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PARABOLIC DISTRIBUTED SYSTEMS

H. T. Banks and P. L. Daniel

ABSTRACT

We present techniques based on cubic spline approximations for estimating

coefficients (e.g., diffusion, convective velocity, etc.) depending on time

and the spatial variable in parabolic distributed systems such as those that

arise in transport models. Convergence results and a summary of numerical

performance of the resulting algorithms are given.
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§1 Introduction

In this paper we present results on the problem of estimating variable

(in space and time) coefficients in general parabolic models. Our efforts

were motivated by consideration of fundamental transport equations (based on

mass balance) such as

(1.1) au + -L (Vu) : 2- (V -L) + g(t,x,u)

at ax ax ax

0 < x < 1, t > 0, that often arise in population dispersal models [12], [19],

[22], [23] as well as in more classical applications involving material trans-

port. In the case of species dispersal models, the term involving V represents

a directed movement mechanism (convective, advective, attractive, chemotatic,

etc. phenomena), D is the coefficient of diffusion under the usual Fick's first

( law formulation, and g represents general sink/source mechanisms (death/birth,

emigration/immigration, etc.) while u is the population density. Recently

such equations (with spatially dependent V and constant D) have been successfully

employed in studies of rjea beetle movement [12] and transport of labeled

substances in brain tissue [12], [28]. However, as pointed out in [12], some

of those investigations were limited somewhat by an assumption that V and D

be constant in time. In the case of insect dispersal, the fact that insects

are ectotherms and are very sensitive to weather leads to a natural expectation

that their movement rates will vary temporally when observations are taken

over several days or more. To model behavior in extended field situations, one

must therefore employ equations with time varying coefficients (Example 5.4

in Table 3 of [12] illustrates how dramatically one might expect the estimated

diffusion coefficient to vary when determined from experimental data for 1 day vs.

that obtained with data for 3 days.) As explained in [12], [23] there are also
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Usituations in which one should allow for spatial dependence in the coefficients.
We present below techniques for estimating nonconstant (i.e., functional) coef-

ficients in a general class of parabolic equations which includes equations such as

(1.1) where V=V(t,x), D=V(tx), and g(t,x,u) = k(t,x)u. We are the first, to

our knowledge (e.g., see the surveys [15], [24]),to give a complete treatment con-

sisting of algorithms with convergence proofs as well as numerical results for these

Uvariable coefficient estimation problems (some preliminary findings in this area

were announced in our earlier note [8]). The methods we develop are based on

cubic spline function approximations and can be correctly viewed as extensions

I of those developed in [7], [12]. However, the fact that we wish to treat non-

autonomous systems means that the semigroup approach used in [7], [12] to

obtain theoretical convergence results for problems involving autonomous

parabolic equations is not directly applicable. (An analogue of the Trotter-

Kato convergence theorem -- see [7] -- which can be used to treat evolution

equations -an be found in the factor space methods developed in [20, Chap. V];

however, the use of an approximating evolution operator framework for the

problems under consideration here would not offer any simplification in

conceptual or technical details.) Fortunately, an alternate approach that we
I

have employed with success [1], [9], [16], [17] in treating estimation and

control problems for delay systems may be applied here, avoiding the semigroup

evolution operator theories altogether. Our conceptual framework (in which
I

the "consistency plus stability implies convergence" steps of the Lax

Equivalence, Trotter-Kato, factor space theories can also be clearly identified)

relies on properties enjoyed by certain approximation schemes when applied

to dissipative operators, a simple application of Gronwall's inequality, and

basic spline approximation estimates. While we consider only linear systems
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. - in this presentation, our ideas and methods can be extended to also treat

estimation and control problems involving certain nonlinear systems of practical

interest (for example, see [1], [7], [8], [9], [13], [17]).

In the presentation below we consider systems of the form

au = ql(t,x) ELR + q2(tx) -l + q3(tx)u + f(t,x,q)
ax ax

of which the linear system (1.1) (with g = ku) can be shown to be a special

case (i.e., carrying out the differentiations in (1.1), we have q, =D

q2 = Dx - V, and q3 = - Vx + k so that knowledge of q,, q2, q3 yields V, V, k).
4 We first show in section 2 that such systems can be equivalently viewed in

an abstract framework; approximate estimation problems are formulated and

convergence results given in section 3. In the final section we discuss

(implementation of the proposed methods and present a summary of our numerical

findings for a number of test examples.

E



A4

§2. Formulation of the parameter estimation problems

We turn then to consideration of the problem of estimating the vector of

unknown variable coefficients, q(t,x)=(q,(t,x), ..., q n(t,x)), appearing in

the parabolic equation

2
(2.1) = ql(tx) -tx) a + q3 (tx)u + f(t,xq(t,x)),

ax
2

on U = (0,T) x (0,1), with Dirichlet boundary conditionsU
(2.2) u(t,O) = u(t,l) : 0

and initial condition

(2.3) u(Ox) = (x).

We assume throughout that the parameter q = (ql, ... Aq) belongs to Q, where Q

is a given compact (in the L2 topology) subset of

Q(m,M) -=(-ql,...,q n) E L 2(U)x... xL 2(U)IO < m <ql(t,x) < M,

I 22 (tx)l < M, qj(t,x)l < M, j= 2,3; for i= 1,2,... ,n,
ax

2
-q ad 2 are uniformly Holder continuous on U with

0at - ax2

exponents in (0,1))

0 for some positive constants m,M. We further assume that we are given observations

Yie L 2(0,1) for the system (2.1)-(2.3) at discrete times ti, i =1,.r

(t, > 0, t <T), and an output map Y(t,x,q): R -~ R such that Y is continuous

I r -

in q and such that the map x -- Y(tdixxq)v(x) is in L 2(0l ) whenever vtEu L 2(0)

The fundamental identification problem we consider in this paper then consists

6
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of determining a q 6 Q that minimizes a distributed least squares fit-to-data

functional given by

r l2
(2.4) J(q) = I f lYi(x) - Y(ti,x,q(ti,x))u(ti,x;q)l dx

i=l0

where u is the solution to (2.1)-(2.3) corresponding to q 6Q.

We make the following standing assumptions regarding Q and the system

(2.I)-(2.3):

(HI) For each q eQ the perturbation function g(t,x) = f(t,x,q(t,x)) is

such that-t and E-2 are uniformly Holder continuous on U withax2

exponents in (0,1).

(H2) For each q : Q, f(,O,q(OO))= f(Ol,q(0,l)) = 0.

(H3) The function q - f(.,.,q) is continuous as a mapping from

L2 (U) x .. x L2 (U) to L2 (U).

(H4) The initial function is in H3(0,l).

Standard results from the theory of parabolic partial differential equations

may be called upon to guarantee that, under hypotheses (Hl)-(H4), there exists

a unique (classical) solution u (on [0,T] x [0,1]) to (2.1) to the initial-

boundary value problem (2.1)-(2.3) (see, for example, Theorem 7, p. 65 of

[18]). In fact, using such results, we find that a2u and 2u are uniformly
ax

2

continuous functions on U.

We note that our use of homogeneous boundary conditions (2.2) with

equation (2.1) does not restrict the generality of our results since the
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corresponding nonhomogeneous boundary value problem,

a. -_= ql(t,x) 2 uq2(t,x) 3- + q3 (tx)u + f(t,x,q(t,x))

uaxo + quo~xt)

(2.5) u(tO) u(t)

u(t,l) : Ul(t)

u(O,x) =

can be transformed into

av =2v

= q1 (t,x) + q2(t,x) - + q3 (t,x)v + F(t,x,q(t,x))ax2

(2.6)
v(t,O) = v(t,l) = 0

v(Ox) =(OW

by letting v(t,x) = u(t,x) - (l-x)u0 (t) - xui(t) . In the event that f satisfies

(Hl)-(H3) and, for i = Ol,ui is a uniformly H6Ider continuous function on (0,T)

satisfying ui(O) = ui(O) = 0, it is easy to see that the new perturbing function

given by

F(t,x,q(t,x)) = f(t,x,q(t,x)) - q2 (tx)(uo(t) - Ul(t))

+ q3(tx)((l-x)uo(t) + xul(t)) - (l-x)uo (t) - X l(t)

also satisfies hypotheses (HI)-(H3). A similar statement may be made about

the case when u(t,O) = q4uo(t) and u(t,l) = q5ul(t), where q4 and q5 are

(constant) components of the unknown parameter vector q.

