
A1D-R125 931 TOPICS IN MOUST STATISTICAL SIGNAL PROCESSINGMU 1/2,
ILLINOIS UNIV AT URBANA COORDINATED SCIENCE LAB
K S VASTOLA SEP 82 R-965 N98814-79-C-8424

UNCLASSIFIED F/G 12/1i N

EsonhhhiILIhhhhinh



iiiiiN IIll Im)-1.8 .

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A



REPORT R-965 SEPTEMBER,= 13I LU-ENG 62-2231

TOPICS IN ROBUST
STATISTICAL SIGN4AL
PROCESSING

Ge £N--'",-NETK STEVEVAOL; . *

~?

41

PROED FOR PUBLIC RELEASE. DI'TUISUTIONULMT.

C:)v

Li.

IIX

-,j.. #Tw~ -4 *f



L SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

I .. REPORT NUMBER 12. GOVT ACCESSION Nt. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (end Subtitle) S. TYPE OF REPORT & PERIOD COVERED

5 Technical Report
TOPICS IN ROBUST STATISTICAL SIGNAL PROCESSING

S. PERFORMING ORG. REPORT NUMBER
R-965 UILU-ENG 82-2231

7. AUTHOR(s) S. CONTRACT OR GRANT NUMBER(&)JSEP N00014-79-C-0424
Kenneth Steven Vastola ONR N00014-81-K-0014

NSF ECS 79-16453

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERSCoordinated Science Laboratory

University of Illinois
h -1101 W. Springfield, Urbana, IL 61801

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Joint Services Electronics Program September 1982
Office of Naval Research 13. NUMBER OF PAGES
National Science Foundation 108

14. MONITORING AGENCY NAME A ADDRESS(il different from Controlling Office) IS. SECURITY CLASS. (of this report)

[ UNCLASSIFIED

1Sa. OECL ASSI FICATION/DOWNGRADING
SCHEDULE

IS. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, it different from Report)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side ii necessary and identify by block number)

Robust signal processing, Wiener-Kolmogorov theory,
Spectral uncertainty, Choquet capacities

20. ABSTRACT (Continue on reverse side If necessary and Identify by block number)

" This dissertation addresses several problems in robust signal processing.
The term "robust"'in this context implies insensitivity to small deviations
from the assumed statistical description of the signal and/or noise.

The first part of this thesis considers the problem of linear minimum-
mean-square-error estimation of a stationary signal observed in additive
stationary noise when knowledge of the signal spectrum and noise spectrum is
inexact.- First, the performance of robust continuous-time (Wiener) noncausal

DD FORm 1473
S I C I O OSJANGn

SECUIRITY CLASSIFICATION OFf THIS PAGC -
.

'vo'n Dae Krntored)



p ".

P. SECURITY CLASSIFICATION OF THIS PAGE("W n Date Entered)

p
20. filters (designed using a method developed elsewhere) is examined.

It is shown in a variety of situations that when spectral uncertainty
exists the performance of the traditional Wiener filter degrades
badly while the robust filter's insensitivity to such deviations
makes it an effective alternative. Next, this design approach is
developed for the general problem of robust discrete-time (Wiener-
Kolmogorov) causal signal estimation, and a simple characterization
of solutions to this problem is given. The method of design is then
illustrated by a thorough development of the special case of one-
step noiseless prediction and numerical examples which illustrate
the effectiveness of the general design are given for the problem
of robust causal filtering of an uncertain signal in white noise.

In the second part of this dissertation, a previously developed
cohesive theory of robust hypothesis testing in which uncertainty
is modeled via 2-alternating Choquet capacity classes is considered
in light of recent applications of this theory to problems in robust
signal processing and communication theory. In particular, a general-
ization of capacities is given which allows several of the most
common uncertainty classes to be considered nder a less restrictive
compactness assumption. Results are given which generalize this
robust hypothesis testing theory and which ar of direct consequence
for the applications. For example, it is showA how these results
allow the problem of robust linear smoothing of\an uncertain continuous-
time signal in white noise to be fit within a geheral framework
developed previously for robust (minimax) linear moothing. Finally,
some properties of the band model and p-point model (uncertainty
classes which are especially appropriate for many applications) are
developed within the context of 2-alternating capacities.

Accession For

NTIS GRA&I
DTIC TAR ,
Unannounced [ j
Justification-- ..

- /

Distribution/

AvailabilitY Codes
Avail and/or

Dist spIcial

SECUPITY CLASSIFICA'10s OF TH4IS ;;AGE( 'Io Owe



TOPICS IN ROBUST STATISTICAL SIGNAL PROCESSING

BY

KENNETH STEVEN VASTOLA

B.A., Rutgers University, 1976
M.S., University of Illinois, 1979

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 1982

Urbana, Illinois



TOPICS IN ROBUST STATISTICAL SIGNAL PROCESSING

Kenneth Steven Vastola, Ph.D.
Department of Electrical Engineering

University of Illinois at Urbana-Champaign, 1982
(H. V. Poor)

This dissertation addresses several problems in robust signal

processing. The term "robust" in this context implies insensitivity to

small deviations from the assumed statistical description of the signal

and/or noise.

The first part of this thesis considers the problem of linear

minimum-mean-square-error estimation of a stationary signal observed in

additive stationary noise when knowledge of the signal spectrum and noise

spectrum is inexact. First, the performance of robust continuous-time

(Wiener) noncausal filters (designed using a method developed elsewhere)

is examined. It is shown in a variety of situations that when spectral

uncertainty exists the performance of the traditional Wiener filter degrades

badly while the robust filter's insensitivity to such deviations makes it

an effective alternative. Next, this design approach is developed for the

general problem of robust discrete-time (Wiener-Kolmogorov) causal signal

estimation, and a simple characterization of solutions to this problem is

given. The method of design is then illustrated by a thorough development

of the special case of one-step noiseless prediction and numerical examples

*which illustrate the effectiveness of the general design are given for

the problem of robust causal filtering of an uncertain signal in white noise.
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In the second part of this dissertation, a previously developed

cohesive theory of robust hypothesis testing in which uncertainty is modeled

via 2-alternating Choquet capacity classes is considered in light of recent

applications of this theory to problems in robust signal processing

- and communication theory. In particular, a generalization of capacities is

given which allows several of the most common uncertainty classes to be

considered under a less restrictive compactness assumption. Results are

given which generalize this robust hypothesis testing theory and which are of

direct consequence for the applications. For example, it is shown how these

results allow the problem of robust linear smoothing of an uncertain continuous-

time signal in white noise to be fit within a general framework developed

previously for robust (minimax) linear smoothing. Finally, some properties

of the band model and p-point model (uncertainty classes which are especiallyU
appropriate for many applications) are developed within the context of

2-alternating capacities.
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"-. I. INTRODUCTION

In the design and analysis of statistical signal processing procedures,

it is usually assumed that some underlying spectral distribution or proba-

bility distribution is known precisely. Often in practice this is an

unrealistic assumption. Furthermore, as we will illustrate in Chapter II

of this thesis, the belief that nearly accurate models will result in

nearly optimal solutions is frequently unfounded. Thus, we would like to

design procedures which are insensitive to small deviations from an assumed

model. Such procedures have generally been termed robust.

In 1960, Tukey [391 brought attention to the fact that a number of

statistical data-analysis procedures are undesirably sensitive to small

deviations from the assumed probability distribution of the observations.

During the 1960's, two basic approaches to the problem of designing robust

alternatives to such procedures were developed. The first, which could

be termed the "minimax" or "Huber" approach consists, basically, of first,

modeling the uncertainty via a class of probability distributions and,

then, finding a procedure which has the best worst-case performance over

this class (see [431, [14], [27], [6] and [44]). The other approach, which

was originated by Hampel [45], views robustness in terms of the continuity

properties of a procedure on a space of probability distributions (see

[451 and [44]).

These techniques were first applied in a statistical signal processing

context by Martin and Schwartz [40] who considered the design of robust

signal detection procedures. Other results in robust detection were sub-

sequently obtained by Kassam and Thomas [46], El-Sawy and VandeLinde [5I,

[81, Kuznetsov [22], Poor [531 and many others (for a survey, see [47]).
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Robust parameter estimation has also been considered in a signal processing

context by Martin [501 , Papantoni-Kazakos [51] , Price and VandeLinde [52]

and others (see [48] for a survey). Further, results have been developed

for robust nonlinear filtering (see Martin [491 for a survey of this area).

Recently, Kassam and Lim [11 , Cimini and Kassam [25] and Poor [21, [7] have

developed a method of designing Wiener filters which are robust with

respect to spectral uncertainty.

This thesis considers several top: in the general area of robust

signal processing. In particular, in C ter II of this thesis, we present

results from a numerical study of the I mance of the robust Wiener

filters designed via the methods of [1], [21, [25]. We begin Chapter II

by examining the effects of spectral uncertainty on traditional Wiener

filters. We show that in many cases a clear need for robust Wiener filtering

exists and that in many of these cases the robust Wiener filters developed

in (1], [2], [25] are an effective alternative to traditional Wiener filters.

In Chapter III, using a general formulation analogous to that developed

in [21 for robust linear continuous-time (Wiener) noncausal filtering, we

develop a method of designing robust linear discrete-time (Wiener-Kolmogorov)

causal signal estimators (e.g., robust n-step predictors, robust causal

filters and robust n-lag smoothers). The specific problem of robust one-

step noiseless prediction is developed in detail and numerical results are

given for the particular problem of robust filtering in white noise.

In Chapter IV, we present a generalization of the results of Huber

and Strassen [6]. In [61, a cohesive theory of (minimax) robust hypothesis

4 testing was developed for the quite general situation in which uncertainty

is modeled via classes of probability distributions dominated by 2-alternating

I4
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Choquet capacities. These results have been applied by Poor [71, [32] to

problems in communication theory in which spectral uncertainty is modeled

via capacity classes of spectral distributions. In this chapter we extend

*. the theory of [6] to certain situations which are appropriate in this new

context. For example, we show in Chapter IV how the problem of robust

continuous-parameter smoothing of an uncertain signal in white noise now

fits within the general framework developed in [7]. Furthermore, the

results given in Chapter IV partially extend the usefulness of the results

of [61 to noncompact measure spaces. Finally, the band model, an uncer-

tainty class which is appropriate for many applications, is shown to be a

2-alternating capacity class and is used to illustrate certain results of

this chapter.

In Chapter V, a commonly used model of uncertainty known as the p-point

£ class is examined. It is shown that, while the p-point class is not a

capacity class, it is contained in a capa-ity class which we call an

extended p-point class. In many instances the results of [61, [7], [32]

which, of course, hold for this extended p-point class are shown to hold

also for the corresponding p-point class.
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II. AN ANALYSIS OF THE EFFECTS OF SPECTRAL UNCERTAINTY ON WIENER FILTERING

1. Introduction

The solution to the traditional stationary linear (i.e., Wiener)

filtering problem requires exact knowledge of the signal and noise spectra.

Often in practice it is unrealistic to assume such knowledge. Despite this,

Wiener filters are widely used for steady-state filtering. In this chapter

- -we consider the performance of Wiener filtering when the signal and noise

spectra differ to a small degree from those assumed in the design process.

In Chapter III, we will consider the related problem of discrete-time

(Wiener-Kolmogorov) signal estimation when spectral uncertainty exists.

In Section 2 of this chapter we consider the Wiener filter for a

particular signal and noise spectral pair which would be natural to assume

is the true spectral pair. We then look again at our circumstances and

model the uncertainty we might have about our choice of spectra. In so

doing we find that the potential exists for totally unacceptable perfor-

mance degradation in the presence of even small degrees of uncertainty.

In Section 3 we consider filters termed "robust". These filters are

designed to have the best "worst-case" performance over uncertainty classes

of spectra. The method of design is due to Poor 121 and was based on the

work of Kassam and Lim li]. As we will see, the advantage of these robust

filters is that they are least sensitive in the sense that they have the

smallest possible maximum deviation from optimality within the constraints

imposed by our uncertainty.

Of course there is a trade-off involved in robust filtering. While

the robust filter has better worst-case performance, we cannot expect it
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to have optimal performance should our original choice of spectra be the

true ones In Section 3 we will consider this trade-off as well.

2. The Sensitivity of the Wiener Filter to Spectral Uncertainty

The mean-square-error (MSE) for linear filtering of a signal in

uncorrelated additive noise, where both signal and noise are modeled as

zero-mean, second-order, wide-sense stationary random processes, is

given by

1 2 2e(a,v;H) = j , )l-H(w)I + v(w)IH(w)I I dw (2.1)

where H is the transfer function of the filter and a and v are the power

spectral densities (PS1's) of the signal and noise, respectively. For a

fixed signal and noise spectral pair, (a,), e(a,v;H) is minimized by

the Wiener filter

H (w) = a() + v(w) (2.2)

and the minimum MSE is

* A 1 *

e(a,v) e(a,v;H = - 2 H(w) v(w) dw (2.3)2-.

Unfortunately, as we discussed in Section 1, it is often the case

in practice that our knowledge of the signal and/or noise PSD's is inexact.

If the a and v we choose for designing H are not the true spectra, then

our filter will generally have less than optimal performance. To illustrate

the degree of performance degradation that can result from such mis-modeling,

we consider the following examples. The numerical results presented here

F
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and in the following section comprise a representative selection from an

extensive numerical study.

The p-point class. For a number of applications it is natural to

assume that we have a narrow-band first-order Markov signal in wide-band

first-order Markov noise, i.e. that

2a 2

o0(w) = 2 + 2

and S (2.4)

22 cNvN
v 0 () = W 2

N

where a aN are the 3 dB bandwidths and v2 and v2 are the powers of the

signal and noise, respectively. For Fig. 1 we have aN = 10 and as = 1.

In the figures of this chapter we have used a measure of performance

which we refer to simply as output signal-to-noise ratio (SNR). The purpose

of Wiener filtering is to minimize the MSE,E[[S(t) - S(t)] 23.

between our estimate S(t) (i.e. the output of the filter) and

the actual signal S(t). Since the output of the filter can be written as

S(t) + (S(t) - S(t)), we use the signal power divided by the MSE as an output

SNR. For the purpose of our graphs we translate this to dB. The horizontal
2 2

axis is 10 loglO(Vs/VN), the input SNR in dB.

