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1.  INTRODUCTION AND GENERAL NOTIONS 

The purpose of this report is to provide a brief review of the 
principles governing the phenomenon commonly called "velocity-coupled 
combustion instability." Most of the basic ideas covered here origi- 
nated many years ago.1 3 They have been clarified by subsequent work 
and the analytical framework into which they fit has developed consi- 
derably in the recent past. 

So far as practical applications are concerned, the general problem 
of velocity coupling remains largely unsolved. The most difficult ob- 
stacles are associated with the experimental work required to produce 
the values of certain characteristic quantities arising in the analysis. 
No consideration will be given to those matters or to the details of the 
combustion processes and origins of the physical behavior. 

Velocity-coupled combustion instability is most simply described as 
the behavior under unsteady conditions corresponding to erosive burning 
in steady flow. Observations of burning solids have established that in 
steady state, the regression rate is dependent on both the pressure of 
the environment and on the rate of flow parallel to the surface. For 
the purposes here it is adequate to assume that the burning increases 
if either the pressure or the parallel flow, or both, are increased, as 
sketched in Figure 1. The symbol Vn denotes the velocity parallel to 
the surface; often the mass flow is used as the independent variable, 
but the velocity will serve well enough here to develop the principles. 

P 

(t) 

v11 

<b> 

FIGURE 1.  Influences of Pressure and Parallel Velocity 
on the Linear Burning Rate. 
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Now imagine that, from some initial steady operating point, the 
pressure is slowly changed by an amount 6p. If r — p , then to first 
order in small quantities, the corresponding change in burn rate is 
given by 

6r    6p 
T~  = n - 
r    P 

(1) 

where r, p, are the initial steady values. Obviously 6p can be positive 
or negative, and if the pressure slowly oscillates (i.e., with very low 
frequency or long period) about its average value, then so does the 
burning rate. Similar behavior occurs if the parallel velocity is 
changed. Figure 2 shows schematically these quasi-steady responses of 
the regression rate to oscillations of pressure and velocity. Figure 3 
shows the pressure, velocity, and burning rate as functions of time for 
the two cases. Note that for slow quasi-steady oscillations, the burn- 
ing rate is always in phase with whatever independent variable is 
changed, providing the burning rate increases monotonically with the 
variable under steady conditions. We restrict ourselves here to the 
simplest situation in which only one variable changes and when the velo- 
city fluctuation is smaller than the average velocity. 

7 ♦ oV 

- 6c ■ 

vi. - 5vi VII  ♦  6vj 

<b) 

FU.UKK :.  Quasi-Steady Changes of the Linear Burning Kale. 
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r ■ r 

FIGURE 3. Quasi-Steady Oscillations 
of the Linear Burning Rate. 

Consider now the situation in a combustion chamber. Suppose that 
for some reason the chamber pressure p is changed and that the pro- 
pellant surfaces are so oriented (e.g. as in an end burner) that fluc- 
tuations of the parallel velocity are negligible. When the pressure 
increases, so does the burning rate, which causes the total mass of com- 
bustion products in the chamber to be increased. If no other process 
occurred, the pressure would be further increased, an unstable situa- 
tion. Of course in practice, the increased chamber pressure causes the 
exhaust flow to increase, compensating for the increased burning rate; 
it is then a familiar result that if n < 1, the flow in the chamber is 
stable to fluctuations of pressure when the exhaust nozzle is choked. 
This is the quasi-steady limit of "I/«" or "bulk mode" instability. 

Similar considerations apply to the case when the chamber pressure 
is held constant, but the parallel velocity changes. The condition for 
stability is then not so simply stated and will not be worked out here. 
However, it is clear that for the cases sketched above, an increase of 
parallel velocity will cause an increase in the rate of mass addition to 
the chamber. In the absence of other processes, this will cause an in- 
crease of chamber pressure. The assumed constraint of constant chamber 
pressure will therefore be satisfied only if other processes, including 
the exhaust flow, are accounted for. 

In any practical situation, changes of the velocity parallel to the 
surface will not occur alone: they will he accompanied by changes of 
pressure as well.  Moreover, the geometry of combustion chambers is such 
that a quasi-steady increase of pressure, uniform in the chamber, will 
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Jß produce a quasi-steady increase of parallel velocity everywhere. The 
latter will of course not generally be uniform over the burning surface. 
However, for small fluctuations, the total change of burning rate will 
be the sum of the changes due to the fluctuations of pressure and velo- 
city. This behavior is sketched for one position on the burning surface 
in Figure 4. 

Hi 

V„ * V 

FIGURE A.  Quasi-Steady Oscillations in 
Response to Both Pressure and Velocity. 
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Qualitative examination of quasi-steady behavior is evidently 
straightforward, although the details of a particular case may become 
tedious. Under truly unsteady conditions, at higher frequencies, the 
analysis becomes considerably more involved. However, one principle* is 
always true: an increase of local burning rate with an increase of local 
pressure is a destabilizing influence. Thus it is that part of the 
burning rate in phase with the fluctuations of pressure which may pro- 
duce unstable motions in the chamber. This is true whatever may be the 
cause for the burning rate to change. 

All arguments concerning the influence of velocity coupling on com- 
bustion instability have been based on the principle stated in the pre- 
ceding paragraph. What sometimes obscures the issue is the necessity to 
introduce some representation of the way in which the unsteady burning 
rate is connected to velocity fluctuations. This problem will be 
treated later in greater detail but it may be helpful here to outline 
some of the main joints. We shall consider the simplest and most impor- 
tant case of longitudinal (axial) acoustic modes in a straight chamber. 
Even with combustion, particulate matter in the gases, average flow, 
exhaust nozzle, and other features of a real motor, the unsteady motions 
usually found may be regarded in good approximation as acoustical mo- 
tions in a chamber having the same shape, enclosed by a rigid boundary 
excluding the nozzle volume and without all perturbations associated 
with combustion. Thus we may consider the lateral burning surface to be 
subject to classical acoustic modes appropriate to a closed/closed tube; 
the pressure field for a standing wave is proportional to p cos(k z) 

cos(w t) where k = n/i/L and ui = ak (n = 0,1,2,. ..).  To be definite, 
n        n n    n 

we restrict our attention to the fundamental or first axial mode having 
amplitude c, the maximum value of p'/p : 

p'(z,t) = tip cos(njr) cos (^ t) (2) 

The momentum equation for acoustical motions is 

- au*    Dp' ,-, 

It will br shown in Section 2.2 that this principle is closely 
related to "Rayleigh's Criterion", .i statement concerning the influence 
of heil .i Id it ion on the stain It tv o| acoustic waves. 
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and with equation (1) 

p w= ep L 8in (L z) cos (r ° 

This is easily integrated to give 

u'(z,t) = e * sin (£ z) sin (£* t) (4) 

which can be written to show explicitly the phase difference between the 
pressure and velocity: 

u'(z.t) = e Ä 8in (5 Z)  Cos (£± t - *) (5) 

Comparison of equations (2) and (5) shows that for z < L/2, the velocity 
lags the pressure in tine by n/2. To appreciate these formulas it is 
helpful first to sketch the pressure and velocity mode shapes at quarter 
cycle intervals (Figure 5). It is also useful to have the pressure and 
velocity fluctuations as functions of time in the two regions z < L/2 
and z > L/2 which may be regarded as the fore and aft sections of a 
rocket motor. These are sketched in Figure 6. 

It is apparent that the velocity lags the pressure by n/2 in the 
head-end (0 < z < L/2) of the chamber and leads the pressure by n/2 in 
the aft-end. The reason why the phase difference depends on position in 
the chamber may be seen from Figure 5. For the fundamental mode, the 
velocity is always zero at the ends only, while the pressure field has a 
node at the center. Thus, although the velocity at any given instant is 
in the same direction throughout the chamber--i.e., has the same sign-- 
the pressure changes sign. That sign change is reflected in the phase 
difference sketched above. 

Now Ifi us consider the response of a burning surface to such an 
acoustic field. We shall base the discussion on several assumptions: 

O) The bunting rate is proportional to the pressure fluctuation 
for pressure coupling; 

(2) The burning rate is proportional to the velocity fluctuation 
for velocity coupling; 
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t - 0 i - L/2 i ■ I 

t • 0 

I -  U7W 

t • L/r 

t - 3/2 L/I 

t • 2UI 

K1ÜURK S.  Pressurr and Velocity Fluttujltons 
in Ihr Fund*»™!41 Longitudinal Mode. 
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A 

■ 
0 <  z < L/2 

h L/2 <  z < L 

FIGURE 6.  Pressure and Velocity Oscillations 
in the Fore and Aft Regions of a Tube. 