If f does not depend on q it is possible to relax the differentiability

requirements for f in the spatial variables (as defined in (Hl)) although



67

modest changes must be made in the theoretical arguments of section 3. For

- details on the alternative hypotheses and an indication of the required

modifications, see Remark 3.1 in that section.

Having stated the fundamental estimation problem, we next consider an

abstract setting that might facilitate our treatment of the problem. We shall

-Napproximate solutions q of this problem by a sequence {qN} of solutions to

q estimation problems that are computationally more tractable than our original

problem. The approach taken here is similar in spirit to that of a number of

other related efforts (see [1], [4], [5], [6], [7], [9],[13] and [16]) in

that the original estimation problem is reformulated in a Hilbert space setting

where Ritz-Galerkin type ideas may be applied to construct the approximate

problems. To this end, we rewrite (2.1)-(2.3) as an abstract evolution equation

(AEE) in an infinite-dimensional state space; although the use of spaces

and operators here is quite standard and well-established in the literature,

the dependence of our problem on unknown parameters requires that we make an

effort to carefully define the operators involved.

Define Z = L2(O,l) with the usual inner product <.,.> and norm .'. For

q = (ql,.. ,qn)E Q, and tE [O,T], let the operator A(t,q): V - Z be given by

(2.7) A(t,q)p = ql(t,-)D 2 p + q2(t,,)D + q3(t,)

for dom(A(t,q)) = D = H2 (0,1) n H (O,I), where D - is the usual dif-

ferentiation operator. Finally, for each q : Q and t e [O,T], defitne

G(t,q) = f(t,-,q(t,.))e Z. Before we give the equivalence between (2.1)-(2.3)

and an AEE on Z, we shall establish, for the operator A(t,q), a dissipative

inequality that is fundamental to the calculations that follow.
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Lemma 2.1. There is a constant w > 0 such that

(2.8) <A(tq)*,p> < wj1 2

for all *E:D, uniformly in t E [O,T] and q eQ.

Proof: For * e D, qe Q and t E [0,T],

<A(t,q)*,*> = <qD 2 ,i> + <q2D*,*> + <q3*,*> I

where qi is understood to mean qi(t,.) for i = 1,2,3, Using integration by

parts and the boundary conditions on p we obtain
0

<q1D2*,*> = -<D,D(ql*)>

= . <D,,qD >- <D,,(Dql),>

. q' 2 - <q)D, l (Dql)p>

lq_- + (Dq]) [

q D4I 2 +  jqi D* 2 + q2 (Dql) j 2

- D + 1 2 - ( q
lq_ (Dql)tp<__ q ! D 12  + 3i qi ,1

In addition,

<qD , > = q{Dip q 2P
=qEh, --# '>

ql2 q2_< iqi'D*[2 + !jI -,, *1

il~~~~~~~~~~~ -1 2 Fm l - | a tl t i h " - mi i : l
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Combining these estimates with bounds on q i = 1,2,3, and - given in the

definition of Q, we find

1_1_ (Dq )1 + !_ 1!2  12 +M*2
<A(t,q)I + -- +MIIr M2 '12

( 2+ M)1 1

so tt w + M can be chosen independent of t and q Q

In the theorem that follows we establish the equivalence between (2.1)-(2.3)

and an AEE on Z, obtaining some needed continuous dependence results as well.

Theorem 2.1 Let qE Q be fixed and let y(t,q) = u(t,.;q) where (t,x) - u(t,x;q)

is the solution to (2.1)-(2.3) on U. Then y is also the unique solution on

[0,T] of

t
(2.9) z(t) = o + f {A(o,q)z(a) + G(o,q)}da.

0

Furthermore y(t;q)C Z is continuous in t e [0,T] and uniformly continuous in

e H3 (in the Z topology), uniformly in t C [0,T] and q eQ.

Proof: That t - y(t;q) satisfies (2.9) follows immediately from the definitions

of the operators involved and the comments following (Hl)-(H4). The arguments

required to establish uniqueness are similar to those for continuous dependence,

so we present only the estimates that prove the latter.
If z and z denote solutions to (2.9) associated with 0 and (in H0)

respectively, then

...4|
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t

(2.10) z(t) - I(t) = - + f {A(a,q)z(a) - A(o,q) (a)}da
0

We require an integral version of the well-known result [14, p. 100] that
d 1 2
d2 Ix 2t = <(t),x(t)>. If X is a Hilbert space and if x: [a,b] X is

t

given by x(t) = x(a) + f v(a)d, then
0

(2.11) txCt)I 2 = tx(a)l 2 + 2 f < v(a),x(a)>da
0

In our case we find, using (2.10) and this result, that

2 =2 t
lz(t) - 2(t)I1 - I2 + 2 f <A(a,q)(z(a) - '(c)),z(a) - '(a)>do

0
T

< 1 -fl + 2w Jz(o) -z ()2do
0

where we have used the dissipative property for A(o,q) that is uniform in a and

q. Finally, an application of Gronwall's inequality yields

Iz(t) - '(t)1 2  I exp(2T)

and the desired continuity result (uniform in t and q) obtains.

In view of the established equivalence, the parameter estimation problem

involving (2.4) may be reformulated as an abstract identification problem,

where we now wish to find q Q that minimizes

r
(2.12) J(q) = Y yi - C(ti,q)z(ti;q)l 2

i=l



where z is the solution to (2.9) corresponding to q6 Q, C(t,q): Z Z is

defined by C(t,q)* = Y(t,.,q(t,.))p, for iE Z, and ('( is the usual L2 (0,1)

norm.

*Theorem 2.2. There is a solution q in Q to the parameter estimation problem

F for (2.9), (2.12) (equivalently, (2.1)-(2.3), (2.4)).

Proof: In the arguments that follow, we shall show that the map q - z(t;q) is

continuous for each t E (O,T), so that the continuity of q -* J(q) is assured;

therefore, there is a parameter q in the compact set Q for which J attains

its minimum.

Let q, q be given in Q and let z, z be the corresponding solutions to

(2.9). Applying (2.11) we find that

2 t
Iz(t) - Z(t)l 2 f<(A(a,q) - A(a,'))z(a),z(a) - z(a)>da

0
t

+ 2 f <A(c,q)(z(a) - 3(a)),z(a) - (a)>du
0
t

+ 2 f <G(a,q) - G(aq),z(a) - (a)>da
0
t

2 f J(A(a,q) - A(a, ))z(a)I (z(a) - 'Z(aflda
0

t
+ 2w f )z(o) - Z(a) 2da

0

t
+ 2 f JG(o,q) - G(o,0)Ilz(a) - (cllda

0

T<(A (a 'q )  A(a'q))z(O)I 2do

0
*T 2

+ f G(aq) - G(a,q)l da
0

T 2
+ 2(w+I) f Jz(a) - z(G)I do,

0
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where dissipativeness for A(o,q) has been used, along with the inequality

2ab < a2 + b2 that holds for a and b real numbers. Applying Gronwall's

inequality to the last expression we see that the continuity result depends on

estimates for the first term (that the second term involving G may be made

arbitrarily small is immediate from (H3)). To this end, we observe that

T 2T ,1 2

(2.13) f 1 (A(uq) - A(o,q))z(o)( 2do 2 f I(q(CT,') - 1 (o,'))D'z(a)l
2 da

0 0

T 2

S+ 4 f J(q3(u,) - qB(O,'))z(o)j 2do

0

<4N2+ N1+ N 0 ) jq-q

where in the last expression I.1 denotes the L2 (U) x ... x L2 (U) norm and

Ni = sup{I (Diz(o))(x)I "a E (0,T),xC (0,I)} is finite, i = 0,1,2, (see the

comments following (Hl)-(H4) above). The continuity of J and thus the existence

results are established.

We remark that the important aspect cf the above result is the continuous

dependence of z on q which is needed to establish existence of solutions to the

approximate estimation problems formulated in the next section (see Theorem 3.2).

Indeed, existence of solutions to our original estimation problem follows from

the convergence results for sequences of solutions to the approximate problems

(
(see Theorem 3.5).

4
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§3 Approximate parameter estimation problems

We focus in this section on the problem of approximating the infinite-

dimensional estimation problem for (2.9), (2.12) by a sequence of parameter

estimation problems for which the state variable satisfies an ordinary differential

equation (ODE) on a finite-dimensional state space ZN. Fundamental to this

undertaking is the task of establishing the convergence of solutions of the

approximating systems on ZN to solutions of the original AEE on Z. Although our

formulation is a classical one of the Ritz type (involving orthogonal projections

of an infinite-dimensional system onto a sequence of finite-dimensional sub-

* spaces) that is modified to allow for q-dependent operators and variables, our

calculations are much simpler than those for functional differential equations

in [4], [9] and [16], where the spaces Z and ZN as well depend on the choice

of q.