The top line in Fig. 1 gives the performance of the Wiener filter H0,

- designed using a0 and v0 of (2.4) ii equation (2.2), when a0 and u0 are, in

fact, the signal and noise spectra which occur. For this case it is

straightforward, via equation (2.3), to show that

*2 A /2 2
e*(0Sc.ON// S,2r + N /(,a' aINr_+__S_-_iN) OSr+ AN)

U
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FIG. 1. p-point example. (From top to bottom) H 0 at (a9N 0

"trivial filtering"; H0 at its worst case.
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where

r 22

Now, suppose that the only information about which we are certain

is the powers of the signal v2 and the noise vN and that we have estimated

with sufficient accuracy the fractional power of each on the set

s = [w reallwl 1 1 }. We denote the signal and noise fractional powers by

PS and pN' respectively (e.g. (2n)-ifS a(v)d - s). In particular, for

the example considered above, we have PS " 0.5 and pN - 0.063. If these

total powers and fractional powers are all we can really be certain of, we

would like to know how badly the performance of H0 can deteriorate. The

bottom line in Fig. 1 gives the worst-case performance of H The middle

line represents what we can do trivially for any pair of spectra by using an

all-pass filter (H 1 1) when the input SNR is positive and by using a no-

pass filter (H 0) when the input SNR is negative. Thus we see that if

the spectra are actually first-order Markov then our filter does well, but

if not we can do significantly worse than trivial filtering.

Finally we note that uncertainty classes of spectra given by assuming

exact knowledge only of the total and fractional powers are called p-point

classes and have been studied as models of spectral uncertainty by Cimini

and Kassam [25]. An analogous uncertainty class for probabilities used in

robust hypothesis testing and robust detection has been examined by El-Sawy

and VandeLinde [5], [8]. These classes will be considered in greater detail

in Chapter V.

The c-contamination class. Suppose that we again have a particular

spectral pair (a0,v0) which we believe to be the true spectra, but that we



also have a general sense of uncertainty about our choice which we model by

an e-contaminated class; i.e., we assume we know that the true spectra

satisfy (a,v) 6 W x 7? where 0 S e j 1,
C E

= (W) =l-)a 0 (W) + ea'(W) woRn, fo'(w) dw - fa(w) dw)

and (2.5)

I 7? C [VIv(w) (I-)v 0 (W) + Ev'(W) weR, fv'(w) dw f VO(w) dw}

Classes of this form have been used extensively as general models of uncer-

[C tainty [391, [141, 1271, 1401, 11], [231.

Fig. 2 gives the performance of the Wiener filter H0 designed via

equation (2.2) assuming a narrow-band (as = 1) first-order Markov signal in

wide-band (a = 1000) first-order Markov noise. The upper line gives the

performance of this filter when these are the true signal and noise. The

lower line is the worst case of this filter over the uncertainty classes

- in (2.5) with a and u0 given by the above choices and with e = 0.1. We see
10 0

that, for values of input SNR near zero, the worst case is better than trivial

filtering but still much worse than optimal (about 8.5 dB); for values of

input SNR greater in absolute value than 60 the performance in both the

nominal and worst cases is the same as trivial filtering; and for all other

values the worst case is worse than trivial filtering.

An e-contaminated signal in white noise. Fig. 3 shows the nominal

and worst case performance of the nominal Wiener filter for the signal

uncertainty class W in (2.5) with c = 0.l and u0 first-order Markov with

is = 1. The noise is white noise with no uncertainty and the horizontal

L------------ -- -- -------------
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2
axis is actually the ratio of signal power v5 to the noise level N /2. Note

S 0

that the worst case is bounded above by 10; in fact, for any choice of e, it

is bounded above by -10 log(e).

As noted above, the optimal and worst-case performance of Wiener

filtering under various conditions has been examined extensively for several

uncertainty models and for a variety of signal and noise parameters (such as

bandwidth and power). The above examples are reprer atative of the sensi-

tivity of Wiener filtering to deviations from spectral assumptions which

were found in virtually every case. Further examples are pictured in the

appendix.

3. Robust Wiener Filters

To remedy the problems of Wiener filtering sensitivity discussed in

the preceding section, we consider the following robust filter design which

was developed by Poor [21 based on the work of Kassam and Lim [1].

A most-robust Wiener filter [21 is a solution HR to the game

min sup e(o,v;H) (2.6)
H (X)c.× 7

* where a and 'a are classes of spectra representing uncertainty in the signal
and noise,respectively, and where e('7,v;H) is given in (2.1). Note that

since the supremum in (2.6) gives the least upper bound on the error,

* H is a filter with the smallest possible such upper bound. In other words
R

HR is least sensitive to worst case uncertainty.

A pair of spectra (a L L) is least favorable for Wiener filtering for

* the spectral uncertainty classes P and 'r [21 if

e(7,;HL) e(,. L;H T) (2.7)

a
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for all a g •, v e ?Z where 1 is the Wiener filter for the pair (OLvL)

as in (2.2).

It is straightforward to see that if (aL,vL) e X 7 is least favorable

for Wiener filtering for W and 77 then the pair ((aLL), ) is a saddle-point

solution to the minimax game (2.6). That is,

sup e(a,v;H L ) = e(aL,vL;H) = min e(L,vL;H). (2.8)
(a,v) *X7 L H

We see from this that if (OLVL) is least favorable then HL is a most-robust

Wiener filter.

Thus we see that if we can find a least-favorable pair then we can

design a most-robust Wiener filter. One of the methods developed by

Poor [2] for finding least favorable pairs of spectra (and hence most-

robust filters) involves an analogous concept in hypothesis testing: least-

favorable probability density functions (PDF's) for testing one set of PDF's

against another. Least-favorable PDF's have been found for a variety of

classes of PDF's (see [14], [271, [20], [211, and Chapter V). If

every signal spectrum in J has the same finite power v2 and every noise
2

spectrum in 77 has the same finite power vN then we can define classes of

PDF's

9S = {fslfs(w) = a(u)/27rv , oEA

and

.9= {fjlf,() =~)2v 2 I

and possibly apply the following ( [21, Corollary 1).

Theorem 2.1: If a and 71 are convex and have constant powers v2 and v re-

spectively, and qs S eS and qN % N are least-favorable PDF's for versus
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then a 2 q are least favorable spectra

for Wiener filtering for a and ?.

This theorem allows us to construct most-robust Wiener filters for the

first two examples considered in Section 2.

The p-point class. It can be seen from [25] that

2PsVs
for w S2 2

HR(w) = , v, ~ V

2+ s) 2 for w e Sc

(1-ps)vs + (l-pN)vN

and, hence,

p PP (1-ps ) (1-pN
e (a,vj;) = ~ N + N for all (a,v) cdx'),HR), ;-- + N (l-ps)r + (1.PN)

where r A vs/v N the input SNR. In Fig. 4 we have superimposed onto Fig. 1

the performance of H (the middle line). It is clear from Fig. 4 that,
R

unless we are extremely certain about our choice of a and v, HR is prefer-

able to H0'

The c-contaminated class. For the classes in (2.5) it can be easily

seen from the above theorem and [14] that

AI
k' a c'r/(c'r + 1) for H0(w) L_ k'

H() H(w) for k' < H () < k"R 0 0

c"r/(c"r + 1) for o 0(w) > k"

where 0 . c' < c" L_ are constants given by Huber [141. It is interesting

to note that the robust filter H R has this same form for several other
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FIG. 4. p-point example. (From top to bottom) H* at(a'-
* 0 at*H at any (a,v) c a X ??Hat its worst case.R 0
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uncertainty models (see [2], [271). Also note that this HR will

not have constant MSE over W/ x 7 as in the previous example. In Fig. 5

we have superimposed onto Fig. 2 the performance of HR when the true spectral

pair is (aov 0) (the second line from the top) and when the true spectral

pair is (aLvL) (the third line from the top). Recall from the definition

of (OLvL) that the latter is the worst-case performance of HR. For this

example c' = 1/c" = 0.125.

Unlike the preceding example, the preferability of the most-robust filter is

not so clear-cut. If one were relatively certain about (o0,v0 ) being correct then

H0 would be the better choice; however, if not, and if the guaranteed level of performanc

over dX 7 (given by the third line down) were adequate, we would likely choose H.

An e-contaminated signal in white noise. Clearly the above theorem

cannot be applied to find a robust filter in this case since the noise has

infinite power; however a more direct approach proves fruitful here. First,

we may restrict our search to H C L2 (dw), the mean-square integrable functions

on R, the real line, since all others have infinite MSE regardless of what

a is (cf. equation (2.1)). Second, we have, for all H e L2(dw),

Q i2 2 N

sup e(a,v 0 ;H) = sup 1 [l-H(w)l ((l-E)a (W) + ECy'(W)) + IH(w)I dw 
are? s 0 2T 2

1 2

= e((l-)a 0 ,v 0 ;H) + E sup l-H(w) a dw (2.9)

IR "

2e((l-t)a ,v0 ;H) + Vs.

The last step is true because H E L.,(dw) and it is assumed that fc7'(w)dw=271v-.
IR S

6.
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-- H* at (a-o , z/0)
H

: H R at (O-0, ,o)  "

40 . .......... H* at its Worst Case, (0 L) /
- HO at its Worst Case .4

M

V)20

0.0

0

0

-20(-

-20 I I LI i.I I

60 -40 -20 0 20 40 60
Input SNR (dB) FP-7334

FIG. 5. -contaminated example. (From top to bottom) H0 at (00,0) ;

H R at (a0,v0 ); HR at (aLvL) (R 's worst case); H at its

worst case.
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Clearly equation (2.2) and equation (2.6) (the definition of H ) imply that

0(2.10)

(l-C)a (w) + N /2
0 0

minimizes (over H) the last expression in (2.9). But, for the value of H

given in (2.10), we have equality in (2.9). Thus, HR for this problem is

given by (2.10).

Recall that Fig. 3 showed the performance of H0 in this situation

in its nominal and worst cases. If we superimposed the nominal and worst

cases of HR onto Fig. 3, as we have done for the other examples, we would

Rfind no change; i.e., up to the accuracy of the graph the nominal cases

and worst cases of H and HR are the same. In fact, they differ by no

more than 0.01. It should be noted that this is a singular example and

the unusual performance is due to the infinite power of the white noise,

not to the "very wide bandedness" which white noise is generally used to

model.

4. Discussion and Conclusions

4 As we have discussed above, the results presented in this chapter

(with the one exception of the white noise example) are representative of

our findings in a wide variety of cases. For example, although it is a

much harder case to solve, we have developed numerical results for causal

Wiener filtering of an E-contaminated first-order Markov signal in first-

order Markov noise. The theory of the causal case has not been developed

in the same generality as the noncausal case: however, this specific

example can be treated using the results of Poor [21 and Yao 1161. In

Fig. 6 we have presented the results for this causal filtering example

I
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I°

6I I
--- H* at (ro-, vo) /
. ..H* at (ao, v O)  /

.......... H* at its Worst Case, (a-L, I/L i

-40 - Ht at its Worst Case

0 
-

S~~~o I....

-40 -20 0 20 40 60
Input SNR (dB) F P-7333

FIG. 6. Causal example. (From top to bottom) H0 at (0,v 0 ); HR at

(a0 v ); HR at (Lv L) (H 's worst case); H0 at its worst case.

-1

-4
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with e = 0.1, as 1 1 and aN = 1000. For comparison we have also included

Fig. 7 which gives the results for the corresponding noncausal case. Note

the similarity between the two figures. Again, this is indicative of our

findings over a wide range of signal and noise bandwidths and e's (see the

appendix).

Other situations we examined in the noncausal case include ones with

o and/or v as second-order Markov (i.e. having the form 43 v 2/(a
2 + W2 ) 2)

or using bandlimited white noise. The results for all these cases were

similar to those already presented (e.g. Fig. 5). (Again, see the appendix.)

Of particular interest is the case of an e-contaminated first-order

Markov signal in c-contaminated bandlimited white noise. Even when the

bandwidth of the noise was extremely large (e.g. 10 6) the results were similar

to the other cases and unlike those involving nonbandlimited white noise

(cf. the remarks at the end of Section 3 and Figure 22 in the appendix).

In summary, the Wiener filter can be undesirably sensitive to small

deviations from assumed spectral models. Furthermore, while there are

enough specific cases to the contrary to make caution advisable, we have

found for a wide variety of situations that, when spectral uncertainty

exists, the robust Wiener filter is generally preferable to the traditional

Wiener filter.
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i

rg 60 I

0-- H* at (o,zo)
- R- H* at (o, Vo)

.......... HR at its Worst Case, (a'L,z/L)
H* at its Worst Case
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C-

020

0-40 -20 0 20 40 60
Input SNR (dB) PP-733

FIG. 7. Noncausal version of FIG. 6 (all parameters the same).
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III. ROBUST WIENER-KOLMOGOROV THEORY

1. Introduction

We saw in Chapter II that optimal linear continuous-time (Wiener)

noncausal filters can be undesirably sensitive to spectral uncertainty

and that often the robust Wiener filters developed in [2] are preferable

because of their insensitivity to such uncertainty. In this chapter we

consider a general formulation of robust linear discrete-time causal

estimation of a linear function of a wide-sense stationary signal. This

formulation is analogous to the robust Wiener noncausal filtering

development in [2] which is summarized in Chapter II, Section 3.

Recall that the essential steps of this formulation consist of, first,

choosing two classes of spectra which model the signal and noise uncer-

tainty and, second, finding the signal estimator which minimizes the

maximum error over these spectral uncertainty classes. Our main results

yield, under mild conditions on these spectral uncertainty classes, a

method of designing robust n-step predictors, robust causal filters and

robust finite-lag smoothers and guarantee their existence. In order to

illustrate this method of design, the special case of robust one-step

noiseless prediction is developed in detail. Also, numerical examples

are given for robust causal filtering of an uncertain signal in white

noise.

In Section 2 we briefly present the traditional discrete-time

(Wiener-Kolmogorov) signal estimation problem [281 and discuss those

*aspects which will be relevant in the sequel. In Section 3, we present

the robust version of this problem and state and prove the main theorems.

gI
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Section 3 includes a discussion of commonly used models of uncertainty.

In Section 4, we apply the results of Section 3 to the problem of robust

one-step noiseless prediction. For this case, explicit expressions are

developed using an analogy with robust hypothesis testing originally

developed in (2]. In Section 5, examples are given and discussed. In

Section 6 we consider the development of Section 3 in the more general

situation when the signal and noise are represented by spectral distribu-

U tions rather than spectral densities as in Section 3. Results of a

somewhat different nature are obtained. Finally Section 7 contains

conclusions and general discussion.

