hU'xk (5.24)

k+1 GS(h)xk  (5.25)

where

GS (h) = [(D+L) - h(D'+L')]-1 [(C-U) + hU']

Using the binary expansion, MGs(h) can be expressed as

M (h) = I + h(C-U)-lA + 0(h2 ) (5.26)

GS

Thus, we can conclude that the standard Gauss-Seidel algorithm is not

consistent when floating capacitors exist in the circuit.

For Gauss-Jacobi method, the same arguments can be made by

deriving the companion matrix

MGJ (h) = I + hD1 A + O(h2 ) (5.27)

which also inlicates thai the Gauss-Jacobi algorithm is not con-

sistent when floating capacitors exist in the circuit.

(ii) The modified Gauss-Seidel algorithm with trapezoidal formula

The trapezoidal formula

ik+1 (2/h)(xk+l - x) - ik (5.28)

applied to the test system (5.13) yields
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CZ k+1 - (h/2)Ax k+1 CZ Ck + (h12)i k (5.29)

The predictor for the trapezoidal integration formula has the follow-

ing form:

x k+I 1 xk + h[(3/2)i k- (1/2)i ]- (5.30)

(5.30) is an explicit second-order Adams-Bashforth formula. Applying

this predictor method to (5.29), we obtain

(DLk+1 (h/2)(D'+L')x k = Cx k- lix kI+ (h/2)i k+ (h/2)Ux I

= Cx k - U[x k+ (3h/2)i k - (b12)i k-J

+ (h/2)i k+ (h/2)U'Ex k+ (3h/2)i k- (h12)i k-

(5.31)

Assuming Xk# k-1 and i k1to be exact, (5.31) can be written as

follows

(C-U)x -~ (h/2)(A-U')x k = (C-U)x k+ (h/2)(A+U'-3UC1IA)x

+ (3h2/4)U'C 1lAx k+ (h/2)UC1lAx k1- (h2/4)U'C 1'Ax. -

(5.32)

and

xkl= [(C-1)-(h/2)(Au)Vl'[(C-U)+(h/2)(A+Ue-3UC-lA)+(3h2/4)UPC-1A],

+ [(C-U)-(h/2)(A-U)][(/2)JClA.1h 2/4)UDC1'Alxk-

= [I - (h/2)(C-Ur'l(A-U')]-'.[I + (h/2)(C-Ur'I(A+U--3UCr'A) +

(3h2/4)(C-U) 1lU'C1lA]x k+ [I - (h/2)(C-U)'l(A-U')1V'.

((h/2) (C-U)_ 1 UC 1lA - (h214) (C-U)'U'CrlAlx k- (5.33)
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Theorem 5.

The modified Gauss-Seidel algorithm with the trapezoidal

integration formula is consistent and stable.

Proof

Assuming x k and 'k-i are exact, the Taylor series expansion for xk-I

is

x k-i = I k - hi k+ (h2 /2)'X* k + 0(h 3 )

= [I - hAl + (h212)(A')2 + (h3)]x k (.4

Since the timestep h is small, we could also have the following

binary expansion

[I-(h/2)(C-UY 1'(A-U')]V' = I + [(h/2)(C-U)_1(A-U')J

+ [(h2/4)((C-UY_1(A-U'))2J + 0(b3) (5.35)

Substituting (5.34) and (5.35) into (5.33), we obtain

X k1 I I + hA' + O(h2)]xk

MT(h)I k 1(5.36)

Following Definition 5.1. this aigorithm is consistent and stable.

Theorem §.6:

The modified Gauiss-Seidel algorithm with the trapezoidal

integration formula is convergent.

Proof
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It follows from Theorem 5.5 and Theorem 5.2.

The modified Gauss-Seidel algorithm with trapezoidal integration

formula is of second-order.

Proof :

Assume xk and Xk_1 are exact and expand them into Taylor series

expansion

X k+l-i (-j x (tk+ I )

( -ij (C- A) Jz( t + )  
5.37)

where i-i, 2. Substituting (5.35) and (5.37) into (5.33). we obtain

the local truncation error

LTEk+l I x(t k+1 x k+l

0 (h3) (5.38)

Hence, the proposed algorithm is of second order.

In this section, we use a numerical test to verify the order of

convergence of the modified Gauss-Seidel algorithm with the backward

Euler integration formula. Assume that the numerical solution xa is

related to the exact solution x(t n) through the relation

xn  x(t ) + hP C(t ) (5.39)

n n
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where p is the order of convergence. Since the dependency of C(tn)

on the timestep h is of O(hP+l), the order of convergence for the

given system can be approximated by the following formula [36]

(z (h) - n
p - los ( n ) log2 (5.40)

For the linear circuit in Fig. 5.7, the order of convergence

found by using the above formula is given in Table 5.1. At initial

time (or time-0), V(1) = 5 V and V(2)- 0 V. Since the formula (5.40)

is more valid at a smaller timestep, it can be verified that the

value of p is closer to one as the timestep h gets smaller in Table

5.1. For the bootstrap capacitor circuit shown in Fig. 5.4. the

results of these tests are listed in Table 5.2. Because there are

nonlinear devices in this circuit, a number of iterations are

required at every timepoint. The input waveform at V(1) is a step

function falling from 5V to OV in the time interval 20ns to 30ns.

From Table 5.2, it is observed that the order of convergence of the

modified Gauss-Seidel method is about one at 24 ns and approaches one

at 28 ns with a decreasing timestep.

Accuray Tesl

Applying the nodal analysis to the test circuit of Fig. 5.8, we

obtain
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c- g1 g2 - = c2

Fig. 5.7 Test Circuit (a, = C2 = c3  S 1, l 2

Table 5.1 Order of Convergence for the Circuit in Fig. 5.7.

Measured Point p (h-2.0) p (h-1.O) p (h0.S)

V(1) 0.74 1.00 1.01
time-1l

V(2) 0.983 0.926 0.951

V(1) 2.40 1.90 1.53
tine -40 ... ..

V(2) 2.26 1.84 1.49
I. _______ ___________________ ___________
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4Table 5.2 Order of Convergence for the Circuit in Fig. 5.4.

Measured Modified
Point Gauss-Seidel Method

V(4) p (h-lns) p (h-0.Sns)

at 24 us 1.101 1.147

at 28 as 0.689 0.775

g3

[ C3

Cl 9Pv2  MV1  :92 C2

Fig. 5.8 Test Circuit.
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1 1 + v1I + gpy2 + c3(01 - i2) + S3(Vl - v2) - 0 (5.41)

02 #2 + 2 + A m 1 3vI  + C33(2 - 1 ) a 0 (5.42)

These node equations can be represented in the following matrix form

c I+c3 C 3 1 1+13 9 P'2
+ ]-0 (5.43)-3 2 +e3 L 2 m-3 2 +3 v 2

(5.43) can be rewritten in normal form

[ ] = ](5.44)
v2  v 2

where

A(ll)=(-(c2+c3 )(gl+S 3 )-c3 (g-g 3 ))/DE

A l,2)=(-( 2 +c3 )(gp- 3)-c3 (g2+g3))/DE

A(2,1)'(-(c +c3 )(g -3)-c$1l+S3))/DR

A(2,2)(-(c+1 c3)(g 2+S3)-c3 (gp-S 3))DE

and

DE-c c2+ (c 1+c )

The eigenvalues of the matrix A, '1 and 12" can be obtained

by solving the characteristic equation of A. The absolute ratio of

)1 and X2 - which are given in Table 5.3, shows the stiffness of

the test system (5.44) associated with the set of element values. By

applying the backward Euler formaula
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- 2L.!a~L(5.45)

to (5.43), we obtain

[(C +C )/h + S + S3 -C3/A + £3l1FS 3  v
/a3 h + - 3 (C 2+C 3)/h+92+S1 2

(c +C )/1
1 3 I c3 h 1 j 0 (5.46)

-a c3 h -(C 2 +C3)/I V 2 In-I

(i) Standard Gauss-Seidel Method

Using the standard Gauss-Seidel method in (5.46), we obtain

(C I(C14 3 )/ h+5 S,+ 3 03 1 ['2I +

-C3A+ ga- £3 (c2 +C 3 )h + 92 +9 1v2I

_ c 1+c 3)/h C22p/h[ l - (5.47)

3 2 3I2 n-1

Assume a solution of the form v 1 nEAizn and V2 n=A 2 z~ where AP~ A2 ~

0. Then ('~ ;i) is transformed into

((C +C )/h *.S1+g3)-(C +C )/h S _S3

[ /3 h +gm3 )+C 3 A z((c 2 c3)h +52+3)-(c2+c3)/hlL2I
(5.48)

To obtain a nonzero solution the matrix in (5.48) must be singular.

Thus the corresponding characteristic polynomial can be expressed as

Pz2 + Qz + R 0 (5.49)

wher e
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Pin((c I+c 3 )/h +Sl+S3 )((0 2 +c3 )Ih +12+&3)
Q-((c +c )Ih)(c+ /

1 3 )( 2+c3) +&2+g3)-((c2+c3)Ih)((cl+c3) +g~3

3lb +5-53 )(S 13)

R'((c I+c3 )lh) ((c 2 +c 3 )Ih)-(c 3 1h)(A -g 3 )

The sufficient and necessary condition for the nonexistence of

oscillatory parasitic components in the computed solution is that the

roots of (5.49) are real and positive. Critical timestep h crtis

defined as the maximum timestep at and below which all roots of the

associated characteristic polynomial are real and positive. If Q2 _

4PR12 0 *then the roots are real; otherwise, they become complex.

Whether the roots are positive will depend on the circuit parameters;

for example, when g p - 53 - 0 in the given test circuit, the roots

are always real and positive and thus there is no limit on h crit* In

general, a table look-up method can be used to find h cri t if it

exists. For each set of element values shown in Table 5.3. the

correspondent h crit is infinite in the cases #1 to #10 and at least

larger than 1.Oe+4 for #11 and #12.

