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\ 1. Introduction Anita Jones

The 50-processor Cm* muitiprocessor became operational in fall 1979, making it one of the largest
multiprocessors in existence. The associated operating systems are nearing the point that they can
be used to harness the computation power of Cm* to run e)_(perimental applications. Thus, the Cm*
project is nearing the end of the development phase and is entering an experimental phase.

The most important recent milestones for the Cm* project are:

e A stahle, operational, Cm*/50 configuration. It is routinely in use by several different
research groups at a time. Some enhancements to hardware continu ~ particular, a
prototype disk controller has just been compieted.

e Two operating systems, STAROS and MEDUSA, now run on muitiple clus -~  They have
just reached the state of beginning to support user applications and ar +e process of

being tuned for performance. Crucial to performance is the microcod . ion of each
of the operating systems; microcode performance measurements are «._..ussed in detail
in this review.

e Initial 50-processor application measurements. This document reports the results of the
- first experiments to utilize the full fifty-processor Cm* configuration. .
'\

This review documents this turning point in our project from development to experimentation. It
describes recent progress, current status, and future plans of the various research efforts that use the
Cm* hardware. This review ig both a “stock-taking" exercise for us, and an attempt to make available
some initial resuits, because large muitiprocessors have yet to be widely investigated—especially
Quantitatively.

Qur collective, global objective is to investigate multiprocessor computation from many perspec-
tives: architecture, operating systems design, parallel algorithm design, performance of parallel
algorithms, reliability and software management. Cm* is the most recent and largest of the hardware
vehicles built at Carnegie-Mellon University during a program of multiprocessor research that has
now spanned more than 10 years.

——

This review reflects the work of a collection of people who have undertaken a variety of relatively
independent research efforts. The research questions asked within the context of the ditterent
undertakings vary. The premises on which two efforts are predicated may contrast, or even be in
opposition. We make some effort {0 contrast resuits, but the review, quite appropriately, does not
reflect the consistency of a single research theme. And, indeed, this review provides only a
"snapshot” of the state of ongoing projects.

- — 4
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System Development. We have developed Cm* substantially since 1977 when it existed as a 10
processor configuration, and we first wrote a comprehensive review of the project {Fuller et al. 77).
Since that time we have extended Cm*/10 to the Cm* /50 configuration. In addition, we enhanced or
developed a number of hardware and software tools. In this document we describe these
developments, particularly where they are directly relevant to the performance measurement resuits
also given in this document.

Application performance measurement. We have experimented with a variety of applications—
for example, partial differential equation solving, sorting, molecular modeling. We have had some
encouraging results. And we have experimented with some parallel algorithms that are inherently not
able to exploit the parallelism potentiaily available in the Cm* architecture to iearn more about both
the algorithms themselves and algorithms that are well-suited to the Cm* architecture.

For example, in the 1977 report, we presented performance measurements of aiternative
algorithms for a particular application: partial differential equations (Po€'s). The 1977 report showed
wide variance in performance for algorithms that relied on different synchronization patterns. In
particuiar, the purely asynchronous POE algorithm developed by Baudet was severai times faster than
some competitive algorithms because it does not reqixire lock-step synchronization of iterations being
performed on different processors. The purely asynchronous PDE algorithm attained /inear speedup
on Cm*/10—i.e., n processors performed the PDE calculation in 1/n-th the time that a single
processor could. This was true when between one and ten processors were employed.

A key question for muitiprocessor computation, in general, is what kind of speedup can be attained
when substantially larger numbers of processors are employed on a single probiem. Rephrased in
more concrete terms, what speedup is attained, as more and more processors execute the purely
asynchronous PDE computation?

Figure 1-1 shows an answer to that question graphically. It shows the performance of the purely
asynchronous PDE algorithm running with three different microcodes that provide mapped addressing
and basic synchronization facilities: SMAP, MEDUSA, and STAROS. At this writing, SMAP can reference
memory in distant parts of the Cm* configuration faster than either of the operating system
microcodes. With 35 processors, the speedup using SMAP is about 28. The speedup is not quite
linear, but there is no strong downtﬁm of the speedup curve that would indicate that any sort of limit
for this algorithm has been reached on Cm*.

A more detailed discussion of this particular application is given in Chapter 5. To speak generally,
the purely asynchronous PDE algorithm is reasonably well suited to Cm*/50 it the grid data is
distributed across the clusters, or groups of tightly coupled processors. Better performance might
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Figure 1-1: Poe—~Comparison of Three Microcodes

result if the data were distributed across individual Cm's within a cluster, at least for very large grids.
However, we have not experimented with this version of the algorithm. We have actually measured 40
per cent poorer performance in the case that the grid data is all maintained within a single cluster—in
fact, within a’single Cm.

Operating systems. We have developed two operating systems, STAROS and MepusA. They differ
from most extant operating systems in that each—in a different way—supports some notion of
strongly typed objects, and each is structured as a set of asynchronous server processes. It is the
microcode implementation of certain primitives that permit the operating systems to support these
attributes efficiently. For example, both systems use message communication for interprocess
communication and for synchronization. n addition, both use messages to communicate requests
passed between asynchronous processes in cases that uniprocessor operating systems typically use
procedure activations.

To date we have written, debugged and experimented with over 10,000 words of microcode. In
several chapters of this report we discuss measurements and experiments with the use of the various
microcodes. In particuiar, Chapter 10 discusses microcode performance measurement, for example,
the cost of mapped references and message communication operations.

 EEEEEE—— I J
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4 § Introduction 1.0

We contrast the cost of mapped references for three microcodes, SMAP, which uses the simplest
possibie virtual addressing scheme that supports cross-cluster addressing; MEDUSA, which supports
two-level descriptor-based addressing; and STARQOS, which utilizes three-level, or capability-based,
addressing. Mapped references require assistance from a processor called the Kmap. Because the
speed of mapped references is a first-order determinant of how fast an application can execute, we
have measured the average time for a memory reference to be completed, once a processor has
placed a 16-bit address on the bus. The cost of an in-cluster mapped reference for the three
microcodes is:

Kmap cost
Smap 8.3 useconds
MEDUSA 8.3 useconds
STarOS 8.6 useconds.

The average time for a memory reference emanating from one cluster to be serviced by a distant,
but directly connected, cluster is

Smap 26.2 yseconds
Mepusa 30.8 useconds
STAROS 35.3 useconds.

The above measurements assume no contention. In addition, they assume that any caching of
needed data structures within the data ram of the Kmap has been performed prior to measurement.
One observation of interest is that the dynamic cost of capability-based addressing (STAROS) and
descriptor-based addressing (MEDUSA) is roughly the same for the PDE application as can he seen in
Figure 1-1. This contradicts the belief held by many that capability addressing has excessive dynamic
cost compared to other kinds of addressing mechanisms, such as segment-descriptor or simple
paged addressing. 3
Conclusion. This review provides an overview of the set of research efforts that collaborate in their
use of the Cm* hardware. For the reader who wishes to delve more deeply into Cm*-related research,
additional papers and technical reports are listed in in the Appendix I. The foilowing references are
particularly recommended:

[Fulleret al. 77] S. H. Fuller, A. K. Jones, |. Durham, eds.
Cm* review. '
Technicai Report, Computer Science Department, Carnegie-Melion University,
June, 1977,

[Fuller et al. 78] S. H. Fuller, J. K. Gusterhout, L. Raskin, P. Rubinfeld, P. S, Sindhy, and R. J. Swan.
Multi-microprocessors: An overview and warking example.
Proceedings of the IEEE 66(2):216 - 28, February, 1978.
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[Jones et al. 78] A. K. Jones, Robert J. Chansler, Jr., |. Durham, K. Schwans, and S. R. Vegdahi.
StarOS, a multiprocessor operating system for the support of task forces.
In Proceedings of the Seventh Symposium on Operating Systems Principles, pages
117 - 27. ACM/SIGOPS, Pacific Grove, California, December 10 - 12, 1979.

[Ousterhout et a/. 80]
J. K, Qusterhout, D. A. Scelza, and P. S. Sindhu.

Medusa: an experiment in distributed operating system structure.
Communications of the ACM 23(2), February, 1980.
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2. TheCm* Hardware

This section provides a brief overview of the structure and components of the basic Cm* hardware.
More detailed descriptions may be found in a number of earlier publications: the original description
of the design and implementation of Cm* appears in two papers presented at the 1977 National
Computer Conference [Swan et al. 77a, Swan et al. 77bj; the design of the switching structure of Cm*
and a detailed account of one particular addressing structure are presented by Swan [Swan 78]; a
discussion of Cm* in the context of multiprocessors in general appears in [Fuller et a/. 78]; an
evaluation of the performance of the hardware is the subject of [Raskin 78] and [Fulier et al. 77].

2.1. The Structure of Cm* Pradeep Sindhu

Cm* consists of fifty processor-memory pairs called computer moduies, or Cm'’s,' connected
together by a hierarchical, distributed switching structure (Figure 2-1). The lowest level of the
switching hierarchy consists of Slocals, local switches that connect individual Cm's to the rest of the
structure. Cm’s are grouped together into clusters that are presided over by high-speed micro-

( programmable communication controllers called Kmaps. A Kmap provides the mechanism for Cm's
in its cluster to communicate with each other and cooperates with other Kmaps to service requests
from its Cm's to access Cm's in non-local clusters. Since Kmaps are microprogrammabile, it is usual
to impiement key operating system functions in the microcode of these processors in addition to the
normal functions of address mapping. All communication mediated by the Kmaps is implemented via
packet switching rather than circuit switching to avoid deadlock over dedicated switching paths.
Packet-switched communication also allows the processing of requests by the Kmaps to be
overlapped since switching paths are no longer allocated for the duration of a request; this leads to
considerably better utilization of the switching structure. The inter-cannection structure of Cm* at the
level of clusters is essentially arbitrary. The Kmap of each cluster has two bi-directional ports each of
which may be connected to a separate intercluster bus to impiement a variety of inter-connection
schemes. In the current configuration of the hardware, all five Kmaps are connected to both of the
intercluster busses as shown by Figure 2-1.

The modularity and distribution present in the hardware provides the potential for building a system
that can tolerate failures within its components. There is no central point of failure in the structure of

VAtter the PMS notation of Bell and Newell [Bell 71].
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2.1 The Structure ofCm* § 9

Cm*, and there are no static master-slave relations between its components.? The main memory of
the system consists entirely of the locat memary of all the Cm's; there is no central, shared memory.
The processors in the system are individually slow but there is a large number of them and they are
distributed physically. As a result, errors occuring in one processor ought to be localizable to that
processor, and the loss of a single processor ought not to degrade the operation of the system

substantially. The communication resources of the system, the Kmaps, are individuaily more powerful
and are also physically distributed. However, since there are fewer Kmaps, and since each Kmap
presides over a larger portion of the system than a processor, the loss of a Kmap will have a greater
impact on the system than the loss of a processor.

There are two attributes of the architecture that combine to make Cm* unique for the purposes of
experimenting with multi-computer systems. First, the computational and communication resources
of the system are physically distributed so that problems that are encountered in the context of Cm*
are likely to apply in the broader context of distributed systems. From any one point in the system a
small set of resources is accessible at low cost. The rest of resources of the system are also
accessible, but with greater overhead. Second, the presence of powerful, programmable communi-
cation controllers permits a wide variety of systems ranging from closely coupled shared memory to
pure networks to be evaluated on the same hardware.3 This combination of distribution and sharing

('.\ is enhanced by the particular way in which processors are interfaced to the rest of the system. Since
the Slocal of a processor cuts the addressing path between processor and'memory. the method of
making ordinary memory references appears to the processor to be independent of the location of the
memory. Moreover, highly complex functions implemented within Kmap microcode may be invoked
exactly like memory references by giving special meaning to particular portions of the processor's
address space.

2.2. The Components of Cm*

The basic computing element in Cm*® is a processor-switch-memory combination called the Cm.
Each Cm zonsists of a standard off-the-shelf DEC LSI-11 processor, 64 or 128K bytes of memory, one
or more 170 devices, and a custom-designed Slocai which connects the processor-memory
combination to the rest of the system (Figure 2-2).

2Eveﬂ though there are no static master-siave relationships between components, temporary master-siave
reiations do exist between components over the lifetime of a given request.

3To date at least six different systems spanning the entire range from shared memory to fast message
° systems to networks have been impiemented on the Kmaps.
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Figure 2-2: Details of a Computer Module

When the processor of a Cm initiates a memory reference, the Slocal of that Cm is responsible for
determining whether the reference is to be directed to local memory or out to the Kmap for further
mapping. As shown in Figure 2-3 the Slocal uses the four high-order bits of the processor’s address
along with the current address space to access a mapping table which determines whether the
reference is to proceed locally or not. References that map to local memory proceed with no loss of
performance; references that map to another Cm in the same cluster as the referencing Cm are
slower by a factor of three; and references that map to a Cm in another cluster are slower again by a
factor of three. These figures are the best possibie ratios that can be achieved on Cm*, and therefore
correspond to constraints imposed by the hardware itself rather than to implementation quirks of any
particular microcade, for the Kmaps. All 1/0 devices in Cm* are connected to the various LSk11
busses. Since there is no inter-processor communication mechanism other than the standard one for
memory references, interrupts generated by an |1/0 device must be fielded by the processor to which
the device ig directly attatched.

The other important component in the architecture of Cm* is the Kmap. The Kmap is a fast (150-ns
cycle), horizontally microprogrammed (80-bit wide) microprocessor that provides the basic address
mapping, communication and synchronization functions in the system. The flexibility and power of
the Kmaps is in part responsible for the variety of systems that have been implemented for Cm*.
Since the Kmap is microprogrammabile, it is possible to move key operating system primitives into the
Kmap and experiment with a number of operating system designs that differ in their iowest levels.
Later chapters of this report contain detailed descriptions of four of the iargest microcode systems
that have been written for the Kmaps.

The Kmap itself consists of three tightly coupled processors (Figure 2-4). The bus controfier, or
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Kbus acts as the arbitrator for the bus that connects Cm’s in the local cluster to their Kmap; the
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Linc manages communication to and from the Kmap to other Kmaps: and the mapping processor, or
Pmap responds to requests from the Kbus and Linc, and performs most of the actual computation for
a request for service. The Pmap also directs the Kbus and Linc to perform any needed operations on
behalf of the request being processed. Since the Kmap is much faster than the main memory of the
LSI-11's, most of the time for a simple reference is spent in accessing memory and relatively little time
is spent within the Kmap. The throughput of processing requests could therefore be increased
considerably if the Kmap is allowed to process more than one request concurrently. In fact the Kmap
is hardware muitiprogrammed to a degree of eight, permitting it to handle up to eight requests at any
one time. Each of the eight partitions of the hardware is called a context and key state for each
context is duplicated to make context swaps efficient.

2.2.1. Present Hardware Configuration Lawrence Butcher
: The original Cm* configuration contained 10 Cm's and 3 Kmaps. The resuits of earlier
experimentation with it were reported in 1977 [Fuiler et a/. 77). In the last two years the Cm*
multiprocessor has grown from a 10-Cm machine to a 50-Cm machine with 5 Kmaps. This section
serves to describe the present hardware configuration and explain how it has changed since the
previous report.

As the additional hardware was built and brought up, a series of modifications were made to all
components of the machine, and at present the entire Cm* machine is stable and free of known bugs.
A large number of peripheral devices were added to the system as the machine grew. At the present
time, the Cm* configuration contains the following components:

o Cm*® support hardware. A PDP-11/10 system cross-patches user terminals to
resources on Cm*. It runs a software system known as the Cm* Host, which is described
in detail in Section 3.1. The Host is much the same as it was in 1977. The number of lines
to the Computer Science Department’s Frort End computer has increased from 2 to 3,
and there are now 4 local terminais. two of which are 9600-baud CRT's. There are
additional lines available for hardware development and debugging.

e Kmaps. 2 Xmaps were built to bring the total number of Kmaps to 5. The writable control
store on each Kmap was quadrupled in size to the present 4K eighty-bit instruction
capacity. The number of Kmap generai-purpose registers and the number of subroutine-
return registers were increased from 8 to 32 each. There are two intercluster busses,
which serve to transmit messages from one Kmap to another. Each Kmap is connnected
to both intercluster busses. Normally all 5§ Kmaps are interconnected to form a 5-cluster
system: however, for performance evaluation it is possible to rearrange the processors to
run with all Cm's in a 4-cluster system. In addition. 5 map bus monitors wera
constructed to monitor communication on the bus between Kmaps and Cm’s. These
monitors serve as muitiprocessor front paneis and are capable of producing trigger
signals on selected Map Bus events. They have been used to obtain accurate hardware
performance measurements and are used in hardware debugging.

_ A. I
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e Cm's. 40 additionai Cm's were assembled to make a total of 50 Cm's. All Cm's now use
DEC 64K-byte memory cards: 34 Cm’s have 64K bytes of memory and 16 Cm's have 128K
bytes of memory. All Cm's have line-time clocks. There are serial-line
connections from the Cm* Host to ten individual Cm's. These connections permit
programs or data to be loaded directly from the Host to these 10 Cm's, two of which are in
each of the 5 clusters. Cm's lacking serial-line connections have to be ioaded from other
Cm'’s via a Kmap. or from peripheral devices to which they are attached.

e Paripherals. The Cm* processor has access to a large number of peripherals in addition
to the 10 seriai-line connections to the Cm* Host. They are—

1. Two 4800-baud serial-line connections switchable between the Computer Science
Department's two DEC KA-10 computers.

2. One 4800-baud serial line to a vector graphics terminal. This has been used in
experiments such as hidden-line elimination (Section 8.3).

3. One 32-bit reai-time clock. This device has 0.5 usec. resolution and uses a crystal
timebase. The counter can be set to zero under program control to simplify interval
measurements. This clock can accurately measure single instruction-execution
times.

4. Four DEC KUV11-AA Writable Control Store boards. These boards allow user
microcode to be executed on modified LSI-11's. The LSI-11's behave like ordinary
processors until thé WCS board is enabled. These boards have been used by
several classes to teach microcoding and could be used for standalone Cm*
projects. At present there are no plans to make these devices available to users of
the various Cm*® operating systems, as a microprogram with bugs couid cause the
LSI-11 to ignare all interrupt and halt requests.

5. Four DA-Link boards. These high speed DMA devices communicate over an 18-bit
paraliel bus with a similar device on the Computer Science Department's DEC KL-
10. Between an unioaded LS!-11 and an unloaded KL-10 these links can transfer in
excess of six hundred thousand words per second. Designed and built by the
department, these devices have greatly decreased the time needed to complete a
compile-link-download cycle. The file-transfer system based upon them (Section
3.8) provides programs executing on Cm* with access ta both files and programs
on the department's KL-10,

8. Two DEC RP-11 disk controllers. Locaily accessible disks will provide the main file
storage for the Cm* operating systems. These 2 disk controllers are interim
devices that will be replaced by ccntroilers built in-house (Section 2.2.2.) Each of
these controllers can control eight RPO3 40-megabyte drives, although each will
probably be used with four or five drives.

7. Two Xerox ETHERNET interfaces. These boards provide a DMA interface to the 3-

megabaud ETHERNET, a network to which mast machines in the department
presently have access. Eventually there will be access o the Arpanet through the
ETHERNET.

8. One character-mapped console display terminal. An ADM-3A terminal was modified

The Components of Cm* K 13
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so that it refreshes from a dual-ported memory which connects directly to an LSI-11 1
bus. Each character on the screen is readable and writable as a byte of LSI-11 |
memory. The terminal is therefore addressable by ail S0 Cm's. The various !
operating systems can provide protected access to portions of the screen. When
several Cm's use the display simultaneously, it can be updated at speeds of several
hundred-thousand characters per second.

e Diagnostic Processor. A Diagnostic Processor (DP) has been added to the Cm* system
to collect hardware reliability and availability information. It hosts a program called the
AutoDiagnostic Master which runs diagnostics on those Cm's that are otherwise idle. The i
DP is an LSI-11 with 28K words of memory. it has 2 serial-line connections to the Cm* :
Host. One connection provides a user interface through which one can request status
reports about particular Cm’s, particular clusters, or of the entire Cm*® processor. The
second serial line interface is used by the AutoDiagnostic program as a command
interface to the Host. The program iogs in over the second line, directs the Host to run
diagnostics for it, and on operator request transfers a statistics file to the department's
KL-10.

o Hooks Processors. In addition to its 50 Cm’s, Cm* has three LSI-11's, known as Hooks
processors, which are used for debugging the Kmaps. These processors control the
Hooks, which is the collective name for a set of hardware which has been designed into
each Kmap in order to permit complete external control and diagnosis of it. The Hooks
consist of several control registers and other hardware within the Kmap, an LSI-11 bus
interface to make the hardware accessible from an LSI-11, and a bidirectional Hooks
bus used to transmit information between the control hardware and the LSI-11 bus
interface. The Hooks appear to an LSl-11 as a group of eight words in its physical
address space. By reading and writing these words, the Hooks processor has almost
complete control over the internais of the Kmap. [t may load microcode; start, stop, and
single-cycle the Pmap/Linc and Kbus clocks; read out most and write some of the
internal registers of the Pmap; disable certain error checks within the Pmap; and initialize
the Kmap.

2.2.2. Disk Controller Pradeep Reddy
A prototype disk controiler has recently been designed and built for Cm*. The goals of the project
were:
o The controlier shouid be capable of supporting both RP0O3 and RPO6 disk drives. The

RPOB6 has higher transfer rates and more storage. The disk controiler has to be capable
of cycie times fast enough to keep up with the faster drive.

o The controlier should be both inexpensive and compact. This is directly in keeping with
the philosophy ot Cm*®. The disk controiler must fit an a single Hex wire wrap card that
would plug into the LSI-11 bus.

e The controfier should make both hardware and firmware debugging easy.

The motivation for the project came from the ten RPO3 disk drives that were part of the DEC hardware
grant in the summer of 1978 and the fact that Cm*, being a distributed system, has a potentially large
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170 bandwidth. To realize this bandwidth in terms of Disk 170 it is necessary to distribute disk drives
across the system say one or two per cluster. In this way ali the disks could conceivably be
performing 170 simultaneously. Thus it becomes necessary to have many disk controllers which are
both compact and inexpensive.

None of the commerciaily available disk controllers fulfilled all the requirements and most were too
expensive in the quantities that were needed. Hence it was decided to build a disk controlier in
house. The project entered its design phase in February 1979.

Since the controller must be capable of using both RP03 and RPQ6 disk drives, all the drive-
dependent circuits were moved from the controlier to an adapter board that would be taiiored to
meet the varying specifications of the two drives. The adapter board consists of data-acquisition,
data-generation, clock-generation and line-driver circuits.

To achieve upward compatibility the controller had to be designed for the faster transfer rate, 6.5
MHz, of the RP0B. A more critical speed constraint was the decision to provide capability for error
correction on the controller. The scheme invoived the addition of 10 words of error-correction codes
to the end of each block of data. This enables the controller to correct burst errors up to 16 bits long.
Though this solution is somewhat expensive in storage, all the code generation and checking could
be done in microcode. To perform this in real time the microprocessor has to be capable of 13 cycles
for every word that is transferred to or from the disk. A microcycie time of 190 ns is necessary for the
RPO6.

The current impiementation of the disk controller is a microprogrammable machine. [ts main
constituents are a bit-slice ALU capable of cycling at about 190 ns, a 1K x 40 writable control store
and a 1K x 16 data RAM for internal storage. it has FIFO queues to provide data buffering between the
internal data bus and both the disk and the LSIi-11 bus. The disk data-acquisition logic can operate
up to 10 MHz. About 16 parallel lines are driven off-board to issue commands to the drives and about
12 lines can monitor the status of drives. There is considerable hardware support for hardware and
firmware debugging. The disk controller is capable of using up to 8 drives but the current design of
the RP0O3 adapter card can handle only four drives. In the Cm* system it is hoped that no more than
one drive will be connected to a controller to maximize system throughput. The current
implementation for an RP03 cycles at 300 ns, which is quite adequate for the slower bit rate. The
same hardware, with faster control store RAMS (about 50 ns access time) will yield the 190 ns cycle
needed for the RP06. Figure 2-5 diagrams the the data paths in the disk controiler.

Though the controller was meant to be used as a disk controiler the interpretation of all the "disk"
registers is soft. The device-dependent circuitry is also happily oft board. We can view the controller
as being able to drive some paralie! lines (about 16) and monitor the status of some more lines (about
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12). The frequencies at which these lines are driven or monitored is as fast as the cycle rate of the

micromachine. The device also drives a sernal data line with frequencies up to 10 MHz, and can

acquire data from another at the same maximum frequency.

The adapter card that goes between the controfler and the device will then tailor these signals to
the needs of the device. The controller can be made to work with a new device by building a new
adapter card, which is quite trivial, and writing new microcode, which is not so trivial. Most serial
devices with data rates of up to 10 MHz can be handled by the controller. The controiler could quite i
easily be turned into a network controller. ;

A prototype disk controiler has been designed and fabricated. A debugger was written before
attempting to bring up the hardware. The debugger proved to be of tremendous help during this i
phase. An RPQ3 adapter card was then fabricated to interface the controller to the Cm* drives.
Microcode, making the controller appear like the DEC RP11 disk controller, was developed and data

transfers between the drive and the controller are now possible.

The next step is to determine a programmer interface to the controller and implement this interface
in microcode. Cm* could use many copies of this disk controiler to improve both its 1/Q capability
and bandwidth. Some of the controllers could be driving disks and others could be interfaces to local ’

( networks. Hardware work to enable the controller to interface to a network, however, needs to be ]
o done. It will also be worthwhile to investigate the possibility of turning the controller into a PDP-11

e s v e

device. This seems eminently possible and desirable in the CMU environment.

Pradeep Reddy was the principal designer of the disk controller. Richard Swan, John Qusterhout,
Pradeep Sindhu, and Lawrence Butcher originated many design ideas and heiped develop them.
Butcher designed and fabricated the RP03 adapter card.

2.3. Reliability Studies on Cm* Michael Tsao

The 50-module Cm* system provides a unique opportunity for gathering data about computer
failures, both hard and transient. Cm* hard-failure data was used in a reliability comparison between
industrially proeduced components and CMU-built one-of-a-kind components. 1t was found that CMU-
buiit components, which did not use burned-in parts, generally have a higher failure rate. It was also
shown that, as expected, the distribution of hard failures foilows the exponential distribution. Cm*
transient error data was also analyzed for the distribution of interarrival times. It was found that the
distnbution follows a decreasing failure-rate Weibull function. This is at variance with the standard
assumption that transient errors exhibit an exponential distribution with a constant failure rate.
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2.3.1. Hard Failures

Hard failures, or permanent faults, are continuous and stable, reflecting an irreversibie physicai
change in the hardware. Cm* hard-failure data, collected from the engineering iog book, was used to
calibrate existing reliability models. The Mean Time Between Failure (MTBF) was calculated
assuming failures were independent. The MTBF was obtained by dividing the total time by the total
errars. In order to combine data for all of the computer moduies (Cm's), a concept called "module
time" was introduced. If there are several modules running during a period of time, then the module
time is the sum of the time that each module was up. Module time is divided by the total number of
recorded failures for the entire multi-module Cm*. This yields the MTBF for a single “"typical” module.
Because of the small number of failures per computer moduie, it is a more realistic reliability measure
than the MTBF for any particular module. Table 2-1 presents this module-time data and the MTBF,

measured in moduie hours, for Cm*.

Table 2-1: Cm* Hard-Failure Data From February 1977 to May 1978

Complexity # of Total Time Total MTBF
(Chips) Modules (Mod.Hrs.) Failures (Mod. Hrs.)
Component :

Kbus 138 3 36696 8 4587
Pmap 1068 3 37416 12 3118
Control store 116 6 68328 4 17082
Data RAM 142 3 37082 2 18540
Linc 116 3 22608 0 —
DEC LSi-11 68 14 163200 10 16320
Slocal 126 10 120720 5 24144
4K memory 58 21 260568 5 52003
16K memory 104 10 122280 5 24456
SLuU 28 17 223248 5 44650
Power board 6 16 195456 3 65152
Refresh 14 16 162912 0 —

The "complexity in chips" mentioned in the table is a measure of the actual number of chips used
in each component. In the case of the Digital Equipment Corporation (DEC) LSI-11, the actual
number of chip sockets used is 76; of these, 72 contain digital integrated circuits. Since unused
functions on the chips add up to the equivalent of 4 unused chips, the number of chips used is ﬁ
recorded as 68.

An ANOVA (analysis of variance) on the error-log data shows that uncentainties associated with
module commissioning dates (i.e., initial power up and integration into the system) were insignificant.
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The failure distribution was shown to follow the exponential distribution, i.e., a constant failure-rate
Poisson process used in the Military Standard Handbook (MIL 2178) reliability model [Siewiorek et al.
78b].

MIL model 2178 assumes that the failure of electronic components is a Poisson process and the
failure distribution follows the exponential distribution, which is characterized by a constant failure
rate over time. The failure rate for a single {C chip can be predicted using the following MIL 2178
model parameters: a learing factor based on the maturity of the production process, a quality factor
based on the procedure for incoming screening of components, the ambient operating temperature, a
tactor based on the benignity of the operating environment (considering such factors as humidity and
vibrations), and two complexity factors based on the number of random logic gates, and the number
of memory bits in the component.

Cm* chip-failure data and vendor data was used to calibrate the MIL 2178 model, and was then
compared with its predictions. The model turned out to be too pessimistic by a factor of 16 to 64,
compared to the Cm* data. That is, it predicted 16 to 64 times as many failures as actually occurred.
One can speculate that MOS technology might not yet have settled in 1972, when the data was
gathered for the creation of the 2178 model. Since Cm* uses mostly 1976-77 components, there are
many 2178 parameters that can be aitered to take into account the maturity of the production
( process. Cm* data was compared with the predictions generated by various parameter changes in
the model. As a result of these comparisons, a modified MIL 2178 model was proposed: the quality
factor for MOS chips was derated by a factor of 16. Based on this modified MIL 2178 model, a PMU-
level reliability model for Cm* was also presented [Siewiorek et al. 78b].

2.3.2. Transient Errors .

Transient errors are manifestations of faults which are due to temporary environmental conditions.
Very little is known about transient failures. Data collected on Cm* and other CMU computers has
contributed to the understanding of this phenomenon. On Cm*, transient error data was collected by
an Auto-Diagnostic program {Scelza 79]. The Auto-Diagnostic continuously exercised the Cm*
system by running diagnostic programs on all otherwise idle computer modules. Whenever an error
was detected by the diagnostic program, the information was printed on the console terminal.
Looking through the console log, one could determine occurrences of transient errors. A more
detailed analysis of Cm* error data was presented by Tsao [Tsao 78). it was fqund that the interarrival
times of transient errors foliows a decreasing failure-rate Weibull distribution This is at variance with
the standard assumption of constant failure rate (Poissan process, exponential distribution) used in
reliability modeling. The Weibull distribution, observed on Cm*, was also observed on several PDP-10
systemé [McConnel et ai. 79a]. A summary of these findings will be presented in Section 2.3.3.
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A set of four diagnostics are continuously run on the Cm's. These tests exercise (1) the memory,
(2) the instruction set, (3) the traps and interrupts, and (4) the Slocal and a small part of the Kmap.
The memory test is divided into 13 subtests. 'which include a gallop test, marching ones and zeros,
and shifting ones. It takes approximately 13 minutes to complete one pass through 56K bytes of
dynamic MOS RAM. The instruction-set test and the interrupt-and-trap test are designed to test the
functioning the of LSI-11 processor. These are short tests, so many passes are done before moving
to the next diagnostic. The Slocal diagnostic performs a number of functions. First it tests the
registers and data path of the Slocal. Second, it exercises a part of the Kmap. Finally it runs a few
tests on portions of memory.

Previously reported data [Siewiorek et a/, 78a] indicated that several computer moduies sometimes
will report detection of errors almost simultaneously. Three basic occurrence patterns were noticed
in transient errors: multiple errors occurring together in the same Cm (burst type), simultaneous
errors reported by different Cm’'s (simuitaneous), and finally, isolated errors (isolated). it was also
observed that sometimes a single transient error event would be manifested as both the burst type
and the simultaneous type together. Table 2-2 groups the recorded errors for the period between
September 1977 and August 1978 into these four classes.

Table 2-2: Cm* Transient Error Events: Sorted by Mode and by Test Type

Type of Test Memiory Instruction Interrupt = Slocal Total
Error Modes
Burst only 8 6 1 16 31
Simultaneous only 6 1 1] 20 27
Burst and Simuitaneous together 3 1 0 10 14
Isolated 4 - -9 —18 <1 §
Tatal 24 14 1 64 103

Observations indicate that the most common cause of the burst errors is the destruction of the
diagnastic program. A garbled diagnostic program can cause either spurious haits or a burst of
reported errors, since successive restarts of the diagnostic program will be unsuccessful and resuit in
consecutively reported errors. It is also possible that such burst errors arose when fauity
transmission of code caused a bad copy of the diagnostic program to be ioaded. But this is not likely
because alf such transfers are checksummed. Once a checksum error is detected, a reload is started.
Bursts may aiso be caused by transient errors of a duration that is longer than the time resolution of
the diagnastic. But the majority of observed burst type errors did not fit this hypothesis.

The simultaneous reporting of errors in several Cm’s is the most interesting observation. It is
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conjectured that a systemwide transient failure causes this type of error. Two possible sources were
proposed: Kmap error during Slocal test and common DC power supply glitches. It is known that
turning power on and off in one Cm causes errors in other modules. These simuitaneous errors could
be human-induced events of this type that were not properly recorded in the system log. If these
simultaneous errors were truly transient, one fourth (27 events) of all transient events affected more
than one Cm.

2.3.3. Analysis of Transient Error Interarrival Time

Transient error data was processed and analyzed for the underlying statistical properties, with the
aid of the SEADS transient-error statistical analysis program [McConnel et al. 79b]. Figure 2-6 shows
the adjusted histogram of the interarrival for Cm* transient errors . The histogram of the distribution
is overiaid with the maximum likelihood estimator (MLE) Weibull probability density function. Figure
2-7 shows the interarrival data for Cm* plotted on Weibull probability paper. The straight line drawn
on the plot is a least-squared-error (LSE) linear fit to the data. Note that most of the visual deviation is
due to relatively few points at the lower end. This deviation is mostly due to the transformation
induced by the Weibull probability paper which is not very accurate for low-end data points. The near
collinearity of the data points, tracking the LSE line, shows that the sample follows a Weibull
distribution.

Table 2-3 lists some general statistics about the interarrival times for the five sets of data: TOPS-C
system reloads on the CMU Computation Center DEC 2060 (under the TOPS20 operating system),
PDP-10 system reloads on the Computer Science Department DEC KL-10 (under the TOPS10
operating system), POP-10 memory-parity error interrupts on the KL-10, Cm* transient errors, and
C.vmp* system crashes [McConnel et al. 79b]. [n all cases, the mean is less than the standard
deviation, indicating a decreasing failure rate (a < 1). The Weibuit shape parameter is a, and A is the

Weibull scale parameter.

For the last three sets of data, the 90% confidence intervals for a and A were also generated.
These values are listed in Table 2-4. Note that the range of values for a does not include 1.0, as it

would have to, if the data did follow the exponential distribution.

Confidence-intervai tests on the MLE Waeibull parameters and Chi-square goodness-of-fit test
confirmed the hypothesis that the data follows a decreasing failure-rate Weibull distribution. This is
significant since past publications on the problem of transient errors have always assumed the
exponential distribution for ease of computation. No other data have been published to support that

‘C.vmp is a triplicated NMOS LSI-11 microprocessor with majority voting at the bus level [Siewiorek et al.
780].
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Table 2-3: Statistics for Transient Errors

TOPS-C POP-10 POP-10

Reload Reload Parity Cm* C.vmps
Time (hours) 2646 8576 8596 4222 4921
Errors 195 6368 74 103 50
Interarrivals 196 640 78 104 51
wp(wall-clock time) 13.5 13.4 110.2 406 96.5(328)
c 16.5 24.6 2449 59.8 167.8 (471)
a (Linear) 0.864 0.684 0.500 0.834 0.711
a’ (MLE) 0.826 0.639 0.481 0.779 0.654
A (Linear) 0.0843 0.109 0.0206 0.0204 0.0149
N (MLE) 0.0826 0.106 0.0203 0.0288 0.0148

Table 2-4: 90% Confidence Intervals for Weibull Alpha and Lambda
POP-10 Parity Cm* C.vmp

[aw‘, wap)  [0.566,0.0307] [0.893,0.0358] ([0.806,0.0214]
[0.412,0.0134] [0.693,0.0231] [0.558,0.0099]

%ow’ Iow
assumption. This observation of a decreasing failure-rate Weibull distribution means that the problem
of modeling transient errors must be reconsidered.

2.3.4. Transient Error Data for February and March 1980

During February, 1980, the Auto-Diagnostic reported a totai of 45 errors that were actual detected
diagnostic fauits found by individual test programs on the Cm’s. It is evident from the console log that
Cluster 3, Cm 14 had a hard failure, ag 21 errors were reported. Errors reported simuitaneously are
assumed to be due to the same transient fauit, and so only one transient error is counted. During this
month, there were 4 simultaneous error events which caused the reporting of 5 redundant errors.
After discounting these non-transient diagnostic errcrs, there were 19 transient-error events in
February, 1980.

Table 2-5 presents the Mean Time Between Error (MTBE) for each cluster and the detected errors
(sorted by tests). A new test, the parity test, is used on the 50 module Cm*. This test diagnoses the

5the pessimistic value discussed in [Siewiorek ef al. 78b} is used throughout tor C.vmp because there were
too few interarnvals in the optimistic value (shown in parentheses for the mean and standard deviation) to be
statisticaily signiticant.
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parity generating and checking portion of each Cm. It is evident that the parity test is a very sensitive
diagnostic test for transient errors, because many more parity errors were reported by this test than
by the Slocal test which, in the past, used to report the largest single group of errors. The newly
discovered sensitivity of the parity test is also reflected in the low MTBE, compared with a MTBE of
218 module-hours as reported in [Tsao 78].

Table 2-S: Cm* Transient Errors, February 1980

Cluster 1 2 3 4 5 Total
Module Hours 408 312 481 309 212 1722
Errors per Test
Parity 1 3 7 2 3 16
Slocal 0 0 0 2 0 2
Instruction 1 Q Q Q Q 1
Total Errors 2 3 7 4 3 19
MTRBE (module hours) 204 104 639 77 71 91

Table 2-6: Cm* Transient Errors, March 1980

Cluster 1 2 3 4 L3 Total
Module Hours 241 212 326 385 365 1529
Errors per Test
Parity 1 2 3 1 3 10
Slocal 0 1 0 0 0 1
Instruction 0 . R -9 ~—9 -1
Total Errors 1 4 3 1 3 12
MTBE (module hours) 241 53 108 385 128 127

During March, 1980, two more Cm'’s failed. Cluster 4, Cm 3 had a hard failure in the memory board.
Also in Cluster 4, Cm 12 had a failure in the Slocal board. The transient error MTBE for that month is
presented in Table 2-6. Data collection on Cm* will continue and analysis will be conducted
periodically in the future.

e e — v e ——— o
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3. Exploiting the Hardware: Basic Software
Support

An important part of any systems-development project are the tools which are used to realize it. it
is rarely possible, however, to duplicate the utility programs of a mature operating system on an
experimental machine. Rather than spend our time on the routine tasks of developing editors and file
systems and transporting compilers, we have chosen to use these utilities on the Computer Science
Department’'s PDP-10's. This has enabled us to concentrate our efforts on implementing transtators
for Kmap microcode, and debuggers for microcode and software. We have also built an efficient
mechanism for transporting files to Cm*. This chapter describes these tools.

3.1. The Cm* Host Gregg Lebovitz

When software was first being developed on Cm*, there arose a need for a system to let the
software developer control the usage of resources on the machine, and protect his resources from
being disturbed by other users. The Cm*™ Host system Was developed for this reason. The Hostis a
serial-line oriented resource-management facility running on a PDP-11/10 with 28K words of memory.

The command structure of the Host resembles that of the PDP-10, which most Cm* users are
familiar with. The Host performs several of the functions of a primitive operating system.

o Security. The Hast protects Cm* from unauthorized use by providing an account system.
In order to use any Cm* resource, one must /og in to the system by typing in a valid user
number and password.

e Protection. A resource on Cm* must be assigned to a user before it may be used. Onceit
is assigned, no other user may access the resource until it is deassigned. The resources
of Cm* are thus partitioned among users. Development wark on several projects, even
several different operating systems, may be carried out simultaneously using disjoint sets
of resources (different clusters, for example). Meanwhile, each user is protected from
having his working environment accidentally disturbed by another user.

e Resource control. The Host has commands for controiling a variety of assigned
resources. Among these are commands to load programs from tape or from the PDP-10;
to start, halt or single-step a processor; to guard against buffer overflow; and to
communicate with a resource via a direct terminal link.

e Communication. The Host allows the user to monitor output from all assigned resources
simulitaneously, by requesting that messages sent to him by each resource be printed at
his terminal. As an option, a banner, that is. an abbreviation of the name of the resource, ﬂ
may be printed in front of each message to indicate where the terminal output came from.
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Such a feature helps the user to monitor the interaction of resources for debugging
purposes. A user may also send a message to any serial line from the Cm* Host. This
facility enables the user to communicate simuitaneously with several of his processes—or
with other users. This facility is used by the Cm* Auto Diagnostic system to notify the
diagnostic processor of errors detected on other resources.

