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CHAINED AGGREGATION AND CONTROL SYSTEM DESIGN:
A GEOMETRIC APPROACH

Douglas Kent Lindner, Ph.D.
Department of Electrical Engineering
University of Illinois at Urbana-Champaign, 1982

This fhesis is an indepth study of the Generalized Hessenberg
Representation (GHR) of a linear time-invariant control system. It is shown
that the GHR explicitly exhibits a sequence of observability subspaces, Cti}.
By studying these subspaces in this specific basis, a number of results
follow.

Having defined the subspace {21} algebraically, we introduce a topo-
logy into the subspaces of state space. Using the GHR we are able to estimate
distances between key subspaces. This leads to a measure of the degree of
observability, called here near unobservability, which formalizes the intui-
tive geometric notion that a system is "nearly unobservable" if it has an
invariant subspace near the null space of C. The relationship to other
measures of observability is discussed as well as its role in model reduction.

The behavior of the subspaces {£i} under the action of an input is
also discussed. The connection to the supremal (A,B)-invariant subspace in
the nullspace of C is made, but other (A,B)-invariant subspaces are also
described. 1In addition, the GHR is used to identify (C,A)-invariant subspaces.
Both of these subspaces play a fundamental role in compensator design. Thus,
the GHR leads to a state feedback design scheme, called Three Control

Compcnent Design, based on (A,B)-invariant subspaces produced by the GHR.
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This control is hierarchical in that it gives priority to the primary design
goals. Furthermore, it explicitly identifies a reduced order model used to
meet the design goals. This results in an interactive design procedure which
allows for a trade-off between model order and computational complexity.
Furthermore, by using (C,A)-invariant subspaces, observer design is carried
out in the same framework. This leads directly to dynamic compensator design.
The results are applied to ﬁecentralized control problems, noninteractive
control, and nonlinear systems.

Implicit in this discussion is the decomposition of a system into
subsystems based on the underlying geometric structure. We investigate this
aspect of the GHR and show how the information and control structures are
related to physical subsystems in several types of interconnections. The role

of system decomposition in reduced order modeling and compensator design is

discussed.
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CHAPTER 1

INTRODUCTION

Recently the Generalized Hessenberg Representation (GHR) was

introduced as a particular representation of a linear time-invariant control
system {1,2]. This representation was obtained by a constructive algorithm

called chained aggregation [1,2]. Only the elementary properties of the

GHR and chained aggregation were known at this time. It is the purpose of
this thesis to present an indepth study of the fundamental propcricies of
the GHR and chained aggregation. The GHR has been used as model reduction
tachnique and as the basis of a control design scheme. By describing the
fundamental structure of the GHR, insight is gained.into toth of these

methodologies by both a simplification of the presentation and an extension

of the previous results. However, this investigation has wider implicationms.

It turns out that the GHR is connected to several basic linear system
properties which recur throughout the literature. Thus the GHR is
emerging as a common framework for the investigation of many linear system
problems. It is also the purpose of this thesis to lay the groundwork for

future investigations.

Perhaps the most important recent contribution to linear systems has

been the introduction of geometric techniques {3]. While not detracting
from the importance of this contribution, it should be noted that these
methods are complementary to the older matrix methods of linear system
theory just as a matrix can be an array of numbers or an abstract operator.
Perhaps the greatest understanding of linear system will come when these

two approachs are fully merged. 1t is the general approach of this thesis
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to make exﬁlicit use of both of these techniques for an indepth study of
the GHR.

The original prescantation of the GHR was in a completely matrix
format [1-2]. The starting point and most fundamental result (for this
work) is a geometric interpretation of the GHR and chained aggregation.
This turns out to be a sequence of subspaces €1 called here i-th

unobservability subspaces. These subspaces are well known [4-5] in the

literature, however, they are usually introduced to identify a particular
subspace, £n’ which turns out to be the unobservable subspace. The other
subspaces do not seem to have been exploiced.

Having this twofold interpretation of GHR, we are able to extend
the understanding of the GHR in three directions. First, we introduce
a metric on the subspaces {Ii}. While this is easy enough. to do in an
abstract setting [6], it is the GHR which provides the quantities to
estimate relevant distances. Secondly, we study the subspaces {£i} under
the action of the input. By modifying chained aggregation, the GHR
identifies the interaction of the input and output and so provides a
natural vehicle to study the closed-loop version of {ri}, {Li}. Thirdly,
we study the implicit system decomposition induced by the subspaces {Li}
and their closed loop relatives. By representing the system in an explicit
basis, we are able to identify how physical subsystems relate to the more
abstract information subsystems identified in the GHR.

Perhaps the major contribution of this work is the unification
of these ideas into a single framework, the GHR, so that their interaction
can be evaluated in a single context. There are a number of benefits

which follow from this unification, many of which have not been explored
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yet. In order to show the usefulness and flexibility of this approach, we
discuss model reduction and control design using the GHR.

By combining the system decomposition with the topological
characterization of {:i}, we obtain a unified approach to several standard
model reduction techniques [7-11]. The GHR was originally introduced as a
reduced order modeling technique [1], and we are able to deepen our under-
standing of its role in model reduction. If the system decomposition is
combined with the closed loop subspaces {£i}, we obtain a control design

procedure called the Three Control Component Design (TCCD). Originally

introduced in [2] in a matrix format, the geometrical interpretation obtained

here not only simplifies the presentation, but extends those results by
removing some of the original restrictions and applying the procedure to
other problems such as noninteraction problems, nonlinear systems, and
dynamic compensators. We feel that even more insight will be gained by
combining these ideas with the topological characterizations of {31}. A
few preliminary results in this direction are discussed.

While combining these ideas is important, some of the results
are of interest in themselves. In particular, the topological characteri-
zation of the {£i} seems to be the first result in this direction. A
related approach was used in [12] to measure the distance between two
particular subspaces, but it is not clear that this could be generalized
beyond this special situation. The result of this analysis is a measure of
the degree of observability. The approach'here is different from past
approaches [13-19] and the results are slightly different. These relation-

ships are discussed in detail below.
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In discussing the behavior of the subspaces {ti} under feedback,
we identify a maximal set {z;}. These subspaces turn out to be well known
{20-22] with a matrix version of them appearing earliest as Silverman's
Structure Algorithm [21]. A completely abstract characte;ization is given
by Wonham [3] and Basile and Marro [22]. However, we are able to identify
other sets of closed loop subspaces {ti} which have important implication
for compensator design. These characterizations appear to be new. The
connection between {ti} and Lti} is also new.

The algorithms developed in the amalysis of these problems
present themselves for numerical computations. Concurrent with this work
there has appeared a numerical analysis of chained aggregation {22,23] and
the algorithm to compute {£I} [24]. These papers were presented from a
computational point of view which differs greatly from the approach here.

We note that the numerical success apparently rests on the use of orthogonal
transformations, of which we make theoretical use here. Hence, the proce-
dure here, particularly the design procedures, show great promise for
numerical implementation. This work is underway.

This thesis is organized as follows. The GHR and chained aggrega-
tiou are briefly reviewed in Chapter 2 and the main results are presented in
Chapters 3--5. These results discuss, respectively, the open loop geometry,
including the topological characterizations, the closed loop geometry, and
system decomposition. Chapters 6-8 use these results in discussion well~
known problems such as model reduction and compensator design. This shows
the usefulness of the GHR framework as well as identifying problems for

future study. The conclusions are in Chapter 9.

A aamS eamsAAmS KIS M A A A 8B L8




)

, ey
T

—

e~ She

w

v

—pT—— Y

N RIAAOR

ey TEFT N d -
T T T N L e R S IR VT S R X
e T . . A DI . . v e . .

Notation. All matrices and maps shall be denoted by capital
Roman letters and vector spaces by capital script letters. If A:Z+% then
the null space of A is denoted by 7[A] and the range space of A by ®[A].

The dimension of a vector space is denoted by d(-). By

0 v
sp [ ] (1.1)
x

we mean the vector space generated by the given vector as the nonzero
elements vary over all of the reals. If the subvector x in (1.1) is
replaced by a matrix X, then (1.1) means the vector space spanned by the
columns of that matrix.

The set of eigenvalues of a matrix A are denoted by A(A). An
element of this set is denoted by X i(A). The largest and smallest eigen-
values of A are denoted A(A), A(A), respectively. The set of singular
values of A are denoted by o(A) with other notation like the eigenvalue
notation. Recall that if A:X+%Y where X is an n-dimensional vector space
equipped with the two-norm, then Al =3 (A). Im this thesis, we shall use
only two norms. If two vector spaces X and Y are orthogonal to each other
write 21 %- The orthogonal complement of a subspace ¥ is % L .

The trace of A is written tr A.

The expectation of a random variable is written E{-}.

Define

i-1

(AlB)i-R[B+AB+---+A B). (1.2)

Then (AlB)né (A|B) 1is the controllable space of the pair (a,B).
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CHAPTER 2
PRELIMINARIES

2.1. _The Model

In this thesis we will be concerned mainly with continuous linear

time-invariant systems of the form
x(t) = Ax(t) + Bu(t), x(0), t20 (c.1)
y(t) = Cx(t) (C.2)

where x€ Rn, ue Rm, YE Rn, and (A,B,C) are appropriately dimensioned constant
matrices. Denote the state, input and output spaces byX% -Rn,'u -Rm, and
Y= Rr, respectively. Then we can think of (A,B,C) as fepresenting maps.
In fact, many of our results are derived from the algebraic and geometric
properties of (A,B,C) and, therefore, apply equally well to discrete systems
of the form (C.1)-(C.2). Usually we shall not state the results for discrete
systems except in discussion certain subspaces in Chapters 3 and 4. These
subspaces have very nice interpretationé in the discrete case which do not
exist for continuous systems.

Most of our results also generalize to systems in which (C.2) is

replaced by !
y(t) = Cx(t) + Du(r). (c.2")

For the most part, these extensions are straightforward. A special section
is added where necessary.
Without loss of generality, we will alwavs assume B has full

column rank and C has full row rank. We make no special assumptions
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concerning the observability or controllability* of (C.1)-(C.2). 1In fact,
these concepts are so fundamental we rarely mention them explicitly. 1In

most cases it is obvious where these assumptions apply.

a2 )
> ..
. 2.2. The GHR o 3
k g
] The basis of this thesis is a representation of (C.1)-(C.2), called B
:! the Generalized Hessenberg Representation (GHR) [1]. A system can be trans- 3
:} formed into a GHR by chained aggregation [ 1-2 ]. This consists of con- fi
g structing a finite sequence of state space transformations as follows. Let {
gy
{ Tl be an nxn nonsingular matrix such that i
1
vwhere C1 has full column rank r,- (Since we have assumed C to have full row =
-
rank, C1 is a square nonsingular matrix and T =T. We shall use this fact ;
without explicitly stating it.) Interpret Tl as a state space transformation :?
- ¥ ]
{ X = '1‘1 (2.2.2) R
e x' - ; ]
s r - 4
;‘ and apply (2.2.2) to (C.1)-(C.2) to obtain -
1
b }.' A A y B 1
e 11 12 |+ 11 u }
%l LA A2l (% ) LBa (2.2.% ‘
[ .2. .
! y ;
y= [Cl o] . N
x i
r
(] -
y
*
3 For discrete systems, think reachabiiity.
P.
q -
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This completes the first step of chained aggregation. If Alzf-o or
d(x;)-o, then the algorithm terminates and the system is in GHR.
If neither of these conditions hold, then the second step (sécond

transformation) is this.: - Let S, and T. be r xr

2 2 1°%1 and (n-rl)x(n-rl) nonsingular

matrices such that

- F12 : o
S.A T, = : = [F,, O] .
2122 15 :o 12 (2.2.4)
where ?12 is a T X1, nonsingular matrix. Define the state space trans- ;
formation . ¥
r_l‘ :
y
Sl e AR (2.2.5) B
- 0 Tz y
2
X
L L J
4
Then (2.2.3) becomes ph
[ 217 = = .3 1r-17 (= T .
y Fii Fi1 0 Fip 0 O 5 6 5
=1 ~ = ° L . .1 ~ :
y F F . 0 . o0 y G 4
"2 = l;}%.l:%}a:lﬁocn: ..... "20 + -t%o u (2-2.6) 1
o0 I 30 - e =11 A4 I 3
[%e) LA31 8310 A3z 0 A33dl*e ] (B3 |
or |
.1 17
y fln F12 ° 1Y 6 ]
2 . 2 |
RN Bl oSS TS = | A I e e .21
3 SSEE | T I AR
y A1 A3 A3ll*) LB
s 7
y ‘
L2
y = [H1 0 0] {Y
-..iu
er -
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...............................

.....................

This completes the second step of chained aggregation. The algorithm

terminates if A23-0 or d(x:) = (0, If these conditions do not hold, the

third transformation is defined analogous to the second by replacing A

12 in

(2.2.4) with A23.

A, R.+1'° or d(x:') = 0. It is easy to see the £ <n. Then each transformation
’ :

The algorithm then proceeds until on the ith step

as described in (2.2.5) will be called one step of chained aggregation.

After i steps of chained aggregation, (C.1)-(C.2) has the form

.17 - - 1
y r Fll Flz o:coocoo-? Gl
.2 . . .
A R Fa1 Faa Fa3 -, . :
X =, = . ", T, Lt X+ . u (2.2.8)
. : . .0 :
.i F o. oF Gu
y 1,1 .. 1,1+1 1
ii A .°A B
X rd i+1’1 ® & ¢ 0 S 00 s 0 e el e 1+l,1+1J I 1+1
y=[H, 0 ..uo....0)xt.
1
Note that the transformations are chosen such t:hat7l[1~'j j+l] = (0 for

j=1,...,i=-1. In (2.2.8) we identify two interconnécted subsystems; the

i-th aggregate given by

it [ F 0 o | (6,1 [o]
y 11 12 1
.2 v v . 0 : :
y 21 22 23 .ol : :
.. . . . ) : ; S
vy . . . 0 yi+ u + w (2.2.9)
. . . 0
: : Fio1,1
Lyi F. o ereeennnannn, F G I
il L'1,1 1,1 4 L 71 L
1 {

:
A
|
]
ﬂ
p

w0
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and the i-th residual given by

.1 1
X

T - Ai+1,i+1xr +(a

141,17 Ry, 1171 ¥ B

i

v F %

If in (2.2.8) Fi i+1"° then chained aggregation terminates And we gsay that
’

the system (2.2.8) aggregates.

(2.2.10)
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CHAPTER 3

GEOMETRY OF THE GHR

3.1, Introduction

In this chapéer we present the first set of fundamental results
concerning the geometrical interpretation of the GHR. 1Imn particular, in
this chapter we will be concerned with open loop geometry of the GHR. That
is, throughout this chapter we will assume that u(t) =0. We identify a
nested set of subspaces that are intimately related to the observability
structure of the system (not surprisingly). The second section is devoted
to an algebraic characterization of these subspaces and their relation to
some system invariants.

In the third section we introduce a topological characterization
of these subspaces. This is based on some results by Stewart [26] so we

review them there. Basically, this analysis allows us to relax the subspace

containment condition which permeates geometric system theory. For example,

a system is unobservable if 7[C] countains an A-invarian: subspace. Our

characterization allows us to say that the 7[C] is near an A-invariant

subspace. It is shown that this characterization 1s related to the canonical

angles between subspaces giving it a very geometrical flavor.

This analysis allows us to measure the degree of observability.
This is a long-standing problem [13-19] and we relate our measure, called
near unobservabilitwv, to several other well known measures in Section 3.4.
It turns out that nearly unobservable systems are characterized by 1) a
certain geometrical relation between observability subspaces and the A-

invariant subspaces and/or 2) separated eigenvalues. In general these two
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properties interact in a complex way to determine the structure of the
operator A. Separated eigenvalues are a characteristic of singularly
perturbed systems [27] and there is an interesting connection between
explicitly perturbed systems and near unobservability [22]. We examine
this in Section 3.5. A simple example is included in Section 3.6 to

illustrate the basic ideas involved.

3.2. Observability

In this chapter we will study systems of the form
X = Ax (3.2.1a)

y = Cx, (3.2.1b)

i.e., the observability structure of (C.1)-(C.2). The following definition

is a well-known characterization of observability.

Definition 3.2.1 [ 4]: The vector £€X is an element of .L'j, the j-th unob-

servable subspace if £ = x(0) implies y(0)=y(0)=...= y(j-l) (0)=0. By
definition, .{.’oé . c
If the system representation contains an input, it is assumed to be identically
zero for all t.

The discrete version of Definition 2.1 gives a more intuitive
characterization of the subspaces £j. We list it here for completeness.

For the discrete version of the development here, see [28].
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Definition 3.2.1 (Discrete): The vector £€X is an element of .cj if £=x(0)

and y(0) = ---=y(4-1)=0. £ 2% . a
. The following proposition gives a well-known characterization of

the subspaces £, for (3.2.1).

j .
-1 i
Proposition 3.2.2 [ 5]: £,= N Q[CA7].

3 =0

Proof: From (3.2.1b)

y(0) = Cx(0) = 0 (3.2.2)
by Definition 3.2.1. Hence,.cl-n [c]. Similarly

y(0) = cx(0) = cax(0) = 0. (3.2.3)
Since Definition 3.2.1 requires that both (3.2.2) and (3.2.3) hold, we have

L, =qn[c}nn(ca]. (3.2.4)

Induction completes the proof. o
By elementary properties we have the following corollary.

Corollarv 3.2.3 [20]:

1) £, is a subspace.

b
2) £jC£j+l.
3) There exists an 2 <n such that £jc£j+1 is proper for j< % and £2=.L‘j

for all j2> 2.
4) £J. are invariant to a change of basis in the state and output spaces.
5) 1.‘2' is the standard unobservable subspace.
Proof: The first two statements are obvious. The third statement follows
from the fact that if ‘Cj =£j+1
invariant. This implies £

then CAj.C. =(0. Hence, AL, CL, or L, is A-
J ] ] J

=£i for all i> j. Therefore, the sequence

3

must be strictly decreasing until equality holds. We have £ 2 n by the

=




8
(u
- finite dimensionality of 22 . The fourth statement is easily proved by sub-
E stituting X=Tx in Proposition 3.2.2. Let O be the unobservable subspace 1
¢ - 1f x(O)e.Cz, then y(k) (0) =0 for all k» 0. Thus .CLCL‘. Also if x(0)en ’
p then y(t)=0 V¢t implyingoc.cl. Hence, 5) follows. o -|
! By 4) of Corollary 3.2.3, the subspaces tj must be connected to a
E‘. set of invariants for the pair (A,C). Indeed, define the numbers
2
g r, =deh)-det ) 1=1,...,8 (3.2.5a)
i i i-1 ? ’

i Y=r (3.2.5b)

a, = max{a : raz,j} j=1,...,Y. (3.2.5¢)

Then the list {ai, i€r} is the well~known observability indices. For a

proof of this and a further discussion of these indices see Wonham [3 ].

The number £ is sometimes known as the observability index [3 ].

{ The unobservability subspaces are intimately related to the GHR.
F After i steps of chained aggregation let the system be represented as in
§
(2.2.8). Then we have
Theorem 3.2.4 [ 28 ] .
3 1
>. - -
! [ 0 ;
. k
y) ;
o £J,=Sp i , j=1,...,i=-1 |
s y 3
i 1
x A
. r J
‘@ [ 0
= = =
: Ly=spl ] v Ly =T i)
b _.‘(r
! 1
b
! o -
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Proof: The proof is simply a specific basis version of the proof of

Proposition 3.2.2. The result is trivial for i=1 because of the representation

of C in (2.2.8). Suppose the theorem holds for j=1,...,i. By Corollary 3.2.3,

we know that £i+ ], then 91(0) #0.

lc.ti. 1f x(O)e.Ci and x(0)€7l[l:‘i’i+l

Since N(F ]#0 for j=1,...,1 (by construction of the GHR), it follows

j,j+1
that

o (1+1-3) oy o (1-3) -
¥ © = Fyy g, 140-97 (0)#0 i=1,...,1. (3.2.6)

Thus, by Definition 3.2.1, x(0)¢& Ii On the other

s or N[F

+1 1,i+10° L1

hand, if x(0)€?[F 1], the same argument shows y(j)(O) =0 for j=1,...,1,

i,i+

and 'ci+1cn[Fi,i+1] implying ‘°1+1’an 1. o

i,.+1
The GHR is a particular basis which explicitly displays the sub-
spaces £j’ j=1,...,2, one subspace being identified at each step of chained
aggregation. In particular, it will display the unobservable subspace. This
has lead some authors [23,24] to suggest chained aggregation with orthogonal
transformations be used to compute observability subspaces.
The last remark made implicit use of the fact that the transforma-
tions in chained aggregation are not uniquely defined. In fact, some of
the work below is aimed at using this nonuniqueness in various ways. What
then is unique about the GHR? The following‘corollary is so easily proved,

the proof is omitted.

Corollarv 3.2.5 [29]: The numbers rj, defined in (3.2.5a), are the dimensions

a

of the diagonal blocks Fj Ik j=1,...,1i.
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The subspaces Li supply the foundation of the geometrical analysis

that follows.

3.3. Near Unobservability
3.3.1. Norms

In the last section, we introduced an algebraic characterization
of the subspaces £i. It would clearly be useful if a topological charac-
terization could also be provided. The GHR provides an approach to this

problem. If in (2.2.8) F =0, then £ -£+

i i+l

I is "small," £i should be "near"

1,141 and £i is an A-invariant

'
unobservable subspace. Thus, if IF1,1+1
an A-~invariant subspace. This idea was recently suggested in [30] but
no system interpretations were given.

To make these qualitative judgments, we need to introduce norms

into the system representation (3.2.1). To motivate our approach assume an

L,-norm on the space of output functions {y(t), 0<t<T}. Then

T T . T
iy12 = [ yTeoryeyde = x @) ([ e® cleettarx(0)
0 0 (3.3.1)
= xF (0)K(T)x(0)

where K(T) is the well-known [31l] observability gramian. Since K(T) is a

positive semidefinite matrix, (3.3.1) provides a direct relationship between
the initial states and the corresponding output functions. 1If Ix(0)l =1 and
iyl is "small” then x(0) is said to be "weakly" observcble [10,17,32]. More
generally, we can characterize the degree of observability via the properties
of K(T) [10,13,16,17,32]. However, we will not pursue this approach directly

because of the difficulties of computing K(T).

[
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The above ;nalysis shows there is a direct relatiomship between
the natural norm on the space of output functions and the natural Euclidean
or 2-norm in the state space R®. Our approach is to analyze the subspace
geometry with operations which preserve the two natural norms and the
relationship between them. Thus we restrict the transformations in chained
aggregation to be orthogonal state space transformations. These operations
yield systems algebraically equivalent to the original system so that all
the usual algebraic information is preserved. All norms om R® are the two-

norm
Ya
I = +(x'x)’ (3.3.2)
and its subordinate operator norm

1Al = sup 'I‘:::' . (3.3.3)

X

Both of these norms are invariant to orthogonal transformations on R® as are
the essential properties of K(T).

To summarize, we shall measure ''mear' unobservability by measuring
the '"nearness" of £l to an A-invariant subspace ¥. The measure will be
given in terms of certain properties of an orthogonal matrix which trans-
forms £l into” . These transformations preserve the natural norms on the
output function space, the state space, and K(T). However, K(T) need not
be computed. The exact relationship to K(T) will be investigated in
Section 3.4.

Implicit in the selection of the norms above is the issue of

scaling. Since we are not using limiting arguments, the relative magnitudes

of various quantities are meaningful. For instance, by properly scaling a
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basis and then choosing the basis~dependent norm (3.3.2), we can say the
initial conditions are evenly distributed over the unit ball. This raises
a difficult and unsolved problem which we will not address here. It is
only our purpose to set up a framework im which this problem is easily
incorporated (if there is one). In any case, it should be noted that this

question plays a fundamental role in the use of the theory below.

