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The role of information structures in some Nash and Leader-

Follower games is examined. By preserving the informatio~n structure of the

full order singularly perturbed game, while solving the reduced order ones,

reduced order near optimal strategies are obtained and well-posedness is

shown for two classes of Leader-Follower games. Decision-dependent information

3 structure is employed in both Nash games and optimal coordination problems

and two market models of duopoly with this type of information structure are

extensively analyzed and examined. Finally, sufficient conditions for

existence of the solutions of both the stochastic optimal coordination problem

* with decision-dependent information structure and the stochastic Leader-

* Follower team problem with partial decision-dependent information structures

are developed.
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CHAPTER 1

INTRODUCTION

* 1.1. Motivation and Backzround

In a world complicated by competing multi-national corporations and

* vast informational data bases stored in high-speed computers, the need for

optimizing large scale economic systems has gained considerably in importance.

* It is thus no surprise that hierarchical engineering solutions to problems of

* this nature have attracted a great dIeal of attention from researchers in the

past several years. In particular, the theory of games provides formalization

of many basic problems in large scale systems, i.e., problems characterized

as having several decision makers acting on different sets of information with

U possibly conflicting goals.

The appearance of the "Theory of Games and Economic Behavior" by

* J. V. Neumann and 0. Morgenstern (1] gave the impetus for research in game

* theory. Although the importance of the theory of games was initially

* recognized almost exclusively in economics, its usefulness and recognition as

a challenging area of research is established today in mathematics, engineering,

economics, sociology, and political science.

A basic feature of the theory is that in solving a game theoretic

* problem, one is faced not with a conventional minimization (maximization)

problem, but with a conceptually different situation altogether. This might

be expected, however, since the outcome of a decision maker depends not only

on his own actions and chance, but also on complicated interactions with

other decision makers. The theory of games can be viewed as a generalization

* of centralized and decentralized control oroblems. since most of the questions



2

U posed in control theory can be considered in a game theoretic framework, but

* their solution is usually more difficult. The generality and unification of

several special cases which characterize game theoretic results, help to

*counterbalance the difficulties encountered in finding them.

Game theory reduces the ingredients in a formalization of the game

problem to seven essential elements.

1. The players involved in the game (there may be only two, or possible more

players).

2. A description of the interaction both among the players and the players

with the system. (In a dynamic setting, a difference or differential

equation describes this situation.)

* 3. The information structure of each player, describing an "information space"'

which contains the precise information gained or recalled by the player at

every stage of the game.

4. The decision space (of alternative course of action) for each player.

5. The admissible strategies of each player, defined as mappings from the

information space into the decision space.

6. The objective function of each player.

7. A rational equilibrium solution concept which takes into account the

relative power of each player and the hierarchical structure of the

decision process.

Two solution concepts which are of particular interest here are

the so-called Nash and Leader-Follower (LF) games, (see [30],31 ). A

general description of Nash and LF games may be given as follows. Let and

7- be the spaces of admissible strategies for player one and player two,
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iI respectively, with y1 e r and 2 e r2 . Let Jl(ylY 2 ) and J2 (Y1 ,y 2 ) be the

• corresponding cost functions of the two players. A Nash equilibrium solution

is defined as follows:
0 0

- Definition of a Nash equilibrium: 10) is'an equilibrium Nash solution if

and only if

J1(YlY2 )  :S Jl(1 ,1Y2)

and (1.1)
2(YIly2 :S J2(YlY 2

so a Nash equilibrium solution assumes that if one player minimizes on the

basis that the other player's strategy is known and it is at equilibrium

then the first player will find his optimal strategy at equilibrium.

*To define the LF equilibrium, we need the following definition: The

rational reaction set of the follower (player two) to the permissible strategies

of the leader (player one), D2 (y1) is

D(y I ) =jy*E F such that J2(Y*,y <

Y2
E r 2 and each y1}.

Definition of the LF equilibrium: A permissible pair of strategies

(Yer i , y*E 2(yI)) is said to be in global LF equilibrium, with player one

as a leader, if

Jl(Y*,Y2) J(Yl,2 )

for all pairs 2
{'y 1 .1, Y2e D (yI)f.

Nash game describes a situation of conflict where the two players do not

trust each other and do not cooperate, but each player assumes that the other



one will act in a rational way. The two players are assumed to declare, but

not necessarily apply, their strategies simultaneously, and both players know

* rI, r2 P Jl, and J2 " The LF game formalizes the situation where the follower

tries to minimize J2 for a given choice of y1 e r 1 by the leader. The leader,

who wants to minimize J1 ' knowing the rational reaction of the follower and

having the power to declare his strategy first, wishes to announce a strategy

Y* which achieves the minimum possible J The leader must know rI, r Jl'
1 1 1 2'

and J2 ' but the follower knows the strategy y* (not the strategy value), 2

and J2"

The LF solution concept was first introduced by von Stackelberg (3]

within the context of economic competition. It was generalized to the dynamic

game case by Chen, Cruz, and Simaan ([4],(5],[6]). There are different types

of LF strategies, (a) open-loop strategies, (b) feedback strategies, and

(c) closed-loop strategies. References [5] and (6] provide discussions of

pthese various types; however, we will confine our attention primarily to the

closed-loop type. It was thought for a long time that the solution of closed-

loop strategies would be impossible to obtain, but recently several successful

attempts have been made in this direction, see (16], [18], and [26]. In [18]

and [26] a new and important class of LF games of the closed-loop type has

been defined and developed. In this class the leader achieves his global

optimal payoff. In other words, the leader is able to induce the follower to

play with him as a team, even though the follower optimizes his objective

function.

The information gained or recalled by each decision maker (DM)at _ver-:

s:aqe of the game (the information structure), is crucial to the solution of



the game. For a given information structure, each DM tries to find his

optimal strategy (where optimality is defined according to the solution concept

adopted by the DM). A different information structure will generally require

a different optimal strategy, and hence may result in a different payoff.

This leads to a natural way for comparing two information structures in

terms of the maximum payoff that can be achieved through their use. For a

detailed discussion of information structure and its value, the reader is

referred to (44] and [48]. In problems involving a single decision maker, the

more information the DM has, the better off he is; but, for problems with

many decision makers this is not generally true, as was shown in [54,55,57]

within the context of Nash games.

1.2. Contribution and Outline of the Thesis

In this section we will outline the results of our work, relate

them to other existing ones, and point out our contributions.

In this thesis we consider two important aspects of information

structures in Nash and LF games. These two aspects are preservation of

information structure and decision-dependent information structure. By

* preserving the information structure of the full order game, while solving the

reduced order ones, we obtain reduced order solutions which are equivalent to

* the full order ones. But by using decision-dependent information structure.

* we obtain solutions which are usually different from but more desirable than

the solutions obtained by using normal information structures; in particular.

in LF games, by using decision dependent information structure, the leader



6

U can, under certain conditions, achieve any feasible solution he desires for

the game.

In Part One of the thesis, we show that by preserving the informa-

tion structure of the full-order singularly-perturbed LF games, while solving

the reduced-order ones, reduced-order and near-optimal strategies are obtained

and well-posedness is achieved.

Singular perturbation technique is used to decrease the order of

the system, and hence reduce computation and alleviate the numerical

"stiffness" in the problem. Alternatively we can regard the model reduction

as a simplification in desiring to obtain approximate strategies which are

asymptotically optimal but which involve significant reduction in computation.

*A fundamental question is whether the resulting reduced optimization function

is, in the limit, equal to the full order optimization function for each

player as u tends to zero. In linear quadratic control problems the reduced

and the full order optimization are equal in the limit as u tends to zero, i.e.

the usual singularperturbation procedure is well-posed [9]. However, in games

Sthis is not generally true, as was shown by a counterexample in [10]. When

the usual singular perturbation procedure leads to an ill-posed solution, it is

desirable to seek a modified procedure which is well-posed. Such well-posed

order reduction have been obtained for linear quadratic Nash games [10].

Cases for which the usual singular perturbation leads to a well-posed solution

have been reported in [22].

In Chapter 2 the well-posedness of linear closed-loop LF strategy

is considered. When the space of closed-loop LF strategies is consti'ained to

be a linear function of the state variables, it was found [8] that such

linear strategies do not exist because some gain matrices depend on the



7

3initial conditions. But by assuming that the initial conditions are

randomly distributed and averaging the performance indices over these

initial conditions, linear closed-loop LF strategies were obtained. In [11]

'p a linear closed-loop LF strategy as described in (8], was considered, and it

was shown that if we restrict the space of strategies to be taken from the

slow variable only, we obtain a well-posed formulation. In [56] and in this

chapter, we consider the linear closed-loop LF strategy when both the slow and

the fast are available for measurement. This information structure is different

from the one in (11]. We introduce a method by which we can find strategies

using reduced order systems such that if we apply these strategies to the

full order system, the resulting cost functions will have the same limits as

the cost function for the same full order systems if the full order optimal

strategies are applied. Preserving the information structure of the full order

problem is the basic feature of our procedure. In Chapter 3 we consider team

p LF games for singularly perturbed systems. We d.osign a well-posed method to

obtain reduced order near optimal strategies. In this method, we solve two

* subgames, one for the fast modes and the other for hybrid slow modes (hybrid

because the fast gain is imbedded), under the constraint that the information

structure of the full order problem is preserved. We also show that the

* sufficient conditions for existence of a team LF solution for the reduced order

games is equivalent to those of the full order one in the limit as ', tends to

zero.

In Part Two of this thesis, decision-dependent information

structure (DDIS) is employed in some classes of Nash and UF games. We intro-

duce and analyze two new mnodels of duooly with this type of DDIS and we give

sufficient conitions for the existence of the solution of two classes of



8

stochastic team-LF games with DDIS. In Chapter 4 we consider Nash games with

DDIS and introduce a market model of duopoly. Although the concept of DDIS

in Nash games is not new (see [38] for example) our analysis and approach

are different. In Section 4.2 we formally define the equilibrium Nash

. solution with the two types of information structure and we give two examples

which clarify the basic ideas in this section. In Section 4.3 we consider a

general static market model of duopoly and derive the necessary conditions for

the supply adjustment controls of both firms to be optimal in the Nash sense

6for the two types of information structure. Then we analyze, in detail, the

*- special case of a linear market demand relation and quadratic cost function.

In Section 4.4 we generalize the concept of DDIS to multistage dynamic games,

g and we give sufficient conditions for existence of the Nash equilibrium

solution with DDIS for the discrete linear quadratic problem.

In Chapter 5 we consider DDIS as the incentive mechanism (we refer

the interested reader to [40],[41],[42] for discussions on the incentive

problem), which is used by the leader to induce the Nash followers, in a LF

". game, to behave as members of a team with the leader's objective as the objec-

tive of the team, and develop a static market model of duopoly with the

government as the market coordinator. In Section 5.2, the incentive problem is

formalized as (n+l)-person LF game with one leader and n-Nash followers. The

leader desires to force the followers to optimize his (the leader's) objective

function, even though each one optimizes his own objective function. In

Section 5.3 the incentive mechanism of the organization is formulated by

incorporating the decisions of the followers in the strategy of the leader.

By employing such forms of strategies, the leader can force the followers to

behave as members of a team, with their composite objective function contained
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in the objective function of the team. In Section 5.4, we consider a general

static market model of duopoly where the government interfers in the market.

We show that the government can always succeed in enforcing the two duopolists

to cooperate and achieve the Pareto-optimal solution. Then we analyze in

detail the case of a linear market demand relation and a quadratic cost

function. We obtain analytic solutions for the optimal strategies of the two

Nash duopolists.and the government. We show that in the limit as the unit cost

of the govenment control tends to infinity, the enforced cooperative optimal

. controls and profits tend to the voluntary cooperative ones. Finally, we

discuss the general properties in terms of marginal cost, price, and the

-* consumers' welfare in the context of this problem. In the last chapter we

* deal with two stochastic static LF problems, where the leader can, by using

DDIS, achieve the team solution. Each player has a quadratic cost function

and part of his information is a linear function of Gaussian random variables.

Answers to many problems in the area of stochastic control with

classical information structure (in classical information structure, all

actions taken at the same time are based on the same information, and any

information available at time t will still be available at time t'> t) are

- known; in particular, the problem of linear quadratic Gaussian (LQG) is

- completely solved. But, stodhastic control problems with nonclassical informa-

tion structure are more difficult. These problems are usually viewed in the

context of team theory. The most important theorem in team theory is

Radner's theorem on teams with static information structure (see [4A] for the

L" statement of the theorem). By using the concept of nesting, this theorem was

*extended, in (43], to solve problems of teams with dynamic information structure.

Later, team decision making problems were generalized to stochastic game
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theoretic framework. In [49] a two person stochastic Nash game with static

information structure was considered, and it was shown that under some

sufficient conditions the linear quadratic Gaussian Nash game admits a unique

equilibrium solution which is linear in the observation of each decision maker.

* In (52] a linear quadratic Gaussian two person LF team game with decision-

dependent information structure was considered and completely investigated.

In the first section of Chapter 6 we consider the problem of a 3-

person stochastic optimal coordination, where the coordinator desires to induce

the two noncooperative (in Nash sense) players to minimize his (the leader)

* cost function, even though each player minimizes his own cost function. The

coordinator's cost function is a convex combination of the cost functions of

* the Nash players. The information structure of the game is dynamic and nested

since the coordinator knows whatever the fohlower knows, and his (the

coordinator's) strategy depends on the decisions of the followers. In the

V second section, we investigate a 2-person LF game in which the leader does not

completely detect the decision variable of the follower. The satisfaction of

the condition of complete detectability of the action of the follower is

v - necessary for the leader to be able to obtain his global optimal solution. The

case in which the leader does not completely detect the action variable of

the follower was investigated in a deterministic setting by Basar [47]. He

gave a general procedure by which the leader can achieve a new tight lower

bound for his objective function. En this secticn we solve the same problem.

* but in a stochastic setting, and using a different procedure. We define a new

modified team problem after taking into account the optimal response of the

undetected action of the follower. We find that the leader can. under a

certain condition, achieve thiLs new tight lower bound.



U Finally, in Chapter 7 we state some conclusions and we outline

directions for future research.

In sumary, the basic contributions of this thesis are

1. Introduction of two well-posed procedures to obtain reduced order and

near optimal strategies for two classes of singularly perturbed LF games.

The key feature of these two procedures is the preservation of the infor-

mation structure of the full order game, while solving the reduced order

ones.

2. Introduction of two new market models of duopoly with DDIS and a detailed

analysis of these models.

3. Determination of sufficient conditions for the existence of solutions for

both the stochastic optimal coordination problem with DDIS and the

stochastic LF team problem with partial decision-dependent information

structure.
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PART ONE

INFORMATION STRUCTURE IN SINGULARLY PERTURBED GAMES
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CHAPTER 2

WELL-POSEDNESS OF LINEAR CLOSED-LOOP LEADER-FOLLOWER STRATEGIES

2.1. Introduction

In this chapter, we describe a well-posed procedure to obtain

reduced order and near optimal strategies for singularly perturbed linear

closed LF games. In Section 2.2, we formulate the problem and give the

necessary conditions for existence of a linear closed loop LF equilibrium

solution for the full order system. In Section 2.3, the follower minimizes

the fast part of his objective function under the condition that the fast

subsystem and the fast part of the leader's strategy are given. In Section

*. 2.4, the follower minimizes his slow part of his objective function under the

conditions that the slow subsystem is given and that the follower's and

* leader's strategies have the same information structure as their, corresponding

strategies in the full order game. In Section 2.5, the leader minimizes his

. slcw part of his objective function under the conditions that the slow sub-

system is given and that the follower applied the above procedure to find his

rational reaction. In Section 2.6, we find that if we apply the reduced order

*optimal gains to the full order system, the resulting strategies and cost

functions will have the same limits as the strategies and the cost functions

for the same full order system if the full order optimal gains are applied.

2.2. Formulation of the Problem

Let us :onsider the singularly perturbed system:

S= Ax + Az + BJU + 3u :.:(0) x
A 12 11 12'

-z A,.x -Aooz + B21u. + 3,u,); Z (0,=Z

ere :.--R , z=R U. -R anr.- i sma1 pcsitive parameter. Assume

ta_ the cost ftz:i;on associated wl: pla:.'er i i.
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S- [j (y'Qiy +u'Riui +u!Rijuj'%dt]
2. Y o . 212. J~

Y0  0
where

y Y " Q i [ "  Q ,

".. .z Qi3

Rii., Rij are symmetric, positive definite riatrices, E(y )0O; E(yoyo )I

- where I is the identity matrix.

Let player 2 be the leader and player 1 be the follower. A

closed-loop linear Stackelberg strategy was considered by Medanic [8]. In

his paper the controls were assumed to be of the form

u --. F y , u2 -- F2 y.

1.u

and F.,, the gain of the leader is found by solving the following equations.

A' cM + MAC+ MISIiM + FRI 2 F2 + Q 1 0 (2.la)

A'M2 + M2Ac + MIS2 MI + F2K22F9 + Q2 (2.1b)
c2 2c 11 222 2

N A' +AcN 1 - MN + S =0 (2.1c)j.c 1 1 M2N2 "N 2 L 2 5 1+ S21MN 1 2 2121 = 0(.c
%,1

2A I+A N + i 0 (2.1d)

c2 c 2

R12 F2 NI +R22 217 2 2j( 1N1 + 'K, ) =0 (2.1e)

A1 -A. - S 1. I Ic U

S 3 R-1 R -1@

a* ii 12 32 J
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A- B~ Q.

I -I&21 2 B2i i2 03

In general by letting i-0 in the full order system we change the meaning of

the vector z from a state variable to a variable which depends on x. So if

we solve the resulting slow optimization problem, we will have a change in

information structure. To avoid this change in information structure, we solve

- the problem as an output feedback problem, where we constrain the feedback to

be taken from x and z. This is clearly shown in Section 2.4.

in the following sections we will show a procedure to get a well-

posed solrtion of the problem depending on reduced order systems while both

x and z are available for measurements for both players. Let

Ulap _L 1 x L12 z.
I

U 2ap -L2)L1x - L22z.

The follower will find L1 . by minimizing the fast part of his optimization

function while the fast part of the system is given, and he will find L11 by

* .. minimizing his modified slow optimization function. The leader wil, find his

gains L. and L,, by minimizing his slow part of the optimization function

under the constraints that the follower applies the above procedure and the

slow part of the system is given.



~XT.~'TK~ W~. .x-§-f .: .: ... . .

16

k2.3. The Fast Optimization Problem for the Follower
The follower can find the gain L12 by minimizing the fast part of

his performance index which is

nf E [ (,")d,
if z (0) ('iQ13f lf'll'f u4f'l22f

given that

m dzfd A22 Zf +B uf+B2U
~dt 2 11£2'l "22£

and

."- ~Ulf =-lzf

S-u2f£ -L22zf.

Substituting for u if, U2f' we get

i Jf = 0 2f (zfQl3 zf+L12R1 12  L 12 L2 2 )dtI
A

.i f = (A22 - B21L1 2 - B2 2 L2 2 )zf A22 z f

Solving the problem, we get the following necessary conditions

L1' R '1 B2K (2.2)

A2 2 K1 3  K1 3 A2 2 +K 13 S1 3K + 1LR 2 L Q1 3  (23

wnere

S13 R 134
13 2111 21
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2.4. Hybrid-slow optimization Problem for the Follower

The follower can find L11 by the following procedure. Letting

• 0 in the system considered we obtain

k Xs -Alx s +A12zs + 11 Is + 12U2s

O-A 2 1 xs +A 2 2 z s + B21 u  +B 222s

". and if we constrain the controls to be of the form

Uis llxs -L 2 Zs

U2s -L2 1 xs -L 2 2 Zs

and substitute for us, U2s, we obtain

zs =-(A22 -B2 1L1 2 - B22L22 ) (A2 1 -B2 1LI-B 2 2 L2 1 )x.s

Assuming that (A2 2 -B2 1L 2 -B2 2L22 ) is nonsingular and substituting

K for uls Us, zs in the differential equation, we obtain

R [A 'BIL I'B2L21A -B L -B L 122)(A-BLI LI )-I
11 11 11 12 2)l12 11 22 22

-(A, -B L 1-B)I L' 1)]x21 21 22 21 s
or

X' sA x x (t)=.(t,O0) (0)

where

A 0 =A1 1  A 1 2 A2 2 A2 1

A Al -B T - L=-=A 11 11 122'-2A 2 -B 1 , 3,L

AA

A,, =A1 1 11 - B2li2!2 A 2  AI? - 1 1

=A2 Z i 21Ll -1 22 21' A 22 =A22- 2 1L12 -1, ,
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Substituting for uls, u2s, zs in the optimization function of the follower, we

obtain

Is El i 'o)Q '+Lii 'taii+LhR L ( + LlR11 L12+ L
"0 2 x0 (t° ILIR I 212L21 - <Q12 + LRI Li'1 1R2L22 )

A AA- Aj

2221 +1 22 12 12R 2222 21A2

(Q13 1  L2 1 +L2 R1 2L 22)A 22A 211" 0

Applying the same procedure as in the output regulator problem [12], while

using the assumption that E(x xo') , we obtain

A - JA-Is(Lll,Ll2 -- trace ' (tO) [Ql A Q22A2 -A2
12) ac 0 ,, 1 1  Q12 2221 2A1(A 22) Q0

A , 1. A-i
A21 (A22) Q 3A22A2 ](t,O)dt

U
where

Q 1 1 =Qll 
+ L 1 R1 1 Lll + L2 1 R1 2 L2 1

Q 12 m-Q12 + LI'RlLI2 + L'R L 2

Q 13 + L' R IL + L' L13 12 12 22'12 22

iJs
Finding - and setting it equal to zero we obtain

L ~!!R 11L!22A2 + 2 (A22 QI 1'22 I",A -- '(2.4)'&1

whnere

1d 11 i21( 22 l'n2 )

ar.d Ki is t=he solution of
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. . . . .. . . . . . . . . . . . . . . . .

