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" (H. V. Poor) :

This dissertation addresses several problems in robust signal
processing. The term "robust" in this context implies insensitivity to

. small deviations from the assumed statistical description of the signal

]
and/or noise.
i The first part of this thesis considers the problem of linear
IE minimum-mean-square-error estimation of a stationary signal observed in
additive stationary noise when knowledge of the signal spectrum and noise
spectrum is inexact. First, the performance of robust continuous-time
. (Wiener) noncausal filters (designed using a method developed elsewhere)
is examined. It is shown in a variety of situations that when spectral
uncertainty exists the perforumance of the traditional Wiener filter degrades
- badly while the robust filter's insensitivity to such deviations makes it
- an effective alternative. Next, this design approach is developed for the
K general problem of robust discrete~time (Wiener-Kolmogorov) causal signal
- estimation, and a2 simple characterization of solutions to this problem is
given. The method of design is then illustrated by a thorough development
of the special case of one-step noiseless prediction and numerical examples
[ ] which illustrate the effectiveness of the general design are given for
the problem of robust causal filtering of an uncertain signal in white noise.
»
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In the second part of this dissertation, a previously developed

P cohesive theory of robust hypothesis testing in which uncertainty is modeled
- via 2-alternating Choquet capacity classes is considered in light of recent

applications of this theory to problems in robust signal processing

and communication theory. In particular, a generalization of capacities is

given which allows several of the most common uncertainty classes to be
ii considered under a less restrictive compactness assumption. Results are
given which generalize this robust hypothesis testing theory and which are of
direct consequence for the applications. For example, it is shown how these
c results allow the problem of robust linear smoothing of an uncertain continuous-
time signal in white noise to be fit within a general framework developed
previously for robust (minimax) linear smoothing. Finally, some properties
of the band model and p-point model (uncertainty classes which are especially

appropriate for many applications) are developed within the context of

2-alternating capacities. f
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I. INTRODUCTION

In the design and analysis of statistical signal processing procedures,
it is usually assumed that some underlying spectral distribution or proba-
bility distribution is known precisely. Often in practice this 1is an
unrealistic assumption. Furthermore, as we will illustrate in Chapter IIL
of this thesis, the belief that nearly accurate models will result in
nearly optimal solutions is frequently unfounded. Thus, we would like to
design procedures which are insensitive to small deviations from an assumed
model. Such procedures have generally been termed robust.

In 1960, Tukey [39] brought attention to the fact that a number of
statistical data-analysis procedures are undesirably sensitive to small
deviations from the assumed probability distribution of the observations.
During the 1960's, two basic approaches to the problem of designing robust
alternatives to such procedures were developed. The first, which could
be termed the '"minimax" or "Huber" approach consists, basically, of first,
modeling the uncertainty via a class of probability distributions and,
then, finding a procedure which has the best worst-case performance over
this class (see [43], [14], [27], [6] and [44]). The other approach, which
was originated by Hampel [45], views robustness in terms of the continuity
properties of a procedure on a space of probability distributions (see
[45] and [44]).

These techniques were first applied in a statistical signal processing
context by Martin and Schwartz [40] who considered the design of robust
signal detection procedures. Other results in robust detection were sub-

sequently obtained by Kassam and Thomas [46], El-Sawy and VandeLinde (5],

[8], Kuznetsov [22]), Poor [53] and many others (for a survey, see [47]).
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Robust parameter estimation has also been considered in a signal processing
context by Martin [50]), Papantoni-Kazakos [51], Price and Vandelinde [52]
and others (see [48] for a survey). Further, results have been developed
for robust nonlinear filtering (see Martin [49] for a survey of this area).
Recently, Kassam and Lim {1], Cimini and Kassam [25] and Poor [2], [7] have
developed a method of designing Wiener filters which are robﬁst with
respect to spectral uncertainty.

This thesis considers several top: in the general area of robust
signal processing. In particular, in ( ter II of this thesis, we present
results from a numerical study of the | . mance of the robust Wiener
filters designed via the methods of [1], [2], [25]. We begin Chapter II
by examining the effects of spectral uncertainty on traditional Wiener
filters. We show that in many cases a clear need for robust Wiener filtering
exists and that in many of these cases the robust Wiener filters developed
in (1], [2], [25]) are an effective alternative to traditional Wiener filters.

In Chapter III, using a general formulation analogous to that developed
in [2] for robust linear continuous-time (Wiener) noncausal filtering, we
develop a method of designing robust linear discrete-time (Wiener-Kolmogorov)
causal signal estimators (e.g., robust n-step predictors, robust causal
filters and robust n-lag smoothers). The specific problem of robust one-
step noiseless prediction is developed in detail and numerical results are
given for the particular problem of robust filtering in white noise.

In Chapter IV, we present a generalization of the results of Huber
and Strassen [6]. 1In [6], a cohesive theory of (minimax) robust hypothesis
testing was developed for the quite general situation in which uncertainty

is modeled via classes of probability distributions dominated by 2-alternating

Py . P S O P - P - P "
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Choquet capacities. These results have been applied by Poor [7], [32] to

problems in communication theory in which spectral uncertainty is modeled
via capacity classes of spectral distributions. In this chapter we extend
the theory of [6] to certain situations which are appropriate in this new
context. For example, we show in Chapter IV how the problem of robust
continuous-parameter smoothing of an uncertain signal in white noise now
fits within the general framework developed in [7]. Furthermore, the
results given in Chapter IV partially extend the usefulness of the results
of [6] to noncompact measure spaces. Finally, the band model, an uncer-
tainty class which is appropriate for many applications, is shown to be a
2-alternating capacity class and is used to illustrate certain results of
this chapter.

In Chapter V, a commonly used model of uncertainty known as the p-point
class is examined. It is shown that, while the p-point class is not a
capacity class, it is contained in a cava._ity class which we call an

extended p-point class. In many instances the results of [6], [7], [32]

which, of course, hold for this extended p-point class are shown to hold

also for the corresponding p-point class.
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II. AN ANALYSIS OF THE EFFECTS OF SPECTRAL UNCERTAINTY ON WIENER FILTERING

1. Introduction

The solution to the traditional stationary linear (i.e., Wiener)
filtering problem requires exact knowledge of the signal and noise spectra.
Often in practice it is unreaiistic to assume such knowledge. Deséite this,
Wiener filters are widely used for steady-state filtering. In this chapter
we consider the performance of Wiener filtering when the signal and noise
spectra differ to a small degree from those assumed in the design process.
In Chapter III, we will consider the related problem of discrete-time
(Wiener-Kolmogorov) signal estimation when spectral uncertainty exists.

In Section 2 of this chapter we consider the Wiener filter for a
particular signal and noise spectral pair which would be natural to assume
is the true spectral pair. We then look again at our circumstances and
model the uncertainty we might have about our choice of spectra. In so
doing we find that the potential exists for totally unacceptable perfor-
mance degradation in the presence of even small degrees of uncertainty.

In Section 3 we consider filters termed "robust'. These filters are
designed to have the best "worst-~case' performance over uncertainty classes
of spectra. The method of design is due to Poor [2] and was based on the
work of Kassam and Lim [1l]. As we will see, the advantage of these robust
filters is that they are least sensitive in the sense that they have the
smallest possible maximum deviation from optimality within the constraints
imposed by our uncertainty.

Of course there is a trade-off involved in robust filtering. While

the robust filter has better worst-case performance, we cannot expect it

e X
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to have optimal performance should our original choice of spectra be the

true ones In Section 3 we will consider this trade-off as well.

2. The Sensitivity of the Wiemer Filter to Spectral Uncertainty

The mean-square-error (MSE) for linear filtering of a signal in
uncorrelated additive noise, where both signal and noise are modeled as
zero—-mean, second-order, wide~sense stationary random processes, is
given by

@

1 2 2
e(o,v;H) =§;onnlbuw)|-+vaHm)|]dw, (2.1)

-

where H is the transfer function of the filter and ¢ and v are the power
spectral densities (PSD's) of the signal and noise, respectively. For a
fixed signal and noise spectral pair, (o,v): e(s,v;H) is minimized by

the Wiener filter

o(w)

*
H () o(w) + v(w) (2.2)

and the minimum MSE is
e*(c,v) ¢ e(c,v;H*) = g; I H*(w) v(w) dw . (2.3)

-

Unfortunately, as we discussed in Section 1, it is often the case
in practice that our knowledge of the signal and/or noise PSD's is inexact.
If the o and v we choose for designing H* are not the true spectra, then
our filter will generally have less than optimal performance. To illustrate
the degree of performance degradation that can result from such mis-modeling,

we consider the following examples. The numerical results presented here
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and in the following section comprise a representative selection from an

extensive numerical study.

The p-point class. For a number of applications it is natural to

assume that we have a narrow-band first-order Markov signal in wide-band

first-order Markov noise, i.e. that

ZGS vg
ToW) = 5 —3
as + w -
and (2.4)
2
20 v,
- N 'N
Volw 7, .2
N

where as <« ay are the 3 dB bandwidths and vg and vﬁ are the powers of the

signal and noise, respectively. For Fig. 1 we have aN = 10 and as =1,

In the figures of this chapter we have used a measure of performance
which we refer to simply as output signal-to-noise ratio (SNR). The purpose
of Wiener filtering is to minimize the MSE,E{[g(t) - S(t)]z},
between our estimate §(t) (i.e. the output of the filter) and
the actual signal S(t). Since the output of the filter can be written as
s(t) + (§(t) - S(t)), we use the signal power divided by the MSE as an output
SNR. For the purpose of our graphs we translate this to dB. The horizontal
axis is 10 loglo(vg/vé), the input SNR in dB.

The top line in Fig. 1 gives the performance of the Wiener filter H;,
designed using % and Yo of (2.4) ia equation (2.2), when % and vy are, in

fact, the signal and noise spectra which occur. For this case it is

straightforward, via equation (2.3), to show that

e*(oo,vo)/vg = ///a ayT + u %y )(u r + %y )

- 2 2 PO S S Sy P S W\ - P G P S -
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Now, suppose that the only information about which we are certain
is the powers of the signal vg and the noise v§ and that we have estimated
with sufficient accuracy the fractional power of each on the set
s = {w realllwl.ﬁ 1}. We denote the signal and noise fractional powers by
Pg and Py’ respectively (e.g. (2ﬂ)-1}§ c(w)dw = psvg). In particular, for
the example considered above, we have Pg = 0.5 and Py = 0.063. 1If these
total powers and fractional powers are all we can really be certain of, we
would like to know ﬁow badly the performance of H; can deteriorate. The
bottom line in Fig. l.gives the worst-case performance of H;. The middle
line represents what we can do trivially for any pair of spectra by using an
all-pass filter (H = 1) when the input SNR is positive and by using a no-
pass filter (H = 0) when the input SNR is negative. Thus we see that if

the spectra are actually first-order Markov then our filter does well, but

if not we can do significantly worse than trivial filtering.

Finally we note that uncertainty classes of spectra given by assuming
exact knowledge only of the total and fractional powers are called p-point
classes and have been studied as models of spectral uncertainty by Cimini
and Kassam [25]. An analogous uncertainty class for probabilities used in
robust hypothesis testing and robust detection has been examined by El-Sawy
and Vandelinde [5], [8]. These classes will be considered in greater detail
in Chapter V.

The e-contamination class. Suppose that we again have a particular

spectral pair (co,vo) which we believe to be the true spectra, but that we

L
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also have a general sense of uncertainty about our choice which we model by
an e-contaminated class; i.e., we assume we know that the true spectra

satisfy (o,v) € J; x ﬂe where 0 < e <1,

s = {d o) = (l-e)co(w) + e0'(w) we R, [u'(w) dw = [co(w) dw}
and (2.5)
7l€ = {v|v(@) = (l-e)vo(w) + ev' (W) weR, [\"(w) dw = fvo(w) dw} .

Classes of this form have been used extensively as general models of uncer-

tainty [39], [14], {27}, [40], [1], [23].

*
0

equation (2.2) assuming a narrow-band (as = 1) first-order Markov signal in

Fig. 2 gives the performance of the Wiener filter H. designed via
wide-band (aN = 1000) first-order Markov noise. The upper line gives the
performance of this filter when these are the true signal and noise. The
lower line is the worst case of this filter over the uncertainty classes
in (2.

(2.5) with % and Y

that, for values of input SNR near zero, the worst case is better than trivial

given by the above choices and with ¢ = 0.1. We see

filtering but still much worse than optimal (about 8.5 dB); for values of
input SNR greater in absolute value than 60 the performance in both the
nominal and worst cases is the same as trivial filtering; and for all other
values the worst case is worse than trivial filtering.

An _e-contaminated signal in white noise. Fig. 3 shows the nominal

and worst case performance of the nominal Wiener filter for the signal

uncertainty class JE in (2.5) with € =0.1 and G first-order Markov with

ag = 1. The noise is white noise with no uncertaintyv and the horizontal

- - - . e . - e - e a4 = 4 ma . M . M. M A R 4 & A & A ma.a _m A A A a4 e AeAm e e e
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axis is actually the ratio of signal power vg

to the noise level NO/Z. Note
that the worst case is bounded above by 10; in fact, for any choice of ¢, it
is bounded above by -10 log(e).

As noted above, the optimal and worst-case performance of Wiener
filtering under various conditions has been examined extensively for several
uncertainty models and for a variety of signal and noise parameters (such as
bandwidth and power). The above examples are represr atative of the sensi-
tivity of Wiener filtering to deviations from spectial assumptions which
were found in virtually every case. Further examples are pictured in the

appendix.

3. Robust Wiener Filters

To remedy the problems of Wiener filtering sensitivity discussed in
the preceding section, we consider the following robust filter design which
was developed by Poor {2] based cn the work of Kassam and Lim [1].

A most-robust Wiener filter [2] is a solution HR to the game

min sup e(o,viH) (2.6)
H (o,v)edXN
where o and 7l are classes of spectra representing uncertainty in the signal
and noise,respectively, and where e(7,v;H) is given in (2.1). Note that
since the supremum in (2.6) gives the least upper bound on the error,

H 2 is a filter with the smallest possible such upper bound. In other words

* 70 %

HR is least sensitive to worst case uncertainty.