Four different kinds of serial lines are available to the user. These are lines connected to Cm’s,
Hooks processors, terminals, and the Computer Science Department’s Front End computer. The Cm
lines are configured two per cluster. These lines allow the user tb load code and data directly into a
few of the LSI-11’s, and then to interact with with his running programs. The Front-End lines have two
purposes. They. allow the user to communicate with other computers from Cm*. Many programs on
Cm?, for example, the DA Link programs (Section 3.6) interact with programs on other machines. The
Front-End lines also permit the user to monitor debugging information on both machines simuita-
neously from one terminal using the banner facility mentioned above. The lines to the Hooks
processors allow the user to load Kmap microcode and to communicate with the Kmap debugger
(Section 3.4).

The original Host system was written in the fall of 1975 by Hal Van Zoeren. Don Scelza and John
Ousterhout completely rewrote it with enhancements in early 1977. The Host has been running
smoothly since the summer of 1977. Its average uptime is several hundred hours. The features it
provides have greatly facilitated the impiementation and debugging of software on Cm*,

3.2. The CMIC Microassembler and its Software Support
Ed Gehringer and Steve Vegdahl

The CMIC microassembler has been used to produce most of the microcode which has been
written for the Kmaps. It was adapted by Paul Rubinfeld from an earlier microassembiler in the fall of
1978, and consists of 2100 lines of source code. Writing without macros, the programmer codes each
separate micro-operation by specifying a numeric value for each non-zero field of the microin-
struction. Fields which are not assigned a value are set to zero. Statements have the form
{(Pieldname)> = <{value). All of the statements on a single line are assembied as part of the same
microinstruction. Continuation lines are allowed. A microinstruction, then, might be written
something like this:

fcn = 3 ; reg »~ 13 ; rw=1; na = 20
The programmer does not normally write code in this fashion, however, as the macro facility allows
him to define macros which expand to a set of closely related micro-operations. Thus the example

above, which causes addition to be performed by the ALU (fcn = 3) and stores the result in generai- '

purpose register 13 (reg = 13 ; rw = 1), and then branches to location 20 of the contro! stare (na
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= 20), might be programmed as follows with suitably defined macros:

Add&1d(gpr(13)) : goto(ErrorBranch)
Here the first macro invocation expands to the first three micro-operations, and the second macro
invocation generates the brar.ch operation. ErrorB8ranch is assumed to be a label attached to
location 20. In practice, there are a few hundr2d macros which are used by all projects. Additional
project-specific macros are routinely defined. Deeply nested macro calls are not uncommon.

The other major function performed by CMIC is the placement of instructions within the control
store. Placement is complicated by the way the Kmap does conditional branching. The Kmap has no
program counter; rather each instruction contains a next-address field. and conditional branching is

performed by aring bits into thrs field. This constrains certain microinstructions to be placed only in
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certain locations. For example, if a sixteen-way branch is to be performed by oring a four-bit value
into the low-order four bits of the next-address field. the sixteen microinstructions which can be the
object of this branch must be placed in sixteen consecutive locations, beginning with an address
divisible by 16. The existence of several different kinds of conditional branches means that CMIC
must often rearrange the microinstructions considerably in order to fit ihe microcode into the smailest
possible block of control store.

CMIC provides only the bare facilities of a microassembler. It provides no linking mechanism to
resolve external references in separately assembled microcode files. Nor does it aid in register
allocation across subroutine calls. The PMIC program, consisting of 2000 lines of source code written
by Pradeep Sindhu in the summer of 1978, provides these facilities. It binds subrouiine names to
absolute addresses, so that they can be referenced symboiically by routines in other microcode
source files.

For efficiency reasons, it is not practical to save registers across microcode subroutine calls. Yet
the registers used by a particular micro-routine must not be disturbed by any micro-routine which may
be reached from it by a series of subroutine calfls. PMIC performs register management by allocating
the Kmap's 32-general purpose registers among subroutines.

When the programmer writes microcode, he uses macro names in place of absolute register
numbers. PMIC reads the microcode, anaiyzes the subroutine call graph, and writes the macro
definitions for the symbolic register names used by the programmer; that is, it decides which absolute
register number to assign to each macro name. Then, when tne programmer assembies his code with
CMIC, he passes the macro definitions which bind symbolic names to register numbers.

From a microcoding point of view, it would have been simpler to implement the Kmap's registers as
a stack. Not only would this have obviated the inconvenience of running PMIC, but it would also have
allowed recursive subroutines. This option was considered when the Kmap hardware was designed,
but it was rejected because there was not enough room on the processor board for the additional
chips which would have been needed.

3.3. The MumeLe Microcode Compiler James Gosling

MUMBLE, a most unlikely microassembler, is a compiler, written by James Gosling, that generates
high-quality microcode. Its design was prompted by the need for better tools to assist in the
production of microcode for the Kmaps (Section 2.2). These are horizontally microprogrammed
machines with many complex data paths and timing rules. Using conventional techniques for
microprogramming, operations that are logically refated have to be physically separated to satisfy
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timing constraints and merged with unrelated operations in order to exploit parailelism and produce
compact code. The major goals of MUMBLE are to allow logically connected primitive machine
operations to be written together with little or no loss of efficiency, and to provide high-level-langu-.ge

cantrol-flow constructs.

When MuUMBLE was designed. no attempt was made to hide the gross aspects of the structure of the
micromachine—its registers, busses and communication with the outside world. Rather, MUMBLE was
designed to hide fine details like inter-instruction timing and address assignment. This approach was
based on the premise that to hide all of the structure ot a machine with a high-level language wouid
lead to unacceptable performance. Most micromachines have unusual features whaose exploitation is

crucial to effective use of the machine.

At the mast primitive level, MUMBLE programs are written in terms of micro-operations. Program-
mers can actually specify which micro-operations that they want performed, aithough they have no
control over placement. In practice though, micro-operations are almost never explicitly used,
"paths” and macros are usually used to build more powerful and more machine-independent
abstractions.

MuMBLE also attempts to make control flow within a program more abvious by providing "high-tevel
language” features such as if-then-else-fi, repeat-until, case-of-end and procedure calls with
parameters. With the present poor interblack optimizations these statements will often cause the
generation of suboptimal code, but MUMBLE provides escape clauses so that it can be coerced into
producing better code. The use of such techniques is strongly discouraged since they tend to
obscure programs. The current MUMBLE compiler takes as input a MUMBLE program and translates it
into a program for a microassembler. Currently CMIC, the microassembier for the Kmaps, is used.

Most of the methods which the compiler uses are applicabie to many horizontailly microcoded
machines. Almost all of the compiier's knowledge of the micromachine is provided by a file of
definitions which could be replaced by one describing another machine. This definition file contains
information about what micro-operations the machine can perform and how the micro-operations are
related in resgurce usage and timing. Using these definitions, the compiler produces microcode that
takes a near-minimum number of microwords.

The optimizations performed by the compiler are limited to a fairly intelligent packing aigorithm
(which handles unstable resources), Iimiteq interblock code motions. and a minimum-path-iength
data routing algorithm.

s b A e i
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Micro-operations. The basic units out of which MUMBLE programs are constructed are micro-
operations which specily primitive operations performabie in a single instruction time by the
micromachine. For exampie, in the Kmap definition there is a micro-operation "fbus.plus™ which
represents the single ALU operation of adding the A register to the B register and putting the output
on the F bus. All timing/resource dependencies in the micromachine are defined at the micro-
operation level. Dependencies are expressed in terms of classes, which are sets of micro-
operations: each micrg-operation may belong to several of these. Each class has specific resource-
usage or dependence properties. For example the Kmap micro-operation that ioads the data-rRaM
address register from the A bus is defined to be a member of the class of micro-operations that use
the A bus value from the previous microcycle; there is also a class of micro-operations that set the A
bus. A relationship is defined between these two classes; namely that the micro-operation that uses
the value on the A bus must be in the microword following the micro-operation that sets the A bus.

Paths. Many operations that one wishes to perform on a micromachine involve only the movement
of data from one place to another. Unfortunately, many conceptually simple data movements can
become quite complex when microprogramming: for example, data must be expiicitly shuffled from a
register or bus, across other busses and through intermediate registers untii it finafly arrives at its
destination. The micromachine definition file aiso describes how the various parts of the
micromachine are interconnected and which micro-operations are used to move data between
connected points. The user can then write statements of the form A—+8, where A and 8 are registers
or busses in the micromachine, and the compiler will find the route through the least number of
intermediate nodes in the Adata-path graph, and will emit a sequence of micro-operations that
correspond ta that path. These interrelations are expressed in a graph whose nodes are the registers
and busses of the micromachine and whose edges are their interconnections.

Paths may have intermediate stages. For example A=+8—C is equivalent to A—+8; 8—C. These
intermediate stages may act as filters, effecting a transformation as data passes through them. In the

Kmap definition the node /ncOne, which doesn’t correspond to any single part of the real machine,
may be used as a fiiter that adds one: A-+/ncOne—+A adds one t0 A.

Macros. A macro facility is provided in MUMBLE to allow more powerful abstractions to be built. For
axample, it is possibie to define a macro called pl/us so that the statement pius(r1.r2)=+r3 adds r1 ta r2
and places the resuit in r3. Macros may be called recursively: plusipius(r1.r2),r3)=+r4 does the
obvious thing; and macros may define other macros.
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High-level statements. Linear blocks of code composed of micro-operations which are explicitly
written or resuit from the expansion of @ macro or a path are put together in a framework of high-level
statements. These statements provide control structures that are largely independent of the actual
control mechanisms provided by the micromachine.

The lessons of structured programming teach us that we want to use higher-level control
constructs. This is difficult on micromachines since conditional branches are often eftected by oring
values with the next address field of an instruction. Using conventional techniques this leads to the
confusing appearance of “magic” numbers throughout a program. The control constructs of MuMBLE
were designed to hide this from programmers.

Often, just a single bit is to be ared with the address of the next instruction. Such singie bits can be
thought of as boolean variables which MuMBLE allows the programmer to use in the test portion of if-
then-else-fi or repeat-until statements. For example, in the Kmap it is possible to or the low-arder
bit of the F bus into the next insiruction address; in MUMBLE's definition of Kmap the boolean f.is.odd
is defined so that the statement "if f.is.odd then ... else ... fi" would have the natural meaning.
Where more than a single bit is being ored the case statement can be used. There is also, of course,
a goto statement. It is interesting to note that goto was the most difficult statement to implement

since the analysis of interblock timing had to take into account widespread interactions.

Procedures. The procedure facilities in MUMBLE allow calling sequences to be specified on a
procedure-by-procedure basis. This is done to allow the efficient exploitation of the various registers
and busses of the machine when passing parameters. Parameter passing and resuit return may thus
invoive timing dependencies that cross entry/exit boundaries. This is complicated even further by the
fact that a procedure call and a procedure body may be separately compiled. For example, one may
want to call a procedure and pass a parameter on a bus that is stable for a short period of time. The
parameter must be placed on the bus immediately before the call and it must be used immediately
upon entry.

MUMBLE requires that the specification and the implementation of a procedure be separated. The
specification gives ail information necessary for separate compilation. The necessary timing
information is not given explicitly; rather the user must .. uvide in the specification a sample of the
code that will surround the entry and exit of the procedure, and the timing information 1s deduceu
from this. In order to ensure that this sample is given correctly, deduced information can be
compared with the actual timing that surrounds procedure calls and bodies when they are compiled.
This actual information from the bodies and calls is used only for checking since iming information
from the body may influence (and be influenced by) the call, which may be separately compiled.
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The operation of the compiler. The micro-operations for each linear block are tormed into a graph
with timing and data dependencies linking them together. These graphs are then transformed into a
linear form, assigning micro-operations to microwords, using a packing algorithm derived loosely
from the topological sorting algorithm given in [Knuth 73). Experiments have shown that this
algorithm for packing micro-operations into a linear block almost always does as well as an

experienced programmer. Some (imited interblock code motion is performed, but not much work has
been done in this direction. The major limit on the quality of the code produced by the compiler is this
lack of interblock code motion.

As an example of what the packing ailgorithm does, consider the p/us macro from section 3.3.0,
which actually appears in the Kmap definition file. It can be used in a statement like
plus(fab,tbi)—>dadr to compute the sum of the fab and fb/ registers and place it in the dadr. This
statement generates code which occupies two microwords of storage. If the statement following plus
were minus(r1,k)=~r2, which also occupies two microwords of storage, then the two statements

together wouid only occupy three microwords since MUMBLE would merge them.

A Tiny Program. The following fragment is the inner loop of a block-transfer procedure.

DestinationAddress, SourceAddress and WordCount have been bound to registers; ones is
a fictitious regi:r.ter6 that behaves as though it contains the constant -1; read is a procedure that
takes an address as an argument and returns the value of the word in the memory of the current
master Cm at that address; wr 1te is a procedure that writes a word at a specified address; F is the F
bus; and F.eq.ones is true if the value on the Fbus is - 1.

repeat
write(DestinationAddress, read(SourceAddress));
SourceAddress— inctwo—~SourceAddress;
DestinationAddress—inctwo—DestinationAddress;
plus(WordCount,ones)—F—WordCount;

until F.eq.ones;

The code generated by the compiler for this example is very good.

Users’ Experience. The main use of MUMBLE has been in the ECHOES experiment (Chapter 9) by
Mike Kazar, who has been quite enthusiastic about the compiler. The other two operating system
groups did not use MUMBLE because the compiler was not in a usable state when they needed to
begin coding. From small experimental programs and Mike Kazar's experience, MUMBLE appears to

6()nos is actually a3 MUX selection an one leg of the ALU, hence efficient to generate. Iit's a deficiency in the
compiler that the user has to know that there are speciali mechanisms for generating the constants 0 and - 1.
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represent a useful approach to microprogramming. The micromachine specification technique
appears to be quite good; very few errors in the original specification of Kmap were found, and those
that did occur were easy to detect and correct. Much work remains to be done, particularly in the
areas of interblock code optimization and testing the compiler on other machines.

3.4. KDP: A Flexible Debugging Environment Anita Jones

The Kmap Debugging Package (KDP) assists in diagnosing the Kmap hardware and debug-
gingthe Kmap microcode from a remote terminal. KDP is a BLiSS-11 program that executes on a
Hooks processor. Using the Hooks interface to a Kmap, a user may start and stop the clocks within
the Kmap, examine and change internal Kmap state, as well as load, trace and symbolically edit
microcode.

KDP is capable of interacting with up to 8 Hooks-Kmap interface units, though it communicates
with only a single "current” unit at a time. In the current Cm* configuration, each of the three Hooks
processors is connected to one or two Kmaps. To initiate a debugging or diagnostic session, the user
requests KDP to load a microcode object file into the current Kmap via a 9600-baud Hooks-to-PDP10
line. The user may initiate Kmap execution of the object code and proceed with diagnosis or
debugging.

KDP commands are generaily non-destructive. They may be invoked at any time without disturbing
the state of the Kmap. If the Kmap is running, KDP will automatically stop the clock, perform the
command and restart the clock (if appropriate) so that there will be no effect on the Kmap, except that
caused by the command. For example, consider a user attempting to debug an operating system
operation that invoives two clusters, both of whose Kmaps interface to the same Hooks processor. If
the user desires to interrogate or trace the actians of the Kmap in the cluster ariginating a request that
is destined to be satisfied by the second Kmap, he may set breakpoints or perform tracing at the origin
Kmap, leaving the remote Kmap to run without hindrance.

KDP operations may be divided into several groups. We describe each group only to the ext nt of
giving a flavor of the operations available. Complete documentation is available in [Ousterhout /8].

e Initialization and clock control. Either the Pmap clock or the Kbus clock may be stopped
and single-cycled an arbitrary number of times. The user may request tracing so that the
addresses of the instructions being executed are printed out. KDP can be used to
reinitialize the Kmap hardware, and to restart executicn at an arbitrary address.

e Memory control. Besides allowing the user to load the controi memory by naming a POP-
10 file. KDP wili display and change both the control memory in which code is stored and
the memory used strictly for data (data Ram). The user may either display the contents of

ol
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the control memory in octal, or name an instruction field symbolically and then change or
display only that particular field.

e Execution monitoring. KDP permits up to eight breakpoints to be set simuitaneously for a
single Kmap. In addition, the user may request that a set of Kmap state values are to be
dumped whenever the Kmap haits a specified number of times. After haits, KDP will
automatically restart the Kmap clock if so requested. For Pmap diagnosis, KDP will stop
the Kmap clock after certain parity errors are encountered, and will cause alternative
values to be gated into certain registers for test purposes.

e Interrogation. KDP will display a large number of register values: the 32 general-purpose
registers associated with the currently executing context, the 32 subroutine registers, and
the 35 additional Pmap internal state values that are accessible to the Hooks interface
unit. This latter set includes most register and bus values invoived in the ALU usage,
computer-module memory access, linc-bus access, Pmap program-counter control, and
control-store and data-RAM access.

Assay of KDP. KDP was developed by John Ousterhout, primarily in the summer and fall of 1976.
A total rewrite in the spring of 1977 cleaned up its structure without substantially changing its
functionality. Since then members of the Cm* project have developed substantial amounts of
niicrocode. Together the SMaP, STAROS, MEDUSA, and ECHOES microcodes, described later in this
report, comprise nearly 100,000 lines of code, including comments, and approximately 11,000
microinstructions.

We do not believe that this amount of microcode could have been successfully developed without
the aid of the Hooks interface to the Kmaps and the software packages that make the Hooks interface
tractable. These tools allow us to suspend Kmap execution arbitrarily, to observe progressive state
values during execution, and to adapt Kmap state without going through the cycle of editing
microcode source, recompiling it, reloadipg the Kmaps, and executing the aitered code. It is our
experience that such a cycle costs roughly half an hour to over an hour at prime compute times.

In addition, the Hooks interface permits execution of a variety of Kmap diagnostic programs not
described here. Maintenance of the Kmap has heen made decidedly easier. As a resuit Kmap
availability is extremely high, an average of one failure every six months or so. The major factor in
reliability is probably the very conservative hardware design, although the Hooks interfaces have
heiped to reduce mean-time-to-repair (the diagnostics usually indicate within 5 chips where the bad
one is).
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3.5. The Star0OS Test-Bed Ivor Durham

The STAROS Test-Bed, written by ivor Durham, is a tool for developing software components of a
Cm* operating system independently of each other. Components are tested and debugged in a
hospitable uniprocessor PDP-11 environment provided by the Test-Bed. It is known as the STARQOS
Test-Bed because it builds data structures used in the STAROS operating system, though with
relatively minar changes, it could be used with other operating systems as well.

The Test-Bed has been used to considerable advantage in several ways. First, after a few initial

STAROS components had been debugged and included in the Test-Bed, other STAROS components
were developed independently using the augmented Test-Bed. Second, because the interface to the
various STAROS functions is well defined in the design documentation, independent testing of
software modules reduced the number of problems encountered when components were put

together. When a problem was encountered in an integrated system, the programmer could retreat to
a Test-Bed environment to locate the probiem within an individual component. Finally, we believe that
by removing many of the initial bugs in a uniprocessor environment the problems encountered in the
multiprocessor environment will be primarily those of interaction (sharing and synchronization).

The Test-Bed itself is a collection of software modules—a few of which are specific to STAI;OS—
that may be linked together with "user” software to produce a monolithic PDP-11 program. These
components include 1/0 functions, a command interpreter, a library of functions for constructing
interactive interfaces to software under test, and a facility for reporting PDP-11 detected errors. All of
the facilities of the STAROS microcode are available through Test-Bed commands. Also provided are
functions to interpret capabilities in a readable form and functions for tracing simpie subroutine cails.
Various simple debuggers are available (like DDT), but none of them embodies any knowledge of the
STAROS object world and so they are of limited use. A version of the main debugger that was used on
the C.mmp multiprocessor (known as SIX12) has been adapted for the STAROS object environment

and it will ultimately provide facilities for debugging multiple processes via a common interface in user
space.

A typical stratagern for testing a STAROS component with the Test-Bed is to construct a user-
interface function from convenient library components and inciude the interface function in the Test-
Bed as a new command: this is achieved simply by adding the function name to a private copy of the
Test-Bed command table and re-compiling the table. Software modules are linked together with the
Test-Bed components and the entire program executed on a Cm* LSI-11. Parameters may then be
specified and functions invoked via the Test-Bed's interactive command interface.

As functions are invoked, any errors reported by the LSI-11 processor and those reported via a
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Kmap interrupt are interpreted for the user, unless functions have been provided to handle these
exceptions unaided by the Test-Bed. In addition, any exception that is handled by the Test-Bed also
causes a code checksum to be verified so that the user is warned if any damage has been done to the
Test-Bed or functions under test as a cause or effect of the exception.

3.6. The Cm* File-Transfer System Gregg Lebovitz

The systems software being developed for Cm*® is written, compiled and stored on a remote
machine. Conseguently, object code must frequently be transferred to Cm*. Until recently all files
wera transfeired by way of a 1200-baud serial terminal line. Such transfers are quite slow and prone
to transmission errors. Transfers of large files to Cm*® can, under unfavorable conditions, take as
much as 15 minutes. For this reason, the DA Link file-transfer system was developed. The DA Link is
a 10-megabaud bit-parailel DMA link between Cm* and a DEC-10; the transfer protocois, of course,
reduce the effective throughput. It is used to transfer LSI-11 object code from the DEC-10, where it is
developed, to Cm*, where it is to be executed The file-transfer system is a set of software that
resides on the DEC-10 and implements reliabie file transfers.

The hardware for the DA Link consists of a DMA device, called a DA28-C, that interfaces several
parallel lines to the memory I/0 bus on the DEC KL10; a home-built DMA device that interfaces a
parallel line to the Unibus on one of Cm*'s LSI-11s; and a sixteen-bit parallel line.

The file-transfer system is compased of two parts. The first is a set of low-level reliable transfer
routines. These routines are designed to provide an error-free transmission of packets of data
between Cm* and the DEC-10. The higher-level file-transfer routines interface the reliable packet-
transfer software to the DEC-10 file system. The file-transfer routines can also multiplex data from
several files, allowing a single physical link to become a multi-user system.

Reliable Transfer Routines. The purpose of the rellable transfer routines is to transfer data
packets across the DA Link. These routines implement the reliable transfer protocols, which
provide a convention for transferring the data without uncaorrected errors.

The reliable transfer routines transfer all data across the DA link in packet format. A packet
consists of two sections, the packet header and the packet data. The packet header contains four
sixteen-bit words of information. The first word holds the packet sequence number. its purpose is
two-fold: to identify a packet uniquely, and to specify how mariy packets were sent before this packet.
This is necessary for the implementation of error recovery. as we shall explain later. The second word
of the packet header is the packet function code, which determines how the data in the packet is to be
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interpreted. The third word contains an integer between 0 and 252 that specifies the number of bytes
in the packet data section. The fourth word is the checksum of the packet. The remainder of the
packet holds the packet data.

The packet sequence number identifies a packet and ensures that it was received in sequence.
Originally, the sequence number was 1o be used to implement a system in which packets could be
sent and received out of order: all requested data would have been sent without any communication
of transmission errors from the receiver to the sender. When all data had been transferred the
receiver wouid have re-requested all packets that were received with errors. This would have
eliminated the need for timely acknowledgment protocols. This system was not implemented since
hardware transmission errors proved to be too infrequent to warrant the time and effort to implement
such software. The present system does not aliow the receiver to request individual packets. Instead
it must request alf the data that was sent after the point where the first error occurred.

The file-transfer system employs a packet quota system to prevent the receiving site from
overflawing its buffer. The quota system establishes the size of the receiving site's buffer at the time a
connection is made between the sender and receiver.

The second word of the packet header specifies that the packet will perform one of five functions:
the Connect function is used to establish a connection between two machines on the DA Link. [t
serves to synchronize the two machines on the DA Link and set up the buffer quota system. The
Disconnect function tells the other machine on the DA Link that the first machine no longer wishes
to communicate across the link. The Data packet is used to transmit data across the DA Link.

The Acknowledgment packet serves two purposes. It carries both packet-acknowledgment and
packet-quota information. Three words of data are associated with it. The first word is the sequence
number of the first packet received with errors, if an error has occurred. The next word tells whether
there was an error in the previous transmission. The last word is the new quota information.

File Transfer Routines. The flle-transtfer routines perform the functians of opening and closing
files, reading and writing data to and from files, and moving file pointers. To provide a multi-user
environment for the DA Link, the file-transfer system implements virtual channeis, which are bi-
directional communication paths over which control data and information may pass. The file-transter
system allocates a buffer for each virtual channel and provides buffer destination inforination for the
data. A file is associated with each virtual channel, and all data placed in the virtual channel's butfer
is transferred to this file.

information handied by the file transfer routines is transterred to and from the reliable transter
routines in the form of packets. These packets are much like the packets used by the reliable transfer

|
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-cutinzs themss'ves. Each packet contzins packet-hzader and packat-daia szclions. The cucket
«zader containg the virtual channel name and the function the packet performs. Ths packet-dota

secion conlzins sacnet data and has no size restrictions.

tstus. The filz-trarster system has ba2sn running smoothly since January 1880, The DA Link is a
great advaniage over the 1200-baud serial terminal line. Its effective throughput. on top of ail the

protocols, is 10 to 40 kilobaud, depending on the load on the DEC-10.

Fresently the file-transfer systam is running as a ¢daemon program on the DEC-10 and can only be
accessed from Cm*®. Future versions will use the DEC-10 interprocass communication facility and will
allow the daemon program to be accessed by users logged in on the DEC-10. Eventually a "elnet"
facit'ty will be added to allow users logged in on one of the machines to attach their termiral to a job

on the foreign machine via the DA Link.

Don Scelza designed the DA Link protocols. Scelza, John Ousterhout, and Gregg Lebovitz
implemented the user interface on the DEC-10. John OQusterhout and Howard Wactlar wrote the
additional DEC-10 monitor code which was required to support the DA28-C; and Qusterhout wrote the
PDP-11 code.
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4. Issues in the Design of Cm* Microcode

Standing as the switching center within a cluster of computer modules and as a node on a network
of clusters. the Kmap is the primary source of communication and synchronization in the Cm*
system. For a hardware description of the Kmap, see Section 2.2. Aithough we frequently refer to the
Kmap as the microprogrammed entity, the Cm* systems microprogrammer actually writes code for
the Pmap, which is only one component of the Kmap. Taking the viewpoint of the Pmap
microprogrammer, this chapter discusses the operation of the Kmap, describes the interfaces
between Kmap and computer module and between Kmap and Kmap, and presents some examples of
the standard probiems of distributed systems which arise at the Kmap microprogramming level. The
chapter concludes with a description of an early version of Kmap microcode whose design ignores
most of these problems.

4.1. The Kmap as a Transaction Controller Thomas Rodeheffer

in the Cm* system, Kmaps and computer modules communicate with each other by sending
message packets along some interconnecting communication bus. Although a computer module can
only send and receive a few types of message packets—packets dealing with memory accesses which
are handled automaticafly by the Slocal—the Kmap can be programmed to act in almost any manner
desired by the microprogrammer. This programmability is one of the strengths of the Cm*®
intercommunication structure.

The Kmap is envisioned as a transaction controller, sending to and receiving from computer
modules and other Kmaps message packets which contain requests and replies, following a protocol
designed by the microprogrammer. Because one of the common transactions that the Kmap is
expected to handle is the mapping of a memory access issued by the processor of one computer
module to a location in the memory of another computer module—a transaction which must be
performed very rapidly and with littte defay if any reasonable system performance is to be obtained—
the Kmap containg some special hardware features designed to assist it in controlling many
transactions at a high rate of speed.

The Kmap hardware supports eight separate Pmap contexts, each with its own set of generat
purpose registers and its own micro-subroutine stack. Typically, each context is in charge of one
transaction. When one context needs to wait for a message packet to return with the reply to some
lower-level request, it has the Pmap switch to another context so that work on some other transaction

oror: ey
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can proceed concurrently.

The Kmap also contains 5120 words of random-access memory, called the data rRaM. which the
Pmap can read and write at the expense of a few microinstructions. Because the data rRaM is shared
by ali contexts, it typically holds infarmation which is of interest to more than one transaction. such as
cached pieces of address transiation tables and mechanisms for synchronizing the use of other
resources among different contexts.

Taken individually, each Kmap appears to the Pmap microprogrammer as a non-preemptive,
hardware-scheduled multiprogramming system. Taken coliectively, the netwark .of all Kmaps
presents the microprogrammer with a distributed system with message-packet intercommunication.
As the examples in Section 4.4 illustrate, the problems of programming this system are not trivial.

4.2. The Interface between Kmap and Computer Module

The Pmap communicates with the computer modules in its cluster via the map bus, a packet-
switched bus controlled by the Kbus. The Kbus fields requests and replies from computer modules,
coordinates the transfer of data across the map bus between computer modules or between a
computer module and a Pmap context, and keeps track of which Pmap contexts are free to service
new requests. Two queues, the Kbus out gueue and the Pmap run queue, provide the interface
between the Kbus and the Pmap. Refer to Figure 2-4.

Whenever the processor of a computer module issues a non-local memory access (see Section
2.2). a service request is signalled to the Kbus. The Kbus aillocates a Pmap context, reads via the
map bus the virtual address for the memory access, and activates the new context by placing an entry
in the Pmap run queue. The computer r'nodule which thus invokes a Pmap context to process its
memory access is calied the master computer moduie or mas}er Cm.

The Kbus activates (or reactivates) a Pmap context by placing into the Pmap run queue an entry
containing the number of the Pmap context to be activated along with a smail amount of other data,
such as the virtual address of the processor's non-local memaory access or the result data from a
Pmap-initiated memory access. A newly-activated context does not automatically gain control of the
Pmap, however, but instead must wait on the run queue until the Pmap removes its entry and loads
the new context number. Since the Pmap examines the run queue only under the explicit direction of
the current Pmap context. a context cannot unwillingly lose control of the Pmap. Loading a new
context number from the run queue performs what is called a context swap; a context which invakes
a context swap is said to swap out.
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A Pmap context can initiate a physical memory access in any of the computer modules in its
ciuster. This memory access can either be a read access, in which case the resuit is the data read, or
a write access, in which case the Pmap aiso supplies the data to be written and the result serves
merely as an acknowledgement. The context invokes the proper Kbus operation and the Kbus sends
a memory access request via the map bus to the indicated computer module, called the destination
computer module or destination Cm. When the destination Cm completes the memory access it
signals a return request to the Kbus, which reads the result of the memory access via the map bus
and reactivates the requesting context.

The Pmap invokes a Kbus operation by loading a request into the Kbus out queue. About two
dozen different operations are provided, most of which are variations of the Pmap-initiated memory
access. After loading a request in the out queue, the Pmap context typically swaps out in order to let
work on some other transaction proceed concurrently with the operation requested of the Kbus.
Later, when the resuit of the operation becomes available, the Kbus reactivates the requesting Pmap
context. This sequence of requesting a Kbus operation, swapping out to run other contexts, and
waiting for eventual reactivation is an extremely common occurrence in Pmap microcode.

4.2.1. A Simple Kmap Operation

From the point of view of the computer module, a non-local memory access causes the invocation
of some Kmap operation, the result of which is reflected back as the resuit of the memory access.
The most basic KXmap operation, and certainly one which is expected to be invoked frequently, is the
mapping of the non-iocal access to a location in the physical memary of some computer module in the
cluster. Because it is sO common, a mapped non-local memory access is usually just called a
mapped reference. See Figure 4-1. Each memary access issued by the processor of a computer
module passes through its Slocal, which either routes the access directly to local memory or sends it
out to the Kmap. A memory access which is handlied by the Kmap can be mapped back to the local
memory of the issuing processor, but a direct local access is about three times faster.

The simpie, intracluster. mapped memory access proceeds as follows. The master Cm signais the
Kbus, which activziis a . v context. The Pmap context considers the virtual address, the master Cm
number, the contents of an address-‘ransiation table, and any ather desired source of information,
and determines the destination computer module and the physical address within that module to
which the memory access is directed. A Pmap-initiated memory access is performed on the desired
memory location and the resuit returned to the master Cm. ‘

In order to obtain better performance. the Pmap microcode can actually use a special case of the
Pmap-initiated memory access: one in which any data to be wntten is supphed by the master Cm
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Figure 4-1: The Steps in an Intracluster Memory Access

instead of the Pmap context and, provided that no error is indicated, the resuit data from the
destination Cm is routed directly back to the master Cm, without ever reactivating the Pmap context.
Of course, if any error happens, the automatic bypass is forgotten and the result data goes back to the
Pmap context instead, under the expectation that maybe the context could do something intelligent
about the probiem. In the expected case in which no error occurs, however, a non-local, intraciuster
memory access requires only one Pmap context activation and three map bus cycles. From the time a
processor issues a non-local memory access until it receives the result data, a total delay of about
seven microseconds elapses.

4.2.2. More Complex Kmap Operations

Although the memary-access mapping operation is expected to be invoked quite often, the Kmap is
by no means limited to providing just that one operation. Generaily, the Pmap microprogrammer
appropriates some subset of the computer module processor's virtual address space. designating
specific addresses which the pracessor can use to invoke other, less ordinary Kmap operations. With
some hardware assistance, the Pmap microcode, by decoding the virtual address of the memory
access, determines which particular Kmap operation is desired. A computer such as the PDP-11
which has memory-mapped device control registers invokes input/output operations in exactly the
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same manner as on Cm* these special Kmap operations are invoked.

" Because 2ach cluster has only one Kmap, the Kmap is the logical processor to perform aperations
which must be interlocked. if, however, the operation involves a context swap—any operation which
performs a Pmap-initiated memory access, for example—some mechanism must be used inside the
Kmap to prevent other contexts of the same Kmap from violating the interlock. One technique is to
implement an internal semaphore in the data ram.

Other operations which the Kmap might provide are low-level operating system primitives. in
particular, operations which cross domain boundaries, such as a message-transfer operation, and
operations which involve much memory traffic, such as a block-transier operation, are well suited for
implementation in the Kmap. The primary objective in microcoding these operations is speed.

4.3. The Interface between Kmap and Kmap

Kmaps communicate with each other via an intercluster bus, a packet-switched bus which is
jointly controlled by the Linc processors in each of the directly-connected Kmaps. The Linc
maintains queues of incoming and outgoing messages, interacts with the Kbus to activate and
reactivate Pmap contexts, and provides the local storage for Pmap contexts to construct and inspect
interciuster messages. Each Linc interfaces to two independent intercluster busses. Refer to Figure
2-4.

An intercluster message contains up to eight 16-bit words of data, of which all words except the
first are totally uninterpreted by the Linc. Each intercluster message is sent from an immediate
source Kmap to an immediate destination Kmap. The number of the Qestination Kmap appears in
a fixed place in the message so that ihe Linc can determine which messages are sent to its cluster.
Intercluster messages are of two types: forward messages, which invoke a new context at the
destination Kmap, and return messages, which return to a waiting context at the destination Kmap.
A return message contains the context number of the to-be-reactivated Pmap context in a fixed place
where the Linc can find it in order to inform the Kbus. These intercluster messages were designed to
be used as a mechanism for implementing remote procedure calls between Kmaps.

When a Pmap context desires to invoke some operation in another Kmap, it prepares a forward
intercluster message, instructs the Linc to transmit it on a specified intercluster bus, and then swaps
out. The forward message must include the source Kmap number and the originating Pmap context
number so that the remote Kmap will be able to send back a return message:; there are standard

conventions for this information.
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When the Linc receives a forward message it has the Kbus activate a new Pmap context to examine
the message and respond to the request. Presumably, the message contains some operation code
which the Pmap context can identify and act upon. After performing the operation, the context
prepares a return intercluster message, instructs the Linc to transmit it on a specified intercluster bus,
informs the Kbus that the context is now free, and swaps out.

When the Linc receives a return message it finds the context number indicated in the message and
instructs the Kbus to reactivate that context. The context then examines the return message, extracts
the result of its requested operation, and continues on with whatever processing it had been doing.

4.3.1. A Simple Multicluster Kmap Operation

From a logical point of view, there is not much difference between the invocation of a Kmap
operation by a micro-subroutine call from within the Kmap, the invocation of a Kmap operation by a
non-local memory access from a computer module, and the invocation of a Kmap operation by a
forward message from another Kmap. Practical considerations abound, of course, but all three are
really just different methods of invoking some logical operation. It is often quite convenient that, while
in the middle of performing one operation, a Kmap be allowed to invoke a sub-operation which is
carried out on a different Kmap. For example, the only physical memory that a Kmap can directly
access is that memory which resides in its own cluster; in order to effect an access on memory in
some other cluster, the Kmap must send an intercluster message to that cluster’s Kmap, asking it to
perform the access and to send back the result. The simplest example of such a multicluster Kmap
operation is the mapping of a non-local memory access to a location in the physical memory of
another cluster. See Figure 4-2. '

Some computer module initiates a non-ijocal memory access which activates a context in its
cluster's Kmap. This first-activated context is called the master context; the Kmap, the master
Kmap. The master context performs the address translation, discovers that some other Kmap will
have to pertorm the access, sends a forward message to that Kmap, and swaps out to await a reply.

" When the message arrives at the slave Kmap. its Linc signals the Kbus to activate a new context.
This context, called the siave context, decodes the request, performs the memory access inside its
cluster, and sends the resuit in a return message back to the master Kmap. The return message
identifies the waiting master context, which is reactivated to transfer the resuit back to the master Cm.
As far as the master Cm can tell, the only difference between a non-local memory access which is
mapped to a computer module in another cluster and a non-local memory access which is mapped to
a computer module in the same cluster is the extra time required for the out-of-cluster operation.
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Figure 4-2: The Steps in a Cross-Cluster Memory Access

4.3.2. Forwarding intercluster Messages

In a configuration of the Cm* system, it is quite possible that two particular Kmaps have no
intercluster bus in common and thus cannot send messages directly to one another. Each Kmap
connects directly to two intercluster busses, however, and as long as some path through a series of
intermediate Kmaps can be found, the two Kmaps in question can still communicate it each of the
intermediate Kmaps cooperate by forwarding the message closer to its uitimate destination. See
Figure 4-3.

This example differs significantly from the previous example in its style of use of Pmap contexts. In
the previous example, contexts are allocated in a nested fashion: the allocation of the master context
lasts throughout the entire operation; for a period of time within that allocation, a slave context is also
invoked. The potential series of contexts which are allocated at intermediate Kmaps to forward an
intercluster message do not wait for a reply, but instead accomplish their entire task by passing a
message on to another Kmap.
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Figure 4-3: Forwarding a Message across Intercluster Busses

4.4. Distributed System Problems

Thus tar in this chapter, various difficulties which present some serious problems in designing Cm*
microcode have been carefully glossed over. These difficuities arise both from hardware limitations—
or, occasionally, malfunctions—and from the very nature of multiprogramming and muitiprocessing.
Although their particular manifestations relate to the Cm* microprogramming environment, the
problems are by no means unique to Cm*, and, in fact, many of these issues exhibit themseives as
well in a uniprocessor multiprogramming environment.

4.4.1. Maintaining Consistency

In order to cooperate on any shared task, the individual components of a system must maintain
some form of global consistency of state. Even on a muitiprogrammed uniprocessor, the design of
separate, cooperating processes is a high art. Unfortunately, because of their inherent delay in the
propagation of information from one component to another, distributed systems present even more
obstacles to the goals of synchronization and maintenance of global consistency.

As an example of this problem in the Cm* system, consider a counter which is updated from time to
time by various computer module processors. in the simplest, but incorrect implementation, each
processor executes an increment or decrement instruction whenever appropriate. In the Cm-*
system, the processor must perform such instructions as a memory read followed by a memory write.

A st e S m s e e s
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Beacuse all memory access requests are carried in message packets on packet-switched busses,
there is no a priori guarantee that a request issued by some other processor will not intrude after the
read but before the write.

Because this specific problem involves an operation upon memory which resides in only one
cluster. it can be solved by requiring that all such operations be performed at the Kmap for the cluster
whose memory is involved——a requirement which, since that Kmap would have to perform the memory
accesses upon the memory in its cluster anyway, does not really limit performance. This requirement
reduces the problem to one of interiocking the several contexts of a single Kmap.

Any operation which involves data which is spread aver several clusters, however. s not so easily
disposed of. For example, frequentiy-used data may be cached, for performance reasons. in several
clusters. (n order to modify such cached information atomically, all possessors of cacned copies
must cooperate at least to the extent of realizing that their local copies have been invalidated.
Aithough the microprogrammer can design the microcode to consider some Kmap or even computer
module as the authority responsible for maintaining a piece of information, the Cm* hardware
provides no implicit central authority for the entire system.