1.9

K Ao +AOK + Q 1  Q1 2 A22A A A2 (3+2AA2 (A 1
Ii. 0 2 21 21 22122122) 'QulA 2 21

(2.5)

Substituting for L12 obtained from equation (2.2), (2.3) in equation (2.4),

* (2.5), we can find L11 .

Comments:

(1) Finding & and letting it equal to zero will lead

to the same equations as (2.4), (2.5). This is due to

the fact that z s(t) is a linear function of x S(t).

(2) If we constrain uls -L11xs, and apply the same procedure,

the formulation is ill-posed.

2.5. The Leader Problem

Before describing how the leader can find L21, L2 , it is ad-

-iutageous to change the form of equations (2.4) and (2.5) by using equations

(2.2) and (2.3), and by letting L11 to be of the following form

LII -- Rll(BiIK,,+ B IK12)

Then after some straightforward but lengthy algebra equation (2.4) leads to

KI2 i"[(QI2+L21 R1 2 L2 2 
+ K,1 A1 2 -K1 B1 2 L2 2 +A2 1 K 3 ]A2 2 (2.6)

where

-:.- --

-- -1Sa B R 3u, S be3 Ro

and equation (2.3) becomes
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+AlKll " KllS1 K1 "-K1 B1 2L2 1 "L2 1B{2 KII +Q1  K1 2 S1 3 KI9 +

K12 1 2  1 2  L2 1 R1 2 L2 1

By substituting for u1 s, u2s, z s in the slow part of the leader's optimization

function, we obtain

A A- -1 A ̂ -I
72s 2 x [&21 "&22A22A21 "A2 1(A22)'Q 2  (A22 )'Q23A22A 21 xs(t]

0 0

where

Q- L',R L + K +K SK' KS + S 2
21"Q21 21222222 12 S2 2K + 12 2312 121 11 +  22K12

Q2 2 =Q 2 2 +L2 1 R2 2L 22 +K 1 2S23K1 3 +KlIS 22K1 3

"Q23 Q23  22+ L 2R2ZL22. + K 3SZ3'1 3

S-R - R- -1 -B - R'R1 -1.1

21 ' B11R11R21R 1  ' 22 - 11R11R211121 S2 3  ?11 2 RU 21

Let J 2 s = E I" x'(0)K2 x(0)], where K2 satisfies
x (0)2s. X(- 2(2 2 ),-

A;K + KA + - A- A (A-)' + iA4 1 (A) 100oK2 2 21 2 2 2 2 Q23 22 .1 (2.8)

So the leader has to minimize under the following constraints:

A22I 3 +K 1 3A2 2 + K,3S1 3K1 3 + L2 2 R1 2L. 2 +Q1 3 =0

K lAl + AIKll - K, 1 11K11 - K1 1B1 2 L11 - L'Bi2 11 +Q 11 2'- 3 K ,2 -

II A -I " +A K1 " R L 0

K'l21 i12 L-21 1221

(A -A 0- ^
Ao 2 A0 +Q 2 1K A 2 2A2 2 A2 ! ' (. .)Q2 2 +A 2 1 (A)Q 3 2 1
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where

K12 IQ 12 +L2 1R12L22+ K1 A12 -KllB12L22 +21 K13]A22

The reader is referred to Appendix A for the derivation of the necessary

N conditions for the leader's minimization problem.

*2.6. Full Order Problem

- In equation (2.1) we assume

Mi- i2 Nil N 2

M Ni

i2 i2 i0

Substituting forMI in equation (2.la) and letting A-0, we obtain the following

A' jM'I (0) + M, (O)Ac  
+ AM() + M (O)A + M (0) (SM (0) +SM(0))

c~+M. (0c21 ) 12 c2 11 11 11 1212

+M ()(SMi 2 (O))+2 1 (O)R 2 F 1(0) +Q 0 (2.9)

2 (0) - "Q 1 2 + FI(0)R2 F21 (0) + (A2 1 -S1 2 M (0)- 2 2 F2 1 ()) 'M 3 (O) +MQA

-M 7 (0) B R2 F2 2 (0) MA-l2  (2.10)

A 2 2 ' 1 3 (0) + 3 (0)% (0)S 1 3 1 3 (0) +F1 2 (0)R, 1 F2 2 (0) +Q3 0 (2.11)

- where

A C1i A i-SiiM I(0)-S1 2 mu2 (0)-B 12F 1 1 (0)

A I.=A 2S1 .1(0)-B .Foo0
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Ac2l 21-S 2M11 (0)-S13M2 (O)-B 22F2 1 (o)

& c22 'A22-413 43 (0) -B22 722 (0)

assuming that Ac22 is nonsingular.*
It is noticed that equations (2.3), (2.6) and (2.7) are identical to equa-

tions (2.11), (2.10) and (2.9) respectivelywhereM1 1 (0), 112(0), M1 3 (0), F21(0),

F22 (0) replace Kll, K12, K13, L21 L22"

Substituting for M2 in equation (2. lb) and letting P-" 0, we obtain

M ) +A' (0) +A'azM a(0)+ +'1(0)R 2 2F+()M (0)210clI+cliM21(0) +M22 Ac21 czLA 0 q21 F 2 11

(S21M11 (0) +0 22Mt (0)) + M12 (0) (S'2M11 (0) +S2 3 M. 2 (0)) -o (2.12)

"21 (0)Ac1 2 +2 2 (0)Ac22 +A c2lM23(O) +M11 (0)522M1 3(0) +M 2(0)$23M13(0) +

F21(0)R22F22(0) +Q2 2 -0 (2.13)

SA'22M23( ) +23 (0)A c22 +"M13(0)2 3M13 (0) +F 2 (0)R22 F22 () +Q2 3 - 0. (2.14)

From (2.13) we have

M22 -[A' 21M2 3 (0) + M21 (0)A c12 +M 1 (0)S22M1 3 (0) + M1 2 (0) S23 M13 (0) + F21 (0)R22

F22 (0) +Q 22  c22.

Substituting for M22 in (2.12) and using equation (2.14) we obtain an equation

identical to (2.8), whereM 21 (0), m,,"(), (0), F, (0), F_,(O) replace

2, K.1 , K2 K, L respectively.
1) ' 3' 2 1' 22
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Decomposing equation (2.1d), and letting o.-O we obtain

A iNa(O)+N 2 1 (O)A + ++N 2 2 (0)A' +1-0 (2.15)

c'- 21 c11+2122 (0)A2 + L122 (O)Ac 12 (. 6

N O) + (2.16)

A2 1 N2  A N~A +A -2 2  i0 (2.17)

From (2. 16), we $atN 22 (0) =-N2 1 (O)A(21 A N-22 21 , (c22)1 -21(0)V'.

on From (2.17), we get N23 (0) -VN21 (0)V.

where V - -Ac2.Ac21

" Substituting for N22 in (2.15), we obtain

(A A A-1AIONcl A- 1 A--

c1-Ac12Ac22 -- N21(0) +N 21 (0) 12 -Ac12Ac22 c21)' +I

which is identicalto (A.2) where N21 (O), MiluO), M12 (0), M1 3(0), F21 (0), F22 (0)

replace ?2' Kill K12' K13' L2 1, L22 respectively.

Afer decomposIng (2.1c), and letting p - 0, we obtain

C11 11  c12 1 1 M21  S12M72 (0))N (0) 2 3
[AcIINI(0) +cI2Nz(O) -(SI 1 

0) - , _ "2M3)2 (0

(S21 M11 (O) +S 22 12 N ).'121 (0) +S22 1 3 (O)NI (0)] + [N11(O)AclI NN2, (O)Ac !

-,, (0) (mt -O~ +) -' No) 1 (0) (,%1,.1.(0) S2, +,.l (o) S .,
21 (O)S1+ "122 (O)SI2 )N 22(O) 2 3  -+N1, --

+ N22 (0)d 3(O0)S ,] =0 (2.18)

N( ) I +0 A ml. N0 (0 A' +
"1 . 1 2() ,_ 21(0) (i(0)S +..(0)S 3)-N_ (0)" ,3 (0)S 3

+ N (0)(- 3)0)S + 12 C3 +N1 ,(0)M,3(0)S-23 =0 (2.19)

A N (0 ) -A N 0Ac!- 1 (0)Aco- o () : 0T

c212 c221 2c2 3 22 3 2... - .

-T,' (0) (0) T -0 (2.20)
"23 '23
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From (2. 19) we obtain

N12 (0) - N21 (0)W' + Nll(O)V'

where

W - 2(T3 + T4V)

-3 " S1 3M 2 (o) + S12M2 1 (o) - S2 3M1'2 (o) - S2'2 Mll(0)

4- S1 3 Z)3 (0) -23,3(o).

Substituting for N12 (0), M2 2 (0), N22 (O) in (18), we get an equation identical to

(A.1) where N11 (0), N21 (0), X21(0), Mll(0), F21(O), F22(0), MI3(O), M

replace P,, P2, K2, K 1 , 12 1 , L22, K13' K12' respectively.

Substituting for N1 2 (O), N23(0), M2 (0) in (2.20) and using equation

(2.14), we get an equation identical to (A.5), where N13 (O), Il(O), N21(0),

13o) ll(0 '1()
421(o), Mil(0), M12(0), M13(0), F21(0), F22(0) replace P3, P' P 2' K' KlI'

K12, K1 3, L21, L22 respectively.

Decomposing (2.le) and letting -O, we have

RB 2(F 2 (O)N1 (0) +F2(0)N{ 2 (0)) +R 22(F21 (0 OO)1()+NL(0)) B12 IM (0)N(0)

-BM () 0)B (0)N' (0)-B'(Io0 0B! (Mi2)" 1l(OI0) + 1Z3 (0'N2 (0) -)l  21 ,) 2' 0 2

M2 3 (0)N', (0)) -0 (2.21)

(R 2 F", (0) -BiMI! (0)-B :,{1 (0) ) L. (0) + (R, 1 F9 1 (0) -B. 12 1 (0) -BMI, (0)),I (0)

6 )IN B( 1 3 )N 3 + (R..F 2 (0) %B (0)]N 2 3 (0) =0. (2.22)

13 1 3-
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Substituting for N1 2 (0), N22 (o), M22(0), and N2 3 (0) in equations (2.21) and (2.22)

and using equation (2.14), we get equation (2.21) identical to (A. 3) and equation

(2.22) identicalto (A.4) whereNll(O), N2 1 (0), M21(0), Mi i(0), "2(0), M13 (0), F2 1 (0)

* F22 (0), and N13 (0) replace Pit P2' K2" Kill K12' K13' L2 1, L22, and P3

respectively.

To compare the performance indices resulting from solving the full

order problem with the ones resulting from the reduced order solution we need

the following assumptions:

a. The fast optimization problem of the follower has a unique stabilizing

solution. In other words there exists a unique K13 which is a solution

of equation (2.3) for eachL 22 applied such that % (A22 )< 0.

b. The slow optimization problem of the follower has a unique solution after

substituting for L12 from the fast problem, i.e. equations (2.6) and (2.7)

have a unique solution for Kll , K2.

c. The leader optimization problem has a unique stabilizing solution, i.e.

-here exists a unique pair L2 1 and L22 as a solution of the set of equations

(2.3), (2.6), (2.7), (2.8) and (A.1) through (A.5) such that k(Ao) <0.

Theorem: If assumptions (a), (b), (c) are satisfied then:

(1) lim (u.-u.) 0 for i 1,2
0 L iap

(2) lim (J -J*) = 0

where

Uiap = Lix'Li2z ,  ui  -Fi i2Z .

J* is the performance index when uI and ul are used.

j. is the performance index when u and u are used.
la P aO
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Proof: () It was shown that M11 (0), Ii(0), M1 3 (0), Mi(0), N11 (O), N2 1 (0),

N1 3 (O), F2 1 (O), F22 (0) replace Kll , K 12, K 13, 1, P1 ' P2 ' P3 L21, L22 respectively

in the equations, and if the uniqueness assumptions are satisfied,

then we have unique values of Kl, K 12, K13' KV2 P' P2' P3' L2 1, L 22 and

K 11 M 11(0), K12 UM 12 (O'd, K13 =MI3(O), F21(O)-L 21, F22 (O)=L22,1 K 2 =M1 (0 ) 0

P1 N 1 1 (0). P2 =N 21 (0)' P3 -NI 3 (O)
"

For the follower:

Ulap a-L 1 1 x - Ll 2 Z.

Substituting for Li, L12 , we obtain

" u - ,lap 1 1  (B 1 K1 +3 2 1 KI 2 )x - R 21B21K1 3z•

But the exact control of the follower is:

-1 , B21 ][ 1  x

21 12' 13

CB'c~x--~Mz)+ '.; ~M z)

l ""hl~l !  12 13j

S-RI, CB j,(MlIX + "1123 z),

'*1 z), B21 (M!2Ix +'d~)

= -RI C(Blll' 21l) BllZ B1 Z]•

Clearly,

lim u- lir ul-o - l ap"

For the leader:

-g ix - L z
U~a .. "

Clearly, u U7 Ul

-0 _-" --0 a p
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(2) When the exact controli, uI1 .- F l y and u2 =-F2Y are used the

resulted performance index J* Yatyo where M. is given by equations (2. la),

(2.1b).If Ulap , and U2ap are used, where

U2ap - -L2Y

we will have J. as the performance index, where J 1nYoW Yo' and WV W satisfy
1. i 2Fowio 1 2

the following equations

W1 (A - S11KI - B2 L2 ) + (A - S11K1 - B2 L2 ) 'WI + Q + KIS11 Kl + L2R1 2 L2 -0

* (2.23)

W2 (A - S11K - B2L2) + (A - S11K1 - B2L2)'W 2 + Q2 + K1S21K1 + L7RI = 0.

(2.24)

Subtracting (2.23) from (2.24) and (2. la) from (2. lb) we find that

P W - and P, aW "M satisfy
P21 2

P1 (A - S11KI - B2 L2 ) + (A - S1 1K1 - B2 L2 ) 'P + (K1 - M1 ) 'S 1 1 (K - M) +MIB 2 (L2 - FI)

+(L 2 - F2) 'B1 .m + L2RL - F2R 2F 2' 7 0 (2.25)

(A" -SK - 2 L2 ) +(A-S "BL2) P, + K S 1 K I "M S, mS(K "M )

-(K -M ) 'S 11M2 -M3,(L -F) - (L. .-F.,)'B'M,+L'R,,L - F R, =0. (2.26)

Pil Pi2

Taking Pi =

L
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and substituting for P and P1 in equations (2.25) and (2.26) respectively, and

setting ;-0, we obtain

+ A j'i 0 (2.27)iAlL + P12A21 + All'il + l-i2 ' '(.7

A ^' A A, 0 (2.28)

ilA12 + Pi2A2 2  21i3

P i 22 + A42Pi3 -0. (2.29)

Since 2 2 is stable, P 3 -0 is the unique solution of equation (2.29)

From (2.28) we have

Pi2 " [Pi.1 12 1A2 2

Substituting Pi2 in (2.27),we obtain

A '- 1 AA .A
P I (A 1'A12 A2)2 A 211) 2 + (AI A A A12)_ ). 1 Pil 0

or P ilA+A 0Pi=0. Since A0 is stable, P il=0 Thus

P.. 0 for i-1,2, j=1,2 ,3

Remark 1: In the LF game, the leader announces his strategy first, and the

follower reacts by playing optimally, i.e., the follower chooses a strategy which

lies on his reaction curve. So if the leader uses U)ap, then the follower has
0

to respond by choosing u0 = u (U2ap). In our case the follower does not choose

00bu he chooses u lap hence the rules of the game are violated. This

deviation from the basic definition of the equilibrium solution of the game can

be tolerated for computing the optimal strategies, if tie resulting deviation

of che leader's and follower's performance indices from their correspondin;

exact LF performance indices is small. 7n other words, the use of u, by theLao
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foll~ower instead of u0can be tolerated as long as J (u ,u )tends to

. Ji(u (u ),up) as . tends to zero. This can be easily shown to be the
1.2ap 2a~p

case by using a method which is equivalent to the one given in the theorem.

I We will not pursue this, any further in this chapter.

Remark 2: In this chapter and in (56], we consider a different information

structure from the one given in [11]. In [11] the space of admissable strate-

gies is restricted to be taken from the slow variables only, and the usual

singular perturbation technique is used to obtain a well-posed solution. But

in [561 and this chapter a more general information structure is considered,

since both the slow and fast variables are available for measurement, and a

new procedure, which depends on preservation of the information structure of

the full order game, is used to obtain a well-posed solution.
U

U
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0CHAPTER 3

LEADER-FOLLOWER TEAM STRATEGIES FOR SINGULARLY PERTURBED SYSTEMS

3.1. Introduction

In this chapter, we develop a well-posed procedure to obtain low order

and near optimal LF team equilibrium strategies for systems with slow and fast

modes. In Section 3.2, we find the limiting behavior of the full order game as

,j tends to zero. In Section 3.3, we solve two reduced order games. First, we

give sufficient conditions for the existence of solutions for the fast LF team

problem. Secondly, we give sufficient conditions for the existence of solutions

for a hybrid slow (hybrid because the fast gains are imbedded) LF team problem.

The basic property of this reduced order hybrid slow game is that it has the same

if information structure as that of the full order one. In Section 3.4, we show

that, under certain conditions, the reduced order games and the full order one

are equivalent in the limit as u tends to zero. In Section 3.5, we apply our

i well-posed procedure to the case when the leader uses strategies with finite

dimensional memor: and solve a numerical example.

3.2. Full Order Problem

Let us consider the singularly perturbed lii'ear time-varying system

x -A11 (t)x + A1 2 (t)x + Bll(t)u1 + B12 (t)u; x(O) x

- A, (t)x -i- A2 (t)z + B3l(t)u i B 2 2 (t)u'; z(0) = z

n2 n
nwhere x R zR n, u.eR 7 for i= 1,2, .; is a small oositive parameter,

and A.- A12, Al, All , Bll B12l BI ,_ B.,_ are continuous in t for all

t= [ o,t-]. Assume that the ith plaver wishes co minimize the following frinction

Pa
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t f

Ji(ui'u ) 7 f (Y'Qiy(t)y+uR ut) + uR )dt; for i 1,2 i~j

0Y..x QitP t Q1(

where 2 , which is a symmetric po ie.semi-
~~z hQr y- ;Q I (t) Q(t)

i2 0
definite matrix, and Rii, Rij are symmetric positive definite matrices. Let us

A take player one as the leader and player two as the follower. The procedure

to solve the team leader-follower game, with memory in the control structure

is as follows [18]:

1. Solve the leader's problem as a control problem with J1 (ulu2) as the

objective function, and ulu 2 as controls under the constraint of the

state equation. The optimal controls are Cul,u 2 ), where

'- -1

" (t) = -RI1BIKY
-1

(t) = -RI B KY

and K satisfies the following Riccati equation

K+KA+A'- I + -1 K '] 0

SQ- K[B 1 R1 1 B 2 R12B

and

K(t ) = 0.

