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INTRODUCTION

Singularly perturbed systems and, more generally, two-time-scale
systems, often occur naturally due to the presence of small "parasitic"
parameters, typically small time constants, masses, etc., multiplying time
derivatives or, in more disguised form, due to the presence of large
feedback gains and weak coupling. The chief purpose of the singular
perturbation approach to analysis and design is the alleviation of the
high dimensionality and ill-conditioning resulting from the interaction of
slow and fast dynamic modes. This two-time-scale approach is asymptotic,
that is, exact in the limit as the ratio ¢ of the speeds of the slow versus
the fast dynamics tends to zero. When ¢ is small, approximations are
obtained from reduced-order models in separate time scales.

While singular perturbation theory, a traditional tool of fluid
dynamics and nonlinear mechanics, embraces a wide variety of dynamic
phenomena possessing slow and fast modes, its assimilation in control theory
is recent and rapidly developing. The methods of singular perturbations
for initial and boundary value problem approximations and stability were
already largely established in the 1960s, when they first became a means
for simplified computation of optimal trajectories. It was soon recognized
that singular perturbations are present in most classical and modern control
schemes based on reduced order models which disregard high frequency
"parasitics.”" This recognition led to the development of two-time-scale
methods for a variety of applications including state feedback, output
feedback, filter and observer design. Singular perturbation methods also

proved useful for the analysis of high-gain feedback systems and the
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interpretation of other model order reduction techniques. More recently
they have been applied to modeling and control of dynamic networks and
certain classes of large-scale systems. This versatility of singular
perturbation methods is due to their use of time-scale properties which are
common to both linear and nonlinear dynamic systems.

The first survey [A4] of control theory applications of singular
perturbations in 1976 1included 130 references. The last six years have
witnessed an even faster growth of this research area both in theoretical
depth and breadth of applications, as evidenced by surveys and books [Al-
A20]. The present survey of over 400 publications can only outline research
directions with brief references to the representative issues and results.
Each of the topics discussed here is rich enough for a detailed survey.
This is particularly true of the references [B1-B2], which contribute
to the continuing strengthening of mathematical foundations of classical
and modern asymptotic methods. Let us only mention that a new coordinate-
free formulation of singular perturbations and time scale properties appears
in [B19], while [B13] and [B16] compare matched asymptotic expansions and
averaging methods with multi-time scale formulations. Some basic results,
proofs of correctness, and extensions of asymptotic methods have been
obtained in [B2,B4,B6,B12,B15,B17,B18,B20]. Singular perturbation
techniques are used to study bifurcations in ordinary differential equations
(B11,B27], and jump phenomena in electrical circuits [B28]. Applications
of distributions to the analysis of singularly perturbed systems appear in
(B20,1241.

Our bibliography includes a group of references [01-043] on

"singular systems." Under this heading we encompass seemingly diverse, but
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closely related topics such as numerical methods for mixed differential-

algebraic systems {01,03,032,041-043), descriptor systems [08,013,030,034,
039], singular-singularly perturbed systems [02,05,010-019,025], generalized
state (semi-state) equations forsingular (degenerate) systems [06,020,
023,024,027,029,033,035,036], etc. However, we do not attempt to review the
intricate issues discussed in these references. The rich literature on
partial differential equation methods, such as homogenization [A9,B9,Bl4], is
also beyond the scope of this survey.

To make this text accessible to a broad audience of control
engineers, Section 1 introduces singularly perturbed systems as a
special class of two-time-scale systems. This section includes a survey
of recent results on discrete-time systems. We then proceed with Sections 2
and 3 on system properties and linear composite control. Section 4 is
dedicated to nonlinear and adaptive control, and Section 5 to stochastic
filtering and control. A singular perturbation view of high-gain feedback
systems is given in Section 6, which includes references on multivariable
root loci and variable structure systems. Sections 7 and 8 deal with
applications of time-scale methods to modeling and control of networks,
Markov chains and other large scale systems with several control agents.

For ease of orientation the references are arranged in fifteen

groups which largely correspond to sections or subsections of the text.




..I 1. TWO-TIME-SCALE SYSTEMS

Examples of multi-time-scale systems abound [A4,M15] and include

electrical networks [B28,K2,K3,K5,K7,K10-K14], power systems [K6,K8,K9,

K15-K19], aircraft and rocket systems [H1,H4,H13,H15,H18-H20,H25,H27-H29, i
H31-H33], nuclear reactor systems [El4], scheduling systems [I25,19], J

large space structures [E23], chemical kinetics [B24,G4], diffusion processes

[I3,I10], population biology models [B10], and bifurcations [B11,B27,B29,B30].
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Such systems can be modeled by the set of nonlinear differential equatiomns

x = f(x,2z,t) x(to) = x°

(1.1)

z = g(x,2,t) z(to) = 2°

where the n-dimensional vector x is predominantly slow and the m-vector z

contains fast transients superimposed on a slowly varying ''quasi-steady-state."
A linear time-invariant version, sometimes obtained by linearization of ]

(1.1), takes the form iy

- - — - g

e
>
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%

< - . (1.2) -
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The separation of states into those which are slow and those which

t

[‘ are fast is a nontrivial modeling task [C24,K19,M15] demanding insight and

E ingenuity on the part of the analyst. In the absence of empirical estimates

;‘ of x and 2, physical parameters such as time constants, loop gains, and

:  inertias are examined to determine which states are slow and which are fast. -
E As illustrated in [Cl7], a permutation and/or scaling of states is required

e




to obtain the state separable model (1.1) or (1.2). In some applications
the slow and fast states of the overall system can be determined from the
slow and fast states of each subsystem, but in general, the effect of
interconnections on the speeds of some states may be by no means negligible.
A new choice of state variables may then be needed to make the overall
system model state separable. A time-scale modeling methodology which
accomplishes this in networks and Markov chains is discussed in Section 7.
If the linear model (1.2) satisfies (rather conservative) norm conditions
[C6] or conditions involving a correlation of states with eigenvalues [K9,
€20}, its two-time-scale property is assured. Otherwise, a remodeling with

a different selection of states 1is required.

1.1. Linear Systems

Linear time-invariant system (1.2) exhibits a two-time-scale

property if it can be transformed into the block-triangular system

0
5]
o
o]

= 1 (1.3)

3
o
rf

such that the largest eigenvalue of F1 is smaller than the smallest eigen-

value of F2’

mixfhi(Fl)[ < m§nllj(F2)|. (1.4)

Applii-cion of the transformation [C5,C6,C10,C11,C13,Cl4]

n=2z+Lx (1.5)

. a a - aa - - PRI P




where L satisfies the algebraic Riccati equation

DL-1A + LBL-C = 0 (1.6)

c Memn s .8 8 4 &

to (1.2) results in the block-triangular system (l.3) where

Fl = A -BL, F, = D + LB. (1.7)

2

To completely separate the '"slow" and the "fast" subsystems we let :

E =x-Mn (1.8)

and choose M to satisfy

(A-BL)M-M(D+LB) + B = 0. (1.9) i

If the eigenvalue separation (1.4) is sufficiently large, the achieved

decomposition

(A-BL)¢ (1.10)

e
(]

(D+LB)n (1.11)

3
]

defines the "slow" state § and the "fast'" state n and relates them to the
original variables x and z. As we shall see, this relationship is made
clearer when instead of the exact decomposition (1.10), (L.l1), an
approximate expression for L can be obtained.

Approximations enter into the decomposition by way of solving
(1.6) and (1.9) for L and M respectively, up to a specified degree of

accuracy. In [C6,Cl1,Cl4] the determination of the matrices L and M is
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iterative. When the separation of time-scales (1.4) is large, the conver-
gence is quite rapid, typically a couple of iterations. Even when the
separation (1.4) is small, as for example in the power system decomposition
of [K9], the iterative scheme [Cl4] is still applicable, provided that
the original choice of slow and fast states in (1.2) is valid. The
iterations for solving (l1.6) are related to the simultaneous subspace
iterations [C8,Cl4]. An alternative scheme for separating the slow and
fast subsystems are the quasi-steady-state iteratioms [C15,C17,K9], which
remove the inconsistencies of the classical quasi-steady-state approach [Kl].
With minor modifications, the iteractive procedures for two-time-
scale system decomposition apply to linear time-varying systems. A nonlinear
version, appropriate for a class of nonlinear systems separable in x and z,
is outlined in [C17]. Decomposition of multi-time-scale systems can also
be achieved along the lines of repeated two-time-scale decompositions [K9].

That a singularly perturbed system
% = Ax + Bz x(0) = x° (1.12)

€z = Cx + Dz z(0) = 2° (1.13)

where ¢ >0 is small and D-l exists, is a two-time-scale system, can be
easily seen by substituting C/e and D/e for C and D, respectively, in (1.2)

to (1.11). Then it follows from (l1.6) that an approximation of L is

1

L=D "C+ 0(e) (1.14)

and hence the slow and the fast subsystems (1.10), (l1.11l) become

aad

-
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E= [A-BD IC+0(e)]E (1.15)

en = [D+0(e)]n. (1.16)

This proves that the small eigenvalues of (1.12), (1.13) are close to the
eigenvalues of A-BD-IC, while the large eigenvalues are close to those of
%-D. Hence, smaller values of € result in wider separation of time scales.

If for € =0 we denote & by Xo» then (1.15) becomes the so-called reduced

(or "quasi-steady-state') model of (1.12), (1.13),

(o}

X, = (A-BD-IC)xs, x () =x". (1.17)

Formally (1.17) can be obtained by setting eés=-0 in (1.13) and substituting

-1
zS -D st. (1.18)
From (1.5) and (1.14) we see that (1.18) is consistent with neglecting both
€ and n in (1.5), that is, z is the "quasi-steady state" of z at e=0. If

we introduce the fast time scale

t-t

o = =
TE t=0 at t to’ (1.19)

and denote n by z_ whenever we set ¢ =0, then (1.16) becomes the so-called

£

boundary layer system

dzf(r)

o
4 = sz(T), zf(O) =z -zs(to). (1.20)

We have thus chown that if D is a stability matrix, then a two-time-scale

approximation of the state of (1.12), (l1.13) is

A L2
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x(t) = xs(t) + 0(e) (1.21)

z2(t) = zs(t) + zf(t) + 0(¢e) (1.22)

where xs(t) and zf(r) are the limits as €+ 0 of the exact slow and fast
states £(t) and n(t), respectively. Based on (1.21), (1.22) a model order-
reduction, related to modal methods [C2] and aggregation [C3], but specific
to two-time-scale systems, is achieved by neglecting the fast subsystem
while retaining the reduced model (1.17). The justification for this is

that zf(r) decays rapidly in an initial "boundary layer" interval after which
the system response is essentially due to xs(t), zs(t). Because this order
reduction is based on time-scale properties and not on linearity, it is also

applicable to two-time-scale nonlinear systems.

1.2. Nonlinear Systems

The structure of the approximation (1.21) and (1.22) remains the

same for singularly perturbed time-varying and nonlinear systems

g—: = f(x,2,t) x(t) = x° 1.23)
e & = g(x,z,1) 2(c ) = 2°. (1.24)

In the 1limit as £+~ 0, the asymptotically stable fast transient decays
"instantaneously" leaving the reduced-order model in the t time-scale

defined by the quasi-steady-states xs(t) and zs(t)

.
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dxs
T = f(xs,zs,t) xs(to) = X

(1.25)
0= g(xs,zs,t). (1.26)

To obtain the fast parts of x and z we rewrite (1.23) and (1.24) in the fast

-t !
time-scale T = EEE , where t' is any fixed instant,

dx

el ef(x,z,t'+e1) (1.27)
42 o gx,z,t"+eT) (1.28)
dt * e :

and again examine the limit as ¢ +0. Then dx/dt=0, that is x=constant
in the fast time-scale. The only fast variations are the deviations of 2z

from its quasi-steady-state zg- Denoting them by z =2z-z_ and letting ¢=0

£
in (1.27), (1.28), we obtain the fast subsystem

— = g(xo,z:+zf(r),to), 2.(0) = z"-z: (1.29)

where the fixed instant t' has been chosen to be to and xo and z: are fixed
parameters, Conditions under which the slow subsystem (1.25), (1.26) and

the fast subsystem (1.29) together yield the state approximation (1.21),

:;- (1.22) (and higher order approximations up to O(ek)) are given in {Cl]

v

;‘ and in more recent references surveyed in [A4]. These references assume
that the fast transients described by (1.29) are asymptotically stable

; uniformly in xo, z:, to. For linear time-invariant systems this means

%. that the large eigenvalues have large negative real parts so that the fast

; state rapidly reaches its quasi-steady-state z_. On the other hand,

L

pY
p
p
b
b

ey ey




T
.....................
..................

11

mechanical and electromechanical systems often have lightly damped modes
resulting in sustained high frequency oscillations. After linearization
such systems can be put in the singularly perturbed form (1.12), (1.13) and
a transformation similar to that of (1.5), (1.8) can be applied [K4].
However, in this case, the two-time-scale approximation (1.21), (1.22) is
only valid up to a finite time. Under additional assumptions the slow
phenomena in the oscillatory singularly perturbed system are adequately
modeled by the slow subsystem which has an "averaging" effect on the fast
oscillations. An example of this modeling procedure is the study of
coherency in power systems where high frequency intermachine oscillations
are not negligible [K4]. Related gontrol studies of quasi-conservative
large space structures are reported in [E32]. More general treatment of
oscillatory two-time-scale systems and periodic structures is possible via

averaging methods [A8,A14,B16] and homogenization [A9,B9,Bl4].

1.3. Discrete Time Systems

In recent years considerable progress has been made in formulation
4 and analysis of two-time-scale discrete-time models [D2-D27]. The fact that
the theory of difference equations is in most respects akin to that of
ordinary differential equations [Dl] suggests that a similar two-time-scale
decomposition [D6] might be obtained for discrete-time systems. Attempts,
however, to model general discrete-time systems with slow and fast modes

in a strict singularly perturbed format encountered stability difficulties

{ [D5,D8]. For a discretization of a continuous-time singularly perturbed
system, the discretization interval can be compatible with either

fast or slow time scales. The former case is considered in [Di8]
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where the discretization interval is O(e). This case admits a hybrid

two-time-scale approximation consisting of a discrete-time fast model

and a continuous-time slow model. This decomposition has been applied to
the design of linear optimal regulators in [D18]. A further development

in [D27] relates this result with its continuous-time counterpart [E8].

The assumption that the interval is small or the number of time-steps is
large is pursued by [D3,D10,D20] using asymptotic expansions. Other topics
include the numerical solution of continuous-time boundary value problems
(D7] and initial value problems [D15], discrete system initial value problems
[D20] and boundary value problems [D22,D23], optimal control problems [D24,
D25], limiting behavior of solutions of singular difference equations [D12],

and multi-time methods for discrete systems [D9,D13].

The application of the block-diagonalization [C6] to two-time-scale

discrete-time systems is straightforward. Paralleling the continuous time

approach, references [D16,D19,D26] establish that the linear system i

x (k+1) A B|| x(k) x(0) x°
= =1, (1.30) !
. z(k+1) C D|{ z(k) z(0) z ]
¥ ] h
1

exhibits a two-time-scale property if it can be transformed into the block-

Cadiadd

diagonal system

{

y 7
g E
, £ (k+1) Fl 0 £ (k) ]
- = (1.31) :
n(k+1) 0 Fy || n(k) !
¢ .
' Q

: .
s where the largest eigenvalue of F2 is less than the smallest eigenvalue of Fl. g
. X
- Formally setting z(k+l) =2z(k) in (1.30) is equivalent to assuming that after

b ]
I'e
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the decay of (stable) fast modes, the system (1.31) reaches the quasi-

steady-state described by the slow subsystem

x_ (kH) = (A= BL )x_(K), L = -(Im-D)-IC. (1.32)

During the initial short transient period in which the fast modes
are active, we assume that xs(k) and zs(k) are constant. Subtracting
zs(k) =-Loxs(k) from z(k) to obtain the fast part zf(k) = z (k) -zs(k), the fast

subsystem of (1.30) can be expressed as

z¢ (k1) = Dz (k) 2,(0) = zo-zs(O). (1.33)

The singular perturbation parameter € :an be introduced to explicitly express

the magnitudes of system matrices as

A=A, B = sl-cﬁ, C= ecé, D = eD (1.34)
where 0<o<l and A, B, C, and D are O(1). 1In this case BLo is 0(¢e).
Alternatively A, B, C, and D may be required to satisfy more general norm

conditions [D19].

......

ek 1

RO 2 SR

P I PR

> S

[}

”, e ey
R SRR,
. a d ot Lnn i

)
N e Nl
Asdndodo s b

5

s
s




R e i

2, SYSTEM PROPERTIES

Attention is now focused on how certain properties of two-time
scale systems; namely, stability, controllability, observability, and system

zeros, can be deduced from lower-order subsystems in separate time scales.

2.1. Stability

In order to guarantee a stability property of the linear singularly
perturbed system (1.12), (1.13), it is sufficient in view of the decoupled
nature of subsystems (1.15), (1.16) that they both possess that property.

More specifically, if the reduced system (1.17) and the boundary layer

system (1.20) are asymptotically stable, then there exists an €*>0 such

that the original system (1.12), (1.13) is asymptotically stable for all

c€ [0,e*], that is, for € sufficiently small. Such a result for time-
varying and nonlinear systems dates from [Gl]; see [A4]. For linear time-
varying systems an explicit expression for the upper bound e* is more
recently presented in [Cl2]. A different condition via singular values
appears in [G9]. In [K3] input-output stability is analyzed, while conditions
for preservation of absolute stability in the presence of singular pertur-
bations are derived in [G12,Gl7].

Considerable progress has been made in constructing Lyapunov
functions for singularly perturbed systems {G2,G5,G11,Gl6]. For nonlinear

systems which are linear in z,
x = f(x) + F(x)z (2.1

€z = g(x) + G(x)z (2.2)
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where G-l (x) exists for all x, the Lyapunov function proposed in [G5]

consists of two functions. The first function
v = a'(x)Q(x)a(x) (2.3)
establishes the asymptotic stability of the slow subsystem is-a(xs). where

a(x) = £(x) -Fx)G F(x)g(x), (2.4)

and Q(x) > 0 satisfies

da

' B - W ——
Q(x)ax(x) + ax(x)Q(x) C(x), a = o (2.5)
for some differentiable C(x) > 0. The second function
W= (z+I‘g-P-1I"F'v}'{) 'P(z+1‘g-P-1I"F'v;() (2.6)
where T =«G-1 (x) and P(x) satisfies
P(x)G(x) + G (x)P = -I, 2.7)

establishes the asymptotic stability (uniform in x) of the fast subsystem

dz

Trf- = G(x)zf + g(x). (2.8)

The Lyapunov function V(x,z,c) for the complete system (2.1), (2.2) is

V(x,2,6) = v(x) + = w(x,z) (2.9)

and can be used to estimate the dependence of the domain of attraction of

x=0, z=0 on ¢. For example,the system

. .
..........................
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f - g

:':-x-x3+z, €2 ™ =X =2 (2.10)

is analyzed in [G5] using

x4 € 3,2
V(X,2,) = T+-4- (z+x+2x7) (2.11)

and for € <0.01 the region includes |x| <1, |z| <10, while for €< 0.005 the

z bound is extended to |z| < 20.

