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INTRODUCTION

Singularly perturbed systems and, more generally, two-time-scale

systems, often occur naturally due to the presence of small "parasitic"

parameters, typically small time constants, masses, etc., multiplying time

derivatives or, in more disguised form, due to the presence of large

feedback gains and weak coupling. The chief purpose of the singular

perturbation approach to analysis and design is the alleviation of the

high dimensionality and ill-conditioning resulting from the interaction of

*slow and fast dynamic modes. This two-time-scale approach is asymptotic,

that is, exact in the limit as the ratio e of the speeds of the slow versus

the fast dynamics tends to zero. When e is small, approximations are

obtained from reduced-order models in separate time scales.

* .While singular perturbation theory, a traditional tool of fluid

* dynamics and nonlinear mechanics, embraces a wide variety of dynamic

phenomena possessing slow and fast modes, its assimilation in control theory

* is recent and rapidly developing. The methods of singular perturbations

for initial and boundary value problem approximations and stability were

already largely established in the 1960s, when they first became a means

for simplified computation of optimal trajectories. It was soon recognized

that singular perturbations are present in most classical and modern control

schemes based on reduced order models which disregard high frequency

"1parasitics." This recognition led to the development of two-time-scale

methods for a variety of applications including state feedback, outp t

feedback, filter and observer design. Singular perturbation methods also

proved useful for the analysis of high-gain feedback systems and the
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interpretation of other model order reduction techniques. More recently

they have been applied to modeling and control of dynamic networks and

certain classes of large-scale systems. This versatility of singular

perturbation methods is due to their use of time-scale properties which are

common to both linear and nonlinear dynamic systems.

The first survey [A4] of control theory applications of singular

perturbations in 1976 included 130 references. The last six years have

witnessed an even faster growth of this research area both in theoretical

depth and breadth of applications, as evidenced by surveys and books [Al-

A20]. The present survey of over 400 publications can only outline research

directions with brief references to the representative issues and results.

Each of the topics discussed here is rich enough for a detailed survey.

This is particularly true of the references [Bl-B2], which contribute

to the continuing strengthening of mathematical foundations of classical

and modern asymptotic methods. Let us only mention that a new coordinate-

free formulation of singular perturbations and time scale properties appears

in [Bi9], while [B13] and [B16] compare matched asymptotic expansions and

averaging methods with multi-time scale formulations. Some basic results,

proofs of correctness, and extensions of asymptotic methods have been

obtained in [B2,B4,B6,Bl2,Bl5,Bl7,Bl8,B20]. Singular perturbation

techniques are used to study bifurcations in ordinary differential equations

[Bll,B27], and jump phenomena in electrical circuits [B28]. Applications

of distributions to the analysis of singularly perturbed systems appear in

*| [B20,1241.

Our bibliography includes a group of references [01-043] on

I"singular systems." Under this heading we encompass seemingly diverse, but

... .. .. .... "
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closely related topics such as numerical methods for mixed differential-

algebraic systems (01,03,032,041-043], descriptor systems [08,013,030,034,

039], singular-singularly perturbed systems [02,05,010-019,025], generalized

state (semi-state) equations for singular (degenerate) systems [06,020,

023,024,027,029,033,035,036], etc. However, we do not attempt to review the

intricate issues discussed in these references. The rich literature on

partial differential equation methods, such as homogenization [A9,9,B14], is

also beyond the scope of this survey.

To make this text accessible to a broad audience of control

engineers, Section 1 introduces singularly perturbed systems as a

special class of two-time-scale systems. This section includes a survey

of recent results on discrete-time systems. We then proceed with Sections 2

and 3 on system properties and linear composite control. Section 4 is

dedicated to nonlinear and adaptive control, and Section 5 to stochastic

filtering and control. A singular perturbation view of high-gain feedback

systems is given in Section 6, which includes references on multivariable

root loci and variable structure systems. Sections 7 and 8 deal with

applications of time-scale methods to modeling and control of networks,

Markov chains and other large scale systems with several control agents.

.- For ease of orientation the references are arranged in fifteen

groups which largely correspond to sections or subsections of the text.
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1. TWO-TIME-SCALE SYSTEMS

Examples of multi-time-scale systems abound [A4,M5] and include

electrical networks [B28,K2,K3,K5,K7,KIO-Kl4], power systems [K6,KSK9,

K15-K19], aircraft and rocket systems [Hl,H4,HI3,H15,HI8-H20,H25,H27-H29,

H31-H33], nuclear reactor systems (E14], scheduling systems [125,L9],

large space structures [E23], chemical kinetics [B24,G4], diffusion processes

[13,Il0], population biology models (B10], and bifurcations [BlI,B27,B29,B30].

Such systems can be modeled by the set of nonlinear differential equations

= f(x,z,t) x(to)  x

0 (1.I)

i - g(x,z,t) z(t) -z

where the n-dimensional vector x is predominantly slow and the m-vector z

contains fast transients superimposed on a slowly varying "quasi-steady-state."

A linear time-invariant version, sometimes obtained by linearization of

(1.1), takes the form

[*- A B
D 1 x] . (1.2)

i C D

The separation of states into those which are slow and those which

are fast is a nontrivial modeling task [C24,K19,M15] demanding insight and

ingenuity on the part of the analyst. In the absence of empirical estimates

of k and i, physical parameters such as time constants, loop gains, and

inertias are examined to determine which states are slow and which are fast.

As illustrated in (C171, a permutation and/or scaling of states is required

-Im m / m '" m , ' d



to obtain the state separable model (1.1) or (1.2). In some applications

' the slow and fast states of the overall system can be determined from the

* slow and fast states of each subsystem, but in general, the effect of

interconnections on the speeds of some states may be by no means negligible.

A new choice of state variables may then be needed to make the overall

system model state separable. A time-scale modeling methodology which

accomplishes this in networks and Markov chains is discussed in Section 7.

, If the linear model (1.2) satisfies (rather conservative) norm conditions

i- [C6] or conditions involving a correlation of states with eigenvalues [K9,

* C20], its two-time-scale property is assured. Otherwise, a remodeling with

a different selection of states is required.

1.1. Linear Systems

Linear time-invariant system (1.2) exhibits a two-time-scale

property if it can be transformed into the block-triangular system

= (1.3)
0 F 2

such that the largest eigenvalue of F is smaller than the smallest eigen-

4 value of F2,

maxh (F )I < minlX (F 2 )!. (1.4)
i j2

Appli .:ion of the transformation [C5,C6,C1O,CI1,C13,C14]

= z + Lx (1.5)
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L6

where L satisfies the algebraic Riccati equation

% DL-LA + LBL-C -0 (1.6)

to (1.2) results in the block-triangular system (1.3) where

F -A-BL, F2  D + LB. (1.7)

1

To completely separate the "slow" and the "fast" subsystems we let

x-Mn (1.8)

and choose M to satisfy

(A-BL)M-M(D+LB) + B = 0. (1.9)

If the eigenvalue separation (1.4) is sufficiently large, the achieved

decomposition

= (A-BL) (1.10)

= (D + LB)n (1.1) "

defines the "slow" state & and the "fast" state n and relates them to the

original variables x and z. As we shall see, this relationship is made

clearer when instead of the exact decomposition (1.10), (1.11), an

approximate expression for L can be obtained.

Approximations enter into the decomposition by way of solving

(1.6) and (1.Q) for L and M respectively, up to a specified degree of

accuracy. In [C6,C11,C14] the determination of the matrices L and M is

" j
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iterative. When the separation of time-scales (1.4) is large, the conver-

gence is quite rapid, typically a couple of iterations. Even when the

separation (1.4) is small, as for example in the power system decomposition

of (19], the iterative scheme [C14] is still applicable, provided that

the original choice of slow and fast states in (1.2) is valid. The

iterations for solving (1.6) are related to the simultaneous subspace

iterations [C8,C14]. An alternative scheme for separating the slow and

*fast subsystems are the quasi-steady-state iterations [C15,C17,K9], which

*. remove the inconsistencies of the classical quasi-steady-state approach (KI].

With minor modifications, the iterative procedures for two-time-

scale system decomposition apply to linear time-varying systems. A nonlinear

version, appropriate for a class of nonlinear systems separable in x and z,

is outlined in [C17]. Decomposition of multi-time-scale systems can also

* be achieved along the lines of repeated two-time-scale decompositions [K9].

