
AD-A1257742 A TWO-PRIORIT FRAME-SYNCHRONIZATION ALGORITHM(U)
NAVAL 5

RESEARCH LAB WASHINGTON AC J0 COLEMAN 28 FF8 83

NRL-8661 /G 2

UNCLASSI
FIED

SEElllmhhhhhEI8mh
EhhhhhhhhThh

A

L611 12.0 1112.5 I
11111- *2

11111 '~IW O-

1.25 .4 II.

MICROCOPY RESOLUTION TEST CHART

NA1IONAL f tAL W~ (L A N ALLARI h 1%, A

Ad

771

A& Two-Priority Frame-Synchronization Audb

- J. 0. COLEMAN

GetRadar Analysis Branich
Radar Division

February 28, 1983

C-)

DTIC
LA. ELECTE

NAVAL RESEARCH LABORATORY mm 1 6183
Wahlugms, D.C. W E

Approved for pubbc Msaime; dlWlbuion unimitad.

83 03 16 071

. . . .- .. . L

SECURITY CLASSIFICATION OF THIS PAGE DWno. Enf.,d)

REPOT DCUMNTATON AGEREAD INSTRUCTIONS______ REPORT___DOCUMENTATION _____PAGE_ BEFORECOMPLETINGFORM
I REPDR NMBER2. GOVT ACCESSION No. 3 RECIPIENT'$ CATALOG NUMBER

4 TILE (nd ubtile)5. TYPE OF REPORT 6 PERIOD COVERED

A TWO-PRIORITY FRAME-SYNCHRONIZATION Interim report on a continuing
ALGOITHMNRL problem

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(.) S. CONTRACT OR GRANT NUMBER(ir)

1.0. Coleman
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

AREA 6 WORK UNIT NUMBERS

Naval Research Laboratory 62712N; SF12131691;
Washington, DC 20375 53-0620-00

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT OATE

Naval Sea Systems Command February 28, 1983
Washington, DC 20362 13. NUMBER Of P AGES

29
14. MONITORING AGENCY NAME & AODRESS(II different from Controling Office) 15. SECURITY CLASS. (ol this report)

UNCLASSIFIED
15.. DECL ASSI FICA TION/ DOWN GRADING

SCH EDULE

i.. DISTRIBUTION STATEMENT (of fi. Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (.1 lth *b.Irtict *nr*,.d In Block 20. it diffe~renom ,. Report)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue. on rover-O side It necessary end Identify by block number)

Frame synchronization
Data link control protocols
Data link control procedures
Radar communication

,,ABSTRACT (Continue 0on reverse side if n.cessary And Identify by block numer.)

Most digital communication involves the transmission of data in distinct and identifiable groups
of bits, sometimes referred to as frames. In tnany 1:pes of systems, separate control channels for

marking frame boundaries are unavailable and frame-synchronization information must be embedded
in the data stream. The standard techniques for synchronization are inadequate in situations in
which both of the following are true: (1) data can be transmitted only occasionally and in amounts
not necessarily corresponding to frames-, (2) data frames are divided into two categories, high Priority

(Continued)

DD 1473 ED, "ION OF1 1 NOV 65 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (Wh. Date Entered)I

&t ol I *.,, :_! L

SECURITY CLASSIFICATION OF THIS PAGE (*o.n D.I. EnI.,d)

20. ABSTRACT (Conflnued)

and low priority, with high priority indicating time-critical information. In these situations the

transmitter data queue should operate as a priority queue; i.e., it should operate in a

first-in-first-out fashion except that when high-priority bits enter the queue they immediately move

past any low-priority bits already in the queue. Because this can result in a high-priority frame

being inserted into the middle of a partially transmitted low-priority frame, the synchronization

algorithm in this context needs to do two things in a compatible way: (1) delimit low-priority

frames and (2) mark high-priority frames in such a way that they can be detected anywhere in

the low-priority data stream. This report describes such an algorithm.

SECURITY CLASSIFICATION OF THIS PAGEWhoIn D.1 Ente-,d)

ii

CONTENTS

T he Problem I
The Approach to a Solution .. 3

THE TWO-PRIORITY FRAME-SYNCHRONIZATION ALGORITHM 3

A t the T ransm itter 3

A t the R eceiver .. 4

AN EXAMPLE .. 6

VERIFICATION OF THE FRAME-SYNCHRONIZATION ALGORITHM............................ 7

When Only Low-Priority Data Are Involved ... 7
When High-Priority Data Arc Involved... 9

SUMMARY 10

REFERENCES I I

APPENDIX A - Derivation of the Frame-Synchronization Algorithm.................................. 12

APPEND)IX B - A Test Implementation ... 22

Accession Jar

NTIS G1RA&I
DTIC TAB
Unannounmced
Ju ;tifilCr.ti ij.r1 _____

Distribution/

Availthbility Codes

Avail and/or
Dist Special

A TWO-PRIORITY FRAME-SYNCHRONIZATION
ALGORITHM

INTRODUCTION

The Problem

Most types of digital communication involve the transmission of data in distinct and identifiable
groups of bits, variously referred to as messages, packets, or frames. When the physical channel over
which the data are transmitted consists of a set of wires, the beginning and end of a frame can be indi-
cated by the raising and lowering of a control signal on a wire dedicated to that task. With some types
of channels, e.g., radio channels, it is inconvenient to provide a separate control channel, and frame
demarcation must somehow be embedded in the data stream itself. When the transmitted data stream
consists of characters (each character represented by a fixed bit pattern), special demarcation characters
are often used to delimit blocks of data [1]. The data stream in many contexts, however, consists of
blocks of bits that have no character structure. The data-link control procedures that have evolved in
this context insert a unique bit pattern, called a marker or flag sequence, into the data to separate frames
[2]. To achieve data transparency, it is then necessary to take special measures to prevent any coin-
cidental occurrence of the flag sequence in the data itscil from being interpreted as the end of the
frame These measures are referred to as bit sttfing or simply sttffing.

Carlson [31 describes the stuffing procedure used in the Advanced Data Communication Control
Procedures [4] to achieve data transparency as follows:

The flag sequence is a unique 8-bit pattern (a 0-bit followed by six I-bits ending with a 0-bit) used to syn-
chronize the receiver with the incoming frame...

To achieve transparency, the unique flag sequence is prohibited from occurring anywhere in
the... information...by having the transmitter and receiver perforni the following action..

Transmitter: insert it zero bit following five contiguous one bits anywhere before sending the closing flag
sequence ('bit stuffing').

Receiver: delete the zero bit following five contiguous one bits following a ,ero bit anywhere Seforc receiving
the closing flag sequence Cdestuffing').

Similar procedures are widely used.

I recently encountered a system in which this type of scheme was inadequate. In an NRL pro-
gram that is investigating the use of surveillance radars for jan-resistant communication 15]. I
discovered a need for a multiplexing/synchronization procedure that could combine data trames from
two sources into a single, continuous data stream at the transmitter, and, of course, perform the
inverse operation at the receiver. The "obvious" solution of using a slandard framing and stuffing pro-
ied ure with the source given at the beginning of each frame was not applicable. The reason is related
to 1hw delay inherent in the mechanicad rotation of the radar antenna, as will become apparent ini the
follo% ing discussion.

dl U riiip . pr Icd).ihcr 22, 18)2

t t
44

III A-

J. 0. COLEMAN

The primary benefit gained by the use of a radar for communication is the jam resistance obtained
by transmission through its high-power transmitter and its high-gain antenna. The associated penalty is
the necessity of waiting for the slowly-rotating antenna to reach the desired position before transmit-
ting. This implies long communication delays, making a priority structure for the data desirable. For
example. data frames could be divided into two categories: high priority and low priority. The bulk of
traffic would presumably be low priority, with the high-priority designation reserved for time-critical
information or, possibly, link-control information.

After the antenna has reached the desired position for the beginning of a transmission, transmis-
sion must be limited in duration to the interval in which the antenna's beam is over the receiving site.
Once that interval has passed, no data can be transmitted to that particular receiving site until the radar
antenna has nearly completed another rotation. If as much of the data as possible is transmitted on a
given pass of the antenna over the receiver, transmission will frequently have to cease somewhere in
the middle of a data frame, rather than on a frame boundary. Therefore, some part of a frame is fre-
quently queued at the transmitter, awaiting the arrival of the antenna at a particular position. What
happens if a new frame arrives from the data source?

If the arriving frame is of the same priority as the one whose final portions are already queued for
transmission, there is no problem. The remainder of the first frame can be transmitted, and then the
transmission of the new frame can begin. The same is true if the new frame is of a lower priority than
the first frame. If, however, a high-priority frame arrives when a preceding low-priority frame has been
only partially transmitted, it is desirable that the high-priority frame be transmitted before the transmis-
sion of the low-priority frame is completed. In effect, this requires that the transmitter queue operate
as a prioritv queue; i.e., it should operate in a first-in-first-out fashion except that when high-priority bits
enter the queue they immediately move past any low-priority bits already in the queue. This tends to
minimize the total delay experienced by high-priority frames relative to low-priority frames, with the
delay difference sometimes corresponding to one or more multiples of the rotational period of the radar
antenna.