(3) Pressure and velocity coupling are independent and linearly 
additive; 

(4) The proportionality constants for pressure and velocity coup- 
ling are, in general, functions of frequency and contain the 
fact that the change of burning rate is not in phase with the 
pressure and velocity fluctuations. For the present, rectifi- 
cation is ignored, but will be discussed later. 

10 
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There pre several equivalent ways to write the oscillations of 
burning rate (items (1) and (2)). The most efficient representation 
involves complex notation. For tho pressure field, write 

El = E Jut e (6) 

?=ecos (5£) (7) 

P 

It is necessary to choose a definition of zero phase and maintain that 
definition consistently throughout. Unless otherwise specified, we 
shall follow the generally accepted convention that all phases are mea- 
sured with respect to the pressure oscillation so p/p is always real. 
The actual (observable) values are found by taking real parts, for then 
equation (2) follows from equations (6) and (7).  The velocity is: 

äl = H eiWt (8) 

A (i)   i-r    * (i) 
U    . £  . ,  Zx   ./u\       2 /u\v ,rtv v -x - .„o, E, =,(.)     =e   (-) (.). 

where 

A, 

(!) 

(i) 
= -| sin(7t|) (9)b 

Note that because the acoustic velocity lags the pressure by n/2, u/a 
is imaginary. Define the response functions for pressure and velocity 
coupling: 

R
b 

= R
b
(r) + iRb(i) = \%\c^b = iRbl cos% + rlRblsin *b (10) 

Rv = Rv(r)  +  iRvU)  =   lRv|el  V =   IMCM*v  *  MM"» *v       (1,) 

11 
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Then the changes of burning rate due to pressure and velocity coupling 
are represented as 

(r)b^^l\l?ei(-V (12) 
\r /b     p       p 

/r'v      a'     ./u\(i)ei(wit+*v + ?J 

f- =R
vr-= lRvl r * <13> 

\ r /v     a      ' a/ 

The real parts of these are: 

f~    = |Rb|?cos (uit + V 
\ r /p       p 

= |Rb|cos ik § cos u)t - |RJ sin ik § sin wt      (14) 
P P 

cos(wt + 2 + 4>y) (n;;;=iM(!)' 
-   (i) 

=   |Rvl/^]       [cos(wt + j)  cos 4>v - sin(wt + ^)sin ijij 

=  |R |[-\      [-cos I|J    sin wt  -  sin I}J    cos wt) (15) 

The par'* of equations (14) and (15) which are proportional to 
cos wt and th^reiore can be in phase with the pressure oscillation are: 

(I)(r) = |Hb|-^! = Hb
(r)? U6) !a' P       P 

p 

(v) 

12 
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Note that according to equation (9), (u/a) has a negative sign, 

(u/a)(i) = -(e/y) sin(nz/L). 

What these results show is that for pressure coupling, it is the real 
part of the response function which controls the destabilizing tendency 
and for velocity coupling it is the imaginary part. 

It must be emphasized that the phase of the pressure-coupled re- 
sponse function is that for the oscillatory burning rate with respect to 
the pressure, but the phase tjj of the velocity-coupled response function 
is for the burning rate with respect to the velocity fluctuation. The 
reason that the imaginary part of R is required to specify the de- 
stabilizing tendency of velocity coupling is that the acoustics intro- 
duces a TT/2 phase difference between the velocity and pressure oscilla- 
tions, as shown by equation (5). Thus, an additional phase difference, 
provided by the response function R , is required to produce a component 
of the burning rate which may be in phase with the pressure. Only in 
this way is the principle cited earlier satisfied. 

Choosing the parts of (r'/r) and (r'/r) which vary as COP u)t 
serves to eliminate those portions pwhich cannot affect the stability of 
pressure waves. According to the principle stated ojn page 7, the fluc- 
tuations of burning rate must be in phase with p/p to be destabiliz- 
ing tendencies.  This is a statement about the sign of r', namely that 

r /p must be positive for instability. Thus, in order that the con- 
tributions represented by equations (16) and (17) cause instability: 

(r/r)^ 

P/P 
= RK

(r) > 0 (18) 

(r/r)(r)    ,.,  ,-,-,(» 
_JL_ = .R(0 Ü!Öi_ > o (19) 

p/p        p/p 

Note that for quasi-steady beha.ior, the sign of (r/r) /(p/p) is fixed 
by the slope of the steady burn rate graphed as a function of pre: s^re 
or parallel velocity. For the examples shown in Figures 2 and 3, the 
contributions are destabilizing. 

For pressure coupling to be an unstable influence, the general 
statement, according to equation (18), is that the real part of the 
pressure-coupled response function must be positive.  This is true for 

1J 
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(r) 
all frequencies for real propellants.  If R.    > 0, all elements of 
burning surface everywhere in the chamber contribute destabilizing in- 
fluences. For velocity coupling, with the four assumptions listed 
above, the product of the imaginary part of the velocity-coupled re- 
sponse times the ratio of the spacial parts of the velocity and pressure 
fluctuations must be positive to cause instability. The situation is 
more complicated than for pressure coupling, and two cases must be con- 

sidered, distinguished by the sign of R 

R (i) > 0 
V  

For velocity coupling to be destabilizing, the velocity fluctuation 
must have a component in phase with the pressure fluctuation, u/p > 0. 
Consider again the fundamental longitudinal mode, and Figure 5; u/p is 
positive only in the head end of the chamber, 0 < z < L/2. Thus, if the 
imaginary part of the velocity coupled response function is positive, 
the contribution from burning surface in the forward half is destabiliz- 
ing and the contribution from the aft half is stabilizing. This conclu- 
sion follows directly from equation (19) upon substituting equations (7) 
and (8), giving 

. R(i) Ml'
0 = R(i) JÜJ,_ = 1 RÜ) ta„ (p} 

v  ,- r\ v      m     Y v     L 
(p/p)        Y cos j~  ' 

The tangent function is positive in the forward half of the chamber. 

R tn < 0 
V 

Obviously the situation is the reverse of that tor R    > 0.  The 

contribution from the forward half j_s stabilizing and the contribution 
from the aft half is destabilizing, for the fundamental mode. 

The same sort of reasoning can he applied to the higher modes of 
the chamber.  Suppose that the imaginary part of the velocity coupled 

response is positive, K     > Ü.  The pressure fluctuation always has 

maximum amplitude, and tin* velocity fluctuation is :»ero, exactly at the 
head-end, for all modes. In a region near the head-end, the velocity 
lags the pressure hy n/2. Thus, there is a length of propel laut sur- 
face, starting at the head-end, which under the influence o! velocity 
coupling, is destabilizing for all modes. 

14 
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At the aft end of the chamber, the pressure fluctuation also has 
maximum amplitude; it is out of phase with the pressure at the head end 
for even modes and in phase for odd modes. The velocity fluctuation at 
the aft *»nd leads the pressure by n/2 for some distance upstream of 
the end. There is, consequently, some portion of propellant surface, 
stretching from the aft end, which is stabilizing under the influence of 
velocity coupling. Regions of stabilizing and destabilizing influence 
alternate along the chamber, and can readily be identified by extension 
of the preceding argument.  Figure 7 shows the situation for the third 

and fourth modes, with R *lJ > 0. To compress the information into 
single figures, the mode shapes of pressure and velocity, are shown as 
they occur for their respective maximum amplitudes, i.e., they are 
sketched for instants of time separated by one-quarter of a period (see 
Figure 5). 

A 
3rd MODE 4th MODE 

  P(z) 

 u(i) 

/ / / REGIONS FOR DESTABIUZATION BY VELOCITY COUPLING IF Rv
(i> > 0 

FIGURE 7.  The Influence of Velocity Coupling for 
the Third and Fourth Longitudinal Modes. 

So tar in this discussion nothing has been assumed concerning the 
relationship between the response functions R. and R .  In practice, it 

b     v     r      • 
is often supposed that R is proportional to R.. This approximation is 
based on the ideas that processes in the gases respond in a quasi-steady 
fashion, if the frequencies of oscillation are not too high, and that 
the principal source of a time lag in the response is unsteady heat 
transfer in the solid phase. 11 we further assume that the response 
function R^ for pressure coupling is reasonably approximated by the 
familiar two parameter form,4 then we are able to relate the sign of 

Rv   to the frequency of the mode considered.  Figure 8 is a sketch of 

the real and imaginary parts of R   and therefore R , as turn lions of 

the dimension less frequency V.  = u*/r . 

\b 
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fl   * Cük/r' 

FIGURE 8. Real and Imaginary Parts 
of the Response Function. 