(ii) Modified Gauss-Seidel Method

By applying the modified Gauss-Seidel method in (5.46), we

obtain
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(cI 3 )/h' 1 ( 2 3 )/h 12 13 +

-a3 .S-3 ( c3/ 5+3[ 1

[ -(C +c )/ -C3A+2S,-2,,][vI] +
c3/h -(C 2 +c3 )/h v2 n-+

[0 ; 3 /h-1p3][il - 0 (5.50)

0 v2 n-2

Assume a solution of the form v1 n A1
z n and v 2 n A2 Z n z where A1,

A2 A 0. Then

2(c +0 )h +g +g3 z(-c 3h +2g -2 S3A1
-z( 1 c 3c )/h) +c 3/A -ap +1 3

+c/h.g ~~ L 2]- 0 (5.51)
Z(-€s/h +S)-h3  z(( + A +S2+S3 A2+c3/h -(fc+c3)/h)

Again, this matrix must be singular. Thus, the followint charac-

teristic polynomial can be obtained

Pz3 + Qz2 + R + S - 0 (5.52)

where

P ((c 1+€$3)/h -&Ii+13)((c 2 +€3)/h +S2+3)

Q-((c2+c$)/h)((c€+c 3 )/h +g 1 +gS ) - ((c +c 3)/h)((c 2 +c3 )Ih +2+1 $

-(-c3 /h +2g -2g3 )(-c3/h +g,-1 3 )

R=((c+C 3 )/h)((c 2+c3 )/h) - (c3 /h)(-c3 /h +21p-23)

-(-c3Ih +g -S$)(c 3 Ih -p+13)

S-(c3/h)(c 3/h -p+3)

The sufficient and necessary condition for the nonexistence of

oscillatory parasitic components in the computed solution is that the
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roots of (5.52) are real and positive. Given the set of element

values, if the critical timestep hcrit exists then at hcrit we have

q3 + r2  0 (5.53)

where

q
3P 9 P

r = - 3  0) -6 p2 P 27 P

If q3 +r2 j 0 then all the roots are real, otherwise a pair of conju-

gate roots exists [37]. Whether the the roots are positive will

depend on the circuit parameters. Therefore, a table look-up method

can be used to find the hcrit by observing the transistion of the

q3+r2 from negative to positive with increasing timestep h.

In Table 5.3, the hcrit is listed at different element values

for the modified Gauss-Seidel method. X, and X2 are two eigen-

values of the test system (5.44). The following conclusions can be

made from this table:

(1) The effect of increasing the floating capacitor c3  is to

decrease the hcrit, and vice versa.

(2) Increasing the conductance g1 slightly lowers hcrit.

(3) Decreasing the conductance g2 slightly increases hcrit

(4) The effects of Xm on the hcrit is more critical than the other

parameters in the circuit. The larger g is, the smaller hcrit is.

(5) The existence of the transconductance of the feedback current,

S., has a positive effect of Increasing hcrit.
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Table 5.3 hcrit for the Modified Gauss-Seidel Method.

# 01 02 C3 81 B2 53 go $p 1).1/X21 hcrit

0 1 1 0.1 0 0.1 0 1 0 0 9.2

1 1 1 1 0 0.1 0 1 0 0 0.91
2 1 1 0.01 0 0.1 0 1 0 0 95

3 1 1 0.1 1 0.1 0 1 0 0.0818 6.3
4 1 1 0.1 0.1 0.1 0 1 0 0.1568 8.6

5 1 1 0.1 0 1 0 1 0 0 6.4
6 1 1 0.1 0 0.01 0 1 0 0 9.9
7 1 1 0.1 0 0 0 1 0 0 10

8 1 1 0.1 0 0.1 0 10 0 0 0.99
9 1 1 0.1 0 0.1 0 0.1 0 0 64
10 1 1 0.1 0 0.1 0 0 0 0 320

11 1 1 0.1 0 0.1 0 1 1 0.7542
12 1 1 0.1 0 0.1 0 1 0.1 0.5353

*0 means hcrit at least larger than 1.0e+4

For NOS inverter circuit, whose companion circuit model is

described in Fig. 5.9 but with gp = 53 = 0, the small signal gain can

be expressed as

A - v2/v1 = SM/82

The typical value for &m is 0.7e-3, and that for 92 is from 0 to

2.0e-3. From the above table, we could figure out the range of the

hcrit for simulating the inverter circuit.



98

2

J (a)

0~C3__

ii IF .2 i

(b)

Fig. 5.9 (a) An NOS Inverter Gate.
(b) Companion Circuit Model for (a).
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.j. Discussion

The modified Gauss-Seidel method discussed in this chapter is

used to solve the circuit equations and to decouple the feedback

terms during the analysis. The technique of using a forward predic-

tor to estimate the values of the yet unsolved variables in the feed-

back loops was found to be more accurate than the standard Gauss-

Seidel method, without requiring much additional computation. Pro-

vided the timestep is less than a critical maximum timestep hcrt

associated with the set of element values, the accuracy test proves

that no oscillatory parasitic components are presented in the com-

puted solution. In general, for a wide range of element values, the

associated hcrit is relatively large. So this algorithm is reason-

ably accurate.
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CHAPTER 6

Latency and Time-Step Control Scheme

i.1. Latency Scheme

6.1.1. Introduction

During the analysis of large-scale partitioned networks, a large

portion of the subnetworks is not active at any given time. This

temporary inactive behavior of a subnetwork is defined as 'latency'

[13, 38]. The latent status of a subsystem can be established by

monitoring the changes of all its stimuli and all its responses to

ensure their being within certain predetermined errors. Once the

latent status of a subsystem is established, the analysis of that

latent subsystem can be bypassed, and thus provide savings in CPU

time.

In [14], the latency at the subnetwork level was exploited and

four schemes of determining the latency in time were proposed. For

the one-way macromodelling approach, all subcircuits are unilateral

and each subcircuit can be identified as an 'event'. Therefore, we

can take maximum advantage of the latency in time to achieve computa-

tional effiency.
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!.1.2. Latency Scheme fr Tle Ajtwork Comosed 2 Unilatral Subnet-

works

For the subnetwork Nk, let the fanin node voltages be denoted by

Vik a p-l,2,... , the internal node voltages of Nk be denoted by
P

Vok , q=1,2.
q

Latency Scheme

A subnetwork Nk is considered to be latent at time tn if

(1) I Vik (tn) - Vik (tni) < l
P p

(2) Vok (tn) - Vok (tn_1) < 2
q q

p = 1, 2, ... q 1, 2,... (6.1)

The subnetwork Nk will remain latent at time tn+1 as long as

v Vik (tn+1 ) - Vik (tn ) 1 < el

p P
p = 1, 2,... (6.2)

6.1.j. Examples

The latency scheme described in Section 6.1.2 has been success-

fully implemented into the program PREMOS. The results of applying

this latency scheme to the transient analysis of 2-bit adder,

binary-to-octal decoder and 10-stage inverter chain are given in

Table 6.1. The data in Table 6.1 corresponds to the error tolerance

e1-1.0e-2 and 82=1.0e-3.
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Table 6.1 Simulation Data for Transient Analysis.

Circuits with Without Percentage
Latency Latency Savings

2-Bit Full Adder 18.050 $cc 25.867 sec 30.2 S
(Fig. 6.1)

Binary-to-Octal 11.417 sec 17.583 sec 35 %
Decoder (Fig. 6.2)

10-Stage Inverter 3.850 sec 6.417 sec 40 %
Chain (Fig. 6.3)



103

00

XO 9'



104

X20 ln

Fig. ~ X 6.9iayt-OtlDcdr

F~g.6.3 0-Stge nverer Cain



105

The latency described above is at the subnetwork level. This

latency principle could be applied to any cluster of subnetworks in a

large network. In [13], a multilevel latent path algorithm is

presented and latency is exploited with modularities. For the pro-

grams having a multilevel macromodel structure, this approach could

achieve more computational savings.

Analysis sequencing for the relevant parts has been discussed in

Chapter 3. During the simulation, only the relevant parts of the

circuit need to be analyzed even when the remaining parts are active.

In PREMOS, this approach combined with the latency technique is

employed to provide more savings in computation and in memory.

f.. Time-Ijej Control Scheme

.. Introduction

In circuit simulation, the stepsize is in general determined by

the local truncation error. The local truncation error of a numeri-

cal integration algorithm for solving the Initial-value problem

i = f(z,t), z(O) - • (6.3)

is defined as

T(t n+1 = [Zln+1 n+1 16.4)

where z(tn+i) is the exact solution x(t) to Eq. (6.3) evaluated at
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t-t n+, and z,+l is the corresponding numerical solution obtained at

the same time titn 1 -tn + h, provided that in using the numerical

integration algorithm we assume that xn=x(tn) is the exact solution

at t-tn- In other words, the local truncation error is the error

made in one timestep.

The tolerance on the local truncation error is defined as

UT - h ED (6.5)

where ED is the absolute value of the error allowed per unit time.

In (6.5), ED is an absolute tolerance. In practice, however, rela-

tive tolerances are more meaningful. A larger ED is allocated for

the fast transient part and a smaller ED for the slower transient

part. After adding a relative tolerance, UT in (6.5) becomes

UT - hn(a nIi + a) (6.6)n r n+1 a

In (6.6), a is the relative tolerance and a is the absoluter a

tolerance.

For the backward Euler integration formula, the local truncation

error is evaluated by
h2

9 (t ) - - 1(6.7)

where t n 4 1 tn+ . The second derivative 1(t) in (6.7) can be

approximated by using the divided difference fo:mula

(Q) - 2 DD2 (6.8)

and
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1n+1 zn 2n -i 1

DD2 n h + h 1  (6.9)
If he oca tracaion hn hn_1

If the local truncation error for timepoint tn+1 is considered satis-

factory (less than the allowable tolerance), the new timestep hn+1 to

compute the timepoint tn+2 is increased. This feature allows the

solution to be found within the specified accuracy in fewer

timesteps. On the other hand, ,if the local truncation error Is too

large, then the timepoint tn+1 is recomputed by using the reduced

step-size. Therefore, the LTi at each timepoint is maintained within

the specified bounds.

