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4
FINITE WIDTH CURRENTS, NON-UNIFORM MAGNETIC SHEAR
AND THE CURRENT DRIVEN ION CYCLOTRON INSTABILITY

In our recent study1 on the effects of magnetic shear on the current

_ driven ion cyclotron instability (CDICI), we obtained the intriguing result

that even a small shear could produce a significant reduction in the growth

rate. The transition from the local to the non-local treatment essentially

induces a singular perturbation, (the small shear being the coefficient of

the highest - here the second -- derivative term), and there is also a

change in the boundary conditions, from plane waves to a bounded

solution. It was thus possible to understand and justify the sharp change

in the growth rate from the local to the non-local treatment.

q However, it was assumed in the treatment above that both the shear and

the current were uniform in space. In laboratory as well as space plasmas

on the other hand, one necessarily deals with finite width currents, so

that the scale length of the current profile is an additional parameter
which could play a rule in determining the precise nature of the transition

fron the local to the non-local treatment. One can see, a priori, that if

the current width scale length Lc is much larger than the shear length Ls ,

the effects due to shear should prevail unhindered. In the other limit,

when L, is much smaller than Ls , it is also clear that the total change in

the angle of the magnetic field vector in traversing the slab will be so

small that the non-local effects due to shear may not come into play, and

the local growth rate should prevail, apart from any non-local effects due

to the variation of the current profile itself. Thus a transition from the

local to the non-local results will occur as the current width is increased

from a value much smaller than the shear length to a value larger than the

shear length; this transition can be expected to be primarily governed by

the ratio of these scale lengths, and a quantitative study of this

phenomenon is the main objective of this memo report.

An additional feature to be considered is the relationship between the

current profile and the shear. If the shear is entirely generated by the

driving current, we will call it the self-consistent shear. If the shear

is generated by (stronger) external currents which do not drive the

instability, we will call it the prescribed shear. These two cases could

lead to slightly different results. Examples of one situation or the other .

Manuscript ipproved January .5, 19S3.
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can be found in various plasmas of practical importance, and there are also

situations where the total shear derives from both the mechanisms.

With the introduction of a finite slab, the problem can no longer be

Utranslated to a convenient origin where the given wave vector is perpen-

dicular to the local field line. Instead, we will take the center of the
0

31ab as the origin and introduce explicitly klH, the parallel component of

the wave vector, as a prescribed parameter. One must maximize over all
o

possible k 0, even in the non-local theory, to obtain the optimal normal

mode solution. We introduce a finite current width along the x direction

by taking the electron distribution function to be a shifted Maxwellian

with a drift velocity parallel to the magnetic field to beI
O _-2 V

Vd(x) = Vd g(xg/L), g() e X , x + Y (1a)d d g C la)I
42 e

The Vlasov equation is satisfied since Xg, the guiding centre position is a

constant of the motion, Vy being the electron velocity component

perpendicular to the magnetic fieLd direction z and 2 is the electron
e

gyrofrequency. A very small correction in the constant of motion due to

shear can be ignored here. The current profile is then found to be

j(x) = n eVoexp[-x2/(L + p2 ) ] - noeVg(x/L (lb)

where p2 << L2 can be ignored; this is also equivalent to replacing Xg by x
e C

in equation (1a). This will generate a self-consistent shear in the

magnetic field, given in terms of = by
c

x 4 n e V0 L a

B (x) ." - x- j(x)dx = O d Lc g(F)d , (2)
y c 0c00 0

B (x)/B - (L /L ) )
y z c s 00

cB(l/s) - L 1 z (3)
s 47rn eV0

o d

and a corresponding variation of the parallel wavenumber,

k (x) - k° + k 3 (x)/B , (4a)
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or

u(x) k (x)/k = u + (L /L) fj g( )d&. (4b)
It y o Cs o

The shear length is determined by the physical parameters in eq. (3).

Following, the usual procedure for introducing the non-local effects, I

we let k -(l/i)d/dx, and assuming that the higher derivative terms are

less important, we obtain

[p d2- + Q(u(x), Vd(X))] = 0, (5)
dx

2

or

_(j1)2 d.+ Q(u, Vd)l. = 0,

c dC2

where o. is the ion Lar-nor radius. Apart from the change in definitions

of ki, u and Vd, to include the space variation of the current, Q is given

by

Q f - p2Q /A (6)

where 01 and A are described by eqs. (6) and (7) of Ref. I. In general, it

would be necessary to solve (5) by a numerical method such as the Numerov

shooting code technique. The case of pure shear, without any effects due

to finite current width (Vd(x) = Vd), was discussed in Ref. 1 by expanding

Q to se- ond order around uo, the angle of maximum growth in local theory

given by Q(uo) = 0. The resulting Weber equation provides a dispersion

relation for the determination of the eigenmode frequency. When anharmonic

terms become important, the error involved in approximating Q by a

quadratic form around uo will become significant. An improved procedure is

to consider an expansion around the (complex) position $I where the

derivative of Q with respect to vanishes,

, %i) = 0. (7)
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Then the dispersion relation (analogous to eq. (18) of Ref. 1), reduces to