A pair of spectra (OL,vL) is least favorable for Wiener filtering for

the spectral uncertainty classes o# and % [2] if

* ) H* =
e(T.J,HL) i e(.L.:L. L) (2.7

sdas.




*
for all ¢ ¢ o/, vV ¢ 7 where HL is the Wiener filter for the pair (aL,vL)

as in (2.2).
It is straightforward to see that if (oL,vL) ¢ o/ X N is least favorable

for Wiener filtering fors and 7 then the pair ((aL,vL) ,H.:) is a saddle-point
solution to the minimax game (2.6). That is,

* *
sup e(a,v;H,) = e(o, ,v;;H ) = min e(ao,,v,;H). 2.8
(@sv) € XN L 2t T (2-8)

*
We see from this that if (o L) is least favorable then HI. is a most-robust

LV
Wiener filter.

Thus we see that if we can find a least-favorable pair then we can 1
design a most-robust Wiener filter. One of the methods developed by 1
Poor [2] for finding least favorable pairs of spectra (and hence most-
robust filters) involves an analogous concept in hypothesis testing: least- .
favorable probability density functions (PDF's) for testing one set of PDF's

against another. Least-favorable PDF's have been found for a variety of K

classes of PDF's (see [14], [27], [20], [21], and Chapter V). If

every signal spectrum in o has the same finite power v2

S and every noise 4

2
spectrum in 7] has the same finite power vy then we can define classes of

4 PDF's
] -

o, = ltglg(w) = o(w)/2nvs, ocoh

and

Y v
.
A i,

QN = {fN]fN(w) = v(w)/zﬂvfx' vel}

} and possibly apply the following ( [2], Corollary 1).
"

¥ Theorem 2.1: 1f o/ and 7] are convex and have constant powers vg and v;, re= {

1

spectively, and qg € 95 and qy ¢ ON are least-favorable PDF's for OS versus 9\1 {
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2 2

then oL & ZT\'Vsqs and 23 4 erquN are least favorable spectra
for Wiener filtering for o and 7.

This theorem allows us to construct most-robust Wiener filters for the
first two examples considered in Section 2.

The p-point class. It can be seen from [25] that
[ _esv;

PsVs

2 2
PgVs + PyVy

for w e s

%*
HR(w) = )
(1-pg)vg

c
3 for w e s

2
\ (l-ps)vs + (l-pN)vN

and, hence,

PP (1-p,) (1-py)
S N S N for all (o,v) XN,

+
gF + Py (l-ps)r + (l-pN)

*
e(cs\";H-R) = P

A
where r = vglvé, the input SNR. 1In Fig. 4 we have superimposed onto Fig. 1
*
the performance of HR (the middle line). It is clear from Fig. 4 that,
: *
unless we are extremely certain about our choice of ¢ and v, HR is prefer-

ble to H.
a [o] .
€ 0

The e-contaminated class. For the classes in (2.5) it can be easily

seen from the above theorem and [l4] that

( A .
k' =c'r/(c'r + 1) for Ho(w) < k'
Hi(w) = B (w) for k' < H'(a) < k"
R w 0 W (o} 0 [ .4
1" A " 11] * 1"
k" = ¢"t/(c"r + 1) for Ho(w) 2 k",
where 0 < ¢' < ¢" < = are constants given by Huber [14]. It is interesting

*
to note that the robust filter HR has this same form for several other
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*
uncertainty models (see [2], [27]). Also note that this HR will

not have constant MSE over o/ X 71 as in the previous example. In Fig. 5

we have superimposed onto Fig. 2 the performance of H; when the true spectral
pair is (oo,v 0) (the second line from the top) and when the true spectral
pair is (CL"’L) (the third line from the top). Recall from the definition

%
of (UL ) that the latter is the worst-case performance of HR For this

VL
example ¢' = 1/¢" = 0.125.
Unlike the preceding example, the preferability of the most-robust filter is
not so clear-cut. If one were relatively certain about (oo,vo) being correct then
H; would be the better choice; however, if not, and if the guaranteed level of performanc{

over # X 7 (given by the third line down) were adequate, we would likely choose H:.

Ap e-contaminated signal in white noise. Clearly the above theorem

cannot be applied to find a robust filter in this case since the noise has
infinite power; however a more direct approach proves fruitful here. First,
we may restrict our search to He Lz(dw), the mean-square integrable functions
on R, the real line, since all others have infinite MSE regardless of what !

¢ is (cf. equation (2.1)). Second, we have, for all H ¢ Lz(dm),

YR IO

1 2 ' 2 Ny
sup e(3,v i) = sup 5 Jl1-8) | (A-e)oy @) + eo' @) + [H@) | 2] o

€ .
c z € R

2
= e((l-e)og,vgH) + € sup 2= [ [1-H(W) | @w) du 2.9
ot T R
2

> e((l-e)oo,vo ;H)Y + v

ol _m.iaia a.a aaak amat.aa A A

2
The last step is true because H ¢ Lz(dm) and it is assumed that fﬁ'(w)dw=2ﬁv;.
R
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Clearly equation (2.2) and equation (2.6) (the definition of H;) imply that

(1-e)o,(w)
(l-e)oo(w) + N0/2

minimizes (over H) the last expression in (2.9). But, for the value of H
given in (2.10), we have equality in (2.9). Thus, H; for this problem is
given by (2.10).

Recall that Fig. 3 showed the performance of Hg in this situation
in its nominal and worst cases. If we superimposed the nominal and worst
cases of H; onto Fig. 3, as we have done for the other examples, we would
find no change; i.e., up to the accuracy of the graph the nominal cases

* *
and worst cases of H_ and HR are the same. 1In fact, they differ by no

0
more than 0.01. It should be noted that this is a singular example and
the unusual performance is due to the infinite power of the white noise,

not to the '"very wide bandedness" which white noise is generally used to

model.

4. Discussion and Conclusions

As we have discussed above, the results presented in this chapter
(with the one exception of the white noise example) are representative of
our findings in a wide variety of cases. For example, although it is a
much harder case to solve, we have developed numerical results for causal
Wiener filtering of an e-contaminated first-order Markov signal in first-
order Markov noise. The theory of the causal case has not been developed
in the same generalitv as the noncausal case: however, this specific
example can be treated using the results of Poor [2] and Yao [16]. 1In

Fig. 6 we have presented the results for this causal filtering example

(2.10)

a e
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with € =0.1; ag = 1 and ay = 1000. For comparison we have aiso included

Fig. 7 which gives the results for the corresponding noncausal case. Note '

the similarity between the two figures. Again, this is indicative of our

findings over a wide range of signal and noise bandwidths and c's (see the
appendix).

Other situations we examined in the noncausal case include ones with
¢ and/or v as second-order Markov (i.e. having the form 4a3v2/(a2 + w2)2)
or using bandlimited white noise. The results for all these cases were
similar to those already presented (e.g. Fig. 5). (Again, see the appendix.)

Of particular interest is the case of an g-contaminated first-order

Markov signal in e-contaminated bandlimited white noise. Even when the

kel

bandwidth of the noise was extremely large (e.g. 106) the results were similar

el

to the other cases and unlike those involving nonbandlimited white noise

(cf. the remarks at the end of Section 3 and Figure 22 in the appendix).

- - In summary, the Wiener filter can be undesirably sensitive to small

PPN STy

deviations from assumed spectral models. Furthermore, while there are

enough specific cases to the contrary to make caution advisable, we have

PRI

found for a wide variety of situations that, when spectral uncertainty

P SRy

exists, the robust Wiener filter is generally preferable to the traditional

v Vv

¢ .

Wiener filter. )

y
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III. ROBUST WIENER-KOLMOGOROV THEORY

1. Introduction

We saw in Chapter II that optimal linear continuous-time (Wiener)
noncausal filters can be undesirably sensitive to spectral uncertainty
and that often the robust Wiener filters developed in [2] are preferable
because of their insensitivity to such uncertainty. In this chapter we
consider a general formulation of robust linear discrete-time causal
estimation of a linear function of a wide-sense stationary signal. This
formulation is analogous to the robust Wiener noncausal filtering
development in [2] which is summarized in Chapter II, Section 3.

Recall that the essential steps of this formulation consist of, first,
choosing two classes of spectra which model the signal and noise uncer-
tainty and, second, finding the signal estimator which minimizes the
maximum error over these spectral uncertainty classes. Our main results
yield, under mild conditions on these spectral uncertainty classes, a
method of designing robust n-step predictors, robust causal filters and
robust finite-lag smoothers and guarantee their existence. In order to
illustrate this method of design, the special case of robust one-step
noiseless prediction is developed in detail. Also, numerical examples
are given for robust causal filtering of an uncertain signal in white
noise.

In Section 2 we briefly present the traditional discrete-time
(Wiener-Kolmogorov) signal estimation problem [28] and discuss those

aspects which will be relevant in the sequel. In Section 3, we present

the robust version of this problem and state and prove the main theorems.

WS Sy -1
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Section 3 includes a discussion of commonly used models of uncertainty.
!g In Section 4, we apply the results of Section 3 to the problem of robust
one-step noiseless prediction. For this case, explicit expressions are

developed using an analogy with robust hypothesis testing originally

-«

developed in [2]. 1In Section 5, examples are given and discussed. Im
Section 6 we consider the development of Section 3 in the more general

situation when the signal and noise are represented by spectral distribu-

tions rather than spectral densities as in Section 3. Results of a
somewhat different nature are obtained. Finally Section 7 contains

conclusions and general discussion.

?

2. Background and Preliminaries

Throughout this chapter we assume that we observe a portion of a reali-
zation {y(k)|k € Z, k ko} of a random process {Y(k)|k € Z}, where Z
denotes the set of integers, and we assume that Y(k) = S(k) + N(k),

Tk€Z, where [S(k)l k € 2} and {N(k)lk € Z} are second-order, wide-

sense stationary random processes which are uncorrelated with each other.

e ey LRt A
i !! - a .

Y . ‘

*

We can also assume that {N(k)|k € Z} is zero-mean. The processes {S(k)}

13

!

i and {N(k)} represent signal and noise, respectively.

'@

: Our purpose is to form a linear causal estimate of a linear function

; of {s(k)} from the observation {y(k)}. That is, we are given some function
)

)

; of the signal having the form

i

4

E zd(k) = d(k-n)s(n) (3.1)
b ==

!

|

'@

S

-
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and we wish to find the "best" estimate of {ld(k)} among all estimates having

the form

k
ih(k) = I h(k-n)y(n) (3.2)
n

I e OO
where h satisfies h(n) = 0 for n < 0 (causality). The usual criterion of
optimality is to find such an h minimizing the mean-square error (MSE).

For given functions d and h the well-known formula for the MSE is

T
E{[!Ld(k)- ih(k)]z} 2—1“] [|D(6)-H(6)|2f5(9)+|H(6)|2fN(e)]dA(e)

-7

e

eD(fS,fN;H) (3.3)

where D and H are the transfer functions (i.e., Fourier transforms) of
the transformations d and h, respectively, and fS and fN are the power
spectral densities (PSD's) of {S(k)} and {N(k)}, the signal and noise, with
respect to the finite measure A. In general, we will take A to be Lebesgue
measure on [-m,m] (so that fs and fN are just the usual PSD's) but it also
might be convenient, for example, to allow A to include some point masses
in order to represent pure sinusoids in a mathematically rigorous fashionm.
(More will be said about this in Section 6.)

We refer to the transformation d (or its transfer function D) as the

desired operation. The cases of greatest interest occur when d(n) = 1 for

in_6
n = ng and d(n) = 0 for n # n, (correspondingly D(98) = e 0

our problem is causal filtering, if n

). If n, = 0

< 0 it is prediction n, steps ahead,

0

and if ny > 0 we have smoothing with fixed lag n

0

0
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If the PSD's fs and fN are known and the desired operation D(9) is

given then we would like to minimize eD(f H) over all causal transfer

Rt
functions., We denote by H* the solution to this minimization problem and

refer to H+ as the optimal causal transfer functiom for (fs’fN)' Note that

H+ is unique a.e. (fs + fN)dA (i.e., if H' also minimizes eD(f ,f. 3;H) over

s’ N’

all causal transfer functions then f [fs(e) + fN(e)]dx(e) = 0, see [3]).

{(H'w'}
For the remainder of this chapter we will assume that the PSD's fs

and fN are bounded a.e. [A]. Further, we will only consider filters H

which are mean-square integrable on [-7,*] with respect to A, i.e. we will

assume that H € L2 & Lz(dx(e)). Of course, we only want to consider those

He Lz which are causal transfer functions. The set of such H is denoted

by Hi 4 Hi(dk(e)) and can be defined as the (closed) subspace of the Hilbert

in6 |

n=0,1,2,...} . i is called a Hardy

space L2 which is spanned by {e .

space (see [3],{4], or [18]). With these definitions the minimum-MSE

problem for a specific peir of PSD's (fs,fN) and desired operation D(9) can

be formulated as

t A
e (f.,£.) = min e
DSTN H € Hi

D(fs,fN,H) . (3.4)

3. Robust Linear Estimation of a Signal in Noise

Throughout this section we will assume that the desired operation D(8)
is fixed and bounded. It is clear from Section 2 that the solution, H+(e),
to the minimum-MSE estimation problem (3.4) depends entirely on the signal
and noise PSD's, fS and fN. As we discussed in Section 1, the spectra we
choose for designing H may differ somewhat from the true signal and noise

spectra. We model this spectral uncertainty by choosing appropriate classes

of PSD's, o and N, and assuming that ES € and fN € N. 1In other words,
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we know that fs belongs to o/ and that fN belongs to N , but we do not know

which elements of » and Nl represent the true signal and noise spectra.
Clearly any transfer function HR for which there exists a finite upper

bound on the MSE, eD(fS,fN

termed robust since a certain level of performance can be guaranteed by using

;H.R) over all fS in & and fN in N, could be

H (That level being: sup e (£ _,f ;H ).) Ideally we would like a

DS’ N’R
(£5.£ )€ x 7

(causal) transfer function with the smallest possible such upper bound, i.e.,

Ro

we would like to find a solution H; to the game

inf 2 sup ey
H € B (fs,fN)E s x N

(f.,E,3H ). (3.5)

S! N;

As in Chapter 11, we refer to H; as a most-robust causal transfer

function for the spectral uncertainty classes # and -

We now give some specific forms for the uncertainty classeso and N
These forms have been widely used to model uncertinty in both the engineering
and statistics literature. We will exhibit these forms for the class o/
but, of course, they could just as easily be used to model noise spectral
uncertainty.