N
For the approximation spaces Z , we take the spans of cubic spline basis

elements which have been modified so as to satisfy the homogeneous boundary

conditions. Specifically, for any integer N > 0, let xN = j/N, j = -3,...,N+3,
3

and SN, j = -1,...,N+l, be the cubic spline that vanishes outside (x 2, xj 2),

has value 4 and slope 0 at xN, value land slope 3N at x and value I and

slope -3N at xN SN is the standard cubic spline found in the literatureslope 3N at ' Then S.

(see, for example, [27, p. 73] where the basis elements differ from the ones

defined here by a factor of 24). We note that for some values of j we do not
N

have S. satisfying homogeneous boundary conditions. The modified basis.

elements BN considered here will be the restriction to [0,1] of the followingf
i functions:
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B N = S N _ 4SN
0 00 -1

1 0 1

BN = S j = 2,...,N-2

* N =N 4 S NBN_-i N N-1

B N = S N _-S
N N N+1

The approximating subspaces ZN of Z are then given by ZN = span{BB,... B},

for which it is easy to see that ZN C V for each N = 1,2,...

Our intermediate goal is to find approximations, for fixed q 6 Q, to the

solution z on [tlT] of

AI t

(3.1) z(t;q) = z(tl;q) + f {A(a,q)z(a;q) + G(a,q)}da,
tl

which is equivalent to (2.9) if z(t,;q) is given by (2.9) for time t, > 0 (the

first sampling time). To this end we define, for t 6 [tlT]

(3.2) zN (t;q) = PNz(tl;q) + ft{AN(a,q)zN (a;q) + pNG(aq)}do,
•t 1

where pN: Z - ZN is the orthogonal projection characterized by <PNz - z, B.> = 0,
3

j = 0,1,...,N, and A : Z ZN is defined by AN(t,q) = PNA(t,q)PN. Since

SN (t) in (3.2) belongs to ZN , a finite-dimensional space, equation (3.2) is

equivalent to the ODE on [tl,T]

(3.3) N(t;q) AN(tq)zN(t;q) + pNG(tq)

LzN (t I;q) P PNz(t 1;q)

(33
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which, as we shall show in the arguments to follow, approximates (3.1) in some

sense. We remark here that although does not explicitly appear in (3.2)

and (3.3), zN depends on € in that zN (t) was generated using z(tl) from (2.9)

with z(O) = 0.

Associated with (3.2) (or (3.3)) is an "approximate parameter estimation

problem": Find N e Q that minimizes
r

(3.4) jN(q) = -I i  C(ti;q)z N(ti;q)l 2

i=l

where zN is the solution to (3.3) corresponding to q s Q.

' Before discussing the convergence of z N(t) to z(t) as N , we establish

analogues of Lemma 2.1 and Theorem 2.1 for the operator AN and the Nth ODE

(3.3), respectively. Our first result is a dissipative property for A N that

follows immediately from the same property for A; that is, for any qN C ZN

<AN(t,q) N,pN> = <pNA(tq)pN pNN>

= <A(t,q)PNIN, pN N>

< whp N

where we have used the fact that pN is self-adjoint. We summarize this finding

in the following.

M2  N N
Lemma 3.1. Let w = -- + M > 0. Then, for every N E ZN

(3.5) <A t,q),N a QNdc

for all t [ O,T] and q C Q, and for each N = 1,2, ....
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Our next result guarantees the existence of solutions to (3.3) as well as

to the Nth parameter estimation problem. Furthermore, in the proof of the

former we outline the numerical scheme used to solve (3.3) for various sample

problems reported in section 4.

Theorem 3.1. Let q be fixed in Q. Then there exists a unique solution zN to

(3.3) on [tl,T] that depends continuously on 0 E H3 (in the L2 (O,l) topology),

uniformly in t E [tlT], q e Q, and N = 1,2,....

Proof: Our arguments are similar to those developed in [9], [11], where z N(t)

is written in terms of the basis elements {B } for ZN.

Define aN as the l x (N+I) row vector function given by

0 N

NN N ~
BN:(B0,... ,BN).

For each t E [tl,T], zN(t) e zN, so that there exists w (t)E: RN+l, w (t) =

NN N N N
col(w(f such that zN(t) = 8 w (t). Thus we may rewrite (3.3) as

(3.6) i (t) = A N(tq) Nw N(t) + NgN(t), tE [tlT],

N w N(tl) = 8N

(t) in R are defined by PNz(t ) N C N and PNG(t) = g Nt);

NN N N
it is understood that w , gN, and N depend on q E Q. Let A (t,q) denote the

matrix representation of A N(t,q) with respect to the basis elements

* {Bo ... B N}. Then usual Galerkin arguments establish that the coefficients
N0' N

w (t) in (3.6) satisfy

N (t) A AN(t,q)w N(t) + g N(t), tC [tlT],
(3.7)

\wN (t ) = N ,
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so that once we determine A N(t,q) we will be able to analyze the existence

and uniqueness of solutions to (3.7); in addition, the realization of numerical

algorithms to solve our approximate estimation problem will be based on (3.7).

Note that for any p e Z, (pN¢ _ w) G (ZN). so that for each j = 0,...,N,

<pN _, BN> 0

or, equivalently,

(3.8) < BN> = <pN N3 3 j

N ,N NT RN+

However, since there exists EN ( N I NT E R +1 such that

(3.9) PN = BN= N ,

equation (3.8) can be written

N NN N
<i, B.> : <sN N, B.>

N N N N
- . <Bi, B.> & = 0,...,N.

This may be written as a matrix equation

HN(i) QNEN

where

( N
h N s , 

B

B(* N >

N N r4 N
and the (N+l) square matrix Q has elements Q <B. B.>, i,j 0,1,...,N.

j
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It follows that we may solve for EN by writingC
(3.10) c _- (QN) H N( )

where Q is invertible since it is the Grammian of linearly independent basis

elements for ZN. The desired representation for AN(t,q) may be derived from

these estimates since

N N(t,q)zN(t) = P N A(t,q)NwN(t)

= PN ql(t,.)D 2 ( N w N (t)) + q2 (t,.)(N w N(t))+ q3 (t,.)N w N(t)]

S:$N N(t)

N l
for some a (t) E RN+l. Thus, applying (3.9) and (3.10), we find

aN~) M (Q N H-N(ql(t )2( NwN(t)) + qz(t, )D(aNwN(t))+q 3 (t'.)NwN(t))

I= (QN) ," .

NE (Q)-

j=0 ,
N N( wj(t)<q 2(t,')DB j, B >j=O '

j 1o0j t )<2 ( t ,' ) DBj , BN>

S
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j0
1 1

+ (QN)

j=O wj(t) <q 3(t")BN , BN >

j=0

(QN)-_i (K N(q) +KN ()+K N(qw (t).
_- + K2(q) + q)w

= (~)1(~() N N N

Here the (N+1)-square matrices K1, K 2 , and K3 have elements given by

K 1(q) i j <ql(t,-)D2B i, B i> ,

K (q)i,j = <q2 (t
'')DB ' Bi >

K N =(~ <q3 (t,.)B , B.>31

Hence we may conclude that (3.7) may be rewritten as a linear (N+1)-vector

ODE in w N(t) for t E [tl T ] ,

N NNN N N(1 { ) (Q N(K(q) + K2(q) + K3(q))w (t) + g (t),
(3.11)

N N
wN(tl )=N

We may then apply standard differential equation theory to obtain the existence

Nof a unique solution of (3.11) on [t,,T] that depends continuously on C

Moreover, since

N N N
(QN) H (z(t1 )) ,
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where the well-defined map € - z(tI) is continuous, it follows that the

solution to (3.3) given by

zN(t) = NwN(t),

3
is unique on [tl,T] and continuously dependent on *: H0. We have only to

show that the continuity is uniform in t : [tlT], qE Q, and N = 1,2,....

This follows easily from the (uniform) dissipative result for AN, as the

required arguments are virtually the same as those used to demonstrate the

continuity (uniform in t,q) of € - z(t;q) (found in the proof of Theorem 2.1).

4

Finally, minor modifications in the proof of Theorem 2.2 yield the

following. (Note we use here the continuity of q - z(tl;q).)

Theorem 3.2: The Nth approximate parameter estimation problem has a solution

q E Q for each N = 1,2,...

We may, therefore, determine a solution q N to the Nth identification

problem by applying conventional optimization techniques with computational

schemes that solve (3.11) (the ODE in the "Fourier" coefficients wN (t)).