The real part \ has a maximum at Q = Q at which frequency, 

or nearly there, R-    passes through zero.  For frequencies less than 
-2 D (i) 
r 0 /K, the imaginary part of R, , and therefore R as well, is posi- 

tive; this is the first case discussed above. Combined with the discus- 
sion of the first and second cases above, this completes the basis for 
the following statements often encountered, in one form or other, in the 
literature dealing with velocity coupling: 

-2 
(1) In the low frequency range (i.e., m <  r Q  /K, the burning rate 

leads the pressure (i.e., R. , R > 0) and velocity coup- 

ling in the forward half of the chamber is destabilizing for 
the fundamental mode. 

-2 
(2) In the high frequency range (w > r Q /x) the burning rate lags 

the pressure (R^ » R > ft) and velocity coupling in the aft 

half of the chamber is destabilizing for the fundamental mode. 

An important aspect of velocity coupling which has so far been 
ignored in this discussion is rectification. The burning propellant 
should normally be sensitive to the magnitude of the parallel velo- 
city, but not the direction. Suppose that an element of surface is 
exposed only to an oscillatory component of velocity having frequency ui, 

16 
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u* = ü cos u)t. Then because the combustion processes should be sensi- 
tive to the magnitude but not the direction of parallel flow, the burn- 
ing rate should be related to the magnitude of u': 

|u'| = |u| cos tut (20) 

which is sketched in Figure 9. 

Ir'L 

FIGURE 9.  Rectification of a Velocity Oscillation. 

The oscillatory part of |u'|, and therefore the burning rate re- 
sponding to the parallel velocity, has frequency 2u>, not w. Conse- 
quently, the input disturbance of frequency u) cannot be reinforced and 
velocity coupling cannot be acting in this case. This of course is due 
to the rectification noted above and shown in Figure 9. Note that 
rectification also produces a DC component which may be reflected as a 
change in steady erosive burning. 

The phenomenon of rectification must always he present, but it does 
not preclude the possibility of having velocity coupling at the funda- 
mental frequency u>. What is required is that the mean velocity in the 
same direction as the fluctuation^ be non*zero. The extreme rase, 
sketched in Figure 10, occurs when u > u* ; there is then obviously a 

component of |u ♦ u* | at the frequency w, namely u' itself. 

17 
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a  • u 

|u ♦ ul 

u -f ►   M* 

r 

"\ -\[ r \. 
1 K. /? t 

1 

—I 

1 

1 

FIGURE 10.  Rectification Prevented by Mean Flow. 

If 0 < u < | u*| , the situation is somewhat more complicated, as 
shown by Figure 11. The part of |u + u'| which has the freqeuncy u> of 
u* must be found by Fourier decomposition of |u + ui. Because the re- 
sults depend on the amplitude of u', rectification introduces nonlinear 
behavior. Note that this is a consequence of the kinematics and the 
assumption that the response of the burning surface is sensitive to the 
direction but not the magnitude of the velocity; this has nothing what- 
ever to do with the details of the combustion processes. 

Now the average velocity u varies along the chamber, in general 
increasing with distance t rom the head end, so that the amplitude of 
that part of |u ♦ u'| having frequency u> also varies along the chamber. 
The earlier discussion remains valid if the definition of R is assumed 
to include the influence of rectification. That is, there is an implied 
multiplicative factor proportional to the Fourier coefficient associated 

with that component of I u ♦ u'l having the frequency of the node being 

considered.2 3 l% This has the important consequence that the function 
R is a strong function of position along the axis of the chamber, gen- 
erally having greatest magnitude in the aft portion of the chamber where 
the mean flow speed is larger. Thus one should anticipate that the in- 
fluence of velocity coupling is in some sense more sensitive to changes 
in the aft end of the chamber. 
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|ü ♦ u'l 

FIGURE 11.  Partial Rectification in the Presence 
of Mean Flow. 

For example, assume that the dependence of the velocity-coupled 
response function on frequency is that shown in Figure 8. Suppose that 
the burning rate and geometry are such that the dimensionless frequency 
U is less than 12 .  The influence ol velocity coupling in the forward 

hall of the chamber is destabilizing for the first mode. But this is 
weak because of the weakness of rectification over the forward portion 
of the grain. Now suppose that the burning rate is decreased so that 
i}   >  Q  , so that velocity coupling in the aft end where rectification is 

stronger, is destabilizing. Such a change of burning rate may be accom- 
panied by a sufficient increase in the influence of velocity coupling, 
as to cause an initially stable fundamental mode to become unstable. 

These remarks serve to emphasize that the influence of velocity 
coupling is intrinsically dependent on position in the chamber. It is 
true that the most basic piece of information is the imaginary part of 
the velocity-coupled response function, such as sketched in Figure 8. 
This should ideally be known as a function of dimensionless frequency, 
without the influence of rectification. To obtain a quantitative as- 
sessment of the stability of wave muttons in a chamber with velocity 
coupling, a much more elaborate analytical structure is required to 
account fjr spatial variations in the chamber. That is the subject of 
the following section. 
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2.  STABILITY ANALYSIS WITH VELOCITY COUPLING 

In the preceding section, the answer to the question of stability 
rested ultimately on the principal stated earlier. However reasonable 
that proposition may seem—and it should be at least appealing, because 
it is true—nevertheless it was simply stated without proof. The formal 
analysis outlined in the following paragraphs will produce an explicit 
statement of the principle, and in such a form that it can be used to 
obtain quantitative results for practical situations. It is not the 
purpose here to provide a detailed exposition of the analysis, but 
rather to review the salient features. First the linear stability 
analysis will be covered and then, for future reference, an approximate 
nonlinear analysis will be summarized. 

2.1 FORMULATION OF LINEAR STABILITY ANALYSIS 

The most recent treatment of linear stability analysis, essentially 
the form used in all current computer codes, appeared as Reference 6. A 
treatment of velocity coupling, using essentially the same analytical 
framework, appeared earlier in Reference 7. The idea on which the 
analyses are based is that, for linear behavior, any arbitrary distur- 
bance in a chamber rcay be represented by Fourier analysis as a super- 
position of contributions from all of the normal modes of the chamber. 
If one of the modes should be unstable, i.e., grow in time, then so is 
the disturbance. Hence, the stability of an arbitrary disturbance may 
be determined by finding the stability of all the normal modes of the 
chamber. By definition, a normal mode of a linear system varies har- 
monically in time, and the study of general linear stability comes down 
to studying the behavior of harmonic oscillations. 

Thus, the time dependence exp(iu>t) is assumed, with a» real if the 
oscillation neither grows nor decays in time. In order to display more 
clearly the contributions to the stability of motions, it is more con- 
venient to calculate the growth or decay constant ttt defined by assuming 
the complex exponential dependence exp(i(m-ia)t) = exp(iwt) exp(at). If 
a is positive, the motion is unstable; processes which cause a to be 
positive are said to be destabilizing. The combination k = (tu-ior)/a, 
where a is the speed of propagation of small disturbances, is the com- 
plex wave number. Alt analyses of the linear stability for combustion 
chambers lead eventually to results for k. 

The general analyst.«; is based on the equations of conservation 
tor the flow in the chamber. Although the procedure is a bit tedious, 
it can be summarized as a sequence of several steps which are impor- 
tant to recognize. This is a simple way of emphasizing the important 
approximations. 
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First, in a more general vein, the formulation of the problem be- 
gins with the notion that the behavior of waves in a combustion chamber 
is a consequence of relatively small influences:. The idea is that the 
structure (spatial distribution and time dependence) of a normal mode 
for the real problem, including combustion and flow, is "nearly" that 
for a classical acoustic mode in a chamber having the same geometry, but 
with no combustion and flow. If the frequency of the nth classical mode 
is UJ , then the constant a, and the change of frequency u>-w for the 
corresponding mode in the combustion chamber, are small compared with 
UJ : 
n 

a, UJ - u) << UJ (21) 
'    n   n 

It is not assured a priori that this inequality is true, but it has been 
verified both analytically and experimentally for most situations en- 
countered in practice. 

It follows from this approximation and the assumption of linear 
behavior that there are two small quantities characterizing the general 
problem: the amplitude of the motions, and a measure of the perturba- 
tions due to combustion and average flow. These are, respectively, the 
Nach number M* for the amplitude of the fluctuation, and a Mach number 
M representative of the average flow field. Construction of a suitable 
set of differential equations rests on_a formal limit process defined by 
the relative sizes of M' and M . If M = 0 and M' ■* 0, all influences 
of combustion vanish, and classical linear acoustics is recovered. If 
M =0, and M* remains finite, equations for nonlinear classical acous- 

tics are found. 

