RD-RiéS 756

UNCLASSIFIED

FINITE WIDTH CURRENTS NON-UNIFORM MAGNETIC SHEAR AND"
THE CURRENT DRIVEN 10N CYCLOTRON INSTABILITYCU> NAVAL
RESERRCH LAB NASHINGTON OC P BAKSHI

mlenj

oric 7

i1




S SUTES . B DT T '_,._L;‘.;,_Tﬁi
. L
% =
| @ -
’-A'
) o
F o
;

— el
——

=ik RS

40

}

:rrl‘i‘fr

< 22 o

Il ;
o - ol

22 [l e B

] ‘
@
-
- ]
MICROCOPY RESNLUTION TEST CHART ]
NATIONAL BUREAU OF STANDARDS 1963 A - 1
.
-@
. - r
- -
®
~ 1
@
- 1
) ]
— )
o
- - — ’
S
{ 1
; !




March 17, 1983 .

This work was supported by the Office of Naval Research and the
National Aeronautics and Space Administration.

DTIC

ELECTE
NAVAL RESEARCH LABORATORY MAR 1 6 1983
Washington, D.C.

E

Approved for public relesse; distribution untimited.

88 03 16 067




Lk e o o

PP

T —— T T T T — ) " v

SECURITY CLASSIFICATION OF Tri$ PAGE ‘When Date Entered;

READ INSTRUCTIONS

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1 REPORY NUMBER 1‘2. GOVT ACCESSION NO.( 3. RECIPIENT'S CATALOG NUMBER
NRL Memorandum Report 5034 !
4 TITLE [end Subtitle) $. TYPE OF REPORT 8 PERIOD COVERED
FINITE WIDTH CURRENTS, NON-UNIFORM MAGNETIC Interim report on a continuing
SHEAR AND THE CURRENT DRIVEN ION CYCLOTRON NRL problem.
[NSTABIL‘TY 6. PERFORMING ORG. REPORT NUMBER
7. AUTHKHOR(s, 8. CONTRACT OR GRANT NUMBER(S)

P. Bakshi,* G. Ganguli,** and P. Palmadesso

9. PERFORMING CRGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

61153N; RR0330244; 47-0884-0-3;

Naval Research Laboratory W14965. 266: 47.1447.0-3

Washington, DC 20375

11 CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Office of Naval Research NASA March 17, 1983

800 North Quincy Street Washington, DC 20546 '3 NUMBER OF PAGES

Arlington, VA 22203 13

14 MONITORING AGENCY NAME & ADDRESS(if different from Controlling Oflice) 15. SECURITY CLASS. rof thie report)
UNCLASSIFIED

1Sa. DECLASSIFICATION DOWNGRACING
SCHEDULE

16 OISTARIBUTION STATEMENT f this Regort)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the adatract entered in Block 20, it different {rom Report)

18. SUPPLEMENTARY NOTES

This work was supported by the Office of Naval Research and the National Aeronautics and Space
Administration.

*Present address: Physics Department, Boston College, Chestnut Hill, MA 02167.
**Present address: Science Applications, In¢c., McLean, VA 22102.

9. KEY WORDS (Continue on reverse aide if necessary and identlly by block number)
Electrostatic ion cyclotron waves
Plasma instabilities
Nonlocal effects
Magnetic shear

20. ABSTRACT (Continue on reverse side Il necessery and identily by biock number)

* Our earlier results that non-ocal effects due to even a small magnetic shear produce a significant
reduction of the growth rate of the ion cyclotron instability driven by a uniform current are now gen-
eralized to finite width gurrents. Externaily prescribed as well as self-consistent shears are considered.

If the current width L, exceeds the shear length L. the previous results are recovered. Shear becomes
less effective with reduction of L, and for typical parameters, the growth rate attains its (shearless) local
value for Lo, Lg § 1072, Non-local effects of the finite current width itself come into play if L is
further reduced to a few ion Larmor radii and car quench the instability.

1

DD , 5™, 1473  coition oF 1 nov 63 15 0BSOLETE {
3/N 0102-714-664GC1

SECURITY CLASSIFICATION OF THIS PAGE /When Data Bniered)




FINITE WIDTH CURRENTS, NON-UNIFORM MAGNETIC SHEAR
AND THE CURRENT DRIVEN ION CYCLOTRON INSTABILITY

In our recent st:udy1 on the effects of magnetic shear on the current
driven ion cyclotron fastability (CDICI), we obtained the intriguing result
that even a small shear could produce a siznificant reduction in the zrowth
rate. The transition from the local to the non-local treatment essentially
induces a siagular perturbation, (the small shear being the coefficient of
the highest -— here the second -- derivative term), and there is also a
change in the boundary conditions, from plane waves to a bounded
solution. It was thus possible to understand and justify the sharp change

in the growth rate from the local to the non-local ttreatment.