That a singularly perturbed system

0
=Ax + Bz x(O) x (1.12)

0
ei = Cx + Dz z(O) = z (1.13)

where e > 0 is small and D exists, is a two-time-scale system, can be

easily seen by substituting C/E and D/c for C and D, respectively, in (1.2)

to (1.11). Then it follows from (1.6) that an approximation of L is

L = D-Ic + 0(c) (1.14)

and hence the slow and the fast subsystems (1.10), (1.11) become

4
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= [A-ED C+O(c)] (1.15)

=n; [D+O()]n. (1.16)

This proves that the small eigenvalues of (1.12), (1.13) are close to the

eigenvalues of A-BD- C, while the large eigenvalues are close to those of

1
-D. Hence, smaller values of e result in wider separation of time scales.
E

If for e= 0 we denote & by xs, then (1.15) becomes the so-called reduced

- (or "quasi-steady-state") model of (1.12), (1.13),

(- 1 Ox0( o
s = (A-BD- C)Xs X(t) . (1.17)

Formally (1.17) can be obtained by setting Eis =0 in (1.13) and substituting

z = -D ICx • (1.18)S S

From (1.5) and (1.14) we see that (1.18) is consistent with neglecting both

E and n in (1.5), that is, z is the "quasi-steady state" of z at E=0. IfS

we introduce the fast time scale

t-t
0

T o T =0 at t to, (1.19)

and denote n by zf whenever we set E =0, then (1.16) becomes the so-called

* boundary layer system

dzf(T) o
d = Dzf(T), zf(0) = z -Z (to ) "  

(1.20)

We have thus shown that if D is a stability matrix, then a two-time-scale

approximation of the state of (1.12), (1.13) is

0
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x(t) =x sCt) + O(e) (1.21)

z(t) - z (t) + z + 0(C) (1.22)

where x (t) and zf(T) are the limits as c-*O of the exact slow and fast

states (t) and n(T), respectively. Based on (1.21), (1.22) a model order-

reduction, related to modal methods [C2] and aggregation [C3], but specific

to two-time-scale systems, is achieved by neglecting the fast subsystem

while retaining the reduced model (1.17). The justification for this is

that zf(r) decays rapidly in an initial "boundary layer" interval after which

the system response is essentially due to xs(t), zs (t). Because this order

reduction is based on time-scale properties and not on linearity, it is also

applicable to two-time-scale nonlinear systems.

1.2. Nonlinear Systems

The structure of the approximation (1.21) and (1.22) remains the

same for singularly perturbed time-varying and nonlinear systems

*dx o 1.3

=, f(x,z,t) x(t ) W x (1.23)
dz0

E-A= g(x,z,t) z(t o ) = z0. (1.24)

dt0

In the limit as s-0, the asymptotically stable fast transient decays

"instantaneously" leaving the reduced-order model in the t time-scale

defined by the quasi-steady-states xs(t) and s(t)
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= f(x sz ,t) x s(t) x °  (1.25)

0 g(x sZst). (1.26)

To obtain the fast parts of x and z we rewrite (1.23) and (1.24) in the fast

t-t'
time-scale T w- , where t' is any fixed instant,

- ef(x,z,t'+ 'r) (1.27)
dz

Sg(x,z,t'+ cT) (1.28)

and again examine the limit as e-0. Then dx/dT=0, that is x-constant

in the fast time-scale. The only fast variations are the deviations of z

from its quasi-steady-state z s . Denoting them by zf = Z-Zs and letting c - 0

in (1.27), (1.28), we obtain the fast subsystem

dzf_ 00z z_- g(xo ,zo+ z(r), zf(0) =Z o (1.29)
- x f  f s

where the fixed instant t' has been chosen to be t and x and z are fixed
0 S

parameters. Conditions under which the slow subsystem (1.25), (1.26) and

the fast subsystem (1.29) together yield the state approximation (1.21),

k(1.22) (and higher order approximations up to 0(c )) are given in [C1]

and in more recent references surveyed in [A4]. These references assume

that the fast transients described by (1.29) are asymptotically stable
0 0

uniformly in x , z., t . For linear time-invariant systems this means
F 1 0

that the large eigenvalues have large negative real parts so that the fast

state rapidly reaches its quasi-steady-state z . On the other hand,r s

r
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mechanical and electromechanical systems often have lightly damped modes

resulting in sustained high frequency oscillations. After linearization

such systems can be put in the singularly perturbed form (1.12), (1.13) and

a transformation similar to that of (1.5), (1.8) can be applied [K4].

However, in this case, the two-time-scale approximation (1.21). (1.22) is

only valid up to a finite time. Under additional assumptions the slow

phenomena in the oscillatory singularly perturbed system are adequately

* modeled by the slow subsystem which has an "averaging" effect on the fast

oscillations. An example of this modeling procedure is the study of

coherency in power systems where high frequency intermachine oscillations

are not negligible [K4]. Related control studies of quasi-conservative

large space structures are reported in [E32]. More general treatment of

oscillatory two-time-scale systems and periodic structures is possible via

averaging methods [A8,A14,B16] and homogenization [A9,B9,B14].

1.3. Discrete Time Systems

In recent years considerable progress has been made in formulation

and analysis of two-time-scale discrete-time models [D2-D27]. The fact that

the theory of difference equations is in most respects akin to that of

ordinary differential equations [DI] suggests that a similar two-time-scale

decomposition [D6] might be obtained for discrete-time systems. Attempts,

however, to model general discrete-time systems with slow and fast modes

in a strict singularly perturbed format encountered stability difficulties

[D5,D8]. For a discretization of a continuous-time singularly perturbed

system, the discretization interval can be compatible with either

fast or slow time scales. The former case is considered in [D18]

• ," . . . . . . . - -1
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where the discretization interval is O(e). This case admits a hybrid

two-time-scale approximation consisting of a discrete-time fast model

and a continuous-time slow model. This decomposition has been applied to

the design of linear optimal regulators in [D18]. A further development

in [D27] relates this result with its continuous-time counterpart [E8].

The assumption that the interval is small or the number of time-steps is

large is pursued by [D3,Dl0,D20] using asymptotic expansions. Other topics

include the numerical solution of continuous-time boundary value problems

[D7] and initial value problems (D15], discrete system initial value problems

(D20] and boundary value problems [D22,D23], optimal control problems [D24,

D25], limiting behavior of solutions of singular difference equations [D12],

and multi-time methods for discrete systems [D9,D13].

The application of the block-diagonalization [C6] to two-time-scale

discrete-time systems is straightforward. Paralleling the continuous time

approach, references [DI6,DI9,D26] establish that the linear system

x(k+l) A B] x (0)

Zk~l=[C :][:::][z0 - SO](1.30)z(k+l)J Lz(k) Z()J z °0

exhibits a two-time-scale property if it can be transformed into the block-

diagonal systemF (k+l) 1F 1 (k
I~t (1.31)

n(k+l) 0 F2 1[n(k)

where the largest eigenvalue of F2 is less than the smallest eigenvalue of FI.

LF
L omlystigzkl izk n(.0-seuvlett suigta fe

*6
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the decay of (stable) fast modes, the system (1.31) reaches the quasi-

. steady-state described by the slow subsystem

Xs(k+l) -(A-BL)x (k), Lo  -(I-D) C. (1.32)
S 0

During the initial short transient period in which the fast modes

are active, we assume that x (k) and z (k) are constant. Subtracting
5 5

z(k) = -L x (k) from z(k) to obtain the fast part zf(k) - z(k) - z (k), the fast

subsystem of (1.30) can be expressed as

zf(k+l) = Dzf(k) zf(O) - z (0). (1.33)

The singular perturbation parameter c :an be introduced to explicitly express

the magnitudes of system matrices as

A -A, B-e B, C C, D =cD (1.34)

where 0ai and A, B, C, and Dare 0(). In this case BL is 0(c).0 .

Alternatively A, B, C, and D may be required to satisfy more general norm

conditions [D19].

-1
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2. SYSTEM PROPERTIES

Attention is now focused on how certain properties of two-time

scale systems; namely, stability, controllability, observability, and system

zeros, can be deduced from lower-order subsystems in separate time scales.

2.1. Stability

In order to guarantee a stability property of the linear singularly

perturbed system (1.12), (1.13), it is sufficient in view of the decoupled

nature of subsystems (1.15), (1.16) that they both possess that property.

More specifically, if the reduced system (1.17) and the boundary layer

system (1.20) are asymptotically stable, then there exists an &*> 0 such

that the original system (1.12), (1.13) is asymptotically stable for all

cc [0,e*], that is, for e sufficiently small. Such a result for time-

varying and nonlinear systems dates from [GI]; see [A4]. For linear time-

varying systems an explicit expression for the upper bound c* is more

recently presented in [C12]. A different condition via singular values

appears in [G9]. In [K3] input-output stability is analyzed, while conditions

for preservation of absolute stability in the presence of singular pertur-

bations are derived in [GI2,G17].
4

Considerable progress has been made in constructing Lyapunov

functions for singularly perturbed systems [G2,G5,G11,G16]. For nonlinear

systems which are linear in z,

- f(x) + F(x)z (2.1)

i- g(x) + G(x)z (2.2)



where G (x) exists f or all x, the Lyapunov function proposed in (G5]

consists of two functions. The first function

v -a'(x)Q(x)a(x) (2.3)

establishes the asymptotic stability of the slow subsystem k, ua(x ), where

a(x) f(x) -F(x)G (x)g(x), (2.4)

and Q(x) > 0 satisfies

Da
Q(x)a~x + a'(x)Q(x) -- C(x), a a (2.5)

for some differentiable C(x) > 0. The second function

w (z+rg-P- r IF v )'P(z+rg-P- r F v) (2.6)x x

-1
where r= G Wx and P(x) satisfies

P(x)G(x) + G'(x)P -1-, (2.7)

establishes the asymptotic stability (uniform in x) of the fast subsystem

dzf

-G~ Wzf + g W) (2.8)

*The Lyapunov function V(X,Z,E) for the complete system (2.1), (2.2) is

V(x,z,E) VWx + - . w(X,Z) (2.9)

and can be used to estimate the dependence of the domain of attraction of

x- 0, z-O0 on c. For example,the system
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iiX X 3 + Z, Ci -Xz (2.10)

is analyzed in [G5] using

432
V(x, z,c) 1-+ x + 2 (2.11)

and for c< 0.01 the region includes jx :S1, jzi :,1O, while for e< 0.005 the

z bound is extended to jzj :.2O.

