D-A125 748 STAGED CIRCUIT SWITCHING FOR NETHORK COMPUTERSCU) STATE 4/4
UNIV OF NEW YORK AT _STONY BROOK DEPT_OF COMPUTER
CE M ARANGD ET AL. 1982 AFOSR-TR-83-

. SCIEN
UNCLASSIFIED AFOSR-81-0197 F/G 1772

Te T T S TR, WL LW WL W P S i i - Lo T —c sl e e S AOR
L A A ‘ e v
L e MRaben o - BN R ORI e e e .-, .
T T e e e e e Tl e e L e e e T e
N . S g T Tt e e e e T e e e e
) ° N) .‘_ -t R -
T ~.,.~..--—!....L.J...,-_..A".....1_-..

- ._‘r'-“

RO e e A A

Y
« O

i

p g T 5

- =ik

i = fu gy '
Fl

L
:: s fee poe

L D et el
u...\..

- MICROCOPY RESOLUTION TEST CHART
3 NATIONAL BUREAU OF STANDARDS-1363-a

o an gt e e v
ARAd Sirus LIRS ¢

? .
|
L

R e . VP U/ S I :

H ST WLE.v 7 s ¥ ¥ ¥

;
1

L s m o L4 e L a4 o aga e e g

DTIC FILE copy

vllvhl\u.}l o

SECURITY CLASS!FICATION OF THIS PAGE rWhan Daeta Entered)

READ INSTRUCTIONS
3 REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
- REPORT NUMBER 2. GOVT ACCESSION NO| 3. RE(/‘H’IENT'S CATALOG NUMBEPR
4. TITLE rand Subtitle) . TYPE OF REPORT & PERIOD COVERED
STAGED CIRCUIT SWITCHING FOR NETWORK COMPUTERS TECHNICAL
€ PERFORMING ORS. REPORT NUMBER
AUTHOR'’s) 8. CONTRACT OR GRANT NUMBER's!
Mauricio Arango, David Gelernter and Arthur AFOSR-81-0197
Bernstein
PERFORMING ORGANIZATION NAME AND ADDRESS 10. pROGﬂAM ELEMENT PROJECT TASK
" . AREA & WORK UNIT NUMBERS
Department of Computer Science
State University of New York PE61102T; 2304,A2
Stony Brook NY 11794 /
CONTROLLING OFFICE NAME AND ADDRESS / 12. REPQRT DA; __(»
Mathematical & Information Scienceg Directorate JL)(
Air Force Office of Scientific Research 13.Nuuasnornnr=s
Bolling AFB DC 20332 ; 23
MONITORING AGENCY NAME & ADDRESS(#f dll!ereJﬂ from Controlling Office)} 15. SECUR!TY CLASS. 7of »is reprrer
UNCLASSIFIED
1Sa. DECLASSIFICATION DOWNGRADING
SCHEDULE
+. DISTRIBUTION STATEMENT (of this Report) h
Approved for public release; distribution unlimited.
L]
17. DISTRIBUTION ST. 1ENT (of t' ¢+ abstract entered In Block 20, if different from Report)
'8 SUPPLEMENTARY TES
Submitted to ACM SIGCOILI 83 Symposium.
19. KEY WORDS rContinue on reverse side if necessary and identify by block number)
20 ABSTRACT rContinue on reverse side If necessary and -Ide..“ilv by block number)
Staged circuit switching (SCS) is a message-switching technique tha® 2eorbines a
new product with new communication hardwarn. Protocol and harduare are decigned
specilically for networks that are intended to functicon as integrated, ponoeal-
purpose MIND machines, i,e., for 'network computers.
The 3CS protoccl is a form of circuit-switching that deprades au'omatical il
into packet-switching when unavailable output lines make further extension ~f a
partial circuit impossible. The SCS hardware uses a front-cnd crassbar soiten
to multiplex some small number of communication channels among alt (CONTIHUED

DD 35", 1473

UNCLASSLVIED
SECURITY CLASS|FICATION OF THIS F’AGE (When Dau Emered}

;_i‘

- UNCLASSITIED

T —— Caaiitin i e S DI
L SSee i M e i ien P e . A RSN . .