However, it was assumed in the treatment above that both the shear and
the current were uniform in space. In laboratory as well as space plasmas
on the other hand, one necessarily deals with finite width currents, so
that the scale length of the current profile is an additional parameter
wnich could play a roule in determialng the precise nature of the transition
from the local to the non-local treatment. One can see, a priori, that if
the current width scale length L, is much larger than the shear length Lg,
the effects due to shear should prevail unhindered. In the other limit,
when L. is much smaller than Lg, it is also clear that the total change in
the angle of the magnetic field vector in traversing the slab will be so
small that the non-local effects due to shear may not come into play, and
the local growth rate should prevail, apart from any non-local effects due
to the variation of the current profile itself. Thus a transition from the
local to the non-local results will occur as the current width is increased
from a value much smaller than the shear length to a value larger than the
shear length; this transition can be expected to be primarily governed by
the ratio of these scale 1lengths, and a quantitative study of this
pnenomenon is the maln objective of this memo report.

An additional feature to be considered is the relationship between the

current profile and the shear. 1If the shear is entirely generated by the

driving current, we will call it the self-consistent shear. If the shear

is generated by (stronger) external currents which do not drive the

instability, we will call it the prescribed shear. These two cases could

lead to slightly different results. Examples of one situation or the other ..

Manuscript approved January 5, 1983, L ER I
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can be found in various plasmas of practical importance, and there are also

situations where the total shear derives from both the mechanisms.

With the iatroduction of a finite slab, the problem can no longer be
translated to a convenient origin where the given wave vector 1s perpen-
dicular to the local field line. Instead, we will take the ceater of the
35lab as the orizgin and introduce explicitly k;, the parallel component of
the wave vector, as a prescribed parameter. One must waximize over all
possible k°

1?
mode solution. We introduce a finite current width along the x direction

even 1in the non-local theory, to obtaln the optimal normal

by taking the electron distribution function to be a shifted Maxwellian
with a drift velocity parallel to the magnetic field to be

r'2 v
o} - Yy
V,(x) =V x /L 3 = e X =x+ =, la
The Vlasov equation is satisfied since xg» the guiding centre position is a
constant of the motion, vy Dbeiag the electron velocity component
perpendicular to the wmagnetic fia2ld direction z and Re is the electron

gyrofrequency. A very small correction in the constant of motion due to

shear can be ignored here. The current profile is then found to be

o]

. - v
j(x) noe.d

eXP{-XZ/(Li + pi)] = noevzg(x/Lc), (1b)

where pé <K Li can be ignored; this is also equivalent to replacing Xg by x

in equation (la). This will generate a self-consistent shear 1in the
magnetic field, given in terms of £ = %— by
c
wr X 4n e VZLc 3
By(x) = o[ i(x)dx = —= [ sy, (2)
o o)

B (x)/B. = (L /L) | a()de,
4 z e’ s C

ch
(1/s) = LS = — > (3)
4tn eV
o d

and a corresponding variatioa of the parallel wavenumber,

© (x) =%° + % 3 (x)/B, (4a)
! yv z




or

k"(x)/ky =u + (LC/LS) jo g(£)dE. (4b)

u(x)

The shear length is determined by the physical parameters in eq. (3).

“ollowing, the usual procedure for introducing the non-local effects,l
we let k - -(1/1)d/dx, and assuming that the higher derivative terms are

less important, we obtain

r.2 d2 ( 16 =
] + Qlu(x), v (]]e =0, (3)
or
.k 2
(A2 Y+ aw, V)] =0,
Lo 4g2 d

where o, is the ion Larmor radius. Apart from the change in definitions

of kx,, u and V4, to iaclude the space variation of the curreant, Q is ziven
by

- - 2 7
Q pin/A (86)

where Q; and A are described by eqs. (6) and (7) of Ref. 1. In general, it
would be necessary to solve (5) by a numerical method such as the Numerov
shooting code technique. The case of pure shear, without any effects due
to finite current width (Vd(x) H V:), was discussed in Ref. 1 by expanding