2.2. Controllability and Observability

* Let us now consider the singularly perturbed control system

-~01
u, 0 I-[z0 J(2.12)

*00

y -Ax + u xE R -x (2.14)

where o~) R s a osto etradytCRri notu etr t

00

Eif ~A 2 2 zf + B 2 Uff Zf () = z0 -Z S(0) (2.16)

-f C 2 zf (2.17)

where z f MZ - Z , u f u-us yf M-y-y and
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A-A -1 B
o "11 A12A22A2 1, Bo B1 -A 12A 22B2,

(2.18)

-1o -1
CO " C1 -C2 A22A21, D - -C AB

The controllability conditions [J2]

rank[oIn -A o , Bo] 0 n, rank[a M -A 22, B2] - n, Va complex (2.19)

together imply the controllability of (2.12) for E sufficiently

small. The observability of the original system (2.12), (2.13) follows from

observability of the subsystem pairs (Ao,C) and (A22 ,C2). Controllability

results along these lines were introduced in [E5] for linear time-invariant

systems and subsequently extended to linear time-varying systems in [G3]

and (E251, and to the class of nonlinear systems in [G8]. Analogous results

apply to continuous-time [E36] and discrete-time [Dig] linear two-time-

scale systems. In [E15] it is shown that the controllability of the

singularly perturbed system (2.12) for E:> 0 does not necessarily require

*the controllability of the subsystems (2.14) and (2.16), although in practice,

such weakly controllable systems are undesirable.

L 2.3. Analysis in the Frequency Domain

Taking one-sided Laplace transforms of (2.12), (2.13) yields, upon

rearrangement,

A [A-al n  A12 B 1 x() ] jLx
A A21/ A 22 /E-I m2  B2/E ((a) -z(O) (2.20)

2G
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The matrix in (2.20) denoted by P(a) is known as the system matrix [J2].

The invariant zeros [J7] of the system are those complex frequencies a- a

for which P(a ) loses rank and the corresponding invariant-zero directions
0

are those vectors that lie in the null-space of P(ao). The asymptotic values of

the invariant zeros and associated invariant-zero directions as € O are

the values computed from the system matrices

[A 1 I A2 Bi In 0 01

P (o) =L A A B2  p(f) (a) - 0 A22-aIm B2J (2.21)

L C 2  C 2  L 0 C 2  0

associated with the slow and fast subsystems, respectively (J23].

Just as the system matrix P(o) exhibits the internal structure

associated with the singularly perturbed system (2.12), (2.13), the external

relation between the input and output is described by y(a) -G(a)u(a) where

aI-A -A B
G(a) - [C1  C2] n -A2 (2.22)

!-A21/E al -A22/E B2/

21 ~m 222

is an rxp proper transfer-function matrix which is given t- within an 0(E) as

G-(a) - Co(aI n - A o  B  + C2 (EaI -A 2 2 ) B2 . (2.23)

As shown in [C7] the asymptotic forms of G(a) for low and high frequencies

are

G low() Co(CIn-Ao) Bo + D (2.24)

Ghigh(a) - C2 (EaI m -A 2 2) B2  (2.25)

I
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which, as expected, are the transfer-function matrices for the slow sub-

system (2.14), (2.15) and the fast subsystem (2.16), (2.17), respectively.

Moreover, the asymptotic values of the transmission zeros of G(a) as c-0

are made up of those of Glow(a) and Ghigh (a) [J39].

Further insight into the frequency-domain analysis and design of

singularly perturbed multivariable feedback systems is obtained by exhibiting

the return-difference matrix at the input [E2,E3], associated with the

application of a linear state feedback control law. The static decoupling

*--. problem for two-time-scale multivariable systems is considered in [E18].

0.-

,0bo.

S
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3. LINEAR COMPOSITE CONTROL

The decomposition of two-time scale systems into separate slow

and fast subsystems suggests that separate slow and fast control laws be

designed for each subsystem and then combined into a "composite" control of

the original system. If the fast control is not needed, then only the slow

"reduced" control is used. These ideas have motivated numerous two-time-

scale designs [A4,E4-E9,E1I-E14,E17-E42] which are now surveyed through a

couple of representative problems.

3.1. Linear State Feedback

Suppose that the controls

u Kx, uf Kz (3.1)
a 0s f 2 f

are separately designed for the slow and fast subsystems (2.14) and (2.16).

In order to use

u =u + uf K x + K z (3.2)
.4 c s 0 s 2f

as a "composite" control for the full system (2.12), we must express the

fictitious subsystem states x and zf in terms of actual states x and z.

Noticing that

z = -A22(A 2 1 +B 2K0)x5  (3.3)

and substituting the approximation x - x
s , Zzz s +z f into (3.2) we obtain a

realizable composite control

0



u K(Z+A 2 (A21 +B 2K)X] (3.4)

When this control is applied to (2.12), the resulting feedback system is

singularly perturbed. The time-scale decomposition shows that its slow

and fast subsystem matrices are, respectively,

A + BoK + 0(), - [A 2 2 +B 2 K2 +0()] (3.5)

where A and B are defined by (2.18). Therefore, K and K can be used0 o o 2

for separate slow and fast eigenvalue placement, stabilization, or optimal

state regulator designs provided that the pairs (Ao,Bo) and (A22,B2 ) are

controllable or stabilizable. This approach was proposed in [E7,E8] and in

[El23. A proof of near-optimality of the composite control for a quadratic

cost is given in [E8]. A two stage design extending these results to more

general two-time-scale systems appears in [E36] and to linear time-varying

systems in [E25]. When A is a stability matrix the fast subsystem
22

need not be controlled. Then setting K2 0 in (3.4) reduces uc to the

reduced order stabilizing control of [E4]. A similar slow-mode design was

developed for the so-called linear multivariable tracking problem [EIlI,E22,

E42]. The problem of eigenstructure assignment [EIO,EI6] is addressed in

[E21].

Two-time-scale decomposition of near-optimal regulators for discrete- -

time linear systems appears in [DI8,D25,D17]. The results in [D27] parallel

the continuous time results of [E8]. Asymptotic expansions of the compu-

tationally attractive Chandrasekhar type of equations are presented in [E431.

Reference [E30] considers the case of designing a control with partial state
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feedback to approximate the performance cost of a given full state feedback

control where the given control need not be optimal. Extensions of the

linear quadratic regulator to three-time-scale systems using two

singular perturbation parameters are presented in [E20,E41], while [E40]

considers near-optimum feedback with multiple time scales. Other work

on the optimal regulator for linear singularly perturbed systems includes

the asymptotic expansion methods of (E31], the near-optimum control of distri-

buted parameter systems [E6], the near-optimum control of nuclear reactors

with distributed parameters [E14], the control of quasi-conservative linear

oscillatory systems (E32], the use of degeneracy to simplify the synthesis

[E35], and the control of large space structures [E23].

3.2. Output Feedback and Observers

Static output feedback design of two-time-scale and singularly

perturbed systems has been dealt with in several recent references [F7,F8,

F1I,FI3,FI4,F7]. To stress that the output feedback may be non-robust

with respect to singular perturbations EF1I], we consider

x z

ei - -x-z+u (3.6)

y = 2x + z.

If instead of (3.6), its reduced order slow model

=-x +u
S S

(3.7)
Ysi Xs + u

Y5 5
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is used to design the output feedback u -ky s to place the eigenvalue

at -3, then k= 2. Applying the same feedback law u= 2y to the actual

* system (3.6) we see that the resulting feedback system

z
(3.8)

=i 3x + z

indeed has a slow eigenvalue -3 +O(e) as desired. However, it also has an

unstable fast eigenvalue -+0(1), that is, the design is nonrobust. The
C

possibility of instability is due to the presence of z in the output equation

("strong observability of parasitics"). It can be easily seen that a

sufficient condition for a robust reduced order design is that C =0 and,
2

hence, D 0 in (2.15). Similar conditions in [F7,F8] also have the form

of "weakly observable parasitics." If they are not satisfied, then a dynamic

rather than static output feedback design should be used.