Although we may be able to determine qN fairly easily in the N th ODE-governed

problem (especially for small values of N), the solution qN we find is

4N meaningful only if qN approximates the desired solution q to the original

estimation problem. Fundamental to the establishment of this fact (i.e.,

the convergence of qN to q in some sense) is the demonstration that

z N(t;q N) N z(t; ) for an sequence {qN I of parameters in Q that converges to

some q E Q.
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To pursue this line of argument, we shall therefore assume that an

arbitrary sequence {qN} of parameter functions has been given such that

N - t and Q, N = 1,2.q q in the L2(U) x... xL2(U) q

We first consider the problem of obtaining the convergence of zN(t;q N) to

z(t;q) for initial data in a smooth but dense subset of H3 , a restriction
0'

that simplifies our calculations since we are able to take advantage of

several useful spline estimates (given below).

Let3 denote the subspace of Z given by = H . Then for .

we obtain the spline estimates presented in Lemma 3.2 below, the proof of

which may be found in [7, Lemma 2.3] (the arguments use standard techniques

from spline analysis such as those underlying Theorem 6.13 of [27]).

Lemma 3.2 Let p be given in Z. Then
I p% I CO  01

(3.12) 1PN¢ - tI C0- ID4 ip,
N
Cl

(3.13) ID(p " )I <CjD 4 , and
N3

C2(3.14) 0D2(pN¢" *)I - pI,

where C0, C1 , C2 are constants independent of p and N.

We turn now to a rather technical result that facilitates later convergence

proofs. To argue that z N(t;q N) - z(t;q), we shall need to use estimates such

as (3.12)-(3.14) where = z(t; ) and hence need conditions under which

z(t; ) E: . This can be guaranteed if we suitably restrict the initial data

for z. To this end we define I = H6 n H3 and note that I is dense in the
03

initial data set H0 (in the L2 topology). We can then prove the following.
0 2
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LeTma 3.3 Suppose q G Q is fixed and let $ be given in I. Then the solution

z to (3.1) corresponding to the initial data $ is such that z(t;q) for

each t e [tl tr].

Proof: We shall need certain results from Chapter 3 of [18]. From (HI) and

the definition of Q it follows that for i 
= 1,...,n, and s = 0,1,2, ---

i g and a (where g(t,x) = f(t,x,q(t,x))) are uniformly Holder con-
X s ' t xs

tinuous functions on U with exponents in (0,1). Pick a E (0,1) as the maximum

of these exponents so that each function is uniformly Holder continuous with

* exponent a.

If 0 E I is given, belongs to C5 (0,1) so that, for s = 0,...,4, D S has

a bounded (continuous) derivative on (0,1). It follows immediately that DS

s = 0,...,4, are uniformly Holder continuous on (0,1) with exponent a. In

addition, € e I implies that $ E H03 so that (D 2)(x) = (Do)(x) = O(x) = 0 for0 o

x = 0,1. Therefore, for x = 0,1, and t = 0,

A(t,q)4(x) + G(t,q)(x) = 0

where we have used hypothesis (H2) to set the second term equal to zero.

We note that this last condition is just the condition "Lp = f on aB" in the

notation of [18, p. 75].

Standard regularity theorems for parabolic equations may now be applied:

Specifically, one may use Corollary 1 of [18, p. 78] (with p = 1 in the

notation of [18]) to make minor modifications in the arguments underlying

Theorem 12, p. 75, of the same reference (with p = 2 for the spatial derivatives)

S 4
and conclude that D z(t;q) is uniformly H6lder continuous on (0,1) (with

exponent a) for every te [ti l tr ] .
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The preceding results may now be employed to demonstrate convergence of

zN(t;qN) to z(t; ) whenever z(t;^)E.; i.e., when cE: I and t E [t l 9t r ] .

Theorem 3.3: Let 0 6 I be given. Suppose {qN } is arbitrary in Q with

q qand E:Q. Then

z N(t;q N)  z(t;'q)

q
as N -* ®, uniformly in t1E [tlEtr].

Proof: Where no confusion results, we shall let z N(t) and z(t) represent the

solutions to (3.2) and (3.1) corresponding to qN and , respectively. Then

for te [tl,tr],

( (3.15) IzN(t) - z(t)j < IzNt) - PNz(t)j + JPNz(t) -z(t)j

where the second term converges to zero as N + from (3.12) and Lemma 3.3;

in fact, convergence is uniform in t due to the compactness of {z(t)It [t ,t r]}

in Z. It remains to consider IzN(t) - PNz(t)!. From (3.1), (3.2) and (2.11)

we have

z N(t) - pNz(t)I 2 =P Nz(tl;qN) - PNZ(t1;q)I2

N N N N

+ 2 ft <AN (,q )(zN (a)- P Nz(a)), zN(a)- PNz(a)>da
tl

t N NN~

+ 2 f <AN(,q N)PNz(a)- pNA(a,q)z(a), zN (a)- PNz(a)>da
t1

+ 2ft < pNG(,qN)- pNG(,), z N (a)- PNz(c)>da

tI
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Appealing to arguments similar to those found in the proof of Theorem 2.2, we

thus argue
N 2 trz

(3.16) IzN(t) - PNZ(t)l2 < T(N) + T2(N) + T3) + 2(w+l) ft WN(o)- PNz(G)I2 do
tl

where

TI(N) lz(t,;qN) -Z(t ;,)12

T(N) f A'(a qN )P pN(a) - Aa,1)zajd
titr

* T3 (N) f tG(cqN) G(o,^)I 2 do.
tl

It remains only to verify that Ti(N) - 0 as N - , i = 1,2,3; an application

of the Gronwall inequality to (3.16) will then give the desired convergence of

z N(t) - PNz(t) i to zero as N -, uniformly in t E [tl~tr].

The convergence of TI(N) to zero is an immediate consequence of the proof

of Theorem 2.2. In addition, T3(N) 0 from (H3). Further, T2(N) < 2TI(N) +

2T2 (N) where

= tr  N NN N N 2

T I (N) A j )AN(aqN)pNz(a) - p( z 2do
t1

and
= tr jN Nza N1

T2 (N) - j IpNA(,qNz(a) pNA(aq)z(a) 2d
• tl

converge to zero as N - , (the argument for T2 follows the reasoning of (2.13)).

Considering Tl , we first observe that the integrand satisfies
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I(PNA(aqN)PN)pNz( ) - pNA(o,qN)z(o)I

S IA(a,qN)(PNz(W) - z(aM))

< q - z(a)) + q (o,.)D(PNz() - z())[

+ qN(a,.)(PNz(a) z(- )

C2  Cl  CO

N 2 N 3 N4

O N (a)

6

from (3.12), (3.13), (3.14) and the definition of Q. Furthermore, the con-

vergence of aN(a) -+ 0 as N is dominated since

0N(a) < M(C0 + C1 + C2)ID 4z(;q),

where the map a - ID 4z(;'q)l is in L2(t1ltr) since : I (the arguments are

4
similar to those used to prove Lemma 3.3; i.e., the map (a,x) - D z(a;q)(x)

is uniformly Holder continuous on (t,tr) x (0,1).

Finally, we are able to derive state variable convergence for arbitrary

e H3
~ 0.

N N
Theorem 3.4: Suppose that q - q where q and q are arbitrary in Q. Then

3for any E: H0,

zN (t;q N )  --z(t;q)

as N , uniformly in t C [tlstr] -

I w i i l" i i + " i i " -i- - ,
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Proof: Since I is dense in H , an element 0 may be chosen from I so that

the quantities z N(t;O,q) - z N(t;;,q)l and Iz(t;o,q) - z(t;;,q)l are as small

as desired (uniformly in t, q, and N; see Theorems 2.1 and 3.1). Therefore,

for any t 6[titr], we find that

z N(t;o,q N) -z(t;o,^)l

IzN(t; ,qN  z N (t;,qN)

I
+ iZN (t;oqN) -

+ lz(t;o,') -

will be arbitrarily small for N sufficiently large. The convergence result

thus obtains.

C
Remark 3.1. If the perturbing function f is independent of q, it is useful

to note that we may relax the spatial differentiability requirements on f

(given in (Hi)) in much the same way that this was done for 0 in Theorem 3.4

above. That is, we may replace (HI)-(H3) by (Hl)' and (H2)', given below,

and obtain the initial convergence results (Theorem 3.3) for { ,f} in a smooth

* but dense subset of H3 x L2(U); as before, the additional smoothness is needed

to guarantee that the corresponding solution z(t;o,f,q) belongs to for

t 1 [tltr]. Under the new hypotheses on f, existence and uniqueness of

* solutions to the original parabolic equation are still assured.