‘ |S_E£- 2SI TAVSL ASSIFICATION OF THIS PAGE(When Data Entered)
= ITEM #20, CONTINUED: of a given node's incident links. Together, hardware and
A protocol represent an attempt to convert spare bandwidth intce lower network
delays. They also allow experimentation with networks that reconfigure them-
bl selves dynamically in response to measured trarfic. We compare SCS to packet-
switching, circuit switching and the 'virtual cut-through' protocol of Kermani
and Kleinrock, and discuss an SCS implementation designed for the SBN network
! computers.
:
f
{
. -- Q
He
t K
.
=
F .
A
: pccession For /
) “NTTS GRARI
DTIC TAB
unanmounced (W]
N J.stitication
'. - '____..__—-——-""'——'-’-‘-—-
3 8'
S * | ptstribution/
¢ | availadility Codes
1 -—" Javail and/or
pist Special
| A
¢ L v
t -
[
;l
. UNCLASSIFIED 3
‘ SECURITY CLASSIFICATION OF TKIS PAGE(When Data Entered)
- SIS T T "‘_ M -

—~ ye M e e teCEeRERECRECENCHRECHREE NN A S P R

W e e E : oo

. .~ AFOSR-TR- 83-00883

Staged Circuit Switching for Network Computers*

by
Mauricio Arango, David Gelernter and Arthur Bernstein
State University of New York at Stony Brook

Abstract

technique that combines a new protocol with new communica-
tion hardware. Protocol and hardware are designed specifi-
cally for networks that are intended to function as
integratad, general-purpose MIMD machines, i.e. for "network
computers”.

Bl Staged circuit switching (SCS) is a message-switching
{

The SCS protocol is a form of circuit-switching that
degrades automatically into packet—-switching when unavail-
able output lLines make further extension of a partial cir-
cuit impossible. The SCS hardware uses a front—end crossbar
switch to multiplex some small number af communication chan—
nels among all of a given node's incident Links. Together,
hardware and protocol represent an attempt to convert spare
bandwidth into lower network delays. They also allow exper—
imentation with networks that reconfigure themselves dynami-
cally in response to measured traffic. We compare SCS to
packet-switching, circuit switching and the ™virtual cut-
through? protocol of Kermani and Kleinrock, and discuss an
SCS implementation designed for the SBN network computer.

Approveq ¢

or pnh
diStributi pn Iicrelea

Se:
on unlimted, ’

*Research sponsored by the Air Force Office of Scientific Re-
search, Air Force Systems Command, USAF, under Grant Number
AFOSR 81-0197. The United States Government is authorized
to reproduce and distribute reprints for Covernmental purposes

notwithstanding any copyright notation thereon.

83 03 14 148 { |UNGIASSE

..............
............................

K|
1. Introduction
3 Staged circuit switching (SCS) is a message-switching technique that

combines a new protocal with new communication hardware. The protocol and
hardware proposals are independent to the extent that the protocol might

be implemented on different hardware and the hardware has properties that

TV v H,.'.' PRI
. A . R

are potentially of interest regardless of protocol. Protocol and hardware

T

were, however, designed together and complement each other; they will be

presented here as two aspects of a single design.

Bant~ g

Both the SCS protocol and the SCS architecture are applicable in
theory to any computer network. In practice, however, they are well-suited
to a specific sub—class of nstwork, the "network computer" sub-class. A

network computer is a network of processor nodes that is intended to func-—

tion not as a collection of autonomous hosts but as a single MIMO machine.

Network computers are designed to support experiments in asynchronous dis-

T Y T

tributed programming. As the cost of microprocessor nodes falls, such

machines have become increasingly interesting. Intuition insists that
there must be some way of combining many cheap, modestly—powerful proces—
sors into a single highly-powerful machine. Many problems remain though,
and the design of effective network—computer communication protocols and

hardware is an important one. SCS is an approach to this problem.

The SCS protocol combines aspects of packet switching and of conven-
tional circuit switching. Packet switching is used loosely here to refer

to any store-and-forward protocol in which data is copied into holding

T W V. W T TR TR 0T 8T AT e T e .
m. i an-atArt Aeu bras NN A - Ce e ST T s e e e e m T e s T e e et
WL TR T T - . . - AT P PR LRV .

buffers at each intermediate node along some path from soﬁrcé to destina-
tion. No assumption is made about packet size; packets may conceivably be
Large enough to encompass any single message. Circuit switching refers to
a class of protocols in which a communicating source s and destination d

first construct a dedicated path or circuit from s to d and then communi-

cate directly over this path. In time-switched circuit switching, the
dedicated path consists of reserved input and output slots in esch time-—
division multiplexing switch along the circuit's route. In space-switchec
circuit switching, the dedicated path is a physical ccnnection between
source and destination. The SCS praotocol is strongly related to space-

switched circuit switching.