Certainly the most commonly used uncertainty class ([6],[7],[14],[20}],

[23]1,0321,(37],[39},[40]1,[43]),[44],(46]1-[48]) is the e-contaminated model

(also called the e-mixture or gross-error model). It has the form

aal g4 o
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s, & {£,]£_(0) = (1-e)£0(0)+ £! (8)Voc[-m,7],

“ﬂ' ku 0
J £1(0)dr(e) = [ £_(6)dr(8)} (3.6)
- -

where fg is a nominal PSD and ¢ (O <e < 1) is the contamination parameter.
This class is probably the most popular for representing uncertainty because
it models the idea that we have e¢ of completely general uncertainty about

0

our choice of the PSD fs .

Another common model ([2],[6]1,{141,[20],[44]) is the total variation

model which has the form

™
Sty 4 (£ | %{nlfg(e)-fs(e)ldx(e) <e

™ LY
{ﬂfs(e)dx(e) - [ﬁfs(e)dk(e)} (3.7)

. 0 . .
where, again, fs is a nominal PSD and € an uncertainty parameter.

A third model is the band model ([1]1,{21],[22]) which has the form

m
A L U
sg = (£ [£,(8) < £.(8) < £_(8) Vo, [ﬁfs(e)dx(e) = 2w} (3.8) |
T Ty '
where | fs(e)dk(e) < 2mw < fs(e)dk(e) and w is the (known) power of the i
-1 -1 |

signal. The name band model comes from the idea that fz and fg are the
lower and upper bounds of a confidence band around a spectral estimate.
The last model is the p-point ‘or Sakrison's class b) model ([5],[8], :

[25]1,[41],([42]) which has the form




3
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s, & (£ | {A £,(8)dr(0) = 2mw, , i=1,...,n} (3.9)
i

where the Ai's are a partition of [-m,7] and 1§1w1 = w , the power of the
signal. A p-point class is an appropriate model of uncertainty in situa-
tions where, for example, we can accurately measure the power Py in each
interval Ai g [ei_l,ei] (where -7 = 90 < el < ... < en = 1) using a

nested bank of low pass filters or a bank of band pass filters. Note that
unless n is quite large we are allowing a considerable amount of uncertainty
when we use a p-point class. It might be more reasonable to obtain also
some other form of spectral estimate and use a band model in addition

(i.e., let our class be the intersection of a p-point model with a band

model). We call this a banded p-point model.

We note that for each of these classes we have assumed that the power
is known. Often it is a reasonable assumption that the power can be
accurately estimated even though the shape of the PSD is uncertain.
Furthermore, in all the specific cases in which we have found most-robust
filters (see Section 5) it turns out that they do not depend on the specific

signal and noise powers (wS and w_, respectively) but only on the input (to

N

the filter) signal-to-noise ratio wS/WN-

Returning now to the definition of a most-robust filter (3.5) for
general o and 71 , we note that, while the minimum-MSE transfer function is
known to exist for each (fs,fN) €o x 7, this is no guarantee that the
infimum in (3.5) is achieved. In fact, it need not even be finite. Of
course, even if it were not achieved there would still exist transfer
functions whose worst-case MSE over # x 7l would be arbitrarily close to

this infimum.




S ppy—————y

................
............
........

29

In the following theorem we give some mild sufficient conditions for
the infimum in (3.5) to be achieved and finite.
Theorem 3.1. If the spectral uncertainty classes o and 7! are such that

the following two conditions hold
1 'rr
1) P 3 ] fge)an(e) =wg <=
-
1i) Either (a) or (b) holds for some ¢ > O:
a) There is an -f-N € M such that -f-N(e) >e >0 a.e.l}r],
b) There is an ?S € o/ such that -fs(e) >e>0

a.e.[A];

then there exists H.; achieving the infimum in (3.5). Furthermore this

infimum is finite.

Proof. Let Ho(e) = 0,Y8. (Note that HO € Hf_ .) We have

inf sup (f.; £.3H) < sup e (f.,f.,H)
Hz.,x,,zens N anensuo
+
4 2
= sup ‘r iD(8) | fs(e)dk(e)
£ -
S
T
=B, sw | £5(0)d1(0)
£ € -
S
=BD ws<°°

2
where BD is the essential supremum of |D| . Hence the infimum in (3.5) is

finite and for any fixed M satisfying BDWS <M < » we may exclude from

.......

RN LIPS W= UL RN )



| i Aa Iee Aee e avae nee. dune s ) A RPEe Aot s SN St heui i gt S J Y e T e e W W TR TN T e i S . T e
[ B * e e :

Tl

30

consideration any H € H which satisfies e.D(fS N,H) > M for some

(f.,£f €02 x7. We will now translate this to a bound on || H s
SN i

u Y
[_J” [H(e) |2dl(e) ] which i~ the norm of H in the Hilbert space Hf_ .

b
g
N
t‘
S
L
-
-
»
b
..b
|

!

= E
If condition (a) of (ii) in the statement of the theorem holds .1
then for any fg € o and any H € Hi we have
1 |
ep (g Eyl) > 3= j' laee) | %, ((©dA(8) )
-T
€ 2
> 5 a]
. |
Hence in this case we may exclude any H satisfying || H ||2 > 2mM/e. If,
on the other hand, condition (b) of (ii) holds then for any fN € N and
any H € Hf_ we have B
1 " 2= 5
e (fS GH 25 J_’n|n(e)-u(e)| £ {8)dA(0) ;
-4
2
> (e/2m) || D-H ||
( ) ]
> (e/20)( {|o]] - lln]l ] )
1
Hence we nay exclude any H satisfying || H || > || D|| + v2mM/e .
i‘ Thus we have shown that if B > || D|| + \/ZrBDws/e then we have y
| .
: inf sup eD(fS ‘\I’H) = inf sup e (fs fN,H) (3.10) :
. HZ s x N 2 o x 4
. 4 H (B) i
s ]
¢
1 1




- Trrvr

31

where Hi(B) g [ € Hil R4l < B]. We will now show that the right hand
side of (3.10) has a solution.

2
Step 1: eD(fS,fN; *) is continuous on H+ for each (fs,fN) €S xMN.

We have

2n|ep (£, £ 30 ) - e (£, £y 3H) |

o 2 2 2 2
< 15 io-u 1%egan = Jlo-u | “ean|+ [0 |"ggan - []n|“ggar]
2 2 2 2
< B | llo- I © - |lo-r || | + BfN| [ [ O |

where Bf and Bf are the essential supremums of £
S N

Now if ||Hn—H || + 0 then IKD-Hn)—(D—H)II + 0. Hence from the inequality

S and fN’ respectively.

lag=ll 2 1 IRl = 180l | we have chat |5 || = || &Il ana fjp-n|i -
|| D-H|| . Hence eD(fS,fN;-) is continuous.

Step 2: sup e.(f ,f ;) is lower semicontinuous (l.s.c.) on H2 .

This is a straightforward consequence of Step 1 and Corollary 1.1, p. 77,
in [55] which states that the supremum over a famiir of.l.s.c. functions
is l.s.c.

Step 3: sup e (f.,f ;°) is convex on Hz. This is a straightforward
S XN D*"S°'N +

computation.

Step 4: Apply Theorem 1.2, p. 79, in [55], to sup eD(fS’fV;') on Hi(B).

% 7N

Y GV S GT W SUNE S

. 2 . .
This Theorem 1.2 states in our case that because H+ is a reflexive Banach

space (see [4]); because sup eD(fS’fV;.) is l.s.c. (Step 2), convex (Step 3),
A

]
and proper (this is trivial since e(fs,fN;H) >0 > - =) on H: : and because

T I )
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Hi(B) is convex, closed, and bounded (these can be deduced from the fact
that Hi(B) is just a multiple of the closed unit ball of Hi, see [10]);
we have that the infimum in (3.5) is achieved by some H; . QED.

As we noted above, the conditions of Theorem 3.1 are mild. Certainly
any problem in which there was no upper bound on the signal power would be
unreasonable. Further, the condition (iia) [resp. (iib)] is satisfied if
N [resp. o# ] has any of the forms discussed earlier (i.e., e-contaminated,
etc.). The only possible nontrivial exception to this would be in the case

of the p-point class if some wi=0 while x([ei_l.ei]) > 0.

ES
We now turn our attention to the problem of finding Hk » the most
robust transfer function. We begin with a definition.

Definition 3.1. A pair of PSD's (f;,f;) is least favorable for causal

. . 1 . .
estimation” for the uncertainty classes o/ and 7] if

L L +
eD(fS,fN) = max eD(fS,fN) (3.11)
s x N
¥ . . . ,
where eD(fS,fN), the minimum-MSE for (fs,fN), is defined in (3.4).
Note that (3.11) means that (fg,f;) solves the maximin game
max min e (f_.,f, ,H) . (3.12)
AN HZ DS N
+

Hence, if the minimax equality holds here (i.e., if (3.12) equals (3.5))

lThis definition differs from the ones given in [1] and [2] (see Chapter 2)
but is consistent with earlier notions of least favorability (see, for
example, [26], p. 34). As was pointed out by Verdu ([54], p. 72), this
discrepancy seems to have had its origins in a somewhat confusing discussion
in {14].
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then (f:,f;) is a least favorable pair if and only if (fg,f;) and its

+
optimal causal transfer function Hi form a saddle point solution to the
game (3.5) (or, equivalently, the game (3.12)); that is (fg,f;) and H{

satisfy
ol L.t L L,

(For a clear and thorough discussion of this point see [55], especially
Section 2.3.1.) Clearly, if (3.13) holds then H{ is a most robust causal
transfer function.

Our next theorem gives some conditions under which the optimal transfer
function for a least favorable pair is most robust. This is useful because
it is often easier to solve the maximization problem (3.11) than it is to

solve the minimax game (3.5).

Theorem 3.2. If the spectral uncertainty classes o and 7l are such that the

following three conditions hold
1 i
i) sup o f fs(e)dx(e) =Wg <@ .
-1

ii) o and M are convex.
iii) At least one of (a) or (b) holds for some £ > 0.

a) Every fN € N satisfies fN(Q) >

v
m
A\
o
[*Y)
o
—
P
—

b) Every fS € o satisfies fs(a) >

\"
m
v
Q
V]
(1]
-—
P
(S

then a pair of PSD's (fg,f;) in# x N and its optimal causal transfer
function H; form a saddlepoint solution to the minimax game (3.5) if and

L
only if (fs,fg) is least favorable for causal estimation, i.e., solves
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(3.11) (note that in this case H{ is a most robust causal transfer function). b

e

Proof: We will need the following lemma (which is Theorem 2 in [11]) L

AAaaan g, s se o oo e e
A !

- Lemma 3.1: Let X be a compact Hausdorff topological space and Y an

arbitrary set. Let F be a real-valued function on X x Y such that for
every y € Y F(x,y) is l.s.c. on X, If for each y € Y F(x,y) is convex

on X and for each x € X F(x,y) is concave on Y then

min sup F(x,y) = sup min F(x,y). (3.14)
x€X yeY yEY x€X

We wish to apply Lemma 3.1 with X = Hi(B) (Hi(B) was defined in the

= SO

proof of Theorem 3.1), Y =o XN , and F(x,y) = F(H,(fs,fN)) = eD(fS,fN;H).

] Since Hi is a reflexive Banach space Hi(B) is compact in the weak topology
F(: (see [10], Chapter V , especially Theorem V.4.7, or [55], Sections 1.2.2 r
p

and 1.2.3). Furthermore we saw in the proof of Theorem 3.1 that eD(fS,fN;-) R

4 aad

is continuous (hence l.s.c.) in the norm topology of Hi(B) and that

i!! eD(fs,fN;-) is convex and proper on HE(B). Thus by Proposition 1.5 of j
3 [55] we have that eD(fS,fN;-) is l.s.c. in the weak topology of Hi(B). The

E final condition of Lemma 3.1 is that eD(-,-;H) is concave on o x 7 . But ;
@ this is trivial since it is even linear. Thus we have shown that for any 1
g R

b B > 0 we have

min sup e (f.,f ;H) = sup min e (f_,f ;H) . (3.15)
o ey ? nD SN Sx M2 D\'s’ N
I + + 7]

Note that since the conditions of this theorem are stronger than the !
conditions of Theorem 3.1 we have from the proof of Theorem 3.1 that if B

is large enough then the left hand side of (3.15) is equivalent to (3.5).
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We will now show that the right hand side of (3.15) is equivalent to the
right hand side of (3.1l1).
If (say) condition (a) of (iii) holds than for any (fs,fN)EJxﬂand

any H € Hf_ we have that

1 2
ey (fg-fysH) > 5= [ x| £dA

> (e/2m) [ |u|%an

= (e/2m) || B2

Ty e
B S h
o ! ‘

1'
Hence for any B > \/ZneD(fs,fN)/e we have

min eD(fs,fN;H) = min eD(fS,fN;H)

2 2
.H_‘_ H+(B)

- Furthermore, if B >‘/21r sup e;(f of£.)/e we see that the right hand side of
o/ x N §° N

1-
p (3.15) equals the right hand side of (3.11). We note that sup eD(fS,fN) is
always finite under the conditions of Theorem 3.1 (hence under those of

Theorem 3.2) because it is always less than or equal to

, &
m1n2 "Sl:pn eD(fs,fN) .
€
H H+

o L
r Thus we have shown that under condition (iiia) B can be chosen so
1 that (3.15) implies
[ .
. min sup e (f_ ,f ;H) up min e_(f_,f ;H)
P ’ M = S > H
. 2 SN D SN Jx N2 D SN

H H

+ +
L

»




L e B T Y

v v a
Pt

r
L

36

Knowing this we have (see Section 2.3.1 of [55]) that (3.11) is equivalent
to the existence of a saddlepoint solution to the game (3.5) and that,

in particular, any solution (fg,fg) to (3.11) and its optimal causal
transfer function HI form a saddlepoint solution to (3.5). Thus H{ is a
most robust transfer function . Conversely, any pair of PSD's which together
with its optimal transfer function forms a saddlepoint solution to (3.5)

must also solve (3.11).

