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reduced order near optimal strategies are obtained and well-posedness 1is
shown for two classes of Leader-Follower games. Decision-dependent information
Ii structure is employed in both Nash games and optimal coordination problems
and two market models of duopoly with this type of information structure are

extensively analyzed and examined. Finally, sufficient conditioms for

existence of the solutions of both the stochastic optimal coordination problem

Ll

= with decision-dependent information structure and the stochastic Leader-
Follower team problem with partial decision-dependent information structures
are developed.
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CHAPTER 1

INTRODUCTION

1.1. Motivation and Background

In a world complicated by competing multi-national corporations and
vast informational data bases stored in high-speed computers, the need for
optimizing large scale economic systems has gained considerably in importance.
It is thus no surprise that hierarchical engineering solutions to problems of
this nature have attracted a great deal of attention from researchers in the
past several years. In particular, the theory of games provides formalization
of many basic problems in large scale systems, i.e., problems characterized
as having several decision makers acting on different sets of information with
possibly conflicting goals.

The appearance of the '"Theory of Games and Economic Behavior" by
J. V. Neumann and 0. Morgenstern [1] gave the impetus for research in game
theory. Although the importance of the theory of games was initially
recognized almost exclusively in economics, its usefulness and recognition as
a challenging area of research is established today in mathematics, engineering,
economics, sociology, and political science.

A basic feature of the theory is that in solving a game theoretic
problem, one is faced not with a conventional minimization (maximization)
problem, but with a conceptually different situation altogether. This might
be expected, however, since the outcome of a decision maker depends not only
on his own actions and chance, but also on complicated interactions with
other decision makers. The theory of games can be viewed as a generalization

of centralized and decentralized control problems, since most of the questions
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.' posed in control theory can be considered in a game theoretic framework, but
their solution is usually more difficult. The generality and unification of
several special cases which characterize game theoretic results, help to

!! counterbalance the difficulties encountered in finding then.

Game theory reduces the ingredients in a formalization of the game
= pfﬁblem to seven essential elements.

f? 1. The players involved in the game (there may be only two, or possible more

players)f

2. A description of the interaction both among the players and the players

with the system. (In ; dynamic setting, a difference or differential
equation describes this situation.)

3. The information structure of each player, describing an "information space"
which contains the precise information gained or recalled by the player at
every stage of the game.

l' 4., The decision space (of alternative course of action) for each player.

5. The admissible strategies of each player, defined as mappings from the
information space into the decision space.

6. The objective function of each player.

e

7. A rational equilibrium solution concept which takes into account the
relative power of each player and the hierarchical structure of the
decision process.

Two solution concepts which are of particular interest here are

the so-called Nash and Leader-Follower (LF) gzames, (see [30],[3]). A

-

v general description of Nash and LF zames may be given as follows. Let 1 and

2 be the spaces of admissible strategies for player one and playver two,




1
‘. respectively, with Yle I‘l and yze I'z. Let Jl(yl,yz) and JZ(YI’YZ) be the

corresponding cost functions of the two players. A Nash equilibrium solution

is defined as follows:

.!. Definition of a Nash equilibrium: (Y;,y;) is an equilibrium Nash solution if

and only if

o 0 o

-f and (1.1) |
| Jz(Yi,Y;) < JZ(Y;,YZ) ‘
o so a Nash equilibrium solution assumes that if one player minimizes on the

basis that the other player's strategy is known and it is at equilibrium

then the first player wili-find his optimal strategy at equilibrium.
0 To define the LF equilibrium, we need the following definition: The

rational reaction set of the follower (player two) to the permissible strategiss

of the leader (plaver one), DZ(Yl) is

2 ook * \
D (Yl) tyze I‘z such that JZ(YZ’YI’ SJZ(Y].’YZ) for all

Y, € F2 and each yl}.

’ Definition of the LF equilibrium: A permissible pair of strategies

(YIE I'l, Y;E Dz(yl)) is said to be in global LF equilibrium, with player one

as a leader, if

* * -
Jl(Yl,YZ) < Jl(vl,Yz)

for all pairs

2
I r N 3
\{le‘“l! {2GD (Yl)fﬁ

Nasn game describes a situation of conflict whers the two plavers do not

trust each other and do not cooperate, but each plaver assumes that the other

\ . , L ;
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one will act in a rational way. The two players are assumed to declare, but

not necessarily apply, their strategies simultaneously, and both players know

rl, PZ, Jl’ and J The LF game formalizes the situation where the follower

2
tries to minimize J2 for a given choice of yle I‘l by the leader. The leader,

who wants to minimize J , knowing the rational reaction of the follower and

l!
having the power to declare his strategy first, wishes to announce a strategy

YI which achieves the minimum possible J The leader must know T

1 1 Tr o
and Jz, but the follower knows the strategy YI (not the strategy value), ?2
and Jz.

The LF solution concept was first introduced by von Stackelberg [3]
within the context of ecohomic competition. It was generalized to the dynamic
game case by Chen, Cruz, and Simaan ([4],(5],[6]). There are different types
of LF strategies, (a) open-loop strategies, (b) feedback strategies, and
(¢c) closed-loop strategies. References [5] and [6] provide discussions of
these various types; however, we will confine our attention primarily to the
closed~loop type. It was thought for a long time that the solution of closed-
loop strategies would be impossible to obtain, but recently several successful
attempts have been made in this direction, see [161, [18], and [26]. 1In [18]
and [26] a new and important class of LF games of the closed-loop type has
been defined and developed. In this class the leader achieves his global
optimal payoff. In other words, the leader is able to induce the follower to
play with him as a team, even though the follower optimizes his objective
function.

The information gained or recalled by each decision maker (DM) at ever:

stage of the game (the information structure), is crucial to the solution of




}

the game. For a‘given information structure, each DM tries to find his

optimal strategy (where optimality is defiﬁed according to the solution concept
adopted by the DM). A different information structure will generally require

a different optimal strategy, and hence may result in a different payoff.

This leads to a matural way for comparing two information structures in

terms of the maximum payoff that can be achieved through their use. For a
detailed discussion of information structure and its value, the reader is
referred to [44] and [48]. In problems involving a single decision maker, the
more information the DM has, the better off he is; but, for problems with

many decision makers this is not generally true, as was shown in [54,55,57]

within the context of Nash games.

1.2. Contribution and Outline of the Thesis

In this section we will outline the results of our work, relate
them to other existing ones, and point out our contributionms.

In this thesis we consider two important aspects of information
structures in Nash and LF games. These two aspects are preservation of
information structure and decision-dependent information structure. By
preserving the information structure of the full order game, while solving the
reduced order omes, we obtain reduced order solutions which are equivalent to
the full order onmes. But by using decision-dependent information structure,
we obtain solutions which are usually different from but more desirable than
the solutions obtained by using normal information structures; ia particular,

in LF games, by using decision dependent information structure, the leader




e

can, under certain conditions, achieve any feasible solution he desires for

the game.

In Part One of the thesis, we show that by preserving the informa-
tion structure of the full-order singularly-perturbed LF games, while solving
the reduced-order ones, reduced-order and near-optimal strategies are obtained
and well-posedness is achieved.

Singular perturbation technique is used to decrease the order of
the system, and hence reduce computation and alleviate the numerical
"stiffness' in the problem. Alternatively we can regard the model reduction
as a simplification in desiring to obtain approximate strategies which are
asymptotically optimal but which involve significant reduction in computation.
A fundamental question is whether the resulting reduced optimization function
is, in the limit, equal to the full order optimization function for each
player as u tends to zero. In linear quadratic control problems the reduced
and the full order optimization are equal in the limit as u tends to zero, i.e,
the usual singularperturbation procedure is well-posed [9]. However, in games
this is not generally true, as was shown by a counterexample in [10]. When
the usual singular perturbation procedure leads to an ill-posed solution, it is
desirable to seek a modified procedure which is well-posed. Such well-posed
order reduction have been obtained for linear quadratic Nash games [10].

Cases for which the usual singular perturbation leads to a well-posed solution
have been reported in {22].

In Chapter 2 the well-posedness of linear closed-loop LF strategy
is considered. When the space of closed-loop LF strategies is constrained to
be a linear function of the state variables, it was found [8] that such

linear strategies do not exist because some gain matrices depend on the

- o a_ __a - P PR D Py Sy 1 . G P .
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‘l' + initial conditions. But by assuming that the initial conditions are
:}} randomly distributed and averaging the performance indices over these
initial conditions, linear closed-loop LF strategies were obtained. In [li]
'!. a linear closed-loop LF strategy as described in (8], was considered, and it

was shown that if we restrict the space of strategies to be taken from the

slow variable only, we obtain a well-posed formulation. In [56] and in this
o chapter, we consider the linear closed-loop LF strategy when both the slow and
the fast are available for measurement. This information structure is different
from the one in [11]}. We introduce a method by thch we can find strategies
using reduced order systems such that if we apply these strategies to the
full order system, the resulting cost functions will have the same limits as
.i the cost function for the same full order systems if the full order optimal

strategies are applied. Preserving the information structure of the full order
5E problem is the basic feature of our procedure. In Chapter 3 we consider team
.' LF games for singularly perturbed systems. We d.sign a well-posed method to
obtain reduced order near optimal strategies. In this method, we solve two
subgames, one for the fast modes and the other for hybrid slow modes (hybrid
because the fast gain is imbedded), under the constraint that the information
structure of the full order problem is preserved. We also show that the
sufficient conditions for existence of a team LF solution for the reduced order
games is equivalent to those of the full order onme in the limit as u tends to
zero.

In Part Two of this thesis, decision-dependent informacion

structure (DDIS) is employed in some classes of Nash and LF games. We intro-
duce and analvze two new models of ducpoly with this type of DDIS and we give

sufficient conditions for the existence of the solution of two classes of
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stochastic team-LF games with DDIS. In Chapter 4 we consider Nash games with

DDIS and introduce a market model of duopoly. Although the comcept of DDIS
in Nash games is not new (see [38] for example) our analysis and approach
are different. In Section 4.2 we formally define the equilibrium Nash
solution with the two types of information structure and we give two examples
which clarify the basic ideas in this sectiomn. In Section 4.3 we consider a
general static market model of duopoly and derive the necessary conditioms for
the supply adjustment controls of both firms to be optimal in the Nash sense
for the two types of information structure. Then we analyze, in detail, the
special case of a linear market demand relation and quadratic cost functionm.
In Section 4.4 we generalize the concept of DDIS to multistage dynamic games,
and we give s&fficient conditions for existence of the Nash equilibrium
solution with DDIS for the discrete linear quadratic problem.

In Chapter 5 we consider DDIS as the incentive mechanism (we refer
the interested reader to [40],[41],[42] for discussions on the incentive
problem) , which is used by the leader to induce the Nash followers, in a LF
game, to behave as members of a team with the leader's objective as the objec-
tive of the team, and develop a static market model of duopoly with the
government as the market coordinmator. In Sectiom 5.2, the incentive problem is
formalized as (n+l)-person LF game with one leader and n-Nash followers. The
leader's) objective

leader desires to force the followers to optimize his (the

function, even though each one optimizes his own objective function. In

Section 5.3 the incentive mechanism of the organization is formulated by
incorporating the decisioms of the followers in the strategy oif the leader.
By emploving such forms of strategies, the leader can force the followers to

behave as members of a team, with their composite objective function contained
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in the objective function of the team. In Section 5.4, we consider a general
static market model of duopoly where the government interfers in the market.
We show that the government can always succeed in enforcing the two duopolists
to cooperate and achieve the Pareto-optimal solution. Then we analyze in
detail the case of a linear market demand relation and a quadratic cost
function. We obtain analytic solutions for the optimal strategies of the two
Nash duopolists.and the government. We show that in the limit as the unit cost
of the govenment control tends to infinity, the enforced cooperative optimal
controls and profits tend to the voluntary cooperative oneé. Finally, we
discuss the general properties in terms of marginal cost; price, and the
consumers' welfare in the context of this problem. 1In the last chapter we
deal with two stochastic static LF problems, where the leader can, by using
DDIS, achieve the team solution. Each player has a quadratic cost function
and part of his information is a linear function of Gaussian random variables.
Answers to many problems in the area of stochastic control with
classical information structure (in classical informatiom structure, all
actions taken at the same time are based on the same information, and any
information available at time t will still be available at time t'> t) are
known; in particular, the problem of linear quadratic Gaussian (LQG) is
completely solved. But, stochastic control problems with nonclassical informa-
tion structure are more difficult. These problems are usually viewed in the
context of team theory. The most important theorem in team theory is
Radner's theorem on teams with static information structure (see [44] for the
statement of the theorem). By using the concept of nesting, this theorem was
extended, in [43], to solve problems of teams with dynamic informacion structure.

Lataer, team decision making problems were generalized to stochastic game
g




(5]
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s

theoretic framework. In [49] a two person stochastic Nash game with static
information structure was considered, and it was shown that under some
sufficient conditions the linear quadratic Gaussian Nash game admits a unique
equilibrium solution which is linear in the observation of each decision maker.
In [52] a linear quadratic Gaussian two person LF team game with decision-
dependent information structure was considered and completely investigated.

In the first section of Chapter 6 we consider the problem of a 3-
person stochastic optimal coordination, where the coordinator desires to induce
the two noncooperative (in Nash sense) players to minimize his (the leader)
cost function, even though each player minimizes his own cost function. The
coordinator's cost function is a convex combination of the cost functions of
the Nash players. The information structure of the game is dynamic and nested
since the coordinator knows whatever the fohlower knows, and his (the
coordinator's) strategy depends on the decisions of the followers. 1In the
second section, we investigate a 2-person LF game in which the leader does not
completely detect the decision variable of the follower. The satisfaction of
the condition of complete detectability of the action of the follower is
necessary for the leader to be able to obtain his global optimal solution. The
case in which the leader does not completely detect the action variable of
the foilower was investigated in a deterministic setting by Basar [47]. He
gave a general procedure by which the leader can achieve a new tight lower
bound for his objective function. In this secticn we solve the same problem.
but in a stochastic setting, and using a different procedure. We define a new
modified team problem after taking into account the optimal response of.the
undetected action of the follower. We find that the leader can. under a

certain condition, achieve this new tight lower bound.

L_h_a.__-‘.--'_‘__.'-_-‘-_’-_.‘._.A_-_---A--._._.«,-._.._._._._~‘,-- 2 t s oat . - - a s
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.l Finally, in Chapter 7 we state some conclusions and we outline

directions for future research.

In summary, the basic contributions of this thesis are
{ .’ 1. Introduction of two well-posed procedures to obtain reduced order and
near optimal strategies for two classes of singularly perturbed LF games.
’ The key feature of these two procedures is the preservation of the infor-
| :’ mation structure of the full order game, while solving the reduced order
~ ones.
2. Introduction of two new market models of duopoly with DDIS and a detailed
analysis of these models.
3. Determination of sufficient conditions for the existence of solutioms for
ii both the stochastic optimal coordination problem with DDIS and the
stochastic LF team problem with partial decision-dependent information
structure.
|

-
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PART ONE

INFORMATION STRUCTURE IN SINGULARLY PERTURBED GAMES
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CHAPTER 2

WELL~POSEDNESS OF LINEAR CLOSED-LOOP LEADER-FOLLOWER STRATEGIES

2.1. Introduction

In this chapter, we describe a well-posed procedure to obtain
reduced order and near optimal strategies for singularly perturbed linear
closed LF games. In Section 2.2, we formulate the problem and give the
necessary conditions for existence of a linear closed loop LF equilibrium
solution for the full order system. In Section 2.3, the follower minimizes
the fast part of his objective function under the condition that the fast
subsystem and the fast part of the leader's strategy are given, In Section
2.4, the follower minimizes his slow part of his objective function under the
conditions that the slow subsystem is given and that the follower's and
leader's strategies have the same information structure as their, corresponding
strategies in the full order game. In Section 2.5, the leader minimizes his
slow part of his objective function under the conditions that the slow sub-
system is given and that the follower applied the above procedure to find his
rational reaction. In Section 2.6, we find that if we apply the reduced order
optimal gains to the full order system, the resulting strategies and cost
functions will have the same limits as the strategies and the cost functions

for the same full order system if the full order optimal gains are applied.

2.2, Formulation of the Problem

Let us -onsider the singularly perturbed svstem:

X = A ,x +A .2+ B,.u, +3 . u.; 2(0) =x
© T A% T 1191 T 31540 (0) ==,
> c - ' " . . - Y -
=2 T AL X T A2+ 3ypup T 35505 20y =z,
=, o, =,
wnere =R , z<R 7; u, =R and - is a2 small positive parameter. Assume

-

that the cost function assocliated with plaver 1L Is
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{y Q‘y'+uiRiiui'+ujRijuj‘dt]

where
—xl o - 1 Y

1
Qo Y

. R R . . = =0- '
Rii’ Rij are symmetric, positive definite matrices, n(yo) 0; E(yoyb) =7
where I is the identity matrix.

Let player 2 be the leader and player 1l be the follower. A

closed-loop linear Stackelberg strategy was considered by Medanic [8]. Ia

his paper the controls were assumed to be of the form

up = cF)y o, uy = mEyy

and F,, the gain of the leader is found by solving the following equations.

A' My +MA +M S M +FIR P +Q) =0 (2.1a)
AMy +MpA_+ M5, M) +FJR ) +Q, = 0 (2.1b)
NALHFA N, -8 MN, - NoM, S, + 5, M) N, +N,M S, = 0 (;.lc)
. ::2.-\.& +a N, +1= 0 (2.1d)
Ry, F,N  + Ry FN, - By (M N, +M,N,) =0 (2.1le)

winere

—
(9))
¥

SR-L

rey

y—

1
.&c =3 - sll'.ll - 32r

5
-

s..-s.x'.%..a'fs',
iy 3T iiizd

- " sl sl - P
P ki - ; . P

-
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.. In general by letting »—0 in the full order system we change the meaning of

the vector z from a state variable to a variable which depends on x. So if

r‘ we solve the re;ulting slow optimization problem, we will have a change in
information structure. To avoid this change in information structure, we solve
- the problem as an output feedback problem, where we constrain the feedback to
be taken from x and z. This is clearly shown in Section 2.4.
In the following sections we will show a procedure to get 2 well-
l. posed solution of the problem depending on reduced order systems while both

% and z are available for measurements for both players. Let

u = -],

lap - k¥ " Lyp2-

Upap ™ "lpyX = Lyy2.

'r'.
1
2
A
]

The follower will find 112 by minimizing the fast part of his optimization
function while the fast part of the system is given, and he will fiad Lll by
minimizing his modified slow optimization function. The leader will find his

gaias L,

i aad L,, by minimizing his slow part of the optimization Iunction
- o

under the constraints that the follower applies the above procedure and the

B0 Am b S SEL e L et | gn ae oA R st on a1

slow part of the syscem is ziven.

e a on e ol
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2.3. The Fast Optimization Problem for the Follower

The follower can find the gain le by minimizing the fast part of

his performance index which is

- L ' ' '
e ™ Boy2 ¢ Prluate e iefintie T YRt 2009
£
given that

dz

Mge T Aaa%et Byt et Byt

and

YT lo%

- u, . ==L

2f z

227°fF°

Substituting for Uigs u2f’ we get
(=~}

T - .L . 1 ] -t
Jig= L 13 4 (2Q 325 + L oR 1Ly, +LgaRy 5Ly, )de]

. N
B2 = (Ay =ByiLyy = Byolyylzp =4,,2.