(Hi) The perturbation function (t,x) -- f(t,x) and its derivative

* are uniformly Holder continuous on U with exponent in (0,I).
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(H2) The function f satisfies f(O,O) = f(0,l) = 0.

We note, however, that a price must be paid for this formulation of the problem:

When q2 0 or q3 T 0, nonhomogeneous boundary conditions can no longer be

allowed since the transformation to homogeneous boundary conditions (see (2.5),

(2.6)) necessarily generates a q-dependent perturbing function.

We should also remark on another technical aspect of the above presentation.

The reader might be curious as to why we choose the first sampling time tI

strictly positive and carry out the convergence proofs (see (3.1), (3.2) and

Theorem 3.4) on [tl,T] instead of the (perhaps) more natural interval [0,T].

This is a purely technical matter, since if we take tI = 0 the establishment

of the fundamental results of Lemma 3.3 becomes more delicate. In particular,

we can then no longer use Corollary 1 of [18, p. 78] as we did in the proof

of that lemma. However, if we make further smoothness assumptions on the data

of our problem (e.g., the coefficients, initial data, nonhomogeneous perturbing

function f), we can instead invoke Corollary 2 of [18, p. 78] to obtain the

desired bounds and convergence results on [0,T] x [0,1] in place of [t1 ,T] x

[0,1] where tI > 0. In our calculations in section 4 below, we actually

approximate the functional coefficients on [O,T] and exhibit the convergence

in this case.

The smoothness assumptions that we have assumed on the coefficients are

reasonable unless one is dealing with problems in which the coefficients have

jump discontinuities. Our methods also perform well in such situations (this

comment is based on use of our techniques in numerical calculations for other

classes of estimation problems), but the above theory does not extend in a

straightforward manner. Rather, one can use a weak formulation of the

system (2.1)-(2.3) (e.g., see [10]) to develop a convergence theory in this case.
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To this point we have focused on the convergence of solutions zN (of

(3.3)) to the solution z (of (3.1)) once the convergence of any sequence of

parameters has been assured. In reality however, we have yet to determine

whether any sequence of solutions [ N} of the approximating problems is in fact

convergent; even then we have no guarantee that the limiting function a is

indeed a solution to the original parameter estimation problem. Our next

result, (similar in spirit to that found in [4], [9], [13]), addresses this

question and indicates when an approximate identification problem may be used

4 to compute numerical solutions for the original problem.

Theorem 3.5. Let {N } be given, where each qN is a solution to the approximate

parameter identification problem for (3.3), (3.4). Then there exists q E Q

and a subsequence {qNk such that q Nk q and q is a solution to the original

estimation problem for (2.9), (2.12).

Nk
Proof: Since Q is compact, convergence of a subsequence {q to some q in

Q is ensured. In fact, it is easy to see that q is a solution to the original

parameter estimation problem. From (2.12),

Sr 2
J( ) = i i j - C(ti, )z(ti;q)l

4 =lI ly. -c(t.,q )z (t.:; )

= l Nk qk

< lim jNk (q)

Nk .
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for any q 6 Q. But Theorem 3.4 is also valid with the constant sequence {q},

so that z N(t;q) - z(t;q) uniformly in t E [tl,tr]; we are thus guaranteed that

lim JNk (q) = J(q)~Nk-

so that J(.q) S J(q) for any qE Q.

I
In the discussions thus far, our problems have been formulated in terms

of iterations and searches in the parameter function space Q. Of course, we

cannot realize such searches on a computer. Indeed we must have for the elements

in Q some type of representation amenable to implementation. One possibility

(see [12]) is to assume an a priori functional representation (e.g., polynomials

of degree < k with coefficients ranging over some given set) so that the parameters

sought and convergence argued actually involve finitely many constants in some

fixed subsets of Euclidean space. For this approach one must have an idea of

the form (shape) of the unknown functional coefficients. In this event the

above-developed theory obviously suffices to establish convergence results

and an implementable scheme. However our theoretical framework is, in

reality, much more general and can be employed to develop methods where one

actually searches for the shape of functional coefficients by seeking functional

approximations (say in the space of linear or cubic splines). We do this in

the examples of section 4 below. To illustrate how the above theory can be

applicable in this situation (we recall that all the results are given for Q

compact in the L2 sense and that the continuous dependence of z and J on q is

in the L2 norm), we first consider the case where one uses piecewise linear
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spline approximations to functions in Q (which is natural if Q is compact

Cin the C or supremum norm topology).

tWe assume that QO C is compact in the C topology and let L (Ml) and

LX(M 2) denote the spaces of piecewise linear splines (see [27, p. 11j)
T-t

corresponding to equal partitions of [t1 ,T] and [0,1] of mesh size l and

l2 ' respectively. That is, we use the piecewise linear splines with knots

* tk= t l + (k-l)((T-tl)/Ml), k = 1,2,...,M +1, and x. = (m-I)/M 2 , m = 1,2,...,M2+.

We denote the corresponding 2-dimensional interpolating linear spline operator

by IM where M = (M1 ,M2). Thus if q is continuous on [tl,T] x [0,1],

MI+1 M2+1

(IMq)(t,x) = I Z q(tk x m)k(t)pm(x)
k=l m=l

Ml1 M

where Bk = ak and pm = Pm are the appropriately normalized (depending of

course on the partition mesh) usual "patch" function piecewise linear basis

elements [27, p. 11] defined on the intervals [tl,T] and [0,1], respectively.

Clearly the mapping I M:Q -- C is continuous (in the C topology on Q) and

hence QM = IM(Q) is compact in C. Since any q = (ql,q2,...,qn) in QM can be

written as q I M(q) for some q EQ, it follows that QM has the representation

* (3.17) QM [tlT] - [0,1] RnI qi= ikk kP m' 6 i km ' 'ikm
km

1where the Likm are appropriately chosen compact subsets of RI.

We then carry out the minimization procedure (for JN) described earlier

Min this paper over the function set Q I obtaining, for each state approximation

index N, a best parameter function qN(M) in QM. Due to the compactness of

MQ , we can extract a subsequence (we relabel to avoid subsequence notation)

M Nconverqing to some liit .. io (M) in Q I i.e., qi (M) urn E1.(M),
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i 1 1,...,n. From our earlier discussions (Theorem 3.5), q(M) provides a

Mminimum for J over Q From the definition of QM, it follows there exists

q(M)e Q such that q(M) = IM(q(M)) for each M. From the compactness of Q,

we can extract a subsequence q(Mj) such that q(Mj) converges (in C norm) as

f - (recall M = (MI,M 2 ) and hence by Mj  - we shall mean M3 -0 and
2 1~*

M3 -) to some element q in Q.2

To argue that q is a solution to our original problem of minimizing J

over Q, we need further assumptions. Specifically we assume Q C H2 with the

quantities ID2qj , ID2qj , IDxDtql uniformly bounded as q ranges over Q.Mj

Then we also find that IMj(q(M )) q in the L2 topology since

(3.18) IMJ(q(Mi)) - q*j , 1M (q(MJ)) - q(MJ)j + 1q(Mj) - q*j

CO< O  lq(M') - q*1

(M3)(M3 )1 2

and this last expression (the first term of which follows from a minor

modification of Theorem 2.7 of [27, p. 19]) approaches zero as M-* Co.

Recalling that J(q(M)) < J(q) for all qE QM , and, given the fact that

QM = I M(), thus

(3.19) J(q(M)) < (IM (q)) for all q E Q,

we next observe that the same basic spline result used in (3.18) yields

M IM(() al anI (q) - q for any qE Q. Furthermore, since q(M) = IM M)) for all M and

IMJ(q(MJ)) - q*, we may use the continuity of J (in the L2 sense) to take

limits in



32

' -rj(IM (q(MJ))) < j(IM (q)), q e Q,

to obtain

J(q*) < J(q) for all q : Q.