Finally we note that (just as in the proof of Theorem 3.1) we may
obtain these same results if condition (iiib) holds instead of (iiia) and
the theorem is proved.

While the conditions of Theorem 3.2 (especially (iii)) are not as
innocuous as those of Theorem 3.1, they are satisfied by any e-contaminated
(see (3.6)) whose nominal PSD, fo, satisfies fo(e) > 6 a.e. [A], for some
§ > 0, by any band model (see (3.8)) whose lower bound fL satisfies
fL(a) > & a.e. [A] and hence by any banded p-point model whose lower
bound satisfies this condition. This is not an unreasonable condition
since it only need apply to one of o and 7, not both. Generally the
noise will be wide-band with respect to the signal and this condition will
be satisfied by 7. Alternatively, we might assume there is a small white
component to the noise. This added component is sometimes called . "noise
floor" and has been used, for example, by Van Trees to make the problem of
detection in nonwhite noise analytically tractable. See [57], Section 4.2,
for further justification.

The benefit of Theorem 3.2 stems from the fact that the maximization

in (3.13) should be easier to solve than the original minimax problem (3.5).
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In general, this will only be so if we have a closed-form expression for
e;(fs,fN) as (fs,fN) ranges over o X 7. Such expressions have been found
in a variety of cases by various researchers (see [3], [4], [13],[15]-{19],
[33]1,[34]). 1In particular Snyders [3] has developed a general method for
finding such expressions when one of fs and fN is fixed and rational while

the other is completely arbitrary.

4. Robust Noiseless One-Step Prediction

In this section we consider in greater detail the special case of
prediction one step ahead of a signal with uncertain spectrum. The
signal is assumed to be received in a noiseless environment. In other
words, we consider the problem (3.5) with D(8) = e-ie and fN(G) = 0
for all 9 € [-m,m]. This special case is the one considered previously by
Hosoya [23]. The conditions on our main theorem (Theorem 3.2) when
applied to this case are slightly more restrictive than those of
Hosoya's analogous result (Theorem 2, p. 581 in [23]). On the other hand,
in [23] only the e-contaminated class (see (3.6)) is considered and the
proofs directly depend on the specific form of the least favorable PSD
for this class, whereas our treatment is valid for more general uncertainty
classes.

For a known signal PSD, fs(e), the one-step minimum-MSE noiseless

prediction problem is given by

+
eD(fs,O) = mén eD(fs,O,H) (3.16)
H,
-i8 + 2 .
where D(9) = e and eD, eD and H+ are defined in Section 2. Note that

e, .,
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this is just (3.4) with fN(e) =0V 0€[~-r,7]. In this section we refer

to the sclution to (3.16) as the optimal linear predictor for fs.

The Szegd-Kolmogorov-Krein Theorem [3],[4] states that (with

D(B) = e-ie ) we have
el’;(fs,O) = exp [% j'wlog fs(e)de] (3.17)
-7

where the right hand side is interpreted as zero if log fs is not
integrable. (Technically, the fS in (3.17) 1is the density of the absolutely
continuous part of fs(e)dx(e) with respect to Lebesgue measure on [-w,7].
However, since the case of greatest interest is when A is Lebesgue measure
and since any predictor can be adjusted to perfectly predict the singular
part of any signal spectrum (see [18]) we assume here that fs is just the
usual (Lebesgue) PSD).

We now consider the case where the signal spectrum is uncertain. As

in Section 3 we assume that we know only that fS € o/, and we wish to find

H; solving
min sup eD(fS,O;H) (3.18)
H2 o
+
where, again, D(6) = e—le. In this section we refer to H; as the most
robust linear predictor. Also, we define fé to be least favorable for

nne-step noiseless prediction for o if (fé,O) satisfies Definition 3.1 with

N = {0}. From (3.17) we see that fg is least favorable for one-step

noiseless prediction for o if and only if
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m T
[ log fg(e)de = max [ log £5(0)de . (3.19)
-1 4 -7

Furthermore, under the conditions of Theorem 3.2 we have that fg solves

(3.19) if and only if fg and H{ form a saddlepoint solution to (3.18),

where H{ is the optimal linear predictor for fL Thus, if we can solve

S.
(3.19) then we can find the most robust linear predictor for o .

We will now demonstrate how to obtain the exact form of a least

favorable spectrum for each of the uncertainty classes discussed in Section

3. The method we use involves an analogy to robust hypothesis testing.
The advantage of this is that it allows us to make use of the considerable
effort already expended in finding least favorable probability densities
for that problem (defined below). This analogy was the underlying basis
for the solutions given in [1] and [22] and was developed explicitly in
Section III of [2] (see Chapter 1I).

As in each of the classes of Section 3, we will assume that
satisfies a power constraint, i.e., that J‘fs(e)de = was, where
0 < wg < @ is the power in the signal process {S(k)}. We can now define

a class of probability densities on [-w,m] by

65 = {pg(8) [pg(8) = £5(8)/2mu , £ € o} (3.20)

and consider the following pair of statistical hypotheses concerning a

random variable X on [-m,7] and its Borel o-field
H : X ~ p(9) = —1—‘1'-"-‘[—1r7r]
27 T '

versus (3.21)

13
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For any test ¢ of H, versus H, define R, (¢;P) to be the conditional risk

1 0 3

of using ¢ when X ~ P under Hj(j-O,l) (see [26]). Consider the following

(see, for example, [26]).

Definition 2: For the hypothesis pair in (3.21), fs € OS i3 least

favorable in terms of risk for 9% versus {1/2r} if

for every probability ratio test ¢' between qg and 1/2n.

Least favorable densities play an important role in the design of
robust hypothesis tests (see [14], [6]). They have been found for the
e-contaminated and total-variation models ((3.6) and (3.7), respectively) b

Huber [14], [27]; for ‘the band model (3.8) by Kassam [21]; and for the
p-point mudel (3.9) (see Chapter V). Thus the importance of the following
which is related to Lemma 1 of [2], Theorem 2 of [21] and results

in [29] and [30].

Proposition 3.1: Let ¢ be any differentiable concave function on (0,«).

Let 6% be any convex set of probability densities on [-w,m]. 1If qS € 6%
is least favorable in terms of risk for OS versus the uniform distribution

on [-7,n] then, for all p_. € #_,, we have
S S

Jolag(e))de > [olpg(8))de . (3.22)
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Proof: We wish to show that I ¢(ps(6))d6 achieves a maximum over 6% at qg-
Since I tw(+) is concave we only need to show that
9
=1 [ol(-e)ag(e) + epg(®dldo] _, <0 (3.23)
v Pg € OS' The left hand side of (3.23) is

of (1-€)q (8) + epo(8)] - ©(q (6))
lin | 3 > S ds (3.24)
ed0

But, by the concavity of ©®, as €40 the function inside the integral in
(3.24) converges pointwise up to m'[qs(9)1[PS(9) - qs(e)]- So the left hand
side of (3.23) is less than or equal to f w'[qs(e)][ps(e) - qs(e)]de . This
latter term is nonpositive since (by concavity) ' is nonincreasing and qq is
the distribution making qg stochastically smallest over 95 (see [14], [27])

therefore implying

J o (ag(®pg(8)de < [ o' (qg(8))aq(8)ds .

This concludes the proof of Proposition 3.1.
From this proposition and Section 3 in [14) we have that if o is an
g-contaminated model (i.e. has the form (3.6)) then
(1-e)fg(6) for fg(e) > ¢!
a =
fs(v) (3.25)

c'(l-e)vas for fg(e) <c'

where fg is the nominal PSD in (3.6) and the constant c' can be determined

so that

~ L ~» 0
. fs(e)d9 = | fg(8)ds .
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Note that this agrees with the result given in [23]. Similarly fg may be
found for the other uncertainty classes discussed in Section 3.

We also note that -[f“ o(p(6))d6], as in Proposition 3.1, may be
thought of as a '"measure ;2 the distance" between Pg and Lebesgue measure
on [-m,m]. - I@(-) is related to a class of divergences sometimes
referred to as Ali-Silvey distances (see [29]-[31], [21]). Thus,
Proposition 3.1 says that fs is an element of o which is "closest'" to
Lebesgue measure. This makes f; of (3.25) intuitively appealing since it
is the "flattest" element of #/.

Another interesting fact about fg is that it is a least favorable
spectral density for the problem of calculating the rate-distortion function

of the class of discrete-parameter homogeneous Gaussian sources whose

spectra are contained in an e-contaminated class (see [32]).

5. Robust Filtering in White Noise: Numerical Results

Abstractly, the significance of robust signal estimation is clear:
to be able to put the tightest upper bound on the error when the possibility
of deviation from the assumed spectra exists is clearly desirable. However,
as we discussed in Chapter II, in most situations we must also expect that
the robust estimator will not perform as well as the assumed (or nominal)
estimator if the true spectra are the nominal spectra. So there is a
trade-off. Thus the questions that naturally arise are how much is gained
by the robust estimator in its worst case (at (fg,fg)) as compared to the
nominal estimator at its worst case and how much is lost in using the
robust estimator should the true spectra be the nominal ones. Clearly a

blanket statement of the superiority of one estimator over the other in all
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cases is not likely to prove correct. Thus, we consider these questions for
two numerical examples.

Specifically, we consider robust filtering of a first-order Markov
signal in white noise. It has been shown [33], [34] that , if fg is the

spectrum of white noise (i.e., f:(e) = N, for some positive constant NO)

0]
and if D(8) represents filtering (i.e., D(s) = 1), then

el (f,f0) = Ny{1 - exp 3= ([ Log(1+Nzleg(e))de] ) (3.26)

A n a-y

for any signal PSD fS. In view of Eq. (3.26), the results of Section 3 and
Proposition 3.1 in Section 4 can be applied to any convex signal uncertainty
class o/. 1In particular, for normalized classes, results from robust
hypothesis testing can be used to obtain least favorable signal spectra and
hence most-robust filters. !

For a wide variety of applications it is appropriate [35] to assume

that the noise is white and that the signal is first-order Markov,

i.e., has PSD fg where

]
ii
Dy = @ = D ;
S 5 , (3.27) g
1 - 2rcost + r 4
3
for some r €[-1,1]. A process with this spectrum has power wg and, for :
r >3 -2/3% 0.172, it has 3 dB power bandwidth
-1 r2 -4r +1
7
cos [ T ] (3.28)

Substituting the expression for fg into (3.26) we obtain ei(fg,fg).
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Alternatively, since fs(e) is rational, we can determine that the optimal

causal transfer function for the nominal pair (fg,fg) is given by

-f.
HO(S) = K

: 8 € [-m,m] (3.29)
—-.3
1l - ae
where
- b - b2 - 4r2
a 2r ’
aw (1-r2)
g austT)
No(l-ra)
and 2
w (1-r7) 2
b =S 4 (1+r°) .
N
0
. 0 Y R +..0 W
We can then substitute fs, fN’ and (3.29) into (3.3) to obtain el(fs, fu).

As in Chapter II, we use a measure of performance in the figures which
we refer to simply as output signal-to-noise ratio (SNR).~ The purpose
of Wiener-Kolmogorov filtering is to minimize the MSE,E{[;(C) - S(t)|2},
between our estimate g(t) (i.e., the output of the filter) and the actual
signal S(t). Since the output of the filter can be written as S(t) +
(g(t) - S(t)), we use the signal power divided by the MSE as an output SNR.
For the purpose of our graphs we translate this to dB. The horizontal
axis is 10 1oglo(wS/No), the input SNR in dB.

The top line in Fig. 8 gives the performance of the filter HO’ ziven
in (3.29), (which is optimal for the pair (fg,fg)) when fo

S

fact, the signal and noise spectra which occur. In Fig. 8, the signal

W
and f_ are, in
N

bandwidth is 0.105.
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Suppose, now, that we are not completely certain about our choice of
signal spectrum. In particular, assume we know only the total signal

power w. and that the fractional power w, on the set Alé{9||6|<0.125} is

S

given by W= 0.555 LA In other words, we are modeling our uncertainty
about the signal by defining o/ as the p-point class (3.9) with A and w,

c
as above and AZ—A1 and W= 0.445 wg-

If all we know is that fgﬁ# then we would like -‘to know how badly the

performance of HO can deteriorate. The bottom curved line in Fig. 8 gives

the worst case performance of Hg.

to show how bad this deterioration is. It gives the performance of an

The straight line in Fig. 8 was included

all-pass filter (i.e. H=E1).

+

So we see that the performance of the optimal or nominal filter HO

can deteriorate by as much as 3 dB; and, for input SNR above 6 dB, its
performance can be significantly worse than no filtering at all. Thus

there is a clear need for robust filtering.

Applying Proposition 3.1 with o(x) = log(l + x/No) (see (3.26)), it can
be shown (see Chapter V) that fg is least favorable for causal filtering

for the uncertainty classes o and 7 2 {fg} if fg is given by

2mw, /0.25 for & € A
L 1 1
£4(8) = (3.30)

2nw2/(2n - 0.25) for 9 € A2

It is clear that the hypotheses of Theorem 3.2 (specifically i, ii,

and iiia) are satisfied for this o and . Thus, the most robust filter

HR is the optimal filter for (fé,f:). It can be seen from [16] and (3.29)
£ 2 A
that {l - HR(S)! is constant on Al and on A2. Since every element of
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W
has the same power on Al and on A,, the error el(fs,fN,HR) is constant

2
. . +,.L W, _ w_ .t
over all fS € o ; in particular, el(fS’fN) = el(fs,fN,HR), for all

fS € o, and we can calculate eI(fg,fg) using (3.26). The constant (overs)

performance of H; is given by the second line from the top in Fig. 8.
It is clear from Fig. 8 that, unless we are very confident about our

original choice of signal spectrum, fg, the robust filter H; is preferable

+
to Ho.

For our second example, we assume that we have again chosen fg
(first-order Markov signal) and fg (white noise) as our signal and noise
spectra; but instead of assuming we know the fractional powers, as in the
previous example, we assume, now that we have a general sense of uncertainty
about our choice of signal spectrum, i.e., we assume that 7 = {fg} and that

» 1is an e-contaminated class (see (3.6)) with nominal spectrum f0

g given

by (3.27).