Now consider the situation at the output of the receiver. Because the insertion of a high-priority
frame into the priority queue puts it in front of any existing low-priority data, and because the low-
priority data may be only part of a frame (if part of the frame has already been transmitted), a high-
priority frame can appear inserted into the low-priority data stream at an unpredictable place. On the
other hand, the reverse is not true. Presu,-.-my, frames will always be made available from the data
source as complete units. Therefore, a high-priority frame can always be inserted into the priority
queue as a unit. Since the priority queue ensures that the transmitter will always move all available
high-priority data before moving any low-priority data, a high-priority frame will never have other data
appear in its midst.

The picture the receiver sees is that of a continuous* stream of low-priority data, presumably
divided into frames by a marking/stuffing procedure, with occasional high-priority frames inserted into
the data stream at completely random locations. A high-priority frame could even end up in the middle
of a flag sequence being used to delimit low-priority frames! To be able to correctly identify frame
boundaries in spite of these difficulties an algorithm is required to do two things:

(I) delimit low-priority frames, and

(2) mark high-priority frames in such a way that they can he detected anywhere in the low-priority
data stream.

S lit rh)i'al.I hrc.'iking ol lhl dl,l ill hur,,i, korrc ,il ,.l Io rl1 , , rol:, n' I, IrrCI .,ini

2

NRL RE-tPORT 8661

This situation is not unique to radar communication; it can occur anytime prioritized units of data
(be they frames, messages, packets, or whaleer) must be put through a system where queuing delays
are longer than transmission times. This occurs, for example, with some "bursty" channels, especially
if the prioritized units of data can be larger than the bursts or if the size of the bursts is unpredictable.
Communication systems, such as meteor-scatter systems, that depend on intermittently available propa-
gation niodes sometimes fall into this category.

The Approach to a Solution

The ADCCP marking and stuffing scheme described earlier, while adequate for a single data
stream, is insufficient here because it does not provide a mechanism for handling the two data streams,
low and high priority, that will be intermixed at the output of the priority queue and hence at the out-
put of the receiver. A stuffing scheme similar to that just described can be used, however, as the basic
synchronization mechanism for the low-priority data stream, with a flag sequence to signal the end of
each low-priority frame. A way is then needed to detect the beginning of a high-priority frame. To do
this, the stuffing algorithm can mark the beginning of each high-priority frame with a special "'high-
priority flag sequence." The end of the frame can be marked with the same end-of-frame flag si=quence
used for the low-priority data. Since the low-priority data (inchding the end-of-frame flag sequence)
must also be protected from accidental occurrences of this high-priority flag sequence, it is necessary to
perform protective stuffing operations on the low-priority data with respect to both flag sequences. In
addition, it is desirable that the stuffing operations on the low- and high-priority data be identici if the
flag sequence at the end of a high-priority frame is ever missed at the receiver (possible only with
errors in transmission). In that case the flag sequence at the end of the surrounding low-priority frame
would be recognized and would allow processing to revert to low-priority mode.

A marking-and-stuffing algorithm based on these ideas is presented below. An example is then
presented to help clarify the operation of the algorithm. The body of the report concludes with an out-
line of tile procedure used to prove that the algorithm derived will operate as desired for any input.
The report includes two appendixes: Appendix A details the derivation of the algorithm, and Appendix
B describes a test implementation used as a final check on the algorithm.

THE TWO-PRIORITY FRAME-SYNCHRONIZATION ALGORITHM

A concise descrption of the algorithm is presented here. Separate descriptions are given of the
transmitter and receiker portions of the algorithm. Readers wishing to understand how this algorithm
was derived are referred to Appendix A.

At the Transmitter

A priority queue is maintained for the data at the input to the transmitter. This is the equivalent
of having two queues, a high-priority queue and a low-priority queue. Both of these equivalent queues
operate strictly in i first-in-first-out fashion. When the transmitter is ready to send some data, it first
takes data from the high-priority queue and only takes data from the low-priority queue it tile high-
priority queue becomes empty. If more data should arrive in the high-priority queue while transmission
of low-priority data is in progress, tile transmitter immediately reverts to taking its input from the
high-priorily queue until it is again emptied.

lr.inies arri ing from the daa source are first marked and Stuffed according to their priority, high
or Im. .,, described helo lligh-priorit% lranes are then placed in [lie high-lpriori t. queue, and lo%%-
proirit% lrancs are placed in file h%-prioi tL queue

1h proC'cedure to mark d il" I d nc'l\-ohiaiined frame is as follos: Append a colla o tlhe
end of' tie fraiiic mn pa,,, thie Iriit1c 1t tihe filiC-tehC-tamchine ([SM) stuffer oIt T;ihlc I. The lable is

II
3

qr

10 , COLEMAN

Table I - The Stuffer

State Input=0' lnput=i' Input=,

AA AA/0 BB/I AA/01II11010
BB AA/0 CC/I AA/011111010
CC AA/0 DD/I AA/01I111010
DD AA/0 EE/I AA/011I11010
EE AA/0 AA/100 AA/01I111010

interpretcd as follows: The states of the machine are listed on the left, and the possible inputs are listed
across the top. For each combination of state and input the table shows the machine's next state.
When output is called for, it is shown following the next state and separated from it by a slash. The
first state in the table is the starting state of the machine.*

This FSM changes each input comma to a flag sequence of 01 1111010. To prevent coincidental
occurrences of this sequence in the data from being interpreted as the flag sequence, this machine stuffs
two extra zeros into the data stream following each occurrence in the data of five consecutive ones.

Each state in Table I represents a situation in which the machine has encountered a particular
input pattern but has not finished acting on that particular input pattern. For example, the stuffer of
Table I will be in state CC when it has encountered two consecutive ones in the input but cannot yet
decide whether they are part of a sequence of ones long enough to require stuffing zeros into the out-
put. If three more consecutive ones follow, two extra zeros will be stuffed (from state FE). If, how-
ever, a zero arrives before three more ones have arrived, no stuff bits will be inserted. Thus, its being
in state CC is equivalent to the FSM's remembering that it has seen two ones.

If (and only if) the frame is a high-priority frame, the output of the stuffer of Table I should be
preceded by the binary (high-priority flag) sequence fI I110. The accumulated output of the stuffer
should be inserted into the queue that corresponds to the priority of the frame being stuffed.

At the Receiver

The data from the receiver should be passed to the two-priority destuffing machine of Table 2.
The format of Table 2 is similar to that of Table 1, except that an additional column labeled Saved has
been added. Saved is an auxiliary variable and will always contain the name of a state; it is initialized
to AA, the starting state (only once, not once per frame). For (state) transitions on which input to the
machine is equal to one, Table 2 is interpreted exactly like Table 1. For transitions on whicb the input
to the machine is zero, the machine first determines the next state (without actually changing state)
and generates the required output, if any. It then sets the variable Saved to the value shown in the
Saved column of Table 2 and changes state. If there is no entry in the Saved column, the value of
Saved is left unchanged. Because the input to the destuffer is provided by the output of the stuffer,
and because the stuffer output consists of only zeros and ones, there can be no commas at the input of
the destuffer. An output of "err" is shown with transitions that cannot take place without an error in
transmission between the stuffer and the destuffer. In such cases the next state shown was chosen arbi-
trarily (this is discussed further in Appendix A).

There are two output buffers, low-priority-buffer and high-priority-buffer, and wo auxiliary flags,
low-priority-error and high-priority-error. Output is initially put into low-priority-buffer. Both auxili-
ary flags are initially clear. The exclamation-point output shown with certain transitions of Table 2
should he intcrnreled as: begin putting data into the high-priority-buffer instead of the low-priority-
buffer. The "'err'" output shov.n with certain transitions should he interpreted as: set the appropriate

1 hiii1 is j Co e.tli)I' ll i %.l. to represent a tinlie-sile mahine, for e viniiple. aiong dlgilai-design engineers 161

4

•4 . . .

ELL-. lI: ,.,t

ME=

NRL REPORT 8661

Table 2 - The Two-Priority 1)estufl'er

State Input ='O' Saved Input ='
AA AB BA
AB AB/O BB
BB AB/Ol CB
CB AB/OllI DB
DB AB/OllII EB
EB AB/Ol IlIl FB
FB AG GB
AG AA/OllIIlIl BG
BG Saved/, AA CG
BA AB/lI CA
CA AB/I I DA
DA AB/I Il EA
EA AB/IlII FA
FA AM/lull1 GA
AM AA BM
GB AA/! AB HB
111B AA/! BB lB3
lB AA/! CB JB
JB AA/! DB KB
KB AA/! EB LB
LB AA/! FB AA/err
CG AA/err DG
DG AA/errl EG
EG AA/errll F
FG AA/errllIl GG
GG AA/! AG HG6
116 AA/I BG AA/err
GA AA/! AA HA
HA AA/! BA IA
IA AA/! CA JA
JA AA/! DA KA
KA AA/! EA LA
LA AA/! FA AA/lerr
BM AA/err CM
CM IAA/errl DM
DM AA/errlI I EM
EM IAA/errl I I FM
FM AA/errllIlIl GM
G M {AA/! AM AA/err

ailxiaiir% flg, low -prioriit y-error or high-priority-error, according to the outp~ut buffer currently in use.
The conima output shown in the table mazrks the end of a framec. When a commaiz is output, the algo-
rithm should do several things before continuing to process input data through the destutler:

I) cst thie error flag, low -priority -error or low-priori ty -error, corresponding to the buffer currentk
inl use. If' it is set. cleatr it. It' (mnd onl]% if) it %kas Arcad% clear, the contents of' the hufler should
be passed to the datii sink (the desired recipient) ats ai fratme of' the prioril) corresponding to the
butfer inl use.