2.2, Controllability and Observability

Let us now consider the singularly perturbed control system

: I B |
X A A X B x(0) x°
2 12 o P - °J (2.12)
€2 A21 A22 zd 82 z(0) z
x n n
y = [Cl CZ] XER ', z€R (2.13)

Z

where u(t)€ RP is a control vector and y(t)e R' is an output vector. Its

slow and fast subsystems are

:':s = ons + Bous, X, =X (2.14)
Vg = Coxs + Dous (2.15)
€2, = Ay,z, + Byu,  2.(0) = 2°-z_(0) (2.16)
Ve = szf (2.17)

where 2z -z-zs, uf-u-u

¢ ,yf-y-ys, and
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A=A -A_ASA B =B -A_A 3
o 11 "12722721° o 1 71272272
-1 -1
Co ™ C1=Cohoohyy» Dy = =ChA5,8,-
The controllability conditions [J2]
rank[oIn-Ao, Bo] = n, rank[olm-Azz, BZ] = m, Vo complex (2.19)

together imply the controllability of (2.12) for ¢ sufficiently

small. The observability of the original system (2.12), (2.13) follows from
observability of the subsystem pairs (Ao’co) and (AZZ’CZ)' Controllability
results along these lines were introduced in [E5] for linear time-invariant
systems and subsequently extended to linear time-varying systems in [G3]

and [E25], and to the class of nonlinear systems in [G8]. Analogous results
apply to continuous-time [E36] and discrete-time [D19] linear two-time-

scale systems. In [E1l5] it is shown that the controllability of the
singularly perturbed system (2.12) for ¢ >0 does not necessarily require

the controllability of the subsystems (2.14) and (2.16), although in practice,

such weakly controllable systems are undesirable.

2.3. Analvsis in the Frequency Domain

Taking one-sided Laplace transforms of (2.12), (2.13) yields, upon

rearrangement,
A -1 A, B, [x(o) -x(0)]
A21/s A22/s—cIm BZ/e z(o) | = | -z(0)| . (2.20)
c, C, 0 u(o) v(o)

Iy P WL IP Sy I W W G P

PP T WS
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e

The matrix in (2.20) denoted by P(c) is known as the system matrix [J2].

The invariant zeros [J7] of the system are those complex frequencies o=0,
for which P(oo) loses rank and the corresponding invariant-zero directions
are those vectors that lie in the null-space of P(oo). The asymptotic values of
the invariant zeros and associated invariant-zero directions as €+ 0 are

the values computed from the system matrices

All.GIn A12 Bl In 0 0
P (o) = Ay Ay Byl pB ) =] 0 Ay~ol B, | (2.21)
c, c, 0 0 c, 0

associated with the slow and fast subsystems, respectively [J23].
Just as the system matrix P(c) exhibits the internal structure
associated with the singularly perturbed system (2.12), (2.13), the external

relation between the input and output is described by y(c) =G(o)u(o) where

-1
n~A11 ) B,

—Ales oIm—AZZ/e BZ/e

ol
G(g) = [C1 CZ] (2.22)

is an rxp proper transfer-function matrix which is given t: within an O0(¢) as

-1 -1

G(o) = Co(cIn-Ao) Bo + Cz(scIm-Azz) BZ‘ (2.23)

As shown in [C7] the asymptotic forms of G(o) for low and high frequencies

are

-1
= - 2.24
Glow(c) CO(UIn Ao) Bo + DO ( )

-1
= € - 2.25
Ghigh(c) C2(.GIm A22) 32 ( )
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which, as expected, are the transfer-function matrices for the slow sub-
system (2.14), (2.15) and the fast subsystem (2.16), (2.17), respectively.
Moreover, the asymptotic values of the transmission zeros of G(o) as ¢+0
are made up of those of Glow(c) and Ghigh(a) [J39].

Further insight into the frequency-domain analysis and design of
singularly perturbed multivariable feedback systems is obtained by exhibiting
the return-difference matrix at the input [E2,E3], associated with the
application of a linear state feedback control law. The static decoupling

problem for two-time-scale multivariable systems is considered in [E18].
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3. LINEAR COMPOSITE CONTROL

The decomposition of two-time scale systems into separate slow
and fast subsystems suggests that separate slow and fast control laws be
designed for each subsystem and then combined into a "composite'" control of
the original system. If the fast control is not needed, then only the slow
"reduced" control is used. These ideas have motivated numerous two-time-
scale designs [A4,E4-E9,E11-E14,E17-E42] which are now surveyed through a

couple of representative problems.

3.1. Linear State Feedback

Suppose that the controls

u, = Koxs’ u, = Kzzf (3.1)

are separately designed for the slow and fast subsystems (2.14) and (2.16).

In order to use

u, = ug + ug = Koxs + Kzzf (3.2)

as a "composite" control for the full system (2.12), we must express the
fictitious subsystem states Xy and 2, in terms of actual states x and z.

Noticing that

-1
z = -AZZ(A21+BZKO)Xs (3.3)

and substituting the approximation x1=xs, z:»zsi-zf into (3.2) we obtain a

realizable composite control
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1
u, = Kox + Kz[z +A22(A21+BzKo)x]. (3.4)

When this control is applied to (2.12), the resulting feedback system is
singularly perturbed. The time-scale decomposition shows that its slow

and fast subsystem matrices are, respectively,

1
Ao + BoKo + 0(e), . [A22+BZK2+0(€)] (3.5)

where Ao and Bo are defined by (2.18). Therefore, Ko and K2 can be used
for separate slow and fast eigenvalue placement, stabilization, or optimal
state regulator designs provided that the pairs (Ao’Bo) and (A,,,B,) are
controllable or stabilizable. This approach was proposed in [E7,E8] and in
[E12]). A proof of near-optimality of the composite control for a quadratic
cost is given in [E8]. A two stage design extending these results to more
general two-time~scale systems appears in [E36] and to linear time-varying
systems in [E25]. When A22 is a stability matrix the fast subsystem
need not be controlled. Then setting K2==0 in (3.4) reduces u, to the
reduced order stabilizing control of [E4]. A similar slow-mode design was
developed for the so-called linear multivariable tracking problem [Ell,E22,

E42]). The problem of eigenstructure assignment [E10,E16] is addressed in

[E21].

Two-time-scale decomposition of near-optimal regulators for discrete-

time linear systems appears in [D18,D25,D17]. The results in [D27] parallel

the continuous time results of [E8]. Asymptotic expansions of the compu-

tationally attractive Chandrasekhar type of equations are presented in [E43].

Reference [E30] considers the case of designing a control with partial state
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feedback to approximate the performance cost of a given full state feedback
control where the given control need not be optimal. Extensions of the
linear quadratic regulator to three-time-scale systems using two

singular perturbation parameters are presented in [E20,E41], while {E40]
considers near-optimum feedback with multiple time scales. Other work

on the optimal regulator for linear singularly perturbed systems includes

the asymptotic expansion methods of [E31], the near-optimum control of distri-
buted parameter systems [E6], the near—optimum control of nuclear reactors
with distributed parameters [El4], the control of quasi-conservative linear
oscillatory systems [E32], the use of degeneracy to simplify the synthesis

[E35], and the control of large space structures [E23].

3.2. Output Feedback and Observers

Static output feedback design of two-time-scale and singularly
perturbed systems has been dealt with in several recent references [F7,F8,
F11,F13,F14,F17). To stress that the output feedback may be non-robust

with respect to singular perturbations [Fll], we consider

€z = =x—-2z+u (3.6)

y=2x + z.

If instead of (3.6), its reduced order slow model

X = -x_ +u
s )

(3.7)
= +
yS xS u
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is used to design the output feedback u==kyS to place the eigenvalue

at -3, then k=2. Applying the same feedback law u=2y to the actual

aad d J'JI

system (3.6) we see that the resulting feedback system

L AR
I

. "{ R R

e
[
N

[ (3.8)
ez = 3x + 2z

bl ?

| - indeed has a slow eigenvalue -3+ 0(c) as desired. However, it also has an E

s unstable fast eigenvalue %HFO(I), that is, the design is nonrobust. The "3

NAd e aman]
[

possibility of instability is due to the presence of z in the output equation g\
("strong observability of parasitics"). It can be easily seen that a

sufficient condition for a robust reduced order design is that C_, =0 and,

2
hence, D°==O in (2.15). Similar conditions in [F7,F8] also have the form ;.
of "weakly observable parasitics.'" If they are not satisfied, then a dynamic 4;
rather than static output feedback design should be used.

Typical dynamic feedback design is based on an observer [F1,Fl8].

We focus our attention on the reconstruction of the inaccessible state of ';

the singularly perturbed system (2.12), (2.13) using the full~order observer

= (AE-GC) | +Gy+ Beu (3.9)
z

MBS A a0 ok e "‘",'v
Y
a

>

Noe

f where ﬁ, z is an estimate of the state x, z, and

1
|

A A | B '

F 7| . . . . (3.10)
: 21'€ 22/ ¢
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>
"

The state reconstruction error e(t) = - satisfies

N>
N

z(0) z(0)

Following the duality with composite control an observer gain matrix, composed

of G and G,,
o 2 -1 -1
A 789585 + G(I = CyAy9G))

G,

(3.12)

c

b

P . x(0)] [=x(0

= e(t) = (A_-GOe(t),  (0) = - . (3.11)
3

|

.

3

r

[

is designed in [F4-F6,F9,F10,F15]. It is pointed out in [F12] that although the

observer gain (3.12) does not depend on £, some knowledge of € is required

pormv T TT R

in order to implement the observer. Nonrobustness of reduced order

observers is analyzed in [Fl11,Fl12] and conditions are given under which a

reduced-order observer can be designed to estimate the '"slow" states of a

singularly perturbed linear system from a knowledge of its reduced slow
model. Decentralized identity observers for a large-scale system with two

® time-scales are treated in [F3] and the design of observer-based controllers

WO NPT W UK R )

for discrete two-time-scale systems is considered in [Fl7]. Another approach

to reduced-order compensator design is described in [F19].
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4. NONLINEAR AND ADAPTIVE CONTROL

The common theme of references surveyed in this section is that
a scalar function (functional) defined for the full problem is decomposed
into similar functions (functionals) for separate slow and fast subsystems.
For optimal control problems this function is the Hamiltonian and for
stabilization problems it is a Lyapunov function, which, in case of optimal

regulators, coincides with the optimal value function,

4.1. Nonlinear Composite Control

Recent generalizations [G16,G18] of the composite control
establish that if the boundary layer system (fast subsystem) and the reduced
system (slow subsystem) are separately made uniformly asymptotically stable,
then the full singularly perturbed system is stabilized for sufficiently
small . To avoid more complex notation we briefly outline an earlier
result [G6,G7,Gll]:a nonlinear infinite interval problem in which the system

and cost to be optimized are

% =a,(x) +A (X)z+ 3B (D, x(0) = x° (4.1)
€z = az(x) + Az(x)z + Bz(x)u, z(0) = z° (4.2)
J={ [px)+c' (x)z+2'Q(x)z+u'R(x)uldt (4.3)

0

subject to assumptions of differentiability, positivity and the existence
of an equilibrium at x =0, z=0. This problem is difficult even for well-

behaved nonlinear systems. The prescnce of 1/: terms in the Hamilton-Jacobi

|
|
!
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equation increases the difficulties. However, avoiding the full problem,
and taking advantage of the fact that as ¢+ 0 the slow and the fast
phenomena separate, we can define two separate lower-dimensional subproblems.

The slow subproblem is to optimally control the slow subsystem

. o

x, = a (x) +B (x)u,, x (0) = x (4.4)
with respect to

= L ]

Jg é [Py (x,) +20](x Ju_+u’R (x )u_ldt (4.5)
where

a = -A A, -l o = ( A L o),

o = 317 A14; 3y o = BAy Qzazz

1 v 1=l =1
B = 1-A1A2 29 R, =R+ ByA, QA,'B,, (4.6)

= 1) "1 [ -1
p=c A2 a, + aZA2 QA2 a,.

P

Assuming the existence of the optimal value function L(xs) satisfying the

lower dimensional Hamilton~Jacobi equation

= - ' -1 - —l 1 ' =
0 (po soR° oo) + Lx(a B R c ) LxBoRo B L , L(0) 0 (4.7)

the minimizing control for (4.4), (4.5) is

u = -R—l(o -I'-l
S o o

> BéLx) (4.8)

where Lx denotes the derivative of L with respect to its argument X Then
L(xs) is also a Lyapunov function which guarantees the asymptotic stability

of xS-O for (4.4) controlled by ugs
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o - - -1 l v - -
X, = a, BORO (<7c’+2 BoLx) ao(xs) (4.9)
and provides an estimate D of the region of attraction of xs-O.
Introducing Zo=2-Z_, U =U-U_ and neglecting 0(c) terms, we

define the fast subproblem in the t-scale (1.19) as

dz
—dTi = 4,0z, + B,(Mug, 2,(0) = z°-z_(0), (4.10)
I =£ (zéQ(x)zf+uéR(x)uf)dt, .11)

which is to be solved for every fixed x€ D. It has the familiar linear

quadratic form and under a controllability assumption its solution is

ug(z,,x) = —R-l(x)Bé(x)Kf(x)zf (4.12)

where Kf(x) is the positive-definite solution of the x-dependent Riccati
equation

R™IB'R. + Q. (4.13)

1]
0=KA, + AK 2 oKe

ghy * AjKy - KB

The control (4.12) is stabilizing in the sense that the fast feedback system

dz

-1, -
T (AZ—BZR BZK) Ze Az(x) z; (4.14)

has the property that Re\[ﬁz(x)] < 0, Vx€E€D.

The design is completed by forming the composite control uc=us+uf,

-1

by z+A2

in which X is replaced bv x and z (az+32us(x)), that is,

£

uc(X.Z) = us(X) -R-lBéKf(z+A;1(a2-32us(x)))

-1 1 v
= -Ro (00 +'§' BoLx) -R

-IB;.KE(2+:T\51;2) (4.15)
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where

- - _1- -1 [ ] 1] L =
a, (x) a, -3 BZR (ble +32V1) . 32(0) 0,
(4.16)

' = 2=l Y -1
Kf+LxA1)A2 A A, -B.R "B K

? ]
Vy = =(o +2a, 1 = A - BR "BK..

Under the conditions stated in [Gll], there exists e* such that Ve€ (0,e*],
the composite control u, stabilizes the equilibrium x=0, z=0 of the full
system (4.1), (4.2). An estimate of the region of attraction is also
given. The corresponding cost Jc is bounded and it is near-optimal in the
sense that JC*JS as ¢e+0. Thus the problem (4.1), (4.2), (4.3) is well
posed with respect to €.

In [Gll] a composite Lyapunov function of the type (2.3), (2.6),
(2.9) is used. More general Lyapunov functions in [G16] remove the

restriction of the linearity with respect to z.

4,2. Trajectory Optimization

For the trajectory optimization problem the control interval is
finite, t€ [to,T], and some conditions are imposed on x,z of the full system
(1.23), (1.24) at both ends of the interval. A control u(t) is sought to
ninimize

T

J = [ V(x,z,u,t)dt. (4.17)

t
(o)

2
The necessary optimality condition consists of 8—§=0 and
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. oH . oH
x 3p P=-3 (4.18)
oH o oH
ek 3q €q = =3z (4.19)

which is a (2n+ 2m)~dimensional singularly perturbed boundary value problem,
where H is the Hamiltonian and p and €q are the adjoint variables. Typical
optimal trajectory consists of a slow "outer" part with "boundary layers"
at the ends. In the limit as €+ 0 the problem decomposes into one slow

and two fast subproblems. The slow ("outer') subproblem

ans 3Hs
2 = - —, p = -— (4.20)
s eps 8 aps

is 2n-dimensional. To satisfy the remaining 2m boundary conditions, the
(1) ”
layer ("inner') corrections sz(tL), sz(TR) for z, and qu(TL)' qu(TR) for

q are determined from the initial (L) and final (R) boundary layer systems

L L
dsz . BHf dqu L aHfz .21)
dt Qe | dt 3z :
L fL L fL
dZep _ ‘“’H%g dagg Re, 4.22)
dt 3 ep dt 3z '
R fR R fR

where TL is the same as T in (1.19), while TR='Z§£ is the reversed fast time
scale. The results of these subproblems are used to form approximations

of the type (1.21), (1.22). Analytical issues of such approximations have
been discussed in (H3,H5-H12,H17,H21,H24 ,H26,H30], and for the time

optimal control problem in [H16,H22]. Conditions for asymptotic validity
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are given in [H6,H7,H12,H30]. A trajectory optimization problem for
systems of the type (4.1), (4.2) is solved in [H21].

In flight dynamics both low thrust (aircraft) and high thrust
(missile) conditions can be modeled as singular perturbations. Several
applications to specific problems arising in jet engine control, missile
guidance and energy management have been reported in [H1,H2,H4,
H13,H15,H18,H19,H22,H25,H27~H33]. Some approaches, such as [H20],
use sequential multi-time-scale modeling and obtain solutions in convenient
feedback form. Problems of scaling are addressed in (H27,H28,H32,H33]
and indicate that more research is required to properly introduce singular
perturbation parameters for specific aircraft and missile control problems.

These issues are more complicated in the presence of singular arcs [H24].

4.3. Adaptive Control

The study of robustness of model-reference adaptive schemes in the
presence of singular perturbations has recently been initiated. The general
formulation examines situations when the order of the model is equal to the
order of the slow part of the unknown plant and the model-plant "mismatch"
is due to the fast part of the plant. A fundamental requirement for feasi-
bility of an adaptive scheme is that it be robust, that is tolerate a
certain model-plant mismatch. The singular perturbation parameter
¢ is a convenient parameterization of this mismatch.

The robustness of continuous-time identifiers and observers when
the parasitics are weakly observable is established in [G14,G19]. The

bounds for output/parameter error indicate possibilities for reducing the
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error by a proper choice of the input signal. When the parasitics are
strongly observable, the problem is no longer robust. Robustness is
re-established either by using a low-pass filter at the ocutput, or by an
appropriate modification of the adaptive laws [Gl5]}. Analogous results for
discrete time parallel and series-parallel identifiers have been obtained in
[G13,G21]. The methodology in [G14,G19] has been to transform the singularly

perturbed plant (2.12) into

x = on + Bou + Alzc (4.23)
el = AL + cAL'B_d (4.24)
f f °f *
where
£ =2z + Lx + A;leu (4.25)

and L is the same matrix as in Section 1.1. The matrices Ao, Bo of the
dominant part (4.23) are matchable by the model, while the parasitic part
(4.24) introduces a disturbance Alzc. It is crucial to observe that the
disturbance is persistently excited by the derivative of the input signal
i(t) and is large if u(t) has high frequencies in the parasitic range. For
this reason the input signal should achieve its richness condition at
dominant, rather than parasitic frequencies. A significant conclusion is
that, contrary to common belief, white noise and similar wide-band signals
are not as appropriate as some lower frequency signals.

The situation is more complex in adaptive control where the plant
input depends on the adaptive feedback. In this case the parasitics can
destroy global stability and boundedness properties. The singular perturba-

tion approach in [G20,G23] has led to a modified adaptation law which
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guarantees the existence of a region of attraction from which all signals
converge to a residual set whose size depends on disturbances and the

mismatch parameter ¢. The modified law achieves robustness by sacrificing

the ideal convergence in the parasitic-free case, i.e., the residual set
r_‘—:i is not zero even if e=0. It is of interest that the development of the
modified law uses a two-time-scale Lyapunov function of the type discussed in

>' subsection 2.1. The details are given in a recent monograph [ G23 ].
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5. STOCHASTIC FILTERING AND CONTROL

Research in singular perturbation of filtering and stochastic

control problems with white noise inputs has revealed difficulties not

present in deterministic problems. This is due to the fact that the input

: white noise process "fluctuates'" faster than the fast dynamic variables,

no matter how small € is. In the limit as ¢+ 0, the fast variables them-

1 selves tend to white noise processes, thus losing their significance as
physically meaningful dynamic variables. The papers dealing with stochastic

“ differential equations and diffusion models such as [I3,17,19,122,126] have

also indicated the importance of attaching clear probabilistic meaning to

time scales.