3.3.2. Computations

To provide a precise characterization of the distance between
certain subspaces, we will use results by Stewart (26]. There, in the
context of numerical analysis, Stewart characterizes the nearest A-
invariant subspace by describing the properties of a rotation needed to
carry the given subspace into an A-invariant subspace. To apply those
results to our problems we first suppose that (3.2.1) is represented, after

one step of chained aggregation (using an orthogonal transformation) as

- ~ -
Yy ) Al A2 y
X A3 A& Lxr.
o (3.3.4)
y
y='[Cl 0]
X
. I d

In this representation, the natural basis for R" yields an orthonormal basis

for £, and £§. That is

1
Ir 0]
L = (3.3.5)
0 I
n-r
1
is a basis for R" such that the first r columns span £1 and the second n-r

columns span Ll. Now an algebraic characterization of Stewart's notion of
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nearness [26] is expressed as :
V= [vcv'l = LF (3.3.6)
where R[V] = ¥ is an A-invariant subspace and P is an orthogonal matrix j
given by 3
- R
_ [1, o [aseeh & 0 w
P = -l (3.3-7)
' 1 0 +2%p) " 4
=T =
§
where the square roots are the unique positive definite square roots of the .
indicated matrices. Thus P rotates £ tov. /
A useful geometrical interpretation enters through the use of -
canonical angles.
Definition 3.3.1 [26,34]: Let Y and ¥ be subspaces of R® with orthonormal -
bases U and V, respectively. Let 9 be the singular values of UTV. Then 7
the canonical angles between U and ¥ are the numbers
61 = cos ci. o 1
To apply this definition to .L'l and %, we first obtain orthonormal bases from f
(3.3.5)-(3.3.7). Thus we have 1
-1 '
LV = (40'R) . (3.3.8) -
i
Let P have singular values gy Then the canonical angles between £1 and ¥ ‘
are given by
- -la '
8, = cos L(L+a%) 2. (3.3.9) ‘
i i .*
It follows that ;
o, = tan si. (3.3.10) )
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By choosing P in (3.3.7), P rotates £, to a subspace ¥ and the canonical

1
angles are directly related to o(P). For future use, let

O = diag(ei)

(3.3.11)
cos O = diag(cos ei)
and similarly for sin©® and tan©®. Then
IPl = ltan O
1P(+P™R) 71 = 1sin Of (3.3.12)
12+T) 1 = Isin ol

See [26] for a more complete geometric discussion.
Thus far we have translated the problem of finding subspaces near
£1 to choosing a matrix P in (3.3.7). If the rotated subspace ¥ is A-

invariant, then‘)fll A7(C%). 1In the matrix form (3.3.6)
T
VCAV =0, (3.3.13)

Substituting (3.3.7) in (3.3.2) and (3.3.6) and using the representation of
A in (3.3.4), (3.3.13) becomes

(1+PPT) 7* (A.P-PA. +A.-PA.P)(I+PTP)
17 "FA, T AyFA,

Vza

0. (3.3.14)

Thus, if ¥ is an A-invariant subspace then P in (3.3.7) must be a root of a

Riccati equation (3.3.14), which we write as

All’-PA4 = PA3P-A2. (3.3.15)

The exact solution of (3.3.15) is known [35], but it requires knowledge of
the eigenvectors and eigenvalues of A. Instead we will use a bound on P

given in terms of the coefficients of (3.3.15). Stewart [36] has done a

B A A N Seam AR Matets A

o gom.n 9 8 o

ol Sl




Ty

careful analysis which goes like this. First note that
T(P) = AP-PA, (3.3.16)

is a linear operator in P, Hence, if A3 is small enough the quadratic term
in (3.3.15) can be neglected and we obtain a bound from the approximate

linear equations

1

'm <IT 1-1A0. (3.3.17)

The exact statement is as follows:

Theorem 3.3.2 [26,36]: Let &= T-lﬂ -1. Y'ﬂAzﬂ s n-[|A3u . Then if

. % (T.1)
[\

there exists a matrix P such that

Pl < %1 ) (T.2) @

We note for future use that if A3-0 ((3.3.15) is a Lyapunov equation) (T.1)
is always satisfied so that bound (T.2) always applies.
From the preceding analysis we immediately have the following

theorem:

Theorem 3.3.3 [26]: Assume that Theorem 3.3.2 holds. Then there exists

a P satisfying (T.2) such that¥ =Q([V] is an A-invariant subspace.

Furtherrore,

A(A) = X(Al)UX(Aa)

where

1 -l
}\(Ai) = A{(1+PPT)" (Al—PAB)(I+PPT) 2

A = A{(1+2Tp) /2 (A4+A3P)(I+PT'P)I/1 .

- |
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Theorems 3.3.2 and 3.3.3 give an estimate of the nearness of tl to ¥.
The results on eigenvalues in Theorem 3.3.3 are obtained by simple algebraic
manipulation. It conveys the intuitive idea that if IPl 1is small, the
eigenvalues of A1 and A4 approximate the eigenvalues of A. For a detailed

discussion of this point, see Stewart [26].-

3.3.3. Subspace topology :

Thus far we have characterized the relation between two subspaces
£1 and 7 in terms of a rotation. These ideas are related to the following

subspace topology.

Definition 3.3.4 [6]: Let % and ¥ be subspaces of R". The gap between Y

and ¥ 1is the number

TU,r) = max{ sup inflv-ul, sup inflv-ul}. o
lul=1 ve” ivi=1 ve Y
e Y vET

Since we are using the two-norm, the gap function 7 is a metric which also
preserves dimension. See [ 6] or [26] for further properties. The gap
function is related to canonical angles as follows. Let the canonical
angles between Y and ¥ be ei.

Proposition 3.3.5 [26]: T (U,Y) = §sin OF. n

Hence, if the canonical angles between two subspaces are small, they are
close in the gap topology.

With this background, we are ready to introduce and discuss near
unobservability. Let €, 0 be given.

Definition 3.3.6 (33]: 1If for any i< 2

rwiﬂ7$€o
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for some A-invariant subspace ¥, then we say the subspace ‘i is nearly
unobservable. ) o
Selection of the number € simply means that in the context of a

particular problem, we are judging the subspaces £, and ¥ to be close in the

i
gap topology. What is small involves a number of issues including scaling.
However, 38 we discuss near unobservability in the context of other observ-
ability measures, as we will do below, various criteria for judging
"smallness" will emerge.

At first glance, Definition 3.3.6 appears to be hord to use because

of the abstract nature of all quantities involved. However, from Proposition

3.3.5 and (3.3.12), we have that
T(ﬂi,7) = jgin O < Itan QI = IPS. (3.3.18)

So it is enough to estimate IPl. In fact, the discussion leading up to
Theorems 3.3.2 4nd 3.3.3 set up the framework for estimating t(ﬂl,vﬁ. The
calculations are given in Theorem 3.3.2. The estimates are obtained from
submatrices read off from the GHR. Thus by imposing some more structure on
the GHR, we are able not only to explicitly identify the subspaces £i' but

also estimate the distance to A-invariant subspaces directly from the GHR.

3.3.4. Interpretations

Assuming that (T.l) is satisfied, IP§ (measuring the nearness of
Ll to? ) depends on two quantities, y and § which we will discuss in turn.
First, we will see that vy is a measure of the deviation of £, from ¥. If

1

£1 is an A-invariant subspace, there exists a matrix B such that

ALl = LIB' (3.3.19)
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If Ll is not A-invariant, for each B we define a residual matrix R as

R = ALl-LlB. (3.3.20)

Consider the problem of finding a B to minimize IRI. 1In the basis of (3.3.4)

we have

i =] 2. (3.3.21)

Clearly, B=A_, minimizes IRl and IRl =1A_I =y, Note that the dual of this

22 2
problem is Aoki's aggregation problem [ 8]}.
Consider next 6. It is well known [37] that the spectrum of T(P)

is given by

AT) = {A-2"|2re AA ), AT EN(A,) ) (3.3.22)

So T is invertible if and only 1if A11 and A22 have no eigenvalues in common

(which we shall assume throughout this thesis). It is also seen that

1,-1

§ = AT "1™~ = daf IT(P)I 3.3.23
5 TR ( )

from which it follows that

§ < min|A(T)]|. (3.3.24)

This shows that if the eigenvalues of A11 and A22 are poorly separated,

then the bound (T.2) is not small. The converse is not necessarily true,
because the inequality (3.3.24) may not be tight. The exact relationship
between A(T) and § is not well understood, it being similar to the relation-
ship between eigenvalues and singular values of a real matrix. However, if

Al and A& are diagonalizable, we have the following result. Let Si be a

A
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complete system of eigenvectors for A:I. and define
k(s,) = 1S, 0-0S1. (3.3.25)
Proposition 3.3.7 (26]:
s> min|A(T)| = D min|A(T)|. g
x(8,)x (S,) /ain(r,n-r)

In the special case when Al and A4 are Hermetian, S1

Hence K(Si)-l and § is directly related to eigenvalue separation. Following

-is a unitary matrix.

Stewart [26] we will use the notation § = sep(Al,Aa).
In this section we have discussed an explicit measure of the
distance from £1 to an A-invariant subspace ¥ using the GHR. Because of

the lower block Hessenberg structure it is trivial to extend this amalysis to

any subspace ti.

3.4, Weak Observability

3.4.1. Observabilitv gramian

In this section we will relate near unobservability to more well
known notions. We begin with the widely used measures of the degree of
observability via the observability gramian [10,13,16,17,32]. We will restrict
ourselves to systems (3.3.4) which are stable and assume T= in (3.3.1).

In this case K(=) & K is the solution to the Lyapunov equation

KA+ AR = -ClC. (3.4.1)

The measures on K may be interpreted as follows. Let the singular value

decomposition for K be

Sl e
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[l |

[U Uzl = K (3.4.2)

1
T
U2 0 )

i
Definition 3.4.1: 1If

where I, are real diagonal matrices with elements ci.

1

for all j,j', then we say the subspace142=-a[uzlis weakly observable. o
By introducing the topology of the last section, we could extend this notion
by including all subspaces in the neighborhood ofi(z. Also, other measures
on I; and 22 can be used.

Assume that the system is represented as in (3.3.4) and that K
has been computed from (3.4.1) with respect to the basis in (3.3.4). Consider
V=P in (3.3.7) to be a state transformation

- P -~

¥ Iy P P
= B =| 11 12 ) (3.4.3)

-

X, X Po1r P2 r

«

)

Furthermore, assume that £1 is nearly unobservable and that P has been chosen
in (3.4.3) to carry £l into an A-invariant subspace ¥ . Note that from

(3.3.7) and (3.3.12), IPllﬂaﬂcos o0 and iPlzﬂ-Hsin ol . Since £l is

nearly unobservable, IP 2" is small.

1
Compute
A 0
PFlap=| 1 [=X (3.4.4a)
A3 Aa
-a =_ A/
CcP [ClP11 C1P21] (o} (3.4.4b)
PTKBA + ATPIKP = -CIC (3.4.4¢0)
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where
K K
Pgp=| I 2]ag. (3.4.5)
K K
2 3
Then from (3.4.4c) we obtain
- =T T T
KlAl + All(l -Pllclclpll (3.4.63)
- =T T .T -
KZA4 + A1K2 = -pllclc1P21-A3x3 (3.4.6b)
- < T T
K.A, + A K, = -P_.C.C,P (3.4.6c)

3% 473 2171717 21°

What we would like to show is that K is nearly a block diagonal
matrix and that the spectra is separated. This implies that ¥ is a weakly
observable subspace and so relates near unobservability to weak observability.
The approach is to apply Theorem 3.3.2 to (3.4.6). This will give conditions
under which the spectra is separated and K 1s almost block diagonal.

Motivated by this observation we apply Theorem 3.3.2 to (3.4.6¢)

to obtain

21C,1 2)54n 012
66

IK.I <

3 (3.4.7)

5§ = sep(ﬁz,—x

4 4)'

Let §4 be a complete eigensystem for A Then if XY§4)==1, we have from

4
Proposition 3.3.7 that 64 is approximately twice the smallest eigenvalue of

Ka. So if the eigenvalues of A, are all large and since !sin 6l is small,

4
it follows that HK3ﬂ (= largest eigenvalue) is also small.
The next step is to bound the lower eigenvalue of Kl to show that
the spectra of K1 and K3 are separated. We can do this using the results in

I PRI A PSP U W ORI YL

iadbal s A il
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(38]. To this end let g(X) denote the smallest singular value of X. Then
for (3.4.6a) we have

-l
a(c ey 7*)?
21

]
4
;
E
3
i
<

a®) 2 (3.4.8)

Thus if lKll is small (implying small eigenvalues) and (3.3.4) is nearly

9

unobservable (implying oi(Pll) =oi(cos 9)=~1), then g(Kl) will be large. ]

Taken together with (3.4.6), this implies a separation in the spectra of Kl

and K3. It follows from Proposition 3.3.7 that 6K==sep(Kl,K4) will be large.
Finally, we compute a bound for K Again we apply Theorem 3.3.2 1

to (3.4.6b) to obtain

2
$14

2

IR < (204 11K 1 +1C. 0 1sin Ol Icos o ]

3 [
(3.4.9) -

§ = sep(Ki,—K ). 8y

i

4

This bound contains some interesting information. For HKZH to be small we 1

must have: (1) (3.3.4) is nearly unobservable (Isin Gl is small), (2) 614

is large (x(TAl) and x(za) are separated). (3) IK_I is small, and (&) BA_I

3

is small. The first two conditions entered into deteimining the near

3

unobservability. The third condition relied on the fact that 34 coﬁcained

large eigenvalues. Hence, the separation between A(Xl) and A(KA) must

° occur in a special way. Finally, if ﬂA3ﬂ is small then (3.4.4a) is almost

mead e s e

1
block diagonal. This is interpreted as meaning that ¥ 1is near an A-

Pp———

invariant subspace (apply Thecrem 3.3.3!). This imposes additional

pap—y

® structure on the eigenstructure of A and represents the difference between

weak observability and near unobservability.
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4.2. Trajectory Amalysis

Another way of interpreting near unobservability is to consider
the evolution of the state. Intuitively, we can think of the state
evolving on two A-invariant subspaces, 71 and 7/2. Furthermore, suppose ¥ 2
is near £1= 7C]. Thus, the projection of the states in ‘1/'2 on the output
is small so that they should be '"nearly unobservable."”

We can make these ideas precise by again considering the trans-

formed system in (3.4.4a),(3.4.4b). Given an initial condition, the states

evolve as
th
g(t) = e = §(0) (3.4.10a)
Z t t Aa(t 1) _ Kl(r)
x (t) = e (0) + j e A3e §(0)dt (3.4.10b)
Thus, from (3.4.4b) the output evolves as
y(t) = Cl(Plly(t)'!-Plzxr(t)). (3.4.11)

From (3.4.10) and (3.4.11) we can get an estimate of the contribution of

ir(t) to the output y(t). First, let

i E
= ) (—=—L i = 2
A x( 3 ), i=1,4. - (3.4.12)

Then it is shown in [39] that

Kit Aot
le ) <e i=1,64. (3.4.13)
Now
A, Ayg(E=0) xlmr
px_(E)) < e u< (O + 1Al uy(O)uf e 2 dt

3

ﬂA 10y (0)l Aémt Al t

g (o>n+—r————— (e "™ -g "By, (3.4.14)
im An

A

‘A B oo a4 b

. [N .
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Combining (3.4.14) with (3.3.10) we have

A, t A, t

Im" L p 1[e 4™ 1%_(0)1

ly(e)l < ICll[IPlll-l§(0)le 12

+ o e 4m
l 1m 4m|

The estimate in (3.3.14) is good for each value of t whereas the analysis

1A -ly0)t A, t At
3 le 4™ e 171, ' (3.4.15)

by observability gramian is the integral of the square of (3.4.16).

This bound again shows all the structure of weakly observable

systems.

3.5. Singular Perturbations

It is clear that near unobservability is closely related-to time

scale separation. It enters through the dependence of § on eigenvalue

separation in Theorem 3.3.3. As an application of the ideas in the previous

sections, we will discuss near and weak observability in singularly perturbed

..

Parr T

s systems. In this section we will consider systems of the form
r . :
; X Al A2 X {
e = , (3.5.1a) 4
> A3 Aa :
ﬁ z = —1llz ]
€ € h J

{ ]
v [ ]

y = [C c,] (3.5.1b)
F. 1 2 L 2 J 4
i
L
% First, we would like to compute the asymptotic eigenspaces of the
{ slow and fast modes of (3.5.la). We use Theorem 3.3.2 to see how near the ;
Y d
; eigenspace of the fast modes is to :
I i
'® 41
3 |
|
b
’ 1
g . . — e
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0
?ff = . (3.5.2)

From Proposition 3.3.7 we have
A
4 1 1
§, = sep (Al, =) = < sep (€A ,A,) =<5,
(3.5.3)
1
L DleAi-kjl

for some xie A(Al) and AjeA(Aa). Then from Theorem 3.3.2 (T.l) becomes

1A 1141 2
J% < —2 3 .= +0 as €~ 0. (3.5.4)
5 € 62
€ o

So for small enough ¢, Theorem 3.3.2 applies and P is bounded as

Pl < 3—15%1 e+0  as €+0. (3.5.5)
€ [o]

Hence, the fast eigenspace tends to ?/f (3.5.2) as €+ 0 by Theorem 3.3.3.
A
4
Also note that from Theorem 3.3.3, the fast eigenvalues tend to >\(—€—) since

x; PH - 0‘
To estimate the slow subspace 'Ifs, we chose P to place a O in the
(2,1) block of (3.5.1a). The necessary condition (3.5.4) still holds so that

an estimate for || P || is

A

el < 1430

= 1430 = 14045 ¢ 0 (3.5.6)

o %o 1| Aa]]

£
s

<

O

]
halat.

AL ]

=4
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from (3.5.3). From (3.5.6) we might guess that

pT -zt A, (3.5.7)
so that
: 1
Vg™ sp | (3.5.8)

and the slow eigenvalues are tending to A(Al-A2A21A3) from Theorem 3.3.3.
(We are rotating into the subspace spanned by the first r polumns of P in
(3.3.7). This requires that Theorem 3.3.3 be modified as A(A)-A(Al-AzPT)

u X(Ay+PTA2).). This is confirmed in [27].

Now if A(Ao) and AC% Aa) are both stable for small enough €, can
these results be related to weak observability? 1In fact, we can apply the
analysis of Section 5.4 almost directly. Now C in (3.5.1b) replaces C in
(3.3.4). Then C in (3.4.4b) becomes

_ -1 -1 -1 -1
C = [Cl(I+PPT) /2+C2P(I+PPT) £ ClP(I+PTP) /’+c2(1+PTP) 21 (3.59)

This causes the bound for NK3H to become

e a2 aa ok a4

. |
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1
3 )
!

1K1 s 2 (e Ystnot?+ 21€ 0 -1¢ 1 s1n of -lcos of +1c, ) 2cos o1

] 4
“ 2 2 2
-2 [1C,011s8in O +IC_llcos 6I]2. : (3.5.9) Iiﬁ
66 1 2 e
-4
It is easily seen that § T as €+ 0 so that eventually the bound in (3.5.9) " e

] becomes useful. However, a strong component of the fast modes in the output
b (lCzl large) requires that the fast modes be sufficiently fast. k
:‘ The lower bound on the eigenvalues of Kl is only increased by the -4

presence of the fast component in the output.
From (3.4.9) the bound on KZ becomes '

3 3
s IR0 < <= [20A0-1K1 + {[1C.12 Lcos Of -1sin Of »
X 2 s 3 3 ] .
- 14
3 +1¢,11C, 1 [1cos Ol +1sin 6H]}]. (3.5.10) : 1
ﬁ- It can be shown that X3 behaves as %-A3 as €e+0. It 1s also easily seen ?
that 614-»~ as €+0. In fact, it is not hard to show that t
1
n33| -1 .
T 1A, "1-1A0 as €=+0, : (3.5.10) "3
14 4 3 -

PR R

From (3.5.8) we know that IK3[I +0 as €+ 0 so that the first term on the RHS o

of (3.5.9) goes to zero as ¢+ 0. Note, however, that the convergence is much
faster if 7rsuff or nearly so. This asymptotic limit is a property of

(3.5.1) for e=1. '?

The second term in (3.5.9) also goes to zero as £+ 0 because

lcos Gl and lsin &l are bounded by 1. However, the presence of the fast

variables in the output again slows down the convergence because this term

contributes a constant. Indeed, if IC

|
4
b

2“ is large, fast dynamics are again

g - v v
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indicated for the fast states to be weakly observable. Similar results were
obtained in [40] in a closed loop context.

The analysis in the last two sections clearly shows the connection
between near unobservability and time scale separation. Since the computa-
tions do not depend explicitly on €, this may be a useful method for identi-

fying time scales.

3.6. A Simple Example

In this section we will consider the following second order

system

4 a b y
% 0 d x
4 L J
y - [1 o] 'y' (3.6.1)
X
L

which is already a GHR. Then if follows from Theorem 3.2.4 that

(3.6.2)

The eigenvalues are Al-a and \zad with respective eigenvectors

Y W P

kol

s v

IOVORRUY B

Py

L.
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r ]

r, = 1, (3.6.3a) "
0

l

b | "

= - b

| 1 2

.

PO |

To apply Theorem 3.3.2, first note that transformation P in (3.3.7)

is given by '§
N “(+p?) "2 0o - 3

Tl 1 0o w2 il
] :
‘ - (3.6.4) R
3 cos 8§ sin 8 3
._ ) ~-gin 6 cos © i
I - :

Y where § is the angle between the x,-axis and the second column of P. :;

‘ Now in this example the quantities in Theorem 3 3.2 are computed as :i

E. follows: s

{ :

s § = |d-a|

p .o

-

¢ n=0 (3.6.5) .
4
Y

| (T.1) Lao<t :

.- s ]

g

f‘ I ' ! = 2=bl N

: (T.2) e li=tel = g5 ;

i

k. 1

[ ¢

:_

I
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Here (T.1l) holds trivally. (In general, (T.l) applied to a second order
system is just the condition that the system have two real roots.) Now
compare r, in (3.6.3b) to the second column of P in (3.6.4) to the bound (T.2)
in (3.6.5). This clearly shows the two characteristics of a nearly unobserv-
able system; i.e., a system in which rz is close to 31. The first is the
geometric relationship between r, and £, which is measured by ibl.

This quantity is unrelated to the eigenvalues and, in fact, can be altered

by scaling. The second characteristic is the time scale separation which

is measured by |d-a|. As is well known, this quantity is unrelated to the
spatial distribution of the eigenvectors and, in fact, is invariant to
scaling. Here enters the connection to singular perturbations.

To discuss weak observability, consider the system

el n®.

y o

P Y

[~ ) :
} y a € y A
} o
X b d X
| L
t (3.6.6)
5 — — B
p y
{ y = [1 0]
b X
X L
? -
1- where ¢ is small., If €=0 then the eigenvalues and eigenvectors would be
d-a i
f‘ b
= = =~
{ «\1 a, rl » ;
}
: 1 J
; (3.6.7)
° _ ‘
[ 0 -
[ 1 ‘
4
L -
]
L P P —
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By continuity arguments, for small ¢ we can consider (3.6.7) to be

approximations to the true quantities.

Clearly, the system is nearly unobservable for small ¢ since
r, is near 81. Note, however, that if b is large then r, is also near .1:1.

It is in exactly this situation that a nearly unobservable system is

not weakly observable. This can easily be seen by computing the observability

gramian from (3.4.6). Using the fact that Pll = cos 8 and P21 = gin §

we have

K - sinze . = sinze
3 ?Az 2d
- cos20 - cos®o (3.6.8)
1 Zkl 2a
g(sinze)

kz = a¥d (cos 8 sin 0 + AZ ).