J. 0. COLEMAN

(2) The contents of' the buffer in use should be discarded, making the buffer available for another
frame. The output of the two-priority destuffer of Table 2 should be directed to low-priority-
buffer for successive data. (This may or may not be a change from the buffer previously in use.)

AN EXAMPLE

Suppose the transmitter received a low-priority frame consisting of the following:*

10011111001111001011111010.

Here I have intentionally included as part qf the data (at the end of the frame) the flag sequence used
by the stuffer of Table I. This is to emphasize that the data can contain anyequence of bits. If a
comma is added to this frame and it is then put through the stuffer of Table 1, the following results,
in which brackets have been added to show the bits added by the stuffer:

10011111 [00100111 1001011111 [001010[011111010].

This differs from the original data in the following ways:

(I) two zeros have been stuffed following the first occurrence of five ones (4th through 8th bits):

(2) two zeros have been stuffed following the second occurrence of five ones (the ones in the flag
sequence that was part of the data-this transformation is what makes the inclusion of the flag
sequence as part of the data harmless): and

(3) a flag sequence of 011111010 has been added to the end of the frame to represent the comma.

If the stuffed bit sequence as shown (minus brackets) is put through the destuffer of Table 2, the
original frame results (with comma appended). The example is more interesting, however, if a high-
priority frame is added to lhe picture. Suppose the following small high-priorily frame arrives at tlhe
transmitter:

0011010.

Preparing it for transmission by adding a comma, stuffing with Table 1, and prefixing a high-priority flag
sequence, the algorithm produces

I I II 11010011010[1 I I 110101

where again the added bits are shown in brackets. Because the frame contained no occurrences of five
consecutive one;, no stuff bits were needed and only the delineating flag sequences were added. Now,
suppose that the transmission of the low-priority frame is partially completed when this high-priority
frame arrives. This causes the (stuffed) sequence of high-priority bits above to be transmitted some-
where in the midst of the low-priority bit stream produced earlier by the stuffing of the low-priority
franme. This might look like

1001111I00001l1110010l11lI 11000II010011111010]11100010011111010

where the high-priority bits are shown in brackets. When this sequence appears at the receiver
(without benefit ol brackets), it is put through the two-priority destuffer of Table 2. The machine of
Table 2 produces the following output:

1001111 I001111001 !001 1010,011111010,

In iI re.l ,iphlittlinl T1iist Ir,micA, i e mtl, i11li Ihrigr lhlll i '

111IN C -11111le t,'rtl... ",I, IHh~dUI I %%III) .Il d lC ICS1 inI'dC :)VII1,,1n101 diML L I',' IIn ,\l1p1 \ It

6f

IE
-, ~ ~ ~ ~ ~ ~ ~ ~ ~ ~-l _. -- - " & .. . _ " f--- II IL i .

NRL RITORT 9661t

Mihich conitai ns thle high-priority frame, heginlning after thie exclamation point and continuing to tile first
COllinla. If' exclamiationi points and comnmas are used to Control Outplut buffering, ats described earlier,
thle high-prionty frame will be removed to at special high-priority-buffer and the remainder, minus

fl~lictuation. will end Up ill thle low -priori tyv-buffer.

Not ice that thle high-priority f'rame atl the ou tput or' the destu ffer of' Table 2 is at ai slightly earlier
point1 in thle low-priority framie than it was when it was inserted into the low-priorit ' data streamn alt1le
transmitter. Tliis results because of the information storage in the ESM of' Table 2. Any data sequence
that happens to be identical with the beginning of' a flag Sequence is, eff ectively, stored in the I-SM
uiitil at bit co-les along that[shows that at flag sequence is tiot beiiig received. C'onsequently, at Iew bits
(three in this example) of the low-priority franie niay, be stored in thle FSM when the high-priority flag
sequence arrives. Because those stored bits are not output until tlie high-priority frane has beeii com-
pletely received, the high-priority frame appears to have iioved to an earlier position within the low-
priority franie.

VERIFICATION OF THE FRAME-SYNCHRONIZATION ALGORITHM

When Only Low-Priority Data Are Involved

The first step in the verification of' the two-priority fratiie-synchronization algorithim is to show
that it operates correctly when input consists of low-priority frames only. lIi this limited context, the
handling of thle auxiliary variable Saved can be siniplified. Since Saved in Table 2 is initialized to AAX.
since Saved is reset to AA on the zero transition from state BG inl Table 2. and since that transition
always occurs at the end of a high-priority frame when the destuffer of' Table 2 is returning to low-
priority operation (ats will be seeii later), the variable Saved will always be set to AA when the destuffer
is operating on low-priority data. Therefore, the verification of' the correct operation of' the stuffer arid
destuffer together can be carried out with tile value of Saved assunied to be AA. Construction of an
JF5M that is the ('alenaiion of the stuffer and destuffer followed by verification that thle input and output
of the catenation are identical is sufficient to show that the stuffer and destuffer work correctly together
while operating on low-priority data. I constructed the catenation. shown in Table 3, by simulating the
operation of' the two FSMs with tile output of' the stuffer of Table I applied to the input of the destuff er
of Table 2. beginning with both in their starting states. The first two letters of each state designation
correstionid to the state of' thle stuffer, arid the last two letters of' the state designation correspond to thle
state of the destuffer.

Table 3 - SM Equivaleiit to the Catenation of' the Stuffer and Destuffer

State Input = '0' Intput ='I' Inpiut =Stored

AAAA AAAB BRIIA AAAA/.
AAAB AAA3/0 B3BB AAAA/0, 0
BIIHI AAA13/0 I CCCB AAAA/01, 01
CCCII AAAII/01 I I)I)IDB AAAA/01 1. 011
D)11)1 AAAI3/0l II [Elihi:, AAAA/01 11. 0111
[hFll AAAI/llIlIl AAA/,\11I1II1 AAAA/01 Il11, 01111
B B BA AAA B/lI CCCA A AAAIl,.
(((A AAAI/ I I hDlDhA A AAA/ I I I I
IDh)IA .AAAB/l I 1 [1: 1\ A AAA/] 11, I1l

II A AAB/l l .A / 111 .A / AAA.\II.II 1111

111 lc prncc1' of Cnnllro1011 111C c,IIlC,1ition begins '\ itli thle state AAA V St'ate X i'.
cqoti l1cft b? bothl 111C sltfcl ot I rhlc I .mid thic thcstoffer ofl Eth~c 2 being inl state \A, thc stiring

s'ltte Inl lic h.Limimg~i. this, is, ie ,ill\ *.tate tile catenttioii is &ssumeld to tic able to re'ili., WXXi the0

7

-~~~ .. ,.7

J 0. COLE|MAN

stuffer receives an input or' zero, it mo Ves to (or stays in) state AA and outputs a zero. This zero out-
put goes to the destuLffer. "here it causes a transition to state AlB tith no output produced. The entry
in Table 3 for the receipt of a zero input from state AAAA should, therefore, show a transition to state

.\AAB, equixalent to the stuffer being in state AA and tlle'destuffer being in state Ali, and should
sho, no output. Once a similar process is used to fill in the other Table 3 entries for transitions from
state AAAA, it is apparent that tile catenation can reach states AAAB and BBBA as well as its starting
state AAAA. -ach of these states is added to tile first column of tile state table of' tie catenation, and
each has entries added for each possible input symbol. This process continues until ever\ state shown

in the first column of tile table has had entries added on its right for all three input symbols and until
each state nane appearing as a 'next state" appears sonewhere in the first colunin.

On some transitions the stuffer of Table I outputs more than one symbol. This has to be handled
carefully when the catenation is constructed. Consider, for example. state EEEA in Table 3 with an
input of one. The state EEEA is equivalent to the stuffer of' Table I being in state EE while he
destuffer of Table 2 is in state EA. When the stuffer receives an input of one from state EE, it moves
to state AA and outputs a one f'ollowed by two zeros. The one and the two zeros go to tile destuffer,
taking it f'roti state EA through states FA and AM to state AA and causing it to output fie ones along
the wav. The entry in Table 3 for the receipt of a one input fron state EEEA should, therefore, show a
transition to state AAAA, equivalent to both tile stuffer and the destuffer being in state AA, and
should show an output of five ones.

The last column in Table 3 shows the input that is "stored" in the FSM, if any. In other words,
this is the cumulative input for which the "appropriate" output has not yet been generated. By
"appropriate," I mean the output that should be generated to represent the data if it turns out that the
currently-arriving input is not part of a flag sequence.