S.2.Z. Relaxed Version oL Iiae-St Control Scheme

For the timestep control scheme described In the last section,

if the old timestep hn is rejected. the solution at t,+I needs to be

evaluated again at the newly reduced timestep hn. Generally, this

re-evaluation adds to the overhead needed for the timestep control

scheme and increases total computation time. Also; due to the inac-

curacy of the divided difference approximation to *(Q), some

undesirable situations can occur if one does not implement the

timestep control properly [5, 14].

In large-scale circuit simulation, most of the current programs

either use a fixed timestep or a variable timestep controlled by the

circuit activity (the maximum voltage variation) (18]. To have an

accurate and efficient timing analysis, it may be worthwhile to have

the timestep controlled by the local truncation error. However, some
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modifications need to be done in order to reduce the overhead

required in the implementation. The desired features for a new

timestep control scheme are described in the following:

(1) The next timestep bn+I is controlled by the local truncation

error evaluated at the present timepoint tn+11 This timestep is

iccepted all the time, even when it is judged to be too large.

(2) The increased timestep is double the present one and the

reduced timestep is half. As shown later, this scheme ensures that

the local truncation error is generally within a reasonable range of

the specified tolerance even though there is no rejection of

timesteps.

The timestep control algorithm is as follows

BEGIN
BEGIN

Xn = node voltage at present timepoint tn
xn-i node voltage at previous timepoint tni
hn - t - tnf-i n n-
hn-2 tn-1 n-2
a n; ,n -i where bn is the next timestep
facmax=O!.0

END (inilization)

FOR each node voltage xn DO

BEGIN

ed - epa + epr n j

factor -(i - i )l/ed
facmax max~facuax, factor)

END (finding the maximum of LTE/UT)
BEGIN

emax - facmax ; hn- 1 (hn_ 1 + hn2
IF (emax ) 1.2)

TEEN a - 0. 5
ELSE

BEGIN
IF (emax (0.4)

THEN a = 2.0
ELSE a U 1.0
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END
END

hn n-1

END

It should be noted that in the above algorithm the upper limit

of the local truncation error for reducing the timestep is 1.2 ha ED,

and the lower limit for increasing the timestep is 0.4 bn ED.

Although there is no rejection of the timestep at any timepoint, the

test equation below shows that the local truncation error stays

within the desired tolerance.

Let us consider the test equation

i = Xx (6.10)

where X is negative. The exact solution of (6.10) is

I = x ekt  (6.11)
0

where x0 is the solution at time zero. Applying the backward Euler

integration formula to (6.11), we obtain

xn+1 n -[ 1 ] (6.12)
nl n 1 - hn

n

Consider the situation hn-2 - hn_= b and hn a h, where a could be

2, 1, or 0.5. From Eqs. (6.12), we obtain

LTEn+ 1  DD2 n+ h2  2a 2 1
- a (6.13)

LTE DD2 h2  a+1 1 + ah-
n n n-i -

There are three cases to consider, depending on the value of a
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(1) a-2

From (6.13), LTE n 1 is evaluated as

LTE , -UL. I LTE (6.14)n+1 3 1+(2hI(-X)) n

Since LTE n 10.4 h3.... ED , then

LTE -2 - h ED < 1.2 h ED (6.15)n+1 3 1+(2hI(-))) n n

(2) a - 1

At the previous timepoint t3no LTEn 1 1.2 hn.... ED. The following

relation can be easily derived:

LTE S. I h ED < 1.2 b ED (6.16)n+1 1+(hI(-X.i) n n

(3) a -0.5

In this case, LTEn is just greater than 1.2 hn-.1 ED and LTE... S
1 2 hn-2 ED, where h n l h - L t TE M m * n-i D . W

assume that the second derivative *X(4) is continuous and varies

slowly for most of the circuits. This Is generally true, especially

for digital circuits. Therefore, the value of m is assumed to be

less than 3.6. Then, we obtain

LTE 3J- h ED <1.2 h ED (6.17)
n+1 3 1+(0.Sh/ (-)L)) n n

In summary, this new algorithm gives the required accuracy for

the given test equation.

With X--10- zul1 and h=0.01. Table 6.2 shows the results of

Backward Euler integration with a fixed timestep. For the new
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Table 6.2 Numerical Solution Obtained by Using Fixed Timestep

with 1=-1O, x0Il and h-O.O1.

Time Exact Sol. Bk Euler Glb Err. LTE

0 .O000e+O0 .1000e+01 .1000e 01 .0000e+00 .0000e+00

1 .10OOe-01 .9048e+00 .9091e+00 -.4253e-02 -.4253e-02

2 .2000e-01 .8187e 00 .8264e*00 -.7716e-02 -.3867e-02

3 ,3000e-01 .7408e+00 .7513e+C0 -.1050e-01 -.3515e-02

4 .0OOe-01 .6703e+00 .6830e+00 -.1269e-01 -.3196e-02

5 .5000e-01 .6065e+00 .6209e 00 -. 1439e-01 -.2905e-02

6 .6000e-01 .5488e+00 .5645e+00 -.1566e-01 -.2641e-02

7 .7000e-01 .4966e+00 .5132e+00 -. 1657e-01 -.240le-02

8 .8000e-01 .4493e+00 .4665e+00 -.1718e-01 -.2183e-02

9 .9000e-01 .4066e+00 .4241e+00 -.1753e-01 -.1984e-02

10 .lO00e+00 .3679e+00 .3855e+00 -.1766e-01 -.1804e-02

11 .1100e 00 .3329e+00 .3505e+CO -.1762e-01 -.1640e-02

12 .1200e 00 .3012e+00 .3186e+00 -.1744e-01 -.1491e-02

13 .1300e+00 .2725e+00 .2897e+00 -. 1713e-01 -.1355e-02

14 .1OOe+00 .2466e+00 .2633e+00 -.1673e-01 -.1232e-02

15 .1500e+00 .2231e+00 .2394e+00 -.1626e-01 -.1120e-02

16 .1600e+00 .2019e+00 .2176e+00 -.1573e-01 -.1018e-02

17 .1700e+00 .1827e 00 .1978e+00 -.1516e-01 -.9257e-03

18 .1800e+00 .1653e+00 .1799e+00 -. 1456e-01 -.8415e-03

19 .1900e+00 .1496e+00 .1635e+00 -.1394e-01 -.7650e-03

20 .2000e 00 .1353e+00 .14 86e+00 -.1331e-01 -.6955e-03

21 .2100e+00 .1225e+00 .1351e+00 -.1267e-01 -.6323e-03

22 .2200e+00 .1108e+00 .1228e+00 -.1204 e-01 -.5748e-03

23 .2300e*00 .1003e+00 .1117e+00 -. 1142e-01 -.5225e-03

24 .2400e+00 .9072e-01 .1015e+00 -.1081e-01 -. 4750e-03

25 .2500e+00 .8208e-01 .9230e-01 -.1021e-01 -.4318e-03

26 .2600e+00 .7427e-01 .8391e-01 -.9632e-02 -.3926e-03

27 .2700e+00 .6721e-01 .7626e-01 -.9072e-02 -.3569e-03
28 .2800e+00 .6081e-01 .6934e-01 -.8533e-02 -.3244e-03
29 .2900e+00 .5502e-01 .6304e-01 -.8016e-02 -.2950e-03

30 .3000e+00 .4979e-01 .5731e-01 -.7521e-02 -.2681e-03

31 .3100e+00 .4505t-01 .5210e-01 -.7049e-02 -.2438e-03

32 .3200e+00 .4076e-01 .4736e-01 -.6600e-02 -.2216e-03

33 .3300e+00 .3688 e-01 .4306e-01 -.6174e-02 -.2015e-03

34 .3400e+00 .3337e-01 .3914e-01 -.5769e-02 -. 1831e-03
35 .3500e+00 .3020e-01 .3558e-01 -.5387e-02 -.1665e-03

36 .3600e+00 .2732e-01 .3235e-Cl -.5025e-02 -.1514e-03

37 .3700e+00 .2472e-01 .2941e-01 -.4685e-02 -.1376e-03

38 .3800e+00 .2237e-01 .2673e-01 -.4364e-02 -.1251e-03

39 .3900e+00 .2024e-01 .2430e-01 -.4063e-02 -.1137e-03

40 .4000e+O0 .1832e-01 .2209e-01 -.3779e-02 -.1034e-03

41 .4lC~e 00 .1657e-01 .2009e-01 -.3514e-02 -.9398e-04

42 .4200e+00 .1500e-01 .1826e-01 -.3265e-02 -.8544e-04

43 .4300e 00 .1357e-01 .1660e-01 -.3032e-02 -.7767e-04

44 .4400e+00 .122 8e-CI .1509e-01 -.2814e-02 -.7061e-04

45 .4500e+CO .1111e-01 .1372e-Cl -.2610e-02 -.64I4e-04
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46 .4600e+00 .1005e-01 .1247e-01 -.2420e-02 -.5835e-04