We thus find that q* = lim q(Mj ) = im IMj(q(MJ)) = lim (M) =
MJ-.CO Mj-. Mj

J tim lim qNk(M4j) provides a minimum for J over Q. We summarize our findings
- N k +cc

in the formal statement:

* Theorem 3.6. Suppose QC H2 with ID2 q, ID2qj, IDtD qj uniformly bounded

for q E Q. Further assume that Q is compact in its C topology and let Q M= I M(Q)

denote the linear spline approximation sets as given in (3.17). Let qN(M) be

N
a solution obtained from minimizing j (see (3.4)) over QM. Then there exists

q* in Q minimizing J over Q and a subsequence Nk(MJ) with q*= Jim (lim qNk(MJ)).
MJ-.o Nk i0o0

We next consider approximating the parameter functions with bicubic

elements. That is, we assume the basis elements k and pm in (3.17) are those

for St(M,) and SX(M 2 ), the cubic splines [27, p. 44, 48, 49] on [tl,T] and

* [0,1], respectively. The corresponding bicubic interpolating map IM is

continuous in the C2 topology on Q (the interpolation map involves functional

values of q at interior grid points of [tl,T] x [0,T], values of Dtq, Dxq at

* lateral boundaries, and those of DtDxq at the corners -- see [27, p. 49, 50]).

If we assume that Q is C2 compact, we again can obtain a representation for

QM = 1M(Q) of the form (3.17) where the coefficients range over compact sets

* in RI. To make arguments analogous to those involving (3.18), (3.19), we
44 4 22

need only to further as,,e Q C H4 with ID q , Dtq1 , ID D qI uniformly
x t tx
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bounded for qe Q and employ Theorem 4.9 (which holds with PC4 '2 replaced by

H4 ) of [27, p. 60]. The following corollary to the above results is thus

obtained.

Corollary 3.7. Suppose Q C H4 is compact in the C2 topology with ID4qI,

ID4q ID D 2xq[ uniformly bounded for qE Q. Let QM = IM(Q) denote the

bicubic spline approximations to Q as defined above. Then the conclusions

of Theorem 3.6 are also valid in this case.

If the parameter functions are separable, i.e., qi(t,x) = hi(t)ci(x), we

can relax the assumptions in the above theorem and corollary. For example

suppose Q1 C {h: [t1,T] - Rn } and Q2 C {c: [0,1] -- Rn } are given subsets of H

with both Ql, Q2 compact in their respective C topologies and let Q = Q1 0Q 2 "

That is, Q = {q = h cI h C Ql, c E Q2 } so that the components of q e Q are

given by qi(tx) = hi(t)ci(x), i = 1,2,...,n. We further assume that IDh1 2,

IDc12 are uniformly bounded in he Ql, c e Q2.

Let I l and IM2 denote the piecewise linear interpolating splines [27, p. 11]
t X T-t

on [t1 ,T] and [0,1] corresponding to mesh sizes and 1/M2, respectively.

Ml 
M2

Then It and Ix are continuous from Q, and Q2 (with their C topologies) totM M1 M2 M2
Lt(M) and Lx(M 2) , respectively, and both Q1  1 t (QI) and Q2 Ix (Q2) are

compact with representations

M 1l~Q 1 = ( [tl'T] R hi = ik~k ikj
k=l

and

M2 [ Rn c,(x) = 7 Yim+m(x), Y . Fim
Q2 ) c: [Ol M" M ci m

m=1

where CXik' F im are compact subsets of RI.
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We then can carry out the minimization (for each N) of JN over
Q M MI M2 ' obtaining minimizers qN(m) F N (MI)Dc N(M2. The compactness

M 1  2  o 2 ) k

of Q, and Q2  imply the existence of convergent subsequences {f (M,)},

cNkM2) with )k(MI) (l Nk(M) 2 ) where q(M) h(M1 ) 0 c(M2 ) CQM.
M1

It follows that there exist h(M1), c(M2 ) in Q1' Q2 such that h(MI) = It (h(M)),

c(M2) = I x(c(M2 )). Since QI, Q2 are compact, we may obtain convergent sub-

sequences of {h(MI)} 1=1 , {c(M2)}o2=i (relabeling if necessary, we again

call them {h(M )}, {c(M 2 )}) converging as Ml  , M2 .wto h*, c* in Q1, Q2

I respectively. It follows that (here we distinguish between the L2 and L. norms)

M11 6W M 2 (^M -h* O*1t (h(M)) Ix (c(M2 )) - h c*I2

I M1  2(cM ) ®C(M + fh(MI) ®c(M2 ) - h*(Dc*l 2
t 1~ (h(Ml)) ®Iic(M 2 )) - 22)122

M1 ^ M2~ c( 2)

E t (h(MI)) ® [x (c(M2)) cM2)] 2

+ KI[I (N(MI)) - h(M)] c(M2 )I 2 + lh(Ml) Qc(M2 ) - h c1 2

l (h(M))l ix (c(M2)) 2)12

+KIC(M2)1It I (f(Ml)) - h(Ml)1 2 + jh(MI) C(M2 ) - h 0c*12

(M/M2 ) sup IDcI 2 + (M(T-tl)/M I ) sup 1Dh1 2c fQ 2  h Q 1

+ jh(Ml) 1 (12 ) - h 0c*12

-- 0 as MI, M2  o

E
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where the first two terms in the last estimate follow from Theorem 24 of

[27, p. 16].

From the above one can conclude (the arguments are similar to those

Ifollowing (3.18)) that q* = h* c* is a solution of the original problem of

minimizing J over Q. We thus have:

Theorem 3.8. Suppose Q = Q1 ®Q 2 with Qi C H, Qi compact in its C topology

with lDhi , fDcj uniformly bounded for hE Q1 9 cE Q Let QM = QMl 0 QM2

be the (linear) spline approximation to Q as defined above and let qN(M) :

hN(M 1 ) ®cN(M2 ) be a solution to the problem of minimizing jN over QM. Then

* h* *
there exists q = h o c in Q which provides a minimum for J over Q and a

subsequence qNk(MJ) such that q* = h* c* = lim lim hNk(M1 ) 0 c( )).

MJ3- , Nk-*

1

M 2

There is an obvious corollary to this theorem involving use of cubic

Lsplines. If Q = Q1 ®Q 2 and we wish to use the cubic splines S t(MI) and

SX(M 2 ) to approximate the sets Q and Q2, respectively, the conclusions of

Theorem 3.8 are valid under the assumptions that Qi c H2, Qi compact in its

*C topology with ID2hl , ID2cl uniformly bounded for hE QI, c E Q2 (compare

with the assumptions of Corollary 3.7). Finally one can also wish (in the

separable Q = Ql 0Q 2 case) to approximate one parameter set (say Q1 ) by

4 linear spline elements (Lt0l1 )) while approximating the other, 02' by cubic

elements (Sx(M 2 )) (see the examples in section 4). Obvious analogues of the

above convergence results can be easily given in these cases also.
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§4 Numerical results

In this sectioln we preseht our numerical findings for a number of

representative parameter estimation problems, including an example that

illustrates how our spline-based methods can be used to identify variable

diffusion and convection parameters in a dispersion model. The goal of our

efforts was to ectablish the effectiveness of these methods as they are used

to determine a variety of parameters that depend on time and/or spatial

variables, and to observe convergence properties in several different examples.

To this end, we developed a Fortran software package (a modification of one

created by Dr. James Crowley when he was a student at Brown University) to

identify parameters in the N approximate ODE system (3.11); all test

computations were carried out on the CDC 6600 at Southern Methodist University.

The numerical examples that appear in this section were formulated in

the following manner: "True" parameter functions q = (q12 q2' q3) and a true

solution u(t,x) were chosen for each example a priori. (In each case,

u(t,O) = u(tl) = 0, although only Example 4.1 satisfies the hypothesis that

the initial data 0 lie in H30 Indeed, it is not surprising that the methods

under investigation perform admirably when applied to examples that satisfy

* weaker assumptions than those we used in arguing theoretical convergence.)

An r x (s-l) grid of sample data points yij was determined by setting

= u(ti,xj) (with random noise added in Example 4.1) where ti = (i-i)T/r,YijJ

* i = 1,...,r, and x. = j/s, j = 1,...,s-l. The estimation problem then

becomes that of determining 6 Q (and u(q)) that minimizes

J(q) = Yij - u(tixj;q)12

ii 13
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where u satisfies (2.1)-(2.3); for each example, * and f were given at the

( outset by o(x) = u(o,x) and

f(t,x) 2- q 26 2 (t 'x )

t l B x 2 -a(l) (~
ax)

We remark here that the cost functional J defined above is not even a special

case of the distributed least squares fit-to-data functional given in (2.4).