If the input and the output of the catenation of the stuffer and destuffer can be shown to be
identical, then it follows that the destuffer correctly desufi's the output of the stuffer. Tile value shown
in the "Stored" column must be considered in the determination of this equivalence of input and out-
put. For any particular transition in Table 3, the input and output of the FSM are ilkcihelv equal if the
conbination of the stored bits followed by tile input hit is equal to the output bit(s) follo,.ed by the
stored bits associated with tile nex state. Figure I illustrates this for the zero transition fron state
EFEB of Table 3. In state Ft-ElB there are liv c stored bits: 01111. These are the input bits that the
FSM has seen but for which no output has \ct bvecn generated The appearance of the zero at tile input
tieans the FSM Ihits now seen six bits that ithas no acted o: 011110. These six bits are shown to the
left of the equal sign in Fig. I As it make' the ranimon fron state LE-IB to the next state, AAAB,
Table 3 shows that the]:SM output, the first fit e (those six bits. leaoing a single zero bit as yet
unused. This zero is correLt . shii in I;.: tSI red diumn of Table 3 for state AAAB.

Stored in HI B I I Output
II 1

Inputl i) 0 Slored in AAAB

I I t! Input I fblehlC 3 effecteLAIC equals output
ift ."(. 'tllill rl () state I ll ..\

If 11C inputI dld the1 otl t if ii i 1 '\ l \C , ,llIl\ eqal iII tll,, nilarlr l all Iransitions in
Ihc siae table ut1 the ISM. tine total i/u(u otmi/hd mutlo)f" the I:SM lflhiivCId h tile bits stored in the

8i

• Il! , I

NR I R IIPORI 1 8 66

Miachinies final Staite %koild alIaJ s 1 eqti~iI t11C total inpu)(t thle Machine had Seen. Consequently. tile total
output Of' such all I:S% %%ouIId hc esactlk equal, to itS total inpu)Lt whenever the machine \%as in at state
hia rig noi stocrage. 10s 111111 a ~ri/C [I Ihi (n 1011 /c 0iII/iil of an F'A I must be identical/ to a nY inpul that
lcs /I(. FV1! inl a stat.i c1/1 /it stcclcncf it, lt'(I ca/I comnihicn of1 Ire'scn/ Vtale. current I .npta1. next %fate.

ivit/I 1w ncxtI-stc Volvo'/ Ill/Oill

The argulniII that thc dest utlcr (it' Fable 2 correctl ICS1st otil e OutpuLt of' thle SI uter of' T-ableI
Mi en loss -priorit 1' rames are 1111i1.11 iius% proceeds ats 1'l low&s:

I) For each combiination of' present staic, current inputI nest state, and output in the catenated
stuffer-destuffer FSM cii Table 3. thle present-state stored inputLJ catenated with thle current inputI is
Identical to thle ouLtpuLt catenIated sith thle nest-state stored input. Therefore. thle total accumulL-
flted out put (since thle FS NI hegan operating) of' Table 3, tot (iwed by the hits stored in its final
state. always equals its total accumulated input.

(2) Since iio coimmas appear inl !he '*Stored"' columin olt TahI. 3 (implying it cannot store ccimmas).
and since theC iOal outpuIt of' Table 3 fcillossed h\ thie bits, stored iii its final state atssai\S equals its
toctal input.I1 any inputLI sequ1enc ending in at commina appears compltet at the outpu)(t (If Table 3.
leas ig the machi ne iii thle on l[.% state with no storage: its start inrg state, A A AA.

(3) All properly f'ormed loss -pricirit\ f'raiies eiid ss itli commas. Iciss-prioity framles are. therefore.
copied COrrectl to tile outpuLt cif thle FSNI of Table 3. and e.Iilh toss -priority f'rame leaves the
mlachinle ini Its Starting State read\ tio process the nlest f'ranie.

When High-Priority Data Are Involved

To establish the correct operation of' the stuffer of Table I with the destuffer of Table 2 when
high-priority f'ramnes are present is niore irioclxed. Since each high-priority f'ranie begins with thle high-
priority flag sequence, arid since the entire highi-priority f'raii can be inserted anywhere in the Iciw-
prioiri ty data, thle effects of' t he Iiigh-priciri P. flag Sequence onl the state of' t he two-prioiri ty destuffer of'
Table 2 iiiust be determnired. Construction (if' thle catenation (if' tilie FS.Ms (if' Table I and Table 2
revealed which states (If' the destuffer If, Tfable 2 can be reached when it is operating onl low-priority
data only. These States inludeRI iot only states whose namies appear as secoiid components (If, state
names ii i Table 3 (states AA, AR. BB 'CR, DR. ER. BA, CA, D)A, and [A), but thley AlSO include
those intermediate states cif T-able 2 used s hen tilie desWtutr is padssed i ult lc inpu)Lt elemerits f'roml thle

st utler at onel time. Th is happenis on th!e "onre" transition t'roni state Fl F i able I arid onl all lie
. coriia ia'transitions of' Table 1 . Thie associa ted transitlions of' Table 3 are:

IIthle "o(ne" transit ion 1'roii state lF A, sshiiel causes tilie destufler to pass through rintermediate
startes FA airi(AM.

(2) the "o(ne" tranisitionr Ircori state [[1E113 ss hiCh causes the desiuiffer tol pass thr-ough iriternidiale
states FB and AG: arid

(3) the.(Irninia" transitionrs cit Table 3. cacti of' MIM rihcases the destutier of' Table 2 to pass
tlrciugl intermiediate states AB. R113 (I1). I). 1:13 1:1. AGi, arid 1.

I liere'tc. [lie miil [i~i ,, (of 11 Ire esillere 01' [able 2 that are uISed Inl handling thle outputkl of' the stuffer
inl Ire abs:lcce of* iisel idcib ()t 1142 tiglr~ roiir MfOat! SequiLiice are esCtxII thiose states ab/Iiic the diiutbleC
liue ill I able2

A, A! --I

J. 0. COLEMAN

Sillulation ol the operation of' the destutrer of Table 2 with .i high-priority-flag-sequence input,
.%t;ai ing from each of Lhose states reachable with low-priority data, produces the result shown in Table

4. The starting staes are shown at the left and tie sequence of inputs making up the high-priority flag
sequence are sho% n along the top. For each starting state, the sequence or states the destuffer of Table
2 passes through a-, the flag sequence is input can be read from left to right. The destuffer produces no
output on ani of' .i ll e transitions.

Table 4 - Table 2 States Used when a Iligh-Priority Flag Sequence
Appears at the Input

Start I I I I I 1 0

AA BA CA DA EA FA GA AA
AB BB CB DB EB FB GB AA
BB CB DB EB FB GB HB AA
CB DB EB FB GB 1iB IB AA
DB EB FB GB JIB IB JB AA
EB FB GB 1iB IB JB KB AA
FB GB FIB lB JB KB LB AA
AG BG CG DG EG FG GG AA
BG CG DG EG FG GG IG AA
BA CA DA EA FA GA HA AA
CA DA EA FA GA iA IA AA
DA EA FA GA tHA IA JA AA
EA FA GA htA IA JA KA AA
FA GA HtA IA JA KA LA AA
AM BM CM DM EM FM GM AA

Looking at the states in the column under the last "one" in Ohe flag sequence in Table 4, and
looking at the zero transitions from those states in Table 2, one finds that the last bit of the high-

priority flag sequence always sends the destuffer of Table 2 to state AA and sets the auxiliary variable
Saved to the value shown in the first colunn of Table 4. Since AA is the correct starting state for the
destufling of a high-priority frarne (because it is stuffed exactly like a low-priority frame), the frame
following the high-priority flag sequence will be correctly destuffed according to the same arguments
used previously to show the correct destuffing of low-priority frames. Since insertions of the high-
priority flag sequence are impossible when the destuffer is in the midst of destuffing a high-priority
frame, and since the only transition possible that changes Saved and can occur in the absence of such
insertions is the end-of-frame zero transition from state BG, the value of Saved at the end of the high-
priority frame is exactly the value stored there at the end of the high-priority flag sequence that ini-
tiated the frame: the state the destuffer was in just before the high-priority flag sequence arrived.
Therefore, at the end of the high-priority frane the destuffer of Table 2 correctly resumes destuffing
tile low-priority frame in which tie high-priority frame was imbedded.

SUMMARY

I-he standard techniques for f'rame synchronization in bit-oriented link-level protocols are inadc-

qtILlic in sitlltlions in which both of the follow, ing are true: (I) data can be transmilted only occasiolally
aid in a1iouills nlit ncccssarily corrcsponding to 'rames, and (2) dala franes are divided into t%%0
cal cgoriws. high piiorith and l m priority ill high prioril. id rting Inic-crilical l'lill ation. In

thesC Sitidtis n, ile Irmirsrrittcr dtmla liuce shoild opcralc ,is d priority qlUeul: i..C., it should operate ill
a first-in-lirst-oUt Iashioll CxcCplt lhit \her high-prioritr\ hits enter thc qleutc ihe\ imllediately move
pist ain Im-priority bit, alrc,id. in It lticrquu IJlCcdusC Ibs Crii restill i d high-pri)orily frnC being
inscied into tihe middle of i partiaillk ir iit cd hr i-priorit.\ framlllc, tIc s1ichloni/,irion algorilhll ill

10

AL

NRI RI!POR] 8661

this COnltex needs to do two things in a conipalihle way: (I) deliniil ilow-priorit frames, and (2) mark
high-priority ialmes il skich a way that they call be dlected anviv.'here in the low-priorily data stream.
This report described such an algorilhlml in delail and showed thal its two halves, (he transmitier-site
stufer illd the receiver-site LestUlfer, operatC correctly togelhcr.