47 .4700e+00 .9095e-02 .1134e-Ol -.2243e-02 -.5305e-04

48 .4800e+00 .8230e-02 .1031e-01 -.2078e-02 -.4823e-04

49 .4900e.00 .7447e-02 .9370e-02 -.1924e-02 -.4384e-04

50 .5000e+00 .6738e-02 .8519e-02 -.1781e-02 -.3986e-04

51 .5100e+00 .6097e-02 .7744e-02 -.1647e-02 -.3623e-04

52 .5200e+00 .5517e-02 .7040e-02 -.1524e-02 -.3294e-04

53 .5300e+00 .4992e-02 .6400e-02 -.1409e-02 -.2995e-04

54 .5400e+00 .4517e-02 .5818e-02 -.1302e-02 -.2722e-04

55 .5500e+00 .4087e-02 .5289e-02 -.1203e-02 -.2475e-04

56 .5600e+00 .3698e-02  .4809e-02 -.111le-02 -.2250e-04

57 .5700e+00 .3346e-02 .4371e-02 -.1025e-02 -.2045e-04

58 .5800e+00 .3028e-02 .3974e-02 -.9464e-03 -.1859e-04

59 .5900e+00 .2739e-02 .3613e-02 -.8733e-03 -.1690e-04

60 .6000e+O0 .2479e-02 .3284e-02 -.8055e-03 -.1537e-04

61 .6100e+00 .2243e-02 .2986e-02 -.7428e-03 -.1397e-04

62 .6200e+00 .2029e-02 .2714e-02 -.6848e-03 -.1270e-04

63 .6300e 00 .1836e-02 .2468e-02 -.6312e-03 -.1155e-04

64 .6400e+00 .1662e-02 .2243e-02 -.5816e-03 -.1050e-04

65 .6500e+00 .1503e-02 .2039e-02 -.5358e-03 -.9541e-05

66 .6600e+00 .1360e-02 .1854e-02 -.4935e-03 -.8674e-05

67 .6700e+00 .1231e-02 .1685e-02 -.4544e-03 -.7885e-05

68 .6800e+00 .1114e-02 .1532e-02 -.4184e-03 -.7169e-05

69 .6900e+00 .1008e-02 .1393e-02 -.3851e-03 -.6517e-05

70 .7000e+00 .9119e-03 .1266e-0 2 -.3543e-03 -.5924e-05

71 .7100e+00 .8251e-03 .1151e-0 2 -.3260e-03 -.5386e-05

72 .7200e+00 .7466e-03 .1046e-02 -.2999e-03 -.4896e-05

73 .7300e+00 .6755e-03 .9513e-03 -.2758e-03 -.4451e-05

74 .7400e+00 .6113e-03 .8649e-03 -.2536e-03 -.4046e-05

75 .7500e+00 .5531e-03 .7862e-03 -.2331e-03 -.3679e-05

76 .7600e+00 .5005e-03 .7148e-03 -.2143e-03 -.3344e-05

77 .7700e+00 .4528e-03 .6498e-03 -.1969e-03 -.3040e-05

78 .7800e+00 .4097e-03 .5907e-03 -.1810e-03 -.2764e-05

79 .7900e+00 .3707e-03 .5370e-03 -.1663e-03 -.2513e-05

80 .8000e+O0 .3355e-03 .4882e-03 -.1527e-03 -.2284e-05

81 .8100e+00 .3035e-03 .4438e-03 -.1403e-03 -.2076e-05

82 .8200e+00 .2747e-03 .4035e-03 -.1288e-03 -.1888e-05

83 .8300e+00 .2485e-03 .3668e-03 -.1183e-03 -.1716e-05

84 .8400e+00 .2249e-03 .3334e-03 -.1086e-03 -.1560e-05

85 .8500e+00 .2035e-03 .3031e-03 -.9966e-04 -.1418e-05

86 .8600e+00 .184le-03 .2756e-03 -.9146e-04 -.1289e-05

87 .8700e+00 .1666e-03 .2505e-03 -.8393e-04 -.1172e-05

88 .8800e 00 .1507e-03 .2277e-03 -.7701e-04 -.1066e-05

89 .8900e+00 .1364e-03 .2070e-03 -.7065e-04 -.9687e-06

90 .9000e+00 .1234e-03 .1882e-03 -.6481e-0 4 -.8806e-06

91 .9100e+00 .1117e-03 .1711e-03 -.5944e-0 4 -.8006e-06

92 .9200e+00 .1010e-03 .1556e-03 -.5451e-04  -.7278e-06

93 .9300e+00 .9142e-04 .1414e-03 -.4999e-04 -.6616e-06

94 .9400e+00 .8272e-04 .1286e-03 -.4583e-04 -.6015e-06

95 .9500e+00 .7485e-04 .1169e-03 -.4202e-04 -.5468e-06

96 .9600e+00 .6773e-04 .1062e-03 -.3851e-04 -. 4971e-06

97 .9700e+00 .6128e-04 .9658e-04 -.3530e-04 -.4519e-06

98 .9800e+00 .5545e-04 .8780e-04 -.3235e-04 -.4108e-06

99 .9900e+00 .5017e-04  .7982e-04  -.2965e-O -. 3735e-06

100 .1000e+C1 .4540e- 0 4 .7257e-C4 -.2717e-C4 -.3395e-C6
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timestep control scheme, the corresponding results are shown in Table

6.3.

In both Table 6.2 and Table 6.3, the first column of data is the

time point, the second column the exact solution, the third column

the solution using the backward Euler formula, the fourth the global

error and the fifth the estimated local truncation error. It can be

seen that, by using the fixed timestep scheme, the order of global

error varies from -1 to -4, and the order of local truncation error

from -2 to -6; which indicates that in some time intervals the step-

size is too large and in other intervals the stepsize is unneces-

sarily small. On the other hand, by using the new timestep control

scheme, the order of the global error and the local truncation error

are kept within the range from -2 to -3 and the range from -3 to -4,

respectively.

!E2.3. Conclusions

Dynamically varying the timestep is necessary for the timing

analysis program to evaluate the simulated results accurately and

efficiently. To ensure an accurate transient analysis, the timestep

must be controlled to produce an acceptable amount of local trunca-

tion error at each timepoint. In this chapter, a new algorithm of

timestep control is proposed, in which the next timestep is predicted

using the LTE at the present timepoint and no timestep is rejected.

The PRENOS program employs the Backward Euler integration with the

LTE timestep control described in this chapter.



114

Table 6.3 Numerical Solution Obtained by Using Now Timestep Control
Scheme with X-0 x0o1 D epa-0.Ol and eprinO.05.

Time Exact Sol. Bk Euler Gib Err. LTE
0 .0000e+00 .1000e+01 .1000e+01 .0000e+00 .0000e+00
1 .5000e-02 .9512e+00 .95224e+00 -. 1I152e-02 -. 1152e-02
2 .0OOe-Q1 .904~8e+00 .9070e+00 -.2192e-02 -.1097e-02
3 .1500e-01 .8607e+00 .8638e+00 -.3130e-02 -.104I4e-02
J4 .2000e-01 .8187e+00 .8227e+00 -.3972e-02 -.99J47e-03
5 .2500e-01 .7788e+00 .7835e+00 -. 4'725e-02 -. 9474e-03
6 .3000e-01 .7408e+00 .7462e+00 -.5397e-02 -.9023e-03
7 .3500e-01 .7047e+00 .7107e+00 -.5993e-02 -.8593e-03
8 .4000e-O1 .6703e+00 .6768e+00 -.6519e-02 -.8184e-03
9 .4500e-01 .637'6e+00 .644~6e+00 -.6981e-02 -.7794~e-03

10 .5000e-01 .6065ei-00 .6139e+00 -.7383e-02 -.7J423e-03
11 .5500e-01 .5769ei.00 .58247e+00 -.7729e-02 -.7069e-03
12 .6000e-01 .54~88e+00 .5568e+00 -.8026e-02 -.67.23e-03
13 .6500e-01 .5220e+00 .5303e+00 -.8276e-02 -..6412e-03
14 .7000e-01 .4966e+00 .5051e+00 -.8J483e-02 -.6107e-03
15 .7500e-01 .4724~e+,00 .480e+00 -.865le-02 -.5816e-03
16 .8000e-01 .4I493e+00 .4581e+00 -.8783e-02 -.5539e-03
17 .8500e-01 .4274e+00 .4363e+00 -.8882e-02 -.5275e-03
18 .9000e-01 .4066e+00 .4155e+00 -.895le-02 -.5024e-03
19 -9500e-01 .3867e+00 .3957e+00 -.8993e-02 -.4785e-03
20 .1000e+00 .3679e+00 .3769e+00 -.9010e-02 -.J4557e-03
21 .1.050e+00 -34~99e+00 .3589e+00 -.9005e-02 -.43J40e-.03
22 .1100e+00 .3329e+00 .3418e+00 -.8979e-02 -.4133e-03
23 .1150e+00 .3166e+00 .3256e+00 -.8935e-02 -.3936e-03
2~4 .1200e+00 .3012e+00 .3101e+00 -.8874e-02 -.3749e-03
25 .1250e+00 .2865e+00 .2953e-.00 -.8798e-02 -.3571e-03
26 .1300e+00 .2725e4-00 .2812e+00 -.8709e-02 -.3400e-03
27 .1350e+00 .2592e+00 .2678e+00 -.8608e-02 -.3239e-03
28 .14~00e+*00 .24166e+00 .2551e+00 -.8497e-02 -.3084e-03
29 .1450e+00 .234~6e+00 .2429e+00 -.8376e-02 -.2937e-03
30 .1500e+00 .2231e+00 .2314ie+00 -.82147e-02 -.2798e-03
31 .1550e+,00 .2122e+00 .2204ie+00 -.8112e-02 -.266J4e-03
32 .1600e+00 .2019e+00 .2099e4-00 -.7970e-02 -.2538e-03
33 .1650e+00 .1920e+00 .1999e+00 -.7823e-02 -.2417e..03
34~ .1700e+00 .1827e4.0o .1904e+00 -.7671e-02 -.2302e-03
35 .1750e+00 .1738e+00 .1813e+00 -.7516e-02 -.2192e-03
36 .1800e+00 .1653e+00 .1727e+00 -.7359e-02 -.2088e-03
37 .1850e+00 .1572e+00 .1644e+00 -.7198e-02 -.1988e-03
38 .1900e+00 .1496e+00 .1566e+00 -.7037e-02 -.189J4e-03
39 .1950e+00 .1423e+00 .14191e+00 -.6874e-02 -.1803e-03
40Q .2000e+00 .1353e+00 .1420~e+00 -.6'110e-02 -. 1717e-.03
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41 .2050e+00 .1287e+00 .1353e+00 -.6547e-02 -.1636e-03
42 .2100e+00 .1225e+00 .1288e+00 -.6383e-02 -.1558e-03
43 .2150e+00 .1165e+00 .1227e+00 -.6220e-02 -.1484e-03
44 .2200e+00 .1108e+00 .1169e+00 -.6058e-02 -.1413e-03

45 .2250e+00 .1054e+00 .1113e+00 -.5897e-02 -.1346e-03
46 .2300e+00 .1003e+00 .1060e+00 -.5738e-02 -.1282e-03
47 .2350e+00 .9537e-01 .1009e+00 -.5580e-02 -.1221e-03
48 .2400e+00 .9072e-01 .9614e-01 -.5424e-02 -.1162e-03