Typical dynamic feedback design is based on an observer [F1,F18].

We focus our attention on the reconstruction of the inaccessible state of

the singularly perturbed system (2.12), (2.13) using the full-order observer

= (A-GC) + Gy + B u (3.9)

where x, z is an estimate of the state x, z, and

Al A 2  B -

A 1 12  Be (3.10) ,"A21 /C A22/ B2/E
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The state reconstruction error e(t) [ - satisfies

e(t) - (A -GC)e(t), e(O) - I 0 I [ 0  (3.11)

L (o) J LZ(O) I

Following the duality with composite control an observer gain matrix, composed

of G and G2, G 0G A[12A22 2 0(Im C 2A G2 )]

G G2 (3.12)

is designed in [F4-F6,F9,F10,F15]. It is pointed out in [F12] that although the

observer gain (3.12) does not depend on E, some knowledge of E is required

in order to implement the observer. Nonrobustness of reduced order

observers is analyzed in [F1l,FI2] and conditions are given under which a

reduced-order observer can be designed to estimate the "slow" states of a

singularly perturbed linear system from a knowledge of its reduced slow

model. Decentralized identity observers for a large-scale system with two

* time-scales are treated in [F3] and the design of observer-based controllers

for discrete two-time-scale systems is considered in [F17]. Another approach

to reduced-order compensator design is described in [F191.

0
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4. NONLINEAR AND ADAPTIVE CONTROL

The common theme of references surveyed in this section is that

a scalar function (functional) defined for the full problem is decomposed

into similar functions (functionals) for separate slow and fast subsystems.

For optimal control problems this function is the Hamiltonian and for

stabilization problems it is a Lyapunov function, which, in case of optimal

regulators, coincides with the optimal value function.

4.1. Nonlinear Composite Control

Recent generalizations [G16,G18] of the composite control

establish that if the boundary layer system (fast subsystem) and the reduced

system (slow subsystem) are separately made uniformly asymptotically stable,

then the full singularly perturbed system is stabilized for sufficiently

small E. To avoid more complex notation we briefly outline an earlier
1

result [G6,G7,GII]:a nonlinear infinite interval problem in which the system

and cost to be optimized are

0I

= aW(x) + Al(x)z + Bl(X)u, x(0) = x (4.1)

0

Sa2 (x) + A 2(x)z + B2(x)u, z(0) = z (4.2)

*

J = f [p(x)+c'(x)z+z'Q(x)z+u'R(x)uldt (4.3)

0

* subject to assumptions of differentiability, positivity and the existence

of an equilibrium at x-0, z-0. This problem is difficult even for well-

behaved nonlinear systems. The presence of 1/; terms in the Hamilton-Jacobi

6I
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equation increases the difficulties. However, avoiding the full problem,

and taking advantage of the fact that as c-1O the slow and the fast

phenomena separate, we can define two separate lower-dimensional subproblems.

The slow subproblem is to optimally control the slow subsystem

is a0 (Xs) + Bo(xa)us 5 xs (0) - x0  (4.4)

q with respect to

s -
/ [po (xs) +2(Xss u+ UR(Xs)Us] dt (4.5)
0

where

ao M a AA1a2 ao M BA2- (QA2 - ).

-1 o " 2  QA2  2  (4.6)

B0- B 1 -A 1 A2 B2 , R 0- R + B2' ' 2-B'(46

PO" p  a'A2 a2 + aIAI-'QA212, 2 2 Q a2.

Assuming the existence of the optimal value function L(x ) satisfying the

lower dimensional Hamilton-Jacobi equation

-1 -1 -1 )  , , ,o
0 0 (p o-soR a) + L (ao-BoR a)--LLB R-B L, L(O) 0 (4.7)

0 0 0 0 X 0 0 0 0 2 x oo o x

the minimizing control for (4.4), (4.5) is

us R (a + BoLx') (4.8)
5 0 0 2 O

where L denotes the derivative of L with respect to its argument x . Thenx s

L(x s) is also a Lyapunov function which guarantees the asymptotic stability

of x -0 for (4.4) controlled by us,

s
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k s "ao -BoRol(ao+-L B V~ ) - o(xs (4.9)

and provides an estimate D of the region of attraction of x -0.s

Introducing zf- -zs, uf Wu-us and neglecting 0(e) terms, we

define the fast subproblem in the T-scale (1.19) as

dzf o
- A2 (x) zf + B2(x)uf zf(0) z -z ,(4.10)

Jf - f (zfQ(x)zf+ufR(x)uf)dt, (4.11)

0

which is to be solved for every fixed xE D. It has the familiar linear

quadratic form and under a controllability assumption its solution is

uf(zfx) -R- (x)B2(x)Kf Z (4.12)

where Kf(x) is the positive-definite solution of the x-dependent Riccati

equation

0-KA + A IfKfB2R- BIKf + Q. (4.13)f = f 2  2 A2 f'  f13)

A4 The control (4.12) is stabilizing in the sense that the fast feedback system

dzf -1
d-- (A2-B2R B K)zf = A2 (x)zf (4.14)

has the property that ReI[A 2(x)] < 0, VxED.

The design is completed by forming the composite control uc u +u
in which xs is replaced by x and zf by z+ (a2+B2us(x)), that is,

u (x,z) - u (x) -R- B'Kf(z+A- 1 (a-B u(x)))
c -s ( 2 R 2 2-2Bs( )

- -R_ ( +T -L .' - .BK z+ '-)(.50 2o
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where

a - a2 - B2R- (b'Lx+ V, a2(0) -09

(4.16)

V -(a'+2a'K +-LAX- A BRBK

1 2 fz 2 1 1 1 2 f

Under the conditions stated in [Gll], there exists ea such that VE (O,c*],

the composite control u stabilizes the equilibrium x-0, z-0 of the full

system (4.1), (4.2). An estimate of the region of attraction is also

given. The corresponding cost J is bounded and it is near-optimal in thec

sense that J c- J as E- 0. Thus the problem (4.1), (4.2), (4.3) is well

posed with respect to e.

In (GIl] a composite Lyapunov function of the type (2.3), (2.6),

(2.9) is used. More general Lyapunov functions in [G16] remove the

restriction of the linearity with respect to z.

4.2. Trajectory Optimization

For the trajectory optimization problem the control interval is

finite, tE [to,T], and some conditions are imposed on x,z of the full system

(1.23), (1.24) at both ends of the interval. A control u(t) is sought to

minimize

T
J = f V(x,z,u,t)dt. (4.17)

t
0

The necessary optimality condition consists of - =0 and

a
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. p ax

ci __- - (4.19)
3l q E a z

which is a (2n+2m)-dimensional singularly perturbed boundary value problem,

where H is the Hamiltonian and p and cq are the adjoint variables. Typical

optimal trajectory consists of a slow "outer" part with "boundary layers"

at the ends. In the limit as e- 0 the problem decomposes into one slow

and two fast subproblems. The slow ("outer") subproblem

szs  - p , P5s  B- (4.20)

is 2n-dimensional. To satisfy the remaining 2m boundary conditions, the

layer ("inner") corrections zfL(L). z fR(rR) for z, and qfL(TL), qfR(r) for

q are determined from the initial (L) and final (R) boundary layer systems

dz aHL dqf Hfz
dTL = dt f (4.21)

L fL L fL

dz 3HR dqf fz-
. ..fR f (4.22)
d R 3q fR dTR aZfR

fT-t shervrefatim

where T L is the same as T in (1.19), while TR T is the reversed fast time

scale. The results of these subproblems are used to form approximations

of the type (1.21), (1.22). Analytical issues of such approximations have

been discussed in [H3,H5-Hi2,HI7,H21,H24,H26,H30], and for the time

optimal control problem in [H16,H22]. Conditions for asymptotic validity
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are given in [H6,H7,H12,H30]. A trajectory optimization problem for

systems of the type (4.1), (4.2) is solved in [H21].

In flight dynamics both low thrust (aircraft) and high thrust

(missile) conditions can be modeled as singular perturbations. Several

applications to specific problems arising in jet engine control, missile

guidance and energy management have been reported in [H1,H2,H4,

I H13,HI5,HI8,HI9,H22,H25,H27-H33]. Some approaches, such as [H20],

use sequential multi-time-scale modeling and obtain solutions in convenient

feedback form. Problems of scaling are addressed in (H27,H28,H32,H33]

and indicate that more research is required to properly introduce singular

perturbation parameters for specific aircraft and missile control problems.

These issues are more complicated in the presence of singular arcs [H24].

4.3. Adaptive Control

The study of robustness of model-reference adaptive schemes in the

presence of singular perturbations has recently been initiated. The general

formulation examines situations when the order of the model is equal to the

order of the slow part of the unknown plant and the model-plant "mismatch"

is due to the fast part of the plant. A fundamental requirement for feasi-

bility of an adaptive scheme is that it be robust, that is tolerate a

certain model-plant mismatch. The singular perturbation parameter

c is a convenient parameterization of this mismatch.

