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QUEUEING MODELS FOR DESIGNING

DIGITAL COMMUNICATION SATELLITE SYSTEMS

by

Frederick S. Hillier and Bijan Jabbari

Abstract

4 Satellites have an enormous potential for providing efficient

communication links between many widely scattered ground stations. By

interpreting the messages as customers in a queueing system, an unusual

type of queueing model can be formulated to describe this process. The

expected waiting time of the messages in the queue can then be derived

for different configurations in order to guide the design of the system.
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GLOSSARY

Random variable representing the interarrival times between

messages. See Section 2.1.

X: Arrival rate of messages (=1/E(T)).

Pn(t): Probability that n messages arrive during time t (assumed to
be a Poisson distribution).

Y: Random variable representing the message length (assumed to
have an exponential distribution). See Section 2.2.

I/p: Expected mean message length (=E(Y)).

P: Packet size expressed as the number of bits.i

L: Random variable representing the number of packets in a
message.

T: Frame time. See Section 3.1.

( K: Total number of slots in a frame.

C: Channel transmission rate.

a: Traffic intensity in erlangs. See Section 3.2.

S: Number of slots assigned to a traffic source.

P: Normalized traffic intensity.

M: Buffer capacity (in number of packets). See Section 4.1.

P: Transition probability matrix for the imbedded Markov chain.

See Section 4.2.

7Tj: Steady state probability of j messages in the system.

R: Random variable representing the number of messages rejected
(blocked) in one frame.

PB: Probability that a message will be blocked.

W: Random variable representing the waiting time in the buffer by
a randomly selected arriving message.

ii
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Wq: Expected delay in the buffer incurred by messages which are
not blocked.

Ein: Event that a random arrival finds I messages left behind
in the buffer from the last epoch and is one of n arriving
messages in this frame.

P(Ein): Probability that the event Ein occurs for a random arrival.

Sn: Number of new arrivals that wait (not blocked) for Case 2.

g(0): Probability distribution of L. See Section 4.3.

R.: Random variable representing the number of messages rejected
(blocked) in one frame given that j packets were left

*behind in the buffer at the beginning of the frame.

G(i)(t): Cumulative distribution function of the number of packets in
i messages.

N: Random variable representing the number of messages arriving
* in a frame.

Ei.npq: Event that a random arrival meets four conditions defined inSection 4.3.

P(Einpq): Probability that the event Einpq occurs for a randomljpq arrival.

r: Min {p + q, M - i} for the event Eiinpq*

( j-l)(p): Probability that the first (j-l) messages contain p
packets.

iii



QUEUEING MODELS FOR DESIGNING
DIGITAL COMMUNICATION SATELLITE SYSTEMS1

by

Frederick S. Hillier and Bijan Jabbari

1. Introduction

Digital communication satellites have an enormous potential for

providing efficient and reliable communication links between many

distant points. However, the full realization of this potential

requires improved techniques for designing digital satellite networks.

Of particular importance is the channel architecture, i.e., the

multi-access techniques employed in the satellite transponder channels

to provide communication between a number of geographically scattered

ground stations.

Consider the digital communication satellite network depicted in

Fig. 1. The network consists of many ground stations and a

geostationary satellite. This satellite must be placed in an orbit

about 36,000 kilometers away from Earth in order to maintain a

stationary position relative to any point on Earth. Each of the

satellite transponders acts as a repeater. The ground stations transmit

their signals to a transponder at one frequency band. At this

transponder the signals are converted into another band, transmitted

back to Earth, and delivered to the desired ground station(s).

In most situations, there are many ground stations which must

simultaneously reach each other through a satellite transponder. The

satellite transponder is a limited resource which must be shared among

the ground stations and must meet certain performance criteria

IThis research has been partially supported by a) the U.S. Office of
Naval Research under Contract N00014-75-C-0561 and b) National Science
Foundation Grant ECS-8017867 with the Department of Operations Research,
Stanford University.
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Figure 1. A digital communication satellite network.

concerning the traffic flow between the sources and the destinations.

The satellite transponder channel management techniques employed in a

multi-access environment consists of two design aspects. One of these

concerns the techniques with which we channelize the transponder into

smaller units called subchannels. Of interest in this report are the
6

techniques by which the subchannels are derived in time or frequency.

These techniques are referred to as Time Division Multiple Access (TDMA)

and Frequency Division Multiple Access (FDMA), respectively. We
a

concentrate in this report on the general case of the TDMA Scheme, which

reduces to the FDMA Scheme in a special case.