Also related to SCS is a proposal called "virtual cut-through" dis-
cussed by Kermani and Kleinrock(1,2]. In virtual cut-through, intermedi-
ate nodes along a message path attempt to send a message onward as soon as
an appropriate output link has been determined. If the appropriate output
chann-.{ is free the attempt succeeds; output and input continue in paral-
lel, with the initial portion of the message being transmitted while the
final portion is being received. Otherwise the message is accepted and
buffered as per normal store—-and-forward procedure. Virtual cut—through,
then, attempts to pipeline a message through the network at a grain size

determined by the time required for routing at each intermediate node.

SCS is compared in the following to packet switching, circuit switch-

ing and virtual cut-through. Proper comparisons between SCS and the other

')
N
H

v

¥ v epe o

{ T)

-" e -
P .

vy
b

threse are, however, problematic. The others were developed fﬁr iarge net—
works, SCS for a network computer. On large networks, the bandwidth and
the cost of intarnode Lines are expected to dominate the bandwidth and
cost of the processors or i/0 channels that drive them. Long communication
links between distant nodes are wusually far slower than noda-internal
memory busses. On a (physically-localized) network computer, an the other
hand, essentially the reverse holds. Data rates usually depend on the
speed of the commqnication processor or i/0 channel, and the cost cf
internode Lines is trivial. Wa will keep these fundamentally different

assumptions in mind as we discuss SCS.

Section 2 describes the SCS protocol and section 3, the SCS architec-
ture. Section 4 discusses the SCS protocol and relates it to ather proto-

cols. Section 5 discvu~~~s dynamic network reconfiguration.

SCS has been developed in the context of a network—computer project
called SBN, for Stony Brook Network. In a small prototype implementation
of SBN, communication takes place via conventional packet-switching over
word-parallel, point-to-point Links. The design calls for the network to
be configured in a torus——a square grid in which each row and each column
loop back on itself. The torus topology is integral to SBN's design, but
the prototype hardware will soon be replaced. The implementation of SCS
designed for a new version of SBN is asutlined in Section €. (The SBEN pro-
ject itself is described by Gelernter and Bernstein(3] and Gelernter(4].]

Finally in Section 7 we discuss related work in network—computer communi-

- N

cation protocol and hardware design.
2. The SCS protgcol

In SCS, 8 source node first transmits the header of a message M and
then awaits an acknowledgement before transmitting M's data portion. As
the header arrives at each intarmediate node along its path, that inter-
mediate node attempts, using a programmable crossbar switch, to establish
a direct physical connection between M's input Link and an appropriate
output Link. If the appropriate output Link is not in use, and the node
at the other end of the output link is in interrupts-enabled state—i.e.,
able to accept M's header and process it immediately— then the attempt
succeeds and the next node along M's path examines the header. Ultimately
the header reaches either a node at which the attempt fails or a node
which is M's final destination. In either case, a dynamically-configured
hardware path has been established between source-node s and destination-
node d. This path is used for transmitting an acknowledgement from d to s
{indicating that data transmission may proceed] and then for transmitting
M's data portion from s to d. A final acknowledgement from d to s indi-
cates sucessful or unsuccesful receipt.If d is M's final destination the
process is complete; if it is not, M is accepted and buffered 1in the
intermediate node for Llater forwarding in the same fashion. If, in the
default case, each attempt to connect inpui to output Llink along M's path
fails, then M progresses through the network precisely as it would under

pure store—and-forwarding. On the other hand, if each such attempt

succeeds, then a direct physical connection between M's source and desti-
nation has been astablished precisely as in pure (space-switched)
circuit-switching protocols. In the in;ermediate case, M may pass several
times between packet~ and circuit—switched mode as it travels from source

to destinatiaon.

The SCS protocol offers potential advantages as against both store-

and- forwarding and conventional circuit switching.