The robustness of continuous-time identifiers and observers when

the parasitics are weakly observable is established in [G14,G19]. The

bounds for output/parameter error indicate possibilities for reducing the
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error by a proper choice of the input signal. When the parasitics are

strongly observable, the problem is no longer robust. Robustness is

re-established either by using a low-pass filter at the output, or by an

appropriate modification of the adaptive laws (G15]. Analogous results for

discrete time parallel and series-parallel identifiers have been obtained in

[G13,G21]. The methodology in [G4,G19] has been to transform the singularly

perturbed plant (2.12) into

=Ax+Bu+ A2(4.23)

-1.L "AfC + cAf B fu (4.24)

where

-1z + Lx + A Eu (4.25)

and L is the same matrix as in Section 1.1. The matrices A, B of the
00

dominant part (4.23) are matchable by the model, while the parasitic part

(4.24) introduces a disturbance A1 2 . It is crucial to observe that the

disturbance is persistently excited by the derivative of the input signal

A(t) and is large if u(t) has high frequencies in the parasitic range. For

this reason the input signal should achieve its richness condition at

dominant, rather than parasitic frequencies. A significant conclusion is

that, contrary to common belief, white noise and similar wide-band signals

are not as appropriate as some lower frequency signals.

The situation is more complex in adaptive control where the plant

input depends on the adaptive feedback. In this case the parasitics can

destroy global stability and boundedness properties. The singular perturba-

tion approach in [G20,G23] has led to a modified adaptation law which
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*guarantees the existence of a region of attraction from which all signals

converge to a residual set whose size depends on disturbances and the

mismatch parameter e. The modified law achieves robustness by sacrificing

the ideal convergence in the parasitic-free case, i.e., the residual set

is not zero even if E -O. It is of interest that the development of the

modified law uses a two-time-scale Lyapunov function of the type discussed in

U subsection 2.1. The details are given in a recent monograph [G23 ].

0

[]

S.
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5. STOCHASTIC FILTERING AND CONTROL

Research in singular perturbation of filtering and stochastic j

control problems with white noise inputs has revealed difficulties not

present in deterministic problems. This is due to the fact that the input

white noise process "fluctuates" faster than the fast dynamic variables,

no matter how small c is. In the limit as e-O, the fast variables them-

selves tend to white noise processes, thus losing their significance as

physically meaningful dynamic variables. The papers dealing with stochastic

differential equations and diffusion models such as [13,17,19,122,126] have

also indicated the importance of attaching clear probabilistic meaning to

time scales.

-C
4

5.1. LQG Problems

To illustrate the problems arising in the singularly perturbed

formulation of systems with white noise inputs, consider the linear system

A x + Alz + Glw (5.1a)
11 12 1

i A2 1x + A 22z + G2w (5.1b)

where w(t) is white Gaussian noise. An approximation to (5.1) is desired

that is valid for small E and is simpler than (5.1). Setting c=0 in (5.1)

is inadequate, since

-A22 (A2 1x + G2w) (5.2)
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has a white noise component and, therefore, has infinite variance. Although

(5.2) may be substituted for z in defining a reduced (slow) subsystem, z

cannot serve as an approximation for z in the mean square sense. Under the

as sump tion

-1
Re X(A2 2 ) < 0, Re X((A11 -A 2 A2 2 A21 ) < 0 (5.3)

the mean-square convergence

lm E{ (x - xd) (x - xd) 0

lim E{ (z - zd) (z -Zd)} = 0 (5.4)
E:-O

was demonstrated in [II,10] for x d9 zd defined by

-1 -1 -

Xd = (A1-A12A22A21)xd + (G-A 12A22G2)w

Ci = A x + A z +G W. (5.5)
d 21Xd 22Zd 2

For the linear filtering of (5.1) with respect to the observations

y C1 x + C2 z + v (5.6)

where v(t) is a white Gaussian noise independent of the process noise w(t),

the analysis in [Ii] demonstrates that the Kalman filter can be approximately

decomposed into two filters in different time scales, thereby yielding estimates

of the slow and fast states. Similar results are obtained for near-optimal

smoothing [Ill], and state estimation with uncertain singular perturbation

parameter E in (5.1) [119].
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For the singularly perturbed LQG control problem

A 11 x + A12z + B 1u + GlW

e =A21x + A22 z + B2u + G2w (5.7)

y 1=CX 2z+v (5.8)

J = E{x'(T)rIx(T) + 2x' (T)r1 2z(T) + cz'(T)r2z(T)

T
+ f (x'LI x+2x'L 2z+z'L2 z+u'Ru)dt} (5.9)

~0

it was demonstrated in [18] that the optimal solution to (5.7)-(5.9) may be

approximately obtained from the solutions of two reduced order stochastic

control problems in the slow and fast fime scales. The drawback of the

formulation (5.7)-(5.9) is that it results in J being O(1/E). To avoid

* divergent performance indices, it is required that L2 =o(), r2 =O(E ).

A new approach [129] to this problem is based on singularly

* perturbed Lyapunov equations. The two-time scale solutions yield (c r)

(rjl) approximation to the optimal performance. For r=l, the results of

[129] are equivalent to those of [181.

* A conclusion from [11,18,129] is that in order to obtain well-

defined reduced-order filtering and control problems as £ -0, it is

necessary to scale the contribution of the white noise disturbances to the

* fast subsystem in some sense. Reference [117] introduces small parameters

as powers of as follows
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-A11 x + A12 z + Blu + GIw

ci e= eA 21x + A22z + B2u + C G2w (5.10)

in x + Cl2z + V

SC 2 1 x+C 2 2z + v2  (5.11)Y2 i 2X+2

J = E{x'(T)F 1x(T) +2ex'(T)r 1 2Z(T) + cz'(T)r 2z(T)

T 6 , 26
+ f (x'LIx + 2E x'L12z +E z'L2 z+u'Ru)dt}. (5.12)
0 12

The parameters a, $, v, 6 represent the relative size of the small para-

meters within the system, with respect to the small time constants of the

fast subsystem. The inclusion of a separate observation channel Y2 for

the fast subsystem is essential, since for a> 0, the fast variables cannot

be estimated in a meaningful manner from the slow observation channel

(signal-to-noise ratio tends to zero). The analysis of [117] shows that

the performance index is finite if

, I

6 (5.13)

Furthermore, a well-defined formulation also requires that

* 0 a in V . (5.14)

The restriction a= v is crucial; otherwise, either the fast variables are

not observed due to noisy observations (,- > .), or they are observed noise-
I

lessly (a<v) in the limit as £-0. If -1> , the problem becomes deter-

ministic as E:-0, and if > , the coupling between x and z becomes of

I
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order less than O(e ). The constraint 8 a insures that the state z is

predominantly fast, and relaxing it causes no conceptual difficulties.

Setting -= = 0O, yields the results of [181. In this case

6 to yield a finite performance index. Setting a =v = and 6 =0 results

in the full weighting of the fast variable. This important case, which is

the only one to yield a well-defined stochastic process in the fast time

scale, has been studied separately in [127] and [118]. They have established

the weak convergence, as c-' 0, of the fast stochastic variable z which

satisfies the Ito equation

I

tdz = Azdt+ vC Gdw; Re X(A) <0 (5.15)

where *(t) is Gaussian white noise with covariance W. The results of [118,

M27] show that

lim z(t;c) = weakly (5.16)
E-0

where z is a constant Gaussian random vector with covariance P satisfying

the Lyapunov equation

AP + PA' + GWG' = 0. (5.17)

Alternative formulations of the linear stochastic regulator problem have

been reported in [12,16,I10,116,120]. Colored noise disturbance in the

fast subsystem is assumed in [116], which accounts for situations when the

correlation time of the input stochastic process is longer than the time

constants of fast variables. When the fast subsystem is stable, the

results of [116] demonstrate that the optimal solution to the stochastic

Ii
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regulator problem can be approximated by the optimal solution of the slow

subproblem, and the performance index does not diverge.

5.2. Nonlinear Stochastic Control

A composite control approach for a class of nonlinear systems

driven by white noise disturbances appears in (123] as a stochastic version

of [G6,G7,Gl1], namely

dx = (c(x)z+d(x)+2 (x)u)dt + v2 dw

Edz - (a(x) z+b(x) +2a (x)u)dt + c/2 dw2  (5.18)

J (u(.)) f E f e-t[(f(x)+h(x)z)2 + 2 ]dt (5.19)Xtz 0

where w (t), w2(t) are standard Wiener processes independent of each other.