Solving the problem, we get the following necessary conditions

-]_ '
L1z *R11Boikes 2.2)
o L, A S~ ey -
Aj9Kyg ¥ K gdyy +K 353Ky 3+ LasRy 5L +0Q 320 (2.3)

where

- Tl
51358518130
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2.4, Hybrid-Slow Optimization Problem for the Follower

The follower can find Lll by the following procedure. Letting

=0 in the system considered we obtain

Xs 'Allxs +A12zs * I?'llu].s * l','12"12s

0=A, X +Ay2 + By U1 ¥ Byathg

and if we constrain the controls to be of the form

Uys T "l11¥s T Lya%s

Uys = "Lp1¥g “Lag2g
and substitute for Upgr Upgs We obtain

= <(A,,-B, L., =B, L )'l(A -B,,L,,-B,,L
zg 227821112 = Byalos 217Ba1ly17Byply )%,

u u FA
for ls’ "2s’ “s

or

where

Assuming that (AZZ-BZILIZ-BZZLZZ) is nonsingular and substituting

g = [

in the differential equation, we obtain

8117811011 Byaly 1@y 7By Ry 9B pLg5) (A5 -By Ly 5 =Byo L))

T(A517Byk 1 Byaly ) I

xsﬂons , xs(t)='D(t,0):<(0)

P G W S SNy NP Y

1
L
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Substituting forn;ls, Uyes Zg in the optimization function of the follower, we

obtain

= .l R ! ' 1 - [] !
s x‘f,[zox % (9'(£,0) Q) +1] 1Ry Ly 1+ L3Ry Loy = (Qpy + Ly Ry Ly 5+ 15 R o L))

B
. AR -A ALyl +LLR L +LIR.L..)+AL. @ohye
2221 " 21 %22 12 T 1271101 T 22121 21 %22
(Qy,+L!,R..L., +L!,Ry,L )2'13 19(t,0)}x de]
137 12711712 T 2R 12722742221 ’ o "
Applying the same procedure as in the output regulator problem [12], while
using the assumption that E(xoxé) =], we obtain
- @
3Ly oLy ,) = ktrace | 2'(c,0)[Q.. -~ Q. AciA. . -Ar @ yrqr 4
s “11°~12 oJ J 11 - ¥12722%21 T21 W22/ N2
AL el A=1-
) 4,51 (4520 'Q 48958, 1+ (£,0)de
D
where
T = ' 1
Q1 = Q3 +L11Rykr + 1R 00
N = [ 1
Q2 = Qi * Ly’ ka T E21Ryo0s,
a = ' RN
Q3=Q 3+ LR 0o FLooR500,-
ad,
Finding > and setting it equal to zero we obtain
11
" . f’-l" X 2=1 1A ' f-l A ?"l' ol
Ryl R plioda0dy ) #3971 @900 'Q)n = 351 (8ng) "Qpaigad,) =BIK, (2.4)
where

51 -t a-1 R
3= - 81 (By0) By

o - <

and KLl is the solution of




.

S
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' A -8 a=la Y a-1 1R oy 2=liiz 2-1l2 -
KitBota0K1L T Qup =~ Quafp08,1 ~851 (B5) 'Qq; +455 (A55) Q34554 = 0.

2.5)

Substituting for L;, obtained from equation (2.2), (2.3) in equation (2.4),

(2.5), we can find Lll'

Comments :
ajis
) and letting it equal to zero will lead

12
to the same equations as (2.4), (2.5). This is due to

(1) Finding
the fact that zs(t) is a linear function of xs(t).
(2) 1f we constrain Upg S‘Lllxs’ and apply the same procedure,

the formulation is ill-posed.

2.5. The Leader Problem

Before describing how the leader can find Ly1» L,,, it is ad-

2
1itageous to change the form of equations (2.4) and (2.5) by using equations

(2.2) and (2.3), and by letting L, to be of the following form
L, =RII(B! K, +B),K' )
11 1171171 7 21712

Then after some straightforward but lengthy algebra equation (2.4) leads to

. . - ael
Kia ==[Qpp + Ly R ploy +Kyjayp =Ky B1olyy +45,Ky 5145, (2.6)
whare
Ay TAgy TS558y =355k
5. =B R la 5. =3 R ‘g

12 izt 11 "Il17ii7iL

and equation (2.5) becomes

. ot a - PP . e
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' - < - <T1! Rt - e
[ | S I P P P P P S P T I S P TR PR PO T Pl
L v g ' ' =
- K121 +821K12 + L1 Ryl = 0 2.7
B By substituting for Uisr Yag0 2 in the slow part of the leader's optimization
function, we obtain
= 1 o ~ ~ nela A Al  ~ A A=l .~ aA=la
J = = ' - M 150 ' 1
s 2 "i['(; %50Qp1 = Qupfppiyy ~421 (p) ' Qg +451 Bp) 'Qp3hpgay; x5 (EMdE]
-
where
- 0 = 1 ! < ' < c o '
= Q= +Ly1Roalyy +Ky 955 K 1 K 553K ) +K;1571K11 ¥K1555K)
~ = 1 e » > e
Q2 =Qyp +Lg1RyoLlyy +Ky55; 3K 3+ K 15,5Ky 5
. s g - ' -
n Q3= Q3+ LyaRoglyg ¥ K 459415
-1 -1, IS B = -1 -1
551 *B1iR11Ro1R 1Bl 0 S22 TBpRyiRoiR ) Bors Sp3 =By R 1RyR 180y
. Let J-Zs'-' E ['21- x'(O)sz(O)], where K2 satisfies
x(0)
AT + KA+ T = Goarid  cAN @by w8 by 018 =0
052 FRoAg+Cgy = Quodgdny ~An1(Ag5) "Qpp +an, (A5) Qp 585085y

(2.8)

So the leader has to minimize jés under the following constraints:

,“ » N = » ] =
455K 3 T Ky ghgg + K381 3K 3+ LyoR pLyy #Q5=0

. | SIS - 4 - - Tt ot - = et -
Kipdpp 7oKy “ KSRy " KyBralag mLo1Bip¥y 7Qp ~KpaSq4%ys -

=0

3 -

Ky980) #5018 T L1 R olng

-t -

~ a aels s, Lemloy=, oy omliix oaele
AgKy ¥ Rydg+Qp1 = Qoodngdyy =93 (A33)TQq +45; (A03) 705 33004, =0




(]

where

~ I‘-l
B - ! - '
Kyg = =[Q oy Ly Ry oLy n+ Ky yA 5 ~ Ky Byolyy +471K) 514,

The reader is referred to Appendix A for the derivation of the necessary

conditions for the leader's minimization problem.

2.6. Full Order Problem

In equation (2.1) we assume

Miy o MMy, i Nii Nio

Substituting foer in equation (2.la) and letting %0, we obtain the following

T ' ' < . Q '
ActM (O +M1 (0A ) +a0, M (0 +3, (DA 5y +M, (0) (S 4y, (0) +8,M7,(0))
r Y < ' - =
2 (0) (51571 (0) #5315 (03) + 533 (OORy,Fpy (O +Qy, =0 (2.9)
% - - S h - 'k ‘
M12(0) = =[Qy; +Fp; (R pF51 (0) + (Ag)=S15My 1 (0-355F 57 (00) ™y 5(0) +2y ya)
M, (0)B..F..(0)]a~} 2.10
11497512522 22 (2.10)
Alyg¥3(0) #30 1(0)a o)+ (0I5, 1) 1(0) +FLy (OIR, ,F 0 (0) +0Q; 5 =0 2.11)
wnere
= -- v —T ' -
Al TA117811 M (O=815M1, (0) =By, F, (0)

Ao1n 812751273078y F5,(0)

- - - - e v U IS S N TV U NSOV U WU D DU S, ~*_AAAJ
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Acp1 =Ay)-S1oM; 1 (0) =5y 4M1,(0)=B,,F,, (0)

ALzp =By57S) M 3(0)-B,,F,) (0)

assuming cthat Ac22 is nonsingular.

It is noticed that equations (2.3), (2.6) and (2.7) are identical to equa-

tions (2.11), (2.10) and (2.9) respectively where Mu(O) s Mu(O), M13(0?, le(O) ,
Fp2(0) replace Kyp» Kyps Kyz» Igyo Lo

Substituting for M2 in equation (2.1b) and letting k=0, we obtain
My (O)A )1 +AL; 1My (0) +2y5 (0)A 55 +AL,5,M55(0) +Qy +E3y (0)R),Fyy (0) +M,, (0)

(S21 ll(0)+822~‘1'2(0))+\412(0)(s22 11(0)+523 12€0) =0 (2.12)

Mo  (O)A 15 +My5 (DDA 55 +A 5 My 3(0) +M;, (03, M, 5(0) +My, (0)S,5M) 5(0) +

! =
Fy1(0)Ry5Fpp(0) +Qpp =0 (2.13)
AlogMy3(0) +M,y4(0)A 55 +M) 3(0)S, 3 5(0) +F), (O)R,,F,,(0) +Q,, =0 (2.14)

From (2.13) we have
E ! h : 3 '
M22 [ACZlMZJ(O) +M21(0)Ac +M 1(0)822 13(0) +.‘112 (0)523‘113(0) -+-1’21(0)R22
F..(0)+Q.,]a"}
22 224%¢22°

Substituting for M,, in (2.12) and using equation (2.14) we obtain an equation

identical to (2.8),whereM21(0), h (O), ‘1,7(0), (0), F,,(0), F,,(0) replace

’3

Xy K.l, Kl” Kl3’ qu, L,, respectively.
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Decomposing equation (2.1d), and letting =0 we obtain

Ae11Na( @ + 851 (DAg) 1 +4:15N55(0) +8,5 (004, +1 =0 (2.15)
‘ ' - )
Np1 (AL, +N,5 (004!, =0 (2.16)

4 J
Aea1Ngp #NJ AL +A g, +N,y4A L, = 0. (2.17)

B - -l ’
From (2.16), we get sz (0) N21 (O)A::ZI(Aczz) ' 'N21 (o)yv',
From (2.17), we get N23(0) 'VNZI ov'

1

where V= -Ac22Ac21 .

Substituting for Ny in (2.15), we obtain

-1 -1 o
(A 1178.12822821IN21 (O + N, (00 €A -A 1oA 5oA 5)) " +1 =0

which is identical to (A.2) where Nzl(o)’ Mn(O), Mn(O), MIB(O)‘ 1-'21(0), Fzz(o)
replace P,, Kll’ Kyps K13, Lzl’ L22 respectively.

After decomposing (2.1lc), and letting p <0, we obtain

' (< < M! -5, ) '
(8,111 €0) +A 4 N1, (0~ (S My (0) +8) M55 (0))N,; (0) =8, M, 5 (0N, (0) +

(55371 (0) +5,,M15 (03)Ny (0) +5,,M) 3(OIN}, (0] + [N (DAL} ) +Ny5 (0)al;,
-.‘.'_,l(0)(.‘121(0)§u+}122(0)§]'.2)-N22(0)..\[23(0)—5.'2+N21(0)(:~1u(0)§21+.\112(0)§£:)

+ NzZ(O)MU(O)gz':] =0 (2.18)
Ny (AL + N, (0)Al,, + N,y (0) (My, (0)S,, 4-.\122(O)EU)-:«::(0):123(0)513

+ ¥, (0) (:'11{0)522 +M, (0)§:3) Xy, (0).\113(o>§23 =9 (2.19)
22112 (D) 2 AN 3(0) + N1 5 (DALyy =Ny 3 (0AL, 5 =T34 (0) =X, (DT

- ! N = 6.20
115,23(0) .\23(0)1_,: 0. (2 )

PR S S u "
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From (2.19) we obtain

Ny,(0) = Ny (OOW' + N, (0)V!

where
weaali eV
c22(T3 + T,V
= C ' ot - < ' -
Ty = Sy3My,(0) + S1,My,(0) - S M1, (0) - S,,M,,(0)
Ty = Spates(0) - Sy4M14(0).

Substituting for le(O), M22(0), sz(O) in (18), we get an equation identical to
(A.l) where Nll(o), NZI(O)’ . l(o)a Mll(o)’ le(O), FZZ(O)’ M13(0): Mlz(o)

replace Pl, PZ’ K,» Kll’ L21’ L22’ K13, KIZ’ respectively,

-

Substituting for NIZ(O), N23(0), MZZ(O) in (2.20) and using equation

(2.14), we get an equation identical to (A.5), where N13(0), Nll(O), NZI(O)’

MZl(O), Mll(O), MIZ(O)’ M13(0), FZI(O), FZZ(O) replace P, P., P

3 "L T2 T2 LY
KIZ’ K13, L21’ L22 respectively.

Decomposing (2.le) and letting k=0, we have

Rpp (Fpp (081 (0) +F,y (ON]) (0)) +R,, (Fpy (0N, (0) +F,y (I3, (0))-BJ,3, , (0N (O)

12°

=By (M1, (0N} (0) +M (0N}, (0))=B{,M,) (0)N,) (0)=BJ, (1, (O)N, (0) +
M, 3(0)N},(0)) =0 (2.21)

(RIZFZI(O)-BiZMIL(O)-B' M3 (0))N12(O)-+(R22F21(0)~Bi2M21(0)-B

22712

LML (0))N., (0)

4

- (R12?22—852M13)N13(0)~+(R2:F ,(O)-B;ﬂnq3(o)]N23(o)=¢3.(2.22)
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Substituting for NIZ(O), NZZ(O)’ M22(0), and NZB(O) in equations (2.21) and (2.22)
and using equation (2.14), we get equation (2.21) identical to (A.3) and equation
(2.22) identical to (A.4) whereNll(O), NZI(O)’ M21(0), Mll(O), MIZ(O),M13(O),F21(0)
FZZ(O), and Nl3(0) replace Pl, PZ’ KZ’ Kll’ K12’ K13, L21, LZZ’ and P3
respectively.
To compare the performance indices resulting from solving the full
order problem with the ones resulting from the reduced order solution we need
the following assumptions:
a. The fast optimization problem of the follower has a unique stabilizing

solution. In other words there exists a unique K 3 which is a solution

1
of equation (2.3) for each L22 applied such that ) (:\.22)< 0.

b. The slow optimization problem of the follower has a unique solution after
substituting for le from the fast problem, i.e. equations (2.6) and (2.7)

have a unique solution for Kll’ K12'

¢. The leader optimization problem has a unique stabilizing solution, i.e.

there exists a unique pair L and LZ’ as a solution of the set of equations

21
(2.3), (2.6), (2.7), (2.8)and (A.1) through (A.5)such that A(a,) <O.

Theorem: If assumptions (a), (b), (¢) are satisfied then:

) _l.l.né(ui-uiap) =0 for i=1,2

2) ;limo (Ji-J'{) =0

where
U, = -L.,x-L.,2 u, = -F,,u~F.,2.
iap il i2™’ i Fll F12

J¥ is the performance index when u

: 1 and u2 are used.

J. is the performance index when u and 4, are used.
- - by

lap
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;,. Proof: (1) It was shown that Mll(o)’ Mlz(o)’ Mls(o)a le(o)) Nll(o)’ Nzl(o):
N13(0), F21(0), FZZ(O) replace Kll’ K12’ K13, KZ’ Pl’ Pz, P3, Lzl’ Lz2 respectively
in the equations, and if the uniqueness assumptions are satisfied,

l. then we have unique values of Kypo K12’ K13; Kz, Pl’ PZ? P3, Lzl' LZZ and
K =M1 (0 Kyp =Myp (0s Xy 3 =My 3(0), F3y (0) =Ly;s Fpp(0) =Ly, K, =1y, (0),
PN (0, By =N, (), By =Ny 4 (0)-
For the follower:

Ulap T TLpp¥ "t 12

Substityting for Lll’ le, we obtain

o u

- - =1l o e
lap - “R11(Byi¥y) +By1K )% - Ry 1By K 42

But the exact control of the follower is:

= -1 ! "
Rll[Bll(Mllx + .—Mlzz) 4- BZ'1 (Min +Ml3z)]

P -1 1 - N t o

Clearly,

limu, = limu

-0 L -0 lap

Tor the leader:
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. (2) When the exact controls, ult-Fly and u, = -F,y are used the
resulted performance index J'{ -%yc',Miyo where Mi is given by equations (2.la),

(2.1b).If ulap’ and uZap are used, where

= -l ' =
Ulap " R1BiKyY s Kyt I Ky O
] 18’4
H-l(12 .-k13

-

Yap ™ "LyY
3 X el .
- we will have Ji as the performance index, where Ji Eyowiyo’ and wl, WZ satisfy

the following equations
- - - - 1 g . ] -
wl(A sllKl BZL2)+(A sllKl BZLZ) le+Ql+l\ S.,K, + LR 0

. 151151 * FoR1aly
Ly (2.23)
- - - , = ' =
Wy(& -5 K ~ByLy) + (& = §; K; = B,Ly) "Wy +Q, +K,S, K; +LiR,L, =0
(2.24)

2

Subtracting (2.23) from (2.24) and (2.1a) from (2.1b) we £ind that

Pl’wl -Ml and P2 =w2 -MZ satisfy
Pl(A - sllKl - BZLZ) + (A - sllK]. - BZLZ) 'Pl-i- (Kl - -.\11) 'Su(K -Ml) +M132(L2 - FZ)
-9-(1.2 - FZ) '82'.\11+L2'R12L2 - F?'_Rlel =0 (2.25)
P2 @ - 511K1 - 3212) + (A - SIIKI - BZLZ) 1"2 -i-KlSlel - :"15:1”1 - .‘12511(1(1 - -.\Il)
(K =My) 'S My =My, (Ly = Fa) = (Lo = F5) "BjM, + LIR, Ly - FyR,,F, =0, (2.26)
‘ '—?:.1 :"PiZ——

Takiag P, =

|
|
' =Pia "‘Pf.3_|
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and substituting for P and P2 in equations (?.25) and (2.26) respectively, and

setting »—0, we obtain

. 2 ~y = 0ot . 2.27
PigArr ¥ Profyy Y APy AR, T 0 (2.27)
N A At = 2.28
PijA1g + Pighgp + 451 Fi3 = 0 (2.28)
s At = 2.29
Piydpy + AjoP5 = 0. (2.29)

Since AZZ is stable, Pi3='0 is the unique solution of equation (2.29)

From (2.28) we have

~ .\-l
Pig = - [Py180185; -

Substituting Pi2 in (2.27), we obtain
S A AT i@, -A 3TNy =0
Pip(App magafypiy) T (A mA10899%91) Py
or Pi1A0+A.0Pil=O. Since “‘O is stable, Pilso‘ Thus

P..=0 for i=1,2, 3=1,2,3
1]

Remark l: In the LF game, the leader annocunces his strategy first, and the
follower reacts by playing optimally, i.e., the follower chooses a strategy thch
lies on his reaction curve. So if the leader uses Urap? then the follower has
to respond by choosing ugsu1 (uZap)' In our case the follower does not choose
u?. but he chooses ulap’ hence the rules of the game are violated. This
deviation from the basic definition of the equilibrium solution of the game can

be tolerated for computing the oprimal strategies, if the resulting deviation

rn

0of the leader's aad follower's performance indices from ctheir correspending

exact LT performance indices is small. In other words, the use cf Yo by the

-— -~ - D hm e iR 4 miea




Py

29

follower instead of “2 can be tolerated as long as Ji(u

) as » tends to zero. This can be easily shown to be the

lap’uZap) tends to

I3 (U (upgp)sYoag

case by using a method which is equivalent to the one given in the theorem.

We will not pursue this, any further in this chapter.

Remark 2: In this chapter and in [56], we consider a different information

structﬁre from the one given in [l1l]. 1Imn [1l] the space of admissable strate-
gies is restricted to be taken from the slow variables only, and the usual
singular perturbation technique is used to obtain a well-posed solution. But
in [56] and this chapter a2 more general information structure is considered,
since both the slow and fast variables are available for measurement, and a
new procedure, which depends on preservation of the information structure of

the full order game, is used to obtain a well-posed solution.
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CHAPTER 3

LEADER-FOLLOWER TEAM STRATEGIES FOR SINGULARLY PERTURBED SYSTEMS

3.1. Introduction

In this chapter, we develop a well-posed procedure to obtain low order
and near optimal LF team equilibrium strategies for systems with slow and fast
modes. In Section 3.2, we find the limiting behavior of the full order game as
u tends to zero. In Section 3.3, we solve two reduced order games. First, we
give sufficient conditions for the existence of solutions for the fast LF team
problem. Secondly, we give sufficient conditions for the existence of solutions
for a hybrid slow (hybrid because the fast gains are imbedded) LF team problem.
The basic property of this reduced order hybrid slow game is that it has the same
information structure as that of the full order one. In Section 3.4,'de show
that, under certain conditions, the reduced order games and the full order one
are equivalent in the limit as u tends to zero. In Section 3.5, we applv our
well-posed procedure to the case when the leader uses strategies with finite

dimensional memorv and solve a numerical example.

.
19

full Order Problem

I

Let us consider the singularly perturbed lirear time-varving system

x = All(t)x + Alz(t)x + Bll(t)ul + Blz(t)uz; x(0) = X

Lz o= A (t)x + Azz(t)z + le(t)ul + Bzz(t)uz; z(0) = 2,

-

n o a,

1 2 i R . . .
where X€R " z=R u, €R for i=1,2, u is a small positive parameter,
’ 1. by &

are continuous in t Zor all

o4

and & ;. 4150 Aag. Ayp0 Byys Bioy By B,

i

t={t ,t.]. Assume that the ith plaverwishes co minimize the following tfunction
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8 .
1 ' ! ?
- - -+ . =
Jytuup) =3 { (7'Qu(B)y+u;R;  (B)u; +u Ry u)de;  for i=1,2 14]
o
. X Qil(t) Qiz(t)
where y = ; Qi(t)- , which is a symmetric pq§¥§§xgv§emi-
' LEA RS ,
z ] Q;,(8)  Q,(t) e L
definite matrix, andRii,Rijaresymmetric positive definitematrices. Let us
- take player one as the leader and player two as the follower. The procedure

to solve the team leader-follower game, with memory in the control structure

is as follows [18]:

1. Solve the leader's problem as a control problem with Jl(ul,uz) as the
objective function, and ul,u2 as controls under the constraint of the
x state equation. The optimal co;trols are (ﬁl,ﬁz), where
T, (£) = -R) B!Ky
1 111
B ﬁz(t) = -RI;BEKY

and K satisfies the following Riccati equation

-K([B R71s' +3 R'IBL]K =0

R+ Ka+A'K+
Krka+ax+Q 11171 271272

1

and

K(tf) = Q.