Q(W, 1) (21 + 1) (pILJ [- /L Q"(w, F.1 )]1/ 2 , (8)

where X is the mode number. Equations (7) and (8) are two complex

equations for the simultaneous determination of the complex eigenfrequency

w and the complex angle ul, corresponding to the complex position " We

have tested the results obtained from eqs. (7) and (8) against the

numerical shooting code solation of eq. (5) in a variety of cases, and the

results ;ire in excellent agreement for the eigenfrequencies as well as the

solutions for the potential p.

Considering Q(u, v) as a function of two variables u and v, each a

function of , the explicit expressions for the derivatives are

Q= 'L /Ls'g Q - 2rV. / Q, (9a)

Q" /L s 2 g2 Q - 2' !L 'gQ (9b)c S)' uu I C ' S;gu

- 4 (L /L )(V0 /v e)g2Qu

C d e u

- 2g(l-2&2 ) v d / v ) Q  + 4(Vd/ve)2r2g2Q w .

We have solved eqs. (7) and (8) for a range of slab widths (L /p d

10 to 107 and shear lengths (L s/P 1 102 to 106. The results are

displayed for Z - 0 mode in Figures 1-5. The basic transition from the

local to the non-local results is evident in Figure 1, which depicts the

growth rate in units of ion Larmor frequency, (-/ i ) as a function of the

width of the current slab expressed in units of ion Larmor radius,

(Lc/Pi). Typical parameters are the ion to electron mass ratio

- 1837, the electron drift to electron thermal velocity ratio

V Ive - 0.28, the ion to electron temperature ratio T - (Ti/Te) 0.5 and

the transverse wave number given by b = (1/2) k2c2  - 0.6. Three different
y i

shear lengths are represented by (L /p) 106, 105 and 104. In each case,

,hen Lc is sufficiently large, one obta!i:s the ion-local growth rate

0.0127. Since the shear. strengths considered here are all small, we find

the same non-local value for y. For a stronger shear (Pi/L) 10- 2 , (not
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Figure 1 A plot of the growth rate ( .)against the current channel
iwIdth (L /P ) for three different magnetic shear lengths.

0ciHere V 0.28 Ve, i - 1837, b 0.6, and Tr 0.5.

I
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LS= 106pi
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0.02- S1-p

0.01

0 .0 0 , I I I I I I I I I I II I I I I I
0.01 0.001 0.01 0.1 1.0

(L c/LS)---

Tigure 2a A plot of (Y/Ii) against (Lc/Ls) for three different Ls

values. Here b = 0.6, u = 1837, r = 0.5, and Vd = 0.28 v.

The transition from the local to the nonlocal results are

universal, almost independent of the shear value.

0.03-

Ls = 106p,

0.02

0.

0.0001 0.001 0.01 0.1 1.0
(Lc/L s).-

_71gure 2b A plot similar to Figure (2a) except that the value of b here

is 1.2.
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Figure 3 p(u) against u for Lc/p , and (pis) = , b = 0.6, V =

0.28 ve, and 7 = 0.5.
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I IOO

Figure 4a A plot for the complex angle u I for various values of
0

Lc/Ls. Here b 0.6, ;1 1837, Vd = 0.28 Ve, and t 0.5.
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0.14-

0.13-

0.12-

0 0.11

E
M 0.10
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0.08-

0.07

0.061 I I 'i

0.0001 0.001 0.01 0.1 1.0

(LclLs) -

Figure 4b A plot for the real angle Umo where I (u)t attains its

maximum, against Lc/Ls. The rest of the parameters are same

as Figure 4a.
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0.025F

0.020 -0L
LS=: 1QP.%LO

S0.015-

-LCS105pi LS=I06Pi

0.010
LC=Ls= ,

0.200/ 0.4 0.6 0.8 1.0 .2 1.4 1.6

-0.005
Figure 5 A plot of the growth rates against b.