Against conventional| circuit switching, SCS's potential advantages

are (i) SCS is non-blocking. When path construction meets a roadblock in
the form of a non-interruptable neighbor or unavailable output Llines, it
is necessary neither to abart and re-schedule the transmission, nor to
hold unused lines until the circuit can be completed. Transmission simply
continues in packet— rather than circuit-switched mode. SCS shares the
following two advantages with certain other circuit-switched or hybrid
protocols: (ii) Distributed contral. No appeal to a central route manager
is required in order to establish a circuit. (iii) Flexibility. Short
messages are more efficiently packet-switched, Llong messages circuit-

switched., SCE can distinguish the two cases and treat each appropriately.

Against store-and-forward switching, SCS shares the advantages of

circuit-switchecd svystems generally. If the SCS protocol succeeds in
establishing an N-node path, the data portion of a message that would have
been recopied N times under store-and-forwarding is copied only once,

directly from source ‘0o destination. The message arrives faster and

——Y i ~ YF",‘Kr,‘_".'..'r'('i,'i"

g ;’*" O

computation resources network-wide are conserved, insofar as intermediate

nodes along the message path are not required to input, buffer and output

the dsta portion of the message.

Disadvantages of SCS, and problems for ongoing study, involve the
effects of communication bandwidth Llost as 8 headsr propagates down a
path, building a circuit. We discuss advantages and disadvantages of SCS

and compare it to virtual cut-through below.
3. The SCS Architecture

The SCS architecture is shown in a highly-simplified schematic in
figure 1. Each node n is provided with a front—end containing a programm-
able c}ossbar switch ¢. Line L1 is connected to the front-end crossbar of

n's first neighbor, l2 to its second neighbor and so on. The switch

—1|¢

C

), ol e
Figure 1.

PO GO SN U S Sy

4
R

L S Aot Ml i

allows any line Li to be connected to any other Line or to the DMA link d.
The figure assumes 4 nearest neighbors, as on SBN, but the genetat scheme
makes no assumptions about number of neighbors. Note that in <the 5&x5
switch shown, two connections may be maintained through the switch

simultaneously-—e.g.l1 may be connected to ls. and l4 simultaneously con-

nected to d.

The communication kernel runs either on the host or on a dedicated
front-end pracessor at each node. In the first case, the host multiplexes
communication and computation. In the second and more Llikely case, the

dedicated front—-end interfaces to a host over a shared bus or a second OMA

channel.,

In figure 1, each node interfaces to the net over a single DMA chan-
nel. This would be unacceptable on Large netwarks, where the bandwidth of
communication lines is typically small relative to node-internal memory
bandwidth. But it is likely that, on a fully-developed network computer,
communication—-Lline bandwidth will approach memory bandwidth more closetly,
and the wutility of multiple OMA channels (each contending for memory bus
cycles]) diminishes as line speed approaches bus speed. Nevertheless, the
SCS architecture makes no assumptions about the number of OMA channels
connecting a8 node to its switch. The allowance it makes for channels—
per—node to be determined independently of the number of lines to adjacent
switches is its fundamental charactecristic. The number of channels per

node is aoptimized to node-internal bus bandwidth. The number of LlLines to

— - . ae T - TwrT oy T .
> - T - — B et e i et 4 b | pr vea A s avesc e Ml aun SRR g T, oW v T . . Y.
re L Bea-ae et 8 Jeae - gae N S S A i ChuiC N - - PO e - .~ - e T R .

adjacent switches—i.e., neighbors-per-node—is determined 'by network
topology. It makes no sense for channels to sxceed neighbors, but there

are many cases in which neighbors might exceed channelis.

r.._.

-4

»

b

!

3

»

?!

h! The SCS architecture supports the SCS protocol directly. In addi-
! tion, because it allows number-of-channels and number-of-neighbors to be
.

L determined independently, it might well allow construction of more
nl densely-connected networks than conventional architectures do—
"conventional architectures" being those in which each node is required to
have as many channels as it has neighbors. Increasing the connectivity of
x an SCS network requires that the complexity of the crossbars be increased

and that passive inter—switch Llines be added—but does ngt require the

addition of communication channels.