5.1. LQG Problems

To illustrate the problems arising in the singularly perturbed

formulation of systems with white noise inputs, consider the linear system

X = Allx + AIZZ + le (5.1a)

€z = A21x + AZZZ + sz (5.1b)

where w(t) is white Gaussian noise. An approximation to (5.1) is desired
that is valid for small ¢ and is simpler than (5.1). Setting ¢=0 in (5.1)

is inadequate, since

- -1 -
z = -AZZ(Azlx-+sz) (5.2)

SO S S
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4
én has a white noise component and, therefore, has infinite variance. Although
(5.2) may be substituted for z in defining a reduced (slow) subsystem, z

cannot serve as an approximation for 2z in the mean square sense. Under the

¢ fYr'-

assumption -
-1 :

Re A(Azz) <0, Re l((All-AlezzAZI) <0 (5.3) y

the mean-square convergence 1
;

lim E{(x-x,) (x-x,)} = 0 1

e+0 5

(3 -y

lim E{(z-z)(z-—zd)}=0 (5.4) 1

was demonstrated in [I1,I10] for x40 24 defined by _
%, = (A, -AATIA Jx, + (G -A ATlc )w 1

d 11 71272272177 d 1 71272272 i

k!

!

€2y = Ayxy + Az, + Gw. (5.5) g

For the linear filtering of (5.1) with respect to the observations @

y = Clx + sz + v (5.6) y

.

where v(t) is a white Gaussian noise independent of the process noise w(t), i
the analysis in [Il] demonstrates that the Kalman filter can be approximately
decomposed into two filters in different time scales, thereby yielding estimates _.
of the slow and fast states. Similar results are obtained for near-optimal

smoothing [Ill], and state estimation with uncertain singular perturbation :

parameter < in (5.1) [I19]. -j
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For the singularly perturbed LQG control problem

X = Allx + Alzz + Blu + le
€z = A21x + A222 + Bzu + sz (5.7
y = Clx + sz + v (5.8)

J = E{x'(T)le(T)4—2€x'(T)F122(T)'+ez'(T)Fzz(T)

T

+ f (x'le-FZX'L z+z'L,z+u'Ru)dt} (5.9)
0 12 2 .

it was demonstrated in [I8] that the optimal solution to (5.7)-(5.9) may be
approximately obtained from the solutions of two reduced order stochastic
control problems in the slow and fast fime scales. The drawback of the
formulation (5.7)-(5.9) is that it results in J being 0(1/e). To avoid

%)

divergent performance indices, it is required that L, =0(¢g), F2==0(e

2

A new approach [I29] to this problem is based on singularly
perturbed Lyapunov equations. The two-tiane scale solutions yield O(Er)
(r>1) approximation to the optimal performance. For r=1, the results of
[I29] are equivalent to those of {[I8].

A conclusion from {Il,I8,129] is that in order to obtain well-
defined reduced-order filtering and control problems as ¢ -0, it is
necessary to scale the contribution of the white noise disturbances to the

fast subsystem in some sense. Reference [Il7] introduces small parameters

as powers of : as follows
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X = Allx + Alzz + Blu + le
€z = eBA x+A,.z+Bu+eCw (5.10)
21 22 2 2 -
v, = Cllx + Clzz + vy
v v
Yy =€ C21x + szz + € v, (5.11)

J = E{x'(T)Plx(T)-+Zex'(T)F122(T)-+ez'(T)Pzz(T)

+ fT(x'L1x4-2€6x'lez-+szsz'Lzzi-u'Ru)dt}. (5.12)
0

The parameters a, 8, v, § represent the relative size of the small para-

meters within the system, with respect to the small time constants of the

fast subsystem. The inclusion of a separate observation channel ¥, for

the fast subsystem is essential, since for a >0, the fast variables cannot

be estimated in a meaningful manner from the slow observation channel

(signal-to-noise ratio tends to zero). The analysis of [Il7] shows that

the performance index is finite if

§ > (%:—-a). (5.13)

Furthermore, a well-defined formulation also requires that
0O<ca=vsg8c<h (5.14)

The restriction o =v is crucial; otherwise, either the fast variables are
not observed due to noisy observations (x>v), or they are observed noise-
lessly (a<v) in the limit as ¢~0. If x>, the problem becomes deter-

ministic as ¢+ 0, and if B >!, the coupling between x and z becomes of
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order less than O(E%). The constraint 8 2a insures that the state z is

predominantly fast, and relaxing it causes no conceptual difficulties.
Setting o =8 =v =0, yields the results of [I8]. In this case

=3 to yield a finite performance index. Setting @ =V =% and § =0 results

in the full weighting of the fast variable. This important case, which is

the only one to yield a well-defined stochastic process in the fast time

scale, has been studied separately in [I27] and [I18]. They have established

the weak convergence, as € >0, of the fast stochastic variable z which

satisfies the Ito equation

edz = Az dt + V& Gdw; Re A(A) <O (5.15)

where w(t) is Gaussian white noise with covariance W. The results of [Il8,

M27] show that

lim z(t;e) = z weakly (5.16)

e-+0

where Z is a constant Gaussian random vector with covariance P satisfying

the Lyapunov equation

AP + PA' + GWG' = 0. (5.17;

Alternative formulations of the linear stochastic regulator problem have
been reported in [12,16,110,116,I20]. Colored noise disturbance in the
fast subsystem is assumed in [Il6], which accounts for situations when the
correlation time of the input stochastic process is longer than the time
constants of fast variables. When the fast subsystem is stable, the

results of [Il6] demonstrate that the optimal solution to the stochastic
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T‘ dx = (c(x)z+d(x) +28x)u)dt + V2 dw1
7 edz = (a(x)z+b(x) +2a(x)u)dt + /2 dw2 (5.18) R
r R
5 - 2 2 :
rc 35 () = E [ V(£ +h(x)2) “ +u’lde (5.19) 1
5 %,2 0 4
f. ]
) where wl(t), wz(t) are standard Wiener processes independent of each other. f
! The optimal feedback law for (5.18), (5.19) is given by i
;. c c a(x)Vz(x,z) ]
4 u(x,2) = -8V _(x,2) - ————— (5.20) K
:‘. p
c -
) where Ve(x,z) is the Bellman function
[
' VE(x,2) = inf IS (u(+)) (5.21) 1
L u(e) 77
g r
As £~ 0, the optimal solution (5.20), (5.21) converges to the solutions of
b
two reduced-order problems, which yield an O(e) approximation to the optimal
®
E performance. 1
,‘ '.
" ]
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regulator problem can be approximated by the optimal solution of the slow

subproblem, and the performance index does not diverge,

5.2, Nonlinear Stochastic Control

A composite control approach for a class of nonlinear systems
driven by white noise disturbances appears in {I23] as a stochastic version

of [G6,G7,Gll], namely
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The slow control problem is

dx = (-§ (b+20u_) +d+28u )dt + /2 dw

® 2
2 () = E g e "‘[(f-{‘l (b + 2au ) +y:]dt. (5.22)

T T v
’

%

;

The fast problem is an x-dependent deterministic optimal control problem

. 4 ]
wl
y

given by

ezf = azf + Zauf

. e .
o ss v e al s s 4 AN A

Py

?4

3 P () = [ P2 +udyae. (5.23) |

- z f f f T

3 £ 0 $

- g
b

t‘ The composite control is formed as *4

h'\_ .i
-1

- u (x,2) = us(X) + uf(x,Z) (5.24) Zf
.
-~

where us(x) is the optimal control of (5.22) and uf(x,z) is the optimal .
control of (5.23).
Under mild regularity conditions, the existence of us(x) has been

established. This is in contrast to the deterministic problem of [G6,G7,

Gl1), where the existence of the slow optimal control had to be assumed.
Furthermore, the composite feedback control uc(x,z) maintains the payoff

bounded as ¢+ 0 for v sufficiently large. Also

Ve(x,z) - VZ(x) pointwise as c-+0 (5.25)

v - e ww T waw wvwy e
v

where VZ is the Bellman function of the slow subproblem (53.22).
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Noticing that [I23] has scaled the white noise input to the

fast subsystem by the factor £v2, we understand why the fast optimal
control problem becomes deterministic in the limit €+ 0. A more realistic
formulation may be obtained by using the scaling V2e.

Singular perturbations of quasi-variational inequalities arising
in optimal stochastic scheduling problems are investigated in [I25]. The

system considered is the diffusion process

dxt = m(xt)dt + V2¢ c(xt)dwt. (5.26)

With this process we associate an index process it’ a pair of cost rates
{fi(x), i=0,1}, and a pair of switching costs {kij (x); 1,j=0,1; i#j}.
Scheduling the system (5.26) consists of changing the cost rate fl(x) to a

more favorable rate fj(x) at discrete times Sm' A cost ki (x) is incurred

3

for each change. Changes are based on the full observation of (xt’it) which

-]
+ ! with
Sy m=0
respect to a certain cost function leads to a system of second-order

is a Markov process. The solution of the optimal policy {Sm,i

singularly perturbed quasi-variational inequalities. Asymptotic approxima-

- @ tions to the optimal solution are obtained using standard singular pertur-
4
tation analysis of boundary value problems.
.
]
2
i 5.3. Wide-Band Input Noise Formulations
[ Keeping in mind the limiting behavior of the fast variable, it
.‘ is perhaps more realistic to model the input disturbances as wide-band
3
noise [I14]. In formulations for linear systems [I5], nonlinear systems
o
L L ]
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{112], and linear filtering problems {I4], both the parasitic elements of
the system and the correlation time of the input stochastic process have
been represented by the same perturbation parameter. By doing so, informa-
tion about the relative behavior of the two asymptotic phenomena is lost.
In fact, it has been shown in [I18] that the interaction between the two
idealization procedures does affect the reduced order model. The following

second order system is considered in [I18],

eX + % = a(x) + b(x)V¥ (5.27)

where V" is exponentially-correlated noise with correlation time u. 1It is
shown that for sufficiently small ¢ and u, x(t) can be modeled as a Markov

process X(t), which is the solution of the Ito equation

% = [a(®) + ITOQ%% b(X)S(0) ]dt + dw (5.28)

where S(°) is the spectrum of V. The important feature of (5.28) is the
dependence of the drift coefficient on the ratio ¢/u. This has been

generalized in [I28] to the nonlinear singularly perturbed system
. u
X al(x) + AIZ(X)Z + Bl(x)V

. H
€2 a21(x) + Azz + Bz(x)V (5.29)

where Vu(t) is a wide-band zero mean stationary process with correlation

matrix

E(VE () (VW () ') = l RE). (5.30)
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) A

Assuming that Re A(Az)‘<0, a diffusion model for x(t) is obtained where

. g

the drift coefficient depends on e€/u. Similar scaling problems appear in

andentadadd

bifurcation of stochastic differential equations.[B30].
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6. HIGH-GAIN FEEDBACK SYSTEMS

' T

Multivariable generalizations of classical single-input single-

output high-gain feedback arise in a number of control problems: disturbance

rejection, parameter uncertainty, decoupling of large-scale systems, and

Dl 4n

are implicit in cheap control problems (J8,J12,J16-J18,J20,J36,341,343,J48,
nl J50,352,359,J60], almost singular state estimation [J45,J61], and variable

P structure systems with sliding mode [A3,A6,A7,J14,J26-330,J58]. High gain
feedback is treated in the context of multivariable root loci [J5,J21,J22,
e J33,J337,342,361,362] and multivariable optimal root loci [J6,J19,J325,J38],
and, more recentl:, the theory of invariant subspaces [J46,J53]. There is a

synergism between these approaches and singular perturbations. Singular

perturbation methods provide a unifying framework for the analysis and
elucidation of diverse high-gain feedback problems in both linear and non-
linear systems. Conversely, high-gain systems, which seldom appear in the
standard form (1.23),(1.24), motivate the investigation of more general

forms of singularly perturbed systems.

?
:
1
f?

6.1. High~Gain and Time Scales

e s d

Perhaps the simplest multivariable high-gain feedback system is
. n P
X = Ax + Bu, X€R, u€éR (6.1)

u= l-Cx = l'y, y€.Rp. (6.2) j
£ €

Substitution of (6.2) into (6.l1) yields

ey = CBy + £CAx (6.3)




vy

Ty

and shows that, if CB is nonsingular, then y is the fast variable. After
the fast transient near the range space of B decays, the slow motion is
continuous near the null space of C, {J14]. From the theory of asymptotic
root loci [J5,J22,333,342] as € +0 the p fast eigenvalues of the high-gain
system (6.1),(6.2) tend to infinity (the infinite zeros) along the
asymptotes defined by the directions of Ai(CB), while the n-p slow eigen-

values tend to the transmission zeros (finite zeros) of the open-loop

system (6.1) with the output y=Cx. Thus when CB is nonsingular system (6.1),

(6.2) can be expressed in the standard form (1.12), (1.13) and analyzed
using the methods of Section 1.

-

When CB is singular the situation is more complicated. For

example, under the condition

cals = o, 1=0,1,...,q-2

(6.4)

CAq-lB is nonsingular,

which is sufficient for the invertibility of (6.1) with y==Cx° [J1] (and

corresponds to case q in cheap control and singular arc problems [J8,J12,J52],

that is to infinite poles of uniform order q in multivariable root locus

problems [J37]), there are q fast time scales

= 2 ,... 2 (6.5)

As ¢ tends to zero, the slow eigenvalues coincide with the system trans-
mission zeros as before, while the fast eigenvalues form the familiar

Butterworth pattern of asymptotic root locus theory [J5,J22,333,J37,J42].
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6.2. Composite State Feedback and Cheap Control

Let matrix C be free to be chosen in a state feedback design

and, without loss of generality, consider that (6.1) is in the form

er" P, xerP (6.6)

X = AR *Ax), X 2

1

- - p
x, A21x1 + A22x2 + Bzu, u€R (6.7)

and B2 nonsingular. Then the composite high-gain feedback

+K_x

1 T Ke 2] (6.8)

1 1
u=ocx == [Kstx
can be used for a separate assignment [J14] of the slow and fast eigenvalues

to locations

Aj(Ap -8 KD + 0(e), j=1,...,p (6.9)

-:-[xj(nzxf)w(e)], juptl,...,n. (6.10)

Developments of this approach for high-gain state feedback and error-
actuated tracking controllers are reported in [J24,J31,J34,J335,J44,351].
Geometric conditions whereby the multivariable high-gain feedback system
is insensitive to disturbances and (possibly large) parameter variations
are explored in {J54]. An analysis of the interaction of actuator and
sensor parasitics (frequently neglected in feedback systems design) with
the fast system modes is undertaken in [J56].

The slow and fast gains can alternatively be determined from the

solution of two separate lower-order regulator problems so as to provide

a near-optimal composite state feedback control for the original system (6.1).
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A cheap control problem analogous to the preceding eigenvalue assignment
problem arises when the system (6.1) is regulated with respect to a
quadratic performance index having small (cheap) penalty on u

J= %j [x'Qx +€2u'Ruldt (6.11)
0

and ¢ is a small positive parameter. Assuming B'QB>0, a composite control
[J14] of the form (6.8), where Ks and Kf are the state feedback gain
matrices associated with the respective solutions of slow and fast regulator
problems, is near-optimal in the sense that the performance is 0(52) close to
the optimum cheap performance. As ¢-+0, the original system (6.1) under
cheap control exhibits a two~time-scale response in that an initial fast
transient (boundary layer) is followed by a slow motion on the singular

arc determined by a dynamical system and matrix Riccati equation of reduced
order n-p [J8,J12,J332]. 1In the limit e =0, the stable fast modes decay
instantaneously, so that the optimal solution is given by the slow regulator

solution which is identical to the singular linear quadratic solution [J10].

If instead of B'QB > 0 we have

8'(a") qals = o, 1=0,1,...,9-2,
(6.11)
B'(A')q_lQAq-lB is nonsingular,

then, in successive cases, a singular perturbation analysis [J12] reveals
increasingly impulsive behavior at the initial time t =0, increased thick-
ness of the boundary layer and lower dimensionality of the singular arc
solution. It is often desired that the state trajectory xo(t,e) be bounded

or at most step-like near t=0 as ¢ tends to zero, for any initial state
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(J17,332,343]. A condition [J17] for bounded peaking is that rank
C(UI-A)_lB=-rank CB. Morzover, for a square invertible [J1] transfer-
function matrix G(o)-C(oI-A)-lB, perfect regulation (zero cost) is
achieved as €+0, irrespective of the initial state, if and only if the
transmission zeros [J7] of G(o) lie in the open left-half plane (G(o) ‘is
minimum phase) [J6,J14,J32]. Dual results on perfect state estimation in
the presence of weak measurement noise are discussed in [J32,J45]. 1In the
nonminimum phase case, there is a set of initial conditions for which
perfect regulation cannot be achieved [J6,J52,J60]. This has to be viewed
as an inherent performance limitation of nonminimum phase systems. The
cheap control problem also forms the basis of a design procedure, using

multivariable root loci [J5,J6], for the selection of the cost weighting

AR

~
matrices of the state regulator problem [J18,J36] and the output regulator y
problem [J41]. A partial cheap control problem, in which some but not f
! necessarily all of the control inputs have arbitrarily small weighting in :
1
F! the performance index is studied in [J59]. Recent results [J61] establish -
1 1
4 that assumption (6.11) is not essential and the high-gain results extend to b
s 4
b |
g include all invertible systems [J1]. j
!. J
4
4 6.3. Variable Structure Svstems
[ |
3 Variable structure systems [A3,A6,A7,J14] are systems (6.1) for -
which the so-called sliding mode on the switching surface :(x) =9 is
achieved by the discontinuous feedback control, component-wise,
q
) ;
3
4
p
s
4
b
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), Ty (x)) > 0
ui(x) = (6.12)

u (x), g (x ) < 0.

For z(x) =Cx=0 and CB nonsingular the system (6.1) in sliding mode is

governed by the "equivalent control"

-1
U = ~(CB)CAx (6.13)

obtained by requiring that

£ = CAx + CBu = 0. (6.14)

The feedback system (6.1), (6.13) is robust with respect to parameter varia-
tions, similar to high-gain systems, and the motion of (6.2) with (6.13) is
identical to the slow motion of the high-gain feedback system (6.1), (6.2).
The switching surfaces can be synthesized from the solution of either an
eigenvalue assignment problem or a quadratic regulator problem for the slow
subsystem [J14,J27,328]. Developments of the variable structure approach
include model-following systems [J30,J58], and servomechanism design with

application to overspeed protection control [J57].
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7. WEAK COUPLING AND TIME SCALES

The need for model simplification with a reduction (or distribution)

of computational effort is particularly acute for large-scale systems

involving hundreds or thousands of state variables, often at different geo-
o graphical locations. Some form of decentralized modeling and control which
exploits the weak interactions between subsystems is then required. While

there are a number of approaches to the study of large-scale systems [Al2],

the success of any proposed decentralized scheme critically depends upon the

choice of subsystems [M15]. In this respect, two-time-scale methods
can be developed to aid the modeling process “tself.