2. Background and Preliminaries

Throughout this chapter we assume that we observe a portion of a reali-

zation fy(k)lk E Z, k : ko 0)of a random process (Y(k)Ik E Z), where Z

denotes the set of integers, and we assume that Y(k) = S(k) + N(k),

! k E Z, where fS(k)I k E Z) and (N(k)I k E ZI are second-order, wide-

sense stationary random processes which are uncorrelated with each other.

We can also assume that (N(k)Ik E Z) is zero-mean. The processes (S(k)}

and [N(k)) represent signal and noise, respectively.

Our purpose is to form a linear causal estimate of a linear function

of {s(k)} from the observation {y(k)}. That is, we are given some function

of the signal having the form

Z d(k) = 7 d(k-n)s(n) (3.1)
di n=_
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and we wish to find the "best" estimate of {d(k)} among all estimates having

the form

k
ih(k) Z Z h(k-n)y(n) (3.2)

where h satisfies h(n) = 0 for n < 0 (causality). The usual criterion of

optimality is to find such an h minimizing the mean-square error (MSE).

For given functions d and h the well-known formula for the MSE is

E{[[d(k)- Zh(k)] } ff j [jD(6l-H(6 ) 2f (6l+ IH (8l 1 fN (6)]dX (O)

-iT

eD(fS1fN;H) (3.3)

where D and H are the transfer functions (i.e., Fourier transforms) of

the transformations d and h, respectively, and f and f are the power
S N

spectral densities (PSD's) of {S(k)} and [N(k)}, the signal and noise, with

respect to the finite measure X. In general, we will take X to be Lebesgue

measure on [-,rl (so that fs and fN are just the usual PSD's) but it also

might be convenient, for example, to allow X to include some point masses

in order to represent pure sinusoids in a mathematically rigorous fashion.

(More will be said about this in Section 6.)

We refer to the transformation d (or its transfer function D) as the

desired operation. The cases of greatest interest occur when d(n) = 1 for
in e

n = n0 and d(n) = 0 for n # n0 (correspondingly D(e) = e ). If no = 0

our problem is causal filtering, if no < 0 it is prediction n0 steps ahead,

and if n0 > 0 we have smoothing with fixed lag no.

|

U
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If the PSD's f and fN are known and the desired operation D() is

given then we would like to minimize eD(fSfN;H) over all causal transfer

functions. We denote by R the solution to this minimization problem and

refer to H as the optimal causal transfer function for (fsgfN). Note that

Ht is unique a.e. (f + fN)dX (i.e., if H' also minimizes eD(fS,fN;H) over

all causal transfer functions then [f () + fN(O)]dX(e) - 0, see [31).

For the remainder of this chapter we will assume that the PSD's fs

and f are bounded a.e. [X]. Further, we will only consider filters H
N

which are mean-square integrable on [-7,w] with respect to X, i.e. we will

2 A 2
assume that H E L = L (dX(8)). Of course, we only want to consider those

H E L2 which are causal transfer functions. The set of such H is denoted

2 A 2
by H+ = H (dX(e)) and can be defined as the (closed) subspace of the Hilbert
space L2 which is spanned by {e inIn = 0,1,2,...} . H+ is called a Hardy

space (see [3],[4], or [18]). With these definitions the minimum-MSE

problem for a specific pair of PSD's (fsf) and desired operation D(6) can\N

be formulated as

efsfN) ma 2 eD(fSfNH) (3.4)D~fSfN) H 'E H+2D

3. Robust Linear Estimation of a Signal in Noise

Throughout this section we will assume that the desired operation D(e)

is fixed and bounded. It is clear from Section 2 that the solution, Ht (),

to the minimum-MSE estimation problem (3.4) depends entirely on the signal

and noise PSD's, f and f N As we discussed in Section 1, the spectra we

.hoose for designing H may differ somewhat from the true signal and noise

spectra. We model this spectral uncertainty by choosing appropriate classes

of PSD's, .I and 7Z, and assuming that fS E -' and fN E 7. In other words,

S
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we know that fs belongs to P and that fN belongs to 7 , but we do not know

which elements of &P and 77 represent the true signal and noise spectra.

Clearly any transfer function R for which there exists a finite upper

bound on the MSE, eDN(ffsN;R) over all fS in &0 and fN in 72 , could be

termed robust since a certain level of performance can be guaranteed by using

HR. (That level being: sup e Df ,fN;HR).) Ideally we would like a
(fS,f N)E N

(causal) transfer function with the smallest possible such upper bound, i.e.,

we would like to find a solution H to the game

inf 2 sup e (f,f N;H ). (3.5)
HEH+ (fs fN)E .1 D S N

tAs in Chapter II, we refer to H as a most-robust causal transfer
function for the spectral uncertainty classes a and 7.

We now give some specific forms for the uncertainty classes d and 7?

These forms have been widely used to model uncertinty in both the engineering

and statistics literature. We will exhibit these forms for the class a,

but, of course, they could just as easily be used to model noise spectral

uncertainty.

Certainly the most commonly used uncertainty class ([6],[7],[14],[20],

[23],[321,[37],[39],[40],[43,[44],[461-[481) is the s-contaminated model

(also called the s-mixture or gross-error model). It has the form

I
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Se {fslfs(e) - (1-S)f°(8)+ fs(B)VOc[-7,W],

f f(e)dX(e) - ff (e)dX(e)} (3.6)

where fO is a nominal PSD and c (0 < e < 1) is the contamination parameter.

This class is probably the most popular for representing uncertainty because

it models the idea that we have £ of completely general uncertainty about

0our choice of the PSD f
s

Another common model ([21,[6,[14],[20],[44]) is the total variation

model which has the form

S {fI " If 0 (e)-fs(O)IdX(e) < c
TV s 2* - ' Tr s, <

f f(e)dx(e) = f (e)dX(e) } (3.7)
-'i" -n1

where, again, f is a nominal PSD and e an uncertainty parameter.

A third model is the band model ([1],[21],[22]) which has the form

* SB {fs fL (6) < fs () < f (6) e, J fs(8)d'(e) = 2w} (3.8)
-Tr

whre, L ; Uwhere s()dX(e) < 2w < f ()dX(O) and w is the (known) power of the

-IT -t

-7rU
signal. The name band model comes from the idea that fL and fU are the

s s

lower and upper bounds of a confidence band around a spectral estimate.

The last model is the p-point (or Sakrison's class b) model (f5],t8],

[251,[41],[42]) which has the form
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Sp {f A fs(e)dX(e) - 2i , i-l,...,n} (3.9)
Ai

where the A 's are a partition of [-r,r] and E wi - w , the power of the
i i-i

signal. A p-point class is an appropriate model of uncertainty in situa-

tions where, for example, we can accurately measure the power pi in each

interval A [6_ (where -w - e < e < ... < e r) using a
i i-li 0 1 n

nested bank of low pass filters or a bank of band pass filters. Note that

unless n is quite large we are allowing a considerable amount of uncertainty

when we use a p-point class. It might be more reasonable to obtain also

some other form of spectral estimate and use a band model in addition

(i.e., let our class be the intersection of a p-point model with a band

model). We call this a banded p-point model.

We note that for each of these classes we have assumed that the power

is known. Often it is a reasonable assumption that the power can be

accurately estimated even though the shape of the PSD is uncertain.

Furthermore, in all the specific cases in which we have found most-robust

filters (see Section 5) it turns out that they do not depend on the specific

signal and noise powers (w and wN, respectively) but only on the input (toS N
* the filter) signal-to-noise ratio ws/wN .

Returning now to the definition of a most-robust filter (3.5) for

general &* and 7? , we note that, while the minimum-MSE transfer function is

* known to exist for each (f s,f N) E W x 7 , this is no guarantee that the

infimum in (3.5) is achieved. In fact, it need not even be finite. Of

course, even if it were not achieved there would still exist transfer

* functions whose worst-case MSE over &x 7 would be arbitrarily close to

this infimum.
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In the following theorem we give some mild sufficient conditions for

the infimum in (3.5) to be achieved and finite.

* Theorem 3.1. If the spectral uncertainty classes . and 7 are such that

the following two conditions hold

1
i) sup I 7" fs (0) d (0)  w. -c

27r

*ii) Either (a) or (b) holds for some e > 0:

f E - suh ha

a) There is an fN E 71such that fN(0) > > 0 a.e.[X],

b) There is an TS E d such that fs (8) > e > 0 a.e.[X];

then there exists H achieving the infimum in (3.5). Furthermore this

infimum is finite.

2Proof. Let HO(e) - O,Ve. (Note that H0 E H; .) We have

inf sup eD(fs; fN; H) < sup eD(fSfN,HO)
H2 &Px~ 7dX 7

u- sD(O) 12fS(e)d,(O)
f SEd - r

iT

BD SUp fs(e)dX(e)
fs£d -,4

•=B D W < 0

2
where BD is the essential supremum of IDI Hence the infimum in (3.5) is

* finite and for any fixed M satisfying BDwS < M < we may exclude from
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consideration any H E 2 which satisfies eD(fSfNH > M for some

(fS'fN)E J x7* We will now translate this to a bound on 1H 11

r~
IJ H(e)IdX(e)I which i?' the norm of H in the Hilbert space2

if condition (a) of (ii) in the statement of the theorem holds

2
then for any f S E .0 and any H E H we have

~(f~f;H) 1f' IH()12--(e)dX.(e)

2

Hence in this case we may exclude any H satisfying 1H 112 > 2irM/E:. If,

on the other hand, condition (b) of (ii) holds then for any f E and

2
anyH E H we have

D S N' 27T S

K > (s/2t)j11 D-H12 2

> (E:/2ir)[ JID1I - IIHJ ]2

Hence we -Lay exclude any H satisfying 11H 11 > fl Dfl + v7Pii7T/E

Thus we have shown that if B > jIDfl +~ 2B w K/ then we have
D S

inf sup %D(fS f;H) = inf sup eD(f f ;H) (3.10)
2 1 fN2 p D S N

H2 H +(B)



31

2 A2
where H+ (B) = [H E H+1 IIH 11 < B]. We will now show that the right hand

side of (3.10) has a solution.

2
Step 1: eD(fS'fN; ) is continuous on H+ for each (f sfN) E x 77

We have

2TrIeD(fS,fN;H) - eD (fSsfN;H)l

Ii ID-H I 2 fsdX - ID-HnI 2 fsdXI+ IJIH I 2fNdX - JIHI 2fNdXI

< Bf I IID-H n 2 11 DfH I -1 H H 112
- S N

where B and B are the essential supremums of fs and fN' respectively.

S N

Now if II Hn-H 11 - 0 then II(D-Hn)-(D-H) II - 0. Hence from the inequality

II H1-H 211 > II1 HIll - II H211 1 we have that II Hnl n II HjI and 11 D-H nl I'

IID-HII . Hence eD(fS fN;.) is continuous.

2
Step 2: sup eD( ,f N.) is lower semicontinuous (l.s.c.) on H+

- 5 N' +S

This is a straightforward consequence of Step 1 and Corollary 1.1, p. 77,

in [55] which states that the supremum over a fam4lr of.l.s.c. functions

is l.s.c.

2
Step 3: sup eD (fS,fN;-) is convex on H+. This is a straightforward

computation.
2

Step 4: Apply Theorem 1.2, p. 79, in [55], to sup eD(fS~fN;.) on H+(B).
D N~

2
This Theorem 1.2 states in our case that because H+ is a reflexive Banach

space (see [4]); because sup eD(fS~fN;) is l.s.c. (Step 2), convex (Step 3),

and proper (this is trivial since e(fs,f ;H) > 0 > - on H: and because
SN' +
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RH (B) is convex, closed, and bounded (these can be deduced from the fact

that H;(B) is just a multiple of the closed unit ball ofH, see [1);

we have that the infimum in (3.5) is achieved by some R QE.

As we noted above, the conditions of Theorem 3.1 are mild. Certainly

any problem in which there was no upper bound on the signal power would be

unreasonable. Further, the condition (iia) [resp. (iib)] is satisfied if

71 [resp. W I has any of the forms discussed earlier (i.e., E-contaminated,

etc.). The only possible nontrivial exception to this would be in the case

of the p-point class if some w.=0 while X([O i _ i]) > 0.

We now turn our attention to the problem of finding H ,the most

robust transfer function. We begin with a definition.

Definition 3.1. A pair of PSD's (f ,f N is least favorable for causal.

estimation for the uncertainty classes d and 7 if
*1

(fLf L max eD(fsf (3.11)
D SN eDf SN

where eD(fS,fN), the minimum-MSE for (fs~fN), is defined in (3.4).

L L
Note that (3.11) means that (fs,fN) solves the maximin game

SN

max min e D(f S,f ,H) (3.12)
W X 2

4 H+

Hence, if the minimax equality holds here (i.e., if (3.12) equals (3.5))

iThis definition differs from the ones given in [1] and [2] (see Chapter 2)
but is consistent with earlier notions of least favorability (see, for
example, [26], p. 34). As was pointed out by Verdu ([54], p. 72), this

discrepancy seems to have had its origins in a somewhat confusing discussion
in [14].

I.

-j
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then (fL,ff) is a least favorable pair if and only if (fLf L) and its

C +
optimal causal transfer function H form a saddle point solution to the

LL tgame (3.5) (or, equivalently, the game (3.12)); that is (fsf and

satisfy

e S ; eD(fs)L L L
D ' Y DfS9eND(fSffN; (3.13)

U (For a clear and thorough discussion of this point see [55], especially

Section 2.3.1.) Clearly, if (3.13) holds then HL is a most robust causal

transfer function.

Our next theorem gives some conditions under which the optimal transfer

function for a least favorable pair is most robust. This is useful because

it is often easier to solve the maximization problem (3.11) than it is to

solve the minimax game (3.5).

Theorem 3.2. If the spectral uncertainty classes & and 7 are such that the

following three conditions hold

1

i) sup -" 1 fs(e)dX(e) = W < co

ii) *0 and 7? are convex.

iii) At least one of (a) or (b) holds for some E > 0.

a) Every fN E 7? satisfies fN (9) > c > 0 a.e. [X]

* b) Every fs E d satisfies f () > E > 0 a.e. [X]

L Lthen a pair of PSD's (fS, f N) in W x 7? and its optimal causal transfer

function HL form a saddlepoint solution to the minimax game (3.5) if and

only if (f ,f ) is least favorable for causal estimation, i.e., solves
S N

40
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±
(3.11) (note that in this case H is a most robust causal transfer function).