Define ¥ (t) as the resulting trajectorv when the controls El(:).:,(t)

are aoplied.

2. Coosider the function u,, which is represent.i 5+ a Lepesgue-Stielties }
1 :
; . . . i
N integral of the following form ‘
N t
u, (=) = d "(c,3)vis),
1 3 :
t
)
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such that
ul(t) = ul(t).

...........

.........

Then with u, in the objective function (JZ(Gl,uZ)), of the follower and

1

in the state equation, minimize JZ(Gl,uz) with respect to u, and find

2

conditions such that if the optimal (ﬁl,ﬁz) are applied then the resulting

trajectory will be ¥ (t). If these conditions are satisfied then (&l,ﬁ

2)

constitute a leader-follower strategy pair. These conditions are stated

in [18], but we restate them here for completeness.

If there exists a function n(t,9) with n(t,3) =0 for 3t and (n1+n2)X(n1+n2)

matrix P which satisfy

. _
{ d n(e,s)y (s) = -R;iBiK(t)y (t) ety te]
(o]
RIL(£)B. (£)P(t) = RIL(£)B)(£)R(E) cele_,t.]
22 2 12 2 o’ f
tt
P(OF () - [ (Qu+a'P+n" (1,0F(1))F (1dr =0 eeley,t.]
C

where

F(e) = Rzl(c)Rii<c)si(t)K(c)-ai<c>P<c>

and v {t) satisfies the following linear differential equation

P -1 -1
- - 3 -

BéP)? (v)

T(s = v
_\O) Y

tnen

(3.2)

(3.3)

(3.4)

(3.5)

(3.7)
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b
4
b t .
; ~ +
f l u, (t) = [ an(t,s)y (s)
¢t . to
P
E Te.

4, (£) = ~R]3B,(O)K(E)y (©)

are optimal leader-follower strategies. Furthermore they are also the team
solution.

Preliminary analysis indicates that the following forms are useful
for our problem

- "K(t,u) = , Q-
uKz(t,u) uKB(c,u)

11 Y4

U,  Y;
n(t,s,u) = [nl(t,S.U) nz(t,s,u)]

F(t,u) = [Fl(t,u) Fz(t,u)]

Pl(t,u) uPZ(t,u)

P(t,u)
K WPy (e,u) WP, (t,u)
We substitute the forms of K(t,u), Qi’ n(t,s,u), F(t,u), and P(t,u) as given
above in equations (3.1)-(3.8), decompose them, and take the limit as * tends to
zero. The reader 1is referred to Appendix B for the resulting equationms.
Several remarks are made regarding the above procedure.
21: The state vector y=-[§] in equations (3.2), 3.4}, and (3.6) is decoupled

into fast and slow subvectors by using a transformation due to Chang {25].

. For a precise description of the function n(t,s) the reader :s
referred to [i8].




34

So the control memory of the leader is decomposed into a memory of the
slow modes and a memory of the fast modes.
R2: In general the matrix P(t,u) is nonsymmetric, but it is symmetric for
some special n(t,s)’'s.
R3: After decomposing equation (3.4), and letting u->0+, we get as one of the
equations
¢
{ (Qy, +Ay,P, (1,0) + 10,y (1,£,00F,(1,0))¥,,(r,t,0)dr = 0.
But since the state transition matrix has full rank the above equation

implies (B.16), and the same situation applies in (B.l7) and (B.18).

3.3. Reduced Order Games

The class of leader-follower games, which is considered in the
previcus section, will also be considered in this section but for the case

in which the reduced order systems are given. The fast subsystem is

MZg = AjpZe * Bortis T Bl
and the fast part of the objective function is

£

(z;Q z_+u! R, ,u, _+u'_R, . u,_)dt.

J i3%f  Tif117if 0 Tjfij if

-1
if 2

tTY—

o

Sufficient conditions for the existence of an optimal leader-follower fast
strategy pair with memorv which coincides with the team fast strategy pair
are given in Appendix C.

+ .
If we let u~0 1in the original svstem, then

X o= A .x + + ;
¢ s T A% T Bty T 8ot
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Assuming that Azz(t) is nonsingular for all :E[to,tf], then

zs (A x +B +B,.u, )

21%1s T P22%24

Eliminatingzs, we have

B = Ay Rg T Brivie T BroYyg

where

. -1 - -1
A1) T ApTA1a%90815  Byy T BiytAla8g0B)

A -1
By = BigmAphgsBys-

The slow part of the objective function is

t
J 4 [ [x Q x +-x'é u u Q +x'Q,.u, +u' Q'.x
is 2 ¢ i17s “s7il2’is iZ s "s871273s  Tjs"i27s
o

' o [ v At
F iR gUye T U1y 3uye T U auy g lde
where
3,. = Q,.-Q,Aca -(asta. )'Ql, + alta, )0, .aTka
i1~ Y17Q0890%91" 22 217 Q2 ¥ (B8990 Quadyodyy

= 1

Qo = =Qp8p5B54 * (

Azz 21) Qah zz 24

l

Qua = =Q4p899855 % ¢

A22 21) O 3A 22 23

- -1
Q5 21(A22) Q44758 23

~

' -1
1 7 Ryy*By5(a)) Q13A22373

1]
4sRi1Y%s

Sufficient conditions for the existence of the leader-folleower teamhybrid slow

solution are obtained as in [18]. We have the following facis and condicions.

1. (@

,u, ) are the team slow optimal controls, where
1s’2s
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*

- ~=]1_~ - - -
Upg = "Ry [Q %+ By K x +Qy5u,.]

-— '-l - =1 - -t
Uzs = ~RyglQo% ¥ QU o+ By oK x ]
where E; is the resulting trajectory‘whentﬁj, u,  are applied.

ﬁiq and Gis can be expressed in the following form

-

T, = -M, x

is 18%s ? for i=1,2,

and Ks satisfies
. ~ - Iy N A ~ ' ~ v~y
Kg ¥ Qup ¥R (A)1-By M) =By oMyg) + (A1 =B My =By oMy ) Ko=QpM; oM Q5
- 1 =0 r D [ " - t =
~Qp oMy Mg Qpp F M Ry My o My Ry gty F My QM My QM = 0

Ks(tf) = (,

The leader applies a control u,_ of the following form

is
- t -1 A -1
uls(t) = f (dsns(t,s)-dsnf(t,s,0)A22A21)xs(s)-é dsnf(t,s,O)AzzBZluls(s)
% 0
t -1
-{ d_ng(t,s,0)4,,8,,u, (S).
0

This specific form of the leader's control is chosen so as to preserve

the information structure of the full order problem in the limit as u tends

to zero, since a closer look at its form reveals that u;q can be expressed as

t t
< " { dsns(t,s)xs(s)+-f d ne(t,8)z_(s)

t
o Q

4y

where z, is the slow part of the z-state vector. Inthe Zull order problenm
the leader has access to the past history of the trajectory, but in the

reduced order problem, he has access to the history of the slow part of
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the trajectory, his strategies and the strategies of the follower. Also,
the leader is not using a standard slow control since he is using the fast
gain ﬂf(t,s) which is obtained from the solution of the fast game. The

use of the fast gain is necessitated by the preservation of the information

structure.

3. oufficient condi.iuns for the enictence of the hybrid slow leader-follower

solution are given in Appendix D.

4. 1If g is not used in 2 above, the equations of the reduced order games will

not correspond to the full order ones, as will be clearly explained, later

in this chapter,

3.4. The Correspondence Between the Reduced Order and the Full Order Games

This section contains four lemmas which show the correspondence
between the reduced and the full order games, and prepare for the main
theorem which describes the procedure to obtain a well-posed and near optimal
strategies depending on the reduced order subsystems.

Before stating the lemmas, let us form the composite controls ulc(t),

u,c(c) as
uic(t) =u, + uifi-o(u), for i=1,2
or
| - -l ! N
ulc(t) Mlsxs RllBZIKlf(c,O)zf(t)-+O(A)

-lv AL
uzc(t) -Mzsxs-RlszzKlf(t,0)zf(t)-+u(a).

After using the same manipulations as in [9], we get u u

1o Y2 of the following

form
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B, [ Ks(t) 0 ] Fx-

-1, .
u, = -R.i[B ]
1c - RuitByy 3 WK (8)  uk, (2,0)] |z

' .
i [ RO 0 P
2c 127712 u

t
L-uKm(t) uKlf(t,O) z.

where

- -A-l ' -k S
Kn(E) = 8,5 [K oAy )+ 45K £(£,0) + Q) =K S,K; .(£,0)]

g = AypSKy ((£,0)

< . -1, -1,
S3 = B11R11821 ¥ 81281285

—131 +B R-]'B'

S3 = By Ry1Bay ¥ BooRy5B),-

In [17], it was shown that if
1. All’AIZ’A21’A22’Bll’312’321’322 are continuous in t,

2. ,Qi are continuous in t for i=1,2, j=1,2, and i#j,

Rii’Rij
3. Equation (C.4) has a umique solutiom as - tends to zero.

4. The fast subsystem is asymptotically stable,

then
}ig[K3(t,u)—K1f(t,u)I =0 VuE[to.tf]
lim[Kz(c,u)-Km(c)] = 0 VUE[to.tf)
u=0
lim(K, (t,u)-K (£)] =0 ves (e ,c.]
—~0 1 s ot

and as a result we have
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lim[u (t,u)- u, (t,u)] =0 for i=1,2, and for all ce[to,tf)

u+0
where
u,(t,u) = lB'
1 ll l
(r. u) = =R ~lg; Ky
127277

The relevance of these results to our problem will be clear later.

Lemma 3.1: Let

[ 5 -
¢ - M8 By = (B Byyl
o i =
| Mg (8 By = [Byy Byl
c - Rn 215£¢6:0) Y1c
2 - ’ uc =
L'R12322K1f("°) Use
us = Goxs; uf = Gzzf.
Form l
ag = [(T+Gy2708,)6 4G a70a, T+ Gye.

If ug, uf, u, are applied to the slow, fast, and the full order systems

respectively, and if (A22+BZGZ) is asymptotically stable, then

lim(x(t)-t (¢)) =0 Vte[to.tf]
u=0

1ig(z(t)4-A (A21+82G )x (t)-2 (c)) =0 Vce[co,:f)

where xs(t),zf(t) are the resulting trajectories aftar appiving ug and u. to
s
the slow and the fast subsvstams respectivelv.

Proof: When we apply u, to the full order system we zet

[ PR
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% A, +B. (I+G asls )G +B.G asla +8.G X
11781 (IFCA5585)G #B,C 8508, 445%B16)
- - -1 - -
; (A))*B;G)) A, (4, +B,G ) A557B,6)
. u o

It is clear that the present system is exactly equivalent to the system
described by equation (B.8) before, since equal controls are applied to the
full order system. Using the usual singular perturbation techniques, see

(17], we get

tig(x(t)-xs(:)) =0 Vte[co,cf]
. -1 =
tig(z(t)+-A22(A21+BZG°)xS(t)-zf(c)) =0 Vte[to,tf). -

After noting the equivalence between the present system and the system

described by equation (B.8), it is easy to see that

tig(wll(s,t,u)-¢s(s,t)) =0 VtE[to,tf]

tig(wzz(é.t,u)-¢f(s,t,u)) =0 Vte[to,tf]

where wll(s,t,u) and wzz(s,t,u) are the state transition matrices described

by equations (B.ll) and (B.l2) respectively.

Lerma 3.2: If in the limit as u tends to zero, equation (C.4) has a unique

solution, and there exist unique values for n_.(%,s,0), K, (£,0) which satisfv
'Y

2.
£
equations (C.1l), (C.2), and (C.3), and if the fast subsystem is asymptocically-

stable i.e. \(;7,)< 0 then

X, (£,0) = K3(t,0); nf(t.s,O) = 12(t,3.0): X, (£,0) = Pa(t,O)

&
L

t,0) = F,(t,0); v.(7,6,0) = v,,(z,t,0)




.
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where K , and wzz are defined in Section 3.2 and Appendix B,

3 N0 B By
Proof: If we let u»0' in equations (C.1), (C.2), (C.3), (C.4), (C.5), and

(C.6) of the fast game, and then compare themwith (B.14), (B.5), (B.18), (B.3),
(B.7), and (B.12) of the full-order game, we notice that the first set of equations
are exactly equivalent to the second set, where Klf(t,O), nf(t,s,O), Kzf(t,O),
Ff(t,O), ¢f(1,t,0) replace K3(t,0), nz(t,s,O), Pa(t,O), Fz(t,O). wzz(r,t,O)
respectively. The uniqueness assumptions stated in the lemma are sufficient

for equality of the above terms. The stability condition is necessary and
sufficient for the boundedness of ¢f(r,c,0).

Lemma 3.3: If the assumptions of Lemma 3.2 are satisfied, and if there exists

unique values of n_(t,s), P_(t) which satisfy equations (D.l), (D.2), (D.3)

and

Qyp+ 21 zf(~,0)+ns'(r,t)Ff(r,0) =0 ... vt<t (3.12)

then

P (E,0) =P () (r,£,0)=n_(r,8) and d.n (7,¢,0)=d.n_(r,6)")

where Pl and n, are defined in Appendix B.

Proof: Comparing equation (B.6) of the full order game with equation (D.4)

l 1

we noti t b 3
ce that by adding the term (F;-R, R (B! 1

-1
-8,,K, f)AZZ(AEI_BZIMIS-BZZMZS)’

Je
In general if fn(t), f(t) are differentiable almost everwwhere (a.=2.)
d< .
(t) _di(e)

for all n, and £ (t)*f(t) pointwise, this does not implv that e ic

a.a. for example, take £ (t)s—,%,— sin nt.
v

O O PO T YD DU PR WIS SO PR WSV W VP S-S SERS S SRS PS> S S

PO
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which 1s equal to zero, to equation (D.4) , we get an equation equivalent to

(B.6) , after using the identity

-1_1 -1 _ _ - 1,., -
Mls+R11321Klf(t,O)A22(AZl By1 ¥ s Baotyg) = Ry (B, K, (£,0) +B, K (¢,0)),

-1
and substituting for P3(t,0)=--(A22)'[Q52+Ai291(c,0)+néFl(:,0)] obtained from

- equation (B.1l7) in (B.6). So Fl(t,O), Pl(t,O), nz(r,t,O), Fz(t,O) in (B.6)
: -1 ,

replace Fs+FfA22(AZl-BZIMls-BZZMZS)Ps(t), nf(t,t,O), Ff(t,O) respectively
- in (D.4).

Comparing equation (B.4) with equation (D.2) , we see that by using

the identity

- =1 _ ' ' - ot -1 - -
a , B1a(BrgKy (80048 Ko (8,00) = Myg + RygBagky (£:00Ag; (Ag1 Bt M1 Baa™y)

and by substituting for the value of P3(t,0) from (B.17) in equation (B.4),
the two equations will be equivalent, where Pl(c,O), Fl(t,o), nz(t,t,O),

| -1 .
Fz(t,O), Pa(t,O) replace Ps(t), FS+FEA22(AZl-BZlMlS-BZZMzs), nf(g,t,O),
Ff(t,O), and Kz (t,0) respectively.
£

Equations (D.1) and (B.13) will be equivalent afterusing some of

; . the previous identities, and we will have dsnl(t,s,O) and dan(t,s,O) replace
dsws(t,s) and dsnf(t,s,O) respectively.

If we substitute for P3(t,0) using (B.l7), and Pa(:,O) using (B.1l3)
in equation (B.l5) , we notice that equation (B.l53) 1is equivalent to equation
(D.3) whereP, (£,0), F,(t,0), i;(s,t,0), 7, (s,t,0) replace P_(2),

-1 . .
) Fs+FfA22(Azl-BZIMIS-BZZAZS)’ 15(5,:) and nf(s,t,O) respectively.
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If n;(r,t) also satisfies equation (3.12), which is equivalent to
equation (B.l6) , then under the uniqueness assumption given in the lemma, we

have
ny(s,t,0) = n_(s,t)
Pl(t,O) = Ps(t)
d n,(t,8,0) = 4 n_(t,s).

Before stating the main theorem, we need the following definition and one
more lemma.

Definition: A function f£(t,u) is said to be well behaved in u, if there
exists an integrable function g(t) such that for all u, £(t,u)<g(t) for

almost all ¢t.

Let ¢o(t,t°,u) be the state transition matrix which satisfies

bo(t,to,u) = A(t)¢°(t,to,u); ¢(to,to,u) =1
where
A1(0) A1,(0)
A(t) = ,
AZl(:) Azz(t)
- u o J
and rﬁ
1
B: -
i)




g
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vemma 3.4 If Azz(t) is asymptotically stable Vte[to,tf], then lig ¢(t,t°,u)B(u)
is bounded for all t> to. -

Proof: See Appendix E:

Theorem: If the assumptions of Lemmas 3,2 and 3.3 are satisfied, and

dsnl(t,s,u), dsnz(t,s,u), ul(t,u), u2(t,u) are well behaved in u, and if the

leader and the follower choose u , uZap as their controls, where

lap
t rt:
ulap(t) = { dsns(t,s)x(s) + :: dsnf(t,s,O)z(s)
o o
L
K 3
uZap(t) - -RI%[BiZ 832] ?(t) : )
uKm(t) uKlf(t,O) z
then
1) tig(ul(c,u)-ulap(t,u)) = 0 Vte[to,tf]
iinol(uz(t.u)-uZap(t,u)) =0 v:e[co,cf)
2) i_{g(y(t,u)-yap(t,u)) =0 veE(e ,t ]
3) lig(Ji(u)-Jiap(u)) = Q for i=1,2

where v(t,.) and Ji(p) for i=1,2 are the resulting trajectorv and objective

functions from applving ul(t,u), u,(t,u), while yap(t,u) and Jiap(u) for

5 (
i=1,2 are the resulting trajectorv and objective functions from appiving
u t.e u Cyou)e
lap(E+)s Uy (2,)

2roof:

L. Tor the follower (plaver ), it was proved berfore that

PR - . = We =Ty
{--:glku:(tsﬂ) u:ap(tyv‘)) O 'E—Ltovtf)'
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For the leader

t
lim(u, (£,0)-u,, (E,1)) = lim [ (d gN (ts8,1)=d n_(t,8))x(s)
w0 P u-+0 t
+limf (d_n, (t,s,u)-d_n (€,3,0))z(s) '
w0 £,
since

dsnl(t,S,u)-*dsns(t,s), pointwise
dsnz(t,s,u)-*dsnf(c,s,O), pointwise

and since lim x(s) and lim z(s) are bounded, because of the stability
u+0 u-+0
assumption in Lemma 3.2, and since dsnl(t,s,u), dsnz(t,s,u) are well

behaved in u, then by the Lebesgue Convergence Theorem (LCT), we get

lim(u (t,u)- -uy (c,u)) = ( VtE[t .t
u-0

X ul
2. Let y= 2 ; u= u
2

L

t
y(t,u) = @(c,to,u)y(0)+-f d(t,T,0)B(r)ult,n)dr
tO
t
yap(t,u) = Q(t,to,u)y(O)*-f @(t,r,u)B(u)uap(f,u)dr
to
t
Lim(y(e,u)-y, (€,u)) = lin [ oo, t,0B W) (u(e,u) -y, _(t,u))dr
',.1"'0 L-»Q t P

since #(t,t,u)B(u) is bounded VY. and

lim(u(z,u)-u__(T,2)} 0
L—~0 ap

then using LCT, we get

[}
o

iig(y(t,u)~yap(t,:))
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3. If ui(t,u) for i=1,2 are applied to the system, the resultiong

objective function of the leader is

te

-1 '
T =3 { (y'Qpy +upR, 4y + usR, Hu))de.

o
1f uiap(t,m for i=1,2 are applied to the system, the resulting objective

function of the leader is

e

(u) ~—f (y) Qly

O

)dt

lap ap lap ll lap 2ap 12 Zap

tf e

(3 )= ) = F [ y'0 Gy, dde+ g [ y] Q) ey, )de
t

(u, - )dt

Pt -

ap ll 1 la

t
L .
1282782450 *2 { U2apR12 (U2 7¥2gp) 2t
Using the results of (1) and (2), and the well-behavedness property,

and then apolving LCT we get

iig(Jl(u)-Jlap(u)) = 0.