We could have, of course, interpolated our data {yij} and used (2.4); thisq 1

would have kept us in the framework developed above. We didn't do this since

it has been our experience that one actually obtains a much stronger convergence

N N
(pointwise in x) for z (t;q) = u (t,.,q) than the norm convergence that is

usually guaranteed a priori by the theory (for cases where one can establish

the stronger convergence see Lemma 2.4 and Theorem 2.1 of [7]). In addition,

we have in our numerical tests violated the assumption that the first sample

time, tl, be strictly positive (t1 = 0 for all of our examples). No real

problems are posed by these discrepancies however: As was noted earlier,

this particular restriction may be relaxed if we are willing to assume

additional smoothness on the coefficients q. Continuity requirements of this

sort are certainly met in the test examples chosen here.

Several different finite-dimensional representations for the functional

parameters were discussed in detail in section 3. We assume throughout this

section that qi(t,x) = hi(t)ci(x) and, for a given N, attempt to identify

'optimal" approximations for hi in Lt(M l) or St(M1 ) and ci in LX(M 2 ) or SX(M 2 ),

-N
i = 1,2,3; that is, given initial guesses for aik and Oim' we determine 'ik

and Nm k = l,...,K 1(Ml), m = 1,...,K 2(M2), so that
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-N Kl N
h i (t) =XI k= k(t)

and

N K2i(x) I mpm(x)
m=l

are "optimal" in the sense described in previous sections. For each example,
-N

we take M1 and M2 fixed; thus there should be no confusion in writing aik and
A N NUYim throughout, instead of the intended meaning, Nk(Ml) and im(M2). We remark

here that this choice of approximation for hi, ci simplifies the effort required

to implement the approximating parameter estimation problems. Because standard

parameter identification packages require that (3.11), the system in w N, be

solved for each updated value of q, the inner product matrices KN, i = 1,2,3,

need to be recomputed for each q-iterate. This is a simple matter given the

representations chosen here; for example, the (t,j)-entry of K N becomes

2 N N 2K 22N N
hl(t)<c1 D B , Bt> = k~l alkk(t)) m im <Pm D Bj, BI kIIc= kk m=l YM"I

so that the inner products need to be computed only once (prior to the iterative

process) and simply combined appropriately as alk and ylm are updated.

* Our experience with numerous numerical examples has indicated that greater

accuracy is required for the spline representation for ci than for hi, which

is not surprising since ci is involved in calculating the .,,ner products for
14 t

K1 , etc. For this reason, we chose L 1(Ml) for hi and Sx(M 2) for ci in the

examples presented here, except for Example 4.3 where LX(M 2) is used for ci

as well. The choice of M1 and M2 is clearly problem-dependent, especially

when the time interval [O,T] is very large; in what follows we pick M1 and M2

6
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so that both Lt(M,) and Sx(M 2) have exactly four basis elements, a number large

enough to ensure reasonably accurate approximations for hi and ci yet small

enough to keep the number of unknowns (1ik,Yim; i = 1,2,3; k = l Kl;".k ' im , I. .

m = 1,...,K 2 ) at a manageable level. We therefore take M 3 M2 = 1,

except in Example 4.2, where the four basis elements for S X(M2 ) are modified

to satisfy homogeneous boundary conditions (and thus M2 = 3 must be taken).

For given values of N, M, and M2, we used ZXSSQ, the IMSL version of the

Levenberg-Marquardt algorithm, to iteratively determine the desired parameters.

Our experience with this package has been relatively good (it is easily

implemented and usually performs well with default values for several of the

required input variables) so long as we did not need to estimate more than

a combined total of 7 or 8 unknown coefficients in the approximation for h.

and ci. The package tends to fail in attempts to estimate a larger number

of parameters and this may be due to the fact that ZXSSQ computes all needed

gradients using a finite difference scheme (although preliminary testing of

MINPACK's version of the Levenberg-Marquardt scheme, LMSTR1, with more accurate

user-supplied gradients, has not indicated that this is necessarily the sole

source of the difficulty). It is more likely that a large number of unknown

4 parameters is associated with an excessive number of degrees of freedom in

the problem, which manifests itself in the inability of the iterative

scheme to converge at all to -N(q() for N and M fixed.

As can be expected, increasing the number of unknowns also increases

the CP time required, as well as the number of requisite iterations on q.

It was also our experience that it was far more difficult to identify ci

than hi , possibly due to the fact that ci always appears in integrated form
1N

(in the inner product matrices) which suggests that the solution wN to (3.11)
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Cis less sensitive to small changes in c. than it is with respect to changes

in hi. In such examples the parameter estimation process was frequently quite

expensive (CP time for N= 3 problems with 6-8 unknown coefficients for hi and

Rc i often exceeded 1000 seconds; in contrast, it took only 345 CP seconds to

accurately identify the 8 unknowns in Example 4.1. where parameters did not

depend on the spatial variable). Even with fewer unknowns, these parameter

qestimation problems are generally more expensive (137 CP seconds for Example
4.1(a); N= 2) than those for many other distributed systems (see [9], [10])

because the approximating ODE systems for these parabolic PDEs tend to be

* quite stiff, requiring more costly solution schemes (for example, IMSL's

DGEAR, which is what we used in our computations).

We turn now to several numerical examples that are representative of our

findings. In example 4.1 and 4.2 we display -N = qN(M ) fo r N = 2,4,8, and 16,

(values of MI or M2 for M are fixed throughout, as was previously indicated)

to demonstrate how quickly qN approaches q; in fact, convergence is so rapid

in these examples that we present only q3 for the remaining examples.

Example 4.1

We consider the system

ut = ql(t)uxx + q2(t)ux + f(tx), 0 < x < 1, 0 < t < 1

u(O,x) = 0

u(t,O) = u(t,l) = 0

A 9x3 grid of sample data points was generated from the "true" values of the

solution and parameters, u(t,x) = lOOx(l-x)(x+4)sinit, ql(t) = 8t+l, and

q 2(t)= -2t +4. "True" coefficient values for the representations

. . . ....S.. . . .
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4 4
ql(t) I alkI k(t) and q2 (t) I k c2k~k(t) are then given by Ill l ,

k=l k=l

A 3 - 1 I -a12  3 , 13 6 , 14 =  21  , 22 =3 23 24

(in each case, ik = aik(M) ' i = 1,2; k = 1,...,4). Several different

estimation problems were investigated.

(a) We seek to estimate ql with q= q2 given. For our initial guess

we take q, = .001; that is, OR = .O0l, k = 1,...,4.

-N -N -N -N

II 1 2  "13 a14

2 0.998581 3.629449 6.250314 8.880572

4 0.999974 3.666598 6.333214 8.999806

8 0.999975 3.666598 6.333214 8.999806

16 0.999974 3.666598 6.333214 8.999806

(b) We repeat the computations in (a) except that we corrupt the "data"

with random noise (varying between -1 and +1).

-N -N -N -N

11  a1 2  a1 3  a14

2 1.044241 3.605704 6.282895 8.932719

4 1.046339 3.642512 6.366286 9.051935

8 1.045438 3.640817 6.368787 9.049063

16 1.041110 3.643830 6.366950 9.050610

(c) We estimate both ql and q2, using start-up values of ql = 5.0

and q2  1.5 (alk = 5.0, a2k = 1.5, k = 1,...,4). The results are

reported in Table 4.1.
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(d) We repeat the calculations in (c) except we corrupt the data with

random noise as in (b). Table 4.2 contains the outcome of this

investigation. The addition of random noise in this case yields

satisfactory estimates for all coefficients except a24' which appears

to be converging to a value far from 24 = 2. We were able to

determine however that J(q16) < j( ) for this example so that the

parameters ql and q2 that provide the best fit to the new (noisy)

data are not merely slight deviations from the parameters that

generated the original (noise-free) data.

Example 4.2

We consider

ut = ql(x)uxx + q2 (x)ux + f(tx), 0 < x < 1, 0 < t < 2

u(O,x) = - 20(x 2-x)

u(t,O) = u(t,l) : 0

with ql(x) = x-x 2, q2(x) : 8x-8x
2 and true solution 5(tx) 0l(x2 x)(t 2 +4t+2).

-N -A 9x 3 grid of sample data was used to search for estimates q and in

(4
Sx(3) =m YimPmI Pm is a cubic B-spline modified so that pm(O) = pm(l) = 0,

m = 1,... 4 (the spline elements Pm are defined exactly the same as B for
) M

M = 3, where Bm was given in section 3). We compare our computed values with

those corresponding to the projections P q = P3q which have the coefficients

Yl = 0.01698, 12 = 0.04321, Y13 = 0.04321, '14 = 0.01698, and Y21 0.13580,

= 0.34568, Y2 3
= 0.34568, 24 = 0.13580, respectively.
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(T (a) We seek to identify q2 with ql = q given. The initial guess for

q is q2 0; i.e., 2m = m = ,...,4.