REFERENCES

I. J.W. Conard, "Character-Oriented Data Link Control Protocols," IEE- Trans. Commun. COM-
28(4), 445-454 (Apr. 1980).

2. R.A. Scholtz, "Frame SynchroniLation Techniques," IEEE Trans. Commun. COM-28(8), 1204-
1213 (Aug. 1980).

3. D.E Carlson, "Bit-Oriented Data Link Control Procedures," IEEE Trans. Commun. COM-28(4).
455-467 (Apr. 1980).

4. ANSI Standard X3.66-1979, Advanced Data Comnmnunication Control Procedures, American National
Standards Institute, 1430 Broadway, New York, NY 10018, 1979.

5. B.I. Cantrell, J.O. Coleman, and G.V. Trunk, "Radar Communications." NRL Report 8515, Aug.
26 1981.

6. F.J. Iill and G.R. Peterson, Introduction to Switching Theoo and Logical Design. Wiley, New York,
1968.

II

I
!-+, . . ' c , + '+ ¢ " " : " +" ' :':' '.1 + _ . . + , + ,lo'll i __. , . . .;,', .. J .. i -, .,l.- -- - A

Appendix A

DERIVATION OF THE FRAME-SYNCHRONIZATION ALGORITHM

The derivation of the two-priority frame-synchronization marking and stuffing procedure described
in the body of the report (referred to subsequently as simply the two-priority stffing procedure, for
brevity) is outlined here as an evolution from the ADCCP stuffing procedure outlined by Carlson
(quoted in this report's introduction) to the full two-priority stuffing procedure. First, the ADCCP pro-
cedure, described briefly in the Introduction, must be rigorously described.

The ADCCP Algorithm

Table Al is a state-table description of a finite-state machine (FSM) that implements the ADCCP
stuffing algorithm. The FSM in Table A2 gives the corresponding destuffing algorithm.

Table Al - FSM Implementation of the
ADCCP Stuffer

State Input--'O' Input="I' Input='
A A/0 B/I A/I0III10
B A/0 C/I A/01II1II0
C A/O D/I A/OI111110
D A/0 ElI A/01111110
E A/0 A/10 A/01111110

Table A2 - The ADCCP
Destuffer

State Input-'0' lnput='l '

A B I/I
B B/O C
C B/01 D
D B/01I E

E B/011I F
F B/011 G
G A/0111I I H
H A/, A/err
I B J/I
i B K/I
K B L/I
L B M/I
M A A/err

In addition i the two data values, the stutffer of Table Al can accept a comma as input. The
comilt, indicatles Ohe end of i frminc. The destulTer of Table A2 sees only /eros and ones as input.

('onstrution of a1n ISM thai is the catenation of the stuffer and destlfTer f'ollohed by verification
thai the inplut alnd oputl of the cilnalion are identical will prove thai the AI)CCP stuffer and
dCSlutl'er work correct[% together. Iach stmat of the combined FSM corresponds to a staic of the stuffer
paired wiIh a siate of tie destuffer, Table A3 shows the combined FSM.

12 k

NRL REPORT 8661

Table A3 - FSM Equivalent to the Catenation of the ADCCP
Stuffer and Destuffer

State Input '0 lnput='I' Input=',' Stored

AA AB Bi/l AA/,
AB AB/0 BC AA/0, 0
BC AB/01 CD AA/01, 01
CD AB/01 l DE AA/01 1, 011
DE AB/01 II EF AA/01 lI, 0111
EF AB/01 II I AA/011 I I I AA/01I11I, 01111
BI AB Cl/I AA/,
Ci AB DK/l AA/,
DK AB EL/I AA/,
EL AB AA/I AA/,

The last column in Table A3 shows the input that is stored in the FSM, if any. In other words,
this is the cumulative input for which the appropriate output has not yet been generated. By appropri-
ate I mean the output that should be generated to represent the data if it turns out that the currently-
arriving input is not part of a flag sequence.

For each combination of present state, current input, next state, and output in the catenated
stuffer-destuffer FSM of Table A3, the present-state stored input catenated with the current input is
identical to the output catenated with the next-state stored input. Therefore, the output of Table A3,
followed by the bits stored in its final state, always equals its input. Since no commas appear in the
"Stored" column of Table A3 (implying it cannot store commas), and since the output of Table A3
followed by the bits stored in its final state always equals its input, any input ending in a comma
appears complete at the output of Table A3. Further, since a comma is the last symbol input in a
frame, and since each transition on a comma input in Table A3 has state AA as its next state, the FSM
is always in state AA at the end of a frame and is ready to begin processing the next frame. This com-
pletes the argument that the ADCCP destuffer of Table A2 correctly destuffs the output of the ADCCP
stuffer of Table Al.

The ADCCP algorithm just described will be used for end-of-frame marking, with the end of a
frame of either priority indicated by a comma at the input to the stuffer. Unfortunately, the ADCCP
algorithm is not suitable for marking the beginning of the high-priority frame. If the ADCCP flag
sequence were inserted into a stuffed data stream at random, it would be possible in certain cir-
cumstances for the zero at the beginning of the ADCCP flag sequence to be removed by a destuffer
before the flag sequence was recognized. Therefore, a different flag sequence must be adopted to indi-
cate the beginning of a high-priority frame.

The High-Priority Flag Sequence

To mark the beginning of a high-priority frame, I chose a high-priority flag sequence consisting of
six ones followed by a zero. When a high-priority frame is stuffed, this high-priority flag sequence is
inserted into the output once at the beginning of the frame and is never used thereafter. When low-

priority frames are stuffed, the high-priority flag sequence is never used at all.

Although tlie fact that the high-priority flag sequence will only he used to mark the heginning of a
high-priori) frme iim plies thai onl% the loo,-priorit% data need to be protected against its coincidental

CCtlrrence. it is desirale that tile igh-piriority data be protected as "ell. This results in the stUffing
operiilns for the higli-prioril dat~i ,ild the lo%%-priorit% datit being identical, ensuring faster resn-
chroni/ation if' an error ill lransmtllsion hetCocii slUffer and deSttler results in the deuluffer losing
track of the correct priori)% Of the d~itli.

13

4 ________________7 -

J. 0. COLEMAN

To see that this is so, consider an example. Suppose the flag sequence at the end of a high-
priority frame is not recognized by the destuffer. This will cause tile destuffer to process the succeeding
low-priority data as if it were high-priority data. If the stuffing processes for high-priority data and low-
priority data are identical, the destuffer will recognize the flag sequence at the end of the surrounding
low-priority data and believe that it has found the end of the high-priority frame. At this point it will
resume processing data, assuming correctly that it is low priority. The net effect of the error was to
take the portion of a low-priority frame that followed an embedded high-priority frame and incorrectly
catenate it to the high-priority frame.

If different stuffing procedures had been used for high-priority and low-priority data, the non-
recognition of the terminating flag sequence of a high-priority frame would result in a longer resyn-
chronization process. Because the destuffer would process succeeding low-priority data with the wrong
destuffing procedure, it would not recognize the flag sequence at the end of the low-priority data. In
effect, all the data between the missed flag sequence at the end of the high-priority frame and the ter-
minating flag sequence of the next high-priority frame would be incorrectly catenated onto the original
high-priority frame. Because high-priority frames would normally be expected to occur less frequently
than low-priority frames, this could result in a large loss of data.

The stuffer used to protect a data stream against accidental occurrence of the high-priority flag
sequence is identical to the ADCCP stuffer of Table AI. The only difference is in the input that will be
fed to the stuffer. The input to this stuffer will come from the output of the stuffer used to mark the
end of the frame. This is necessary because a high-priority frame can appear in the midst of a low-
priority frame that is already' stuiI.d, implying that it can evcn appear in the middle of the flag sequence
used to mark the end of that low-priority frame. Since the ADCCP flag sequence, as well as the data,
needs to be protected against coincidental occurrences of the high-priority flag sequence, the high-
priority stuffing should apparently be applied at the output of the original ADCCP stuffing operation.
Because this output contains only ones and zeros, comma inputs need not be considered in the high-
priority stuffing operation. Because of the desirability of making the various stuffing operations identical
for low- and high-priority data, both low- and high-priority frames will be protected against coincidental
occurrences of the high-priority flag sequence by this second stuffing operation.

Because the high-priority flag sequence can appear anywhere in the data stream at the receiver.
the role of the destuffer is somewhat different here than it was for the ADCCP destuffer described ear-
lier. To begin with, assume that only an isolated flag sequence will be inserted into the data stream;
i.e., it will not be followed by a high-priority data frame. While this restriction will obviously be lifted
later, it is useful here to simplify the derivation. Under this assumption the functions of the destuffer
are:

(I) to remove the zero stuff bits that were inserted into the data following occurrences of five ones-
and

(2) to recognize insertions of the high-priority flag sequence, returning at the completion of the
sequence to the state the FSM was in before the arrival of the first bit of the sequence.