49 .2450e+00 .8629e-01 .9156e-01 -.5270e-02 -.1107e-03
50 .2500e+00 .8208e-01 .8720e-01 -.5119e-02 -.1054e-03
51 .2550e+00 .7808e-01 .8305e-01 -.4970e-02 -.1004e-03
52 .2600e+00 .7427e-01 .7910e-01 -.4823e-02 -.9564e-04
53 .2700e+00 .6721e-01 .7191e-01 -. 1700e-02 -.3364e-03
54 .2800e+00 .6081e-01 .6537e-01 -.4559e-02 -.3059e-03
55 .2900e+00 .5502e-01 .5943e-01 -. 4403e-02 -.2780e-03
56 .3000e+00 .4979e-01 .5402e-01 -.4237e-02 -.2528e-03
57 .3100e+00 .4505e-01 .4911e-01 -.4063e-02 -.2298e-03
58 .3200e+00 .4076e-01 .4465e-01 -.3886e-02 -.2089e-03
59 .3300e+00 .3688e-01 .4059e-01 -.3706e-02 -.1899e-03
60 .3400e+00 .3337e-01 .3690e-01 -.3526e-02 -.1726e-03
61 .3500e+00 .3020e-01 .3354e-01 -.3347e-02 -.1569e-03
62 .3600e 00 .2732e-01 .3050e-01 -.3171e-02 -.1427e-03
63 .3700e+00 .2472e-01 .2772e-01 -.2999e-02 -.1297e-03
64 .3800e+00 .2237e-01 .2520e-01 -.2832e-02 -.1179e-03
65 .3900e+00 .2024e-01 .2291e-01 -.2669e-02 -.1072e-03
66 .4000e+00 .1832e-01 .2083e-01 -.2513e-02 -.9745e-04
67 .4100e+00 .1657e-01 .1894e-01 -.2362e-02 -.8859e-04
68 .4200e+00 .1500e-01 .1721e-01 -.2218e-02 -.8054e-04
69 .4300e+00 .1357e-01 .1565e-01 -.2080e-02 -.7322e-04
70 .4400e+00 .1228e-01 .1423e-01 -.1949e-02 -.6656e-04
71 .4500e+00 .111le-01 .1293e-01 -.1824e-02 -.6051e-04
72 .4700e+00 .9095e-02 .1078e-01 -.1682e-02 -.1889e-03
73 .4900e+00 .7447e-02 .8981e-02 -.1535e-02 -.1574e-03

74 .5100e+00 .6097e-02 .7484e-02 -.1388e-02 -.1311e-03
75 .5300e+00 .4992e-02 .6237e-02 -.1245e-02 -.1093e-03
76 .5500e+00 .4087e-02 .5197e-02 -.111le-02 -.9108e-04
77 .5700e+00 .3346e-02 .4331e-02 -.9852e-03 -.7590e-04
78 .6100e+00 .2243e-02 .3094e-02 -.8508e-03 -.1904e-03
79 .6500e+00 .1503e-02 .2210e-02 -.7064e-03 -.1360e-03
80 .7300e+00 .6755e-03 .1228e-02 -.5521e-03 -.2347e-03
81 .8100e+00 .3035e-03 .6820e-03 -.3785e-03 -.1304e-03
82 .9700e+00 .6128e-04 .2623e-03 -.2010e-03 -.1246e-03
83 .1000e+01 .4540e-04 .2018e-03 -.1564e-03 -.7453e-05
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CHAPTER 7

The PREKOS Program

I.1. roucRtiona

PREMOS (PREdiction-based simulator for NOS circuits) is an

experimental simulator program for VLSI NOS digital circuits. The

object of the program is to close the gap between conventional cir-

cuit simulation and logic simulation. This program is faster than

conventional circuit simulators because it uses a Gauss-Seidel cir-

cuit simulation scheme and employs built-in models for the subcir-

cuits. Although it is slower than logic simulators, it generates

more accurate electrical waveforms than the logic levels produced by

logic simulators.

In PREMOS, a modified block Gauss-Seidel-Newton algorithm is

used instead of the standard point Gauss-Jacobi algorithm used in

NOTIS and MOTIS-C. Compared with NOTIS and MOTIS-C, the accuracy of

the results is improved at three levels: (1) circuit analysis is used

to solve the unilateral subcircuit equations, (2) multi-nonlinear

iteration is used at each time point, and (3) the predictor method is

used for solving the feedback interdependence. In addition, an

analysis sequencing algorithm based on relevant parts is used to

improve the speed of the simulation. Because of the additional

iterations, PREMOS is generally about five times slower than that of

NOTIS-C, whereas the speed and circuit-size capability of MOTIS-C
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have been claimed to be over two orders of magnitude greater than

those of SPICE2 [7].

PREMOS evolves from MOTIS-C but has different data structures

and new analysis algorithms. It is written in FORTRAN and contains

more than 3000 statements at the present time.

1.2. The Input Processina

The input processor reads and processes the model file of MOS

devices, and the input data file containing the description of cir-

cuit elements and control statements. There are a number of built-in

models for the partitioned subcircuits in this program. A list of

circuit elements and their corresponding models is shown in Appendix

2. The control statements are listed in Appendix 3. The input pro-

cessor constructs the internal node table and the linked lists for

the structure of the circuit. The data structures for subcircuit

models are shown in Appendix 4. The data generated are passed to the

analysis part of the program through disc files.

The subroutine EROR performs error checking when input data are

read. If an error exists, the program stops with the error messages

printed out.
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MM. h Anallsis for

The analysis core of the program includes two phases: analysis

sequencing phase and analysis phase. They are described respectively

in this section.

141.1. Analysis kegeut.LUL fthai

Before the transient analysis is performed, the sequence of

analyzing the suboircuits is generated in this phase. First, the

linked list of the corresponding directed graph is constructed.

Algorithm 5 mentioned in Chapter 3 is then executed to provide the

analysis sequence. During the sequencing procedures, the feedback

paths and the floating capacitors are identified. Finally, the sub-

circuits that do not belong to the relevant set are deleted from the

sequence.

14.2. Analysis Phas

Following the analysis sequencing, each scheduled subcircuit is

identified and linked to its models. Initially, device sizes and

node tables are read out by means of the pointers in the model map.

If feedback paths or floating capacitors exist, the associated node

voltages are predicted. If a subcircuit has been declared latent at

a previous timepoint and its fan-in node voltage changes are less

than some certain limit, the subcircuit is bypassed during the

analysis. At each nonlinear iteration, the device models are

evaluated and the subcircuit matrix is formed. In solving the
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matrix, no sparse matrix technique and no reordering scheme in the LU

factorization process are used since the size of the subcircuit is

usually small. The number of nonlinear iterations is specified by

the user. The timestep can be either controlled by local truncation

error as described in Chapter 6 or fixed, depending on the user's

option.

l.A. Te Output Processing

The output from the program is written in a disc file, which

could be read by the output processor. The output data is sent to

either the line printer or the plotting terminal through the output

processor. Hard copies of the plots of the waveforms selected can

also be produced on an X-Y plotter.

2. . Siulated Egunnle

In this section, four examples of circuit simulations using

PRE4OS are presented. Example 1 illustrates the timing analysis of a

PLA circuit. The input data file is also included. Example 2 and

Example 3 are given to show the improvements in the accuracy of the

simulated results by using the predictor method. The comparisons

with SPICE2 and MOTIS-C are also included in these two examples.

Example 4 shows the effect of analyzing only the relevant parts on

reducing the simulation time.



120

... PLCircuit

The circuit diagram of a programmable logic array (LA), which

is used to implement a traffic light controller, is shown in Fig. 7.1

[391. This PLA circuit which is composed of about 150 NOS transis-

tors can be partitioned into 42 unilateral subcircuits or circuit

elements. The input data file used for circuit simulation by PREJOS,

is included in Appendix S.

The input and output waveforms for this example simulated by

PREMOS are shown in Fig. 7.2. The total analysis time is 12.450

seconds, compared with 5.567 seconds taken by MOTIS-C. Table 7.1,

which can be found in [39]. is given to verify the simulated results.

I-..Bettrtal Capacitor Circuit

The bootstrap capacitor circuit in Fig. 7.3 has become very

popular in NOS digital circuit design for fast switching operations

and large driving capability. The simulated results are shown in

Fig. 7.4, where it can be seen that the modified Gauss-Seidel method

used in PRMOS is more accurate than the standard Gauss-Seidel method

(represented by PRENOS without predictor) and the Gauss-Tanobi method

used in XOTIS-C. In this comparison the exact solution is what

SPICE2 produced.

In this example, the analysis time is 17.60 seconds for SPICE2,

1.017 seconds for PIEOS with predictor, 1.200 seconds for PRENOS

without predictor and 0.467 seconds for NOTIS-C. Both PREHOS and

NOTIS-C use a fixed timestep scheme with a 0.5 ns timestep. PREMOS



121

01 0

C4 
41 K -

1..NC

Nc

cc 0

-,t-

N ac

- { -. 4f-



122

- - -0 - -A

) I a & j

I I , , I ,

(0 E a

I ; j : f I '
I a I , a

I t

--r..... " ---- - - -

(S1A aa~O

~~=------'----- .._. I\- I ii
a-' " .. .. .. .. .. .. 5' -

. !

(Sil^) I I IO



123

0. *~ C -U U ~2 C -~ = -~ -~

b. b.I ! i i I a* : : *I a ~ f I' I I* a ~a I 
I (

a f f ~ I j1%.

-~ - -. 

I

0- - -.

-- 

'*1

00 
I..

E.4.

0
co E

I- U
WI)
Uk

QcJ
Is-
.40
W~.

S.--

* 
a

.. 
-a9.

*.... ~ 

1q
~.'- 

N
- S.

~--- .5-v -

14

& 

-- ~ 

I-.
* 

~ N 
- 0



124

Table 7.1 Encoded State Transition Table for the Ligbt Controller.

Stored during , in In-register Stored during p, in Out-register
Inputs Present Next Outputs Product

state state terms
C TL TS Y,..Y,., Y,0 .Y,, ST HL. HL, FL,, FL,
0 X X 0.0tHG) 0.0(HG) 0 0 0 I 0 R,

X 0 X 0.0HG) 0.0tHG) 0 0 0 I 0 R.