A fundamental relationship between time scales and weak coupling
has been independently developed for power systems and Markov chains [Kl15,
K18,L1,L2,L11,L13]. 1If the weak interactions of N "local" subsystems are
treated as 0(g), and if each subsystem has an equilibrium manifold (null
space), then the local subsystems are decoupled in the fast time scale.
However, they strongly interact in a slow time scale and form an aggregate
model whose dimension is equal to the number of the local subsystems N. The

system is thus decomposed into N+1 subsystems (N in the fast and one in the

slow time scale).

7.1. Slow Coherencv in Power Svstems

The motivation to seek a system decomposition/aggregation along
the above lines or ginates in the post-fault transient analysis of electro-

mechanical models for multi-machine power systems [K6,K9,K15-K17] of the

vy WY VYOTLTATY Y

linearized form
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I |
XxX=M (Kin-FsKex)x Aex (7.1

BT |

where x represents the rotor angles, Kin are strong "internal," and eKex are
weak "external connections." It has been observed that after a fault some

mactines have the tendency to swing together with an "in phase" slow motion.

SIS U5 VISR

Such coherent machines are grouped into "coherent areas" which are then
represented by "equivalent machines." Given the N slowest modes of Ae’ the -
machines i and j are said to be slowly coherent if the angles xi-xj contain

only fast modes [K6,K15]. The practical problem in reduced order modeling

o

of power systems is to find the groups of slow-coherent machines when the -
partition of Ae into Kin and EKex is not known, that is, the location of
g~-connections is not explicit. When the number of coherent areas is equal

X
'.h to N, the number of slow modes of Ae’ the time-scale separation algorithm -

[K6] for the "dichotomic'" solution L=V V_1 of the Riccati equation auto-
21

v
i. matically groups the machines into areas. In the present notation, V==‘-V;l

is an nxN basis matrix for the N selected slow modes of As' For this ideal,

RN DR

so-called N-decomposable case, the matrix L consists of rows which have only

one nonzero element and it is equal to unity. This matrix L is termed a .

M e 0 e 2on o e o
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grouping matrix because it associates the remaining n-N angles x  to the 1

1 . ,
N reference angles x . The angular differences xi-xj in the areas are

fast variables defined by

a(t) = x>(t) - Lxl (o) (7.2)

rreTYTYVTw

('] as a special case of (1.5). The slow variables are the area 'centers of

inertia"

T —————
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o= I — = I m, =1,...,N. 7.3
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(fg In the new coordinates £, n a near—decomposable power system appears in a
standard singular perturbation form (1.12),(1.13). It is shown [K17] that for
a 48-machine system, the area decomposition obtained for the linearized
model remains valid in nonlinear simulations. Further details and applica-

tions of these methodologies are given in a recent monograph [K19].
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7.2. Aggregation of Markov Chains

It has recently been established [L12] that the coherency method

in power systems is analogous to a method for aggregation of Markov chains

developed earlier in [L1,L2,L5,L7] and more recently in [L3,L4,L6,L10,L11,

LIRS SR e e ma, 0

L13]. In Markov chains, high transition probabilities within a group of

states, permit that for long-term studies this group be treated as an
aggregate state, Much weaker transition probabilities to states of other

groups have effect only after a long period of time, and can therefore be

neglected over shorter periods, while for long-term studies an aggregate
model can be used.

The probability vector p of an n-state Markov chain with N groups of

FAJRS Same o s e e ey e

®
strongly interacting states satisfies
b i&: p(A+EB) (7.10‘
dt :
‘e
where A==diag[A1,A2,...,AV]. Weak interactions B become significant after
a long period in the fast time scale 7. In the slow time scale t==cx
do . o s
® It p(E A+B) (7.5
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the fast transient is formed of separate transients within the strongly
coupled groups. After some time pA decays to 0(c), and from then on
pB 1s no longer negligible with respect to é-pA. To make the slow and fast

parts of p(t) explicit, let

y = pT, z = ps, p=yV+zW (7.6)

where

AT = 0, VA =0, VT = IN

(7.7)
WI'=0, VS=0, WS=1I ..
Then (7.5) appears in the standard singular perturbation form
y = yVBT + zWBT (7.8)
€z = cyVBS + zW(A+¢€B)S (7.9)
where W(A+¢cB)S is a stable matrix. The slow subsystem is
¥, = v (VBT - cVBS (WAS) ~'WBT) = 7 A, (7.10)

For € =0 it reduces to the aggregate chain proposed ian [L1]. 1Its states
are the groups of the original states and Y J=1,...,N is the probability
for the original process to be in group J. Based on the aggregate chain
(7.10), near-optimal policies have been obtained for controlled Markov
chain problems [L2,L4-L8,L]10,L11,L13,L14]. The resulting optimization
algorithms are decentralized in the sense that fast subsystems compute
their controls "locally'" with the aggregate coordinating necessary informa-
tion between subsystems and in a slow time scale. These results can be
considered as discretized versions of diffusion control processes [L3] and

are applicable to queueing problems [L9].
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8. CONTROL OF LARGE SCALE SYSTEMS

Large scale systems are characterized by decentralization in
available information, multiplicity of decision makers, and individuality
of objective functions for each decision maker.

In recent years, singular perturbations have become an important
tool for structuring large scale system models. Indeed the preceding
section has shown that for a wide class of large scale systems, the notions
of subsystems, their coupling, and time scales are interrelated and lead to
a singularly perturbed model with a strongly-coupled slow '"core" representing
the system-wide behavior, and weakly-coupled fast subsystems representing
the local behavior. The impact of this model on the design of control
strategies is discussed in the section on multimodeling, while the last

section deals with singularly perturbed differential games.

8.1. Multimodeling

Suppose that with original controls, or by their voluntary grouping,
the linearized model of a large scale system exhibiting one slow and N fast

subsystems can be written as

N Rt
- T Az, + S B u
* = Ago* * E1%0i% L Boi™s
(8.1)
N

2, + T e..A .2, +B..u,
i'i j=1 13131 ii~i

j#i

£.2, = A X + A,
i“i i0 i
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where each fast subsystem is associated with a different singular pertur-

bation parameter €, and is weakly coupled to other fast subsystems through

i

eij.

In a situation like this, it is rational for a fast subsystem
controller to neglect all other fast subsystems and to concentrate on its
own subsystem, plus the interaction with others through the slow core. For

the i-th controller, this is simply effected by setting all c-parameters to

zero, except for €y The i-th controller's simplified model is then

.1 i N
X = Aix + AOizi + BOiui + jElBijuj
4 (8.2)
€2, = A, xt + A,.z, + B, ,u,.
ii i0 i17i it i

Often (8.2) is all the i-th controller knows about the whole system. The
k-th controller, on the other hand, has a different model of the same large
scale system. This situation, called multimodeling, has been formulated
and investigated in [M4,M10,M15] for deterministic problems, and in [M18,M19]
for stochastic problems. Control u, can be divided into a slow part, which
contributes to the control of the core, and a fast part controlling only
its own fast subsystem. Pole-placement and Pareto solutions have been
studied in [M4], while the closed-loop Nash solution has been analyzed in
[M10].

In stochastic problems, a careful treatment is required to
establish the validity of the multimodel problem. In addition to the usual
difficulties encountered in modeling a fast stochastic variable, as

discussed in Section 5, the problem is involved due to the presence of
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nonclassical information patterns. To elucidate this aspect, consider the :
model §

. , 0 N 1
X Aoox 1§1A0121 + iEIBOiui + Gow -]
(8.3) ~
2 + A 3 Ve, :
= +
1% T Apo* T A% Y L SagRey®s Y Bugt TGV
3# _1
t
where w(t) is white Gaussian noise. The information available yi(t) and ]
performance objective Ji of each decision maker are to be compatible with E
the multimodel assumption (8.2). This implies that {
1
Yi0 = Ci0* * V10
yi5 = Cya%y + ey vy (8.4)
' BR R ™
vy = yyo viql' s 1=1,2,...,N |
4
- 3
T .'
= U ' ' ' '
i E{“TFOixr+€iziTriizir+cf) (x'Qqx +2;Q;,2; +u;Ryu;)de} ]
i=1,2,...,N (8.5) i
where vio(t) and vii(t) are white Gaussian noise processes, independent of .
each other and of the process noise w(t). Clearly, the problem defined by 1
(8.3),(8.4) under any solution concept 1is one involving nonclassical {
‘ information patterns for which no implementable finite-dimensional solution 1
"7
exists. Further assumptions need to be made about the information structure !
to obtain implementable solutions. In any ca3e, the optimal strategies
generally lead to the solution of a set of coupled integro-differential 1
B
equations, and it is not clear whether their limiting solution would i
)
1
1
1
‘ -
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correspond to the solution of the multimodel problem. To aiswer this
question, a detailed investigation is undertaken in [M18,M19, for two
important classes of quasi-classical information patterns. In [M18], well-
posedness of the multimodel problem is established for a class of stochastic
Nash games with a prespecified finite-dimensional compensator structure for
each decision maker. The same fact is established in [M19] for static and
dynamic team problems with sampled observations, under the one-step-delay
observation sharing pattern. These results establish certain '"robustness"
of the multimodel problem to a class of solution concepts and information
structures.

The assumption of weakly interacting fast subsystems is removed
in [M6,M7,M8,M11,M17] where a sufficient "block D-stability" condition
guarantees the asymptotic stability of the multiparameter boundary layers.
Several tests'for identifying classes of systems which satisfy this condition
are reported in [M7,M8,M17]. The relationship of this condition with
multiple time-scales is exmained in [M7]. The main result of [M6] is a
procedure for including limited, though not necessarily weak, interactions
of fast subsystems. In [M11], applications to decentralized stabilization
are examined and in [M16] a near-equilibrium solution to closed-loop Nash
games 1is obtained. Extension of the "block D-stability" condition to a
class of nonlinear svstems which are linear in the fast variables, is
obtained in [M14]. Related approaches to the multi time scale problem are

reported in {M9] and [M12] for linear systems, and in [M20] for nonlinear

systems. A series of papers [M1-M3,M5,M13] deal with the stability of large-

scale singularly perturbed systems within a general framework, while [K8]
uses singular perturbation techniques to study the hierarchical stability

of power systems.
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8.2. Singularly Perturbed Differential Games

The references in this section report on the impact of singularly
perturbed reduced order models in the determination of simplified zero-sum,
Nash and Stackelberg strategies. The main question investigated is one
of well-posedness, whereby the limit of the performance using the exact
strategies is compared to the limit of the performance using the simplified
strategies. The simplified solution is said to be well-posed if the two
limits are equal. Unlike the state feedback problem, the natural singular
perturbation order reduction does not always lead to well-posed solutions
of differential game problems. The answer crucially depends on the
information structure of the game and its preservation in the reduced order
problem since it is well-known that, in contrast to the optimal control
problem, differential games admit different open- and closed-loop solutions.

The crucial role of information structure in reduced order modeling

of differential games can be seen from the following two-player Nash game

X = f(x,z,ul,uz,t); x(to) =x
(8.6)
£z = g(x,z,ul,uz,t); z(to) =z
“f
Ji = { Li(x,z,ul,uz,t)dt; i=192' (8'7)
o
Necessary conditions for a closed-loop solution are
. 5v, ,
P, = -7 H - (—lax (t,x,2)) 7, H; p;(tg) =0
] (8.8)
ay '
- = - - (,J - -
\ vzHi : (t,x,2)) 7 Hj’ qi(tf) 0

. 4
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and ui=‘¥i(t,x,z) minimizes the Hamiltonian Hi(x,z,t,ui,\i’ ), 1,5=1,2; 1i#3.

h
For open-loop solution, (8.8) is replaced by

P, = -V H; Pi(tf) =0
(8.9)
sVi = —VzHi; Vi(tf) = 0,

The partial derivative terms in (8.9) give rise to generally different open-
and closed-loop solutions. Setting € =0 reduces the necessary conditions

for the closed-loop solution to

0= g(x,z,t,ul,uz)
(8.10)
0= —\72111—(az (t,x,2)) VujHj.

Using (8.10) to eliminate z from (8.6), (8.7) implies that the optimal

, are functions of t and x only. Thus awi/az==o. Suppose,

however, that (8.6)-(8.8) are first solved and then ¢+ 0. If it is not true

strategies Wl, k4

that

é-i»?)l VzHi = 0; VtG(to,tf) (8.11)
then the order reduction is generally not well posed. Under appropriate

assumptions one may be able to show that

v, ,

—y 7 = 0; . 12

iig(vzﬂi+(32) ,u.Hj) 0; VeE (¢ ,t0) (8.12)
J

The fact that (8.12) does not imply (8.11) is the reason for the ill-

posedness of closed-loop Nash solutions [N2-N5]. In open-loop and partially
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closed-loop (control functions of x alone) Nash solutions, (8.12) does
Y

imply (8.11) because 7;}-0; and hence these solutions are well-posed [N5].

Another class of problems for which (8.12) implies (8.11) are LQ problems

where the performance indices are modified (i.e., no penalty on the fast

variable z) as in [N2], where also an alternative way of defining a reduced

game whose closed-loop solution is the limit of the closed-loop solution of

the full game is proposed. Related work on near-Nash feedback control of a

composite system with a time-scale hierarchy is reported in [N11].

Analogous results for the Stackelberg problem are [N6,N9]. For zero-sum

games, the normal order reduction is well-posed [N1], which is to be

expected because zero-~sum games have the same open- and closed-loop solutioms.
Singular perturbation techniques are applied to pursuit-evasion

problems in [N7,N8,N10,N12,N13].
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CONCLUDING REMARKS

Research trends, discernible from this survey, can be briefly
summarized in the broad categories of modeling, analysis, and design.

In modeling the trend is to go beyond the standard model discussed
in Sections 1.1 and 1.2. The two more general classes are, first, models
with known small parameters which do not multiply derivatives, and, second,
models whose time-scale properties are caused by "hidden" parameters.
Representatives of the first class are high-gain and some singular systems.
In the second class are dynamic networks with coherent groups of states.
Modeling issues in stochastic systems center around probabilistic scaling
of fast phenomena. Scaling is also an issue in trajectory optimization
problems.

In analysis, the trend is to encompass new classes of systems:
discrete-time, stochastic and nonlinear; and to analyze their controllability,
stability and other properties in separate time scales. In particular,
singular perturbation method promises to be a powerful tool in robustness
analysis of adaptive systems. In linear systems new frequency and geometric
methods are being related to asymptotic methods.

Two-time-scale state feedback design methods are being extended to
ouptut feedback, observer and compensator design problems. The success of
the composite control method for a class of nonlinear and stochastic systenms
motivates its extension to broader classes of systems. The multimodeling
approach is one of the potential applications of time-scale methods to
decentralized design of large scale systems and differential games.

These and related research directions depend on and will contribute
to a deeper understanding of nonlinear and stochastic perturbation, bifurcation

and averaging problems.

el




Y

-

e

61

REFERENCES

A) Books and Survevs

{A1] Langerstrom, P.A. and R.G. Casten (1972). Basic concepts underlying singular
perturbation techniques. SIAM Review, 14, 63-120.

(A2] Eckhaus, W. (1973). Matched Asvmptotic Expansions and Singular Perturbations.
North Holland/American Elsevier.

{A3] Ickis, V. (1976). Control Svstems of Variable Structure. Wiley, New York.

(A4] Kokotovic, P.V., R.E. O'Malley, Jr. and P. Sannuti (1976). Singular perturbations
and order reduction in control theory - An overview. Automatica, 12, 123-132.

(A5] Eckhaus, W. (1977). Formal approximation and singular perturbations.
SIAM Review, 19, §93.

[A6] Utkin, V.I. (1977). Sliding Modes and their Aopplication to Variable Structure
Svstems. Mir. Moscow.

[A7] Utkin, V.I. (1977). Variable structure systems with sliding modes : a survev.
IEEE Trans. on Aut. Control. AC-22., 212-22:.

{a8] Armold, ¥.I. (1978). Chapitres Supolémentaires de la Théorie das Fcuacionas
Differentielles Ordinairas, (im Freazch) Editions de Mescou.

lA9] Bensoussan, A., J.L. Lions, and G.C. Papanicolacu (1978). Asvmptotic Analvsis
for Periodic Structures. North Holland, New York.

(A10] Frank, P.M. (1978). Introduction to Svstem Sensitivicv Theotv, Acadamic Press.

[A11] Pervozvanskii, A.A. and V.G. Gaicsgori (1978). Suboptimization, decomgposition
and aggregation. Proc. 7th IFAC World Congress. Helsinki. Finland.

[A12] Sandell, N.R., Jr., P. Varaiya, M. Athans and M.G. Safonov (1973).
Survey of decencralized control methods for large scale systems. [ESES Trans.
Ayt. Control, AC-23, 108-128.

[A13] Vasileva, A. and M. Dmitriev (1978). Singular perturbations and some optimal
control proolems. Proc. Tth [FAC Werid Congress. Paper 23.5.

(A12] Blankenship, G.L. (1979). Asvmptotic analysis in mathematical gaysics and
controi theory: some probiems with common features. Richerche di Automatics.
10: 2.

(A17] Pervozvanskii. A.A. and V.G. Caitsgori (1979}, Decomnacsitisn. Az27rezaion 1
Subcotimizatior. Nauxa (in Russian).

(A16] Camgoell, S.L. (1980). Singu:lar Svsrems of Oifferertial Scuatians. Sitman.
New York.




(A17]

{a18]

{A19])

ta20]

B)

Mischenko, E.F. and N.K. Rozov (1980). Differential Equations with Small

Parameters and Relaxation Oscillations. Plenum, New York.

Moiseev, N.N. and F.L. Chernousko (1981). Asymptotic n;ethods in the theory
of optimal control. IEEE Trans. on Auto. Control, AC-26, 993-1000.

Campbell, S.L. (1982). Singular Svstems of Differential Equations II .
Pitman, New York.

Fossard, A.J. and JF. Magni (1982). Modelisation commande et applications des
systemes a echelles de temps multiples. R.A.LR.O. Automatique/Svstems

Analvsis and Control, 16:1.

Asvmototic Methods

(B1]

(B2]

(e3]

(B4]

(s

wy

]

(86]

(87]

(88]

(89]

(810]

{311}

(812}

O'Malley, R.E., Jr. (1968). Topics in Singular Perturbations. _Advances in

Mathematics. Val. 2, p. 365470,

Hoppensteadt, F. (1974). Asymptotic stability in singular perturbation problems, II.

J. Differential Equations, vol. 15, p. §10-521.

O'Malley, R.E. Jr. (1974). _Introduction to Sineular Perturbations.

Academic Press, New York.

Balachandra, M. (1975). Some new basic results for singularly perturbed ordinary

differential equations. J. Math Anal. & Aopol., \bl. 49, p. 302-316.

Hoppensteadt, F. (1975). Analysis of some problems having matched asvmptotic
expansion solutions. SIAM Review, Vc.. 17, p.123-135.

Smith, D.R. (1975). The multivariable method in singular perturbation analysis.

SIAM Review, Vol. 17, p. 221-273.

O'Malley, R.E., Jr., (1976). Phase plane soiutions to some singular perturbation
problems. J. Math Anal. & Aopl., Vol. 34, p. 459-266.

Vasil'eva, A.B. and V.A. Anikeeva (1976). 'Asymptotic expansions of solutions
of non-linear problems with singular boundarv conditions. Differential Equations,
Vol. 12, p. 1235-1243,

Kesavan, S. (1977). Homogenization of second order elliptic eigenvalue problems.