The FSM destuffer given in Table A4 performs these functions. It assumes that no comma input is
ever used at the corresponding stuffer. An exclamation point is output when a high-priority flag
sequence is recognized,

To show that the high-priority destuffer is corrcct inioles se cral stepl:. Table A5 shows an FSM
that is equivalent to the catenation of the stuffer of Tablc A I (ili0.t1 the corn ma input column) and
the high-priority desluffer of Table A4. assuming there are no Ilag sequence insertions. rhe output of'
this combined FSM is always equal to its input ctenated ith the stored Input (by the same argument

14

0,.

NRL REPORT 8661

Table A4 - The High-Priority
Destuffer

Siate lnput='' lnput='l'
A A/O B
B A/10 C
C A/10 D
D A/Ill0 E
E A/III10 F
F A/Itll G
G A/! H
H B/! I
I C/! J
J D/! K
K E/! L
L F/! L/lerr

Table A5 - FSM Equivalent to the Catenation

of the High-Priority Stuffer and Destuffer

State input-0' Input='I' Stored
AA AA/0 BB
BB AA/10 CC I
CC AA/II0 DD II
DD AA/1ll0 EE III
EE AA/IH1I0 AA/HlIII 1il

used for earlier catenations). A separate check is required to see whether an inserted flag sequence can
be recognized without otherwise disturbing the destuffing process. In the absence of the flag sequence
in the input, the destuffer of Table A4 uses only states A through F. Proper handling of the flag
sequence requires that if the machine begins in one of these six states, a flag sequence input will leave
the machine back in the same state after it outputs only an exclamation point. The FSM of Table A4
meets this condition.

The Two-Priority Algorithm

At this point the necessary raw material has been developed for the needed marking and stuffing
algorithm. It remains only to put the pieces together. The two-priority algorithm will first be summar-
ized as a combination of the FSMs just developed. The algorithm will then be condensed into a more
compact and efficient equivalent. The two-priority stuffing algorithm using the ADCCP stuffer, sum-
marized in Fig. Al, consists of the following:

(I) Take the data frame (of either priority), follow it with a comma, and put it through the ADCCP
stuffer of Table Al. This marks the end of the frame with the ADCCP flag sequence and stuffs
the data stream to prevent accidental occurrence of that flag sequence.

(2) Take the output of tle AI)CCP stuffer (including the flag sequence at the end of the frame) and
put it through the AI)CCP stuffer again. This second pass stuffs the data to prevent accidental
occurrence of the high-priority flag sequence. Because the input to this second pass Consists only

of ones and zeros, the output of this second stuffing pass will not contain any flag sequences. (The
flag sequence front the first stuffing pass will have a zero stuffed into it during this second iass.)

(3) if (and only if) this is a high-priority frame. precede it with the high-priority flag sequence.

15

LLf

J. 0. COLEMAN

FRAME, ADCCPSTUFFER ADCCP STUFFER STUFFED

I -*- FRAME

PROTECT: 01111110 1111110 (PRECEDE WITH
1111110 IF HIGH
PRIORITY)

Fig. Al - Two-priority stuffing with two stuffers

The two-priority destuffing algorithm is more involved. It involves the use of two output streams,
low priority and high priority, and the use of two copies each of the high-priority destuffer of Table A4
and the ADCCP destuffer of Table A2. Figure A2 shows the relationship between the four destuffers
and should be referred to during the following discussion. Destuffing takes place as follows:

(1) Begin by putting the received data stream into a high-priority destuffer whose output goes to an
ADCCP destuffer whose output is low priority. These two destuffers are shown at the top of Fig.
A2.

(2) The exclamation point output by the high-priority destuffer on receipt of a high-priority flag
sequence should not be sent to the ADCCP destuffer, but it should be used instead as a signal to
switch the input stream to the other copy of the high-priority destuffer. This second copy sends
its output to an ADCCP destuffer whose output is high priority.

(3) When this second ADCCP destuffer outputs a comma, the input stream should be returned to the
original high-priority destuffer, which then takes up destuffing from the state it was last in. The
comma is not removed from the output stream.

It is not difficult to see intuitively that the stuffing and destuffing procedures just described are compati-
ble. Proof is not given here, however, because the final form of the algorithm is proven in the body of
the report.

ICH- PLOW-PRIORITY
DATA

DAPT SWITCH UP

HIGH-PRIORITY ADCCP HIGH-PRIORITY
DATA

Fig. A2 - Tw(priority destuffing with four desiuffers

16

J.I

NRL REPORT 8661

Simplifying the Algorithm

The algorithm iat this point involves six identifiable FSMs, two at the transmitter and four at the
reccier. 1h remnining steps in the derivation ceduce the number to two, one each for the transmitter
and tOic receiver. To combine the tmo stuffers into one equivalent "double stuffer," catenate the FSM
of Table AlI with itself. Table I in the body of the report shows this catenation. Inspection of the table
shows that this [SM is, in effect, an ordinary stuffer that uses a flag sequence of a zero, five ones, a
/ero, a one, and a zero. To prevent accidental occurrence in the data of both this sequence and the
high-priority flag sequence, it inserts a double zero following the occurrence anywhere in the data of
ive ones.

The first step in the simplification of the two-priority destuffer is the catenation of the high-
priority destuffer of Table A4 with the ADCCP destuffer of Table A2 into a single FSM. Table A6
gives the resulting "double destuffer." The two-priority destuffing algorithm can be constructed from
two of these double destuffers, as shown in Fig. A3. (It may be instructive to compare F'.gs. A2 and
A3.) In the catenation all outputs of "!" or "err" from the high-priority destuffer (the first [SM in the
catenation) were assumed to pass straight through to the output of the ADCCP destuffer without
affecting its state. Wherever a transition of the catenated -SM of Table A6 shows an output containing
an "err" indication, the associated next state may or may not appear in the table, as the next states for
these transitions are the result of arbitrary choices made in the design of the destuffers of Tables A2
and A4, and they will be changed later anyway.

DOUBLE LOW-PRIORITY
DESTUFFER FDATA

r -- "!"(DELETE)
SSWITCH DOWN

INPUT SWITCH UPDATA #J

DOUBLE HIGH-PRIORITY
DESTUFFER DATA

Fig. A3 - Two-priority destuffing with two 'Jestuffers

Because there are constraints on what can appear at the input of this machine, it is reasonable to
hope that sonic of' the states can be eliminated as unreachable with legitimate inputs. To determine
exactly what states are reachable, it is appropriate to go ahead and form the catenation of the double
stuffer of Table I with the double destuffer of Table A6. Performing the catenation will show exactly
which states of the double destuffer of Table A6 can be reached in the absence of insertions of the
high-priority flag sequence. The result of the catenation is given in Table 3 in the body of the report.

The first two letters of each state designation correspond to the state of' the double stuffer :ind the
last two letters of the state designation correspond to the stae of the double destuffer. In addition to
the states implied by Table 3, the double destuffer of Table A6 passes through some intc mediate states

17

-- II I | l l II i l | I • -- I] "' Il

J. 0. COLEMAN

Table A6 - The Double Destutler
State Input ='O' lnput='
AA AR BA
AB AB/O BB
BR AR/OlI CR
CB AB/OllI DB
DB AB/O IlI EB
ER AB/OllIlI FR
FR AG GB
AG AA/Ol01 R G
BC AA/, CG

BA AR/I CA
CA AR/IlI DA
DA AR/Ill EA
EA AR/IlII FA
FA AM/ IIlIl GA
AM AA BM

GB AB/P 11R

lB CB/' JR
JR DB/' KR
KB EB/! LB
LB FB/' LC/err
CG AR/err DG
DG; AR/erri EG
EG AB/err Il FG
FC AK/errlII GG
Cci AC/! IG
II(; BC/! IC

K; CC/ JG
IC I)G/' KG
KGi FC/! LG
LC FG/' Lu-/err
GA AA/! HA
hIA RAP IA
IA CA/P JA
JA DP KA
KA EA/' LA
LA FA/' LI/lerr
BM AR/err CM
CM AB/errl DM
DM AB/errlIl EM
EM AR/erril FM
FM AL/errilII GM
CM AM/P [IM
Ulm BM/!1 IM
I M CM/I JM
i M l)M/ K M
K M FM/! L M

I I :M/ LA'/errerr

18

NRL REPORT 8661

whenever it receives multiple input elements from the double stuffer at one time. This happens on the
"one" transition from state EE in Table I and on all the "comma" transitions of Table 1. The associ-
ated transitions of Table 3 are:

(I) the "one" transition from state EEEA, which causes the double destuffer to pass through inter-
mediate states FA and AM;

(2) the "one" transition from state EEEB, which causes the double destuffer to pass through inter-
mediate states FB and AG; and

(3) the "comma" transitions of Table 3, each of which causes the double destuffer of Table A6 to
pass through intermediate states AB, BB, CB, DB, EB, FB, AG, and BG.