I I X 0. 01HG) 0. I (HY) I 0 0 I 0 R,
X X 0 0. I (HY) 0. I tHYi 0 0 I I 0 R.

X X I 0. 1 HY) I. 1 FG) I 0 1 I 0 R,

1 0 X I.IiFGi I. I(FG) 0 I 0 0 0 R,

0 X X I.I FG) I.0iFY) I I 0 0 0 R-

X I X I. I iFG) 1.0iFY I 1 0 0 0 R.

X X 0 I.0fFY) 1.0(FY) 0 1 0 0 I R,

X X I 1.0(FY) 0.0tHG) I I 0 0 I R,,
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Fig. 7.3 Bootstrap Capacitor Circuit.
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uses three nonlinear iterations at each timepoint.

1.l.-. On- Register

The block diagram and circuit schematic of a one-bit register

circuit are shown in Fig. 7.5. This design has a memory function. A

feedback path exists from the output of S2 to the input of Si. As

shown in Fig. 7.6, by comparing the results to SPICE2 results, it can

be seen that PREMOS with predictor produces more accurate results

than both PREMOS without predictor and MOTIS-C.

In this example, the analysis time is 19.05 seconds for SPICE2,

1.267 seconds for PREMOS with predictor, 1.000 seconds for PREMOS

without predictor and 0.433 seconds for MOTIS-C. Both PREMOS and

NOTIS-C employ a fixed timestep of 0.5 nanoseconds in the transient

analysis. In PREMOS three nonlineaz iterations are used at each

timepoint.

. Binary-to-Octal Decoder

A block diagram of the binary-to-octal decoder circuit is shown

in Fig. 7.7. In this example only the subcircuits that directly or

indirectly affect the output are analyzed during the solution pro-

cess. The analysis results of selecting one, two, four or eight out-

puts are shown in Table 7.2. Because of the overhead involved in the

simulation, the total CPU time taken in each case is not in propor-

tion to the number of relevant subcircuits.
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Fig. 7.5 (a) Block Diagram
(b) Circuit Schematic of One-Bit Register.



129

> 
5.

-a.

> ->CL - 0- 0- y

C.~

>CaLj c) 0 S ~

.11 I -60110



130

AN- 2

B 3

C 4

8

Fig. 7.7. Block Diagram of Binary-t-n'ctal Decoder.
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Table 7.2 Simulation Data for the Circuit in FiS. 7.7.

No. of Relevant Analysis Time
Output Requested Subeircuits ( seconds )

1 2 3 4 5 6 7 8 17 11.167

1 2 3 4 11 8.933

5 6 7 8 12 9.200

1 2 6 6.817

3 4 7 7.183

5 6 7 7.100

7 8 7 7.133

1 3 5.333

2 4 5.817

3 4 5.800

4 5 5.883

5 4 5.567

6 5 5.967

7 5 5.683

8 6 6.650
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CHAPTER 8

Conclusions

The aim of large-scale circuit simulation is to bridge the gap

between conventional circuit simulation and logic simulation. In the

experimental program PRESO developed as part of this dissertation,

the suboircuits are analyzed at the transistor level by using

Newton's method as is done in conventional circuit simulation; but

the signal propagation from subcircuit to subcircuit, which deter-

mines the analysis sequence of these unilateral subcircuits, is simi-

liar to that used in logic simulation. The transistor level simula-

tion in the subcircuits provides the detailed waveforms. The

analysis sequencing combined with latency checking reduces signifi-

cantly the amount of computation time and memory requirements.

The analysis sequencing procedure which includes checking and

identifying feedback loops has been presented in Chapter 3. The pro-

cedure schedules only those subcircuits that directly or indirectly

affect the output. Combined with latency checking, this 'segmenta-

tion' approach achieves a further increase in speed. The amount of

increase depends on the circuit being analyzed.

In Chapter 4 we discuss initial DC analysis in large-scale cir-

cuit simulation and compare the different algorithms using 2-element

and 3-element companion models for the NOS transistors. It is found

that the 2-element model of the NOS transistor is suitable for
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large-scale circuit simulation from the point of convergence rate.

The analysis results also show that using a small fixed number of

iterations produces DC solutions close enough to those obtained after

much more iterations, provided the initial guess is a good approxima-

tion.

In using the standard Gauss-Seidel method for solving the parti-

tioned circuit, the feedback loop is decoupled by assuming that there

is no change in the feedback loop over the integration timestep. In

this thesis, a 'modified' Gauss-Seidel method is proposed, where

explicit formulas are used to predict the 'unsolved' variables in the

feedback loops. As a result, the accuracy is improved without

requiring much additional computation. It has been shown that the

method is consistent, stable and convergent. It has also been shown

that no parasitic oscillatory component appears in the solution if

the timestep is smaller than a critical timestep.

As the entire circuit is partitioned into 'one-way' subcircuits,

which can be easily identified as an 'event' during the simulation,

latency detection and exploitation is used to provide additional com-

putational savings. The latency criterion for PREMOS is described in

Chapter 6. In the same chapter, a timestep control scheme based on

the local truncation error is discussed. It should be noted that the

proposed timestep control scheme does not reject the present timestep

even when the LTE bound is exceeded.

The program PREMOS is described in some detail in Chapter 7. It

is written for use on VAX 780/11 UNIX operating system. Several

SIMON
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simulation examples are liven to show the validity of using the new

algorithms and schemes.

PR.MOS could be used for the timing analysis of NOS integrated

circuits in hierarchical design. For general purpose usage, more

enhancements on the program must be done. The input processor should

be able to expand the macro or nested subcircuits. Furthermore, the

capability of partitioning the circuit automatically should be added.

In this way, the program could be used for verifying the circuit

extracted from the layout. For other IC technologies like CNOS and

12L, which could have unilateral Sates (subcircuits) formed easily,

the analysis techniques used in PREMOS can be applied to develop

similiar kinds of simulators.

As described in [23], the speed of logic simulation could be

increased more than several hundred times by using logic processors

and array processors. Similiarly, it could be possible to implement

decomposition algorithms in hardware and analyze 'one-way' subcir-

cuits by using multi-processors to gain orders of magnitude in execu-

tion time for the next generation circuit simulators [12]. Further

research on this kind of simulation machine could be promising in the

future.
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Appendix 1

NOS Device Modeling and Capacitor Modeling

In conventional circuit analysis, the NOS device model shown in

Fig. A1.l(a) is generally used (the charge storage effects are not

shown here). The three values of Sm. sda and io are calculated for

each DC iteration. The substrate bias effect is included into the

changes of the threshold voltages. For large-scale circuit analysis.

the NOS device model for the enhancement transistor could be simpli-

fied further as shown in Fig. Al.l(b). Only two values, gds and io .

need to be calculated at each DC iteration.

Recently, short-channel NOS devices are becoming widely used and

"second-order" effects such as mobility reduction, channel length

modulation and substrate bias effects are becoming increasingly

important in deriving device models. In order to obtain accurate

simulated results, these effects should be taken into account. The

NOS device modeling work in PREMOS is based on curve-fitting empiri-

cal curves of DC characteristics, with the emphasis on matching the

saturated points and the conductances in the saturated regions for

different VGS.

The modeling equations are

I - ((V - V )V - I V 2) (A.1)DS 1 + 1(#v-s- VT) VGS T DS 2 DS

for operation in linear region
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S

Fig. A.1.1 (a) NOS Transistor Model In Conventional Circuit
Analysis.

I

G 0 o gds

Fig. Al.1 (b) NOS Transistor Model in Large-Scale Circuit
Analysis.
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IDS 1P 1 )- (V -V) 2  (A1.2)
G + qTVGs- VT )

for operation in saturation region and

V -V +AV(A1.3)
T T + ,VT

where

P= intrinsic transconductance ( ocoWlLeff)

= channel length modulation parameter

q = mobility reduction parameter

VTO = threshold voltages where the DC curves are measured

AVT - threshold voltage change from VTO due to substrate bias

voltage change

AVT is represented in tabular form as a function of the source-to-

substrate voltage VSB.

The extraction of the DC model parameters from the physical dev-

ice can be done by using curve-fitting techniques in a straightfor-

ward manner. A special computer program can be developed for this

purpose.

The capacitance at each node in LSI or VLSI circuits consists of

two types (1) voltage-dependent capacitance formed by MOS devices,

which includes gate capacitance and diffusion capacitance and (2) the

interconnect capacitance. In the scaling down technology, the latter

plays an Increasingly important role in the circuit behavior. The

features and modeling of these capacitances are described below:

(1) The voltage-dependent capacitance: gate capacitance and diffu-

sion capacitance.
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The voltage-dependent relation of gate capacitance for MOS

transistor is shown in Fig. A1.2 [40]. For the diffusion capacitance

c, the voltage-dependent relation can be expressed as

€,0°  (A1.4)

(1 -V/Vbi )

where

Cjo - diffusion capacitance at zero junction voltage

v = junction voltage

Vbi - junction contact potential

e - grading constant

In large-scale circuit simulation, it is rather expensive to calcu-

late these voltage-dependent capacitances at every iteration. So

these capacitances will be lumped together and approximated by a

linear capacitance. The value of this linear capacitance depends on

the device size and on the processing parameters. This value could

be experimentally determined as a function of device size and gate

oxide capacitance.

(2) Modeling of the interconnection capacitance.

Poly and metal capacitances are usually calculated by applying

the parallel-plate formula. However, present scaling-down technology

produces interconnection conductors that are comparable in dimension

to the thickness of the oxide, so the parasitic capacitance of vari-

ous interconnections can no longer be treated as capacitance of

infinite parallel plates because of fringing field effects. For

today's interconnection system, an error of a factor of two could
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Figl. A1.2 Gate Capacitances of NOS Transistor.



140

result due to fringing fields alonel It is necessary then to correct

the capacitance from the parallel-plate formula by a correction fac-

tar. The correction factor c/c0 could be evaluated either experimen-

tally with test chips or theorectically, where

c = the interconnect wiring parasitic capacitance per unit

length

co M the capacitance per unit length from the parallel-plate

formula [41, 42].