Using Theorem 3.3.2 we can estimate p as

€
PST7 - (3.6.9)

Next, doing the computation in (3.4.4a), we have

5 b +ap-dp-ezg
T2 2
1+p l+p

. (3.6.10)

To review, we used the transformation in (3.6.4) to measure the
near unobservability of (3.3.6). The estimate cf p is given in (3.6.9) which
we assume is small because ¢ is small and a-d is large. Because p(=tan®6) is

small, in sind =0 and cos3 =1. Then from (3.6.8) it follows that k3 is small

-

PRSI S )




small and k

able systems,

small.

system will not be weakly observable. In this case, (3.6.7) shows that r

Thus, k

close to r,.

2

38

Next note that b=b from (3.6.10) and sz'd because ¢ is

in (3.6.8) will not be small if b is too large and so the

1

2 This is the geometric structure of systems which are nearly

unobservable but not weakly observable.

1 is large. This 1is one of the characteristics of weakly observ-

is

PR




CHAPTER 4

CLOSED LOOP GEOMETRY

4.1. Introduction

It is obvious from the GHR (2.2.8) that the open loop unobservable
subgpaces Lj can be modified by state feedback [28]. 1Indeed we shall base our
design procedures on appropriately modifying these subspaces. In this

chapter we shall investigate the role of the subspaces £, in a closed loop

b
setting. This involves two kinds of subspaces: (A,B)-invariant subspaces
[ 3] associated with the state feedback law Section 4.2. and (C.A)-invariant

subspaces [22] associated with the observer, Section 4.3. Two applications

are included in Section 4.4.

4.2. (A,B)-Invariant Subspaces

4.2.1. Definitionms

In this section we will study the geometry of discrete systems under

the action of a state feedback law, i.e.

x(k+1l) = Ax(k) + Bu(k) (4.2.13)
y(k) = Cx(k) (4.2.1b)
u(k) = Lx(k) + v(k). (4.2.1c)

The reason for working with discrete systems is that we will obtain very
nice dynamical interpretations of certain subspaces which do not exist for
continuous systems. However, the results hold for continuous systems and
there is no loss of generality here.

With respect to the closed loop system (A+BL,B,C), defined in

(4.2.1), we have

PRSP S PO
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Definition 4.2.1 [28]: The vector £€ZX is an element of the j-th L~

unobservable subspace, £L, if x(0)=§ and v(Q) = --- =v(j-1) =0 implies

3
y(0) = +--=y(j-1) =0. By definition, .ci‘;x. a
Note that £§ are defined with respect to a fixed L. For different feedback
laws we obtain different sets of subspaces, £§. Indeed, if L =0 we obtain

L
3

satisfy the same properties as in Corollary 3.2.3, 1)-4). Property 5) is

the unobservable subspaces of Section 3.3.2. The subspaces £, clearly

modified as follows:

Corollary 4.2.2: tt is an (A,B)-invariant subspace in 7][C].

Proof: From the proof of Corollary 3.2.3, it follows that £§ is an (A+BL)-
invariant subspace which is exactly the definition of an (A,B)-invariant
subspace. Also, .L‘I;Cﬁ'[C] since by Corollary 3.2.3, 2),' .CtC.Ci's?z[C] (from

Definition 4.2.1). a

4.2.2. Maximal L-unobservable subspaces

We can characterize the subspaces £§ by describing the effect of

the control on the subspaces £j. More precisely, we will characterize the

effect of the control on the super-diagonal blocks Fj,j+l in the GHR,
because these blocks govern the relationship between £j and £j+l' We will
first describe a set of £§'s which we show below are in a certain sense
maximal. From properties of these subspaces we will derive other sets of
£¥'s.

]

The procedure starts by applving one step of chained aggregation

to (4.2.1). The resulc is

EYERE

1
]

p.
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y (k+1) F F G
I I S S VA S P

Ay Ay By

L e, (4.2.2)

x;(k+1)
y(k) = (8, 01xt (k).

We can identify the control affect on the information structure of (4.2.2)

by identifying R[Gll and ﬂ[Gll. To this end, there exists nonsingular

matrices S, and V., such that

1 1
G 0
11
slclvl [ ] (4.2.3)

where all is a mlme nonsingular matrix. We embed S1 in the nxn matrix

Tl - (4.2.4)

y y
=T, . (4.2.5)
r r

where the partitioning in (4.2.6) is compatible with (4.2.3). Applying

(4.2.5) and (4.2.6) to (4.2.2) yields

st

R

"
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(. Tl ) ——_— = T
3 oD | TR0 F, [, o
. 2 - . 7 (k) i, (k)
3 Foet) | = | Fpy - Fpy +| o o | (4.2.7)
ﬁ . . e e e e x;(k) IR | L)
F!! | X (k1) | Ay | Ag) ] [ B33 Bay.
- [ F(k)
! y(k) = [B, : 0] .
: -x;(k)

{ We can further isolate the effect of the input on F12 by defining
4 - - - -
1 0 o |[5*] [+
m
1
0o I o [|§%]=]5> (4.2.8)
m-m
1
W 0 x| x
b 1 n-mJg rJ . T J
==1
W) = "By
Applying this to (4.2.7) we have
C_1 1 s . = =
F (k+1) F, 512T G,, O ]
} : . -
4 _2 ~ ¥(k) ul(k)
§ Fokt1) | =) F - F, +1 0 o || . (4.2.9)
- . x' (k) u, (k)
! ey e oe . cso r e e e . 1
& | X (A1) [ [ Ay L Ay | 0 B3y
- y (k)
y(k) = [Hl . 0] .
X' \k)
4 r
®
E Equation (4.2.9) shows explicitly how the control affects £1 and
£2. First note that £i==ﬂ[c] (from Definition 4.2.1) for anv L since the
® state feedback does not affect FlZ which defines £2. In particular, note
that we can choose LIZ such that
{ F G L* = 4.2
F12 + Gllle 0 (4.2.10)
o
1
L - dastttteetesihndenndumiing shasdessnihe
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since 511 is nonsingular. Then define the feedback matrix
*
P Rt E R

Ly Lo

(4.2.11)

where the unstarred entries are arbitrary. Using (4.2.11) and (4.2.9) with

Definition 4.2.1, we have

LT 4 (6.2.12)

Because of the construction of (4.2.9), the subspaces in (4.2.12) are
maximal (with respect to inclusion) of the subspaces £i i=1,2 for all

possible L's. Henceforth, we shall denote these maximal subspaces by L;;

*
ie., £= 8 p*,
1 J
If in (4.2.9) 17'12=0, then £I=£* and we are done. If ?12#0, then
we repeat the algorithm above on (K27’B32’F12) to identify L;. This includes

one step of chained aggregation plus transformations (4.2.4), (4.2.6), and

(4.2.8). We shall call this algorithm Modified Chained Aggregation (MCA).

At each step the computations are embedded in appropriately defined state or
input transformations so that the algorithm produces equivalent system
representations. As described above, this algorithm was first presented in
[61]. %ee also [28.29,42].

It turns out that the subspaces f; are well known. Consider the

following definition.

ot

T 9
L
9
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Definition 4.2.3 [4,20]: The vector £€EX is an element of the j-th weakly

unobservable subspace, ¥, 1f x(0) = £ implies that there exists an input

J

sequence u(0) = -++ =u(j-1) such that y(0) = -..=y(j-1)=0. By definitionm,

v &2, . )
o

Proposition 4.2.4 [28]: z;-?rj.

Proof: We will establish Proposition 4.2.4 for j=1,2. Induction will

complete the argument. From Definition 4.2.3 we have ?/‘1-72[C], hence the

*
2°

g, (0) LY %' (0)
u(0) =[-1( )] -[ 12°r J © (4.2.13)
ul 0 0

*
12

forward computation in (4.2.9) yields y[0,1]=0. Therefore, .c;c?rz. On the

result holds for j=1. Now suppose §€£L Define the control

where E=§1’_(0) and L7, satisfy (4.2.10). Then since 6672[1:‘12], straight-
other hand, suppose Eé.!:;. Then either y(0) # 0 or ?2(1) #0. If the latter
holds y(1) #0. In either case, Definition 4.2.3 fails no matter what control

is selected. It follows that 'VZCJ: This gives the result. o

*
2

It has been shown [20] that 7h==7* where 7* is the supremal (A,B)-
invariant subspace in7[C] [ 3]. (Indeed, this result can be proved using
the construction given above.) Thus Proposition 4.2.4 serves to connect the
subspaces £; to the well known subspace r*.

The subspaces 75 have been used [20] to connect several well-
known algorithms [3,21,25] and so relates these algorithms to MCA. Of these
algorithms, [25] is closest to MCA in that it uses only input and state
space transformations. However, this algorithm was presented in a numerical,

not theoretical, context. Furthermore, all of these algorithms identify onlw

L‘}"s. We shall use MCA to identify other sets of L‘g"s.
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4.2.3. Generic cases

When MCA terminates, the system (4.2.1a)~(4.2.1b) will always have

the representation

¥ (k+1) ) A, Cp F y(k) ] . BG 0 u(k)
x, (k+1) B Apflx ] [0 B [[ud (4.2.16)
5]
y(k) = [H1 0]
Lxr(k).

with the properties that 1) ?2[G111=0 and 2) a[CR]CR[Gu] (so there exists
state feedback to cancel CR)° We shall frequently refer to this system
representation below.

Not every system displays all of the structure in (4.2.14). There
are three basic variations which can be illustrated nicely by considering the
generic results of MCA. To do this suppose that the first transformation of

MCA is selected as

c c
T, - [ 11 12} (4.2.15)
0 I
C=10C); €yl

*
whera Cll is an rxr nonsingular matrix. Then it follows that
Gl = CB (4.2.16)

where Gl is found in (4.2.2). Generically the product C3, an rvm matrix,

has full rank. There are three cases.

%
This is always possible by state permutation.
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Case 1. m>r - more inputs than outputs.

Here CB has full row rank and a nonzero nullspace. Hence, in

(4.2.14)

d [ sp > 0. (4.2.17)

Furthermore, R[FIZ]CZR[GII] so that all of F12 can be canceles on the first

;=-£1 and MCA terminates here. Thus all of the structure

displayed in (4.2.14) exists and is nonzero. o

step. This implies £

Case 2. m=r - equal number of inputs and outputs.
In this case CB is a square nonsingular matrix. We have a similar

structure to Case 1 except that

0
d [ sp = 0. (4.2.18)

MCA still terminates on the first step and £I==£l. Now in the system repre-

sentation (4.2.14), the submatrix.BR does not exist. a

Case 3. r>m - more outputs than inputs.

Now CB does not have full row rank. Condition (4.2.18) holds here,
but in (4.2.9) ElZ is not canceled. Furthermore, all the control has been
used. Thus MCA continues as chained aggregation on the pair (322,512) (see

(4.2.9) where B.. does not exist). Since this pair is generically observ-

32

able, we have, generically, o*

=0. c
n
This analysis establishes the generic existence of L£* (as is well known
[3]). This will also give us a criteria for generic solvability of certain

problems discussed below.
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4.2.4. Structural properties of MCA

We would like to describe how to generate other sets of L-
unobservable subspaces, but first we need to establish other properties of
the system representation produced by MCA. Let L* be any feedback matrix

which makes .C; (A+BL*)-invar1ant. Let - -

0
= 8p . (4.2.19)
ﬁi '

Uy

Denote by &* the supremal reachability subspace in 7[C].

Proposition 4.2.5 [281: &% = (A+BL*|RY)

Proof: According to Wonham [ 3, p. 113] &* is characterized as

/* =( A+BL*|7*NR([B)) . So we need to show Y*NA[B]= B‘l:(z. We proceed by
induction. If %=1, then .BI-‘I/'*. In this case from the input transformation

V1 in (4.2.3) and (4.2.6), it follows that

x A = R?
.cl--R[B] B’ul. (4.2.20)

. * Y * *
If i>1 then we have that Vi identifies .Cir‘\ B?.(i Since £iD£i+1’ we have
that .C:r\R[B]DB'ul. On the other hand, if uéf(z then Bué.t:: by MCA. So
L*ﬁﬁ[B]CBﬂz and the result follows. . o]
MCA explicitly identifies a feedback matrix L* and the subspace

'&2. Hence, it also identifies R*. Indeed, consider the first generic case

of (4.2.14). We have

&% = (A [B). (4.2.21)

In fact, this analysis further classifies the generic cases. For Case 1.
we have R*=0% since (4.2.21) is generically reachable. In Cases 2 and 3,

/R*=0.

..........
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In general, the pair (AR,BR) in (4.2.14) will not be reachable.
We can give the eigenvalues of these unreachable modes a fundamental inter-

pretation using the following definition. Let A*= A+BL*|£* and denote by

A* the map induced on L*/&*.

| - Definition 4.2.6 [43]: The invariant zeros of (4.2.la)-(4.2.1b) are the

eigenvalues of A%, o

I‘ Proposition 4.2.7 [28]: The invariant zeros of (4.2.14) are the unreachable

modes of the pair (AR,BR).

Proof: Because MCA generated the representation in (4.2.14), by Proposition

4.2.4

P S0 S Fadng an gl
. @

£* = sp : (4.2.22)

Xr

The feedback map L* is essentially determined by

CR + BGL2 =0 (4.2.23)

(see (4.2.10)-(4.2.11)) which shows that A*=A.R. By Proposition 4.2.5, &%

"mﬁw“ ) ) vz

is the reachable space of (AR’BR)' It is a well known [3 ] fact that the

@ eigenvalues of the unreachable modes of a pair (A,B) are eigenvalues of the
{ induced map on the factor space ZX(mod (A|B)). In this case the factor

E space is £*/R* and so Proposition 4.2.7 follows from Definition 4.2.6. a
K The invariant zeros provide the final classification of the

| generic cases. Both Cases 1 and 3 will have no invariant zeros while Case 2
F will have n-m invariant zeros.

..

b

!

;l

calhendd i )

B g,y o

JEY CRP AL S Tty W ¥ ST S

P

Baahd aatera

AN WA

JEEY EESRIPUP U SR V)



lm

LTI T T
t. ',

T ﬁv"'w T

- e
-

e ¥ =~ v Y v T vy v -

-

Ty Nk B A G M- e Tt S e e e adtoestituit Salih At iy e e e e e e e e el

49

4.2.5. .C? subspaces

We are now in a position to describe other sets of L-unobservable
subspaces. It turns out to be most useful if we concentrate on possible
candidates for 32‘. We proceed by selecting a subspace XCX and then
computing a feedback matrix such that :2-7(. We first note that XC L: since
.cj{ is the supremal L-unobservability subspace. In fact, IIDLI{ for all 1 and
all L. Hence, the L*-unobservable subspaces .C; represent an upper bound on
all possible sets of subspaces .CI:E. Furthermore, we want X to be an (A,B)-
invariant subspace of the original system.

From Propositions 4.2.5 and 4.2.7, .CI can be decomposed as
¥ = g%e .Cz where £z is an A*-invariant subspace associated with the
invariant zeros. Since XC::;" write 7(2 = Xﬁtz and ’(r = XNQ/*. The possible
set of subspaces X is then determined by possible sets of 7(2 and ’(r' We
will discuss each in turn.

Assume first that €*=0 in (4.2.14) (BR=0). Thus, the invariant
zeros are the set A(AR).

Now ?(z =X must be (A,B)-invariant in 7R[C]. By inspection of
(4.2.14) it is not possible to alter the submatrix AR by state feedback. It
follows that 7(2 must be (A.R)-invariant. Furthermore, if 7(2 is to be unobserv-
able, we must have 7Z[CR] D?{z. But we can alter the submatrix CR arbitrarily
by state feedback (since R[CR]CR[BG]). So we have that ?(z can be selected
to be anv (A.R)-invarianc subspace.

Now consider XrCR* where the containment is proper. To simplify
the analvsis, we will assume that £:=ﬁ*, i.e., the system is represented
as in (4.2.14). It is easv to see that 7(r must be an (AR,BR)—invariant

subspace. Furthermore, we want k’r to be a closed loop unobservable subspace.
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If we use feedback to replace CR by Xl, this is equivalent to saying x;c:n[xl].

So we might as well choose X, such that X;'is the supremal (AR,BR)-invariant

1
subspace in ﬂ[XI], i.e., £* for the subsystem (AR’BR’XI)' Now computing such
a feedback along with properties of the resulting subsystems was discussed at
some length above. All of those results carry over directly here.

Finally, we note that the two cases discussed above can be combined
in a completely straightforward way to produce all sets of subsystems tt.
Only note that when ®* # 0, the eigenvectors of A" associated with the

invariant zeros are functions of the feedback in &*. The possible sets of £i

are then generated by first selecting X} and then X;.

4.2.6. Direct feedthrough term

MCA can be applied to systems of the form

x(k+1l) = Ax(k) + Bu(k)
(4.2.24)
y(k) = Cx(k) + Du(k).

L
]

where tre closed loop system is now (A+BL,B,C+DL,D) [20]. All the properties

In fact, Definition 4.2.1 can be used directly to define the subspaces £

of £? go through.

To apply MCA to (4.2.24), we first find nonsingular matrices S° and

V_ such that
o
Dl 0
S DV = (4.2.25)
o o

where D1 is a m_xm nonsingular matrix. We interpret So as an output space

transformation. Write

ead L

| PP - L
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S°C - ’ BV° = [B B (4.2.26)

1 2]
2

where the partitioning is compatible with (4.2.26). Now we apply MCA to the
system (A,Bz,cz).

Using Definition 4.2.1, we have that

:’l' = 7lc,] 2 Mcl. (4.2.27)

1f D=0, then £I- M(C]. Thus, we see that, in general, the subspaces .CI are

larger when D# 0. However, the modifications to the theory are minor.

4.3. (C,A)-Invariant Subspaces

The second class of subspaces we will be interested in is (C,A)-
invariant subspaces. These subspaces will be useful in constructing dynamic
observers. These subspaces are the formal dual of (A,B)-invariant subspaces,
but we shall work with them directly. We start with a definitionm.

Definition 4.3.1 [22]: A subspace #CX is (C,A)-invariant if A(/N NC))C. ©

Proposition 4.3.2 (22): o is (C,A)-invariant if and only if there exists a K

such that (A+KC)os/C /. o

Proposition 4.3.2 clearly shows the dual nature of (C,A)-invariant and (A,B)-

invariant subspaces.
The GHR 1is a useful basis for identifying (C,A)-invariant subspaces.

Let (C.1)-(C.2) be represented after one step of chained aggregation as

L 2 e P S o

Y L.h'_‘hh'.ﬂ
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¥ F F..I1T57 1 B
- 11 12 +] Yo (4.3.1)
1 LA %2201%] LB
-;1
y-[li:L 0] .

where Hl is nonsingular. First note that any subspace o of R® with a basis

of the form
I
S=spl T (4.3.2)
X
where X is an arbitrary (n-r)xr matrix and is a (C,A)-invariant subspace.
When X=0, this is immediate from Proposition 4.3.2, because Hl

When X# 0, introduce the state space transformation

51 M1, o 17
= ) (4.3.3)
X X 1 X
r n-r r
Substituting (4.3.3) into (4.3.1) we obtain
y Fi17FpX Fi2 y B
PO Bl I I u (4.3.4)
X A1 Ayt XF o JL %] B33
BA
y = | Hl 0 ] _ .
X
L T J

Note that this transformation has preserved the information structure, i.e.,

the GHR structure. In this new basis, o is spanned by

afs]

is nonsingular.
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Again, applying Proposition 4.3.2 shows that o 1s (C,A)-invariant. In
fact, X parameterizes a class of (C,A)-invariant subspaces S;, an element
of which we denote by "x' It is also clear that any subspace of Jx is also

(C,A)-invariant.

Now consider a subspace "Y with a basis of the form

= sp (4.3.6)
M Y

where Y is a (n-r)xr matrix. Now we have that JYO n(c] ""I‘ Applying

Definition 4.3.1 to (4.3.1) we have in matrix form

F F o "F..Y
11 12 - 12 . (46.3.7)

A1 Ay dlY Ayt

If "Y is to be (C,A)-invariant, we must have that: 1) Azz'yc"{, and
2) F12Y=O. These two conditions imply the "Y is an unobservable subspace
of (4.3.1). 1If "Y satisfies 1) but not 2), then "Y can be expanded into

a (C,A)-invariant subspace. Define

F_..Y
"FY: spI: 102 ] . (4.3.8)

Then JFYQ"Y is a (C,A)-invariant space. This analysis enlarges the earlier

defined class of (C,A)~invariant subspaces, S;. For each X in (4.3.2)

-’anY (4.3.9)

where Y satisfies (A22+XF12)'}C'}',15 a (C,A)-invariant subspace. Note that

Y depends on X.
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It can be shown [22] that the intersection of two (C,A)-invariant
subspaces is again a (C,A)-invariant subspace. Thus any subspace of x_ is
contained in a least (C,A)-invariant subspace. As an example, we
will identify the least (C,A)-invariant subspace containing 8, which we
denote by J.

We shall see that J can be identified from the system representation
produced by MCA. We first illustrate the idea by considering generic Case 1

of Section 4.2. Then the system is represented as in (4.2.14), which we repeat

here
3 F F.I[y1 (o o |[a
= 11 12 +f 11 (4.3.10)
X A1 A2l %] 0 By JLv
. (7]
y = [H1 0] _ .
.4
. rJ

The structure of the input matrix in (4.3.10) shows that 8 decomposes as

I 0
8=sp| Tlesp (4.3.11)
0 B,,
331932.

From the previous discussion it is immediately recognized that B. is already

1
an (C,A)-invariant subspace. Indeed, the transformation in (4.2.8) (which
is similar to (4.3.3)) makes this transparent. It remains to find a sub-

space /D38,

l-

such that 8,9/ =7 Yow 7/, must be (A,,)-invariant containing
32. But the smallest subspace with these properties is (A72|877> (=6%).
Thus we have for (4.3.10) :¥=Ble(ﬁ*. This generic case illustrates the

following general result.
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Proposition 4.3.3 [44]: Jne*=g*. o

Since we already know how to identify Q*, it remains to identify [
*
off L. The details of the general case are quite lengthy and can be found
in [42]. We shall briefly describe the construction for the following system.

Suppose that a system (C.1)-(C.2) aggregates after two cycles of MCA and has

the following representation:

ks an Pyt [, o 0]

ol [Fpiriolfs]|o o oy

b R LRI | EA R I | LA E (.3.12)
R RAC I LS N B I L

o B LS L0 0 8y

-1. . -
y [sl M 0 : 0]

From our assumption and properties of MCA, it follows that 511

nonsingular matrices. We introduce the addition transformation

and G22 are

o - -

r o o o oll3] [5]
o 1 o o o5 |5
o o 1 o oll7|=1]7° (4.3.13)
o0 0 o0 I O Yo ¥,
, _2 .2
-0 “ O 0 I-d Ler -er

W= —A32.

This leaves B unaltered and replaces A, by a zero matrix. Now it can be seen

32
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that
-1 0 0
y =2
7= sp[ ]9 sp|y |esp|F,le (A33|B33). (4.3.14)
0
0 0

The first term in (4.3.14) 1s a subspace of B as is the third term in
(4.3.14). This third term is in 7C] and so must satisfy the two conditions
discussed above. This generates the second term in (4.3.14). Of course, the

fourth term is f/*.

4.4. Examples

4.4.1. Pole-zero cancellation

As a short and interesting example which ties together many of the
preceding ideas, suppose that upon applying MCA to (C.1)-(C.2), we obtain

a representation of the second generic kind, i.e.,

prd [ T
YoM R L R
xr A3 A4 _xr_ 0 (4.4.1)
F:‘;“
>'===[Hl 0]
l.x
rd

From Sections 4.3 and 4.4, the natural basis for X decomposes into two

subspaces

v2L” = sp & , (4.4.2)
0 I

The first of which is the least (C,A)-invariant subspace containing 3 and
the second of which is the supremal (A,B)-invariant subspace in % [C].