Therefore, the states of the double destuffer of Table A6 that are necessary and sufficient to handle the
output of the double stuffer in the absence of insertions of the high-priority flag sequence are exactly
those states above the double line in Table A6. To complete the determination of the necessary states
of Table A6 under the implied input constraints, it is now necessary to simulate the operation of the
FSM of Table A6 with a high-priority flag sequence as input, starting from each state that can be
reached in the absence of insertions of the flag sequence (those states above the double line). Table
A7 shows the result of this simulation. The starting states are shown at the left, and the sequence of
inputs making up the high-priority flag sequence is shown along the top. For each starting state, the
sequence of states the double destuffer of Table A6 passes through as the flag sequence is input can be
read from left to right, along with any output the double destuffer produces. The states that could not
be reached in the absence of insertions of the flag sequence are shown io italics. Comparison of Table
A7 with the double destuffer FSM of Table A6 shows that states IG, JG, KG, LG, HM, IM, JM, KM,
and LM of Table A6 are superfluous and can be eliminated, since they cannot be reached with inputs
produced by the associated stuffing scheme.

Table A7 - Table A6 States Used When a High-Priority Flag Sequence
Appears at the Input

Start I I 1 1 1 1 0
AA BA CA DA EA FA GA AA/!
AB BB CB DB EB FB GB AB/!
BB CB DB EB FB GB HB BB/!
CB DB EB FB GB HB 1B CB/!
DB EB FB GB HB IB JB DB/!
EB FB GB HB 1B JB KB EB/!
FB GB HB 1B JB KB LB FB/!
AG BG CG DG EG FG GG AG/!
BG CG DG EG FG GG HG BG/'
BA CA DA EA FA GA HA BA/!
CA DA EA FA GA HA 1A CA/!
DA EA FA GA HA 1A J4 DA/!
EA FA GA HA 1A JA KA EA/!
FA GA HA 1A JA KA LA FA/!
AM BM CM DM EM FM GM AM/!

There is sonic question about the appropriate chobces of next states to be associated with "err"
indications in the output. The next state indications in Table A6 are those arising directly from the
catenation of the high-priority destuffer and the ADCCP destuffer. Since these two component
destuffers had next state indications that had been chosen complctely arbitrarily for those transitions
with an "err" in the output, there is no reason to keep the resulting transitions in the double destuffer
of' Table A6. There are several possible approaches to the selection of these next states:

19

f

J. 0. COLI-MAN

(I) IdenLify. for each transition in.ol1vi ng an error indication, the possible input (t ransnl ission) errors
that could ha'e caused the problem, and identify the one that was tho most likely. The FSM is
then designed 1o go the state it ,..ou ld be in if the error so identified hd never occurred.

(2) The assumption could arbitrarily be made that the rror occurred in the bit just recei',ed. This
implies that the next states should be the same for both inputs from any present state in which
either input causes an error indication in the output.

(3) Always return on an "'err" transition to the starting state AA. This, effectively, assumes that
there is no way that any one assumption about what went wrong and led to the error is better than
an) other.

Without meaning to imply that it is the preferred approach, I have chosen the last for simplicity. This
choice, of course, could easily be changed.

The remaining step in the derivation of the two-priority destuffer is the combining of the two
destuffers of' Fig. A3 into one. Notice that a single output stream from the two-priority destuffer is
enough if it is specified that the arrival of an exclamation point at the output always redirects the output
to the high-priority data stream and the arrival of a comma always redirects the output to the low-
priority data stream. Figure A4 illustrates this. As in Figs. A2 and A3, the exclamation point itself is
deleted from the output while the comma is not. The comma goes to whichever output stream is in
effect beffore the switch is thrown. Under these conditions a single FSM can be found to duplicate the
fornction of the two destuffers of Figure A3 if each state of the combined FSM corresponds to a pair
consisting of one state from each destuffer. This would be similar to the replacement of the lower
destuffer of Fig. A3 with 15 separate destuffers. one for each of the 15 next states associated with an
exclamation point output in Table A6. Since the upper destuffer would have all 39 reachable states of
Table A6, and since each of the 15 lower destuffers would have the 15 states of Table A6 that can be
reached %ithout an insertion of the high-priority flag sequence, the combined FSM would have 264
states. All this can be avoided, however, by the use of a single 39-slate machine to perform the func-
tions of all 16 of the component machines just enumerated. An auxiliary variable stores the extra slate
information required. The two-priority destuffer using an auxiliary variable named Saved is sho% n in
Table 2 in the body of the report.

The rationale for the handling of the variable Saved is as follows: When an exclamation point is
output frotm the upper destuffer in Fig. A3, input is switched to the lower destuffer, which always
begins in its starting state, AA. Therefore, all transitions in Table A6 with an exclamation point output
ha'.e been given i next state of AA in Table 2, with the next state shown in Table A6 saved in tihe
auxiliary variable Saved. When the lower FSM of Fig. A3 outputs a conna, the upper FSM of Fig. A3
must begin operating where it left off. This is accomplished in the two-priority destuffer of Table 2 by
the machine's transitioning to the state saved in the variable Saved whenever a comma is output. In
alddition, the v ariable Saved is set to state AA (the next state associated with the zero transition of state
B(; in Table A6) whenever ii conmma is output, insuring the appropriate beha-ior when the comnia at
lie end of a low-priority frame is output (i.e., any conlma is output from the upper FSNI of Fig. A3).*

I h,' .iri.i S ehlc S d ,l i cii-. n mido iir I I 11 , , hc ic irn ,tdd ."icss in ,i stihilin.. hullnI mii . wi t ,,cturC :all in

,I .1 Irl.jpu r I~tlrr lll i

20

- ,.. IF

I .. . -

NRL REPORT 8661

HIGH -PRIORITY

DATA

(DELEE)PLW-PRORIT

DDATA

Fig. A4 -Output control with two-priority destufl'er

21

* . .. * M-

Appendix B

A TEST IMPLEMENTATION

The aigorithn described in this report has not yet been inplermented in a way suited to opera-
tional use. A "quick-and-dirty' implementation was constructed, however, so that the algorithmn could
be tested. Because the approach taken in the test implementation was somewhat unconvertional, I
decided to present it here as an alternatiie to the use of Table I and Table 2 as discussed in die body of
the report.

The first step in the implementation of the stuffer and destufler was the conversion of their state
tables to formal grammars. The grammars were then used as specifications to a compiler-generator
called vacc [BI,121. A compiler-generator is i computer program that accepts a specification as input
and produces as output another computer progran or a portion of a program. It is most commonly
used to create the parsing portion of a compiler, hence the name. Here I have used yacc to create two
programs implementing the equivalents of Table I and Table 2.

Figure BI gives the grammar used as a acc specification of the double stufrer.* Figure BI is inter-
preted as follows: Each line contains a grammar rule followed by an associated action enclosed in
braces. The first two lines are exceptions to this pattern and will be discussed separattely later. The two-
letter designations appearing in the rules are the equivalent of the states of Table I. That portion of ai
rule to the left of tle colon is the lCi side of' the rule. For those lines that start with the indented verti-
ca bar. tlie left side is iniplied to be tle sane as the left side of the last line thai did not begin with the
bar. In Fig. BI, for exaniplc, there are twelve rules with left sides of AA. That portion of the rule to
the right of the colon or vertical ha- is the right side of the rule. While the left side always consists (for
this ty pe of grammar) of the ntite of a state (usually termed at nonterminal stYmbol in i gra ,inar), the
right side ma. consist 01' i sequence of' state naimes and possible input symbols (usuall% termed ierminal

Vmholis). with the input symbols enclosed in single quotes to distinguish them Clearlv from the state
nillics Each rule specifies one legitimate way for tile machine to proceed in a particular contet. The
tlfl side gives fihe state that is in sonic sense "equivalent'" to the condition specified by tie right side.
Bc¢AusC it is Cqui.dalent, the machine will transition to the state given on the left side when the condi-
non specified h% the right side is met. flie right side can be interpreted if we consider each symbol as
1 input string. In particular. the name of a state appearing on the right side of a rule is equi alent to

anil input string thit could lea.e tile machine in that state. For exatmple, tile line in Fig. BI whose left
side is CU can be interlreted is: proceed to state CC once input that leaves tie miachine in state BB is
hIo\wed b\ an input of' I. This is entirely equi alell to the "Input = I" transition out of site BB in

ablc II

he first line in Fig, BI makes it legal for the machine to transition to i "STOP" state from Lin\
0I the other silIes O encounte[ring tie end of the input data: end-of-data is thus ic'.,er considered an
erro r Ihe rule on the second line contains no right side, making it legal to proceed to state AA

ithllloutl dinx input hail\ing dppeired it all. This is eqlikilenl to specifying the state AA is the starting
,tiltc of tile miachine.

\11 the rules in itig Ilh hill the first two aire followed h\ associated actions enclosed ii hratccs.
tach iction ius illst , statenment ii1 the C programmliiig ldnguagc 1113.1141 th,1 should be CxecutCd when
the associted rule changes ie suite (ll the nmchin or this test ileentilation, eich iclion is al

th11 %,1,, 0 it. Iti Hi %. I, i ,pk . Ii WITi .1 cc i iLInI l.IhI c'C l %clv m , I 1 1] 1 kh1 l i e i,

22

S.