Highly-connected network graphs are desirable 1in network-computer

architecture in order to maximize aveilable cennuniction capacity and

minimize network diameter. Diameter in particular is a central concern in

i the design of large networks, and topologies such as the binary hypercube
provide log-growing diameter in exchange for & Llog-growing (potentially
b .
:‘{ large) number of neighbors per node. The SCS protocol itself provides
-
| further incentive for the use of dense toplogies; these points are pursued
- below.
q
) -
.
s
X
F
3
4
)
1
b
e
-
L

- e e e i e R R YT AR SO
m. —— d vt e : Lo . R R T

4. Discussiogn

As noted above, comparison between SCS and large-network protocols is
difficult because of the fundamentally different hardware assumptions
involved. We will nonetheless compare in general terms the behavior aof
packet switching, virtual cut—through and SCS under similar circumstances.
Because we will assume for illustrative purposes that SCS succeeds in
building a circuit from source through to destination, its behavior is

identical to the behavior of circuit-switching protocols.

We assume a8 network computer; we therefore assume that propagation
delays are negligible. Suppose that the nodes of a communication subnet
require h time-units to transmit or receive a packet header, d time-units
to transmit or receive the data portion of a packet and p time-units to
perform whatever processing is necessary to determine where a newly-
received packet goes next. For present purposes we will sssume h, d and p
to be identical under each of the three protocols to be compared. {(This

assumption will cause SCS to be underrated, as we discuss below.)

Consider a packet that follows a three-hop path from source node 1
through intermediate nodes 2 and 3 to destination node 4. Assuming that
virtual cut~through successfully cuts through nodes 2 and 3 and that SCS
builds a complete circuit from node 1 to node 4, the behavior of the three
protocols is graphed in figure 2. (The figure assumes the simplest possi-
ble store-and-forward protocol, one in which message reception end header

processing occur serially.) Let tSF be the time required by the store-

e e

PP W e e
. . -

i

b
LT
.
..
~
N
—
b.
—

A r'_"~' B
PR - R

..................

time to route and process & header

time to transmit or receive a header

time to transmit or receive the data portion
of a message

aJ9o
o

SF = store—gnd-forward; VC = virtual cut -through

path: 1—>2——>3—>4

time—>
SF
de 1
node g’ﬂ-ct =T
3 i b)
4 [
5CS s
node 1 [& 1
-]
3 L 4
a 7 ¥]
vC
node 1J~41
a__] 1
3 oty
4

Figure 2

and-forward protocol to handle the packet from transmission of the first
byte by the source to reception cf the last byte by the destination.
(Note that reception by the destination is not complete until the destina-
tion realizes that it 1is in fact the destination.) tve is likewise the
time required by virtual cut-through, and tSCS the time required by SCS.

If j 1is the lencth of the path in hops, then it is clear from the figure

1
: {generalizing from 3 to j hops) that
' tgp = j(h+p) + jd
_ tscs = jlh+p) + d
' tye = Jﬁh+pl + {d-p)
! SCS and virtual cut-through are faster than store-and-forward by a factor

proportional to the Llength of the path. SCS and virtuel cut—through are
equally fast within a factor of one packet-processing delsy. Virtual cut-
through is faster by one processing delay because it processes and

raceives packets simultaneously.

In terms of network delay, then, SCS and virtual cut-through are com-
parable within the broad terms of this comparison. Both are ordinarily
superior to store—and-forward; in the worst case, where virtual cut-

through is unable to perform cut-throughs and SCS unable to build circuits

g of Length greater than one hop, both are essentially identical to store-

and-forward.

. This comparison however addresses transit times only, not throughput.
] ' Regarding throughput SCS 1is at a disadventage: communication lines that
have been incorporated into a circuit are held idle as the header pro-
. pagates forward. Lines are never held idle in store-and-forward or virtual
cut-through. Note however that SCS is a self-limiting protocol. Lang
circuits are constructed only when idle banuwicth is avsilable. When

bandwidth is in short supply, circuits are blocked earty and bandwidth-

e aun it 22 J

12

loss is correspondingly small. SCS is in this sense a "greedy algorithm"

thet siezes the largest chunk of bandwidth available at any given time and

converts it 1into Llower network delay. Analytical and simulation studies

now in progress will measure this feedback effect and determine to what

extent it prevents excessive bandwidth-consumption.

There are many unanswered questions regarding the behavior of SCS—
despite which it is SCS and not virtual cut-through that is of interest in
our network computer context for tactical reesons involving simplicity and
data rates, and strategic reasons involving flexibility. We discuss tacti-

cal points directly bslow and strategic issues in the next section.