Furthermore, A(Ah) are the invariant zeros of (4.4.1).
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Now assume that Theorems 3.3.2 and 3.3.3 can be applied to (4.4.1).
Then

1P

I <
1 8 (4.4.3)

§ = sep(Al,Aa)

measures the near unobservability and

|A3I
IPZI £ (4.4.4)

measure the near uncontrollability. 1In either case, some of the eigenvalues

of A are given by
T, 2 T, V2
Al(I+ PiP)) (a, +A3P1) (I+ PlPl) ]
(4.4.5)

..l/z

T T V2
MAI+P,B) (A, +PA)(T+PP) ],

Thus, if the system is either nearly unobservable (HPlﬂ is small) or nearly

uncontrollable (HPZI is small), (4.4.5) shows that some of the eigenvalues

LR PRI
aint A8l

of A approximate the invariant zeros of (4.4.1). 1In fact, it would seem to
be the product
¢ y
E BA0 04, :
AP ¢ ———=—
t PasFd < —3
{ (4.4.6)
¢ A, 1 BA I
| 3 2
\ "PZAZH S
4
which is important (cf. (4.4.5)). At any rate, this seems to be a state
¢ space version of the well-known frequency domain phenomenon of approximate
t pole-zero cancellation.
[ ¢ .
L o — »
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4.4,2. Almost invariance

In order to show a connection between the material in this chapter
and the near unobservability concepts, we will briefly discuss Willem's
almost invariant subspaces [45]. In fact, the points of contact seem to be
so strong, that a complete exposition is not possible at this time.

In the interest of brevity, we simply list the necessary defini-
tions and theorems from [45] where the reader is referred for details.

Let d(x,X) represent the distance from a point x to a set K, both in R".

Let AS = A+BFs where Fs is a matrix dependant on s.

Definition 4.4.1 [45]: A subspace W; CXx is said to be an almost invariant

subspace if VxOGW; and € > 0, %here exists x(t) such that x(0) = X, and
d(x(t),¥ )< e Vt.

A subspace ﬁaC % is said to be an almost controllability subspace if

on,x € ﬁa, there exists T > 0 such that Ve > 0 there exists x(t) with

1

the properties that x(0) = X, x(T) = x, and d(x(t),ﬁa) < g, Vt. o

1
Theaorem 4.4.2 [45, Theorem 2]:

1) ¥ =% +8 for some R if ¥ 1is almost invariant.
a a a a

2) ﬁa is an almost controllability subspace if and only if there exists

. rs n-1
- Iy = g+ +.. .+ a
an Fland a chain ‘Bl} such that Rh Bl AFﬂz .o AF Bn.

Theorem 4.4.3. [45, Theorem 8]:

Assume that W; is almost invariant and that there exist subspaces ¥
such that¥ -7 where AYC7_.
c a "0 o}

1) 1If Fc—n"‘,"f a is (A,B)-invariant and (A+BF) 'Vac ‘.‘fa.

1]

2) If Va is not (A,B)-invariant, then FC > =,

We shall discuss these notions for a system which is of generic

case 2, i.e. the system is represented as

.
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y A ally B
-] 1 2 + 1 u
*r A3 A L *r 0 (4.4.7)
[y
y=1I[1 0] .
' p.4
. T
Now suppose we apply feedback
u =L (Dy+L, (D)=, (4.4.8)
Then the closed loop system is
¥ +
v Al+BlLl(o) A, B,L, (%)) y 4.4.9)
X A3 A4 X,
Now

£1 in (4.49) 1s an almost invariant subspace by Theorem

4.4.3 (1). Simply take Ll(p) = 0 and define L2 (p) such that .

LZ(O) > —Az as p+ = (6.4,10)

Of course, the approximating invariant subspaces"fc are a subset of the

invariant subspaces of (4.4.9).

A more interesting question is whether & [B] an almost invariant

subspace. Yes, by Theorem 4.4.2 (2) and by Theorem 4.4.3 (2), F_

¢,

suppose that we take L, (p) = 0 (for simplicity) and let L (p) - =. For

+ o,

Now

fixed 7, is ®{B] near an invariant subspace? Yes, by Theorem 3.3.2!

By using Theorems 3.2.2-3.2.3 we have

HABH
Il < < (4.4.11)
()
where
Ay = ( 5 4.5.12
8(s) = sep{a; + B L.(2),a)) (4.4.1
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and llPIl' measures the distance between

y ,
sp[ } : (4.4.13)
0 .

and ®[B]. By suitably choosing the limit of Ll(p), 8 (p) » = as p > ™,
Hence, the closed loop invariant subsp.aces approximate &[B] but they require
high gain.
We also note that in these coordinates
d(x'(t), REB]) = Ix_(2) | (4.4.14)

Then using the analysis of Section 3.4.2. from equation (3.4.14) we have

- ALt Y, t .
T in 4m )
Ixt(t)l_f_ B PIZ“HY(O)Ie + "P22'e ﬁxr(O)
- . A, t At
+ IR, 0 - 1A, H- 15(0)1 (e 4m”_ "1lm”) (4.4.15)
where
$(0) p!. BT v(0)
- 11 21 3
, T (4.4.16)
x_(0) P, Py, 0

since Definition 4.4.1 requires that x(0)€B. 1In (4.4.15) Alm + o and Plz* ®
by (4.4.11). Hence, for any xl(O)E:B we can find ¢ large enough such that
d(xl,B) <e. Thus 8 sat sfied Def. 4.4.1 and so it is almost invariant.

The purpose of this rather superficial analysis is, first, to show

that the trajectory definitions of almost invariant subspaces can be translated

into the topological characterization introduced in Section 3.3. Secondly,
the GHR framework allows us to identify, in particular, the structure of the
high gain feedback matrix which produces almost invariance. These two
observations suggest that the GHR may be useful for the analysis and design

of high gain svstems.
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CHAPTER 5

SYSTEM DECOMPOSITION

5.1. Introduction

In the previous chapters we have discussed the geometric
structure of the linear system (C.1)-(C.2). The general approach has
been to study this structure in a specific basis. Relative to this
basis we were able to decompose the system into subsystems. See
Section 2.2.2. Until now we have not discussed the decomposition
aspect of this work. This chapter serves as a bridge between the
geometric theory above and the system theory below.

‘The decomposition of large scale system is of interest in its
own right. Many results for large scale systems are stated in this
framework [46-48]. The description of a large scale system as
interconnected subsystems can occur in several ways. On the one hand,
the sygtem model can be built up by joining together the subsystem in
some specified way. In this case the interconaection description is
straightforward. At the other extreme, composite systems are sometimes
decomposed into an abstract description for analysis [46-5C] or compensator
design [51] . 1In this paper we shall discuss a decomposition procedure
which falls somewhere between these two extremes. It is not assumed
that the given system obviously decomposes into some interconnected
structure. Rather, the procedure exploits the basic underlying
structural properties to obtain a suitable decomposition. The decomposi-
tion procedure described here is based on output or information structure

(observability), input structure (controllability), and/or their
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interaction. When considering only input structure, related results

have been obtained by Ozgliner and Perkins [52], Siljak and Vukcevic [51],
and Sezer and Siljak [53]. of these, Ozglner and Perkins is closest

to the spirit of this paper., The other two decomposition methods

result in single input subsystems. We have no such restrictions here.

The decomposition procedure presented here should not be confused
with decomposition procedures which serve to reatrange.a given inter-
connected subsystem description ( [50] or [54] , for example). The
purpose here is to identify subsystems appropriate for the intended
use of the model.

The method described here differs from existing methods in
emphasizing input-output interaction. -We shall present this method
with two basic goals in mind. The first is model reduction. We will
show in a later chapter how several model reduction methods are

related to the open loop geometry and the system decomposition it

induces. Clearly, input-output interaction is useful here. The second

goal is compensator design. Since this interactiaon structure has proven
e useful in feedback design (28] we are able to identify system
descriptions which are useful in closed loop design. This includes
both centralized and decentralized control. Chapter 7 is devoted to
'] these design ideas.
In Section 5.2 we will briefly summarize the previous chapters
to establish notation. This will set the stage for the model reduction

e in Chapter 6 and the centralized compensator design. In Section 5.3
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we extend these ideas to systems to be decomposed into interconnected

subsystems.

connected power system.

5.2. Review

Consider the system (C.l)-(C.2).

aggregation, (C.1)-(C.2) is represented as

- (e R
X, BGR AR
y = [ 1§ 0]

bme

ﬂ

<l

Section 5.4 applies these results to a two ares inter-

After 1 steps of chained

u (5.2.1a)

(5.2.1b)

(See (2.2.8) where x_ = x:.) Equation (5.2.1) suggests that we think

of the composite system as two interconnected subsystems; the

aggregate subsystem given by

y = AGy + Cer + B, u

and the residual subsystem

x, = A xr + BGRy + B

R
(see (2.2.9)-(2.2.10)).

G

R

u

(5.2.2)

(5.2.3)

By Proposition 3.2.4 we have that
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In view of (5.2.4), we can think of Si as the ''state space" of the

residual subsystem (5.2.3). Further, C, represents the information

R
coupling between these two subsystems. Considering it as the output
matrix of the residual, we say the system (C.l1)~-(C.2) has been
decomposed into interconnected subsystems (5.2.2)-(5.2.3) based on
the information structure of the system.

By dualizing the above results we immediately obtain an
input structure decomposition. Indeed, any results stated below for
the output structure have a dual interpretation in terms of the imput
structure. However, it is probably more useful, because of the
potential closed loop applications, to investigate how the input
structure overlaps the output structure.

Modified Chained Aggregation (MCA), described in Section 3.4.2,

provides a system representation which identifies the overlap of the

input and output structure. MCA will produce a system representation

of the form

I
’

: . r‘_‘1 -

‘e y I | 4% % y B, O u N
r = + (5.2.5)
i *r BGR AR L_*qd 0 BR °

:ﬁ y = [, 0 [¥]

' e

' X

%
The submatrices in (5.2.1) and (5.2.5) are not the same. We
g have relabeled (5.2.5) for notational simplicity.
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vhere

:,'i' = sp (5.2.6)

for some feedback matrix L (L is identified by MCA). Similar to (5.2.1),
we identify and aggregate and residual subsystem in (5.2.5).

Geometrically, (5.2.5) displays a decomposition of 8 = R[B] as

B = BN ‘g @A) (5.2.7)
where
LoolMa™
BNE; =R 0 ) (5.2.8)
‘.BR '

Note that BNy is unique and is identified explicitly by MCA. This
decomposition splits the control into two subvectors. The first
subvector, u, influences the dynamics of the aggregate subsystem and
the information coupling between the two subsystems. The second control
vector, {, influences the dynamics of the residual and the affect of the
aggregate on the residual. Since 8§ describes how the controls directly
affect the state of the system, we have achieved the desired input
decomposition.

Chapters 2-4 have been devoted to the study of the properties
of the representations in (5.2.1) and (5.2.5). Knocwing these basic
properties, these decompositions should be useful in a-variecy of

contexts, We shall discuss in detail their relationship to two major
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topics. The first is model reduction. Here the aggregate subsystem is
selected to be a reduced order model of the original system by ignoring
the coupling term Crxr. Of course, certain errors are made. An
aposteriori error analysis then shows how the nonuniqueness of the
transformations can be used to minimize these errors.

The second topic we shall discuss with respect to these
decompositions is compensator design. In particular, we shall introduce
a control design procedure called Three Control Compoment Design, which
is based directly on (5.2.5). We shall also see that (5.2.1) is useful

for observer design and so we will also discuss dynamic compensators.

5.3. Interconnected System Decomposition

In this section we investigate the role of the input-output
structure in decomposing composite systems into intercomnnected
subsystems. These decompositions result when the submatrices in (5.2.1)
and (5.2.5) take on a special form. The approach here is to use
chained aggregation and MCA to identify the inherent information and
control structure of the composite system. Having isolated this
structure it is then possible to recognize how these structures
decompose. This leads to various decompositions of the composite system.

This approach is somewhat ad hoc and can be expected to be most
usaful when there is some underlying physical structure. However, it
does exhibit great flexibility. The number of decompositions possible
is too large to give a complete listing. Therefore, we shall present

a number of examples to illustrate the approach.
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The first three examples illustrate decomposition based on

information structure alone. Then we turn to input-output decompositions.

Example 5.3.1. Suppose that (5.2.1) represents (C.1)-(C.2) after one
step of chained aggregation and Hl = I, Furthermore, suppose that y in
(5.2.1b) 1is composed of two subvectors y1 and yz. These could represent
the outputs of two separate '"channels", for example. With this finer

structure we can further decompose (5.2.1) as

51 A A ' C 1 B
¥ Gl ez & “r| | ¥ 6l
.2 ] 2
y A2l e 1 Cro Y| ¥ | Bgyju
@arn|] | eevimmsca ceovees rPoowa --- -
:
L *:] LBri Berz 4% | *c | Br |
— (5.3.1)
1 = - - —
1 ' 1
y 1 Q HY y
2 0 1 E 0 y2 )
AL o ]2

L *J
That is to say, the assumption of two separate outputs has yielded a

further partitioning of the aggregate subsystem. Suppose also that

A = 0 and A

cl2 G21 2 0. This is not merely a result of the computational
procedure but must result from the structure of the system. 1In this
case (5.3.1) takes on a hierarchical structure of two subsystems being

driven by a common third subsystem (the residual), i.e.
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i i
y o= AGiy + BGiu + Cth i=1,2

(5.3.2)
. 1
k =A% +Bu +1£1 Bogy?

See Figure 1. : u}

Example 5.3.2. As a second example suppose that in (5.2.1) AR turns

out to be block diagonal. Then (5.2.1) becomes

& ]
y % 1+ Sm % | |7 B¢
oeoa | | ecome= Joccanmee - aromw - -an -
[}
1l ; 1
Xr Bert | A © S R Y
'
2 : 2
< ]
s xgj B BGRZ 0 AR2 N _qu | BRZJ
(5.3.3)
[y 7]
1
y = [I : 0 0 ] xr .
2
| ¥z ]

Here we see that the residual subsystem decouples into two subsystems

which then drive the aggregate, i.e,

2
y = Ay + £ L
y = Agy FBgu + L Cai%y

(5.3.4)
it - A x + B
T Ri“r riY

See Figure 2.
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~| 15t Aggregate
. L_Subsystem

Residual |+
Subsystem

Xy

~12nd Aggregate
"I Subsystem

~y2

Fp-7343
Figure 1. Example 5.3.1 - Aggregate decomposition.

15! Residual |

Subsystem

Xr
u ~| Aggregate N
»| Subsystem ~Y

x¢

12" Residual
Subsystem

¥

Fp-73544

Figure 2. Example 5.3.2 - Residual decomposition.

PP A

Smoniak

. .2 e s -




. 02

'.Tv—f >y
. RS

iC|

Y P

70

Example 5.3.3. Continuing with Example 5.3.2, suppose we have the

structure described there and, in addition, the matrix

[ch CR2] (5.3.5)

is block diagonal.

This structural property induces a further decomposition in

the aggregate subsystem; i.e. (5.3.3) becomes

1] [ T [ s ]
b fe2z 1 S 0 y Bs1
1
.2 ' 2
¥ A A T 0 c y B
o lal G2 QZ---.E ............. R2 ] 82y
1
.1 ' 1
X, Ber1  Bor:z Ar1 0 X Bp1
1
.2 ' 2
_?r_ | BGR21 BGRZ : 0 ARZ 4L xr_ LFRZ _
(5.3.6)
-
yl I 0 E 0 0 y1
= ]
v° 0 1 b0 0 ¥
1
X
T
2
N3

With this additional structure, (5.3.6) can be interpreted as two subsystems

interconnected through their outputs, i.e,
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i 1 3-1
¥y A C y B Agi 3. y
- GL Ri + GL u + Gis3 j
i i .
% Beri  2pt | | ¢ Spi | Beri, 3-
i=1,2 ) (5.3.7)

See Figure 3.

Equations (5.3.6) and (5.3.7) very ni;ely illustrate the close
relationship between the information structure in (5.3.6) (as derived
from (5.2.4) and the physical structure in (5.3.7). By changing our
point of view we obtain different decompositionms.

Also note the difference in the decomposition procedure between
Examples 5.3.1 and 5.3.3. 1In Example 5.3.1 a partitioning of the output
was assumed and then this was used to induce a decomposition in state
space. In Example 5.3.1 exactly the reverse occurred. Here, the
decomposition in state space lead to a partitioning of the output vector. O

Thus far we have considered some decompositions based only on
the information structure. Clearly, by dualizing the results we obtain
decompositions based on the input structure. However, as noted above,
it is of more interest, because of the potential for closed loop
applications, to obtain decompositions based on both the input and

output structure. We will consider several such decompositions next.

Example 5.3.4. In this example we consider a refinement of the structure

of Example 5.3.3. In addition to assuming AR and CR are block diagonal

in (5.3.6) suppose that BGR’ BG and BR are also block diagonal.

Furthermore, let

- a4 a ek
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Subsystem 1

Figure 3. Fxample 5.3.3 - thqt interconnection.
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= BeiMu1

A6t,3-1
(5.3.8)

Beri,3-1 = BriMi2

Then (5.2.5) takes on the form of two systems connected in a feedback

configuration, i.e,

i i
y A. C.. y B 0

-| Gt Ri + | G vt (5.3.9a)

i =i

0
Lxr BGRL ARJ. L_ r_l BRL
. N, . )
wo= 1L 3= i (5.3.9b)
Nyp |

See Figure 4., (Compare with (5.3.7).)

Computationally, the existence of this representation depends

on the block diagonalizarion of BG and BR (along with previous assumptions)

and the existence of Nil and Ni2 in (5.3.8). Since we have allowed input

transformations, there is some flexibility to meet these conditions.

I

Example 5.3.5. 1In this example we will generalize the structure of
Example 5.3.4 to include representations where the interconnections
(5.3.9b) are dynamic. To illustrate the basic idea, we consider the

composite case first. Suppose we have obtained the representation in

(5.2.5) and BR 0. 1If we assume that BG is square and nonsingular we

can write

coed L.zl

—AA e~ s
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Uy | Subsystem 1

[

A

y2 Subsystem 2

Figure 4. Example 5.3.4 -~ Input-output interconnection.
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CR = BGN
(5.3.10)
BGR = LC
for some matrices N and L. Then (5.2.5) becomes
y A BN y B
¢ G Gl (5.3.11)
= + u,
L LC AR X, 0

which we recognize as the aggregate subsystem with dynamic output

feedback compensation.

Now suppose that in (5.3.11) AR’ B, and N are block diagonal,

G
i.e.
- - — -
al T 1 -1
]‘y AGl AG].Z i BGlNl 0 [ [_Y rBGl 0 u
.2 ! 2 -2
A T S W S R Sala) | YN 2 Bt
]
]
=1 1 -1
X Lll le i AR1 0 xr 0 0
N ; )
L -
L xrd L 21 L22 v 0 AR2 4 L er L 0 0 J

(5.3.12)
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Here the aggregate decomposes into two subsystems,

A i
y = Ag¥ + Bgyu

~-i i
i

where th: interconnections vi are now dynamic. They are given by

2 =i 2. ]

i=1,2 (5.3.14)

i =i 3-i
v = Nixr + AG1,3-iy .

See Figure 5.

One case of particular interest occurs when L11 and Lzz are
both zero in (5.3.12). This uncouples the interconnection equations
in (5.3.14) and results in a simplification of the interconnection

structure., See Figure 4 where the Ni are now thought to represent

dynamic connections. This represents a particular case of the

interconnected structure used in [50]. : a}

We have given here by no means an exhaustive list of possible
structures. The similarity between the structures in Examples 5.3.2
and 5.3.5 indicates the variety of interpretations possible. This
flexibility should allow the representation to match its intended use.

The structural decompositions discussed above occur frequently
in the large scale system literature, For example, certain conditions
have been given for dynamic decentralized stablization. These conditions
have been specialized for the structures discussed in Example 5.3.4 [46]

and Example 5.3.5 (49]. A particular control strategy has been proposed

T P T g ey T W e e, Y . S e e T . T e
T T T e P s e ey e - .- iy - . T oy -

+Byv ,  i=l,2 (5.3.13)
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for systems exhibiting the structure of Example 5.3.2 [28]. Recently,

a decomposition in the spirit above was used in a dynamic game context [55].

The dual decompositions of Examplé 5.3.3 have been used in stability

analysis [48].

5.4. Two Area Power System

In this section we apply the ideas of the last section to
decompose a two area power system. This example illustrates the close
connection between the physical structure and the information structure
and how this interrelationship can be used to obtain different
decompositions,

We'will consider a two area power system in which each area
contains two thermal power plants. The outputs are the frequency
deviation in each area and the tie line power flow. A description of
the system model and parameters is given in the Appendix. Physically
we would expect the model to decompose into two interconnected sub-
systems but the decomposition is not immediate because the tie line does
not fit conveniently into either area. As suggested in Section 5.3 we

apply one step of chained aggregation tec obtain

r 1 = = o
1 1
249 h12 0 C1 0 X g1 0 1 vl
¢ = 2 i
y h21 0 h23 y+|{ 0 0 : X_J +| O 0 § W,
2 |
0 h a 0
L 32 299 _ €] |0 egy

(5.4.1)
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This is exactly the structure of Example 5.3.2. Note that (5.4.1) does

not further reduce to the aggregate structure of Example 5.3.3. This

is the reason we were not able to identify two subsystems in the original

model. .We can, however, obtain a hierarchical structure for (5.4.1) by

permuting the states y, and ¥,

e pu -— d p— - -
] 0 h. h ] 0 0 ) xt o 0 w
) 21 23 ¥y T 1
v - h a1 0 + C 0 x2 + C 0 W
71 12 %99 n 1 r 91 2
2
h 0 a 0 C 0 C
| Y3 | 732 994 | Y3] B 2] | 92 |
(5.4.4)

This shows that we can associate the states Y1 and Y3 with their residual
subsystems, respectively. This is perhaps a more physically meaningful
decompositiog in that each residual subsystem now represents exactly each
area while the aggregate subsystem is exactly the tie line. However, it
may not be as useful for control design since the control does not appear

in the aggregate.

Retuming again to the decomposition in (5.4.1)-(5.4.3), write

i

i i i . i i
A diag {All,A 22}, B diag {311,322}
(5.4.5)
i i
D D,
i
)
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Noting that

D, =B_,.N j.lsz

(5.4.6)

we see that each subsystem decomposes into two subsystems (representing

each plant) as

o
JE SRS N SRNE SF Sk S R
X559 T Aya%ey T BNy BysYy

j‘l:z d13'1a d2’3°

This is similar, but dual, to the structure in Example 5.3.2,

As menticned above these decompositions may not be useful
since the control variables do not appear in the equations for the
output variables (which we want to control). To obtain a different
decomposition, we continue to apply chained aggregation to

(5.4.1)-(5.4.3) until the control appears in the aggregate. Since

the residuals are decoupled we can apply chained aggregation to each

subsystem separately. In this case two stages of chained aggregation

are needed. The result is

(5.4.7)
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y =[1000 00 0 0% i=1,2

where a; T 1, a, = 3. The aggregate system parameters are given in

the Appendix.

(5.4.8)
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From (5.4.8), we see each subsystem has one output and two
inputs. To isolate the residual control, we apply an input trans-

formation as in (5.2.9):

i ot 1 -'g1 /gi' o
u =V il = 22821 L , (5.4.9)
a 0 1 a
so that the input matrix in (5.4.8) becomes
[~ 0 0 ]
i
g O
0 o
gi gi i i
4l a2 1 _ 84 8
0 0 > 840 T . (5.4.10)
71
o o0
0 o0 1=1,2
{
| 0 8]

We now decompose the subsystems as indicated by dashed lines in (5.4.9)

and group it with (5.4.1) to obtain the decomposition:
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r-:'c;— f;3 f§40 o o o | [ o o-]
o o £, 0 0 0 o0 81 %4
iis';‘00f§5f§600 AL 0 o ut
i ik 0 0 0 £ £, 0 0o o gt
%5 o o o o £ fi o o
L*;_ (0o 0o 0o o o0 f;sA o gézJ
(5.4.11b)
0 ]
441
+ | ° g4 =12
0
Q
;dsl_.

