

١

I

٩.

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

. v

: م AFOSR-TR- 3 - 0 0 77

Report No. 162

Randomly Sparse Equation Solution by Loopless Code Generation on the CRAY-1

D.A. CALAHAN

May 1, 1982

Sponsored by Directorate of Mathematical and Information Sciences, Air Force Office of Scientific Research, under Grant No_3660765 HFCSK-8C-C158

8

3

~

S 1 1

-

A UH

Systems Engineering Laboratory

83

03

Approved for public release; distribution unlimited.

14 012

NTIP: FILE CON

FLECTE

£.

UNCLASSIFIED		
SECURITY CLASSIFICATION OF THIS PAGE (When Der	L DACE	READ INSTRUCTIONS
	2 GOVE ACCESSION NO	BEFORE COMPLETING FORM
1505P TR- 89-0077		
I TILL (and Subtitie)	AD-A12-5 738	5. TYPE OF REPORT & PERIOD COVERED
RANDOMLY SPARSE EQUATION SC	LUTION	Interim
BY LOOPLESS CODE GENERATION	I	6. PERFORMING ORG. REPORT NUMBER
ON THE CRAY-1		SEL #162
7. AUTHOR(a)		B. CONTRACT OR GRANT NUMBER(3)
D. A. Calahan		AFUSR 80-0158
9. PERFORMING ORGANIZATION NAME AND ADDRES University of Michigan	55	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Dept. of Elec. & Computer E Ann Arbor, MI, 48109	ngring.	61102F 2304/A3
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE May 1, 1982
Air Force Office of Scienti Bolling AFB, Washington DC	fic Research (1 20332	NUMBER OF PAGES
14. MONITORING AGENCY NAME & ADDRESS(II diller	ent from Controlling Office)	15. SECURITY CLASS. (of this report)
		UNCLASSIFIED
		15#, DECLASSIFICATION/DOWNGRADING SCHEDULE
17. DISTRIBUTION STATEMENT (of the abatraci entere	d in Block 20, il different froi	m Report)
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side il necessary i	and identify by block number)	
Sparse matrices Parallel processing Vector processing Linear algebra		
20. ABSTRACT (Continue on reverse side if necessary a	na (den(ily by block number)	
To solve dimectly a sparse equation-ordering algorithm is proposed to maintain a h within a floating point pip highly-sparse unpatterned s generation, Rates in the r achieved.	unsymmetrix equ based on local igh flow rate o eline. Software ystems efficien ange of 15 MFLC	ation Ax = b, an equation decoupling of scalar computations is described to solve atly via explicit code OPS on the CRAY-1 are
D. FORM 1473 FOLLION OF LNOV 65 IS OBSC		

ار میکیسید از ایا این از بور میکور سیاست ایو ایو ا

. .

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

Randomly-Sparse Equation Solution by Loopless Code Generation on the CRAY-1

D. A. Calahan

Systems Engineering Laboratory University of Michigan Ann Arbor, Michigan 48109

August 1, 1982

1

and Information Sciences, Air Force

Office of Scientific Research, under

Grant 80-0158

	- COLEVITIE F	190
AIRTONT		
NOTT T Thick		
appro	م • د ده شدند.	
MATTELS J.	ion Information I)ivision
Chief. Jacha	10.11 1112	

Abstract

To solve directly a sparse, unsymmetric matrix equation Ax = b, an equation-ordering algorithm based on local equation decoupling is proposed to maintain a high flow rate of scalar computations within a floating point pipeline. Software is described to solve highly-sparse unpatterned systems efficiently via explicit code generation. Rates in the range of 15 MFLOPS on the CRAY-1 are achieved.

I. Introduction

Vector processors have forced a reconsideration of traditional computational algorithms. In the solution of sparse systems of equations, such study has resulted in a proliferation of methods to service a variety of sparsity characteristics.