NRI. RIAP()RI Old60

VAlto\ A) i s I otI s 1 li 1c I t r} I)i i"o s i c

it p u fll ' 11 110 0

i ltp o I i I 1 "")

Ili . , tro n ll "(III 11101')"

CC 0II Ill l p inl 11")

tlib p I',n i I 111(11"
IM . print F 011 11l)10"

1)' 'o pr in il ' I ") .

I: 1 .1 r I ill0pr) .I 1 10 "

I((' r n Il f "1' 00fill AA 1 1 r in i f* I)

CCItl ' I p r il I " I l"

I IX) CC I [i t F" I"

Fig. 131 - Yacc specification tor [lle double stul1r of lahlC I

statement that prints the output associated with tie corresponding tririsili on 0'i Liable I It is not
difficult to %erif'y that each line (ater the first two) in Fig. Ill has it corresponding iranitiohi in ihle I
and vice versa.

Figure B2 gives the grammar used as a yacc specification for the two-priorilt\ desitiT'er of Table 2.
Its interpretation is the same ias described earlier for Fig. 131 with to eceptions. First. there is an
addilional subtlety related to the Saved variable of Table 2. In this iiplemenialion Ihere is no e\plicit
Saved variable. The reason is that the program generated by yacc uses i slack to store state informai-
tion, and the information that is stored in Saved in Table+ 2 is stored here on the slack.

An example should make clearer the parallel between Table 2 and Fig. 132 where Saved is
invol\ed. look at tihe first row following the double line in Table 2. This shows that. on1 receiing i
input of icro f'ro m stale (lB, tle two-priority destutter should output in e\clamalion point, set Saved io
All, ind then transition to state AA. The machine should then run eclusi vely in the stites iibo\et ihe
double line (becaIse of input Constraints) until a iro inptiut is recei\ed while in slate B(G. This /ero
input fl'rces the micline to output a coninia and trasition to the state whose name is stored in Saved.
M hich in this case is state All.

The equivalent of this process is represented in Fig. 132 by the last rule whose left side is All.
lIis rule, aid several others similar to it, takeS Up two lines of Fig. 132. (Notice that tile second O
liesc lines does not begin with the bar.) Its right side contaiis two actions rather thin one. Tile firsi

I%%o itenis oil tile right side represent Ml input of i single /ero follov+ ing i input Ihlllt Could result in
th illchine irriking til state (ill. This nliucli is parallel to the I\O-priority desluffer of Table 2 being in
stac (Ii % it a /Cro at tihe input. To continue o ith the right side of' tihe Fig. 132 rule. ignore tihe first
aiclione iciporlrily. tihe F(i on the second line of' tile rule represents an input string that l Iies tile
ni,lcllile in stme ll(j This implicitl\ includes the 'nlir iupill processed by the two-iriority dtuilfller of
Lible 2 beginning iriimediatl atfer it left stile GiB (in our exanilple) ind ending is it sUbsequlotll
irri\CLe In state B(i. This is beCaIus the only \lY) tlhe illil'iliie can reach s ilte IG is b.\ first being ill
state A.A aid ilien plroc'sCsing input, chaiging state ias mali limes als necessar\. untlil State 11(1 is

ecched,! Since Iig. 112 h;,s t rule Ihal SIrs that stilte AA is eqlliv, itlll to ii nlull (CIIpt I illllL , the Irain-
sitioi frori slate (ill to sta e AA cali roceed regardless of' what input symbo1)0l I'ollos the first /ero on
the right side at tie rule If tile entire c orilition specified ho tihe rigll side of' the .tile docs occu'Lir, the
iclhli e ic rccrllcd h I g. 112 inliterpolilcs the t\o actiolls shl ll oil h e right side 11 tile' poills

crrl-,poilri g t o tiheir pIc.illn tn. thenl it trl sitions to tile 'S'tti\ ,lB.t t 1 l ll lhe i 1 r1,1 e1 o1'

23

I - - . - -

_ _ ! .. . > . i
0

. + c . <" +., e.
-

... -'

J. 0. COLEMAN

STOP AA IAB AGi AM
FBA BB FBG IBM
ICA CB M CMI
D A I B [DiIG 11
E A FEB IFiG ERI
FA FB FR ;F FM
FGA IGB W X (N
I hA 111 J IB F IA
F B FJA IJB FKA
KB FLA ILB /* allow machine to accept any, inputAA I" empty "I I corresponds to FSM start ing statc

FAki0 pr in t f "011111
FAM 'I'

vM prinif("crrllll"
G (A '- W printf("I"

(N II printil "err"
fu'0 printf'("er"

FLA 'I' (printf("lerr"
FBM '0' Iprintf("err"
F Gu *', printf("err'
FM wj~ 0 printf("erri" I
1x;~ '0o. pr in t f("erri"
13Mi '0V printf('err]]")
FEG '0' prinl.C("erril" I
EF R '0'. printf("errill" I

FIFG '0' (print Cl "err Ill"
FLB 'I' prinif("err"

AB :AA '0'

FAR "0' Iprintf("0"
FBA '0' (printl'("I")
B B '0' 1printf("01"1
FCA '0' (printf("Il" I
CR '0' Iprintl'("Oil"
D 1A '0' 1 pr in tfC(" III" I

F 1B '0' Iprintf("0111"1
FEA '0' pr intf("LIII" I
FER '0' Iprint Cl "01111"1
61GB '0' IpriniI'("I"

BG '0' printf(", I

FG .X 0'. printf('

BC; '' (printl'(".

AMFA '0' Iprintf("11111")
F(im. 'w pr intl.(

* BC, rintf(.

AA '0'prVn f

I3(; VI 1) prnt~' f("

RH AH '
IIB A1' F r iItt f " "

Bi p prInt (I ",

Fig. B2 -Yaicc spcitficattion for the two-prioritv dcstufl'er
01 Tahle 2 z

24

-. ~ -*amp".
A.q

NRL REPORT 8661

BG AG'I'
Ic '0 printf()

BG '0' { printf(, I
BM AM'I'

CA BA 'I'

I IA *0' printf("
BG '0 prinif()

CB BB 'I'

IB 0' printf()

BG '0' I printf()
(:G BG '1*

(M BM 'I'

DA CA '1'

I JA '0' { printf(")
BG "0' 1 printf(,

DO CB " I

JB '0' 1 printf("
G 0' I printf(,

DG1 OG 'I'

IN CM3 'I",

EA DA "'I

KB 0, printf("

BG '0' 1 printf("

I "0" prinMf ,

EG DG "'I

EM EM 'I:

FA EA 'I'

LA 0' printf'("
BG '0' I prinif(,)

FB EB 'I'

LB '0' I printf("

BG '0' 1 printf(,
FG EG 'I'

FM E 'I'
GA FA 'I'
GB FB 'I'

G FG 'I'
GA FM 'I
HA GA '
HB GB'I'
113 (1

IA HA 'It
IB liB I
JA IA'I'
JB IB l

KA JA 'I.

KB JB '
LA KA 'I

LB KB '1'
A.A '0prin(

Fig. B2 (Continued) - Yacc specification for the two-priority dcstuffer
of Table 2

25

f 77'-

J.0. ('Mot IVXN

Fig. B12, therelore, operates in a manner parallel to the two-priority destuffer of]'able 2 for all those
transitions of]-able 2 that set the Saved variable below the double line in the table. This is because all
those transitions operate analagously 0 the example just discussed.

There is one Table 2 transition involving Saved that was not covered by analogy in the above dis-
cussion. If tile two-priority destulter of Table 2 is processing low-priority data when it arrives at state
BG, the ,ariable Saved will contain the value AA. The zero transition corresponding to this situation is
represented in Fig. B2 by the last rule, which shows diat state AA is equi%alent to an input that can
leave tile two-priorily destuffer in state B, followed by an input of zero. The second area in which
Fig. B2 is interpreted differently from Fig. BI involves this rule. The right side of this rule is identical
to the last portion of several other rules (the exceptional rules discussed above). When the condition
implied by the right side of' the last rule appears, it will sometimes be true ihat the condition implied by
the right side of one of these other rules is also true. In these cases the ambiguity is resolved by tihe
application of whichever applicable rule occurs firsl in the grammar specified in Fig. B2. This results in
tile test implementation represented by Fig. B2 behaving exactly according to the two-priority destuffer
specification of' Table 2.

REFERENCES

BI. S.C. Johnson, "Yacc - Yet Another Conpiler-Conpiler," Computer Science Technical Report 32.
Bell Laboratories, Murray lill, New Jersey, July 1975.

B2. A.V. Aho and J.D. UlIman, "An Automatic Parser Generator," in Prinopes of Compiler Design,
Addison-Wesley, Reading, Massachusetts, 1977, pp. 229-241.

B3. D.M. Ritchie, S.C. Johnson, M.E. Lesk, and B.W. Kernighan, "UNIX Time-Sharing System. The
C Programming Language," Bell SYst. Tech. 1. 57(6), 1991-2019 (1978).

114. B.W. Kernighan and D.M. RithJie, The C Prormmnning,, La ,uage, Prentice-Ilall, Lnglewood
Clifts, New Jersey., 1978.

26

• , r,. . .. ,,.