In (5.4.11) we have represented the original model as three interconnected
subsystems as described in Example 5.3.2. As opposed to the earlier
decomposition (5.4.1)-(5.4.3), at least one component of the control enters
each subsystem. This feature makes this decomposition attractive for
closed loop design. This decomposition also illustrates how the ideas

in Section 5.3 extend directly when more than one step of chained

aggregation is used.
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CHAPTER 6

MODEL REDUCTION

6.1. Introduction

Chained aggregation and the GHR was originally introduced as a
model reduction technique [ 2]. Indeed, it is an extension of Aoki's concept
of aggregation [ 8]. Since Aoki's original work, much insight has been gained
into aggregation [1,56~62]. In this chapter, we will show how many of these
ideas can be unified and extended using the GHR framework.

The purpose of this chapter is not an indepth review and discussion
of model reduction techniques, but to point out where the GHR and its geometry
come into play in reduced order modeling. The most important aspect of this
chapter is not the details of any specific reduction procedure, but a general
understanding of how the geometric structure of (A,B,C) relates to system
theoretic ideas. TIf the final goal is compensator design, one can question
the wisdom of open loop model reduction. Therefore, the true benefits of
this chapter will be realized when these ideas are combined with compensator
structures discussed in the next chapter.

In Section 6.2 we will discuss Aoki's aggregation concepts [ 8],
the birthplace of the GHR. This will include its abstract form as a projec-
tion method. Section 6.3 applies these ideas to modal methods for reduction.
Two different error analysis methods are presented. Section 6.4 discusses
model reduction by using properties of the controllability and/or observ-
ability gramian. Section 6.5 relates the GHR to the cost decomposition work
of Skelton [1ll].

Throughout this chapter we shall assume that the system (C.1)-(C.2)

is asymptotically stable and observable. These assumptions are not always




required, particularly in Sections 6.2 and 6.3, but this allows for a unified

treatment. The appropriate generalizations can be easily made by the reader.

6 * 2 o Ags!esation — ——— - "
6.2.1 Projection '

We first consider Aoki's algebraic concept of perfect aggregation.

Thus, we interpret the output equation (C.2) as defining the variables to be

approximated, i.e., C is the "aggregation matrix" [ 8]. According to Aoki [8]

the system aggregates if there exists a matrix F such that
CA = FC. (6.2.1)
In this case, the reduced order model is

é‘Fz'{'Gu
(6.2.2)
G = CB.

To see how this relates to the GHR, consider (C.1)-~(C.2) after

one step of chained aggregation, i.e.,

Y],[Fu NRARE

21 223 L r. "2 (6.2.3)

y = [Cl 0] .

In the basis (6.2.3) it is easy to compute (6.2.1). We have
?
CA = Cl[Fll Flz] = F[Cl 0] = FC. (6.2.4)

Assuming C1 is nonsingular (C has full row rank), F exists exactly when

FlZ. 0, in which case

4

..
Ca e g

-




-1
F=CF,C (6.2.5)
Also note that
CB = G = C,G,. : (6.2.6)
Thus, G, contains all the information of CB. From (6.2.5)~(6.2.6) the

reduced order model (6.2.2) is constructed.
The geometric interpretation of the GHR gives us immediately a

geometric interpretation of aggregation. From Theorem 3.2.4

0
L. = Ln = gp (6.2.7)

X
r

is the unobservable subspace of (6.2.3). Hence, systems that aggregate in
Aoki's sense exhibit this very strong form of unobservability.

Aggregation has also been interpreted as a projection method [57-59].
This also has an easy interpretation in the basis of (6.2.3). Assume that

C1=-I (or change basis in the state space). Then the projection matrix P is

I o0
P = . (6-2-8)
0O 0

A projection matrix is characterized by 1) the subspace being projected
along and 2) the subspace being projected on. Here the subspace being

projected along is

M {C] = sp . (6.2.9)

r

This subspace is unique and determined by C. The subspace being projected
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on 1is

y
sp [ ] . (6.2.10)
0

Note that rlz-o implies the rows of C (the aggregation matrix)
span a left eigenspace of A. Since R[CT]lﬂ[C], the reduced order model is
determined by N[C] [62]. This fact is often used in constructing an aggre-

gation matrix [57-60].

6.2.2. Coherency

As an application of these ideas we mention some recent work in
coherency of power systems. While coherency has been a standard topic in power
systems, we shall follow the recent new approach of Kokotovic, et al [63,64)

where the reader is referred for details. The system model is given by
x = Ax, x(0), t=20. (6.2.11)

If (6.2.11) represents a disturbed system, then the disturbances are
modeled in the initial condition. States x, and xj of system (6.2.11) are

coherent with respect to n-r modes of A, ca, if and only if none of these

modes is observable from

yj(t) = Xj(t)~xi(t). (6.2.12)

Now suppose we have chosen n-r modes %, and that there exists r
distinct groups of coherent states, i.e., groups of states coherent to each
other. In each group pick a reference state and let these be the last r

states in (6.2.11). Now define an (n-r)xn output matrix C for (6.2.11) by

= - 2.
¢= (1 _-Ll. (6.2.13)

The matrix Lg contains the grouping information. The (i.j)th element of Lg

-l




is 1 if state x, is in the j~th group, i=1,...,n~r and j=n-r+l,...,n.

Note that each row of (6.2.13) defines an output as in (6.2.12). Next

define a similarity transformation

y I -L x ’
=| T 8 [ 1] (6.2.14)
x, 0 In-r xz
in which case (6.2.11) becomes
y A, RILI1][7y
-| 4 8 (6.2.15)
X AZ; Aa xr

where R[Lg] is a Riccati equation in Lg. Using this setup, it is shown
that the outputs defined by (6.2.13) are coherent with respect to the modes’
o -if and only 4if R[L ]1=0. 1In this case g_= X(A ).
a g2 a a
This whole framework fits directly into the discussion above. We

note that the transformation in (6.2.14) transforms (6.2.13) into

[IrO]. (6.2.16)

Hence, this is the first step of chained aggregation. Then (6.2.15) aggre-
gates 1f and only if R[Lg]=-0 and the unobservable modes are A(Aa). In

other words, £, for (6.2.15) is the unobservable subspace. This shows that

1
coherency is intimately related to the information structure of the system.
Coherency is a topic closely related to physical systems which do

not satisfy the strict algebraic requirements above. Therefore, a common

approach is to define near-coherency. This can be formalized in the frame-

work above by requiring in a nearly coherent svstem that the contribution
of modes aa to the output (6.2.12) be small [64]. This idea can be made

precise by introducing near unobservability of Sectiom 3.3. 1f a system is

._‘_‘I.A




coherent when :1 is unobservable, then it is nearly coherent if tl

unobservable. In fact, the contribution of the modes oa to the output

is nearly

trajectory has been bounded in (3.4.15). There we see that coherency is

strongest when there is a separation between A(Aa) and A(Aa) in (6.2.15), a

fact which has already been noted [64). We also note that the Riccati approach

to coherency is very similar to the approach to near unobservability in

Section 3.3.
An approach to near coherency very similar to the one here has been
proposed in [12] under a slightly different formulation. Those results can

be recovered by using the subspace measure proposed in Section 3.3.

6.3. Modal Methods

6.3.1. Preliminaries

There is a number of model reduction methods [7,9,65], based
essentially on the open loop modes, that fit nicely into the aggregation

framework. Suppose that the system (C.1)-(C.2) is represented as

y A AT v T B
= 1 2 +] 1u (6.3.1a)
X SR | I B
r yw
y=[1 0] . (6.3.1b)
X
L T J

We wish to construct a reduced order model for the output variables y from
some get of r modes of (6.3.1). This model will be identified by selecting,

sequentially, two state space transformations. The first transformation is
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the orthogonal transformation, to preserve as much structural information

as possible, introduced in equation (3.3.7),

y1 1 PIf(eerty 0 §

*| .1 v it 71 |

=| L-® 1] 0 (I+P"P) £
- - -
At Pl v s]?
.P21 PZZ xr xr

y l'.11 0 y i Gl
. = u
0 LFa Fall®*! LG
-
[ 5
y= I[Py Pl _}-
X
LT

The second stage is the selection of a second transformation

y -~ Ir 0 y
xr In—r xr

Then (6.3.3) is transformed into

y1 [r, o131 [c
aRK e
X Far Faadl®] |G
[y
y = [Py1-P1X Pyl .
| X

— ——— ihabhesivndemtiostoninatesiononuienieninstinaiosafecntunshusivniinenibestbentiooninmbustotioedineduefomd

(6.3.2)

(6.3.3)

(6.3.4)

(6.3.5b)

e e

(6.3.5c)




From this representation we obtain the reduced order model

y= Flli + Glu _
(6.3.6)
Yp = (P3P K1y
The error is calculated from
(€) = y(t)-y_(t) = [ [ 7 '
e(t) = y(t)-y (¢} = [0 P
r 1271 :
r (6.3.7)
= Plzxr(t).
From (6.3.5) it(t) is given explicitly from
F t F (t-1) t F,,(e=1)_ .
() =e2z @ +[e?? TE@utdr+ e F_(Xy(r)dr
T T 0 2 0 21
(6.3.8a)
F,,T Tt F,.(t-8)
5 =e 5@ + [ et Teuls)s. (6.3.8b)
¢

So these methods proceed as follows. First (6.3.2) is selected.
Comparing (6.3.6) to (6.3.3), we see that this is the same as selecting the
eigenvalues of the reduced order model to be a subset of the open loop eigen-
values of (6.3.1). In forming the reduced order model (6.3.6), an error is
made (6.3.7). By specifying a cost function on e(t), we can select a second
transformation (6.3.4) to reduce this error. On the other hand, X may be

selected to satisfy some other criteria (?21()() =0 or (-;2 €X) = 0) and then an

-

a posteriorl error analysis performed. -
This method is clearly a projection method. The subspace to be =

projected along is determined by the transformation (6.3.2) (the span of the -4




~ last (n-r) columns). The subspace to be projected on is determined by the

second transformation (6.3.4) (the span of the first r columms).

6.3.2. Dominant modes
This method of model reduced proceeds by first reducing A in
(6.3.1) to a diagonal form. In our framework this means selecting X such that
?ZI(X)=-0. Then to produce the correct steady state error, the neglected

state variables are approximated by

X =0=F_ % +0G.u
by T

22 2
(6.3.9)
- -1=
In this case the error equation (6.3.7) is modified as
A -1-
e(t) Plz(xr(t)i-Fzzczzu(t)). (6.3.10)

If we assume as zero initial state and a constant input of magnitude u,» then

we can estimate the error using the analysis in [66]. Note that ?12=()

eliminates ir dependence on §'and simplifies the analysis. Let T2 be the

(n-r)x(n-r) matrix of eigenvectors for F22 and Az the corresponding modal

matrix.

t F ,(t=-1)

le(e)l < 1B, 10f e 22 1
12'']

226291
_ t Az(t-r) -1
nPlzuK(Tz)uczu-uuon-ué e dT+ A0

A

GZ(X)uodt + F

IA

Azt

= -1
1P 0 (T )IG, 0 -Ru i 1A, e © 4

A

1P, 0 (T HIG 0 -Ru d
¢ —12 2.2 o (6.3.11)
minlki(Az)I

BN
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In this bound we identify three terms. The first is

. (6.3.12) -~
minlli(Az)l

o Adrae e
2 e .
P o WIS

This term bounds the dynamic response of the neglected residual subsystem.
Note that this term tends to zero as the dynamics become arbitrarily fast.
This indicates that the fast modes should be neglected.

The second term is lPlzl. This measures the contribution of the
residual subsystem to the output. Clearly, we want this to be small. Taken
in combination with the first term, we see that we would like the system
(6.3.1) to be nearly unobservable (see Section 3.3). .

The third term is I&zl-luol. This measures the excitation of the
residual system by the input, again a term we would like to be small. It is
not hard to see that‘in (6.3.6) if ?12-0 and 52 is small, then the dominant
invariant subspace appro#imates B . This gives a guideline for selecting the
dominant invariant subspace to be retained.

Bounds similar to (6.3.11) were given in a 'series of notes [66-68].
However, they ignored the geoﬁetric structure of the problem in favor of

emphasizing the dependence on time scale.

6.3.3. Mitra's method

Mitra's method [9] is a systematic way of choosing X in the second ]
transformation (6.3.4) to minimize the integral squared error (6.3.7). The -T
first step is exactly the same as in dominant mode seiection. The first
transformation (6.3.2) is chosen to yield (6.3.3) though the eigenvalues to

be retained are not yet specified. Now introduce the cost function

atn £ = f le(e)l 2de. (6.3.13)
0

B — ‘**i--i-------------l-i----------------.--J
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So the second step of the method is to choose the second transformation
(6.3.4) to minimize (6.3.13). Bear in mind that (6.3.13) is parameterized
on the first transformation (6.3.2).

Next note that

2 ATT ~ -~ GTT
le(t)l erlzPlzxr trace Plzxrerlz
y 0
T -T.T T
trace Plz[o 1] [i ] [y xr] [I] 912' (6.3.14)
T

Then

T e[y 0 .
f le(t)1%dt = trace P[0 1] / [ ][iT iT]Tdc[ ]PT
0 0 r

- - ' T
I 0] T[¥ ¢ [T X0
= trace P__[0 I] f (57 %) dt T
12 < 1lo |z r 12

- - T
I O Q Q I X 0
trace Plz[O I] % 2 Piz
Q2 Q3 0 I

T T T
trace P12[xQ1x +Q2X +XQ2+Q3]P12 (6.3.15)

Q Q
Q=| 1 (6.3.16)
% Y

is the well-known controllability gramian computed for the system (6.3.3). ~1

where

However, this gramian has the same properties as the controllability gramian
for (6.3.1) because (6.3.3) was obtained from (6.3.1) by an orthogonal

transformation. =1




Since (6.3.15) is always greater than 2ero, we can minimize the
integral of the error by minimizing the quantity in hrackets in the last

term. Thus

] T T,T
% {trace XQIX +Q2X +XQ2+Q3]

(6.3.17)*
T <
2Q1X + ZQ2 0
or
T -1
X --Ql Qz. (6.3.18)
The optimal value of the cost function (6.3.15) is
T 2 T.-1 T
g be(t)) de = trace P.,[Q;-Q,Q;7Q, 1P ,- (6.3.19)

Thus for each P, i.e., each invariant subspace, (6.3.19) gives the associated
cost. The straightforward application is then to look at all r-dimensional
invariant subspaces and choose the one with least cost {9,60].

The above analysis provides more insight, however. First, Q is

calculated from
F 0 1rQ, Q FL FL G
11 12 1% Qi Fafl T 6T 6Ty. 6.3.20)
F.orl1Qf qQ ol
21 Ta2ilt ¥

This decomposes as

T _ .l
F 1, * QF); = =6;6] (6.3.21a)

T T, o gl ]
F11Q + QF 5, = =(GG,+Q;F, ). (6.3.21b) 1

d
X trace XQ Q.




To compute X in (6.3.4) first solve (6.3.21a) followed by (6.3.21b). Thus,
the full order Lyapunov equation need not be solved. The savings in compu-
tation may be great if the order of the reduction is large.

Secondly, substituting X in (6.3.18) into (6.3.15). we obtain the

controllability gramian of the optimal representation to be

Q, 0

. (6.3.22)
T -1

This is reminiscent of Moore's balancing technique [10]. Indeed, the control-
lability gramian for the reduced order model is the same as that subsystem
embedded in the original representation (see (6.3.21a)). For further
discussion see Section 6.4.

Finally, consider (6.3.8) (cf. (6.3.7)) which essentially describes
the error. The error is generated by two inputs: 1) u(t) directly into the
residual subsystem through 62, and 2) u(t) filtered through the aggregate
Both G, and F.,, are functions of X.

21° 2 21

So we interpret the calculation of X as trading off the effect of the input

subsystem, i.e., y(t), through F

and the effect of the aggregate on the error.

The error analysis of Mitra's method yields results similar to the
dominant mode method. Again we would like the system to be nearly unobserv-
able, i.e., nPlzn small and the eigenvalues of F22 fast. We would also like

to have F17 and G2 small together. This has the effect of diagonalizing Q in

(6.3.16) (cf., the analysis of weak observability). Then the separation of

the eigenvalues will ensure a small cost (6.3.19).




a2 - e &

6.3.4. Summa

We can combine the observations to identify characteristics of
subspaces used to produce a reduced order model. For clarity, suppose the

invariant structure decomposes as

Z = 1'r07d (6.3.23)

where 7/'1_ is the invariant subspace of retained modes while ¥y d is its
complementary invariant subspace of discarded modes. Then

1) 7& should be near N[C]. This implies IF, .} is small.

12

(2) 7& should be nearly orthogonal to 7}. This implies IF21l is small.

(3) ?} should be near ®[B)}. This implies IGZI is small.

%) 7} should contain the slow modes and 7a the fast modes. This
implies the effect of the aggregate and input on the residual will
be small.

We shall see that (4) is structurally related to (2); i.e., systems with
separated eigenvalues tend to haye property (2). Also (2) and (3) combined
with (4) implies that the controllability gramian tends to be diagonal with
separated singular values. Similarly, (1) and (2) combined with (4) leads

to weak observability. The combination of these two concepts will be

discussed in the next section.

Al aa . g

3

6.4. Balancing Techniques ‘
6.4.1. Internal amalvsis

The discussion of Mitra's method ia the last section provides a “1

bridge between modal model reduction and model reduction based on the

controllability and observability gramian [10-11], here called balancing

a 4 s s

-

- im o - b
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techniques. The idea here is to choose state coordinates such that the
controllability and/or observability gramian exhibit special strucuuture,

i.e., they are both diagonal with the same eigenvalues (called second order

modes [10]). Then if there is a separation in the spectra, the weakly
observable/controllable subsystem is discarded. As an example, note that if
B=0, then this reduction is just weak observability.

Thus, we see that Mitra's method is a combination of modal methods
and balancing techniques. The modal analysis enters in the first stage as
already discussed. The balancing is performed in the second stage by
selecting a basis such that the contréllability gramian is block diagonal
(see (6.3.22)).

The balancing technique is related to the framework presented here
as follows. Given the system (6.3.1), choose P1 in (6.3.2) such that K,

the observability gramian, is block diagonal, i.e.,

KP, = = K. (6.46.1)

Since ?1 is orthogonal, the eigenstructure of K is preserved. Now introduce

a seccnd transformation

¥ y v, 0 y :
=V = (6.4.2) ;

% X o Vv X

r T 2 r R

where V, is chosen such that

{ ]
L

VIRV, = I i=1,2. (6.4.3)%

i%1V4
>
F
*IfK =V"VT take V. =V Z-l .
17 V1% 1% Vit o




This makes the observability gramian an identity matrix. Now select a

second matrix of the form (6.3.2) such that the controllability gramian Q

is block diagonal, i.e., select P_ such that

2
- = Q 0°
PPl =| 1 . (6.4.4)
22 0 Q
3

Since the observability gramian K is the identity it is unaffected by 52.
The second order modes are now

2 Ya

°si (c(Qi)) i=1,3. (6.4.5)

A transformation similar to V in (6.4.2) will create identical control-
lability and observability gramians. The idea, clearly, is to choose P2 such
that the spectra of Q1 and Q2 are separated, if possible. 1In this case, the
subsystem associated with the larger spectra is retained.

In Section 3.3 we discussed the relationship between near unobserv-
ability and the observability gramian. A dual theory immediately follows for
controllability. How then are these concepts related to balancing
techniques? Suppose that we compute the transformations above, but delete

V in (6.4.2). Then following the transformation P. in (6.4.4), the observ-

2
ability gramian (6.4.1) becomes

BRF, = T% Tz - R (6.4.5a)
K2 Ky
g, = (1+png)_"1 (1<1+92K2p§)(1+pzp§)-'/’ (6.4.5b)
g, = (1+P29§)-Vz (Klpz-‘pzxz)(_1+p§1>2)—l/2 (6.4.5¢) -4
gy = (I+-P§P2)-Vz(K2+-P§K1P2)(I+-P§P2)-V’ (6.4.5d)

e et ; 4j--d-hI-i----‘iﬁi-i-i--lI-Iililii...ill.l.'l....l.ll.ll‘
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The intuition is this. Suppose that the original system is weakly observ-

able and controllable, i.e.,

°1(K1) > ¢g,(K for all 1,3

3 &2

ai(Ql) >> aj (Q3)'

(6.4.6)

Then if IP2I is small, i.e., the weakly controllable and observable subspaces
are near each other, then the system is nearly balanced. This is equivalent
to asking that K be block diagonal. To see this, we note from (6.4.4) that

the weakly controllable subspace is

o
Z wc ™ SP [I] . (6.4.7)

Then we wish to estimate how close ch is to an ﬁ-invariant subspace. Apply

Theorem 3.2.3 to (6.4.5). Using singular value perturbation theorems [69],

we have
0. (K. +P.K.PY) > 0,(K.) + o(P.K.PL)
g (R FERFS) 2 0,(Ky) + alF Ky
(6.4.8)
T -,.T
oi(Kz-kPZKle) < oi(KZ) + o(PZKlPZ)
g(P.K.PL) > 20(P.)o(K.)
IR 2 22(Fy)alRy

A

-,.T - -
a(pZKIPZ) < 20(P2)0(K1).

Thus, 1if 5(?2) -IPZu is small and (6.4.6) holds, sep(ﬁl,ﬁa) will be nonzero.

For a bhound on ﬁz, we have
- . - -{
IKZI < 2] cos Ol lel(lKII lel). (6.4.9)

This again shows that a small IPZI leads to a nearly block diagonal K.

Combining (6.4.8) and (6.4.9) we obtain the estimates in Theorems 3.2.2-3.2.3.

\
-
E

A 4441----------------h-------l--l----ilil-lll
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:n : It is interesting to note that a separatiom in a(Kl) and o(Kz)
decreases the magnitude of allowable angles between the weakly controllable

and observable subspaces. (This separation increases the bound in (6.4.9).)

This is to be expected since the discarded subspace must be both weakly con-
trollable and observable.

The relationship between near unobservability and weak observability
was established in Section 3.4. Roughly, the system is weakly observable 1if
the N[C] is near the fast subspace. A dual analysis of controllability would
yield that the system is weakly controllable if the R[B] is near the slow
subspace. Both weak controllability and observability require that the slow
and fast subspaces be nearly orthogonal. These properties characterize a
balanced system which will reduce. However, note that if, say, ai(K) are closely
grouped and oi(Q) are separated, then the system will decompose according to

the controllability criterion. A dual situation also occurs.

6.4.2. External analysis

It should be noted that this model reduction technique is based on
internal properties rather than external properties [10] such as impulse
response

H(t) = ceMts. (6.4.10)

This is in contrast to Mitra's method which is based on the systems impulse

response. To see this, suppose that (A,B,C) in (6.4.10) are given by (6.3.3)

where X is selected as in (6.3.18). Then compute
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j B(e)uT (c)de= [ rcAtBBTeA taeict (6.4.11a)
T
Q 071 (P ,-P,,%)
- [P X P ][ 1 ][ 11 12 ] (6.4.11b)
X Py ~ T

0 Q 27

T - T
= (P 1" 12x)Q]_(Pu-l’ux) + P12Q3P12 (6.4.11¢c)

From (6.3.21a) and (6.4.10) we see that the first term in (6.4.11lc) is the
impulse response of the reduced order model. Thus the second term in
(6.4.11c) represents the error as we derived in (6.3.19).