Early work in general vectorized sparse methods [1], yielding codes that appeared to the user similar to "traditional" scalar counterparts [2], had limited intelligence to identify vector operations. For important classes of both highly-sparse and relatively dense systems, special codes were later found to achieve speedups of 3:1 to 20:1 over the general vector code. From an algorithmic viewpoint, it appears that the notion of a general sparsity code for vector architectures may be an anachronism (however, see [17]).

An exception occurs where such speeddowns can be tolerated in the interest of user convenience; for example, in a small highly-sparse system, the equation solution time may be a small fraction of the equationformulation time and such inefficiencies may be acceptable.

In general, such speedups are achieved either by

(a) locally decoupling of equations so that the pipelines can be "crammed" with independent computations associated with uncoupled equations; such methods are useful in highly-sparse systems;
(b) local coupling of equations so that vectors can be defined within dense banded or locally blocked sparse systems.

Figure 1 illustrates that each of these approaches can be further classified. In the case of dense systems, usually associated with elliptic finite element and finite difference problems, coupling is exploited either (a) within a grid point (node) - with many unknowns/node [3] - or within a finite element [4] or (b) across grid points, yielding banded and profile systems

Э

[5]. These are termed intranodal (intra-element), and internodal (interelement) coupling, respectively. In general, internodal coupling yields denser submatrices, longer vectors, and so higher execution rates.

When highly-sparse equations are decoupled, a distinction must be made between patterned and unpatterned systems.

In the former, it is presumed that (a) submatrices with identical sparsity patterns can be identified, and (b) these submatrices are stored with similarly-positioned elements a constant stride apart. (This latter restriction is more important for highly sparse systems, where one cannot afford to remap the matrix by gather/scatter operations; however, the existence of patterns usually implies that subsystem matrices can be simultaneously formulated in vector mode so that (b) is often satisfied.) These conditions apply, for example, to large electronic circuit matrices [7][8] and assure vectorizability.

The above vectorizable dense and patterned sparse matrix cases account for the majority of sparse problems. Indeed, sparse matrices become large usually by means of a formulation algorithm that guarantees vectorizability.

However, there do exist relatively small (\leq 5000 equations) highlysparse problems with undiscernable patterns: some electronic circuits, electrical power systems, small dissected 2-D finite element grids [6], occurring perhaps as a part of a 3D iterative solution. In more exotic formulations, an unpatterned matrix may represent only part of a large sparse system [7]. In any case, such structures pose a most difficult algorithmic challenge, apart from their arguable utility. It is to these problems that the report is addressed. The results of the report were first given in [14] and [15].

ŝ

4

جاريد ر

One additional caveat is offered before proceeding. It will be necessary to preprocess the sparsity structure before the numerical solution is carried out. On the CRAY-1, this preprocessing time is several hundred times the matrix solution time. Therefore, this procedure is appropriate only when multiple numerical solutions are required with the same sparsity structure.

II. Algorithms

A. Parallel Solution

Consider an unsymmetric matrix equation of the form

Ax = b

where A is an nxn matrix and x and b are nx1 vectors. This equation is to be solved by LU factorization, viz,

 Factor A = LU, where L and U are lower and upper triangular matrices, respectively.

2. Solve Ly = b for y (forward substitution).

3. Solve Ux = y for x (backward substitution).

The matrix A is considered locally decoupled if the combined structure of its LU factors has the form [11].