Proof: We will need the following lemma (which is Theorem 2 in [11])

Lemma 3.1: Let X be a compact Hausdorff topological space and Y an

arbitrary set. Let F be a real-valued function on X x Y such that for

every y E Y F(x,y) is l.s.c. on X. If for each y E Y F(xy) is convex

on X and for each x E X F(x,y) is concave on Y then

U
min sup F(x,y) = sup min F(x,y). (3.14)
xEX yEY yEY xEX

We wish to apply Lemma 3.1 with X = H (B) (H (B) was defined in the
*+ +

proof of Theorem 3.1), Y = al X 7× , and F(x,y) = F(H,(fs5 f) eD(fS,f;H).

2 2
Since H+ is a reflexive Banach space H (B) is compact in the weak topology

c(see [10], Chapter V , especially Theorem V.4.7, or [55], Sections 1.2.2

and 1.2.3). Furthermore we saw in the proof of Theorem 3.1 that eD(fS~fN;.)

2
is continuous (hence l.s.c.) in the norm topology of H+(B) and that

2
eD(fS~fN;-) is convex and proper on H+(B). Thus by Proposition 1.5 of

2
[55] we have that eD(fS,fN;-) is l.s.c. in the weak topology of H (B). The

final condition of Lemma 3.1 is that eD(.,.;H) is concave on x × 7 . But

* this is trivial since it is even linear. Thus we have shown that for any

B > 0 we have

min sup eD(fc,f N;H) = sup min eD(fSfN;H) . (3.15)

H 2 (B) .0x× 7? 7 H2(B)

Note that since the conditions of this theorem are stronger than the

conditions of Theorem 3.1 we have from the proof of Theorem 3.1 that if B

is large enough then the left hand side of (3.15) is equivalent to (3.5).

6
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We will now show that the right hand side of (3.15) is equivalent to the

right hand side of (3.11).

If (say) condition (a) of (iii) holds than for any (fS,fN)Ex7Zand

any HE H+ we have that

eD(fS,fN;H) > j IHI2fNdX

> (E/2w) IH12d X

=(c-/27) 11 H 112

Hence for any B > v 2TreD(fS'fN)/e we have

min e D (fS,fN;H) = min eD(fSsfN;H)
2 2
2 H+(B)

Furthermore, if B> 2'T sup e (fsfN)/ we see that the right hand side of
& 7 

t
(3.15) equals the right hand side of (3.11). We note that sup eD(fSf N) is

always finite under the conditions of Theorem 3.1 (hence under those of

Theorem 3.2) because it is always less than or equal to

*i

min sup eD(fS'fN) "

HEH2 ×  S

Thus we have shown that under condition (iiia) B can be chosen so

that (3.15) implies

min sup e (f f ;H) - sup min e (fS,f ;H)
2 D S x H2  D
H+ +

S
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Knowing this we have (see Section 2.3.1 of [55]) that (3.11) is equivalent

to the existence of a saddlepoint solution to the game (3.5) and that,

in particular, any solution (fL, fLN to (3.11) and its optimal causal
S' N'

± "
transfer function form a saddlepoint solution to (3.5). Thus UL is a

most robust transfer function . Conversely, any pair of PSD's which together

with its optimal transfer function forms a saddlepoint solution to (3.5)

must also solve (3.11).

Finally we note that (just as in the proof of Theorem 3.1) we may

obtain these same results if condition (iiib) holds instead of (iiia) and

the theorem is proved.

While the conditions of Theorem 3.2 (especially (iii)) are not as

innocuous as those of Theorem 3.1, they are satisfied by any E-contaminated

0 0(see (3.6)) whose nominal PSD, f , satisfies f (6) > 6 a.e. [X], for some

6 > 0, by any band model (see (3.8)) whose lower bound fL satisfies

f L() > 6 a.e. [X] and hence by any banded p-point model whose lower

bound satisfies this condition. This is not an unreasonable condition

since it only need apply to one of &P and 7, not both. Generally the

noise will be wide-band with respect to the signal and this condition will

be satisfied by 7. Alternatively, we might assume there is a small white

component to the noise. This added component is sometimes called , "noise

floor" and has been used, for example, by Van Trees to make the problem of

detection in nonwhite noise analytically tractable. See [571, Section 4.?,

for further justification.

The benefit of Theorem 3.2 stems from the fact that the maximization

K in (3.13) should be easier to solve than the original minimax problem (3.5).

-A

LI "~-~-
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* In general, this will only be so if we have a closed-form expression for

eD(fSfN) as (fs,fN) ranges over W x 71. Such expressions have been found

in a variety of cases by various researchers (see [3], [4], [131.[151-[191,

[33],[34]). In particular Snyders [3] has developed a general method for

* finding such expressions when one of f and fN is fixed and rational while *1

the other is completely arbitrary.

4. Robust Noiseless One-Step Prediction

In this section we consider in greater detail the special case of

prediction one step ahead of a signal with uncertain spectrum. The

- signal is assumed to be received in a noiseless environment. In other

-iewords, we consider the problem (3.5) with D(e) = e and fN(e) = 0

for all e E [-rr]. This special case is the one considered previously by

Hosoya [23]. The conditions on our main theorem (Theorem 3.2) when

applied to this case are slightly more restrictive than those of

Hosoya's analogous result (Theorem 2, p. 581 in [23]). On the other hand,

* in [23] only the e-contaminated class (see (3.6)) is considered and the

proofs directly depend on the specific form of the least favorable PSD

for this class, whereas our treatment is valid for more general uncertainty

classes.

For a known signal PSD, fs(e), the one-step minimum-MSE noiseless
SI

prediction problem is given by

e (fs O) min e (fS,0;H) (3.16)
D SDS

2 "
H+ ,

e e and e 2
where D(e) = n D' eD and H+ are defined in Section 2. Note that "
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this is just (3.4) with fN(e) 0 V e E [-fifr]. In this section we refer

to the solution to (3.16) as the optimal linear predictor for fs"

The Szegd-Kolmogorov-Krein Theorem [3],[4] states that (with

D(O) - e ) we have

--(fS,) -log f s(d) (3.17)
2w -

where the right hand side is interpreted as zero if log fs is not

integrable. (Technically, the f in (3.17) is the density of the absolutely
S

continuous part of f (e)dX(e) with respect to Lebesgue measure on

However, since the case of greatest interest is when X is Lebesgue measure

and since any predictor can be adjusted to perfectly predict the singular

part of any signal spectrum (see (18]) we assume here that f is just the

usual (Lebesgue) PSD).

We now consider the case where the signal spectrum is uncertain. As

in Section 3 we assume that we know only that fs E .P, and we wish to find

H solving

min sup eD(fS,O;H) (3.18)

H2+

where, again, D(e) = e . In this section we refer to T as the most

L
robust linear predictor. Also, we define f to be least favorable for

S
L

one-step noiseless prediction for aP if (f S,O0) satisfies Definition 3.1 with

* L
{0}. From (3.17) we see that f is least favorable for one-step

noiseless prediction for &P if and only if
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log f (e)d max log fs(e)de (3.19)

L
Furthermore, under the conditions of Theorem 3.2 we have that f solves

S

(3.19) if and only if f and t form a saddlepoint solution to (3.18),

t Lwhere HL is the optimal linear predictor for f Thus, if we can solve

(3.19) then we can find the most robust linear predictor for &P

We will now demonstrate how to obtain the exact form of a least

favorable spectrum for each of the uncertainty classes discussed in Section

3. The method we use involves an analogy to robust hypothesis testing.

The advantage of this is that it allows us to make use of the considerable

effort already expended in finding least favorable probability densities

for that problem (defined below). This analogy was the underlying basis

for the solutions given in [1] and [22) and was developed explicitly in

Section III of [2] (see Chapter II).

As in each of the classes of Section 3, we will assume that

satisfies a power constraint, i.e., that rff(e)de = 21w S, where

0 < wS < - is the power in the signal process {S(k)}. We can now define

a class of probability densities on [-Tr,1T] by

4S= {ps(e)1ps(6) = fs(6)/2wSwfs E &} (3.20)

and consider the following pair of statistical hypotheses concerning a

random variable X on [-7,1] and its Borel a-field

41

HO  X p(8) = [-wr]

versus (3.21)
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H1 : X-pEP.S

For any test * of H1 versus H define R ( ;P) to be the conditional risk

of using when X-P under H (J-0,1) (see [26]). Consider the following

(see, for example, [26]).

Definition 2: For the hypothesis pair in (3.21), fs E S is least

favorable in terms of risk for S versus {i/27r} if

:"iRI(O', S ) < Rl(o''q S )  PS E P S

for every probability ratio test 0' between q and 1/2n.

Least favorable densities play an important role in the design of

robust hypothesis tests (see [14], [6]). They have been found for the

c-contaminated and total-variation models (3.6) and (3.7), respectively) b.

Huber [14], (27]; for 'he band model (3.8) by Kassam [21]; and for the

p-point mjdel (3.9) (see Chapter V). Thus the importance of the following

which is related to Lemma 1 of [2], Theorem 2 of [21] and results

in [29] and [30].

Proposition 3.1: Let cp be any differentiable concave function on (0,-).

Let S be any convex set of probability densities on [-,]. If qs E S

is least favorable in terms of risk for S versus the uniform distribution

• on [-,Tn] then, for all PS E ,S' we have

>(qs (e))dO >fC(ps(e))de . (3.22) 1
• S
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Proof: We wish to show that f (p(ps(6))de achieves a maximum over 9S at qs"

Since f tp(.) is concave we only need to show that

i2

-5-[ f[(1-e)qs(e) + cps(e)]del]. < 0 (3.23)

V PS E 19 The left hand side of (3.23) is

CP[(1-~q 6)+ Cp (e)] I-PqM
lim S CSS-de (3.24)

But, by the concavity of (P, as E4-0 the function inside the integral in

1 (3.24) converges pointwise up to cp'[qs(S)][ps(0) - qs(9)]. So the left hand

side of (3.23) is less than or equal to f e'[qs(0)][ps(6) - qs(e)]d. This

latter term is nonpositive since (by concavity) cp' is nonincreasing and qs is

the distribution making qs stochastically smallest over S (see [14], [27])

therefore implying

f '(qs(O))ps(e)dO < '(qs(6))qs ( 6 )d6

This concludes the proof of Proposition 3.1.

From this proposition and Section 3 in [14] we have that if a, is an

* £-contaminated model (i.e. has the form (3.6)) then

(l-)fO(6) for fO(a) > c,

fL(q) (3.25)
S

c'(l-)2 wS for fOe) < c

0
where f is the nominal PSD in (3.6) and the constant c' can be determined

6 S

so that

L s0f (@)d9 f - (e)d.
S S
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L

Note that this agrees with the result given in [23]. Similarly fs may be

found for the other uncertainty classes discussed in Section 3.

We also note that -[ cO(p(e))de], as in Proposition 3.1, may be
p ,7-

thought of as a "measure of the distance" between p5 and Lebesgue measure

on [-n,]. -. cp(-) is related to a class of divergences sometimes

referred to as Ali-Silvey distances (see [29]-[31], [21]). Thus,

* Proposition 3.1 says that fs is an element of .Pwhich is "closest" to

Lebesgue measure. This makes fs of (3.25) intuitively appealing since it

is the "flattest" element of &.
L

Another interesting fact about fs is that it is a least favorable

spectral density for the problem of calculating the rate-distortion function

* of the class of discrete-parameter homogeneous Gaussian sources whose

spectra are contained in an c-contaminated class (see [32]).

5. Robust Filtering in White Noise: Numerical Results

Abstractly, the significance of robust signal estimation is clear:

to be able to put the tightest upper bound on the error when the possibility

of deviation from the assumed spectra exists is clearly desirable. However,

as we discussed in Chapter II, in most situations we must also expect that

the robust estimator will not perform as well as the assumed (or nominal)

estimator if the true spectra are the nominal spectra. So there is a

trade-off. Thus the questions that naturally arise are how much is gained

by the robust estimator in its worst case (at (fS,fN)) as compared to the

nominal estimator at its worst case and how much is lost in using the

robust estimator should the true spectra be the nominal ones. Clearly a

blanket statement of the superiority of one estimator over the other in all
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cases is not likely to prove correct. Thus, we consider these questions for

two numerical examples.

Specifically, we consider robust filtering of a first-order Markov
~W

signal in white noise. It has been shown [33], [34] that , if fN is the

spectrum of white noise (i.e., f (8) B NO for some positive constant NO)

and if D(8) represents filtering (i.e., D(e) B 1), then

e tf~ N { ~T1 -exp - l oglN rr )dB1 (3.26)

for any signal PSD f In view of Eq. (3.26), the results of Section 3 and

Proposition 3.1 in Section 4 can be applied to any convex signal uncertainty

class &. In particular, for normalized classes, results from robust

hypothesis testing can be used to obtain least favorable signal spectra and

*hence most-robust filters.

For a wide variety of applications it is appropriate [35] to assume

that the noise is white and that the signal is first-order Markov,

i.e., has PSD f where

2
f0(6) - (1 -r)w 3s (3.27)

1 - 2rcosO + r

for some r e[-I,i]. A process with this spectrum has power wS and, for

r > 3 - 2v3P 0.172, it has 3 dB power bandwidth

0

r - 4r + 1 1cos -2r (3.28)

0 1
Substituting the expression for fs into (3.26) we obtain e (fSfN).

re 2

I.
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Alternatively, since fs(6) is rational, we can determine that the optimal

0 W
causal transfer function for the nominal pair (f f is given by

iK

0i e E [-Tr,Tr] (3.29)
1 -e

where
b - / 2  4r 2

2r

K wS (l-r )
NO (1-r)

and 2

b =- $  
--- + (l+r2).

N
0

We can then substitute fS, fW, and (3.29) into (3.3) to obtain e1(f S fW).

As in Chapter II, we use a measure of performance in the figures which

we refer to simply as output signal-to-noise ratio (SNR). The purpose

of Wiener-Kolmogorov filtering is to minimize the MSE,E{1s(t) - S(02

between our estimate S(t) (i.e., the output of the filter) and the actual

signal S(t). Since the output of the filter can be written as S(t) +

(S(t) - S(t)), we use the signal power divided by the MSE as an output SNR.

For the purpose of our graphs we translate this to dB. The horizontal

axis is 10 log 10 (ws/N0 ), the input SNR in dB.