-
Of course, el(fs,fg;HO) is the same as in the previous example; in

particular, el(fg,fg) is the same. From the expression for el(fs,
we can calculate e (fWC fw'H+) = sup e, (f fw'Hf) It is easy to see
1'°s” "'N0 £ & 1'°s’"N*07°
S
WC ce o 0 '
that fs (WC stands for worst case) is given by (l—e)fS +ef! , for any

' i i ! = - =
fs satisfying fs(e) 2ww15(8 n)+2ww26(6+w) where vy +w, Vg
+ 2 _ + |2 + 2 '
Il - H (-n)| = |1 - H (7)!" = sup Il - H (e)l . (Of course, these f
0 0 0 S
9€ [-m,m]
are not actual PSD's but since we can get arbitrarily close to their value

W ..t
fN,HO)

since

W
in el(fS’EV;HE) using the usual limit arguments for dirac delta functions
+
0

are given by the top and bottom curved lines, respectively, in Fig. 9.

at (fg.fg) and (£7C£7)

we will use this notation.) The performances of H s*fy

For Fig. 9, ¢ = 0.1 and the signal bandwidth is 0.001. As in the previous

# A m e m o~ -
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example, the straight line gives the performance of an all-pass filter;
and, for input SNR between 10 and 60 dB, the performance of the "optimal"
filter H;

a clear need for robust filtering exists.

can be much worse than that of the all-pass filter. Once again,

In order to find fg € o/ , we can apply Proposition 3.1 with the
same ¥ function as in the first example. Thus we see that the least

favorable spectrum fg is given by (3.25) if fg is the first-order Markov

spectral density given in (3.27).

We can now calculate eI(fg, fg) by substituting (3.25) into (3.26).
On the other hand, el(fg,fg;H;) is more difficult to calculate. Fortunately,
Yao has developed an expression (see equation (36') and ff. in [16]) which

can be used to find |1 - +(6) 2. And we can write e (fo,fw; +) as
B 1oty

™
el (eh. ) - = [ 1 - BI) | 2(Eg (@) - £2(0))do . (3.31)
-

The second and third lines from the top in Fig. 9 give the performance

BN
of Hﬁ at (fg,fg) and (Fé, fg) , respectively. For input SNR below 0 dB or

- +

above 60 dB there is essentially no difference between H_ K6 and H

0 R; between

0 and 30 dB the insensitivity of H; makes it preferable to HO unless we

<
are fairly certain about our choice of f_; and between 30 and 60 dB HR is

S

We also note that above 20 dB the performance of

0"

4.
HR is the same as the all-pass filter. Hence, for high input SNR, we are

clearly preferable to H

0

The examples given in this section are in close agreement with those

better off doing no filtering at all than using HR or H

for the continuous-time case given in Chapter II1 and the appendix. Based

on this experience we can conclude that the robust filter design developed




vV vy Vv v
-

PR
o St o

49

60

dB)
N
@)

.Output SNR (
N
o

0 L | I 1 l |
-20 -10 O 100 20 30 40 50 &0
Inpuf SNR (dB) FP-7239

FIG. 9. e-Contaminated Example. (From top to bottom)

‘ 0 w, . .t 0 W, ,* L W, .t

T . . '
HO at (fs,fN), HR at (fS,fN), HR at (fs,fN) (HR s worst
case; HB at (fgc,fg) (Hg's worst case)(straight line is

performance of trivial all-pass filter).
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here and in [2] is always worth considering and is often preferable to the

nominal filter in situations where spectral uncertainty might exist.

6. General Spectral Uncertainty

In the preceeding sections we have modeled spectral uncertainty via
classes of bounded spectral densities. While this formulation is quite
general and allows for accurate modeling of uncertainty in most situatioms,
there are still a number of practical circumstances in which greater
generality is needed. For example, in many situations there can be a
contamination of an assumed noise PSD by small amounts of noise generated
by rotating machinery located in close proximity to the receiver. This
noise is Bften best modeled by sinusoids of random phase at frequencies
which are imprecisely known. Similarly in, for example, an active sonar
system such contamination can be present in the signal spectrum due to
engine noise generated by the target or due to jamming (see [561).

Thus, it is clear that a completely general model of spectral
uncertainty should include pure tones. This is modeled mathematically
using spectral distributions or, equivalently, spectral measures. This
means, for example, that if the signal covariance function is Rs(k) then
the spectral measure mg of the signal is a Borel measure on [-m,7]

satisfying

1 0 -ik6

R(k) = 3. . dms(e)

(See [36]. Chapter X, Theorem 3.2). The spectral measure mN of the noise

is similarly defined.
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In this setting (3.3), the MSE, becomes

m m
@t £ 5] @R ams) + 7] BE) Pamy® 632

where D and H are the transfer functions of the desired and performed
operations, respectively, and now must be mean-square integrable with
respect to g and mg + My» respectively. Furthermore we have that such a
transfer function H is causal if and only 1if H € Hf_(d (ms+ mN) (6)), the

Hardy subspace of L2 (d(ms-i-mN) (8)) (see Section 2). We also note that the

minimum MSE, equation (3.4), becomes

+ A (3.33)
ey (mg,my) = min , e (mg,m;H)
H € H.(d(mg+m ) (8))

We now consider, as in Section 3, the situation where we only know
that for some classes » and N of spectral measures the true signal
spectrum satisfies m € o/ and the true noise spectrum satisfies oy € N. 1In this

S

setting a most robust causal transfer function H.; is a solution to the game

inf sup e (m, ,m_;H) (3.34)
HE}C(mS,uﬁ)EJXﬂ D%y

where X = N Hf_ (d(m +mN) (8)). We do not need to consider any H
S
(mS ’mN)E & xN

not in X because if H € ¥ then either H is not causal or for some (ms,mN) €S XN

we have that eD(mS,mN;H) = » _, Similarly to definition 3.1 we

define (m;", "‘;‘) to be a least favorable pair of spectral measures for

the uncertainty classes o/ and 77 if
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R (m_, ) = max (m_,m,) (3.35)

ar
where eD(mS,mN) is defined in (3.33).

Of course, our objective at this point is to prove results like
Theorems 3.1 and 3.2 for this more general setting; i.e., to show that
a most-robust transfer function always exists and that if a least
favorable pair exists then the optimal transfer function for that pair is
a most robust transfer function. We have been unable to show that this is
the case here. However, the following result (Theorem 3.3) is in
some sense symmetric to Theorems 3.1 and 3.2. That is, this result
rtates (under a mild condition on the uncertainity classes o and 7) that
a least favorable pair always exists and that a most robust transfer
function exists if and only if the optimal transfer function for the least

favorable pair is also a most robust transfer function.

In order to formulate the hypothesis of Theorem 3.3, we consider
and 7N as subsets of the Banach space B of Borel measures on [-m,m] (see [4]).
We consider 8 to be endowed with the topology induced by ¢, the Banach
space of continuous functions on [-w,n}; i.e., a sequence

{mn}gs converges to m€ B in this topology if and only if, for all

feC,
| m m
r J g@dn (0) [ £(a)dm(9). (3.36)
o - "
f Note that B is the dual space ofC and that, in this setting, this
topology is called the C-topology or weak*topology on B (see [24] or [10]).
®
4
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In probability theory a sequence {mn} of probability measures is said to

be weakly convergent if (3.36) holds for some m€ g8 (see [9]).

We are now ready to present the main theorem of this section.
Theorem 3.3: Assume the transfer function of the desired operation D(8) is
continuous on [~m,w]. If the spectral uncertainty classes o and 7 are
convex and weak*compact then there exists a least favorable pair
(mL,mg)G Ix7; i.e. (mL,mNL) satisfies (3.35). Furthermore, a most robust
S S
transfer function exists if and only if the optimal transfer function for

(mls'.m;) s H.Z , 1s a most robust transfer function; that is, if and only if

e, (L, mosH] ) = e (gm ) (3.37)

holds.

Proof. The proof of this theorem is quite similar to that of Theorem 3.2.
In fact, we begin by applying Lemma 3.1. Let X = o x 1 (endowed with the
weak*product topology), Y =X NC and F(x,y) = -e (ms m.N,H) F(x,y) is
clearly convex on X and concave on Y, and X is compact by hypothesis. We
have only to show that F(.,y) is lower semicontinuocus on X. We will
actually show that it is continuous. Let (mlsc,nﬁ)E # x N converge to

(m(s)’ mNO)E o x7 in the (weak*product) topology of & x M. Since HE ¥ " &
and D is continuous by hypothesis, we have that | D(8)-H(8)| 26@ and

| H(®) ZEC . Hence, from equation (3.36) we have that

T v
[ o) -u@)|ans @) +f Ip(@) -1(2)|%am () and

T

and © 1@ | tamg(®) ~ |H<e>| dmg(8). Hence e (mf,mi3H) = ep (mg,mo3H),

-1

i.e., eD(.,.;H) is continuous on o x 7. We can now apply Lemma 3.1 to yield

.
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max inf e_ (m_.,m ;H) = inf max (m sH) . (3.38)
sxnine D STNTY Tens Jn s
Now, for each pair (ms,mN)EJx N, we have that G+ & {H €C|H is causal }
(i.e. 64.13 the subspace of C spanned by {einﬁ n=0,1,2,...}) is dense in
H+2(d(ms-|mN(6)). We have that G+EH+2(d(mS-I-mN) (8)) since H continuous

on [-n,7] implies H is bounded and, hence,

[1r@l ? dmgm) o) < (sup | u(o) %) (agtm)) (Lm,mD)< o,

. 2
That CE+ is dense in H+ (d(ms-HnN) (8)) now follows from the fact that they
are both spanned by {ein6| n=0,1,2,...}. This implies that for each

(mgsm)EL XN we have C, =X NC = Hf_(d(ms-i-mN)(S)) NC and we have

inf e (m,.,m_;H) = min e (m,,m ;H). This and (3.38) imply

xne D TN Hy (d(mgrm) (@) D S R
inf max e_(m,,m ;H) = max min e (m,,m ;H). (3.39)
xne »xn P SN JxﬂHi(d(mShnN)(e))D 52"

But for any minimax problem we have sup inf < inf sup, hence the right hand

side of (3.39) is less than or equal to

2 inf max e (m ] ;H) —<’ inf max e (m , ;H . 3.40
H, (d(mgm ) (8)) o x N D 5"y Ynaosxn D8N ) (3.40)

=4

.*:‘.4
=4
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2
This last inequality holds because ¥ NC C H+(d(ms+mN)(B)). Since the

right hand side of (3.40) equals the left hand side of (3.39) we have

inf max e (m_,m ;H) = max min e (m,,m ;H) ]
W axn DSTNT TN HE (d(mgtm ) (8)) 0 ° w ]
! 3.41
-Jmﬁz © (ms,mN). (3.41)

In particular, there exists a pair (mSL,mNL)E.’X7Z solving the right hand
side of (3.41), i.e. (mSL, mNL) is a least favorable pair. Further, we
see from (3.41) that a saddle point exists if and only if a most robust
transfer function (i.e. a solution to the left hand side of (3.41))

exists. Finally, this implies (see [55],Section 2.3.1) that a transfer 1

f
function HR is most robust if and only if it satisfies ,
L L t L L
(e, m"; Hy ) = , min ey (mc,my 3 H)
’ D\"s* My
DT T R Hy (d (mg+m ) (9))

cadhaded it oo ad

Hence, by the uniqueness of optimal transfer functions (see [3]), if
.r

+ t + .
HR is most robust then HR = HL a.e.[ms+mN] and HL is a most robust

causal transfer function.QED
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For the remainder of this section we will consider a general
formulation of uncertainty classes involving 2-alternating capacities
(defined below). As we shall see, this formulation includes most types
of classes that have been used to model uncertainty in the robustness
literature and all such classes are convex and weak* compact, i.e. they
satisfy the hypothesis of Theorem 3.3 regarding o/ and 71. Furthermore,
least favorable pairs have been found for many of these classes (in
particular, the five discussed below) for the analogous problem of robust
hypothesis testing, and we have shown in Sections 4 and 5 how these
least favorable pairs for robust hypothesis testing can often be used
to find pairs which are least favorable for robust signal estimation.
Finally, we note that 2-alternating capacities are central to efforts
being made to develop unifying theories of robust statistics and of
robust statistical communication (see [37], also see [6], [7], [32]
and Chapters IV and V).

We define By L {m €4 m is nonnegative} and we let & denote
the Borel oc-algebra on [~m,m]. Suppose N C /3+. We will be thinking of 7
as a possible uncertainty class of signal or noise spectral measures.
Thus, it is not unreasonable to assume as we did in Section 3 that, while
we are uncertain about the spectrum, we still are able to make an accurate
estimate of the power of the process. Thus we assume m([-m,7]) =
2w, Tm € M, where w is this constant power.

If 772‘5/3+ then we can define the upper measure, v, of 71 as

v(a) = sup{m(A) meMm)}

RORIE S A
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for each A&7 . Clearly, if m([-w,7]) = 2mw Ym€7, for some w < =, then v

E‘g satisfies
v($) = 0, v([-m,7]) < = (3.42)
AS B = v(A) = v(B), (3.43)
A+ A=Vt V). (3.44)

Of course we actually have v([-w,7]) =27Ww. If M is also weak* compact

then v satisfies ([6], Lemma 2.3)
Fn { F, Fn closed = v(Fn) + v(F). (3.45)

Any set function v on & satisfying (3.42)-(3.45) is called a (Choquet)

capacity [12]. If v further satisfies
v(AUB) + v(ANB) < v(A) + v(B) (3.46)

then v is called a 2-altermating capacity.
For a 2-alternating capacity v we define

m, = m€BJma) < v(a), VAEZ,m([-m,m]) = v([-m,7])}. (3.47)

Robust noncausal (infinite-lag) smoothers have been developed for classes
of this form in [7]; and, in [32], a method of finding the rate-distortion

function for classes of discrete~parameter homogeneous Gaussian sources

,. whose spectra belong to a class of this form is developed. Also, classes
of probability measures having the form (3.47) were considered in detail

); bv Huber and Strassen [6] as uncertainty models for robust hypothesis

>. testing. Most importantly for our purposes, it was shown in [6] that ﬁv

is weak* compact (note that ﬁv is also clearly convex), that the upper
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measure of W%'is v, and that three commonly used uncertainty models
have the form (3.47). {f

The first of these models is the e-contaminated model

772s & {mGBJ m(a) = (l-e)m’(A)+ m'(A),VAed;mO([-Tr,'rr])=m'([-W,W]);m'EB+} (3.48)

TN EE Y S M B )

where ¢ € [0,1] and m0 is a nominal measure. This has the form (3.47)
with v(A) = (1~e)m0(A) + emo([-n,n]) for A # ¢. Let A be a finite Borel }F
measure on [-T,m] such that m0<<x and dmO/dA is bounded a.e. [)\], and ?1
consider the following set of spectral densities {f = dm/d) where nmEW%

such that m<<) and f is bounded a.e. [A]}. Clearly this is nothing more "
than the ¢-contaminated class J; of PSD's defined in (3.6) with 71

fg = dmO/dA. Similarly classes of measures can be defined to correspond

to the total variation class given in (3.7), the band model given (3.8),

POy

and the p-point model in (3.9). It was shown in [6] that the total

variation class of measures can be generated by a 2-alternating capacity

having the form

v(A) = min {m"(A) + enC([~m,7m]), mO ([-7,7]) ]}

et hina B

for A # 6. !