The optimal feedback law for (5.18), (5.19) is given by

a(x) Vc"(x, z)

u (x,z) = -a(x)V (x,z) - (5.20)

where Ve(x,z) is the Bellman function

V£ (x,z) = inf Je (u(')) (5.21)
* u() XZ

As E-0, the optimal solution (5.20), (5.21) converges to the solutions of

two reduced-order problems, which yield an 0(E) approximation to the optimal

performance.
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The slow control problem is

7.

dx- (- (b+2au)+d+28u)dt + r2 dw
a 8 ~s

f U() [(f-a (b+2eu)+]dt. (5.22) .

0

The fast problem is an x-dependent deterministic optimal control problem

given by

-i az f + 2ctuf

Jf (u ( f) ) - 2 + uf2)dt. (5.23)
f 0

.I

The composite control is formed as "I

-- 4

Uc (x,z) = U(X) + uf(xz) (5.24)

where u (x) is the optimal control of (5.22) and uf(x,z) is the optimal

control of (5.23).

Under mild regularity conditions, the existence of u s(X) has been

established. This is in contrast to the deterministic problem of [G6,G7,

GIl], where the existence of the slow optimal control had to be assumed.

Furthermore, the composite feedback control u (x,z) maintains the payoffc

bounded as E- 0 for v sufficiently large. Also

VE (x,z) - V0 (x) pointwise as s-0 (5.25)

where V0 is the Bellman function of the slow subproblem (5.22).
,S

L _ _ _ _ _



40

Noticing that (123] has scaled the white noise input to the

fast subsystem by the factor e/2, we understand why the fast optimal

control problem becomes deterministic in the limit e 0. A more realistic

formulation may be obtained by using the scaling 2/r-€.

Singular perturbations of quasi-variational inequalities arising :1
in optimal stochastic scheduling problems are investigated in [125]. The

system considered is the diffusion process

dx = m(x )dt + VE c(x )dw t . (5.26)
t t t t

With this process we associate an index process it, a pair of cost rates

( x, i=0,1}, and a pair of switching costs {k (x); i,j- 0,i; ioj}.
iji

Scheduling the system (5.26) consists of changing the cost rate f (x) to a

more favorable rate f (x) at discrete times S m . A cost k ij(x) is incurred

for each change. Changes are based on the full observation of (x t,i t) which

is a Markov process. The solution of the optimal policy {Sm~i + with
Sm m-0

respect to a certain cost function leads to a system of second-order

singularly perturbed quasi-variational inequalities. Asymptotic approxima-

* tions to the optimal solution are obtained using 5tandard singular pertur-

tation analysis of boundary value problems.

h

5.3. Wide-Band Input Noise Formulations

Keeping in mind the limiting behavior of the fast variable, it

* is perhaps more realistic to model the input disturbances as wide-band

noise [114]. In formulations for linear systems [15], nonlinear systems
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[112], and linear filtering problems [14], both the parasitic elements of

the system and the correlation time of the input stochastic process have

been represented by the same perturbation parameter. By doing so, informa-

tion about the relative behavior of the two asymptotic phenomena is lost.

In fact, it has been shown in [118] that the interaction between the two

idealization procedures does affect the reduced order model. The following

second order system is considered in [118],

ex + * = a(x) + b(x)Vu  (5.27)

where V is exponentially-correlated noise with correlation time v. It is

shown that for sufficiently small E and U, x(t) can be modeled as a Markov

process 5E(t), which is the solution of the Ito equation

dx = [a(x) + 0 - - b(x)S(O)]dt + d (5.28)

where S(,) is the spectrum of V. The important feature of (5.28) is the

dependence of the drift coefficient on the ratio c/p. This has been

generalized in [1281 to the nonlinear singularly perturbed system

aI(x) + A1 2(x)z + B1 (x)V11

Ei a21 (x) + A z + B2 (x)V
1  (5.29)

where VP(t) is a wide-band zero mean stationary process with correlation

matrix

E(V-(t)(V (t+))} = (,R (5.30)
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Assuming that Re X(A2) < 0, a diffusion model for x(t) is obtained where

the drift coefficient depends on £/1. Similar scaling problems appear in

bifurcation of stochastic differential equations. [B30].

-I

I
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6. HIGH-GAIN FEEDBACK SYSTEMS

Multivariable generalizations of classical single-input single-

output high-gain feedback arise in a number of control problems: disturbance

rejection, parameter uncertainty, decoupling of large-scale systems, and

are implicit in cheap control problems [J8,J12,J16-Jl8,J20,J36,J41,J43,J48,

J50,J52,J59,J60], almost singular state estimation [J45,J61], and variable

structure systems with sliding mode [A3,A6,A7,J14,J26-J30,J58]. High gain

feedback is treated in the context of multivariable root loci [J5,J21,J22,

J33,J37,J42,J61,J62] and multivariable optimal root loci [J6,J19,J25,J38],

and, more recentl:, the theory of invariant subspaces [J46,J53]. There is a

synergism between these approaches and singular perturbations. Singular

perturbation methods provide a unifying framework for the analysis and

elucidation of diverse high-gain feedback problems in both linear and non-

linear systems. Conversely, high-gain systems, which seldom appear in the

standard form (1.23),(1.24), motivate the investigation of more general

forms of singularly perturbed systems.

4i

6.1. High-Gain and Time Scales

Perhaps the simplest multivariable high-gain feedback system is

*=Ax + Bu, xER, uE R (i=x n , uRp (6. i)

I "

u = Cx= y, yECR p . (6.2)

Substitution of (6.2) into (6.1) yields

CBy + ECAx (6.3)
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and shows that, if CB is nonsingular, then y is the fast variable. After

the fast transient near the range space of B decays, the slow motion is

continuous near the null space of C, [J14]. From the theory of asymptotic

root loci [J5,J22,J33,J42] as E O the p fast eigenvalues of the high-gain

system (6.1),(6.2) tend to infinity (the infinite zeros) along the

asymptotes defined by the directions of Xi(CB), while the n-p slow eigen-

values tend to the transmission zeros (finite zeros) of the open-loop

system (6.1) with the output y -Cx. Thus when CB is nonsingular system (6.1),

(6.2) can be expressed in the standard form (1.12), (1.13) and analyzed

using the methods of Section 1.

When CB is singular the situation is more complicated. For

example, under the condition

CA iB = 0, i=0,l,...,q-2

(6.4)

CAq-B is nonsingular,

which is sufficient for the invertibility of (6.1) with y=Cx0 [J1] (and

corresponds to case q in cheap control and singular arc problems [J8,J12,J52],
I

that is to infinite poles of uniform order q in multivariable root locus

problems [J37]), there are q fast time scales

t-t t-t t-t0 0 0 (6.5)
' E 2 . '. '' 9 q

As E tends to zero, the slow eigenvalues coincide with the system trans-

4 mission zeros as before, while the fast eigenvalues form the familiar

Butterworth pattern of asymptotic root locus theory [J5,J22,J33,J37,J42].

II
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6.2. Composite State Feedback and Cheap Control

Let matrix C be free to be chosen in a state feedback design

and, without loss of generality, consider that (6.1) is in the form

A 11 x Xl + A1 2 x2 9 X Rn-P x2E 
RP  (6.6) 2

x2  A2 1x + A22 x2 + B2u, uERP (6.7)

and B2 nonsingular. Then the composite high-gain feedback

1 1
" -- cx -- [K K x +Kfx 2 ] (6.8)

can be used for a separate assignment [J14] of the slow and fast eigenvalues

to locations

X (AI-A2Ks ) + 0(c), j1,...,p (6.9)

[ j p+l,...,n. (6.10)

Developments of this approach for high-gain state feedback and error-

actuated tracking controllers are reported in [J24,J31,J34,J35,J44,J51].

Geometric conditions whereby the multivariable high-gain feedback system

is insensitive to disturbances and (possibly large) parameter variations

are explored in [J54]. An analysis of the interaction of actuator and

sensor parasitics (frequently neglected in feedback systems design) with

the fast system modes is undertaken in [J56].

The slow and fast gains can alternatively be determined from the

solution of two separate lower-order regulator problems so as to provide

a near-optimal composite state feedback control for the original system (6.1).
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A cheap control problem analogous to the preceding eigenvalue assignment

problem arises when the system (6.1) is regulated with respect to a

quadratic performance index having small (cheap) penalty on u

J f . [xQx+c2u'Ru]dt (6.11)
20

and e is a small positive parameter. Assuming B'QB> 0, a composite control

[J14] of the form (6.8), where Ks and Kf are the state feedback gain

matrices associated with the respective solutions of slow and fast regulator

problems, is near-optimal in the sense that the performance is 0( 2 ) close to

the optimum cheap performance. As e- 0, the original system (6.1) under

cheap control exhibits a two-time-scale response in that an initial fast

transient (boundary layer) is followed by a slow motion on the singular

arc determined by a dynamical system and matrix Riccati equation of reduced

order n-p [J8,J12,J32]. In the limit c-0, the stable fast modes decay

instantaneously, so that the optimal solution is given by the slow regulator

solution which is identical to the singular linear quadratic solution (J10].