The top line in Fig. 8 gives the performance of the filter H0, given

W 0 Win (3.29), (which is optimal for the pair (f ,fN)) when fs and f are, in

fact, the signal and noise spectra which occur. In Fig. 8, the signal

bandwidth is 0.105.
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Suppose, now, that we are not completely certain about our choice of

signal spectrum. In particular, assume we know only the total signal

power w S and that the fractional power w1 on the set A--{8I16I<0.125} is

given by wl= 0.555 w S. In other words, we are modeling our uncertainty

about the signal by defining al as the p-point class (3.9) with A1 and w
c

as above and A2 =A I and w2 = 0.445 w S.

If all we know is that fS E then we would like -to know how badly theIS

performance of H0 can deteriorate. The bottom curved line in Fig. 8 gives
0

the worst case performance of H . The straight line in Fig. 8 was included

to show how bad this deterioration is. It gives the performance of an

all-pass filter (i.e. H l).

t
So we see that the performance of the optimal or nominal filter H0

can deteriorate by as much as 3 dB; and, for input SNR above 6 dB, its

performance can be significantly worse than no filtering at all. Thus

there is a clear need for robust filtering.

Applying Proposition 3.1 with n(x) = log(l + x/N ) (see (3.26)), it can

L
be shown (see Chapter V) that fs is least favorable for causal filtering

A W Lfor the uncertainty classes W and 7? = {f } if f is given by
N S

2 lw/0.25 for e E A1
fL = (3.30)

2 rw2 /(27 - 0.25) for 9 E A2

It is clear that the hypotheses of Theorem 3.2 (specifically i, ii,

and iiia) are satisfied for this a and 7 . Thus, the most robust filter

L W
• R is the optimal filter for (f S,f N). It can be seen from [16] and (3.29)

2
that i - HR() 2 is constant on A, and on A2. Since every element of "

• 20
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W

has the same power on A1 and on A2, the error el(fS,fN;HR) is constantLW W2

over all fs E & ; in particular, efor all
S 1l S fN) 1S'N 1  ) fo alt L W

fs E d, and we can calculate el(fs,fN ) using (3.26). The constant (over./)

tperformance of H is given by the second line from the top in Fig. 8.

It is clear from Fig. 8 that, unless we are very confident about our

0 toriginal choice of signal spectrum, is' the robust filter H is preferable
t

to H
0'

0
For our second example, we assume that we have again chosenf0

(first-order Markov signal) and fN (white noise) as our signal and noise

spectra; but instead of assuming we know the fractional powers, as in the

previous example, we assume, now that we have a general sense of uncertainty

wabout our choice of signal spectrum, i.e., we assume that/? = {f } and that
N

a is an e-contaminated class (see (3.6)) with nominal spectrum f0 given
S

Cby (3.27).

Of course, e (f5 f W;H O) is the same as in the previous example; in

+ 0 W W +
particular, e(fiS,fN) is the same. From the expression for eI(fSfN;H 0)

we can calculate el(fsC fN;HO) = sup el(fS,fN;H'). It is easy to see

S

that fWC (WC stands for worst case) is given by (l-c)f 0 +Ecf' , for any

* f' satisfying f'(e) = 2Twl8(0-7)+27w2 (6+) where w1 + w2 = Ws, since

22 ± 2
11 - H0( = i - H0 (r)

2 = sup i - H (e)2  (Of course, these fs
9E [- , S

are not actual PSD's but since we can get arbitrarily close to their value
in el(f ft;Ho) using the usual limit arguments for dirac delta functions

0 W WC W.we will use this notation.) The performances of H0 at (is a (aS'nd

are given by the top and bottom curved lines, respectively, in Fig. 9.

* For Fig. 9, c = 0.1 and the signal bandwidth is 0.001. As in thu previous
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example, the straight line gives the performance of an all-pass filter;

and, for input SNR between 10 and 60 dB, the performance of the "optimal"

filter H0 can be much worse than that of the all-pass filter. Once again,

a clear need for robust filtering exists.

In order to find fL E ) ,we can apply Proposition 3.1 with the

same cp function as in the first example. Thus we see that the least
L 0

favorable spectrum fL is given by (3.25) if f0 is the first-order Markov

spectral density given in (3.27).

We can now calculate eI(fL, fW) by substituting (3.25) into (3.26).
0 W t

On the other hand, el(fS fN is more difficult to calculate. Fortunately,

Yao has developed an expression (see equation (36') and ff. in [16]) which

can be used to find Ii - H(6)12 . And we can write el(SiW;t ) as

SN
tfL, W .I t 2L

T

The second and third lines from the top in Fig. 9 give the performance

0 f L W
of HRat (f s and (fN, f respectively. For input SNR below 0 dB or

HR S

above 60 dB there is essentially no difference between H and HR; between

t -L
0 and 30 dB the insensitivity of H makes it preferable to H0 unless we

0 are fairly certain about our choice of fs; and between 30 and 60 dB HR is

clearly preferable to H We also note that above 20 dB the performance of
0*

HR is the same as the all-pass filter. Hence, for high input SNR, we are

better off doing no filtering at all than using H or H.
R o0

The examples given in this section are in close agreement with those

for the continuous-time case given in Chapter II and the appendix. Based

on this experience we can conclude that the robust filter design developed

S
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here and in [2] is always worth considering and is often preferable to the

nominal filter in situations where spectral uncertainty might exist.

6. General Spectral Uncertainty

In the preceeding sections we have modeled spectral uncertainty via

classes of bounded spectral densities. While this formulation is quite

general and allows for accurate.modeling of uncertainty in most situations,

there are still a number of practical circumstances in which greater

generality is needed. For example, in many situations there can be a

contamination of an assumed noise PSD by small amounts of noise generated

by rotating machinery located in close proximity to the receiver. This

noise is often best modeled by sinusoids of random phase at frequencies

which are imprecisely known. Similarly in, for example, an active sonar

system such contamination can be present in the signal spectrum due to

engine noise generated by the target or due to jamming (see [56]).

Thus, it is clear that a completely general model of spectral

uncertainty should include pure tones. This is modeled mathematically

using spectral distributions or, equivalently, spectral measures. This

means, for example, that if the signal covariance function is R (k) then
S

the spectral measure ms of the signal is a Borel measure on [-n,7]

satisfying

1 e-iked
R(k) 2e- ' dmS(G)

(See [361. Chapter X, Theorem 3.2). The spectral measure of the noise

is similarly defined.
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In this setting (3.3), the MSE, becomes

e(smN;H) D()-H()I 2dms(e) + ' (e I (e) (3.32)

where D and H are the transfer functions of the desired and performed

operations, respectively, and now must be mean-square integrable with

respect to mS and ms + mN , respectively. Furthermore we have that such a

transfer function H is causal if and only if H E H+(d(ms+ mN)(e)), the

U Hardy subspace of L2 (d(mS+mN)(8)) (see Section 2). We also note that the

minimum MSE, equation (3.4), becomes

eD mN) 2min e (mS ,;H) (3.33)

H E H+(d(ms+ N ) (9))

We now consider, as in Section 3, the situation where we only know

that for some classes d and ?Z of spectral measures the true signal

spectrum satisfies m E a/ and the true noise spectrum satisfies mN E 7k. In this
S

setting a most robust causal transfer function % is a solution to the game

inf sup eD( mS,%n;H) (3.34)
H E . (ms,) E& Dx 7Z

O where3( H (d(m +m)(6)). We do not need to consider any H

(mSmNE &PxI + S

not in3C because if H E X then either H is not causal or for some (msm) Edx77

we have that eD(S,iN;H) . Similarly to definition 3.1 we

L LD
define ( , mN) to be a least favorable pair of spectral measures for

the uncertainty classes aJ and 7? if
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t L L
. ( ,  )~ e max e(msm (3.35)

where eD(mS,m N ) is defined in (3.33).

Of course, our objective at this point is to prove results like

Theorems 3.1 and 3.2 for this more general setting; i.e., to show that

a most-robust transfer function always exists and that if a least

favorable pair exists then the optimal transfer function for that pair is

a most robust transfer function. We have been unable to show that this is

the case here. However, the following result (Theorem 3.3) is in

some sense symmetric to Theorems 3.1 and 3.2. That is, this result

:-tates (under a mild condition on the uncertainity classes OP and ?Z) that

a least favorable pair always exists and that a most robust transfer

function exists if and only if the optimal transfer function for the least

favorable pair is also a most robust transfer function.

In order to formulate the hypothesis of Theorem 3.3, we consider

and ??as subsets of the Banach space a of Borel measures on [-7r,n] (see [4]).

We consider 6 to be endowed with the topology induced by 0, the Banach

space of continuous functions on [-n,f]; i.e., a sequence

* {mn}Ca converges to m EB in this topology if and only if, for all

f EC,

S'f(e)dmn () - f f(e)dm(e). (3.36)

Note that a is the dual space of Cand that, in this setting, this

topology is called the C-topology or weak*topology on a (see [24] or [10]).
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In probability theory a sequence {m of probability measures is said to
n

be weakly convergent if (3.36) holds for some mE a (see [9]).

We are now ready to present the main theorem of this section.

Theorem 3.3: Assume the transfer function of the desired operation D(O) is

continuous on [-rr]. If the spectral uncertainty classes &P and 7 are

convex and weak*compact then there exists a least favorable pair
L L L L

(ms,mN)E .x7Z; i.e. (ms,m N ) satisfies (3.35). Furthermore, a most robust

transfer function exists if and only if the optimal transfer function for

(m ,mN), R ,is a most robust transfer function; that is, if and only if

L L t .
eD (,;,HL) = max eD(m ,HL) (3.37)

JX 7

holds.

Proof. The proof of this theorem is quite similar to that of Theorem 3.2.

In fact, we begin by applying Lemma 3.1. Let X = W x 7Z (endowed with the

weak*product topology), Y --,wnCf and F(x,y) = -eD (mS,mN;H). F(x,y) is

clearly convex on X and concave on Y, and X is compact by hypothesis. We

have only to show that F(.,y) is lower semicontinuous on X. We will
,k k,

actually show that it is continuous. Let (ms,N)E W x? converge to
0 0OC

(ms, n)E &P7? in the (weak*product) topology of & x 7j. Since H E Y .

and D is continuous by hypothesis, we have that I D(B)-H(e)I 2EJ and

SH(e)I, E- . Hence, from equation (3.36) we have that

JD(G) -H(9)I12dm k(e) *+JD(9) -H(9)1 2 dmo(O) and

and JH(9) 12 d k(e)- H(9)12 d O(). Hence eD(mS,N;H)- eD(mS,mN;H),

i.e., eD(.,.;H) is continuous onW x 7?. We can now apply Lemma 3.1 to yield
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max inf eD (msmN;H) - inf max eD(mS,mN;H) . (3.38)

m if eD (S Yn.la#x7D

Now, for each pair (msmN)E/x7?, we have that C- {H E C-H is causal }S+
(i.e. C, is the subspace of C spanned by {ein In=0,1,2,...}) is dense in

2 2(dm~k)e)HcniuuH+ (d(ms+ mN(e)). We have that CCH+ (d(mSN)(6)) since H continuous

q on [-n,ir] implies H is bounded and, hence,

2 2](
II H(e)l d(mS+N)(e) < [sup I H(e)j +m) (rr)<

e

That C-+ is dense in H+ +mN ) (e)) now follows from the fact that they

are both spanned by {e in n=O,l,2,...}. This implies that for each

2(mS,mN)EPx 7 ? we have C+ = Yl C- -H (d(ms+mN)(9)) n C and we have

inf e D(mS, mN;H) = 2 min eD(mnS,mN;H). This and (3.38) imply W4

Y C H (d(ms+mN) ())

inf max eD(mS,N ;H) max 2 min eD(S,mN;H). (3.39)
3caC w x 7 P x 7  H +(d(mS+mN)) D

But for any minimax problem we have sup inf < inf sup, hence the right hand

side of (3.39) is less than or equal to

I

2 inf max eD(mS,mN;H) _ inf max e (m mN;H ) . (3.40)H+(d(mS+m )( ) dx / Yv n ai x 77
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This last inequality holds because YCflC-C H (d(ws+RN)(8)). Since the

right hand side of (3.40) equals the left hand side of (3.39) we have

inf max eD(mSmN;H) - max 2 min eD(mS,m;H)
,x?? ,Ix7 H (d(ms+%N)()

t
max e ( (3.41)

L L)In particular, there exists a pair (mSL NL)Ed~x7? solving the right hand

side of (3.41), i.e. (mS , mNL) is a least favorable pair. Further, we

see from (3.41) that a saddle point exists if and only if a most robust

transfer function (i.e. a solution to the left hand side of (3.41))

exists. Finally, this implies (see [55],Section 2.3.1) that a transfer
tfunction R is most robust if and only if it satisfies

L L t L LeD(mS mN ; ) = 2 in eD(mSmN;H)
H+ (d (mS+mN) (9)

Hence, by the uniqueness of optimal transfer functions (see [3]), if

t t t
* H is most robust then H . HL a.e.[mS+mNl and HL is a most robust

causal transfer function.QED

Si
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For the remainder of this section we will consider a general

formulation of uncertainty classes involving 2-alternating capacities

(defined below). As we shall see, this formulation includes most types

of classes that have been used to model uncertainty in the robustness

literature and all such classes are convex and weak* compact, i.e. they

satisfy the hypothesis of Theorem 3.3 regarding P and 7Z. Furthermore,

least favorable pairs have been found for many of these classes (in

particular, the five discussed below) for the analogous problem of robust

hypothesis testing, and we have shown in Sections 4 and 5 how these

least favorable pairs for robust hypothesis testing can often be used

to find pairs which are least favorable for robust signal estimation.

Finally, we note that 2-alternating capacities are central to efforts

being made to develop unifying theories of robust statistics and of

robust statistical communication (see [37], also see [6], [7], [32]

and Chapters IV and V).

We define B i {m E m is nonnegative} and we let a denote

the Borel a-algebra on [-7,7]. Suppose 13 ' . We will be thinking of T?

as a possible uncertainty class of signal or noise spectral measures.

E Thus, it is not unreasonable to assume as we did in Section 3 that, while

we are uncertain about the spectrum, we still are able to make an accurate

estimate of the power of the process. Thus we assume m([-7,7]) =

2iw, Ym E 7, where w is this constant power.