The same orocedure can be applied for the follower's objective

function, and we get

lin(G,(0)=J,_ (u)) = 0.
-0~ -ap

.

te tnecram 2laims that under proper assumptions if the leader obtains n_(:,z)

an: - .30 from the solution of the [{ast and hybrid slow games respectively, and
1T Hya ta tne full order srstem, and if the rfollower uses U, v a3

ESs 2a
tewlTiTel Azowve, %hen the ra2sulting objective functions oI toth plavers ars

weLL-Ddosel,
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If the fast game is solved as before, and the slow game is solved
independently‘of the fast information, i.e., the leader applies ;ls
t -

Gls:'{ dsﬂs(t,s)xs(s), then the sufficient conditions for the existence of
the reduced order LF team strategies may be satisfied, while these conditions
are not satisfied for the full order LF team strategies (as will be shown

in the next section). This makes such a procedure undesirable. But if we
can show that the sufficient conditions for existence of the full order

and the reduced order LF team solutions are satisfied, then this procedure,
in which the fast and the slow information are decoupled, is well-posed.
This procedure is exactly equivalent to the one used in control problems,
The basic feature of our procedure, which depends on the preservation of the
information structure of the full order game, is that the conditions of the
reduced order games are equivalent, under certain assumptions, to the full
order ones, in the limit as the small parameter . tends to zero. This

feature makes our procedure more general and more desirable than the other

one.

3.5. The Case of a LF Team Strategy with Finite-Dimensional Memory

In the previous sections we have assumed that the leader uses
a strategy which is described by a Lebesgue-Stieltjes measure. This
general strategy provides the leader with much flexibility in enforcing
his team solution. The sufficient conditions under which the leader can
enforce his team solution, by using such a strategy, are described bv
intgro-differential equations which are very difficult to solve, hence such
forms of strategies are unappealing in applications. Fortunately, it is

possible to greatly decrease the mathematical complication of the suificient

PR S R WY PRI RO % e
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conditions, by allowing the leader to adopt a slightly less flexible and
less general strategy. In particular, he can choose the following represen-

tation of his team strategy:

Y, (t,x(s),5 S t) = -R] BIRY(E) +P' (y(t) - ¥(£)) +T* (W(E) -W(c))
(3.13)
- where W(t) is an n-dimensional vector function which satisfies
| ﬁ=Kw+Ey+§kl+5'u2 W(0) =0

and W is the solution of the above equation with y, ), and u, are replaced
by their optimal team forms. The leader has the freedom to choose the

. matrix functions K, E, f, 5, P and T which gives him a high degree of

L flexibility. '

If the leader announces the strategy (3.13), then the follower's
reaction to that can easily be found, and the sufficlent conditions for the
team solution to exist can be obtained, by basically following the same
procedure described in section (3.2). Sufficient conditions for existence of
the LF team solution are given in the following proposition, which we state

here without proof.

Proposition 3.l: If there exist appropriate dimensional matrix functions

A(-), C(-), B(-), D(-), P(-) and T(.) so that the following holds:

-1,
125K

g P St
Ry, (BjM+D'N) = R
where K satisfies equation (3.1), M and N satisfy the following matrix

equations:
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u y T 4! 1 -l ey -1 =L
M+MF+F M-i-Q2 + PBlM+ KBZRIZBZM - PR21R1181K+K31R11R21R1131K
|
\
- = =, -1
| I ] ] = .
;, + (C+BP BRuBlK) N=0 M(cf) =0 (3.14)
N e 1Rt A LRTIVIN = =
0 N4+NF - T'Ry BIK+T'BjM+ (R+BT')'N=0  N(ty) =0 (3.15)
and F=a-B R BIK-B R IBIK
171171 271272
then
-
-1 - -
= ! o ] - ] 1 -
uy = (2" - B )BIK)Y(E) - B'Y(E) +T' (W-H)
-1_,
are optimal LF equilibrium pair. Furthermore, they are also team solution.
We assume that the auxiliary system (the memory system) employed
- ‘W n
. by the leader is also singularly per:urbed’, with w = wl , Where wleR L and
n 2 |
w2€R Z Thus, the matrix functions A, B, C and D take the following forms:
F3, 5, 5, | T, T,
)| I i 8 12 S - 11 12
X _ s B=j_ b, T _ _
i
A1 A | 5 Sa S
- . I L .
and
4 -
Dy |
B = - '
| 22 |
L
3.5.1. Reduced Qrder Games
The method, previously described, to obtain reduced order and
L
near optimal LF strategies, with the leader using a stracegy with an
infinite dimensional memory can, obviously be applied to the special case
’
l . L. e el e e a—alial e - M- M. A & m - s mm .
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when the leader adopts strategies with only finite dimensional memory.

In this section, we will use this method to obtain reduced order strategies
for the case when a finite dimensional memory is employed. We will
restrict ourselves to a brief description of the procedure and the results,
since a detailed analysis has been given in the previous sections,

In the fast LF game, the leader designs his fast strategy as:

3 R ! ' - [ 2
Uig R11312K1f'”f(zf 2g) +Te(W) e ¢)

where w2f satisfies:

Mg ThoaWag T Co2%e ¥ Byl FDyU s
klf’ zf are as described before and the fast subsystem and the fast part of
the objective function are given in section 2.3. Sufficient conditions for

the existence of the fast LF team strategies are equivalent to the ones

322 EZ Ff B.
s . &
glvenxin proposition 3.1, with ﬁklf’ ;Mf, pr, -:—, 7:, :: ::,

22, _%3, Zg and w, . replaces K, M, N, B,, Bé, F, Eé, Q,, P, T, C, A, y and

H]

Q3s Per g
o
w, respectively in those equations, where

= - °l| - 'll
£ = (A5 =ByyRy 1By K g = ByaR Bk £)

F
In the hybrid slow game, the leader picks the following representation of
his optimal slow team strategy:
= - 1 o ' ey - -
Y1 Mlsxls-’-Ps(xs xs)'FPf(zs zs)'b‘s(wls wls)

_ (3.15)
' -
+ T (W s7vag)

This specific representation of the leader's optimal slow team strategy
has the same information structure in the limit as . tends to zero, as the

full order strategy of cthe leader wnich is described by equation (3.13).
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To preserve the information structure of the full order game while solving
the hybrid slow one, we need to transfer the fast information to the slow

game. As before, the slow subsystem is:
X, = A 1¥s + B

1 11%1s * B1oY%s

And, equivalently the slow memory subsystem can be described as:

9. =k w +8 +8 )
Yis T 811¥1s T B11®s T B1Yps * DY

1 = l 1— ==1l= ,-1

11 " A12899817 €11 =Cpp = Crahgphsg ~A1p8,5C0, +A15A0,C,0h058,

=C
- -1,
A58+

B=8 22 Cag872851

1~ Gy 22321 1A,
=D, -C.als. -% B+, A ke acly
1 =D ~CypAz9Byy = Ay 5A05B, +A15875C) 54,8,

ol

By substituting for Zs, Es’ Voo and ;25, equation (3.1l6) can be rearranged

to:

- MX (3.17)

=M 2s s

1ls

~, = ~, = -
u lsxs'bps(xs xs)"'Ts(wls wls) Lu

where the fast gains are imbeded in ﬁ , P , Es, L and M. Now, if the

1s s

leader announces the strategy (3.17), then the follower reaction can be
easily determined, and the sufficient conditions for the existence of the
hybrid slow LF team problem can be derived. These conditions are given in
the following proposition:

Proposition 3.2: If there exist appropriate dimensional mactrix functions

~

le(.), Ell(')’ E (-, D 1s(*)» P (+) and T (), so that the followiag holds:
Ryy + LRy L - Byyly N @Yy - DT L 4 D0yl + LRy -y
Ry #L'Ry L = QL) T (Qgy - L'Qpy +L'RypMy # LRy M =Ty 3y = Q51
-L'Bl'.lus':'BiZ\ls -L'B]'.Ns+Dlys) = ‘25

h
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where Mg and Ns satisfy the following matrix equations
= Iy -0 ~ - oy i i Y |
Icls +Mst +Q21 QZZMZS +Q22( M].s +LMZS M) +( Mls + Ps)Q22

-~ ~ -‘- L d -~ - R -~' — . -~ ~ ~
* (Ps Mis)RZI( Mls+LMZs M) (Ps Mls)(Qé3M2s)+(Ps Mis)Bil'*Ail)Ms

had ~ . ~. A -
+(C11+(Ps Mls)Bl)N.s 0 (3.18)
. —-— ~ -' ~ -~ ~ - A~ - -~ —' ~ ~
Ns +Nst +TsQ22 +TsR21( Mls +LMZs M) Ts 23M25 +TsBllMs
~ 2 4' -
+ (TsBl+All)Ns 0 (3.19)
and _ R " R
Fg =411 "Bty ~ ByoMys
then

~

:-~ ~' - ~' —— -~ -
uls Mlsxs'*'Ps(xs xs)"“Ts(wls wls) LuZS wxs

trs ™ Mys¥g
are the equilibrium LF hybrid slow team solutionm.

I1f the sufficient conditions for existence of the solutions of
both the hybrid slow and fast LF team subgames are satisfied, then the
leader can form the following reduced order strategy and apply it to the

full order system.

a 1 e ' ey e 1 -w ' e -
Ulap TUpc FPg(X - X)) #Pr(2 -2 = 2p) +T (W) ~w) ) +Tr(Wy =Wy =Wy g)

where Uie (the ccmposite control which is defined in section 3.%), Ps, Pi’

T, 3 2 w w z. and w, . are obtained from the solutions of the
TE’ X1 250 Wigr Wago Zf 2f °© o o

reduced order games. Similarly, the follower will apply u,ap =Ua. s

full order system,
Under conditions which are equivalent o the cnes given in che
Theorem, the low order strategies Ulap and uﬁnp ars Wwell-posed in the sense

zhat they tend to the optimal strategies and costs respectively, in the
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limit as » tends to zero. The infinite horizom version of the problem can

be easily produced by setting the derivative term in equatiomns (3.14),
(3.15), (3.18) and (3.19) equal to zero and adding the proper stabilizability
conditions. It is clear that our procedure can be readily applied to
infinite horizon games. Before we conclude this chapter, we present an
example which shows that the sufficient conditions for the existence of

the team LF slow solution may be satisfied, while these conditions are not

satisfied for the full order problem.

Example: Let the system be described by

-x 4+ 2z

W
]

HZ = =z + —ér u, + 1 u,.

V2 1 jE 2

Let
on
1 2 2 2 2
I =E£ (x“+2 +u; +uy)de
1. 2,,.2,
J, = 3 / (x +22 +2ul )dt

o}

Assume player one to be the leader, while player two to be the follower.

Full Order Problem: The team solution is

L - L (0.318x +0.414z ] = -0.225x -0.293z
2
1

el

[0.318x +0.414z ] = -0.225x -0.293z

vy B -
U,
-

~

v2

and the leader's cost = % v'(0)Sv(0) where y==[:] and
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Let the leader choose his strategy to be of the form
u (8) = -0.225x(¢e) + Pl(x(t)-i (£)) -0.293z +P2(z-'z' (£))

where (x ,z ) is the optimal trajectory resulting from applying Gi(t) and

Ez(t).

I1f the leader announces the above strategy, then the optimal reaction of the
follower will be unique and a function of Pl and PZ‘ It can be checked that
there exist no 2 and P2 by which the leader can force the follower to play
with him as a team. Clearly, if we use our procedure, which depends on pre-
serving the information structure of the full order problem, to solve the
example, we will find that the leader cannot enforce his team solution by
adopting the aforementioned affine strategies. Instead, let us solve the

pure slow (no information about the fast game is used) problem.

The Slow Problem

. 1
= - B +
k x, + s (uls uZS)
J ifm x2+1 502 +1.5u% +u )dt
ls 2 ° 1s 2s 1s 2
1 2 2 2
=3 cf) (‘cs + 3uls + 2u25-+ 2ulsu28)dt.
Team Solution:
u, = - 5 a. = -0.15%x_.
Uy 0.139xs, Usg 0.15 X,
Assume the leader chooses
uyg = -0.139xs + u(xs—xs).
3+ solving the problem, we can see that if the leader chooses 2= -3, the
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sufficient conditions for existence of a team leader-follower for the slow
problem is satisfied. So without preserving the inform;tion structure, the
sufficient conditions of the reduced order problem may not correspond to
those of the full order problem. a
The procedure given in this chapter which is based on preservation

of information structure of the full order problemwhile solving the reduced
order ones can be applied in general to all linear quadratic singularly
perturbed games. So, we expect a well-posed solution of the usual reduced

order problem if the optimal strategies do not depend on the information

structure as it is the case for control problems and zero-sum games.
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PART TWO -

NASH AND LEADER-FOLLOWER STRATEGIES WITH
DECISION-DEPENDENT INFORMATION STRUCTURE
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CHAPTER &
NASH STRATEGIES WITH DECISION-DEPENDENT INFORMATION

STRUCTURE AND A NEW MODEL OF DUOPOLY

4.1, Introduction

In this chapter we consider Nash games with a decision-dependent
information structure (DDIS) whereby one player formulates his strategy as a
function of the decision of the other. We compare properties of the solutions
to those involving a normal information structure (NIS) whereby the strategy
of each player is not a function of the decision of the other., In Section
4.2, we discuss the equilibrium Nash solution with two types of information
structure, we compare the Stackelberg solution concept with the Nash solution
with DDIS, and we give two examples which clarify the basic ideas in this
section. In the first part of Section 4.3, we consider a general static market
model of duopoly and derive the necessary conditions for the supply adjustment
controls of both firms to be optimal in the Nash sense with the two types of
information structure. In the second part of Section 4.3, we analyze in detail
the case of linear market demand relation and quadratic cost function, we obtain
analyric solutions for the optimal strategies of the two firms, we show that
the profit of the firm with DDIS is more than its corresponding profit with NIS,
and we discuss the general properties in terms of marginal cost, marginal
revenue, price, and the consumer's welfare. 1In Section 4.4, we generalize the
concept of DDIS to multistage dynamic games, we solve a two-stage dynamic
duopoly with a linear demand and quadratic cost function, and we give sufiicient
conditions for existence of the Nash equilibrium solution with DDIS for the

discrece linear quadratic problem.
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4.2. Nash Solution

Let Ii and rz be the spaces of admissible strategies for players one

and two (P1 and Pz) respectively, with N € I‘l and v,€T,. The strategies y, are

272 i
mappings from the information space to the control action space of each player.

The nature of the information structure should be specified in each situation.
Let Jl(yl,yz) and JZ(Yl,Yz) be the corresponding payoff functions of the two

plavers. A Nash equilibrium assumes. that if one player maximizes on the basis
that the other player's strategy is known and it is at equilibrium, then this

player will find his optimal strategy at equilibrium,

Definition : The rational reaction set of player i to permissible strategies

of player j, Dl(yj) is

i * - - * . -
D (yj) {yie T, such that Ji(Yi,Yj) > Ji((i,r ) for all

i i

€, and each v, !}.
Yi Li YJ}
If the reaction strategy of plaver i agaimst Yj is unique, then we can

. i,. . = f (-
describe the reaction set D ((j) by fi({j) where s Li((j)-

-~
r

2.1. YNormal vs. Decision-Dependent Information Structure (NIS vs, DDIS)

In a Nash game both plavers are required to declare their strategies
simultaneouslyv before the start of the game, but the sequence of their action
Jdepends on further rules and assumptions of the game. 1If both plavers appiv
their strategies simultaneously, the decision of anv of the plavers will not
te available to the other, and as 3 result no plaver can formulate his

stratagv as a function of the other plaver's decision, anc their role in the

zame is totallv svmmetric. In such a case we sav that the information structure
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of the game is normal. If the two players1 apply their strategies sequentially,

let us assume that P2 plays first, Pl has access to the decision of P,, and

2

Pl has a choice of using this information in his strategy. Thus P. may declare

1
a strategy which is a function of P,'s decision, but the declarations are
simultaneous. The difference between normal and decision-dependent information
structure in Nash games will be clarified in the following example.

Example 4.1:Let Jl(ul,uz) and Jz(ul,uz) be the pavoff functions of Pl and Pz

respectively, where

2 2
Jl(ul,uz) -y - 2u2 - 3u1

2
Jz(ul,uz) = -3u2- lOuz- Zuluz.

Under the normal information structure assumption, no player can formulate his
strategy as a function of the decision of the other player. So each plaver
will maximize his objective function on the basis that the strategy of the

other player is fixed, vielding

Uy = -3/2 and Upy = - 7/6
where (ulv,u7“) constitutes the Nash equilibrium solution with a normal infor-
mation structure. The Nash values of the pavoff functions are JlV:=-O'472’
J2N=+4.08/.

2 will be available to Pl

when ne applies his strategy, Pl can announce a strategy which is a function

If P, will play first, and the value of u

A two-plaver Nash game with decision-dependent information structure
can be zZeneralized to N-plaver as follows: Let us arrange the N plavers in such

a way as P| makes the Iirst move, P, the second move,..., and Py the last move.
So each playver i can formulate his stratezy as a Ifunction of P,,%-~,...,2. ,

. . . e - -~ -~
decisions for all i=2,...,N.
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of u,. For simplicity, let this function be restricted to be linear in Uy,
. i.e., ul=bu2.
The Nash equilibrium solution with DDIS can be determined as follows:
Pl maximizes Jl on the assumption that u, is fixed, and we have
L N
1D 2
?, maximizes Jz on the assumption that u1=-bu2, and the optimal u, is
Uy, = =2
- 2D 3+2b °
Ir can pe seen that if there exists a real number b such that
3
busp ¥ 2
‘ tnen thiie Nash solution with DDIS exists. Substituting for Usp in the above
|
! etuations, and solving for b, we find that b=2.25 is the unique solution.
\ n .
: Thus, there is a unique equilibrium Nash solution with DDIS, which is
2.2 ~0.667).
( SUZD’ 667)
ll The —ralues of the pavoff functions which correspond to this equilibrium

soLution are J D' 1.2602 and J

1 D='+3.33&. P. has beneiited from his

2 1

“ZI: is zreater than the corresponding pavoff function under NIS. P, suffers

i lizzle but the collective pavorlf, J1+J° is improved.
-
-.2. .. YashSolutican with 2DIS vs, Stackelberz Solucion

The Ztacxelberg solution assumes that the two plavers have iiffarant

- l=zs. Thevre 133 leader anc therz is 3 Jollower. The leader annouaces 1is
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strategy firstz and as a result he can impose a solution which is favorable to
‘, himself. It is the order of announcing, not the order of action, that distin-
guishes the leader from the follower.
As was pointed out, in the Nash solution with DDIS, both players
I. announce their strategies simultaneously, where Pl announces a strategy which

is a function of P,'s decision, i.e., ul='gl(u2). If P1 chooses 8 to be the

2

same as fl (see the previous Definition), then Pl is choosing a strategy which is the

- same as his reaction function. It is not difficult to see that the best strategy

foerin the Nash sense will be equivalent to the Stackelberg equilibriumsolution
with P2 as the leader and Pl as the follower, and with NIS, that is, the leader
plays first. Such a choice of g, does not worsen P2's payoff function (it may
improve it) since the payoff function of the leader in the Stackelberg solution
is at least as good as (and possibly better than) that of the corresponding
Nash solution with NIS (see [5] ). But the value of Pl's payoff function may be
worse. 1If the follower applies his strategy first, then the leader can formulate
a strategy which is a function of the follower's decision. This enhances the
leader's opportunity te enforce a team solution. (For a discussion of the
Stackelberg team solution, see [26]).

Determination of the Nash solution with DDIS and thus the form of
the mapping 8, which achieves the best Jl, is not an easv problem and it needs
further investigation. But it is desirable for Pl to make use of the informa-
tion available to him (the strategv of PZ) by choosing an appropriate function
2 which increases his pavoff relative to the corresponding Nash pavof: with
NIS. Clearly, Pl can alwayvs disregard the information available to him and

choose & robust strategy (a strategy which is insensitive to anv decision made

bv the other plaver). The solution in this case will be the Nash solution wita :iIS.

)
The leader can announce his stratezv first either due to rhe lack of
? information of the other plaver about the leader's performance index or due to
differences in size and strength.

L
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}n A simple example which {llustrates some of the basic properties of )
the solution is presented below.

Example 4.2: The payoff functions J, and J,, defined on R1>(Rl, are assumed

1 2’
‘ll to be convex and have contour lines as shown in Figure 4.1. The reaction

curves Dl(uz) and Dz(ul) are loci of tangent points between the contour lines and

the lines of constant ul and Uy respectively. Point N, whose coordinates are

!! (ulN’uZN) is the Nash equilibrium solution with normal information structure.
Point S is the Stackelberg solution with P2 as a leader and P1 as a follower

QE under NIS. (gl(uZD),uZD) is the resulting Nash equilibrium solution, with
Pl's strategy depending on Pz's decision. This equilibrium point is evaluated
as follows: Pl finds his reaction set Dl(uz). P2 maximizes Jz(ul,uz) taking

- the declared strategy of P., which is u, =g (u,), into account and finds u

a 1 1 °1°72 2D

as the optimal solution. If Dl(uZD)srgl(uZD), as it is in Figure 4.1, then the

Nash solution with DDIS structure exists.