Proc. of IF3C/IRIA Workshoo on Singula: Percurbations in Czontrol. France. p. 177-196.

Lakin, W.D. and P. Van Den Driessche (1977). Time scales in population biclogs.

SIAM 1. Acch. Mach,, \al. 32, p. 694-705,

Matkowsky, 8.]. and E.L. Reiss (1977). Singular Perturzaticns of 3ifurcaticns.
SiAM I Ascl. Math., Vol 33, p. 230-285.

vika, . (1977). Singularly Perturbed Evelution Squations in Banach Spaces.

-

J. Math Anal. ¥ Aopol., Vol. I3, p. 139-201.

deci o Koo

et

ak

—l




T T r o
4 . .

(B13]
(B14]

[B15]
{B16]
(B17]

{B18]

(B19]
(B20]
(Bz21]
(B22]

[B23]
(B24]

(B2s

(B3]

63

Wollkind, D.J. (1977). Singular Perturbation Techniques : A Comparison of the
Method of Matched Asymptotic Expansions with.that of Multiple Scales.
SIAM Review, Vol. 19, p. 502.

Burgat, J.F. and A. Derviewx (1978). Homogenization and Stiffness Methods for
Operations with Periodic Coefficients of Large Amplitude. Proc. of IFAC/IRIA
Workshop on Singular Perturbations in Control, France, p. 151-176.

Howes, F.A. (1978). Boundary-interior layer interactions in nonlinear singular
perturbation theory. Memoirs Amer. Math. Soc., 203.

Sarlet, W. (1978). On a Common Derivation of the Averaging Method and the
Two Time Scale Method. Celestial Mechanics, Vol. 17, p. 299-312.

Shepherd, J.J. (1978). Asymptotic solution of a nonlinear singular perturbation
problem. SIAM J. Apol. Math, Vol. 35, p. 176-186.

Van Harten, A. (1978). Nonlinear Singular Perturbation Problems : proofs of
correctness of a formal approximation based on a contraction principle in a
Banach Space. J. Math Anal. & Appl., Vol. 65, p. 126-168.

Fenichel, N. (1979). Geometric Singular Perturbation Theory for Ordinary
Differential Equations. J. Diff. Equaticns, Vol. 31, p. 53-98.

Glizer, V.]J. and M.G. Dmitriev (1979). Singular Perturbations and Generalized
Functions. Soviet Dokl, Vol. 20, No. 6. :

Howes, F.A. (1979). Singularly perturbed semilinear systems. Studies in
Appl. Math.. 61. 185-209.

Mac Gillivray, A.D. (1979). The existence of an overlap domain for a singular
perturbation problem. SIAM J. Apgl. Math. Vol. 36, p. 106-114.

Naidu, D.S. and P.X. Rajagopalan (1979). Application of Vasileva's singuiar
perturbation method to a problem in ecology. Int. j. Svstems Science,
Vol. 10, p. 761-773.

Bobisud, L.E. and C.Q. Christensen (1980). A singular singularly perturbed svstem
of nonlinear equations from chemical xinetics. J. Marh. Anal. & Aopl..
Vol. 7+, p. 296-310.

Howes. F.A. and R.E. O'Malley, jr. (1930). Singular Perturbations of Seceni-drssr

Semilinear Systems, Soringer Lecture Ncras Maths.., Voi. 327, p. 131-150.

Mac Gilliveay, A.D. (1980). On the switsh back teem in the asymptatic =xgarsien

of 2 mode!l singular perturdation grediem. [ Marth Armal. & Azci..

Viei. 77, p. 612825,

o

WP A W'Y

el




—p———
o

- MY M e e e e R S e R A

64

Reiss, E.L. (1980). A modified two time method for the dynamic transitions

Sastry, S.S. and C.A. Descer (1981). Jump behaviour of circuits and systems.

Sastry, S.S. and (, Hijab (1981). Bifurcation in the presence of small noise.

Tihonov, AN. (1952). Systems of differential equations containing a small parameter

Davison, E.J. (1966). A method for simplifying linear dynamic systems.

Aoki, M. (1968). Control of large-scale dynamic systems by aggregation.

Stewart, G.W. (1971). Error bounds for approximate subspaces of closed linear

Chang, K.W. (1972). Singular perturbations of a general boundary problem.

Kokotovic, P.V. (1975). A Riccati equation for block-diagonalization of
ill-conditioned ‘systems. IEEE Trans.-on Aut. Control, AC-20, p. 812-814.

Porter, B. and A.T. Shenton (1975). Singular perturbation analysis of the transfer
function matrices of a class of multivariable linear systems. Int. ]. Control,

Stewart, G.W. (1976). Simultaneous iteration for computing invariant subspaces

Javid, S.H. and P.V. Kokotovic (1977). A Decomposition of Time Scales for
Iterative Computation of Time Optimal Controls. J. Opt. Theorv & Apol.,

Narasimhamurzhv, N. and F.F. Wu (1977). On the Riccati Equation Arising {rom

the Study of Singularily Perturted Svstems. Proc. JACC, p. 1124-1237.

Anderson, L. (1978). Decomposition of two time scale linear svstems.

Javid, S.H. (1975). CUniform asympretic stability of linear time varving singulariy

(827]

of bifurcation. SIAM J. Aool. Math. Vol. 38, p. 249-260.
[B28]

IEEE Trans. on Circuits and Svstems, CAS-28, p. 1109-1124.
(B29]

Svstems & Control Letters, Vol. 1, p. 159-167.
C) Time-Scale Properties of Linear Svstems
(ci]

multiplying the derivative. Math. Sb, Vol. 73, p. 575-586.
(c2]

[EEE Trans. on Aut. Control, AC-11, p. 93~101.
{c3]

IEEE Trans. on Aut. Control, AC-13, p. 246-253.
[C4]

operators. _SIAM _J. Numer. Anal., Vol. 8, p. 796-808.
[cs)

SIAM ]. Math, Anal.,, Vol. 3, p. 520-526.
(cé]
[c7]

Vol. 21, p. 655-660.
{cs]

of non-Hermitian matrices. Numer. Marth., Vol. 25, p. 123-136.
{C9]

Vol. 21, p. 439.
(cic]
(Cii]

Proc. 1ACC, p. 133-163.
(ciz)

perturbed systems. J. Franklin Inst., Vol. 308, p. 2737,
(C13]

C'Mallev, R.E.. Jr., and R.L. Anderson (1973). Singular perturbaticns and siow

moce agproximation for large scale linear systems. Proc. of the [FAC/IRIA

Warksnoo on Singular Perturbatiens in Control, France, p. 113-121.

s

2 b 4 e n o m A m A —

LR VvV I




P e o

[Ci14]

(c15]

(c16]

[C17]

(c18]

{c19]

(c20]

{ca}

(cz22

(c23]

D)

Avramovic, B. (1979). Subspace [teration Approach to the Time Scale Separation.
Proc. of IEEE Conf. on Dec. and Control, p. 684-687.

Phillips, R.G. (1979). Decomposition of time scales in linear systems using
dominant eigenspace power iterations and matched asymptotic expansions.
Report DC-31, Coordinated Science Lab., University of Illinois, Urbana.

Allemong, J.J. and P.V. Kokotovic (1980). Eigensensitivities in Reduced Order
Modeling. IEEE Trans. on Aut. Control. AC-2S, p. 821-822.

Kokotovic, P.V., J.J. Allemong, J.R. Winkelman and J.H. Chow (1980).

Singular perturbation and iterative separation of time scales. _Automatica,
Vol. 16, p. 23-33.

Furusho, J. and H. Kanch (1981). A low order model of a superheater under
large and fast load changes. Proc. of IFAC Congress, Kyoto, p. 66-71.

loannou, P. (1981). Robustness of absolute stability. Int. J. Control,
Vol. 34, p. 1027-1033.

Litz, L. and H. Roth (1981). State decomposition for singular perturbation order
reduction. Int. J. Control, Vol. 34, p. 937-954.

Saksena, V.R. and P.V. Kokotovic (1981). Singular perturbation of the Popov-
Kalman-Yakubovich Lemma. Svstems & Control Letters, Vol. 1, p. 65-68.

Fernando, K.V. and H. Nicholson (1982). Singular perturbational model reduction
of balanced systems. [EEE Trans. on Aut. Control, AC-27, p. $66—68.

Fernando, K.V. and H. Nicholson (1982). Singular perturbational model reduction
in the frequency domain. [EEE Trans. on Aut. Control, AC-27, p. 969-970.

Discrate Tine Swrsrams

[o1]
(D2}

(D3]

(4]

(D6]

Miller, K.S. (1968). Linear difference equations. Benjamin, New York.

Dorato, P. and A.H. Levis (1971). Optimal linear reguiaters : the discrete-time
case. _IEEZ Trans. on Aut. Control, AC-16, p. 613-620.

Butuzov, V.F. and A.B. Vasileva (1970). Differential and difference eguation
svstems witd a small parameter in the case wnen unperturbed (deganerated)

system is on the spectrum. Differential Ecuacions. Vol. §, p. +99-310.

OC'Malley. R.E.. Jr.. (1971). COn che asvmctctic solution of initial value pretlems
for diffarential equations with small delav. SIAM J. \Math Anmal., Vol. 2. 2

-
* e

Comsteck, C. and G.C. Hsiao (1976). Singular perturs-tion for cifferena aquaticns.
Rockv ‘Meuntain ! Math. Vol. 6, p. 161-567.

Locateili. A. and N. Schiaven (1976). Two-time-scale discrete systems.

First Internat. Conf. on Information Sciences and Swvstems, Patras, Greece, Aug. 1975,

1915

-

.« 4

W o
* N e
’ Ml g L el

. dnt

-




Fhats JNA. ol G g 4
. -

-

——

o
-

"

A : D

g NASha a ma e ease aa 4 dom he e

M

TV LY W e

{D7]

(o8]

(D9]

(D10}

{D11]

(D12]

{D13]

[D1s]

(o1:2]

(D15]

{(D17]

{Dis]

(013!

W T T W T T T TR TN TR, TR T, Ty vy O WY /ST EoRTRTWOORETOT Oy YT Y PR T T e Ty, 7

66

Flaherty, J.E. and R.E. O'Malley, Jc., (1977). The numerical solution of boundary
value problems for stiff differential equations. Math. of Computation, Vol. 31,
p. 66.

Grujic, L.T. (1977). Quasi singular perturbations of time discrete systems.
Proc. JACC, p. 857-862.

Hoppensteadt, F. and W. Mirankar (1977). Multicime methods for systems
of difference equations. Stud. in Apol. Math, Vol. 56, p. 273-289.

Vasil'eva, A.B. and M.V. Faminskaya (1977). A boundary-value problem for
singularly perturbed differential and difference systems when the unperturbed
system is on a spectrum. Differential Equations, Vol. 13, p. 738-742.

Kellogg, R.B. and Alice Tsan (1978). Analysis of some difference approximations
for a singular perturbation problem without turning points. _Maths. of Comoutation,
Vol. 32, p. 1025-1040.

Campoell, S.L. (1979). Limic behaviour of solutions of singular difference equations.
Linear Algebra and Aool., Vol. 23, p. 167-178.

Javid, S.H. (1979). Multitime methods in order reduction and control of discrete
systems. Proc. of 13th Asilomar Conf. on Circuits. Svstams & Comoputers.
Pacific Grove, Calif.

Reinnarde, H.J. (1979). Numerical analysis of singular perturbation problems
(P.W. Hamker and J.J.H. Miller, Eds.), Academic Press.

O'Malley, R.E., Jr., and [.E. Flaherty (1980). .-\r.alytic.al and numerical methods
for nonlinear singular singularly perturbed initial vaive preoblemms. SIAM J. Apol.
Math. Vol. 38, p. 225-248.

Phillips, R.G. (1980). Reduced order modeling and control of two time scale
discrete svstems. Int. J. Control, Vol. 31, p. 765-7S0.

Rajagopalan, P.X. and D.S. Naidu (1980). A singular perturbaticn methad for
discrete cont:rol systems. Int. J. Concrol. Vol. 32, p. 928-935.

Blankenship, G. (1981

). Singularly perturted difference equartions in optimal
control preolems. [EEE Trans. on Aut. Control, AC-25, p. 911-917.

Manmeoud. M.S. (1502). Order reducticn and control of discreta systems.
Proc. {EZ, 127 D, p. 129-1133,
Naidu, L.S. and A.K. Rao (1981). Singular gerturSation method for initial vaive

ar2olems witd inputs in ciscrate conerel systems. Int. [ Conioail Vol. 33,

£. 953364,

Rajazncalan. P.X. and D.3. Naidu (1991). Siagular zerssurzaticn merzod icr zissreta

mccels of continucus svsiams in optimal cantrel. 2:sc. (22, Vei. {23, Pt O,

2. 14l-123.

T
a.aa

,.'.‘
A nd aa b - a A a_'a

-4




- (D22]

-
1,
L
v
L

[D23]

[D24]

[DZS]
{ (D26]

[027]

v}'(“!

=)

67

- Rao, A.K. and D.S. Naidu (1981). Singularly perturbed bpundary value problems
in discrete systems. Int. J. Control, Vol. 34, p. 1163-1174,

Naidu, D.S. and A.K. Rao (1982). Singular perturbation methods for a class
of initial and boundary value problems in discrete systems. Int. J. Control,
VOL 36’ P. 77.940

Rao, A.K. and Naidu, D.S. (1982). Singular perturbation method applied to the
open-loop discrete optimal control problem. Optimal Control Appl. and Methods,
Vol. 3, p.

Naidu, D.S. and A.K. Rao (1983). Singular perturbation analysis of closed-loop

" discrete optimal control problem. Optimal Control Appl. and Methods,

Val. 4, p.

Sycros, G.P. and P. Sannuti (1983). Singular perturbation modelling of continuous
and discrete physical systems. IFAC Workshop on Singular Perturbations and

Robustness of Control Systems, Ohrid, Yugoslavia, 13-16 July 1982.

Litkouhi, B. and H.K. Khalil (1983). Iafinite-time regulators for
singularly perturbed difference equations. Proc. 20tk Allerzaa Conf. on
Communication, Contral, & Compuzing, Univ. of Iilinois, 6-8 Oct. 1382.

Linear State Teedbacl:

E
:‘ . (E1]

N (E2]

(E3]

~————v—

Wonham, W.M. (1967). On pole assignment in multi-input controllable linear
systems. [EEE Trans. on Aut. Control. AC-12, p. 660-665.

MacFarlane, A.G. (1970). Return-difference and return-ratio matrices and their
use in analysis and design of multivariable feedback control systems.

Proc. IEE, Vol. 117, p. 2037-2049.

Perkins, W.R. and J.B. Cruz, jr. (1971). Feedback properties of linear reguiators.
[EEE Trans. on Aut. Control, AC-16, p. 659-664.

. Caow, J.H. and P.V. Kokotovic {1978). A

Porter, B. (1974). Singular perturbaticn methods in the design of stabilizing
feedback controllers for multivariable linear systems. Int. J. Control.
Vol. 20, p. 689-692.

Kokotovic, P.V. and A.H. Haddad (1975). Controllability and time-optimal
control of systems with slow and fast modes. IEEE Trans. on Aut. Contiol.
AC-20, p. 111-113,

Asatani, K. (1976). Near-Optimum Control of Distributed Paramerar Systems

via Singular Perturbation Theory. J. Math Anal. & Apol.. Val. 54, p. 799-31%

Chow, J.H. and P.V. Kokotaovic (1976). Eigenvaiue piacement in two :ime scale

svstems. Proc. of IFAC Symoosium on Larze Scale Svstems, Udcine. italy, p. 3121-3

decomposition of near optimum regulazacs

for svstems with slow and Jast moces. IE
p. 701-705.

& Trams. en Aut. Caonrral, AC-2L,

221-325.

e

-

- s
.

¢ e e oe
N Y SO S PPy

e
Py




M -
-

N

iR ‘rvvv

DO AN Al it S S it e ge Y 2 o N
. . A R T r " .

68

(E9] Kung, C.F. (1976). Singular Perturbation of an Infinite Interval Linear State
Regulator Problem in Optimal Control. J. Math. Anal. & Appl., Vol. 55,
p. 365-374,

(E10] Moore, B.C. (1976). On the flexibility offered by state feedback in multivariable
systems beyond closed-loop eigenvalue assignment. [EEE Trans. on Aut. Control.
AC-21, p. 689-692.

(E11] Porter, B. (1976). Singular perturbation methods in the design of linear
multivariable tracking systems. Electronics Lett., Vol. 17, p. 33-34.

(E12] Suzuki, M. and M. Miura (1976). Stabilizing feedback controllers for singularly
perturbed linear constant systems. [EEE Trans. on Aut. Control, AC-21, p. 123-124.

(E13] Womble, M.E., J.E. Potter and J.L. Speyer (1976). Approximations to Riccati
equations having slow and fast modes. [EEE Trans. on Aut. Control,
AC-21, p. 836-855.

(E14] Asatani, K., M. Shiotani, Y. Hattoni (1977). Suboptimal control of nuclear reactors
with distributed parameters using singular perturbations theory. Nuclear Science

and Engineering, 62, p. 9-19.

(E15] Chow, J.H. (1977). Preservation of controllability in linear time invariant perturbed
systems. Int. J. Control, Vol. 25, p. 697-704.

(E16] Klein, G. and B.C. Maore (1977). Eigenvalue-generalised eigenvector assignment
with state feedback. [EEE Trans. on Aut. Control, AC-22, p. 140-141.

[EI7] Porter, B. (1977). Singular perturbation methods in the design of state feedback
controllers for multivariable linear systems. Int. J. Control. Vol. 26, p. 583-387.

(E18] Porter, B. (1977). Static decoupling of multivariable linear systems with slow
and fast modes. Electronies Lertt., Vol. 13, p. 23-25.

(E19] Chow, J.H. (1978). Pole-placement design of multiple controllers via weak and
strong cont:ollability. Int. J. Syst. Science, Vol. 9, p. 129-136.

(E20] Murthy, D.NP. (1978). Solution of linear regulator problem via two paramecer
singular perturbation. Iat. J. Syst. Se.. Vol. 9, p. 1113-1132.

(£21] Porter, B. (1978). Closed.loop eigenstruczure assignment bv state feedback in
multivariable linear systems with slow and fast modes. I[nt. J. Controi.
Vol. 23, p. 93-i00.

(E22] Porter, B. and A. Tsingas (1973). Singuiar perturpation methods in the dasign
of linear multivariable tracking systems for plants with palvniomial command

- -

inputs. Iat. !, Contrel. Vol. 27, p. 639-430.

(£23] Sesak. J.R. and Ahu. S.M. (1978). Singuiar perturdaticn cptimal control of large
space struciures. Proc. [RIA/IFAC Worksheo en Sinzular Persurdaticns in Conteoai.

Paris, France, p. 107-i12.

Lk & 4 ad

Y

VOUIY SUUDTAIS .

'1-‘.-

NP VR




e

N
";‘
E
b
L
4

g

[E27]

(E2s]

[E29]

(E30]

[E31]

(E32]

(E33]

......

69

Gaitsgori, V.G. and A.A. Pervozvanski (1979). Perturbation method in optimal
control problems. J. Systems Science, Vol. §, p. 91-102.

O'Reilly, J. (1979). Two time scale feedback stabilization of linear time varying
singularly perturbed systems. J. Franklin Inst. Vol. 308, p. 465-474.