If 72?c1 then we can define the upper measure, v, of7' as

v(A) = sup~m(A)! mE7?}
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for each A a . Clearly, if m([-i,]) = 2mwVmE74, for some w < , then v

satisfies

v() = 0, v([-r,7T]) < 0 (3.42)

AC B 0 v(A) f v(B), (3.43)

An t A = v(An ) + v(A). (3.44)

Of course we actually have v([-w,n]) = 2.w. If 5 is also weak* compact

then v satisfies ([6], Lemma 2.3)

F + F, F closed - v(F ) + v(F). (3.45)Fn n v(n)

Any set function v on 6 satisfying (3.42)-(3.45) is called a (Choguet)

capacity [12]. If v further satisfies

v(AUB) + v(AB) < v(A) + v(B) (3.46)

then v is called a 2-alternating capacity.

For a 2-alternating capacity v we define

=mESj m(A) < v(A), YAEC7,m([-,rl]) = v([-7,r])}. (3.47)T v

Robust noncausal (infinite-lag) smoothers have been developed for classes

of this form in [7]; and, in [32], a method of finding the rate-distortion

function for classes of discrete-parameter homogeneous Gaussian sources

whose spectra belong to a class of this form is developed. Also, classes

of probability measures having the form (3.47) were considered in detail

ri by Huber and Strassen [61 as uncertainty models for robust hypothesis

testing. Most importantly for our purposes, it was shown in [6] that v
V

is weak* compact (note that *i is also clearly convex), that the upper

0v
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measure of 7 is v, and that three commonly used uncertainty models
V

have the form (3.47).

The first of these models is the s-contaminated model

'P? {mE Ijm(A) = (I-E)m0 (A)+ m'(A),VAEa;m0 ([-i, ])=m' ([-rr,,r);m'EB+} (3.48)

+0

where e E [0,11 and m0 is a nominal measure. This has the form (3.47)

0 0with v(A) = (l-e)m (A) + cm ([-ni]) for A # t. Let X be a finite Borel

measure on [-7,7] such that m A<< and dm 0/d is bounded a.e. [X], and

onsider the following set of spectral densities {f = dm/d where mE)F

such that m<<X and f is bounded a.e. [A]l. Clearly this is nothing more

than the e-contaminated class & of PSD's defined in (3.6) with

0 0f s = dm /dX. Similarly classes of measures can be defined to correspond

to the total variation class giqen in (3.7), the band model given (3.8),

and the p-point model in (3.9). It was shown in [6] that the total

variation class of measures can be generated by a 2-alternating capacity

having the form

v(A) = min {m 0(A) + Em 0([-r,r ]), m 0([-'r,)}

for A # c.

It will be shown in Chapter IV that the band model can be generated

by a 2-alternating capacity. In fact the band model is a rather nice
U rU L

special case. If we let m UA) =JA f (e)dX(9) and m L(A) =.i f L(9)dX()

F L
for all AEawhere F and F are the upper and lower PSD's of a band

model as in (3.8) then the corresponding band model of measures is given by

' = (3L U

'B = {mE/3 4jm (A) < m(A) < m (A), VA 7; m([--r,]) = 2rw} (3.49)
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L U
where w is the constant power and m and m are lower and upper measures,

respectively, satisfying m L ,7]) < 2w < mU ([-1,Tr]). So we see that

for the band model there is a one-to-one correspondence between the density

Uversion and the measure version. Furthermore, if f (8) does not satisfy

condition (ii) of Theorem 3.1 we can take the densities with respect to

m instead of X. Once we do this we have f (0)= LV ,and the conditions

of Theorem 3.1 will be satisfied. Hence a most robust filter exists.

But since is a 2-alternating capacity class (it is generated by

Lc U
v(A) -m {2rw-m (Ac), m (A)}, see Chapter IV) we have that the conclusions

of Theorem 3.3 also apply to the band model. Hence we have

Theorem 3.4. If d and 7j are band models as in (3.8), or equivalently, as in

(3.49), then there exists a pair (fsL, fNL) E&P x7 such that (f L, fNL)

t L)
is least favorable and Ht , the optimal transfer function for (f L , fN

is a most robust transfer function.

Note that a singleton is, of course, a special case of a band model.

The p-point model is, unfortunately, not a capacity class and is

never weak* compact, but in Chapter V we will show that the weak* closure

of a p-point model is a 2-alternating capacity class and in many situations

the results for the closure can also be shown to hold for the actual

p-point class.

The last of the 2-alternating capacity classes considered in [61

(the first two being the c-contaminated and total variation classes) is

called the Prokhorov class. It has the form

S +0 ,0 0
+UE m() m( +Sm -T,7],A6 (-r r)mQ77)(.0
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where 6 > 0 and e E [0,11, mn is a nominal, and A is the closed 6-

6
neighborhood of the set A, i.e. A = {eE[-n,l inf e- 4 < 6}. The 2-

aEA
alternating capacity v which gives %p the form (3.47) is defined by

letting

0 6 0 0
* v(A) = min{m (A) + m 1([-1r, IT), m0-1, IT

for compact A # ¢ and, then, extending v to a via (3.44) and (3.45).

While the Prokhorov class has no immediate intuitive appeal, it has some

nice theoretical properties; for example, the set consisting of all

classes having the form (3.50) (i.e. as 6 varies over [0,271 and c varies

over [0,1]) forms a base for (i.e. generates) the weak* topology (see [9]).

From the above discussions we see that many of the classes one might

use to model spectral uncertainty are 2-alternating capacity classes and

hence are weak* compact and convex. Thus we see that the hypothesis of

Theorem 3.3 is quite general.

7. Discussion

In this chapter, we have considered the problems of robust causal

smoothing, filtering and prediction of a discrete-time signal in noise and

* the special case of robust noiseless one-step prediction. Our formulation

is analogous to that developed in [2] for r,bust noncausal continuous-time

filtering; however, the proof of the main theorem (Theorem 3.2) required a

more abstract approach since no completely general expressions exist for

the optimal transfer function or the minimum error. This same difficulty

has prevented us from proving a general theorem stating that if the

uncertainty classes of Theore7, 3.2 each satisfy power constraints
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then a least favorable pair of PSD's can be found directly from the (in -I

many cases, known) solutions to an analogous robust hypothesis testing

problem. Fortunately, as we showed for the robust one-step noiseless

prediction problem in Section 4 and for the filtering in white noise

problem in Section 5, Proposition 3.1 can be applied to yield this result

in many cases. For example, it is straightforward to see from the

expression given in Theorem 1 of [3] that this approach will work for the

problem of robust one-step predict.on in white noise. Many other cases

could be handled in this manner or by, first, proving a more general

version of Proposition 3.1 to suit the other cases for which minimum
'Id

error-expressions have been developed [3], [151-[191, [331, [34].

In Section 6 we saw that the notion of a 2-alternating capacity is

useful as a general model of uncertainty. In the next two chapters we

consider capacities and some of their properties in detail.
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IV. A GENERALIZATION OF THE HUBER-STRASSEN DERIVATIVE

S1. Introduction

As we discussed in Chapter III, Section 6, the formulation of

uncertainty in terms of classes of measures dominated by 2-alternating

Choquet capacities, first considered by Huber and Strassen [61, is quite

general. It includes most classes commonly used to model spectral uncer-

tainty or to model uncertainty in robust hypothesis testing. In [61,

Huber and Strassen develop the Neyman-Pearson Lemma for classes of

probability measures whose upper probabilities are 2-alternating capa-

cities. In particular, they prove the existence of a minimax test

statistic between two such classes (this statistic is actually a deriva-

tive between the capacities which dominate these classes) and the exist-

ence of a least favorable pair (Q0,QI) such that for each fixed sample

size the Neyman-Pearson tests between Q0 and Q, constitute a minimal

essentially complete class of minimax tests between these two classes.

In addition to the obvious importance of these results in unifying the

theory of robust statistics, they have been used to obtain several general

results in robust statistical communication theory [7], [321.

The one shortcoming of Huber and Strassen's fundamental paper is that

the capacities which generate the three classes of probability measures

most commonly used to model uncertainty in robust hypothesis testing (i.e.,

those generating the E-contaminated, total-variation and Prokhorov neighbor-

hoods) must be restricted to a compact space in order to satisfy property

* (2.4) in the definition of a capacity given by Huber and Strassen 16 1.

Property (2.4) insists that a capacity be continuous on decreasing sequences

of closed sets. In this chapter we relax thi- rtm-tri -tion by only insisting

*1
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that our set function (which, for lack of a better term we call a

"generalized capacity") be continuous on decreasing sequences of compact

sets. This minor alteration allows us to consider the three aforementioned

neighborhoods on noncompact spaces.

For many robust statistical communication theory results it is of

interest to consider a-finite as well as finite measures (the generaliza-

tion of Huber and Strassen's results to capacities v satisfying v(Q) <

rather than v(Q) = 1 being straightforward). For example, in [7]

spectral uncertainty for the problem of robust linear smoothing is modeled

via capacity classes of spectral distributions onRn. This excludes the

possibility of "white noise" whose spectral measure is given by Lebesque-

~Betel measure onnR

The purpose of this chapter is to develop Huber-Strassen type results

for a 2-alternating generalized capacity class versus a a-finite measure.

In Section 2 we give the definition of a 2-alternating generalized capacity

and some preliminaries. In Section 3 we construct the Huber-Strassen

derivative 7 between a 2-alternating generalized capacity and a c-finite

measure m and we prove that if a least favorable distribution Q exists then

Tr = dQ/dm a.e.[m].

Our main theorem (Theorem 4.2) gives an easily verifiable necessary

and sufficient condition for the main result of Huber and Strassen [6]

to hold for a distribution Q which we construct from 7. Corollary 4.1 states

that this condition always holds if the generalized capacity is actually

a capacity. Thus, for the problem of a capacity versus a (-finite measure,

we always have a least favorable distribution and a Huber-Strassen derivative.
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Section 5 contains some examples and applications. In particular, we

give an example of a situation in which the condition of the main theorem is

not satisfied. Also, we introduce a new 2-alternating capacity which gener-

ates a widely used uncertainty class known as the band model. This class

is an accurate model of uncertainty for many applications. Furthermore, the

upper measure of such a class is a capacity even if the sample space is not

compact.

2. Generalized Choguet Capacities

Let 0 be a complete separable metrizable space, a its Borel a-algebra

and 74 the set of all nonnegative finite Borel measures on 0.

Definition 4.1:A set function v on (2,a) is a 2-alternating generalized

V (Choguet) capacity if v satisfies

v(O) = 0, v(Q) < (4.1)

A C B v(A) < v(B), (4.2)

A n A-v(An) v(A), (4.3)

0 F n F, F compact V(F n) v(F), (4.4)n nn

v(AUB) + v(AnB) < v(A) + v(B). (4.5)

* Note that this definition "generalizes" the definition of a 2-alternating

capacity [ 6 1 by changing the condition "F closed" to "F compact" in
n n

property (4.4)

For any 2-alternating generalized capacity v we define

PVEP,2 PP(A) v (A), VA ; P(C. v
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*" It was shown by Huber and Strassen [6] (Examples 3-5) that three of the

most important uncertainty classes in robust statistics (the £-contamination,

total variation and Prokhorov classes) have the form (4.6) where v is a

2-alternating capacity only if 0 is compact (see Chapter III). The moti-

vation for the generalization in Definition 4.1 is that these three set

functions are 2-alternating generalized capacities even if n is not compact.

Moreover, the "special capacities" considered by Rieder [20] are 2-

alternating generalized capacities.

For all the results of this chapter we assume that n is a-compact.

The following extends Lemma 2.5 of [61 to generalized capacities on

a-compact spaces.

Lemma 4.1: Let v be a 2-alternating generalized capacity on (, a). For

each A E 67, there is a Q GM such that Q(A) v(A).
v

Proof: Since 2 is a-compact, let {K } be a sequence of compact sets such
n

n n
that K + 2. We denote the restriction of v to K by v ; i.e., v (A)=

n n

v(ACK), VAE a ; Vn. Clearly, for each n, v is a 2-alternating capa-

n
city. Thus, we may apply Lemma 2.5 of [6] to v

Let AGE7. Denote AnK by An. From Lemma 2.5 of
n

[6], there exists Q1 E Mv
I such that QI(A ) = vl(A I) and, for each

(A\n-l n An\An-l
n> 2, there exists QnE vn such that Qn(A\A (An\A ). For all

BEa , define

Q(B) = QI(B) + Q v(A )-v(A+) An -1)

n n--
n[K\(AnUKn n] Q[BP"K\(A UK )

n n n-i)

- - - - - - -



S . .. . . . . .

66

It is straightforward to verify using (4.5) that Q satisfies the conclusion

of the lemma.QED.

3. The Huber-Strassen Derivative Between a Generalized Capacity and a
a-finite Measure

Since Q is assumed to be a-compact, we can fix a sequence of compact

sets K n t. For a 2-alternating generalized capacity v and a a-finite
n

I nonnegative measure m on ( 2, ) we denote by vn and mn the restrictions

* of v and m, respectively, to the set K . Clearly, for all n, vn is a
n

2-alternating capacity and mn is a finite nonnegative measure on (,L7)

* (hence, mn is also a 2-alternating capacity).

Thus, for each n, the theory of Huber and Strassen [6] can be

n n
applied to the pair (v ,n). In particular, for each n and for each

tE[0,-] , there exists a set At minimizing, over all AELI , the set

n t n +n C
function w (A) m (A) + vn(Ac). Further, for each n, there is a

t

n n n
function 7n (the Huber-Strassen derivative of v with respect to mn )

such that An = {7n > t} for every tE[O,-] . Finally, there is a leastt

favorable distribution Qn. vn , i.e. Q n({r n < t}) = v n({T n < t}) >

p({,n < t}) for all PE7 n and for every tE[O,]

Regarding the above situation we have the following lemma.

Lemma 4.2: The collection of sets {AnlItG[O,], n = 1,2,...1 may be chosen
t

so that An + l C An for each tE[O,-] and n > 1. Hence, for all n, iT n+l(x) <
t -t

n
Tr (x) for all xE2.

Proof: We first note that, for any n and t, w (Ae UK) = wn(An) so weSt t n t tnnAn+l n A)

may assume that K
c C An . Now fix n and t; we will show that w (A UA
n- t t t t

Wn (A n) i.e. that
t t
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?IA+ufl lKI+ v[(Afl+l nlc]n n
tm[(AL+U A) n K UA < tm(A r K) + v(At). (4.7)

By adding t m(K \K ) to both sides of (4.7) and using the additivity of m
n+l n

and the fact that Kn C At we obtain the following equivalent expression

n+l n n+ n c
A t t) K n+l t t A Kn+l) + v(At

(4.8)

We prove (4 .8)(and hence the lemma) by first noting that the right hand

n+l nside of (4 .8)is wt  (A t), then showing (using (4.5)and some straightforward

n+ln,
manipulations) that the left hand side is less than or equal to w (A n)

t

plus w n + l (A + l  - n+l (A n +l n A ) and finally noting that this additionalt t t t t

term is nonpositive.