where D_{rr} is a diagonal matrix and $L_{r+1,r}$ and $U_{r,r+1}$ extend from D_{rr} to the matrix boundary. The ordered steps to reduce the rth pivot block and the associated right band side components are

$$L_{r+1,r} \leftarrow L_{r+1,r} D_{rr}^{-1} \qquad (multiplication) \qquad (2)$$

$$A_{r+1,r+1} \leftarrow A_{r+1,r+1} \leftarrow U_{r+1,r} \qquad (mult./subtraction) \qquad (3)$$

$$Y_{r+1} < Y_{r+1} - L_{r+1,r} Y_{r}$$
 (mult./subtraction) (4)

where $A_{r+1,r+1}$ represents the unreduced southeast corner of t he matrix and Y_{r+1} is the associated right hand side at the rth reduction step. The block back substitution has the form

$$Y_{\mathbf{p}} < - Y_{\mathbf{p}} - U_{\mathbf{p},\mathbf{p}+1} Y_{\mathbf{p}+1}$$
(5)

$$X_{\mathbf{p}} < - Y_{\mathbf{p}} D_{\mathbf{p} \mathbf{p}}$$
(6)

where $\mathbf{x}_{\mathbf{p}}$ is the rth block component of the solution vector. Equations (1)-(4) can be performed in three parallel steps. That is, except for the subtraction, all right hand side matrix elements - operands of unary and binary floating point computations - are known on entry to the step. (The subtractions can be processed efficiently at the coding level but can not always be performed in parallel.) Indeed, the sparser the equations, the greater the decoupling (dimension of $\mathbf{D}_{\mathbf{rr}}$) and the more parallel the solution.

B. Pipelined Solution

Calculation of vector or scalar results in a pipeline requires that operations in the pipeline at any time be independent. Without this independence, results must be secured in registers or, worse, main memory, before they can be operands for a succeeding computation. Independence ideally permits pipelines to be crammed with vector or scalar operands. Thus, parallel and pipelined architectures make a similar demand on the organization of an efficient solution algorithm; equations (1)-(6) are, therefore, also the basis of the proposed pipelined solution.

C. Code generation

If the elements of the D_{FT} are stored a fixed address increment apart, then conceivably floating point operations could be performed in vector mode. However, assuming column-ordered matrix storage for compatibility with existing programs, the cost of gathering the diagonals into this vector storage format will likely not be worth the advantage of vectorization. Similar arguments apply to the other two highly sparse parallel steps. For the CRAY-1, with slow gather/scatter operations, it is assumed that floating point operations should instead be performed in scalar mode.

To achieve the highest speed scalar operation, it was decided to generate explicit loopless scalar code in the manner of Gustavson [9]. This avoids the issuing of address operations - costly on the CRAY-1 - since the addresses are imbedded in the scalar code. Thus, when a series of consecutive reciprocations, (or multiplications, or subtractions) is to be performed, the code generator produces, in a preprocessing step, a sequence of similar scalar operations with different addresses. Because the instructions are identical except for addresses, the associated scalar

fetches, floating point operations, and stores can be overlapped in a predictable manner.

Table 1 gives a summary of the asymptotic rates of each of these generated code sequences, with and without overlapping. Since the multiplies/subtracts dominate the other computation in any but the sparsest matrix, the execution rate for a large matrix should approach that of the multiply/subtract kernel (14.8 MFLOPS). The detailed kernel overlapped timings from a CRAY-1 simulator [10] are given in Table 2.

D. Ordering

The restricted utility of this class of sparse matrix algorithms to small highly sparse systems suggests that available ordering techniques and software be modified, rather than new software be developed. For this reason, the following procedure represents a variation on the so-called minimum-degree algorithm, but applied to unsymmetric matrices. It is accepted apriori that specialized ordering software may execute more efficiently.

First, the conventional MD minimizing algorithm is reviewed. At the kth step in the ordering, let pr(m) and pc(m), m = 1,..n, represent the row- and column-ordering permutation vectors, with pr(m) = pc(m) = m for k = 1. Also, let $n_{pr(i)}$ and $n_{pc(j)}$ be the number of k+1,..n and j = k,k+1,..n, respectively. There, among the non-zero elements $e_{pr(i),pc(j)}$, the pivot positions i_b and j_b are chosen such that

 $\{i_{k}, j_{k}\} = \{i, j; \min(n_{pr(i)} - 1) (n_{pc(j)} - 1)\} \in pr(i), pc(j) \neq 0\} k \le i \le n, k \le j \le n\}$

The modified algorithm insures the local decoupling of equations and variables, as follows. When pivot positions i_k and j_k are selected within

block r, the rows and columns coupled to the block's pivot positions are marked; pivoting is then prohibited on non-zeros in these rows and columns. When no non-zero, unmarked pivots exist, a new block is initiated by incrementing r and clearing markers.