Pervozvanskii, A.A. and V.G. Gaitsgori (1979). Perturbation method for LQ
problems: duality in degenerate cases. Proc. of 2nd Warsaw Workshop on
multilevel Control, Warsaw.

Bradshaw, A. and B. Porter (1980). Design of linear multivariable discrete-time
tracking systems incorporating fast-sampling error-actuated controllers,
Int. J. Systems Sci., Vol. 11, p. 817-826.

Dragan, V. and A. Halanay (1980). A singularly perturbed matrix Riccati equation.
Rev. Roum. Math. Pures et Appl... 25, 1477-1484.

Fossard, A.J. and J.F. Magni (1980). Afrequential analysis of singularly perturbed
systems with state or output control. J. Large Scale Systems, Vol. 1, p. 223-228.

Gardner, B.F., Jr. and J.B. Cruz, Jr. (1980). Lower order control for systems
with fast and slow modes. Automatica. Vol. 16, p. 211-213.

Naidu, D.S. and P.K. Rajagopalan (1980). Singular perturbation method for a
closed-loop optimal control problem. Prec. IEE, Vol. 127., p. 1-6.

Pervozvanski, A.A. and V.G. Gaitsori (1980). Control of quasi-conservative
linear oscillatory systems. Autom. and Remote Control, No. 10, p. 12-18.

Bradshaw, A. and B. Porter (1981). Singular perturbation methods in the design
of tracking systems incorporating fast sampling error actuated controllers.
Int. J. Syst. Science, Vol. 12, p. 1181-1192.

(E33]

[E35]

Bradshaw, A. and B. Porter (1981). Singular perturbation methods in the design
of tracking systems incorporating inner loop compensators and fast sampling
error actuated controllers. Int. J. Svst. Science, Vol. 12, p. 1207-1220.

Pervozvaaskii, A.A. and V.G. Gaitsgori (1981). Degenerancy in LQ and LQG
problems of optimal control : possibilities to simplify the svnthesis.
Proc. of 8th IFAC Congress. Kvato.

Phillips, R.G. (1981). A two stage design of linear feecback controls.
IEEE Trans. on Aut. Control. AC-25. p. 1220-1222,

Porter, B. and A, Braashaw (1981). Singular perturtaticn metiods in the
design of tracking systams incorporating Righ -gain error actuated controilers.
[nz. j. Svst. Science. Vei. 12, 3. 1169-1130.

Porter, 8. and A. 3radshaw (1931, Siagular perturcation metheds in the
design of tracking systams incorgcrating inner loop ccmpensators anc high

gain error aciuates controilé-s. [nc. J. Svst. Science. Vol. 12, p. 11923-12Ce.

I SN




Balas, M.]. (1982). Reduced order feedback control of distributed parameter
systems via singular perturbation methods. J. Math. Anal. and Apol..

Dragm, V. and A. Halanay (1982). Suboptimal stabilization of linear systems
with several time scales. Int. J. Control, Vol. 36, p. 109-126.

Mahmoud, M.S., M.F. Hassan, M.G. Singh (1982). Approximate feedback
design for a class of singular perturbed systems. Proc. IEE, Vol. 129,

Porter, B. (1982). Singular perturbation methods in the design of tracking
systems incorporating error-actua_ted controllers for plants with explicit
actuator dymamics. Int. J. Contrel, Vol. 35, p. 383-389.

Syrcos, G.P. and P. Sannuti (1982). Asymptotic expansions of singularly perturbed
Chandrasekhar type of equations. Amer. Control Conf. 14-16 June, Arlington,

Luenberger, D.G. (1971). An introduction to observers. [EEE Trans. on

Porter, B. (1974). Singular perturbation methods in the design of observers
and stabilizing feedback controllers for multivariable linear systems.

azg'{mer, U (1977). Decentralized cbservers for a large scale system with
two time-scales. Proc. JACC, San Francisco, June 1977.

Porter, B. (1977). Singular perturbation methods in the design of full order
observers for multivariable systems. Int. J. Control, Vol. 26, p. 589-394.

Balas, M.J. (1978). Observer stabilization of singularly perturbed systems.

O'Reilly, J. (1979). Full order observers for a class of singularly perturbed

linear time varving svstems. [nt. J. Control. Vol. 30. p. 743-736.

Chemcuil, P. and A.M. Wahdun (1980). Output feedback control of svstems
with slow and fast modes. J. Large Scale Svstems. Vool. 1, p. 257-26-<.

Fossard, A.G. and [.S. Magni (1980). Frequential analvsis of singularly periurbed

svstems with state or output control. J. Large Scaie Svstems, Voi. I, p. 223223,

(E39]
87, 281-294.
(E40]
(E41]
Pt. D, p. 49-56.
‘[E42]
[E43]
Virginia.
F) Qutout Feedback and Observers
(F1]
Aut. Control, AC-14, p. $96-603.
(F2]
Electronic Letters.. Vol. 10, p. 49495,
(73]
(F4]
(Fs]
J. Guidanee and Control, Vol. 1, p. 93-95.
(F6]
(7
(Fs]
(F9l

Javid, S.H. (1980). Obsarving the slow states of a singularly perturted

system. [EEE Trans. on Aut. Control. AC-23, p. 277-130.

Aoatd s

LN LA TS DS

s aala A e el




- — e —— Y - ol — —w s = o=

71

{F10] O Reilly, J. (1980). Dynamical feedback control for a class of singularly

perturbed linear systems using a full order observer. Int. J. Control,
VOL 31, p. 1-100

Khalil, H.K. (1981). On the Robustness of Output Feedback Control Methods

Saskena, V.R. and J.B. Cruz, Jr., (1981). Stabilization of singularly perturbed
linear time invariant systems-using low order observers. [EEE Trans. on

Bingulac, S. and J. Medanic (1982). Two-time-scale design of output regulators.

[FAC Workshop on Si_ngluiat Perturbations and Robustness of Control Systems,

Calise, A.J. and D.D. Moerder (1982). Optimal output feedback design of systems

with ill-conditioned dynamics. IFAC Workshop on Singular Perturbations and

Javid, S.H. (1982). Stabilization of time varying singularly perturbed systems

Mahmoud, M.S., Y. Chen and M.G. Singh (1982). A two-stage output fesdback

Mahmoud, M.S. (1982). Design of observer-based controllers for a class

O'Reilly, J. (1983). Observers for linear svstems. Academic Press, Lendan.

Klimushev, A.l. and N.N. Krasovskii (1962). Uniform asymptotic stability

of systems of differential equations with a small parameter in the derivative

Kuz'mina, L.K. (1977). The stability of solutions of certain systems of

Sannuti, P. (1977). On the czntrollability of singulariy perturtad svstems.

Brauner, C.M. (1973]). COptimal contrai of a singuiativ perturzad svsiam ia

(F11]
to Modeling Errors. [EEE Trans. on Aut. Control, AC-28, p. 524-528.
(F12]
Aut. Control, AC-28, p. 510-513.
[F13]
Ohrid, Yugoslavia, 13-16 July, 1982.
(F14]
Robustness of Control Svstems, Ohrid, Yugosiavia, 13-16 July 1982.
[F15]
by observer based slow state feedback. IEEE Trans. on Aut. Control,
AC-27, p. 702-704.
[F16]
design. J. Computers and Electrical Engin.
(F17]
of discrete systems. Automatica, Vol. 18, p. 323-328.
(Fis]
G) Stabilitv. Non-Linear and Adaotive Control
(@]
terms. J. Apol. Math. Mech.. Vol. 25, p. 1011~1025.
(@]
differential equations with a small paramecer at derivatives.
PMM. Vol. 41, p. 567-573.
(G3]
[EEE Trans. on Aut. Conerel. AC-21Z. p. 822524,
(G+]
enzyme Kinetics. Proc. Tih IFAC Congress. Halsinki. z. 945-324,
(Gz]

Chow. J.H. (1673). Asymptotic stadiiity of a ciass of nealinear singui.si

......
UiL iy

perturbed svstems. [. Frankiin Inst. Vol, 106, n. 273-173.

-4
-.4

| 2 TP .
S SR e

AT Y 4

-4

o ‘.'.L;szg

-4

&

- . .
Ciee A a_aa a4 s 44‘

P - . Y A B, T




,AfVﬁ‘..-—-v-v,-f.-v_.,
a

-

{Gs]

(G7]

(Gs]

[G9]

(G10]

{G11]

[{G12]
(G13]

[G14]

(G13]

[G16]

(G17]

(G18]

(Gi9])

(1320]

-
Q
"
v

-—

72

Chow, J.H. and P.V. Kokotovic (1978). Near-ootimal feedback stabilization
of a class of nonlinear singularly perturtbed systems. SIAM ]. Control and

Opt., Vol. 16, p. 756-770.

Chow, J.H. and P.V. Kakotovic (1978). Two time scale feedback design of
8 class of nonlinear systems. IEEE Trans. on Aut. Control, AC-23, p. 438443,

Sannuti, P. (1978). On the controllability of some singularly perturbed
nonlinear systems. J]. Math Anal. and Appl., Vol. 64, p. 579-591.

Sandell, N.R., Jr. (1979). Robust stability of systems with applications to
singular perturbation. Automatica, 15, 457-%70. '

Sacker, R.]. and G.R. Sell (1980). Singular perturbations and conditional .
stability. J. Math Anal. & Appl., Vol. 76, p. 406-331.

Chow, J.H. and P.V. Kokotovic (1981). A two-stage Lyapunov-Bellman
feedback design of a class of nonlinear systems. [EEE Trans. on Aut. Control
AC-26, p. 656-663.

loannou, P. (1981). Robustness of absolute stability. _Int. J. Control, 34, 1027-1033.

loannou, P.A. and C.R. Johnson, Jr., (1981). Reduced order performance
of parallel and series-parallel identifiers of two time scale systems.
Proc. of the Workshop on Application of Adaptive Systems Theory,

Yale Univ., p. 169-175.

loannou, P.A. and P.V. Kokotovic (1981). Error bounds for model plant mismatch
in identifiers and adaptive observers. JACC, Charlottesville, VA.

Kokotovic, P.V. and P.A. loannou (1981). Robustness redesign of continous
time adaprive schemes. Proc. of IEEE Conf. on Decision and Control.

Saberi, A. and H. Khalil (1981). Quadratic-type Lyapunov functions for

singularly perturbed systems. Proc. of [EEE Conf. on Decision and Control, p. 205-203.

Saksena, V.R. and P.V. Kokotovic (1981). Singular perturbation of the
Popov-Kalman-Yakubovich lemma. Svstems and Control Letters, 1. 65-68.

Suzuki, M. (1981). Composite controis for singularly perturbed systems.
IEEE Trans. on Aut. Control, AC-26, p. 503-507.

loanrou P. and P.V. Kokotovie (1932). An asvmptotic ecrror analvsis of

identifiers and adaptive observers in the presence of parasites. [EEE Trans. on

__Aut. Control. AC-27, n. 921-927.

loannou, 2. and 9.V. Kokotovic (1932). Singular perturbations and robust racdesien

of adaptive control. P2rac., 2f she  2ist [€2Z Conf. on Cacision ard Canes-i,
Jrlando, FL, 2. 24-29. To apraear in IZEZ Trazs. cm Aoz, Comewsl, AC-I13, 1881,

Jonnson. C.R.. J:.. and P.A. lcannou (1982). Reduced order acaptive parametar

identification. 9th 'FAC Svmop. 2 ldentificaticn and Svsiem Paramerer Z:siimaticn,

Wasning-on. 0.C.

[ W S ICUIC U DI E ALY P i e S

Bl 2 BASL T I MMkl ' . 4T e Y

aa 4 s a_s

o oDk Ta%"a




vy

———rry

-~ v W .

r
»

»
.
r
v

73

(G22] Koda, M. (1982). Sensitivity analysis of singularly perturbed systems.
Int. J. Syst. Science, Vol. 13, p. 909-919.

{G23] loamnou, P. A. and P. V. Kokotovic (1983). Adaptive Systems with Reduced
Models. Springer-Verlag, Vol. , Lecture Notes in Control and Information
Sciences.

H) Trajectorv Ovtimization

(H1]  Actdema, M.D. (1976). Solution of the minimum time-to-climb problem by
matched asymptotic expansions. AIAA J. Vol. 14., p. 843-850.

(H2] Ardema, M.D. (1976). Characteristics of the boundary-layer equations of the
minimum time-to—climb problem. Proc. of 14th Allerton Conf. on Circuit and
Svstem Theorv, Univ. of Illinois, p. 807-317.

(H3] Binding, P. (1976). Singularly Perturbed Optimal Control Problems. I : Convergence.
SIAM ]. Control, Vol. 14, p. 591-612.

(Ha] Calise, A.J. (1976). Singular perturbation methods for variational problems in
aircraft flight. IEEE Trans. on Aut. Control, AC-21, p. 345-333.

[(H5] Chang, K.W. (1976). Singular perturbations of a boundary value problem for
a vector second order differential equation. SIAM J. Apol. Math.. 30. 42-54.

{H6] Freedman, M.I. and B. Granoff (1976). Formal asymptotic solution of a singularly
perturbed nonlinear optimal control problem. J. Opt. Theory & Appl., Vol. 19,

p. 301-325.

{H#7] Freedman, M.I. and J.L. Kaplan (1976). Singular perturbations of two point boundary
value prcblems arising in optimal ‘contrel. STAM J. Contrel & Opt.,
Vol. 14, p. 189-215.

(H8] Howes, F.A. (1976). Effective characterization of the asymptotic behaviour of
solutions of singularly perturbed bcundary value problems. SIAM J. aopl. Math,
Vol. 30, p. 296-306. )

[H9]  De Groen, P.P.N. (1977). Spectral properties of second order singularly perturbed
boundary value problems with turning points. . Math Anal. and Acel..

Vol. 57, p. 119-149.

[H10] Grasman. J. and B.J. Matkowsky (1977). A variaticral acorcach to singularly

) perturded Doundary value probiems for ordirary and zartial cifferential eguaticns
with turning points. SiAM J. Apol. Mach. Voi. 32, g. 3383-397.

[H1:] Howes, F.A. (1977). An acproximation method for 2 ciass cof singuiariv gerturzecd
secand orcer boundary value protlems. J. Math. Arai. & azpi.. Vol. 33, p. 333 564,

{H1Z] Kurina. G.A. (1977). Asvmrprotic solution of a ciassical singuiariy pertursed

optimal cont:oi problem. Soviet \ath Dokl 13, p, 7I2-T2

! - -de

roU

., v
SUASUNORE A Y PP AP Y v

»
Aot o AN

L S

PYREY WUBRY §




(H13]

(H13]

{H15]

{H16}

(H17]

{H18]

(H19]

(H20]

(H21]

(H23]

[H24]

(H2s

CHIT
1

r<29)

Calise, A.J. (1978). Energy management and singular perturbanom in flight mechanics.
Proc. 7th [FAC Congress, Helsinki, p. 949-955. : ) .

in_control, Paris, France, p. 73-88.

Calise, A.J. (1978). A new boundary layer matching proceduu for singularly
perturbed systems. IEEE Trans. on Aut. Control, AC-23, p. 434-438.

Calise, A.]. and B. Sridhar (1978). A singular perturbation solution for minimum
time jet engine control. Proc. iRIA/IFAC workshop on singular perturbations

Javid, S.H. and P.V. Kokotavic (1978). The time optimal control of a class of
nonlinear singularly perturbed systems. Int. ]J. Control, Vol. 27, p. 831-836.

Van Harten, A. (1978). Singular perturbation for non-linear second order ODE
with nonlinear b.c. of Neumann or mixed type. J. Math. Anal. & Appl.,
VOL 65, po 169-183.

Ardema, M.D. (1979). Linearization of the boundary layer equations for the
minimum time to climb problem. _]. Guidance and Control, 2. 434-336.

Ardema, M.D. (1979). Singular perturbation and the sounding rocket problem.
Proc. of JACC.

Calise, A.J. (1979). A singular perturbation analysis of optimal aerodynamic
and thrust magnitude control. IEEE Trans. on Aut. Control, AC-24, p. 720-730.

Chow. J.H. (1979). A class of singularly perturbed nonlinear, fixed endpoint control
problems. J. Opt. Theory & Appl., Bl 29, p. 231-251.

Halanay, A. and St. Mirica (1979). The time optimal feedback control for singularly
perturbed linear systems. Rev. Roum. Math. Pures et Appl.. 24. §85-596.

Mehra, R.K., R.B. Washburn, S. Sajon and J.V. Corell (1979). A study of the
application of singular perturbation theory. NASA CR3167.

Ardema, M.D. (1980). Nonlinear singularly perturbed optimal control probiems
with singular arcs. Automatica, 16. 99-104.

Calise, A.]. (1980). A singular perturbation analysis of optimal thrust control
with proportional navigation guidance. AlAA J. Guidance and Conerol. 3. 312-318.

Howes. F.A. (1980). Some old and new results on singularly perturbed nonlirear
Soundary value problems. Proc. Conf. on Singular Percurparicns 1nd Asvmorotics.
Madison, p. +1-35.

Mesari. A. and J. Shinar (1930). Applicasility of forced singular pertuszation

technique in flignt mechanics. 222¢ lsraei Anrual Tonf. on Aviaticn and 3dst:-=autics.

Shinar. J. and A. Mesari (1980). Aircralt pericrmance optimization 5v forced

singular perturtazion. 12tn [CAS Congress. Munich. Sermane.

Sridhar, B. and N.K. Guota (1780). Missile guidance ‘aws based cn singuiar

perzurdaticn methodolozv. J. uu.anc- ind Zontrei, Vol. 3, . 133-167.

- ———

[




Py

VT YT
]

75

Determination of the structure of
generalized solutions of nonlinear optimal control problems. Soviet Math. Dokl

Singular perturbation theory for on-line optimal flight path

Comparison between the
exact and an approximate feedback solution for medium range interception problems.

Solution of three dimensional interception by
inclined plane using the forced singular perturbations technique. 24th Israel

Linear filtering of singularly perturbed systems.

On singular perturbarions in stochastic dvnamic systems.
Proc. 10th Asilomar Conf. on Circuits. Svstems and Computers. p. 94-98.

Some probabilistic problems and methods in singular

Linear filtering with wide band noise
_p. 550-583.

Singularly perturbed linear stochastic
ordinary xf‘g %nual equations. Proc. JACC; also (1979), SIAM J. Math. Anal.

Bratus, AS. (1977). Asymptotic solutions of some propabilistic optimal eccntrol

7). Slowly modulated oscillaticas
3,

"y _9n

-ai o

Stochastic contrei of linear singuiariv

- - e

The exit problem for randomlv perturced

Linear regulator design for stschastic

(H30] Vasil'eva, A.B. and M.G. Dmitriev (1980).
Vol. 21, p. 104-109.
(H31] Calise, A.]. (1981).
control. AlAA ]. Guidance and Control, 4, 398-405.
(H32] Shinar, J., M. Negrin, K. Well and E. Berger (1981).
Proc. of JACC.
{H33] Negrin, M. and ]. Shinar (1982).
Annual Conf. on Aviation and Astronautics.
1) Stochastic Svstems. Filtering and Control
(] Haddad, aH. (1976).
IEEE Trans. on Aut. Control. AC-31, 515-519.
(2] Haddad, A.H. (1976).
Papanicolaou, G. (1976).
(3] perturbations. Rockv Mountain J. Math., 6. 653-674.
Blankenship, G. and D. Meyer (1977).
(4] disturbances. Proc. IEEE Conf..on Decision and Contrel.
Blankenship, G. and S. Sachs (1977).
(15]
10, p.
(8] problems. Pu. s1. 13-23.
Conen, D.S., F.C. Hoppensteadt and R.M. Miura (1977
(7] in nonlinear diffusion processes. SIAM I Apel. Marth.. 33,
Haddad. A.H. and P.V. Kaokotovie (1977).
r
(18] perturded systems. [EZE Trans, on Aut. Contsol, AC-22, 8i7-321
‘atkowsky, B.). and Z. Schuss (1977).
[i19] dinamical svstems. SIAM [, Azsl. Math.. 33, 365-332.
Tenekertzis, D. and N.R. 3andell, Jr., (1977).
(110] systams by a muitipie time scale machod.