The second design aspect concerns the schemes with which we
I

allocate the subchannels among the ground stations. This allocation can

eL
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take place on a Fixed Assigned (Preassigned), Random Access

(Contention), or Demand Assigned (Reservation) basis. The case of

interest in this report is the fixed assigned scheme - that is, we are

concerned with the performance characteristics of a pool of subchannels

derived in time or frequency and allocated permanently to the ground

stations.

The traffic flow between the ground stations may represent a

variety of message types with different constraints. The messages may

be the information from a user to a computer, a computer to a user, a

telephone conversation, facsimile electronic mail, or it may be video

information. The messages are assumed to be comprised of one or moreI
digital data packets that are stored in a memory buffer at the

originating ground station. The data packet consists of a fixed number

of binary digits.:(
The memory buffer size at each ground station is finite. There-

fore, the messages which arrive after the memory buffer is filled are

subject to "blocking," whereby they are lost to the system. Thus, the

probability of blocking is one basic performance criterion. Another key

measure of performance is the expected delay in the buffer before

transmission occurs for messages that are not blocked. Other possible

criteria include the probability of exceeding the delay time which these

messages can tolerate before reaching the destination.

The buffer behavior of a fixed assigned TDMA system has been

analyzed by Chu for Poisson input traffic [l] and batch Poisson input

traffic [2] cases. Chu and Konheim [3] have derived the probability

generating function of the number of packets in the buffer just before a

transmission occ,)rs and the expected delay experienced by the packets.

3



In their analysis, they have assumed buffers of infinite capacity and

C have employed the notion of "virtual" message arrival in the expected

delay calculation. The results obtained in [3] may serve as a good

approximation for practical applications involving finite buffer

capacity if the probability of buffer overflow is sufficiently small.

Hayes [4], Spragins[5], Lam [6], and Kosovych [7] also have derived

the expected delay experienced by messages under various assumptions for

the case of infinite buffer capacity. Various analytical techniques

were employed to obtain the steady state movement generating function of

the buffer size.

Although assuming infinite buffer capacity considerably simplifies

the analysis, it does prevent studying the effect of blocking on the

performance of the system. Therefore, this report departs from the

t investigations described above by making the more realistic assumption

of finite buffer capacity. In our approach, we formulate queueing

models having a finite queue to represent the system. We then are able

to derive such measures as the probability of blocking, the expected

number of messages blocked per period, and the expected delay in the

buffer for messages that are not blocked. This information would be

used to analyze the allocation of subchannels to the incoming traffic

and to evaluate the performance of the system.

In our approach we have made use of analytical queueing models

rather than simulation models because queueing models can provide a

reasonably accurate representation of the actual systems and also

furnish mathematical formulas which are easy to compute [8]. The models

are examined for cases which have specific applications, so care is

taken to make reasonable assumptions.

4
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Before formulating our queueing models in Section 4, we shall first

(describe the nature of digital traffic flow (Section 2) and of a

satellite communication channel (Section 3).

2. Characteristics of Digital Traffic Flow

A message which arrives at a ground station to await transmission

through the satellite consists of (or is converted into) a series of

binary digits (bits). Each message may come from either a single source

or a group of sources whose output has been combined (multiplexed) into

a single stream of digital traffic. Examples of messages are a

telephone call or an inquiry-response between a terminal and a computer.

The messages arrive according to some stochastic process and the

length of these messages has some probability distribution. As

discussed below, we will approximate such processes with well-known

distributions.

Once presented to the ground station, the messages require the

transmission medium to transmit them to another ground station within a

time constraint. The specification of this time constraint depends

highly on the type of message. In Section 2.3, we will describe further

the nature of such constraints.

2.1. Message Arrival Process

For any given ground station, suppose that messages to be transmit-

ted through the satellite arrive at times to < t1 <t2 <... <t n. (If the

message requires conversion into digital form, we assume that the time

needed to do this is negligible.) The interarrival time defined by

5



t = n - tn_1 (n > 1) is a random variable. We assume that the messages

arrive according to a renewal process, so that the interarrival times

are independent and identically distributed. This is not always the

case in applications because of a time-dependence of the interarrival

times, but it should be at least a reasonable approximation for the

period of peak usage, which is the particularly interesting case for

design purposes.

qm If the arrivals take place according to a Poisson process, then the

interarrival times will be exponentially distributed; that is,

. -4 Prob { <t} l -e- At , for t > ,

where x is the arrival rate. The probability that n arrivals occur

during time t is

Pn (t) = exp(-xt).(,t)n n=O,l,2,...

which is a Poisson distribution.