A similar analysis can relate the internal analysis above to the
external behavior. Suppose that the system (6.3.1) has (almost) been
balanced with the transformations (6.4.1), (6.4.2), and (6.4.4). Then the

system will have the form '

§: F F y G
[. ]-[ ! 2] F~ +[ 1]\1 (6.4.12a)
1 LFs Fllxd LG

»ne

y
y=1[¢ Clif. (6.4.12b)
Lx
rJd
2 1. .2
c, 1[P11V1P11”11V2P12] (6.4.12¢)
p2 4pl y p2
c, ‘*”11112*'?12"2?22] (6.4.12d) i
1 1 ;
?i-ril 12] 1=1,2. (6.4.12¢) |
P P ]
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Doing the computations in (6.4.1l1) we have

T T
J = °1Q1°1 + c2Q3c2. (6.4.13)

Next observe that since Q is block diagonal,

AQ + QAT = -BBT | (6.4.14)
decomposes as
' T T

F,Q, + QF; = -G,C) (6.4.15a)

F.Q. + Q,F: = -G GL (6.4.15b)
2% * ¥, 1%2 e

F Q. + Q.F = -G.GY (6.4.15¢)
433 T &5, 2%2° -4

Hence, we can again measure the error between the impuise responses of the
full and reduced order model by imposing a measure on (6.4.13).

We can make a few qualitative judgments based on (6.4.12d) and
(6.4.13). Both weak controllability and observability enter in two ways.
First, they enter geometrically through IPizl-lsin Oil, i=1,2. Here Ol
and the weakly observable space and ©, measures

1 2
the angels between the weakly observable space and the weakly controllable

measures the angles between £

space. Secondly, they enter through the eigenvalues associated with each

space. That is, the eigenvalues of K enter through V., and V2 (see (6.4.3))

1
and the eigenvalues of Q enter through Q3.
There are other ways to measure the error when balancing is used

to obtain a reduced order model [1l]. See Section 6.5.2.
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6.5. Cost Decompositions
6.5.1. Formulation

All reduced order models deviate from the true system in sdne way.
There are many ways of evaluating this error as is evidenced from this
chapter. Evaluation of a reduced order model, then depends on the evaluation
of the error. In an effort to put these methods in a common framework,
Skelton [ ll] has suggested evaluating a candidate reduced order model by
identifying its contribution to a cost function. Presented in the framework
of Chapter 5, the residual subsystem which contributes little to the cost
is truncated.

Suppose that u(t) in (6.3.1a) is a zero mean Gaussian process with

covariance

E{u(t)ul(t)} = S6(t-T). . (6.5.1)

Define a cost function for (6.3.1a) as

V = 1lim E{xT(:)Qx'(:)}
c-’a
= 1im E{xT(t)CTCx(t)}
t-ﬁ“
= 1im E{ly(e)1%} (6.5.2)
Lre

where C 13 a square root of the nxn symmetric positive semidefinite matrix
Q. (This illustrates the origin of C even in other model reduction
contexts.) It is easily shown [70] that

V=c¢r KBSBT (6.5.3)

where K is the observability gramian of (6.3.1) (see (3.4.4c)).
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Consider (6.3.1) where (6.3.1b) is replaced by

y
y=I[c ¢l . (6.5.4)

Xe

With respect to this partitioning, we decompose the cost as

Ve Vl + Vz

Vi - vil + viZ . (6.5.5)

T =
Vyj = tr K B,SB;  1=1,2.

If V1>>'V2, this suggests that we take (Al’Bl’cl) as a reduced order model as
discussed in Section 5.2. However, in general the cost associated with the
reduced order model will not be V1 because of the coupling in (6.3.1) and

(6.5.5). Therefore, define the error cost as

§V = %im E{ly(t)-yr(t)l}. (6.5.6)

From (6.5.5) and (6.5.6) various indexes can be derived [ll].

The general approach is to select special representations to
derive various expressions for the cost decomposition quantities above. This
can be easily done in our framework and we will discuss the various methods
above here. To evaluate 6V in (6.5.6) is somewhat more difficult.
Expressions can be derived by augmenting the model state equations (6.3.la)
with the reduced order model equations and defining an appropriate output
equation. Then &V {s computed as in (6.5.3). The details are found in
(L11]. We shall discuss 6V only where our approach leads to insight and

simplifications ({.e., modal methods).




6.5.2. Cost decoupling

To gain insight into the contribution of various subsystems to

-the cost, it might be useful to identify coordinates in which the costs v1

and V, are uncoupled, i.e., =0, 1¥j. It is easy to see from (6.5.3)

2 Viy
that two sufficient conditions for this are 1) K is block diagonal, or
2) BSBT is block diagonal. Either of these conditions can be accomplished
by an orthogonal transformation as in (6.3.2). Motivations for choosing
these transformations can be obtained from Chapter 3 and Section 6.4

Intuitively, this must be connected to weak observability. 1In

fact, the connection is explicit if we reformulate the problem by assuming
that u(t) =0 and the initial condition has a zero mean Gaussian distribution

with covariance BSBT. If the cost function is taken to be

Vv = [ Iy(t)hde, (6.5.7)
0
then 1ts value is given in (6.5.3). Hence, each cost component Vi measures

the observability of that subsystem when the initial states are distri-
buted as BSBT-(tather than I as assumed in Chapter 3). If K is block
diagonalized, truncating the residual system corresponds to eliminating
the weakly unobservable states.

It should be emphasized that the error cost 6V is not V This

2°
cost must be determined from the full error model [11]). This corresponds to
internal-external discussion of Section 6.4.

To evaluate the error cost 6V requires that the reduced order model

be stable. By block diagonalizing K, this reduced order model is almost

always stable [10]. An even stronger result is proved in [ 71].

il
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Block diagonalizing BSB‘r has been called disturbance decoupling.
It is possible to simultaneously block diagonalize both K and BSBT. The
required transformations are the transformations needed for balancing
(Section 6.4, (6.4.1)-(6.4.4) where BSB'r replaces Q). In this form, it is

easy to see that the truncated states should be weakly observable states

which are not disturbed too much.

6.5.3. The GHR

A second obvious choice of representation is the GHR (6.3.1), so
that the reduced order model is the aggregate subsystem. A real issue here
is the stability of the reduced order model since it is not guaranteed.
However, suppose the system is nearly unobservable. Then by Theorem 3.3.3,
A(Al) approximates a subset of A(A). In this case the reduced order model
should be stable. Bounds can be derived using the results in Sections 3.3

and 3.4.

The relationship of these coordinates to cost decoupled coordinates

follows from the discussion of near unobservability and weak observability.
Here again it 1is easy to see that the weakly observable states should not

be heavily distributed to produce a good reduced order model.

6.5.4. Modal methods

Lastly, consider the modal methods of Section 6.3. Assume that
the system is represented as in (6.3.5a) following transformations (6.2.2)

and (6.3.4). 1In these coordinates it is not easy to give a simple

expression for the component costs--hence, it is not obvious a priori how to

select P in (6.3.2) (in contrast to the above two methods).

| | |



These coordinates simplify the calculation of §V. 1Indeed, the
error model is given by (6.3.5a) with output equation (6.3.7). With respect to

this representation, the observability gramian of (6.3.5a)-(6.3.7) is

K, K

g = % 2 (6.5.8)
K. K
2 3
where
R.F.. + FL R = -pLp (6.5.9a)
3722 223 12712 *d.
R.F. + FLE, = -FL K (6.5.9b)
22 1172 213 <.
RF.. +F . K =-KF._ -FLR (6.5.9¢)
KFh Yk 2F21 " F21%; -3-
which is the result in [1l]. Now the error cost is calculated from
4 K G
6V = cr[ %. 2][ llstc}' 6';]. (6.5.10)
K. K G
2 3 2

In developing the modal representation (6.3.5), the submatrix X
in the transformation (6.3.4) was not specified. We see now that it can be
used in two ways here which lead to simplifications. First, X can be chosen

such that there is disturbance decoupling. For instance, if G, is nonsingular,

1

we can choose X such that 62-0. However, the motivation for this seems to

be only computational simplicity.

The second choice of X would be such that flz-(). Then the

coordinates in (6.3.5) are closer to the well-known modal coordinates. In

this case the solutions to both (6.5.9b) and (6.5.9c) are §1-=E2=43. Thus,

the cost reduces to

—e
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= = =T
&V = K,G,SC,. (6.5.11)

The ideal solution would be an optimal choice of X somehwere between these

tow extremes. However, a closed form solution does not seem possible at this

time.

._,‘
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CHBAPTER 7

THREE CONTROL COMPONENT DESIGN

7.1. Introduction

Having introduced the subspaces £, in Chapter 3, we studied their

i
behavior under state feedback in Chapter 4. The intent of that analysis was
to lay the foundation for the use of these subspaces in closed loop design.

In this chapter we introduce a control design scheme, called Three Control

Component Design (TCCD), {2,28,72]; based on the closed loop subspaces £ i.

We then see how this procedure relates to several control design problems.
The TCCD is derived from the system representation produced by MCA.
Hence, we immediately have a geometrical interpretation of the TCCD. This
allows us to connect it with several known [3 ] results and extend these
ideas. However, a deeper insight is also gained by considering MCA in a
state feedback context; the TCCD. First, the TCCD establishes an a priori
control structure which reflects a hierarchy of design goals by giving
priority in the design procedure to the control component used to meet the
primary design objectives. This is done by integrating the control objectives
into the GHR. Secondly, the TCCD explicitly identifies a reduced order model
which is used to meet the primary design objectives. Thus reduced order
modeling, implying a reduction in control computation, is integrated directly
into the design process. Finally, the combination of these two aspects into
an overall design procedure allows for the evaluation of the trade-off
between the order of the reduced order model and the complexity of the

control computation.

I P
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E! i The decomposition of the control design in the TCCD is directly
' related to the system decomposition discussed in Chapter 5. Hence, this
p? makes it useful for decentralized control of interconnected subsystems.
‘! While the TCCD applies to any of the system structures in Section 5.3, it
is discussed here for systems connected through their outputs. However,
the approach here can easily be used fof any of the other structures in

:‘ Section 5.3.

When the TCCD is used in this special context, it takes on

additional properties. The information and control structure is exploited
to produce a control scheme which is hierarchical and partially decentralized.
The control problem is decomposed into a global problem, which is a coordi-
nator problem for the interaction variables, and local control problems
which lead to a decentralized design. Through this analysis we are able to
identify what models are necessary for computing the control, and what
information exchange is necessary for implementing the control.

This approach to control of an interconnected system is different
from most other schemes [51,73-76]. First, the scheme is not necessarily
decentralized. If the interactions between subsystems are strong then it
may be justified to relax the decentralization constraint (if possible).
The control scheme proposed here specifically identifies the control
component associated with the interactions and allows for a (partially)

centralized design. Secondly, the interaction variables are given priorityv

in the design while the local control is computed onlv after the inter-

action variables are compensated. This is exactly opposite of many decen-

S WPy

tralized schemes which assign the local concrols first and then compensate

for the interactions ([51,73,76]. Finallyv, the control scheme is based on the

et et et tiincsutnsmali ‘M
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information and control structure and not om the physiéal subsystem
structure directly as are most other schemes [51,73-76].

If the purpose of the state feedback matrix is to place the closed
loop poles, then the TCCD decomposes this one large problem into two smaller
problems. It is then left to the designer to choose his/her favorite design
technique. However, here we also discuss the use of the TCCD in an optimal
control framework [ 2]. This analysis when combined with interconnected
systems has applications in dynamic games [ 2]. We discuss a Pareto game
here.

The discussion of the TCCD in decentralized control is a straight-
forward application of these ideas. As a novel use of this approach, we
discuss a noninteraction problem. By combining the decomposition of
Chapter 5 directly with the TCCD, we are able to solve the problem of
decoupling a system with static output feedback. While solutions to this
problem are known [3,77-82], the procedures here bring fresh insight and new
interpretations to the issues involved here.

Finally, the TCCD is applied to a class of nonlinear systems [83].
The main idea is to extend the concept of invariant structure of linear
system theory [44) to a class of nonlinear systems characterized by
arbitrary dynamics and a collection of static nonlinearities, and to
determine a partial invariant structure of such nonlinear systems and its
basic characteristics. A number of significant gains follow from such a
development. First is an explicit use of nonlinear system structure, loca-~
tion of nonlinearities, and structure of inputs into the nonlinearities in

the classification of nonlinear control svstems. Second is the extension

P P P
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of structural invariants defined for linear systems to a wide class of

nonlinear systems, and the use of these invariants in the classification of

nonlinear system types. Third is a natural decomposition of the control
structure in nonlinear systems into three control components: the first is
a compensatory component that brings out the invariant structure and reduces
the nonlinear system to a tandem configuration of an inherently nonlinear
subsystem forcing a residual linear subsystem through static nonlinear inter-
connections; the second is a (possibly nonlinear) control component that
solves the synthesis problem associated with the inherently nonlinear part
of the system; the third is the residual control component that shapes the
dynamics of the residual linear system. It is stressed that the major gain
is in the decomposition of the nonlinear synthesis problem since nonlinear
synthesis need be considered only in providing controls adequate for the
inherently nonlinear part of the system.

This chapter is organized as follows. Section 7.2 discusses the

basic properties of the TCCD. These follow directly from the results in
Chapter 4. The TCCD is then extended to interconnected systems in Section
7.3. In Section 7.4 the TCCD is discussed in an optimal control framework.
Section 7.5 discusses output decoupling. Section 7.6 extends these ideas

to nonlinear systems.

7.2. Basic Properties

7.2.1. Structure

In this section, we ocutline the basic principles behind the TCCD.

In fact, the basic properties follow immediately from MCA. We assume, first,
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f! that the system (C.1)-(C.2) has been transformed by MCA to yield
y A, ¢ I1ry] B. 01fa
PO B G t _ it ¢ - (7.2.1a)
e B ArIl%d LO Bpllv
o ; - .
y = (B ot_ |- (7.2.1b)
her

With respect to this basis consider the feedback law

(]

_ K, K I[7 +'\7
u LKRl KRZ ir .v
[ K "0 ] v v
Bk %+ Al + N (7.2.2)
| 0 0 %1 Kpall®ed LY

which we have separated into three components. The first component is

5],

0 r

where KD is chosen such that

CR + BGKD = 0. (7.2.4)

MCA guarantees the existence (and uniqueness) of KD. With KD chosen as in
(7.2.4), the closed loop aggregate subsystem will not depend on the 4
residual states ir' Thus, we call this first component the decoupling ]
control.

By specifying the decoupling control as in (7.2.4), the aggregate -1
subsystem becomes a reduced order model for the output variables y. If

the primary design objectives are given for these variables, then these




objectives can be met by specifiying the second component of the control

] |
[ “] 5 (7.2.5)
0

called the aggregate control.

The decoupling control has reduced the closed loop system to a
tandem configuration of the aggregate subsystem driving the residual sub-
system. Once the aggregate control (7.2.5) has been selected, we can use

the third control éomponent

0 0 y

KRl KR2 X

s (7.2.6)

the residual control, to stabilize and control the residual.

Thus the TCCD is a decomposition of the control law based on the
information and input structure. The design is hierarchical in that the
aggregate control can be selected freely to meet the primary design objec-
tives but the residual control depends on the aggregate control and can only
be computed after the aggregate control.

The geometric interpretation of MCA gives us an immediate geo-
metric interpretation of the TCCD. The selection of KD in (7.2.4) provides

*

the essential construction of a state feedback matrix K such that £2K= L.

Another way of saying this is that K makes L* closed loop invariamt. It is

0

&= sp (7.2.7)
%
r

clear from (7.2.1) that




is a closed loop unobservable subspace. Since £* is the supremal such sub-
space (Proposition 4.2.4), the decoupling control in (7.2.4) is making the
system maximally unobservable [ 4]. Therefore we will call this choice of
decoupling control the maximal decoupling control. We will discuss other
choices of decoupling controls below. However, next we turn to properties
of the aggregate and residual subsystems.generated by maximal decoupling.

If the maximal decoupling control is used to aggregate the system,
the residual state space is 7*. Since ¥* is unique [ 3 , Theorem 4.1], the
corresponding reduced order model is, in this sense, unique. As the design
of the aggregate and residual control components involves standard design
procedures for the aggregate and residual subsystems respectively, we will
examine the stabilizability of these subsystems and see how they relate to
the original system properties. This analysis applies to certain steps of
the synthesis procedure described above. The final goal is to produce a
state feedback law. Hence, certain aspects of reduced order models are not
relevant here, such as stability of the reduced order model. We will be
interested in those structural properties that relate to the overall synthesis

procedure.

7.2.2. Aggregate subsystem

Let (A[B) denote the reachable space of (7.2.1) and (AG|BG) the

reachable space of the aggregate subsystem generated by the maximal

decoupling control. Furthermore, let Zaf:Z'denote the state space of the

aggregate subsystem. )

Proposition 7.2:.1: [28] (A[B) %) = (a [8.). 1

Proof: Consider the following system which aggregates following two cvcles 3

of MCA
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7] [Pl Fia o Fug) (6, o o]

72 ;11; 1 0 "?.“ 0 0 0 J‘-‘l-

Pl=le, -0 o |l5,]+] 0 o o5}, (7.2.8)
AR F2 BaflZd | 0 B O[3

(5] [As 0 25 7 455 L 0 0 By

y(y) = [Hl : 0 : 0] ;2 .

11 and 522 are

nonsingular matrices. Hence, the maximal decoupling control is computed to

From our assumption and properties of MCA, it follows that G

cancel the subblocks §13 and F23. Since the reachable space is the same for
the systems (7.2.1) and (7.2.8), denote the system matrices in (7.2.8) by
(A,B,C). Similarly, denote the aggregate subsystem (generated by the

maximal decoupling control) by (F,G,H). Let

a y
1l 0 )
'Nl =spli, |, 7.{2 =sp|_ |, Zl =sply, |- (7.2.9)
Y2
0 0

With this notation, we have that

Al ® = <A|B'u1> + (Alm.(z). (7.2.10)

From the special represeantation in (7.2.8), it follows that

Z, N <A[B33u2>2 = F 48Uy 2 FynBadio, (7.2.11)

AP A
P . '
L IR

R

) -
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or
zZn <A|n33u2>2c BU, C (AG|BG) . (7.2.12)

We conclude that

Z,n(A|B, W) (AL|B) : (7.2.13)

and so the result follows from (7.2.10).
The special system in (7.2.8) contains all of the relevant structure
for Proposition 7.2.1. An easy induction argument extends the result to
all systems (7.2.1). o
Thus the aggregate subsystem inherits its reachability properties
from the original system and these properties are not altered by this choice
of decoupling control. We now given an interpretation of the aggregate's
unreachable modes.

Definition 7.2.2 ([84]: The input decoupiing zeros are the roots of the

invariant polynomials of [sI-A,B]. The output decoupling zeros are the

roots of the invariant polynomials of
[sI—A]
C

The system zeros are the invariant zeros together with those decoupling

zeros not already included in the invariant zeros. G

Proposition 7.2.3: Let the system (7.2.1) be aggregated by the maximal

decoupling control. Then the eigenvalues of the unreachable modes of the
aggregate are input decoupling zeros. Hence, they are system zeros which

are not invariant zeros.
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Proof: The first statement follows easily from Definition 7.2.2 and

LT‘H VT Y n

Proposition 7.2.1. Since all the invariant zeros are in the residual,

(Proposition 4.2.7, see discussion below), the second statement follows. ©

Porter [85] has given a similar description of system zeros which are not

invariant zeros.

7.2.3. The residual subsystem

In fact, the residual subsystem's properties are described in
Section 4.2. From Proposition 4.2.5, the controllable subspace of the
residual 1is exactly /*, the supremal controllability subspace in 7[C].
Furthermore, we know that some of the residual's poles are fixed by the
maximal decoupling control and that these poles are exactly the invariant
zeros (Proposition 4.2.7). Recall that we interpreted the maximal decoupling
control as making the system maximally unobservable. This has been inter-
preted as canceling some of the system poles by the invariant zeros [86-89]
and we recover those results here.

The TCCD allows us to integrate all of the structural results of
this section directly into a control synthesis. This allows us to evaluate
the procedure as we work through it and modify it to take into account
important structural properties of the system. In particular, we note

that an unstable invariant zero will result in an unstable design. Next

we will discuss ways to structurally modify the aggregate and residual sub-

system to circumvent this and other problems.

7.2.4. Alternative decoupling strategies

In the most general terms, the TCCD induces a system decomposition.

Maximal decoupling represents an extreme case of this decomposition. Other

R - —— —— sttt atnaat]
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decoupling controls will produce other decompositions. The different
decompositions possible reflect the designer's freedom. One particular use
of this freedom is discussed in detail below.

As pointed out above, the maximal decoupling control will produce
an unstable design if one of the invariant zeros is unstable. This situa-
tion may be corrected by choosing a decoupling control other than the
maximal decoupling ;ontrol. This corresponis to selecting a feedback matrix
L such that .clz‘#.c*. The geometrical aspects of this problem were discussed
in Section 4.2. We shall apply that analysis to the design problem at
hand, i.e., how to choose a decoupling control to produce a stable residual.

Since we are interested in the spectrum of the residual in the

factor space mod ®*, we shall assume f%=0. Then (7.2.1) becomes

¥ A, C,1[771 B
1=l ¢ R + [ Glg (7.2.14)
xr BGR AR .xr. 0
) 2
y = [H1 0] -
L "t

It is easy now to compute the decoupling control. First, identify the
invariant subspace associated with the stable invariant zeros by finding

a nonsingular matrix T such that

-1 &g O ]
Tl T = i (7.2.15) |

R
sy 4

Here, the eigenvalues of A, are the stable invariant zeros. Such a traas- 4

S

formation always exists since the spectra of AU and A, are disjoint. We

S
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;! interpret this as a change of basis in state space as
§
. y I 01y
= (7-2-16)
x 0 T|]E

T

and apply it to (7.2.14). The result is

y A S Spl[F] [%
E =18 & O ||&|+|o]e C(7.2.17)
$21 LBz “su 45 JL%2) LO
T3
y = [B, 0 011& |-
Ty

We can now immediately compute the decoupling control as

-1
u = -BG CRZEZ + v. (7.2.18)

We note that the aggregate subsystem in (7.2.17) again inherits

the reachability properties from the original system. The proof is similar

to the proof of Proposition 7.2.1 and is omitted. Furthermore, by using
the results of Section 4.2 we can see directly that the invariant zercs of

the aggregate subsystem are exactly the unstable invariant zeros of the

el

original system. Finally, the residual dynamics are completely fixed, but
stable by construction. Hence, the TCCD with decoupling control (7.2.18)
will produce a stable design. The extension of these ideas to systems in
which R*# 0 1is straightforward and discussed in Section 4.2.5.

The discussion above is a particular case of a general procedure 1

for constructing alternative decoupling strategies. The analysis in
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Chapters 2-6 provides the general background to use this freedom. 1In
particular, the results in Chapter 5 may be used to decompose the system
along physical lines that are still compatible with the TCCD. Or since the
aggregate subsystem is a reduced order model of the output variables, the
discussion in Chapter 6 provides insight for a good selection of a decoupling

control.

7.3. Control of Interconnected Systems

7.3.1 Systems connected through their outputs

The TCCD is based on the system decomposition produced by MCA.
Thus, when interconnected systems are decomposed by MCA, the TCCD should have
a direct application. Indeed, the TCCD can be applied to any of the
decompositions discussed in Section 5.3. We shall discuss its application
to one particular structure described in “xample 5.3.3. However, the
approach here will generalize to any system structure produced by MCA or
chained aggregation.