E. Limited Decoupling

The memory hierarchy of the CRAY-1 suggests that the full decoupling allowed by this ordering should not be exploited. It is preferred that the results from the first two steps of (2) and (3) be maintained in 64 scalar (T) registers. This necessitates that the total number of elements in $D_{\rm TT}$ and $L_{\rm T+1,T}$ be no greater than 64, since all elements of these two matrices are required in (3) and (4). By correspondingly limiting the dimension of $D_{\rm TT}$ in the ordering algorithm, the minimal degree criterion is, on the average, less constrained during a pivot selection than if maximum decoupling were demanded within each block. In the limit, if the dimension of $D_{\rm TT}$ is constrained to be unity, a true MD criterion results and the MD operation count should be achieved.

Viewed another way, since the scalar register file size is limited at 64, a family of matrices increasing in size should be less impacted by the limited-decoupling strategy as the size increases. Thus a matrix of large dimension should achieve a nearly minimal (MD) operation count.

A flow chart of the limited decoupling algorithm is shown in Figure 3.

III. Software

A. Introduction

The program has two parts:

(1) A Fortran symbolic preprocessor that (a) orders the equations according to the limited decoupling algorithms, (b) generates CRAY-1 machine code in a buffer array, and (c) writes this code into a file in unformatted form.

(2) A program that (a) reads the code into main memory, (b) formulates a set of equations of the prescribed sparsity from randomvalued numerical data, and (c) calls (from Fortran) a short interface program that jumps to the code.

The flow chart is given in Figure 2. Note that the same code suffices to solve multiple numeric solutions.

B. Inputs To Symbolic Phase

The symbolic phase reads the following data.

1. N - the number of equations.

2. NRMAP = Oifnumeric values stored in column order; NRMAP = lif order of numeric values is given in NUMN

3. JA - an array of dimension N+1; JA(J) points to the first element of the Jth column in array IA; JA(N+1) points to one beyond the last element of IA.

4. IA - an array of dimension NA = JA(N+1)-1, containing the column-ordered row indices.

5. NUMN - an array, usually of dimension NA; NUMN(J) gives the location in data array A of the element corresponding to IA(J).

Although written as a self-contained research program (e.g., facilities are provided to generate randomly-positioned matrices, to count operations, and produce a printer map), it is relatively clear which facilities should be deleted for production use. Also, the above data could be transferred in an argument list.

If NRMAP = 0, it is assumed that NUMN(J) = J, and NUM(J) is not referenced further; the dimension of NUM need then be only unity.

C. Numeric Solution Phase

A Fortran test driver (Table 3) was developed to formulate a randomly-valued matrix of the sparsity prescribed by JA and IA. Moreover, the values are mapped according to NUMN and, to insure numerical dominance of the pivot positions, pivots are located from an array passed from the symbolic program. The right band side is formulated so that the solution vector X has the value X(J) = J + 1.

The linkage in the code that performs the LU factorization, the forward substitution, and the back substitution is made by the subroutine invoca-

CALL EXEC(INST, A, B, X, N)

where

INST is an array containing the machine code

A is the matrix numeric values, packed according to NUMN and IA

B is the right hand side

X is the solution

N is the number of equations.

11

Ĵ.

All reciprocations are half precision.

D. Ordering Subroutine

The equation-ordering program, being a critical element of this software package, deserves separate documentation. A list of its calling arguments follows.