It has been shown [9] that the assumption of a Poisson process for

the arrival of messages has been a reasonable one when the number of

users generating these messages is large. Examples are the customers

who wish to make a telephone call or the users who send an inquiry from

* a terminal.

2.2. Message Length

Another statistical characteristic of a message is its length,

which typically is measured by the number of bits or blocks of bits in

6



the message. In general, the messages may be either fixed length or

variable length. The messages may be segmented into fixed size blocks

(packets); in such a case, we will have either a fixed or variable

number of packets El0].

Now let the random variable Y be the message length (expressed as

the number of bits). It is usually assumed that Y has an exponential

distribution, so that

Prob {Y<_y} = 1 - e- "y ,  for y >0

q where l/p is the expected message length. This assumption has been

shown to be valid in many applications [11].

For segmented messages, denote the packet size by P bits/packet and

"T let the random variable L be the number of packets in a message, so that

L = <Y/P>

where <x> denotes the least integer greater than or equal to x. It

easily follows from the lack-of-memory property of the exponential

distribution that L has d geometric distribution such that

Prob {L = i}= pq-l, for z = 1,2,...

where q =e - 0P and p = -q.

7



2.3. Delay Constraints

Another important characteristic of a message is its associated

delay constraint; that is, when a message to be transmitted arrives at a

station, it should be transmitted and received at its destination within

some time limit. We define the total delay as the elapsed time from

when a message arrives to be transmitted until it is received at its

destination. This elapsed time includes very small amounts of time

needed for possible digitization, packetization, depacketization and any

other processing at the ground stations (so we hereafter assume that

these times are negligible). Thus, the total delay essentially is just

the delay in the buffer plus the time required (see Section 3) for the

message to travel to the satellite and back to its destination.

The delay constraint specification is very important since it

determines, along with the other digital traffic characteristics, what

system architecture should be considered for service. We will elaborate

on this matter in the next section. The most common methods for

specifying the delay constraint are:

- Maximum delay

- Average delay

The maximum delay for service is sometimes used as a constraint by

giving the delay which can be exceeded by no more than a given

percentage of messages. The average delay constraint, expressed as an

upper bound on expected delay, is usually specified for message types

which do not require an exact amount of tolerable delay.

Based on the type of application and the nature of the digital

traffic (which may be data, voice or image), the user may describe the

constraint in any of the above forms.

8



3. Characteristics of a Satellite Channel

C
The transmission medium which provides service for digital traffic

flow is the satellite channel. Its limited capacity is divided among

the ground stations by dividing the channel into time or frequency bands

(subchannels). The subchannels are allocated either permanently or

temporarily to the ground stations.

The need to characterize the service quality is evident, since it

is important to evaluate how effectively the channel is being allocated

to match the digital traffic requirements. Some properties of the

satellite channel that enhance its service quality are its multi-access
4

property and its ability to broadcast. One limitation is that, due to

the large distance between a satellite and Earth, it takes about 0.27

seconds for the electromagnetic waves to travel from Earth to the

satellite and back to Earth. This delay introduces a bound on the

service that can be provided to incoming traffic. The important channel

design parameters will be described in the following subsections.

3.1. Subchannels

Subchannels are obtained by partitioning the satellite transponder

channel into frequency or time slots, corresponding to FDMA and TDMA,

respectively. Consider a time-shared system with a number of ground

stations which transmit their messages in a sequence of non-overlapping

time slots that use the entire transponder channel. The entire time

needed to fill all of these slots once is called the frame time. Figure

2 shows the TDMA structure where the frame time T is divided into K
9
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equal slots, one or more of which are assigned to each ground station.

The messages are assumed to be segmented into one or more packets

of slot size, so that one packet of P bits can be packed in each slot.

The value of P is considered an important aspect of the design.

Reference [13] discusses the selection of an optimal block size for

packet transmission.

The channel transmission rate,

C = K P/T,
is the most important channel parameter and is assumed to be constant

over time.

0

~_~p __ Frame ___Time

Slots Slot Slot' Slot' Slot Slot

1 2 3 4 K-1 K

Figure 2. A time shared channel.