Define 7 (t) as the resulting trajector- when the controls u (t),u,(t)

are applied.

. Consider the function u,, which is repreentiv a Lebessue-Stieltjes

integral of the following forn

t

0d I( s)v(.L S

0
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such that

i~t) - ~)

T Then with Ul in the objective function (J2 (Ulu 2 )), of the follower and

in the state equation, minimize J2 (Ulu 2) with respect to u2 and find

conditions such that if the optimal ( 1,j2 ) are applied then the resulting

i- trajectory will be f (t). If these conditions are satisfied then (Uli 2)

constitute a leader-follower strategy pair. These conditions are stated

in (18], but we restate them here for completeness.

If there exists a function n(t,6) with n(t,) - 0 for 9> t and (nl+n2 )x(nl+n2)

matrix P which satisfy

St - - t 32
d n(ts)y (s) - -RIIBIK(t)y (t) te[tof] (3.2)f S0ft

0

R122 (t)B;(t)P(t) - R 1 (t)B2 (t)K(t) 0toi't (3.3)

t-
t

P(t)y (t)- f (Q2 +A'P+'( ,t)F(:))y (T)dt = 0 tE[to,tf] (3.4)
t

where
F-)=l t) _1(t)B'(t)K(t)-B'(t)P(t) (3.5)F= ') 1 2 1()I 1B

and 7 (t) satisfies the following linear differential equation

= (A(t)-B RIIBK-B R2(t) ( -. r)(
1i 1 2 22~P

(: ) = V
0 0

then



. .. . . . . .. . . ..

33

t

-. t 0

11(t - 1 B(t)K(tOy (t)

are optimal leader-follower strategies. Furthermore they are also the team

solution.

Preliminary analysis indicates that the following forms are useful

for our problem

FKt~ Kl(tU) UK 2(tIpi ri 1 i
2 1 [Q!2 Qi21

n(t,s,) (n(ts,U) n2 (ts,U)]

F(t,u) [Fl(t,U) F2(tp)]

P~tp [P1 ( t , p)  up 2 (t,U

) 3 (t U) 14Pu,

We substitute the forms of K(t,p), Qi9 n(t,so), F(t,U), and P(t,;i) as given

abovein equations (3.1)-(3.6), decompose them, and take the limit as 1- tends to

zero. The reader is referred to Appendix B for the resulting equations.

Several remarks are made regarding the above procedure.

32.: The state vector y in equations (3.2), (3.4), and (3.6) is decouoled

into fast and slow subvectors by using a transformation due to Chang (251.

For a precise description of the function n(t,s) the reader is
referred to [18].
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So the control memory of the leader is decomposed into a memory of the

slow modes and a memory of the fast modes.

R2: In general the matrix P(t,u) is nonsymmetric, but it is symmetric for

some special n(ts)'s.

. R3: After decomposing equation (3.4), and letting p 0 we get as one of the

equations

ff (Q22 + A21 P4 (-r 0) + nI(T't,0)F 2(T10))T22(T't'0)dT - 0.
t 22

But since the state transition mtrix has full rank the above equation

implies (B. 16), and the same situation applies in (B. 17) and (B. 18).

3.3. Reduced Order Games

The class of leader-follower games, which is considered in the

previous section, will also be considered in this section but for the case

in which the reduced order systems are given. The fast subsystem is

uz 22z f + 21Uif +22u2f

and the fast part of the objective function is

t f

Jif 2 f (f 0 zf if iiuifu jf ijuj fd.
o

Suff-icient conditions for the existence of an optimal leader-follower f"ast

strategy pair with memor-T which coincides with the team fast strategy pair

are given in Appendix C.

If we let ,.- 0+in the original system, then

As  l x s + A ! s  + Bll l + BlU3

0 A,,.x + A2 z +, + B2 Usl s _s ? B2Uls )
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Assuming that A22 (t) is nonsingular for all tottf]  thenl

z - -A +B u + B u
s 22 (A21Xs 21 ls 22 2s

* Eliminating zs, we have

* A x + B u + B us = A s l ls 12U2s

where

All AII-A A A B -B -A A-B
1 1112 22 21' 11 11 1 22

-1

B -B -A -1
12 12 12A22B22 "

The slow part of the objective function is

t

s +Xs2Us + usQ 2xs+ Q12uis + +
t0

+ u' R s+2s us dt
js ij Ujs is i3ujs + Usii3Uis

where

il QilQi 2A2A2 1-(A22 A2) 'Q!2 + (A22A21) Q 3A22A21

-- l -1 -1
Q. - -Q A- B .+(A1 A )QA- B.i2 i2222i 22A21 i322B2i

Q - , -1
12 " -i 2A22B2j

+ (A22 A21 i3A22B2j

- -1 , -1B2 i(A22 ) Qi3A22B2 j

0 2, -

; ij 2j 2 0) i3A22 2j

Sufficient conditions for :he existence of the leader-follower team hybrid Slow

solution are obtained as in (181. We have the following facts and conditions.

1. (Uis 's) are the team slow optimal controls, where

j



36

. - -,j(- 2 xs+BiKX+& 1 3 U2 ]

U 2s R2[2s +Q13 is +' 1 2Ksx s ]

where Ts is the resulting trajectory whenu U are applied.

u s and T2s can be expressed in the following form

- is M -MisXs  for i-l,2,

and K satisfies
s

+ QI +Ks(AI-BlIIs-BI 2M2 ) + (AI-BIMs-B12M2 s) 'Ks-Q 2Ms-MsQI2

- M -M'Q + 'R M MR +MI Q M +MI M -
12 2s 2s012 isMls ils 2s 12M2s is 132s 2issis 

Ks (t) -0.f

2. The leader applies a control uls of the following form

t tu tufd ts)-l _f - (s)
U ls (t) f (dsns(t,s)-dsnf(t,s,O)A22A21)xs(s)- dsnf(t,s,)A 22 B21 Uls

00

SThis specific form of the leader's control is chosen so as to preserve

the information structure of the full order problem in the limit as ~I tends

to zero, since a closer look at its form reveals that can be expressed as

tt
u is f ds(t, s, (s)+2s nf(ts)z ()

t t
o o

where z is the slow part of the z-state vector. In the aul order problem

the leader has access to the past history of the trajectory, but in the

reduced order problem, he has access to the history of the slow part of
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the trajectory, his strategies and the strategies of the follower. Also,

the leader is not using a standard slow control since he is using the fast

gain *-f(t,s) which is obtained from the solution of the fast game. The

use of the fast gain is necessitated by the preservation of the information

structure.

3. oufficient condi-Lwns ior the wi..tence of the hybrid slow leader-follower

solution are given in Appendix D.

4. If n f is not used in 2 above, the equations of the reduced order games will

not correspond to the full order ones, as will be clearly explained, later

in this chapter.

3.4. The Correspondence Between the Reduced Order and the Full Order Games

This section contains four lemmas which show the correspondence

between the reduced and the full order games, and prepare for the mainp
theorem which describes the procedure to obtain a well-posed and near optimal

strategies depending on the reduced order subsystems.

Before stating the lemmas, let us form the composite controls ulc(t) ,

Uc(t) as

u ic(t) - uis + uf +0(p), for i-1,2

or
rUl (t) = -Mls-RlIB'1Klf(t,O)zf(t)+0()

UIC(t) x- 11 2 1

-M Xs-R1B2t K f(t ,)z (t) +Gu).
U2 t 2sxs 12 22 If' f

After using the same manipulations as in [9], we get UU of the following

f. o rm



38

I

lc 1 -_[1 -U- W (t) uA (t, o)

-1 BL' t

u2c 2[ 2 [- K(t )  PK f(tO)]

where

KK(t) -UKA +A'Kf(t,O)+ -KsK (t,)]Km) ,, -22 s 1 21 f 2-s2Kf

A 22 A 22-S 3Klf(tO)

i 2-1 ,+ -1,
S 2 B 11R 11Bl B 12R 12B ;2 B1R121 BI 212B22
$3 -1B +B - B

3 21 11 21 22R12 22"

In [171, it was shown that if

1. AillA 12 ,A21 ,A22,Bil,B1 2,B21,B22 are continuous in t,

2. R ij,Qi are continuous in t for i-1,2, j-1,2, and i#j,

3. Equation (C.4) has a unique solution as - tends to zero.

4. The fast subsystem is asymptotically stable,

then

lim[K 3(tO)-Kif (t,) 1 0 VYe(t ,tf3

i-0

lim[K2(t,4)-KM()] - 0 v([t d

lim[K 1(t,,)-KmS(0)] = 0 vt- ,= t f]
and as ao r

and as a result we have
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lim(ui(t,U)-u (t,')] 0 for i-1,2, and for all tE[totf)
U-0

where

u u(t,P~) -- R1BKul~t~u) =-RIIB'Ky

U (tu) - -R1B2KY.

The relevance of these results to our problem will be clear later.

Lemma 3. l: Let

-M (t) B1 " [B11  B12]
G ls 11 1

j B2  B 21  B221

*i G2  L_ B;AKf(t,o)j ; =

u s G x ; uf = G2zf.

Form
uc = [(I+ G2A22B2)G + G2A22A21 x+ G2z.

If us, Uf, uc are applied to the slow, fast, and the full order systems

respectively, and if (A22+B2G2) is asymptotically stable, then

lim(x(t)-x s (t)) - 0 Vte[t o t If]
'-O

lim(z(t) A--(A 21+B G )X (t)-z (t)) - 0 Yte[t otf)
imztA 22(2 2 o s f 0o

where x (t),zf(t) are the resulcing trajectories after applying u and u- to
s r s z

the slow and the fast subsystems respectively.

Proof: Mhen we apply u to the full order system we 7et
c
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U
x All+B 1 (I+G 2A 2?B2 G 0+B 1G 2A 22A 21 A12BG' 1

(A -G Al(A G)

It is clear that the present system is exactly equivalent to the system

described by equation (B.8) before, since equal controls are applied to the

full order system. Using the usual singular perturbation techniques, see

t17], we get

lim(x(t)-x S (t)) - 0 vte(tot f ]

lim~z(t)+ A2-1(A21BGo)xs(t)-zf(0)) 0 Yteftoptf)
P-0 ~ tL 2 2  2 1 + 2 U tJ-f~ Jo f

* After noting the equivalence between the present system and the system

described by equation (B.8), it is easy to see that

lim(ill(s,t,u)-s (s,t)) = 0 YtE[t 0 ,t

lim(22(st,)-,f (st,)) = 0 VtE[t0  tfI

where --pl(s,t,u) and ,P22(s,t,p) are the state transition matrices described

by equations (B.LI) and (B.12) respectively.

Le=%a 3.2: If in the limit as u tends to zero, equation (C.4) has a unique

solution, and there exist unique values for nf(t,s,0), K2 (t,0) which satisfV

equations (C.1), (C.2), and (C.3)," and if the fast subsystem is asymptotically.

stable i.e. \(A71.)< 0 then

K1  (t,O) = K3 (t,0); nf(t's,0) 1 2 (ts,0): K, (r,O) P 4 (t ,0)
f ((

Ff:(t,0) -- F (t,0); b4(:Vt,0 113 (-,t,0)
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where K3  n29 P4' F 2 and *22 are defined in Section 3.2. and Appendix B.

Proof: If we let w- O+ in equations (C.l), (C.2), (C.3), (C.4), (C.5), and

(C.6) of the fast game, and then compare themwith (B.14), (B.5), (B.18), (B.3),m
(B. 7) , and (B.12) of the full-order game, we notice that the first set of equations

are exactly equivalent to the second set, where K. (t,O), nf(t'sO), K2 (t,O),
f f 2f

Ff(t,O), Of(T,t,O) replace K3 (t,O), n 2 (t,s,O), P4 (t,O), F2 (t,O), *22 (r,t,O)

respectively. The uniqueness assumptions stated in the le-na are sufficient

for equality of the above terms. The stability condition is necessary and

- sufficient for the boundedness of 0f(t,O).

Lemma 3.3: If the assumptions of Lemma 3.2 are satisfied, and if there exists

unique values of ns(ts), P (t) which satisfy equations (D.1), (D.2), (D.3)

and

-Q2 2 +A21K2 (r,O)+'(T,t)Ff(rO) - 0 ... Vt<T (3.12)
f

*then

PI(t O) P s (t); ni( 't 'O)=nQs (T t) and dt n (,t,O)=d ts(r,t)(*

where P and n are defined in Appendix B.

Proof: Comparing equation (B.6) of the full order game with equation (D.4)

we notice that by adding the term (F- . I 1K i- K )A (2 B M -B M )
f 11ll 21 1lf 1)1 - f 22 21- ')lls 22

In general if 'f (t), f(t) are differentiable almost e,,er-11here (a'.e.)n df (t)n _dr(t)

for all n, and f (t)-f(t) pointwise, this does not imply that dt dt
n I

a.e. for example, take f (t)=-- sinnt.
n n
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which is equal to zero, to equation (D.4) , we get an equation equivalent to

(B.6) , after using the identity

P 1415 R11 321 K1 (t,O)A2 2 (A 1 B2 1 M-B 2  2  - 1 (Bj1 K1 (tO)+ +B K(t,O)),|Mz~s 1 2 2,o)A2 (21- 2l -s 22M2s ) -11l
f

and substituting for P3 (tO)- -(A72 )'(Q 2 + 2Pi(tO)+nFi(tO)l obtained '2o1

equation (B.17) in (B.6). So FI(t,O), P1 (t,O), q2(T,t,O), F2 (t,O) in (B.6)

replace Fs+FfA2 1(A21-B21M1 s-B22M2 )P (t), nf(T,t,), Ff(t,O) respectively

in (D.4).

Comparing equation (B.4) with equation (D.2) , we see that by using

the identity

R-1 ( ( 0K(tO)+B22 K2 (tO)) RA2 (A _B -B

and by substituting for the value of P3 (t,O) from (B.17) in equation (B.4),

the two equations will be equivalent, where P1 (t,O), F1 (t,O), .2 (-,t,O),

F2 (t,O), P4 (t,O) replace P (t), F +FAB (CtO)2 s s (A21-21fls-22M2s f

Ff(t,O), and K (t,O) respectively.
-f

Equations (D. 1) and (B. 13) will be equivalent after using some of

the previous identities, and we will have d sn (t,s,O) and ds n(ts,O) replace

d si (ts) and dS n f(t,s,O) respectively.

If we substitute for P3 (t,O) using (B.17), and P4 (t,O) using (B.13)

in equation (B.15) , we notice that equation (B.15) is equivalent to equation

(D.3) whereP l(,0), Fil(St) ad2(sr,) replace P(),

FsF A (A,1-BI M! - B ' ) -I _ 's (s ' ) and I (s,t,0) resoectively.
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If n'(T,t) also satisfies equation (3.12), which is equivalent to

equation (B.16) , then ufder the uniqueness assumption given in the lemma, we

*have

rl(s,t,O) = ns(s,t)

P1(t,O) - Ps(t)

dsi 1 (t,s,O) = dsns(ts).

Before stating the main theorem, we need the following definition and one

more lemma.

Definition: A function f(t,p) is said to be well behaved in u, if there

exists an integrable function g(t) such that for all u, f(t,u)<g(t) for

*almost all t.

Let 0(t,t ,) be the state transition matrix which satisfies

t 0o(t,to 0 A(t)o(t'toP); *(tott = 0

N where

Al1(t) A1 2 (t)

A(t) A_2(t) A2 (t)

and

BJ
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L .emma 3.4: If A22(t) is asymptotically stable Vtit ,t If, then lim (t,t ,P)B(p)
2-of

is bounded for all t> t
0

Proof: See Appendix E:

K Theorem: If the assumptions of Lemmas 3.2 and 3.3are satisfied, and

dsil(t,s,), dsn 2 (ts,u), U1 (t,), u2 (t) are well behaved in u, and if the

* leader and the follower choose Ulap' U2a p as their controls, where

m t t

U. (t) = f d ns(t,s)X(s) + f dsnf(t,s,O)z(s)
lap t

- B1 [K (t) 0 1ri
u ()--1 B 22j II

U2ap t) - -R12[Bi 2  1 [ulm t) 1Kf(t,0 [

*then

1) lim(ul(t,p)-u lap(t,)) - 0 VtE[t, tf

lim(u2 (t, )-u2ap(t, 1)) - 0 VtG[tot )

2) lim(y(t,±)-y ap(t,p)) - 0 YtE[t, tf]
,..-00 f

3) lim(Ji(p)-J iap()) = 0 for i=1,2
.-0

where y(t,...) and J.(u) for i=1,2 are the resulting trajectory and objective1

functions from applying ul(t,'), u2(t,u), while y a(t,0) and J iap(;) for

i=1,2 are the resulting trajectory and objective functions from apDlving

Ulap (t Uap(t)

Proof:

1. or the follower (player 2), it was proved before that

- if C t
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3 For the leader

t
lim(U (tU)-U (timi) fr (d n1 (t,s,v)-d n5 (t,s))x(s)

1 lap 1SS

+ +lin f (ds n2 (t~s~u)-dflf(t~s,O))z(s)

since

d d 1 (t,s,ii)+-d n. (t,s), pointwise

and since lrn ,c(s) and lrn z(s) are bounded, because of the stability

assumption in Lemna3.2, and since d sn 1 (,si), dn 2(t,s,i) are well

behaved in ji, then by the Lebesgue Convergence Theorem (LCT), we get

li* ui(t')-ulap (t, .)) - 0 yte-[t0 t f].

2. Let [y - ~[l

t

Y~t'O ' ('t'."y()0
t

0

t
yap(t4P) q (t't '')v(0)+ f t(t,Tr,w)B(p)u (T, )dT

0

t

lmyt)-ap (tu) - 0t ap (,)d

since ~t(~,)~)is bounded Vu and

ap

then using LCT, we 'get

li-n(y(t,:J)-v (t,---) 0.
ap
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3. If ui(tW) for i-1,2 are applied to the system, the resultiong

objective function of the leader is

tf

J -() (Y'Q Y+uiRllul1 +uR
l

2u 2 )dt.
t

0

If u iap(t,) for i1,2 are applied to the system, the resulting objective

function of the leader is

m tf
f ,y +,PR +, d

Jlap t) lap U2ap12U2ap
t

0
tf tf

(J1  -lap()) - f Y'QI(Y-Yap)d r + f YapQa(YYap)dt
t

0 0
tf tf

+ ,? (ulUlad t +

+2 I UfR 11  1  p d T f uiapRll(ul-ulap)dt

tf tf,R 2 R , (uUap);t.

2 & 2 12 (u2 _U2ap)+ f U 2apR(u2  a
o t
0 0

3 Using the results of (1) and (2), and the well-behavedness property,

and then applying LCT we get

lim(J ()-J lap(u)) - 0.

The same orocedure can be applied for the follower's objective

function, and we get

1 (J( -J~a() 0.

7 ~e-~~ ~ :'ins that under :roper assumptions if the leader obtains S-(t.5

. mr the solui on of the fast andhybrid slow games respectively, and

°Z tne fjll order s-stei, 3nd if the follower uses u, as

1i:O .". :hen tie resultin., objective functions of both ,la-ers are

P ~ ~ PeI -:e.
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UIf the fast game is solved as before, and the slow game is solved

independently of the fast information, i.e., the leader applies uls

- It -

Uls -j d ss(t,s)xs(s), then the sufficient conditions for the existence of| t
the reauced order LF team strategies may be satisfied, while these conditions

are not satisfied for the full order LF team strategies (as will be shown

in the next section). This makes such a procedure undesirable. But if we

can show that the sufficient conditions for existence of the full order

and the reduced order LF team solutions are satisfied, then this procedure,

in which the fast and the slow information are decoupled, is well-posed.

This procedure is exactly equivalent to the one used in control problems.

The basic feature of our procedure, which depends on the preservation of the

*information structure of tne full order game, is that the conditions of the

reduced order games are equivalent, under certain assumptions, to the full

order ones, in the limit as the small parameter . tends to zero. This

i feature makes our procedure more general and more desirable than the other

one.