The equations for linear acoustics with combustion and flow are 
defined by the limit process 

M' *  0, M << 1; M7M  * 0 (22) 
o      o       o  o 

This implies that the Mach numbers ol both the acoustic dtu\ average flow 
fields must be small, but that for the acoustic field must be smaller. 
If M «.* 1 but is not allowed to go to zero, equations for nonline.tr 
acoustics with combustion are obtained. The simplest nonlinear problems 
are »let iued by 

M'  << 1, M <■< I, H' in     - 0(1) (23) 
o        o o  o 

This limit process provides the basis for the approximate nonlinear 
analysis described in the following section. 
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It is important that the formal basis just described be recognized, 
although it is not necessary to be aware of all the details. The formu- 
lation of the problem eventually determines what input data are required 
for numerical computations. 

With these preliminary remarks, we now describe briefly the pro- 
cedure leading to a formula for the complex wavenumber. 

1. The general conservation equations are written first for the 
mixture of gas and particles. Then the equations are split 
into two sets, one set for the gas phase and one for the par- 
ticulate phase. This step defines the representations of 
interactions between the two phases: exchanges of mass, 
momentum (the drag force), and energy (heat transfer). 

2. Earlier work on combustion instability was based essentially 
on the two sets of equations formed in step 1. However, for 
propellants heavily loaded with metal, this turns out to be a 
poor strategy. The speed of sound in the mixture may be 20% 
(or more) less than the value for that of the gas only. If 
the two sets of equations for the two phases are maintained 
separate, the change in the speed of sound is computed as part 
of the analysis. But the change is too large a perturbation 
to be handled accurately. Thus it is much more satisfactory 
to incorporate the influence of particle loading in the 
"zeroth order" problem by suitable combination of the two sets 
of equatif's; this procedure is de scribed in Keterence 6. 
The result is that the speed of sound in all that follows is 
f.he speed of propagation _for small disturbances in the gas/ 
particle» mixture1, dene ted a. 

i. The equations art* then linearized according to the proves* 
defined by equation (22). This produces a set of first order 
linear partial differential equations with source terms pro- 
portional to the Mach number of the average flow. (There are 
some contributions associated with gas/particle interactions 
which do nut depend on the average flow, but are neve»Iheless 
small perturbations.) These equations can be combined to pro- 
duce an i'vhoittogeneous wave equation for the pressure field, 
and .tu associated inhomogeueous boundary condition for the 
normal component of the pressure gradient 

rv - ', aV = h (24> 
a^ «>l~ 

n * Vp' = -1 U»S> 
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The assumption of harmonic time dependence is now introduced 
to give the problem to be solved, 

v^p ♦ k2p = h <26> 

n • Vp = -f (27) 

At this stage, the wavenumber k is unrestricted—it is not 
identified with any particular mode. 

4. Equation (26) with the boundary condition (27) can be solved 
by use of a Green's function, followed by an iteration pro* 
cedure. However, to the order of small perturbations (linear 
in H ) usually treated, the following simple procedure jives 
the same result. The perturbations represented by fi and t «re 
necessarily small for this analysis to work well. Then the 
mode shape p and wavenumber k cannot be very different from 
the corresponding quantities (p , k ) for the classical acous- 
tic mode in a closed chamber having the same shape. The un- 
perturbed problem is described by the equations 

V\ ♦ kjpn = 0 (28) 

n • vpn = 0 (29) 

In a certain sense, the "difference" between the perturbed and 
unperturbed problems contains the information we seek for the 
gains .»nd losses ol energy associated with the perlurbat ions. 
This is contained in the formula for the wavenumber. The 
"difference" between the problems is formed by multiplying 
equation (26) by p , equation (28) by p, subtracting and inte- 
grating over the volume to give 

lip v^p - p^Tp |dV ♦ (k2 • n / p p dV = jTip dV rn *       '     rn n J  r  rn    J  ' n 

The first volume integral can be integrated by parts by use of 
Green's theorem, with the boundary conditions (equation (27) 
and (29)) inserted, leading to: 

fpy*  - pV^pJdV = J) !PnVp - pvpj • n dS = fyt  pn IS 
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in tne second volume integral, p = p for first order in small 
quantities, and the final result can be written 

i2  ,2 J   1 k = k + 
n ^2,„ 

p dV 
*n 

{ßvn  <*V + <|Jf pnds| (30) 

This result is the basis for nearly all current analyses of 
linear stability in solid propellant rockets and will be used 
here to examine in greater detail the influence of linear 
velocity coupling. 

A A 

The functions h and f are defined during the construction of the 
wave, equation (24), and its boundary condition. They contain repre- 
sentations of all processes contributing to the losses and gains of 
acoustic energy. Only one part will be examined here. It arises in the 
boundary condition expressing the fact that, owing to the response of 
the combustion processes, there are fluctuations of the flow inward at 
the surface. The origin of this term may be easily demonstrated. The 
linearized momentum equation has the form: 

pfr= *p' + 

For harmonic motions, the gradient of the pressure normal to the surface 
is: 

n • vp = -ipaku • n (31) 

Actually, there is another contribution, a combination of part of h 
and part of f, which must also be included, to give the formula for k : 

' ~ " k * 2 

JPn <W pu 

The sign has been changed so that while n is still the outward normal, 

both u and u • n are positive inward.  It is often useful to express 
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this result in terms of the mass flow; from equation (31) of Refer- 
ence 6, 

(33) 

The particulate loading (p /p), the mass of particles per volume of 
chamber) is C , and AT is xhe   difference between the fluctuations of 
temperature at the edge of the combustion zone and in the acoustic field 
in the flow outside the combustion zone.  For subsequent discussion we 
shall ignore the temperature differences and the influence of particles, 
so AT = C =0. Hence, equations (32) and (33) lead to: 

m 

Jtn 

In the first section, equations (12) and (13), the response func-^ 
tions were introduced and related to fluctuations of the linear burning 
rate. What appears in equation (34) is the fluctuation of mass flux 
departing the combustion zone and entering the chamber. If ont accepts 
the assumption of quasi-steady behavior in the gas phase 

m. ' = p t'      and  m^ = p^r (35) 

where p is the density of the unburned solid propellant.  Hence 

m,   * 
-^ = *- (36) 
m.   r 
b 

and the two response functions may be defined as 

m, /m.   m./m,        in. /m. 
D  D    D  D    n      DO 

Rb = — - - = -"—- ; Ry = -  _ 
p7p    p/p     *  (u'/a) 

V 

HetL   (u'/a)  represents an effective velocity fluctuation, parallel to 
the surface, which approximately accounts for rectification and the 
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threshold velocity; see Figures 9 through 11 and the accompanying dis- 
cussion in the previous section. Because the analysis described here 
is linear, the correct nonlinear influences of rectification and thresh- 
old velocity cannot be rigorously accommodated without further discus- 
sion. These nonlinear effects will be properly treated in the following 
section. 

For the sake of the argument here, we assume that pressure and 
velocity coupling are linearly additive, so that substitution of the 
definitions of equation (37) into equation (34) gives: 

2 . . 2  . ,,Hb 
* = k - l — 

n    pa Jp dV n 

where c, , c are real constants whose values are unspecified. They 
simply express the relative weighting of pressure and velocity coupling. 
It is to be noted that p/p in equation (37), the actual pressure fluc- 
tuation has been replaced by (p /p), the unperturbed mode shape. This 
is justified in the previous discussion of the linearization of equa- 
tions of motion.  Because m,/m,  is first order in small quantities, 

retention of p/p instead of p /p in equations (37) and (38) add terms 

of second and higher order which must be dropped. 

Special attention must be paid to the integrand of the second inte- 
gral in equation (3tt)-  The circumflex O over the term R (u*/a) means 

that_the exponential time dependance exp(iu)t) must be removed. Because 
(u'/a)  is nonlinear when rectification is accounted for, this requires 

careful interpretation explained below following equation (54). 

Now k is complex, k = (u> - ia)/a, and its square is: 

i 2  1/2   2v ./- awv 
k - --(ID - a  )-i(2 — 

a2 a (39) 

The bracketed terms in equation (38) arc corrections of first order in 
the Mach number of the average flow. Consequently, both a and the 
change of frequency, w - u) , are first order, and again because higher 
order terms must be dropped, equation (39) must be approximated by: 

2     am 
k2 = ^ -i(2 :~5) (40) 

-2 ^"  -2 
a      a 
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With k = tu /a, the real and imaginary parts of equation (38) are: 

»2 - % + »n  ^ 4- k   (f^Us  ♦ c.K(f\)a) ^  dS> (41) R\f)ds + \IJ\\(f) P    JPn<JV  f vp J I    \a   /vJ        p 

-it^K ^K^^/Nfti'iN   «•> 
The meanings of the real and imaginary parts of the integrands in the 
second integrals are explained below. 