It appears that SCS will be considerably simpler to implement within
the constraints of a network-computer environment than would virtual cut-
through. Virtusl cut—through appears to require either independent CMA
channels for each link or a dedicated communicatioun prucessor that imple-
ments all DMA channels and interfaces to a routing-snd-contral processor.

SCS, on the other hand, allows a single CMA channel to be multiplexed

among all links via the passive switch.

Closely related to the foregding is the issue of maximum data-rates
supportable under the two prﬁtocols. Virtusl cut-through requires that
two channels access one message buffer simultanecusly; the maximum Sup-
porteble data—-rates is therefore roughly one~half the bandwidth of the bus

over which meseage buffers are accessed. In SCS, on the other hand, the

source message buffer is emptied directly into the destination buffer.

......

5& Meximum bandwidth is therefore roughly equal to the bandwidth of node-
! internal memory busses. It follows that assuming h, p and d to be identi-
t

cal under virtual cut-through and SCS is unfair to SCS. In the best case,

EI hSCS and dSCS are each not much more than half hVC and dVC’ making SCS
g substasntially faster than virtual cut-through.
S

S. Dynamic reconfiguration

i If, in an SCS system, a message intended for transmission agver a
multi~hop path were to find a direct connecticn already in place between
%é its source and its destination, then header propagation time is eliminated
| and transit time is shorter than in either virtual cut-through or standard
SCS. SCS, then, encourages experimentation with networks that reconfigure
t!ﬂ themselves dynamically in response to measured traffic.

- Consider the SBN torus first. A node N that establishes and removes

a given connection maore than j timas within some designated period might
conclude that traffic over the path of which that connection is part is
sufficiently heavy to warrant the connection's being left in place for

some longer period. Throughout this designated longer period N igrores

the path bresk-down interrupts that ordinarily notify all intermediate
nodes to disconnect a path at the end of a given transmission. The Llong-
El term connection is transparent to the source-destination pairs whose com-—

3 munication paths include it; all such communicating pairs are 1in effect

brought one hop closer together. When the designated perioc is over, N

responds :® the next path break—-down interrupt by disconnecting the path.

14

In this methodology for dynemic reconfiguration, the. cbmmunication
kernel's decision to leave a switch connection in place is broadly analo-
gous to a compiler's decision to store a variable in a register. Whether
to speed communication in the firat case or computation in the second,
steps are involved that must be taken explicitly (leaving the connection
or Loading the register) and undone explicitly (breaking the connection or
reloading the register). Registers and long—-term switch connections are

scarce resources that must be allocated by carefully-designed algorithms

or heuristics.

As noted above, the SCS architecture may, however, allow construction
of networks that are considerably denser than SBN with its degree-four
nodes; Dense networks may be configured in such a way as to minimize
diameters (in binary hypercubes, for example] or, on the other hand, in
such a way as to maximize shortest-route redundancy. An instance of this
second kind of configuration is a square torus with two links rather than
one joining every pair of adjacent nodes. The diameter of this 2-link
torus 1is the same as the diameter of an ordinary 1-l.1k—per—adjacent-pair
torus. But consider a pair of communicating nodes s anc ¢ separated by i
horizontal and | vertical hops: in an ardinary 1-link torus, s and d are
connected by (i}j] shortest paths; in the 2-link torus they are connected

(14,

by J 21+J shortest paths. (To ses this, note that each of the [‘IJ)

shortest paths in the 1-link torus is i+j hops long. In the 2-lLink torus
an h-hop path exists in 2h versions, each version the result of h sequen-

tial choices between two possible Llinks per hop.)

N . 15
]

i When a sufficiently large number of acceptably short routes are
available on average between source and destination, dynamic reconfigura~
tion algorithms might make use of the SCS crossbar switches as a distri~

ii buted communication cache rather than as a set of communication registers.
In this cese, every switch connection is left in place until the two links
it joins are expressly required for some other circuit. A cache hit

i. corresponds to a randomly-distributed source and destination finding each

other adjacent.

Dynamic traffic-sensitive reconfiguration heuristics such as these
are particularly interesting in light of the difficulty of what has been
referred to as the "mapping problem" (BokharilS8]). Network computers Like
SBN are designed to support distributed programs consisting of many
simultaneously-active modules. "Mapping problem" refers to the task of
finding a mapping from program modules to network nodes that makes accept-
ably efficient use of the network's limited communication resources. Use-
ful mapping heuristics are known for particular instances[S] but Bokhari
shows the graph isomorphism problem, for which no polynomial-time solution

is known, to be reducible to the most general form of the mappinu problem.