3.5. The Case of a LF Team Strategy with Finite-Dimensional Memory

In the previous sections we have assumed that the leader uses

a strategy which is described by a Lebesgue-Stieltjes measure. This

general strategy provides the leader with much flexibility in enforcing

his team solution. The sufficient conditions under which the leader can

enforce his team solution, by using such a strategy, are described by

int-ro-differential equations which are very difficult to solve, hence such

for-s of strategies are unappealing in applications. Fortunately, it is

possible to greatly decrease the :athematical complication of the sufficient
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conditions, by allowing the leader to adopt a slightly less flexible and

less general strategy. In particular, he can choose the following represen-

tation of his team strategy:3
Y (t., .,s ct - -R 'y<t) P' y<t) -y t) +T I' (Wt -W t)

(3.13)

where W(t) is an n-dimensional vector function which satisfies

W -AW+Cy+Bk +Du2  W(O) =0

and W is the solution of the above equation with y, ul, and u2 are replaced

by their optimal team forms. The leader has the freedom to choose the

matrix functions A, C, B, D, P and T which gives him a high degree of

flexibility.

If the leader announces the strategy (3.13), then the follower's

reaction to that can easily be found, and the sufficient conditions for the

team solution to exist can be obtained, by basically following the same

procedure described in section (3.2). Sufficient conditions for existence of

the LF team solution are given in the following proposition, which we state

here without proof.

Proposition 3.1: If there exist appropriate dimensional matrix functions

A(.), G(.), 3(.), D(.), P(.) and T(.) so that the following holds:

R-I (B'M+D'N) R- I3
R22(2 R12B

where K satisfies equation (3.1), M and N satisfy the following -matrix

equations:
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M+-+ MQ+BR ' -PR lR1,iBIK+K31 RltR2lRBt'K

+ (C+BP'-BR' B'K) 'N- 0 M(tf) -0 (3.14)

U N +NF T'R2 B K +T'BlM + (A +BT')'Nn 0 N(tf) -0 (3.15)

and T -A -B R BIK - 1
1 11 2 BR 12B~

then

u M (P' - R- IB'Ky -P'y(t) + (W-:W)
1 1  yYt

U =-R 1 B Kt
U2  12 2

are optimal LF equilibrium pair. Furthermore, they are also team solution.

We assume that the auxiliary system (the memory system) employed

by the leader is also singularly perturbed, with w - W where wI R and
n2w 2ER Thus, the matrix functions A, B, and E take tkhe following forms:

-7-l
--- - --g - I

A A_
i l 1A2 11 12

21 A2 2  B' C C 2
__ __ _B 21i 22

and

3.5.1. Reduced order Games

The method, previously described, to obtain reduced order and

near optimal LF strategies, with the leader using a strategy with an

infinite dimensional memory can, obviously be appLied to the special case

p
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I when the leader adopts strategies with only finite dimensional memory.

In this section, we will use this method to obtain reduced order strategies

for the case when a finite dimensional memory is employed. We will

restrict ourselves to a brief description of the procedure and the results,

since a detailed analysis has been given in the previous sections.

In the fast LF game, the leader designs his fast strategy as:

-R "' K + zf-zf) +T (w2 f-w2 f)I-uf 11 12 If +iz

where w2 f satisfies:

4w A w +C z +B u +Du
2 f 2 2 2f 22 f 2 If 2u2f

kif , Zf are as described before and the fast subsystem and the fast part of

* the objective function are given in section 2.3. Sufficient conditions for

the existence of the fast LF team strategies are equivalent to the ones
B22 r2 Ff I2

given in proposition 3.1, with i.k l f, Zf, Nf 22 2 f 2E p T,22 122,z and w replaces K, M, N, B D, F, B, , P, T, C, A, y and
f 2f 2 ' 2 2'2

w, respectively in those equations, where
-l -I,

f (A2 -B RB2Kf - B2212 2 i.

in the hybrid slow game, the leader picks the following representation of

his optimal slow team strategy:

U1  -M1 X -r' - ) +0' -)-T,(w-'.

_ (3.16)
+Tt(w -w'.)

r 2s -

This specific representation of the leader's optimal slow team strategy

has the same informnation structure in the limit as - tends to zero, as the

full order strategy of the leader which is described by equation (3.13).
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To preserve the information structure of the full order game while solving

the hybrid slow one, we need to transfer the fast information to the slow

game. As before, the slow subsystem is:

i s = All.x s + B 11u is + B12 U2s

And, equivalently the slow memory subsystem can be described as:
• .A AI

is 11 IWs + ellxs + B1u1 s + D sU2s

where
. ...- 1- - -l - -- 1- --- 1-_ -l

i. -AAA C -C 1 -CA A -A 2A22 C2  +A A 1C A -1A11 K121;2 21' 11 1 12 22 21 12222 1222 22 22 21
- -1 B - -1- -- = -1

1 " 2 A22B2 1 A12 22 2  "12 A 22C22 22 221

2 1 --- 1- --
D1  D1 C 12A22B22  A 12A22B2 + 12A22C22A22B2

By substituting for Zs, zs, w2s and w2s, equation (3.16) can be rearranged

to:

u "-M x +P' - )+T'(w - - (3.17)is Isss + T S Wis Wls- £U2s " s

where the fast gains are imbeded in M1 s, P , T, L and M. Now, if the

leader announces the strategy (3.17), then the follower reaction can be

easily determined, and the sufficient conditions for the existence of the

hybrid slow LF team problem can be derived. These conditions are given in

the following proposition:

Prooosition 3.2: If there exist appropriate dimensional matrix functions

A 1 (.), C11 (.), B(.), D1 s(.), p(.) and T_('), so that the following holds:

(R- +L'R1 +L' ' L'R 2 22 3M -Q '23• ""is i Q311s Q 23"'

-L'B' '- +B2' 3 - 1 '~s Ds 'N
U~~s S2 1 DN) 2s
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where M and Ns satisfy the following matrix equations

~+M F +Q 21-Q22 +Q22(-Mls+LM'2 -M)+(-M' +P)Qs ss 21 2 M2 s 22 Is 2s "s s22

+i ( - 5) 21 (-s 8 +LM"25 -M)-(Ps -Mts) (Q23M2 s) +(P5 -MI4,5Th'+Al1)ms

+ (C1 1 + (P "Mj5s)B)Ns M0 (3.18)

5 s sQs22 + sR21 (Ml + LM 2 s -M) -T5 2 2 sB,s 

+ (TB +AI 1 )N - 0 (3.19)

and
- =a - BliMts - B1 2 s

then

U +P;(x -x +(T;-)+ (Wls -wls) -LUs-MXis is's su i s 2s 's

u 2 2S sXs

are the equilibrium LF hybrid slow team solution.

If the sufficient conditions for existence of the solutions of

both the hybrid slow and fast LF team subgames are satisfied, then the

leader can form the following reduced order strategy and apply it to the

full order system.

U Uc +P'(x- )+P t(z -z )+Ts(W - W) +T-(w - w) f

lap Ic s s ~ s f sIW is r 2s f

where u1  (the composite control which is defined in section 3.4), P Pf

Ts, TV xs' zs' w1 s, WISP zf and w2f are obtained from the solutions of the

reduced order games. Similarly, the follower will apply Uap =u.c, to the

full order system.

Under conditions which are equivalent to -he cnes given in :he

Theorem, the low order strategies u ap and ulap are well-oosed in the sense

*:hat they tend to the optimal strategies and costs respeczivei, ,-, in the
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limit.as . tends to zero. The infinite horizon version of the problem can

be easily produced by setting the derivative term in equations (3.14),

(3.15), (3.18) and (3.19) equal to zero and adding the proper stabilizability

'conditions. It is clear that our procedure can oe readily applied to

infinite horizon games. Before we conclude this chapter, we present an

example which shows that the sufficient conditions for the existence of

-the team LF slow solution may be satisfied, while these conditions are not

satisfied for the full order problem.

Example: Let the system be described by

x -x + z
1 1

--z + -- u + - - u2
/2 1 2

Let

J f ( x 2 +z +u + u2 )dt

2 2 2 22

2 2 x z2 + uI+u2)dt.

Assume player one to be the leader, while player two to be the follower.

Full Order Problem: The team solution is

1
u - 1- (0.313x +0.414z ] = -0.225x -0.293z

u2  - - ( 0.318x +0.414z ]=-O.2'5x -O.-.03z
22

and "he leader's cost 7 '(O)Sv(O) where v- and

=[0.430 ..O. 3181
.O.313 A0.414j

I
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Let the leader choose his strategy to be of the form

u (t) - -0.225x(t) + P (x(t)-l (t)) -0.293z +P 2 (z-7 (t))

where (Z ,) is the optimal trajectory resulting from applying il(t) and

2 (t).

- If the leader announces the above strategy, then the optimal reaction of the

follower will be unique and a function of P1 and P2. It can be checked that

there exist no P1 and P2 by which the leader can force the follower to play

with him as a team. Clearly, if we use our procedure, which depends on pre-

serving the information structure of the full order problem, to solve the

example, we will find that the leader cannot enforce his team solution by

adopting the aforementioned affine strategies. Instead, let us solve the

pure slow (no information about the fast game is used) problem.

The Slow Problem

k s -xs +2- (Us + u 2s )

J f (x2 + 1.5u2 + 1.5u 2 + u su s )dt

is2 + 2 2

J ' f (X2+ 3u 2 + 2u2 +2uu)dt.J2s 2 s IUs + 2 ;s + 2ulsu-s d "

0

Team Solution:

Uis -0.159x ,

Assume the leader chooses

Uis -O.159X + .(< - s )"

3y solving the problem, we can see that if the leader chooses Z.-3
, the
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sufficient conditions for existence of a team leader-follower for the slow

problem is satisfied. So without preserving the information structure, the

sufficient conditions of the reduced order problem may not correspond to

those of the full order problem.

The procedure given in this chapter which is based on preservation

of information structure of the full order problem while solving the reduced

order ones can be applied in general to all linear quadratic singularly

* perturbed games. So, we expect a well-posed solution of the usual reduced

order problem if the optimal strategies do not depend on the information

structure as it is the case for control problems and zero-sum games.

d&
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PART TWO

* NASH AND LEADER-FOLLOWER STRATEGIES WITH

DECISION-DEPENDENT INFORMATION STRUCTURE
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I CHAPTER4

M~ASH STRATEGIES WITH DECIS ION -DEPENDENT INFO RMA.TIO N

STRUCTURE AND A NEW MO)DEL OF DUOPOLY

4.1. Introduction

In this chapter we consider Nash games with a decision-dependent

information structure (DDIS) whereby one player formulates his strategy as a

function of the decision of the other. We compare properties of the solutions

to those involving a normal information structure (NIS) whereby the strategy

of each player is not a function of the decision of the other. In Section

* 4.2, we discuss the equilibrium Nash solution with two types of information

structure, we compare the Stackelberg solution concept with the Nash solution

with DDIS, and we give two examples which clarify the basic ideas in this

section. In the first part of Section 4.3, we consider a general static market

model of duopoly and derive the necessary conditions for the supply adjustment

1 controls of both firms to be optimal in the Nash sense with the two types of

information structure. In the second part of Section 4.3, we analyze in detail

the case of Linear market demand relation and quadratic cost function, we obtain

* analytic solutions for the optimal strategies of the two firms, we show that

the profit of the firm with DDIS is more than its corresponding profit with NIS,

and we discuss the general properties in terms of marginal cost, marginal

revenue, price, and the consumer's welfare. In Section 4.4, we generalize the

concept of DDIS to multistage dynamic games, we solve a tw~o-stage dynamic

duopoly with a linear demand and quadratic cost function, and we give sufficient

conditions for existence of the Nash equilibrium solution with DDIS for the

discrete linear quadratic problem.
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4.2. Nash Solution

Let and r be the spaces of admissible strategies for players one

and two (P1 and P2 ) respectively, with y1 e rI and Y2 6 F2. The strategies y, are

mappings from the information space to the control action space of each player.

The nature of the information structure should be specified in each situation.

Let Jl(YlY 2) and J2 (yiy 2) be the corresponding payoff functions of the two

players. A Nash equilibrium assumes that if one player maximizes on the basis

that the other player's strategy is known and it is at equilibrium, then this

player will find his optimal strategy at equilibrium.

Definition : The rational reaction set of player i to permissible strategies

of player J, D i(y) isU
3|

Di(y {y*E ' such that Ji(Y*,y) > 1 (i,9) for all
D ii

yi EF and each y.}.

If the reaction strategy of player i against y. is unique, then we canJ

describe the reaction set Di (y.) by f.(Y) where yi= (y.).

p

4.2.1. Normal vs. Decision-Dependent Information Structure (NIS vs. DDIS)

In a Nash game both players are required to declare their strategies

simultaneouslv before the start of the game, but the sequence of their action

depends on further rules and assumptions of the game. If both players applv

their strategies simultaneously, the decision of any of the players will not

S be av!ailable to the other, and as a result no player can formulate his

strategy as a function of the other play:er's decision, and their role in the

game is totally synr.etric. in such a case we say that the information structure
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of the game is normal. If the two players apply their strategies sequentially,

let us assume that P2 plays first, P1 has access to the decision of P2 1 and

P1 has a choice of using this information in his strategy. Thus P1 may declare

a strategy which is a function of P 2's decision, but the declarations are

simultaneous. The difference between normal and decision-dependent information

structure in Nash games will be clarified in the following example.

" Examnle 4.1:Let J (ul U2) and J2(UU2) be the payoff functions of P and P2

respectively, where

2 2
J (UU2) = -u - 2u _- 3u
112 1 2 1

2_J 2 (UlU 2) -3u- lOu 2 - 2U 2 .

Under the normal information structure assumption, no player can formulate his
U

strategy as'a function of the decision of the other player. So each player

will maximize his objective function on the basis that the strategy of the

other player is fixed, yielding

UlN -- 3/2 and U2N -7/6

where (u Nu N) constitutes the Nash equilibrium solution with a normal infor-

mation structure. The Nash values of the payoff functions are JIN = -0.472,

J 2N= +4.087.

If P., will play first, and the value of u2 will be available to P1

when he applies his strategy, P can announce a strategy which is a function

IA two-plaver Nash game with decision-dependent information structure
can be generalized to N-player as follows: Let us arrange the N players in such
a way as PI makes the first move, P the second move,..., and PN the last move.
So each player i can formulate his strategy as a 'unction of ?,....,

decisions for all i=2,...,N.

S
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of u7. For simplicity, let this function be restricted to be linear in u

2. 29a i .. u I - a b u 2 '

The Nash equilibrium solution with DDIS can be determined as follows:

? maximizes J on the assumption that u2 is fixed, and we have

33
UID 2

?, maximizes J2 on the assumption that ul mbu2, and the optimal u2 is

-5
m U 2D 3+2b

* c can be seen that if there exists a real number b such that

3
bu2D 2

tnen :ne Nash solution with DDIS exists. Substituting for u2D in the above

e-uations, and solving for b, we find that b- 2.25 is the unique solution.

... s. there is a unique equilibrium Nash solution with DDIS, which is

(2.25u2D, -0.667).

The .-aies o: the payoff functions which correspond to this equilibrium

iiirion are U1D a1.602 and J2D =+3.334. P has benefited from his

a:i:L:.-na. information (the decision of P ), since his pavoff function under

:5 reater than the corresDonding payoff function under NIS. P suffers

* L n but the collective payoff, i +J1 is improved.

"ash Soluticn with DD:S vs. Stackeiberc Solution

The _ackelberz solution assumes that the two :?Iavers have i::ferent

........ S a leader anc there is a follower. The leader announces iis
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strategy first 2 and as a result he can impose a solution which is favorable to

0himself. It is the order of announcing, not the order of action, that distin-
guishes the leader from the follower.

As was pointed out, in the Nash solution with DDIS, both players

announce their strategies simultaneously, where P1 announces a strategy which

is a function of P 2's decision, i.e., ulIg1(u2 if P1 chooses g1 to be the

same as f1 (see the previous Definition), then P1 is choosing a strategy which is the

same as his reaction function. It is not difficult to see that the best strategy

for P2 in the Nash sense will be equivalent to the Stackelberg equilibrium solution

with P2 as the leader and P1 as the follower, and with NIS, that is, the leader

plays first. Such a choice of g1 does not worsen P2 's payoff function (it may

improve it) since the payoff function of the leader in the Stackelberg solution

is at least as good as (and possibly better than) that of the corresponding
U

Nash solution with NIS (see [5] ). But the value of PI's payoff function maybe

worse. If the follower applies his strategy first, then the leader can formulate

a strategy which is a function of the follower's decision. This enhances the

leader's opportunity te enforce a team solution. (For a discussion of the

Stackelberg team solution, see [26]).

Determination of the Nash solution with DDIS and thus the form of

the mapping gI which achieves the best J1, is not an easy problem and it needs

further investigation. But it is desirable for P1 to make use of the informa-

tion available to him (the strategy of P2) by choosing an appropriate function

which increases his payoff relative to the corresponding Nash payoff with

N1S. Clearly, P can always disregard the information available to him and

choose a robust strategy (a strategy which is insensitive to an-: decision made

by the other player) . The solution in this case will be the Nash solution with :;7S.

The leader can announce his stratey first either due to the lac: -7

information of the other player about the leader's performance index or due to
differences in size and strength.
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A simple example which illustrates some of the basic properties of

the solution is presented below.

Example 4.2: The payoff functions J and defined on R1  11xml aofJ 2 on xR, are assumed

U to be convex and have contour lines as shown in Figure 4.1. The reaction

curves D (u2) and D2 (u) are loci of tangent points between the contour lines and

the lines of constant u1 and u2, respectively. Point N, whose coordinates are

(ulN,u 2N) is the Nash equilibrium solution with normal information structure.

Point S is the Stackelberg solution with P2 as a leader and P1 as a follower

- under NIS. (g1 (U2D ) u2D) is the resulting Nash equilibrium solution, with

P,'s strategy depending on P 2's decision. This equilibrium point is evaluated

as follows: P1 finds his reaction set D (u2). P2 maximizes J2(ulu 2) taking

the declared strategy of Pi. which is uin g1 (u2 ), into account and finds u2D

as the optimal solution. If D (u2D ) - g(U2D), as it is in Figure 4.]1, then the

Nash solution with DDIS structure exists.

4.3. Market Model of DuoDoly

Let there be two firms which have access to the same potential

* buyers. The two firms share the production of a commodity (or two perfect

substitute commodities) with the quantity of production of each firm as its

strategic variable. The market price is determined by a special demandmechanism.

- in this demand mechanism, the market is cleared of whatever quantities the firms offer.

The sales are assumed to be made on one occasion; thus, actions for a sequence

of periods are ruled out. The Nash equilibrium solution assumes that if cne

duopolistmaxi-nizes on the basis that the other duopolist's output is known and

itis at equilibrium, then this duopolist wiLl produce the equilibrium )utput.
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D U(u1) u g(U2)

L~.D' (u 2)

UU

U2 N U2 0
IU 2  FP-7051

... 'r 4.1. A game th c he two type(-s of 'Nasl sol1ution and i
Stacke-lberz so1,:ion.

16
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4.3.1. General Model

Let qi denote the output rate produced by firm i and Q denote

the total marketed quantity. Hence.

Q = 1 + q2"

Let us suppose that the aggregate demand can be represented by a continuous

function as follows:

p - f(Q)

such that the price p and the quantity Q vary inversely. It is reasonable to

assume that each firm wishes to maximize its net profit Ji, where

Ji= Pqi" hi(qi)

* where hi(q.) is what it costs firm i to produce at a rate qiV and it is assumed

to be an increasing function of q..

4.3.1.1. Nash Equilibrium Solution with NIS

With NIS no firm can formulate its strategy as a function of the

other firm's decision. Nash theory postulates that each firm chooses a rate

of sale that maximizes its net revenue given the competitor's rate of sale.

The equilibrium Nash solution with NIS can be found by solving the two

equations 3

J i (ql'q, )  5hiQ)(q i )

(q = f(Q) + q hi = 0 for i= l,Z.
d. Qa. -"

We require that qi z 0, so the necessary conditions should be written

as an inequality as follows: 0 0. But since this is not the main3qi

issue of the paper, we assume that the solution obtained is nonnezative, for
simpiicitv.
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It is clear that firm i should choose its rate of sale such that its

marginal cost (MC) equals its marginal revenue (MfR). In addition, the
I f(Q)<0 iuto

price (p) is higher than the marginal cost (MC) (since Q 0), a situation

which is different from perfect competition where price (p) equals marginal

cost (MC).

4.3.1.2. Nash Equilibrium Solution with DDIS

Whereas the two firms announce their strategies simultaneously as with

NIS, the amount supplied by firm two will be known when firm one supplies its

commodity, and firm one is going to use this information structure in its declared

strategy. Such a type of information structure can be realized if firm one has

spies or agents, who inform their management of the decisions of firm two, or if

firm two has to apply its strategy first (e.g., the plant of firm two may be at a

distance which is farther from the market than that of firm one, so to compensate

for the effect of transportation delay, firm two mayhave a faster production

facility). Due to the information structure of the game, the strategy space of

firm two can be described as q2 -a2, where aER +; the strategy space of firm one

can be described by ql = 9g(q2 ), where the function g is chosen by firm one.