10
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3.2. Traffic Intensity

For a ground station, its traffic intensity, a, is defined as

a = E[Y]/E[T] =

where E[T] = l/A is the expected interarrival time of messages, and

E[Y] = I/' is the expected message length. The unit of traffic

q intensity is the Erlang. Normalized traffic intensity is defined to be

the traffic intensity per slot; i.e., if there are S slots permanently

assigned to the source, then its normalized traffic intensity is

4

p = a/S.

The traffic intensity or normalized traffic intensity for the

entire satellite channel also can be defined in an analogous manner. In

this; case, S would correspond to K of Section 3.1, and the normalized

traffic intensity would more commonly be referred to as the channel

utilization.

3.3. Scheduling Policy

Another important aspect of service is the scheduling policy for

processing the messages. The most common scheduling policies are

First-In-First-Out (FIFO) and Random. In FIFO the messages arriving at

each ground station are processed by the channel according to their

order of arrival, whereas in random service the messages are processed

on a completely random basis. The FIFO policy normally would be an

appropriate one when the messages have the same delay time constraints.

If the incoming messages mave different delay constraints, then those

II



requiring less delay take priority over the long-delay ones. This is

referred to as service priority and, in practice, different strategies

for handling various priority-class messages are adopted.

4. Models for Analyzing the Performance of a Satellite Channel

In this section we introduce a basic type of model for the Fixed

'q Assigned allocation scheme and derive the key measures of performance,

namely, expected delay and blocking probability in steady state. The

model can be adapted to include other allocation schemes. The results

of the analysis generate appropriate vehicles for analyzing the

performance of many practical systems.

4.1. Model Formulation

Consider N ground stations sharing a channel with a transmission

rate (capacity) of C bits/sec. Assume that the frame time T is divided

into fixed slots. Let us focus on a typical ground station which can

transmit packets in S consecutive allocated slots in each frame. These

slots are assigned to this ground station and no other user has access

to them. The messages arriving for transmission from this ground

station are stored (if there is room) in its finite capacity buffer and

then transmitted in these slots, as shown in Fig. 3. For purposes of

analyzing the performance of the system in transmitting messages from

this typical ground station, the messages and transmissions from the

other (N-l) ground stations can and will be ignored.

I
12



S Slots S Slots

Iiil i I I I~. ~ I I
Buffer

S- Frame -i44-- Frame --.4

I

Figure 3. The Fixed Assigned allocation scheme.

Assumptions:

- Arriving messages occur according to a Poisson process at a

mean rate of X messages/sec.

- Each message is segmented into one or more packets of P bits

per packet.

- The buffer has a fixed capacity for storing a maximum of M

packets. Any message (or portion thereof) will be accepted

into storage as long as there is room'remaining. (If there is

room for only a portion of a message, we assume as an

4 approximation that this portion is accepted and treated like

an entire message.) Otherwise, it will be blocked and will

leave the system.

- Messages are transmitted (one packet per slot) according to a

FIFO (First-In-First-Out) policy.

13
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S is small relative to the total number of slots in a frame so

that, as an approximation, the transmission of messages in

these S slots is considered to occur simultaneously. Without

loss of generality, these slots are assumed to be the first S

slots in each frame, so that their transmissions are

considered to occur at the instant each frame begins, with a

time lapse of T between their transmissions.

In the terminology of queueing theory, this is a batch service

model with a single server, a finite queue, a Poisson input (Sec. 4.2)

or compound Poisson input (Sec. 4.3), and constant service times T. TheI
"customers" are the packets, the "queue" is the buffer, and the "server"

is the channel, where the server is considered to be tied up in service

during both the transmission of the S packets and the "recovery time"

until the server is ready to begin the S slots in the next frame.

However, a key difference from the standard models of queueing theory is

that the server here always is busy, since it will become tied up in

"serving" the next batch of customers even when there are no customers

in this batch.

In the following two sections we examine the performance of this

system for single-packet and multi-packet messages.

4.2. The Model for Single-Packet Messages

Let us assume that the messages have lengths shorter than the slot

sizes so that each message consists of just one packet that will be

stored in one buffer unit and will be transmitted in only one slot. As

indicated above (Sec. 4.1), S slots are allocated in each frame to

14
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transmitting the S messages at the head of the buffer (or all of the

messages if there are less than S in the buffer).