Lemma4 .2 allows us to define ir(x) = lim r (x) for each x E Q.

Further, it implies that the definition of 7(x) does not depend on the

choice of the sequence {Kn}, since for any alternative sequence {Kl the

ordered (by set inclusion) union of the two sequences must produce the

same limit as each of the original two.

The following theorem justifies our defining 7r as the Huber-Strassen

derivative of v with respect to m.

Theorem 4.1: Let v be a 2-alternating generalized capacity and m a

a-finite nonnegative measure on (n,67 ), and let i be defined as above.

If there exists a measure Q C such that Q is least favorable for 7 v

versus m, i.e. V t E [0,]

Q(U--2 ! ) = v({d,-2 ti),
d.am -- (4.9)

then

dm a.e.[m].
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Proof: For every t E (0, ] there exists t k t t. Since tk t t implies

{dQ/dm < t I + {dQ/dm < t}, (4.9) implies that Vt E (0,-]
-k

W42< t) v(49 < t}). (4.10)

dm, dm

|"n n

Also tk t t implies that, Vn, {r n<t {ir n < t}. This fact, property
k -k

(4.3) and the definition of An = {In > t} imply that, Vt E (0,-] and Yn,I t

-I
'tm n({7 n > 0}) + v n(Trn <t}) t tmn({d > t}) + vn([ d Q2 < t}). (4.11)

tmm - d- dm

Since the right hand side of (4.11) is clearly less than or equal to

tm({dQ/dm > t}) + v({dQ/dm < t}) and n - implies {i n < t} t {7r < t}, (4.11)

and (4.3) imply

mUr > t}) + v({w < t}) <t m(4 > t}) + v({- < t}). (4.12

By (4.10) the right hand side of (4.12) is equal to txm({dO/dm > t}) +

Q({dQ/dm < t}). Since Q E v, the lefthand side of (4.12) is greater than

or equal to tm({,i > t}) + Q({r < r}). Thus we have, Yt E (0,-]

tmC{r > t}) + Q({7 < t}) < tMCQ > t0) + Q(CLmm < t}). (4.13)

dm -dm
U

Since, for any t E [0,c), tk + t implies Or > tk } + i > t} and
k k

{dQ/dm > tk } t {dQ/dm > t}, we have from (4.13) and the continuity of

measures that

tm({n > t}) + Q({ < t}) < tm({- > t}) + Q( 2 < t}), (4.14)dm dm -

Vt E [0,-]. By the uniqueness of the Radon-Nikodym derivative between two

measures (see, for example, Royden [38]) we have that i = dQ/dm a.e. [m]

(cf. the remarks near the end of Section 3 in [61). QED.
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4. The Least Favorable Distribution

By Fatou's Lemma (see, for example, Royden [381, Proposition 17,

p. 231) we have, for each A C 7, that

f ndm < lim inf 7rndmn < lim inf Qn (A), (4.15)
A A

n andcn -o

where n, n , and Qn are defined at the beginning of Section 3. By Lemma

4.1 there is a distribution Q IE7v such that Q({} < } v({ < -}). We

define the distribution Q on (Q,L7) by

Q(A) = i rdm + Q(A n {r = a}), (4.16)

I A

for each A EL7. If there exists a least favorable distribution then Theorem

4.1 and the Fundamental Theorem of Calculus imply that the Q given in (4.16) is

also least favorable. Furthermore, we have

Theorem 4.2: Assume v is a 2-alternating generalized capacity and m is a

a-finite nonnegative measure on (Q,a ). Let t be defined as in Section 3

and let Q be defined by (4.16).If Q({7r < c}) = v((7 < -}) (or equivalently

if Q(7) = v(S2)) then Q is a least favorable distribution for M v versus m;

i.e., for every t E [O,']

Q({n< t}) = v({ff < t}) (4.17)

and t is a version of dQ/dm.

Note that the hypothesis is also trivially necessary. Also, note that

if m(Q) and the conclusion of Theorem 4.2 holds then, by (20,

Proposition 2.1 1, Q is least favorable for any minimax testing problem for

versus (im.
6
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Proof: From the definition of Qn the fact that t t - implies {7 < tk } +

{n < -}, and property (4.3) we have that Qn({7n < _j) = vn ({Tr n < -}) tnn

v({n < -}). Thus, the hypothesis of the theorem implies that Qn({7n < ee})

t Q({r < -}); i.e.

lim 7 dmn = irdm.

n-w

For any set A G67, we apply the Generalized Dominated Convergence Theorem

(Royden [381, Proposition 18, p. 232) to the sequence {TnIA n=1,2,...}

(n 1A is the restriction of ,n to A) to obtain lim f ir n dm n f ndm; i.e.,

n-wA A

lim Q n(A) = Q(A), VA E a• (4.18)

CO

If we set A = {i < t} -- U jIT < t} in (4.18), we have Q( < t)) =
OD k=l

n k n~ n n n
lim Q ( U {fk < t}) > lim Qn ({r < t}) = lim v ({7 n < t}) = v({r < t
n-o k=l n- n-

Thus, we have Q({7r < t}) > P({n < t1), for all P E5 and all t E [0,-].

From property (4.3) we have Q(i7 < t1) > P({ < t}), for all PE v and all

t E [0,-], since t 4 t implies {i < t 1 { < t}. But, by Lemma 4.1,

for each t E [0,"] there is some Pt ETAv such that Pt ({Tr < t}) = v({r < t})

so we must have Q({ir < t}) = v({[r < t}), Vt ( [0,,] . QED.

Corollary 4.1: If v is a 2-alternating capacity and m, 7 and Q are as above

* then Q({7 < }) v({7 < -}); hence, the conclusions of Theorem 4.2 hold.

Proof: We wish to show that T ndmn I dm. Let n . on K and 0 onn

Kc, we will show tndm- dm. By the Vitali convergence theorem (see
n f

Dunford and Schwartz 1101, pp. 150, 173) this happens if for any sequence

6A
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{Ek} C a such that Ek + we have lim f fndm f 0 uniformly in n. To prove
k _ - E k

this we use the fact that a capacity class is tight (Huber and Strassen

[6 1, Lemma 2.2) to pick (given E > 0) K such that [ ndm < Qfn( )

fc

e/2 for all n. Then since {Wnln=N,N+l,.. . is decreasing on KN we have that

N N
f 71dm < f Ntdm < Q (E k r) KN). Now for each n1l,... ,N there is an

Ek rKN Ek nKN

L n, such that, V k > Lncl Qn(Ek) < /2. Now let L = max{L, L-- n,' s"''N,e}

we have that, for all k > 1. fndm i ndm + If ndm < e/2 + e/2, for

every n. Ek Ek KN

5. Examples and Applications

Our first example shows a situation in which the hypothesis of Theorem

4.2 fails to hold.

Let Q =R and let v be the 2-alternating generalized capacity which

setwise dominates an E-contaminated neighborhood of probability distribu-

tions, i.e., let e E (0,1) and let v(A) = (l-E)P(A) + e, for A # , where

P is a probability measure on (]R ). Also, let m be Lebesgue-Borel

measure on (Rc). Assume that P has a density p with respect to m.

Chcose K nR with K compact Vn. From [141, Section 3, we havet0 n n

that - 0 n) = max~c n,(l-E)P(X)}. Vx E K n9 where c > 0 can be chosen so that

fn
n n

K

n7(x) = (l-)p(x). Vx ER , and we have that t < = 2 and 0({, =

I7dm = i-c < v ({ < -I).

Intuitively each least favorable 0n tries to be as much as pnssible

like Lebesgue-Borel measure by flattening the tails of n with the E of

contamination; but, because R is not compact, tnis of contamination is

allowed to ol p ff the ends -f the r-al lint, a-; i.
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On the other hand, as we mentioned earlier, all the neighborhoods of

probability distributions commonly used to model inexact knowledge in

robust hypothesis testing are 2-alternating generalized capacities even

if the sample space Q is not compact. Since least favorable pairs have

been found for all these classes [14], [27], [20], Theorem 4.1 implies that,

for any of these specific but important examples, we have succeeded in

extending the main result of Huber and Strassen [6] to a generalized

capacity class versus a finite measure on a a-compact space. Further,

Corollary 4.1 implies that this is true for any 2-alternating capacity

class versus any a-finite measure on a a-compact space. To illustrate

this result we introduce the following example of a 2-alternating capa-

city on a noncompact space.

Let mL and mU be finite nonnegative measures on (Q,L) such that

mL(A) (A), VA Ea. (4.19)

Define

v(A) minfw-mL(Ac),mu(A)}, (4.20)

for A , where w is a positive constant such that mL ) < w < mU(2 ). For

this v, 7 is given byv

{m e%4,hmL(A) < m(A) < mu(A), VA E L ; m(Q) = w}. (4.21)

This class is called the band model. Note that every element of is

absolutely continuous with respect to , so if w=I,,( is equivalent to

the class of pdf's considered by Kassam 1211 . Most importantly, least

favorable pairs are given for these classes by Kassam [211.

Classes of the form (4.21) arise naturally as a confidence band around

an estimate of a pdf (where, of course, w1l) or around in estimate of a
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spectral density (where w/21 is the known power of the process). Also,

as has been noted by Kassam [21], if we define E = l-mL(S)/w then the

band model(4.21)Lo)ntains those elements of an c-contaminated class which

are bounded above by mu . Thus, the c-contaminated class may be thought

of as a limit of classes which are band models.

Proposition 4.1: The set function v in (4.20), which defines the band

model (21), is a 2-alternating capacity even if 2 is not compact.

Proof: The 2-alternating property (given by (4.5)) is the only defining

property which is not straightforward. We handle (4.5) case by case. If

A and B are such that v(A) = mu(A) and v(B) = mu(B) then, by (4.20),

v(A U B) + v(A n B) < mu(A U B) + mU(A n B) = mU(A) + mu(B) = v(A) + v(B).

Similarly, if V(A) = w-mL(Ac) = mL(A) + (w-mL(2)) and v(B) = mL(B) +

(w-mL(P)) then(4.5)holds. If, say, v(A) = mL(A) + (w-mL(2)) and v(B) =

mU(B) (A and B are interchangable) then we must have v(A r) B) = mu(A 1- B)

and v(A U B) = mL(A U B) + (w-mL(Q)) because if mL(A n B) + (w-mL()) <

(A n B) then, since mL(B) + (w-mL(2)) > mU(B), we have (by subtraction)

that mL(B\A) > mU(B\A) which contradicts(4.19). (The possibility of

mU(A U B) < mL(A U B) + (w-mL(2 )) is similarly disallowed.) The one

possible case is v(A U B) = mL(A U B) + (w-mL(2)) and v(A n B) = mU(A n B).

In this case(4 .5) is equivalent to mL(B\A) < mu(B\A) which always holds by

(4.19). Thus v of (4.20) which gives rise to the band model (4.21) is a

2-alternating capacity. QED.

Theorem 2.2 of [7J states that if vS and v,, are 2-alternating
n

capacities on IR and 7 is a version of the Huber-Strassen derivative

)etween v" and v N then h ' /(l+') is a minima-X linear ;moother for

0 87
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l Vsand ? , where 7Vs and T1? are uncertainty classes of signal and
VS VN VS VN

& noise spectral measures, respectively. A careful examination of the proof

of this result shows that it holds for any two set functions v, and vN for

which the conclusions of Theorem 4.1 of Huber and Strassen [6] hold.

Thus we see from Corollary 4 .1 that Theorem 2.2 of [71 holds for vS

and mN where vS is a 2-alternating capacity and mN is a nonnegative

a-finite Borel measure or, Rn. Unquestionably, the most important examples

[I to which this extension can be applied are those where mN is Lesbesgue-Borel

n
measure on R which is the spectral measure of continuous-parameter white

noise.

0I

~1
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V. ON THE P-POINT UNCERTAINTY CLASS

1. Introduction
.1

As we have discussed in the preceding chapters, there are many

applications of statistical communication theory for which it is inappro-

priate to assume that we have exact knowledge of some underlying spectral

distribution or probability distribution. A common approach to such

Usituations (and the one we have used in this thesis) involves choosing
classes of distributions which accurately model this uncertainty. We have J

also discussed the fact that a number of results have been obtained for

situations where uncertainty is modeled via classes whose upper measures

are 2-alternating Choquet capacities (see [61, [71, [32] and Section 6 of

Chapter III).

The significance of these results is twofold. First, in each case,

general existence results are given which unify the theory involved

(especially considering the generality of modeling uncertainty via

2-alternating capacity classes; a topic we will discuss below). Second,

least favorable pairs for the robust hypothesis testing problem [61 have

already been found for each of the classes which have been shown to be

2-alternating capacity classes and the results given in [32] and [71

allow us to solve the problems considered therein directly from such

least favorable pairs.
I

Among the classes which have been used to model uncertainty (and for

which least favorable pairs have been found) are the E-contaminated, total-

variation, Prokhorov and band models. The first three are shown to be

2-alternating capacity classes (when restricted to have compact support)

6
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in [6]. The band model was shown to be a capacity class in Chapter IV.

Furthermore, least favorable pairs are known for these classes (see [14]

and [27] and [21] for the band model).

One class which has been used to model uncertainty in detection

problems [51, [81, rate-distortion problems [411 and robust smoothing

problems [25] which is not a 2-alternating capacity class is given by

pp {pE !P(A.) = wi j=l,...,n} (-l)

where 7 is the set of all finite nonnegative Borel measures on a compact

Polish space Q, the w. 's are positive real constants, and {A lj=l,...,n}* J

is a fixed partition of 2 such that each A. is a Borel set with nonempty

interior. If 2 is a compact subset of the real line, if each of the A. 's
.3

is the union of a symmetric pair of intervals and if the P's are spectral

distributions then P is essentially the form of the class referred to
pp

by Sakrison [411 as "class b" and by Cimini and Kassam [25] as a "p-point

class." The term p-point class is also used by El-Sawy and VandeLinde

[51, [8] for P when the P's are probability distributions and, of
n

course, E w. = 1. The cliss given in (5.1) is an appropriate model of
j=l

* spectral uncertainty when, for example, we are able to use power measure-

ments from a bank of low-pass filters [411, and they are appropriate

models for probabilistic uncertainty since P([-a,al) "is one of the most

* easily measured parameters of a distribution" [5, p. 725].