4.4.2. Avoiding Starvation

Within any muitiprogramming system looms the danger of starvation, the possibility that some
process might be so unfortunate as never to manage to acquire some resource it must have, even
though that resource is, from time to time, briefly available. Starvation typically resulits from the simple
strategy of repeatedly racing for the resource. Assuming that races are independent, under this
strategy the probability that a waiting process will never obtain its resource is asymptoticaily zero.
People desire the assurance that the resources their programs need will be acquired within some
"reasonable” period of time, however, and the expected waiting time under the simple strategy may
be quite unacceptable, especially during periods of severe contention.

In the Cm* system, a single computer module can only process one Pmap-initiated memory access
at a time. When the Kbus sees Pmap context a instructing it to request a memory access on a
computer moduie which is currently busy with an access for some other context, the Kbus discards
the request and reactivates a with an error indication. Although the simplest thing for a to do wouid
be just to try again, a second attempt would not necessarily guarantee success.

It is possibie for two contexts, 8 and v, to block every attempt by a to obtain a memory access in a
certain computer module, while they themseives are processing a series of difterent intracluster
mapping operations. Every time that a arrives at the front of the run queue, and its request for a
memory access is refused because the computer module is busy with a request from either 8 or y, the
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reactivation of a will be placed at the back of the run queue. Given proper, diabolically arranged
timing, one of the contexts 8 and y can always be on the run gqueue ahead of a whenever the
computer module finishes the current request from the other context.

4.4.3. Avoiding Deadlock

Anather specter which haunts all multiprogramming systems is deadlock, the situation in which a
set of processes permanently ceases execution because each process needs a resource which some
other process in the set has already reserved. Whereas starvation is usually a probabilistic
phenomenon, resuiting only in unacceptable delays in execution, deadlock is forever.

The possibility of deadlock arises in any situation in which muitiple resources are needed at the
same time in order to complete an operation. For example, because of the remote procedure call
style of invocation, a cross-cluster mapped memory access requires both a master context in the
master Kmap and a slave context in the slave Kmap. Now each Kmap only has eight Pmap contexts.
If in each of two, previously quiescent clusters eight computer modules suddenly each made an
intercluster memory access to the opposite cluster, all eight contexts in both Kmaps could get
alfocated to the requests from the computer modules, leaving none to respond to the requests which
would shortly be arriving across the intercluster bus. No context in these two Kmaps would ever
become available because first another context must be allocated to service an intercluster request
and send back the result. Deadiocki

4.4.4. Coping with Errors

All software systems face the problem that their supporting subsystems cannot provide absolute,
perfect reliability. Occasionaily, some operation which ordinarily ought to have succeeded fails in
some way. Provided that the supporting subsystem manages to report its failure, it might be possible
to attempt some sort of corrective action, either o repair the current damage or to forestall future
failures of the same sart. Although this problem is retevant to all systems, it is even more difficuit to
address in a distributed system, if it is desired that failure of remote processors or of communication
links not kill the entire system, but instead onfy cause damage commensurate with the failure.

At the Kmap microprogramming level, the supporting subsystem is the Cm* hardware. All of the
failures which the ngp has any hope of noticing can be classified as communication errors:
transmission errors, which are detected by parity violations on the various comr unication busses,
and selection errors, attempts to address a non-existent memory location, computer module, or
cluster, which are detected by timing out after a reasonable pause waiting for a responce.

Generally, these errors are reported to the requesting Pmap context. if one can be dentified. as an
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error reply to its request. For example, if a map bus error occurs during the reading of the resuit of a
Pmap-initiated memory access back to the requesting Pmap context, the context will receive an error

reply instead of the data it was expecting.

e e

4.4.5. Achieving Good Performance

Although possibly content with any level of system performance within a fairly large range, the end
user does expect his application programs to proceed toward their conclusion at a reasonable rate. A r
system which has unbearabie performance limitations simply will not be used.

One technique for improving performance on Cm* is to transfer common system operations from u
the computer module processors into Pmap microcode. The use of this technique is limited by the
capacity of the Pmap microinstruction store.

Another technique is to cache in the Pmap data RaM information which is frequently referenced by F
various Kmap operatior.s but which may be too voluminous to be stored there in its entirety. For

example, a complete index of all descriptors for all objects in the system is certainly too large to fit in
the data rRam, but since individual descriptors may be referenced frequently and repeatedly,

maodification to the cached information is to be promulgated, all of the cached copies, which couid be
far dispersed in a distributed system, must be rooted out and either invalidated or modified on the
spot.

C performance can be improved by caching. Caching has its own problems, of course, for when a

4.5. Smar: the Simple Microcode Pradeep Sindhu

Written during the spring of 1977, SMAP was one of the first microcode systems for the Cm*
Kmaps. It provides the bare minimum address-mapping and synchronization facilties needed to allow
processors to share memory. No attempt was made in its design to provide protection or generality
since its primary use was seen as the base for benchmark programs and diagnostics for the hardware.
SMmaP has been used extensively for these purposes, as well as for the Algol 68 system and for a
number of application programs that have been written for Cm®.

The main function of the simple microcode is to allow each processor to associate any 2048-waord

physical page in the system with any of the pages in the immediate address space of the processor. A
page in the system is identified by its cluster number, Cm within the cluster, and high order six bits of
its base address. A page in the immediate address space of the processor is identified by the address
space of the processor (user/kernel) and the high order four bits of the processor address, and is
referred to as a window. Once a window has been associated with a physical page by writing the
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mapping tables in the Slocal and Kmap, all references to the window are mapped to the physical
page, with the bottom twelve bits of the processor's address serving as the offset into the page. In
binding a window to a physical page in its local memory, a processor may choose to have references
to the page proceed directly through the Slocal or mapped via the Kmap.

The Slocal mapping table and the mapping table maintained by the Kmap on behalf of a processor
are both addressabie from the processor. A processor may therefore make any page in the system
addressable to itself simply by writing into the appropriate entries in these tables. The microcode
does not provide any protection.

A variety of synchronization operations that are useful in making indivisible access to shared data
and in coordinating the actions of processors working on a common task constitute the remainder of
the functionality of the mi'crocode. There is one operation to indivisibly increment an arbitrary word in
memory and four operations to indivisibly decrement an arbitrary word in memory. The decrement
operations vary along two dimensions, conditionality and manner of notification. Unconditional
decrements are performed regardless of the old contents of the target focation; conditional
decrements are not performed if the old value of the operation is zero. A processor can select from
two methods of notification, synchronous and asynchronous. In the synchronous method the
processor examines a result location that is set after the operation 'completes; in the asynchronous
method it is interrupted when the result of the eperation is zero.

SmaP contains simple facilities to aid processors in handling errors. When an error occurs during
a microcode operation, the Kmap does not attempt to recover from the error. Instead, it collects as
much information about the error as it can and stores this information in a place that is accessible to
the invoking processor; it then interrupts the processaor to signali the error. Recovery from the error is
left entirely up to the invoking processor.

There are certain quirks in the implementation of SMAP that prevent it from functioning in a robust
way when large amounts of contention are generated at a particular Slocal. The probiem has to do
with the way in which the microcode handies a busy Slocal condition when it tries to reference the
memory of a Cm. The solution used simply waits a fixed amount of time and then retries the
reference. Although this is simple to impiement, and turns out to be the mast efficient solution a3 long
as it works, it runs into problems when large numbers of processors are continually referencing a
given Cm. The amount of time a given context waits for a busy Slocal o become free is non-
deterministic, and may be large enough to exceed any reasonable time-out period for components
that are waiting for the reference to complete. Since the hardware of Cm* provides no way to
recognize return requests from operations that have aiready been timed out, arbitrary damage may
resuit when such a request does return.

botimet ~ oy
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John Qusterhout wrote the initial single-ciuster version of SMaP; Andy Bechtoisheim added
intercluster references, and Pradeep Sindhu made a major revision to incorporate synchronization
operations and better error reporting.

4.6. Microcode Measurement Techniques Ed Gehringer

The five Kmaps are the centrat components of Cm*, and the speed of their microcode is critical to
the performance of the multiprocessor. Not only does the microcode perform all of the non-local
addressing, which can be a major source of contention, but it also implements key functions of the
operating system. Since these functions have been included in the microcode to improve their speed,
a good deal of attention should be devoted to optimizing the microcode. The aggregate microcode is
large—several hundred micro-routines—so it is necessary to focus our efforts at optimization upon
the most fruitful areas. This requires us to identify those portions of the microcode which consume
substantial execution time,

Toward this end, we have utilized two techniques, each with its own strengths and weaknesses.
The first is tracing through microcode, counting microcycles and references from the Kmap to the
memory of LSI-11's. The secand is real-time measurement, which involves running a program which
performs a given microcode operation repeatedly, usually several miflion times. The time required for
one microcode operation can be calculated by both methods.

The advantages of real-time measurement are these:

e It accounts for queueing delays. Many of the interesting operations in all of the Cm*
operating systems are fairly complex, requiring several passes through various queues in
the hardware and firmware of the Kmap. Tracing does not take into account any
queueing delays within the hariware, and thus trace measurements are only a lower
bound.

¢ it can show the effects of contention. Because tracing cannot model hardware delays, it
cannot show how the system siows down as the load on it becomes greater. It is useful to
find out. for exampie, whether a particular operation pertorms acceptably when all of the
Cm’s are making references to the same block of data. Only reail-time measurement can
provide the answer.

Tracing has different advantages:

o it shows which portions of a microcode operation are the most expensive. A real-time
measurement yields only one number: the average elapsed time for the operation to be
performed. A trace shows how much each microcode subroutine contributed to the totat
time, and thus indicates where optimization may be fruitful.

e It is easier to perform a large number of traces than a large number of real-time
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measurements. A separate program must be written or modified tor each measurement
which is to be made, whereas with a tracing program (such as the one described below) it
is very simple to perform additional traces. Moreover, most microcode operations modify
the state of the Kmap or its data Ram in some way. so that consecutive operations in a
real-time experiment may follow different paths through the microcode, or even produce
errors.

How tracing is performed. Tracing is performed by two programs written by Edward Gehringer in
the fail of 1979. The first of these, CYCLES, is used to perform traces of individual micro-subroutines;
and the second, RESOLV, uses these traces to calculate how long a Kmap operation takes, by adding
together the time to perform a micro-subroutine and all of the subroutines it causes to be called.

When CYCLES is run, it reads in a microcode source file and builds a flow graph. Next it asks the
user to select from a menu of micro-subroutines to trace. It then adds up the microcycles and
memory references (to the memory of the Cm's) which would be performed when the selected micro-
subroutine was executed. At each branch point, it asks the user which branch to take.

It is often useful to perform several traces of the same routine, to account for different values of
parameters, or different giobal conditions. For exampie, the routine that performs mapped memory
references will follow different traces, depending on whether the memory word is local to the cluster
or in a foreign cluster. CyCLES thus allows the user to give names to the traces in order to distinguish
them. Each time that a micro-routine calls another micro-routine, the user is prompted for the name
of the trace of the called routine.

How reai-time measurements are performed. A program which invokes same Kmap operation
repeatedly is run on one or more Cm's. It is loaded, and then controlled, using the NEST environment,
which will be described more fully in Section 5.3.2. This smail executive allows the user to specify the
number of iterations of the operation, to inquire about the progress of the experiment, and to compute
the time consumed by an individual operation from data it displays after all of the processors have
finished.

Validation of trace data. Three factors contribute to the time consumed by a Kmap operation:
Kmap microcycles, memory references from the Kmap to memory of one of the Cm’'s, and waiting time
due to contention for resources. As noted above, tracing cannot measure contention, but it can give
a load-independent lower bound on the time needed to pertorm an operation. n any event, we expect
Kmap and memory contention to be of minor importance for most programs.

To determine how long a Kmap operation takes in the absence of contention, we must know the
time consumed by a microcyle and a memory reference. A microcycle takes a constant 157 ns, as it

P




In thig example, the user traces the FixPtrsSend routine, which is used by STarROS to write
mailbox pointers when a message is inserted in a mailbox during the Send operation. Al input typed
by the user is underlined in this figure. The user entitles this trace fast. When the routine being
traced encounters a procedure call. CYCLES asks the user which trace of the calied routine would be
followed. For three of the four routines called by FixPtrsSend, the user desires the ordinary
unnamed trace to be foliowed, and thus merely types a carriage return in answer to the guestion
"Which trace?”. The microcode performs a goto rather than a call of HereQuickReturn. and
CYCLES indicates this by prefixing the routine name with an arrow (->). Along the right margin,

CYCLES keeps a running total of the number of microcycles consumed. At the end of the trace, it
reports that FixPtrsSend takes six microcycles to perform, exclusive of any time consumed by the
routines which it calls. i
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.rfu cycles
Input file: msgotr.miclx336sv30]

Listing file:
No listing file.

Trace file: msgptr.trg y
123458 t

Here are the routines defined in this file:

1. FixPtrsSend (28)
2. FixPtrsReceive (38)

Type the aumber of the routine to trace, or "quit"™ to quit. }

Tracing "FixPtrsSend”. Title of trace: fast
fe===)> AREG = max pointer value for this segment ; 0

DEQUESTATE called. Which trace?

0. norms) | We've got the status, etc. :- 1
1. error { Error while reading the pointers ;-

Select one of these: Q !
FULLMODE :

EIAi ! Buffer mode, buffer not full ;- 2

PR

15]) | Register mode ;- :
161 t Buffer mode, and buffer is fuyll ;-
17] t Register mode ;-
Select one of these:
|=e==)> FBLATCH = max pointer value ; 3

INCPTR called. Which trace?
DONEINC:
2] | We slways come here ;- 4

WRITEPTR called. Which trace? fast
DONESEND:
0. normal | Done writing potnter ;- [}
1. error ! An error occured ;-
2. abnormal | Buffer overfliowed ;-
Select one of these: 0
-=> HEREQUICKRETURN cailed. Which trace?
Exit node. Totals:
8 microcycles. Routines Called: DEQUESTATE INCPTR WRITEPTR{fast] -> HEREQUICKRETURN

o e £ ot e

Here are the routines defined in this file:

1. FixPtrsSend (208)
2. FixPtrsReceive (38)

Type the number of the routine to trace, or "quit™ to quit. guit
End of SAIL executtioa

Figure 4-4: An Example of Using CYCLES
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depends on the quartz clock within the Pmap. The trace data tells us how many microcycles and

memory references are encountered in a particular Kmap operation; if we know how long the Kmap
operation takes, we can thus compute how long a memory reference takes. One calculates how long
a Kmap operation takes in the absence of contention by performing a real-time measurement with
only one Cm in the cluster running, since there is then nothing to compete with that Cm for the Kmap
ar for memory. !

From our initial real-time experiments, we concluded that a memory reference from a Kmap to aCm
took 4.3 usec. We then were able to use this value to predict how long other real-time experiments
shouid take to run, based on the trace data. Five dissimilar Kmap operations were tested in this
fashion; in all cases the elapsed time was within 2.1% of that predicted, based on our value for a
memory reference. These experiments allow us to list values for other Kmap operations without
carrying out real-time measurements of those operations, many of which are not amenable to such
measurement since they madify the state of the Kmap or data Ram. Microcode-measurement resuits
have helped the operating system projects choose which operations to optimize. The results are
reported in several places in the operating system chapters.
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5. Standalone Benchmarks Jarek Deminet

This chapter reports on standalone benchmarks. "Standalone" means running without the full
support of an operating system. Besides the LSI-11 code of the application programs, the only
programs present in Cm* are the Kmap microprograms and. perhaps, a smail amount of executive
software to facilitate communication with the user. The appiication software must provide the rest of
the functionality normally furnished by an operating system, which means that the programmer is, in
eftect, programming at a lower fevef. Further, these programs can be classified as benchmarks, since
their primary goal is to help evaluate the hardware and firmware. {n contrast, the experiments
described in the next chapter focus an the applications themselves.

5.1. Goals

Since the previous Cm* Review [Fuller et a/. 77] and the experiments described there, Cm* has
evoived in several ways. This created interest in repeating some of the oid expenments and
developing new ones in the new, 50-Cm configuration and with different microcode.

The experiments that we are about to recount are iess oriented toward hardware performance than
the previous ones. The reason is that sufficient data has already been gathered on Kbus bandwidth,
memory-reference delay and similar phenomena. The still-open questions are these: what is the
optimal number of processors to solve a particular problem, and what are the implications of the Cm*
architecture for the algorithms used? The previous results obtained with a 10-processor config-
uration exhibited nearly linear sy'eedup as the number of processors was increased to 10 for several
of the algorithms tested. Wiil we observe further speedup as the number of processors is increased to
50?7 The resuits will also serve as a reference point to measure operating system overhead in future
experiments to be performed when STAROS and MEpUSA are fully operational. As a side effect, some
data concerning the reliability of the system can also be gathered.

5.2. Conditions

All the experiments mentioned in this chapter were conducted by Jarek Deminet in the period from
'May 1979 to March 1980. During that time, both machi.ne configuration and microcode versions
changed. The number of available Cm’s fluctuated between 40 and 50 and the number of Cm's per
cluster varied with time and cluster, The microcode changes were partially due to fixing some bugs
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and partially due to improvements and extensions. In particular, a new and much tmproved version of
the STAROS microcode was used in the partial differential equation (PDE) experiment with distributed
data.

Even under the same hardware configuration, not all Cm’'s were always available, since several
people were running and testing unrelated programs at the same time. Thus, sometimes different
clusters (with different numbers of local Cm's) had to be used for different series of experiments.

All of this makes it difficult to compare resuits from different runs. An attempt was made to conduct
each experiment in as short a time as possible, so that configuration changes would be minimized. In
general, each curve presented in this chapter consists of results recorded with the same
configuration and the same microcode.

It should be pointed out that the results of experiments have not yet been statistically validated. An
effort was made to perform a larger number of experiments rather than to repeat each experiment
several times. As a consequence, some opinions expressed here about the relevance and impact of
individual factors are intuitive rather than statistically validated hypotheses.

In all cases, the experiments were conducted with no other programs running in the same cluster.
Thus the only load on the Kmap was that imposed by experiments themseives. Since the number of
objects existing at any one time was small, the Kmap was abie to keep most of the supporting
information in its cache (see Section 4.1).

5.3. Environments Used

The experiments mentioned in the first Cm* Review were conducted with no system software other
than 1/0 routines. Programs were lpaded into all Cm's through the serial lines connected to the Cm*
Host. As Cm* grew, the number of serial lines was not increased. Cm*/50 still has serial lines
connected anly to ten Cm’s, and only these Cm’s can be loaded directly through the Host. Thus, a
more sophisticated environment had to be created. In fact, two such environments have been used
and will be described in the rest of the section.

5.3.1. Standalone

The first experiments with the PoE and QSORT applications (see Section 5.4) on Cm*/50 used a
very simple environment. We defined a set of routines for creating and maintaining a list of available
Cm's. All program code was loaded into a single Cm, called the master. through its serial line. ARer

initialization, the master transferred parts of the code to other Cm'’s, called slaves, and imtialized ail
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global data. which resided in its own memory. The code to perform these additional functions had to
be inciuded in the program for the master. After starting the slaves. the master joined the slaves in
solving the problem. At the same time, however, it had to handle clock interrupts and monitor the
system in order to repor final results. The version of an algorithm using this environment will be
referred to as a standalone version.

This approach proved to be inadequate for running longer experiments, and inconvenient for
smailer ones. The most serious reasons were:
e After the experiment had started, the user was, in effect, cut off from the system. The
master, like the slaves, was busy running the application code and could not perform any

170 to the terminal. No interrupts or other events in the processors other than the master
were reported.

e The additional functions performed by the master had some influence on the results of its
wark. In particular, clock-interrupt handling and incrementing the time counter, which
was necessary to keep track of the time of the experiment, slowed the processor down.

e To provide all those additional functions, the program for the master had to be different
than the one for the slaves, even when the essential functions were same.

o Since the global data was always assumed to reside in the master Cm, it needed to be
directly addressable at all times. Cm*'s small address space caused problems. The
master memory contained both (master and siave) versions of the algorithm, /O
package, bootstrap and configuration routines and debugger—a total of up to 7 pages.
The problem was exacerbated when using the DA Link bootstrap code, which occupies
an additional 3 pages. Only 5 pages remained for all the data. This imposed restrictions
on the size of problems that could be solved. For example, it constrained the size of the
array to be sorted, or the grid for partial differential equations.

5.3.2. Nest

To avoid those problems, an environment cailed Nest (Nuclear Environm:~t for Software Tests)
was created. Its main innovation was to dedicate one Cm, called the interface module, for
communicating with a user and monitoring other Cm's. This module does not take part in solving of
the application problem. After initializing globai data and starting an experiment, it remains ready for
communication with the user. Thus, at any point the user may interrogate the status of the
experiment.

The other Cm's, called remote modules, constitute a task force for solving a given orobiem. All
remote modules run identical NEST software. Each contains a supervisor, which handles interrupts
and communicates with the interface module. The supervisor also implements a simple mechanism
for multiplexing user processes. The user processes perforr the essential work on the problem. The
structure of the whole NesT is depicted in Figure 5-1.
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Because all the functions associated with problem-independent system management are deait with
in NEST, the task of creating a new application program has been made much easier. Moreover, in the
interface module as well as in remote modules there is available a set of background routines,
which define some medium-level memory management operations. This allows a user to write a
program with no knowledge about the different low-level memory management operations offered by
Cm* itself and the different Kmap microcodes. At present there are three different sets of routines,
one for SMAP (Section 4.5), one for the STAROS microcode (Section 7.2) and one for the MEDUSA
microcode (Section 8). Both STAROS and MEDUSA micracodes require special data structures in the
memory of Cm's. Since NEST runs without the support of the STAROS software, all these structures in
the STAROS version are created by NesT itself, according to its needs. Only the necessary objects are
used, and the object space is very simple. In fact the only data objects used are fuil 4K pages. The

Cm

Remote Cm'’s

UDIR -- User-detined Initializing Routines

NUR -- Nest Utility Routines
User-defined objects

Nest-defined objects

Figure 5-1: The NEST Structure
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MEDUSA version runs with the support of parts of the system software, and all needed structures are
created by this software.

Because NEST was to run with different microcodes. not all the tools offered by the STAROS and
MEeDUSA microcodes could be used, as some of them would have been difficult or impossible to
emulate in the others. Only the address-space. synchronizing and initializing operations were used.

5.4. Algorithms Tested

This section describes results obtained with three application algorithms. They will be referred to
as QSORT, PDE and NeT. Two of them, QSORT and PDE, were modified versions of those written for
Cm*/10 by Levy Raskin [Fuller et al. 77, Raskin 78]. The versions run with the NEST environment
were improved and optimized, compared with those used in Raskin’'s experiments and in the
standalone environment. Hence, resuits of the three experiments are not strictly comparable. The
third application, Ner, is new. Each application was implemented as a task force, consisting of
several processes cooperating with each other.

The following is a shart comparison of features of the applications:
1. QSORT:

o flexible number of processes

e gne process in each Cm

¢ indistinguishable processes

¢ functionally identical processes

¢ dynamic assignment of tasks to processes

¢ giobal data structures shared by all processes

2. PoE:

o flexible number of processes

e one process in each Cm

o distinguishable processes

o functionally identical processes

o static assignment of tasks to processes

« global data structures shared by all processes

3. NeT:

o fixed number of processes

« multiple processes muitiplexed in a Cm

¢ distinguishable processes

« functionally different processes

o static assignment of tasks to processes

¢ distributed data structures, each shared by a small number of processes.

"y
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5.4.1. Qsort

This problem is to sort an array of integers using a modified version of the Quicksort algorithm
[Sedgewick 78). The task force consists of a variable-sized set of indistinguishable processes. Each
process runs on its own dedicated processor, so a process may be identified with its processor. The
processes share the sorted array and another structure, the stack. The stack contains descriptors
for continuous subsets of the array that have not yet been sorted. As initialized, the single descriptor
on the stack describes the whole array. The stack must be lock-protected against simultaneous
manipulation by muitiple processes.

In each pass a process tries to pop a descriptor for a new subset from the shared stack. If
successful, the process partitions the subset into two smaller ones, consisting respectively of all
elements less than, and greater than, some estimated "median” value. This "median” is computed as
the mean of the first, last and middle elements of the subset. Atter this partitioning, a descriptor for
the shorter of the new subsets is pushed onto the stack, and the longer subset is further partitioned in
the same way.

In the Cm*/10 implementation, this action was repeated as long as the longer subset had at least
two elements. The algorithm was later improved in the NEST version to avoid too-frequent stack
references. |f any of the subsets was shorter than some threshold value, it was immediately sorted
using the insertion sort instead of being either partitioned or pushed onto the stack. The motivation
for this change in a uniprocessor algorithm is given in [Sedgewick 78]. The threshold was set to 10
for most of the experiments (uniess explicitly stated otherwise).

In most of the experiments, both the stack and the sorted array were located in the same Cm.
There is no good way of distributing them, since different processes have their tasks assigned
dynamically so that it cannot be predicted which array element will be accessed by a particular
process.

The best speedup theoretically achievable with this algorithm may be computed from the equation

2 - g _ 2
p P
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log 2N

where

s is the speedup,
p is the number of processes, and
n is the number of elements sorted.
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Figure 5-2: QsoAT—SMaP, Speedup with Different Threshold Values, 20480 Elements
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Figure 5-3: QSORT-—SMAP, Speedup with Dilferent Data Size, Threshold = 10

For example, for 20480 elements and for 10 processes the expected speedup is equal 5.94. For 25
processes this value is 6.21. For 10000 elements respective values are 4.75 and 5.86. The speedup
should continuously grow up to n/(threshoid + 1) processes and remain constant for larger numbers.
The best speedup obtained with Cm*/10 was about 3.5 for 8 Cm’s.

5.4.1.1. Results

Figures 5-2 through 5-5 show the results of the QSORT experiments using SMaP. This microcode '
was ogriginally designed to serve diagnostic and simple test programs. Its design has some ‘
shortcomings and the microcode cannot support heavy use of interprocessor and intercluster |
communication facilities. For this reason QSORT could not be run with this microcode on more than
16 processors.

Figure 5-2 presents the speedup vs. humber of processes for different values of the threshold, l
using the NesT environment, for 20480 elements. This speedup is refative to the speed of the
unipracess task force with the threshold set to 10. As can be seen, the best resuits are achieved with
the threshold equal to 10. The same result was obtained with a uniprocessor implementation
(Sedgewick 78]. The resuit is, however, still far from the theoretical speedup. especially with more
than 8 Cm's. The reason for that is the contention when several processors try to access memory of
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the same Cm very frequently. At first, the lock operations were suspected of causing the slowdown.
However, if this were true, performance should have been degraded more markedly with the smaller
threshold value. as the lock-protected stack activities are more frequent. The figure shows, however,
that with the threshold set t0 5, the critical point7 is at 10 processes; whereas for a threshold of 10 it is
at 9 processes; and for 20, eight processes. That proves that the observed phenomenon is a result of
Kmap contention while servicing the simple memory references, which in the insertion sort are more
frequent than in the pure QSORT. In the critical part of the insertion sort, there is one reference to the
global array every other instruction, while in the pure QSORT they occur every 3 or 4 instructions.

The results shown in Figure 5-2 were obtained with up to two clusters. The local cluster, which
contained the sorted array, had 10 Cm's, so that when fewer than 11 Cm's were used, the
configuration behaved as a unicluster configuration. There is no significant performance drop after
switching to a two-cluster configuration (except for threshold = 5). This can probably be attributed to
the aiready poor performance, due to the Kmap contention previously noted, of a large unicluster
configuration.

Figure 5-3 shows a comparison of results with different data sizes. The speedup is relative to the
uniprocess task force for each array size. Better speedup with the larger sorted array is in
accordance with theoretical expectations. The results for the smallest array are very irregular since
the time of that experiment was very short and very small absolute ditferences could cause a large
relative difference.

Figures 5-4 and 5-5 show a comparison of the best results obtained with the new NesT version
(threshoid = 10) with the oid standalone version (effective threshold = 1). Figure 5-4 presents the
best speedup values achieved with each version. Because of address space limitations the maximum
data size in the standalone version was less than haif of that available with NesT. This is one source
of better performance of the NesT version. Figure 5-5 shows the absolute time for both versions with
the same data size (10000 elements). As can be seen, even then the NEST version is roughly twice as
fast as the standalone one, especially for a small number of processes. This is due to the optimization
of the version of the program run with NEST.

Figures 5-6 and 5-7 show resuits of QSORT with the STAROS microcode. Figure 5-6 presents the
speedup vs. number of processes for different threshold values (for 20480 elements). In this

experiment the focal cluster had 8 Cm's. Kmap saturation occurs around 6 processes, independent of
threshold values, with the exception of threshold = 1. There is no significant performance drop when “

7Thal is, the pomny where the performance begins to decrease significantly with growing numbers of

processes.
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crossing the intercluster boundary (between 8 and 9 Cm's). This figure may be compared with Figure
5-2. QsORT using the STAROS microcode exhibits slightly worse performance than QSORT using
Smap. The reason is that the functions of the STAROS microcode are more complex and time-
consuming than those of SMAP (see Chapter 10).

Figure 5-7 corresponds to Figure 5-3 and shows the speedup vs. number of processes for different
numbers of elements to be sorted. As expected (see Equation 1, page 64), the smaller the size, the
worse the speedup achieved. The shape of all graphs, however, is essentially the same. Again, for a
large number of processes, performance with larger thresholds becomes worse than with smaller
ones {note crossing graphs for thresholds 20 and 10, and 5 and 40). This demonstrates that the
degradation is caused by Kmap contention during simple memory references. The larger the
threshold value, the more frequent these references are.

Figure 5-8 presents the resuits obtained with the MEDUSA version. The best achievable speedup is
between 3.0 and 3.5, similar to the STAROS version and 20% less than with SmMapP. The optimal
threshold value is 10, just as in both other versions. It should be noted that the best speedup for
threshold = 5 was achieved with a smaller number of processes than the one for threshold = 20.
That means that the speedup is bounded by the cost of simple memory references rather than by the
cost of synchronization, as was discussed above.

Several experiments with both STAROS and MEDUSA microcodes were also performed for a large
number of processes (up to 40). The results showed constantly dropping performance for all
threshold values and data sizes.

5.4.1.2. Conclusions

The best speedup achieved with QSORTwas about 4 for SMAP and 3.3 for the STAROS and MEDUSA
microcodes, for less than 10 processes in a task force. Those results suggest that the QSORT
algorithm is not suitable for distributed processing with a large number of processes, at least using
Cm*. In theory, the best result should be achieved for the number of processes equal to
n/{threshold + 1) where n is the number of elements sorted. In practice the critical value is much
smaller. The reasons for this are probably associated with the structure of the computer. In this
algorithm a remote reference to the global data occurs, in some critical parts, every 3 or 4
instructions. Since all shared data is located in one Cm, all those references are directed to this Cm,
causing heavy contention. Thus, the effective reference time is much longer than the theoretical
inter-Cm reference time measured with no saturation or contention.

Several experiments have also been performed with the global data distributed between different
Cm's, This does not improve locality of the references, since tasks are assigned to processes in a
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random way and most of the processes still access non-local data. Distribution makes no significant
difference.

5.4.2. PDE—Partial Ditferential Equations

In this application, the objective is to solve Laplace's partial differential equation with given

boundary conditions (Dirichiet's problem) by the method of finite differences.

The equation
2%z . % - o @
LR

is solved for points of an m-by-n rectanguiar grid. The solution is found iteratively. On each iteration
the new value of every element is set to the arithmetical average of the values of its four adjacent

neighbors.

Each process of the task force solving this problem runs on its own dedicated processor, so a
process may be identified with a processor. Each process performs the iteration for a fixed,
continuous subset of the grid array, which will be called a task; thus the processes are

( » distinguishable.

There are many possible ways to synchronize the processes and buffer the data. Raskin [Raskin l
78] described four of them. The purely asynchronous method was seiected for these experiments.
it is most c*ticient and allows—theoretically—linear speedup. In this method, each process updates "
the value of each paint using the current values of adjacent points directly from the shared array and ;
places the new value immediately into the array, so that it is availabie for other processes. This
reduces the working space because no buffers are needed and also assures that the newest—and
probably the best—approximation is used as soon as it is computed. The only variable that has to be
lbcked against simultaneous use is one that records the number of processes that haven't finished
their tasks yet. This variable is accessed only once per each iteration.® The best speedup achieved

9

by Raskin with this version was 7.2 for 8 Cm's.® We were interested in whether similarly good resuits

could be obtained with a much iarger configuraticn as well.

aSpeedup of a task force in this section will be refative to the uniprocess or task force for the same data size
and under the same conditions, uniess explicitly stated otherwise.

9F“or comparison, the other, more synchromized versions, nad speedup from 5 to 6.3 for the same number of
Cm’s. Also, the absolute time in this version for 3 small number of Cm's was up to 50% less than in some of the
other versions,
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The version of the program used for standalone experiments was similar to that used hy Raskin.
The NEST version was improved and optimized. Because oniy one synchronization method was used,
the code performing some actions required only by the other modes could be removed and the
program could be restructured.

5.4.2.1. Results

The number of experiments with PDE was greater than with the other programs because in this
application several aspects of behavior may be measured more easily than with other benchmarks.
During a given experiment, the same amount of work is performed by each process during one
iteration. This allows us to measure the relative speed of different processes in different
configurations. The theoretical speedup is linear despite the size of the grid; therefore experiments
with different data sizes may be easily compared.

The largest array available with the standalone version was 20-by-20. The run time of the
uniprocess task force was approximately 4 minutes in that case. The NEST version was used mainly
with 40-by-40 or 150-by-150 arrays. with a run time of 3 minutes and 13 hours respectively. This
shows how the magnitude of the computation to be performed increases when the data size grows
significantly. The smaller time for a 40-by-40 array in the NEST version than for a 20-by-20 in the
standalone version was caused by the generally improved performance of the former one.

Figures 5-9 through 5-16 present results obtained with SMAP. Figures 5-17 through 5-20 show
corresponding results with the STAROS microcode.

Figure 5-9 shows the comparison of the speedup in three different experiments varying the
environment and the grid size. The theoretical linear speedup is shown as a reference line. As can be
seen, the best speedup was achieved with the standalone version. It is aimost linear, with a
coefficient of 0.77. This is caused, ironically, by the inefficient implementation of the process
algorithm in this version. Since the number of global data references remained the same in the NEST
version while the number of other operations decreased, the time between the references decreased
as well. This led to heavier contention and greater communication overhead relative to the program
runtime. Figure 5-10 shows the comparison of the absolute run time of two experiments with the
same data size in both standalone and NEST versions. Note that the vertical scale is logarithmic. At
any point the NEST version is up to 4 times faster. These results show how careful one has to be in
evaluating different algorithms or grograms faor parallel processing. The program that ofters the best
speedup may be otherwise ineffective and the absolute time may be worse than with some other
ailgorithms.

Figure 5-11 aiso presents speedup for small data sizes (30-by-30 and 20-by-20). It is not obvious
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why the speedup depends on the size of data. Intuitively, any irregularities such as different number
of references to the boundary-condition data set. which requires slightly mcre computations than
references to the grid points, play a more important role with the smaller data. Because the total time
is determined by the time of the slowest process, such irregularities may slow down the whole task
force. Besides, updating of the lock-protected variable, performed once after each iteration, is more
frequent with the smaliler data.

Figure 5-12 presents some results of a more detailed study of this problem. For each data size, it
presents thiee different curves. One of them shows the total speedup of the task force as a whole.
The other two show the adjusted speedup of the slowest and the fastest processes in the task force.
Each of those values was computed as a ratio of the time of one iteration for the uniprocess task force
to the time of one iteration for the slowest (or fastest) process in the multiprocess task force. One may
say that this is the speedup of a hypothetical system, each component of which runs at the same
speed as the measured process.

As can be seen, there are no irregularities in the speed of the fastest process {which runs in the Cm
containing the global data). ts speedup is still not as good as theoretically possible; however it is
linear with a coefficient of about 0.87.

On the other hand, the speedup of the slowest process is not so regular. It is aimost linear when
the configuration is unicluster. After crossing this point there is a significant drop in performance (in
one experiment it takes place at 9 processes, in another at 10). From this point on, the speedup
increases slowly and finally starts to decrease. Those changes are reflected in the total speedup. As
long as the number of the processes running in the local cluster (that is the one containing the giobal
data) is larger than the number of other Cm’s, the speedup is close to linear (up to about 20 Cm's).
After that, it resembles the speedup of the slowest process.

Figure 5-13 shows the speed ratio of the siowest vs. the fastest process in the configuration.
Again, as long as all references are intracluster, no significant performance degradation is observed
and all processes run at least at 90% of the speed of the local process. This result is in full
accordance with the previous resuits from the unicluster Cm*. In the multicluster configuration the
resuits are much worse and with 38 processes running, some of them was'te up to 70% of their time
due to the remote-access overhead. Since this overhead grows with the number of processes
running in parallel, significant contention must have been encountered. Most probabiy. this is the
contention in the Kmap when several Cm’s want to access the same destinaticn Cm. Since the Slocal
of that Cm can serve only one reference at a time. the others must wait. The time for a reference tc be
processed is determined by the Kmap. Slocal and LSI-11 times. It is very uniikely that the iatter two
experience much contention, as otherwise they would significantly siow down the local Cm as well.




80 % Standalone Benchmarks 5.4

Speedup

0O Relocation enabled in idie modules
( Relocation disabled in idie moduies

) 1 2 3 4 5 6 7 8 9 10
Number of processes

Figure 5-15: PDE—SMAP, Speedup with Different Behavior of Idie Cm's




54 Algorithms Tested 8 81

In the original Cm* /10 version of the algorithm, the assignment of different tasks to processes was
either random or based an the number of the Cm in the pool of available Cm's. This was not suitable
for a multicluster configuration. In fact, not all tasks need to perform the same amount of work during
an experiment. The middle tasks require more iterations than the ones that are close to the boundary,
so they shouild be soived by the fastest processes. In general, the cioser the task is to the middle of
the array, the closer to the global data (in terms of reference locality) should be the process solving it.
A version that satisfies this condition will be referred to as an improved task selection version.

Figure 5-14 compares the results obtained with the two methods of task selection. The resuits with
the improved task selection are significantly better when the number of processes is larger than 16
(more than two clusters invoived). This corresponds to the point when the speed of different
processes becomes significantly different due to rising intercluster reference time (Figure 5-13). At 35
processes, improvement is about 20%.

The LSI-11 microcode provides another way of measuring intracluster memory reference
degradation. When an LSI-11 is haited, it runs the ODT microcode communicating directly with a
console (the Host serial line in Cm*). The microcode performs a busy wait, trying to read the console
register on its LSI-11 bus in a continuous loop. |f relocation is enabled, all those reads are serviced by
the Kmap. Figure 5-15 shows the results of two different runs. In one of them, relocation in the idle
Cm's was disabled; in the second one, it was enabled. Note that in this case the speedup in both
versions is relative to a uniprocess task force with relocation disabled. As can be seen, the
difference, although visible, is very smail. This is one more proof that a Kmap may service intracluster
references with no significant performance degradation when no contention occurs (each processor
makes references to its own Cm).

To alleviate the problem of contention observed in the PDE experiments aiready described, an
attempt was made to distribute the giobal data. This was passible only if the data was larger than a
memory page because a page is the smallest unit of memory that may be effectively allocated in a Cm.
Figure 5-16 shows the resuits for a 150-by-150 array. The pages containing the array were distributed
between clusters to maximize intracluster locality of references. This distribution was compietely
invigibie to processes themselves. The task selection was such as to increase locaiity of reterences
as much as possible. The improvement is significant (compare with Figure 5-12 or Figure 5-9). The
speed of the sliowest process in the 37-process configuration was about 68% of the speed of the
fastest one, as opposed to 28% in the non-distributed version.

The perfarmance drop at about 20 processes was caused by the distributing algorithm. which is far
from optimal. The distribution is only between clusters and not between Cm’'s in a cluster. Because
data is gistributed uniformiy between clusters, when the number of processors running n different

o —— s
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Figure 5-16: PDE—SmAP, Distributed Data

clusters differ, the number of interciuster references may increase. This crossover phenomenon is
responsible for. the performance drop after changing, for instance, from two clusters and 20
processes to three clusters and 21 processes, with the extra cluster hosting only one process.

The next few figures show results obtained with the STAROS microcode using the NEST version.
Figure 5-17 shows the speedup in an experiment with the 40-by-40 array with ordinary and improved
task selection. The speedup, linear as long as the configuration is unicluster, drops after crossing the
cluster boundary (at 10 processes) and continues to drop afterwards. The performance of the
improved-task-selection version is slightly better, especially in the decreasing region. This figure
presents additional evidence that the main problem with a large configuration is Kmap contention.
The STARCS microcode is slower than SMaP: comparison of Figure 5-17 with Figure 5-14 shows that
the performance drop is more pronounced in the case of STAROS.

Figure 5-18 shows the speed ratio (slowest/fastest Cm} for the STAROS microcode. The
performance drop is very large, reaching 95% in the 36-process configuration (that is. the siowest
process runs at 5% of its nominal speed). A very rough estimation 10 gives a value of 1200 pus per one

10(! -l )/ n, where t,and t_are the run time of one iteration in the Cm containing the shared data and the Cm
in3 du{erent cluster, respectively; and nis the number ot memory references pef one iteration.