Consider the imbedded Markov chain obtained by observing the system

at just those instants (epochs) where a frame begins. Let an denote the

probability of n arrivals between epochs (i.e., during a frame), that

is,

an (XT)n - exp(-xT)
a= n , for n=O,l,2,... (1)

Letting the state of the system be the number of messages in the buffer,

excluding those which just were removed for transmission, we may write

the following transition probability matrix.

0 1 m-1 m

S
0 nO a aS+l ... aM-l n an

n=O nn=Mn

S-1 =
1 n- an as "'"aM2 n

n=0 nn M- Lan

P= S a0  a I  . (2)

S+l 0 a0

m 0 0 as l n S an

wherein = M -S.

15
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Therefore, the state probabilities {irj, j=0,l,...,m} are given by

= P where = 97O,1l,...,7m]

or

m

= z'i Pij' for j=0,1,...,m.

iO

A message is blocked (rejected) if the Markov chain was in state j

and then there were at least (M - j) preceding arrivals of messages0

before the next frame starts. Thus, letting R be the number of such

messages rejected in one frame, the expected number of messages blocked

per period (frame) is

m
E (R) i Z n a M j + n (3)

j=0 n=O

where the second summation is written in terms of a finite number of

elements as

M-j-l M-j-I

n aM-j+n = XT - n an (M-j)(1 - an) (4)

n=O n=O n=O

The probability that a message will be blocked (rejected) is given

by

PB = E(R)/xT. (5)

16



Now we proceed to calculate Wq, which is defined as the expected

delay in the buffer incurred by those messages which will be

transmitted, i.e., those which are not blocked. (In the terminology of

queueing theory, Wq is called the expected waiting time in the

queue.) Let the random variable W be the delay in the buffer incurred

by a randomly selected arriving message (regardless of whether it is

blocked or not). Note that W > 0 implies that the message is not

blocked, whereas W = 0 implies that the message is blocked (with

probability 1) since the probability that a message arrives at exactly

the same instant that a frame begins (transmission occurs) is zero.

Therefore,

E(W= E(WIW >0)(1 -P + E(WIW =

- Wq (i - PB) , (6)

so that calculating E(W), along with PB from Eq. (5), will immediately

yield Wq. Hence, we now will focus on deriving E(W).

For the random arrival under consideration, let Ein be the event

that this arrival meets the conditions: (1) finds i messages left

behind in the buffer from the last epoch (start of new frame), and (2)

is one of n arrivals in this frame. Therefore, letting P(Ein) denote

the probability that the event Ein occurs for the random arrival,

m

E(W) = I P(Ein)E(WIEin) • (7)

i=O n=l

17
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To find P(Ein), note that the conditional probability given i that a

given random arrival is one of n arrivals in this frame must be

weighted by n, so that

n a n
P(Ein) = i -na (8)

j=l a

(This second term also can be interpreted as the expected fraction of

arrivals that are in a group of n arrivals.) The problem now is

reduced to finding E(WEin ). To do this, we distinguish two cases:

Case 1: i + n < M

For this case, all n arrivals that occur in the frame interval

[O,T] will wait. Therefore, a key observation (see [14]) is that, with

a Poisson input, the time of the jth arrival out of n over a unit

interval has a Beta distribution with parameters p = j, q = n - j + 1.

Thus, the time of this arrival over the interval [O,T] has

mean = - T =-J- Tp+q n+l

6

It then follows that

1 n
E (cumulative waiting by these n until T) n I (n+l-j)T

* j=l

1 1 n(n+l) T = n T
n+l 2 2

where this expression excludes any additional waiting in the buffer

18



that may be incurred by these n messages in subsequent frames. (This

result also can be obtained directly from the fact that the n arrivals

are uniformly distributed over [O,T].) Adding in the waiting in

subsequent frames, we then have

E (total cumulative waiting for all of these n arrivals)

n T/2 + min {n, (n + i - S) + I T + min {n, (n + i - 2S)+} T + ... (9)

where (x)+ = max {O,x}.

4

Therefore, the average waiting for each of these arrivals will be the

expression given in Eq. (9) divided by n; i.e.,

(IEn) = T/2 + I min{n, (n + i - Sk) + } T/n (10)

k=l

when i + n < M. Note that the terms in the summation become zero as

soon as Sk > n + i.

Case 2: i + n> M

For this case, the i messages already in the buffer plus the n

arrivals during the current frame exceed the waiting room in the buffer,

so (M-i-n) messages are blocked and n = (M-i) new arrivals wait.