The procedure to find the Nash equilibrium solution with DDIS is

as follows:

(1) Firm one will maximize its net profit on the assumption that q,=a?, which

can be put mathematically as

;J (ql,q2 3hl(q I
1 f(Q) + 1f.O) l 1  = 0.

Solving for q as a function of q2 in the above equation, firm one obtains

i:s reaction function f1 () and ql = fi(q2 ) "

(2) Fir- two will maximize its net profit on the assumption that Q. = i.

and find q., as the optima1 output rate as follows

'Q(q) 'q, -'
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In this case 1-#1 as it is for NIS, butq 2

- 1+ 1 g(q 2 )

q2 aq2  g(q)

It can be seen that depending on the value of at the optimal
-2

strategy, we may have the marginal cost (MC) either higher, equal, or lower

than the price (p).

* (3) If gl(q 2 )= fl(q2 ), then the Nash solution with DDIS exists.

4.3.2. A Linear Model uase

In this section, we will seek analytic solutions for the Nash

game with NIS and DDIS. This will help us understand the difference between

the two solution concepts and find the extra profit which firm one may have
S

obtained due to its extra information.
4

Let Q and p satisfy an inverse linear demand relation given as

Q-d dlP

where d is a positive constant, while d is a negative constant. Let the

cost function hi(q4) be of the form
i 2

h (q ) 2  k

where ki and ci are positive constants.

!.3.2.1. Nash Equilibrium Solution with NIS

Firm i maximizes J, over q. under the constraint that q. is given.

where i,j-1,2 and i#j. The reaction curve of firm i can be found to be

do 1

i 2-cid 2-cd qj.

PSee '361 for a discussion of a Linear demand relation.
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Solving the above equations for i-1,2 simultaneously, we find that the Nash

equilibrium solution with NIS is

rd 0- C 2d 1d 0

qlN 3- 2c d - 2c d +c cd 2

11 2 1 12 1

d - C d d
o l0

p q2N 832d -  2c* ~
m- 3- 2c 1d 1-2c 2d 1+ c 1c 2d1

Thus (ql.Iq2N) is a feasible solution since the qiN are clearly non-negative.

4.3.2.2. Nash Equillbrium Solution with DDIS

For simplicity, let us assume that the space of admissible strategies

of firm one is linear in the decisions of firm two, i.e., ql= bq2, where bC Rql+ q2 - d

Firm one will maximize J on the basis that q2 is fixed, and p- d

2 d1
and it will find q lD to be

do i
q 1D = 2-cd1 c1d 12D"

q + 2- d
Firm two will maximize J2 on the basis that q, "bq2 and p- d and

0
it obtains

d
0

q2D- 2+2b- c2 d

which is clearly in the strategy space of firm two. A sufficient condition

for (q q2) to be an equilibrium Nash pair with DDS is that

do - I

q2D 2-c d - dI q2D"

Substituting for q, in the above equation and solving for b, we find that
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Hence, (q1D 'q2D 
) constitutes a unique equilibrium Nash pair with DDIS, where

(- c2 d 1)

1lD - - d 2D

lC1do d1
q 2D 2- 2cld - 2c d + ccd2

1 1-2d 1 11

It can be easily shown that (q lDq 2D) is a feasible solution (i.e., the output

rate of each of the firms is non-negative).

The question which remains to be answered is whether firm one

benefits from the additional information it has available (the output rate of

*firm two). This question will be answered in the following proposition.

Proposition 4.I: In a market duopoly with a linear DDIS, linear demand relation

and quadratic cost functions, the profit of the firm possessing the additional

i decision information is increased compared to that in the absence of information.

Furthermore, the profit of the other firm is decreased compared to its profit

in NIS.

Proof: The net profit of firm one, J1 ' is as follows

1 2J, M pql- lql - kl

Substi:uting for p by I1 .2 J becomes

J, q'( -~ll q1 q2 -~~ !d -k1.Il 2 dl d I d

:he occimal strategy of firm one in both NIS and DDIS should satisfy,.

reaction curve equation, namely,

d0 1
q- a2 2
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Hence, J on the reaction curve of firm one, JI' is as follows

Sq(2- Cldl) _l~q1 12i k

is a strictly increasing function in ql. So it is sufficient to show that

q1D > q1N to prove the first part of the proposition. But this is the case since

d -c d 1d0_ 21qID 2- 2c d -2c d +c cd 2

1 1 2 1 1 21

which is obviously greater than qlN" For firm 2, the profit under NIS

(J2N ) is

q2(2-c2dl\

2N 2 2d, 2

The profit under DDIS (J is

2D 2D(2d1) -k 2 "

" 2D 2N' then we have

-c Id d 2/l-c d \2
(2-c d )d o 1) > 0

where
a = 2- 2c d - 2c d + Cc cd

1 1 2 1 12 V

After some manipulation, we find that

-2 + cid + 2cd - CI cld I  0

which is a contradiction, so J2N > J2D

Consequently, fir. two should not let its output rate of Production be known

to :4rm one, because it will end up suffering.
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Before concluding this section, several important remarks should be

mentioned.

R4.1.1:n the special case when the two firms have the same cost function

(cl c2 .c), the two firms will have the same output rate, and as a

result, the same net profit of Nash game with NIS as the solution concept.

But it can be shown that the net profit of firm one is more than that of

firm two under DDIS.

R4.2:If we compare the total output of the two firms under NIS and DDIS, we

find that

2d -c d d -c d d
QN = qIN + q 2N M 3-2c d -2c2 dI +c c d2

1 1 1 12 1

and
d -c d d -c d d

QD " q1D + q2D 2-2cd 1 -2c2d1 +c1 c2d

It can be easily checked that the total output rate of the two firms under

DDIS will be less than the total output rate under NIS. This implies that the

welfare5 of the consumers is worse off under DDIS conditions, since the

firms sell less quantity at higher prices in these conditions.

R4.3: The reaction curve of firm i under NIS can be expressed as follows

-q q for i- 1,2.PNIN'q2N) -¢i'iN =d I qiN'"

1

Under DDIS the reaction curve of firms one and two can be expressed,

respectively, as follows

3An appropriate definition of consumers social welfare ' (Q) is the

consumer's surplus, which is mathematically given as W(oN )
0

where N and ? are the equilibrium values of quantity and pr.ce, respecti.,e>v.
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P D(qlDq2D - lqlD " d for firm one,

and

p (q (+b)q 2  for firm two,P D~~qlD1D2D ) -cqD"d (~~ 2D'

* where c 2dl)

b .

From the above equations, it is seen that the price (p) is higher

than the marginal cost for both firms and for the two kinds of informa-

tion structures. But for each firm the difference between the price (p)

and the marginal cost (MC) is higher for the solution with DDIS than for

NIS. Hence, Nash solutions with NIS and with DDIS do not satisfy group

rationality.6 But the Nash solution with NIS is closer to the "perfect

competition" solution than that with DDIS since the difference between price

(p) and marginal cost (MC) is less for each firm.

R4.4: In the linear duopoly model we examined, we assumed the strategies of

firm one to be of the form ql -bq 2 " Without this assumption the DDIS Nash

condition yields a general class of nonunique nonlinear solutions ql -g(q2 ) '

which have values of (bq2D ) and slopes equal to (b) at q q2 D" Consequently,

we will have a class of equilibrium Nash solutions which leads to the same

payoff functions but with different sensitivity properties.

R4.5:If the strategy space of firm one is assumed to be of the form qw al+bIq29

where aI and b IER; while keeping the strategy space of firm two unchanged,

the reaction curve of firm one will stay as before, i.e.

6To satisfy group rationalir', which includes the buyers, the price

7tust equal the marginal cost (see (3/]).
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d o 1

1D 2-c1d 2-c1d 12D"

But the reaction curve of firm two will be

d -a
q2D 17 2b 1 -c 2d 1

It can be seen that depending on the values of a and b., we have

different equilibrium Nash solutions, hence we have an uncountably

infinite number of Nash solutions with DDIS (for a more detailed discussion

of a similar situation, the reader is referred to'[24]). These

equilibrium Nash strategies are not implementable since neither firm knows

which Nash strategies the other firm will apply.

R4. 6 :The price elasticity of demand at the Nash equilibrium point with

NIS 0,N) is

i-c d - c d +c cd
2

1 1 2 1 12 1nN 2- c1d I - 2d1

The price elasticity of demand at the Nash equilibrium point with

DDIS is

1-C d - c2d +c c d-
D1 1 1 1 21nD -

1-c d - c d
1 1 2 1

It can be seen that nD > N' and the market is always price elastic (an

increase (decrease) ir price leads to a reduction (increase) in the amount

of money spent on the commodity) under the conditions of DDIS but under

NIS conditions it will be price elastic if and only if d2clc2 > 1.

R4.7: The duopoly model is necessarily simplistic to avoid technical

complications. However, it serves to clarify certain aspects of the

nature of duopolist competition. Furthermore, this motivates examina-

tion of various forms of strategy spaces from a game theoretic viewpoint.
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4.4. Multistage Dynamic Problem

In this section we will g~neralize the basic idea presented

in Section 4.2 to multistage dynamic games. Let the evolution of the system be

described by

Xk+1 ' k(xkulku 2kk)

n k m ikwhere xkE X is the state of the game at stage k, u ik EU is the control of

S Pi at stage k for il,2. The function h k is continuously differentiable in

,U'lk, 'U2k' Let the objective function of Pi be

i )+N-I i

Ji(U1 ,U2) - SN(XN) Sk(Xk,ulku2k)

where
ui  (Uio,...,u '_

and the function S is continuously differentiable in XkUlk U2k.

Let us assume that at the start of each stage of the game, P2 makes

the first move and P1 makes the second move. So the information which may be

(but not necessarily) available to player i, at stage k, let us call it n .(k),

is

., n2(k) -{xo'Xl'''',k ;  u20, • -• u2klul0", u •••,lkl}

nl k {oXl,...,Vxk ,  u10, .. ,IUlk-l, U20, ... U2k 1,

If the information available to the players is memoryless ( 2 (k)=Xk and

rl(k) =(.kU 2 k), then P1 and P2 have to choose Uik1 Ylk(. U2k) and U2 k k

respectively, as their optimal strategies in the Nash sense.

As in the static case, the general solution is extremely difficult

to obtain. But if we assume a certain strategy forn for P and P,, solve a

control optimization problem for each player on the assumption that the strateg-

S
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form of the other player is given, and if the resulting optimal strategies have

the same form as our assumed ones, then we say that such a strategy pair is

a Nash equilibrium solution with decision-dependent information structure. If

the resulting optimal strategies do not have the same form as our assumed ones,

then we try to find sufficient conditions for the equality of the two forms,

and these conditions will be sufficient for the existence of a Nash equilibrium

solution with the assumed strategy forms. Before we give the sufficient

IO conditions for existence of a Nash solution with DDIS, we will look into the

problem of a two-stage dynamic duopoly.

4.4.1. Two-Stage Dynamic Duopoly

Assume that the two duopolists face a demand relation of the form

Qt do dlpi + d2Pt+

where
Qt total quantity demanded in period t

Pt price in period t

and d > 0, d1 < 0, and d2 > .

Such a demand relation is more realistic than the static one since the quantity

demanded by the consumers in period t depends not only on current, but also on

the buyer's view of future prices, (see [37)), since if the future price

i3 going to be high, the consumers will have high current demand. Let us assume

- :o firns produce the same commodity (or two perfect substitute commodities),

-hare the same market. Let q (1)q be the quantities supplied by

in: t-.;o respectively, in period t, so the demand equation will be

(1) (2)+ q d +dP +do 0 1 t 't+l'

(i s:" = (r ) is
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r(i) (i) _ci)
t Ptqt t

where C is the cost of producing q which is assumed to be quadratic
t_()(~. i (i) 2(i)

in q (i.e. C (i) q ). The present value of the total profit of eacht t Tt

firm is

I ti(i)
(PV) = j r ti t-0 t

where 8-discount factor. We assume 8 -1. Thus the payoff

function of firm i can be expressed as

1 (i) 1 (i) 2(i)
(PV) i = t E0p t q t  -- ct qt •

4.4.1.1. Cournot-Nash Solution with Normal Information Structure

If the information structure of both firms is normal, then at the

start of each stage, both firms supply the market with their product simul-

taneously, and as a result no one firm can declare a strategy which is a

function of the decision of the other one.

Using dynamic programming and the definition of Nash solution we

find that

At stage 1: (1) 1 q (2) u l
c(1 ' lN c(2)

1 C 1

At stage 0: The reaction curve for firm one is

(2) (1) 2
d-_q d-c d
2(1)() ( + 11 2= 2 1) 1) o/ .TF-C(-1)(11-dc c -d2c( c1

and the reaction curve of firm two is

d a(1) d C(2) d2
q(2) 0 1 0 + 11

0 ,2 (2) (2) 0 (2 (2)
-d2 c o I
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Solving the above equations simultaneously, we have

q) -d c(2)c (2) +  [- d (2)C (2)C(1)+d2 C(l)C (2) (2) +C (2)1
0(0) 0 o1 0 1-1 2 1 1 o 1

oN ,2 (1) (1) (2) (2) (1)(1) (2) (2)
2 o C1  Co l -Co 1  o C1

-d CM (1 ) + P .- (1) l_2) + Cl) + 2C(l) C (1)

(2) o o 1 o lo 1 1 1 21
oN d d2 (1) (1) (2) (2) _(1) (1) c(2)C (2)

2Co 1 o 1 o 1 o 1

in rde tht (l) (1) (2) (2)SIn order that (q oN" (1N,qoN ,qlN) be a feasible Nash solution, we should have
(1) _(1) (2) ad(2)

qo (1ql( qo)and q(2 nonnegative. Sufficient conditions for the

feasibility of the equilibrium Nash solution can be easily found.

4,4.1,2. Yash Solution with DDIS

If the information structure of firm one fs decision-dependent, then

at the start of each stage, firm two supplies the market with its product

before firm one, and as a result firm one may declare a strategy which is a

function of the decision of firm two.

At stage 1: q(1) . i (2) .p
(1 ) 1D (2)

C1  1l

At stage 1 the decision of any firm does not affect the profit of the other

firm at this stage, so it is meaningless to have a strategy which depends on

the current decision of the other firm, but we can have a strategy which

depends on the pasL decisions of the other firm.

At stage 0: For any strategy form of firm two, firm one will respond by its

reactfon curve (2) (1c~) 2]
(1) d Oq(2 0__d_____q = o 0 Io_ d2___

0 l (1) (1) d  o lc(1) d21 1 2 o 1



L. Let us assume that the space of admissible strategies of firm one at this

stage is linear in the current decision of firm two. Hence firm one will

declare a strategy of the form

qI (1) bq(2)-
0 .0

The optimal response of firm two will be
' to(-d 

2 c (2) +d (l+b)) +d (i+b)q- (2) o

oD " .... 2_ (2)d2 (2)f L](i b) -co  d~

For an equilibrium Nash solution with DDIS to exist, firm one should have

d - (2) d cM1) 2
_q (2) ao-oD - | 1- 1 -2-

oD "-c 1) (1) 2 o (1) (1) 2
0 c1  2  0 1-c cI  d2

U (2)
* If we substitute for q(2) in the above equation and solve for b, we find that b

should satisfy the following algebraic equation

2
SAb + Bb + C 0

where
c(1) (i),2_, (1) (1).2+Po(1) 2A -d 0 c C1  C 1  d2+Pc d2

B .2-p ( dd 2d 3cl 1ld 2  Cd -d2 (2) ) c(1) 2
o2 o 1 2o- 2o1-2l ) + 2o 1  d2

-pd2 (2)+ 2 (1)+ (2) (2) 2 (1) 2 d2d c(2)c (2)
0 2 1 a2 1 C 1  2 P(d-cl d2 )+ 2 o 1

Consequently, we may have a unique solution, two solutions, or no solution

which satisfy the Nash rationale with DDIS. A comparison between the payoff

functions under NIS and DDIS can be made for firm one, but due to manipulational

difficulties it will not be pursued here.

I
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Lu It is our conjecture that if a unique equilibrium Nash solution with

DDIS exists, then in a two-stage dynamic duopoly, with linear DDIS, linear

demand relation and quadratic cost functions, the profit of the firm possessing

the additional decision information will be increased compared to that in the

. absence of information. We failed to find a counterexample to our guess and

* the following numerical example is illustrative.

Example 4.3:Let the market demand relation be

q ()+q 2) . 6- 2pt+l; .2.

- Let us assume that the two firms have identical cost functions with

c () .c( 2 ) 1 c (2 ) 3

*Under NIS, the Nash output rate value is

At stage 0: qo q(2) .o 4
(1) (2) =2

At stage 1: ql qN 2.

The resulting Nash profit of each firm (PVN ) is|N

(PVN)1 - (PVN)2 = 6.

Under DDIS, with firm one declaring a decision-dependent strategy, the Nash

output rate value is

(2) . 12.057; (1) . 2 q(2)
At stage oD oD

(1) (2) q(2) . 6.032At stage i: ql- l l
1D 1DD 602

The resulting Nash profit of each firm (PVD) is

(PV D) = 38.34 and (PVD)2 
= 5.999.

Clearly, the profit of firm one under DDIS is more than its corresponding

profit under NIS.
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In the next section discrete linear Nash game with DDIS is considered

The sufficient condition for existence of a solution, on the basis that the

• space of admissible strategies of both players is linear, will be given.

a
4.4.2. Discrete LQ Nash Gapie

Let us consider the discrete linear system

Sk+l xk + Bklk +B 2kU2k
* whe re

n k m

xkE R , UikE Rik

and Uik is the control of player i at stage k, for i=l,2.

The objective function of P. is

iiN-1 + u RWi) + ,l R(i)ujk

i 2 x'QiNXN+- k!=0(kQikk ik ik Uik jk jkjk

*. where
_(i) 0; i)
R W>0; Ri) 20ik jk ' Qik "U

if P1 makes the first move at every stage k, and the information available to

both players is memoryless, then n2(k) xk and nil(k)= (xk, U2k). Let the

strategies of P1 and P2 be of the form

ulk = Llkxk ' L2kU2k

U2k = FkX k '

P I-ill assume u7k = FkXk? solve a minimization problem, and find the optimal

Ulk as

= ( 1< ) + S k ,- 1 :
U 1 , = -(R'l + B P 3 )(3 .)x
lk kk ,k+l lk lkl, kl k

".here P saci sfies
"l~k

p
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P- (R()+ Bo ~)(.1

~l,k Qlk +AkPl,k+AkAkPl,k+llk lk lkpl,k+l~lk) A ' klk+lA) 41

and
"Qlk Qlk+ Fki +

=1~1 rk2k k "

0
P2 will assume ulko Llkk+L2k2k, and solve the following minimization problem:

minimize J such that

-. X " (Ak+ BlkLlk) x+(B2k +BlkL 2k) U2k

where

i , +u R (2) +U kMk ,,

J2 = * XNQ2NXNi k=OxkQ2kxk' 2k u2k 2 kMk U2k)

and
Q2k = Q2k+ LlkRlk Llk

-(2) (2) * (2)
2k - 2k L2klik '2k

1 -L (2)

. 2k lk Llk"

The optimal solution is

u -i(2) , P . +
2k -2k +2k 2,k+i 2k (2k2,k+I~k+MI%)'ck

where

-. Ak+ BlkRlk; B2k B2k + BlkL2k

and P2,k satisfies

fnrA'X(AP B !(()4B -, - -i., '

+A2,k k 'Pk+l-k-('kP2,kB1. 7k + Vk' (' k- +B2k2,k+iB2k )  2,k+! k

Q, 
(4.2)

•P, chooses F -s() -. ) then sufficient
k =( 2k k ,k+IB2k) - -

conditions for existence of a Nash equilibrium solution with DDIS can be

stated in the following proposition.