In this chapter we consider uncertainty classes of the form
pp

(which we henceforth refer to as p-point classes). In particular, we

~ show how, in many cases, the results of [6 [71,[321 can be applied to

these p-point classes by embedding them in slightly larger 2-alternating

capacity classes which we term extended p-point classes (see bt1ow.
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2. Development

Unfortunately, the p-point class P is not weak compact (seepp

Chapter III for a definition of the weak topology) and, as we mentioned

in Section 1, the set function vpp defined, for each A, by

pp4

v pp(A) sup P(A) (5.Z)
PEPP

pp

is not a capacity. (For a class P C 74 , the set function v defined as

the setwise supremum over P E P is called the upper measure of P and

Huber and Strassen have shown [6, Lemma 2.5] that if v is a 2-alternating

. capacity then v is the upper measure of the set P . {P E? IP(A) < v(A),

VA, P(Q) = v(Q)}.) Basically, the reason for this is that p is notPP

weak closed. To illustrate this, suppose Q = [0,2], n = 2, A1 = [0,11,

A2 = (1,21 and w = w = then for each k > 1, the probability distribution

Pk defined by Pk ({1) and Pk({l+1/k}) = is an element of pp. But

{Pk } converges to P0 weak where PO({1}) = 1. Clearly P0  p

We now consider a new uncertainty class which we term the extended

p-point class. It is given by

n
pp E7 JP(A') < w., P(A.) > w., jl, ... n, P(Z) = I w.} (5.3)

4pp j=l I

0where A. is the (nonempty) interior of A. and A. is the closure. We useJ J J

the notation p because this class is actually the weak closure of S9
pp *

The upper measure of is given by
pp

0 if A ;

w if A C A., j=l,...,n;

n if A C Ac and A 7 Ao for

V epp(A) k=l k .. ,n, j1,...,n; (5.4)

k#j

n
Z w, otherwise;

j=l -
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* which is a 2-alternating capacity (recall that 9 is compact here). Thus, the

importance of this extended p-point class is that the results of [6], [7], [32]

can be applied to them. Furthermore, as we will show below, the least

favorable pairs for two nonintersecting extended p-point classes are also

contained in the corresponding p-point classes and, hence, are also least

favorable for the p-point classes.

We now consider the problem of a p-point class versus a single distri-U
bution. This is relevant for tests between a composite hypothesis and a

simple alternative and robust smoothing of an uncertain signal in noise

(e.g. band limited white noise). Moreover, Poor [32] has shown that if

P is a 2-alternating capacity class of spectral distributions then thev

spectral distribution Q E Pv which is least favorable for Pv versus

Lebesgue-Borel measure on [-ir,ir] (least favorable in the sense discussed

in Chapter IV) has rate-distortion function equal to the rate-distortion

function over v

Let i5 be an extended p-point class as in (5. 3 )and let P0 E 77 be
pp0

such that P0 PP " For ease of exposition we assume that 0 is a com-

pact subset of Rn and that P has a density P0 with respect to Lebesgue
00

measure. It is fairly straightforward to see from the definition of

dv1 /dv0 given in [6] that dvepp/dP0 (where vepp has the form(
5 .4) and is

the capacity dominating pp) must be constant a.e.[P 01 on each of the

A.'s. Thus, a least favorable Q E pp can be given in tern- if its

density with respect to Lebesgue measure:

W.
q(x) = p0 AJ)P 0(x) V x E A., j=l,...,n (5.5)

Thus we have that
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dQ1  dQ1
Q < ti) >PC{~ < t1) (5.6)

for all P E . Hence, (5.6) holds for all P E Ip (where P is given
pp pP pp

in (5.1)) and, since Q E Pm, we have that Q (with density given in (5.5) ispp,

least favorable for the p-point class P versus the single measure P0.
pp

Note that(5.5) agrees with the form given by Sakrison [41, equation (37)1

for the spectrum achieving the maximum rate over his class b.

r
So we have seen that by considering the extended p-point class the

results of [6],[71,[321 can be applied to the usual p-point class versus a

single distribution. In many cases, the problem of one p-point class

versus another can be handled in a similar manner. We illustrate this

possibility in a simplified case.

Let A and B be Borel subsets of Q such that AC B0. Let 1 and 0

be p-point classes as in (5.1) with n=2 and based on A and B, respectively.

That is, let

P = (P E IP(A) w 1  P(A) w 2

and (57)

90 =P { M e~JP(B) = w 0, P(Bc) =w 2 0

1 0 1 0

We can further assume that wI > w or that w2 < w2, because otherwise we

would have P fl P # and the problem would be trivial. Again, it is
0 1

not difficult to show from [6], that if v and v0 are the 2-alternating

capacities determining the extended p-point classes corresponding to P1
. Bcc

and P0 of (5 .7) then dv I/dv0 is constant on A and on B (note that AnB =)

and that any pair (%Q,Q) E P0 X 9i satisfying Qo(A') = QI(A') w1/W 0

= 101 0 Bc

VA' C A, and QI(B') Q0 (B') w2 /w2 , B'C C, is least favorable for pi

versus P0"

I
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At the beginning of this example we assumed that A o . One reason

for this is that if there was a point x which was contained in the boundary

0 0 .1 1
of A and the boundary of B and if, say, w1 + w 2 = w 1 + w2 = 1 then the

Q E 74 which satisfies Q({x}) = Q({O}) = 1 also satisfies Q E 70 n nI1

where, for i=1,2, is the extended p-point class corresponding to P

In this case, (Q,Q) E P X P is least favorable for P versus 10 but
0 1 1 0

(QQ) P 0 X V Thus the approach used above will not work in this

case, and we must note that this case is important. For example, for the

robust linear smoothing application, if we used power measurements from

a bank of low pass filters (as suggested in [41]) to determine p-point

classes to model our uncertainty about the signal and noise spectra then

the boundary points would be the same for both classes and the corresponding

extended p-point classes would overlap. Of course, this case can be handled

more directly as in [25].

3. Conclusions

In this chapter we have considered an uncertainty class which is

appropriate for many applications. We have shown that by embedding this

class in a slightly larger 2-alternating capacity class the results of

[61, [71, [421 can be shown to hold for the original class in most cases.

Actually in those cases where this approach cannot be utilized a more

* •direct approach can be shown to work [581.

• "
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VI. SUMMARY AND CONCLUSIONS

In this thesis several problems in robust statistical signal processing

have been considered. In this final chapter we briefly summarize the results

obtained and propose some related topics for possible further research.

In Chapters II and III and the appendix, we presented a varied selec-

tion of numerical results which indicate that the robust Wiener and Wiener-

Kolmogorov filters, developed in [11, 21, [25] and in Chapter III, are

often preferable to the corresponding traditional filters in situations

where deviations from assumed spectra might occur. In Chapter III, we also

gave a method of obtaining robust n-step predictors and robust n-lag

smoothers. Further, we illustrated in the case of robust one-step noise-

less prediction how this method could be used to design robust signal

estimators utilizing least-favorable pairs from an analogous robust

hypothesis testing problem. One possible topic for further work is extend-

ing this result to cases other than those cases considered in Sections 4

and 5 of Chapter III; perhaps, by generalizing Proposition 3.1 and, if

needed, developing error expressions for those cases not treated in [3],

[15]-[191. Another subject which needs to be considered concerns the imple-

mentation of these robust filters. We have, in this study, made the standard
I

assumption that we have knowledge of the infinite past. For most applications

this is an unrealistic assumption; thus, an examination of the effects of

finite memory on robust signal estimation would be of interest.4

In Chapter IV, we introduced the notion of a 2-alternating generalized

capacity because several of the most important uncertainty classes must be

restricted to compact spaces in order to be capacity classes, but are
I

generalized capacity classes even if the space is not compact. We then

I
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developed a Huber-Strassen derivative between a 2-alternating generalized

capacity and a a-finite measure and defined a distribution which Theorem

4.2 guarantees to be least favorable for this problem if any -

least favorable distribution exists. It was also shown that, for the

problem of a capacity class versus a a-finite measure, a least favorable

distribution always exists. Finally, in Chapters IV and V two uncertainty

classes, the band model and the extended p-point model, were shown to be

q 2-alternating capacity classes. The fact that the band model is a capa-

city class even if the underlying space is not compact is especially

significant in view of the results of Chapter IV (especially Corollary 4.1).

The significance of the extended p-point class is that the p-point class,

which is appropriate for many applications, is contained in it and, in

many cases, results obtained for capacity classes can be applied to the

p-point class directly from the corresponding extended p-point class

results.

Further study regarding the topics of Chapters IV and V might be

directed toward finding a Huber-Strassen derivative between two generalized

capacities and a corresponding least favorable pair of distributions. Such

!4a result would allow the full generality of the Huber-Strassen theory to

be applied to a larger class of problems.

!4

4

'4
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APPENDIX

The purpose of this appendix is to give a further selection from our

numerical study of robust Wiener filtering (see Chapter II, Section 3).

Figures 10-14 give further results regarding the examples presented in

Chapter II. In particular, for the p-point example of Chapter II, Figures

10 and 11 give the performances of the nominal filter H and of the robust
0

filter HR for wider noise bandwidths aN . In Figure 10, aN 1 100 and, in

Figure 11, aN = 1000 (recall that in Figures l and 4 we had 1N = 10). Note

that as aN increases the performance of H0 at (o0,Ov0 ) improves but at its

worst case H0 's performance degradates further. Meanwhile HR's performance

changes little. Figures 12, 13 and 14 give further results for the

-contaminated example of Chapter II. In Figures 2 and 5, we had N = 1000;

4 6in Figures 12, 13 and 14 we have aN = 100, aN = 10 and aN = 106, respectively.

Again we see that H is relatively insensitive to changes in the noise
R

bandwidth, but H is not.
0

Recall that the example which we have referred to here and in Chapter

II as the c-contaminated example involved robust filtering of an E-contaminated

first-order Markov signal in E-contaminated first-order Markov noise. In

Figures 15-22, we consider other nominal signal and noise models. In parti-

* cular, Figure 15 gives the performances of H and HR when the nominal signal

and noise power spectral densities, a0 and v0, are second-order Markov, i.e.

3 2
4 S S

* aO (w) = 2 2
0 0") 2 w 2 S2

S + w

and

(c N + N
v0(w) = 2e 2 w2)

- ( i ,J +w)- I. . . I
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2a

-22

-22 -221

r ~ ~~Figure 10. p-point example from Chapter 11, a = N= 0,(fo o* * 100 (fo o

to btto) a (a0 v0) H~at any (c, v) ~ X 7Z H0 at
its worst case.

ha
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-7 7

-22 2 a-'22 22 2a

..ue1.p-point example~ from Ch~apter :7,- 1, yt4 1000, "from

top to bottom) H0 at (hv) Ra n c')~~,t

at its worst case.



* 86

42

42-

-42 -22 i2 22 412

Figure 12. c-contaminated example from Chapter II, E = .1, a 1,

cc, 100, (from top to bottom) H0 at ('309V ), HR, at (
SH~ at (aL v) (<s worst case), H0 at its worst case.

R O
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-22

-22 022 40 6

Figure 13. e-contaminated example from Chapter II, E =.I. as 1
10, (from coo to bottom) H0 at at H ,iat

*H* at (7~~ (H" 5 worst case), H at its worst case.RR T0
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000,

-4 2 2 98

Figure 14. c-contaminated example from Chapter II, e - .1, CL 1

aN -106, (from top to bottom) H 0 at (cv 0 ), H R at (79 )

*H~ at (a L v L (H..'s worst case), at its worst case.
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a0-

22- ___

2224

-42 -20224

Figure 15. e-contaminated second-order Markov signal in e-contaminated

second-order Markov noise, e - 1 Ia , a .00, (from
*N

*top to bottom) H0at *(aov 0), HRat 3,v0HRat (a L9v L

(HRs worst case), H at its worst case.

I0



90

4B-

22-

[,.

2-
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*-49 -29 16 22 49

Figure 16. sc-contaminated second-order Markov signal in e-contaminated

first-order M4arkov noise, C .1 as M 1,a 10, (from

*top to bottom) H 0 at (av 0), H at (a09v 0), HR at (a LO vL)

(Nsworst case), H0 at its worst case.

0..

I.-'
,,"J
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42-

-22--

-420 -22 2 22 40 69

* Figure 17. c-contaminated second-order Markov signal in c-contaminated

first-order Markov noise, e .1, a 1, a.~ 100, (from

*top to bottom) H 0 at *(:;0 0) H1R at (aoo,\) H., at (a L v L)

(H*'s worst case), H0 at its worst case.

0~
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10 Je

29-
- - -

-49 -2 9 26

Figure 18. e-contaminated second-order M4arkov signal in e-contaminated

first-order Markov noise, e .1, as 1 , M 10,(fo

0top to bottom) Hat (.7~0 ) . at 0 0V H., a c (aL)L)

(Rsworst case), H0 at its worst case.
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Figure 19. e-contaminated second-order Markov signal in s-contaminated

first-order Markov noise, .1 as a 1 (from

top to bottom) H0at N1 ) Ra al ) Ra 9vL

(a s wrstcase), H3 at its worst case.
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*Figure 22. e-contaminated first-order Markov signal in E-Contaminated

band-limited white noise, e .1, CLt=1,C = 106, (from
*N 

*

(HR's worst case), Hoat its worst case.
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In Figures 16-21, a is second-order Markov and v is first-order Markov.

In all these cases (Figures 15-21) both signal and noise uncertainty are

* modeled via c-contaminated classes. In Figures 15-19, we have c - .1

and aN varying, and we see that the results are fairly similar to those

already presented when both a0 and v0 are first-order Markov. In Figures h

3 6. 20 and 21, we have aN = 10 and a- 10 as in Figures 18 and 19, respec-

tively; however we have c = .01 in Figures 20 and 21. Note the surprisingly
mr

strong similarity between 18 and 20 and between 19 and 21. Finally, Figure

22 is included to substantiate the claim made in the penultimate paragraph

of Chapter II. Figure 22 gives performances for the case when 00 is an

c-contaminated first-order Markov spectrum and v0 is c-contaminated band-

limited white noise. In Chapter II, we claimed that even when the band-

width of the c-contaminated bandlimited white noise is very large (in

6Figure 22 it is 106) the results for HR are similar to the other cases and

unlike those involving nonbandlimited white noise as in Figure 3. Compare

Figure 22 with Figures 14 and 19, for example; they are virtually identical.

I-.
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