For ease of presentation, we recall the system structure from

Example 5.3.3 as

i1 r | =17 r-1
y AGl AG12 | CRl 0 y rBGl 0 : 0 0 u ]
t
22 2 | 2
v Aco AG2 : 0 CR2 y 0 Beo i 0 0 u
e T T Tl s 0 5 o |]&t
r GRL GR12 1 “R1 r ARL | PRL
o2 B B : 0 2 0 B... ' 0o B 32
LX) LBer21  Bor2 Apadl*el L AR2 | rR2d LY
(7.3.1)
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1 l =2
y . CGl 0 [ 0 Olly
2 | 1]°
y 0 CGZI 0 0 x.
2
[ *¢

By rearranging the states, we see that (7.3.1) consists of two inter-

connected subsystems

24 -1 -1
y A, o y B 0 a A _ _
I B S 1 L 6t o e I e T
it B =t B B al B
r GrRi “Ri T ARL Ri GRi,3-1i

Note that (7.3.1) highlights the information and control structure in the
composite system while (7.3.2) emphasizes the physical subsystem structure.
Equation (7.3.2) also emphasizes that these subsytems are interconnected
through their outputs. So we interpret the state variables §i as system
wide interconnection variables. A model of these variables is given by the
aggregate subsystem in (7.3.1). The remaining states xi are interpreted

as local state variables. The local nature of these states is refiected in
the block diagonal structure of the residuai dynamics.

Implicit in the TCCD is a ranking in the desigr goals. It is

assumed that greater priority is given to the output variables, i.e., the
aggregate subsystem., If in (7.3.1) we are primarily concerned with the ]
system wide interaction variables, then the TCCD has a natural application.
Indeed, it has other interesting features.

First consider the decoupling cecntrol. The block diagonal
structure in (7.3.1) vields

-i i -1 .
u =K .x_ +w i=1,2. 7.3
<D1 T ¢
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This control component is decentralized in that it can be implemented

locally. Once this is done, the interaction variables are modeled by the

aggregate subsystem. The aggregate control is given by

-1 =1 -1
w . Al KAlZ y . v
<2 =2 21 (7.3.4)
v Ra2r  Ka2 § L7 v

Further structure may be imposed on (7.3.4) as fits the problem. The aggre-
gate control reflects the essence of the interconnected nature of the problem.
The aggregate subsystem is the model each subsystem needs to compute its
aggregate control. The control law in (7.3.4) identifies the information
exchange necessary to implement the scheme.

The residual control is given by

- -1 EP RS |

Sl Mo Remaz Y [ (M O {[% {7

) -2 2{"{-2]. (7.3.5)
U] L%r21  ferz JLY 0 Rpalix ] LY

The component of the residual control that shapes the dynamics of the

residual subsystem is again decentralized. The feedforward term of the

aggregate variables can be decentralized or not according to what information

bdbinih,

is locally available.

7.3.2. Two area power system

In Section 5.4 we considered the decomposition of a two area power

system. The final decomposition is given in (5.4.11). A quick comparison

with (7.3.1) shows that this power system exhibits the structure we have +

been discussion in this section.

The application of the TCCD to (5.4.11) is straight forward. Each

area computes its own decoupling control as —
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il - l(;x: + 7t (7.3.6a)

K;j - -fzj/gél {=1,2 §=3,...,8. (7.3.6b)

That is to say, K; is a 1x6 matrix with elements given by (7.3.6b). This
eliminates the aggregate systems dependence of the residual states. Now an
aggregate control can be designed to regulate the power flow and the frequency
deviations.

The last step is control of the residual systems in (5.4.11b)
using Gi. This is a standard design procedure once the aggregate control is

known.

7.4. Optimal Control

7.4.1. Decomposition

The TCCD can be applied in linear quadratic optimal control
problem to obtain a suboptimal control [ 2]. To see how this goes, suppose
that the system is represented as in (7.2.1). With respect to this basis, let

the cost function be given by

® Q Q y R R a
s=YpEt &Y 2 + (@t | L 2 de (7.4.1)
25 QY o,z R R ||a
2 3 T 2 3

with all the usual assumptions. The optimal strategy u®=K*x' would minimize
J for all initial conditions.
We will consider a suboptimal solution based on the TCCD.

Parameterize the total control on the decoupling component. Write
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Substituting (7.4.2) into (7.4.1), we oﬁtain a cost function parameterized

on KD, which we emphasize by writing J(KD), which decomposes as

IRy ) =3, + 3 (7.4.3)
where -
N R JUPSE, S
I, =3 £ $°Q,7 + U,R,T,de (7.4.4a)
® 0 Q +KR y
T T.T 2 KR K

T T T
QH+HERK,  QHERK ] X

y
~T. T T, ~T, ~
+ 2u [RZKA RZKD] u R3u de. (7.4.4b)
%
Since the decoupling control makes thé'system unobservable, the
original optimal control problem decomposes into two subproblems. The
first is defined on the aggregate subsystem with cost function JA (7.4.74).

This involves the solution of a Riccati equation of order r. Once the

aggregate control has been determined, the system (7.2.la) becomes

Rie

51 [A+BK, 017 ™ 0 q _
-1 G G4 ] r_ + l: g. (7.4.5)
r Bk ARl l_":_l B

R

The residual control is now computed using the performance index JR (7.4.4b)
in conjunction with the system constraint (7.4.5).
This scheme is suboptimal because it is parameterized on the

decoupling control K It may be asked when this solution approaches an

D"

PP
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optimal solution. We make the following observation. Suppose that

0 c'WH:" .

Q2'Q3-R2-O in (7.4.1), that is, only the outputs are penalized and
the control weighting is block diagonal. If the residual subsystem was
unobservable in the sense that CR=-0, the optimum solution would be given
by the aggregate solution. Next observe that the decoupling control is

directly proportional to CR (see (7.2.4)), so that KD-*0 as ch'o‘ Further,

from (74.4.b) we have
1, -T
JR-'i-g G Ryu de as K + 0. (7.4.6)
If the residual subsystem is stable, we have u+0. In summary, if the output
equation (7.2.1b) is derived from the state weighting matrix in (7.4.1) (Q=CTC),

then the suboptimal control via the TCCD approaches the optimal control as

the system becomes unobservable.

7.4.2. A Pareto game

This optimal control approach to the TCCD when combined with the
decentralized control of Section 7.3, has applications in game theory[2,55].
As an example, consider the following Pareto game. Assume we have the

system structure of (7.3.1) such that each subsystem (7.3.2) has associated

with it a performance index of the form (7.4.1). Each player (subsystem)

. i c
is to choose an optimal strategy uzarxzx such that any deviation from the 1

optimal strategy causes an increase in one of the cost functions; i.e.,
. 0
there does not exist a strategy pair (Ki.&q) such that

0,,0 ,O P .
= 4
Ji(Kl’KZ) < Ji(Kl,Kz), i=1,2 (7.4.7) 1
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. with strict inequality holding for some i. Thus the two players cooperate to
minimize both cost functions.

As outlined above, each player selects his decoupling control and
applies it locally. Then the choice of the aggregate control, the coordinator
problem in the terminology of Section 7.3, becomes a reduced order Pareto
game in which each subsystem has a cost function of the form (7.4.4a). The

structure of the aggregate control is given in (7.3.4) where K

221 " Kp12™0

is a structural constraint.

Once the coordinator problem is solved, we can solve the residual
problem. Note, however, that the residuals subsystems in (7.3.1) are
mutually uncontrollable, and because of the enforced decentralization of the
control, this structure is preserved. Thus, the Pareto game defined on the
residual subsyseems in (7.3.1) decomposes into two local control problems

with, say for i=1, cost function JRl (7.4.4b) subject to

~1 * * =1

y Ac1 412 o117 0

2] | . N 2 -

y AGZl AG2 0 §oi1+] O u, . (7.4.8)
.1 1

X Ber1  Beriz  “madl*: Br1

Note that there is a computational savings since the states of the other
residual are not included in (7.4.8). This savings may be considerable if

there are more than two players.

7.5. OQutput Decoupling

Having introduced the TCCD in Section 7.2, we showed how it could

be used in decentralized control (Section 7.3) and optimal control

e —————————————————————————
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(Section 7.4). Ve mention again that these results depend on the system
decomposition. In this section we will use these two ideas, decomposition
and the TCCD, in a slightly different way in a standard compensation problem.

By output decoupling we mean computing a static output feedback
control law

u=Ky+ Vv (7.5.1)

such that in the closed loop system, the i-th input vector controls only
the i-th output vector. This implies that the closed loop system forms a
set of decoupled subsystems. That is to say, the open loop system consisted
of a set of interconnected systems which we have decoupled by the feedback
law (7.5.1). From this point of view, the main problem is to identify the
open loop interconnected system structure. In this section, we shall
apply the results of Chapter 5 to solve this problem. This will illustrate
how the information and control structure can be used in compensator design.
The problem of output decoupling has been of long-sianding
interest [77-82]. Results have been obtained in the frequency domain [77]
and in the time domain from both geometric (3,80,82] and matrix [ 78,79,81]
analysis. The main emphasis here is on the approach to the problem anc
the corresponding insight obtained into the structure of the zciutiua.
This problem illustrates the use of the more general concepts developed
above,
Given the system (C.1)-(C.2), suppose that the output vector has

been partitioned into two subvectors yl and yz, i.e., (C.2) becomes

-
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1

1

- X. (7.5.2)
yZ CZ

Now we want to decompose the system into two subsystems with (7.5.2) as

their respective outputs. To this end apply one step of chained aggregation

to obtain
[y 461 412 Cmi] el
92 =l 8g;  Ag Cro y2 +|Bg, |u (7.5.3a)
%) [Beri Borz AR JU%] LB
1t 0 0 Tfyt L
Lyz_ = K . 0 | Lyz_ (7.5.3b)

To obtain the representation in (7.5.3b), the row spaces of Cl
and C2 in (7.5.2) must be independent. This represents a noninteraction in
the information structure. Intuitively, if the row spaces were not indepen-
dent, then the same measurement would occur in both outputs and they could
not be independently controlled.

Next, to identify the input structure overlap we apply the trans-

formations of MCA. 1In addition we require that V satisfy

v = ) (7.5.4)

That is to say, the input transformation V not only identifies the null
space of the aggregate input matrix, but also block doagonalizes it in
accordance with the output partitioning. This requires that the input

decompose with respect to the given output structure. This is a necessary
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condition. Intuitively, if (7.5.4) does not hold, the same input affects
both outputs.

To see the role of feedback in this setting, suppose that C in
(7.5.2) 1s monic (or the outputs are "complete" [3]). In that case the
dimension of the residual state space in (7.5.3) is zero. Assuming that

(7.5.4) holds, (7.5.3) reduces to

.1 1 = =1
y A1 Aa2||? Ber O }|F
= + . (7.5.5)
21 |a A 2 o B. ||d?
y ce2 ‘2 JLY G2
To decouple the system (7.5.5) we would like to cancel ACZl and AGlZ' This
is possible if and only if
RlAgyp) < RIBg ]
(7.5.6)
a[AG21] C R[GGZ].
Hence, (7.5.6) is also a necessary condition for decoupling.
If (7.5.6) is satisfied, then let
Agi 31 = BgiMig 1=1,2. (7.5.7)

In this form it is obvious that (7.5.5) is two interconnected subsystems
as described in Example 5.4.4. To decouple these two subsystems, we apply

feedback

gl =,y ‘ (7.5.8)

The total feedback matrix becomes
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K. -N
k=] 1 12 (7.5.9)
Ny Ky

where Kll and K22 are chosen to place the poles of the subsystems. Note

that the feedback matrix has two distinct functions; i) N.. and N_. modify

11 21

the information structure of the system and ii) K. . and K, , change the

11 22
dynamics of the subsystems.
We also see that the feedback in (7.5.9) has the structure of the
TCCD. Consider only the first output, yl, in (7;5.5). Then the off diagonal
block in (7.5.9), i.e., (7.5.8) with i=1, is the decoupling control. The
A

aggregate control is defined by K,, and the residual control by K

11 22°
similar interpretation is obtained by considering the 'sezond output, yz.

Thus.far we have identified the three essential components of the
decoupling probleﬁ. First, the information structure must be nonoverlapping
(existence of (7.5.3b)). Secondly, the control must decompose with respect
to this information structure (existence of (7.5.4)). These two conditions
establish well defined subsystems of the original system. Thirdly, the
interconnection structure must be of special form (7.5.6). This guarantees
the existence of a decoupling feedback. It also establishes the existence
of a particular interconnection structure between the subsystems. We shall
see that these three conditions reoccur in the general case.

Now suppose that the dimension of the residual system in (7.5.3)
is not zero and that (7.5.4) and (7.5.6) hold (the aggregate subsystem
decouples). We can describe the residual by the quadruple (AR,BR.BGR,CR).

Here we can think of BR representing an "active" input (one available for

control) and BGR a "passive" input.

P W
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With this distinction, the problem of decoupling the residual is
similar to decoupling the aggregate. First note that CR cannot be modified
using output feedback. So we simply apply the procedure described above to_
the residual. Two cases occur as BR is zero or not. First suppose BR#O.
Then the second step of chained aggregation is appiied to CR and the input
transformation is applied to BR. Suppose that CR is monic and that following

the transformation the residual system has the representation

| " Arzf[%] [Pre %% ], [P Pemz|f?
22 _2 = || -2 2
1 Ll%a %2 L% O BpajlLv Sera1  Bora2J LY
(7.5.10)
c E, 0
| L0 E

To obtain (7.5.10), it is first necessary that the rows of CRl

are independent of the rows of CRZ' Thus the information structure must

continue to be nonoverlapping. Secondly, B_ must be block diagonalizable;

R

i.e., the input structure must continue to decompose according to the informa-

tion structure.
Now to decouple the system in (7.5.10), we would like to cancel

ARlZ’ ARZl' BGRlZ’ and BGRZl' However, the residual states are not avail-

able for feedback. So it must be structurally true that ARZI =0 and

AR12 0. The outputs are available for feedback giving the decoupling

conditions

r - P o ) 1
“tBGi,3—i] C R[BRi], i=1,2 (7.5.11) ,

M
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or

= B__N

Bet,3-1 = BRiNio (7.5.12)

The relationship in (7.5.12) again defines the feedback necessary to
decouple the system. It also leads to the subsystem interconnection structure
in Example 5.4.4.

The composite feedback matrix continues to decompose as in (7.5.9)
into two distinct control functioms. Part éf the control is used to
(informationally) decouple the subsystems. The remaining freedom in the
control places the poles of the decoupled subsystems. This is an output
pole placement problem.

If BRfEO, then BGR plays the role of the input matrix, i.e., the

input transformation is defined with respect to B Also note there is

GR®
no possibility for feedback. So if the system is to decouple the corre-
sponding matrices must be‘structurally block diagonal. This again leads
to the subsystem interconnection structure in Example 5.4.4.

1f CR in (7.5.3) is not monic, then (7.5.10) actually will split
into an aggregate and a residual. The above analysis is then applied to
the aggregate. If all the conditions hold, the analysis is repeated for
the residual. This process continues until the system is decoupled.

The main idea behind this approach is to untangle the information
and control structures. The system can be decoupled when these structures
decompose in the proper way. This leads to a special representation of the

system as interconnected subsystems. These results are summarized in the

following.
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Proposition 7.5.1: [90] The system (C.1)-(C.2) can be decoupled by output feed~

back (7.5.1) if and only if it can be represented as an input-output inter-

connected system with respect to the given output partition. o
The above analysis not only tells us when decoupling is possible,

but also identifies the feedback structure which accomplishes decoupling.

This structure includes the part which specifically decouples the system and

the remaining freedom to place the closed loop poles. Thus this analysis

nicely illustrates the close interrelationship between the information and

control structure and feedback design.

7.6. Nonlinear Systems

7.6.1. Preliminaries

Consider the nonlinear system

x(t) = Ax(t) + Bu(r) + Df(y(t)) x(0), t2>0 (7.6.1a)
y(t) = Cx(t) (7.6.1b)

where xX€ Rn, u€ Rm, and y€ Rr. The nonlinearities are represented by the
function f : R*+RP with £f(0) = 0. Furthermore, (A,B,C,D) are real constant
matrices.

In this section we will discuss a (partial) feedback invariant
structure based on linear transformations of the state and input spaces and
linear state feedback. This is motivated by the desire to study the effect
of nonlinearities on linear feedback design. To do this we start with a

review of the invariant structure of the linear part of (7.6.1), i.e.,
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v

%x = Ax + Bu
(7.6.2)

y = Cx.
A complete set of invariants for (7.6.2) under state and input space trans-
formations and state feedback is not known. However, a partial list is
known [44]. To exhibit this invariant structure, we use MCA. After trans~

formation (7.6.2) can be represented as

y . Fll F12 Fy'1+ Gll 0 a
X Far Foa L% 0 Gy Jlv
(7.6.3)
r - -
y= [01 0]
b 4
L. rJ

where R[FIZ]CR[GH] and ﬂ[Gn] =(0. Hence linear state feedback exists

which cancels FlZ'

In Proposition 4.2.4 it is shown that

0
£*=sp| | (7.6.4)
X
r
and in Proposition 4.2.5 that
*8
R <F22[c22>. (7.6.5)

This identifies the uncontrollable modes of (F22,G22) as the invariant zeros

(Proposition 4.2.6).

The uniqueness of ¥* and &* [ 3] identifies the pair (F,v,qu) as

related the the invariant structure of (7.6.2). 1Indeed, a partial list of

invariants for (7.6.2) is given by the list of invariants for (Fq,,sz)
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under state and input space transformations and state feedback. These
invariants are well known [ 3] and consist of the contrillability indices
of (FZZ’GZZ) plus the eigenvalues of the uncontrollable modes. As just
pointed out, these eigenvalues are the invariant zeros of (7.6.2). This

is the invariant structure we seek.

7.6.2. Invariant structure .

We will extend the partial invariant structure to the nonlinear
system (7.6.1). Note that the nonlinearities depend on only some of the
state variables. (In fact, we have in mind systems in which r is signifi-
cantly less than n.) In this section we will interpret C in (7.6.1b) as
an artificially introduced map which explicitly identifies the dependent
variables in the nonlinearities. 1In this way we identify the effect of the
nonlinearities on the linear part of the system.

We can then extend the analysis of the last section directly to
the nonlinear system (7.6.1). By defining the state and input space
transformations with respect to the linear part of (7.6.1), this system

can be represented as (7.6.1)

y F F " v T G 0 u H
- 11 12 + 11 |+ 1 £(y)
X F21 F22 Ler 0 GZ?. v HZ
- (7.6.6)
7]
y = (¢ 0]
X
. I J
We can use linear state feedback to cancel FlZ' Then (7.6.6) decomposes

as a nonlinear system
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A - - -
‘ y Flly + Gllu + Hlf(y) 7.6.7)
1 y =&y
driving a linear system
x = Fzzxr + Gzzu + FZly + Hzf(y). (7.6.8)

Thus the invariants of the linear system (7.6.8), i.e., of (F22’G22) form a
partial listing of the invariants of the complete system. The other set of
invariants are then given by the nonlinear system (7.6.3), but they are not

known at this time.
The geometric structure of the linear system also carries over to

the nonlinear system. The idea of (A,B)-invariant subsystems has recently
been extended to nonlinear systems [91]. Usiig the ideas there, it is

easy to show that

sp (7.6.9)

is an (A,B)-invariant manifold for the system (7.6.2).

7.6.3. Control synthesis

Clearly, the TCCD is useful here. To apply the TCCD to a nonlinear
system, we first transform (7.6.1) into the representation (7.6.6). This

guarantees the existence of a linear (partial) state feedback
= Kyx, + v (7.6.10)
where K, is chosen such that '

Fio + 6%, = 0, (7.6.11)
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L( i.e., the decoupling control. This yields a reduced order model of the
}_

output variables y given by the aggregate subsystem

<.

= Flly + Gllv + Hlf(y)

b (7.6.12)
y = Cy.

Note that the states x_ do not enter into (7.6.12) so that a control can be

designed for the variables y using this reduced order model. The variables

x, are modeled by the residual subsystem

x, = F22xr + Gzzu + F21y + Hzf(y). (7.6.13)

Once the (possibly nonlinear) aggregate control v=k(y) has been specified
for the system (7.6.12), we can design a residual control for (7.6.13).

This synthesis procedure has several advantages. First, the
decoupling control is easily computed since it is linear. Second, the
truly nonlinear aspect of the system (7.6.1) is contained in the aggregate
subsystem. Thus, we have reduced the order of the nonlinear design and
isolated its effect on the system. While a control synthesis for this
subsystem is not, in general, easy, it has been simplified from the original
problem. Also note that this component of the controdl can be linear or
nonlinear as we like. Thirdly, the residual subsystem in (7.6.13) is a
linear system. Thus the control of this system can be carried out using
anv one of a number of standard technigq:es.

As for linear systems, this procedure does not restrict the control

design for the aggregate subsystems, but it imposes the invariant structure

_aa

on the residual subsvstem. This may impose an unacceptable desing constraint;

for instance, if one of the residuals fixed modes is unstable. However, bv

N .-----.--.--.--.-..--.-.-.--III..III-..-.-...-..-J
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modifying the aggregate control (7.6.10), we can include the unstable modes
in the aggregate system., This procedure is the same as the linear case.

See Section 7.2.4.

7.6.4. Example

In this section we will illustrate the ideas above by considering
the aircraft landing problem descirbed in Dyer and McReynolds [92]. The
problem is to design an automatic landing control for a heavy tramsport
aircraft during the final landing stage, the flareout phase. Typical state

equations are

e
[

0.41x, + 0.381x2-0.562x

1 1 - 2.522xy + 0.221f(x5)

3

x, = —0.066xl-0.577x2 + x3-0.05x6-0.992x7-0.395f(?<5)
%3 = 0.0llxl- 1.108x2-0.822x3- 1.264x6-0.157x7- 3.544f(x5) (7.6.14)
X, = X5

X. = ~12.147 + 4.049(x4-x2)
i6 =y
i7 = (uz—x7)/2
where the seven elements of the state vector x are as follows:

X, = increment of forward speed (ft/sec)

1
x, = increment of altitude ange (deg)
X, = increment of pitch rate (deg/sec)
X, = increment of pitch angel (deg)

x. = height (ft)

X, = increment of elevator angle (deg)

F ST Y TR
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x, = increment of throttle
u; = increment of elevator rate (deg/sec)
u, = input to throttle actuator

and f, the nonlinear ground effect term, is

£ = 400/(3x5+-100)-1. (7.6.15)

We want to select controls uy and u, such that x (the forward speed) and

Xg (the height) follow a prescribed trajectory while X, (the pitch angle)
should have a final value which is positive. We shall take the simple point

of view that X0 X, and x_, are the variables of primary interest. A

5
complete description of this problem can be found in [92].

We shall use the TCCD to decompose this problem into its linear
and nonlinear subsystems. Equation (7.6.14) shows that the nonlinearity

depends on the single state variable x We formally identify this structure

5
by introducing an output equation

y=[0 0 0 0 1 0 Olx. (7.6.16)

Combine (7.6.16) with (7.6.14) and then use MCA. The resulting decomposition

is
;
[
¥, [0 ~4.049 0 yl] [ 0 0 0 0 |
X
v,|=|0 -0.5777 1 {1y, l+] o 0 0 0 i 4
X
. ! ' - _ " _ 3
y,] |0 -0.025 -0.6665 !y, |-0.0413 -0.4102 -0.5606 =0.0333 ] )
6 J
[0 0 [-12.147
+100 16, +1-0.395 | £(y)) + 0 (7.6.17)
[ -.5 -0.0179 L o Z

- 9




'iIT [-0.1255 1.8380 -0.562 0.1261 'xl'
xa . 0 0 A 1l 0 x4
%, 0.0214 -1.0173 -0.822 -1.256 || =x,
Lis u 0 . 0 -0 0 | %¢
(0] 0 0.381 2.522] [0.271]
Y1
0 0 0 0 0
+ ul + yZ + f(y)
0 0 -1.108 0.157 3,544
Y4 :
[ 1] Lo 0 0o L o
with
Y15 %
Yo T X7,
© (7.6.18)
¥y = -x7-0.066x1-0.5777x4- -0.05x6

u, = .1u1 + uz.