CALL SPCPIV(N, NA, IA, JA, IROW, JCOL,

JROW, ICOL, INUM, JNUM, IMIN, JMIN, IPR, IPC, ISIZE, IBLC, IBLR, IBLOCK, IMINT, JMINT, IMAP, ICALC, NMAP, NBL, IPIV, ICMAX, IDP).

where

N*	is the number of equations
NA*	is the number of non-zero elements
NMAP	is the number of elements of MAP
NBL	is the expected number of diagonal blocks; .LE.N
ICMAX *	must be set to 64 by user
ISIZE*	is the maximum expected number of non-zeros of L and U (combined)
IPIV*	=O if limited decoupling is desired =1 if no decoupling is desired; MD ordering criterion is then used
IDP*	≖O for unspecified tie-breaking in MD ordering ≖1 for diagonal preference in tie-breaking
IA(J)*	contains column-ordered row number of non-zero positions of matrix; dimension is NA
IBLOCK(J)	is the row number (=column number) of first element of Jth diagonal block; dimension at least NBL+1; IBLOCK(N+1) = NBL+1

.....

(The following arrays must have a dimension of at least N or N+1)

- JA(J)* is the location in JA of the first non-zero element in the Jth column; JA(N+1) = NA+1
- IPR(J) is the Jth pivot row number
- IPC(J) is the Jth pivot column number
- ICALC(J) is the number of floating point operations to factor the matrix through the Jth column

JNUM, INUM, IMINT, JMINT, IBLR, IBLC, IMIN, JMIN, JROW, ICOL

are working arrays

The following arrays must have a dimension equal to the number of expected non-zeros of L and U combined, plus N, the number of equations.

IROW and JCOL are working arrays

IMAP contains information related to the map of L and U in alternating row- and column-order; diagonal elements are represented twice, requiring N additional locations.

IV. Performance

A. Choice of examples

Because the dimension of the matrix is limited by the size of code stored in main memory, the number of applications of this procedure is limited. On the other hand, within this class of highly-sparse systems, the code length and other performance aspects appear to be relatively sensitive to sparsity features from different applications. Therefore, illustrative problems have been chosen from a number of applications, namely,

1. Electronic circuit analysis,

#Input data to subroutine.

- 2. General elliptic PDE solution (by nested dissection),
- 3. Oil reservoir analysis,
- 4. Electrical power systems analysis.

The first class of problems is unsymmetrical in structure; the latter three classes are symmetrical in structure, but are assumed, for purposes of this study, unsymmetrical in value. In all cases, off-diagonal pivoting is allowed.

B. Effect of ordering

It is well-known that the operation counts associated with the orderings of highly-sparse matrices are sensitive to the tie-breaking procedure. The current ordering algorithm is not necessarily optimized in this respect (see [12] and [13]). However, two options have been incorporated in the program:

(a) choosing the "first-found" tied pivot, and

(b) preference for diagonal pivots.

In general, it has been found desirable for symmetrically-structured matrices to favor diagonal pivots. Unsymmetrically-structured matrices yield mixed results.

Floating-point operation counts for a number of problems are given in Table 3, with MD ordering and with the limited decoupling algorithm. The penalty incurred for decoupling is moderate and decreases on a fractional basis as the matrix size increases (as previously predicted). These results are not surprising, since in many model finite difference problems [6], minimal operation counts are associated with the decoupling proposed here.

C. Code length and performance

Table 4 gives the timing and storage results of a number of problems. The "effective" MFLOPS are the actual MFLOPS multiplied by the degradation due to the extra floating point computations necessitated by forced decoupling, visa vis MD ordering (see Table 3).

The following should be noted.

(1) The code length is approximately equal to the number of floating point operations, in 64-bit words. This allows one to estimate the feasibility of code generation for a problem with a known complexity. For example, from Table 4, a million-word memory would seem to be adequate to store code for the largest real-valued electrical power system problem and, perhaps, a 1000-equation complex-valued system. Electronic circuits in the range of 5000 equations should be readily handled. Five-point 2-D square finite difference grids solved by nested dissection [6] have by a known solution complexity of $\approx 20 n^3$; these can be solved for m ≤ 36 .