4.3. Market Model of Duopoly

Let there be two firms which have access to the same potential

i buvers. The two firms share the production of a commodityv (or two perfect

substitute commodities) with the quantity of production of each firm as its

strategic variable. The market price is determined by a special demand mechanism.
— in this demand mechanism, the market is cleared of whatever quantities the firms ofZer.
- The sales are assumed to be made on one occasion; thus, actions for a sequence

of periods ars ruled out. The Nash equilibrium solution assumes that if cne

duopolis:nﬁxiﬁizes on the basis that the other ducpolist's cutput is known and

itis at equiiibrium, then this duopolist will produce the equilibrium sutput.

L U
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Ul:g(Uz)
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Tloure 4.1, A zame with the two tvpes of Nash solution and with
Stackelberg soluation.
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4.3.1. General Model

Let qy denote the output rate produced by firm i and Q denote
the total marketed quantity. Hence.
Q = ql + qz'
Let us suppose that the aggregate demand can be represented by a continuous

function as follows:

p = £(Q)

such that the price p and the quantity Q vary inversely. It is reasomable to

assume that each firm wishes to maximize its net profit Ji, where
Jg = pqy -h,(qy)

where hi(qi) is what it costs firm i to produce at a rate 45 and it is assumed

to be an increasing function of qy-

4.3.1.1. Nash Equilibrium Solution with NIS

With NIS no firm can formulate its strategy as a function of the
other firm's decision. Nash theory postulates that each firm chooses a rate
of sale that maximizes its net revenue given the competitor's rate of sale.
The aquilibrium Nash solution with NIS can be found by solving the two
equations

33, (q,,9,) . 3h,(g.)
S 3£(Q) i1
3 = B+ 559 -5

i 1

=0 tor i=1,2.

3 . . e . . .

We require that q, > 0, so the necessary conditions should »e writt=an

3J,(a,,3,)
i "1°"2

as an inequality as follows: < 0. But since this is not the main

5

9y

issue of the paper, we assume that the sclution obtained is nonnezative, {or
simplicity.
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It is clear that firm 1 should choose its rate of sale such that its
marginal cost (MC) equals its marginal revenue (MR). In addition, the
price (p) is higher than the marginal cost (MC) (sinmce égégl?fO), a situation

which is different from perfect competition where price (p) equals marginal

cost (MC).

4,3.1.2. Nash Equilibrium Solution with DDIS

Whereas the two firms announce their strategies simultaneously as with
NIS, the amount supplied by firm two will be known when firm one supplles its
commodity, and firm one is going to use this information structure in its declared
strategy. Such a type of information structure can be realized if firm one has
spies or agents, who inform their management of the decisions of firm two, or if
firm two has to apply its strategy first (e.g., the plant of firm two may be at a
distance which is farther from the market than that of firm one, so to compensace
for the effect of transportation delay, firm two mayhave a faster production
facility). Due to the information structure of the game, the strategv space of
firm two can be described as q,=a,, where aZE R+; the strategy space of firm one
can be described by ql==gl(q2), where the function g is chosen by firm one.

The procedure te find the Nash equilibrium solutionm with DDIS is
as follows:
(1) Firm one will maximize its net profit on the assumption that 4, =3,, which

can be put mathematically as

3J,(a1,9,) i 3h, (q
3q, 30 1 B

Solving tfor 4 as a function of a, in the above esquation, firm one obtains
izs reaction Zunction fl(-) and q, = fl(qz)'

(2) Firm two will maximize its net profit on the assumption that 3. = ?.(qq)
. .

and find d;p @S the optimal output rate as follows
i~

E() 39 "hylay)
~- q, - = 0.

() = L
) == 4, % e,
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-

In this case 3%;)‘-#1 as it is for NIS, but

2
aqz 3q2
28, (q,)
It can be seen that depending on the value of'——ga—-— at the optimal
2

strategy, we may have the marginal cost (MC) either higher, equal, or lower

.than the price (p).

(3) 1f gl(qZD)- fl(qZD), then the Nash solution with DDIS exists.

4.3.2. A Linear Model case

In this section, we will seek analvtic solutions for the Nash
game with NIS and DDIS. This will help us understand the difference between
the two solution concepts and find thé extra profit which firm one mav have
obtained due to its extra information.

I/
Let Q and p satisfy an inverse linear ' demand relation gliven as

= +
0 do d.p

1

where do is a positive constant, while d, is a negative constant. Let the

1

cost function hi(q;) be of the form
h,(q,) = L c,q, + k
i1 2 1% i

where ki and ¢, are positive constants.

i

%.3.2.1. Nash Equilibrium Solution with NIS

Firm i maximizes J, over 9y under the constraint that qj iz ziven.
-

where 1,3=1,2 and i#j. The reaction curve of firm i can be found to be
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Solving the above equations for i=1,2 simultaneously, we find that the Nash

equilibrium solution with NIS is

- do - cﬁdo
1N 2
3- chdl - 2c:20:ll + clczdl
o do - cﬁ;do
2N 2°
3- 2c1d1 - 2c2d1 + clc2dl

Thus (qlN’QZN) is a feasible solution since the qy are clearly non-negative.

4.3.2.2. Nash Equilibrium Solution with DDIS

L

For simplicity, let us assume that the space of admissible strategies

of firm one is linear in the decisions of firm two, 1i.e., qltqu, where bER

q, +q,-d
Firm one will maximize Jl on the basis that q2 is fixed, and p= L d2 °,
1
and it will find 9p to be
qyp = o 1 q
- 2 - :
1D 2 cldl 2 cldl 2D
q1+q7-d°
Firm two will maximize J, on the basis that ql=-bq2 and p= d- and
- )
it obtains
d
q -—-—-o_——
2+2b-
2D 2b czdl
which is clearly in the strategy space of firm two. A sufficient condition
for (qlD,qu) to be an equilibrium Nash pair with DDIS is that
bq = do - L q
" Y Y - . .
2D “ Cldl - Cldl 2D
Substituting for q.,. in the above equation and solving for b, we rfind thart
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. (1 czdl)
b= -c,.d
11
Hence, (qlD *45p ) constitutes a unique equilibrium Nash pair with DDIS, where
\ . ( 1- czdl) .
1D —cld1 2D
- ldodl
- 920

2
2~ 2c1dl - 2<:2d:L + clczr:l1

It can be easily shown that (qlD’qZD) is a feasible solution (i.e., the output
rate of each of the firms is non-negative).
The question which remains to be answered is whether firm one
benefits from the additional information it has available (the output rate of
ﬁ firm two). This question will be answered in the following proposition.

Proposition 4.1: In a market duopoly with a linear DDIS, linear demand relation

and quadratic cost functions, the profit of the firm possessing the additional
. decision information is increased compared to that in the absence of information.

Furthermore, the profit of the other firm is decreased compared to its profit

in NIS.
' Proof: The net profit of firm omne, Jl, is as follows
l 2
Jp T PAp 7 619 7Ky
_ Substituting for p bv ( ) becomes
P e te S N S L .
1 %1\ T 24 d d 1

Th2 optimal strategy of Zirm one in both NIS and DDIS should satis?iw &

(ad
w

r2action curve 2quation, nanmelw,
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Hence, J, on the reaction curve of firm one, J is as follows

1 1

3 .2 2-441\ .
109 -2d; 1

31 is a strictly increasing function in q- So it is sufficient to show that

%p> 9y to prove the first part of the proposition. But this is the case since

do B cZdldo

2
2 - 2cldl - Zczdl + clczdl

Ip

which is obviously greater than 9y For firm 2, the profit under NIS

J.. = q N<2 “2% ) -k, .
v T M\ m2a, ) T

The profit under DDIS (JZD) is

Jon = ﬁjﬂ% - k,.

q
2D 20\2d1 2

(JZN) is

-£ J2D2J2N’ then we have
—c.d d° {l-c d, \2
—LL0 (2, )d“' 1 l) 2 0
a \ a+l

where

2
= 2= -2 -
a 2 2c1dl -czdl + C1c2d1'

After some manipulation, we find that

) a -
2+ Cldl + .czdl clc d

[andi A5

which i{s a contradiction, so J, 2y J7D' ™
Consequentlv, firm two should not let its outnut rate of produc:tion be known

to firm one, because it will end up suffering.
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Before concluding this section, several important remarks should be
mentioned.

R4.1:In the special case when the two firms have the same cost function
(cltcz-c), the two firms will have the same output rate, and as a
result, the same net profit of Nash game with NIS as the solution concept.
But it can be shown that the net profit of firm omne is more than that of
firm two under DDIS.

R4.2: If we compare the total output of the two firms under NIS and DDIS, we

find that
@ = q g ) 2d° - cldldo - c2dldo
N 1N 2N 2
3- chdl - 2c2d1 + clczdl
and
do - c?_cl]_do - cldldo

Q= ¢q +q
D 1D 2D 2
2- chdl - 2c2d1 + clczdl

It can be easily checked that the total output rate of the two firms under
DDIS will be less than the total output rate under NIS, This implies that the
welfare5 of the consumers is worse off under DDIS conditions, since the
firms sell less quantity at higher prices in these conditions.

R4.3: The reaction curve of firm i under NIS can be expressed as follows

-1
- g =1.2
pN(q]N’qZN) ¢y T Y4y for i=1,2.

Under DDIS the reaction curve of firms one and two can be expressed,

respectively, as follows

35 e . . - . . .
An appropriate definition of consumers social wel;are W(Q) is the
(
N
consumer's surplus, which is mathematicallv given as W(Qq)- ; (?(s)—?w‘

whera QV and ?V are the equilibrium values of quantitv and pr.ce, respectivelw.
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-1

Ppla;ps9yp) ~¢91p = EI 4p for firm onme,

and

-1
Pplaip9gp) = Spp = ) (1*9)9yp  for Hirm two,
where 1-c.d
271
b = —d |

“1%
From the above equations, it is seen that the price (p) is higher
than the marginal cost for both firms and for the two kinds of informa-
tion structures. But for each firm the difference between the price (p)
and the marginal cost (MC) is higher for the solution with DDIS than for
NIS. Hence, Nash solutions with NIS and with DDIS do not satisfy group
rationality.6 But the Nash solution with NIS 1is closer to the 'perféct
competition'" solution than that with DDIS since the difference between price

(p) and marginal cost (MC) is less for each firm. -

:In the linear duopoly model we examined, we assumed the strategies of

firm one to be of the form ql==bq2. Without this assumption the DDIS Nash
condition vields a general class of nonunique nonlinear solutions ql==g(q2),
which have values of (bqZD) and slopes equal to (b) at 9= q,p- Consequently,
we will have a class of equilibrium Nash solutions which leads to the same
pavoff functions but with different sensitivity properties.

If the strategy space of firm one is assumed to be of the form ql=-a1-+blq2,

where a, and bleR; while keeping the strategy space of firm two unchanged,

the reaction curve of firm one will stay as before, i.e.

ust

To satisfv group rationality, which includes the buvers, the price
equal the marginal cost (see [34]).

i o Am. o e a4 A e e — e e e m e ma e
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do 1

%Gp " 52 i Qon -
1p 2 cldl 2 cld1 2D

But the reaction curve of firm two will be

do.'al

99 = -
2D 2+ 2b1 czdl

It can be seen that depending on the values of a, and bl, we have

1
different equilibrium Nash solutions, hence we have an uncountably

infinite number of Nash solutions with DDIS (for a more detailed discussion
of a similar situation, the reader is referred to'[24]). These
equilibrium Nash strategies are not implementable since neither firm knows
which Nash strategies the other firm will apply.

The price elasticity of demand at thé Nash equilibrium point with

NIS(nN) is

2
o l1- cldl - czdl + clczdl
N 2- cldl - B'Zdl

The price elasticity'of demand at the Uash equilib}ium point with

DDIS is

2
1l- cldl - czdl + clczdl

1- cldl - czdl

HD’

It can be seen that n_> nN, and the market is always price elastic (an

D
increase (decrease) ir price leads to a reduction (increase) in the amount
of money spent on the commodity) under the conditionms of DDIS but under
NIS conditions it will be price elastic if and only if d%clc2> 1.

The duopoly model is necessarily simplistic to aveid technical
complications. However, it serves to clarifv certain aspecfé of the

nature of duopolist competition. Furthermore, this motivates examina-

tion of various forms of strategy spaces from a game theoretic viewpoint.
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4.4. Multistage Dynamic Problem

In this section we will guneralize the basic idea presented
in Section 4.2 to multistage dynamic games. Let the evolution of the system be

described by

xk+l = hk(}{k,ulk,uzk,k)

m
where xke Xnk is the state of the game at stage k, uikeU ik is the control of

Pi at stage k for i=1,2., The function hk is continuously differentiable in

. f
Koo Uypr Ugy Let the objective function o Pi be

N-1
1 1
Iy uysuy) = Spleg) + LS, (rsupyauyy)

where
..-,Ll )

IN-1

. i . .
and the function Sk is continuously differentiable in X oUry, Uy e

4 = (uio’ .

Let us assume that at the start of each stage of the game, P2 makes
the first move and Pl makes the second move. So the information which may be
(but not necessarily) available to player i, at stage k, let us call it ni(k),

is

nz(k) "{xo,xl,. . -,xk; Uzo, e ’qu_l)ulo’ cee ’ulk_l}

-l . 3
R R L TYRLLIL R PL Y FERPI R g

If the information available to the players is memorvless (nz(k)==xk and

n, (k) =(x, then P = = 5 X
1 ) (KK’UZk)’ en P, and P2 have to choose Uy Ylk(xk’u2k) and Uy (:k(Ak)
respectively, as their optimal strategies in the Nash sense.

As in the static case, the general solution is extremely diificult

to obtain. But i we assume a certain strategv form for Pl and P_; solve a

control optimization problem for each plaver on the assumption that the strategw
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form of the other player is given, and if the resulting optimal strategies have

the same form as our assumed ones, then we say thaﬁ sucﬂ‘a strategy pair is

a Nash equilibrium solution with decision-dependent information structure. If

the resulting optimal strategies do not have the same form as our assumed ones,

then we try to find sufficient conditions for the equality of the two forms, :
and these conditions will be sufficient for the existence of a Nash equilibrium
solution with the assumed strategy forms. Before we give the sufficient

conditions for existence of a Nash solution with DDIS, we will look into the

problem of a two-stage dynamic duopoly.

4.4.1. Two-Stage Dynamic Duopoly

Assume that the two duopolis*s face a demand relation of the form

Qt = do + dlpl + dzp

t+l
where
Qt = total quantity demanded in period t
Pc = price in period t
and d >0, d, <0, and 4, > 0.
o 1 2

Such a demand relation is more realistic than the static one since the quantity
demanded by the consumers in period t depends not only on current, but also on

the buver's view of future prices, (see {37]), since if the future price
3 P ’

4

15 going to be high, the consumers will have high current demand. Let us assurme

-1+ =wo firms produce the same commodity (or two perfect substitute commodities),

(1) _(2)

- snare the same market. Let 9, "4, be the quantities supplied by

in: =~wo respectively, in period t, so the demand equation will be

1 (2
NESIRNED

=d +d
Tt o]

P
1Pt+'d2'c+l‘

etk (rfl)) is

-
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(1) _ (1) (@
Te Pedy " —Cy

(1)

where C( ) is the cost of producing P which is assumed to be quadratic

qéi) (e D 21 D2D)

2 The present value of the total profit of each

firm is

1
(Pv)i - tzo Bt (i)

where B= discount factor. We assume 8=1. Thus the payoff
function of firm i can be expressed as

(i)q2(i)

1
FV, = Ip P :

1.
0 t't 2

4.4.1.1. Cournot-Nash Solution with Normal Information Structure

If the information structure of both firms is normal, then at the
start of each stage, both firms supply the market with their product simul-
taneously, and as a result no one firm can declare a strategy which is a

function of the decision of the other one.

Using dynamic programming and the definition of Nash solution we

find that
o

SIS 2 _ _1
1y I 9N (2

At stage 1:

At stage 0: The reaction curve for firm one is

(2) (1) 2
I C DI N 3 4 4
) 2 (1 ) (1) (1) (1)
1- d2 1 o 1 dzcO cl
and the reaction curve of firm two is
(L) (2),2
@ __%% L | T 9
% 1-d%e 2 (D) 7 ol 2 (D ()
21 s 270 1
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Solving the above equations simultaneously, we have

(2) (2) (2) (2)_ (l) 2 (1) (2) (2) (2)
S I A I e S M M A A
ON 2 (1) (1) (2) (2) (l) ¢ (2) (2)
2co c1 co c1 -co cl -co c1
2 — (l) (L (1) (1) _ (2) (l) 2 (2) (l
. ) (1)
<2 . o C1 TR I-djes ey e A R ey }
oN 2 (l) (1) (2) (2)_ (1) (1) (2) (2) :
4% 1 % & 1 "% &

(1) (1) (2) (2

qéé)’qié)’q(§)9 and q( )

)) be a feasible Nash solution, we should have
nonnegative. Sufficient conditions for the

feasibility of the equilibrium Nash solution can be easily found.

4,4.1,2. Nash Solution with DDIS

If the information structure of firm one {s decision-dependent, then
at the start of each stage, firm two supplies the market with its product
before firm one, and as a result firm one may declare a strategy which is a

function of the decision of firm two.

1) _ (2)
9p ) ’ 91p

At stage 1:

At stage 1 the decision of any firm does not affect the profit of the other
firm at this stage, so it is meaningless to have a strategy which depends on
the current decision of the other firm, but we can have a strategy which
depends on the past decisions of the other firm.

At stage 0: For anv strategv form of firm two, firm one will respond by its

reaction curve

(2) (l) 2

. SN 4% oo |
o (l) (l) 2 o (L) (L .2
l-cley 7y l-c ey dy
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Let us assume that the space of admissible strategies of firm one at this
stage is linear in the current decision of firm two. Hence firm ome will
declare a strategy of the form

qc(,l) = bqéz) .

The optimal response of firm two will be

2 (2)
(2) P (- d2 l +d (1+b))+d°(1+b)
%p (2) 2 (2) :
(l+b) o 2 1

For an equilibrium Nash solution with DDIS to exist, firm one should have

(2) a q(2) 4- c{l)di
bq = P
(1) (1) 2 _M M2
€1 2 o 1 72
(2)

If we substitute for q in the above equation and solve for b, we find that b

should satisfy the following algebraic equation

Ab2 +Bb+C=0
where
dm e DD p D D2rp (D2
C = _podg 52)*-p°d§c{1) 52)c£2)d2p d - il) 2)4-d2d (2) {2)

Consequentlyv, we may have a unique solution, two solutions, or no solution
which satisfy the Nash rationale with DDIS. A compariscn between the payoff
functions under NIS and DDIS can be made for firm one, but due to manipulatiomal

difficulties it will not be pursued here.
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It is our conjecture that if a unique equilibrium Nash solution with
DDIS exisfs, then in a two-stage dynamic duopoly, with linear DDIS, linear
demand relation and quadratic cost functions, the profit of tﬁe firm possessing
the additional decision information will be increased compared to that in the
absence of information. We failed to find a counterexample to our guess and
the following numerical example is illustrative.
Example 4.3:Let the market demand relation be

), (2)
q +qt

t = 8- 2Pt Py P " 2

‘o
Let us assume that the two firms have identical cost functioms with

cél) = céz) = 1; c{l) = ciz) = 3,

Under NIS, the Nash output rate value is

W _ (@
oN =y T4

2
At stage 1: qiﬁ) = q{N) = 2,

At stage 0: ¢

The resulting Nash profit of each firm (PVN) is

(PVN)I = (PVN)2 =6,

Under DDIS, with firm one declaring a decision-dependent strategy, the Nash

output rate value is

1 2 2
At stage O: qég) = 12.057; gD) =3 qéD).
2
At stage 1: qié) - qig); qiD) - 6.032.

The resulting Nash profit of each firm (PVD)i is

(PVD)l = 38.34 and (PVD)2 = 5.999.

Clearly, the profit of firm one under DDIS is more than its corresponding

orofit under NIS. a
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In the next section discrete linear Nash game with DDIS 1s considered
The sufficient condition for existence of a solution, on the basis that the

space of admissible strategies of both players is linear, will be given.

4.4.2. Discrete LQ Nash Gape

Let us consider the discrete linear system

Kerl T A% T Bkt Babak
where
m,

xke R k, uikE R ik

and . is the countrol of player i at stage k, for i=l,2.