For these n new arrivals who wait we have:

(cumulative waiting by these n until T) I (n+l-j)T
j=l

19
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I ~ [n(n+1) T -(n-F)(n-i+l) T

[nr - (n-i)(n-i+l)l T/21" n+l

Therefore, E (W I E) =n - (n-ii) (n-i+L)] iT
in n ~ n+l

+I minii, (W'+i-Sk)+ I T (1
n k=l

*when i + n > M. Note that the terms in this summation become zero as

soon as k > E+i.

4.3. The Model for Multi-Packet Messages

We now assume that some or all of the messages have lengths longer

than the slot sizes. In this case we segment the message length into

slot-size packets. Recall that the random variable L is the number of

packets in a message; denote its distribution by g(t). Thus, it is

being assumed that messages arrive according to a Poisson process where

* each message contains L packets. The combination of these two random

factors will result in a compound Poisson distribution; that is, the

probability of j packet arrivals, aj, in an interval of fixed length

* is obtained by convolving g(t) a random number of times according to the

Poisson distribution.

Once again, an imbedded Markov chain can be constructed just as

* described in Section 4.2, where the state of the system now is the

number of packets (rather than messages) in the buffer. Let us make the

20



simplifying assumption that if the buffer has room for just some of the

packets in an arriving message, these packets are accepted into the

buffer (and considered a complete message) whereas the rest of the

packets are blocked. Then the transition probability matrix still is

given by Eq. (2), except for the difference in calculating a. described

in the preceding paragraph, so the steady-state probabilities nj also

are obtained the same way. However, the problem of finding the expected

q message delay is somewhat different now because a message is considered

to be delayed as long as any of its packets are still delayed.

Except for taking this difference into account, we can follow the

same steps used in Sec. 4.2 to derive Wq, the expected delay for

messages which are not blocked. To find E(R), the expected number of

messages rejected (blocked) in one frame, let the random variable R. be

the number of messages rejected given that j packets were left behind
in the buffer at the beginning of the frame. Also let G(i)(t) be the

probability that the number of packets in i messages is less than or

equal to t, which would be calculated by taking the i-fold convolution

of g(k). Finally, let the random variable N be the number of messages

arriving in a frame, which is assumed to have a Poisson distribution

with parameter xT, so that

k
Prob {N = k}= ( kT ,x(-T for k=O,l,2,... (12)

Therefore,

M-j

Prob {Rj = n} = Prob {N = n + i} [G(i'I)(M-j-l) - G(i)(M-j-l)]

1=1 (13)

21



and

m

E(R)= I ffj I nProb{Rj=n} (14)

j=O n=l

The resulting probability that a message will be blocked is

P B = E(R)/xT (15)

Given PB' Wq again can be obtained directly from E(W) by using Eq.

(6), so we now will derive E(W).

For the randomly selected arriving message under consideration, let

Eijnpq be the event that this message meets the following conditions:

(1) finds i packets left behind in the buffer at the beginning

of the frame,

(2) is the i th out of n arriving messages in the current frame,

(3) the total number of packets in the first (j-l) messages is p,

and

(4) the number of packets in this jth message is q.

Also, let P(Einpq ) be the probability that the event Einpq occurs for

this message.

Note that E(WIEijnpq) = 0 automatically (due to blocking) if either

j >M-i or p>M-i-l. Therefore,

m M-i 0 M-i-l

E(W) Y Z I Y Y P(E ijnpq)E(WIE ijnpq). (16)

i=O j=l n=j p=j-l q=l
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Let r min {p + q, M - i} , and let g(j-1)(p) be the probability that

the first (j-l) messages contain p packets (as obtained from the

(j-l) - fold convolution of g(z)). As observed in Section 4.2, the time

of the jth arrival out of n over a unit interval has a Beta

distribution. It then follows that

E(WE ) = n+l-J T + < i+r-S> T . (17)E(Iijnpq) =~ >

q Proceeding as for Eq. (8), it also follows that

P(E. ) = 7T. I nP{N=n} g(j-l)(p) g (q) (18)jnpq i n-
Y kP{N=n}

k=l

Combining Eqs. (6) and (12) to (18) now yields Wq.

In a subsequent report, we will discuss the application of the

above results (Sections 4.2 and 4.3) to several practical cases, as well

as present and analyze some numerical results.
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