A e
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intercluster memory reference from the slowest process.

Figure 5-19 compares the speedup in two versions of the environment. In this case the speedup in
both versions is relative to a uniprocess task force with reiocation disabled. In one version the idle
processors were halted and performed their seriai-line references through the Kmap. Because in the
STARQOS environment it is not possible to disable relocation during the experiment, idle processors in
the second version were running an idle loop in local memory, making no references through the
Kmap. Similarly as in the case of SMAP (cf. Figure 5-15), there is no significant difference in process
performance. This suggests that the STAROS microcode does not saturate the processing power of
the Pmap or the bandwidth of the Kbus while serving a uniciuster configuration. Contention is the
only probiem.

Figure 5-20 presents the resuits with the distributed data for two different versions of the
microcode. The o/d version is the version used for all the other experiments. The new version was
released only recently and has a number of improvements. In particular both intercfuster and
intracluster memory references have been optimized. Improvement is visible, though less pro-
nounced than with SMAP. With the old version of the microcode. the best speedup is achieved for 18
processes and then starts to drop, probably because of Kmap saturation. For the new version, the

g
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speedup grows up to 28 processes, where it reaches the maximum value of 18.1. At that point the
slowest process runs with 66% of its potential speed. One may notice that the crossover
phenomenon mentioned before causes much more significant performance degradation with STAROS
than it does with SMAP. The performance drops significantly each time a part of data is moved to a
new cluster witt only few processes running in it. That means that the program using STAROS is
more sensitive for unoptimat data distribution than the one using SMaP. This is due to the greater
ditference in time for an intercluster vs. intracluster memory reference in STARCS than in SMAP.

There are ways to improve this performance further. It should be possible to find a better
distribution of data between Cm's or between clusters, and perhaps to limit the number of processes
running simuitaneously in a cluster. Unfortunately, NEST pravides only limited toois to reconfigure
objects dynamically in Cm*. Ideally, this will be one subject of experiments with the complete
STAROS.

Figures 5-21, 5-22, and 5-23 sho v results obtained with the MEDUSA version.

Figure 5-21 shows speedup with all shared data centralized in one Cm. From comparison with
Figures 5-9 and 5-17, it may be concluded that the MEDUSA micracode behaves similarly to the




54 Algorithms Tested 1 87

Speedup
CH

~

) 5 10 15 20 25 30 35 40
Number of processes

Figure 5-21: PDE—MEDUSA, Speedup with Centralized Data

STAROS microcode. but the performance drop after crossing a cluster boundary is not so large and
the resuits for a I "o number of processes are significantly better. For more than 35 modules the
speedup is still about S, while with STARCS it has dropped to less than 3. Nevertheless, the maximum
speedup is about 8, much less than with Smap. The reason for that is again, as it was with STARCS,
that MEDUSA microcode is more sophisticated than SMAP, and that worse performance is the price for
this.

Figure 5:-22 presents the speed ratio of the slowest versus the fastest process in a task force with
centralized data. As compared with Figures 5-13 and 5-18, this ratio lies between the ones for SMap
and for STAROS. For a large number of processes it is about 15% (85% of time is wasted), while for
SMmaP this value was 25%, and for STAROS less than 5%.

Finally, Figure 5-23 shows results obtained with data distributed between clusters. Improvement is
visible, though not as good as with SMap. Still, the best speedup is only about 19, while with SMAP 1t
was possible to aobtain a speedup of 26 (cf. Figure 5-16). Because of the crossover phenomenon., the
speedup does not grow continously, but drops each time a cluster boundary is crossed.

Figure 5-24 compares the results of POE with distributed data for all three microcodes. Only the
points where the data distribution is close to optimal are incluged in this figure, in order that the graph
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not exhibit the crossover phenomenon. As can be seen, for less than 25 processes (3 clusters), the
speedup is close to linear for all three microcodes.

5.4.2.2. Conclusions
The best speedup achieved with the NesT version with non-distributed shared data was 16 (26
Cm'’s) for Smap and 8 to 9 (11 Cm's) for both STAROCS and MEDUSA microcodes. Respective resuits
with distributed data were 29 for SMAR, and 18 to 19 for STAROS and Mebusa. For a detailed
explanation of differences between the microcodes, s.s Chapter 10. Those resuits suggest that poe
may be distributed and run cost-effectively on Cm*. Several minor modifications to the algorithm
itself, like the improved task selection, are necessary because of the hierarchical structure of the
computer. The reference pattern may raise serious problems of Kmap saturation (in some parts of the (
algorithm there is one reference to the global data each 4 LSI-11 instructions). A crucial problem
concerns the appropriate distribution of the global data between ciusters and Cm’s based on the
(known) reference pattern of particular processes. Experiments directed toward this goal shouild be
conducted as soon as tools become available which are more flexible and more convenient than the
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presently existing ones.

As a side effect, the experiments with PDE provided some data on hardware reliability. A special
facility in NEST allows a user to run several experiments semi-automatically. In this mode the user
records a plan with the attributes of the experiments and NEST runs them one by one and records their
results. Using this facility, the program was run several times for more than one day with no restart or
other interference from outside. The longest run lasted about three days. No hardware errors were
observed during that time. There are no error-correction tools in NEST, so any error would cause
halting of the system. In total, the number of errors that occurred during ail experiments was very
smail.

5.4.3. Net

Finalily, an attempt was made to run an application with more a complicated reference pattern and
more diversified processes. The net simulation was created in 1979 and exists only in the NeST
version.

In this application, a railway network is simulated by a task force which consists of a fixed number
of processes, each of which represents a station—one node in the railway net. Two stations may be
connected with each other by a unidirectional track. For a giveﬁ station A a set of previous
stations includes each station 8 such that there is a unidirectional track from B to A. The stations
communicate with each other by exchanging messages representing trains. The route of each train
through the network is an attribute of the train and is determined by some data associated with the
train when the train is created. Each station schedules the trains that have arrived according to the
time of their arrival and serves them in this order. Each process maintains its own simulated time. At
any given moment, this time will probably be different in different processes. Thus, the simulated time
of sending a train from one station to another is not connected with the rea/ time of creating the
message representing the train. Also the rea/-time order of those events may be quite different than
their simulated-time order. Thus, for example, station A may send a message to station C at real time
5. At this moment the internal clock on station A may show the simulated time 50. Station 8 may send
a similar message to C at real time 7, but its clock may at this moment show the simulated time 40.
This second message should be serviced by C before the first one, since only the simulated time is
relevant. In general, to determine the simulated-time order of arrival of the trains, the station must
know the simulated times ot arrival of the next trains from all previous stations. Unless the messages
from these stations have been recieved, the station is not ready to run, and it will not be allowed to run
by the NesT muitiplexer.

The number of processes in this application is fixed and independent of the number of processors.
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In the present version there are 63 station-processes. Usually several processes are executed by
each processor. The processes are distinguishable, since each of them corresponds to a different
station. In addition, they run different programs. as there are two ditferent types of stations: one
creates new trains according to the simulation parameters, and the other only schedules arriving
trains and sends them further. There aiso exists one additional process, the reporter, which records
data from the special messages sent to it by the stations.

This application, as programmed, may not be run on a uniprocessor configuration. The reporter
must always be running throughout the experiment. It may not be multipiexed, or otherwise all other
processes would be blocked. Moreover, there are too many other processes to put them all into one
Cm. In fact, a minimum of 4 Cm's have to be assigned to this task force.

A theoretical estimation of the speedup vs. number of processors is impossible. The reference and
communication pattern is very compiicated. The time of an experiment depends not only on the
number of processors, but also on the distribution of processes between them. At present a process
is assigned to only one processor. This application corresponds well to the Cm* structure. Most of
shared data is distributed between Cm's. By careful allocation of Cm's to particular processes, a high
degree of locality may be obtained.

Q 5.4.3.1. Resulits

As there is no uniprocessor version to act as a reference point, we cannot compute speedup.
Instead, the resulits will be shown in terms of absolute run time.

The number of experiments conducted with this application was relatively small. as this application
is not very suitable to the simple NEST environment. Besides, the parameters such as number of
traing, configuration of the simulated net, and number of processes were constant and hard to
change.

Figure 5-25 shows the results of experiments with SMAP. The two versions differ in one parameter
that determines the travel time of train between stations. It influences the average number of #
processes blocked at any given time. As can be seen, the time significantly decreases up to
approximately 15 Cm’s. The very large performance improvement with the small number of
processors corresponds to the situation when the average number of runnable processes is greater
than the number of available processors. For a larger number of processors, a processor may be idle l

for some time when all its processes are blocked. Performance of the version with less frequent
blacking is better than performance of the second one.

Figure 5-26 shows the results with the STAROS microcode. This graph is much less reguiar than
the previous one. One expianation may be that the relative position of two different processes
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Flgure 5-25: NET—SMAP, General Results

communicating with each other may have more influence on performance in STAROS than in SMAP,
as in the former, there is greater overhead for intercluster references.

5.4.3.2. Conclusions

From this limited amount of data it seems that this application is relatively well suited for
distribution. Its performance could likely be improved further. As the communication between
processes is not so trivial as in QSORT and POE and the process address space changes during an
experiment, this application is probably especially suitable to run with the support of an operating
system. It will be interesting to compare these resuits with the results of the application running with
the full support of STAROS, possibly using the STAROS message operations for the interchange of
information between processes. Also, it will be possible to investigate whether the performance can
be significantly improved by careful assignment of processes to processors. Several attempts proved
that, with a particular number of processors, it was sometimes possible to obtain up to 20%
performance improvement due to better processor utilization. It is not clear whether there exists any
general method to do this. In the experiments reported here this assignment was performed in a very

straightforward way.

It wili be also possible to allow one process to move between processors. This may improve
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Figure 5-26: NET—STAROS, General Resuits

processor utilization, but will increase overhead associated with references to the process stack and

local data (if thev are in a module other than the processor running the process).
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6. Applications Programs on Cm*

Most of the effort in programming Cm* has thus far been directed toward developing system
software. Serious attempts toc use Cm* for research in various scientific disciplines are just
beginning. Nonetheless, preliminary results are available for three experiments. The first section of
this chapter describes the simulation of an electrical power network. The next section reports on two
projects to apply the computational power of Cm* to problems in chemistry which are amenable to
multiprocessor solution. The final section describes the use of parallel processing to remove hidden
lines in the portrayal of three-dimensional objects on a graphics display.

6.1. Power System Simulation on Cm* Ivor Durham

The task of simulating large electrical networks is the subject of extensive work in the Power
Systems Industry. One algorithm currently in use, the Network Model, exhibits inherent parallelism
in stages which account for over 50% of its time [Dugan 79]. The goal of this work was to develop an
experimental simulator on Cm* with which to investigate the potential parallelism in this algorithm.

The description given below is a condensed and edited version of the paper on this work presented
to the IEEE Power Engineering Society Summer Meeting in Vancouver in July 1979 {Durham 78].

6.1.1. The Network Model and Simulation Algorithm

The Network Model is described here informaily. A mathematical and more detailed description
can be found in |Uugan 79, Talukdar 76]. The model upon which the aigorithm is based is analagous
to the data-type model for software engineering: An electrical network is composed of a set of
interconnected primitive components. An interconnected subset of the devices may be considered as
a complex device and handied in the same way as more primitive devices. Any device (primitive or
compiex) may be characterized by the behavior of the voltage and current values at its terminals. The
mathematical model for a compliex device (or sub-network) is termed a macromodei. The
macromodel may range in complexity from the singie equation embodying Ohm’s law for a two-
terminal resistor to hundreds of differential equations representing multi-terminal devices like
transmission lines.

The overall behavior of a network at any instant in time is determined by sclving the linear
eguations embadying Kirchoff's constraints for the macromodel terminals together with the equations
contained in the macromodels. The solution proceeds iteratively. The collective solution of the
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macromodels is referred to as Phase 1 of a simultation step and the part devoted to the solution of
Kirchoff's constraints as Phase Il. A number of iterations through the two-phase series may be
required to converge the results before proceeding to the next simulated time step.

There is inherent parallelism in this model because the macromodels describing the devices may
be solved independently. Experience with a uniprocessor implementation of this aigorithm [Talukdar
76) has shown that, depending on the number of devices in the network, over 50% (and sometimes as
much as 97%) of the computation time is spent solving the macromodeis.

6.1.2. The Problem Decomposition
The decomposition of the simulation algorithm for Cm* was guided by two main criteria:
o The system must support experimentation. An important part of this work is to identify in
as much detail as possible where the computing power can be and is being used. For
example, we would like to know how much time is spent in synchronizing between

processes, how much time is spent in administration of the shared data structures, and
how much time is devoted to the real processing of the model.

o A considerable amount of effort has been invested eisewhere in exploiting parallelism to
solve linear systems [EPRI 77, Wallach 74a, Wallach 74b]. The simulation system for Cm*
should attempt to exploit the parallelism inherent in solving macromaodels.

For any network, one macromodel may describe a number of similar (complex) devices. There may
be several transmission lines, for example, each characterized by different parameter values. All
devices described by the same macromodel are collected into a device pool. An arbitrary number of
processes (processors) may be applied to the solution of the macromodel for a particular pool of
devices. The selection of the number of processes is based on the compiexity of the macromode! and
the number of devices in the pool.

During an iteration, each Phase | process repeatedly extracts an unprocessed device from its
associated device pool. The new voitage and current values for the device's output terminais are
computed from the corresponding values for its input terminals according to the macromodel. The
resulting terminal voitages and currents are contributed to the linear system that described Kirchoff's
constraints.

When all of the devices in all of the device pools have been processed, the Phase || computation
may be performed to soive the linear system. Information characterizing the state of the network,
such as node voltages, may be reported at the end of Phase Il. (In the implemented system, these
intermediate resuits are shipped to another computer for analysis.)
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6.1.3. The Implementation
The implementaton of the prototype system is described here in four parts:
o Controi structure and general organization
e Macromodels and device pools

e Phase il
e User interface

The first versian of the STAROS operating system [Janes et al. 78] (see Chapter 7 for a description
of the current STAROS system) provided the program environment for the simulator. The simulator
ran on a single 10-processor cluster,

Control Structure and General Organization. The activity of the simulator is coordinated by a
management process. A set of Phase | processes are responsible for soiving the macromodels for
the devices they extract from the.device pools. The single Phase li process waits for Phase | to
complete simply by watching a decrementing count of the devices processed. Hence, the locus of
control moves around a cycle from the management process to the Phase | processes (in
cooperation) and finally on to the Phase |l process.

The Phase | processes simply wait until there are unprocessed devices in their particular device
pool. The management pracess puts the devices back into the pools to start a new iteration. In
addition, it resets the decrementing counter of processed devices to alert Phase Ii that = new iteration
has started. Since Phase Il watches this counter, the management process is not involved in starting
the Phase !l processing. Phase Il notifies the management process (via a shared variable) when it has
completed. The management process may choose to ship intermediate resuits to another computer
concurrently with the next iteration. ,

Macromodeis and Device Pools. A particuldr device is represented by its characteristic
parameters for the macromodel that simulates its behavior. In the implementation, each device's
parameters and terminal voitage and current values are represented in a STAROS basic object
(referred to as a device segment). A device pool is simply a set of device segments. All of the Phase
| procesges that are to work on a particular macromodel access the device pool through shared
memory.

The device pool is represented as a simple vector of device segments with a counting lock. The 4
management process "puts” the devices into the pool by resetting the counting-lock value to the
number of devices in the pool. The Phase | processes identify the next device to process by using the
result of the STAROS indivigible decrement operation on the counting lock. The result is the index of a
capability for an object containing the device segment. Hence, while the index is zero, there is no
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device to process. After the management process resets the counting lock, the resulting index is non-
zero as long as there are devices left to process.

After selecting a device from the pool, the Phase | processes solve their macromodel using
parameters from the acquired device segment. The resuits of this computation are the new voltage
and current values at the device's terminals. These values must be contributed to the linear system to
be solved in Phase II.

Phase ll. The responsibility of the Phase Il Process is to solve the system of linear equations that
describe Kirchoff's constraints for the network. The linear system is represented as a matrix of
coefficients and a vector of node voitages and currents. Access to the shared matrix must be
controlled because the contributions by Phase | processes are cumulative rather than absolute. Each
Phase | process must set a lock before making any changes.

if no changes are made to the shared matrix during Phase |, there is no need to repeat the
factorization of the linear system. Phase |l avoids the extra processing by maintaining a second
matrix which holds the results of a Gaussian elimination on the shared matrix. The factorization of the
matrix represents a significant portion of the Phase Il processing.

User Interface. To make the simulator available for experimentation in a comfortable environment,
the user interface was impiemented on 2 more mature system—a PDP-10. The user interface is an
interactive program that accepts the user's description of the network to be simulated and passes it
over a communication line to the simulator on Cm*. Conversely, the simuiator ships resuits back to
the user interface. The user may then avail himselt of the existing software systems an the PDP-10 to
analyze and dispiay the resuits of the simulation.

To achieve the communication with the PDP-10, a communication process was provided in the
simulator. This process was responsible for the reliable exchange of information between the
simulator’'s management process and the user interface program.

6.1.4. Uniprocessor vs. Multiprocessor Comparison

The design criteria for the experimental simulator ranked flexibility over performance. It was
believed that promising versions of the simulator could be optimized for more detailed evaluation.
However, some first-order comparisons can be made with an implementation of the same algorithm
on a DECSystem-20.

The sample network that was simulated for the comparision consisted of a single-phase, 100 pi-
section transmission line [Dugan 79). Variation in Phase | is achieved by partitioning the pi-sections
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to form macromodels of varying computational demands. The Cm* experiments were run on a 9-Cm
cluster. The management and communication processes were given dedicated processors. A third
processor executed Phase Il and provided Phase | service for the device pool containing the single
voltage source required in the sample network. Various subsets of the 6 remaining Cm’s were applied
to the transmission-line device pool during Phase |.

The simulator outputs intermediate resuits at the end of each time step rather than at the end of
each iteration. The experiments were performed by executing in excess of 300 iterations for each of
10 time steps to avoid the performance degradation introduced by shipping the intermediate results
(concurrently with Phase 1) to the user interface over a low-bandwidth communication fine. Each
device process had a local copy of its code and private data. Hence all code and stack references
were made to local memory.

The predicted time for an iteration on Cm* is described by the following equation:
T= TPhuo I/N + TPhuo n* TOvorhcud
where T

Phase | is the time to perform Phase | with a single processor, and N is the number of
processors. For Cm*, the first term is a special case of the more general formula:

T = Max(T I)+T +T

Macromaode Phase I Overhead

The uniprocessor-equivalent time was determined by permitting only one processor to work on the
transmission-line device pool during Phase |. Although Phase Il was executed on a dedicated
processor, it could not begin until Phase | had completed so the resulting pertormance was equivalent
to a completely seriai computation.

The Speed-Up factor is computed from
n
S=T '/T:
where

T: = iteration time with a single processor solving the transmission-line macromode! during Phase
1.

T: = lteration time with N processors solving the transmission-line macromodel during Phase |.

Figure 8-1 compares the predicted performance with the measured pertormance on Cm*. The
actual performance of the simulator is substantially different from that predicted by the DECSystem-
10 results [Dugan 78]. These resuits are a dramatic illustration of a typical failing of simplisitic
prediction models for multiprocessors: in particular, simplistic models often ignore salient features of
the target muitiprocessor architecture and overhead introduced by communication and synchro-
nization. The model used in {Dugan 79] assumed a uniform cost for accesses to all memory in Cm*.
Making non-local memory reterences in Cm* incurs a factor of 3 overhead over local references.
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Figure 6-1: Comparison of Predictions and Measurements

Although the simulator guaranteed that all of the processes had a locai copy of their code and
private data, aimost none of the data references were to local memory. The most critical instance of
this is the shared matrix which is used by Phase Il. Much of the Phase Il computation operates in this
matrix and a/l references to it are non-local. This affected the resuits presented above because the
times represent entire iterations rather than just Phase |.

If 170 costs are ignored in both the uni- and muitiprocessor versions of the simuiator, Cm* can
execute about 0.93 iterations per second with only one processor working during Phase I. in
comparison, the DECSystem-20 can execute about 4.36 iterations per second. When si>g processors
are applied to Phase |, the iteration rate increases to about 3.0 per second. With only one processor
working on Phase |, the Cm* simulator is about five times slower than the DECSystem-20
implementation. Further taking into account the slow floating point operations on the Cm* LSI-11
[DEC 75], the Cm* simulation system performs quite well. Given that the raw power of a DECSystem-
20 (about 2 MIPS) is close to that of a full (14-Cm) cluster on Cm*, it is evident that modest increments
in the problem size will lead to a superior performance by Cm*.

|
;
|
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6.1.5. Status Mike Carey

This work ./as done during the 1978 - 79 academic year. Research is currently being pursued to
investigate further the effectiveness of using multiprocessors for running transient simulations of
power systems. This research involves the implementation on Cm* of a small parallel multicluster
version of the METAP transient simulation program {Talukdar 76]. Basically, the new implementation
is similar to that described above, but it is based on NEST (see Section 5.3.2) and written to handle a
small but representative class of power systems. Performance measurements will be taken to
determine both the gains afforded by the parallel impiementation and the factors limiting these gains.
Future work may include research into algorithms which exhibit even greater paralielism or which
lend themselves to asynchronous iterative implementations.

6.2. Applications Related to Chemistry
Neil Ostlund and Ed Gehringer

In this section, we defineate two specific applications in the field of chemistry which are amenable
to solution by a Cm*-like multiprocessor: molecular orbital (MO) caiculations of the electronic
structure of molecules, and Monte Carlo calculations of the statisticai mechanics of condensed
media. These algorithms have been chosen because they do not appear to decompose effectively
with only a single instruction stream.

In contrast to the Cm* resuits, most of the experimental work to date on the parallel decomposition
of numerical algorithms has been with single-instruction, muitiple-data (SIMD) stream machines such
as the ILLIAC-IV or the Cray-1. These architectures are well suited to the solution of sets of linear
equations or several more sophisticated, but still relatively straightforward, matrix problems.
However, it appears that both of the problems to be detailed in this section have a high degree of
parallelism on muitiple-instruction, muitipie-data (MIMD) stream machines such as Cm*, but little on
SIMD machines.

Because the processing power of Cm* is obtained from LSI-11's, our resuits will have to be scaled
to reflect two limitations of the processors, compared to other hypothetical MIMD machines. First, the
floating-point abilities of LSI-11's are poor compared to those available on other processors. For
example, the cost of a 32-bit floating-point muitiply is about 50 usec. (performed in LSI-11 microcode),
and the cost of a 64-bit floating-point multiply is about 3000 psec. (performed in software). The
calcuiations described here require more precision than is available with a 32-bit floating-point word.
Thus Cm* is a 10 Mips machine, but only a .02 Megaflops machine for 84-bit floating-point numbers.
Second, the address space is 32K words. and for a processor t0 acctess more memgcry than this
requires the loading of relocation registers with a consequent degradation in performance. It shouid

i
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be pointed out that these factors are a consequence of the implementation of Cm* using LSI-11's,
rather than an inherent property of the architecture. )

6.2.1. Monte Carlo Calculations Using the Metropolis
Technique

The fundamental problem of statistical mechanics is the relation between the macroscopic
behavior of matter and the microscopic properties of its conétituent parts. We have chosen a
particuiar problem in statistical mechanics: a Monte Cario study, using the Metropolis
technique [Metropolis et al. 53], of 256 molecules of water under periodic boundary conditions. The
algorithm obtains the properties of a macroscopic liquid by averaging over a iarge number of random
microscopic configurations of a collection of individual molecules. There has recently been a flurry of

interest [Pangli et al. 78) in developing algorithms closely related to the original Metropolis algorithm'

and in investigating the advantages of Monte Cario methods compared to those of molecular
dynamics [Stillinger 75]. It will be possible to compare the multiprocessor results directly with
extensive related calculations on conventional processors. This problem has a non-trivial computa-
tional complexity, and provides an excellent vehicle for studying memory organization, communi-
cation, and synchronization of parallel processes.

There have been a number of liquids studied by. Monte Carlo simulation, but the most intense
recent efforts revolve around the simulation of liquid water [Pangli et al. 78] using either an empirical
[Stillinger and Rahman 74] or an a priori [Matsuoka et a/. 78] water dimer potential. Thus a number of
published studies will be availabie for comparison with our resuits.

The Parallel Decomposition Method. The Metropolis algorithm considers a collection of N
molecules and generates a sequence of appropriately weighted spatial configurations of these N
molecules by a Monte Carlo procedure. Macroscopic quantities are obtained by a simple averaging
over a sequence of approximately 108 configurations of the system. To generate each new
configuration, a single molecule is moved. At each of these configurations, the bottleneck in the
calculation involves the evaluation of the O(N) altered intermolecular interactions. The present
version of the parallel algorithm uses K processors to evaluate the new N -1 intermolecular
interactions with a moved molecuie. If linear speedup can be obtained, then the complexity of the
calculation at each configuration is reduced from O(N) to O(N/K). The algorithm is thus potentially
capable of speedup which is linear in the nurhber of processors available. However, to obtain linear
speedup requires that memory contention and interprocess bus contention are small, and that
synchronization and latency costs are negligible. Initial experiments show that this is far from true.

et e e et
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Figure 6-2: Speedup of the Metropolis Algorithm

Praliminary Resuits. A number of resuits using Cm* have been obtained for versions of this
parallel algorithm. The present results are limited, however, to a small number of particles and to an
interparticle potential appropriate onfy to atoms rather than molecules. Figure 6-2 displays the results
obtained with a system of 50 atoms'’ [Rossky et al. 78]. The maximum speedup—nearly 27-—was
observed with 46 processors. This relatively optimistic result, however, does not take into account the
fact that floating-point operations were performed in software rather than hardware. The major
communication and synchronization bottieneck in these calculations invoives the global addition of
individual interaction terms evaluated by different processors. It is expected that the aigorithm will

"On two separate occasions during the preliminary axperiments, we noted an anomaly in the curve, like the
one shown in the graph at 25 processors. We have not yet isolated the cause.
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improve as the number of particles increases relative to the number of processors. For this more
important case, most of the additions can be performed locally.

While reasonabie experience with parallel Monte Carlo algorithms running on Cm* is now
available, there has not been an effort to run, from beginning to end, a truly significant scientific
problem. This will be the next step in our investigation. In particular, the present limited programs will
be extended from using a spherical potential to using the general non-spherical intermolecuiar
potential, and from treating only a simple cfuster of particles to using the usual periodic boundary
conditions necessary to represent an infinite system. Caiculations of the structure of liquid water, as
described above, will then be investigated.

6.2.2. Molecular Orbital Calculations

Molecular orbital calculations constitute another "real-life" application whose solution has wide-
ranging consequences. In addition, the techniques used to soive these problems have sufficient
diversity that they provide a thorough test of the many aspects of Cm*. These calculations are of
great interest to a large section of the scientific community and consume a major fraction of academic
computing resources. The MQ algorithm in its seriai form has been extensively developed by
generations of quantum physicists and chemists. [t includes many matrix manipulations
(diagonalization, inversion, etc.), an iterative self-cansistent procedure, extensive integral evalu-
ations, and large data-handling problems. The bottieneck in MO calculations is the evaluation and
manipulation of the order of N* integrals. These integrals fall into a very large number of different
types, and the degree of branching in the related code is such that only a MIMD architecture like Cm*
can provide maximum speedup.

There are two places in the MO algorithm where it is necessary to perform O(N‘) operations:
initially, a set of two-electron integrais must be evaluated, and later O(N?) operations are required to
form the Fock matrix from the two-electron integrals at each step of the iteration. The evaluation of
the O(N‘) two-electron integrals at the beginning of each caiculation can be easily formulated as a set
of digjoint processes.

Many of the other steps involved in the molecular orbital calculation are simple matrix
manipuiations. n particular, the O(N‘) steps involved in forming the Fock matrix are essentially a
square-matrix, column-matrix product and thus an inherently paralief task. individual iterations can
therefore be expected to enjoy few communication and synchronization costs. If the iterations were
to proceed in a lock-step synchronized fashion, the overheads here might limit speedup. Recent
results [Baudet 78, Raskin 78] suggest, however, that these costs can be reduced substantially by
performing the iterations in an asynchronous fashion. The molecuiar orbital calculation. indeed.
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provides a good tool for experimenting with synchronous versus asynchronous iterations. It appears
that speedup in molecular orbital calculations will not be substantially limited by serial processes and
synchronization averheads.

The second factor affecting speedup is the hit ratio, which is the ratio of local memory references
to total memory references. This factor is unique to the Cm* switching structure. The penaity paid for
memory references to another computer module or another cluster necessitate a high hit ratio for
effective performance. Since 70 - 80% of all memory refences are to code, this requires that the code
be duplicated in each computer module. Previous results [Swan 78] suggest that there is about 2 17%
degradation in the performance for a 90% hit ratia, and only a 2% degradation for a 99% hit ratio. We
indicate below that ane can expect a Cm* parallel impiementation of the molecular orbital algorithm
to achieve a high hit ratio.

Solution of the molecular orbital equations invoives many matrix manipulations. If one partitions an
N x N matriz into blocks according to the number of processors K. with each processor's memory
holding a block, then one can show that ordinary square matrix muitiplication involves N/KY 2 jocal
operations per global fetch, where an operation here is defined as a floating-point muitiplication. For
100 x 100 matrices on Cm*, this reduces to fourteen floating-point manipulations per global fetch,
when all 50 pracessors are in use. With local code, one might therefore expect a hit ratio in excess of
95% for these manipulations.

The formation of the Fock matrix each iteration involves N2/K floating-point operation for every
fetch of a global density-matrix element. For N = 100 with 50 processors, this reduces to 200
floating-point multiplications per global fetch. With local code and local two-electron integrais, one
thus expects a hit ratio of greater than 98% for this bottieneck step.

6.3. Hidden-Line Elimination on Cm*® Satish Gupta and Bob Sproull

Hidden-line elimination for three-dimensional computer images is another experiment in the study
of Cm* as a useful and viable computing structure. The following paragraph from [Newman and
Sproull 79] describes the task.

"One of the more challenging problems in computer graphics is the removal of hidden
parts from images of solid objects. In real life, the opaque materiai of these objects
obstructs the light rays from hidden parts and prevents us from seeing them. In the
computer generation of an image. no such automatic elimination takes place when objects
are projected on the screen coordinate system. Instead. all parts of every object. inciuding
many parts that shoyld be invisible, are displayed. |n order to remove these parts to create
a more realistic image, we must apply a hidden-line or hidden-surface aigorithm to the set
of objects.”
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We wanted to study parallel algorithms for this problem. We wanted to see if one should adapt and
use ditferent decompositions of the algorithms as the statistics of the image change.

6.3.1. Experiment Performed

The algorithm chosen for implementation was Warnock's hidden-line elimination algorithm. This
algorithm was chosen mainly because it seemed easy to impiement and also because we used a line-
drawing dispfay which is well suited to display the output of this algorithm. Newman and Sprouil
[Newman and Sproull 79] describe the algorithm.

"Warnock developed one of the first area algorithms, which selects windows by a
recursive procedure. The algorithm first tries to 'solve’ the hidden-surface probilem for a
window that covers the entire screen. if polygons overlap the window in x or y, a decision
procedure is invoked that tries to analyze the relationships between the polygons and
generate a display for the window. Simple cases, such as one polygon in the window or
none at all, are easily solved.

"If a window is too complicated for the decision procedure to display directly, the
algorithm divides the window into four smaller windows and recurs, processing each one
with the same algorithm. This technique gives rise to a tree of window subdivisions. If a
region of the image is very complex, the recursion will force analysis of smaller and smaller
windows. The recursion terminates either by eventually finding a window that can be
solved or by finding a window that is as small as a single pixel on the screen. In this case,
the intensity of the pixel is chosen to represent one of the polygons visible in the pixel.”

The most obvious parallel implementation is used. A global stack of unprocessed windows is
maintained. Processors are constantly looking at the global stack, and when they find it non-empty,
they pop one of the windows and apply the decision procedure on that window. At the termination of
the procedure one of two things happens. Either the window was too complicated, in which case the
processor pushes four more sub-windows on the window stack. Alternatively the window was simple,
in which case the processor has soived the probiem for that window which will result in displaying the
contents of the window on the display. Figure 6-3 gives an abstract description of the outer loop
executed by all the processors,

We use a Graphics Display Processor {[Rosen 73, Rosen 74] to display the images. The GDP is
made to emulate a Tektronix 4000 graphics display. Itis connected directly to one of the Cm’s in Cm*
by a 4800-baud Asynchronous Serial Line Interface. This Cm also serves as a master and controller
for the experiment.

The experiment is started by loading and starting up the master Cm. it queries the user about the
configuration of the experiment. The user has to specify the number of processors to be used, and
the clusters in which they reside. The master Cm will then load and initiate the computation on the
sejected Cm’s. The master Cm also maintains the global data structures such as the window stack,
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{ The fallowing defines a record type for square windows,
Left and Bottom specify the position of the left bottom
corner while Size gives the length of a side. }

Window = RECORD ( Left,Bottom,Size : INTEGER )

{ The following declares a stack of windows and initializes it
with one window which is the whole screen. }

WindowStack : GLOBAL STACK OF Window
INITIALLY [(0,0,1024)]

{ This 1s the outer loop executed by all the processors,
Warnock is the decision procedure. }

WHILE True DO BEGIN
IF NotEmpty(WindowStack) THEN
Warnock(Pop(WindowStack))
END

Figure 6-3: Quter Loop of Warnock Algorithm

the output queue and other status information.

The test data is a simple scene consisting of six squares which are stacked so that all gxcept the
one on the top are partly obscured. The execution time to solve this problem is 53.5 secs. using one
processor, 27 secs. using two, and 6.2 secs. using ten processors. Initially, we observe an aimost
linear speedup as the number of processors is increased. The speedup becomes sublinear as the
number of processors is increased further. The number of processors that can be used while still
providing almost linear speedup depends upon the number of polygons in the scene and the
complexity invoived. But for reasonable problem sizes we expect 50 processors to provide a linear i
speedup in the time of computation.

6.3.2. Planned Work

Running standaione applications on Cm* is hard because of two major problems. First of all, most |
of the programming eftort goes into providing facilities that are conventionally provided by an
operating system. Secondly, it is extremely hard to get programs loaded into Cm*, because the
existing paths from a good programming efivironment are extremely slow and tedious. So it was
decided t0 postpone the rest of the experimentation till one of the aperating systems is usable. My ;
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current plan is to investigate adaptations of scan-line algorithms on Cm*. Scan-line algorithms soive
the hidden-surface problem by processing the image one scan line at a time. These algorithms could
be decomposed by assigning different sets of scan lines to different processors.
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7. StarR0S

STAROS {Jones et al. 77, Jones et al. 78, Jones ef al. 79] is an experimental operating system,; it is
to be a tool to perform experiments designed to study distributed computation in general, and the
exploitation of Cm* in particular. In addition, STARQS itself is to be the subject of experiments
exploring message-based and object-oriented operating systems. The experiments of interest are
wide-ranging:

Algorithms What algorithms are suitable for Cm* and similar multiprocessors? How can the
availability of many processors be exploited for a performance advantage?

Refiability Can systems designed for muitiprocessors exhibit exceptional reliability? How
can the operating system aid in supporting reliable systems?

Resources What techniques are appropriate for managing distributed resources?

Micro-architecture What can be done at the lowest levels of machine architecture to enhance the
performance and reliability of system and user programs, and also aid in thei:
implementation?

User support What can be done to aid the user in programming a multiprocessor? How can the
system aid the task of programming, managing and interacting with dozens of
cooperating processes?

System Structures What are the performance cost and programming advantages of message-based
and object-oriented systems? .

The first requirement of an experimental system is that it be adaptabie to the changing
requirements of the experiments. To this end, the system should be constructed so that modifications
are straightforward. The parts of the tystem that provide a particular function must be readily
identifiable so that the function or the means of providing the function can be altered. Also, the
system should be extensible so that new functions can b2 invented and added to the system.

An experimental tool must not occlude the subject of the experiments. An experimental operating
system for Cm* must allow the experimenter access to ail resources of the multiprocessor. The
operating system must not bias experiments by introducing unexpected behavior. Information should
not be hidden from the experimenter, but rather the system shoulid aid decision making. The person
who designs and builds an experiment should be able to view STAROS as a tool to be exploited, and

not as an obstacte to be overcome.
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7.1. Features of the StarOS System R. J. Chansler, Jr.

Four features of STAROS characterize the general nature of the system. The designers believe that
a system of this type is particularly suited to the kinds of experiments to be performed.

& STARQOS is an object-oriented system. Each object in the system has a specific type,
and the behavior of the object is determined by the functions defined as part of the type.
Objects may contain protected pointers to other objects so that objects may be
composed into arbitrary structures. The result of a reference to an object does not
depend on the physical location of the target, on when or by whom the target was defined
or created, or on whether the reference is made by a system or user program.

e STAROS provides a powerful and efficient means for communicating messages among
processes. System and user processes share the exact same message facilities.
Messages can either be data or pointers to objects.

e There are two classes of functions, each with a specific manner of invocation regardless
of the manner of implementation and of what program requests the function. One class
of functions comprises the STAROS NUCLEUS, the basic support supplied by STAROS that
is necessary for the execution of any program. Each NUCLEUS function is synchronous:
the invoking program must wait until the function has been completed before performing
any other action. Each synchronous function is invoked by a particular memory
reference. In this regard, functions of the NUCLEUS are not unlike processor instructions.

. The other class of functions is the set of asynchronous functions: they may be
performed concurrently with the continued execution of the invoking program, afthough a
process may choose to wait for the completion of the function. The asynchronous
functions are invoked by the transmission of a message. All functions other than the
NucLeus functions are asynchronous functions, whether they are part of the STaAR0OS
system itself or whether they are provided by user programs.

o Tasik forces, collections of processes that execute cooperatively in order to accomplish
a particular task, are created and extended through functions provided by STAROS.
STAROS itself is a task force. All functions necessary to create new task forces, or to
extend existing ones, are available both to STAROS and to users.

All information in the STAROS system, including programs and data, is contained in objects. Each
object is of a particuiar type, and for each type of obiact, there is a particular set of functions that
define how the information represented within the object may be altered or retrieved. For example,
the only functions that may be performed on a stack object are Push and Pop. Similarly, it is never
possibie to Push or Pop a mailbox object. it is only possible to Send and Receive messages.

Several types of objects are implemented by the STAROS NucCLeEys. These representation
types are the basis for building all other structures. Each representation object is impiemented as a
contiguous segment of memory wholly contained in some computer module. The NUCLEUS
implements all of the type-specific functions. which are synchronous, for these objects. Both users
and STarRCOS can dynamically define new abstract types. The physical realization of each abstract
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object is some single, specific representation object. Type-specific functions of an abstract type
implemented by user or STAROS programs are asynchronous.

An Object Name is divided into 3 fields:
C - tells what cluster the object is in
D - tells which subdirectory contains the descriptor

N - gives the index of the descriptor within the directory Subdirectory

in cluster C
<C.D.N> Obiject
<C.,D,N>

Capability for
object<C,D,N> N
Descriptor for D
subdirectory
Root Directory Descnptor for >
for Cluster C <C,D.N>

Figure 7-1: How a Capability Points to an Object

7.1.1. Capability Addressing and Uniform Function Invocation

Each object has a unique name which allows the descriptor for the object to be located. The
descriptor is a record in some directory-type object that specifies the representation type, size,
abstract type (if any) and physical location of the described object. Each and every reference to an
object must specify a capability for that object. A capability is a structure that contains the name of
an object and specifies (as a bit vector) a list of rights for the named abject. Each right represents
the authority to invoke a type-specific function on the object. Figure 7-1 illustrates that a capability
contains the information required to locate a unique descriptor, which in turn contains the physical
location of the object named by the capability.

A capability is the only name or address that an object has, and capabilities are the basis of all
authority control within STAROS. Consequently, capabilities are protected in that specific functions
are provided to manipulate capabilities. and capabilities may never be manipuiated as strings of bits.
Capabilities are not objects themselves, but are contained within objects just as an integer may be
contained within an object. The size of an object is fixed at its creation: consequently, each object
has a fixed number of locations, or slots. where capabilities may be stored. The siots are collectively

~
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called the capability portion of the object; the remainder of the object is called the data portion.

One advantage of capability or object addressing is the uniformity and integrity it provides. Quite
naturally, whenever a name is required in STARQS, a capability is used. All operating systems and
most programs require such object names, and hence must manufacture them for specific purposes if
the operating system does not provide them. For example, in MEDUSA the sender of a message is
identified within the message. The farm of the name reflects the physical location of a data structure.
However, if either the data structure moves or the physical location is reused. the name may be that of
an entirely different and unrelated process when the receiver eventually sees it. If he replies to this
sender, undesirabie behavior may resuit. Fundamentally what is required is a naming facility that is
uniform and that has integrity; capability addressing provides such a facility for STARCS.