IJ
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Proposition4.2: If there exists an (mxn) matrix L lkand an (m lkxm 2k matrix

L 2k such that

-(2), 1- ' () 1-Llk'L2k (R 2k +B 2k P2,k+l B2k) (B 2k P 2 k+l.kk+"K)- (Rilk +B lkPl ,k+,B lk) (Bilk Plk+l-Ak)

*where P l,k+l' P 2klsatisfies equations (4.1), (4.2) respectively, then

2,L + L
Ulk Llkxk+L 2ku2k

2k R2k ;k2kl2 k2klkM

constitute a Nash equilibrium solution with DDIS.
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CHAPTER 5

INFORMATION STRUCTURE,OPTIMAL COORDINATION,AND A GAME MODEL OF DUOPOLY

5.1. Introduction

In this chapter we discuss the idea of using DDIS in inducing the

Nash followers in a LY game to behave as members of a team with the leader's

objective function as the objective of the team. We introduce a static market

model of duopoly where the government interferes in this market. We show that

by incorporating the decisions of the Nash duopolists in its strategy, the

goverment can always succeed in inducing them to cooperate. In Section 5.2, the

incentive problem is formulated as an (n+l)-person LF game with one leader and n

Nash followers. The leader's problem is to force the followers to act in such

a way that even though each one wants to optimize his objective function, they

also optimize the objective function of the leader. In Section 5.3, the objec-

tive function of the leader is taken to be a convex combination of the objectives

of the followers and P quadratic cost function on the strategy of the leader.

The incentive mechanisn of the organization is formulated by incorporating the

decisions of the followers in the strategy of the leader. Bv employing such

forms of strategies, the leader can force the followers to behave as members of

a team, with their composite objective function contained in the objective fune-

tion of the team. in the first part of Section 5.4, we consider a general static

market model of duopoly where the government interfers in the markat throu2h

adiustine the effective income of the potential buyers of the commodity. 'e shD,

that by adopting the incentive mechanism described in Section 5.2, the Zovernment

can enforce the tw o competinz firms to cooperate and achieve the ?areto-octimal

solution. in the second part of Section 5.4, we anal.'ze in detail the Zase: a

linear market demand relation and a quadratic cost function. ['e obtain anai'ti
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Usolutions for the optimal strategies of the firms and the government, where
the optiaml strategy of each firm maximizes in the Nash sense its own payoff

function, and also maximizes the government's payoff function, and the optimal

strategy of the government maximizes its own objective function (which reflects

the welfare of the two firms) and forces cooperation between the two firms.

We show that in the limit as the unit cost of applying government control tends

to infinity, the enforced cooperative optimal controls and profits tends to the

voluntary cooperative ones. We discuss the general properties in terms of

marginal cost, price, and the consumers' welfare in the context of this problem.

3.2. Formulation of the Coordination Problem

*A multi-person decision problem is a team decision problem if the

decision makers (DM's) share a common goal but they have different information

structures. A team decision problem arises in an organization in which the

objective is to maximize the payoff function of the leader (central manager).

If the followers (local managers) share the same objective and they behave in

such a way as to maximize the leader's payoff function, then the model of such

an organization is a team model.

In general, the followers do not share the same objective with the

leader but each has his own objective function which he tries to maximize. In

such a case the decision problem for the organization can be formulated as a

multi-person game. This multi-person game consists of the leader and the

followers. The leader is able to announce his strategy before the other

:)lavers: hence, he may impose a solution which is favorable to himself. Let

the leader choose an overall objective for the organizaticn with which he may!

coordinate the objecti-e functions of the followers. 1:ow, if the leader can
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choose a strategy which induces the followers to behave as if they were members

of a team with the le er's objective as the goal of the team, then we say

that an optimal coordination mechanism exists.

The above discussion can be formalized as

(1) Let I- {0,1,...,nl denote the set of DM's where 1-0 denotes the

leader and il,...,n denotes the followers.

(2) Let Ui.- (ui}, with iEI, denote the decision space of DMi •

(3) Let Ji :U- R, with iE I, denote the payoff function of DM., which is

n
defined on the joint decision space U- ir U1-0 i

(4) Let y :H- U denote the strategy of the leader, mapping the infor-

. mation space H to the decision space U .
0

(5) The decision problem for the organization can be formalized as an

(n+l)-person LF game with DM as the leader and DMI. as Nash
0

followers. This game is defined as

Definition3.l:if there exists a mapping Ti :U :i, for i=l,...,n such that
0

for any u r U
0 0'

Ji(Tuo;U) _> Ji(Tului;Uo ) VuiEU i
p

where TUoiU i = (T1uo,...,TiluoUiTi+1 U,...,Tn uo), and if there exists a

u E U such that
OS 0

J (Tuos ;U) > Jo(TUou 0U)

then the strate~ies (UUls,. .. ,U), where Tu (Uls .. Us) are called
Os' Is"'uns .os '"n

sL strategies with D,'! as the leader and Di. for i= i.. ,n as Nash

followers.
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The leader's problem is to design his strategy so as to induce the

followers to optimize the leader's objective function while playing optimally

0with respect to their individual objective functions as well.

5.3. The Ccordination Mechanism to Enforce Pareto-Optimality

Let Ji(Uo,Ul,...,Un) be the payoff function of DM. for il ,...,n;n 1 2
and let J = lciJ - c u be the payoff function of the leader, where c > 0,0 l i 2 oo 0

n
_t.> 0, and Z a -. This objective function reflects the welfare of the entire3. ' i-l i

organization since it comprises a convex combination of the payoff functions of

its members plus a quadratic cost on the strategy of the leader. The leader's

objective is to see that J (which is also the goal of the team) is maximizedo
by all the DM's. To have a well-defined problem let us assume that there

t t texists at least one team strategy u = (u,...,u) which maximizes J over all
0 n 0

ueU. The leader will seek a strategy y (.) suchthat if u yo (.) is sub-

stituted in Ji, then DMi will find a unique solution (u iN) as his optimal

strategy in the Nash sense, and this solution will also lead to the maximum

value of J . This can be mathematically formalized: The leader should choose0

a strategy u =y (.) such that when DM. plays non-cooperatively, he will choose0 0.

UiN which satisfy

Ji(fo(')UlN''' .UiN .... U " Ji (V).uI ... ... u

and
u ' (u......u).

oo 'UlN' . nN' o o n

let the leader adopt a strategy of the form

t n

Uo = Uo - A (u -u.).
io
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UThe leader makes use of the information available to him (the decisions of
the followers) by formulating a strategy which is a function of these decisions.

By choosing such a representation (the reader is referred to [261

for a game-theoretic interpretation of such a representation), the leader

t
is forcing each of the followers to choose a strategy which is equivalent to u.

or else they will be penalized. So if there exists a real sequence (A in such
ii=l

that the optimal response of DM. (uiN) is equivalent to ui, then we say that the

coordination mechanism to enforce Pareto-optimality exists. The fact that the

leader can enforce cooperation (formation of a team which corresponds to co-

operation) among the competing followers has deep economic implications,

especially in a market structure.

For cooperation to replace competition among several firms in a market

(with no leader to enforce Pareto-optimality), r-, only must the total maximum

profit exceed the combined competitive return, but also none of the participants

in the cooperative group must be able to achieve higher profit by means of some

feasible strategy while all others stick to the cooperative agreement.

In the case when competition dominates cooperation and the firms

play nonefficiently, then the leader (e.g. the government) may interfer to

enforce cooperation. If the total maximum profit obtained after taking into

account the cost of enforcing the cooperation still exceeds the combined

comoetitive return, then the leader has an incentive to interfere and enforce

cooperation, as will be shown in the next section.
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5.4. A Market Model of Duopoly and Enforcement of Pareto-Optimalitv

Let there be two firms which share the production of a commodity

(or two undifferentiated commodities) and have access to the same potential

buyers. The two firms use the quantity of production as their strategic

variable. The demand for this commodity depends on the market price and the

consumers' effective income. We assume that the government interferes in the

m market through the consumers by giving them subsidies or applying income taxes,

hence the strategic variable of the government has a direct effect on the

income of the consumers.

1
As a coordinator of the market, the objective function of the

government is a convex combination of the payoff functions of the two firms

and a quadratic cost function on its control; and its problem is to design aU

strategy which induces the two firms to behave as members of a team with the

objective function of the government as the objective function of the team, while

u maximizing their payoff functions as well.

5.4.l. General Model

Let q. stand for the output rate produced by firm i and Q stand for

!Pthe total marketed quantity. Hence,

Q = qI+q 2.

Let us suppose that the aggregate market demand can be represe:ited by a con-

tinuous 'unction as follows

The 2overnment may find iz necessar-. to int*r -  
. -

3cnieve a -ore e iCi-ent econo-., especiail: i: the c,,t

tne 7articipancs.
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such that the price (p) is an increasing function of the effective income of

the consumers (I), while it is a decreasing function of the demanded quantity

(Q).
The effective income of the consumers (I) can be decomposed into two

* components 10 and i , where I is the nominal income of the consumers which

the government has no control over; and i is that part of the consumer's income

00*: which the government can directly adjust through taxes or subsidies. Hence i

can be taken to be the strategic variable of the government. Consequently,

equation (5.1) can be reformulated as

p - f(Q,io)-
0

It is reasonable to assume that each firm wants to maximize its net profit Ji.

where

• i J, a pql hi (ql)

h hi(q i) is an increasing function in q i and represents what it costs firm i to

produce at a rate q1 "

The objective of the government as the coordinator of the market is

to find a joint strategy (ql ;q2t;iot) that maximizes Jo(q ,q2 ,io) where
t1 0 12

J(ql,q2,i) a Jl1 + J- c
o o 0

i0, co > 0, and a+ 2 
=

The optimal joint strategy (q1t;q,2 ;iot) should satisfy the following

f ",o Ahl (q i)
(a q +a q) + : i f -ai (q) 0 for i,j-l,2 and i#j (5.2)

and
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1 0o  C (/ t° + a2q2 )  (5.3)

0

To have a well-defined problem, we are going to assume that there exists at

P least one joint feasible strategy (by feasible strategy we mean one with non-

negative output rates) which achieves the maximum of J 0 . Hence, we can see from

. equation (5.3) that the optimal strategy for the government (iot) is to give

subsidies for the consumers and consequently increase their effective income.

The increase of the effective income of the consumers enables them to be

willing to buy any fixed quantity at a higher price, which in effect increases

tba firms' profits. To induce firm i to produce at an output rate which is

equal to qit for i-l,2, the government chooses a decision rule (strategy) of

the following representation

1 0 -ot + A 1(q 1-qit) + A2(q2-q2t) (5.4)

where A, and A2 are real constants to be chosen by the government to enforce

0 Pareto-optimality. Clearly, if the output rate of firm i equals q for i-1,2,

then io- i in equation (5.4), that is the strategy of the government will be
0 ot

optimal, and the indirect cooperation between the two firms will also be

achieved.

If i as given in equation (5.4) is substituted in the payoff function
0

of firm i, then firm i will find its optimal output rate by maximizing its

payoff function on the basis that the output rate of the other duopolist is

given. The necessary conditions for the above maximization problem can be

mathematically described as

t.
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0Ji pf Q f ° 0h~ - for i =f,2 (5.5)

aq-- = P + qi[TaQq 3 0 aqi qq 0-

where

S- 1 and Ai"
aq qi

The leader's problem is to choose the real numbers A, and A2, which will
u2

o

cause the optimal response of firm i to be equal to qit' If Ai is chosen to be

ah. hi (q i )

3q f (Q,i1 0) 1qq•Ai =-8 (5.6)

-- qi i -- Sq=qit

q 2=q2t

then the optimal output rate in the Nash sense of firm i will equal qit We

conclude this section by the following proposition, which we have just proved.

Proposition5.1: In a market duopoly, by declaringa strategyof the form given

in equation (5.4), with Ai satisfying equation (5.6), the government can force the

two firms to choose a Pareto-optimal output rate, while maximizing their

- corresponding profit as well.

5.4.2. A Linear Model Case

In this section, we will determine analytic solutions for the

coordination problem presented in the last section. This will aid in under-

*" standing the economic implication of the coordination problem.

Let the market demand relation satisfy the following linear equation

* (for a discussion of the linear demand relation, the reader is referred to [16]

0d + d1p+ d2 i
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3 where d and d2 are positive constants, while d1 is a negative constant.

Let the cost function h (qi) be of the form::i:

S1 21 2
m h1 (q1 ) - Ciql2 +K 1

where Ci and Ki are positive constants. For the linear model case, we have

the following corollary.

* Corollary 1: In a market duopoly with a linear demand relation and a quadratic

cost function, the government can force cooperation between the two firms by

choosing A1 to be

A, a qit (2-old1) + q d 21ot for i,J-1,2 and iOjI -:d 2 q ,

Swhere
q biiai +Si  -d 2 (ctq

. ::" it " ib2 -1 ot" dc--- 1a qlt+ '2 2t)
a -b A c 1

*and2

bij -i d1c0 Si  doa i

22

1-, 2, - ,idlci d2

Proof: The proof is straightforward and follows the same lines given in the

, discussion of the general case.

Instead of absorbing the total cost of cooperative enforcement, the

government may charge the firms the cost of policing the cooperation. Let the cost

charged to firm i be 1- u, where Ce + 2c2 ) co. The objective function of

the government (Jo) will be

-" J a IJ 2 J2 where the profit of firm i (J.) is
0 1 1 212

1 2 i- 2
J - p -7" ciqi- . .-.o
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It can be shown that the government can force cooperation between the two

firms by choosing A of a slightly different form,

qt (2-c d1 ) + q t - d0 + d2 iot
-1,- d2qit+ + i '

where qt. q , and o are as previously described.
jt ot

In the remainder of the chapter we consider the important
special case when the objective function of the government (J ) is the total

0

profit of the two firms and a quadratic cost on the strategy of the government,

1 2i.e., Jon J1 +J2
-  co i. By the same techniques as above, we find that

, .

-dIdoc c0
cqc [d 2cc 2-2 2 (5.8)

jot 2  d2 d (c1+c2) 2

c (cLd.)+ 2d2 (ci+c
0 dAd2 11 (5.10)

I -d dc c

q o and are sketched as a function of the parameter c in Fig. 5.1,

Fig. 5.2, and Fig. 5.3, respectively, wherec denotes the cost of applying one

unit of government control.

From Fig. 5.1 it can be seen that the optimal output rate of the firms

are feasible (the qi 's are non-negative) if and only if

2> (C1+C2 )d2
C >

dlClC2 - 2(ci+c 2 )d1

Hence, the optimal feasible strategy of the government amounts to increasing the

effective income of the buyers as shown in Fig. 5.2.
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JI

I ,%'"I

~(c1 + c2) dim

m ~~~d I -)cc-2(cl+c2>d'l

I'I

I I iFP - 7057

F12ure 3.1. The optIMa' Output rate of firn i vs. the Cost Of one unit
" of government control.

LI

. •
4"I

kI
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ot

I-5

ICO- I
I

i_ , I(CI +c)da2
- .I ,

I I ,o -d~cIc2 -2(cj.+c2)dl

. _ _ _ __ I P-7056

:' 'Figure 5.2. The optimal government control vs. its one unit. cost.

wT

II

- - (c+ 2 d
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U

-ci
c d2

FP - 7058

-:gr 5.3. The opti mal cornstanL Ai vs. the cost c-4 one unit of
government control.



.7'" 96

5.4.2.1. Forced Cooperation vs Voluntary Cooperation
If the two firma agree to cooperate with J +J as their objective

1 2

function (they agree to form a cartel, where the members retain their separate

identities and separate control over their policies), then the optimal output

of the two members of the group can be found by solving a straightforward

maximization problem of the total profit of the two firms on the basis of the

demand conditions. This optimal output rate is

-C d d
2 for i,J-1,2 and i j

-2c d -2c 2d +d 1CC 2

' and J is the optimal total profit. The trouble with this solution is that ita

may not be practically attained, since any firm can depart from this solution

U without being penalized for increasing its profits. For example, if firm 1

* supposes that firm 2 is going to stick to the cooperative solution

q 2 d firm 1 chooses its optimal output rate as the one

1 12 1 1 2 do 1
which satisfies its rational reaction relation q- " 2-cld 2-cd q2" Then

d (-c d -2c d +d2  c)
we have q, 0 o 1 2 1 1 1c2  . Hence, by departing from the

(2-cld1 ) (-2c 1 -2c2d 1+dlcC 2 )

.! cooperative solution, firm I managed to increase its profits. Of course, the

same argument applies to firm 2. As a result no firm may bewilling to join

the coalition, knowing in advance that it and all others may depart from

the cooperative agreement.

Earlier in this chapter, we showed that the government can force

cooperation between the two firms if it announces a strategy of the form

given in equation (5.4), where A. satisfies equation (5.10). The optimal output
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U rate of the two firms and the strategic variable of the government depend on

c . If c is large enough, then the total profit (Jo) of the two firms under

forced cooperative conditions, will become arbitrarily close to their total

profit (J0) under the voluntary coalition conditions, since it can be seen that0

as c q q0, iO1 0, and J -Jo.0s io qt lot 0 0

For large enough c there is a seeming paradox, since, although in0

both situations of voluntary and enforced cooperation, the government contributes

nothing or almost nothing to the market, and each firm has the same output

rate, both firms have an incentive to depart from the Pareto-optimal solution

under voluntary cooperative conditions; whereas no firm would change its solution

under enforced cooperative conditions,since it can only lose by departing from

the equilibrium solution. The answer to this paradbx is that the strategy of

the government has two different representations for the same value in these

two cases (i MO for the voluntary case, while io- A(ql-qlt)+A 2 (q2 -q2 t)

for the enforced cooperation). The representation of the strategy in the enforced

Pareto-optimal case has a threatening power, which directs each firm to behave

in a certain way or else it will incur additional costs.

In summary, we can say that by being in a coordinating position in

the market, the government forces the two firms to cooperate, thus obtaining the

maximal monopolist joint profit, but with arbitrarily small cost.

The following numerical example illustrates the basic ideas

presented in this section.

* 5.4.2.2. Numerical Example

Let the market demand relation be

ql+q, 10 0- 2p+i o .
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i Let us assume that the two firms have identical cost functions with

c - c-1 2

Substituting the values of d0, di, d2 , C1 , c2 in equations (5.7), (5.8), (5.9),

we find that

20c
The optimal output rate of each firm (qi) - 12c -2

0
m 10
The value of the control of the government (i o) =6c-1

0

The strategy of the government (io ) is

100• -. io -(c-0i + Ai[ (ql-qlt)+(q2-q~t
0 6c -1~ + d

-c +2
where Ai -i o

For c -10, we find that

oo
q it W 1.695; 1 ot- 0.1695

A -A 2 - -0.8

p - 3.39

S+J- 8.6190; c 1i 0.1436.
1 2 2 2o

Hence, 1 2
j 0 1 +2- ci - 8.475.

For c - 1000, we find that
0

-i f 1.667; iot -0.0017

A, -0.998, p 3.333; - c 1 = 0.0014
2o o

J +J - 8.333 and J 8.332.
1 2 0



99

If the two firms agreed to cooperate (without the interference of the government),

then the Pareto-optimal solution would be
0 0

ql M q2 2 1.667

0
i o

0

and o Jl +J2 - 8.333.
0 1

It can be seen from the above that for c -I10, the total profits after taking into
0

account the cost of policing the cooperation is bigger than the total profits

under voluntary conditions. In such cases the government may charge the two

firms the cost of its control, for example when El= E2 = 5 with Z1 +C2
= co, the

government, by choosing A =-0.3998 (see equation (5.7)), can enforce cooperation

* between the two firms, charge them the cost of its control, and still make the

total profit of the two firms exceed the voluntary monopolistic total profit.

By increasing the consumers' demand for the marketed commodity, the government

altered the market structure and consequently, increased the total profit of

the two firms compared to their profit under volunary cooperative conditions.

For large enough values of co (co  1000 is large enough for our

example), the values of the optimal strategies and profits of the firms and

government under forced cooperation conditions are arbitrarily close to the

corresponding values under voluntary cooperation conditions.

The optimal solution under enforced cooperation conditions is a

LF equilibrium solution with the government as a leader and the two

firms as Nash followers. Hence, there is no incentive for any participant to

leave this solution.

I
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UBefore concluding this section, several remarks should be mentioned.