It will be shown in Chapter IV that the band model can be generated 1

bv a 2-alternating capacity. In fact the band model is a rather nice )
. U r U L " L

special case. If we let m (A) =JAf (?)dxr(8) and m (A) =iA £7(2)dA(B)

- -4

for all A € Zwhere FL and FL are the upper and lower PSD's of a band

model as in (3.8) then the corresponding band model of measures is given by

Y

Mg & (n€B) m"(a) < m(a) < n’ (&), YALT; n([-7,7]) = 2mw) (3.49) 1
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where w is the constant power and mL and mU are lower and upper measures,
respectively, satisfying mL ([-m,7]) < 2mw < mp([-w,n]). So we see that
for the band model there is a one-to—one correspondence between the density
version and the measure version. Furthermore, if fU(e) does not satisfy
condition (ii) of Theorem 3.1 we can take the densities with respect to
mU instead of A. Once we do this we have fU(e) = 1,V 6,and the conditions
of Theorem 3.1 will be satisfied. Hence a most robust filter exists.
But since W% is a 2-alternating capacity class (it is generated by
v(A) = min {ZWW-mL(AC), mU(A)}, see Chapter IV) we have that the conclusions
of Theorem 3.3 also apply to the band model. Hence we have
Theorem 3.4. If o/ and 7N are band models as in (3.8), ¢©r equivalently, as in
(3.49), then there exists a pair (fSL, fNL) €o’ XN such that (fSL, fNL)
is least favorable and HE , the optimal transfer function for (fSL, fNL),
is a most robust transfer function.
Note that a singleton is, of course, a special case of a band model.

The p-point model is, uinfortunately, not a capacity class and is
never weak* compact, but in Chapter V we will show that the weak* closure
of a p-point model is a 2-alternating capacity class and in many situations
the results for the closure can also be shown to hold for the actual
p-point class.

The last of the 2-altermating capacity classes considered in [6]
(the first two being the e¢-contaminated and total variation classes) is

called the Prokhorov class. It has the form

3
He>

m 8ac 8| m@ = a¥ @ )+ en’([=r,71),TALDs m([=r,m])m ([-7,71) } (3.50)

-4
:

3

-]
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where § > 0 and ¢ € [0,1], m0 is a nominal, and A6 is the closed §-
neighborhood of the set A, i.e. A6 = {SE[-n,wllinﬂ 6-a| < 8}. The 2-

acA
alternating capacity v which givesiWP the form (3.47) is defined by

letting
v(A) = min{mO(A‘S) + smo([-w,ﬂ]), mo([-wnr])}

for compact A # ¢ and, then, extending v to & via (3.44) and (3.45).

While the Prokhorov class has no immediate intuitive appeal, it has some

nice theoretical properties; for example, the set consisting of all

classes having the form (3.50) (i.e. as § varies over [0,2r] and e varies

over {0,1]) forms a base for (i.e. generates) the weak* topology (see [9]).
From the above discussions we see that many of the classes one might

use to model spectral uncertainty are 2-alternating capacity classes and

hence are weak* compact and convex. Thus we see that the hypothesis of

Theorem 3,3 is quite general.

7. Discussion
In this chapter, we have considered the problems of robust causal

smoothing, filtering and prediction of a discrete~time signal in noise and
the special case of robust noiseless one-step prediction. Our formulation
is analogous to that developed in [2] for r bust noncausal continuous-time
filtering; however, the proof of the main theorem (Theorem 3.2) required a
more abstract approach since no completely general expressions exist for
the optimal transfer function or the minimum error. This same difficulty

has prevented us from proving a general theorem stating that if the

uncertainty classes ©of Theorew 3.2 each satisfy power constraints

S e
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then a least favorable pair of PSD's can be found directly from the (in
many cases, known) solutions to an analogous robust hypothesis testing
problem. Fortunately, as we showed for the robust one-step noiseless
prediction problem in Section 4 and for the filtering in white noise
problem in Sertion 5, Proposition 3.1 can be applied to yield this result
in many cases. For example, it is straightforward to see from the
expression given in Theorem 1 of [3] that this approach will work for the
problem of robust one-step predict?on in white noise. Many other cases
could be handled in this manner or by, first, proving a more general
version of Proposition 3.1 to suit the other cases for which minimum
error’ expressions have been developed [3], [15]-{19], [33], (34].

In Section 6 we saw that the notion of a 2-alternating capacity is
useful as a general model of uncertainty., In the next two chapters we

consider capacities and some of their properties in detail.

A al A .
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IV. A GENERALIZATION OF THE HUBER-STRASSEN DERIVATIVE

- 1. Introduction

As we discussed in Chapter III, Section 6, the formulation of

! uncertainty in terms of classes of measures dominated by 2-alternating

| Choquet capacities, first considered by Huber and Strassen [6], is quite
general. It includes most classes commonly used to model spectral uncer-

tainty or to model uncertainty in robust hypothesis testing. In [6],

Huber and Strassen develop the Neyman-Pearson Lemma for classes of
probability measures whose upper probabilities are 2-alternating capa-
cities. 1In particular, they prove the existence of a minimax test
statistic between two such classes (this statistic is actually a deriva-
tive between the capacities which dominate these classes) and the exist-
ence of a least favorable pair (QO,Ql) such that for each fixed sample
size the Neyman~Pearson tests between QO and Ql constitute a minimal
essentially complete class of minimax tests between these two classes.
In addition to the obvious importance of these results in unifying the
theory of robust statistics, they have been used to obtain several general
results in robust statistical communication theory [7], [32].

The one shortcoming of Huber and Strassen's fundamental paper is that
the capacities which generate the three classes of probability measures

most commonly used to model uncertainty in robust hypothesis testing (i.e.,

those generating the eg-contaminated, total-variation and Prokhorov neighbor-

N hoods) must be restricted to a compact space in order to satisfy property i
e (2.4) in the definition of a capacity given by Huber and Strassen (o]},

Property (2.4) insists that a capacity be continuous on decreasing sequences

of closed sets. 1In this chapter we relax this restri-tion by only insisting '

— o — oy~ v = —iw —i— ey — <
_A
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that our set function (which, for lack of a better term we call a
"generalized capacity'") be continuous on decreasing sequences of compact

sets. This minor alteration allows us to consider the three aforementioned

neighborhoods on noncompact spaces.

For many robust statistical communication theory results it is of
interest to consider g-finite as well as finite measures (the generaliza-
tion of Huber and Strassen's results to capacities v satisfying v(Q) < =
rather than v(Q) = 1 being straightforward). For example, in [7]
spectral uncertainty for the problem of robust linear smoothing is modeled
via capacity classes of spectral distributions onR™. This excludes the
possibility of '"white noise" whose spectral measure is given by Lebesque~
Borel measure onR".

The purpose of this chapter is to develop Huber-Strassen type results
for a 2-alternating generalized capacity class versus a o~-finite measure.
In Section 2 we give the definition of a 2-alternating generalized capacity
and some preliminaries. In Section 3 we construct the Huber-Strassen
derivative 7 between a 2-alternating generalized capacity and a o-finite
measure m and we prove that if a least favorable distribution Q exists then
T = dQ/dm a.e.[m].

Our main theorem (Theorem 4,2) gives an easily verifiable necessary
and sufficient condition for the main result of Huber and Strassen [6]
to hold for a distribution Q which we construct from n. Corollary 4.1 states
that this condition always holds if the generalized capacity is actually

a capacity. Thus, for the problem of a capacity versus a o-finite measure,

we alwavs have a least favorable distribution and a Huber-Strassen derivative.
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Section 5 contains some examples and applications. 1In particular, we

A ARG A 2 bt e S

h _

give an example of a situation in which the condition of the main theorem is
not satisfied. Also, we introduce a new 2-alternating capacity which gener-

ates a widely used uncertainty class known as the band model. This class

is an accurate model of uncertainty for many applications. Furthermore, the

upper measure of such a class is a capacity even if the sample space is not

¢ compact.

r .

f‘ . ,
o 2, Generalized Choquet Capacities

i : Let @ be a complete separable metrizable space, & its Borel o-algebra
9

< and 7 the set of all nonnegative finite Borel measures on Q.

ri Definition 4.1: A set function v on (2,4) is a 2-alternating generalized ]

(5 (Chogquet) capacity if v satisfies

» .
i v($) = 0, v(Q) < =, (4.1) 1
F AC B = v(A) < v(B), (4.2) :
: A tA=v(A) tv(a), (4.3) :
! )
o .
i F v F, F compact = v(F)) + v(F), (4.4) i
] n n n ]
| v(AUB) + v(ANB) < v(A) + v(B). (4.5)

® Note that this definition ''generalizes" the definition of a 2-alternating

capacity [ 6] by changing the condition "Fn closed" to "F_ compact" in
n
rroperty (4.4)

° For any 2-alternating generalized capacitv v we define

”mm
o

o = (PEMP(Q) 2 v(A), ¥a€d 5 P = v(D) .. (2.7)

e A O D)
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It was shown by Huber and Strassen [6] (Examples 3-5) that three of the
most important uncertainty classes in robust statistics (the e-contamination,
total variation and Prokhorov classes) have the form (4.6) where v is a

2-alternating capacity only 1if @ is compact (see Chapter III). The moti-

vation for the generalization in Definition 4.1 is that these three set
functions are 2-alternating generalized capacities even if Q2 is not compact.
Moreover, the "special capacities" considered by Rieder [20] are 2-
alternating generalized capacities.

For all the results of this chapter we assume that 2 is c¢-compact.

The following extends Lemma 2.5 of [6] to generalized capacities on

g-compact spaces.

Lemma 4.1: Let v be a 2-alternating generalized capacity on (2,4 ). For

each A € ¢, there is a Q GWZV such that Q(A) = v(A).

Proof: Since Q is s-compact, let {Kn} be a sequence of compact sets such

n_ n
that Kn + Q. We denote the restriction of v to Kn by v ; i.e., v (A) =

v(AFWKn), YA€ ; Yn. Clearly, for each n, v is a 2-alternating capa-

n
city. Thus, we may apply Lemma 2.5 of [6] to v .

Let A€ . Denote AN Kn by A". From Lemma 2.5 of

[6], there exists Ql€ m\ﬂ.such that Ql(Al) = vl(Al) and, for each

n—l)

-1
n > 2, there exists QnEEm o such that Qn(An\A = vn(An\An ). For all

BEX , define

v(AY-v(a" L

n\An-l

a® = o ® + 1 4| L o Branah) +
-+

n=2 (= Q (& )

I%(Kn)-v(A“)+v(A“'l)-v(Kn_l

)

Q_[B K \(ATUK )]1
l , n n n n-17""
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Lo
S PN

PUEPIpR)

"

BRI WY P SR

et f

"

o R v .
’

P .

.
Y SO S S

la_x a_a —

s A . _an

ah_. _a




66

It is straightforward to verify using (4.5) that Q satisfies the conclusion

of the lemma.QED.

3. The Huber-Strassen Derivative Between a Generalized Capacity and a
o-finite Measure

Since Q is assumed to be c-compact, we can fix a sequence of compact
sets Kn 4+ Q. For a 2-alternating generalized capacity v and a o-finite
nonnegative measure m on (R,& ) we denote by v"® and m" the restrictions
of v and m, respectively, to the set Kn' Clearly, for all n, v? is a
2-alternating capacity and m® is a finite nonnegative measure on (2, )
(hence, o is also a 2-alternating capacity).

Thus, for each n, the theory of Huber and Strassen [6] can be
applied to the pair (vn,mn). In particular, for each n and for each
tC—Z[O,m]., there exists a set AI; minimizing, over all A€ 7 , the set
function wz(A) ¢ mn(A) + vn(Ac). Further, for each n, there is a

. . n n
function " (the Huber-Strassen derivative of v with respect to m )

such that A: = {s® > t} for every t€[0,»]. Finally, there is a least

favorable distribution Q"€7 n, i.e. @ ({n" < €}) = vP({n" < t}) >

P({Tfn < t}) for all PEMN o and for every t€[0,]

Regarding the above situation we have the following lemma.

Lemma %4.2: The collection of sets {A:I:G[O,w] ,n=12 ...} may be chosen

1

+
so that ArtH- c Al; for each t€[0,~»] and n > 1. Hence, for all n, " l(x) <

M (x) for all x€ Q.

c
Proof: We first note that, for any n and t, w:(A:UKn) = w:(A:), so we

n n+lU

n . n
may assume that Kﬁ < At' Now fix n and t; we will show that wt(At At)

n,.n
< w (A i.e. th
< t(‘t) that

« T
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(o]

ntl  .n n+l n,c, n
Ac TVAD MK+ vIATTUADT) < em(ar DK ) + v(A: ). (4.7)

cm[( .