If instead of B'QB> 0 we have

B'(A')iQAiB - 0, 1-0,1,...,q-2,

(6.11)

B'(A'I)q-QAq-1B is nonsingular,

0
then, in successive cases, a singular perturbation analysis [J12] reveals

increasingly impulsive behavior at the initial time t- 0, increased thick-

ness of the boundary layer and lower dimensionality of the singular arc

solution. It is often desired that the state trajectory x (t,) be bounded

or at most step-like near t -0 as c tends to zero, for any initial state

0
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[J17,J32,J43]. A condition [P17] for bounded peaking is that rank

C(OI -A) B- rank CB. Moreover, for a square invertible [J1] transfer-

function matrix G(o) -C(OI-A)- B, perfect regulation (zero cost) is

achieved as £+O, irrespective of the initial state, if and only if the

transmission zeros [J7] of G(o) lie in the open left-half plane (G(a)'is

minimum phase) [J6,J14,J32]. Dual results on perfect state estimation in

the presence of weak measurement noise are discussed in [J32,J45]. In the

nonminimum phase case, there is a set of initial conditions for which

perfect regulation cannot be achieved [J6,J52,J60]. This has to be viewed

as an inherent performance limitation of nonminimum phase systems. The

cheap control problem also forms the basis of a design procedure, using

multivariable root loci [J5,J6], for the selection of the cost weighting

matrices of the state regulator problem [J18,J36] and the output regulator

problem [J41]. A partial cheap control problem, in which some but not

necessarily all of the control inputs have arbitrarily small weighting in

the performance index is studied in [J59]. Recent results [J61] establish

that assumption (6.11) is not essential and the high-gain results extend to

include all invertible systems [Jl].
6

6.3. Variable Structure Systems
a

Variable structure systems [A3,A6,A7,J14] are systems (6.1) for

which the so-called sliding mode on the switching surface ,(x) =0 is

achieved by the discontinuous feedback control, component-wise.
E

4
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ux) W (x) > 0

ui(x) - (6.12)

ui(x), 4i(xo) < 0.

For (x) -Cx- 0 and CB nonsingular the system (6.1) in sliding mode is

governed by the "equivalent control"

u eq -(CB) CAx (6.13)

obtained by requiring that

= CAx + CBu = 0. (6.14)

The feedback system (6.1), (6.13) is robust with respect to parameter varia-

tions, similar to high-gain systems,and the motion of (6.2) with (6.13) is

identical to the slow motion of the high-gain feedback system (6.1), (6.2).

The switching surfaces can be synthesized from the solution of either an

eigenvalue assignment problem or a quadratic regulator problem for the slow

subsystem [J14,J27,J28]. Developments of the variable structure approach

include model-following systems [J30,J58],and servomechanism design with

application to overspeed protection control [J57].

O

| I0im inl on im lmn i~ m he m0 o- ....
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7. WEAK COUPLING AND TIME SCALES

The need for model simplification with a reduction (or distribution)

of computational effort is particularly acute for large-scale systems

* involving hundreds or thousands of state variables, often at different geo-

* graphical locations. Some form of decentralized modeling and control which

exploits the weak interactions between subsystems is then required. While

there are a number of approaches to the study of large-scale systems [A12],

the success of any proposed decentralized scheme critically depends upon the

choice of subsystems [MI5]. In this respect, two-time-scale methods

can be developed to aid the modeling process 'tself.

A fundamental relationship between time scales and weak coupling

has been independently developed for power systems and Markov chains [K15,

K18,L1,L2,L11,L13]. If the weak interactions of N "local" subsystems are

treated as 0(c), and if each subsystem has an equilibrium manifold (null

space), then the local subsystems are decoupled in the fast time scale.

However, they strongly interact in a slow time scale and form an aggregate

model whose dimension is equal to the number of the local subsystems N. The

system is thus decomposed into N+l subsystems (N in the fast and one in the

slow time scale).

7.1. Slow Coherency in Power Systems

The motivation to seek a system decomposition/aggregation along

the above lines or ginates in the post-fault transient analysis of electro-

mechanical models for multi-machine power systems [K6,K9,K15-K17] of the

linearized form
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E= M- (Ki+ K)X = A x (7.1)

where x represents the rotor angles, Kn are strong "internal," and eK are
in ex

weak "external connections." It has been observed that after a fault some

machines have the tendency to swing together with an "in phase" slow motion.

Such coherent machines are grouped into "coherent areas" which are then

represented by "equivalent machines." Given the N slowest modes of A., the

machines i and j are said to be slowly coherent if the angles x.-x. contain
iJ

only fast modes [K6,K15]. The practical problem in reduced order modeling
I

of power systems is to find the groups of slow-coherent machines when the

partition oi A into K. and cK is not known, that is, the location of
in ex

c-connections is not explicit. When the number of coherent areas is equal

to N, the number of slow modes of A., the time-scale separation algorithm

-1
[K6] for the "dichotomic" solution L=V V of the Riccati equation auto-

2 1

matically groups the machines into areas. In the present notation, V VJ
is an nxN basis matrix for the N selected slow modes of A . For this ideal,

S

so-called N-decomposable case, the matrix L consists of rows which have only

one nonzero element and it is equal to unity. This matrix L is termed a
I 2

grouping matrix because it associates the remaining n-N angles x to the
1

N reference angles x . The angular differences x.-x. in the areas are

fast variables defined byI

2 1(72
r(t) = x (t) -Lx (t) (7.2)

* as a special case of (1.5). The slow variables are the area "centers of

inertia"

m i

= j xi, mj = J=lI ,N. (7.3)
' J i iEJ i ....
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(TIn the new coordinates , n a near-decomposable power system appears in a

standard singular perturbation form (1.12),(1.13). It is shown [K17] that for

* a 48-machine system, the area decomposition obtained for the linearized

model remains valid in nonlinear simulations. Further details and applica-

tions of these methodologies are given in a recent monograph [K19].

7.2. Aggregation of Markov Chains

It has recently been established [LI2] that the coherency method

79 in power systems is analogous to a method for aggregation of Markov chains

developed earlier in [L1,L2,L5,L7] and more recently in [L3,L4,L6,L1O,L11,

L13]. In Markov chains, high transition probabilities within a group of

states, permit that for long-term studies this group be treated as an

aggregate state. Much weaker transition probabilities to states of other

groups have effect only after a long period of time, and can therefore be

neglected over shorter periods, while for long-term studies an aggregate

model can be used.

The probability vector p of an n-state Markov chain with N groups of

strongly interacting states satisfies

p(A +EB) (7.4)
dtrwhere A= p(A+A, 9A

where A diag[AA 2
,... ,A ] . Weak interactions rB become significant after

a long period in the fast time scale T. In the slow time scale t =cT

p= (' A+B) (7.5)
dt
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the fast transient is formed of separate transients within the strongly

coupled groups. After some time pA decays to 0(c), and from then on

1pB is no longer negligible with respect to - pA. To make the slow and fast

parts of p(t) explicit, let

y pT, z =ps, p -yV+zW (7.6)

where

AT =0, VA 0, VT =IN (7.7)

;"WT 0 , V S 0 , W S I n -NO n-N"

Then (7.5) appears in the standard singular perturbation form

yVBT + zWBT (7.8)

i= eyVBS + zW(A+ cB)S (7.9)

where W(A +eB)S is a stable matrix. The slow subsystem is

Ys = YS(VBT -eVBS(WAS)- WBT) = ysAs (7.10)

* For Ef=fO it reduces to the aggregate chain proposed in [LI]. Its states

are the groups of the original states and yj, J=I,...,N is the probability

for the original process to be in group J. Based on the aggregate chain

* (7.10), near-optimal policies have been obtained for controlled Markov

chain problems [L2,L4-L8,LJ.0,LI1,L13,L14]. The resulting optimization

algorithms are decentralized in the sense that fast subsystems compute

* their controls "locally" with the aggregate coordinating necessary informa-

tion between subsystems and in a slow time scale. These results can be

considered as discretized versions of diffusion control processes [L3] and

* are applicable to queueing problems [L9].
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8. CONTROL OF LARGE SCALE SYSTEMS

Large scale systems are characterized by decentralization in

available information, multiplicity of decision makers, and individuality

of objective functions for each decision maker.

In recent years, singular perturbations have become an important

tool for structuring large scale system models. Indeed the preceding

section has shown that for a wide class of large scale systems, the notions

of subsystems, their coupling, and time scales are interrelated and lead to

a singularly perturbed model with a strongly-coupled slow "core" representing

* the system-wide behavior, and weakly-coupled fast subsystems representing

the local behavior. The impact of this model on the design of control

strategies is discussed in the section on multimodeling, while the last

section deals with singularly perturbed differential games.