The objective function of Pi is

I 1Nl (1) (1)
i 2 .Qi * *-2 k= o(kulkxk ulkRik i-quRJk Jk)
where
(1) (i)
Rig > 05 Ry 5 Qpy 20

If P, makes the first move at every stage k, and the information available to

both plavers is memoryless, then nz(k)==:<k and nl(a)= (xk,qu). Let the
strategies of Pl and P2 be of the form
= +
- U TRt toRavak
Uy = Fkxk.

Pl will assume u,, = Fkxk’ solve a minimization problem, and find the optimal
up, as

(1) ' -1

= - + ? L)
i T TR FBLTL ke B B et

Jhere P sacisiies
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-1

= (1) ?
P [0 AP ity AP1 1Bk ok +B P B Brlr et oD

and

_— )
Qe = Uit FeRor Bt

P2 will assume ulk"lexki-LZkuZK’ and solve the following minimization problem:
minimize J2 such that
= (A + By Ly )%+ (B + By Lo U
where
l ' l ~ (2) [] L ]
= = = +
I = 2 5wt 2 o kukak+u7k 2k Y2 P2t Ao
and
Q. =q. +L &Y L
2k 2k 1k 1k "1k
=(2) _ o(2) Lo (D)
Ry = By vLlopRyp Lok

(2
M= LRy Ly

The optimal solution is

e “1,=0 .
Yok ‘(R e *BuPa a1 By (BoPa ierie T Y %

and P2,k satistfies

. e - N (), . .
P, = i, i-(a'p ) 3 Fgpe
2 APy g i (3 Pg e By P L) Ry #8525 B g 2 ey ]

-9

P =Q...
2,n " Qay

c (2) -1 -1
If P, chooses F =-(R +3! ) T(B,, P,
b k 21 2

1 -
B W then sutficient
°k 2 k+1. 7‘( kT2, k+FLR [1.:)’ - >

conditions for existence of a Nash equilibrium solution with DDIS can be

stated in the following proposition.

i . A it — NN . a4 : _‘-,A,kq.._-J
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Proposition 4.2: If there exists an (mlkxn) matrix le and an (mlkmeR) matrix

L2k such that

(2) -1 (l) -1
Lctox (Ry ByiPo cr1 ) = B P k1B

1k ~2k (B

' !
2k 2,k+1 Zk) ik Pl,k+lAk)

where P Py K+ Satisfies equations (4.1), (4.2) respectively, then
’

1,k+l’

U T Lik®e F EakYak

(2) +B' P i )-l

-(Ry 2kF2, k+182x

Yok T

BorP2, w1k T M) %

constitute a Nash equilibrium solutionm with DDIS.
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CHAPTER 5

INFORMATION STRUCTURE,OPTIMAL COORDINATION,AND A GAME MODEL OF DUOPOLY

5.1. Introduction

In this chapter we discuss the idea of usirg DDIS in inducing the
Nash followers in a LF game to behave as members of a team with the leader's
objective function as the objective of the team. We introduce a static market
model of duopoly where the government interferes in this market. We show that
by incorporating the decisions of the Nash duopolists in its strategy, the
goverment can always succeed in inducing them to cooperate. In Section 5.2, the
incentive problem is formulated as an (n+l)-person LF game with one leader and n
Nash followers. The leader's problem is to force the followers to act in such
a way that even though each one wants to optimize his objective functiom, thev
also optimize the objective function of the leader. In Section 5.3, the objec-
tive function of the leader is taken to be a convex combination of the objectives
of the followers and 2 quadratic cost function on the strategy of the leader.
The incentive mechanisn cf the organization is formulated bv incorporating the
decisions of the followers in the strategy of the leader. Bv emploving such
forms of strategies, the leader can force the followers to behave as members of
a team, with their composite objective function contained in the objective func-
tion of the team. 1In the first part of Section 5.4, we consider a general static
market model of duopclv wnere the government interfers in the markst through
adjusting the eiffective income of the potential buvers of the commoditw. We show
that bv adonting the incentive mechanism described im Section 3.2, the zovernment
can entforce the two competinz Zirms to cooperate and achieve the Par=to-ontinzl
soluticon. TIna the second part of Section 3.4, we analvze in detail the case oI a

linear market demand relaticn and a quadratic cost function. 've obtain anal-tic

- - PO S GOy . P A

T G Y S P S - —




T NuBBte e Buae-h s . -uas “hrma—indes ha- B G R i et Suten _Asus BDanc Ryt -late Bneth i sesnae Mfne Jors Moot eat Mt hewt atn dum gt ) T ——

D T S T T R ST e te e T e JE e

83

I’ solutions for the optimal strategies of the firms and the government, where

?} the optiaml strategy of each firm maximizes in the Nash sense its own payoff
function, and also maximizes the governmment's payoff function, and the optimal
strategy of the government maximizes its own objective fumction (which reflects
the welfare of the two firms) and forces cooperation between the two firms.

We show that in the limit as the unit cost of applying government control tends
to infinity, the enforced cooperative optimal controls and profits tends to the
voluntary cooperative ones. We discuss the general properties in terms of

marginal cost, price, and the consumers' welfare in the context of this problem.

5.2, Formulation of the Coordination Problem

] A multi-person decision problem is a team decision problem if the
decision makers (DM's) share a common goal but they have different information
B structures. A team decisicn problem arises in an organization in which the
I. objective is to maximize the payoff function of the leader (central manager).
If the followers (local managers) share the same objective and they behave in
. such a way as to maximize the leader's payoff function, then the model of such
14 an organization is a team model.
In general, the followers do not share the same objective with the
leader but each has his own objective function which he tries to maximize. In
such a case the decision problem for the organization can be rformulatecd as a
multi-nerson zame. This multi-person game consists of the leader and the
“gliowers. The leader is able to announce his strategyv before the other
slavers: hence, he may impose a solution which is favorable to himseli. Let
the leader choose an overall objective for the organizaticn with which he mav

coordinate the objectie functions of the followers. YNow, iI the leader can

L ‘ | | . 1
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choose a strategy which induces the followers to behave as if they were members
of a team with the le. .er's objective as the goal of the team, then we say
that an optimal coordination mechanism exists.
The above' discussion can be formalized as

(1) Let I={0,1,...,n} denote the set of DM's where i=0 denotes the
leader and i=1,...,n denotes the followers.

(2) Let Ui‘ {ui}, with 1€ I, denote the decision space of DMi’

(3) Let Ji :U»>R, with i€ I, denote the payoff function of DMi’ which is
defined on the joint decision space U=-136U1.

(4) Let Yy ¢ H-+ UO denote the strategy of the leader, mapping the infor-
mation space H to the decision space Uo'

(5) The decision problem for the organization can be formalized as an
(n+l)-person LF game with DMo as the leader and {DMi}2=1 as Nash

followers. This game is defined as

Aa it pdam = 1. . . .
Cerinition5.1l:If there exists a mapping ’1‘i :Uo-*hi, for i=1,...,n such that

ror any uoe Lo’
Ji(Tuo;uo) > Ji(Tuofui;uO) Vuie Ui

i -
where Tuogui= CTluo,.. T ..,Tnuo). and i there exists a

"Ti-luo’ui’ i+l Yo'

u__€ U_ such that
os o

Jo(Tuos;uos) 2 Jo(Tuo'uo)

then the stratagies (u u e..,u_ ), where Tu = (u ... r2 call
g 0s'Y1s’ U Tu o ( 1s’ 'uns)’ ar2 called
T = S . :
i strategies wit oM it} S vae ] o .t
2 ith D.O as the leader and DMi tor i=1,...,n as Nash
tollowers.
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The leader's problem is to design his strategy so as to induce the
followers to optimize the leader's objective function while playing optimally

with respect to their individual objective functions as well.

5.3. The Crordination Mechanism to Enforce Pareto-Optimalitv
Let J,(u ,u.,...,u_) be the payoff function of DM. for i= 1,...,n;
i“0’1 n i

n

T.a.J -l-c u2 be the payoff function of the leader, where ¢, o,

and let J°=i;l 17177 oY%

liZ 0, and iglai:-l. This objective function reflects the welfare of the entire
organization since it comprises a convex combination of the payoff functions of
its members plus a quadratic cost on the strategy of the leader. The leader's
objective is to see that Jo (which is also the goal of the team) is maximized

by all the DM's. To have a well-defined problem let us assume that there

exists at least one team strategy ut= (ug,...,u;) which maximizes Jo over all

u€U. The leader will seek a strategy yo(-) such that if u =" (-) is sub-

I’O
stituted in Ji’ then DMi will find a unique solution (uiV) as his optimal
strategy in the Nash sense, and this solution will also lead to the maximum
value of Jo. This can be mathematically formalized: The leader should choose

a strategy uo:=yo(-) such that when DM, plavs non-cooveratively, he will choose
A

u,., which satisfy
iN -

Ji(Yo(’),ulN,...,uiN,...,unN) = Ji(vo(-).ulx.....ui.....u

and
T : . [ = t t
uo((o( )’JlN""'unN) Jc(uo,...,un).

et the leader adopt a strategv of the form

ol
$oa

. A.(u.—UF).
O U

o 0 i=1

. i ]
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The leader makes use of the information available to him (the decisions of
the followers) by formulating a strategy which is a function of these decisiomus.
By choosing such a representation (the reader is referred to [26]
for a game-theoretic interpretation of such a representation), the leader
is forcing each of the followers to choose a strategy which is equivalent to uz
or else they will be penalized. So if there exists a real sequence {Ai}2=l such
that the optimal respounse of DMi(uiN> is equivalent to uz, then we say that the
coordination mechanism to enforce Pareto-optimality exists. The fact that the
leader can enforce cooperation (formation of a team which corresponds to co-
operation) among the competing followers has deep economic implications,
especially in a market structure.

For cooperation to replace competition among several firms in a market
(with no leader to enforce Pareto-optimality), r~: only must the total maximum
profit exceed the combined competitive return, but also none of the participants
in the cooperative group must be able to achieve higher profit by means of some
feasible strategy wnile all others stick to the cooperative agreement.

Ia the case when competition dominates cooperation and the firms
play nonefficiently, then the leader (e.g. the government) may interfer to
enforce cooperation. If the total maximum profit obtained after taking into
account the cost cf enforcing the cooperation still exceeds the combined
competitive return, then the leader has an incentive to interfere and enforce

cooperation, as will be shown in the next section.
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5.4. A Market Model of Duopoly and Enforcement of Pareto-Optimality

Let there be two firms which share the production of a commodity
(or two undifferentiated commodities) and have access to the same potential
buvers. The two firms use the quantity of production as their strategic
variable. The demand for this commodity depends on the market price and the
consumers' effective income. We assume that the government interferes in the
market through the consumers by giving them subsidies or applying income taxes,
hence the strategic variable of the government has a direct effect on the
income of the consumers.

As a coordinator of the market,l the objective function of the
government is a convex combination of the payoff functions of the two firms
and a quadratic cost function on its control; and its problem is to design a
strategy which induces the two firms to behave as members of a team with the
objective function of the government as the objective function of the team, while

maximizing their pavoff functions as well.

3.4.1. General Model

Let q, stand for the output rate produced by firm i and Q stand for

the total marketed quantity. Hence,
= + .
Q=gq;+q,

Let us suppose that the aggregate market demand can be raprasented bv a con-

tinuous Zunction as follows

D = :‘1(,0.1) :
i ci , .
The zovernment mav Iind 1: necessars to int:rizre 0 i~
acnieve 2 morz eiiicient economy, especiallv 17 the compectizion
the narticirancs
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l. such that the price (p) is an increasing function of the effective income of

the consumers (I), while it is a decreasing function of the demanded quantity

Q.

!! The effective income of the consumers (I) can be decomposed int; two
components Io and io’ where Io is the nominal income of the consumers which -
the governm:nt has no control over; and :l.o is that part of the consumer's income
which the government can directly adjust through taxes or subsidies. Hence i,

can be taken to be the strategic variable of the government. Consequently,

o equation (5.1) can be reformulated as

p = £(Q,1)).
It is reasonable to assume that each firm wants to maximize its net profit Ji'
Qhere

Ji = pqi-hi(qi).

l' hi(qi) is an increasing function in qy and represents what it costs firm i to
produce at a rate qi.
The objective of the government as the coordinator of the market is

to find a joint strategy (qlt;th;iot) that maximizes Jo(ql,qz,io) where

12
30(a1595:1)) = a3y +aydy -5 e 1o

1120, c°>0, and al+a2=l.

The optimal joint strategy (qlc;q7t;iot) should satisfy the following

) 3£ °hy ) ) .
s # 3 foy —2_ 1 . [ im].2 4s o= oA
20 3qi (4 quj) xit 3y 3qi 0 for i,j=1, and i#j (5.2)
and

=




...........

af/31 | : |
i s——"c (ulq1+a2q2). (5.3)

o
Q .

To have a well-defined problem, we are going to assume that there exists at
least one joint feasible strategy (by feasible strategy we mean one with non-
negative output rates) which achieves the maximum of Jo. Hence, we can see from
equation (5.3) that the optimal strategy for the government (iot) is to give
subsidies for the consumers and consequently increase their effective income.
The increase of the effective income of the consumers enables them to be
willing to buy any fixed quantity at a higher price, which in effect increases
th2 firms' profits. To induce firm i to produce at an output rate which is
equal to U, for i=1,2, the government chooses a.decision rule (strategy) of

the following representation

1,=1, + Al(ql'qlt) + Az(qz'qz:) (5.4)

where A1 and Az are real constants to be chosen by the government to enforce
Pareto-optimality. Clearly, if the output rate of firm { equals 9, for i=1,2,
then io"iot in equation (5.4), that is the strategy of the government will be
optimal, and the indirect cooperation between the two firms will also be
achieved.

If io as given in equation (5.4) is substituted in the pavof{ function
of firm 1, then firm 1 will find its optimal output rate by maximizing its
pavoff function on the basis that the output rate of the other duopolist is
given. The necessary conditions for the above maximization problem can be

mathematically described as

Y TP PR P U SRR Y G LN YT S A YL G U G Sl Ly o = . M-
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3J o1 oh,(q,)
i 3f 3Q of o b B &
8q1 i ?Q aqi aio aqi aqi
where
3 8
2 1 and —> = A,.

The leader's problem is to choose the real numbers A1 and AZ’ which will

cause the optimal response of firm i to be equal to A, If Ai is chosen to be

3h, (q,)
19 af
aqi - £ (9’10) = qi 3Q
Ai = - 3E (5.6)
i a:-"o ql’qlt
10-1°t
77¢

then the optimal output rate in the Nash sense of firm i will equal 9y We
conclude this section by the following proposition, which we have just proved.

Proposition5.1: In a market duopoly, by declaringa strategy of the form given

in equation (5.4), with A, satisfying equation (5.6), the government can force the

i
two firms to choose a Pareto-optimal output rate, while maximizing their

corresponding profit as well.

5.4.2. A Linear Model Case

In this section, we will determine analytic solutions for the
coordination problem presented in the last section. This will aid in under-
standing the economic implication of the coordination problem.

Lat the market demand relation satisfy the following linear equation

(for a discussion of the linear demand relation, the reader is referred to [30]

n= do +d,p + dzio

1

D et A A A el A Al A
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where d° and d2 are positive constants, while d1 is a negative constant.

Let the cost function hi(qi) be of the form

1.2
hylqy) = 3 Cjay + Ky

where Ci and Ki are positive constants. For the linear model case, we have
the following corollary.
Corollary 1: In a market duopoly with a linear demand relation and a quadratic

cost function, the government can force cooperation between the two firms by

choosing Ai to be

q,,.(2-c.d,)+q, _~-d_ +d 1
A, - 1€ 7% 1d dt o 20t g 4 4m=1,2 and i%]
2%4,¢
where
b,,.3, +S -d
- 11; i . - —2
e = 2 T o T T %t %)
a-b,. 3 lo .
i 1373
and
o, dg
-1 _1i2 =
bij 1 d,c ? 3 7 do%
)
aidi
a1 = Zai-aidlci + dec °
1o

Proof: The proof is straightforward and follows the same lines given in the
discussion of the general case. =

Instead of absorbing the total cost of cooperative enforcement, the
government may charge the firms the cost of policing the cooperation. Let the cost
charged to firm i be -215 Eiii, where 34131+-:¢232 =c - The objective function of
the government (Jo) will be

Jo = aljl-kazqz, where the profit of firm i (Ji) is

1 2
P L P S Vi
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It can be shown that the government can force cooperation between the two

firms by choosing Ai of a Qlightly different form,

e (2-cyd)) +q,, -4 +dy1 .
271t i ot

where Upr qjt’ and io: are as previously described.
In the remainder of the chapter we consider the important
special case when the objective function of the government (Jo) is the total

profit of the two firms and a quadratic cost on the strategy of the government,

i.e., J . =J.+] -l c 12. By the same techniques as above, we find that
o 172 2 "0oo
-dldocjco
UYe © 2 2 (5.8)
co[dlclcz-z(c1+c2)d1]-(c1+c2)d2
i, = —3 R W > (5.9)
and coldjeyep-2(eytey)d, I-(e ¥ey)d,
2
d,) +
. . co(ci 1) 2d2(ci+cj) (5.10)
i -dldzc c : :
Jo
Upo iot’ and Ai are sketched as a function of the parameter <, in Fig. 5.1,

Fig. 5.2, and Fig. 5.3, respectively, where <y denotes the cost of applying one
unit of government control.

From Fig. 5.1 it can be seen that the optimal ocutput rate of the firms

are feasible (the qi's are non-negative) if and only if

2
(cl+c2)d2

<, > = .
dlclcz--Z(c1+c2)dl

Hence, the optimal feasible strategy of the government amounts to increasing the

effective income of the buvers as shown in Fig. 5.2.
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Figure 3.1. The optimal output rate of firm i vs, the cost of one unit
- of government control.
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5.4.2.1. Forced Cooperation vs Voluntary Cooperation

If the two firms agree to cooperate with J1+J2 as their objective
function (they agree to form a cartel, where the members retain their separate
identities and separate control over their ?olicies), then the optimal output
of the two members of the group can be found by solving a straightforward
maximization problem of the total profit of the two firms on the basis of the

demand conditions. This optimal output rate is

-c,d.d
q: - 1lo — for i,j=1,2 and i#j
-2c1d1-2c2d1+d1c1c2

and Jg is the optimal total profit. The trouble with this solution is that it
may not be practically attained, since any firm can depart from this solution

without being penalized for increasidg its profits. For example, if firm 1

supposes that firm 2 is going to stick to the cooperative solution

-c.d.d
qg = llo 3 , firm 1 chooses its optimal output rate as the one
—chdl-Zczdli-dlclcz g
) o 1
which satisfies its ratiomal te;ction relation ql 2-c1d1 2'°1d1 - Then

d (-c.,d,-2¢,d,+d c.c,)
we have ql = 2 11 21 171 22 . Hence, by departing from the
(2-c1d1)(-2c1d1-2c2d1+dlclc2)

cooperative solution, firm 1 managed to increase its profits. Of course, the

same argument applies to firm 2. As a result no firm maybewilling to join
the coalition, knowing in advance that it and all others may depart from
the cooperative agreement,

Earlier in this chapter, we showed that the government can force
cooperation between the two firms if it announces a strategy of the form

given in equation (5.4), where A, satisfics equation (5.10). The optimal output

-
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rate of the two firms and the strategic variable of the government depend on
¢, If <, is large enough, then the total profit(Jo) of the two firms under
forced cooperative conditions, will become arbitrarily close to their total
profit (J:) under the voluntary coalition conditions, since it can be seen that
as ¢ _+=, q +q°, i -+0, and J ->J°.

(<] it *1’ ot o 0

For large enough <, there is a seeming paradox, since, although in

both situations of voluntary and enforced cooperation, the government contributes
nothing or almost nothing to the market, and each firm has the same output
rate, both firms have an incentive to depart from the Pareto-optimal soclution
under voluntary cooperative conditions; whereas no firm would change its solution
under enforced cooperative conditions,since it can only lose by departing from
the equilibriu? solution. The answer to this paradox is that the strategy of
the government has two'differenc representations for the same value in these
two cases (10-0 for the voluntary case, while io'Al(ql_qlt)+A2(q2-q2t)
for the enforced cooperation). The representation of the strategy in the enforced
Pareto-optimal case has a threatening power, which directs each firm to behave

in a certain way or else it will incur additional costs.

In summary, we can say that by being in a coordinating position in

the market, the government forces the two firms to cooperate, thus obtaining the
maximal monopolist joint profit, but with arbitrarily small cost.
The following numerical example illustrates the basic ideas

presented in this section.