2.2 RAYLEIGH'S CRITERION DERIVED FROM LINEAR STABILITY ANALYSIS 

Before proceeding further with equation (42), it is instructive 
to examine the interpretation of Of, in particular its relation to 
"Rayleigh's criterion." According to the definition of k, the depen- 
dence of the pressure on time is: 

p'    iakt    i(ui-iaf)t   oft  iwt ,.„. 
, = e    - e       = e  e (A3) 

P 

Hence, if or is positive, the fluctuation is unstable and grows exponen- 
tially with time.  The time averaged acoustic energy <<?' is propor- 

2 
tional to the time average o! the real part of (pr) , so: 

^.   2oft K C     - c 

Differentiate with   respect   to  time   to  produce  the  useful   re Lit ion   (Or o 

_.   1        I     ' C> 
a ~ 2  <£'    tit (44) 

In equation (42), the denominator, J*p*" dV, is proportional to *■■ ff'* 
and the numerator therefore represents the rale ol increase of time- 
averaged acoustic energy in the chamber. This is the origin of the 
statement that of represents the difference between "Kains" and "losses" 
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of acoustic energy. All processes contributing to the stability, or 
instability, of waves, may be interpreted in terms of their influences 
on the rate of change of acoustic energy in the chamber. 

The criterion formulated by Rayleigh may be found on Page 226 of 
Reference 8. 

"If heat be given to the air at the moment of greatest conden- 
sation, or taken from it at the moment of greatest rarefac- 
tion, the vibration is encouraged." 

The idea is that for greatest driving of the waves—maximum tendency 
towards instability—heat addition must occur in phase with the pressure 
wave and in the vicinity of a pressure anti-node. This conclusion may 
be deduced directly from equation (30). If distributed heat addition, 
Q (Energy/vol.-sec), is included in the equation for conservation of 
energy, it eventually contributes the following term to h' (equa- 
tion (46) of Reference 6): 

K    ;heat addition    -2^ Y /3t 

For harmonic motions, 

a"  Y /8t (45) 

k 

<fiW addition « " ^(V)* (46) 
a   • 

2 
According to equation (30), the corresponding part of k is 

>2 = ^(V>/^ 
The real and imaginary parts are 

« = ^f-(^:J)/Q(r)PndV (49) 
1  Jp dV   Y J n 

Jt n 
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For a given mode, a   is increased if the product Q  p is increased. 
A n 

This depends only on the real part of Q, the part of the fluctuating 

heat addition which is in phase with the pressure fluctuation and Q  p 
is obviously greater if the heat addition occurs where the pressure is 
greater, i.e., at the anti-nodes. 

Thus, Rayleigh's criterion and the general principle cited in the 
first section are both contained in the same analysis. These are merely 
two ways of expressing the transfer of energy required to drive and sus- 
tain acoustic waves. 

2.3 RECTIFICATION AND THE EFFECTIVE VELOCITY 

The formula (42) is the general representation for the coupling 
between surface combustion processes and acoustic waves. It is the pre- 
cise representation of the discussion given in the introduction. As 
argued earlier and as shown in equation (42), it is the real part of the 
response function for pressure coupling which determines the tendency 
for instability due to pressure coupling. The second term in equa- 
tion (42) contains the real part of the product of the response function 
for velocity coupling and the effective velocity. 

Because of the way in which the analysis is ^constructed, the re- 
sponse function and the velocity fluctuation (u/a) are independent. 
Horeover, according to equation (9) (ü/a) contains only a part which is 
out of phase with p'/p- Hence, for use in equation (42), 

n 

(r)    ,.,  - (i) 

[M!>r-^(i>. 
as shown earlier by equation (17)._ The difference between (17) and (50) 
is that the subscript ( ) on (u/a) indicates that rectification and a 
threshold velocity are to be accounted for. This demonstrates once 
again that for velocity coupling it is the imaginary part of the re- 
sponse function which controls the tendency for instability. 

According to equation (50), treatment of linear stability asso- 
ciated with velocity coupling comes down to two problems: analysis or 
measurement of the imaginary part of the response function; and determi- 
nation of the effective velocity (u/a) . The second problem is essen- 
tially a matter of kinematics which has been treated in several places, 
e.g., References 1 through 3 and 9 through 11. Little attention will be 
given here to efforts to calculate the response function itself. The 
intent is primarily to provide the basis for interpreting data. For 
this purpose, the effective velocity must be known. 
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What is required is the imaginary part of (u/a) . that part which 
is out of phase with the pressure fluctuation. Consider again the sim- 
plest case of the fundamental longitudinal mode in a straight chamber. 
Either the real or the imaginary part of the complex pressure field may 
be used, and to be definite we use the real part of equation (2): 

^- = e cos ~ cos ui t (51) 

The corresponding velocity, parallel to the lateral surface is (5): 

u' = £ - sin r— sin w-t (52) 
Y     l> * 

which is entirely out of phase with the pressure; the frequency is of 
course w   = ak = a/2L for the fundamental longitudinal mode. 

The effective velocity must include the influence of rectification 
and the fact that these may be a threshold velocity. We shall list here 
the various possible cases, but the details will be worked out only for 
the case when the threshold velocity vanishes. 

Three velocities are important: the average flow speed, u, the 
acoustic velocity, u', and the threshold^velocity u . We assume that 
the average flow is from left to right, u then being positive always; 
the threshold velocity is, by definition positive. In steady flow, 
erosive burning is supposed to occur whenever the average speed, u, ex- 
ceeds the threshold velocity. For unsteady motions we assume that ero- 
sive burning occurs whenever the resultant velocity u ♦ u' exceeds u 
for motion to the right and when *(u ♦ ti") is greater than u for motion 
to the left. This becomes clearer from the diagrams given below. 

What we call velocity coupling occurs when the erosive burning at 
any time during unsteady motions exceeds the erosive burning which would 
take place under ti.e average conditions existing at the same time. The 
circumstances when there is no threshold velocity are most readily 
understood. There are then two possibilities: the magnitude of the 
acoustic velocity, |u*|, is either greater or less than the average 
velocity. These cases are sketched in Figure 12. The shaded areas 
denote the velocity effective in causing erosive burning under unsteady 
conditions. Note that rectification occurs whenever the resultant velo- 
city, u ♦ u', becomes negative, or the total effective velocity is 
lu + u'l- 
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(a) 

u * u 

FIGURE 2. The Effective Velocity Due 
to Rectification. 

Steady erosive burning is proportional to u itself, so the effec- 
tive velocity for velocity coupling, when there is no threshold velo- 
city, is 

(M  =1 Hü* u-| - ü| 
* a /   a 

(S3) 

Before» considering the more complicated case of u t 0, let us work out 
the consequences of our discussion so far, to see how the results fit 
into the analysis of stability. According to equation (50) and earlier 
remarks, wt» need that part of equation (53) which oscillates out of 
phase with the pressure fluctuation but at the same frequency. To find 
that contribution, the formula (52) is used for u' and (53) is expanded 
in Fourier series, 

» OB 

(Ü   \      =  c0 
+   11   cn  cosOiu» t)   ♦   £   S    sindwi l) 

*a   ' n=l n=l 
(54) 
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For use in the formulas (41) and (42) we need only the terms which os- 
cillate with frequency w.: 

(r). = C- cos tiLt + S sin u) t 

To see what is required in (41) and (42) and to make the connection with 
the use of the complex notation, write this as the real part of the com- 
lex function 

iw.t     i(w,t - 71/2) 

(h-v ' -v ' = (Cj - iSx)e 
iw.t 

Then in (41) and (42), we can write 

\r-\ = (Rir) + iRii))(ci - is
I
)e"w,t 

(M 
= (Rjr) C, * *«\)  ♦ H*«\ -  <r)

Sj)e
,M,,t 

Hence we find 

(r) 
R(r)C, ♦ RU)S, 
V    I     V    1 

(SS)4, b 

R  U'  |U) = RU)C, - R(r)S, 
v -   I      v   1   v   ! 

v 
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It is easy to show that the result (55)b reduces to the special 
case (50) when u' is the classical acoustic velocity. The complex form 
of u'/a is then given by (8), 

— = - sin(7i|-)e 

and 
iui„t 

a 

Hence, corresponding to (55)a, b, we have 

Ci) - .(i) ? „_,J, "- (=-) I  -  !     r V    M      "V   Y —1, 

^(f)|(0'^r)iBU(* 
The first of these is exactly (50) because -li/ir  = (c/y) sin(nz/L) 
from equation (9). 