Thus, the magnitude of the interconnection capacitance cintcon can be

obtained from

c intcon C c * L * (Correction Factor) (A1.5)
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Appendix 2

Input Descriptions for Circuit Elements and Their Models

The following types of subcircuit models have been implemented

in the program PREMOS:

NAND2: 2-input NAND gate (Fig. A2.1)

NOR2 : 2-input NOR gate (Fig. A2.2)

ANDOI: n-input AND-OR-Inverter (Fig. A2.3)

ORANI: n-input OR-AND-Inverter (Fig. A2.4)

TRANS: n-input NOR gate with nt Transfer Gates (Fig. A2.5)

TRANP: same as TRANS except node tnt is taken as input

PUSPL: Push-Pull Inverter (Fig. A2.6)

LATCH: Latch Gate (Fig. A2.7)

SOURC: Clock (Voltage Source) Model

Model is described as

MODEL (mdnam) (type) (parameters)

for example,

MODEL ml NAND2 (1 0.2 10f 20f 100f)

MODEL is the keyword for model description. mdnam is a user-

defined name for the model. The type field specifies the model type.

The available model types and their associated model parameters are

listed in the following table:

TYPE PARAMETERS

NAND2 wla wll ca ci cl
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Fig. A2.1 2-Input NAND Gate.
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Fig. A2.2 2-Input NOR Gate.
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Fig. A2.3 a-Input AND-OR-Inverter.
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Fig. A2.4 n-Input OR-AND-Inverter.
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Fig. A2.7 Latch Gate.
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NOR2 via vii co ci

ANDOI via via vii ca co ci ci na no

ORANI via via wii co ca ci ci no a

TRJWS via vii wit co ci cg et nlo at

TRANP via vii wit co ci cS ct no at

PUSPL via vii cal ca2 ci

LATCH via vii ca ci

SONJRC VvO to tr tltf

The circuit is described as

(name) (nodes) (adnam)

for exampie,

N1 1 2 3 4 NAND2

"name" is the name of the circuit eiement. The nodes field con-

tains the node numbers describing the circuit connection. The order

of the node numbers for each type of the subcIrcult is listed In the

table below:

TYPE ORDER OF NODE NUMNBERS

NAND2 al &2ii

N012 ol o2 I

ANDOI al a2 ... ol o2 ... I ii 12 ... i(na-i)

ORANI ol o2 ... al. &2 ... 1 11 12 ... Ins

TRANS ol o2 ... I gi ti ... gat tnt

TRANP ol o2... Igl ti. gat tnt

PUSPL al. &2 1

LATCH al a2 11 12
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CAMQ alz2

Salle 3
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Appendix 3

Control Commands Used in Experimental Program PRFMOS

1. TIME

General Form TIME Tstop Tstep Dtmin

Tstop : the length of the analysis

Tstep : output print step

Dtmin : minimum internal timestep

2. PRESET :

General Form PRESET (nlvl) (n2,v2) ...

nl,n2.... : node number

vlov2,... : preset node voltage

3. PLOT :

General Form PLOT n1 n2 n3 ...

4. SEND

General Form SEND n1 n2 n3 ...

The SEND command allows the user to generate the data file

plfile.dat which contains the analysis results on node n1,

n2 ... . The file plfile.dat is used as the input data for

the graphing program graph.f.

5. global elements :

General Form (type) (value)

The global elements are

(i) v+, the drain- or the load-end supply source

(ii) v-, the source- or the driver-end supply source
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(iii) vbS, the back Sate supply voltage source

6. END

General Form END

7. DC

General Form DC

DC is the command reqniring dc analysis.

8. CONTL:

General Form CONTL laten ltstp lpred

laten: flag of having latency scheme or not; 1 (yes), 0 (no)

ltstp : flag of having timestep control scheme or not;

1 (yes), 0 (no)

lpred : flag of having predictor scheme or not;

1 (yes), 0 (no)

9. OPT:

General Form OPT itnan itnor ittrs itpul itlch itao itoa

itnan : preset number of dc iterations for NAND2

itnor : preset number of dc iterations for NOR2

ittrs : preset number of dc iterations for TRANS

itpul : preset number of dc iterations for PUSPL

itlch : preset number of dc iterations for LATCH

itao : preset number of dc iterations for ANDOR

itoa : preset number of dc iterations for ORAND
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Appendix 4

Analysis Data Structures for Subcircuit Models

The internal data structures representing the model of the sub-

circuit look like the following

LINX

LOC(ISUB) Number of Elements in This Field

Model Type

Pointer to Width List

Pointer to Node List

Feedback Node

Pointer to Floating Capacitor List

Others

The data structures for different types of subeircuits are

listed below:

NAND2

LOC +0: 6

+1: 1 WNAN2

+2: INAN2 INAN2 +0: w/l (driver)

+3: IRAN2 +1: w/l (load)

+4: 0 or node number

+5: 0 or IFCAP NAND2

IRAN2 +0: 1st input node
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+1: 2nd input node

+2: internal node

+3: output node

NOR2

LOC +0: 6

+1: 2 WNOR2

+2: INOR2 INOR2 +0: w/1 (driver)

+3: IROR2 +1: w/i (load)

+4: 0 or node number

+5: 0 or IFCAP NOR2

IROR2 +0: 1st input node

+1: 2nd input node

+2: output node

ANDOI

LOC +0: 6

+1: 7 WAND

+2: IRAND IRAND +0: w/I (driver of AND)

+3: IAND +1: w/i (driver of OR)

+4: 0 or node number +2: w/i (load)

+5: 0 or IFCAP

NAND

1AND +0: na

+1: no

+2 -- +(na+l): al -- an

+(na+2) -- +(na+no+l):
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ol -- Ono

+(na+no+2): output node

+(na+no+3) -- +(na+no+aa+1):

ORANI

LOC +0: 6

+1: 8 101

+2: IKROR IR01 +0: v/i (driver of OR)

+3: 101 +1: v/i (driver of AND)

+4: 0 or node number +2: v/i (load)

+5: 0 or IFCAP

NOR

101 +0: no

+1: us

+2 -- +(no+l): ol -- ono

+(no+2) -- +(no+na+l):

&I -- an:a

+(no+na+2): output node

+(no+na+3) -- +(no+2na+2):

11 -- Ina

TRANS

LOC +0: 6

+1: 4 WTFR

+2: ITR IRTPR +0: v/i (driver)

+3: ITRF +1: w/i (load)



+4: 0 or node number +2: v/i (transfer gate)

+5: 0 or IFCAP

NTFR

ITEF +0: no

+1: at

+2 -- +(jor+l): ol, -- ono

+(jor+2): load node 1

+(jor+3): gate node si

+(jor.4): source mode t1

+(jor+2nt+l): gate node gut

+(jor+2nt+2): output node tut

PUSPL

LOC +0: 6

+1: 5 WPUL

+2: IWPUL IYPUL +0: v/I (driver)

+3: INPUL +1: vi (load)

+4: 0 or node number

+5: 0 or IFCAP NPUL

NPUL +0: driver gate node

+1: load gate node

+2: output node
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LATCH

LOC +0: 6

+1: 6 W-R

+2: IVLCH IVLCH +0: w/l (driver)

+3: ILCH +1: w/l (load)

+4: 0 or node number

+5: 0 or IFCAP NLH

ILCH +0: 1st Sate node

+1: 2nd gate node

+2: 1st output node

+3: 2nd output node

SOURC

LOC +0: 4

+1: 3 NSOR

+2: IVSC IVSC +0: node number

+3: IRVSC +1: 0

+2: 1

WSOR

IRVSC +0:

+1: TIME

+2: VEIG

For floating capacitors, the data structures are:
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CAPCR

NCAP

IFCAP +0: Node 1

+1: Node 2

CCAP

IFCAP +0: capacitor value

The order of node 1 and node 2 must coincide with the sequence of

analysis so that the modified Gauss-Seidel method can be applied.
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Appendix 5

Input Data File for The PLA Example

The input data file for simulating the PLA circuit in Fig. 7.1

by PREMOS is contained in this appendix.

PLA finite-state machine implementing the light controller
*subcircuit model card
model inv nor2 (5 1 10f 100f)
model nor3 andoi(5 5 1 10f 10f 10f 100f 0 3)
model nor4 andoi(5 5 1 10f 10f 10f 100f 0 4)
model notrl trans(5 1 2 lOf 100f 10f 50f 1 1)
model notr2 trans(5 1 2 10f 100f 10f 50f 2 1)
model notr4 trans(S 1 2 1Of 100f 10f 50f 4 1)
model notr5 trans(5 1 2 1Of lOOf 1Of 50f 5 1)
model clkl source (4 1 10 nn iOn 5n)
model clk2 source (5 0 5n 5n Sn 5n)
* AND plane
xl 11 17 19 1 nor3
x2 13 17 19 2 nor3
x3 12 14 17 19 3 nor4
x4 15 18 19 4 nor3
x5 16 18 19 5 nor3
x6 12 13 18 20 6 nor4
x7 11 18 20 7 nor3
x8 14 18 20 8 nor3
x9 15 17 20 9 nor3
xlO 16 17 20 10 nor3
* OR plane
xll 5 6 7 8 9 21 56 28 notrS
x12 3 4 5 6 22 56 29 notr4
x13 3 5 7 8 10 23 56 30 notr5
x14 6 7 8 9 10 24 56 31 notrS
x15 4 5 25 56 32 notr2
x16 1 2 3 4 5 26 56 33 notr5
x17 9 10 27 56 34 notr2
* output registers
x18 28 35 55 49 notrl
x19 29 36 55 48 notrl
x20 30 30 37 inv
x21 31 31 38 inv
x22 32 32 39 inv
x23 33 33 40 inv
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x24 34 34 41 inv
0 input buffers
x25 57 42 55 45 notrl
x26 58 43 55 46 notrl
x27 59 44 55 47 notrl
* input registers
x28 45 45 50 inv
x29 46 46 51 inv
x30 47 47 52 inv
x31 48 48 53 inv
x32 49 49 54 inv
x33 50 50 11 inv
x34 45 45 12 inv
x35 51 51 13 inv
x36 46 46 14 inv
x37 52 52 15 inv
x38 47 47 16 iuv
x40 53 53 17 inv
x41 48 48 18 in,
x42 54 54 19 inv
x43 49 49 20 inv
*input sources
val 55 0 clki 0 1 0 0 0 1 0 0 0 1 0 0 0 1
v&2 56 0 clkl 0 0 0 1 0 0 0 1 0 0 0 1 0 0
v&O 57 0 clk2 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1
vbO 58 0 clk2 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
vcO 59 0 clk2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
*analysis requests
opt 1 1 3 1 1 1 1
contl 1 0 1
preset (35.5) (36.5)
time 120n in
plot 55 56 42 43 44 35 36
plot 37 38 39 40 41 9 10
plot 1 2 3 4 5 6 7 8
send 55 56 42 43 44 35 36
send 7 9 37 38 39 40 41
v 5
end



160

References

[I] W. W. Lattin, J. A. Bayliss, D. L. Budde, J. R. Rattner, and

W. W. Richardson, "A Methodology for VLSI Chip DesiSn,"

LAKDA. Second Quarter 1981, pp. 34-44.