5.4.2.2. Numerical Example

Let the market demand relation be

ql+q2']ﬂ-29+i¢
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Let us assume that the two firms have identical cost funct;ons with

=c, =1,

¢ 2

1

Substituting the values of d, dy, dy, ¢ in equations (5.7), (5.8), (5.9),

1’ ©2
we find that

The value of the control of the government (i ) 10
ot 6co—l
The strategy of the government (io) is
i = 0—19—0 + 4, [(q,-q, )+(q,~q, )]
o 6c°-1 171 *le 2 2t
-c +2
where A1 = co
o
Rr%-m,mfmdma
q,, = 1.695; i = 0.1695
Al = A2 = -0.8
p = 3.39
I 43, = 8.6190; = c 1% = 0.1436.
172 : ’ 2 7o '
Hence, 1 2
Jo = J1+J2-3 coi = 8.475.
For c, = 1000, we £find that
q, = 1.667; 1 = 0.0017
A, = -0.998 =3.333; Lc¢ 1% =0.0014
A . , P . 55 o .

J,+J., = 38.333 and J = 8.332.
172 o
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If the two firms agreed to cooperate (without the interference of the government),

then the Pareto-optimal solution would be

o o
. 9y =9, 1.667
i°=0
‘ o
and Jo = Jl+J2 = 8,333,

It can be seen from the above that for c°=10, the total profits after taking into
account the cost of policing the cooperation is bigger than the total profits
under voluntary conditions. In such cases the government may charge the two
firms the cost of its control, for example when ¢ =EZ=5 with ¢, +c =Cy» the

1 1 72

govemment by choosing A, = -0.3998 (see equation (5.7)), canenforce cooperation

i

| between the two firms, charge them the cost of its control, and still make the
total profit of the two firms exceed the voluntary monopolistic total profit.
By increasing the consumers' demand for the marketed commodity, the govermment

l altered the market structure and consequently, increased the total profit of

the two firms compared to their profit under volunary cooperative conditions.

For large enough values of <, (c°= 1000 is large enough for our

L2

example), the values of the optimal strategles and profits of the firms and
government under forced cooperation conditions are arbitrarily close to the
corresponding values under voluntary cooperation conditions.

The optimal solution under enforced cooperation conditions is a
LF equilibrium solution with the government as a leader and the two
firms as Nash followers. Hence, there is no incentive for any participant to

leave this solution.
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; . Before concluding this section, several remarks should be mentioned._
i " R5.1 If we compare the output rate and the price in the market under forced

cooperation and voluntary cooperation, we fini that

K o o -dldo(c1+c2)
9 ta; = 2
-chdl-Zczdl + dlclcz

Po)
[}

and do(cl+c2)-dld°c

(4
1%
% d 2
5 1

-2¢.d.~2c,d, +d

1917%%2% T %1414

while
-dldo(c1+c2)c°

Q =9, *4q, =
t 1t 72t 2 2
) co[—2c1d1-2c2d1+d1c1c2]-~(cl+c2)d2

and
;o[do(cl+c2)-d1doclc2]

- p = .
n t " _ 2 _ 2
. co[ 2c1d1 2c2d1+d1clc2] (c1+c2)d2

2

For all feasible values of ¢ [¢ >( 2
ol o 2
l dlclcz-Z(cl+c

(cl+c2)d

9 the output rate
204

and the price under forced cooperation are larger than the corresponding

output rate and price under voluntary cooperation. Thewelfare of the

consumers (W) is appropriately defined as tge consumer's surplus which

can be mathematically formalized as W(QN)’=fN(p(s)-PN)ds, where PN and QN

are the equilibrium values of price and quantity, respectively. It can

be verified that W is worse off under voluntary cooperation,hence, the govern-

ment increases the social welfare of the consumers compared to that under

voluntary cooperative conditions. But, in the limi; as ¢ ~=x, the price, the

e output rate, and the social welfare of the consumers will be equal under
both conditions.

3.2 The price elasticitv of demand (n) at both the voluntar: cooperative point and

for all values of <, at the enforced cooperative point is identical and it equals
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n= (do(c1+c2)-d1d°clc2)/(do(cl+c2)).

It can be seen that the market is always price elastic under both

‘conditions.

:Under voluntary cooperative conditions the output rate (qg) satisfies

o
o i i
- - — — = ’2.
) ¢ qy dl (1+Cj) for i=1

Under forced cooperative conditions, the output rate (qit) satisfies

2
¢c c,d,+2d, (c +c,)
-1 oi'l 21 "2
- ™ — £ 1'1,2.
P -4, dl qit(1+ 3 ) or

t i
dlcjco

From the above equations, it can be shown that under voluntary cooperative
conditions, the price (p) is higher than the marginal cost (MC) for both
firms; whereas under enforced cooperation conditions, the price (p) is

higherzthan the marginal cost (MC) for both firms if and only if
24

c°> 4 (The feasibility conditions is also satisfied since
1
2d§ (cl+c2)d§
> .) For each firm the difference between p and lMC
" 42e e -2(c,+e,)d
17172 1 7271

is smaller for the enforced solution than for the voluntary one; thus the
former solution is closer to the group rationality solution (to satisfv
group rationalitv, which includes the buyers, the price must equal marginal

cost) than the latter.

‘It can be noticed rfrom the previous example that depending on g the

total profits of the two firms under enforced cooperation conditions maybe larger,
equal, or smaller than the corresponding profits under voluntary conditions.
The procedure to find the region of <, for which that is true, is straigntforward

sut lengthyv., 1t will not be pursued here.
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n R5.5: Our detailed analysis was constrained to the case where the objective

function of the: government (Jo) is the total profit of the two firms and

a quadratic cost on the strategy of the govetrnment, similar results are
. expected when the objective function of the government (Jo) is the

convex combination of the profit functions of the two firms and a

2

quadratic cost on the control of the government, i.e., Jo-a J.+a,J 1 io.

1"17272°2 %
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CHAPTER 6

ON SOME STOCHASTIC STATIC TEAM LEADER-FOLLOWER PROBLEMS

6.1. Introduction

In this chapter we deal with two static, stochastic leader-
follower team problems, where each player has a quadratic cost function and
part of his information is a linear function of Gaussian random variables.

In Section 6.2, we consider the problem of a 3-perspn stochastic optimal
coordination, where the coordinator desires to induce the two noncooperative
(in Nash sense) players to minimize his cost function, even though each player
minimizes his own cost function. The cost function of the coordinator is

a convex combination of the noncooperative players' cost functioms. The
informacion structure of the game is nested and dyramic, whereby the
coordinator not only knows whatever the other players know, but also detect
exactly their decision variables. We show that by incorpgrating the decisions
of the other players, the coordinator can, under a certain condition,
successfully enforce the team solution with his objective as the goal of the
team.

In Section 6.3, we consider a two-person leader-follower game, in
which the leader does not completely detect thé decision variable of the
follower. To achieve the best possible outcome of the leader, we define
a new modified team problem after taking into account the optimal response of
the undetected action of the follower. We find that the leader can, under
a ceratin condition, achieve this new tight lower bound. Finallv, we zive

a numerical example to illustrate our procedure.

'
A A m_m_A_aa.a - = Py

i
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. 6.2. Stochastic Optimal Coordination .
\ Let x be a Gaussian random vector over a probability space (R,4,P),

x: 0+R™ with zero mean and I covariance. Let u, denote the decision variable
. of decision maker (DM):L which takes values in Rmi for 1=0,1,2. The objec-
tive functional of (DM)i for 1i=1,2 is defined by
P

G,(x,u_,u,,u,) = ']‘u'D u,+u'Q,x+u R,u +l u'S,u_+u'L,u, +u'T,x.

- it e’ 1772 St S SR B | i1 2 o"io oii ot

The objective functional of DMO (the coordinator) is a convex combination
':j of the objective functionals of the other two DM's, i.e.
- Go(x,uo,ul,uz) = alGl(x,uo,ul,uz) + asz(x,uo,ul,uz)
where 1> aiz 0, and a1+a2-l. To describe the information structure of the
v game, let Y1 and Yy be two random vectors defined as

yi-l'lix+wi for i=1,2
- where Hi is r xn real constant matrix, and wi~N(0,Ai).
Let r\i denote the information available to DM]._. We consider in

this section the following information structure
® =
Mo T Y120t

T

. "2 T Y2

Wwe denote an admissible strategy of DM, by v, which is a Borel measurable

s e

. mapping from the information space into the decision space, and we also denote

the space of admissible stratagies of DMi by I'l

L- ‘ PO . & P PO - . P e . [T . T S S S W Y PO W ‘AJ
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Let def
et us define the expected value of Gi(x,yo(no),yl(nl),yz(nz))

with respect to the random variable x by

'

J (o eYp)s Leee T (v 57y5Y,) = ELG, (x,7 (n ),y (n)),7,(n, 00}
The coordinator's goal is the achievement of the global minimum of Jo’ and
his role is to adopt a strategy, ;o(no), which induces DMi and DM2 to play
with him as a team with J° as the objective function, even though there is
no explicit cooperation between them. If ?o(no) is substituted in Ji’ and Ji
is minimized over Yi(ni), in the Nash sense, and if the resulting
solution leads to the minimization of Jo’ then the optimal coordination
problem is solved.

By Nash solution we mean that if Yo(no) is a given

(o] Q (o]
Jz(yo,(l.yz) < JZ(YO,YI,YZ).

6.2.1. Derivation of the Optimal Equilibrium Strategies

We start by finding the optimal team solution. Let

t
min min min J (v ,Yl.Yz) = Jo(Y:'Yl‘Yg)'
y er Yl 1 YzeAz

So ulLl a2L2
: N
alLl ‘101 alRl+a2R2i > 0
|
A ] 1] H
3ly 3R TR, D,

N W G G SO S . 1
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. 21 -
Yo(ng) = =S, [a;L u) +a,Lyu) + T Elxly,,y,)]

where To = alTl + asz and So = “151 + a232

t
Yi(“i) = Ky, for i=1,2

where Ki satisfies the following matrix equation
2 13- -1 ra=1x ' ' -1
Ky -(aiDi-aiLisolLi) [(aiQi-aiLiSo To)HiZ(HiZHi+-Ai)

' 1~=1 ' ' -1
- T
a,a¢,L.S "L,)K,H ZHi(Hi“Hi*.Ai) ].

+(aiRi+ajRj 1%3L35, LyKsH,

Proof: The proof is straightforward and can be obtained by using standard
stochastic control techniques under the nested information structure

consideration [48,43]

The optimal team solution can be expressed as
t
Yo(¥1s¥gsuy0ug) = hyq¥y +hoy¥y+h quy +h ,u,-

t
Yy Kiyi for i=1,2.

The coordinator's problem is to adopt a certain form of strategy, in which he

incorporates the decisions of DM, and DMZ, and by which he can force the two

1

DM's to cooperate while each DM is minimizing his cost function as well. Let
us restrict our investigations to the class of strategies which are linear in

u, and u,

1

‘{o(no) = ‘(;(”10) + Al(ul—yz) + AZ(uZ-Yg)-

In general we can take A, and A, as matrix functions which are measurable

1
with respect to the sigma fields generated by "1 and "y fespectively. But.

for simplicity we will consider only constant matrices. It is clear tnat if

st PP U R .. PO T A SR, R L LA A PO S L R PR O P P
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the matrices A1 and A2 are chosen in such a way that the optimal respomse of
DMl and DMZ’ u, and u, equal their corresponding team decisions, then we say
that the stochastic optimal coordination problem is solved.

To find the rational reaction of DHi to the announced strategy of

the coordinator, we substitute Yo (n ) as given above in J (Y ,ul.uz). Since

Ji(yo(no),ul,uz)is quadratic and 1f strict convexity of Ji on Pi is assumed,

then the minimum of J, with respect to u, can be obtained by person-to-person

i i

optimization and by taking the gradient of Ji with respect to u, and equating it

i
to zero. If this procedure is carried out it follows that
E[{Dyu;+Q x*R,u

+(h +A)'S [(n +A) (u =Ry )+(h_ +A) (u,-

37497 87Ky

]+L (A (“1 Kyi)-i-Aj(uj jj)+h "i+hj 3

)+ (A+h )Lu + (A +h )rxlv]-o

5 ¥

*Hhy1+2Y 1005427

+h +h

0371 0472

After some straightforward manipulation we find that

L* = M - - *
3y = MV EGly,) Ny - 0BG ) |y ) (6.1)

where

L} L
Mi Di+(h°i+Ai) Si(h°i+Ai)+Li(Ai+hoi)+(Ai+hoi) Li

<t
[ ]

+4 )K H

Qi+(h°i+Ai) S.h H +L 241 H (h +A) 's (hj 5 3

ij i0,2+i7]j

[} L}
-LiAjKJ_HJ. + (Ai+hoi) Ti

v ' '
xij (Lihg =Ch  +A) 's g (n A K -1, A IR G DR SO

o
(]

] 1
[Ri+ (hoi+Ai) Si(h +A,)+L. (A +h°j)].

ij oj ] i)

That Hi is a nonsiangular matrix and follows from the strict convexitr assumption

o
e
Gy

. on

(=
-
.
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The following proposition gives the conditions of existence and
uniqueness of the solution of (6.1).

Proposition 6.1: If either

).(Mi Oiij oji) <1

or -

Y ) <1

j jii ij

then, there exists a unique linear Nash solution (YI’Y;) which satisfies
equation (6.1), for each pair (Al’Az)’ wvhere X(A) is the maximum eigenvalue of
any bounded real symmetric matrix (A'A).

Proof: The proof is equivalent to the ome given in [49].

Let Yi(yi) K in (6.1), then we have

171

. = -Milvijzi M lN Mi OinjEi (6.2)
where , -1
4
Zi ZHi(HiZHi+Ai) .

Equation (6.2) can be rearranged and written as follows

[L K +'r +si(h

'
%4 H.E, )]+D K +Q i[LiKi+Ti:1

o, 2+i O +2+] j

+Si(h z, )]+L (h

2+i 02+j j 02+i+h02+j Hj:i)

+ +1L! S, =
RinHin LihojKjHj i 0]

or equivalently

Condition 6.1: There exists at least one matrix Ai for i=1,2 which

satisfies

- - - P e e e e B Bee N i el e el
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v =1 =1
The dimensions of Ai’ Bo, and Bl are miXmo, mOXri, mixri, respectively, and
we have m xm variables to choose which satisfy m XT, equations. Condition 6.1

is generally guaranteed if mozmax(rl,rz).
From before, we can easily see the proof of the following theorem.

Theorem 6.1: If Condition 6.1 is satisfied and if Yo(no)erb is picked as
t . t t
Yo(no) Y, * Al(ul—yl)-Az(uz—Yz)

then a solution to the optimal coordination problem exists

6.3. Linear Quadratic Leader-Follower Games with Partial Decision-

Dependent Information Structure

"As in the previous section, x-n-dimensional random vector and

x~N(0,I). u
m,
in R *

1 is the decision variable of player i (Pi)’ and it takes values

for i=1,2. Let P1 be the leader while P2 is the follower. The

objective of the leader is defined as

l ' ] 13 1 ' ]
T - - _—
,..l(x,ul ,uz) 2 ulRllul + ulRIZuZ + ulRl3x + 3 uZRl“u2 + uZRlsx,

while the objective function of the follower is

' 1 ' '
Lz(x,ul,uz) = u2R21x+-2 u2R22u2+-u1R23x4-ulRZAuZ.
where

Ry1sRpp > 0.

Let ¥, and v, be two random variables defined by

v, = H x + w. for i=1,2
i i i

where Hi is rivn real constant matrix, and wi~—N(O.Ai\. The leader deteces

tihe action of the follower through observing ¥y which can be taken without
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loss of generality as

y, = [I Oly,

where I is rxr-identity matrix with r< m,. Let ny denote the information
available to Pi’ and we are going to assume the following nested information

structure
nl : y°,y19y2
As before, Yi is a Borel measurable mapping from the information space to
the decision space: of Pi' The space of all such mappings is the strategy
space of Pi(ri).
One natural lower bound for J, is the infimum of J, over the

1 1

t
product set T xT, (J1)- Let us assume that this infimum is actually

1
achieved, so the leader wants to adopt a certain strategy by which he can
force the follower to play in such a way so as to globally minimize Jl’ even
though the follower intends to minimize his cost function. To investigate
the ability of the leader to enforce the team solution, let us make the

following assumptiomns.

Assumption A: The control value of the follower can be exactly and completely

detected by the leader through his information.

Assumption B: There exists a strategy for the leader by which he can increase

the follower's cost, if the latter does not abide by the taam solution.
Clearly, if the above two assumptions are satisfied then the leader can force

qis ceam solution (see [47] for details).
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is not satisfied, thus J; is not the realizable tight lower bound for J
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In this section we are dealing with the case when assumption A

1

can be dealt with by defining a new modified team problem for the leader

which takes into account the rational reaction of the follower on the

undetectable action space.

The procedure to solve the problem when the complete detectability

condition is not satisfied is as follows.

l‘

1.

Minimize JZ(YZZ’YZI’YI) with respect to YZZGFZQ’ where

Y m,~r
T 2 .
Yz ’ Yzze R and I"z =T U i

21~ t22
Y22

Since J2 is quadratic in Yoo under strict convexity assumption, we
obtain a unique optimal strategy y;2 which is given as the unique map £,
where

* = !
Y39 f(YZI,E(Yl!YZ), E(x|y,)).

Substitute for Y;Z in J, to obtain a new cost functional jl(YZI'Yl'

1
E(Ylly7),E(x|y2)). The infimum of J

-

over the product set [ x is the

1 1721
new lower tight bound (JI). If the infimum is actually achieved, then
the leader can force this modified team solution as will be shown in the
following.

6.3.1. Determination of the Mew Tight Lower Bound of Jl

Minimizing J’(YZ”Y“I’YI) with respect to ¥,,, we find that

(2)'

24

=1 '
LR = st) [R(Z) R

2 .
Aatep = =253 (R Ty UGy 22l B vy vy

- -~ -

et P

This problem
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where )
e T@ @
21 22 22
R,, = H R,, =
2@ 2@
22 22 22
o
Ry, = [Rys 1.

Since J2 is quadratic in 722, and under the assumption that Rég) is positive-

definite, the minimization is obtained by person-to-person optimization.

2. Substituting the value of Y* (y,), which 1s obtained above, in J. ., we
2272 1

get
3y (xavy vy By |9 ECely)) = EGG viRy v+ R E;)YZl
-Y1R {g)‘ég) 1(R(Z)"‘zl éi)E(‘lyz)'*R(Z) BCrylyp) +viR)x
+3 Yo1Re Yo a1 Rig R z(’:z”-l(R Ry ECelyy) 4R ECr, [y,)
+3 @fPvy + Ry + D e0ry 1) R T RRD T Ry
+r{Puxly) + R EGr 1y, v R e Py

+R{PECely,) +R2 By v, 1.

The new natural lower bound for the leader (JI) is the infimum of 31

* : 3 - - ~ 'r

Jiz Einf‘ ) Jl({Zl,(ll.E({l.}z))
RSB RS St} |

over i x[ .12,
the product set Fl T i.e.,

Before we state the theorem which gives the optimal solution which

achieves the tight lower bound of 31, let us assume the following:

o RN P EASI AL
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2D, () (ML (3 ()L 1D @) 7@ @ (DL (2
Ria ¥Ry Roo” Ry Ryo "Ry Rogt Rapt Ry 'Ryt Ry,

positive definite.
(2) (3)-1 (3) (3)'1 (2)'_(2)' (3)-1 v (2) (3)-

is

2. R24 22 14 22 RZQ 2 22 RZ& R24 22 R12 is positive semi-
definite.
3. AR RPRD D" -1 (z) (3)_la' R L@
: 24 R220 Ry 'Ry Rl 247R24 Rop"  Ryy

where A(A) is as defined in the previous section.
Theorem 6.2: 1If assumptions 1, 2, and 3 are satisfied, then there exists a

unique optimal team pair (Y; ) for the modified objective function J

c
’YZl

where y; and Ygl can be expressed respectively, as

l’

Proof: Jl is quadratic and under assumption 1, it is strictly convex in Yops

so the optimal Ya1 can be obtained by person-by-person optimization, and by

taking the gradient of J. with respect to Yoy and setting it equal to zero.