A process is a type of object that may be assigned to a processor for execution. The process has
access to the objects named by capabilities stored in the process object, and to objects named by
capabilities stored in any object to which the process has access.

A process which invokes a NUCLEUS function may pass a capability as a parameter. This is
accomplished not by passing the bit pattern which is contained in the capability, but rather by passing
a one- or two-level capability index. A one-level capability index designates a capability in the
process object; and a two-level capability index specifies a capability in an object which is named by a
capability in the process object (see Figure 7-2). The range of capability indexes defines the
capability address space of the process. Capabilities which are more than two levels removed
from the process object may not passed as parameters; however, a process which has the proper
rights can copy the capability into the process object. In this manner, objects in an arbitrary graph
structure can be accessed.

The sixteen-bit addresses generated by program instructions define the logical address space.
The programmer views the logical address space of his process as being divided into 16 windows.
The leading four bits of the sixteen-bit processor-generated address determine which window an
address falls into. The remaining 12 bits specify the offset within the window:; thus each window is 4K
bytes in iength. The first fifteen windows may be mapped to objects by associating a capability tor an
object with a specific window. Addresses in the last window (window 15) are reserved for
communicating with the STAROS NUCLEUS.

The Slocal containg a register for each window. When the process is running, STAROS sets a bit in
each register to indicate whether a reference within the corresponding window is to be directed to the
module’s local memory (a local reference) or is to be placed on the Map Bus and communicated to
the Kmap (a mapped reference). If the register indicates that the window is local, then the register
provides a relocation constant that is used to relocate addresses within the local memory of the
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Process
Object Object in :
r_ Window 2 ]

Caist : ° Object 2.3
Portion -:-_—f__,r_-_\ i

-

— —

Figure 7-2: Two-Level Capability Indexing
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computer module. in this latter case, the window appears as a conventional segment of memory, and a

. “read” and "write" are exactly their usual hardware equivalents. Only the NUCLEUS may access the
( Slocal registers, and a window is set to local only if it is mapped to a suitable object physically located ;
) in the same computer module (more detail is available in Section 7.2.1). ,

Addresses in window 15 are used to request specific functions from STAROS. In order to invoke a
STaRrOS function, an LSI-11 makes a write reference to a location in window 15.  All processor-
generated addresses are examined by the Slocal, and in the case of an address in window 18§, the
Slocal does not make a memory reference, but instead notifies the Kmap. The first four bits of the
window-15 address are always 1; the Kmap treats the next eight bits as an operation code. The data
which the processor has attempted to write to window 15 is used as a parameter. If more than 16 bits
of parametersare required for an function, or if the function returns resuit values, then the data is

treated instead as the address of a parameter block, .

For example, the Load Window tunction associates an object with a particular window. To invoke
it, the process stores the index of a capability for the object at an address in window 15 assigned for
that purpose. Any function of the NUCLEUS can be invoked in this fashion.

e ——— e TR LA en o e, - jJ
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7.1.2. Structure of the NucLeus

There are two parts to the STAROS NucLeus: the microcode of the Kmaps, and a coliection of
software processes, one for each processor. The Kmap microcode is about 2200 80-bit records; the
code of a nucleus process is about 6K bytes. Together the two parts implement the functions for
representation types, and control the assignment of processes to processors. The NUCLEUS
processes also execute the device interrupt routines for the corresponding processor. NUCLEUS
processes are exactly like other processes belonging to either STAROS or a user, except that they are
restricted to being assigned only to their corresponding processors, and their assignment can be an
immediate effect of a device interrupt, or a processor trap due either to a user request to perform a
synchronous function or to a processor-detected error condition.

All NucLeus functions are invoked in a uniform manner; consequently there is no basis for
distinguishing between functions implemented in microcode and functions implemented by the
NuUCLEUS processes. The Kmap has the right of first refusal for all NucLeus functions. If the function
is implemented entirely in microcode, then the Kmap performs the function while the processor
remains suspended. Otherwise, the Kmap causes the NUCLEUS process to be assigned to the
processor. The NUCLEUS process completes the function before reassigning the previously executing
process to the processor.

STAROS exploits the fact that the Slocal has two sets of registers for mapping the address space of
the processor. Whether the processor executes an instruction on behalf of the kernei space or the
user space depends on the setting of a status flag in the Extended Processor Status Word. In this
way the address spaces of two processes can be associated with the processor, one with each space.
STAROS always associates the NUCLEUS process with the kernel space. The NucLEuS can choose
any other process for the user space by specifying a capability for the process and performing a Load
State function.

Some representation types and their functions implemented by the NUCLEUS are described below:

Basic Basic objects are composed of an array of words and an array of capabilities. The
functions on the array of words include Read., Write, and indivisible Increment
and Decrement functions. Functions on the capabilities include Copy,
Transfer, and Restrict Rights. A basic object is used whenever a conventional
segment of memory is needed for programs or data, and is the usual represen-
tation for an abstract object.

Deque A deque object is a double-ended queue of data words. The functions Examine,
Pop and Push affect one end or the other, depending on the parameter supplied.

Stack A stack is like a deque except that the functions are restricted to Pushing and
Popping data from one end. Stacks are used primarily to support the hardware
defined trap and interrupt sequences.
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Data/CapaMailbox A mailbox object is a queue for messages. A message may be either a single word
of data or a single capability; DataMailbox and CapaMailbox are distinct object
types. The functions of mailbox objects, Send and Receilve. are described in
detail in Section 7.2.3.

Process Each process object has two parts. The Address Space is a list of capabilities
that the process can reference by index. The State Vector is a collection of data
and capabifities STAROS uses for the management of the process. Functions are
available to Activate, Suspend, Block, and Load State a process.

Directory Each record in a directory object is a descriptor for some object. There are
functions to Read and Write descriptors. The descriptors for each directory in a
cluster are in the root directory for the cluster. The physical location of the root is
specified when the cluster is initialized.

7.1.3. Building Task Forces

A task force in STAROS is any cooperating collection ofprocesses, together with their supporting
data objects. A task force is typically composed of a set of modules, each defining some logical
facility. Each process in the task force is created by Invoking a particuiar function. For example.
except for the NUCLEUS which implements the special case of synchronous functions, STAROS itself is
specified as a collection of modules. The STAROS Task Force is the collection of processes which
cooperatively manage the resources of the Cm* machine.

It is possible for a user's task force to include processes created when a user process invokes a
function of a module of STAROS. If the user issues a command to Stop the task force he created.
processes created from STarOS modules may or may not be stopped, depending on their
reiationships with the remainders of the STAROS Task Force and the user’s task force.

STARQOS and Mepusa define use the notion of a “task force" differently. .In MEDUSA, a "task force”
has a restricted technical sense: those activities which share a particular descriptor list. The STAROS
analog of a MEDUSA task force is the collection of processes created from the same module object,
processes that are closely reiated in functionality and hence have reason to share information. A
STAROS task force may include processes instantiated from different modules, which have quite
different functionality. Sharing of information between two processes is determined only by
functional need, not by restriction in the memoary management that forces any two processes iiat
share one data object to share, in addition, all other data any one of them shares with other

processes.

The externally visible attributes of a module are the functions that may be invoked. as described
above. For each such function. there i3 a function descriptor that describes how to create a
process to perform the function, and an indication of whether a process already exists to perform the

—— s e
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function. To invoke a function, the various required parameters are placed in a basic object referred
to as the carrier. Invoke is a function of the type module; it is a synchronous function, and hence is
implemented by the NuCLEUsS. The arguments for Invoke are capabilities for the module and the
carrier, and the name of the function. (f the module indicates that a new process is to be created
when the function is Invoked, the NUCLEUS implicitly Invokes the process creation function of
STARCS. A capability for the carrier is then sent to the new process as a message. Alternatively, the
module may specify that a process already exists to perform the desired function, in which case a
capability for the carrier is sent directly to the process as a message. In either case, the difference is
functionally undetectable to the invoking program,

The several processes of a typical task force will be derived from the maodules that define the
problem solution. Whenever a new process is created, it is given a capability for the module specified
when the Invoke function was executed. Thus, many processes may share a module object. The
module object may contain the objects used to store intermediate results, or to store the objects used
by the several processes for communication with one another.

Modules are the basis for the implementation of abstract types. For each abstract type, there is a
module that defines the functions of objetts of that type. Such modules are called type managers.
The functions of a type manager are in one-to-one correspondence with the functions defined upon
the particular abstract type. In this way, the salution to a task may be represented as a sequence of
functions on abstract objects.

Communication and Synchronization with Messages. Since processes may have capabilities
for the same object, it is possibie for them to communicate and synchronize using special functions
available for the indivisible examination and modification of a shared object. However, since it is
usual that a task force consists of many processes which must cooperate, STAROS provides special
facilities that allow processes to exchange messages and to suspend execution pending the
occurrence of particular events. The message system provides mailbox objects—fixed-length buffers
for messages. Each message is either a single word of data or else a single capability. A particular
mailbox can bufter only one type of messages—either data messages or capability messages; which
type is determined when the mailbox is created. This permits the programmer to structure a task
force so that processes exchange information only along explicit and well-defined channels.

One process may have access to an effectively unlimited number of mailboxes, and each mailbox
may have muitiple senders and receivers simuitaneously holding access to it. Note that by using a
capability message, one process can send arbitrary amounts of information. as well as an arbitrarily
structured graph of objects. A received capability is sufficient to allow the receiver the ability to
access any object in an arbitrary graph structure of objects.




7.1 Features of the STAROS System 8 119

Two different functions are provided for receiving messages from mailboxes. The Conditional
Receive function returns the oldest message, if one is buffered in the mailbox. If the mailbox is
empty, the function simply returns. The term “conditional” is meant to imply that the receiving
process is interested in receiving a message if one is available, but will go on to perform other actions
if no message is available. The Registered Receive function also returns a message, if one is
buffered in the mailbox. However, it acts differently if the mailbox is empty: sufficient information is
stored in the maiibox to remember that the caller wishes to receive a message, when one eventually
arrives. Registered Receive then returns a code indicating that no message was received, but that
the request was registered.

The Send function will buffer the message in the mailbox if no receiver has registered interest in
receiving the next message sent to the mailbox. It a registered receiver does exist, the oldest
registered receiver is dequeued from the mailbox and the message is delivered directly to that
process, without being buffered in the mailbox.

Each process has a vector of events, each of which may be either set or cleared. The events are
organized into several event classes. The Block function requires as a parameter a. mask of thc
event classes. Unless some event in one of the indicated classes is set, then the process will suspend
execution until some such event is set. Suspension of execution is never a side-effect of some other
function: a process is suspended only if it executes a Block function.

There is a link between the message system and the event system. The mailbox function
Registered Receive applied to an empty mailbox returns an empty result code, but also records in
the mailbox that the process desires to receive a message when one becomes available. The process
can specify the number of an event to be set if a message is eventually delivered. Any number of
Registered Receive requests may be pending, each associated with a different event. If a process
discovers that no further work is possible until a message is received, it can perform a Block function
that waits upon a suitable set of-the event classes. In this manner, the message system provides a
general structure for synchronizing the processes of a task force.

Delayed delivery of a message to a registered receiver invoives delivery of a message to the
portal of the receiver. A portal is simply a user-designated location, i.e., a word in the address space
of the process, or a slot into which a capability message can be stored. Before performing a
Registered Receive an a mailbox, a process will establish a portal by specifying a mailbox, an event
name, and a portal name. Event and portal names are small integers between 0 and 255. When a
receiver is actualily registered in a mailbox, a capability for the receiver process is recorded along with
the portal number. Portal delivery, the operation of delivering the message. is currently performed
by a NucLeus process. That is, if the Send function dequeues a registered receiver to whom the
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message being sent is to be delivered, the Send function stores the message, the receiver name and
portal into the address space of the NUCLEUS process. then forces a trap to NUCLEUS software that is
to perform the portal delivery. Portal delivery simply involves copying the message from the NucLEus
space to the portal of the recipient process.

Event Vector

Address space of registered receiver

Figure 7-3: Portal Delivery of a Message to a Registered Receiver

To illustrate portal delivery better, consider a process which has associated a portal p with an event
e. Itthen pertorms a Registered Receive on an empty mailbox m. Figure 7-3 depicts what happens
when, eventually, a message is sent to m. It will not be buftered in the mailbox, but will be delivered
directly into the portal p and the associated event e will be set. The process may or may not have
Blocked on an event ciass that includes e. If it did, it may now resume processing.

The STAROS Task Force. STARQCS is a task force whose task is the management of the Cm*
machine. Aside from the NucLEusS, the STAROS Task Force is buiit from the same components as any
user task force. To request service from STAROS, a system or user process Invokes a function of the
particular module that provides the service. STAROS inciudes modules that create and destroy
objects, create new modules from files of program code, maintain a UNix-like file system, operate
communications interfaces, create new processes as a result of an Invoke request, initialize new task
forces from stored descriptions, and supervise the organization of the STAROS Task Force itseif.

The typical configuration of the STAROS task forces is such that each cluster is seif-sufficient. In
principie, a STAROS system couid run as an independent system in each cluster, aithough a particular
cluster might be limited by the lack of a particular physical resource—a disk, for example. In practice,
STARCS forms a unified system across several clusters. A process that provides some function in one
cluster may communicate with its counterpart in each other cluster. In this manner STAROS makes all
resources of the system available to every process. For example, in the typical STAROS configuration,
allocation_ of physical memary in a cluster is performed anly by A STARQOS pracess withun that ctuster.
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This configuration is not fundamental to the correct functioning of the STAROS system, but was
adopted because it facilitated experimenting with robust, fault-tolerant systems. Figure 7-4 illustrates
an example configuration within a single cluster.

Computer Computer Computer Computer
Moduile 1 Module 2 Module 3 Module N

for module ‘. ./ existing process

Ceemer’

Figure 7-4: Example STAROS Configuration within a Cluster

Within the STAROS Task Force there need not be a process present to serve every function. For
example, a process of the LOADER module may be created only when there is a request to build a new
module. On the other hand, a process that creates new objects must always be present because new
objects are required to make new processes. This is in contrast to MEDUSA where some process
("activity") must be present for each system module ("utility"). In both systems, several processes
may share the demand for a particular function.

STARQOS processes are not privileged; all authority is granted by specific capabilities. It STAROS is
to perform some service for a user process, the user must supply, as parameters, suitable capabilities
for the objects to be manipulated. This feature distinguishes STAROS from MEDUSA in that MEDUSA
grants all system processes the privilege of manipulating any object named in the descriptor lists of a
process requesting a system function.
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7.1.4. Object Management

The OBJECT MANAGER is a STAROS module that provides for the allocation of memory, and the
maintenance of the the object descriptors within the directory objects. OBJECT MANAGER functions
are performed asynchronously. When an OBJECT MANAGER function is invoked to create a new
object. it allocates storage for the object and returns a capability for the object to the process making
the request. All subsequent references to the object are made using this capability or a copy of it. If
the object is to be referenced frequently, this capability may be used by a process to associate the
object with some window of the process's address space.

in the course of system operation, it may happen that all capabilities for an object are deleted.
Such an object is called garbage. In this case there is no way at all to reference the object, yet the
object still would continue to consume physical memory resources. The GARBAGE COLLECTOR

cooperates with the NUCLEUS and the OBJECT MANAGER to discover garbage, destroy the objects, and
make availabie the memory resources. Effectively, the GARBAGE COLLECTOR searches all objects for
all capabilities, and compiles a list of all objects for which no capabilities exist. The GARBAGE
COLLECTOR records the state of its activity by setting the color field in the descriptor for each object.

Object management is, for the most part, a cluster-local activity. An OBJECT MANAGER process
ajlocates objects only within its own cluster; OBJECT MANAGERS in different clusters cooperate by
torwarding requests for object creation among themselves. Similarly, GARBAGE COLLECTOR
processes in the several clusters can cooperate to perform a systemwide search for garbage.
Whenever a capability for an object leaves the cluster in which the physical representation of the
object resides, the NUCLEUS sets the color of that object to red. A cluster-iocal search can be
performed to collect non-red garbagé objects. Red objects are immune from garbage collection until
a cooperative search is performed by GARBAGE COLLECTOR processes in each cluster.

7.2. StarOS Microcode Ed Gehringer

Major portions of the STAROS NuUCLEUS are implemented in Kmap microcode. References by the
LSI-11's to non-local memory and other aspects of interprocessor communication must necessarily
be performed by the Kmaps, because the only data paths from one LSI-11 to another go through one
or more Kmaps. All other functions of the STAROS NUCLEUS could in principle be performed either by
LSI-11 software or Kmap firmware. Where these functions are actually placed depends on certain
tradeotls.

o Firmware runs much faster than software. Precise comparisons are difficuit to make

because of the dissimilarity of the instruction sets of the LSI-11 and the Kmap. but
implementing a function in microcode will often speed it up by a factor of 10 to 20.
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o STAROS microcode is written in CMIC assembler code, which means that it is written at a
much lower level than the BLISS-11 code which runs on the LSI-11's. Thus coding and
debugging for the LSI-11's requires much less of the programmer’s time. MUMBLE, a
higher-levet language for writing microcode (Section 3.3) now exists, but STARQOS could
not take advantage of MUMBLE because it became operational only after substantial
STARQS microcode already existed. !

e The Cm's have much more memory—64-128K 16-bit words on each LSI-11 vs. 4K 80-bit
records of control store in each Kmap. Currently STAROS microcode uses a little more
than half of the control store. The designers decided not to exhaust the available control
store in order to permit expansion of the microcode for the purposes of system
performance measurement, additional NUCLEUS functions, and support for particular
experiments. ’

e In each cluster there are 10 LSI-11's, but only one Kmap. The Kmaps are sufficiently
powerful to perform mapping and synchronization functions without a performance
penalty, but as more of the operating system is written in microcode, the Kmaps get
busier, and contention for them may develop.

Subiject to these constraints, the builders of STAROS have chosen to implement in microcode those
functions which provide communication between computer modules or which are critical for system
performance. Examples will be described in the following sections.

( 7.2.1. Mapped References

When a Cm references memory, its Slocal is responsible for determining whether the reference is
to be mapped. The Slocal contains twbd sets of 16 mapping registers, one for each window in user and
kernel space. As shown in Figure 2-3 on page 11, each register contains a map bit, which
determines whether references to the corresponding window are to be mapped. When a Load
Window function is performed, the map bit is turned on so that the first reference to each object will
be mapped. When the first reference to a particular object is passed to the Kmap, it determines
whether subsequent references to the object will have to be mapped, and, if not, turns the map bit off.
Slocal limitations dictate that only a basic object in the local memory that is 4K bytes long can be
accessed with unmapped references.'? The map bit is turned back on the next time that the
corresponding window is loaded. The Load State operation has the effect of performing a Load
Window on each of the windows.

The other bit in each Slocal register is the read-aonly bit. If it is on, then all write references to the 4
window will be passed to the Kmap. For references which are not mapped, the Slocal performs

'2Tho first four bits of an address generated by a3 Cm determine a window number; the remamning 12 bits are
used as an offset. Every possible 12-bit offset is a jegal address within a 4K-byte dasic object. If the object 1s
smalier, the Kmap must be invoked to perform bounds checking.
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address translation itself, replacing the first four bits of the processor-generated address with the 6
bits from the Slocal register.

An unmapped reference takes slightly less than 2 microseconds, depending on the type of
physical memory. A mapped memory reference to any Cm within the same cluster takes the same 2
microseconds pius an additional 6.6 microseconds, when only a single process is running in the
cluster. . This is the fastest possible mapped reterence, because in this case there is no contention,

either for memory, for Kmap microcycles, or for the Kbus. With Kmap saturation but no memory
contention.'® a mapped memory reference took an additional 17.8 psec. With such Kmap saturation
the cost for a mapped reference is 8.6 + mx2, where m is the number of modules generating
references. With both Kmap saturation and memory contention,'* the cost is 50.1 usec. per memory
reference.

Besides the mapped and unmapped references initiated by Cm's, some memory references are
initiated by Kmagps in the course of performing operations; for example, reading a capability. Each
such memory reference takes about 4.3 usec.

7.2.2. Capabilities and Tokens

Because STAROS is a capability-based operating system, it must guarantee that a process can
manipulate only objects for which it possesses capabilities. This guarantee is enforced by
implementing all the support for capability management in microcode, thus assuring that no user can
tamper with capabilities in unauthorized ways.

The structure of a capability. Capabilities in STAROS are 32 bits long; that is, two 16-bit words,
which are known respectively as the rights word and the data word (see Figure 7-5). The rights
word contains a 3-bit capability type field and up to 13 bits which can be used to specify what rights
the hoider of the capability has to manipulate the capability and the object it names.

There are four types of capabilities. Representation capabilities are used to access represen-
tation-type objects. if the proper rights are present in a representation capability, a process with the
capability can access or change the state (i.e, the contents) of the named object. An abstract
capability names an object which has been assigned an ébstract type. An abstract capability
authorizes no access to the state of the object, but it may be used as a parameter to a function of the

‘3This was measured when ten Cm’s in a single cluster were referencing each other's memory in a nng

configuration; that is, Cm i directed all its memory references to the memory of Cm i + 1 (mod 10).

1‘ln this case, 3 Cm's were all referencing the memory of a tenth. The tenth Cm was not runming any code
iteelt.
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Rights Word Data Word
Type Capability Rights Object name (in non-data capabilities)
Field (bit vector) Data (in data capabilities)
<3 bits> « 13 bits > < 16 bits —>

Figure 7-5: The Structure of a Capability

type manager for the abstract type.

There are two types of capabilities that do not name unique objects. Data capabilities simply
encode sixteen arbitrary bits of information in the form of a capability. Token capabilities are
merely guaranteed to be created to be unique, that is different from one another. They are used to
identify their possessor as having some particular authority. For example, when presented to the
NUCLEUS, certain tokens authorize the invocation of special STAROS functions which are unavailable
to most processes. Both data and token capabilities may be freely created by any process. Their use
ig described in greater detail below.

The rights in a capability are represented by a bit vector: if a particular bit is on, it means that the
corresponding right is present; and if it is off, the corresponding right is absent. For example, there
are 9 rights associated with a representation capability for a Basic object. Destroy is required to
destroy the object; Copy is needed to make a copy of the capability; Restrict is required ‘o remove
rights from the capability. Read and Write grant the power to read and write the data portion of the
object; C-list Read and C-list Write apply to the capability portion of the object. C-list Restrict is
needed to remove rights from the capabilities in the capability portion of the Basic object. Finally, any
operation which modifies the representation of the object in any way requires Modify in addition to
the rights which authorize the specific operation. Each time an operation authorized by a particular
right is invoked on an object, the Kmap checks to make sure that the capability for that object
contains that right; otherwise the gperation is aborted.

The data word of a capability usually contains the unique 16-bit object name of the object it
points at. For some special types of capabilities it serves a different function: for example, in a data
capability the 18 bits of data are stored in the data word. The advantage of having it is that it allows
one word of data to be stored in the canability portion of an object; otherwise it would be necessary to
allocate an object one word long at which the capability could point.
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Tokens and Amplification. Token capabilities are identified by a special bit pattern in their 3-bit
capability type field. Tokens do not name objects. Their creation may be freely requested by any
process at any time. Typically, a token is used to confirm the authority of its hoider to perform a
certain Kmap operation which must be carefully controlled for purposes of protection or reliability.

Section 7.1.3 explained that an abstract object can oniy be operated on by a small set of functions,
collectively known as the type manager. Before accessing the representation of the abstract object,
the type manager must first amplify the capability for the object. Ampilification is performed by the
Kmap. The function Amplify converts an abstract capability into a representation capability for the
same object. The function Deamplify converts a representation capability into an abstract capability
for the same object. Both functions require the presentation of the proper type token for authority
confirmation.

Each time a process creates a new abstract type, it also creates a new type token, which is to
confer authority to manipuiate any object of the abstract type. The process then makes available
copies of this token to the functions which it wants to include in the type manager. This token is
called a type token because possession of the token identifies a function or process as part of the
type manager of the type. Functions which are not part of the type manager do not have a copy of the
type token, and thus cannot amplity capabilities_of that type.

Other uses of tokens. Authentication of type-manager procedures is an important use of tokens,
but there are other cases where a process needs to identify itseif. For example, the GARBAGE
COLLECTOR needs to be able to read the capability portion of all objects so that it can determine
which objects are garbage. For this purpose, it has the GARBAGE COLLECTOR Token, which it
presents to the Kmap in lieu of a capability for each object whose capability portion it wishes to read.
The Kmap itseif has a copy of this token, which it compares with the token presented by the GARBAGE
CoLLECTOR. |f the tokens match, the Kmap allows the GARBAGE COLLECTOR to read capability lists.
Since no other process has a copy of the garbage-collector token, no other process is able to subvert
protection by masquerading as the GARBAGE COLLECTOR.

Similarly, each time the OBJECT MANAGER creates a new object, it needs to be able to manufacture
a capability for that object. This means that it must be able to specify the bit-representation of the first
capability for the new object. The OBJECT MANAGER possesses the OBJECT MANAGER Taken which it
presents to the Kmap as authority to invoke the function which creates in some capability slot a new
capability from a specified bit string.
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Capability references. Ali references to the capability portion of an object are performed by the
Kmap. This is guaranteed in the following way: The descriptor of an object contains the base address
of the object. the iength of the data portion of the object, and the number of capabilities in the
capability portion of the object. Using these values, the Kmap can prevent mapped data references
from accessing the capability portion of an object. Recall that unmapped data references are aliowed
only for objects which contain no addressable capabilities at all. Thus, no data references manipulate
capabilities, and so capabilities are protected from being overwritten by software.

The capability aperations, implemented in microcode, are listed below. Measurements are
given in microseconds, and also as a multiple of the cost of a typical LSI-11 Load instruction (7.4
psec.) executed without any mapped references. All timings are for in-cluster references, and
assume no Kmap or memory contention in the destination Cm.

Create Capability {Representation type) May only be invoked by the OBJECT MANAGEH
Manufactures a capability for a newly created object of a representation
type.

Create Capability (Data type) May be invoked by any user to create a data capability.

Restrict Capability "Turns off” an arbitrary set of the 13 permission bits in the rights word.

This diminishes the power of the capability. This operation may also b
used to delete a capability by turning off ali 3 bits in its type fieid.

Amplify Capability Converts an abstract capability into a representation capability. Requires a
type token for the type of the abstract object. The most time-consuming
part of this operation is comparing the type token with the object type
which is stored in the object's descriptor, but is not cached.

Deamplify Capability This is the inverse of Amplify. It replaces a representation capability with
an abstract capability. A type token is required, in order to prevent
functions ather than the type manager from creating abstract capabilities
of a particular type.

Copy Capability Copies a capability from one place in the address space to another.

Transfer Capability This is a special form of Copy Capability which places a new copy of a
capability somewhere in the address space. then deletes the old one.

Read Capability Copies information from a capability into the data portion of some object,
so that a process may "read the bits", t0 determine. for exampie. the type
of a capability, or the rights associated with it. This does not subvert
protection, because there is stil no way for any process to store an
arbitrary bit pattern into a capability. Read Capability aiso furnishes
information such as the size of the object. which it gleans from the
descriptor. (Often part of the descnptor 1s cached in the Kmap's data RAM,
which will be described in Section 7.2.5. {f not, it must be fetched from
main memory.)

Load Window Associates an object named by a capability with one of the fifteen windows
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of the address space described in Section 7.1.1. An object named by a

capability which is in a window is directly addressable; that is, it may be

referred to by ordinary L3I-11 read and write references. The Kmap ‘

maintains a set of mapping tables. called the cache, in its data Ram; and )

the first reference to an object after it has been loaded into a window will

cause the window, and possibly also the descriptor for the object, to be !
]
4
1
1

cached. Tabie 7-1 also notes how long it takes to cache the window, or 10
cache both the window and descriptor.

I
Table 7-1: Timing of Capability Operations ;1

Operation LSi-11instr.  psec. # refs. to local 1
equivalents memory of Cm’s

!
Amplify Capability 18 133.4 13
Copy Capability 13 99.2 10

Create Capability !
Representation 16 120.9 12
Data 12 86.2 9
Oeamplify Capability 18 133.4 13
Load Window 9 69.9 8
next mem. ref. (caches window) +7 +520 +5
or, if descr. must be cached too + 13 +948 +9
Read Capability 11 78.1 8
if descriptor is not in cache 16 1209 12
Restrict Capability 9 67.2 7
Transfer Capability 18 130.7 13

Thus, we see that any capability operation or change of addressability can be performed in 23
average LSi-11 instructions or less. it should be noted that this mechanism provides both an
expanded address space and support for program modularization. at a relatively small cost. Note that
unmapped references have no overhead, and that the second and subsequent mapped references
require no indirection through a capability. For example, the distributed PDE application incurs no
performance penalty for having the benefit of capability addressing in lieu of the more restricted two-
level descriptor-based addressing offered by SMap and MEDUSA.

The cost of object addressing is likely to be significant only tar processes whase working set
exceeds the capacity of the window registers, resuiting in frequent invacations of Load Window.
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Such processes would expect to incur substantial overheads from any mechanism which attempts to
relieve the constraints of the LSI-11's small address space.

It is wort'.while to scrutinize an individual operation to assess how resources are expended in
performing the operation—in particular, to account for the seemingly large number of references to
the memory of Cm's during the operations listed in Table 7-1. First. we observe that execution time
for a STAROS micro-routine is divided approximately equally between microcycles and memory
references.

Now, we consider the Amplify Capability operation, which performs 13 memory references. it
takes two parameters: The first is a capability index (see Section 7.1.1) which tells which capabiiity to
amplify; and the second is a pointer to the type token which matches the type of the object named by
the capability. These two parameters are contained in a parameter block (see page 115). The first
memory reference by Amplify Capability reads the processor data, the address of the paramete:
block (memory reference no. 1). Then the capability index (2) is read from the parameter block.
AUsing this index, the capability itself (3, 4) is read. A special value called a plug is written into the
capability’s type field (5) to flag the fact that this capability is in the process of being modified, so that
no other Kmap operation attempts to modify it in the meantime.

The abstract type (6) of the object named by the capability is read from the descriptor for the abject
because abstract-type names are not kept in the cache. The second parameter (7) names a type
token, which is then read (8, 9). The amplified capability (10, 11) is written back, thus gverwriting the
plug that says that the capability is being operated on. Then a zero is written into the first word of the
parameter block as an indication that the operation completed successfully (12), and the Cm is
awakened (13).

Most other capability operations foilow a similar sequence of actions, though they are somewhat
cheaper because there is no need to read a token and—if the capability is not to be rewritten or
deleted—to write a plug. Since the microcade performs some of the functions of a conventional
executive or supervisor praogram, it is not surprising that a microcode function has corresponding
entry and exit overheads to read parameters az-d write a result code. This overhead is typically 4 or &
mapped memory references (about 35 - 45 psec. or 5- 6 locally executed LSI-11 Load instruction
equivalents). The corresponding overhead for a function implemented by the NUCLEUS process is
about 750 usec. or approximately 100 instructions.

s
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7.2.3. Message Transmission Facility Measurements Anita Jones

As mentioned earlier, STAROS and the applications that run on the base it provides are both
routinely composed of distributed processes that communicate via messages. Transfer of parameters
during function invocation is accomplished by message communication. Because STARCS is object
oriented, a STAROS process executes with an address space populated only with those objects that it
needs to perform its function. This is a desirable attribute, say, from the perspective of building
reliable software, but it requires more transmission of objects between address spaces than would be
necessary in a conventional system where related processes share large amounts of data. Such
transmission of objects to tailor address spaces is usually accompiished by sending capabiiities for
the objects as messages. For all these reasons the usability and the performance of the message
transmission facility is crucial to determining overall system behavior. [n this section we describe in
more detail the message communication facility of the system and initial results from measurement of
its performance.

Table 7-2 presents measurements of the three message functions Send, Conditional Receive
and Registered Receive, which were described in Section 7.1.3. Separate entries have been made
for cases in which the functions perform significantly different work. Basically, the cost differences
between capability and data message functions are due to the fact that each time a capability is read
or written, two memory references are required; data messages require only a single reference.

Table 7-2: Timing of Message Primitives

INST = LSI-11 instruction equivalents (1 = 7.4 usec)
wSEC = Microseconds
REFS = Number of memory references

Data Capability
Messages Messages
INST uSEC REFS INST pwSEC REFS
Conditional Receive
message is returned 16 118 11 24 180 15
no message available 15 113 10 24 181 16
Send
message is buffered 15 110 10 20 151 14
registered receiver found 27 197 19 33 245 23
Registered Receive
message returned 21 157 12 25 186 15
record receiver in mailbox 22 166 16 32 235 22

o i e
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The most important aspect of the measurement is that the cost of the functions is some modest
multiple of the cost of the fastest possible Load instruction on Cm*®. Typically, the cost of performing
such a function is measured in hundreds of Load operations, not because the message transmission
function is complex, but because in most systems the cost is driven up an order of magnitude by the
cost of entry and exit to the nucleus or kernel of the operating system. For a message-based system
to perform adequately, message transmission must be inexpensive.

All of these measurements include the cost of reading the parameters required to perform the
functions. Each function requires the specification of a mailbox and some value (16 bits) to indicate
where to fetch a message from or how to effect delivery. Registered Receive has three parameters:
the mailbox name, the address of the portal site in case a message can be delivered there
immediately, and a small portal number that will be used if the receiver is registered. (The latter is
sufficient to determine both the portal site and the event associated with the portal when porta.
delivery actually occurs.)

Measurements also include writing one word of status back to the process to communicate th:
action taken during execution of the function. These entry and exit actions account for between 12
and 30 per cent of measured function execution time.

Measurements of Portal Delivery are not included here. We chose not to include it as part of the
initially microcoded portion of the NUCLEUS. After gaining some experience with the message system,
we may choose to convert the software implementation of portal delivery to microcode. Future
measurements will include frequency of usage of the message functions, cost of Portal Delivery,
and a survey of just what sorts of messages are being sent. We would like to determine that relative
usage of data to capability messages, for example.

7.2.4. Additional Facilities Provided by the Kmap

Synchronization support. It is the Kmap that provides synchronization for Cm* systems. In
particular, if an object is mapped, the Kmap in the cluster in which the object's physical
representation exists will assist in performing operations on that object. A cached descriptor contains
a lock. The Kmap uses that lock to order the actions performed by simultaneously executing
contexts. The Kmap routines utilize these locks to avoid undesired interleaving; they permit a Kmap
can make multiple references to an object in an indivisibie way. For exampie the several words of a
descriptor or a capability are written indivisibly.

The directory entry for each object (Section 7.1.4) contains a lock, which is used by the STAROS
microcode any time a function needs exclusive access to an object. In the optimal case, where the
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descriptor to be locked is cached, and there is no contention for the Kmap. 25 microcycles, or 3.9
usec., is required to locate and lock a descriptor. The Kmap "remembers” the location of the
descriptor so that it can unlock it after it is finished with it; untocking takes only 2 microcycles. No
function requires that more than one lock be set simultaneously, nor is the processor requesting the
function permitted to proceed while the lock is held.

One of the many uses of locks is support for the indivisible Increment and Decrement operations
used in process synchronization. These operations take two parameters, a capability for the object
containing the word to be decremented, and the offset of the word within the object. The Increment
operation adds one to a word of memory, assuring that only one process at a time can be performing
an Increment or a Decrement. The Decrement operation similarly subtracts one from a word of
memory, uniess the word was already zero. In any case, the old value is returned to the requesting
process, which may decide to block if the value was zero. The Increment operation takes 89.9 usec.
and the Decrement operation takes 101.2 usec., not including the Cm time used to set up the
parameter block.

Operations on additional representation types. Tabie 7-3 gives sample timings for function of
other representation types: stacks, deques, and directories.

Table 7-3: Timing of Operations on Representation Objects

Object type/ LSi-1tinstr.  pusec. # refs. to local
operation equivalents memory of Cm’s
Stack

Push 4 32.6 4

Pop 5 39.8 5
Deque

Push onto front 6 46.4 6

Push onto rear 6 47.1 6

Pop from front s 39.3 §

Pop from rear 5 40.1 5
Directory

Read 2 15.5 2

Write 3 2.1 3

et
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Garbage-collection support . The Kmap is responsible for maintaining the special data structures
used by garbage collection. For example, each time a capability for an object i1s created or copied
while the GARBAGE COLLECTOR is running, the object is placed in a special queue, so that the
GARBAGE COLLECTOR will not mistake it for garbage. This requires an additional 35.7 usec. Whenever
a capability is copied into another cluster, the object it names is marked "red”, which takes 20.1
usec. Further, as explained in the discussion of tokens. the microcode contains functions to allow
the GARBAGE COLLECTOR t0 read capabilities without the need for individual abject capabilities.

Miscellaneous operations. The microcode also contains a special routine for bypassing the
capability addressing structure and writing to absolute memory addresses anywhere in the system.
This code is used for initialization and reconfiguration, and may not be invoked except by a process
presenting a special token. The Load State operation, mentioned in Section 7.1.2, is also
implemented in microcode. It ensures that all the map bits in the Slocal registers are on, and
invalidates all of the cached capabilities in the windows. This is necessary to prevent the new process
from gaining access to any objects which befonged to the old one. This operation does not require a
special token, but it is not allowed to be invoked from user space.

7.2.5. Implementation Considerations Steve Vegdahl

STAROS use of the Kmap Data RaM. The Kmap data RAM contains 1024 eighty-bit records of
bipolar memory which can be accessed in less than two microcycles without interrupting the Kmap.
Each record is divided into five 16-bit words. Half of the data RAM is used for caching descriptors, so
that frequently accessed objects can be referenced without reading the descriptor from main
memory. The savings are substantial: when the descriptor is present in the cache, it can be located in
about 19 microcycies (depending on how many cache locations have to be searched) and no main-
memory references, but it it is necessary to read it in from main memory, typically about 187
microcycles and 4 memory references will he needed. This represents a saving of about 46.8 usec.
per object reference.

Twenty percent of the data Ram holds information about capabilities which have been loaded into
windows. This information includes the object name of the capability in the window, along with read,
modify, and write rights. Each window entry contains a link to the cached descriptor it references so
that no cache-searching is required when objects in windows are referenced. The data RAM aiso
contains other misceilaneous infarmation such as the name of each process currently loaded onto a
computer module in the cluster and the kernel Kmap registers,
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Register Numbers
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Figure 7-6: The Data RAM as Used by STAROS

Deadlock and starvation avoidance. There are a number of deadlock and starvation issues which
must be addressed by the microcode (see Section 4.4). The major possibilities arise from interactions
among instances of one or more of the following resource allocations:

1. A computer module acquiring a Kmap context.
2. A context locking a descriptor.
3. A context acquiring an Slocal for the purpose of making a memory reference.

4. A context acquiring a second context in foreign cluster for the purpose of having some
wark done in that cluster.

In each of these scenarios, either a processor or a context has the potential for starvation. In
addition, there may aiso be deadlock problems when more than one processor or context is involved.
The following set of microcode conventions is used in order to prevent starvation and deadlock:

e Currently, computer modules busy-wait on Kmap contexts. making sure that context 7 is
never used to wait for a cross-cluster reference to complete. Thus, it can never happen
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that all eight contexts in one Kmap are waiting for the completion of cross-cluster
references from a second Kmap, at the same time that all eight contexts in the second
Kmap are awaiting the completion of cross-cluster references from the first Kmap. This
solves the deadlock probiem, but not the starvation problem. Eventually, the starvation
probiem will be solved by priority ordering of requests. For now. we count on the fact that
all computer modules run with time-outs disabled.

e Slocal allocation is always done at a {ower level than descriptor lacking. In other words a
context will never allocate an Slocal, and then try to lock a descriptor without having first
released the Slocal.

e Interciuster context allocation is always done at a higher level than descriptor locking.
This means that a descriptor may only be locked by a context in the cluster where the
descriptor resides, and that a context may not iock a descriptor and then wait on a cross-
cluster event.

e A context never locks more than one descriptor or allocates more than one Slocal or
intercluster context at any time.

e The hardware guarantees that competition for contexts among local computer modules
and intercluster requests will be starvation free.

Microcode design. The philosophy behind the design of the STAROS microcode was to write the
code in a modular way, making heavy use of procedures (and macros. to the extent that the
microassembler allowed) to manipulate data structures, rather than spreading the information
throughout the source code. In addition, we attempted to make the data structures in the data RAM
simple in order to minimize the interaction among modules which use closely related data structures.
(For example, in the original version of the STAROS microcode [Jones et al. 77] there were eight types
of links in the data RaM. There is only one type of link in the current version.) Intercluster
communication is also done through a small number of intercluster primitives. This was motivated
primarily by a desire to make the code easier to maintain and debug; bottlenecks could be optimized
out once an operational version of the microcode had been completad.

fwo aspects of this strategy are significant. First, the resulting code is conservative of space in the
instruction store of the Kmap, using only 2200 of the 4096 available records {(§4%). This allows the
option of adding functions to the NUCLEUS, moving functions from the NUCLEUS processes to the
microcode, introducing code for performance measurement, or adding special microcode to support
individual experiments. Second, the resulting speed of the micracode is not optimal. However, since
the system became operational, careful performance measurements have been possible. With
specific knowledge of the inefficiencies that are important n practice, effort could be directed at
improving performance while retaining the advantages of modularity.