I[EZS Trans. an dur, Canceal.

AC-22. 615-521.




(111]

(112}

(113}

{114}

{115]

{116]

(117]

(1181

(119]

(120]

(1z1]

{122

76

Altshuler, D. and A.H. Haddad (1978). Near optimal smoothing for singularly
perturbed linear systems. Automatica. 14, 81-87.

Blankenship, G. (1978). On the separation of time scales in stochastic differential

equations. Proc. of 7th IFAC Congress, Helsinki, p. 937-944.

Blankenship, G. and A. Haddad (1978). Asymptotic analysis of a class of nonlinear
filtering problems. Proc. IRIA/IFAC Workshop on Singular Perturbations in Control.

Le Chesnay, France, p. 9-24.

Blankenship, G. and G.C. Papanicolaou (1978). Stability and control of stochastic
systems with wide-band noise disturbance. SIAM J. Appl. Math.. 34, 437—76.

Bobrovsky, B.Z. and Z. Schuss (1978). Singular perturbations in filtering theory.
Proc. IRIA/IFAC Waorkshoo on Singular Perturbations in Control, Le Chesnay,

France, p. 47-38.
Khalil, H.X. (1978). Control of linear singularly perturbed systems wich colored

noise disturbances. Automatica. 14. 153-156.

Khalil, H.K., A. Haddad and G. Blankenship (1978). Parameter scaling and
well-posedness of stochastic singularly perturbed control systems.
Proc. 12th Asilomar Conf.. Pacific Grove, CA.

Razvig, V.D. (1978). Reduction of stochastic differential equations with small
parameters and stochastic integrals. Int. J. Control. 28, 707-720.

Sebald, A.V. and A.H. Haddad (1978). State estimation for singularly perturbed
systems with uncertain perturbation parameter. [EEE Trans. on Aut. Contrel.
AC-23. +$64-469.

Tsai, C.P. (1978). Perturbed stochastic linear regulator problems.
SiAM J. Control. 16. 396-410.

Price, D.B. (1979). Comments on "Linear filtering of singularly perturbed systems".

[EEE Trans. on Aut. Contral. AC-23, 675-677.

Schuss. Z. (1980). Singuiar perturbation methods in stochastic differential

equations of mathematical physics. SiAM Review.22. 119-135.

Sensoussan. A. (1981). Singular certurbation resuits for a class of stochastic

control problems. [ESE Trans. on dut. Control. AC-35. 1071~1080.

Hijab, O. and S. Sastrv (195t7. Singular gerturcation. state aggregation and

; =z Conf agisgi i Cmantsoi. o. FONLIAR
acnlirear tiitering, Prsc. of IESE Conf. sn Tecisicn aac 020l o. §90L333,

i 4 .8 SANA YA AE 24 - - -

it s ad s

PTYVT Ry N

o B




(125)

(128]

p—p— -

77

Hopkins, W.E., Jr., and G.L. Blankenship (1981). Perturbation analysis of a system
of quasi-variational inequalities for optimal stochastic scheduling.
I[EEE Trans. on Aut. Control. AC-26, 1054-1070.

Kushner, H.J. (1982). A cautionary note on the use of singular perturbation
methads for 'small noise' models. Stochastics. 6, 117-120.

Singh, Ram-Nandan P. (1982). The linear-quadratic-Gaussian problem for
singularly perturbed systems. Int. J. Science, 13, 93-100.

El-Ansary, M. and H. Khalil (1982). Reduced-order modeling of nonlinear

singularly perturbed systeas driven by wide-band noise. Proc. 2lst IEZE
Conf. on Decision and Contrel, Orland, FL.

Khalil, H. and Z. Gajic (1982). Year optimum regulators for stochaszic
linear singularly percturbed systems. Proc. 2lst IESE Conf. on Decision

Dorato, P. (1969). On the inverse of linear dynamical systems.
IEEE Trans. Svst., Sci., Cybem., Vol. SSC-5, p. 43-48.

Rosenbrock, H.H. (1970). State-space and Multivariable Theorv. Nelson, London.

Campbell, S.L. (1976). Optimal Control of Autonomous Linear Processes

with Singular Matrices in the Quadratic Cost Functional. SIAM J. Conrtr.,

Kouvaritakis, B. and A.G.J. MacFarlane (1976). Geometric Approach to Arnalysis

and Synthesis of System Zeros (Part 1); Square Systems. Int. J. Control,

Kouvaritakis, B. and U. Shaked (1976). Asymptotic behavicur of root locus of
linear multivariable systems. Int. J. Control. Vol. 23, p. 297-320,

Kwakernaak, H. (1976). Asymptotic root leci of multivariable linear optimal
regulations. [EEE Trans. on Aut. Control. AC-21, p. 378-382.

MacFarlane, A.G.]. and Karcanias, N. (1976). Poles and zeros of linear
muitivariatle systems : a survey of the algebraic. geometric and comglex

variable theory. Int. J. Control. Vol. 2+, p. 3374,

O'Malley, R.E. Jr. (1976). A more diract solution of the neariv singula:

linear regulator problem. SIAM I Contsci aand Zor.. Vel 14, p. 1063-:1077.

(129]
and Control, Orlande, FL.
] Hiech-Gain Feedback Svstems
(1l
(2]
(J3]
Vol. 14, p. 1092-1106.
(J+4]
Vol. 23, p. 149-166.
[15]
(18]
(J7!
(18]
(o]

Shaked., U. (1975). Design techniques fcor hign-feedback gain stabilic..

-

Int. J. Control, Vol. 24, p. 137-124,

e e
TP AT S




78

1
4
{
1%
{
[l
1
i
[
b
L
q
O VIR

(J10] Clements, D.J. and B.D.O. Anderson (1977). Transformational solutions of
singular linear-quadratic—control problems. IEEE Trans. on Aut. Control,
AC-24, p. 616-621.

N S ST

(J11] O'Malley, R.E., Jr. (1977). High-gain feedback systems as singular perturbation
problems. Proc. JACC, p. 1278-1281.

(J12] O'Malley, R.E. Jr., and A. Jameson (1977). Singular Perturbations and Singular x
Arcs II. [EEE Trans. Automatic Control, AC-22, p. 328-337.

{J13) Young, K-K.D. (1977). Asymptotic stability of model reference systems.
IEEE Trans. on Aut. Control, AC-22, p. 279-281.

4
[J14] Young, K.D., P.V. Kokotovic and V.I. Utkin (1977). A singular perturbation -
analysis of high gain feedback systems. IEEE Trans. on Aut. Control,

AC-22, p. 931-938.

A A LS 4.

(J15] Dmitriev, M.G. (1978). On a class of singularly perturbed problems of optimal
control. J. Applied Math. and Mechanics, Vol. 42, p. 238-242. -4

(J16] Francis, B.A. (1978). Singularly pertuerd linear initial value problems
with an application to singular optimal control. Proc. IRIA/IFAC Workshop

on Singular Perturbations in Control, Paris, France, p. 59-72.

. . -1
(Ji17] Francis, B.A. and K. Glover (1978). Bounded peaking in the optimal linear ;
regulator with cheap control. IEEE Trans, on Aut. Control, AC-23, p. 608-6i7. ]

(J1s] Harvey, C.A. and G. Stein (1978). Quadratic weights for asymptotic regulator
properties. IEEE Trans. on Aut. Control. AC-23, p. 378-387.

(J19] Kouvaritakis, B. (1978). The optimal root loci of linear multivariable systems.
Int. J. Control, Vol. 28, p. 33-62.

[;20] O'Malley, R.E., Jr., (1978). Singular perturbations and optimal control.

Mathematical Control Theorv. Lecture Notes in Mathematics No. 680.

Springer, New York.

Cwens, D.H. (1978). Dynamic transiormations and the calculation of multivariable

-ter-icci. at. J. Conmtrel. Vol. 28, p. 333-3232,

et .70 00973), Feecback and multivariabie svstems. Peter Peregrinus,

, o < mpiirem
L. ..z.....\..

‘nvanant zet0s and zero directions of mulcivariable linear

171 f2¢0 moces. Int. J. Comirel. Vol. 28, g. S1-91.

v 17 20 omigniegain state-ieedhack controllers for linear

"= ann, Val, 14, 5, 236-27%

(7))
.

ieJ
VPP T W

© o oze=mavicur 2f the rcot loel of muitivariabie

. S s ea
- LIREtTi A=, Z. SZ3 =30,
—

{ , |




(J26]

(J27]

(28]

[129)

(J30]

[J31]

[532]

(J33]

(J34]

(J35]

(J36]

(J37]

(138]

(J39]

79

Utkin, V.I. and A.S. Vostrikov (1978). Control systems with decoupling motions.
Proc. 7th IFAC Congress, Helsinki, 967-973.

Utkin, V.I. and K.D. Young (1978). Synthesis of the switching plane in
multivariable systems with variable structure. Automation and Remote
Control, No. 10, p. 72-77.

Utkin, V.I. and K.D. Young (1978). Methods for construction of discontinuity
planes in multidimensional variable structure systems. Automation and
Remote Control, Vol. 39, p. 1466-1470Q.

Young, K-K.D. (1978). Multiple time-scales in single-input single-output
high-gain feedback systems. J. Franklin Inst., .Vol. 306, p. 293-301.

Young, K-K.D. (1978). Design of variable structure model-following control
systems. [EEE Trans. on Aut. Control, AC-23, p. 1074-1085.

Bradshaw, A. and B. Porter (1979). Design of linear multivariable continuous~
time tracking systems incorporating high-gain decentralized error-actuated
controllers. Int. J. Systems Sei., Vol. 10, p. 961-970.

Francis, B.A. (1979). The optimal linear-quadratic time-invariant regulator
with cheap control. [EEE Trans. on Aut. Control, AC-24, p. 616-621.

Kouvaritakis, B. and J.M. Edmunds (1979). A multivariable root loci :

2 unified approach to finite and infinite zeros. Int. J. Control, Vol. 29, p. 393—2S.

Porter, B. and A. Bradshaw (1979). Design of linear multivariable continucus-time
tracking systems incorporating high-gain error-actuated controllers.
Int. J. Svstems Sci., Vol. 10, p. +51—369.

Porter. B. and A. Bradshaw (1979). Asymptotic properties of linear multivariable
continuous-time tracking systems incorporating high-gain error-actuated con:rollers.
Int. |. Svstems Sci., Vol. 10, p. 1433-1142,

Stein, G. (1979). Generalized quadratic weights for asymptotic regulator
properties. IEEE Trans. on Aut. Control, AC-24, p. 559-363.

Owens, D.H. (1980). Multivariable rcot loci : an emerzing design tcol.

University of Sheffield Pregrine.

Owens, D.H. (1980). On the comgutation of optimal system root loci.
I[EZEZ Trans. on Aut. Contrel, AC-15, 2. 100-101.

Porter, 8. (1980). Transmission zercs of linear muitivariacie plaats witn

parasitics. Electrenies Letz., Vol. 16, p. 679-530.

Dragan, V. andé A. Haiznay (1981). Cheap contrsi and singularly perturted mar:ix

Riccati differential equations. Rev. Raoum. Mat:, 2uses e Al 2§, 2120,

-4

.. , -
P S

-




80

(Ja1] Grimble, M.]. (1981). Design of optimal ocutput regulators using multivariable
root loci. Proc. [EE, Vol. 128, Pt. D, p. 4139,

(Ja2] Johnson, M.A. and M.J. Grimble (1981). On the asymptotic root-loci of linear
multivariable systems. Int. J. Control. Vol. 34, p. 295-314.

(J43] Kimura, H. (1981). A new approach to the perfect regulation and the bounded
peaking in linear multivariable control systems. [EEE Trans. on Aut. Control,
AC-26, p. 253-270.

(144} Porter, B. (1981). High~gain tracking systems incorporating Lur'e plants
with multiple nonlinearities, Int. J. Control, Vol. 34, p. 333-344.

{Jas] Shaked, U. and B. Bobrovsky (1981). The asymptotic minimum variance estimate

of stationary linear single output processes. IEEE Trans. on Aut. Control,
; AC-26, p. 498-504.

[ [J46] Willems, J.C. (1981). Almost Invariant Subspaces; An Approach to High Gain

f‘_ Feedback Design, Part I : Almest Controlled Invariant Subspaces.

; IEEE Trans. Aut. Control, AC-26, p. 235-252.

- (Js71 Hung, Y.S. and A.G.]J. MacFarlane (1981). On the relationships between the
: unbounded asymptote behaviour of multivariable root loci, impulse response and
m infinite zeros. Int. J. Control, Vol. 34, p. 31-69.

- {j+8] Grasman, J. (1982). On a class of optimal control problems with an almost

cost-free solution. [EEE Trans. on Aut. Contral, AC-27, p. 4341345,

{ [J49] Khalil, H.K. and A. Saberi (1982). Decentralized stabilization of nonlinear

E interconnected systems using high gain feedback. IEEE Trans. on Aut. Control,
L AC-27, 265-268.
X (Js0] Kimura, H. (1982). Perfect and subperfect regulation in linear multivariable
}. control systems. Automatica, Vol. 18, p. 125-145.
(J51] Parter, B. (1982). Design of non-undershooting linear multivariable high-~gain
servomechanisms. Int. J. Control, Vol. 35, p. 189-191.
[J52] Shaked, U. (1982). Singular and cheap optimal control : the minimum and
e non-minimum phase cases. IEEE Trans. on Aut. Control, AC-27, to be published.
p
(J52] Willems, J.C. (19382). Almost invariant subspaces : an acproach to high 3zzin
feedback design - Farr II : Almost conditionally invariant subscaces.
3 I[EZE T:rans. on Aut. Control. AC-27, p. 1971-1084.
]
b {134 Young, K.D. (1982). Near insensitivity of linear {eedback svstems.
Jo Franklin [nst., Vol 31<, o0 12G.132,
(j3s] Young, K.D. (1982). Disturban:: gecoupling Sv nign zain feedback.
¢ [EET Trans. on Aut. Control. AC-I7, p. 970-371.
1 (155 Young, K.D. and P.V. Koxotovic (1982). Anaiysis of feedtack lcop interacrtions
with actuator and sensar sarasitics. dutomatica, | 7,
| N .

NIV U ST SIS SN OO TN TUIRE e



,_-—wyi';'

i

Y TSV

AR A d o4 aribive

Yy

sl

81

Al Sl Jesmad Jana 3 L e T, wT PO Bbiah i - . T e v W W T W N W N e TR R A N S V.r*.rj'.ﬁ.*.T
4
<
<

Young, K.D. and H.G. Kwatny (1982). A variable structure servomechanism
design and application to overspeed protection comtrol, Automatica, 18, p. 385-400.

Zinober, A.S.l., O.M.E. El-Ghezawi and S.A. Billings (1982). Multivariable
variable-structure adaptive model-following control systems. Proc. IEE,
O'Reilly, J. (1983). Parcial cheap control of the time-invariant regulator.
Sannuti, P. (1983). A direct singular perturbation analysis of high-gain and

Sannuti, P. and H. Wason (1983). A singular perturbation cancnical form of

Sastry, S.S. and C.A. Desoer (1983). Asymprtotic unbounded root-loci formulae
and computation. Proc. IEEE Conf. cn Decision and Control, Vol. 1, p. 120-122.

Alden, R.T.H. and P.J. Nolan (1976). Evaluating alternative models for power
system dynamic stability studies. [EEE Trans. on Power Apparatus and Svst.

Sannuei, P. (1976). Use of singular perturbation methods to formulate elec:rical

Descer, C.A. (1977). Distributed networks with small parasitic elements :
input-ocutput stability. [EEE Trans. on Circuits and Systems, CAS-24, p. 1-S.

Chow, J.H., l.J." Allemang and P.V. Kokotovic (197S). Singular Perzurbation

Analysis of Systems with Sustained High Frequency Oscillations. Auctomatica.

Sannuti, P. (1978). Singular perturbations in the state space approach of elec:rical
networks. Proc. of the IFAC/IRIA Worksnoo on Singular Perzurbations in Contsal.

Kirueni, G. Yadzeni, H. and R. Newcemb (1980). A hystaresis circuit seen :nrzugs

. ~ear Svma., Tolada. Ohie.

Sastry, S.. and s Varaiva (1930). Hierarchical stasiiity and 2ierr state steering
Z 7

(Jss]

Vol. 129, Pt. D., p. 6-12.

(sl
Int. J. Control.

(J60]
cheap control problems.

(J61]
invertible systems : determinaction of multivariable root loci.

(J62]

K) Time Scales in Networks & Power Svstems

(K1]

PAS-95, p. 43340,

(k2]
network equa_.tions. Rocky Mountain J. Math, Vel. 6, p. 709-710.

(3]

(k4]

Vol. 14, p. 271-279.

{Kz]

France, p. 137-150.

(K6] Avramovic. B., P.V. Kokotovie, [.R. Winkelman and J.H. Ciow, (1980).
Area decomposition of electromechanical maodels of pewe: systams.
Automatica. Vol. 18, p. 637528,

(7]
sami-state equations. frce. Midwest Cirguis

(3]
centroi of power systems. [ZZZ Trans. cn Circuizs & Svstams, O3

(X3!

Winkelman, [.R.. [.H. Crow, [.]. Allemonrz anc P.V. Kcxatovic (S50,

Multi-time-scale analysis cf 2 powar svstam. 2utz=—atiea. Vai. 16, 2. 1

aad

-9

Ao s A4 s 4




LA SR g .
v
1@

(K10}

(K11]
(K12}
(K13]
(K14]
(x15]
[k16]

(x17]

(K18]

(x19]

L)

82

Matsumoto, T., Chua, L.O., Kawakami, H. and S. Ichiraku (1981).
Geometric properties of dynamic non-linear networks : transversality, local-
solvability, and eventual passivity. IEEE Trans. Circuits and Systems,
CAS-28, p. 406-128.

Newcomb, R.W. (1981). The semi-state description of non-linear time-variable
circuits. IEEE Trans. on Circuits and Systems, CAS-28, p. 62-71.

Peponides, G. (1981). Two time scale modeling via physical considerations.
Proc. of the 15th Asilomar Conf. on Circuits, Systems and Computers.

Peponides, G. and J.H. Chow (1981). Area aggregation of network systems.
Proc. of IEEE Conf. on Dec. and Control, p. 206-214.

Sannuti, P. (1981). Singular perturbations in the state space approach of linear
electrical networks. Circuit Theory & Appl., Vol. 9, p. 47-57.

Kokotovic, P.V., B. Avramovic, J.H. Chow and J.R. Winkelman (1982).
Coherency-based decomposition and aggregration. Automatica, Vol. 17, p. 47-36.

Sastry, S. and P. Varaiya (1981). Coherency for interconnected power systems.
IEEE Trans. on Aut. Control, AC-26, p. 218-226.