By adding tm(Kn+l\Kn) to both sides of (4.7) and using the additivity of m

and the fact that K; E.A: we obtain the fdllowing equivalent expression

(o
n

n+l n +1 n,c n n
U N U N
At) Kn+1] + v[(At At) ] <t m(At Kn+l) + v(At ).

tm[(At
(4.8)

We prove (4.8)(and hence the lemma) by first noting that the right hand

side of (4.8)is w:+1(A2), then showing (using (4.5)and some straightforward

manipulations) that the left hand side is less than or equal to w:+1(A:)
plus w:+1(A:+l) - v.a't“'l(‘t\’ft“*l N AY) and finally noting that this additional

term is nonpositive.
Lemmaé4.2 allows us to define 7m(x) = lim nn(x) for each x € Q.
o
Further, it implies that the definition of :(x) does not depend on the
choice of the sequence {Kn}, since for any alternative sequence {Ki} the
ordered (by set inclusion) union of the two sequences must produce the

same limit as each of the original two.

The following theorem justifies our defining w as the Huber-Strassen

derivative of v with respect to m.

Theorem 4.1: Let v be a 2-alternating generalized capacity and m a
o-finite nonnegative measure on (Q,7 ), and let 7 be defined as above.
If there exists a measure Q €n v such that Q is least favorable for y v
versus m, i.e. ¥ t € [0,=]

4@ 1y = v((®0 ¢ )
QU < th) v({dmit’)’ (4.9)

then

T = %% a.e.[m].
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Proof: For every t € (0,»], there exists tk + t. Since tk + t implies

{dqQ/dm < tk} + {dQ/dm < t}, (4.9) implies that ¥t € (0,x]
d d
QU < b = v < e, (4.10)

Also t, + t implies that, Vn, {nn:itk} + {x" < t}. This fact, property

(4.3) and the definition of A: = {r" > t} imply that, ¥Vt € (0,*] and Vn,

tw ({r" > e}) + vO({n" < t}) itmn({%%i th + vn({;‘:% <th). (4.11)

Since the right hand side of (4.11) is clearly less than or equal to

ta{dQ/dm > t}) + v({dQ/dm < t}) and n > = implies {(r" <t} ¢ {7 < t}, (4.11)

and (4.3) imply

em(in > €) +v(ir < e) <eatt@@ > o) + vl < on. 6.12)

By (4.10) the right hand side of (4.12) is equal to txm({dO/dm > t}) +
Q({dQ/dm < t}). Since Q Eimv, the lefthand side of (4.12) is greater than
or equal totm({7 > t}) + Q({m < t}). Thus we have, Yt € (0,=]

em(lr > ) + o(lr < e <ta(t2 > b + e < b, (4.13)

Since, for any t € [0,=), b v E implies {m > tk} + {m > t} and
{dQ/dm > tk} + {dQ/dm > t}, we have from (4.13) and the continuity of

measures that
tm({m > t}) + Q({rm < t}) itm({ﬁ > t}) + Q({g—% <t}), (4.14)

¥t € [0,=]. By the uniqueness of the Radon-Nikodym derivative between two
measures (see, for example, Royden [38]) we have that n = dQ/dm a.e. [m]

(cf. the remarks near the end of Section 3 in [h]). QED,

w P P T S A
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4. The Least Favorable Distribution

By Fatou's Lemma (see, for example, Royden [38], Proposition 17,
p. 231) we have, for each A € 7, that

I mdm < 1im inf J mdn” < lim inf Q"(4), (4.15)

n->® n->oo
A

where w, 1rn, and Qn are defined at the beginning of Section 3. By Lemma
4.1 there is a distribution Q G??zv such that 6({1r < w}) = v({m < w}). We

define the distribution Q on (Q,4 ) by

Q(a) = J mdm + Q(A N {1 = =}), (4.16)
A

for each A € 7. 1If there exists a least favorable distribution then Theorem

in 4.1 and the Fundamental Theorem of Calculus imply that the Q given in (4.16) is

also least favorable. Furthermore, we have

[
4
‘ Theorem 4.2: Assume v is a 2-alternating generalized capacity and m is a
F o-finite nonnegative measure on (R,7 ). Let 7 be defined as in Section 3
and let Q be defined by (4.16).If Q({nm < »}) = v({nr < »}) (or equivalently

if Q(Q) = v(2)) then Q is a least favorable distribution for 7 y versus m;

i.e., for every t € [0,~]
.
; {m <t}) = v({{r <t}
) Q({w < t}) ({r < t}) (4.17)
o
{ and 7 is a version of dQ/dm.
Note that the hypothesis is also trivially necessary. Also. note that
° if m(Q) < = and the conclusion of Theorem 4.2 holds then, by [ 20,
-
[ Proposition 2.1 |, Q is least favorable for any minimax testing problem for
b versus {m}.
b v
r .
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Proof: From the definition of Qn, the fact that e + » implies {7 < t } ¢

k
t‘ {r < =}, and property (4.3) we have that Qn({wn < w}) = Vn({ﬂn < w}) 4

v({r < »}). Thus, the hypothesis of the theorem implies that Q" ({7" < «})

[
|
& + QU < »1); i.e.

lim J m de = J mdm.
n--wo

f Q

[
r‘ For any set A €{, we apply the Generalized Dominated Convergence Theorem
(Royden [38], Proposition 18, p. 232) to the sequence {nnIA [n=1,2,...}

| (nnl is the restriction of 7 to A) to obtain lim J " dmn = J ndm; i.e.,

: A ne
e A A
1im Q®(A) = Q(a), YA€ @ . (4.18)
If we set A= {n < t}= U {r<t)in (4.18), we have Q({z < t}) =
@ k=1
lim Qn( Y {nk < t}) > lim Qn({nn < t}) = lim vn({nn <t}) =v({{m < t}).
n->w k=1 n--o -

Thus, we have Q({m < t}) > P({m < t}), for all P Eﬁzv and all t € [0,=].

From property (4.3) we have Q({x < t}) > P({r < t}), for all PGZQV and all

t € [0,»], since t, + t implies {7 < tk} + {m < t}. But, by Lemma 4.1,

k
for each t € [0,»] there is some Pt €M, such that Pt({n <t}) =v({m <t}

so we must have Q({m < t}) = v({n < t}), ¥t € [0,»]. QED.

Corollary 4.1: 1If v is a 2-alternating capacity and m, 7 and Q are as above

then Q({m < =}) = v({m < »}); hence, the conclusions of Theorem 4.2 hold.

~
ab

Proof: We wish to show that J dm" - { rdm. Let %' = 7" on K, and O on
Q

") Kﬁ; we will show J #dm - J mdm. By the Vitali convergence theorem (see

o 2
Dunford and Schwartz [10], pp. 150, 173) this happens if for any sequence

PO '.‘ ¥

o

)
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{Ek} C d such that Ek ¥ ¢ we have lim J #dm = 0 uniformly in n. To prove
ko=

E
this we use the fact that a capacity clags is tight (Huber and Strassen

{6 ], Lemma 2.2) to pick (given & > 0) KN such that J ﬁndm_i Qn(K§) <
c

€/2 for all n. Then since {ﬁn[n=N,N+l,...} is decreasing on KN we have that

n N N
J tdm < J fdm < Q (Ek n KN). Now for each n=l,...,N there is an
N
B Ky By
n
Ln,e such that, ¥ k 3_Ln’€, Q (E) < €/2. Now let L = maX{Ll,s""’LN,e}’
we have that, for all k > Le’ J #dm < I #dm + J ﬁndm < ¢gf2 + /2, for
c

every n. Ek KN EkaN

5. Examples and Applications

Our first example shows a situation in whlich the hypothesis of Theorem
4.2 fails to hold.

Let ¥ =R and let v be the 2-alternating generalized capacity which
setwise domiﬁates an e-contaminated neighborhood of probability distribu-
tions, i.e., let ¢ € (0,1) and let v(A) = (l-e)P(A) + ¢, for A # ¢, where
P is a probability measure on (R,7 ). Also, let m be Lebesgue-Borel
measure on (R,GU-‘ Assume that P has a density p with respect to m.

Chcose Kn +R with Kn compact ¥n. From [l4], Section 3, we have
that wn(x) = max{cn,(l-e)p(x)}. ¥x € Kn’ where cy 2 0 can be chosen so that

( Mdm = v(Kn). It is straightforward to show that lim S 0. Thus,

i

« ““‘
n
7(x) = (1-2)p(x), ¥x €ER, and we have that {7 < =} = 2 and 0({m < =}) =
(
J Tdm = l-e < v ({7 < «=}).
R

. n . .
Intuitively each least favorable O tries to be as much as possible
, . . n .
like Lebesgue-Borel measure by flattening the tails of 7 with the = of
contamination: but, because R is not compact, this = of contaminaticn is

allowed to slip off the ends of the r-al line as n

P
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On the other hand, as we mentioned earlier, all the neighborhoods of
probability distributions commonly used to model inexact knowledge in
robust hypothesis testing are 2~alternating generalized capacities even
if the sample space Q is not compact. Since least favorable pairs have
been found for all these classes [14], [27], [20], Theorem 4.1 implies that,
for any of these specific but important examples, we have succeeded in
extending the main result of Huber and Strassen [6] to a generalized
capacity class versus a finite measure on a o-compact space. Further,
Corollary 4.1 implies that this is true for any 2-alternating capacity
class versus any o-finite measure on a o-compact space. To illustrate
this result we introduce the following example of a 2-alternating capa-
city on a noncompact space.

Let m and L be finite nonnegative measures on (2, ) such that

mL(A) < m.U(A), YA €T . (4.19)
Define
v(A) = min{w—mL(Ac),mU(A)}, (4.20)

for A €4 , where w is a positive constant such that mL(Q) <w i'mU(Q). For

this v, Wzv is given by
{m GZ’Z[mL(A) <= m(a) < m(A), YAE 7 ; m(Q) = w}. (4.21)

This class is called the band model. Note that everyv element of wzv is
absolutely continuous with respect to m., SO if w=l,7zv is equivalent to
the class of pdf's considered by Kassam [21]. Most importantly, least
favorable pairs are given for these classes by Kassam [21].

Classes of the form (4.21) arise naturally as a confidence band around

an estimate of a pdf (where, of ccurse, w=1l) or around an estimate of a

y
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spectral density (where w/2m is the known power of the process). Also,
as has been noted by Kassam {[21], if we define € = l—mL(Q)/w then the
band model(4.21) contains those elements of an c-contaminated class which
are bounded above by m. Thus, the e-contaminated class may be thought

of as a limit of classes which are band models.

Proposition4.1: The set function v in (4.20), which defines the band

model (21), is a 2-alternating capacity even if Q is not compact.

Proof: The 2-alternating property (given by (4.5)) is the only defining

property which is not straightforward. We handle (4.5) case by case. If

A and B are such that v(A) = mU(A) and v(B) mU(B) then, by (4.20),

v(AUB) + v(ANB) < m(aUB) +m(aNB)
Similarly, if V(A) = w—m.L(AC) = m (&) + (w-m (R)) and v(B) = m (B) +
(w-m (£)) then(4.5)holds. If, say, v(A) = m (&) + (w-m (R)) and v(B) =
m,(B) (4 and B are interchangable) then we must have v(A N B) = m;(A O B)
and V(AU B) = m (AU B) + (v-m () because if m (AN B) + (w-m (?)) <
m (A N B) then, since m (B) + (w-m (R)) > m (B), we have (by subtraction)
that m (B\A) > m (B\A) which contradicts(4.19). (The possibility of

mU(A U B) < mL(A U B) + (w—mL(Q)) is similarly disallowed.) The one

possible case is v(A U B) = mL(A UB) + (w—mL(S)) and v(A N B) = mU(A N B).

In this case(4:3) is equivalent to mL(B\A) < mU(B\A) which always holds by
{4.19). Thus v of (4.20) which gives rise to the band model (4.21) is a
2-alternating capacityv. QED.

Theorem 2.2 of [7] states that if vg and v, are 2-alternating

P a : . . :
capacities on R and 7 is a version of the Huber-Strassen derivative
s

Setween v and v, then h = 7/(1+7) is a minimax linear smoother for

¢

mU(A) + mU(B) = v(A) + v(B).
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m v and 1, where M
S VN Vs N
noise spectral measures, respectively. A careful examination of the proof

and WZV are uncertainty classes of signal and

of this result shows that it holds for any two set functioms v, and vy for
[%)

which the conclusions of Theorem 4.1 of Huber and Strassen [6] hold.
Thus we see from Corollary4.l that Theorem 2.2 of [7] holds for Vg

and my where Vg is a 2-alternating capacity and my is a nonnegative
g-finite Borel measure on Rn. Unquestionably, the most important examples
to which this extension can be applied are those where Lo is Lesbesgue-Borel

n . . . .
measure on R, which is the spectral measure of continuous-parameter white

noise.
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V. ON THE P-POINT UNCERTAINTY CLASS

1. Introduction

As we have discussed in the preceding chapters, there are many
applications of statistical communication theory for which it is inappro-
priate to assume that we have exact knowledge of some underlying spectral
distribution or probability distributior.. A common approach to such
situations (and the one we have used in this thesis) involves choosing
classes of distributions which accurately model this uncertainty. We have
also discussed the fact that a number of results have been obtained for
situations where uncertainty is modeled via classes whose upper measures
are 2-alternating Choquet capacities (see [6], [7], [32] and Section 6 of
Chapter I1III).

The significance of these results is twofold. First, in each case,
general existence results are given which unify the theory involved
(especially considering the generality of modeling uncertainty via
2-alternating capacity classes; a topic we will discuss below). Second,
least favorable pairs for the robust hypothesis testing problem [6] have
already been found for each of the classes which have been shown to be
2-alternating capacity classes and the results given in [32] and [7]
allow us to solve the problems considered therein directly from such
least favorable pairé.

Among the classes which have been used to model uncertainty (and for
which least favorable pairs have been found) are the e-contaminated, total-

variation, Prokhorov and band models. The first three are shown to be

2-alternating capacity classes (when restricted to have compact support)
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in [6]. The band model was shown to be a capacity class in Chapter IV.
Furthermore, least favorable pairs are known for these classes (see {14]
and [27] and [21] for the band model).