8.1. Multimodeling

Suppose that with original controls, or by their voluntary grouping,

the linearized model of a large scale system exhibiting one slow and N fast

subsystems can be written as

N N

x A x + i A z + B u00 0i i i 0i i
(8.1i)

N
i Ai 0x + Aiiz + E ..A..z Biiu.

jki
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where each fast subsystem is associated with a different singular pertur-

bation parameter ci and is weakly coupled to other fast subsystems through

cij.

In a situation like this, it is rational for a fast subsystem

controller to neglect all other fast subsystems and to concentrate on its

own subsystem, plus the interaction with others through the slow core. For

the i-th controller, this is simply effected by setting all c-parameters to

zero, except for e.. The i-th controller's simplified model is then

Axi Nxi A= + Aizi + Biui + Z Bu
+ 01z 1  j=+ ijBu

joi (8.2)

Ei Ai + Aiizi + Biiui*

Often (8.2) is all the i-th controller knows about the whole system. The

k-th controller, on the other hand, has a different model of the same large

scale system. This situation, called multimodeling, has been formulated

and investigated in [M4,M1O,M15] for deterministic problems, and in [M18,M19]

for stochastic problems. Control u. can be divided into a slow part, which

contributes to the control of the core, and a fast part controlling only

its own fast subsystem. Pole-placement and Pareto solutions have been

studied in [M4], while the closed-loop Nash solution has been analyzed in

[MI0].

In stochastic problems, a careful treatment is required to

establish the validity of the multimodel problem. In addition to the usual

difficulties encountered in modeling a fast stochastic variable, as

discussed in Section 5, the problem is involved due to the presence of

S
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nonclassical information patterns. To elucidate this aspect, consider the

model

N N
A x + A z + E B u + G w

00 i 01 i i1 ii 0
(8.3)

N
Siii A io x + Aiizi + j Z A ijAijz j + Biiui + e iGiw
ii j ii j~li i, ii i

j #i

where w(t) is white Gaussian noise. The information available yi(t) and

* performance objective Ji of each decision maker are to be compatible with

the multimodel assumption (8.2). This implies that

YiO = Ciox + vio

Y i = Ciizi + VE vi (8.4)

i K0  Y ' ; i2
i y yi i

T
J.- E{xfoxT +  ZTriZ T + f (x'Qix + ziQiiz i +uiRiu i)dt}

0

i - 1,2,...,N (8.5)

where vio(t) and vii(t) are white Gaussian noise processes, independent of

each other and of the process noise w(t). Clearly, the problem defined by

(8.3),(8.4) under any solution concept is one involving nonclassical

information patterns for which no implementable finite-dimensional solution

exists. Further assumptions need to be made about the information structure

to obtain implementable solutions. In any c.3e, the optimal strategies

generally lead to the solution of a set of coupled integro-differential
e-tequations, and it is not clear whether their limiting solution would
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correspond to the solution of the multimodel problem. To a.swer this

question, a detailed investigation is undertaken in [M18,Ml9j for two

important classes of quasi-classical information patterns. In [M18], well-

posedness of the multimodel problem is established for a class of stochastic

Nash games with a prespecified finite-dimensional compensator structure for

each decision maker. The same fact is established in [M19] for static and

dynamic team problems with sampled observations, under the one-step-delay

observation sharing pattern. These results establish certain "robustness"

of the multimodel problem to a class of solution concepts and information

structures.

The assumption of weakly interacting fast subsystems is removed

in [M6,M7,M8,Ml1,Ml7j where a sufficient "block D-stability" condition

guarantees the asymptotic stability of the multiparameter boundary layers.

Several tests for identifying classes of systems which satisfy this condition

are reported in [M7,M8,M17]. The relationship of this condition with

multiple time-scales is exmained in [M7]. The main result of [M6] is a

procedure for including limited, though not necessarily weak, interactions

of fx't subsystems. In [MIll], applications to decentralized stabilization

are examined and in [M16] a near-equilibrium solution to closed-loop Nash

games is obtained. Extension of the "block D-stability" condition to a

class of nonlinear systems which are linear in the fast variables, is

obtained in [M14]. Related approaches to the multi time scale problem are

reported in [M9] and [M12] for linear systems, and in [M20] for nonlinear

L• systems. A series of papers [Ml-M3,M5,M13] deal with the stability of large-

scale singularly perturbed systems within a general framework, while [K8]

uses singular perturbation techniques to study the hierarchical stability

of power systems.

L
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8.2. Singularly Perturbed Differential Games

The references in this section report on the impact of singularly

perturbed reduced order models in the determination of simplified zero-sum,

Nash and Stackelberg strategies. The main question investigated is one

of well-posedness, whereby the limit of the performance using the exact

strategies is compared to the limit of the performance using the simplified

10 strategies. The simplified solution is said to be well-posed if the two

limits are equal. Unlike the state feedback problem, the natural singular

perturbation order reduction does not always lead to well-posed solutions

of differential game problems. The answer crucially depends on the

information structure of the game and its preservation in the reduced order

problem since it is well-known that, in contrast to the optimal control

problem, differential games admit different open- and closed-loop solutions.

The crucial role of information structure in reduced order modeling

of differential games can be seen from the following two-player Nash game

f f(x,z,ultu 29 t); x(to) = x

(8.6)
i= g(x,z,u 19u2,t); z(t ) = z°

tf

Ji = f Li(xzulu 29t)dt; i=1,2. (8.7)

t
0

Necessary conditions for a closed-loop solution are

'..

Pi = - 4H- (!-- (t,x,z)) H; Pi(t = 0

(8.8)

= H -- (t,x,z)) H, qi(tf) = 0z Z ui i
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and ui= Ti (tx,z) minimizes the Hamiltonian H i(x,z,t,ui,T), i,j=1,2; i#j.

For open-loop solution, (8.8) is replaced by

V Hi Pi(tf) =0

(8.9)

vi = -VHi; Vi(t) 0.

The partial derivative terms in (8.9) give rise to generally different open-

and closed-loop solutions. Setting c= 0 reduces the necessary conditions

for the closed-loop solution to

0 g(x,z,t,ulu 2)

(8.10)

0 = -VzH - J (t,x,z)) V H..
zi az u j

Using (8.10) to eliminate z from (8.6), (8.7) implies that the optimal

strategies 1 IT 2 are functions of t and x only. Thus 3T /3z=0. Suppose,

however, that (8.6)-(8.8) are first solved and then c- 0. If it is not true

that

* lim V H. 0; VtE (t ,tf) (8.11)

then the order reduction is generally not well posed. Under appropriate

* assumptions one may be able to show that

lim(V H. +(-) VuH.) = 0; VtE (to tf). (8.12)
Z 3Z Uj

I

The fact that (8.12) does not imply (8.11) is the reason for the ill-

posedness of closed-loop Nash solutions [N2-N5]. In open-loop and partially

-I m nuJ l i = J i i mnnmaluumu= ,am -,n..,
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closed-loop (control functions of x alone) Nash solutions, (8.12) does
aTv

imply (8.11) because -- 0; and hence these solutions are well-posed [N5].

Another class of problems for which (8.12) implies (8.11) are LQ problems

where the performance indices are modified (i.e., no penalty on the fast

variable z) as in [N2], where also an alternative way of defining a reduced

game whose closed-loop solution is the limit of the closed-loop solution of

the full game is proposed. Related work on near-Nash feedback control of a

composite system with a time-scale hierarchy is reported in [NIl].

Analogous results for the Stackelberg problem are [N6,N9]. For zero-sum

games, the normal order reduction is well-posed [NI], which is to be

expected because zero-sum games have the same open- and closed-loop solutions.

Singular perturbation techniques are applied to pursuit-evasion
p,

problems in [N7,N8,NI0,N12,NI3].
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CONCLUDING REMARKS

Research trends, discernible from this survey, can be briefly

summarized in the broad categories of modeling, analysis, and design.

In modeling the trend is to go beyond the standard model discussed

in Sections 1.1 and 1.2. The two more general classes are, first, models

with known small parameters which do not multiply derivatives, and, second,

models whose time-scale properties are caused by "hidden" parameters.

Representatives of the first class are high-gain and some singular systems.

In the second class are dynamic networks with coherent groups of states.

Modeling issues in stochastic systems center around probabilistic scalina,

of fast phenomena. Scaling is also an issue in trajectory optimization

problems.

In analysis, the trend is to encompass new classes of systems:

discrete-time, stochastic and nonlinear; and to analyze their controllability,

stability and other properties in separate time scales. In particular,

singular perturbation method promises to be a powerful tool in robustness

analysis of adaptive systems. In linear systems new frequency and geometric

methods are being related to asymptotic methods.

Two-time-scale state feedback design methods are being extended to

ouptut feedback, observer and compensator design problems. The success of

the composite control method for a class of nonlinear and stochastic systems

motivates its extension to broader classes of systems. The multimodeling

approach is one of the potential applications of time-scale methods to

decentralized design of large scale systems and differential games.

These and related research directions depend on and will contribute

to a deeper understanding of nonlinear and stochastic perturbation, bifurcation

and averaging problems.
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