Winkelman, [.R., J.H. Chow, B.C. Bowler, B. Avramovic, and P.V. Kokaotavic (1981).
An analysis of interarea dynamics of multimachine syscems. IEEE Trans. on
Power App. and Systems, Vol. 100, p. 754-763.

Peponides, G., P.V. Kokotovic and J.H. Chow (1982). Singular perturbations and
time scales in nonlinear models of power systems. IEEE Trans. on Circuits and
Svstems, CAS-29, No. 1l1.

Chow, J.H., et al. (1982). Time Scale Modeling of Dvnamic Networks, Sarinqer-
Verlag, Lacture Notes in Contzol and Iafor=acticn Sciences, Vol, 47.

Ageragation of Markov Chains

(L1]

(L2]

(L3]

[aha Y
il
te
—

Pervozvanskii, A.A. and [.N. Smirnov (1974). Stationary state evaluation of

a complex system with slowly varying couplings. Kibernetika, No. 4, p.45-51.

Gaitsgori, V.G. and A.A. Pervezvanskii (1975). Aggregation of states in a
Markov chain with weak interactions. Kibernetika. No. 3, p. 91-98.

Delebecgue, F. and J.P. Quadrat (1978). Contribution of stochastic ccnt:al
singular perturbation averaging and team theories to ax example of large
scale systems : Management of Hvdrogower Preduction. [EEZ Trans. on
Aut. Conerel AC-23, p. 209-222.

Delebecque, F. and J.2. Quadrar (1980). The optimai cost expansica of finjra
centrols. finite state \Markov cnains with weak and strong interactions. Aaalvsis
, —13.3:2

and Qocimizaticn of Svscams. Lacture Notes in Control and lnformation Scierces

23, Springer Vertag.

N WP




ad

+

b
o
b
L;
~.

T

i

TNV Y

T—

..........

83

L™

”
e

{Ls] Gaitsgori, V.G. and A.A. Pervozvanskii (1980). On the optimization of weakly
controlled stochastic systems. Sov. Math. Dokl. Vel. 21, p. 408-$10.

(L6] Javid, S.H. (1980). Nested optimization of weakly coupled Markov chains.
Proc. 18th Allerton Conf. on Communication, Control and Computing,
Univ. of Illinois, p. 881-890.

(L7] Pervozvanskii, A.A. and V.G. Gairsgori (1980). On aggregation of linear control
systems. Autom. and Remote Control, No. 8.

{Ls] Quadrat, JP. and M. Viot (1980). Product form and optimal local feedback
for multi-index Markov chain. Proc. 18th Allerton Conf. on Communication,
Control and Computing, Univ. of [llinois.

(L9} Sauer, C.H. and K.M. Chandy (1980). Approximate solution of queueing
models. Comout., p. 25-32.

{L10] Teneketzis, D., S.H. Javid and B. Srichar (1980). Control of weakly coupled
Markov chains. Proc. [EEE Conf. on Decision and Centrol, Albuquerque,
New Mexico.

{Li1:] Delebecque, F. and J.P. Quadrat (1981). Optimal centrol of Markov chains
admitting strong and weak interactions. _Autormartica 17, p. 281-296.

L12) Delebecque, F. , J.P. Quadrat, and P.V. Kokotovic (1981). Aggregability
of dynamic systems and lumpability of Markov chains. Proc. of IEEE Corf.
on Dec. and Contral, p. 199-203.

{L:3]  phillips, R.G. and P.V. Kokotovic (1981). A singular perturbation approach
to modelling and control of Markov chains. [EZE Trans. on Aut. Control
Ac-26, p. 1087-1094.

fris] Phillips, R.G. (1982). Near-optimal policies for large-scale Markovian decisica
processes. [FAC Workshop on Singular Perturbations and Robusiness of
Control Systems, Ohrid, Yugoslavia, 13-15 July.

M) Multimodeling and Stabilitv of Larze Scale Severams

[M1] Grujic, L.T. (1976). Veczor Lyagunov fuacticns and singula:ly sertussed
large scale systems. Proc. JACC. <09-=16.

(m2] Grujie. L.7. (1977). Converse lemma and singularly gersursed lacze scals
systems. Proc. IACC, p. 1.07-1112.

(M3] Geujic. L.T. (1878). Singular perrusdaticns. uziferm asvmststic staziiics
and large scaie syvstams. Prce. JACS. p. 339327,

(M)

Xhalii, H.X. and 2.V. Kakeeovie (1973). Caatsal era:
maxers sing diflerent models ci tne sam !
Cenersl, AC-23, 236263,

3
[
.
.',;
)
[
)

AR R RSV
¢ A8 e g .

v
i .
PTG - PRv Y U B N

Il

'

LT N

-
H




v

A A % AR s on

{M5]

(M6}

[Mm7]

{(Ms8]

[M9]

(M10]

(M11]

{M12]

[M13]

(M14]

(M15]

(M16]

{M17]

(wm13]

(\19]

[M20]

84

Grujic, L.T. (1979). Singular perturbations, large scale systems and asymptotic
stability of invariant sets. Int. J. Svstems Science. 12, 1323-1341.

Khalil, H.K. (1979). Stabilization of multiparameter singularly perturbed
systems. [EEE Trans. on Aut. Control, AC-24, 790-791.

Khalil, H.K. and P.V. Kokotovic (1979). Control of linear systems with
multiparameter singular perturbations. Automatica. 15, 197-207.

Khalil, H.K. and P.V. Kokotovic (1979). D-stability and multiparameter
singular perturbations. SIAM J. Control and Opt., 17, 56-65.

Bzg'dner, U. (1979). Near-optimal control of composite systems : the
multi-time scale approach. IEEE Trans. on Aut. Control, AC-24. 652-655.

Khalil, H.K. (1980). Multimodel design of a Nash strategy. J. Qot. Theorv
and Aopol., 31. 553-364.

Khalil, H.K. and P.V. Kokotovic (1980). Decentralized stabilization of
systems with slow and fast modes. _J. Large-Scale Svstems. 1. 141-147.

Coderch, M. et al. (1981). Hierarchical aggregation of linear systems
with multiple time scales. Proc. IEEE Conf. on Decision & Control, Vol. 3,
p. 930-935,

Grujic, L.T. (1981). Uniform asymptotic stability of nonlinear singularly
perturbed general and large-scale systems. _Int. J. Control. 33, 481-504.

Khalil, H.X. (1981). Asymptotic stability of a class of nonlinear multiparameter
singularly perturbed systems. Automatica. 17. 797-304.

Kokotovic, P.V. (1981). Subsystems, time-scales and multimodeling.
Automatica. 17, 789-795.

Saksena, V.R. and J.B. Cruz, Jr. (1981). Nash strategies in decentralized
contrel of multiparameter singularly perturbed large-scale systems.
J. Large-Scale Svstems. 2. 219-234.

Khalil, H.X. (1982). On the existence of positive diagonal P such that

Pa - .-\TP<O. [EZE Trars. on Aut. Controi. AC-27, 181-184,

Saksena, V.R. and J.B. Cruz, Jr. (1982). A multimocel apprcach to stochastic
Nash games. Automatica. 13. 293-30:.

Saksena, V.R. and T. Basar (1982). A multimodel approach :0 stochastic
team problems. Automatica. !3. (to acpear).

Singh, Y.P. (1982). \Multiple time analvsis of coucied ncn-linear svsteams.

Int. J. Contrzl, Vol. 26, p. 99-107.

. HN
Aaa i andiace

Laem. Aaa A A A o sk oad . A

.
ae.Acaa ass ‘s ko



| are S e —asacane

.

.

-

-
!

o

3

Gardner, B.F., Jr., (1977). Zero sum strategy for systems with fast and
slow modes. Proc. 15th Allerton Conf. on Communciation, Coatrol and Comouting,

Gardner, B.F., Jr., J.B. Cruz, Jr., (1978). Well-posedness of singularly perturbed
Nash games. J. Franklin Inst., Vol. 306, No. S, p. 355-374. .

Khalil, H.K., B.F. Gardner, Jr., J.B. Cruz, Jr., and P.V. Kokotovic (1978).
Reduced~order modelling of closed-loop Nash games. Proc. IRIA/IFAC Svmp.

Cruz, J.B., Jr. (1979). On order reduction for models of Nash and Stackelberg
differential games. 1979 Int. Symp. on Circuits and Svstems, Tokyo, Japan.

Khalil, H.K. and P.V. Kokotovic (1979). Feedback and Well-Posedness of
Singularly Perturbed Nash Games. IEEE Trans. Aut. Control AC-24, p. 6§99~708.

Salman, M.A. and J.B.Cruz, Jr. (1979). Well posedness. of linear closed Stackelberg

strategies for singularly perturbed systems. J. Franklin. [nst., Vol. 308, No. 1, p. 25-37.

Farber, N. and J. Shinar (1980). Approximate solution of singularly perturbed
nonlinear Pursuit-Evasion games. [. Qot. Theary and Appl., Vol. 32, p. 39-73.

Farber, N. and J. Shinar (1980). Approximate solution of singularly perturbed
nonlinear Pursuit-Evasion games between two airplanes in a horizontal plane.

AIAA Paper No. 80-1597, Prcceedings of the Atmospheric Flight Mechanics

Khalil, H.K. and J.V. Medanic (1980). Closed-loop Stackelberg strategies
for singularly perturbed linear quadratic problems. [EEE Trans. on Aut. Cont:ol

Farber, N. and J. Shinar (1981). A variable modeling approach for singularly
perturbed Pursuit-Evasion problems. 23rd Israel Annual Conference on Aviaticn

Ozguner, U. (1982). Near-Nash feedback cont:ol of a compesite sysiem with

a time-scale hierarchy. [EZE Trans. on Svstems. \Man and Cvbernecics,

Shinar, J. (1981). Solution techniques for realistic pursuit-zvasien games.

Advances in Contral and Dvnamic Svstems. C.7. Lecndes, Ed., Voi. 17.

85

N)  Singularlv Perturbed Differential Games
(N1]

Univ. of Illinois, Urbana, p. 96-103.
[N2]
(N3]

on Systems Optimization and Analysis, Paris, France.
(Na)
[Ns5]
[(N6]
(N7]
[Ns]

Conference, Danvers, MA., p. 337-347,
(N9]

AC-25, p. 66-71.
(N10]

and Astronautics.
[Nit]

SMC-12, p. 62-66.
(N2

Academis Press, New York, p. 63-il4.
N3]

Sninar. J.. N. Tarber and M. Negrin (1982). A three dimensiornal air comb=a:

game analvsis by fcrced singuiar perturdations. A[AA Paper No. 32-1327,

~-

9th Flizhe Mechanies Coni.. San Diega. CA.

i -

y—y . .

.
PRI S P I ey

ot .
P PP ) . dhenshed

ata s .4

R S SR VIR U PUPONPY S




86

O) _ Singular Svstems ]
[O1] Gear, C.W. (1971). Simultanecus numerical solution of differential-algebraic 1
equations. IEEE Trans. on Circuit Theory, CT-18, p. 89-95. R
{02] Vasileva, AB. (1975). Singularly perturbed systems containing indeterminacy 1
in the case of degeneracy. Soviet Math. Dokl.. Vol. 16, p. 1121-1125. :
3 {03] Liniger, W, (1979). Multistep and one-leg methods for implicit mixed differential~ .j
algebraic systems. [EEE Trans. on Circuits and Systems, CAS-26, p. 755-762. %
1 {O4] Schaar, R. (1976). Singularly perturbed conservative systems. Rockv Mountain kK
r .
| J. Math., Vol. 6, p. 711-723. 5
4 ‘ {05] Vasileva, A.B. (1976). Singularly perturbed systems with an indeterminacy :ti
b A
= in their degenerate equations. Differential Equations, Vol. 12, p. 1227-1235. -3
i‘ [O6] Campbell, S.L. (1977). Linear systems of differential equations with singular :
- coefficients. SIAM J. Math. Anal., Vol. 6, p. 1057-1066. ‘
p .
o (O7] Lebovitz, N.R. and R.J. Schaar (1977). Exchange of stabilities in autonomous
systems, II. Vertical bifurcation. Stud. Appl. Math., Vol. 56, p. 1-50.
m {O8] Luenberger, D.G. (1977). Dynamic equations in descriptor form. ‘1
IEEE Trans. on Aut. Control. AC-22, p. 312-321. 3
3 . -
t’ [(09] Luenberger, D.G. and A. Arbel (1977). Singular dynamic Leontief systems. *
E Econometrica, Vol. 45, p. 991-995. .
4
[C:6] O'Malley, R.E., Jr. and J.E. Flaherty (1977). Singular singular perturbation .
problems. Singular Perturbations and Boundary Layer Theory, Vol. 394,
Springer-Verlag, p. 422-36.
:‘ (O11] Campbell, S.L. (1978). Singular perturbation of autonomous linear systems Il. o
: J. Diff. Egne., Vol. 29, p. 362-373. :
(O12] Campbell, S.L. and N.J. Rose (1978). Singular perturbation of autonomous
. linear systems Ill. Houston J. Marth.. Vol. 4, p. 527-539.
q
1 (O13] Luenberger, D.G. (1978). Time-invariant descriptor systems. Automatica. ‘1
t Vol. i4. p. 47330, !
| (Ot+] O'Malley, Jr., (197C). On singular singularlv-perturbed ipitial value proolems. 1
* Acolicable Analvsis. Vol. 8, p. 71-31. 1
] .
LO15] O'Malley, R.E.. Jr. (1973). Partially singular control preblems as singuiar ;
singular perturbation crotlems. Prec. Tth [FAC Congress., Helsinki, p. $37-261. ,
{
: {O18] Camgoeil. S.L. (1979). Nonreguiar sing:lar dvnamic Leontief svstems. 1
;‘ gconnmerrica, Vel. 47, o, 136%-1363. A
‘!
|
L L — - < o




—r

e

87

v
(-
4
-
¥

:
L

(017] Campbell, S.L. (1979).

On a singularly perturbed autonomous linear control

. problem. IEEE Trans. on Aut. Control, AC-24, p. 115-116.
L {O18] Campbell, S.L. and N.J. Rose (1979). Singular perturbation of autonomous
;‘G linear systems. SIAM J. Math. Anal., Vol. 10, p. §42-551.
\ [019] O'Malley, R.E. Jr., (1979). A singular singularly-perturbed linear boundary
; value problem. SIAM J. Math. Anal., Vol. 10, p. §95-708.
[029] Verghese, G., P. Van Dooren and T. Kailath, (1979). Properties of the system _
matrix of a generalized state-space system. Int. J. Control, Vol. 30, p. 235-243. :_
[021] Young, K.D. (1979). Feedback design of singularly perturbed systems. w
Proc. 17th Allerton Conf. on Commun., Control and Computing, lllinois, p. 44954, j
[022] Campbell, S.L. (1980). Singular linear systems of differential equations with
delays. Applicable Analvsis, 11, p. 129-136. s
{023] Favini, A. (1980). Controllability conditions of linear degenerate evolution systems. :’T
Applied Math. & Optimiz., Vol. 6, p. 153-168. .
[024] Pandolfi, L. (1980). Controllability and stabilization for linear systems of algebraic }
and differential equations. J. Opt. Theory and Apol.. Vol. 30, p. 601-620. °)
{o25] Young, K.D. (1980). Analysis of singular singularly-perturbed systems. 3
Proc. 18th Allerton Conf. on Commun.. Control and Comnouting, ‘;
Illinois, p. 116-121. s
[026] Campbell, S.L. (1981). A more singular singularly perturbed linear system. :
IEEE Trans. on Aut. Control, AC-26, p. 507-510. 1
[027] Camgbell, S.L. (1981). A procedure for analyzing a class of nonlinear semistata :
equations that arise in circuit and coantrol problems. [EEE Trans. on Circuits 3
and Svstems, CAS-28, p. 256-261. :
o o .
b (028] Camptell, S.L. (1981). On an assumption guarantzeing bourdary layer ccrnvergence
f of singularly perturbed systems. Automatica, Vol. 17, p. 645-646.
[ [029] Campbell. S.L. and K. Clark (1981). Order and incex of singular time-invarian: 4
}. linear systems. Svstems and Centrol Letters. 1, 119-122,
- -4
E‘ [0z20] Copoe. D. (1921). Feedback and Pole Placement in Descriptor Variable Systems. ]
E_ : fne. ! Ceattol. Voi. 33, p. 1133-1136. ]
}_ (o3t Pandolfi, L. (i981). Cn the regulator problem for linear degenerats conisoi ]
E. svsiems. Jot. Theorv ancé Ascl. Voi. 33, p. 241-134, 1
l‘ (Qiz] Sincovec, R.7. et al. (1981). Analysis of descrigtor svstems using rumerical “{
)
L aigerienms, [EZZ Trams. on Aut. Control, AC-25, p. 139-i<7,
o |

A _




v

-

(033]

(034]

[035]

(036]

[037]

(038]

{039]

[040]

[041]

{042]

[043]

88

Van Dooren, P.M. (1981). The generalized eigenstructure problem in linear system
theory. IEEE Trans. on Aut. Contral. AC-26, p. 111-129.

Yip, E.L. and R.F. Sincovec (1981). Solvability, controllability and observability
of continuous descriptor systems. IEEE Trans. on Automatic control,
AC-26, p. 702-707.

Verghese, G.C., B.C. Levy and T. Kailath (1981). A Generalized State Space
for Singular Systems. [EEE Trans. on Aut. Control, AC-26, p.- 811-831.

Campbell, S.L. (1982). Higher index time-varying and nonlinear singular systems.
IFAC Workshop on Singular Perturbations and Robustness of Control Svstems.

Ohrid, Yugoslavia, 13-16 July.

Campbell, S.L. and N.J. Rose (1982). A second-order singular linear system

arising in electric power systems analysis. Int. J. Systems Sci., Vol. 13, p. 101-108.

Cobb, D. (1982). On the solution of linear differential equations with siagular
coefficients. J. Differential Equations (to appear).

Cobb, D. (1982). Descriptor variable systams and optimal state regulation.
IEEE Trans. on Aut. Control, (to appear).

Francis, B.A. (1982). Convergence in the boundary layer for singularly
perturbed equations. Automatica. Vol. 18, p. §57-62.

Gear, C.W. and L.R. Petzold (1982). Differential/algebraic systems and matrix
pencils. Lecture Notes in Mathematics , Vol. , Springer-Verlag.

Wilkinson, J.H. (1982). Note on the practical significance of the Drazin inverse
in Recent Aoolications of Generalized Inverses. S.L. Campbeil Ed., Pitman.

Fletcher, L.R. (1983). Pole assignment in degenerate linear systems.
Linear and Multilinear Algebra, Vol.

ADDITIONAL RETERINCES

(330]

{zlo}

3laakenship, G. L. (1982). Scaliag and 5i
diffaranzial equations. 32Proc. 2lsc IZE
Qrlando, TL.

Yaunz, X-X. 2. (31982). Scace-space decompositions far linear singularsly
sergurbac sgvstanms. Proe. 2lst 1ZZZ Conf. on Decision amd f3mITol,

Orlande, L.

lancrineera, T. A. and L. M, Silvarman (1983). A nmew ser ¢
fac Limear srstams--aoplicazion o raducsad-order compensald

ITTT Te3=s. om Auctomaciz Zaonsvol, Wel. AC-l13.

LI Fove .
Benndhadhodcnci aan s

S B
i aghn

-

WU R PN