Q to se-~ond order around u_ , the angle of maximum growth in local theory

0!’
given by Q(ug) = O. The resulting Weber equation provides a dispersion
relation for the determination of the eigenmode frequency. When anharmonic
terms become ipportant, the error involved 1in approximating Q by a

quadratic form around u, will become significant. An improved procedure lis

o
to consider an expansion around the (complex) position 51 where the

derivative of Q with respect to £ vanishes,

QA (w, &) = 0. (7
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Then the dispersion relation (analogous to eq. (18) of Ref. 1), reduces to
Qu, £) = (2 + 1) (o, /1) [- FQ"C, £]2, (8)

whera £ is the nmode number. Equations (7) and (8) are two complex
a2quations for the simultaneous detarmination of the complex eizenfrequency

w and the complex angle ups corresponding to the complex position 51. We
have tested the results obtained from eqs. (7) and (8) against the
numerical shooting code solution of eq. (5) in a variety of cases, and the

results are in excellent agreement for the eigenfrequencies as well as the
solutions for the potential 4.

Considering Q(u, v) as a function of two variables u and v, each a
function of 7, the explicit expressions for the derivatives are

~

s = - N - '7{."?,‘0
Q L./Lgss Q- 28V, v, iQ, (9a)

" e 2529 - 2'L /L ¢
Q" = L/L j%g°Q,, ~ 2L /L 58Q (9b)

- ° 2
b (L /L )(v/v, )eg2q
- 2g(1-262)(Vy/v_)Q + 4(v3/v_ )2e2¢20 .

We have solved eqs. (7) and (8) for a range of slab widths (Lc/pi) =
10 to 10’ and shear lengths (Ls/pi) = 102 to 10°. The results are
displayed for 2 = O mode in Figures 1-5. The basic transition from the
local to the non-local results 1s evident in Figure 1, which depicts the
growth rate in units of ion Larmor frequency, (Y/Qi) as a function of the
w#idth of the curreant slab expressad in units of ion Larmor radius,
(Lc/pi). Typical parameters are the {fon to electron mass ratio
u = 1837, the electron drift to electron thermal velocity ratio
Vg/ve = 0.28, the ion to electron temperature ratio T = (T;/T,) = 0.5 and
the transverse wave number given by b = (1/2) képi = 0,h. Three different

shear lengths are represented by (Ls/p,) = 109, 105 and 104. In each case,
i

w#hea L. {3 sufficiently large, one obtafas the non-local growth rate 7/21 =
0.0127. Since the shear strengths considered here are all small, we find

the same non-local value for Y. For a stronger shear (Qi/L") = 10'2, (ant
4
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Figure 1 A plot of the growth rate (%—) against the current channel

width (Lc/pi) for three diffeirent magnetic shear lengths.
Here Vg = 0.28 v_, u = 1837, b = 0.6, and T = 0.5.
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Tigura 2a A plot of (Y/2;) agalmst (Le/Lg) for three different Lg
values. Here b = 0.6, y = 1837, r = 0.5, and vg = 0.28 v,,

The transition from the local to the nonlocal results are

universal, almost independent of the shear value.
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igure Ib A plot similar to Figure (2a) except that the value of b here

is 1.2,
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A plot of the growth rates against b.
Here T =0.5, y =1837, V = 0.28 vo- The top solid line is a
solution of the local dispersion relation. The second solid
line is for L, = Lg = 106p1. The dotted lines show the
transition from local to nonlocal values as Lc approaches

Ls. The lowest solid line is for L. = Lg = 10291.
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shown in Fig. 1), a lower non-local value is obtained, (Y/Qi) = 0.0115, and
still lower non-local growth rates would be attaiaed if the shear is
further increased. In the other limit, when L. 1s sufficiently small, the
_(" local growth rate prevails, (Y/Qi) = 0,.0296. The transition curves for
differaant shear values look very similar, apart from a shift in Lc, and
indeed as shown in the next figure, possess a universal behavior as a
function of L./Lg. Another interesting feature in Fig. 1 is the decrease
E‘ in growth rate for L, < lOZpi, which arises from the nonlocal effect of the
space variation of the current itself. The slab width is too small to
b ohtain any significant variation of the direction of the magnetic field due

to shear, and thus this reduction in growth rate is 1independent of the

v

shear parameter. 1f the current width is further reduced to just a few ion
Larwor radii, the instability is completely quenched. We can call this the

filamental quenching =-- current filaments only a few ion Llarmor radii in

widzth cannot sustain the iastability. This feature wmay be of practical

B A ARS & e cas can e o ot

significancs in Q-machine expariments.