Although only the values of Aj and Bi are required here, we shall 
evaluate all the coefficients in (54). The forumulas for the coeffi- 
cients are: 

.  2n , 
c = l    - u 
o Tnf(Y)   d(V> 

V 
o 

2n 

0       V 

n - S /{ r ) «"osdittijt) d(iy) (56)a,b,c 

n 

o 
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The difficult part of evaluating the formulas arises from the term 
|u + u'| in (53), so this will first be treated separately. With 
(52), this factor may be written 

- (u ♦ u*) = 1 * ß sin w t (57) 

where 

P = S sin «5 
Yu    L 

(58) 

All possible cases will be covered by supposi*.* first that ß > 1. The 
function (58) appears as sketched in Figure 12(a) and expanded in Fig- 
ure 13 for one cycle, 0 < lut < 2n. 

jl ♦ ß  tin u)t| 

wi 

F1ÜÜKK IS.  One Cycle of a Rectified Waveform for 
Mean Flow in the Positive Direction. 

It IN clear from the sketch that 

11 ♦ ß sin u*t | - U ♦ |i sin m I) 0 <  u»i < f 

~  -U ♦ (i sin u> t) * o * Wjt - ^  ♦ (1 

= (1 ♦ P sin w.l) 
m 

- ü ■ u t - in 
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The value of o is set by the condition 1 + ß sin (f- + o) s 0, giving 

cos o = ~        (ß > 1) (59) 

For ß < 1, there is no rectification, and a = 0. With this represen- 
tation, the following integrals may be found: 

271 

\tf \l  + P «in V|d<V) = 1 . i or ♦ | tin o 
71     71 

(60) 

271 

- I |l ♦ ß sin ui1t|cos(nu»1t)d(u»1t) 

S  < 

f 2     n 2 
- - cos n x I - sin no - ß 

71      2 I n 
Jsin/(n-l)o A sin(n+l)onl 
I     <n - 1)    *      <i ♦ l)   r| 

- sin oil - I sin o        (n = 1) 

(n f 1) 

(61) 

271 

-    I   1  ♦ ß sin u> t sin(nu»1t)d(u».t) 

2     *       /3II\| 2     . ~ sin nl-xll - sin no* „(•M5zJl?.»iM5*li2(|   (ftM) 

sin O ♦ ß 1  - ~o -   *  sin 2o|       (n       1) 
7i       n 

(62) 

Value»  of   these   integrals   for  ß  <   I   (no   rectification)   follow directly 
upon setting O=0. 
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The integrals over u/a in (56) contribute only to C , and the final 
results for no threshold velocity (u =0) are 

Co 5 -I1 " n ° + n8 8in °| " " = " nl* sin ° " o) (63) 

Cj = 0 (64) 

«. ■ 4 i«(■ ?)[! - - - »{'ft^ ♦ W}] ««' 

Sj = ? [j »in ö ♦ p|i - | a - i sin 2o| (66) 

c - » . ■- /. 3ff\|4     , . 2ß Jsin(n-l)o  sin(n+l)l] ,^,x Sn = -- .-.„ (n r)|~ tui na * J {~^T^ V^TTf]  (67) 

We hive assumed here that only a simple sinusoidal oscillation, having 
frequency u>  is present in the chamber.  This may be due to any mode. 

Because C = 0, the driving of this mode itself, due to velocity coup- 
ling, is proportional to the coefficient $., as the remarks following 
(54) having shown.  For use in (42), we therefore write 

♦ ß{l - I a  - i sin 2o\\ (68) 

The other terms S cos(mu t) in the series expansion (54) represent the 
influence of velocity coupling on harmonics of the mode having frequency 
u». We shall see in the following section how these are incorporated in 
an approximate nonlinear analysis. Appendix A contains an application 
to T-burner data. 

Now suppose one ts concerned with the genrt.it ion of a mode which 
has frequency w not ^n integral multiple of ihr frequency w . For ex* 
ample» one might suppose that a longitudinal mode may excite the trans* 
verse modes _ in a cylindrical chamber. For use in (42), one needs that 
part of (u/a)  which in   proportional to cos u  i with w t u  .  Because 
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we have assumed steady waves throughout, (54) »ay be used as a valid 
representation for all time, -• < t < ♦•. To find the contribution for 
any frequency, we may take the Fourier transform of (54) and extract the 
component having frequency ui.    Define the transform pair 

CD 

„«). yjalj e-
i2,,ftdt (69) 

(f)'/ U(f)ei27tftdf (70) 

But after (57) is substituted into (65) and the integrals carried out, 
we find that U(f) consists of an infinite series of delta functions 
placed it f s tmjln, ±2 u>./2n, ±3 u./2Jt, .. .±nu»./2ii. There is no com* 
ponent at the frequency ui . The reason for this, of course, is that 
(u'/a) defined by (53) and expressed %% (54) is periodic with frequency 
m and therefore has no component with frequency different from integral 
multiples of ui . 

The important conclusion is: an unstable longitudinal mode will 
gxcitgj due to velocity couplingt only longitudinal modes. The non- 
linear behavior due to rectification can generate only integral har- 
monies of the primary mode. Ve must emphasise that the only noolinearity 
accounted for here is rectification. Nonlinear behavior associated with 
the flow within the chamber may generate other modes, but the matter has 
not been studied. 

When the threshold velocity is non-zero» the situation is consider« 
ably more complicated; a single calculation will not cover all possi- 
bilities. Rather than include the calculations here, we shall merely 
sketch the cases for information and to complete this discussion of the 
influences of rectification and threshold velocity. 

It is convenient to classify the possibilities into two groups, 
those for which the average flow speed is greater than threshold and 
those for which the speed is less than threshold. First, for u > u , 
there are three cases distinguished by the magnitude of the acoustic 
velocity. These are sketched in Figure 14. Again the velocity effec- 
tive in causing erosive burning under unsteady conditions is shown by 

37 



NWC TP 6363 

the shaded regions. Note that there is not erosive burning if the re- 
sultant velocity u + u' does not exceed the value of the ^threshold velo- 
city. Steady erosive burning is now proportional to u - u , so the 
effective velocities for velocity coupling are given by the following 
formulas corresponding to Figure 14(a), (b) and (c): 

(a) | u' | < u - u 

u_ 

a 
= [|u + u'| - utJ - (u - ut) 

* IÜ + u'| - Ü (71) 

(b)  (Ü - ut) < |u'| < (u  + ut) 

(Z~) =0 (-ut < u + u' < ut) (72) 
* a v 

S-) = [|ü + u'| - ut] - Ü - ut) 
a v 

= |u. ♦ u'l - ü       (ü + u' > ut) (73) 
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-A 

|u'| < u — ut 

/TTIv 

Wl'p 
(•) 

(u - ut) < lu'l < <u + ut) 

FIGURE 14.  Rectified Waveforms When the Mean Velocity 
Exceeds the Threshold Velocity. 
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(c)    |u'| >  (G + ut) 

/M   =0 (-ut < G + u' < ut)        (7'0 
v 

^ = [iü + u'i-\] - a-ut) 
a v 

= |ü + u'| - u (G + u' > u ) (75) 

(äI)  = [|G ♦ u'l - (G + ut)] - (5 - ut) 
a 

v 

= |u + u'| - 2u (G + u' < -ut) (76) 

The second group of possibilities arises when the mean-flow speed is 
less than the threshold velocity, u < u . The three cases are sketched 
in Figure 15. Now the portions of each cycle during which erosive burn- 
ing may occur are much smaller than for the previous cases. The formu- 
las for the effective velocity coupling are 

(a)  |u'| < ut - ü 

(f)   =0 (77) 
a v 

(b)  (ut - G) < u' < (G + ut) 

(f ) = 0 (G ♦ u' < ut) (78) 
a v 

# 

|f-\ = G * u' - u (G ♦ u' > u ) (79) 
a 
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II 

M < (Ü - ut) 
ut n 

Ü A\    r\    >   ^-f 
\  /   \ 

1*1 

t 

(ut - u) < lu'l < u + ut 

FIGURE 15.  Rectified Waveforms When the Threshold 
Velocity Exceeds the Mean Velocity. 
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(c)  |u'| > (5 + ut) 

/M = 0 (-ut < n +  u' < ut) (80) 

v 

(r-) =U + u'| - ut       (S+ u' > ut) (81) 
a 

V 

{~\    = |G + u'| - (u" + ut)       (u  + u' < -ut)       (82) 
a v 

For use in the stability analysis the effective velocity must in 
these cases be analyzed into its components. Only the part proportional 
to sin U)t is required to determine the contribution to driving the fun- 
damental mode.  As an unstable wave grows, the conditions at a given 

position in the chamber (i.e., given u and u ) progresses from case (a) 
in Figures 14 and 15 to case (c). And of course at a given location in 
the chamber, the relative values of the mean-flow speed and threshold 
velocity change. Hence, the appropriate formula for the effective velo- 
city (equations (71) through (82)) changes with time. A correct analy- 
sis of stability therefore involves a considerable amount of bookkeep- 
ing.  Some relevant numerical results have been given in Reference 5. 