Four specific optimizations have been made. In each case, the optimization increased the numbet
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of instructions, and thus wouid have been impossibie had the instruction store been exhausted.

e Message operations. The first version of the message operations called to the pointer
routines which did pointer manipulation for deques and stacks. The pointer routines
performed the proper function, but did so inefficiently for the purpose of the message
operations. Far example, each pointer routine read the pointers from main memory even
if a previously called routine had just read them. Two additional routines were written
which manipulated the pointers in an efficient way for the message operations. Resuiting
improvement was roughly 15 to 20 per cent.

e Cross-cluster memory references. The initial version of the microcode optimized only
intracluster memory references. Intercluster references originally cost 37 usec. One
reason is that the intercluster-reference code invoked the singie general-purpose routine
which packed and sent all linc messages. That generality was too expensive. In order to
cptimize the simple cross-cluster memory reference, a specially tailored linc-message
sequence had to be rewritten. At this writing, the intercluster reference costs 30 usec. A
highly optimized intercluster reference has been written but not debugged. Its estimated
cost is 23 psec.; that is, it will execute at essentially the same speed as the cross-cluster
references in the SMAP microcode.

e Slocal arbitration. There must be provision in the microcode for arbitration among
contexts requiring access to the same Slocal (same computer module) for a memory
reference. The initial version of the arbitration used the same starvation-free spin-lock
routines that were used to arbitrate descriptor-lock contention. Experiments showed that
this hampered performance greatly when contention was high. Consequently, a new
arbitration scheme was impiemented; it is discussed in Section 10.1.3.

All the above optimizations have been made in a modest amount of time. Because the microcode
was originally written in a modular form, replacement of code sequences has been simplified. Such
optimizations can be debugged in the context of an otherwise debugged system. There is one more
benefit to be noted. We are looking forward to performing a wide variety of experiments. Because the
microcode is so modular, usually only a single routine is responsible for performing some action or
detecting a particular state. Hence, performance probes are expected to be relatively simple to
install.

7.3. Future Work R. J. Chansler, Jr.

Future work for the STAROS project will be directed along two fronts. Additional general purpose
user utilities need to be constructed to make STAROS a more comfortable environment for
programmers. This work will include the development of a flexible and systemwide 1/0 system, a
generalized loader for creating the initial processes and objects of a task force, an interface to the
local ETHERNET, and a STAROS-specific version of the Six 12 debugger that understands how muitiple
processes are created from a module.
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STAROS is an experimental operating system. It is anticipated that this aspect of the system wilf be
exploited by members of the STAROS group in exploring their own research interests, and by other
members of the community investigating application systems for muitiprocessors. Some of the
experiments that are planned by members of the STAROS group include the following:

o Collection of statistics concerning the use of objects and capabilities will provide useful
information for the design and optimization of object-oriented systems. This information

will be of particular value for comparison with similar data from another object-oriented
system, C.mmp/HYDRA [Almes 80].

e Studies of the design of the Kmap micracode will serve two purposes. Using the data
presented above and operation frequency measurements, it will be possible to learn how
to better optimize the performance of the Kmap as an integral part of the STAROS system.
Second, these investigations will useful information for the designers of future micro-
coded processors.

e An important motive in the deveiopment of muitiprocessors is the potential for improved
reliability. Work in progress is directed towards learning how to improve the refiability of
the STAROS system itself, and how to design and build user tasks forces that exploit the
features of a multiprocessor system for enhanced reliability.

e Many tasks that seem suitable for mulitiprocessor solution involve the transfer of large
. amounts of data from secondary stores. Research is directed at discovering methods for
the efficient distribution of data, and methods for the convenient specuf cation of how
( data is to be distributed to the processes of a task force.

e In order reduce the difficulty of specifying the configuration of task forces, the Task
specification language is being developed ( [Jones and Schwans 79]). Part of that work
will include measurements of how well automatic initial placement and assignment
heuristics accomplish their task.

o STAROS itself provides an example of a compiex distributed system. Studies are planned
which expiore the dynamics of such systems, particuiarly with regard to the management
of system resources.

Part of the success of STAROS depends upon whether the system provides an attractive
environment for people to0 explore multiprocessor solutions to a variety of tasks. Consequently, it is
the intention of the STAROS group to aid and encourage other investigators in using the
Cm*/STARQOS facilities. Preliminary studies for several tasks have been undertaken.
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8. Mebpusa Pradeep Sindhu

Mebusa [Ousterhout et al. 80] is a multi-user operating system developed for Cm*®. The project is
an attempt to understand the effect of the distributed Cm* hardware on operating system structure,
and to build a system that capitalizes on and reflects the underlying hardware. Mepusa is the second
operating system written for Cm*. The first system, STARQOS, has been described in Chapter 7 of this
report. The two operating systems have been motivated by different concerns and have approached
their designs from aimost opposite directions. The design of MEDUSA was driven by the desire to
exploit the modularity and robustness of the Cm* hardware, both for the purpose of providing these
attributes within the operating system as well for making them available to user programs. STAROS,
on the other hand, took a top-down approach in which facilities provided to users were much more
important in determining the design of the operating system than features of the underlying hardware.

The goal of the MEDUSA project has been to produce an operating system with three specific
attributes: modularity, robustness and performance. Although these attributes are general enough t¢
be goals for most systems, what makes them interesting in the context of MEDUSA is the way in which
they interact with the hardware of Cm* to influence the structure of the operating system.

Instead of starting out with an a priori notion of the system structure required to achieve the above
goals, we allowed the underlying architecture to determine the structure. Two aspects of the Cm*
hardware have been especially imporiant to the design of Mepusa. First, the components of Cm* are
physically distributed such that the cost of accessing different portions of the system from a given
paint is not uniform. Second, the computing elements are connected together by powerful
communication controllers that can be used to implement a wide variety of communication and
addressing mechanisms. This combination of distribution and sharing present in the hardware gives
rise to corresponding issues of partitioning and communication in the structure of MEDUSA: how
shouid the operating system be partitioned to enhance its modularity and to allow its components to
make efficient use of the distributed hardware? How should the components communicate so as to
function in a robust way as a singfe logical entity? An examination of these issues led to an operating
system structure that has the following properties:

e Functions of the operating system are partitioned among disjoint utilities that are

distributed around the hardware; each utility implements some abstraction for the rest of
the system.

o Utilities are orgamized as task forces. which are sets of closely cooperating parailel
activities; user programs are aiso expected to be organmized in this way.

o Utilities use messages to communicate with each other and with user programs.
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It is interesting that the approach followed in the design of MEDUSA has led to an operating system
structure that resembles the structure of the hardware quite closely. Task forces in the operating
system are analogous to clusters of Cm's in the hardware, and activities in a task force are analogous
to processors in a cluster. However, task forces are not constrained to map to clusters in any way—a
single task force may have its activities spread around on several clusters. The parallel between the
hardware and operating system also extends to the internal structure of the Kmaps and utilities. Each
utility activity is internally muitiplexed in much the same way as the hardware multiplexing of contexts
in the Kmap.

The implementation of MEDUSA consists of three distinct components. Microcode running on the
Kmaps provides the addressing and communication mechanism. A small kernel/ that resides in every
processor provides for activity muitiplexing and interrupt handling. The utilities provide the functions
of file management, memory management, task force management, exception reporting and
debugging. A significant portion of the remainder of this chapter will be devoted to the design of the
microcode, and to preliminary measurements of its size and performance. The functions provided by
the Mepusa kernel will also be described, but only briefly. The overall design of the utilities and the
functions implemented by each utility will be taken up in the last part of the chapter and preliminary
measurements of their size and performance will be presented.

8.1. The Meousa Microcode

The presence of powerful microprogrammable Kmaps in the Cm* architecture has had a strong
influence on the structure of the MeEDUSA operating system. MEDuUSA is partitioned along functional
lines into a set of utilities that use messages to communicate with each other and with user programs.
Although this structure was motivated by physical distribution in the hardware of Cm*, it was feasibie
primarily because the power and flexibility of the Kmaps permitted the efficient implementation of a
general message mechanism as well as of shared memory.

in deciding whether a function ought to be implemented in Kmap microcode. the most important
consideration was, of course, whether the performance of that function significantly aftected the
performance of the operating system as a whole. Message communication and address mapping are
two functions that are critical to the performance of MEDUSA and are therefore implemented entirely in
Kmap microcode. The message mechanism is crucial to achieving not only performance, but
modularity and robustness in MEDUSA as well. The strong separation between utilittes that is achieveu
by making use of messages for inter-utility communication is largely responsible for the modulanty of
the system. Robustness is attainable, at least in principle, because it is not possibie for utilities to
contaminate each other in arbitrary ways since they do not share read/write memory.

e e e e e

o
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The message mechanism alone, however, is not sufficient to support a structure like that of
MEDuUSA. Activities within the same task force need to interact on a much finer grain than is permitted
by the use of messages, and such fine-grain communication can usually be supported oniy by a

simple mechanism such as shared memory.

Generally speaking, all of the facilities that the microcode provides for the operating system are
available to user programs as well, aithough users may not invoke microcode functions that require
utility privilege. Furthermore, microcode functions are callable directly by user programs, so there is
no loss of performance compared to calls made to the microcode by utilities.

The design of the MEDUSA microcode has had to acknowledge the distributed nature of the
hardware that it executes on. In order to exploit the distribution present in the hardware and to avoid
performance bottlenecks and poor reliability, the microcode treats all Kmaps on an equal basis. it
imposes no static master-siave relationships between Kmaps, aithough it permits master-siave
relationships to exist temporarily during the life of particular operations. The Kmaps in the system
cooperate closely and function together to provide the operations implemented by the microcode
The design of the microcode in this distributed environment has led to a number of interesting
problems that are relevant in a broader context:

e How shouid the message communication mechanism be implemented so it can function
efficiently and reliably?

e What steps should be taken to eliminate starvation and deadlock over shared resources?

e How should the object name space be kept consistent, given that names of objects are
distributed, and that there may be muitiple names for the same object?

o How shouid exception handling be organized so that it is (a) effective and (b)
implementable within the microcode?

The techniques used to solve these problems in MEDUSA will be discussed in some of the later
sections on the microcode. First, however, the address structure of MebusA will be described in
Section 8.1.1. Section 8.1.2 then goes into the design of the message mechanism and pinpoints the
features that make it efficient. The probiems that arose because of the distributed nature of Cm* and
the solutions used in MEDUSA for these problems are presented in Section 8.1.3. The design of
exception handling in the microcode is dealt with in Section 8.1.4. Finalily, Section 8.1.6 presents
statistics on the performance and size of the MEDUSA microcode.

o~

s
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Figure 8-1: The Address Structure of a Task Farce

8.1.1. The Mebusa Address Structure

Since the individual processors of Cm* are siow, most interesting programs that run on Cm* will
need to use several processors. MEDUSA provides an explicit structure, called the task force, to
support this parallelism. A task force is a collection of activities that cooperate closely to perform a
given computation. An activity is the entity that gets scheduled on a processor; it is the MEDUSA
analog of what is called a proceas in most other operating systems. The main difference between the
notion of an activity and a process is that an activity may not exist independently of a task force;
furthermore, there is an implicit assumption that the activities inside a task force need to interact

frequently.

Information manipulated by MEDUSA activities i3 stored in objects that are addressed using
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Figure 8-2: The Logical Mapping of Addresses in MEDUSA '

descriptors. Descriptors contain the type. location, and size of objects and are kept in protected
objects called descriptor lists. The descriptors for objects accessible to the activities in a task force
are organized into a number of descriptor lists as shown in Figure 8-1. The virtual address space ot
each activity is defined by the contents of two descriptor lists: the private descriptor list (PDL), to

which the activity has exclusive access; and the shared descriptor list (SDL), to which alt activities

in the task force have access. Thus virtual addresses generated by an activity consist of a /ist name
(PDL/SDL), an index into the list specifying a descriptor for the object being referenced, and an offset
into the object.

The processors in Cm*, however, are capabie of generating only 16-bit addresses. In order for the
system to map a 16-bit processor-generated address into the full physical address'® of the object
being referenced, there must be a way of associating the processor’'s address with the corresponding
virtual address in the space of the activity making the reference. The microcode provides an
operation called Load Window that allows an activity to bind a descriptor in its virtual address space
to one of sixteen windows in the processor’s address space.

Once this binding is established, hardware in the Slocal cooperates with the Kmap to map a
processor-generated address into the corresponding physical address. Local references are sent out
onto the LSI-11 bus of the processor making the reference, whereas non-iocal references are shipped
out to the Kmap. Logically speaking, the Kmap converts the window number specified by thc
processor's address into the address of a descriptor which it uses to fetch the descriptor from the
appropriate descriptor list. 1t then uses the physical address in the descriptor to access the object
pointed to by the descriptor (Figure 8-2). In practice, however, the reading of the descriptor from a
descriptor list is bypassed most of the time by maintaining a cache of frequently used descriptors in
the Kmap (Figure 8-3).

15A complete physical address in MeDUSA is 26 bits long: 4 bits of cluster number. 4 bits of Cm number within
the ciuster, and 18 bits of memory address within the Cm.
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Two aspects of the design of MEDUSA’s address structure deserve to be efaborated further. First,
information that is used by the system to map virtual addresses into physical addresses is not
maintained in one physically central piace. Rather, it is distributed physicaily on the basis of
ownership. Thus descriptors for objects private to an activity are kept in a private descriptor list that is
present only in that activity’s virtual address space; descriptors for objects that are shared by the
activities in a task force are kept in a shared descriptor list that is present only in the virtual address
space of the activitics belonging to the task force. The motivation for distributing this information
physically is to avoid the performance penalty and poor reliability that would result from keeping one
or at most a few structures that are crucial to the mapping process. Since mapping information is
stored with its owner rather than within the system, failures in the portion of the system that
manipulates descriptors 1s less likely to damage unrelated descriptors. As a general rule, information
in MEDUSA that is not related logically is not kept together physically either—freedom from such

P
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arhitrary system-imposed associations is considered fundamental to achieving robustness within the
operating system,

The address structure also provides a simple protection mechanism that allows the above principle
to be applied to the storage of objects that are implemented by the MEDuUSA utilities. This mechanism
permits such an object to be stored with the owner of the object, yet to be manipuiated by the utility
that understands its internal structure. In addition to reducing the likelihood of an errant utility
destroying an object it manipulates, the mechanism ensures that the size of a utility does not grow
with the number of objects it manages.

A second attribute of the MEDUSA address structure is its relatively flat nature. MEDUSA has one
less level of indirection from virtual addresses to physical addresses than does STAROS: MEDUSA'S
mapping proceeds from descriptor specifier to descriptor to object whereas STAROS's mapping
proceeds from capability specifier to capability to descriptor to object. If an object is shared, MEDUSA
has ane descriptor for each co-owner whereas STAROS has multiple capabilities that point to a single
descriptor for the object. The primary virtue of a flatter address structure is that it is simple tc
implement in microcode. A capability-descriptor structure like that of STARQOS is more difficuit to
implement because two distinct name spaces, the capability space and the descriptor space, need to
be managed instead of just the descriptor space. However, for i{s trouble, STARCS gains the ability to
share objects in a much more controlied fashion than is possible in MEDUSA.

Another disadvantage of the STAROS's address structure is that descriptors are kept in a few,
centralized descriptor lists. Since descriptors used by unrelated processes are stored together
physically, a failure in ane of these descriptor lists (or in the code that manipulates them) could affect
completely unrelated processes, making recovery from such errors quite difficuit. MEDUSA avoids this
problem since descriptors are stored in the same descriptor list only if they belong to the same activity
or to the same task force.

A consequence of having more than one descriptor for an cbject in Meousa is that a shared object
is difficult to move since information about its location is distributed. The soiution used is to keep
pointers from an object back to the descriptors for the object so that all of the descriptors can be
found and changed when the object is to be moved.'® In contrast to a capability-descriptor name
space, the presence of backpointers does not affect the complexity of the microcode since the
microcode has no knowledge of their existence—they are implemented entirely by the memory
manager utility of MEDUSA.

1eThese backpointers aiso turn out to be convenient for handling exceptions on a shared objcct since they

explicitly 1dentify the activities that can access the object. Thus when an exception occurs on a shared objec!
the activities sharing the object can be easily notified.
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8.1.2. The Communication Mechanism

The communication mechanism implemented by the microcode is fundamental to achieving the
performance, modularity and robustness goals of MEDUSA. This mechanism incorporates a number of
features in its design that make it efficient and powerful enough to be used widely within the operating
system as well as in user programs. In contrast with most operating systems MEDUSA’s message
mechanism acknowledges that when two or more activities interact with each other in a synchronized
manner, it is very likely that the activities will wait for each other. Since waiting is expected to be a
common occurrence, the mechanism has been optimized so that activities do not incur large
overheads by being descheduled when they block as a result of a message operation. The STARQS
operating system, which does not incorporate the optimizations made in MeDusA, suffers from a
descheduling overhead that is an order of magnitude larger than the cost of sending a smali message
whenever one of its processes blocks while performing a message operation.

A torm of message communication that is very convenient is where an activity can wait for
messages to arrive in any ot a specified set of receiving ports. The MEDUSA microcode provides a
multi-event mechanism that allows an activity to specify a number of receiving ports and then wait
for a message to arrive in any one of them by executing a single operation. Another important feature
of the communication mechanism in MEDUSA is that most of the message operations have been
overloaded so that they can be applied not only to the objects that implement messages but to other
objects types as well. The overloading provides a uniform way for activities to invoke Send and
Receive operations without being aware of the details of how the operations are handled.

8.1.2.1. Messages

Message communication in MEDUSA is implemented using special objects cailed pipes. A pipe is a
buftered, unidirectional communication medium that is typically shared by two or more activities that
wish to communicate. Operations defined on pipes permit activities to send and receive data
encapsulated in messages. MEDUSA pipes are similar to UNIX pipes in that they hold uninterpreted
strings of bytes; they are different in several other respects. First, the integrity of messages in pipes is
preserved by storing information about the size of each message in the pipe; when a message is
received from a pipe the same number of bytes are removed as were entered when the message was
put into the pipe. Second, the identity of the sender and the size of the message are made available to
a receiver.

When activities communicate with each other using messages. both sending and receiving
activities will normally encounter situations in which a message operation cannot be performed
immediately. For instance. a Send cannot be done if the target pipe is full, and a Receive cannot be
done if the target pipe is empty. The MEDUSA micracode provides both conditional and unconditional
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forms of Send and Receive that correspond to the two ways in which such a situation can be
handled. For the conditional versions the activity is notified that the operation falled. The activity is
then free to perform the gperation again or to do something else. For the unconditional versions. the
activity 1s made to wait explicitly till the operation can be performed. The unconditional forms of
Send and Receive are especially important because there is no way to emulate them using the
conditional operations without incurring busy-waiting overhead. Furthermore, it is difficult to provide
starvation-free service to each activity when a number of activities are performng conditional
operations on the same pipe.

In a client-server relation between a group of activities, it is often desirabie to organize the server
activities so that each one of them can wait simuitaneously on more than one request pipe. For
instance, utility activities in MEDUSA are organized in this way for deadlock avoidance and efficiency
reasons (this organization will be explained further in Section 8.3). One way to mpiement thig torm ot
waiting is to have each server activity poll its set of pipes continuously using a Conditional Receive
operation. Since this busy-waiting wastes communication resources, a form of waiting that Joes 10'
invoive continuous overhead has been provided in MEDUSA. Each activity is allowed ‘0 specity »
multi-event set of pipes from which it can receive messages from other activites ~ oes may be
added to or deleted from this set dynamically using microcode operations. A microcode operation
called Muiti-Event Wait allows an activity to receive the first message that arrives :n s set of
pipes—while all of the pipes are empty the requesting activity is blocked. Thus Multi-Event Wait s
logically equivalent to the Receive operation, except that Muiti-Event Wait works with a number of
pipes instead of just one pipe.

Since speed of the message mechanism is important to achieving good performance in MEDUSA,
special care has been taken in the design and impiementation of this mechanism to ensure etficiency.
Two aspects of the design contribute especially to this efficiency: (a) the special treatment of the
“pipe empty” and "pipe fuil” conditions and (b) the optimization of the Send operation when a
receiver is waiting.

In a producer-consumer relation between two activities, it is unlikely that the producer and
consumer will operate at exactly the same average speed. Thus even with the buftering provided by
pipes either the sender or the receiver will normaily have to wait. in most operating systems a process
that is blocked waiting for some event to occur is automatically descheduled from its processor. Thus
message transactions usually involve two context swaps., one when the process blocks and the
second when the event that it was waiting for occurs. n MEDUSA we wanted activities to be able to
interact on a substantially finer grain than that of the slow context swap on the LSi-11. To achieve this
fine-grain interaction, an activity's state is not swapped off the processor as soon as the activity
blocks. Instead, the activity is allowed to stay on its processor for a duration called the paus-
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time that the activity may specify. If the activity unblocks before its pause time runs out, it is able to
proceed immediately without incurring any context-swapping overhead. otherwise its state will be
removed from the processor and another activity allowed to run. It is interesting to note that the role
played by the pause time in making efficient communication possible is similar to that played by
buffering. Buffer?ng provides a way to smooth out instantaneous differences in the speed of the
sender and receiver, but cannot account for average differences in speed. The pause time, however,
takes care of average differences in speed by filling out the time at the faster activity, siowing it down
till its average speed exactly matches the average speed of the slower activity.

Optimization of the Send operation on a "receiver waiting" condition directly affects the time it
takes an activity to invoke operating system functions. A Send done by a requesting activity to the
invocation pipe for the function will normally" find the pipe empty and the utility activity waiting for a
message. In most implementations of message systems two transfers of data are performed
regardiess of the state of the pipe when the Send is done. In MEDUSA, data is transterred directly
from the sender's buffer to the receiver's buffer if the receiver is waiting on the pipe. Besides
speeding up the transfer, bypassing the pipe has the advantage that the pipe is locked for a much
shorter duration than if data were transferred to and then from it. This allows sends done by more
than one activity to be overlapped to a greater extent.

As a result of the two optimizations described above, the cost of invoking an arbitrary operating
system function is the equivalent of executing 60 LSI-11 instructions (for actual measurements, see
Section 8.1.6). This figure compares favorably with the 20 or so LSI-11 instructions that are required
for a high-level language procedure call in which registers are saved and a display is updated. The
equivalent cost in the STAROS operating system is over 300 LSI-11 instructions.

8.1.2.2. Events

Most of the pipe operations described in the previous section have been overloaded so that they
can be applied to objects of other types as well. This overloading of pipe operations is similar in intent
to the overloading of the Read and Write operations in the UNIx operating system. The motivation in
both systems is to provide a mechanism for programs to communicate and to do 1/Q without being
aware of what it is they are communicating with.

The way overloading is implemented in MEDUSA is to generalize the notion of an event to a number
of object types in addition to pipes. Events are simply conditions that activities may wait for. For
example, an event for a pipe is the presence of a message in the pipe. for a semaphore object an

17‘l’ho number of activities in a utility is dynamically adjusted hill each activity 1s slightly underioaded. This
allows the utility to service requests more efficientiy than it its activities were overioaded.
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event is the condition that the semaphore integer is positive; for a file control block object an event is
the presence of data in the buffer of the file control block. An activity may perform the overloaded
pipe operations on any object type for which events are defined. !f the event defined for the object
has not occurred, the activity will be made to wait just as for a Receive on a pipe. If the event has
occurred, any data corresponding to the event is transterred to a buffer specified by the activity, and
the activity is allowed to continue. An activity may also put objects of several different types in its
multi-event set and then wait for the first event to occur for an object in the set using the Mu/ti-Event
Wait operation. Object types on which events are defined are not restricted to be implemented in
microcode; a number of the object types on which events are defined are, in fact, implemented by the
utilities. When the microcode receives a request to perform one of the overioaded operations on a
type that is implemented by one of the utilities, it converts the operation request to a cail ta the utility
that manages the type and drops out of the operation.

8.1.3. Distributed System Issues

A number of the problems that had to be addressed in the design and implementation of the
MeDusa microcode arose directly as a result of the distribution and explicit parallelism present in the
hardware of Cm*. Other problems, although present in more centralized systems, were harder o
solve in the context of Cm*®. The purpose of the next two sections is to outline these probiems and to
praesent the techniques used in MEDUSA to solve them.

8.1.3.1. Management of Descriptor Space

Descriptors for objects in MEDUSA are kept in descriptor lists that are distributed around the
system. There are no constraints on the relative locations of an object and a descriptor list that
contains a descriptor for that object.'® Thus an object, a descriptor list that has a descriptor pointing
to the object, and an activity that needs to reference the abject may all reside in different clusters.
This generality does have its price, however, since it makes the synchronization of multiple accesses
to the descriptors for an object more difficuit.

At any given time, there may be several microcode operations in progress that need to read a
descriptor in order to access the abject pointed to by the descriptor. Simultaneously, there may be
other microcode operations that need to overwrite the descriptor with a new one. If only one copy of
a descriptor were maintained (in its descriptor list), synchronizing these muitiple accesses would be
easy. The descriptor list could be used as the synchronization point and the problem could be solved

18‘rhis is in contrast to STArQS where a descriptor for an abject must reside n the same cluster as the abjer:
itself. This limitation in STar0S also means that an object can never be moved outside the cluster in which it wa:
created.
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using the approach in [Courtois et al. 71]. However, for the sake of performance. descriptors need to
be cached in Kmaps so there is usually more than one copy of a descriptor present in the system.
Moreover, since the copies of the descriptor are distributed around in several Kmaps there is no one
point at which synchronization can occur. As an added complication, any soiution to the problem is
constrained by the requirement that reads to a cached copy of a descriptor must proceed rapidly
since they are in the critical path for object accesses.

The solution used in MEDUSA to synchronize concurrent reads and writes to muitiple copies of a
descriptor has two components. First, an up-to-date copy of the descriptor is maintained in at most
two places: the descriptor list in main memory, which is aiways current and is assumed to contain the
definitive value of the descriptor, and in the cache of the Kmap that contains the object. All other
Kmaps contain indirect descriptors that provide the number of the Kmap containing the object but
contain no other information.This Kmap number is treated by the system as a "hint" in the sense that
it may be invalid at any time. When a request to access an object that is kept at another cluster uses a
hint that is incorrect, it encounters a cache fault at the Kmap pointed to in the hint. This cache fauit
indicates that the hint is incorrect and causes the hint in the local Kmap to get restored from the copy
of the descriptor kept in the descriptor list. The main effect of keeping only two copies of a descriptor
is that the complexity of the descriptor read and write operations is considerably reduced.

The second component of the solution involves restricting all accesses to the two copies of the
descriptor so that they occur in the same sequence: descriptor Kmap first, then the object Kmap.
When a descriptor cache fault occurs at a Kmap, a request to read the descriptor is issued. This
request travels first to the Kmap containing the descriptor to read out the descriptor. it then travels to
the Kmap containing the object. overwrites any existing copy in this Kmap's cache and returns to the
invoking Kmap with the indirect descriptor. When a request to write a descriptor is issued, the
request foliows the same route; it first updates the copy in the descriptor list and then updates the
copy in the object Kmap's cache. Since inter-Kmap requests for service are guaranteed to arrive in
the order in which they were sent, it is not possible for two or more requests to interact in such a way
that an older copy of the descriptor remains cached permanently in the object Kmap.

8.1.3.2. Inconsistency, Starvation, and Deadlock

The three problems of inconsistency, starvation, and deadlock that arise in the context of
allocating shared resources in a system are closely reiated to each other. Maintaining consistency of
information that is shared in a read/write manner usually implies that the information must be
accessed mutually exclusively by each requester. However, if a resource is accessed mutually
exclusively, some arrangement needs to be made to handle requests that arrive when the resource is
busy. Two approaches are usually taken to handle such requests. In the first approach. a report that
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the resource is busy is sent to the requester who is then allowed 10 make the request again. In the
second approach the requester is made to wait explicitly for the resource. The first approach
needlessly consumes communication resources in busy-waiting for the resource to become available
and leaves requests open to starvation.

The second approach avoids starvation but can lead to deadlock if two or more requesters make
requests in such a way that each requester is waiting for another to release a resource before any of
them can proceed. Note that although deadlock is also possible in the first approach, it can be
avoided by simply releasing all resources held by a requester when it encounters a busy resource and
then retrying. in the second approach, however, a requester cannot take any action when a busy
resource is encountered because the requester is made to wait explicitly.

Although starvation is generally undesirable in a system since it leads to unpredictable behavior, it
may be acceptable if the cost of avoiding deadlock is too high. Starvation cannot be tolerated in
MEDUSA, however, becausu its presence would seriously compromise the robustness of the system.19
Consequently, an operation is forced to wait explicitly if it needs to access a busy resource that can
only be accessed mutually exclusively. FIFO queueing is used throughout to order multiple requests
for the same resource since it guarantees fair service. This approach, however, leaves the system
open to deadlock. Most classical solutions to the deadlock probiem assume the existence of a single,
central arbiter to resolve resource conflicts [Dijkstra 68]. A central arbiter cannot be assumed to exist
in the context of Cm* unless one is willing to sacrifice both performance as well as reliability to

guarantee freedom from deadiock.

The principal idea used to avoid deadlock in the microcode is to impose a systemwide partial
ordering on all shared resources that microcode operations may have to wait on. The ordering of
resources is static and was decided at system design time. All operations in the microcode follow this
global ordering in acquiring resources during the course of their computation. Resources earlier in
the ordering are acquired first and resources further down are acquired later. Since resource
requests are ordered in this way, it is not possible for cycles to exist in requests for resources;
consequently, deadlock over resource allocation is not possible. Note that the presence of a static,
system-wide structuring of resources is sufficient to prevent deadlock even though both the
resources to be ailocated and the operations making the requests are distributed.

Far thigs scheme to work in a straightforward way, an operation needs to know all of its resource
requirements right from the start. Since this usually cannot be guaranteed, an operation must to be

19Tho reasons for this are too detailed to go into here, but have to do with the diflicuity of discarding return
messages from intercluster operation requests that have been timed out. This ditficulty anses because o*
oversights in the implementation of the hardware.
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able to abort processing when it discovers that it needs a resource that is earlier in the ordering than
one it has already acquired. The operation must then be able to restart itself with the intention of
acquiring the resources in the correct order.

As an example of how ordering is used to avoid deadiock, consider the allocation of Kmap contexts
to a microcode operation. |f contexts were allocated arbitrarily, it is easy to imagine situations in
which circularities in requests for contexts could lead to deadiock (an example of such deadlock has
been given in Section 4.4.3). As part of th2 deadlock avoidance strategy, the contexts in a Kmap are
statically divided up into two classes called "master” and "slave” that are ordered for the purpose of
allocation. In addition, all microcode operations are organized so that no more than two contexts
(each perhaps in a different cluster) are needed simultaneously by an operation at any point in its
lifetime.

When an operation starts out, it has no idea whether it will need two contexts or not, so it is
altocated a context at random from one of the two classes. If the operation later discovers that it will
need two contexts, but it has been aflocated a "slave"” context, it queues itself up to request a master
context before trying to get a second context and reieases the "slave” context that it holds currently.
Once a "master” context has been allocated to the operation, it tries to get the second context from
the "slave"” class. Since all requests for contexts follow this discipline, and since "slave" contexts are
guaranteed not to make requests for contexts to be allocated to them, deadlock over contexts is not
possible.

8.1.4. Robustness and the Handling of Exceptional Conditions

Somewhat over one-fourth of the MEDUSA microcode is dedicated towards ensuring that the
services provided by the microcode are robust. The term robustness is used in a fairly general sense
to mean reasonable response by the system to changes that occur in its environment. The changes
may or may not be errors, and could include hardware failures, abnormally heavy system loads,
inconsistent data, or invalid requests for service. Robustness on the part of the microcode does not
mean that all exceptional conditions sre handled in such a way that their occurrence is masked from
higher levels of MEDUSA. if an exceptional condition cannot be handled completely within microcode,
it is considered acceptable to send a detailed report of the exception to the invoker of the failing
operation.

Since the program-development tools available at the microcode level are poor and since
microcode space is at a premium, only the exceptions that are simpie to deai with or are otherwise
crucial to reliable operation of the system are handled within the microcode. Other exceptions are
simply reported to the invoker of the operation in sufficient detail to permit the condition to be handled
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at that level. Most errors that are detected by hardware when a microcode operation is in progress
are handled within the microcode by retrying the sub-operation that failed. If repeated errors occur,
the condition is reported to the invoker after consistency is restored within the microcode.

A different aspect of robustness that involved much more complexity, but which was nonetheless
considered important enough to impiement in microcode is the respbnse of the system when heavy
load is placed on its components. The performance of a system under loaded conditions may be
surprisingly different from that expected by its designers. Furthermore, subtle problems of data-
structure consistency, and of starvation and deadlock over resources usually do not appear until
contention for resources is present. Experience with earlier Cm* microcode systems had shown that
problems of this kind are not infrequent, and are quite difficuit to track down when they do occur.
Considerable attention has been therefore been paid in the design and implementation of the MEDUSA
microcode to ensure reasonable response under ioaded conditions. Section 8.1.3.2 has described
some of the techniques that were used to achieve this robustness, and Section 8.1.6 provides
measurements which indicate that the system does respond reasonably to heavy load.

A complex microcode operation typically invoives several Kmaps during its lifetime, and at any time
there may be several contexts at different Kmaps computing on its behalf. There clearly needs to be
some way to coordinate the actions of the various contexts involved in an operation when an error is
detected by one of them. in the MEDUSA microcode this coordination is provided by structuring
operations so that at any point during an operation there is a clearly defined context (the master
context) that is responsible for reporting unrecoverable errors to the activity that initiated the
operation. All other contexts are slaves. When an exceptional condition occurs that cannot be
handled by a slave, the slave simply releases all of its resources and reports back to its master. The
master takes care of aborting other slaves and reporting the error to the invoking activity. it an
exceptional condition occurs that cannot be handied by a master, the master aborts all of the slaves
and reports back to the invoker. Thus the master context for an operation provides a clearinghouse
for reporting exceptions that occur while the operation is being pertormed.

A key idea in providing robust operation is early detection. It an error is detected as soon as
possible after it occurs, the likelihood that this error will affect more than one lacus of control and
spread to other data structures is small. To ensure that errors are detected early and to avoid the use
of inconsistent data, the microcode employs extensive consistency checking: approximately one out
of every ten instructions in the microcode performs some sort of consistency check. The microcode
is also assisted by the hardware in making checks on values placed on busses and read from memory
focations,

Since exceptions occur rarely in practice, testing of code related to exceptions is more difficult
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than testing most other portions of the system. The MEeDusSA exception-handling code has been
structured to alleviate this problem at least partially. Common portions of exception handling and
exception reporting have been confined to a few well tested procedures that are used throughout the
microcode. The code for detecting exceptions and invoking the appropriate procedures to handle the
condition must untortunately be distributed among all the procedures comprising the microcode.
However, all of the complicated calling sequences and all of the detection checks that are used widely
are encapsulated into a few in-line procedures to guarantee that each occurrence does not have to
be tested individually.

8.1.5. Size Measurements—A Breakdown of the Complexity

The Mepusa microcode is the largest and most complex microcode that has been written for Cm*®
to date. The total source code inciuding comments amounts to over 20,000 lines, and the amount of
object code to well over 4000 80-bit words. This section tries to account for some of this complexity
and to identify portions of the microcode that were difficuit to implement or turned out much larger
than originally anticipated.

Table 8-1 shows the sizes of different portions of the microgode grouped by function and arranged
according to decreasing size. The table lists the number of lines of source code, the number of lines
of comments for that code, and the number of 80-bit microinstructions assembled from the source.
Messages and events, even excluding the code that is responsibie for the data transfer that occurs
during message o:;aerations"’o constitute the largest part. Although the message mechanism is
conceptually simple, it was difficult to implement in microcode. A significant portion of this
complexity is a result of the optimizations that have been made to achieve efficiency; most of the
remainder of the complexity results from the distribution of data and control present in the microcode.

The next largest part of the microcode consists of common routines that are used throughout the
microcode. This includes routines to decode requests for service, routines to send intercluster
messages. routines to manage the Kmap's data RAaM, routines to perform commonly used type
conversions, and routines to read and write words from main memory.

Another large fraction of the microcode consists of a collection of routines that, in one way or
another, contribute to robustness of the microcode. In this collection are routines to queue and
dequeue requests for critical resources, routines to handle hardware errors, and routines to report
exceptional conditions to an activity. Exception detection and reporting code that is distributed
throughout the microcode is not included under "robustness” in Table 8-1.

200‘“ transter is done using the block-transfer mechanism.
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Table 8-1: The Sizes of Various Partions of the Microcode

Function Sour?e Code Com.ments Objgct Code

(lines) {lines) i (80-bit words)
Messages and Events 1832 2538 901
Common Routines 1897 3469 750
Raobustness 1312 2351 670
Address Mapping 1144 1950 610
Block Transfers 716 1343 367
interrupt Handling 510 968 285
Activity Muitiplexing 305 576 157
Indivisibie Operations 217 344 105

The code that performs address mapping and implements shared memory is next in terms of size.
One of the motivations behind the address structure of MEDUSA was to simplify this portion of the
microcode. Experience with the first version of the STAROS microcode had shown that much of the
complexity that was present in its implementation arose from two attributes: the generalized capability
addressing structure of each process [Jones et al. 77], and the muitiple levels present in the address-
mapping process. Although the basic impiementation of address-mapping in MEDUSA is quite simple,
additional microcode did have to be written tg handle the fact that address information is distributed
around the system and no restrictions are placed on the relative locations of objects and descriptors
for the objects.

8.1.6. Microcode Performance Measurements

This section provides performance figures for microcode operations that are used frequently by the
operating system utilities and user programs. The figures are divided into two groups: the first group
containg measurements taken on a lightly loaded system. Since there was little or no contention for
resources under these conditions, the measurements provide an upper bound on the performance of
the operations under more realistic conditions. The second group of measurements shows how the
performance of three representative operations degrades when the number ot activities performing
the operations is increased until there is severe contention for resources. Taken together, these two
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groups of measurements give a reasonable idea of the performance to be expected from the
microcode under actual operating conditions.

Two things are worth emphasizing about the performance figures presented in this section. First,
all data was abtained by making measurements on the running system, not by calculations based on
the CYCLES program for tracing microcode. Actual measurements were used instead of traces
because data from the CYCLES program does not account for queueing delays and contention in the
hardware. Second, the pertormance figures correspond to a version of the microcode that has not
been optimized after it was first implemented. Thus many of the key figures can be expected to
improve considerably for an optimized version.

8.1.6.1. Measurements on the Underioaded System

This section contains times for the basic Kmap operations measured on a lightly loaded system.
The time for each operation is specified in microseconds as well as in terms of the number of average
LSI-11 instructions that can be executed in the same time. The second measure provides a machine-
independent specification of the time taken to perform an operation, and is useful in comparing the
times in MebusaA to times for similar operations on other machines.

Table 8-2: Microcode Operation Timings—Simple Operations

Operation Time (microseconds) LSI-11 instructions
Load Window 69
Read Descriptor 63
Read Word
(local cluster) 10 1
(non-local cluster) 30 4
Indivisible increment
(local cluster) 33 4
(non-local cluster) 47 6

Table 8-2 shows the timings of four of the simpler Kmap operations. The Load Window operation
aliows an activity to associate a descriptor in one of its descriptor lists with one of the sixteen windows
in its processor’'s address space. Once a window is loaded. the activity may reference the object by
going through the window. Read Descriptor enables an activity to read out information about the
size, type, location and protection of the object from a descriptor for the object. The time in the table
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assumes that the invoker and the descriptor list are in different clusters. The operation Read Word
allows an activity to read a word from a page object, or from any other object if appropriate privileges
are available. The times for both the intracluster and the intercluster case are given. Indivisible
Increment is representative of a whole class of synchronization operations that ailow an activity to
manipulate read/write data indivisibly. The particular operation listed in Table 8-2 adds 1 to a given

location.
Tabie 8-3: Microcode Operation Timings—Block Transfer
Number of . Time . LSH 1 Microseconds/Word
Words (microseconds) instructions
1 251 31 251.0
10 342 43 34.2
20 449 56 225
40 647 81 16.2
60 845 106 14.8
80 1075 134 13.5
100 1273 159 12.7
200 2295 287 11.5
2000 20728 2591 10.3

Table 8-3 shows the performance of MEDUSA'S block-transfer mechanism. The time for a one-word
transfer is 251 microseconds, or 31 LSI-11 instructions. Since the amount of data transferred is small.
most of this time corresponds to the time required to set up the block transfer.2’ The table als
shows how the time for a block transfer varies with the number of words to be transferred. !t can be
seen that that the mechanism becomes quite efficient tor transfer sizes of 15 words or more. In
particular, for transfer sizes larger than 15 words it is more efficient to biock-transfer words from a
remote cluster than to read them one by one using interciuster memory references. The asymptotic
vaiue of the transfer time for large biocks is 10.3 micraseconds per word, which compares favorably
with the figure of 5 microseconds per word that is the best that can be done because of hardware

21Al the moment the block-transfer mechanism has not been optimized for smalil transters—an optimuzen
version could cut this time by about 60 microseconds for transter sizes of less than 8 words.
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limitations.