Fizure 2a represents the same iaformation as ia Fig. 1, but now
olotted as a function of (LC/LS). Now the transition from the local to the
r(: non—-local result is seea to be universal, almost ind?géndent of the shear
4 parameter. Of course, shear values with (pi/Ls) 2 10 ~ will lead to lower
non-local values with corresponding, slight, departures from the universal
transition curve. For small (Lc/Ls) < 10—2, the case of very small shear,
ﬁ! pi/Ls = 10—6, retains the local growth rate for the entire range

considered, but the case of larger shear, pi/Ls = 10-3, falls in the domain
Lc/pi < 10 and the growth rate is reduced due to filamental quenching.

Figure 2b represents the same parameters, except for b = 1.2 and

F. essentially describes the same phenomena as in Fig. 23. We note that both
the local and the non-local limit growth rates are lower than those for b =

N.5,

A typical solution for ¢ is given in Figure 3, for the parameters of

[ ¢ Fiz. 1 in the infinite slab limit, Lc/pi + », The shear parameter is

2

{ ! = 107" and the solutions obtained by the analytical method described

/L
1" s
here or by a direct numerical solution of the differential equation weare
found to he identical. The solution is centered around 4 = 0.09 and nas

a width of Zu = 0.01. The angular width decreasas for lower shear, withoat

10
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any significant change in the center of [é]. Figures 4a and 4b
respectively represent the variations in uj, the complex angle around which
the wave packet for the electrostatic potential $ is formed, and up, the
real angle where |$| has its maximum along the real angle axis. The angle
u.y is experimentally measurable in the sense of normal mode dominance at
that angle as measured from the local magnetic field orientation. For the
typical case of b = 0.6, we note the progression of u; from 0.13 in the
local limit to (0.099) - 1(0.043) in the non-local (shear dominant) limit
and a corresponding transition in u,, from 0.13 to 0.09. These curves are
drawa for pi/Ls =10 , but they represent quite accurately the results for

higher shears, because of the universality of the transition.

Figure 5 provides the variation of Yy as a function of b for various L.
and Ls combinations. The top curve %s the local result obtained directly
from Q = 0; this corresponds to the case of a unifora magnetic field (zero
shear). If we iatroduce a small sheart LS/Di = 106 and A conmparable current
@idth Lc/pi = 106, we essentially reach the shear dominant non-local result
discussed in Ref. 1. The transition is shown, with Lc/pi = 105 and 104;
the latter case 1is already good enough to almost approximate the 1local
result. Thus we make the traansition from the local to the non-local result
as L./Lg increases from 10-2 to 1l. The lowest curve is for L. = Lg =
1029i and the difference from the curve above essentially represents the

additional effect of the increased shear.

If we use a prescribed rather than the self-consistent shear, the

relation between the angle and the physical distance is simpler,

u(x) = u, + (x/Ls)- (10)

=u + (LC/LS)E

It can be easily seen that (4b) reduces to (10) if Z remains small, a
situation which 1is wvalid when L. > Lg, the case when the shear effects
dominate. We have also solved eqs. (7) and (8), using eq. (10), and the

results do not significantly differ from the case of self-cousistent shear.

We have shown 1ia this memo report that the non-local effect of shear

i{s tempera2d by the finite size of the current slab: (1) For L. > L. the

11
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shearing of the magnetic field lines across the 1length of the slab 1{is
sufficient to allow the non-local, singular perturbation effects to take
place, and the results of Ref. 1 are recovered; (2) For L, < Lg on the
other hand, the finite slab size is smaller than that needed to provide
sufficient angular space to form a parabolic domain for Qp, the imaginary
part of Q, of the type of Fig. 5 of Ref., 1. Thus the shear doauinated non-
local wave packet formation cannot occur unhindered and for L, < 10'2Ls,
the local results are recovered; (3) A new effect occurs for L, < 10 045
due to the varlation of the current itself; thus filamental currents of

only a few fon gyroradii may not produce any instability.

The results obtained here are quite significant for space-plasma
applications where small shear and finite width curreat channels obtain in
the auroral arc regiouns. Implications for various space and laboratory

plasmas will be described elsewhere.
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