Here T =0.5, V -1837, Vd = 0.28 ve.  The top solid line is a

solution of the local dispersion relation. The second solid

line is for Lc = Ls = l06pi. The dotted lines show the

transition from local to nonlocal values as Lc approaches

Ls. The lowest solid line is for Lc = Ls = 102Pi.
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shown in Fig. 1), a lower non-local value is obtained, (y/Qi) 0.0115, and

still lower non-local growth rates would be attained if the shear is

further increased. In the other limit, when Lc is sufficiently small, the

local growth rate prevails, (Y/i = 0.0296. The transition curves for

different shear values look very similar, apart from a shift in Lc, and

indeed as shown in the next figure, possess a universal behavior as a

function of Lc/Ls. Another interesting feature in Fig. i is the decrease
in growth rate for L. < 102pi, which arises from the nonlocal effect of the

space variation of the current itself. The slab width is too small to

obtain any significant variation of the direction of the magnetic field due

to shear, and thus this reduction in growth rate is independent of the

shear parameter. If the current width is further reduced to just a few ion

Lar-nor radii, the instability is completely quenched. We can call this the

'ilamental quenching -- current filaments only a few ion Larmor radii in
width cannot sustain the instability. This feature may be of practical

* significance in Q-machine experiments.

Figure 2a represents the same information as in Fig. 1, but now

plotted as a function of (Lc/Ls). Now the transition from the local to the

non-local result is seen to be universal, almost independent of the shear

parameter. Of course, shear values with (pi/Ls) Z 10 will lead to lower

non-local values with corresponding, slight, departures from the universal
-2

transition curve. For small (L c/L s) < 10 , the case of very small shear,

pi/L s = 10- 6 , retains the local growth rate for the entire range

considered, but the case of larger shear, p i/Ls = 10- 3 , falls in the domain

L /p. < 10 and the growth rate is reduced due to filamental quenching.c t

Figure 2b represents the same parameters, except for b = 1.2 and

essentially describes the same phenomena as in Fig. 2a. We note that both

the local and the non-local limit growth rates are lower than those for b

0.6.

A typical solution for is given in Figure 3, for the parameters of

Fig. I in the infinite slab limit, L /P. + . The shear parameter is
C I

) sL = 102 and the solutions obtained by the analytical method described

here or by a direct numerical solution of the differential equation were

found to be identical. The solution is centered around u 0.09 and has
Mo

a width of Zu - 0.01. The angular width decreases for lower shear, without

10



any significant change in the center of I€I. Figures 4a and 4b

respectively represent the variations in ul, the complex angle around which

the wave packet for the electrostatic potential p is formed, and umo the

real angle where I has its maximum along the real angle axis. The angle

UMO is experimentally measurable in the sense of normal mode dominance at

that angle as measured from the local magnetic field orientation. For the

typical case of b = 0.6, we note the progression of ul from 0.13 in the

local limit to (0.099) - i(0.043) in the non-local (shear dominant) limit

and a corresponding transition in umo from 0.13 to 0.09. These curves are
-6

drawn for p i/Ls = 10 , but they represent quite accurately the re;ults for

higher shears, because of the universality of the transition.

q Figure 5 provides the variation of ' as a function of b for various Lc

and Ls combinations. The top curve is the local result obtained directly

from Q = 0; this corresponds to the case of a uniform magnetic field (zero

shear). If we introduce a small shear L /P. i 106 and a comparable current

/p. 106, we essentially reach the shear lominant noo-local resultC 3.

discussed in Ref. 1. The transition is shown, with ' = 105 and

the latter case is already good enough to almost approximate the local

result. Thus we make the transition from the local to the non-local result

as Lc!Ls increases from 10- 2 to 1. The lowest curve is for Lc - Ls =

102p and the difference from the curve above essentially represents the

additional effect of the increased shear.

If we use a prescribed rather than the self-consistent shear, the

relation between the angle and the physical distance is simpler,

u(x) u + (x/L s). (10)

= U + (L /Ls)
0 c s

It can be easily seen that (4b) reduces to (10) if , remains small, a

situation which is valid when Lc > Ls, the case when the shear effects

dominate. We have also solved eqs. (7) and (8), using eq. (10), and the

results do not significantly differ from the case of self-consistent shear.

We have shown in this memo report that the non-local effect of shear
is tempered by the finite size of the current slab: (I) For Lc > Ls the

II



shearing of the magnetic field lines across the length of the slab is

sufficient to allow the non-local, singular perturbation effects to take

place, and the results of Ref. I are recovered; (2) For Lc < Ls on the

other hand, the finite slab size is smaller than that needed to provide

sufficient angular space to form a parabolic domain for QI, the imaginary

part of Q, of the type of Fig. 5 of Ref. 1. Thus the shear dominated non-

local wave packet formation cannot occur unhindered and for Lc < 1 ,

the local results are recovered; (3) A new effect occurs for Lc < 10 o1.

due to the variation of the current itself; thus filamental currents of

only a few ion gyroradii may not produce any instability.

The results obtained here are quite significant for space-plasma

applications where small shear and finite width current channels obtain in

the auroral arc regions. Implications for various space and laboratory

plasmas will be described elsewhere.
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