-N -N -N -N
N21 Y22 Y23 Y24

2 -0.14416 0.45511 0.74438 -0.37807

4 0.13599 0.34556 0.34569 0.13577

m 8 0.13581 0.34569 0.34566 0.13580

16 0.13579 0.34571 0.34566 0.13580

(b) We estimate q, with q2 = q2 given (for start-up values, yII = 0.05,

Y12 = 1.5, Y = 2.0, and Y14 = 2.5 are used). The results for

N = 3 are given below.

-3 -3 -3 -3Yll Y12 1l3 Y14

0.01697 0.04321 0.04322 0.01696

Example 4.3

We present now our parameter estimation findings for a problem with

parameters that depend on both time and space variables. We consider the

system

ut = ql(t'x)uxx + 8(x-x 2)ux + f(t,x), 0 < x < 1, 0 < t < 2

u(O,x) : - 20(x 2-x)

u(to) u(t,l) = 0.

A 9x 3 grid of sample data points was generated from the true solution

u(t,x) --O(x 2-x)(t 2 +4t+2). Assuming the "true" value of q, is given by

SUtx 0(
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q1 (t,x) = tx (so that hi(t) t and Cl(x) = x), the "true" basis coefficients

for the representations of h1 in Lt(3) and c 1 in LX(3) are then given by

- - =2- = - =2, and 1=, 1 2 -
1 1 12  3' 213 2 1 4 =ll 2an2 3 11 = 3 Y14  1

Several different estimation problems were considered, using the state variable

approximation index N = 3 throughout.

(a) We estimate hI assuming cI = c1 is fixed. To begin the estimation

process we specify the initial guess as hi(t) =3- t; i.e.,

'll = 3, a12 = 2, a13 = 1, and a14 = 0.

-3 -3 -3 -3
all a12 a13 a14

0.0003 0.6665 1.3338 2.0005

(b) We wish to estimate cI with hI = h, given. Start-up values of
1 3

= 2 , = , and = 2 corresponding to an initial

31
guess of cl(x) = x + were used.

-3 -3 -3 -3'Yll Y12 'Yl3 Y14

0.0061 0.3295 0.6727 0.9817

(c) We estimate hI and part of cl , assuming that the first two basis

coefficients of cI are given by yll = Yll and Y12 = Y12 Start-up

values for the remaining coefficients are a11  .5, a12 = .4,

'13 = 1.8, a14 = 3., Y = 1.5 and Y14 = 2.

-3 -3 -3 -3 -3 -3
all a1 2  a1 3  a1 4  Y13 Y14

0S0.0000 0.6685 1.3371 2.0054 0.6642 0.9972

[
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Example 4.4

We conclude the section on numerical results by returning to an example

similar to the dispersal model described in the introduction. To demonstrate

the effectiveness of our methods for systems of this type we have chosen model

equations for which the diffusion and convection coefficients are realistic

from the point of view of an intended application (see the discussions in

[12]). A report on our efforts to use actual field data to estimate variable

diffusion, convection, and source/sink parameters in systems of the form (1.1)

will appear elsewhere. Consider

0 ut + (V(t,x)U)x = (Vux)x + g(t,x), 0 < x < 1, 0 < t < 2,

u(O,x) = - 400x(x-l)

u(t,o) = u(t,l) = 0

where the "true" distribution of insects is given by t =-4x(x-l)cos2

and a constant diffusion coefficient is given by D = 20. The time and spatially

varying convection coefficient V(t,x) = - l0Q(x-.5)(4-t) is chosen to suggest

an attraction of insects to the point x =.5 (the densely vegetative center

* of a linear array of plants) and to indicate a decreasing attraction to the

region as time increases (a reasonable model if the quantity of foodstuffs is

decreasing over time). As before, 9x3 data points are generated using U,

and the source/sink term is artificially defined to be g(t,x) = t - (V(t,x)u) -
( Gx~ x

(Vu X)X

We remark here that although the theory developed in sections 2 and 3

* (for equations in the form of (2.1)-(2.3)) may be applied to this problem with

q, = V , q2 
= Vx - V, arn q3 = - x , we cannot claim that the convergence

S
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of qi(M) to qi(M), i : 1,2, guarantees that vN(M) V V(M) (where N (M) : - N(M) +

q(M)) x and V(M) - M) + ( l(M))x unless we also have the convergence of
-N

q,(M))x, to (ql(M))x. We certainly have that in the cases we consider here.

In what follows we let V(t,x) = h2 (t)c2(x) where h2(t) = 4- t and

c2(x) =- 100(x- .5). True basis coefficients for h2 as an element of Lt(3)

are given by a21 = a2  3- , 23 - 2 , and a24 = 2. The basis coefficients

for Pc2 6 sX(1 ) (for P the usual L2 projection of L2 onto sX(1)) are used

for comparison as the "true" values of Y2m' m = 1,...,4; those values are

-iv21 2 8-, Y2 3 =-8 and =-25. In addition, wegie b 21 =  5 22 = 823 3 2

allow time varying estimates for D, taking De Lt(3). "True" basis coefficients

for D 20 are -Ik = 20, k = I,...,4. The following problems were studied

and results obtained.

(a) We estimate D with V = V given. A time-varying initial guess of

V = 40-15t (start-up values are all = 40, a12 = 30, a13 = 20, and

a14 = 10) is used.

-3 -3 -3 -30111 Ol12 a13 Ol14

19.9998 19.9996 19.9997 19.9997

(b) We seek an estimate for h2, assuming that c2 = c2 and D = D are

given. Supposing that a priori information about V indicates that

it might depend on the spatial variables only, we take an initial

guess of h2  I (or 12k = 1, k = 1,...,4). The N= 3 estimates for

S2k reveal that this is indeed not the case.

-3 -3 -3 -3"21 022 c23 a24

4.0001 3.3335 2.6668 2.0001
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(c) We estimate c 2 with h2  h2 and D = D fixed. Start-up values are

( Y2m = 0, m = 1,...,4.

-3 -3 -3 -3
Y21 Y22 Y23 Y24

25.0201 8.3373 -8.3390 -24.9459

(d) We attempt to identify V with V = D given. Since V is the product

of h2 and c2, at least one of their basis coefficients must be

fixed or there will be an infinite number of possible combinations

of h2 and c2 that still yield h2c2 = V. Here we fix Y21 = Y21 and

Y22 = Y22" Start-up values for the remaining coefficients are

c2 k= 1, k = l,...,4, and =- 5, y2 4  - 15.

-3 -3 -3 -3 -3 -3
a21  a22  a23  a24  Y23 Y24

4.0005 3.3338 2.6670 2.0003 -8.3333 -24.9883

(e) We repeat the calculations of (d) except that we now estimate 22

as well (only Y21 = Y21 is fixed in V). Start-up values are

a21 = 3.2, a22 = 2.2, a23  1.6, a24 = 1., Y22 = 5, Y23 -8.3,

and Y24= - 15.

-3 -3 -3 -3 -3 -3 -3
c21 a22 23 a24 Y22 Y23 Y24

3.7380 3.1149 2.4920 1.8689 8.9375 -8.8522 -28.6938
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§5. Concluding remarks

In the above presentation we have given a convergence theory for algorithms

to estimate functional coefficients in parabolic systems. While we treated

only scalar equations, the ideas generalize immediately to vector systems of

equations and hence are applicable to a wide variety of transport problems in

addition to the species dispersal problems that motivated our efforts nere

q(for example, transport of several labeled substances in physiological systems

such as those in the brain transport models investigated by Kyner, et.al. --

see [21], [25], [26], [2], [12], [28]). Furthermore, we believe the theoretical

4 framework presented above is the most promising of several possible approaches

in attempting to develop an estimation theory for certain nonlinear systems

such as those arising in transport models with density dependent coefficients

((we are currently pursuing developments in this direction) even though the

framework of [7] handles some nonlinearities in a most convenient fashion.

Our basic parameter estimation ideas and techniques can also be readily

extended to treat problems with several spatial variables. We have already

considered theoretical aspects (with a positive outcome) and are currently

developing computational packages to treat several specific problems including

E species dispersal in two dimensional domains and estimation in large space

structures (the Maypole Hoop/Column antenna -- sea [2] and [10]).

Finally, while we have not here emphasized that either boundary conditions

4 or initial conditions or both may be unknown in many problems, such unknown

parameters can easily be included in our theory and algorithms. Indeed,

we have successfully used our methods to estimate boundary and initial value

parameters for both parabolic and hyperbolic systems (see the discussions and

results in [3], [5], [6], [7], [12]).
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