It is apparent from the preceding remarks that because of rectifi- 
cation, the growth constant, a, given by equation (42) with (68) used 
in tne second term becomes a function of the amplitude |u'| or |p'| of 
the oscillations. Thus, what started as, and is strictly, a linear 
analysis of stability has apparently become a nonlinear analysis. The 
qualification "apparent" should be emphasized, however, because it is 
obvious from all of our previous discussions that no truly nonlinear 
analysis has been accomplished. The situation is better viewed at this 
point as characterized by a parameter (here the response function for 
velocity coupling) which changes with amplitude. A method for treating 
velocity coupling within a true nonlinear analysis is described in the 
next section. 

In any case, it is certainly true that as a consequence of rectifi- 
cation it is quite possible that both the magnitude and the sign of the 
growth constant change with amplitude. A change of sign is especially 
interesting because it offers the opportunity for true nonlinear sta- 
bility. It is possible that a is negative at low amplitudes but posi- 
tive at high amplitudes. Under these circumstances a small amplitude 
wave is stable, but a large amplitude wave is unstable.  An initially 
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small disturbance will therefore decay, but a sufficiently large dis- 
turbance will grow. This is an example of truly nonlinear unstability, 
sometimes called triggering. 

Appeal has often made to the preceding reasoning to explain the 
dependence of instabilities on the amplitudes of pulses initiated in a 
motor. While the argument, or at least the essential idea, may be cor- 
rect, there is no proof and not a single example which can be unambigu- 
ously explained on this basis. Indeed, there is in fact a serious lack 
of calculations which can be viewed simply as credible estimates of the 
phenomenon. There is an opportunity to carry out some useful calcula- 
tions to provide a more systematic and quantitative basis for conclu- 
sions drawn, within the idealized framewerk described here. 

To treat a nonlinear contribution correctly, it should be placed 
within a nonlinear analysis. Some "exact" numerical analysis has been 
done, e.g., Reference 11 and more recently Reference 12, with increasing 
success. Observed behavior has been reproduced qualitatively, and in 
some cases quantitatively, for nonlinear phenomena in solid rocket 
motors, although little has been done specifically to clarify velocity 
coupling. The calculations are expensive and restricted to one dimen- 
sional problems. Consequently, approximate analysis continues to be 
very attractive for many applications. One approach is summarized in 
the next section. 

3.  APPROXIMATE NONLINEAR ANALYSIS 

The approach described here has been reported in detail in Refer- 
ence 12, although no attention is paid there to velocity coupling. We 
shall not discuss the manner in which the approximations are carried 
out; the intent is only to note that a useful framework is available for 
assessing the importance of nonlinear velocity coupling. 

Because the linear analysis described above has been widely useful 
for many years, the nonlinear analysis has been constructed to be a 
logical and clear generalization. The first step is to approximate the 
general conservation equations by treating the Mach numbers of the 
average and unsteady Mows as small parameters. The limit process was 
cited earlier in equation (23). Power series expansions of the depend- 
ent variables (pressure, velocity, etc.) lead to a system of equations 
which can be manipulated to give a wave equation and boundary condition 
lor the pressure fluctuation. These have the same form as equations 
(24) and (25), except that the functions h and f are now nonlinear in 
both the pressure and velocity fluctuations: 

vV - l, 'lV = h (83) 
a" 0t~ 

A   • v>* = t 184) 
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The pressure and velocity fields are then expanded in series of the 
normal modes of the chamber, essentially a Fourier analysis in space 
with time-varying coefficients. After substitution of the expansion, 
equation (83) is integrated over the chamber and the boundary condi- 
tion (54) is used.  The result is a set of coupled oscillator equations 
for the amplitudes n (t) of the normal modes: 

n 

*\   2 ^f  + »A = Fn (85) 

where r| is the coefficient of the nth term in the representation 

00 

P' = pX^nn(t)V^ (8;>) 

n=0 

The forcing function F is 

-2 
F = *a n   ;F 2 

pEn 

{JfipudV +  $)£pn<iS} (87) 

and 

E 2 = jp 2dV (88) n        J*n 

When h' and f' are linear, the equation (85) can be solved by assuming 
exponential behavior in time, and the formula (30) for the wave number 
follows directly. 

More generally, the force F in the equation for the nth mode, or 
oscillator, depends nonlinearly on r| itself and also the amplitudes of 
all the other modes. Thus the unsteady motions in the chamber are re- 
presented as a system of oscillators coupled by nonlinear interactions. 
The interactions cause a flow of energy between the oscillators which 
represents the generation of harmonics in the acoustic field. Note that 
the formulation is not restricted to one-dimensional problems i.or to 
any particular geometrical configuration. 
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After the functions F are set by specifying the functions h and f, 

(85) s a system of coupled ordinary differential equations which can be 
solve-j numerically. It is not particularly cheap to do so because the 
equations are second order. Considerable simplification is achieved by 
taking advantage of the fact that in most practical situations the waves 
have amplitudes which vary quite slowly - the fractional change is small 
in one cycle of the oscillation. A convenient procedure to follow is 
based on the method of averaging which reduces the system of second 
order equations to a set of first order equations, two for each member 
of (84).  Write the amplitudes 

n (t) = A (t) cos(u) t + t|> (t)) 
n    n (g9) 

= A (t) sin ID t + B (t) cos u> t 
n       n    n       n 

where A , F , A , B are slowly varying functions of time in the sense 
described above. 

Eventually the first order equations for the A and B  can be put 
in the form n     n 

dA 

dT = Vn + 6nBn * *n (90(a)) 

dB 
r-5 = of B - 6 A + h (90(b)) 
tit    n II   n n   n 

The linear portion of F  produces the terms containing a    and 6 which 
n r n     n 

are now strictly constant with no dependance on the amplitude of oscil- 
lations.  All nonlinear behavior is contained in the functions g  and 

n 
h .  There is no difficulty accommodating nonlinear velocity coupling. 
No calculations based on this method have been published. 

4?> 
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NOMENCLATURE 

a Speed of sound 

C Particle loading 

C Coefficient in Fourier series, equation (54) 

f Frequency (cycles per second); function defined by equation (25) 

h Defined by equation (24) 

k Wave number, k = (u> - ior)/a 

k Wave number of the n  normal mode 
n 

L Length of a chamber 

m. Mass flux of material leaving a burning surface 

M Reference Mach number 
o 

n Exponent in the burning rate low, r—p 

h Unit normal vector 

p Pressure 

6 Small change of pressure 
p 

i Linear burning rate 

6 Small rhange of burning rate 

K, Response function (or pressure coupling 

K Response function for velocity coupling 

tlS Kiemen I ol .IHM 

S Coefficient in Fourier series, equation (*>4) 
n 

t Time 

T Temperature 

v Velocity 
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dV Volume element 

z Coordinate along axis of a chamber 

a Imaginary part of complex wave number 

ß Defined by equation (57) 

y Ratio of specific heats 

£ Amplitude of an acoustic pressure oscillation 

K Thermal diffusivity of solid propellant 

A Wavelength 

p Material density 

u) Frequency (radians per second) 

-2 
Q Dimensionless frequency, 0 = r w/K 

( ) Average value 

( )* Fluctuation including time variation 

( ) Fluctuation without time variation 

( )(r) Real part 

( ) Imaginary part 

I I Absolut«* value 

4*» 
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Appendix A 

REDUCTION OF T-BURNER DATA TO OBTAIN THE RESPONSE 
FUNCTION FOR VELOCITY COUPLING 

The fluctuation of burning rate due to velocity coupling is written 

(f)-Mr) «-» 
and the formula for the growth constant, the second part of equa- 
tion (42) with c. = 0 and c =1, nay be written 

^■»s^r* n 

ü  dS (A-2) 

The circumflex (*) denotes the part without time dependence, and super- 
script r, ( ) , means real part, that part which is in phase with the 
pressure. Thus, the pressure fluctuation having amplitude c is written, 
equation (51): 

*- = £ co$ p cos u*,t (A-3) 

p = €p cos s— (A-4) 

and p  means p at the frequency w of the nth normal mode.  First we 
examine the situation wh*n rectification is ignored. 