1
The optimal YZl is

I S | K
(51 = KE(v ly,) + KE(xlyz)

where
e @Dy §§) 2 52) DD §2>R<3)'1R§§)'
fg)aéf)_ Ria) yLa® (2)R§2>’l <°>'1 R(“)R57> lRéa N
2y

e m ma e 4 4 e e e _Ama.a_masomom a P LL‘A‘_‘Lkh"_‘_'LL—“L‘LLJ
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To find the min J, with respect to Yl’ we determine the first Frechet varia-

1
tion 631 of 31, and set it equal to zero. After some lengthy manipulation,

in which we use some properties of the conditional expectation, we get

R Yy +Rpuyy +KoE(x]y)) +kaE(y, [y,) + Ry 4EGx]y, 5y,) = 0

where
= o R _ (@)@ () (37 (2) L L (2) (31 (3) ' (DL ()
Ky = Rip =Rip"Ryo" Rop" =Ry "Rop" Ry +Ry"Roo” Ry’ Ryp” Ry
- - -1 -1 -1
2 e gL (2) L () ()T (3)(3)7L(2) () (3)7H ()

2 12 22 21 24 22 R14 22 21 24 22 15

. @ L@ @ L@, @32
ky = “Rip'Rop" Rout TRou Ropt Ryt R Ry RiARy Ry

2_ . s
Assumption 2 guarantees that the second Frechet variation § J is positive
semi-definite. The pnemainder of the proof is equivalent to the one given in
{49], which uses assumption 3 and the Gaussian distribution properties to

show the result. a

6.3.2. The Enforcement of the Modified Team Solution

Let the leader adopt a strategy which is of the same form as the

one described in the previous section, i.e.

A =Y§+A0h14b£=hu +h,v. +h

oY1 ThyYy TRy, +aluy -hy,).

Substituting for Y1 from above and for y,, from (6.3) in J, and taking the

gradient of J, with respect to uyy and set it equal to zero, we get the
e -

Zollowing as the optimal response
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-1 -1 '
0 &P 228D D e R PrD TP 0, ¢ (b 2D

=1 -
L@ L@ @ L@

'(1) _p (D (371" (2)
“R24 R22 22 N 22 24

(h,+a)) + (R, " -Ry5"Ry5" Ry,

-1
~(h_+a)" Réz) ég) (2) ) (1 +8) u,, + (b _+A) " (Ryx

ECINE (z) e (3) )
"Ry Ry E(x|y))-Ry,"Ryy" Ry,” hyH E(x]y,)
(1)_p(2) (3)'1 (2)'
24 24 22 22

IREOMEIN IR =
Ry, Ry’ Ry,” (hyma)y)) + (R

(2) (H-1_(2)' (2) (3)- (2)' =
Ry, Ry Rou” ByH ECx|y,)=Ry "Ry Ry.” (hy-ah)y,)

(1) (2 (3)‘1 (2)'_(2) ()L ()

*(Ryy Ry Roy” Rypt Ry CRyyt Ry, () (hyH ECxly,)

*(hymah)y,) + (b +a) Re Ryy Rﬁf)'%*“u +(h+) " (-Ry,) gg)- Ra1™

*3 R gg)— (Ry5) by Ry OB Gy ) 43 Ry S)— R (hymafvy)
(h +4)' R(Z) (g) <2)E(x|y2)} y,1=0

Let u21==u;l==ﬁy2 in the above equation. After lengthy but straightforward

manipulation we get the above equation equivalent to the following linear

matrix equation

B.A = B” (6.;)

v ome, 1 (2) (3)'1 (), e (D (3)7L(2) (M (L 2y
1 370 AGRR YT Ryt FLTE SR TR T Ry R TR, R2

o~

F () (DL 2y

3
]

() (-1
R,

, s —LlFi-q'F'-h Fih +a'nlRy7"2507 R," h SR F-L'Fih_+ iR,

o) o 3 o) 24 22

3o




rEg.
.

-

.....
..............

RAINAGAG PN INGRN PN VR NG, WA

116

(2)R(3)'1 2)'

h

1
(z)h -L'H'hF _-h)F -L'H/h.R

R 1P FamRoFy~biH R Ry " Ra™ Ry By
and
Fo= gRSD_g(2)p ()71 (2) Fow gD gD (371 (2)
17 R TRy Ry Ryt s By TRy TRy TRy Ry,
D) _p (@ (DL (2 . (2) ()7L (2)_ (@) (DL (@)
F3 = Ry ~Ros Rop” Ry » By = RpgmRy "Ry Ry Ry Rypt Ry, ME)
] 1 -1
L= ZHZ(HZZH2-+A2) .

The following theorem summarizes the results we obtained.
Theorem 6.3: If there exists at least one matrix A which satisfies the linear

matrix equation B A=82, and if Yle I‘l is picked as

1
t t
Yy = vp ¥ alugmvay)s
then the modified team solution is achieved.
The following example illustrates some of the basic ideas presented in

this section.

Example: Let the objective functions of the leader and of the follower be as

follows
(1 2 [%1 1 0]y
Jl =E2§ u1+ul[l 0] + 2u1< +3 [u21 UZZ] o 1l i
| Y22 LY22 !
M.
+ A[uZl u22] " xj
0] fz 01 [“211 N 1 r“:ll‘
Ty =Eeluyy upyl J“ 7 luyy uppl| | Pt e Il é
1 10 12 Luy, ! LU |

EC UL S R R VLY NS WP S0 oy U U S S S P U Uy
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For simplicity, let
yEYp Ty tx s and g, =y

where ¥ is a scalar random Qﬁriable with x~N(0,5). If we minimize J2 with

respect to Uy we find that
YA ) =y + £ E(, |9
227 g “\VpiY

If we substitute for u,, in Jl, and find the infimum of J, with respect to Yoy

22 1

and Yl’ the result will be

* ., X7 1
Y] = "9 = Y- ez By

* =

Solving .the above three equations, we get the modified team solution as

vk - -0.9846u,,, - 2.092y

21

* =
Yop 0.961ly

It can be easily checked that if the leader chooses his strategy of the form

v = =098/ -2 -
‘1 0.,846u21 2.092y + a(u21 0.961v),

where a=4.166, then he can enforce the above modified team solution, and the

value of his objective function (Jf) will be

* 2 727~
Jl 0.11727¢<.

For this example, J. is not strictly convex in the decision variables, so thz

1
2 %, . : - . .
global minirum of Jl does not exist. Jf is the tight lower bound for J, which
L
the leader can achieve, i.e., values of Jl which are less than JI cannot be

induced.
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CHAPTER 7

CONCLUSIONS

In this thesis, the role of information structure in some Nash and
LF games is considered. We show that by preserving the information structure
of the full order singularly perturbed LF games, reduced order solutions which
are equivalent, in the limit as i tends to zero, to the full order ones are
obtained, but by using DDIS, solutioms which are different from and more
desirable than the NIS solutions are obtained. For example, in LF games, by
using DDIS, the leader can, under certain conditions, achieve his most
desirable solutions, which normally he cannot achieve. We investigate several
classes of Nash and LF games with DDIS.

By preserving the information structure of the full order problems,
while solving the reduced order ones, we designed, in Chapters 2 and 3, two
well-posed methods to obtain reduced order and near optimal strategies for
both linear closed loop and team LF games.

In Chapter 4, a class of two-person Nash games with DDIS is considered.
Necessary conditions for existence of a Nash equilibrium solution with DDIS is
derived for a single stage general duopoly model of a market structure. The
case of linear market demand function and quadratic cost function is analvzed
in detail and it is shown that the profit of the firm wicth DDIS is more than
its corresponding profit with NIS, but the profit of the other firm is
decreased compared to its profit in NIS. We extended our analvysis of the
concept of DDIS to multistage dvnamic games. A two-stage duooolv gzame with
DDIS is examined and sufficient conditions for the existence of an equilibriux

solution of discrete linear gquadratic Nash zames with DDIS are ziven.
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In Chapter 5, we showed the significance of using decision-
dependent strategies by the leader in forcing cooperation of the Nash followers
in a LF game. We gave a static model of a market which consists of two firms
and the government. The two firms behave as Nash duopolists, while the
govefnmenc behaves as a coordinator. If the government adopts a certain repre-
sentation for its strategy, which is affine in the output rates of the two firms,
then it can always force the two firms to cooperate. We analyzed in detail
the case of a linear demand relatiom and quadratic cost functions; we found
explicit solutions for the optimal strategiés of the firms and the
government; and we compared the voluntary Pareto-optimal situation with the
enforced Pareto-optimal one.

In Chapter 6, we solved two stochastic static LF team problems, where
each plaver has a quadratic cost function and the random variables are
normally distributed. The first problem is a 3-person stochastic optimal
coordination. We showed that under a certain condition, the coordinator by
adopting strategies which are linear in the decisions of the Nash followers
can enforce cooperation. The second problém is a 2-person LF team game, in
wnich the leader does not completely detect the decision variable of the
follower. If the complete detectabilityv condition is not satisfied. then the
leader cannot enforce his global optimal solution. We defined a new modified
team problem in which we took into account the optimal response of the
undetected action of the follow2r. We found out that the leader can. under
a certain condition, achieve this new tight lower bound.

In the area of information structure in Nash and LF strategies,

there are several avenues which have vet to be explored, such as




2.
!
o
.’ 3

va

T T R L s Ve
e e B el AT e

120

The sensitivity of Nash and LF equilibrium solutions to both uncertainties
and changes in the information structure. In particular, we may try to
develop robust strategies (strategies which are insensitive to uncertain-
ties and changes in the information structure), which the leader can adopt
to achieve his team solution.

The study of information structure design, i.e. who should know what. We
are still at a very elementary stage and several difficulties have to be
overcome, before we are able to answer the above question in a unified and
systematic manmner, such as, a) A deeper understanding of the subject of
dynamic information structure, b) more investigation on the matter of
incentives ;nd decision dependent information structure.

Investigation of the generality of the effectiveness of preserving the
information structure in obtaining near optimal reduced order strategies
and well-posedness. For example, we can check whether preserving the
information structure of the full order problem, while solving the reduced

order ones, leads to well-posed solutions for some classes of nonlinear

game problems.
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APPENDIX A

NECESSARY CONDITIONS FOR THE LEADER'S MINIMIZATION PROBLEM

Applying the matrix minimum principle [14] to the leader optimi-

zation problem we get the following set of matrix algebraic equations:

- ' v T 7% ! rnd '
PjA11 - PyK 4511 = PyLoq Byg = PiKy2S197) - PiKypS1p #BA5T BT

-y fd 1 - - L = ‘-1 =1 - " -
+P)K, 5555 + oK 5593 +ByKy1Soq FB)K 1899 FP)0p0h05 (515 +5157;)

ar 2l ! T TMT'yop A 2 TEPEEP T - < T
Pohyy By0)" e (KygS5, #Ky3S53M) = Pyhsy (R55) ' Q3,5 (51, +5,T))

-y . - T3 x! -3 T2
APy = S11K11P1 " Bala1 By T 1513K 9Py T 510K 0Pt A B

ﬂ'l T -l k) = 1] by =y ]
2KaPp #71559K11 Py +71859K 9P 551K 1Py #595K19P

- - el T e RO

"= (71593K; 3 +559K 3080851 Py + (7181 3%519)* (495) "Qpp By~ (51,5473 513) (A45) Q5
Aha p =0 ALl

- W227%21%2 (&.

1 = -
PAj+AGR, +1=0 {a.2)

-y -7 9 ' T -m! ' iy
B1aKy1Py ~ TaS K P + 3R By~ BooK )Py + 74Ky Py + Ry L5 Py

7 g 1 T - 235 1 y3-lp -
+713593K1 Py + 355K 1 Py + Ry pLy Py = (RypLny +7135,4K) 1)4, 54, P, 4
(PS5 +B A E e - el +7.5 A 4Tk
3513+ 8220 (85)"Qp0 Py = (B +73513) (435) 'Qy 38558, B, =0 (a-3)
TP K = (5 Ly =1p 3:' -1 t L=tp ¢ = o 5 :-]_ f_—tn e 3 A=l
SP1R12513(2) + TSP A1 (A ) T+ TSR R T+ BAR, RAAL (AL ) T TIR,K 1S5, (Aas)
:IP K § :\:-]‘ ] D ?l A-l t_t ,\‘| ‘-‘L 1 Py o=l ' A-l [ )
T5PaK1059 3800 TRy g Ly Pods ) (A0 ) oS RAS AL ) TR 355 3 (8550 2B (5, ) 'L,

r\—l — ~ /‘\-L‘ ~ .A']. —< ,\-l‘
(@53) " =75Pad 1 (455103 3(45) 5 3 (R05)

A =l - ~ A=
Pady1(830) " +T5P50Q,54,

“‘l -~ A=l ~ A A -]_ A ~ PN A
B35 (8550 '053(355)8,5 12,45, (4 45) " +R,, L., v-'u,l‘)é.,lP.\.»x:l(.'«-f‘s' -

- 'y = ’
[Ry,Lgp = Bj3,Ky5123=0 (A. %)

A PRSP e b, dmaduadrenudoutnd R T e




126

o-lo

-~ S A -~ -— ~ A=]l— A=l
- ' ' ' ' - '
822821 P1821 +8525 3K pP1A 1 +A5 1 PIK) (815 = A)54,58,3) (A,,)

A=la - A A=]l=— A=ln ~ A=l— A ~ A=]l— A=l.1
22821825 51 " A15825513) = 3928918249251 3 - 4517, 85,4555, ;&5 )

R = olp = L n oA sl = el
422021 82K 1152252791 PaK1252 3 H A1 Pyha (855) 'Ky 55, (450" +

S ppe atliem aelz oaelal aslip oA, eelx aele ael
42172821 (A22) Q3852513 (Rp) '+ ()4, 1 PAS, (B9 'Q,485,5, 5+ &),)R, 2,

SXysioK, P.Ar -At)S Al -A

oLy 3 N _ea=l - 1 T oAl
A21(82) Ky 38y +ay) Py (B)5)5 55K 1 PpRg 1 ~8055, 3Ky Pohs -4, B1AS 0

. aele,  eely = A o-l= T s S
i, PR (Ban) ' 4 (A5 (51971589951 3) KyPpds ) + (S157A1 947551 3) 'KyPyd s,y

aele, = aeloomi _ a -l S O S |
(Azb '-S13(50) Q50 PyA0 ) (A55) = (K)5)51 3(855) 'R}, PR3, -55,K) 1 Padg, (A5)

R | a-lom acla _oa aeli=  a-l = ael
=S53R 2001 (8520 ' + (35508, 3K1 3(A55)A, 1 Prds ) + (457081 3(397) 'Qy5(855)

-

A A -— ~=1 ~ ‘\-I A Ay A=l - . A=l A s, A=l ,

Ay Pods g +813(A55) Q5 (A5 004, 1 PrRy g (A)5) ' + 5, 4K, 1(84,5)4,,B,3,, (4,,)
A -A s ﬁ-l '-A P K,.S (g-l)' =0 (A.5)

TP 071 PaX 1802 (Bg5) 1oy 1 PR 5553 (A, -

wnere

el
Ty = (RypLyy +B75K 3045,

- - _ A -l -

=~ a . . Q -1
Ty = 51073785 T A A0 (B 75,579

m = -[L!.R,.-K + SL R Lo =K. e oeH. B L
5= TlhagR g K 30 7 (Qup + Lo Ry 5in s w8y A4 7K By ok,

LTz

~ . -1 .
‘I-:\:'l.\lB)n,,,B,,,}




12

7

a-1

'-_ A-l . A A-l— I\-l . ~ - -A
Mg ™=S12(8p9) ' +4)58,5813(A59) ", By =By5-8,8,58,9

So in order for the leader to find L21’ L

(2.6), (2.7), (2.8), and (A.l) through

22

he has to solve equations (2.3),

(A.5).
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APPENDIX B. DECOMPOSITION OF THE FULL

ORDER LEADER-FOLLOWER TEAM PROBLEM

Equations (3.6) - (3.11) of the full order system is decomposed and the
limit as u tends to zero is taken as follows:
. Substitutiag the forms of I((t:,u),Qi as given before in equation (3.6) and

. +
letting u=0 , we get
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K _
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By letting u—>0+, in equation (8) we have
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Equation (3.10) willbe after letting »—0
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Decomposing equation (3.11), where the gains of the controls are evaluatad a:

. -=0
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Substituting for x,z in terms of Vis Vv in (B.8), we get

2
vl=(A.u—A12T(t,u))vl (B.9)
uv, = (522+;1T(t,u)s\12)v2 (B.10)

Let ?ll(t,to,;), ?zz(t,to,u) be the state transition matrices of (B.9) and

(B.10) respectively, then they satisfy the following equations
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Substituting for 2= L v, in (3.2), and then letting u~+0 , we have
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Using the transformation y=L[‘:§ in (3.4), andletting u~0 , we get
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APPENDIX C. THE SUFFICIENT CONDITIONS FOR

THE EXISTENCE OF THE FAST TEAM LEADER-FOLIOWER GAME

The sufficient conditions for tﬁe existence of an optimal leader-
follower fast strategy pair which coincides with a team fast strategy pair
are as follows:

If there exists a function nf(t,e) with nf(t,ej-o for 6>t and

n,xa, matrix K,. which satisfy

2 2f
£ -1
B - t
{ dgng(t,8)ee(s,t) = -R; By K, ¢ (c.1)
(o] "l -l
[} P 1 ]
RyB2oKoe = RygBaoKye . (C.2)
t.
I
- 1 [} R -
uKzf(t) { (Q23(r)+A22(T)K2f(r)+nf(r,c)Ff(r))¢f(T,t)dr 0 (€.3)
" ' - -1, -1, -
MK e ¥ Ry phog * 90K e Y UK e(BorR1Bay +BoaRy2B220% e = O (C.4) :
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= ' -R!
Fe(®) = Ry1Ry1B21%1¢7821 % (C.5)

° - - -1, - -lv
upg(£,8) = (3)9=By R 181K £ BaRo2B 20Ky ) et ) (C.6)

then t
= | d ng(e,8)z (s)

t
o]

*
Y1¢

-1
uje = =Ri5335%p % (E)

is the optimal fast leader-follower strategy pair. Furthermore, this is an

optimal team solution.
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APPENDIX D. THE SUFFICIENT CONDITIONS FOR THE

. EXISTENCE OF THE HYBRID SLOW TEAM LEADER-FOLLOWER GAME

The sufficient conditions for the existence of an optimal leader-follower

team hybrid glow strategy pair are as follows. If there exists a function

|
ns(t,e) with ns(t,e) =0 for 6>t and n’lxnl matrix P which satisfy
. t -1
. { [ds”s(t’S)'ds”f(t’s’O)AZZ(A21'821M13 29Mpg) 18 (s,t) = M. (0.1)
- o
A ' 1.1 -
Q5 (D)=T,p5 (M (1) + B, (D)P_(1)-B5,(7) (A73) 'ni(T,t,0)F, (x)=Ry M, =0
. for t<t (D.2)
te
?
) P_(t) - cr [Q57 -0y My =0y M+ A7, P (1) + (0] (1,¢)
A ' )
<A22 21) (T, E,0)F () ]o_(T,t)dT 2 0 ve<T (D.3)
.. where
] -, '
sz(r) R21 1s (t)+BuP (t)+F (r)—BZl(AZZ) Ne (t,t,0)F (r)-Q23‘42 (t) =
(D.4)
and . . . .
| Pg(Estg) = (A);=By M) =B oMog) o (Esty) (0.5)
o (et ) = 1
then c ¢
up (€)= f (d n, (t,s)=d_n(t, s)A22 21)%g(s)= f d_n(t, s)A,2 2196 (S)
% B
-£ d_ng(t,s)4, 2B72 2s
o
Yag T -MZst(t)
constitute an optimal leader-follower strategv pair which coincides with the
. t=2am solution.




LA"_‘L._\_._LA P

R - Aot Seatl Naud Soad A Mags ) L e Jagd )

pCRNTIAE A B

133

APPENDIX E. PROOF OF LEMMA 3.4

-1
Define Yo L ao where

and T,S satisfies

WT = AT = uTA;) +uTA;T-Ay

us = -u[A) -A ,TIS=S[A,, +uTa, ,]-A,,

then wo(t,co.u) satisfies

. A .-A,,T(t,u) 0
. Rt it . '
#o(toto,u) A +uTA ‘bo(t,tovl-).
0 22 12
u

In a proof similar to the one given in [22, p. 16], we can show that T(t,u)
is continuously differentiable and bounded for all c>'t° and Yu€ [0,.%)

where »* is small positive parameter, and it satisfies

) = AL
T(t,u) AZZAZI-PO(u).

To prove the lemma, it is sufficient to prove that wOI(t.to,u) and
B
woﬂ(c,to,u) :% are bounded in the limit as u tends to zero, where vOl(t.to.;)

and woz(t,co,u) satisfy the following

: 1) = - ATl )+ y

A22+ 0(w)

s ' =
"oz(c’co"‘) ”

. -1 .
since All-A12A22A21 is bounded, so

AN A AN A AR MEAR e e, .:’
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' yllt-:ol
| | Iy, (Eat O < Kpe

for some positive constants K, y, (see [21, p. 287]). Also using a proof

similar to the one in [22, p. 15], we can show

Y
. - 7%(t-t°)
: Ty (tse Wl < Kpe
- where KZ’ Y, are positive constants. As a result,
~-“ Y
2

B K, - —=(t-t)
. 2 3 H o
o which is bounded at u=0 Vt> €, .
~
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