Table 8-4: Microcode Operation Timings—Message Operations

Operation Time (microseconds) LSI-11 instructions

Conditional Receive
(empty pipe) 253 32

Send (one-word,
non-full pipe) K23 43

Send With Bypass
(one word) 480 60

The next set of measurements (Table 8-4) éharacterizes the performance of MEDUSA's message
mechanism. instead of listing the times for all of the message operations under a variety of passible
conditions, a few key measurements were chosen. Those numbers that are not in Table 8-4 can be
directly calculated from the ones gi{len.

The first line of Table 8-4 gives the time taken to perform the Conditional Receive operation when
the target pipe is empty (this measurement, as well as the others in Table 8-4 were made with the
invoker and pipe in different clusters). Since no data is transferred under these conditions, the time is
an estimate of the overhead involved in reading parameters for the operation, locating the pipe,
checking its status, and notifying the activity. These actions are always performed for all pipe
operations, thus the time invalved is the minimum time any pipe operation can be expected to take.

The next measurement gives the time to send a one-word message to a non-full pipe using the
Send operation. Since all data transfers in message operations are done using the biock-transfer
mechanism, the 341 microseconds includes the time to transfer a single word of data from the
sender’s buffer to the pipe. The time taken to perform a Receive of one word from a non-empty pipe
is not shown in the table, but it is virtually identical to the time tor a one-word Send. The third line in
Table 8-4 lists a key measurement for MEDUSA'S message system. It is the elapsed time from the
moment a sending activity does a one-word Send to an empty pipe that has a waiting receiver to the
moment the waiting receiver executes its first instruction following reactivation. This is essentially the
time it takes an activity to invoke an arbitrary operating System function in MEDUSA and is a

fundamental time constant of the system.
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Table 8-5: Microcode Operation Timings—Privileged Operations

I ‘ ]
!Zperation Time (microseconds) i LSI-11 instructions '
L
| i
Establish XDL 23 3 ;
Reawaken Sleeping Activity 106 13
Write Descriptor 610 76

The last set of measurements gives the times for three privileged operations that are used
frequently by the utilities. Establish XDL is used by a utility activity to map its auxiliary descriptor
list?2 onto the PDL or SDL of another activity in the system. This ability to gain access to another
descriptor list along with amplification privileges allows a utility activity to manipulate objects stored in
another activity's address space. Reawaken Sleeping Activity is used to reactivate an activity
when it is in the biocked state and has just become runnable. Write Descriptor is the operation
used to change the contents of a descriptor indivisibly. This operation takes a fairly long time since it
has to synchronize with other Write Descriptors, Read Descriptors, and Kmap contexts that are
potentially using physical addresses derived from the descriptor to be overwritten.

8.1.6.2. Degradation of Performance under Load

The purpose of this section is to characterize the variation in the performance of the microcode as
the amount of ioad on the system is incréased. Toward this end, three operations Read Word,
Indivisible Increment, and Conditional Receive were measured separately as the number of
activities performing the operation was increased. The configuration of referer<+s was chosen to
generate heavy contention in each case: for Read Word all references were made to the same
memory location; for Indivisible Increment the same location was incremented by all the activities;
tor Conditional Receive the same pipe was used as target by all the activities. In addition, each
activity was assigned to a different processor so that activities did not have to contend with
multipiexing—each activity made operation requests at the maximum rate possible.

Figure 8-4 shows the measurements for each of the three operations. Although the operations
covered a wide range of complexity, it is interesting that the shapes of the three curves are essentiaily

2""The auxiliary descriptor list is a third descrniptor list in the virtual address space of an activity. It s used
only by utility activities.
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Figure 8-4: Degradation of Three Operations Under Load

the same. There is an initial portion in which the time to perform the operation degrades siowly, and a
finai portion in which it degrades more rapidly but the degradation is still linear in the number of b

activities. Since the operations Read Word, indivisible Increment and Conditional Receive are
fairly representative of the set of microcode operations as a whole, other microcode operations can
be expected to perform similarly.
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8.2. The Mepusa Kernel

The kernel is the portion of Mepusa that is responsible for providing tow-level device-handling
code and for multiplexing activities that reside on a given processor. Each processor in the system
contains a copy of the kernel, which consists of about 500 words of basic code and 250 additional
words for each device type on the processor. Since the kernel is implemented below the level of
utilities, and since its code is duplicated in every processor, there are good reasons for keeping down
the size of the kernel. Thus the kernel provides only the bare minimum of facilities that need to be
present at each processor.

The kernel issues commands to |/0 devices and responds to interrupts generated by them. It
chains together commands for devices so that commands can be buffered ahead to improve the
throughput of high-speed devices. Interrupts generated by 1/0 devices are converted by the kernel
into messages that are sen* .0 the appropriate utility.

Each processor can contain up to 16 activities that are multiplexed by the kernel. (n performing the
multiplexing, the kernel makes no decisions about which activity on the processor is to run next; it
simply provides the mechanism to make the activity switch.23 Policy decisions are made at a higher
level by the task force manéger utility.

8.3. The Meousa Utilities

Operating system functions such as memory management, /0, and file management are handled
by five utilities. Each utility is a task force that contains several activities and impiements a particular
abstraction for the rest of the system. Parallelism is therefore built into the lowest levels of the
operating system. The design of the utilities is such that the number of activities in a utility may
change dynamically in response to changes in system load. However, for reasons of robustness each
utility always has at least two activities.

The boundaries between utilities are rigidly enforced and are crossed only by messages.
Communication among utilities as well as between users and utilities occurs via a set of pipes that is
reserved for this purpose. Every processor in the system contains a special descriptor list called the
utility descriptor list (UDL) that contains descriptors for the set of communication pipes. When an
activity wishes to invoke a function implemented by one of the utilities. it sends a message to the

2:’This is an instance of the prninciple of separating policy trom implementation that was first formulated in
Hvora [Levin et af. 75].
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invocation pipe corresponding to the function. The Send operation used is exactly like a regular pipe
send except that it takes a UDL slot as argument instead of an arbitrary pipe descriptor. The

correspondence between siot numbers in the UDL and functions in the utilities is uniform across all
UDL's in the system and was assigned statically at system design time.

Distributing the descriptors for communication pipes among UDL's that are kept one per processor
has several advantages. Loss of a particular UDL has very local repercussions since only the
processor containing the UDL will be unabie to communicate. Other portions of the system wili be not
be affected. The ability of utility activities to share the workload for a particular function is also
enhanced. Requests for a function may be redirected to a different activity on a processor-by-
processor basis simply by overwriting the descriptors corresponding to the function in the appropriate
UDL’s.

A result of the distribution of functions between utilities is that circularities in function invocations
between utilities could lead to deadlock over resources in a particular utility. Since each utility
depend on other utilities to perform its own functions, circularities between utilities as a whole cannot
be avoided. The soiution used in MEDUSA is to divide the functions provided by each utility into a
number of service classes so that (a) a given service class is completely implemented within one utility
and (b) there are no circular dependencies between the service classes. This is a straightforward
generalization of the solution described earlier to avoid deadlock over contexts in the microcode. In )
the microcode solution, contexts are analogous to functions in the utilities.

Given that the functions provided by each utility are divided into a number of service classes, these
service classes must be mapped onto the activities of a utility in some way. A simple approach is to let
each activity provide the services for exactly one class. Unfortunately, this approach has a number of
disadvantages that make it unacceptable. Since some service classes will rarely be invoked, the
activities assigned to service these classes will be poorly utilized. in addition, load-sharing between
activities responsible for different service classes is not possible. Finally, since all activities of the
utility are not identical, they will not be able to help each other in the event of failure. The approach
used in MEDUSA is to let each utility activity provide all of the service classes impiemented by the
utility. Each activity is provided with its own collection of invocation pipes, one pipe per service class.
The activity multiplexes itself between the various service classes by performing the Multi-Event
Wait Kmap operation.

8.3.1. The Memory Manager Utility
The memory manager and Kmaps together provide for the management of the primary memory of
Cm*. as well as for the implementation of page, pipe. and semaphore objects. The functions of the
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memory manager fall into three classes: (a) allocation and deallocation of primary memory; (b)
management of descriptor lists; and (c) initialization of page, pipe, and semaphore objects.

The memory manager maintains the atlocation state of the main stare. Other utilities must make
allocation requests to the memory manager when they wish to create new objects. The memory
manager aliso has the responsibility of returning storage to the free pool when it is no longer in use.
MEeDUSA uses a reference-count scheme to determine when the last descriptor for an object has been

deleted, and the memory manager automatically frees up the storage allocated to the object when this
happens. STAROS, on the other hand, uses garbage collection to retrieve storage that is no longer in
use. The principal advantage of MEDUSA's scheme is that it is much more dynamic compared to
garbage collection. Storage is reclaimed immediately after it becomes available instead of at the next
time the garbage collector runs.

The second group of functions provided by the memory manager is used to manipulate descriptor
lists. The memory manager is responsibie for both the creation and deletion of descriptor lists.
Operations are provided to move and copy descriptors between slots in the same or different
descriptor the lists, and to reduce the privileges in a descriptor.

The third group of functions provides for the initialization of page, pipe. and semaphore objects.
( For the sake of efficiency, all operations on these objects except creation and deietion are
implemented by the Kmaps. Since speed of creation and deletion are not as important, these

operations are implemented in the more comfortable environment of the memory manager.

8.3.2. The File System Utility

The file system utility acts as a controiler for all the input and output devices of the system. It
implements a hierarchical file system that is based on that of UNix but extended in several ways. The
restriction on the smaii number of open files per process in UNiX is removed. UNix allows a process
to specify at most 16 file descriptors at any time. In MEousa, a descriptor for an open file is kept in
one of the activity’s descriptor lists; potentiaily there may be as many open files as there are slots in
the descriptor lists.

A search-list mechanism is implemented in MeEDUSA that allows several "current directories” for
each activity instead of the single current directory for each process in Unix. Finally, the organization
of data on disks has been modified to make it more robust in the face of system crashes. The
techniques used to achieve this robustness are quite similar to the ones used in the ALTO file system
[Lampson and Sproull 79]. Each file is organized into blocks of fixed length. A label that contains the
name of the file to which the block belongs, the number of the block within the file. and pointers to
adjacent blocks is written into each block. When a file system crash occurs. labels provide a means
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of reconstructing all of the information that is needed by the file system during normal operation.

Several interesting issues arise because of the distribution of the file system utility. When a file
system activity wishes to perform an 1/0 operation, it is unlikely that the processor containing the 1/0
device will be the same as the one containing the activity. Communication of requests for 1/0
operations is carried out by providing a device-interface object that is shared by the kernel of the
processor containing the device and the file system activity. This object contains a queue of pending
requests for the device and other state information about the device. Communication in the other
direction occurs via messages. The device routine mechanism enforces a clean separation between
functions provided at the interrupt level and those done at background level.

8.3.3. The Task Force Manager Utility

The task force manager utility creates, schedules and deletes task forces. An existing task force
may create a new task force by specifying the name of a task force description file to the task force
manager. Parameters may be passed to the new task force as descriptors or as data that is pushed
onto the stack of the first activity that gets created.

An existing task force may increase its size by adding new activities. A new activity is created by
specifying the location and size of the private descriptor list for that activity, and by indicating
descriptors to be placed in the new descriptor list.

Information about the state of a task force is kept in its task force control block. The task force
control block contains information such as the name of the task force, the names of all the activities in
the task force, and accounting information relating to CPU and file system usage. Ownership of a
descriptor for a task force control block enables an activity to perform debugging operations on the
task force, subject to the privileges contained in the descriptor. Operations include halting,
restarting, and deleting activities of the task force.

One of the most important functions performed by the task force manager is to ptovide a
scheduting policy that guarantees that all the activities of a task force will execute concurrently. This
notion, termed coscheduling in MEDUSA, is crucial for good performance if the activities of a task
force need to interact frequently. If the activities in such a task force are not coscheduled, some of
the activities in the task force will normally not be scheduled on their processors because they are
blocked waiting for results from other activities. When one or more of the running activities naeds to
interact with one of the descheduled activities, it too will block and will lose its processor. When a
descheduled activity gets back on its processor there is no guarantee that the next activity it will
interact with is not descheduled. As a result the activity may get descheduled soon after it has heen
scheduled. This is a form of thrashing that is similar to the thrashing that occurs 1in demand-paged
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systems when the set of pages available to a process is much smaller than the set of pages the
process needs.

8.3.4. The Exception Reporter Utility

This utility, in conjunction with the Kmaps, is responsible for the reporting of exceptions. In
MEDUSA, the reporting of exceptions and their detection are separated. Whenever an exception is
detected, either by the hardware, or by microcode in the Kmaps, or by one of the utilities, the
exception reporter is notified. The exception reporter therefore provides a clearinghouse for all
exceptions generated in the system, and is responsible for directing each exception to the handler
that has been defined for exceptions of this type.

Since the reporting of exceptions is encapsulated in a single utility, it is easy to provide a uniform
reporting scheme that applies to exceptions regardless of their origin. The implementation of the
mechanism is completely hidden from other utilities: they use the reporting mechanism just like user
activities. The conceptual centralization of the implementation makes it less likely that there will be
subtie problems of interaction with details of the utilities.

8.3.5. The Debugger and Tracer Utility

The notion of debugging and measuring task forces has been formalized in MEDUSA in the form of a
separate utility called MACE. This utility consists of a single activity, all of whose resources are
allocated to a single processor. MACE executes with utility privileges and uses the standard MEDUSA
message system for the purpose of communication. However, MACE does not depend on the facilities
provided by the other utilities in any way, nor are the local resources used by MACE shared with other
utilities.

Dedicating a processor to MACE and making it independent of the other utilities has several
advantages. First, crashes in the rest of the system are not likely to bring MACE down. Second, the
full processing power of an LSI-11 is available for use in measurement, without interference that might
perturb the measurements. Third, MACE can be used to debug the utilities since MACE itself does not
rely on utilities.

The facilities provided by MACE inciude setting of breakpoints and tracepoints in activities.
symbolic examination and modification of the code of activities, and calling of subroutines.
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8.3.6. Utility Performance Measurements

Tabie 8-6 shows the times for a number of the utility calls provided by the memory manager, the
exception reporter and the file system.2* Each figure gives the total time from the initiation of the
operation to its completion when the user program is reactivated. In each case the pause time for the
invoking activity is large enough that the activity will not lose its processor while it is blocked waiting

for the call to complete.

Table 8-6: Utility Operation Timings

Operation (mili;i:oe nds) LSI-11 instructions
Utility Entry + Exit 2 250
Create Page + Delete Page 18.5 2300
Create Pipe + Delete Pipe 23 2900
Copy Descriptor 29 3600
Read Memory Statistics 14.5 1800
Read Disk Bilock 58 7300
Write Disk Block 37 4800

The first entry in Table 8-6 indicates the time for a null utility operation. The null operation simply
parses the invocation message and returns immediately. Utility entry/exit calls are analogous to
kernel or monitor entry/exit calls in more centralized systems. For example, kernel entry/exit in
HyDRa is about 150 instructions [Wulf et al. 74]. Estimates for both Unix and Tops-10 are between

100 and 200 instructions.

The next two measurements of the table show the times required for utility calls that overwrite
(indivisibly) a descriptor for a page or pipe object with a descriptor for a new object of the same type.
The times for the operations inciude allocating memory for the new object and releasing the memory
used by the ald object. The Copy Descriptor time is for a utility call that overwrites one descriptor
with another descriptor for the same pipe (thus no memory realiocation occurs). Copy Descriptor is
somewhat more expensive than Create Pipe + Delete Pipe:; the greater cost is due to additional

2‘Tho material in this section has been taken directly from [Ousterhout 80].
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synchronization overheads (two descriptors must be locked instead of one) and manipulation of
backpointers. The Delete Null Descriptor operation returns immediately once it is known that the
descriptor being deleted is null; this time measures the overhead in a utility to parse the invocation
message (which contains the command and one additional parameter) and return a result. Each of
these calls involves only a single utility, the memory manager.

The last two lines of Table 8-6 are for file system operations that require information to be read
from or written to disk. Each figure is the average time for 1000 consecutive disk operations. in the
case of Read Disk Block, no buifering ahead is done by the file system (at the time the user activity
invokes the file system the desired block is not in memary). Most of the time is spent waiting for the
disk to transfer the block to memory. Write Disk Block is organized to buffer requests ahead: the
operation completes as soon as the block has been queued for transfer to the disk. Since the disk is
the bottieneck in Write Disk Block and the time in Table 8-6 is an average over 1000 consecutive
writes, the 37-millisecond time per operation represents the disk transfer time, including seek time,
rotational latency, and transfer time. Since the disk transfer times are identical for read and write, 21
milliseconds of the 58 total required for Read Disk Block is due to execution time in the file system
utility; the rest is disk time.

Table 8-6 suggests that the performance overheads incurred because Mebusa is distributed are
negligible for utility calls. The cost of e.ven the simplest utility call is around 1000 average
instructions, whereas the cost of a message transfer is only about 60 instructions. Most of the time for
a utility call is spent in parsing the cail parameters and performing the operation; this overhead must
be incurred by any operating system regardless of whether it is distributed or centralized. Tables 8-4
and 8-6 indicate that the message mechanism is efficient enough to support much finer grain utility
calls without becoming a performance bottleneck.

8.4. Conclusions and Status

This chapter has provided an overview of the design of the MEDUSA operating system and a
discussion of some of the motivations that led to this design. It has aiso provided preliminary
measurements of key portions of the operating system to help characterize the performance that is
attainable by programs running on MEDUSA.

One of the original goals of the MEDUSA project was to determine if a highly distributed structure
like that of MeEDUSA had a performance that was close to the performance that could be attained by
programs running on the bare machine. The performance measurements indicate that the price that
has to be paid for the distribution present in MEDUSA is negligibie; most of the cost of operating
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system functions is in performing actions that wouid be performed regardless of whether the system is
distributed or not.

At the time of writing of this report, MEDUSA was almost fully operational. All of the microcode,
kernel code and the utilities had been debugged to the point where several programs had been able
to use the system successfully. Portions of the system, however, still need work before MEDUSA can
be used routinely for the purpose of experimentation. In particular, a user version of the debugger
and tracer needs to be availabie. The performance measurements made on the system provide only a
rough idea of how well MEDUSA will perform in practice. Much more experimentation needs to be
done to evaluate the dynamic behavior of the system and to determine whether real application
programs can eftectively utilize the hardware of Cm* using MEDUSA.

Future plans for the MEDUSA system include bringing up a UNix shell and several of the UNix
programs in order to provide a reasonably hospitable environment on Cm* itself. There is
considerable hope that this can be achieved easily, especially since the file systems of the two
systems are almost identical. Most of the work involves writing runtime routines in the C programming
language that would transiate UNIX operating system calls into Mepusa calls. The Unix effort on
MEDUSA has already shown some results. We have been able to execute simple programs written in C
on Meousa; the UNix shell and most of the UNix utility programs are expected to be brought over in
the near future.
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9. ECHOES Mike Kazar

And so | throw the windows wide
And call to you across the sky
~ Pink Floyd from "Echoes”

ECHOES is a small experiment in inter-module communication, coded as a kernel of an operating |
system on Cm*. ECHOES has two goals. The first is 10 implement in microcode a fast call and return .
mechanism between protected subsystems. The second is to extend this procedure-call mechanism ;
naturally so that instead of doing the procedure call within the same process, the procedure call may
be done in a new process in parailel with the continuation of the calling procedure.

This is implemented by providing a collection of 28-bit address spaces in whizh execute an

arbitrary collection of processes. Transfers from one address space to another are accomplished by

means of Call and Return operations. Processes are created by means of a special version of Call,
known as Call/Fork, which functions similarly to Call, except that it has the abi'ity to create a new
( process to be created to execute the called procedure.

An important property of ECHOES that should be noted is that address spaces are supposed to be
independent of the processes that execute in them. Thus an address space can have zero, one or
more than one process currently executing within it. The address spaces that these processes see
are identical with one another with the sole exception that each process has its own stack to prevent
interference with other processes in the same address space.

Cm* is an ideal test vehicle for an implementation of this system. There are two main reasons for
this. -
e We can actually run the called procedure in paralle! with the continuing execution of the
caller. rather than just simulating this parallelism, since we have more than one processor
to work with. This is usetul since it allows actual measurements to be performed on an

actual running system. |n addition, building a running system provides more assurance
that no major difficuity has been inadvertantly overiooked.

e We can modify the addressing architecture of the machine arbitrarily by writing Kmap
microcode to interpret any or all of the memory references made by the LSI-11's.

¢ -—
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9.1. Some Properties of EcHoEs

ECHOES has taken the approach of separating out the large, expensive addressing environment
usually associated with a process from the rest of the process state. The creation of a new address
space is considered to be a relatively expensive operation, while on the other hand, creation of a new
process is a relatively inexpensive operation (that is performed in microcode). This stands in marked
contrast to most operating systems, where creation of a process, especially on a machine providing a
large virtual address space, is an extremely expensive operation. It is achieved by allowing an
address space to persist even when a process is no longer executing in it, and perhaps later to be re-
used by that process or another process.

in ECHOES there is a new address space for ezch user’s instantiation of a subsystem. Processes
are created dynamically to run in this address space when the particular subsystem is invoked (by
Call or Call/Fork).

Where multiple invocations of a subsystem are made the subsystem may construct an arbitrarily
rich execution environment in own storage which persists across invocations because it is part of the
address space. Consider the implementation of an editor which is to be implemented as a protected
subsystem, i.e.. it can not do any damage to those who call it, nor damage those subsystems that it
calls. Assume that when we call the editor utility to perform some work for us, we pass it two
arguments, a string to edit and a place to put the resulting edited version of the string. Further
assume that we want the editor t0 maintain state between executions. For instance, we might want it
to remember the set of mc_ros that we are using, a personal profile describing how the editor is to act
in those areas where it provides a choice (e.g.. should we ask for confirmation before writing out a
file}, and other pieces of environmental information such as the list of text bufters begin edited.

To attain an efficient implementation of the editor, two distinct goals must be met. The first is to be
able to pass /arge arguments between subsystems efficiently. The second is for a large environment
to be maintained by a subsystem between invocations of it.

There are two types of systems that try to solve these problems. They are categorized here by their
ability to pass a name for an object from one environment to another environment (such as from one
process to another) efficiently.

1. Systems without the ability to name objects across contexts. These systems have a great
deal of difficulty passing large arguments around efficiently. This is because there is no

name for the argument in the called procedure’'s address space: thus the argument must
be actually copied into the called procedure’s address space.

2. Systems with the ability to name objects across contexts (e.g., capability-based). With
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these systems, one can build an environment object which one then passes as a
parameter with each call to the subsystem's server process. Since an arbitrarily complex
¢sject (or set of objects) can be passed with each call at little cost. these systems can
achieve the same ability as ECHOES to have a protected subsystem provide a function to
an individual user in the context the user desires.

Next we discuss the question about how the subsystem is to maintain state between invocations.
One method used in some capability-based systems is to simply send a complex object describing the
state to a process which provides the protected subsystem's service. This, however requires a bit of
work on the part of the cailer. who must get this state abject created by the called subsystem, and
pass it off to the proper procedures of that subsystem when making the caills, which implies that the
user must know what subsystem each procedure being called is a part of.

The alternative that ECHOES implements is fairly complex. Assaciated with each user and each
protected subsystem is an address space. When a process running under ECHOES wishes to invoke a
particular subsystem, rather than sending a message to an already existing process, including as part
of that message a state-describing object, ECHOES creates a new process which (wih the exception of
having its own stack segment) executes in the address space associated with the protected
subsystem and the particuiar user. This process creation is relatively inexpensive because the most
expensive part, its address space, has afready been created. One advantage of this method is that the
caller ot a subsystem need not know which state-describing object(s) to pass to a particular routine.

Note that ECHOES is not really a capability-based system. More specifically, it passes segments and
sections of segments around from process to process, but most certainly does not allow users ta copy
these segment descriptors out of the database describing an address space. it maintains a single
object type, called the segment. Sections of a segment are also scmetimes utilized. For example,
the Call operation can actually pass parts of segments around as arguments, so that for example a
single word in the local stack could be passed as a parameter to a protected subsystem without fear
that the rest of the stack could be damaged if that subsystem were to run wild or be maliciously trying
to confuse its caller.

9.2. Definitions and Basic Operations

In this section | will present the essential definitions required to understand this paper and briet
definitions of the most important operations provided by the ECHOES kernet.

e Address Space. A collection of 256 segments that are addressable at one time from the
EcHOES virtual machine. For each segment in the address space. there s 3 vector of
protection bits specifying the access a process using this address space has to each
individual segment. One siot in the address space 1s not really a parnt of the entity called
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an address space. Instead of containing a specific segment all the time, it contains the
stack segment ot the process that is executing 1n that address space. Thus if there are
two processes executing In one address space, then the addresses that they generate
refer 10 exactly the same objects, with the exception of the stack segment. Relerences to
the stack segment s addresses cause references to the process’ own private stack object.

e Protection Domain. A set of ordered pairs of the form (segment, access privileges).
Among the possible access privileges are read. execute and write access. For each user,
there 1s a separate address space created for each protection domain being utilized.
Every address space in ECHOES has associated with it a protection domain. The access
that a process has to the segments in a particular address space is that access which is
specified by the protection domain associated with that address space.

e Call: This operation is used by a process to transfer execution to a procedure it wishes
to invoke. If the procedure is in another address space (and thus part of another )
protection domain) the Call operation will manage the transfer of control between !
address spaces too. ‘-i

J

e Call/Fork: This operation is used in the case where a Call operation is desired, but the
caller wants the called procedure to execute in a separate process—i.e., in parallel with
the caller, if possibie. If the called procedure is a part of the same protection domain as i
the caller, then the called procedure will run in the same address space as the caller,
except for having its own stack segments.

o Global Name. A globa: name is a name that is unique within the entire system. {t thus
refers to the same object no matter which address space or process the name.

e Job. A jobis a collection of processes and address spaces, which can trace their
existence back to a common initiat process. At a given moment, each process is
executing in exactly cne address space. Typically, the processes are working together to
accomplish some common gcal for some user. A job is quite similar in this respect to a
Task Force in STARCS.

e Process. Basically, a process is a repository for the state of a virtual processor. Such
things as the machine registers, the machine’s pointer registers (special 32-bit registers
maintained in the Kmap) and the program counter are part of the process state. The
process has an associated address space n which the process is executing. However,
the address space is not really part of the process; it is instead a separate entity that can
exist independently without regard to the existence of any processes that are using that
address space.

e Return. The Return operation is used to return from a Call or a Call/Fork operation.
if a return is made from a Call/Fork, then the process executing the return is terminated,
and a semaphore in the caller's address space is V'd so that the caller can tell that the
called process has completed. This semaphore is P'd when the caller does a
Synchronize operation in order to wait for the subprocess to complete.

o Segment. A collection of data. of size up to 1 megabyte, consisting of up to 1024 pages,
each of size 1024 bytes. Segments are the basic data-containing ohjects in the ECHOES
system.
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9.3. The Architecture

The ECHOES architecture basically consists of many large (28-bit) addrens spaces, with a collection
of processes executing in some subset of these address spaces and transferring among these
address spaces during their execution histories. Two or more processes can execute simultaneously
In the same address space, except that they will have their own private stack segments.

More precisely, each process executing in ECHOES sees a collection of 28-bit address spaces,
between which it can transfer via the inter-procedure cail mechanism. At any one instant a process
can only refer to segments in its "current” address space.

Thece address spaces form the basis for the protection mechanism used by ECHOES. The access
that a process has to a particular segment is a function of the address space in which the reference to
the segment is made. Thus these address spaces are the primary mechanism used in the
implementation of the protection domains.

The Kmap aiso provides suppart for sixteen 32-bit index registers (hereafter referred to as pointer
registars). These registers can be used for indexing or data storage, just like normal LSI-11
registers. Their actual implementation is beyond the scope of this paper. They are used when
addresses longer than 16 bits are needed. The LSI-11 architecture has been extended with
assistance from the Kmap so that these index registers can be used in place of or along with regular
LSI-11 registers. For example, in ECHOES the instruction

ADD 0(PR1),0(R2)
is valid and means that the processor should add the contents of the word at contents(PR1) to the
contents of the word at contents(R2) and put the result in the word at contents(R2).

The Big Picture of an Address Space. This section describes segments in an ECHOES address
space. Segments come in three flavors.

1. Per-Address Space. The most common type of segments are those that occur on a per-
address space basis. This means that no matter who is executing in this address space,
these segments are always in that address space in their appointed places.

2. Per-Process. There are some segments that really are per-process databases. One
example of such a segment is the user’'s stack segment. Since the basic idea 1s {0 allow
multiple processes to come into existence in the same address space when the need for
the processing power presents itself. it s necessary to ensure each of these processes
has its own private stack segment so that two such processes do not interfere with each
other.

3. Per-Cafl. The last flavaor of segments is per-call segments. These are segments that
contain the arguments when a procedure is executing. Whenever a procedure is called it
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executes in an environment where its arguments are mapped into eight reserved
segments. These segments are clearly not per-address space or per-process since one
can perform a Call and stay within the same address space or within the same process.

Now we are ready to explain how the 256 segments of an address space are used. It is important to
note that here we are talking about the uses of addresses, not particular virtual memory objects in the
system.

e Segments 0 - 3. These segments never contain any data. Referencing them causes a
fault. They are reserved for a large address space of addresses that generate faults when
referenced, and so that small integers (those in segment 0) generate faults that the user
will see as errors if these addresses are indirected through. They are empty slots in the
address space.

e Segment 4. This segment is the gate segment. It is used by the call mechanism to provide
a way of specifying how to call a procedure in a different address space. The details of
this mechanism are beyond the scope of this report, but the flavor of this segment is per-
address space.

e Segment 5. This segment is the protected call stack used by the microcode for the
implementation of the ECHOES virtual machine. Each Call pushes a small stack frame on
this stack, and Returns pop the same frame. Only the microcode can successfully
reference this segment. It is a per-process segment. Note that if two processes are
executing in the same address space, segment 5 is different for them.

e Segment 6. This segment is the process’' stack. Frames on it are pushed by the Call )
operation too, but of course the user's stack is accessible by the user's process.
However, information on the stack pushed before a procedure call is inaccessible to the
called procedure. Note that if two processes are executing in the same address space,
segment 6 is different for them.

e Segment 7. This segment is the descriptor segment. It contains the definition of the
address space. It is, of course, of the per-address space flavor. Basically, a descriptor
segment specifies for each segment’s slot in the address space the unigue ID of the
segment that goes there, and the access that is had to the segment when running in that
address space.

e Segments 8 -~ 15. These segments are the argument segments. After a procedure call,
segment 8+ i contains the ith argument. Furthermore, the access that the called
procedure has to this segment is the intersection of the rights the caller had and what the
caller desired to pass on to the called procedure. These are per-call flavor segments.

e Segments 16 - 255. These segments are the segments in the address space that are
available for people to use for data, programs, etc. These are per-address space
segments.

When a user first calls a procedure that implements part of a protected subsystem, it an address
space corresponding to the protected subsystem's protection domain doesn't already exist in this job,
then it is created. The segment containing the procedure is placed in the newly created address
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space. Thus when this procedure is executed, it will have the proper access rights to segments in its
address space, i.e., the same rights as other procedures implementing this protected subsystem for
the user.

9.4. Operations

There are two important types of operations that can be performed by the system. The first is a
simple procedure Call. The simplest scenario here is the case where no arguments are passed.
What happens is that the microcode remembers, in a stack frame pushed on a stack used only by the
microcode, the program counter and address space from whence the Call was made. This stack is
contained in segment 5 in the address space. The process then switches to the new address space
and changes the program counter to its new value. When a Return operation is performed, the
program-counter/address-space pair on the top of this stack is popped off and restored into the
current process state.

In the case where arguments are passed to the procedure, before the Call we specify via
microcoded special instructions the location, size and access privileges (subset of the process’s
access rights to the argument in its current address space) for each argument. When the Call is
actually performed, it sets up the new address space so that the first eight arguments appear in eight
reserved segments in the new address space (segments 8 through i5 respectiveiy). These eight
segments are refered to as argument segments. The segments containing the called procedure’s
arguments appear in the new address space with the properly restricted access rights, and also with
restricted size ("windowed") so that the oniy part of the argument segment that is accessible is the
region starting at the first word of the argument and continuing for the exact iength of the argument,
as specified by the caller. The resolution of this protection is one PDP-11 word. The Cail operation
additionally sets (Kmap-maintained) index registers 8 through 15 to point to the base of the
arguments, so that it is easy for the called procedure to reference its arguments. This however puts
an effective limit on the number of arguments that can be passed to a procedure, but it has not been a
problem so far. Note that this mapping of the segments containing the arguments occurs even when
the Call is into the same address space as the catler’s. It is important to note that within a particular
address space the argument segments seen by two different processes are different, just as the two
processes see different stack segments even when executing in the same address space.

The Call/Fork extension to this operation ig fairly simple. When a Call/Fark operation is done
instead of a Call. the system has the option of allocating a new process to handle the called
procedure. In addition. the system provides a means of testing for completion of the called
procedure’s process. Currently this wait operation uses busy-waiting to wait for the other process,
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but there is no reason why it could not simply block the waiting process and cause the scheduler to be
invoked.

The Return operation's definition has also been augmented, so that if it returns from a Call/Fork,
then a binary semaphore in the caller's address space is V'd and the Call/Fork process is
terminated.

9.5. An Exampie of Using EcHoes

In this section we will step through a typical ECHOES call and return sequence, for a procedure
running in a separate protection domain from its caller that takes two arguments (a,b) and adds b to a.
We will assume that both arguments are one LSI-11 word long.

The caller first performs two Load Arg microcode c_Jperations. which specify the address, size and
access-rights restrictions of the arguments. The first one specifies all the rights that the caller had to
its argument, the address of a and a size of 2 (bytes). The second load arg will specify the address of
b, a bit map restricting write access (since the procedure does not need to be able to write in b), and
also a size of 2. Then the Callis performed. Segment 8 in the new address space is mapped over the
segment containing a. and similarly segment 9 is mapped over the segment containing b. However,
references to any location in these segments except for the one word containing the argument will
result in an out-of-bounds fauilt. Furthermore, any improper access to the arguments (such as a write
directed to b} will also fault. At the time these segments appear in the address space, enough
information to return is pushed on the microcode-only call stack. The process then changes to the
new address space and transfers to the specified routine. This routine runs, adding the value of its
second argument to its first argument, by doing

ADD 0(PRO),0(PR8) .
Next it returns, which simply has the microcode read the data pushed on the microcode stack and
restore the state of the process, returning to the point after the Call instruction.

9.6. Timings

After writing and debugging the microcode and the PDP-11 assembly kernel, we measured the
actual times required to perform the basic operations (e.g., Call, Call/Fork, etc.) to see if they
matched expectations. This section describes these measurements,

The biggest problem in interpreting the results had to due with scheduler overhead. The scheduler
overhead is trivial, and can be ignored. in many systems. For quite a whiie. this was the attitude taken
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with ECHOES; it led to artificiaily large values for all the measurements. The "system expects” the user
process to run with the 60-Hertz clock interrupt enabled, and it is this interrupt that causes the
scheduler to be invoked. The time that it takes to take a process off of a processor and load another
process on that pracessor is large. No real attempt was made to make this an inexpensive operation,
and it turns out the the actual cost of this is such that running with these interrupts enabled causes an
effective siowdown to 60% of the raw processor speed. This is due to approximately a cost of 9900
microseconds to save a process, se'ect another runnable process and load that process onto the
processor. This time is not at all disappointing, since no attempt was made to optimize this path
through the system.

In all of the figures presented here, the measurements were made with the 60-Hertz clock interrupt
enabled, and the timings were muitiplied by 0.6. The assumptions made are as follows. We assume
that the timings in the LSI-11 handbook are correct as far as the execution time required for
instructions that execute with unmapped code and operand references.

In addition, this tabie summarizes the times assumed for various Kmap-associated operations.

Time from memory request to context activation 28

This comes from the following:

Three map-bus transactions 1.5

Kbus and map-bus arbitration 1.3

Further we count

Kmap-generated memory references 5.0
Each Pmap microcycle executed 15

Control-stack mapping operations are commonly performed while running ECHOES. They occur
when the LSI-11 hardware decides to do something, such as fetching interrupt vectors, or pushing the
PC and PS on the LSI-11 stack which requires the LSI-11 running the program to be in a known state
(i.e., the interrupt vectors have to be addressable and contain the proper data, and SP must point into
an addressable region of memory.) Since this can not always be guaranteed, the Slocal marks these
special memory references for the Kmap and aliows it to map the references as it desires. These
references are called control-stack references. The number of Pmap cycles executed in a control-
stack operation is 22.

A double-length control-stack operation is one which is used to push or pop an item from the
control stack. A single-length control-stack operation is one where an interrupt vector is being read.
A double-length controi-stack operation makes two memory references instead of one. and this takes
an extra 20 micrccycles in the Pmap on top of the time required to make the additional memory
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reference. Thus we get the following expected times for control stack references.

Single length control-stack operation 1.1
Double length control-stack operation 19.1

I assume that interrupt latency for a NXM fault is 16.5 microseconds, that is, the same as for an 170
interrupt.

Setting the PC. On LSI-11's, it is very difficult to set the PC, or any other LSI-11 registers, from the
Kmap. This is due to the fact that the PC in the LSI-11 is not accessible from the Kmap. This causes
extraordinarily large times for domain switching, since the operations that switch domains, i.e., Call,
Call/Fork or Return, also change the PC.

The method used to set the PC from the Kmap is quite simple. It is also quite slow. The Kmap
writes the PC to branch to in a special location in the LSI-11's memory and then forces the LSI-11 to
take a non-existent memory reference fault or NXM. The first thing the NXM interrupt handler does is
check for whether the reason for the NXM is to cause a PC reset and if so the NXM handler simply
returns to the location where the branch is to be made.

NXM handler execution costs about 193 microseconds.

9.6.1. Procedure Call and Retum

In this case, we consider how much time was spent doing a procedure call and return, in the case
where no fork was requested.

The time was 846 microseconds for both operations, of which 386 can be written off to the
overhead of setting the PC. This leaves 460 microseconds, the equivalent of approximately twenty-
four 16-bit mapped memory references.

1 will now explain what this time was used for.

The Call Operation. Call pushes several items onto the protected call stack (segment 5 in the
address space). Specifically, the data that are pushed are the 32-bit return address, the 16-bit domain
fieid, the number of arguments (in a 16-bit field), and the stack bound (a 32-bit quantity). This is a
total of 6 memory references.

In addition, the actual instruction that causes a Call to be performed takes 3 memory references to
be tetched, and another 2 to locate the address to which to branch.

The total amount of time that should be required is thus approximately 220 microseconds for a
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Call. The actual measurements are described later.

The Return Operation. The Return operation should take two 16-bit mapped memory references
less than the Call, since it pops the same information back off from the the stack and restores the
processor state fields from it, but doesn't fetch an address to which te branch, since it is getting the
transfer address from the call stack.

Thus the estimated time for a Return operation is 180 microseconds.

The number of microcycles to handle a Call plus a Return total to about 382 microcycles. Nearly
all of the operations performed during a cali or a return couid be done in parallel, | suspect, it the
machine were designed to do these operations fast, but the Kmap wasn't designed to run ECHOES.
The 382 'microcycles amount to another 57.3 microseconds. The total cost should be
57.3 + 180 + 220 = 457 microseconds. This is very close to the observed 460 microseconds. LSI-11
speeds can vary about 6% from the listed speeds in the handbook. Thus the figures obtained by
measurement are in substantial agreement with what is expected.

9.6.2. Call/Fork Operations and Their Return

The Call/Fork operation takes about 172 extra microseconds, when a fork is not created. The
additional cost comes from several places. First of all, there is a2 Synchronize operation performed
to wait for the fork to complete its execution.

Second, the Call operation, when told to fork, writes aut the synchronization information, which is
a 16-bit word naming the process that will be executing the fork, or -1 if the caller's process will
execute the called procedure. In addition, instruction fetches use another six mapped 16-bit fetches.
Another such fetch is made by the Kmap to read the word specifying which process is being waited
upon when the wait operation is performed. This is a total of 8 memory references, all mapped.
However, this is mitigated somewhat by the fact that the Call itself doesn't push the two 16-bit words
that normally contain the return address. Thus there is a net gain of 6 mapped memory fetches, which
should be about 120 microseconds

The difference (52 microseconds) from the observed could be due to several things. including time
to execute the somewhat more complex microcode and the execution time of the Synchronize
operation used to trigger the Kmap’s actuaily doing the operations above the instruction fetch already
counted.