If u" stands only (or the fluctuating velocity associated with the 
acousti« pressure (A-3), then it is  given by equation (52), 

u' = c S sio("~) sin Wjt (A-5) 
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which is 90 degrees out of phase with the pressure fluctuation. The 
response function is a complex quantity which may be written according 
to equation (11) as 

R = R^ + iR^ a |R I [cos t|i + i sin i ] = R e 
**. 

(A-6) 

In complex notation, (A-3) and (A-5) are 

iw-1    iu>-1 
p' = ep cos kze    = pe 

a    , 
u = e - sin kze 

i(w.,t-7i/2)    iw-t 
s ue 

(A-7) 

(A-8) 

where u is pure imaginary, 

ü = -ie - sin kz (A-9) 

Thus (A-3) and (A-4) are the real parts of (A-7) and (A-8).  The wave 

number k is complex, k = (UJ - ia)/a of the imaginary part, the growth 
constant o, is given by the formula (A-2). 

For use in (A-2), with u/a entirely out of phase with the pressure, 
and R expressed by (A-6) we have (50); 

Ml) a' li a 
vJ v 

(A-10) 

Comparison of (A-7) and (A-8) gives the familiar relation between acous- 
tic pressure and velocity, 

i  dp (A-U) 

r>J 
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Substitution of (A-10) and (A-12) into (A-2) leads to 

-2- 

a  = - I Ü -I— p & dV (A-12) 
vc    2 -   r*2 ,„ *n dz 

For a uniform cylinder, dV = S dz and with p  p , this becomes 

pu), r * dz o 
^1 /pn 

o 

A? 
But because p* has the same value at both ends of the chamber, the inte- 
gral vanishes: 

L -2 

/ -r-5 dz = p2(L) - p2(0) = 0 
dz     *nv    *nv o 

It is because of the different phases between the velocity and pressure 
fluctuations that there is no influence of velocity coupling in this 
case; see Figures 5 and 7 for examples. 

The main point is that if rectification is ignored and the config- 
uration is symmetric (this was implied in carrying out the integral 
above) then there is no influence of velocity coupling. So now we must 
account for rectification. 

We assume that the threshold velocity is zero and write the velo- 
city effective in velocity coupling as equation (53): 

(f)    = i|u t u'| - I |u| (A-14) 
y a ■ a a v 

The first term |u ♦ u*|, accounts for the rectification with unsteady 
flow, and the second term ensures that the effect vanishes when there 
is no fluctuation (u* = o).  We must now determine that part of (A-14) 

ri 5 
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which is out of phase with the pressure fluctuation, that is, oscillates 
with the time dependence sin iüt, and has the same frequency as the pres- 
sure fluctuation. 

To accomplish this most easily, expand (A-14) in Fourier series, 
formally written as equation (54), 

00 00 

~-\   = C +X-]Cn cos(nU)
1
t) •*•/ ^sn 

sin mil (A-15) 
v      n=l n=l 

where the coefficients are given by the formulas 

271  - 
co = k/(f) d<V> <A"16> 

v 
0 

271  - 

C. = i f (~\    cos (nu)jt) dO^t) (A-17) •:~»Ht) 
V 

o 

. 27t  . 
1 t  /U f   i f(~j sin (nujjt) d(uijt) (A-18) 

v 
o 

As remarked after equation (54), only the coefficients C. and S. are 
required. 

The coefficients C  and S  are given in the main text, cqua- n      n 
tions (63) through (67) for the case when the threshold velocity is as- 
sumed to vanish and the mean-flow speed u is positive, implying flow to 
the right.  Equation (66) for B is 

S1 = ~    £|sin 0«t ßll -■ | o - i sin 2ol| (A-19) 

>■* 
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where cos a = 1/ß when ß > 1 and a = 0 if ß < 1. The case o f 0 arises 
when rectification occurs, otherwise, ß < 1 according to the definition 
(58), 

ß = ~  sin(^) (A-20) 

for the local mean-flow speed.  In a = 0, S- = uß and (A-10) becomes 
That is, ß, is the ratio of the local amplitude_of the acoustic velocity 

spec 

. i (r)    R(i) A« ,..   e 
R H    = . _Y_d£   (x) Silft(Jj (A.21) 
v - dz   v  Y   v 1/ 

a J        pu) * 

Substitution into (A-2) correctly produces (A-13) again. 

We now consider the procedure for calculating a , associated with 
oscillations in a T-burner. For simplicity we treat only the case of a 
burner having a center vent and symmetrical configurations of grains. 
End grains may be installed to provide average flow part test grains, 
and additional pressure-coupled driving of instabilities. The following 
analysis is intended only to give results for the contributions due to 
velocity coupling with symmetrically placed cylindrical test grains. It 
is not a comprehensive analysis of the T-burner. 

For each test sample, the distribution of mean-flow speed and the 
acoustic velocity must be known.  The latter may be calculated from the 
formula (A-4) for the acoustic pressure.  The sketches in Figure A-l 
show typical distributions of the acoustic and mean-flow velocities for 
samples on two sides of a T-burner.  The acoustic velocity is drawn for 
the portion of a cycle when the oscillatory motion is everywhere to the 
right. 

Note that the signs must be correctly accounted for so we must con- 

si der the case when u and u* have opposite signs. For u negative, re- 
place u by - u  in the formula (A-14) to find 

I   |u* - |u || = |ß sin u)t - 1 | (A-22) 
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v -- 

\il I I I 1 I I I  I  I I  I A 
SAMPLE   GRAIN 

(LEFT  SIDE) 

1/ ////// / a 
SAMPLE GRAIN 
(RIGHT SIDE) 

FIGURE A-l. Mean and Fluctuating Velocities for 
Two Sample Grains in a T-Burner. 

where ß is defined by (60) with |u| replacing Ü. A sketch of (A-22) for 
u < is given in Figure A-2. This corresponds to the sketch in Fig- 
ure 13 for u positive, and is obtained by reflecting Iß sin u> t + ll 
about the origin, and then shifting by +2n.  The piecewise representa- 

|ß sin wt - l| = 1 - ß sin w t    0 < UJ t < 

ß sin w t - 1 o < u)jt < 2" + a 

1 - ß sin ml 2 + a < wtt < 2n 

The value cf a is the same as for the case Ü > 0 because here the con- 

dition is ß sir, (^ - a) = l which gives cos o = 1/ß as in equation (SS). 
Again the interesting cases arise for ß > 1; the first three coeifi- 
cients in the Fourier expansion arr: 

u_< 0 j, J > l 

C. = ■_    _ Iß sin o ~ o| 
(A-23) 

Y(, 

■tl ■• 



NWC TP 6363 

wt 

FIGURE A-2.  One Cycle of a Rectified Waveform for Mean 
Flow in the Negative Direction. 

c2 = o (A-24) 

,=-   ¥{■-ina+p|l  -?o-l.in2o| S,  = (A-26) 

The average value, C , is the same as for the case u positive, as a com- 

parison of Figures 13 and A-2 shows immediately. However, the value of 
S tor u < 0, which is the rase in the right half of a T-burner, is ex- 
actly the negative of that given by equation (A-19) for u > 0. Hence, 
for use in (A-2), the formula (5f>) is 

v - 
a 

(r) 

V 
a 

S (left half) 

-S (right half) 

(A-27) 
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where 

4 
S = - sin 

71 
a + ßjl - | a - l sin 2o> (A-28) 

Strictly, the integral in (A-2) must be carried out over the sample 
grains, but as a first approximation for quick reduction of data, it 
is adequate to use average values. We _assume that the samples are 
at z = L/4 and z = 3L/4. By symmetry, u has the same values at the 
two locations. If the areas of the samples are each SäW> then the sur- 
face integral in (A-2) is approximately 

ev' 

§ ■CD 
(r) 

t(i) p dS * S. R rn    lv v 

= epS. R r   lv 

<8lV   + (SlPn) 1
 n L/4    l n 3L/4 

(i) 

£PV^"SlvRv S 

u S cos j  - ju|S cos 

.CO. 

With S given by (A-28) 

# AT) 
v . 

(r) p n . JÜL o ..( — dS = c s R(i)^sf* sin „ ♦ ß/i-*e - 5*iiej 
ev v   In        I n    n  ; 

(A-29) 

2     2-2 ScL 
Because Jp dV = e p  y-, th«? formula (A-2) is finally 

am. S       U      , am* s - 

S n       L '  - ' v 
c        cp 

- sm o + ß{l - - - —— JJ(A^O) 

Both ß, equation (A-20), and therefore o = cos   1/ß are based on the 

value of u averaged over the propellant sample. 
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