The partitioning in (7.6.17) corresponds to the partitioning in (7.6.6).

It is interesting to note that the controls seem to decompose
naturally with respect to the state decomposition in (7.6.17) in the sense
that u, affects only the aggregate subsystem, and the first control's effect
on the aggregate is an order of magnitude less than u2.
With this in mind, the first step is to compute a decoupling

ontrol u,=K.x +v
c 2= K%t

KD = [-.0826 ~-.8204 -1.0812 -.0666]. (7.6.19)

When this control is applied to (7.6.17), we obtain the aggregate subsystem

-4
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. . y,] [0 -64.049 0 v, 0

y,|=|0 -0.5777 1 .0+ o |%,

73] o =-0.025  -0.6665]]y, -0.5

0 -12.147
+|-0.395 | £(y,) + 0 . : (7.6.20)

L -0.0179 0

This subsystem, which represents the nonlinear part of the model, forms a
reduced order model for the height variable v, (-:xs). Thus we can design
a control GZ=-L(y) so that the aircraft follows in the prescribed height
trajectory.

Following computation of the aggregate control, we can design the

residual system control using the model

[-0.1255 1.8380 -0.562 0.12617[x,7 [o

* 1
X, . 0 0 1 0 X, N 0 .
% 0.0214 -1.0173 -0.822 -1.265 ||=x, of 1
.xéi L 0 0 0 0 - |.x6- le
[ 0.271] [0 0.381 2.522]
0 0 0 0
+ f(yl) + V. (7.6.21)
-3.544 0 -1.108 0.157 )
i
L 0 . L0 0 0o J 1
Since this system is controllable, we can select the control to meet the ]
1
specifications for forward speed (xl) and pitch angel (xa). ; ‘

-k A
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The residual subsystem (7.6.21) also contains the partial
invariant structure. In this case, the linear part of (7.6.21) is a single
input controllable pair. Thus, the invariant is the dimension of the state

space, i.e., 4. Here, the invariant structure imposes no design limitationms.




T ‘I'ruv"v

147

CHAPTER 8

DYNAMIC COMPENSATION

8.1. Introduction

In the last chapter we discussed the role of the GHR and the
associated geometry in closed loop design. The result was a procedure,
called the TCCD, which produced a gtate feedback matrix. In fact, the
decoupling control, a key component in this procedure, depends only on
the residual states and not on the outputs. If only the outputs are avail-
able for measurement, the implementation of the control requires dynamic
compensation, i.e., an observer.

Since chained aggregation is based on observability, it is not
surprising that the GHR is useful for observer design. We shall see that
the important subspaces here are not £i’ which are connected to the input,
but the (C,A)-invariant subspaces described in Section 4.3. While the
theory behind observers is well known [93], the GHR provides a particularly
simple exposition of the subject [94]. The presentation here should also be
considered in the light of the many other insights the GHR provides.

Because this observer construction is based on the same ideas as
the TCCD, it has applications in the other topics discussed in Chapter 7.
In particular, we discuss a decentralized dynamic compensation scheme for
interconnected systems and an observer for the class of nonlinear systoms
of Section 7.6.

Finallv, we discuss the integration of the ideas of near unobserv-
ability and the TCCD. It seems clear that the GHR provides a framework

for the introduction of the topological notions of near unobservabilitv into




.......

148

compensator design. The benefits of such a theory are equally obvious.
Therefore, we briefly discuss ome possible implication of this theory. This
material should be considered as an outline for future work.

In Section 8.2 we discuss observer design in the GHR framework.
Section 8.3 applies these ideas to interconnected systems and nonlinear
systems. Section 8.4 uses the ideas of near unobservability to discuss static

output feedback and observer design.

8.2. Observers

8.2.1. Residual state observers

After one step of chained aggregation, let (C.1)-(C.2) be repre-

sented by
y A G|l Y B¢
= + u
x Ber  ArJL%] LB
(8.2.1)
BA _
y = (¢ 0]
Lxrd
With respect to this basis, let any feedback matrix be
y
u = [LG LR] . (8.2.2)
X
T
Let the compensator have the structure
ir = Mir + Ry + Qv
(8.2.3)

= Nx_+ +
u er v Py v
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with ireRn-r. With some foresight we choose
M= A = Ag + Bplyp
L=38._cta (. +BL)c Yt
cr“1 e ¥ Brl1)C

N=1, (8.2.4)

Q= BR.

Then the closed loop system becomes

y1 (3 ¢ BL,[? B,
xr‘= Beg  2cr  BrLo || *{*|B:|v (8.2.5)
3 LBr O AR JUXJ LB

where SG’=AG4-BGL1. To show thar we have accomplished the desired compen-

sation, introduce the state space transformation

y I 0 0 y
- . 8.2.6
x. 0 1 0 x_ ( )
e 0 -1 I kr
L .J - S I .

In these coordinates, (8.2.5) becomes
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y 4 S Bglof[ ¥ B¢ |
x | = BGR AR BRL2 X + BR v. (8.2.7)
e 0 0

AR e 0

In (8.2.7) the compensator states can be interpreted as error states
e-ir-xr, which are governed by the dynamics of the residual. If these
dynamics are sufficiently fast and stable (assume this for the moment), then
the state of the system is governed by the desired closed loop matrix. If
we can show that the compensator dynamics can be chosen arbitrarily, then
we have achieved our desired design. To see this consider (8.2.1).
Introduce the state space transform;tion

y I o01fy
- ) (8.2.8)

Substituting (8.2.8) into (8.2.1)

vyl TA.-C.X C ¥ B

G 'R R
=’. C + ¢ (8.2.9)

BGR AR+XCR z BR+XBG

FA

Note that this transformation preserves the information structuring in
(8.2.1) for any X. It is easily seen that if (8.2.1) is observable,
then so is the pair (AR,CR). Hence, the poles of AR+XCR can te placed

arbitrarily by proper selection of X. 1In particular, wecan choose them suf-

ficiently fast and stable. Then (8.2.9) replaces (8.2.1) in the design

scheme above.
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The transformation in (8.2.8) was used in the study of (C,A)-
invariant subspaces in Section 4.3. In fact, this process of selecting
observer poles has the geometrical interpretation of selecting a (C,A)-

invariant subspace to have the basis

I
(8.2.10)

0
(see Section 4.3). Note that the dynamics of the observer are determined by
the induced map of A+KC on the factor space Z mod Jx where K makes o X
(A+KC)-invariant [95]). Thus by selecting a basis which displays a larger

(C,A)-invariant subspace, we can construct a smaller order observer to

estimate part of the residual (unmeasured) states.

8§.2.2. Partial residual state observers

The discussion of (C,A)-invariant subspaces and the GHR in
Section 4.3 shows how part of the residual state can be reconstructed. The
(C,A)-invariant subspaces for (8.2.1) take the form JXGJY where ”Y is an
AR-invariant subspace. (Recall that the subspacesyY are dependent on;Jx.)

Define a state space transformation

= (8.2.11)

such that in these new coordinates, (8.2.1) has the form

A as a4 kv

-



A1 100181 * ] By o (8.2.12)
3

2 R2J )

Hence, T simply identifies an ARfinvariant subspace. Now assume the feed-

back is of the form

u=Ly+LE +v. (8.2.13)
1 272

Again we use the compensator structure in (8.2.3) with d(ir)-<i(£2). The

‘ parameters in (8.2.3) are given by

M= Agy * Bgoly = Apy
. ol i3 ool
L= (Bepyp+BpylyiCy = BopyCy
N=L, (8.2.14)
P=L
Q = By,.
The closed loop system becomes B
r o~ - - - ;
v | [% Car Crz B¢tz 1[7 [ [
£ 8 B..L.ll¢ B ‘
1 Rl R 5 1
1. 1 iz Bl e RN (8.2.15)
821 1Ber2 9O A Broly ] % B2
%] LBerz O O A Jix ] [ Brol ;
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To see that we have achieved the desired compensation,  again we introduce
error coordinates as in (8.2.6) where 52 replaces x_ and the dimensions

change accordingly. In these new coordinates (8.2.15) becomes

7] (% S G Bk J[F] %
2. Bri Am1 Ariz Bmle || ot (8.2.16)
S0 |8z © Ry By |{%2]| | B
e] Lo o o o fle] Lo

By proper selection of X and T we can choose the observer dynamics and
achieve the desired closed loop compensation.
The question now is how to use this flexibility. This shall be

dealt with in later sections.

8.3. Observers and the TCCD

8.3.1. Interconnected systems

The observer construction of the last section is directly related
to the TCCD because we started with a common system representation.
Therefore, we turn to the question of decentralized dynamic system
compensaticn [94]. Consider again the system representation introduced in
Section 7.3, equation (7.3.1). We will assume this representation was
obtained after one step of chained aggregation. Suppose also that with
respect to this basis, the control is given by (7.3.3)-(7.3.5).

To construct an observer for this svstem, simply substitute the

system parameters in (7.3.1l) into the observer equations (3.2.3)-(8.2.34).
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:
3
:(: However, because of the special structure of (7.3.1), the observer decom-
f poses into two subsystems, given by
4 '1 i -1 -3=1
E X, = (ApytBpKpa)Xp + (Bepy®ag)¥ + (Bepy 3 1*Bpi¥ere,3-17Y
b i
: + [BpyBps 1V (8.3.1)
3
] i =1
- u K,. K v
C ARG S %1 Aol (=1.2.
; u Kers Xert,3-1 %1 v

This is immediately recognized as an observer for each of the subsystems

(7.3.2). Thus this approach yields a partially decentralized dymamic
compensator such that each of the local subsystems can choose its own
observer dynamics as discussed in Section 8.2.

Each local compensator in (8.3.1) requires knowledge of all the
interaction variables y, but not of the other subsystem's residual states.

This design framework does not appear to relax this constraint on the

information exchange except in the special case when B =0.

Gr12 = Bor21

However, in this case we are not free to place the compensator poles (in

general, the transformation (8.2.8) will introduce coupling between the

A

compensators). If it turns out that the open loop residual poles are
suitable observer poles, then we can use this compensation scheme. But this
implies that the residual variables do rot contribute much to the open loop 1

system, and suggests that the original model can be reduced to the aggregate

subsvstem alone.

1
:
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8§.3.2. A nonlinear observer

It should be clear now how to construct observers from the GHR.
We note here that this structure can also be extended to the class of
nonlinear systems discussed in Section 7.6 [83]. Given the system (7.6.1),
suppose that y(t) represents the measured outputs. After one step of

chained aggregation let the system be represented as

y F F (v ] B D
| 11 12 + 1 u + 1 £(y)
1 UFa1 Faall®] LB D,
(8.3.2)
y = [Cq 0]
X
L T
Then using the observer construction of Section 8.2, the states x_ are
estimated by
L - -1
x_ = F22xr + FZlcl y + sz(y) + Bzu. (8.3.3)

This is a linear observer whose dynamics can be selected by the method of

Section 8.2. This seemingly simple comstruction hides the fact that it is

difficult to build an observer for any nonlinear system.

8.4. Near Unobservabilitv in Compensation

8.4.1. Output feedback

In Section 8.2, we showed how to construct an observer which

estimated only some of the residual states. In this section we exploit
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that freedom by discussing the role of near unobservability in compensation
schemes. The key idea is to analyze how static output feedback affects the
closed loop system poles.

We shall discuss systems represented by the second generic
case (Section 4.2.3). After one step of chained aggregation the system

can be represented as

y S I RA TR
] 1oy adlx] Lo
(8.4.1)
. ryw
y = [I 0]
X
. T J

Thus, X(AA) represents the invariant zeros of (8.4.1). Consider output

feedback of the form

u = Ly. (8.4.2)

Then the closed loop system has the form

v A_+B_L
y} - [A+B, Az} {Y} _ (8.4.3)
kr [ A3 A4 X,

Here we note that by using Theorem 3.2.3, as [Ll +», the eigenvalues of
(8.4.3) go to infinity and A(AA) (cf., the analysis in Section 3.5), as

is well known.
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Suppose we introduce the orthogonal transformation

y P P y Iy
- 11 12 - B (8.4.4)

1 LPa Pall% X

where P is described in (3.2.7) and we choose P such that

sp (8.4.5)
T

Wi

is A-invariant. Then we may write (8.4.3) in the new coordinates as

L - T -
y A 0 P._B_FP P __B_FP y
O D Y i S L ! %1 ’ 8.4.6)
X Ay 4, Py1BiFPyy BBl L%

where we have separated out the effect of the feedback. In this context
we can think of the feedback as a perturbation of A. Using exactly the
same techniques as we used for near unobservability, Stewart [26] has
given perturbation theorems as follows:

Theorem 8.4 [26]: Let A and E be nxn matrices given as

Let 1

S = SeP(Al,Aa)-ﬂElﬂ-llEéﬂ.
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If
IEZI (IA3I + IEZI) .1
62 4
there is a matrix P1 satisfying
21E,1
2
lPll £

such that

.Y,
[pl(u-plpl) ]
1

span an invariant subspace of A+E. Furthermore, A(A+E) are given as the

disjoint union of

T.V2 T.” V2
A( (I+P1P1) [A1+E1-Pl (A3+E3) ] (I+P1P1) )
T 2] - T Ya
}.((I+P1P1) [A4+EA+(A3+E3 Pl](I+P1P1) ). o

‘We would like to apply Theorem 8.4.1 to (8.4.6) when the original
system (8.4.1) is nearly unobservable, i.e., when 1Pl defining (8.4.4) is

small. Recall that

P, .->1I, Pij +0 as P->0 i#4j (8.4.7)

(see (3.2.7)). Hence, it follows from (8.4.6) that

El = PllBlLPll > BlL as P -+0
T (6.4.8)
EA = PZlBlLP21 + 0 as P -+ 0.
In fact, EA tends to zero quadraticall¢! Assuming Theorem 8.4.1 holds, it

follows that the closed loop eigenvalues tend to X(Al+BlL) and A(AA).
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The point of this analysis is to describe the quantitative effect
of static output feedback on the two sets of open loop poles identified
in (8.4.6) for nearly unobservable systems. Applying Theorem 8.4.1 to
(8.4.6), we see that the poles are modified by 1) an additive correction

term whose effect is described in (8.4.8), and 2) a term in P1 with the

structure (A3+E3)Pl. Now E, contains the output feedback contribution which

3
is linear in P. The other parameter here is K3' If K3 is large then the

output feedback (8.4.2) is expected to have a large effect on the eigenvalues -

of K4. On the other hand, if 7\3

is assumed to be nearly unobservable). This has tyo interpretations. By

is small, then so is A3 (since the system

Section 3.4, this implies the open loop system is weakly observable if
there is an eigenvalue separation. Secondly, by Section 4.4 there is almost
a pole-zero cancallation. In this case it is well known that large control
energy is needed to move the open loop poles.

The above analysis easily extends to any i-th unobservable subspace
L4. Simply redefine the feedback matrix partitioning in (8.4.6) along with

P and Pl.

8.4.2. Observer Desizn

From the analysis of near unobservability, if £i is nearly
unobservable, it is near a A-invariant subspace. Denote the eigenvalues
of this subspace by.A2 and the rest of the eigenvalues of A by Al. From the
analysis above, we see that static output feedback strongly affects Al but
not AZ. There are two evaluations of Az. First, since these eigenvalues

contribute little to the system (they are nearly unobservable) and they

are not affected much by feedback to the other modes, we can safely ignore

e
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them. That is, we do a modal reduction, as described in Section 6.3, and
apply the design techniques above to it.

On the other hand, suppose the modes associated with A, are

2
important and cannot be ignored. Since to move them would require large
static gains, we must use a dvnamic compensator. The modes assocliated with
Al, on the other hand, are heavily influenced by static feedback. This
suggests that we build an observer that estimates only the nearly unobserv-
able modes. |

Both of these points of view fits into the observer framework of
Section 8.2. Indeed it tells us how to'select the transformation T in
(8.2.11) to obtain the observer parameters im (8.2.14). If the nearly
unobservable states are to be ignored, in (8.2.12) we select X(ARI)-Az.

On the other hand, if the nearly unobservable modes are to be measures, we

have A(ARz)a Az.
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CHAPTER 9

CONCLUSION

This thesis has presented a detailed study of the GHR and chained
aggregation with applications to standard problems in linear system theory,
such as model reduction and compensator design. In retrospect, the work
should be viewed as a whole. Then it becomes clear that the GHR is a
unifying framework in which the fundamental structureof linear systems is
exposed. Thus, it is shown that the GHR is useful in many problems and it
is believed it will prove useful in many more.

The theoretical background for this success is the twofold inter-
pretation of the GHR in both geometric and matrix terms. This allows
fundamental properﬁies to be stated concretely while still retaining their
abstract nature. For example, the fundamental result is that the GHR
explicitly identifies the i-th unobservability subspaces {£i}. The matrix
representation is useful because it allows us to estimate distances
between subspaces and so introduce near unobservability. The fact that this
is a useful topology may be attributed to the GHR. The abstract charac-
terization of the GHR is useful because it connects the open loop {£i}
subspaces to their closed loop counterparts, (A,B)-invariant subspaces and
so with the geometric literature. In this way we are given fundamental
interpretations of the design procedures which result from the GHR.

The analysis of the GHR concentrates in three areas. The firsc
is the topological characterization of the subspaces {ci} and invariant
spaces, i.e., near unobservability. The second area is the behavior of {Li}

under the action of the input. The third area is the svstem decomposition
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induced by the GHR. These are treated, respectively, in Chaptefs 3, 4,
and 5.

Even though they are given independent treatment, these topics
are intimately related through the GHR. In fact, combinations of these
ideas lend insight into well-known problems. In Chapter 6 model reduction is
discussed by combining system decomposition with near unobservability.
Hence, we are able to clarify the GHR in model reduction, the original use
of the GHR. By combining the system decomposition with the closed loop
subspaces, insight is gained into a recent control design procedure, the TCCD.
In fact, we are able to connect it with geometric Aesign procedures and
extend the TCCD to various types of interconnected systems, optimal control,
output decoupling, nonlinear systems, and observer design. Because of the
recent introduction of near unobservability, the integration of all three
aspects of the GHR is still in preliminary stages. However, this direction
of research shows great promise. "A preliminary application is given in
Chapter 8 to reduced order compensators.

Because of the fundamental nature of this work, opportunities
for future research abound. Perhaps the most promising is the unification
of near unobservability, the closed loop ;ubspaces {£i} and system decompo-
gition into a complete compensator design theory. The GHR framework should
unify and clarify many proposed deéign procedures. The almost natural
presence of time scales and numerical analysis background of near unobserv-
ability should give this theory breadth and depth. 1In addition to linear
systems, classes of nonlinear systems apparently fit in this framework.
Thus, the GHR is a natural vehicle for generalizing linear system concepts

to nonlinear systems, particularly the geometrical aspects. Finally, we

ket o B
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note that the numerical analysis of linear systems has become a topic of
interest in its own right. The close connection of chained aggregation and
MCA to recent numerical studies indicates great promise for the ‘ideas of
the GHR to have serious computation applications. This by no means exhausts

the possibilities for future research. Many other directions are indicated

in the text.
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APPENDIX

TWO AREA POWER SYSTEM MODEL

A two area power system with each area containing two thermal plants

is constructed from Calovic [96]. The system is modeled by

ve—— fftnilvrr,‘ frvigiﬂ'

* % = AX 4+ Bu + Ew
(A.1)
y =Cx :

where xEng, uERa, méRz and y€R3. The state, ccntrol and outputs variables

have the following physical meanings:

%12 " valve position displacement in first thermal unit of area 1 and 2.

X, 5 = power output displacement of HP turbine in first thermal unit of
area 1 and 2.

X3, X;, ™ power output displacement of IP turbine in first thermal unit of
area 1 and 2. :

X, Xyg = power output displacement of LP turbine in first thermal unit of
area 1 and area 2,

X X1 ™ valve position displacement in second thermal unit of area 1 and
2'

Xgs Xp9 = power output displacement of HP turbine in second thermal unit
of area 1 and 2.

xq, X1 ® power‘displacement of IP turbine in second thermal unit of area
1 and 2.

Xg, X1g ™ pover displacement of LP turbine in second thermal unit of area
1l and 2.

Xy X ™ frequency deviation of area 1l and 2.
= tie-line power flow connecting area l and 2, }

up, 4y = set peint adjustment of first therwal unit in area ! and 2.

PG W

s
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i

3

'( Uy, U, = set point adjustment of second thermal unit in area 1 amnd 2.
3

N Wy, wy = load disturbance of area 1 and 2.

- frequency deviation of area 1.

¥y, = tie-line power flow of area 1 and 2.

y3 = frequency deviation of area 2.

The system matrices (A,B,E,C) are given in (A.2-A.3). The parameters for the

first area (the second being identical in structure) are as follows:

permanent speed droop

time constant of the system pilot valve-servomotor turbine gates
time constant of the turbine; characterizes the delay between control
valve action and turbine nozzle action

time constant characterizing the time delay in the HP turbine
rehearter and reheat piping

time constant characterizing the time delay in the IP turbine and
crossover piping

fraction of total power generated by HP turbine

fraction of total power generated by IP turbine

coefficient chécterizing the influence of frequency variation on
turbine output variation (turbine self-regulation)

proportionality factor connecting the control valves position
variation and HP turbine output variation in the steady stats

(kt for IP and LP turbine are very close to 1 since power variaticns
of these turbines in the steady state are equal)

parzicipation of the unit in total system ocutput
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F( e; = load turbine and system self-regulation coefficient not including
! the participation of the unit under consideration (lead characteristic)
i 2

.~ef . I

e eP 1=1°rT: )

T = system acceleration time constant T = Tp + 1§1°1Tci

T = time constant due to the mechanical inertia of the rotating masses in
the load

T. = unit acceleration time constant, TG = 2Hi
i i

B

inertia time constant.

< The non-zero elements of the matrices A, B, C, and E expressed as functions

of the physical parameters are:

a :-l a --—1—
11 T, 19 T,
1 1
Kk
a = -—t-]: a =-—1_.
21 T, 22 T
1 Y1
a = —l— a ’-—1—
32 T, 33 T,
1 1
.
1 1
343 T Ay =T
1 2
r
e - 2 I
253 T 259 T
S,) S
K
.2 e
. 1z T 66 T
) 2
L1 a4 = - =t
- T 77 T
T T

(=)
N




h
. 16§
| 1 L
fa7 T T %88 T " T,
2 2
elcvl . e 31(1'%1) ‘1(1"’:1) (l-cvl)
" 293 ~ T fe4 T T
e c e,c. (l-c_) e,(l-c_ )(l-c_ )
Ll I DL S M
96 T 97 T 98 T
agg = -e/T
1 1 I |
b1 Ps2 =T, €9,1 = " T
1 2
The parameters hlz’ hzl’ h23, and h32 describe the tie-line dynamics and

interconnection with the two areas,

AGGREGATED MODEL

The following values are obtained for the first area (i=l) in

equation (5.4.8) in terms of the parameters in (4.2):

£11 ™ %4 £22 = 333

£23 = (843394 = 394393 +29333)335 + (359397 + 235293 = 344295 (337 = 323)

f24 ™ (2993qy * 337393 = 34,395)35) T2g5351 (211 ~ 233)

£25 = (2gg = 233) (335295 ~ 34429) :
£15 = (2gg298 ~344298)337 + (277 = 233) (377397 + 25508 ~ 2,4297)
27 = (277297 * 23898 ~ 244970376 T (265 " 233) (Bgg355 T 297776 T 2ur?gp) |
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£28 = (29266t 297875 = 844296) 365 + (255 = 233) (24539¢)

33 ™ 8 £34 ™ 31 £ ™ 211
£55 = 2gg fgg = ag, fe6 = 277 £67 ™ 378
£79 = 246 £78 = 3¢5 £ ™ 255

81 ™ 292%21P14 833 ™ 84539405

8,1 = P14 852 = Bsy
dy1 = 293251319 +3652g4259
441 = 319 dgy = 259
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