Mote that the situation is particularly complex on networks such as SBN
[' that are designed to support a mix of dynamically-loaded jobs; only some
time-varying subset of noces is free at any given time. SCS makes it ros-
sible to investigate this problem from a different angle—not vis high-

3 level load-time algorithms for configuring the program to suit the system,

——
-

but vis Llow—-level runtime algorithms for configuring the system to suit

vy

) na ARl
T -

P

A %t~ tafalatmlelia VWS S N

- 1.17'——-_--'."-.,_',«, H.-(e,
. . LT L

—— L gn AR a0 g0 SRERY T
AL 4 AR MM (NS

16

the program.
6. Implementation

There follows a general description of an SCS implementation designed

for SBN. Arangol[6] gives a detailed presentation of the hardware design

and the accompanying protocol.

Consider a network in which each node n, consists of a
communication-processor P; and an SCS front-end 8;. (Each node contains a
host~processor as well, but its presence is irrelevant in this context.)
Each S, is connected via two physical lines, a8 seriai data line and a con—-
trol Ljne, to each of four adjacent SCS front-ends, and by five Llines, a
serial data Lline and four control lines, to the associated processor pi.
Each 5, contains a 5x5 crossbar and a 4x4 crossbar. The 5x§ crossbar
interconnects the five data lines incident on 8- The 4x4 crossbar inter—
connects tha 4 control lines that terminate on adjacent SCS front-ends;
each of these control lines is also connected via a switchable tap to one

of the control line between 5. and P;- This configuration is shown in f{iy-

ure 3.

At network-initialization time all switches 1in all crossbars are
open, and control-taps are set such that each node is able to receive a
signal over any control Lline (fig. 4a). A node n, wishing to establish a
path to a neighbor n.j so informs “j by pulsing the control line that con-

nects their respective SCS front—-ends. This puilse is referred to as the

P R
JORY L S
PPN

R R
RO
<D

cPU REMORY

RAPRE .
v“ ’.‘n‘

" {
- — >
{ TA “BA
! INTERFACE ONTROL
s R T 1 X =T
v v ! B
l L — =
1 ! .
{ |
fo/trom neetn R (
neighber T T Te=-5 |
‘ .
T | |
[} 1 h \ '
| | | z |
I ' | | I
r L (
N 1 1 .
] ' |
i .
|
i

|
|
i
|
|
v
!
|
]
|
{

[aiadachudbadiad o
———

- lec b map

P - -

to/ brom weat
ncwshbor

R Bt

\

1

]

. r#o/hom south
v neiahbo

Figure 3

path set—up signal. nJ. responds to the path set-up signal by connecting

N P I S

18

data Llines s‘j<->p.i and sj<->si in its SCS front end; n, in turn connects
data lines si<->pi and si<->sj in its own SCS front end, and thus a data

path between n, and n; has been established (fig. 4b}.

If n.i wishas ta sxtend the circuit onward to P and the requisite
"j<_>"k Lines are free, it establishes contact with n, as described above,
then connects both ni<->nj lines (i.e., both the data line and the control
line) with both nj<->nk lines in SJ (figure 4c). A data path and a control
peth have now been established between n, and Npr and the circuit may be

propagated onward in Like fashion,

Node n.j retains no connection to the data—-line component of this
onward-propagating circuit, but it continues to monitor its tap into the
circuit's control-Lline component. Once the path is complete, the source
has transmitted the data portion of its message over the data-—line com—
ponent of the circuit and the destination has ackngwledged receipt, the
source pulses the circuit's control—-line component twice. Two successive
pulses are interpreted by all intermediate nodes along the pasth as a path
break-down signal; node nJ responds to this signal by disconnecting both
the control and the data components of the associated circuit in s.'s

crossbars.

This hardware design allows experimentation with twa different
dynamic-reconfiguration techniques. In one, responsibility for leaving a
connection in plece over a term Llonger than one message—transmission

interval rests with the source node. When the scurce decides that a given

20

Care)

i e e e e -

—-——=

Sw#

r- —
|
|

Swg

(c)

]
T SC
S —
b "
-
-.,.. _—— |b
|
! 1
b ! & \ _
|
|
[
|

sw
jt

Sw‘

|
|
|
|
-l -
S

1
|
|

.