[2] A. R. Newton, "The Simulation of Large-Scale Integrated Cir-

cuits," flL Memo No. ERL-M78/j2, University of California,

Berkeley, July 1978.

[3] R. E. Bryant, "An Algorithm for MOS Logic Simulation," LAMBDA,

Fourth Quarter 1980, pp. 46-53.

[4] G. R. Case, "SALOGS-ACDC 6600 Program to Simulate Digital

Logic Networks, Vol. 1 - User's Manual," Sandia La Reort

SAND A-24-I, 1975.

(5] L. W. Nagel, "SPICE2: A Computer Program to Simulate Semicon-

ductor Circuits," ERL Memo., No. ERL-M520. University of Cali-

fornia, Berkeley, May 1975.

[6] B. R. Chawla, H. 1. Gummel and P. Kozak, "MOTIS - An MOS Tim-

ing Simulator," I= Trans. Circuits Md Systems. Vol. CAS-22,

No. 12, pp. 901-910, Dec. 1975.

[7] S. P. Fan, M. Y. Hsueh, A. R. Newton and D. 0. Pederson.

"MOTIS-C: A New Circuit Simulator for NOS LSI Circuits," Proc.

HaE 1nt. §M. 2p Circuits and Systems, Phoenix, Arizona, pp.

700-703. April 1977.



161

[8] N. Tanabe, H. Nakamura and K. Kawkita, "MOSTAP: An MOS Circuit

Simulator for LSI Circuits," eM. I=EE I1. I. o Circuit

l" Systems. April, 1980, pp. 1035-1038.

[9] A. E. Rushli, A. L. Sangiovanni-Vincentelli and N. B. Rabbat,

"Time Analysis of Large-Scale Circuits Containing One-Way

Macromodels," Proc. IEEE Int. SMg. on Circuits and Systems,

April 1980, pp. 766-770.

[10] A. E. Ruehli, "Survey of Analysis, Simulation and Modeling for

Large Scale Logic Circuits," l1tb Design Automation Confer-

ence, Nashville, Tennessee, June 29 - July 1. 1981, pp. 124-

129.

[11] Y. P. Wei, I. N. Hajj and T. N. Trick, "A Prediction-

Relaxation-Based Simulator for bIOS Circuits," Proc. IEEE Iot.

Co. on Circuits and Computers, New York, Sept. 29 - Oct. 1,

1982.

(12] G. D. Hachtel And A. L. Sangiovanni-Vincentelli, "A Survey of

Third-Generation Simulation Techniques," Proceedings of The

I=.E, Vol. 69, No. 10, October 1981.

[13] H. Y. Hsieh and N. B. Rabbat, "Computer-Aided Design of Large

Networks by Macromodular and Latent Techniques," Proc. IEEE

Ill. tsy. 2p Circuits And Systems, April 1977. pp. 688-692.

[14] P. Yang, "An Investigation of Ordering, Tearing and Litency

Algorithms for The Time-Domain Simulation of Large Circuits."

QL Report l-891 University of Illinois at Urbana-Champaign,



162

August 1980.

[151 A. R. Newton, "Timing, Logic and Mixed-Mode Simulation for

Large M)S Integrated Circuits," _NM Advanced Study Institute

oa CDesiun Ais for N Circuits, Sogesta-Urbino,

Italy, July 21 - August 1. 1980.

[16] 3. M. Ortega and V. C. Rheinboldt, Iterative Solution 2L Non-

linear Eauations in Several Variables, New York, Academic

Press, 1970.

[17] E. Lelarasmee, A. E. Ruehli, and A. L. Sangiovanni-

Vincentelli, "The Waveform Relaxation Method for Time-Domain

Analysis of Large Scale Integrated Circuits," IEEE Trans.

Computer-Aided Desisn, Vol. CAD-i, No. 3, pp. 131-145, July

1982.

[18] "HPMOTIS User's Manual," Hewlett Packard, October, 1981.

[19] Narsingh Deo, Graph Theory with Application t Enginerjfj A"n

Computer Science, Prentice Hall, 1974.

[201 Shimon Even. Graph Aig.rthJs, Computer Science Press, Inc.,

1979.

[211 A. V. Aho, 3. E. Hopcroft and J. D. Ullman, The Design jnd

Analysis oL Computer Alaoribuz. Addison-Wesley. 1974.

[221 R. Tarjan, "Depth-First Search and Linear Graph Algorithms,"

i n. t., Vol. 1, No. 2, pp. 146-160, June 1972.



163

[23] 1. M. Dennean, "The Yorktown Simulation Engine," PM. 2L IM

Design Antgma.Ua Cofrence, Las Vegas, Nevada, June 14-16,

1982, pp. 400-409.

[241 D. E. Knuth. The &I 2L Comuter PrgLamig, Addison-Wesley,

1973.

[25] E. Horowitz and S. Sahni, Fundamentals of PAUL Structures,

Computer Software Engineering Series.

[26] 0. Wing and J. V. Huans, "A Computation Model of Parallel

Solution of Linear Equations," IE Trans. C ., Vol. C-29,

pp. 632-638, July 1980.

[27] P. Roth, Conouter Logic, Test ing n Verification, Computer

Science Press. Potomac, MD, 1980.

[28] C. V. Ramamoorthy. 1. K. Chandy and M. J. Gonzalez, Jr.,

"Optimal Scheduling Strategies in A Multiprocessor System,"

I=K Trans. Comput., Vol. C-21, pp. 137-146, Feb. 1972.

[29] S. Lam and R. Sethi, "Worst Case Analysis of Two Scheduling

AlSorithms," SIAN 1. Couout., Vol. 6, No. 3. Sept. 1977.

[301 K. A. Sakallah, Mixed Simulation 2L Electronic Intearated Cir-

cuits. Ph.D. Thesis, Carnegie-Mellon University, 1981.

[31] R. S. Varga, Matrix Iterative Analysis, Prentice Hall, New

Jersey, 1962.

[32] G. V. Stewart. Introductioln 1 atrix Computations. Academic

Press, New York, 1973.



164

[33] Giovanni Do Micheli and Alberto Sangiovanni-Vincentelli,

nNumerical Properties of Algorithms for The Timing Analysis of

NOS VLSI Circuits," Euronean Cnf. 21 Circuit Theory and4

Design, the Hague. Netherlands, Sept. 1981, pp. 387-392.

[34] L. 0. Chua and P. M. Lin, Com-uter-Aided Azalysis oL Elec-

tron Circits. Prentice Hall, New Jersey, 1975.

[35] Dahlquist, Bjorck and Anderson, Numerical Methods, Prentice

Hall. New Jersey, 1974.

[36] I. N. Hajj and S. Skelbo., "Time-Domain Analysis of Nonlinear

Systems with Finite Number of Continuous Derivatives," IEEE

Trans. Circuits &n Systems, Vol. CAS-26, pp. 297-303, May

1979.

[37] M. Abramowitz and I. A. Stegun, Handbook gL Mathematical Func-

tions. New York, Dover Publication, 1972.

[38] A. E. Ruehli, N. B. Rabbat, and H. Y. Hsieh, "Macromodular

Latent Solution of Digital Networks Including Interconnec-

tions," Proc. 1978 IM Int. Smo. An Circuits and Systems,

New York, May 17-19, 1978, pp. 515-521.

[39] Carver Mead and Lynn Conway, Introduction to VLSI Systems,

Addison-Wesley, 1980.

[40] D. R. Alexander et al, "SPICE2 3NS Modeling Handbook," Report

IM/A-7-071-1R. BDM Corporation, Albuquerque. New Mexico.

1977.



I

165

[41] W. H. Change, "Analytical IC Metal-Line Capacitance Formulas,"

I=i Traus. Microwave Teoy "An TechniQues. pp. 608-611. Sep-

tember 1976.

[42] A. E. Ruehli and P. A. Brennan, "Accurate XetalliSation Capa-

citances for Integrated Circuits and Packages," IEEE journal

of Solid St.te Circuits, pp. 289-290, August 1973



166

Vita

You-Pang Wei was born in Poag-Hu, Taiwan, China on July 6, 1953.

He received his B.S. degree in electrical engineering from National

Taiwan University in Taipei, Taiwan in June 1975. From 1975 to 1977

he was an ensign instructor in Chinese Navy, teaching several elec-

tronic courses. In August 1977 he entered the University of Illinois

and received his M.S. degree one year later. During the academic

year 1977-1979, he was a teaching assistant and research assistant in

the Electrical Engineering Department and the Coordinated Science

Research Laboratory, respectively. From August 1979 to January 1981,

he worked for Advanced Micro Devices Inc. in Sunnyvale, California,

as an integrated circuit design engineer. Since January 1981, he has

held a teaching Assistantship in the Electrical Engineering Depart-

ment and a research assistantship with the Coordinated Science

Research Laboratory. Presently he hax accepted a position as senior

CAD engineer in the CAD department of Intel Inc. in Santa Clara. Cal-

ifornia. His research interests are in the areas of computer-aided

design, VLSI design, circeits and systems, semiconductor device

modeling and solid state circuits.



'DATE,

FILMED