R5.1 If we compare the output rate and the price in the market under forced

cooperation and voluntary cooperation, we fn ' that

-d d (c +c)
Q O q0 + qo 1 2

- 2 -2c d -2c d + d2 c C
1 1 2 1 11 2

and o d0 (c+C 2)-d1doc1c2

2-2c d -2c2d1 + d c c2

while -
1d d (c1+c2 )c
1 0 2Co [-2c dl-2c d +d lc 2 c1+c2) 2

and

, co [d (cl+c2) -dldoclc2 ]
MPt = •22

co [-2c d -2c d +d2c c ]I-(c+c 2 )d2
o 11 2 1 1 12 1 2 2

(c +C2)d 2
For all feasible values of c o 2 ) the output rate0 d2clc 2 -2 (c+c 2 ) d1 /

and the price under forced cooperation are larger than the corresponding

output rate and price under voluntary cooperation. The welfare of the

consumers (W) is appropriately defined as the consumer's surplus which
Q

can be mathematically formalized as W(QN)- (p(s)-PN)ds, where P N and QN

0
are the equilibrium values of price and quantity, respectively. It can

be verified that W is worse off under voluntary cooperation,hence, the govern-

ment increases the social welfare of the consumers compared to that under

voluntary cooperative conditions. But, in the limit as c -M, the price, the

output rate, and the social welfare of the consumers will be equal under

both conditions.

R5.2 The price elasticity of demand (n) at both the voluntary cooperative point and

for all values of c at the enforced cooperative point is identical and it equalso
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* n (d (c1 +c 2) -d1 dc 1c2) / (d 0 (c1 +c2)).

It can be seen that the market is always price elastic under both

conditions.

R5.3:Under voluntary cooperative conditions the output rate (q ) satisfies

0

0 i 1 ( j

Under forced cooperative conditions, the output rate (qi) satisfies

ccd 2c -c oid +2d 2 (c +C2

p -cq -q (1+.. ) for i 1,2.
t - it it q 2 C

From the above equations, it can be shown that under voluntary cooperative

conditions, the price (p) is higher than the marginal cost (MC) for both

firms; whereas under enforced cooperation conditions, the price (p) is

higher than the marginal cost (MC) for both firms if and only if
)d2

C >- (The feasibility conditions is also satisfied sinceo -d1 2
2d2  (cl+c)d 2

2 2 .) For each firm the difference between p and MC
-dI  2
1 dlcc 2-2(c1+c2)d1

is smaller for the enforced solution than for the voluntary one; thus the
U

former solution is closer to the group rationality solution (to satisfy

group rationality, which includes the buyers, the price must equal marginal

cost) than the latter.

__:t can be noticed from the previous example that depending on c 0 the
" 0

total profits of the two firms under enforced cooperation conditions maybe larger,

9- equal, or smaller than the corresponding profits under voluntary conditions.

The procedure to find the region of c0 for which that is true, is straightforward

-uc lengthy. lt will not be pursued here.
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R5.5: Our detailed analysis was constrained to the case where the objective

function of the government (J ) is the total profit of the two firms and
0

a quadratic cost on the strategy of the government, similar results are

expected when the objective function of the government (Jo) is the

convex combination of the profit functions of the two firms and a

quadratic cost on the control of the government, i.e., Jo Jl+ J c io 1 22 2 Co o

U

U
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I CHAPTER 6

ON SOME ST1OCHASTIC STALTIC TEAM LEADER-FOLLOWER PROBLEMS

p 6.1. Introduction

In this chapter we deal with two static, stochastic leader-

follower team problems, where each player has a quadratic cost function and

part of his information is a linear function of Gaussian random variables.

In Section 6.2, we consider the problem of a 3-person stochastic optimal

* coordination, where the coordinator desires to induce the two noncooperative

(in Nash sense) players to minimize his cost function, even though each player

minimizes his own cost function. The cost function of the coordinator is

a convex combination of the noncooperative players' cost functions. The

informacion structure of the game is nested and dynamic, whereby the

coordinator not only knows whatever the other players know, but also detect

exactly their decision variables. We show that by incorporating the decisions

S of the other players, the coordinator can, under a certain condition,

successfully enforce the team solution with his objective as the goal of the

team.

P In Section 6.3. we consider a two-person leader-follower game, in

which the leader does not completely detect the decision variable of the

*follower. To achieve the best possible outcome of the leader, we define

- a new modified team problem after taking into account the optimal response of

the undetected action of the follower. We find that the leader can, under

a ceratin condition, achieve this new tight lower bound. Finally, we ~~

a numerical example to 1.llustrate our procedure.
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6.2. Stochastic Optimal Coordination

Let x be a Gaussian random vector over a probability space (Q,4 ,P),

x: n Rn with zero mean and Z covariance. Let u i denote the decision variable

of decision maker (DM)i which takes values in R for i-O,l,2. The objec-

. tive functional of (DM)i for i-1,2 is defined by
<i

Gi(XUoulu 2 ) ujDii + i Q x+u R u +1 uoSiuo +u oLiui + UoTix.
1 0 2 2 u--u 1 11 1j 2 oi 0 0

The objective functional of DM (the coordinator) is a convex combination

of the objective functionals of the other two DM's, i.e.

G (x,u ou,u2) -a Gl(x,u ,Ulu 2 ) + a2G2 (X,UoUlu 2)

where 1! a ? 0, and al +a2 a l. To describe the information structure of the
-1

game, let Yl and Y2 be two random vectors defined as

Y Hix + wi for i1,2

where H. is rixn real constant matrix, and w.-N(O,A ).
2I i

Let ri denote the information available to DM.. We consider in

this section the following information structure

n ,

n'2 = Y2

We denote an admissible strategy of DM. by y. which is a Borel measurable

mapping from the information space into the decision space, and we also denote

the space of admissible strategies of DM. by 7..l2.
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Let us define the expected value of G i(X,Yo(no),Yl(nl),Y2(n2) )

with respect to the random variable x by

Ji(yoY 1 ,Y2), i.e. Ji(7o,71,72) - E{Gi(xYo(no),Yl(nl),Y2(2))}

The coordinator's goal is the achievement of the global minimum of J09 and

his role is to adopt a strategy, y (no ), which induces DM1 and DM2 to play

with him as a team with J as the objective function, even though there is-m 0

no explicit cooperation between them. If yo (no ) is substituted in Ji, and J,

is minimized over yi(ni ), in the Nash sense, and if the resulting

solution leads to the minimization of J0 , then the optimal coordination

*2 problem is solved.

By Nash solution we mean that if yo(n ) is a given

strategy, then

JI1(YoY1,Y2)  ;S JI(Yo 1,(,2)

J 2 (yopylY2) S J2 (Yo,Y1.Y2).

6.2.1. Derivation of the Optimal Equilibrium Strategies

qWe start by finding the optimal team solution. Let

min min min J(y yl t (,t tY
Yo ro Yl1l 1Y20o

Lemma 6.1: If

a I LI ' C 1id IRI +a2 R2 > 0

2 1

tLn th g l mi onexst a d i

then the globally optimal team solution exists and is ' iven by
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C1.06

Y t (n -i-1C aL iEx
0r 0% 0nS [ 1L1u1  2 c 2 2 + 0Exy 1,y2)]

where a T1 22 and io =.1a 1 +a 2S2

Y ( K yi for i -1,2

where K, satisfies the following matrix equation
EA) 1

Ki-(a D--a LTly) m ~Q -a LS T )H'ZHEj ,
p J..L. J. LL J oi ii i

+ (a R + a R'-a a L S L )K HZH'(RZH.+ A) .i i j iii 0 1 ji i i i

Proof: The proof is straightforward and can be obtained by using standard

stochastic control techniques under the nested information structure

consideration [48,43]

The optimal team solution can be expressed as

t
y (y 1 9 2 u, 2  h h0 y+h 0 2 y+h 3 u1 +ho4 2

'-:" o (Y0 Y2' Ul' u2 ) f olYl + 02Y2 + o3U 1 ho4U2"

t

, i - KiYi for i-1,2.

The coordinator's problem is to adopt a certain form of strategy, in which he

incorporates the decisions of DM1 and DM2, and by which he can force the two

DM's to cooperate while each DM is minimizing his cost function as well. Let

us restrict our investigations to the class of strategies which are linear in

" u1 and u,

t ~t t
Y (no) = (?o ) + *(Ul-y I ) + A2(u2-y2 ).

In general we can take A1 and A 2 as matrix functions which are measurable

with respect to the sigma fields generated by n I and ,2 respectively. But.

for simplicity we will consider only constant matrices. It is clear tnat if
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fthe matrices A, and A. are chosen in such a way that the optimal response of

-. DM1 and DM2, u1 and u2 equal their corresponding team decisions, then we say

that the stochastic optimal coordination problem is solved.

To find the rational reaction of DMi to the announced strategy of

the coordinator, we substitute y (no ) as given above in Ji (yoUlU2). Since

i ( (no0 )UlU 2) is quadratic and if strict convexity of J on r i is assumed,

then the minimum of Ji with respect to ui can be obtained by person-to-person

optimization and by taking the gradient of Ji with respect to ui and equating it

to zero. If this procedure is carried out it follows that

E- {D u +Qx+R u +(h +A) 'S [ (hi+Ai) (ui-KiYi)+(hoj+Aj )(u-Ky
i i i ijoi ii i o JJ

+hoi+2Yihoj+aYj] + Li (Ai(ui-Kiyi) + Aj (uj-K y) + hoiUi+hoj u

+h03Yl+ho4Y2 ) + (Ai+hoi)ILiui +(Ai+hoi) 'Tix}Iyi] -0.

*" After some straightforward manipulation we find that

Y (y -M.'V 1,E(xlyi) N ij - 0ijE(y*(yj )1) (6.1)

where

M = Di+ (h oi+Ai)'S i(h oi+A) + L (Aihoi) + (Ai+h oi) Li

V Q + (h0 *Ai)IS h0  H + f h+ )S( A).- " ii i + (oiAi) Siho,2+j j ih 2+ji iCoi+Ai) Sihoj+A j

-L'A.K H + (Ai+h 'T
ijj 1 oi i

N.. (LIh+i -(h +Ai ) Si(ho+A)K -LA.K + (hO +Ai)S h )v
13 i 2+ i 01 1 i i i 1 1 1 01 1 j o2+i -

o ij (R.i+ (h .-4+A.)'S (h oj+A j) +L'(A i+h .)]M.

That M. is a nonsingular matrix and follows from the strict ccnvexit-. assumption1&1
L

of j. on -
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The following proposition gives the conditions of existence and

uniqueness of the solution of (6.1).

Proposition 6.1: If either

or

D"(..Oji ) )cl

then, there exists a unique linear Nash solution (y1,7y) which satisfies
1' 2

equation (6.1), for each pair (AI,A2), where !(A) is the maximum eigenvalue of

any bounded real symmetric matrix (A'A).

Proof: The proof is equivalent to the one given in [49].

Let y*(y =)K y in (6.1), then we have
K i 1

where
Z. ZH'(H ZH' +A -

Equation (6.2) can be rearranged and written as follows

Ai[LiKi +Tii +S i(h 2+i+ho 2 +jHj Z. ) ] + DK + QZ + h' [LK + T..

+ S(h +h H Z)]+ L'(h +h H Z)
i ho2+io2+j j i ] i  o2+i o2+j ji

+ R.KHZ + L'h KH Z -0ijj i oj j i

or equivalently
I,-i -i

" io 1BI

Condition 6.1: There exists at least one matrix A. for i= 1,2 which

satisfies

A -, -0
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The dimensions of At, BandB are mixm, moxri, mixri, respectively, and

we have m.xmo variables to choose which satisfy mixri equations. Condition 6.1

is generally guaranteed if m 0 max(rl,r2).

P From before, we can easily see the proof of the following theorem.

Theorem 6.1: If Condition 6.1 is satisfied and if yo(no)e Gr is picked as

y (n~ -Y + A (u -y -A (u -Y
0 0 o 1 112 22

then a solution to the optimal coordination problem exists

6.3. Linear Quadratic Leader-Follower Games with Partial Decision-

Dependent Information Structure

As in the previous section, x-n-dimensional random vector and

x- N(0,7). ui is the decision variable of player i (P and it takes values
m.

in R I for i- 1,2. Let P1 be the leader while P2 is the follower. The

objective of the leader is defined as
T 1 , +ufR u +u'R x1 ,
1 .(XUlU 2) 2 U1R1 1U1 112 2 113 2 X+ R 14u 2 +1 u2 R 5 x

while the objective function of the follower is

2 - u'R x+'R u + u'R3x +uR. here, 2 )  2 2 2 22 2  23 24

• whe re

RIR2 > 0.

Let v and v2 be two random variables defined by

Y. W H.x + w. for i 1,2

where H. is r. n real constant matrix, and w i-N( ..i The leader detects

the action of the follower through observing yo9 which can be taken without

Of



1 . . ....r. " ., . . ; j, ., .-. , - . - .'- "•'. ..

110

Il loss of generality as

Yo =[I O]u 2

:1 where I is rxr-identity matrix with r < m2 . Let ni denote the information

available to P1 , and we are going to assume the following nested information

* structure

n 1 : Y oYlY2

n2 : Y2 "

As before, yi is a Borel measurable mapping from the information space to

the decision space- of Pi" The space of all such mappings is the strategy

space of Pi(r).

One natural lower bound for J1 is the infimum of J over the

*, product set r xr2 ( 1). Let us assume that this infimum is actually

achieved, so the leader wants to adopt a certain strategy by which he can

°force the follower to play in such a way so as to globally minimize Jl even

though the follower intends to minimize his cost function. To investigate

the ability of the leader to enforce the team solution, let us make the

following assumptions.

Assumption A: The control value of the follower can be exactly and completely

detected by the leader through his information.

ssumition B: There exists a strategy for the leader by which he can increase

* the follower's cost, if the latter does not abide by the team solution.

" Clearly, if the above two assumptions are satisfied then the leader can force

his team solution (see [47] for details).

.

.

LN 

|
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In this section we are dealing with the case when assumption A

is not satisfied, thus J is not the realizable tight lower bound for J This problem
1 V

can be dealt with by defining a new modified team problem for the leader

Uwhich takes into account the rational reaction of the follower on the
undetectable action space.

The procedure to solve the problem when the complete detectability

condition is not satisfied is as follows.

1. Minimize J 2 (Y2 2 ,y 2 1 ,y 1 ) with respect to y2 2 Cr 2-, where

Y2 21, Y2 2
E R 2and r 2  r 21 u 22

IY22J

Since J2 is quadratic in y22 ' under strict convexity assumption, we

obtain a unique optimal strategy y*• which is given as the unique map f,obtina niueopiml crtey 22

where

•22 f(y2 1 ,E( 11y2 ), E(x[Y 2)).

2. Substitute for y in J to obtain a new cost functional J1 (Y21 Yy1 .

E(y ly2),E(xly 2 )). The infimum of al over the product set 7FI is the

new lower tight bound (J*). If the infimum is actually achieved, then

the leader can force this modified team solution as will be shown in the

following.

6.3.1. Determination of the New Tight Lower Bound of

1. Minimizing J2(y22,Y2 ,Yl) with respect to y,,, we find that

(3)-I[(2) i (2 27(Y') - -RI) 2 R + R21E(x'Y2 )

(6.3)

- -.



I where

21 22 22

R21 R(2) R22 R (2): (3)22 L22 i22

'R [ (l) R (2),
24 [ 24  R24

Since J is quadratic in and under the assumption that 22(3) is positive-

definite, the minimization is obtained by person-to-person optimization.

2. Substituting the value of y , which is obtained above, in J1 , we

get

Jl(x,y1,y21,E(y1 Y2 ),E(xjy 2 )) E{4y 1RlY 1+ yR( Y21

1(x l Ej2y)2 ) 1 E1 12 721

1' ,(2) R (3)- l (R(2)' + (2) +(2) E((l2)-2y R12 122 R 222 Y21yR 21 E(x
22 E4 ' 2 )) +YyIRi3

x

1 '() (2) (3)-  (2) (2) (2)
+ y214 Y22 2 1 -Y21  22  ) R2 R 2 E(yI IY2))

+- ('(2) + R(2) E(xjY2)+ R(2)' E(y lY2) )'R()lR()R()l( 22 + 22 Y21 21 2 24 1-222 14 22 t22 Y21

+ +R (2) E (x j v) + R (2) E ( lY 2 ) , ( i) . (2)
+2 1  ( 24 y 2 1R 15 x-( 22  '21

F +R (2)E(xly 2) +R (2) E(lY2 ))"I..- 21 2 24 1"

The new natural lower bound for the leader (J*) is the infimum of 3

over the product set rix2 i.e., j(iEf J7 1E
.~ Y .I,21F2

Before we state the theorem which gives the optimal solution which

achieves the tight lower bound of J1 9 let us assume the following:

- - - -
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I. + 2)R(3)-l R (3 R (3)-lR'(2) _ (2) (3)- 2 is

14 -222 14 22 22 - 4 22 22 22 22 14

positive definite.

2. (2) (3)-1 (3) (3)-1 (2)' (2)' (3)-i R (2) (3)1
24 R22  14 22 24 R 22 24- 24 22 12 is positive semi-

U definite.

k-1 (2) (3)-1 (3) (3)-1 (2)' (2)' (3)- , (2) (3 )-1 (2)
'

3. [RI1(R24 R22 R14 R22 R24 N2 R22  '24-R24 R22  R12

where X(A) is as defined in the previous section.

* Theorem 6.2: If assumptions 1, 2, and 3 are satisfied, then there exists a

unique optimal team pair (y1,Y21) for the modified objective function

where y and y can be expressed respectively, as

Y1  ho u 2 1 
+ h l y l + h2Y2

t -

Y2= hY2 "

Proof: J is quadratic and under assumption 1, it is strictly convex in yl,

so the optimal y,1 can be obtained by person-by-person optimization, and by

5taking the gradient of J with respect to y21 and setting it equal to zero.

The optimal y21 is

2= kE(yly 2 ) KE(x'y 2 )

where

k (F i1)+R(2) R (3)-I.R (3) R (3)-liR (2) ' _R (2) R(3)-iR(2) '

(R14 -22 22 14 22 2 2  - 14 22 22

_ (2).,(3)- .( ) ) 1 ,( ) .(2) (3)-i (2)-i. (2) (3 -  (2),

R-1 R'RR R R7 )4.P
..2 22 14 14 2 2 22 R1 2  22 22

(i).. 2).(3) .(3). (3)-i_ (2) ' (2)R(3)- (2 )
(R 1 4 +R , i R11 1-,R2 22 -R14 R22 22J

(2) R(3)-1 -R(3)')-1 (2) (3)-i (2) .(1) .(2) (3)-ID (-) )
-R22 (R2 "R " 22R" -R 1 "

412 2-2 14 *22 22 12 '13 32
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To find the min J with respect to y1 , we determine the first Frechet varia-

tion 6J1 of J19 and set it equal to zero. After some lengthy manipulation,

in which we use some properties of the conditional expectation, we get

R1 1y + k2 u2 1 +K-2 E(xjy 2 ) + k3 E(y 11y 2 ) + R1 3E(xj y,y 2 ) - 0

where

- (1) R(2) (3)-l(2)1 (2) (3)-l(2) ' + ( 2 ) ( 3 ) ' ( 3 ) ' ( 3 ) - l ( 2 ) '
2 = 2 -R12 R 22 R22 R 24 R22 R14 + 24 R22 R14 R22 R22

- (2) (3)-l(2) (2) (3)-1 (3) (3)-1 (2) -(2) (3)-l (2)
2 R 12 R22 R21 + R24 R22 R14  22  R21 -R24 R22 R15

k3 R(2)R(3)-lR(2)'_R (2)R(3)-R(2)' + R(2) (3)-lR(3) R(3)-1(2)1
3 12 22 24 24 22 12 24 22 14 22 24

Assumption 2 guarantees that the second Frechet variation 62J is positive

*semi-definite. The remainder of the proof is equivalent to the one given in

(49], which uses assumption 3 and the Gaussian distribution properties to

show the result.