If the fork actually succeeds, then the figures for the time to perform a Call/Fork operation are
nearly identical when two Cm's are running. In particular, the cost goes from 1018 microseconds (1
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Cm available, thus none available for a fork) to 1012 microseconds (2 Cm’s available, 1 is availabie for
the fork). it another processor is added, then the time to execute a Call/Fork operation increases to
1278 microseconds, and when yet another processor is added to the configuration, the total elapsed
time increases to 1573 microseconds. The initial drop in the execution time could be due to actual
paraliel execution of the caller and the forked process. The further increases in execution time are
almost certainly due to memory and Kmap contention.

9.6.3. Timing Summary

Operation Microseconds
Standard procedure Call and Return: 846

Failing Fork (user requested a new process for
the Called procedure but didn’t get one), Return
and re-Synchronize: 1018

Successful Fork (user requested a new process for
the Called procedure and got one), Return and
re-Synchronize processes (2-Cm system): 1012

Successful Fork, Return and re-Synchronize (3-Cm
system): 1278

Successful Fork, Return and re-Synchronize (4-Cm
system): 1573

9.7. Conclusions

The main conclusions that can be drawn from EcHOES are that the proposed addressing
architecture can actually be implemented, resulting in a system enabling very fast calls between
protected subsystems. Furthermore, these calls can be executed in parallel with the continued
execution of the caller if this is what the programmer desires without greatly increasing the time
required for the call and return from the protected subsystem. We are able to do this by separating
out the expensive address space creation operation from the relatively cheap process creation.
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10. Comparison of the Cm* Firmware Machines
.Pradeep Sindhu, Steve Vegdahl, and Anita Jones

This chapter compares the performance of three of the microcode systems that have been written
for the Cm* Kmaps: SMAP, MEDUSA, and STAROS. The systems are compared by giving the costs of
performing equivalent, or at least similar, operations from each of the three systems, and then
discussing the reasons behind any differences in performance. The operations selected for
measurement are the ones that are expected to be executed relatively frequently by user programs
and the operating system. These operations are therefore the ones that will have the greatest impact
on overall system performance. The selected operations perform the following functions:

e Mapped memory references
e Change of addressability

¢ Synchronization
o Message communication.

The cost of mapped memory references is discussed first, both for the intraciuster and intercluster
cases. dapped memory references were measured in an otherwise idle system and under various
loads to determine the range of performance to be expected. The next operation measured, change
addressability, allows a process to change a portion of its address space to make a new object
accessible. How frequently this aperation is executed in practice depends strongly on the application
program, so its effect on ovérall performance is hard to estimate without additional data. It is, ¢
however, of concern since the address space of an LSI-11 is only 16 bits. A typical synchronization ;
operation was chosen for measurement because synchronization costs are important, especially for
processes that share read/write data.

The last set of measurements in this chapter are for the message communication operations of W’H
MEeDuSA and STAROS. SMarp does not implement messages. Both operating systems rely on message

communication where more conventional operating systems use procedure activation. in addition,
messages are used for synchronization and for interprocess communication. The extensive use of
messages in both systems means that the performance of message operations is important to the
overall performance of both systems.

One of the problems in comparing the performance of the three systems has been that the systems
are not functionally identical. In fact, SMaP is much more primitive than either MEDUSA or STAROCS,
and provides substantially less tunctionality than either of these two microcodes. SMap was written to
provide a simple. logically uniform addressing environment along with a few synchromzation

primitives that could be used in writing parallel programs. Both the STAROS and MEDUSA microcodes.
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on the other hand, were written to support particular operating systems and consequently provide a
much more powerful and convenient environment than SmMap. There are also differences between the

actionality provided by nearly equivalent operations in MEDUSA and STARQOS that make direct
comparison somewhat difficult. These differences will be brought up as the individual operations are
compared.

In order to appreciate the measurements that are presented in this chapter, something needs to be
said about the degree to which the different systems have been tuned. SMAP was written several
years ago and has not been optimized since it was first written. However, because the first
implementation was coded fairly carefully and the system is reasonably simple, one cannot expect
large improvements by making refinements. The version of the MEDUSA microcode that was used in
the measurements of this chapter is the first implementation of the system. Execution efficiency was a
primary goal, but critical functions have not been subsequently optimized. The initial version of the
STAROS microcode, on the other hand, sacrificed execution efficiency in order to make it easier to
write and maintain. Currently, optimizations for speed are being made where necessary in STARQOS,
and measurements in this chapter reflect some of these optimizations.

Most of the performance measurements in this section were obtained by measuring the operations
directly on the hardware. The remainder were measured using the CYCLES program for tracing
through source microcode (see Section 4.6). The experiments described in that section show that,
for intraciuster operations, measurements obtained by tracing are in close agreement with
measurements made directly on the hardware. Nonetheless, CYCLES measurements are marked
explicitly so that the method of measurement is clear. Although the figures for operations measured
on the hardware were computed by averaging over a large number of repetitions, strictly speaking,
they have not been statistically validated because all of the repetitions used the same hardware
components. Variations between the speeds of interchangeable components could cause the figures
to vary up to about 10% for some of the operations. For the more complex operations which use a
greater variety of components, variations in the individual components may average out, ieading to a
smaller variance than for the simpier operations.

10.1. Mapped Memory References

The Kmap operation whose performance is perhaps the most critical to system performance is the
mapped memory reference. Because of the distributed nature of the Cm® hardware, mapped
references entirely within a cluster are necessarily faster than mapped references invoiving another
cluster. Thus, two measurements are needed to characterize the performance of this operation—the
time to make a local cluster reterence. and the time to make an intercluster memory reference. The
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table below shows the times for each of the three microcodes measured in an otherwise idle system.

Time for a single mapped memory reference:

Intracluster Intercluster
SMap 8.3 useconds 26.2 pseconds
MEDUSA 8.3 useconds 30.8 useconds
STAarRCS 8.6 useconds 35.3 pseconds

Note that these timings cover the elapsed time from the moment a processor initiates a mapped
read reference to the moment it receives the resuit and is able to continue. The above numbers were
all measured with exactly the same configuration and exactly the same hardware. Thus, they are
accurate relative to each other but may vary slightly in an absolute sense when a different computer

module or a different cluster is used for the same experiment.

10.1.1. Intraciuster References

For intracluster references. all three systems do essentially the same thing: they add an offset to
the base address of a segment to compute the physical address of the word to be referenced, and
then perform a Kbus operation to make the memory reference. Mebusa and STAROS in addition
perform bounds, type and rights checking to make sure that the reference will not violate protection
constraints. It can be seen that the times for the three systems are quite close. The extra time for
STAROS is because of two additional Kmap microcycles during cache lookup.

The cache structures of MeEpusA and STAROS reflect different tradeoffs between the speed of
memory references and the cost of purging a descriptor from the cache. in MEDUSA's cache
structure, it a window points to a descriptor then the descriptpr is gquaranteed to be valid (see page
150). Thus, a mapped reference need not check whether the descriptor pointed to is the correct one.
In STAROS, on the other hand, a window may paint to an incorrect descriptor. so each reference must
verify the validity of the descriptor. It is this check that accounts for the extra microcycies in a
STarRCS mapped reference. MEeDUSA avoids it by linking together all windows that point to a
descriptor so that the windows can be invalidated when the descriptor is purged from the cache. This
guarantees that a window is either null or points to the correct descriptor. STAROS does not reguire
such links because a descriptor can be purged without changing the pointers in the windows that

refer to it.

Figures 10-1 and 10-2 characterize the performance of intracluster memory references when
several computer modules are making simuitaneous references. Figure 10-1 shows the throughput
when all computer modules are making references to the same memaory !ocation. Hence, as the
number of modules making references increases. !t 1s the Slocal and the memory that become
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Figure 10-1: Intraciuster Throughput with Slocal Contention

bottlenecks. For all microcodes the throughput increases until about two or three Cm’s and then
levels off. The maximum throughput supported by SMap (210K references/second) is essentially
determined by the hardware because little time is spent in the Kmap. However, the simple algorithm
that SMAP uses to resolve contention at the destination Cm could cause references to be starved. The
maximum throughput for MEDUSA is 189K refs./sec., and that for STAROS is 187K refs./sec. Bpth are
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Figure 10-2: Intracluster Throughput without Slocal Contention
lower than SmMap. However, there is no possibility of starvation because requests are serviced in a

manner that ensures no request will wait forever. The importance of the aigorithm used to resoive
contention for the Slocal is discussed further in Section 10.1.3.

Figure 10-2 shows the throughput of intracluster memory references m the three systems when
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each computer module is making references to a different Cm's memory. Each data point was
measured with n Cm's in a ring configuration; that is, Cm i directed all its memory references to the
memory of Cm (i + 1) mod n. In this case there is no contention for the target Cm, and the three
systems perform almost identically.

10.1.2. Intercluster References

In the case of intercluster memory references MEDUSA and STAROS t:ave to do 2 little more work
than SmaP at the destination cluster. SMAP sends a physical address to the destination Kmap which
then makes the reference; both STAROS and Mebusa send descriptor names instead of physical
addresses. MEDUSA then searches the cache at the destination Kmap to learn the physical address of
the location to be referenced. STAROS sends the destination Kmap extra bits in its linc message that
constitute a guess of where the descriptor is in the cache. Though not guaranteed to be accurate, the
guess speeds up repetitive references as long as the desired descriptor is still present in the cache.

The optimization of transmitting a guess of descriptor location improved the intercluster memory
reference time of STAROS from 41.7 useconds in the initial, unoptimized version to 35.3 useconds in
the current version. Further improvements are expected by replacing some procedure calls by
speciai-case in-line code to handle intercluster memory references. The current version of MEDUSA
does not use the descriptor-guess strategy; this optimization could improve the intercluster reference
time for MEDUSA also.

Figures 10-3 and 10-4 show the throughput of intercluster memory references for each of the
systems under loaded conditions. In Figure 10-3 all references are made to the same destination
cluster, but the references are distributed between the Cm's so that no Cm saturates; the destination
Pmap is therefore the bottleneck. At saturation, SMAP delivers about 210K refs./sec., MEDUSA
delivers about 160K refs./sec., and STAROS about 145K refs./sec.

Figure 10-4 depicts the performance of intercluster memory references when the source cluster is
the bottleneck—each Cm in the source cluster makes references to a different Cm in some other
cluster. The maximum throughput for SMAP is approximately 250K refs./sec., for STAROS about 150K
refs./sec., and for MEDUSA about 170K refs./sec. SMAP performs substantially better in the presence
of contention; however, the algorithm it uses may cause starvation. The decrease in throughput
between 7 and 8 Cm's for MEDUSA and a much smaller decrease for SMAP between 8 and 9 Cm's are
both due to their scheme for avoiding deadlock over contexts. MEDUSA'S scheme is more costly, but it
guarantees freedom from starvation as well.2®> There is no corresponding decrease for the STAROS

sthis expense couid be reduced significantly if the implementation were optimized for simple operations,
such as memory references.
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microcode because it currently does not address the problem of deadlock over contexts.
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10.1.3. The Importance of Contention-Resolution Algorithms

In the previous two sections we have seen the performance of mapped memory references for
various conditions of lcading. In this section we consider a particular contention situation and
illustrate the effect of the low-level aigorithm used to resolve contention on the speed of the operation
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that is being performed. The point that we emphasize is that low-level contention resolution
algorithms need to be designed and tuned fairly carefully since the performance of the system
depends quite strongly on these algorithms even under moderate loads.

Contention occurs when muitiple Cm’s in a cluster repeatedly reference the memory of another Cm
in the cluster. The resource contended for is the destination Slocal, and the algorithm used to resolve
this contention is implemented within the Kmap that presides over the ciuster. Figure 10-1 shows the
performance of mapped memory references for five different implementations of a strategy for
contention resolution.

The curve labelled SMAP shows the performance of the relatively 'simple. but starvation-prone
algorithm used by SMAP. In this algorithm whenever a context servicing a request encounters a busy
Slocal, the Pmap waits for 20 microcycles and then lets the context retry the reference. The walt is
performed in order to make it more likely that the reference in progress completes before the retry is
done. There is a tradeoft in this scheme between the length of time that the Pmap is allowed to idle
and the probability that a request may have to retry many times before succeeding. Increasing the
wait time lowers the probability of starvation but wastes Pmap cycles, thereby slowing down requests
for other operations that couid proceed in paralilet.

The curve marked STAROS-old illustrates the performance of the algorithm formerly used by
STAROS. This algorithm is starvation free, but the number of Pmap cycles it expends per completed
memoary reference increases roughly linearly with the number of contexts that are contending for the
Slocal. The etfect of this dependence is that beyond about three Cm’s, the Pmap becomes the
bottleneck and the throughput actually decreases as additional Cm’'s make references. There is thus
a marked difference in throughput between a constant-cost strategy and a linearly increasing cost
strategy for contention resoiution.

The three remaining algorithms all incur constant cost and are starvation free. They impiement
slightly different schemes for recording the contexts waiting to compiete a reference and slightly
different decision procedures for selecting the waiting context which proceeds when the Slocal
becomes available. The curve marked STAROS-new illustrates the algorithm that is currently used by
the STAROS microcode. A bit vector is used to record contexts that are waiting for the Slocal. The
strategy used for selecting the context that will next access the Siocai guarantees that starvation does
not accur. This scheme uses between 20 and 24 Pmap cycles per compieted memory reference, and
is the least expensive of the last three algorithms. An interesting aspect of the impiementation is that
the number of Pmap cycles per compieted reference actually decreases as the number of contexts
increases. This decrease is easily noticeable as a gradual increase in throughput as the number of
Cm's is increased.
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The algorithm used by MEbusaA involves placing waiting contexts in a FIFO queue.26 The cost of
insertion and deletion is independent of queue length. This scheme uses between 27 and 31 Pmap
cycles per completed memory relerence and is therefore slightly slower than the bit-vector
implementation of STAROS under heavy contention.

The last algorithm we characterize is the one used by the ECHOES microcode. The ECHOES
impiementation also uses a FIFO gueue to record contexts waiting for a busy Slocal. However, since
the implementation was coded in MUMBLE and since no special effort was made to optimize it, the
throughput is not as high as it is for the other systems—between 46 and 52 cycles are expended per
completed reference.

This comparison shows that both the implementation of a contention-resolution algorithm and the
algorithm itself can have a substantial influence on the speed of mapped memory references. The key
difference between the different algorithms and the different implementations ig the degree to which
they cause the Pmap to become a bottieneck in the process of resolving contention—the
implementation with the smallest Pmap cost has the greatest throughput.

10.2. Change Addressability

The change-addressability operation redefines the binding between a window and the physical
memory to which the window refers. SMAP's version of the operation is the simplest and also the
fastest. It associates an arbitrary physical address with a specified window by loading the window
register in the Kmap. However, in order to complete change of addressability the LSI-11 has to
execute one more instruction to load the Slocal register corresponding to the window (STAROS and
MEeDUSA do this load automatically as part of the change-addressability operation). In order to make
the operations in the three systems more comparable, the 33 useconds quoted in the table belo: for
SmaP include the time to execute this extra instruction.

Time for change of addressability:

SMAP 33 pseconds
MEDUSA 69 useconds
STAROS 109 useconds (traced using CYCLES)

The costs listed above for both STAROS and MEDUSA are incurred on two separate occasions. The
first portion of the cost is incurred when the operation is invoked by the LSI-11. At this time the name

2°Thc Kmap hardware prevents requests from being strictly FIFO, but this scheme comes as close to FIFO as
possible given the hardware.




10.2 Change Addressability 8§ 193

of the new object 13 bound to the window by loading the Kmap's window register and writing the name
out to the process state kept in main memory. The second portion of the cost is incurred when the
first memory reference is made through the window just loaded, in part due to the need to write the
Slocal register. The extra time required by STAROS over MeDUSA is partly because of the three-level
address structure of STAROS~two extra references to translate the C-list index into a capability—and
partly because the entities that are read or written to memory during the operation are larger for
STaROS than for MEDUSA—STARCS uses two-word capabilities, while MEDUSA uses one-word
descriptor indexes.

10.3. Synchronization Operations

All three microcode systems provide indivisible operations that allow parallel programs to
synchronize their operation on shared read/write data. The representative operation, Indivisible
Increment, has virtually the same semantics in all three systems. The operation costs are for the
case in which the target of the increment is in the same cluster as the invoker of the operation. Asis
the case for the other operations in this chapter, any address information needed to perform the
operation is assumed to be present in the Kmap's cache:

Time for Indivisible Increment:

SMAP (immediate address parameter) 25 pseconds
MeDuSA (immediate address parameter) 33 useconds
MEDUSA (virtual address parameter) 47 pseconds
STAROS (virtual address parameter) 95 useconds (traced using CYCLES)

SMAP's Indivisible Increment is faster than that of MEDUSA or STAROS because SMAP makes no
main-memary references to fetch the parameter for the operation; the parameter is a 16-bit immediate
address that is passed up to the Kmap when the operation is invoked. MEDUSA has two forms of the
operation; one uses an immediate address and the other a virtual address. The 14 pseconds cost
difference is due to the two additional main-memory references to read the larger vinuw address
parameter. STAROS does not currently have an immediate address version, so its operation also pays
for the memory references to read the parameter. STAROS's operation takes 48 useconds longer
than MEDUSA'S because—

o STAROS has a three-level address structure. Two additional references must be made
during each operation to read the capability.

o STAROS uses more high-level microprocedures during the operation than MEDUSA. In
particular, the parameter-block binding to the window is recomputed for every word that
is read. STARDS permits a parameter block to be spread across two windows: MEDUSA
does not.
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10.4. Message Operations

The message system is one of the most important facilities provided by the MepusaA and STAROS
microcodes. Messages are used for general-purpose communication and synchronization of
processes. In addition, both operating systems are structured so that asynchronously executing
"servers" provide a substantial portion of the system functions. A request to such a server is in the
form of a message that conveys the requisite parameters. Likewise, any reply is transmitted as a
message. Not only do both operating systems offer a message-communication facility to user
programs, they also make extensive use of it internally. Performance of the message facility is
therefare crucial to the efficient operation of both systems.

Message ccmmunication is the least similar of the facilities provided by the microcodes of MEDUSA .
and STAROS. The two differ both in function as well as in implemantation. The message mechanisms
have been described in earlier chapters, but it will be helpful to review them.

Both systems support buffering of the messages which are transmitted between processes. Both
provide two kinds of operations: conditional and unconditional. Conditional operations run to
compietion regardiess of the state of the mailbox or pipe that is the target for the operation. For
example, when a process performs a Conditional Receive, a message is returned from the mailbox
if the mailbox is nonempty and a status indicating an empty mailbox is returned if the mailbox is )
empty. In either case the process continues processing after performing the operation. The -
semantics of unconditional operations are rather different in the two systems and will be discussed
below. With this rough background we itemize the difference between the two mechanisms—in
particular, we cite differences relevant to the performance of the message operations.

o The difference between the unconditional operations provided by the two systems is that
when an operation cannot be performed immediately, the invoker of the operation is
blocked automaticaily in MEDUSA whereas the invoker is not blocked automatically in
STAROS. Biocking is a separate operation that is invoked explicitly by a process in
STAROS.

e In MEDUSA when an activity is blocked as a result of a message operation, the activity
does not relinquish its processor immediately. Instead, it retains its processor for a
period called the pause time (see Section 8.1.2.1) that is specifiable by the activity. If the
activity becomes runnable during the pause time, it is able to resume processing
immediately without incurring the context-swap time of the LSI-11.

e Because a STAROS process may have several unsatisfied, unconditional requests to
receive a message outstanding, delivery of several messages may be overlapped. in
MEDUSA, messages arrive in the receiver’'s address space sequentially and while the
activity is actively performing the Receive operation, or suspended awaiting the time at
which the Receive in progress can complete.
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o The semantics of the Send and Receive operations in MEDUSA are symmetric. Thus, for
example. the effect of doing an Unconditional Receive on an empty pipe is the same as
the effect of doing an Unconditional Send on a full pipe—the invoker is blocked. In
STAROS., Send and Receive are not symmetric since the Unconditional Receive does
not have a counterpart. If a Send is done to a fuil maiibox, the invoker is informed that
the operation cannot complete immediately.

e The two mechanisms differ in the size and the type of entities that may be transported in
messages. STAROS transmits either a one-word data message or a single capability
which is the name of an arbitrary object. MEDUSA transmits variable-size data messages
ranging from O to 4000 bytes by copying the message;

e The delivery of a message to an activity that has pertormed an Unconditional Receive
on an empty pipe is handled entirely within Kmap microcode in Mebuysa. The
corresponding delivery of a message to a process that has done a Registered Receive
in STARCS i currently implemented in Operating system software.

¢ All data transfers performed during the message operations of MEDUSA are handled by a
block-transter mechanism. Block trangfers are not used in the STAROS message
mechanism since blocks of data are transterred by passing a capability.

» Both facilities have an upper limit on the buffering capacity of a mailbox or pipe. The
buffering capacity of a3 STAROS mailbox may range from 1 to 2044 data messages or 1 to
252 capabilities. The buffering capacity of MEDUSA pipes is a function of message size; it
ranges from 1000 messages for zero-byte messages to a single message if the message is
larger than 2000 bytes.

The differences in the two message facilities are sufficient that the operations are not directly
comparabie because they are not functionally equivalent. Moreover, because they are different,
programmers will use them differently. The next sections give performance measurements of the two
mechanisms. We endeavor to point out where the differences substantially affect the way in which
the two facilities are expected to be used.

10.4.1. Performance in the Non-Waiting Case

Thisg section discusses performance of the message operatians in the situation that the operation
can be completed by simply manipulating the mailbox or pipe; i.e., the invoker need not wait for some
action by another process or activity. The operations chosen for measurement are Conditional
Send and Conditional Receive, which are provided by both microcodes.

Timing measurements were taken of a single process or activity which first performed a
Conditional Send of a message to an empty pipe or mailbox. As a resuit the message is buffered.
The process or activity then performs a Conditional Receive from the same pipe or mailbox. The
Conditional Receive removes the message from the mailbox or pipe, leaving it empty, and then
returns the message to the invoker. Thus the message is copied twice. For STARCS, the operation
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was measured using both a capability i ssage and a data message. For MEDUSA, the message
consisted of a single data word.

Measurements were made using two different distributions of the various entities involved in the
operations: in the Jocal cluster case the sender, the message and the mailbox are all kept in the same
cluster. in the non-local ciuster case the sender and message are in one cluster whereas the mailbox
is in a different cluster. The tabies beiow show the times for Conditional Send and Conditional
Receive that were computed from from the total send + receive time obtained by measurement. The
cost of the send + receive sequence was assumed to be distributed between the Conditional Send
and Conditional Receive in the same ratio as the costs of these operations that were computed
from CYCLES traces.

Cost for Conditional Send:
Local Cluster Non-Local Cluster
MEDUSA 336 useconds 339 useconds
STAROS (data) 110 useconds 146 useconds
STAROS (capability) 151 useconds 196 useconds
Cost for Conditional Receive:
Local Cluster Non-Local Cluster
MEDUSA 341 pseconds 342 pseconds
STAROS (data) 118 useconds 156 pseconds
STAROS (capability) 180 pseconds 225 pseconds

The time to perform the operation in MEDUSA is roughily three times slower for the local-cluster
case and about ‘wo times slower for the non-local cluster case. There are three reasons for this
difference in performance. First, the block-transfer mechanism adds considerable overhead to the
cost of moving small messages. Second, a deadlock-and-starvation algorithm is executed to ensure
that the three contexts allocated during each operation are acquired in a safe fashion. Finally, some
cost is incurred because code to handle waiting is executed, even though it is not necessary in this
particular case.

10.4.2. Performance in the Waiting Case

This section gives the performance of the message mechanisms under the assumption that an
activity or process has to wait for some other process or activity to act. In particular, we consider a
two-process message interaction that involves sending a message from one process to another
process that is waiting after having done an Unconditional Receive on an empty mailbox or pipe.
The performance of the process-process interaction under the assumption that the receiver is not
waiting can be obtained from the measurements of the previous section.
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There are two time measurements of interest. One is the process-to-process interaction time, that
is, the elapsed time from the instant that the Send operation is invoked to the instant the waiting
receiver is about to execute its first instruction following message delivery and any context swap that
may be necessary. The second time is the duration of the operations, that is, the processor time that
is expended for that operation.

First, we consider the process-to-process interaction time. There are two cases for Mepusa and
one for STAROS. Recall that in MEDUSA an activity that does a Receive on an empty pipe is not
swapped off the processor until its pause time is exhausted. The first case corresponds to the arrival
of the message before the the pause time is exhausted; in this case no context-swap overhead is
incurred and the compiete interaction takes 484 pseconds. In the second case the message arrives
after the pause time has been exhausted, so a context swap is incurred. In STAROS the Registered
Receive is a separate operation from Block, an operation that renders the process non-runnable and
initiates a context swap. If the message arrives after the Registered Receive and before the
process Blocks, then no context swap occurs.

Several assumptions were made in deriving the numbers that have been marked as .estimates.
First, the activity or process is assumed to have been waiting long enough so that a switch to another
process is completed before ‘the Send is done. Second, the context-swap times included in the
timings are assumed to exclude the time to make any policy decisions about which process is to
execute next—only the time to make the actual process switch is included. Finally, in the case of
STAROS we assume that Block immediately follows the Registered Receive and no message could
have arrived in that interval.

Process-to-process interaction times:

MEDUSA (within pause time) 484 pseconds
MEDuSA (pause time exhausted) 1600 useconds (estimated)
STAROS 4000 pseconds (estimated)

The reason that STAROS incurs a greater cost than MEDUSA is because both context swap and
delivery of a message into the address space of the receiver are currently implemented in software.
The 4-msec. cost is about equally divided between them. Replacing the software implementation with
microcode would substantially reduce the ¢ost. And if message delivery were in microcode, it would
be possible to implement a version of the pause strategy in STAROS for experimentation. A process
wouid be made to pause by executing code which expanded as part of the BLiss macro used to
invoke the STAROS Block operation. The embedded code would consist of a variabie length, locaily
executed, busy-wait loop.

The second cast of interest is the duration of the Send and Receive operations in the waiting
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case. The mailbox or pipe is empty and a receiver unconditionally requests a message. The message
is a single data word. For STAROS the times are constant. Both MEDUSA operation times are a
function of the size of the message. The duration of Unconditional Receive also depends upon
how much of the pause time elapses before the message arrives.

Duration of Send and Receive operations in the waiting case:

Mepusa Send 490 pseconds {estimated)

MEDUSA Receive 250 useconds + elapsed pause time (estimated)
STAROS Send 2000 pseconds (estimated)

STarROS Receive 166 pseconds (traced using CYCLES)

The STAROS Send time is dominated by the cost of software implementation of message delivery.
it should be noted that during a MEDUSA message operation, both the sender's and receiver's
processors enter a pause state during which they may process interrupts. The sender's processor is
in pause state during the biock transfer; the receiver's processor is in pause state for the duration of
the pause interval.

10.4.3. The Tradeoff Between Passing Pointers and Copying
Data

The message mechanisms of MEpusA and STAROS use different approaches for transferring
messages from a sender to a receiver. STarROS can pass global names in the form of capabilities;
hené:e a process or a mailbox can be passed as a message. MEDUSA messages are in the form of
variable-size blocks of data; hence one activity cannot dynamically send a pipe to another activity.

If we confine our attention to messages that are in the form of blocks of data, we can analyze the
tradeoff between passing pointers and copying data. The cost of accessing non-local data in Cm* is
significantly higher than the cost of accessing local data. So it is not immediately clear at what point it
becomes cheaper to move the data itself instead of accessing it non-locally. The purpose of this
section is to quantify the nature of this tradeoff, and to indicate the range of vaiues for which one
scheme or the other is more efficient.

There are two parameters that determine which mechanism is more efficient. The parameter that
has the greater effect is the number of times each datum will be referenced by the receiver. We will
call this parameter frequency of use, and will examine three regions: sparse use, where only a small
fraction of the words transported are actually referenced; moderate use, where each word is
referenced exactly once; and heavy use, where each word is used a number of times by the receiver.
The second parameter is the number of words that need to be transported; we will consider two
cases: the time to communicate one word, and the time to communicate 2048 words.
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In each case, the cost will include the time for actually transferring the message as well as the time
that receiver must spend in order to access the words transported. Thus the STAROS measurments
include the time to make the words addressable via the capability used in the transfer.

Sparse Use. Let us assume that only a very small fraction of the words transported are ever
referenced. This would be the case, for example, if the data transferred was sorted and the receiver
was doing a binary search to locate a particular value. The times for 1 word and 2048 words are given
below. There is no break-even point since the painter-passing scheme is uniformly better.

1 word 2048 words
MEDUSA 484 pseconds 21000 pseconds
STAROS 228 useconds 440 pseconds

Moderate Use. Let us assume that each word transported is referenced exactly once. Under this
usag ..'ern, the factor that determines which scheme is better is the cost of the non-local access.
Fort  scal-cluster case it is uniformly better to pass a pointer, although the cost ditference is small.
In th  ~n-local cluster case the choice is influenced by whether the message is buffered in the
MED! "9 or not. If data is not buffered, it is better to move the data as long as more than 8 wards
aret  wcansported: If datais buffered, then it is better to move the data only if it is greater than
1345 words.

One frequent use of messages is to communicate the parameters for a function invocation. Such
messages are expected to be of modest size and to receive moderate use. It is cheaper to send such
a message by pointer except when the message is buffered and transported to a remote cluster.

1 word 2048 words
MEDUSA (no buftering) 484 useconds 27000 pseconds
MEDUSA (buffering) 677 useconds 48000 pseconds
STAROS (local cluster) 228 useconds 21000 pseconds
STARQS (non-local cluster) 320 useconds 73000 pseconds

Heavy Use. Let us assume that each word transported is referenced a large number of times, so
that it always pays to move the words. In the table below, we list the costs incurred by the two
systems. For STAROS, we assume that the block transfer is coded in software, using the most
efficient implementation permitted by the LSI-11 processor. The break-even points for the intra- and
intercluster cases are 28 words and 5 words. That is, if more than 28 words need to be transferred
intraciuster or more than 5 words interciuster. then it is cheaper to move them in Mepusa than in
STARCS,

1 word 2048 words
MEeDusA 484 pseconds 27000 pseconds
STARQS (focal cluster) 228 useconds 45000 useconds

STARQS (non-local cluster) 320 useconds 90000 useconds
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ace Costs

1 and 10-2 show the number of microinstructions used by Mepusa and STAROS for
irious operations. lt is difficult to compare these numbers, because the two microcodes
architecture and structure, and because different methods were used in classifying the
For example, Indivisible Operations are included in STAROS's Miscellaneous User-Leve!
while Interciuster Communication is not distinguished in the MEDuUSA classitication

are spread over the various parts of the system.

Table 10-1: The Sizes of Various Portions of the MEDUSA Microcode

nction Number of
Microinstructions

sssages and events 801

ynmon routines 750

sbustness 670

Idressing structure 610

lock transfers 367

terrupt handling 285

ctivity multiplexing 157 )
idivisible operations 105

otal 3845

2 seen from the two tables that the MEDUSA microcode uses more space than STAROS. One

sons for this is that tradeoffs in MEDUSA were generally made in favor of speed at the

¥ microcode space. The second reason is that the Mepusa microcode has also

ed more functionality in the following ways:

iessage operations are more complex (see Section 10.4}.
rforms memory reference retries on hardware errors, such as parity errors.

s a more sophisticated exception-reporting mechanism.
20S has not yet implemented a block transfer mechanism, whereas MEDUSA has,

MEDUSA microcode provides substantially more support for activity multiplexing than
5TAROS microcode.

'OS, the approach was taken that a simpler, more modular system couid be implemented
onal speed improvement and functionality could be added once the system was being used
necks were identified. The STAROS group chose to restrict functions implemented in
» in order to reserve space for both application experiments and performance monitoring.
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Table 10-2: The Sizes of Various Portions of the STAROS Microcode

Function Number of
Microinstructions
Addressing structure 857

Capability manipulation {194)

Cached-descriptor maintenance, searching (153)
Deque/stack references, pointer manipulation (153)
Address mapping (126)

User-level capability operations (118)
Cached-window maintenance (113)

Message operations 326
Low-level operations and initialization 317
Miscellaneous user-level operations 310
Intercluster communication 241
Garbage collection support 71
Total 2122

This would be more difficuit in MEDUSA because it has used nearly all of the controt store.

10.6. Interpreting the Resulits

This chapter contrasts the performance of three microcodes that are reasonably different from one
another. Although many of the performance figures appear to be directly comparable, some care is
needed in extrapolating from these measurements to predict the performance of an application
running with any one of the microcodes. The reader should be aware of some of the considerations

involved in such extrapolation.

Smar, MepusA and STAROS, in that order, provide increasing functional power in the addressing
and protection that they provide to the software developer. For the most part, the cost of comparable
functions increases in the same order. An SMAP operation is generally cheaper than a comparabie
MEDUSA operation, which in turn is generaily cheaper than a comparabie STAROS operation. The
cost difference in the execution of one invocation of an operation may be minute, or it may be orders
of magnitude. Some of these ccst differences are due to implementation issues as discussed before.
But some cost derives from differences in service that the systems deliver.

The design of an operating system reflects a number of tradeoffs between functional power and
cost. Though the operations of one system are faster, that does not mean that programs written using
that system will run faster. Functionality not provided in the system may have to be implemented by

e I o S W o .
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the user. Indeed, it may have to be re-implemented by each user. In the case of Cm* systems,
functionality not implemented in microcode may have to be impiemented in the much slower medium
of software.

An operating system designer chooses what he believes to be suitable functional power delivered
at an acceptable cost. The desired result is a net savings in eventual, overall system usage. The
three microcodes reflect different design decisions, even different attitudes about software devel-
opment. For example, although it delivers better performance as measured in mapped references per
second, SMAP addressing is inadequate for incorporation in an operating system, because any
executing program may change addressability so that any word in the machine can be written. Both
Meousa and STARCS provide additional protection, and they pay for it in dynamically expended time
and space.

Mepusa and STAROS have fundamental differences. To cite one example, names in MEDUSA are
aiways interpreted relative to an activity. In contrast, the STAROS capability is a global name. One
result is that in MEDUSA communication is virtually always "by copy” where in STAROS communi-
cation can be either "by name” or "by copy”. It is difficult to evaluate such differences between
Meousa and STAarROS for a number of different reasons. First, the cost may not be apparent by
considering a single operation; it may be spread across the system. The incurred cost may depend on
the frequency of use of selected operations. So, a single difference in performance cannot be cited.
Second, differences in functionality will cause users to design and program their applications
differently in the two systems. Because Cm* is a multiprocessor, the task decomposition itseif may be
influenced. in addition, the user will adapt his implementation to improve performance in the context
of the operating system being used. So the implementation of an application on the two systems may
look quite different. Certainly, the number of Cm* cycies required to compute an answer in two
implementations of the same algorithm can be compared. it will be more difficult to compare
programmer productivity, robustness, and ease of use.

There also exist costs incurred in invoking operations that are not reflected in the performance
figures of this section. An example of this cost is the setting up of a parameter block to perform the
operation. Because the LSI-11 is considerably slower than the Kmap, setting up the parameter block
can sometimes be as expensive as the operation itself, especially if the operation can be performed
rapidly by the Kmap. A discussion of the parameter-block costs in STAROS and a comparison to an
operation cost is presented on page 129,

Cm* is an experimental system. And its operating system microcodes are moving targets. We
have shown how optimizations can substantially alter the cost of an operation. We expect both
systems will continue to evolve. Indeed, they will probably be adapted to serve particular




10.6 Interpreting the Resuits 1 203

experimentation. In each system, choices were made about which medium—microcode or software—
to use for the implementation of each function. Almost all of the message system of MEDUSA is
implemented in microcode whereas approximately a third to half of STAROS's message system is in
software. Performance would be noticeably influenced by changing the medium of implementation of
a given function.

Yet another consideration in gauging the effect of the performance figures on overall system

performance is that most of them have been measured under no load. The exception is mapped
memory references which have been measured under both artificial load and under the applications
discussed in earlier chapters. Some measurements of additional operations under loaded conditions
are discussed in Section 8.1.6.2. More importantly, we do not yet know the mix of operations and the
frequency of their invocation during application execution.

10.7. Summary

Havin_g compared the performance and size of three of the microcode systems for Cm?, it seems
appropriate to see it any conclusions can be drawn from the comparisons, and if there are any
( important trends that can be observed from implementing three fairly different systems.

The first observation is that a substantial amount functionality can be provided by the microcode at
a reasonable cost in terms of programming time. This functionality includes address mapping,
synchronization primitives, message communication, protection, and the implementation of abstract
data types. Most of these functions except address mapping are traditionally implemented in
operating system software, where the cost of invoking the operation itself can be quite high, often
dominating the actual cost of the operation itself. Thus, there are large gains to be had in terms of
operating system performance by placing commonly used functions in microcode and relatively little
to be lost in terms of the time taken to implement the entire system.

An important observation that can be made from the performance of the message systems is that
on Cm*, the cost of invoking functions using messages can be made comparabie to the cost of
invoking a high-level language procedure. Since message communication is equivalent in semantic
power to the procedure call, the implication is that the cost of distributing components of the
operating system or user programs is negligible as long as most of the memory references mace by
each component are local. Thus ali of the benefits of distribution can be derived without incurring
high communication overheads.

One of the lessons that has been learned from implementing a number of different microcode
systems is that careful attention needs to be paid to low-level design of the microcode to ensure that
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the system will perform adequately under loaded conditions. Two of the problems that arise
frequently under these conditions are deadlock over shared resources and starvation of requests that
are not served in a fair manner. The algorithms and system structures used to guarantee freedom
from these problems may sometimes extract a heavy penalty if they are not designed with efficiency in
mind, and the overall performance of the system may suffer drastically as a result. An example of this
phenomenon has been described in Section 10.1.3.

Another observation is that simple operations like memory references can be performed efficiently.
intelligent use of caching and of special-case microcode to handle memory references seems to make
the cost of such references tfairly independent of the complexity of the address structure. However, it
is important to note that a complex address structure does extract a price for the more complicated
operations since it is not feasible to write special-case microcode for all such operations.

The writing of special-case microcode to impro\}e performance is an example of a space-time-
complexity tradeoff that was encountered frequently in the writing of.all three systems. if a particular
operation is to be optimized for speed then it often helps to write microcode that is specially adapted
to the needs of that operation. However, speciai-case microcode not only takes up more space, but it
makes the code less structured and therefore harder to modify and debug. or to adapt for the
purposes of expenmentation
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11. Language Support for Parallelism
Thomas Rodeheffer and Peter Hibbard

As it becomes more and more economical to build machines which can perform more than one
operation at the same time the problem of arranging a program to take advantage of the parallelism
which is available in such a machine is becoming more and more of interest. We are working on a
cqmpiler and run-time system for an asynchronous muitiprocessor which will detect and exploit low-
level parallelism inherent in a user’s program.

One dimension along which the various parailefism providing machine architectures can be
measured is the time required for two processing elements to synchronize with each other, relative to
the time required to perform an ordinary arithmetic operation. For synchronous architectures which
contain a central master clock, an array machine or a pipeline machine for example, this measure is
zero, since synchronization happens implicitly with every clock tick. For a distributed system this
measure may be quite large.

Previous work on the automatic extraction of parallelism during compilation (for example [Kugk et
al. 72, Banerjee 79]) has generally assumed a machine architecture for which the synchronization
time is zero. Naturally, if one can predict during compilation the exact behavior of the processing
elements during execution, one has the possibility of achieving very intricate choreography at a very
low level. If exact predictions are not possible, however, one must arrange for the processing
elements to act in a manner less and less tightly cooperative, depending on the reiative cost of
synchronization and the accuracy of the predictions.

interestingly enough, most work on language features and programming methods which allow the
programmer to specify and control parallefism (for example {Ichbiah et a/, 79a, Ichbiah et ai. 79b]) has
assumed a machine architecture in which the processing elements are largely independent and
separately programmable, and in which an interprocess synchronization (or communication) might
cost about the same as any other statement in the language. Work on distributed systems
emphasizes machine architectures in which the synchronization costs are much higher.

We are interested in asynchronous muitiprocessors in which the cost of synchronization runs from
very small, say a few machine instructions, up to moderate, say a few hundred machine instructions.
We feel that with the cost of synchronization in this range there remains in ordinary programs
parallelism that would be worthwhile to take advantage of but whose explicit specification would be
too tedious. We propose to detect and exploit this parallelism automaticaily.
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In order to avoid other probiematic aspects of multiprocessors, we assume a very simple
asynchronous multiprocessor architecture: one in which each of the component processors is an
identical, standard uniprocessor, one in which all memory is shared with no access interference, one
in which an unlimited number of processors is available, and one in which there exists some
synchronization mechanism of a particular, fixed cost by which means idle processors can be
obtained when needed and active processors can communicate among themselves. Of course this
architecture is not very realistic, but we view the task of the run:time system as being to provide as
effective a simulation of it as possible.

What the compiler shall be concerned with is discovering parallelism in the user's program,
estimating the synchronization costs required, and deciding on a plausibie structure of parallel tasks
for an idealized multiprocessor of given fundamental cost of synchronization.

We intend to create a compiler and run-time system which will compile programs for and execute
programs on Cm*. Currently the C language is under consideration as a source language.
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