One class which has been used to model uncertainty in detection
problems [5], [8], rate-distortion problems [41] and robust smoothing
problems [25] which is not a 2-alternating capacity class is given by

a ; . .
Pop = (PEM |P(AJ.) = v, 3=1,...,n} _ (2

where 77 is the set of all finite nonnegative Borel measures on a compact
Polish space Q, the wj's are positive real constants, and {Aj|j=1,...,n}
is a fixed partition of Q such that each Aj is a Borel set with nonempty
interior. If Q is a compact subset of the real line, if each of the Aj's
is the union of a symmetric pair of intervals and if the P's are spectral
distributions then Ppp is essentially the form of the class referred to
by Sakrison [41] as "class b" and by Cimini and Kassam [25] as a ''p-point
class."” The term p-point class is also used by El-Sawy and Vandelinde
[5], [8] for Ppp when the P's are probability distributions and, of

n
course, ! w, = 1. The cliss givenin (5.1) is an appropriate model of

spectralJzicertainty when, for example, we are able to use power measure-
ments from a bank of low-pass filters [41], and thev are appropriate
models for probabilistic uncertainty since P({[-a,a]) '"is one of the most
easily measured parameters of a distribution'” [5, p. 725].

In this chapter we consider uncertainty classes of the form Ppp
(which we henceforth refer to as p-point classes). In particular, we
show how, in many cases, the results of [6} [7],[32] can be applied to

these p-point classes by embedding them in slightly larger 2-alternating

capacitv classes which we term extended p-point classes (see below).
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2. Development

*
Unfortunately, the p-point class Ppp is not weak compact (see
*
Chapter III for a definition of the weak topology) and, as we mentioned
in Section 1, the set function vpp defined, for each A, by

v__ (A) = sup P(A) (5.2)
i € Pop

is not a capacity. (For a class P C M , the set function v defined as

the setwise supremum over P € is called the upper measure of ¥ and

Huber and Strassen have shown [6, Lemma 2.5] that if v is a 2-alternating
capacity then v is the upper measure of the set PV 2 ,{P €M |P(A) < v(a),
VA, P(Q) = v(2)}.) Basically, the reason for this is that Ppp is not
weak* closed. To illustrate this, suppose Q = [0,2], n = 2, A1 =[0,1],

A2 = (1,2] and W, =W, = % then for each k > 1, the probability distribution
Pk defined by Pk({l}) =% and Pk({1+l/k}) =1 is an element of Ppp' But

{Pk} converges to P weak where PO({l}) = 1. Clearly P0 & Ppp'

0

We now consider a new uncertainty class which we term the extended

p-point class. It is given by

n

§ =(rpey P <w,, PAR,) > w., j=1,...,n, P(Q) = I w.} (5.3)
pp = (PEM [P <wyy PARY 2wy, @ jop

where A;.) is the {(nonempty) interior of Aj and Kj is the closure. We use

the notation 6pp because this class is actually the weak-"closure of Ppp'

The upper measure of Fpp is given by

0 if A # 9;

w, if ACa%, j=1,...,n;

j i S n

‘ gw ifAE:\;andAgAﬁfor

v (A) = H k=1 k k=l,.%.,n, j=Ll,...,n; (5.4)
epp .

k#j

n

L ow, otherwise;

j=1 7
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which is a 2-alternating capacity (recall that Q is compact here). Thus, the
importance of this extended p-point class is that the results of [6], [7], [32]
can be applied to them. Furthermore, as we will show below, the least

favorable pairs for two nonintersecting extended p-point classes are also

contained in the corresponding p-point classes and, hence, are also least

favorable for the p-point classes.

We now consider the problem of a p-point class versus a single distri-

bution. This is relevant for tests between a composite hypothesis and a
simple alternative and robust smoothing of an uncertain signal in noise k

(e.g. band limited white noise). Moreover, Poor [32] has shown that if

VYT YT, Y VY

o

Pv is a 2-alternating capacity class of spectral distributions then the

spectral distribution Q € Pv which is least favorable for Pv versus

Lebesgue-Borel measure on [-m,m] (least favorable in the sense discussed
in Chapter IV) has rate-distortion function equal to the rate-distortion

function over S’V. 1

-l

Let ﬁpp be an extended p-point class as in(5.3)and let P, €M Dbe

Py WA

such that PO ¢ ﬁ;p. For ease of exposition we assume that 2 is a com-

caslan

pact subset of jRn and that P, has a density PO with respect to Lebesgue

0

measure. It is fairly straightforward to see from the definition of

Ao o dad

, 5.4 d i
dvl/dvO given in [6] that dvepp/dPo (where vepp has the form(5.4) and is
the capacity dominating ﬁﬁp) must be constant a.e.[PO] on each of the

Aj's. Thus, a least favorable Q € ﬁ?p can be given in tern- »f its ]

1
density with respect to Lebesgue measure:
W,
= € ji=l,... .
q(x) 55?%;;P0(x) ¥ x Aj’ j=l,...,n (5.5)
-

Thus we have that




Q({d—Pai t}) > P({-‘ﬂ,—og t}) (5.6)

B T SN I
T "I AR
s . :

for all P € 5;p' Hence, (5.6) holds for all P € Ppp (where Ppp is given

in (5.1)) and, since Q € Ppp’ we have that Q (with density given in (5.5) is

least favorable for the p-point class Ppp versus the single measure PO.

E Note that(5.3) agrees with the form given by Sakrison [41, equation (37)]

for the spectrum achieving the maximum rate over his class b.

R Bt B S et ]
PR YO .

{
J So we have seen that by considering the extended p-point class the

results of [6],[7],[32] can be applied to the usual p-point class versus a

single distribution. In many cases, the problem of one p-point class

A I

versus another can be handled in a similar manner. We illustrate this

possibility in a simplified case.

o P .
e Al A %A da AN S}

Let A and B be Borel subsets of @ such that A S.Bo. Let Pl and PO

be p-point classes as in (5.1) with n=2 and based on A and B, respectively.

That is, let

d N . 1 c, _ .1
»! P, = (PEM |p(a) = W), P(AT) = w,}
; and . 5.7
! . - c, _ .0,
Po = {PEM |P(B) = wis P(BY) = w,]

1 0
We can further assume that w, > w, or that w1 < wO because otherwise we

3 1 1 2 2°

would have PO N Pl # ¢ and the problem would be trivial. Again, it is

not difficult to show from [ 6], that if vy and v, are the 2-alternating

capacities determining the extended p-point classes corresponding to Pl

[}
)
~r

and PO of (5.7) then dvl/dvO is constant on A and on B (note that anB®

and that any pair (Q,,Q,) € £ _ X P satisfying Q.(A") = Q. (A") wl/w9,

1 0 1 0 1 11
1,0
2

YA' C A, and Ql(B') = QO(B') W /wz. VB'E_BC, is least favorable for ¥

1

versus PO'
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At the beginning of this example we assumed that A E_Bo. One reason
for this is that if there was a point x which was contained in the boundary
of A and the boundary of B and if, say, wg + wg = wi + w; = 1 then the
Q € M which satisfies Q({x}) = Q({Q}) = 1 also satisfies Q € FO N ﬁl’
where, for i=1,2, ﬁi is the extended p-point class corresponding to Pi.

In this case, (Q,Q) € P X Fi is least favorable for ﬁl versus ﬁb but

0
Q,Q &¢ 0 X Pl. Thus the approach used above will not work in this

case, and we must note that this case is important. For example, for the
robust linear smoothing application, if we used power measurements from

a bank of low pass filters (as suggested in [41]) to determine p-point
classes to model our uncertainty about the signal and noise spectra then

the boundary points would be the same for both classes and the corresponding

extended p-point classes would overlap. Of course, this case can be handled

more directly as in [25].
3. Conclusions

In this chapter we have considered an uncertainty class which is
appropriate for many applications. We have shown that by embedding this
class in a slightly larger 2-alternating capacity class the results of
[61, [7], [42] can be shown to hold for the original class in most cases.
Actually in those cases where this approach cannot be utilized a more

direct approach can be shown to work [38].
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VI. SUMMARY AND CONCLUSIONS

In this thesis several problems in robust statistical signal processing
have been considered. In this final chapter we briefly summarize the results
obtained and propose some related topics for possible further research.

In Chapters II and III and the appendix, we presented a varied selec-
tion of numerical results which indicate that the robust Wiener and Wiener-
Kolmogorov filters, developed in (1], (2], [25] and in Chapter III, are
often preferable to the corresponding traditional filters in situations
where deviations from assumed spectra might occur. In Chapter III, we also
gave a method of obtaining robust n-step predictors and robust n-lag
smoothers. Further, we illustrated in the case of robust one-step noise-
less prediction how this method could be used to design robust signal
estimators utilizing least~favorable pairs from an analogous robust
hypothesis testing problazm. One possible topic for further work is extend-
ing this result to cases other than those cases considered in Sections 4
and 5 of Chapter III; perhaps, by generalizing Proposition 3.1 and, if
needed, developing error expressions for those cases not treated in [3],
[15]-[19]. Another subject which needs to be considered concerns the imple-
mentation of these robust filters. We have, in this study, made the standard
assumption that we have knowledge of the infinite past. For most applications
this is an unrealistic assumption; thus, an examination of the effects of
finite memory on robust signal estimation would be of interest.

In Chapter IV, we introduced the notion of a 2~alternating generalized
capacity because several of the most important uncertainty classes must be
restricted to compact spaces in order to be capacity classes, but are

generalized capacity classes even if the space is not compact. We then
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developed a Huber-Strassen derivative between a 2-alternating generalized
capacity and a o-finite measure and defined a distribution which Theorem
4.2 guarantees to be least favorable for this problem if any

least favorable distribution exists. It was also shown that, for the
problem of a capacity class versus a o-finite measure, a least favorable
distribution always exists. Finally, in Chapters IV and V two uncertainty
classes, the band model and the extended p-point model, were shown to be
2-alternating capacity classes. The fact that the band model is a capa-
city class even if the underlying space is not compact is especially
significant in view of the results of Chapter IV (especialiy Corollary 4.1).
The significance of the extended p-point class is that the p-point class,
which is appropriate for many applications, is contained in it and, in
many cases, results obtained for capacity classes can be applied to the
p~point class directly from the corresponding extended p-point class
results.

Further study regarding the topics of Chapters IV and V might be
directed toward finding a Huber-Strassen derivative between two generalized
capacities and a corresponding least favorable pair of distributions. Such
a result would allow the full generality of the Huber-Strassen theory to

be applied to a larger class of problems.
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APPENDIX

The purpose of this appendix is to give a further selection from our
numerical study of robust Wiener filtering (see Chapter II, Section 3).
Figures 10-14 give further results regarding the examples presented in

Chapter II. In particular, for the p-point example of Chapter II, Figures 3

C R

*
0

*
filter HR for wider noise bandwidths e In Figure 10, o

10 and 11 give the performances of the nominal filter H_ and of the robust

y = 100 and, in ]

Figure 11, ay = 1000 (recall that in Figures 1 and 4 we had ay = 10). Note ]

———— — T vw- -

*
that as oy increases the performance of HO at (oo,vo) improves but at its

* *
worst case Ho's performance degradates further. Meanwhile HR's performance

},,. changes little. Figures 12, 13 and 14 give further results for the

g-contaminated example of Chapter II. In Figures 2 and 5, we had ay = 1000;

1 in Figures 12, 13 and 14 we have ay = 100, ay = 104 and ay = 106, respectively.

*
Again we see that HR is relatively insensitive to changes in the noise

*

bandwidth, but HO is not.

Recall that the example which we have referred to here and in Chapter

II as the e-contaminated example involved robust filtering of an e-contaminated
first-order Markov signal in e~contaminated first-order Markov nocise. In

Figures 15-22, we consider other nominal signal and noise models. In parti-

*

%
and H_ when the nominal signal -

#. cular, Figure 15 gives the performances of HO R

and noise power spectral demsities, % and vy are second-order Markov, i.e.

3 2
4 o V.
cgA(w) = S >
L 0 2 2.2 -
(e +w)
S
and
3 2
P, 4 ey Vy
v.(w) =
0 ( 2 + w2)2
Y
L J

PTT T T
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Figure 10. p-point example from Chapter 1II, 2 = 1, ay = 100, (from top

* *
to bottom) HO at (oo,vo), HR at any (c,v) € /X N, H; at

its worst case.
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Figure 12.

e-contaminated example from Chapter II, ¢ = .1, o
%*

s = L

*
ay = 100, (from top to bottom) HO it (co,vo), HR at (co,vo),

* * ’ ;
HR at (UL’vT) (HR'S worst case), Ho at its worst case.
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= 1, a

*
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g-contaminated second-order Markov signal in s-contaminated
6

0 " S N .10 , {(from

top to bottom) HO ac*(co,vo), HR at (co,vo), H

first-order Markov noise, = = .1, a_. = 1, «
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(4,'s worst case), H, at its worst case.
R 8]

el e’ -l ai

2a

...,




Figure 20.

T Y Y

T T T i T T
-20 B 28 40 68

g-contaminated second-order Markov signal in ¢-contaminated

3
s 1, Sy - 107, (from

* *
tog to bottom) Hy at*(ao,vo), Hp at (oo,vo), HR at (cL,vL)
(HR's worst case), Ho at its worst case.

first-order Markov noise, ¢ = .01, «

A L T
. L ! . N B
PN U PTG WY | el as

1

PP PR PP TP




e-contaminated second-order Markov signal in e-contaminated

first-order Markov noise, ¢ = .01, ag = 1, o

* W

top to bottom) BO at*(co,vo), HR at (co,vo), H

worst case), HO at its worst case.
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In Figures 16-21, o is second-order Markov and Yo is first-order Markov.

In all these cases (Figures 15-21) both signal and noise uncertainty are

modeled via e-contaminated classes. In Figures 15-19, we have ¢ = .1

and oy varying, and we see that the results are fairly similar to those

already presented when both % and v, are first-order Markov. In Figures
3

20 and 21, we have a, = 10 and ay = 106 as in Figures 18 and 19, respec-

N
tively; however we have ¢ = .01 in Figures 20 and 21. Note the surprisingly
strong similarity between 18 and 20 and between 19 and 21. Finally, Figure
22 is included to substantiate the claim made in the penultimate paragraph
of Chapter II. Figure 22 gives performances for the case when % is an
g-contaminated first-order Markov spectrum and vy is e-contaminated band-
limited white noise. In Chapter II, we claimed that even when the band-
width of the e-contaminated bandlimited white noise is very large (in

Figure 22 it is 106) the results for H; are similar to the other cases and

unlike those involving nonbandlimited white noise as in Figure 3. Compare

Figure 22 with Figures 14 and 19, for example; they are virtually identical.
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