¢
b

21

circuit is valuable and should not be torn down, it simply omits the path
break-down signal and the path remains in place. In the other, each node
decides on its own whether, based on cbserved past demands made on its SCS
switches, 8 given switch connection is likely to be used again soon and
ought thus to be retained for some longer period. A node that has decided
to retain a connection for some longer period ignores all psth break—down

signals pertaining to the connection for the duration of the period.
7. Belated work and conclusions

Surveying briefly the communication systems of operational network
computers in SBN's class—the class of general-purpose MIMD machines— we
note that Arachne(7] uses store-and-forwarding over point-to-point Llinks,
Micronet[B8] uses store—anc-forwarding over contention busses, and Cm*[9]
uses a8 hiersrchical bus to support a network-wide address space. cf
greatar interest in the present context is the communicaticn hardware
designed for the prospective X—tree network computer (Sequin(1C]]}. In X-
tree nodes, each lLink has an associated set of hardware input and output
queues. ALl queues interface to a common bus. Logic associated with each
link handles transmission and reception of byte-parallel cata over that
link, and a dedicated routing processor switches bytes from input tc out-
put queues over the bus. Communication in the X-tree system resembles vir-
tual cut-through insofar as messages are pipelined through the net at
sub-packet grain size. (The X~tree communicaticn protocol is not, however,

specified in detail by Sequin(10].)

T L T R EETA T zalE NN

........

We note finally the relation between SCS and switched interconnection
:3 networks. Switched interconnection networks, as the term will be under-
stood here, differ from the conventional network architectures assumed
b above insofar as communication in such systems takes place through s
potentially multi-stage series of switches. Switches are not associested
- with given hosts; they form an independent network. Messages proceed not
a' from source node through intermediate processor nodes to destination node,
but from source node through the switch network to destination node. Com-
munication may be either packet— or circuit—-switched through the switch

net. When packet-switching is supported, switches must have asscciated

buffers, and the switch net becomes in effect an assembly of simple, de-
locatized front-end processors. Note that, while from the protocol point
of view SCS is a midway between circuit and packet switching, from the
architectural point of view ECS, 1in preserving a network of physicsl
switches but associating each switch directly with a network host, is
mid-way between traditional network structure and the switched intercon-

nectiaon net.

Development of SCS is in the preliminary stages. Much work remains
to be done, particularly in anslysis and simulaticr of the SCE protocol
{es noted, analysis and simulations studies are now underway) and in the
study of dynamic reconfiguration. Research on these problems is continu-

ing.

-

Referencas

1. P. Kermani and L. Kleinrock, "Virtual Cut—through: A New Computer Com-—
munication Switching Technique," Comput. Networks, vol. 3 1870 p. 267.

2. P. Kermani and L. Kleinrock, "A tradeoff study of switchiny systems in

! computer communication networks," IEEE Trans. Comput., C-22,12 Dec.
- 1860 p. 1052.)

3. D, Gelernter and A.J. Bernstein, "Distributed Communication via Global

. Buffer," Proc. ACM Symp. on Principles af Distributed Computing,
D August 1882 pp. 10-18

4. D. Gelernter, "An Integrated Microcomputer Network for Experiments in
Distributed Programming," PhD. Diss., Dept. of Computer Science, State
University of New York at Stony Brook, Sept. 1882.

5. S.H. Bokhari, "On the mapping problem," IEEE Trans. Comp. C-30,3 Mar
1981 p.207

6. M. Arango, "Staged Circuit Switching for SEN," Cept. of Computer Eci-
ence, State University of New York at Stony Brook tech. report, Aug.
1882.

7. R. Finkel, M. Solomon, "The Arachne QOistributed Gperating System,"
Computer Sciences Cepartment, University of Wisconsin at Madison,
tech. report no. 438, July 1881,

8. L.D. wittie, A.M. van Tillborg, "Micros, a distributed cperating sys—
tem for MICRONET, e reconfigurable network computer," IEEE Trans.
Comp. C-29,12 Dec. 1980 p.1133

9. A.Jones and P.Schwartz, "Experience using multiprocessor systems— a
status report,” ACM Computing Surveys 12,1 June 1980 p.121

Fl 10. A.Despain, "X-Tree: a multiple microcomputer system," Proc. Spring
: COMPCON 1880 p.324

L o e o a4