S
6.3.2. The Enforcement of the Modified Team Solution

Let the leader adopt a strategy which is of the same form as the

one described in the previous section, i.e.
t

YI =Y + A(u 21-hY2)=hou21 + hlYl + h2Y2 + A(u2 1-hY2)

Substituting for y from above and for y,, from (6.3) in J, and taking the

gradient of J1 with respect to u2 1 and set it equal to zero, we get the

:ollowing as the optimal response

-
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E[((R(1) R (2)(3)-1R ((2) (1 2)  3 - R(2)' )  + [(ho+A ) , - (1)
21 22 22 R21  "(22  22 22 22 21 0 R24

.. _R(2) (3-1 '(2) .(2) M3-1 (2)'(oA) (1() ,(2) (3)-1_ (2)

-R R 3 R -R R R h+A))+ (1) -R 2 R~3  R'2)24 22 22 24 22 24 0 24  22 22 24

-(h +A)'R(2 3 )-1 (2)' )(ho+A)Iu +(h +A)'(R2x

A 24 22 R24  0 21 0 23
,:.: .,(2),,(3)-1.(2)z  , (2) (3)-I(2) 'Ii~ l2

.- 21 R22 R21 ExIY2)-R 24 R 22 *24 11 2

a (2) (3-1 (2)' + (1) (2) (3)-1 (2)'
24 R22  R24 "2-A)y 2) - 24  22 22

-R (2)R M R ( (2)'h H (x ly )- (2) R (3)- (2)(h -A)

24 22 244 22 24

+ (1-() -R M(-1 (2)' (2)R3 )-1 (2)' (h + A)) ,(h HIE(x!y ,)

24 24 22 R22  24 22 R24  1

,(2) (2)' +A)+(h+A)'-(2)(3)-

2_A)Y2) + h 24 - 2 24 0+ 21 024 22 21

+. R (2) R (3)'-1,(R (2)' h....+ (2) 1Exl ) .R(2) R(3)-. (2)' (h2_Ah)Y2+2 24 22 24 1 1,21 E 2) 2'24 R22 24 2

+ -1 (h +A)'(2) (3) -l (2)' (h'H E(xly2)+(h-Ah)y2)

+2 (ho+A) 2 4 R2 2  R2 4  1 1 2 2

1 (hA (2) (3)-  (2)+ (o A "24 R22 R21 ExY2)}Iy 2 ] 0

Let u2 1 =u 2 1 = in the above equation. After lengthy but straightforward
21 .2

manipulation we get the above equation equivalent to the following linear

matrix equation

B =B (6-4.)

he re
BI h -'3n- 'n  2' (2) R(3)-1 R(24()'-. .,,,An~4,(2) R(3)-l (2)'  +h R (2) M3 -1 ._  2( )

I- ,, , ( :) ,(3) - l ( 2 ) ' (2 ( 3)-
3 -L F-n F;-h'F'h3 + - o n oR h R r -L R'ho R

1 2 0 24 -- 4 0 ~o 3 1 4 21
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R. (2)' h-L'HihiF -hiF -L'H" R (2) R (3)-l R (2) h24 o 23 124 22 24 o

and

F R 1 ) ).(2) (3)-1 R(2) F R W (2)R (3)-l (2)'
1 21 22 22 21 2 22 22 22 22

F R-RI )(2)R(3)-1R(2)' F R R(2)R(3)-l (2)_R (2)(3)- R(2) hHl3 24 24 22 22 4 23-R 21 R22 R21 24 22 24 11

L - H'(H 2 ZH+ 2 A -1

The following theorem summarizes the results we obtained.

Theorem 6.3: If there exists at least one matrix A which satisfies the linear

matrix equation B1A- B 2 and if y 1  is picked as

y yt + tL = 1 +  21-21

then the modified team solution is achieved.

The following example illustrates some of the basic ideas presented in

this section.

Example: Let the objective functions of the leader and of the follower be as

follows

J =E~ u1 +u1 [l O]211 X+ [u21  u.'2] o]F 2
Lu22 1 0 U22I

+ 4[u2l u 21 x1 1Fo 0. ~ 2 a 1 F:11

01 F20 u2ll + U1 u [ 1
2 L 2 ]Li 2 U2 1 22 LO 1 Lu 22 1 ,L 1
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U For simplicity, let

Y Y Y2 -x , and yo u

where x is a scalar random variable with x-N(O,a). If we minimize J2 with

respect to u22, we find that

Y22 y) y+ - E(ylly).7 ()- y + 1

If we substitute for u22 in Jl' and find the infimum of J with respect to y21

and yl' the result will be

-u .17 E(y1)

1 21 8 64 1

• - E(y ly) + 4y.• . 21 1

Solving .the above three equations, we get the modified team solution as

• -0.9846u21 - 2.09
2y

y21 = 0.961y

•=0.6202y.
Y22

It can be easily checked that if the leader chooses his strategy of the form

Y, M -0.9846u 21- 2.092y + a(u 21-0.961y),

where a-4.166, then he can enforce the above modified team solution, and the

value of his objective function (J*) will be
1

Jl= 0.11727h.

For this example, J is not strictly convex in the decision variables, so the

global minimum of .l does not exist. Jl is the tizht lower bound for T, wh:ch

I
:he leader can achieve, .e.. values of which are less than i cannot be

t " induced.
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I-.CHAPTER 7

* ". CONCLUSIONS

In this thesis, the role of information structure in some Nash and

LF games is considered. We show that by preserving the information structure

of the full order singularly perturbed LF games, reduced order solutions which

are equivalent, in the limit as v tends to zero, to the full order ones are

*. obtained, but by using DDIS, solutions which are different from and more

desirable than the NIS solutions are obtained. For example, in LF games, by

using DDIS, the leader can, under certain conditions, achieve his most

desirable solutions, which normally he cannot achieve. We investigate several

classes of Nash and LF games with DDIS.

UBy preserving the information structure of the full order problems,

.* while solving the reduced order ones, we designed, in Chapters 2 and 3, two

well-posed methods to obtain reduced order and near optimal strategies for

both linear closed loop and team LF games.

In Chapter 4, a class of two-person Nash games with DDLS is considered.

Necessary conditions for existence of a Nash equilibrium solution with DD!S is

derived for a single stage general duopoly model of a market structure. The

case of linear market demand function and quadratic cost function is analyzed

* in detail and it is shown that the profit of the firm with DDIS is more than

its corresponding profit with NIS, but the profit of the other fir, is

decreased compared to its profit in NIS. Tie extended our analy'sis of che

concept of DDIS to multistage dynamic games. A two-stage duoooly game with

DDIS is examined and sufficient conditions for the existence of an ecuilibritm

solution of discrete linear cuadratic Nash games with DDIS are Ziven.

f
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In Chapter 5, we showed the significance of using decision-

dependent strategies by the leader in forcing cooperation of the Nash followers

in a LF game. We gave a static model of a market which consists of two firmsU
and the government. The two firms behave as Nash duopolists, while the

* government behaves as a coordinator. If the government adopts a certain repre-

sentation for its strategy, which is affine in the output rates of the two firms,

• "then it can always force the two firms to cooperate. We analyzed in detail

the case of a linear demand relation and quadratic cost functions; we found

explicit solutions for the optimal strategies of the firms and the

* government; and we compared the voluntary Pareto-optimal situation with the

enforced Pareto-optimal one.

In Chapter 6, we solved two stochastic static LF team problems, where

each player has a quadratic cost function and the random variables are

normally distributed. The first problem is a 3-person stochastic optimal

coordination. We showed that under a certain condition, the coordinator by

adopting strategies which are linear in the decisions of the Nash followers

can enforce cooperation. The second problem is a 2-person LF team game, in

which the leader does not completely detect the decision variable of the

follower. If the complete detectability condition is not satisfied, then the

leader cannot enforce his global optimal solution. We defined a new modified

team problem in which we took into account the optimal response of the

undetected action of the follower. We found out that the leader can. under

a certain condition, achieve this new tight lower bound.

In the area of information structure in Nash and LF strategies.

there are several avenues which have vet to be explored, such as

9
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1.The sensitivity of Nash and LF equilibrium solutions to both uncertainties

and changes in the information structure. In particular, we may try to

develop robust strategies (strategies which are insensitive to uncertain-

ties and changes in the information structure), which the leader can adopt

to achieve his team solution.

2. The study of information structure design, i.e. who should know what. We

are still at a very elementary stage and several difficulties have to be

overcome, before we are able to answer the above question in a unified and

-~ systematic manner, such as, a) A deeper understanding of the subject of

dynamic information structure, b) more investigation on the matter of

incentives and decision dependent information structure.

3. Investigation of the generality of the effectiveness of preserving the

information structure in obtaining near optimal reduced order strategies

and well-posedness. For example, we can check whether preserving the

information structure of the full order problem, while solving the reduced

order ones, leads to well-posed solutions for some classes of nonlinear

game problems.
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APPENDIX A

NECESSARY CONDITIONS FOR THE LEADER'S MINIMIZATION PROBLEM

Applying the matrix minimum principle [14] to the leader optimi-

zation problem we get the following set of matrix algebraic equations:p
PlAl- P1K11S1 - P1L 1 B - P K1 2 1 31Tj - PlK12 S +P1A 11{ +P 2 K2'

+P2 K12 S2 + P2 K1 2 S2 3 T + P2K11 S2 1 +P 2K 1 S22'1 +P 2 Q2 2 A22 (S1 2 +S 1 3r'l)-

"2A(A2 )  (K13S22 +K1 3 S2 3'l)
" P21 1 ( 2) Q2 3A22(S1 2 +S13'1

- . - 3K{2P - S12K12P1 +11A21P+
L=+A 11 P1 " S11KIIP1 -IL1 1 S3IP " IKT2 121

TT'K P +.T S' K P+-T S K' P + KP + K'2K2 2 1 22. l12 1231 2P2 +S21 P2 +S22K12P 2

(A0 (A .1)
A22 )A22 a'

P2A; +A P2 +1-0 (A.2)

-B ' KlPl K ~ -B +' T"AP- K P' +p 1
12111 -'21312P +321P1 -22KP I + 2P2  2221P

K7 -- + R- RL,+- , K)-1 IPI

+"3723I2P2 + '322K11P2 + 2  1 22 22 2 3 52 3 K1 3)A22 A2 1 P2

S+B22)(A2) - 3813)(A 22 ) ' Q23 A z A z 1P, =0 (A.3)

f P K2 i  ) 222 6s L P A,,. ,.(A, 'K ,-.,

5 1 .. _ 2_2 -_ 13 - -

(-k )'-R L2  k, 3 (AA" S 1

-2 - P(A21 (~A )_ _~2  !A32 2S1 3 (A))'$)

2222(A2 Q 3 (A.)A 1 1 ?,A (.k ) +R,.., A ) .,

[R2L22' " K =0 (A. )
1222 213 30
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-;22 A2 1pl2 1 +A 2 s 13K12 P 1  1 +A 2 lP2Kl('12 -A 12A A22S1 3 )(A2 )

-- 

A"21S3
+A A ^ K' (S' A A A QA'QA- S

222A21 22K 1 2 2 122 S 21 2 23 21 2 21 (A 22) 3 223222

A 21p2 1(A 2 2- 2 2 1 p 2 )K 1 22 A21P2A 2 1 22' 12322 +, ( 2

A-1 A- A-I A . . . %-- -, . . -

2 2 22)'+ (A2) (S 2 A2A2 2S 3) 'K2P2A 1 + (S 2 AI2A22S 3 ) 'K2P221

"S3K22A1 A2)'+ (A2 )S23K 13(A22)A21P2A21 + (. ) 1 (A2 )2) ( 2~

22A 22 + S23K1 3(A42)A2TL, A2 2)

+A -AS -A A

23 1K12. 22 + .22 ' A21 2 1252 3(A2 ' 0  (A.5)

S where

I  ( -A1 2 + B2L2 2 +-S 2 K 3 )A 2 (

2 2) 13(2 2'& 2A22 (S2 2+1 3  
') 2

A 1 ~ A -1 .A1 -

.A- (.A '2_ , -

A , (A2KA )A2 AIAK (A ) '(

21 A12"3 1. 22 2 23y'

+p 322' -R.2-KI I 3 2) -1 2 12 23 (A).) =0. .. .5

_S _S + (S' .+ S 7
2~~ ~ A11 121 1'21 12 13

-(-R L ,.3- -K A
5 2 1 12 11 12 2 2 2 -- -- --1~

4 ' 3
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6 1 2 ( 2 2 ) +A 1 2 A2 2 S1 3 (A 2 2 )1 B2 - B1 2 -" 1 2 " 2 2 2 2

So in order for the leader to find L21 , L22 he has to solve equations (2.3),

(2.6), (2.7), (2.8), and (A.1) through (A.5).

II

L°
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APPENDIX B. DECOMPOSITION OF THE FULL

ORDER LEADER-FOLLOWER TEAM PROBLEM

Equations (3.6) -(3.11) of the full order system is decomposed and the

limit as ii tends to zero is taken as follows:

Substitutiag the forms of K(t,p),Qi as given before in equation (3.6) and

letting i-O + , we get

K(t,0) + KI(t,0)AII(t) + K2(t,)A21t + A'l(t)Kl(t,0) + AjI(t)K'(t,0)

1-(t 2 (t,0S() 1 2 Bl
+ QI Wt-K (t,0)SI l(t,0)-K2(t,0)SIKI(t,0)-KI(t,0)S Kj'(t,0)

-K 2(t,0)S 3 K(t,0) = 0 (B.1)

Kl(t,0)AI2(t) + K2(t,0)A22(t) + A'l(t)K3(t,0) + QI2(t)-K I (t,0)§2K3(t,0)

-K2 (t,0)S 3K3 (t,0) = 0 (B.2)

K3 (t,O)A22(t)+A92 (t)K3 (t,0)-K 3(tQ)§3K3 (to)+Q 13 (t) = 0. (B.3)

4-

By letting -0 , in equation (8) we have

-l-
1 R(t)[B{2P B t,0) +32P3 (t,0)I = R (t)[B 2 Kl(t,0) +B229 K(t.0)l (B.4)

R2()~P(t,o) = R-1 (t)B L K3(, (B.5)R22 22

Equation (3.10) will be after letting 1-0

F (t,0) ; RRI (BI K (t,0) +B21K(t,0))-BiIPI(t,0)-B21P3(t, 0 )  (B.6

F1(t,0) R2 1R11  11 1 22124(l,03. (B.6)

Decomposing equation (3. 11), where the gains of the controls are evaluated at

-=O



L..

129

* All-S 1 lK 1 (t'0)-S1 2 K2(t'O)-S 2 1 K tO)-S2 2 K (tO)A1 2

-1 1-S12K3 (t ,0)-S 23K3 (t,) x

A A21-S12K (t' 01-S13 K2(tO)-S'2 KI (t,'0)-$23K2(tO)z (B.8)

(A22)-S13K3 (t,O)-S 23K3 (t,0) )/P

Let

[X] L j

where L [1 I+T];[i~S +S

*and

22 -22 A- 11 + wA 12- A21

= -,ll-A 1 2 T(t, i)]S-S[ 2 2 +;iT(t,u)A 1 2 ]-A 1 2 .

Substituting for x,z in terms of vi, v2 in (B.8), we get

1 11- 1A-2 ( t ' i ) )v I (B. 9)

Le 112  (A2 2 + ;T(t,)'k 12 )v2  (B.1O)

Let *11(t~to,, .22 (t,t, ) be the state transition matrices of (B.9) and

(B.10) respectively, then they satisfy the following equations

(t't (A 1 1 -A1 2T( t ,-u))ll(t'to' -) :i(to to'a)
110

_.°("'= ,2) 1 (222+ T(t, 22( ) 0,z o'-) =  (B.12)

h re
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Al1l All- S11 K.(tO)- S12K~t 2O) -S21 K 1(tIO) S22 K(t,O)

* A12  A12 -S13K3 (tO)- S23 3(~O

* 2 1 A 1 ST K (tO) - S~2 1 tO S23 K(t,O) - S 13 K'(t,O)

22 22 S13K3(c0 - 23K3(tO

S 11 D
1

UBL S2-11R, 1B21 S1 - B 2R 1,B'

- 1 RBi2; S22 = B12 R1 232'2; S23 - B22R 12BL2

From (231, we have

lirn T(t,,.i) A'2 2'21

lirn S(t,ii) - -A12'22 '

Substituting for [x] L F21in (3.2), and then letting u-0O + we have

t d 1 t~,O-dn ts,O)A-lA PF(~,)-R1 B' Kl(t,O)+
sd 1(tsO- s2 -9 2 21) 11(stO 11 1 +

t 0 1+B 2 1 K2 t,)+RBf K (t 0) (B-13

t s11 21 3 ' 2"1(. )

t

tt

+1t0). Q A' P t,0)+A'P(T,0)rO) 1(:,t,O)F ( 0)) -11 1112- 313 1

+At 1 4 ~0 ? -(7( 9 ~0F(,0) 0 VI.t6<

23 i224 ' 2 .e0F,:0 t:(.
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APPENDIX C. THE SUFFICIENT CONDITIONS MDR

THE EXISTENCE OF THlE FAST TEAM LEADER-IOLIWWER GAME

The sufficient conditions for the existence of an optimal leader-

follower fast strategy pair which coincides with a team fast strategy pair

are as follows:

If there exists a function qf(tO) with n f(t,8)- 0 for 8 t and

n 2n2 matrix K2f which satisfy

f dn(t,s)o (s,t) - R 11 2 K1 f (C.1)

t R2-zK -1 IB2K (C. 2)

*Kf(t)-f (Q3(T)+A2(T)Kf(T)+ n(T,t)Ff(T))( ,t)d 0 (C.3)

-1-.if 212+ KfA22 + A2 Kif + Q 3-Klf(BR 1 B2 1 + B2 2RIB2 )K (C.4)

Kif(tf) - 0

where R 1B'K -V
f R21RiiB21 if 21K2f (C.5)

U.-i , -1 1uf (t, =o) - (A2-B RB1 K -B2R2B2K (t,t (C.6)

f 0 A22- 21 11 21 if 22 22 22 27ff 0C6

Vf(to~t0) - I

then t
U•f f dsnf(ts)zf(s)

t °~l
1

u2 f 12B221 ifZ f (

is the optimal fast leader-follower strategy pair. Furthermore, this is an

optimal team solution.
b

I



132

APPENDIX D. THE SUFFICIENT ONDITIONS FOR THE

EXISTENCE OF THE HYBRID SLOW TEAM LEADER-FOLLOWER GAM

The sufficient conditions for the existence of an optimal leader-follower

team hybrid slow strategy pair are as follows. If there exists a function

1s(t,e) with ns (t,e)-0 for 8> t and 1lxn1 matrix P which satisfy

"ft[dsris(t,s)-dsffts,0)A; 2(A21-B21Mls-B22M2s)]O s,t) " Ml (D.l)
t

- 0 l OO:- Q 2 (1C:)-Q2 (T)Ml (T) + B2 (T)P s (T)-B22 (T)(A;2I ) 'rif(T, t,0)Fs (T)-R2~

for t<T (D.2)
tf

P (t) r [ +- AIP(T) +  (n's(T, t)
s t

-- 1
-1AA)'nf(T(t,0) )]s (T,t)dr 0 Vt<r (D.3)

where

Q2 2 ()-R 2 1 s (T) + BIPs (r) + F (T)-B21(A) ' f(Tt,0)F (T)- 3M2 (t) m0

(D.4)

and
0 s (t,t0 ) = (A1 1 1 1 Ms-B1 2M(2s) s (t,to ) (D.5)

s(t ,t) = I

then
t t -1

() f (d n (ts)-df(ts)AA)X(s)- dsn f (t,s)A22B21Uls (s)Ul()=/(s~ss )_sf(2s22A1)s -I.22 1

to to
-l

- dn (t,s)A2 2 B 2 U2
t

0

U's -MsX (t)

cons:itute an optimal leader-follower strategy pair which coincides with the

team solution.
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U APPENDIX E. PROOF OF LEO(A 3.4

Define Y. L .€ where

a[114.uTS +A

L -T I + uT T 2

and T,S satisfies

A22T- uTA 1 + uTA1 2T-A 21

uS -[PAl-A 12T]S-S[A 2 2 + uTA12]-A 1 2

then o(t,t , ) satisfies

A 1-A 12T(t,u) 0 1
*o(t'toW)- A22+PTA12 10 (t,tol).

In a proof similar to the one given in [22, P. 16], we can show that T(t,;)

S is continuously differentiable and bounded for all t> t and VYL [O..-*)

where * is small positive parameter, and it satisfies

T(t,) A- + 0(u).22 21

To prove the lemma, it is sufficient to prove that ,01(tt 0,) and
B2

S'0 2(t,toU) _- are bounded in the limit as ' tends to zero, where (tto, )

and ,p0 2 (tt , ) satisfy the following
(t t(A - +0(0)). O (t,t ,lO

.01 ( 0t o  11 1AA2A22A21 01

A22 + 0(i)

sine 2 bo -)02utded so

since AI-_AI2A 22 AI is bounded, so
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l I 0 1 ( t , t o ,O1 ) ll 4 ; ,l

for some positive constants K, y, (see [21, p. 287]). Also using a proof

similar to the one in (22, p. 15], we can show

Y2
- (t-t )02(t t o l 0 0 1 2

where K2, y2 are positive constants. As a result,

Ko -(t-t

which is bounded at u-0 Vt> t

i

I."
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