(2) The code generation time, exclusive of writing the code to a file, is approximately 18 µsec per floating-point operation, or 200-400 times the equation solution time. Together with the storage results above, approximately 18 seconds suffice to generate a million words of code. In general, the code generation time is less than the equation-ordering time for highly-sparse problems; denser matrices, such as those associated with D-4 ordered reservoir grids, have the opposite relation.

(3) The execution rates (MFLOPS) is relatively insensitive to variations in the matrix size and density. For example, the highlysparse power system and electronic circuit matrices yield rates in

the range of 11.6-15 MFLOPS, whereas the denser grid-related matrices can be solved at 16-18 MFLOPS. (Of course, model grid problems can be solved at for higher rates by band-related methods [16]). This insensitivity is due to the independent (parallel) element-level operations that are associated both with dense matrices and with decoupled sparse matrices.

It is reasonable to conclude that **11 MFLOPS represents a lower bound** of the solution rate of any sparse matrix requiring fewer than one million floating point operations.

References

- Calahan, D. A., P. G. Buning, and W. N. Joy, "Vectorized General Sparsity
 Algorithms with Backing Store," Report #96, Systems Engineering
 Laboratory, University of Michigan, January, 1977.
- [2] Gustavson, F. G., "Some Basic Techniques for Solving Sparse Systems of Linear Equations," in Sparse Matrices and Their Applications, Ed.
 by D. J. Rose, and R. A. Willoughby, Plenum Press, 1972.
- [3] Calahan, D. A., "A Block-Oriented Sparse Equation Solver for the CRAY-1," Report #136, Systems Engineering Laboratory, University of Michigan, December, 1980.
- [4] Duff, I. S., and J. K. Reid, "Experience of Sparse Matrix Codes on the CRAY-1," Report CSS 116, AERE Harewell, October, 1981.
- [5] Calahan, D. A., "High Performance Banded and Profile Equation-Solvers for the CRAY-1: The Unsymmetric Case," Report #160, Systems Engineering Laboratory, University of Michigan, February, 1982.
- [6] George, J. A., "Nested Dissection of a Regular Finite Element Mesh,"SIAM J. Num. Anal., vol. 10, 1973, pp. 345-363.
- [7] Calahan, D. A., "Multi-level Vectorized Sparse Solution of LSI Circuits," Proc. IEEE Conf. on Circuits and Computers, Rye, N.Y., October, 1980, pp. 976-979.
- [8] Vladimirescu, A. and Pederson, D. O., "A Computer Program for the Simulation of Large-Scale-Integrated Circuits," Proc. International Conf. on Circuits and Systems, Chicago, April, 1981.
- [9] Gustavson, F. G., W. M. Liniger, and R. A. Willoughby, "Symbolic Generation of and Optimal Crout Algorithm in Sparse Systems of Linear Equations," J. ACM, vol. 17, pp. 87-109.

- [10] Orbits, D. A., "A CRAY-1 Simulator," report #118, Systems Engineering Laboratory, University of Michigan, Ann Arbor, 671 Engineering Laboratory, University of Michigan, Ann Arbor, September, 1978.
- [11] Calahan, D. A., "Parallel Solution of Sparse Simultaneous Equations," Proc. 11th Allerton Conf. on Circuits and Systems Theory, University of Illinois., 1973, pp. 729-738.
- [12] Wing, O., and J. W. Huang, "A Computational Model of Parallel Solution of Linear Equations," IEEE Trans., vol. C29, no. 12, pp. 632-638.
- [13] Lipton, R. J., D. J. Rose, and R. E. Tarjan, "Generalized Nested Dissection," SIAM J. Numer. Anal., vol. 16, 1979, pp. 346-358.
- [14] Calahan, D. A., "Direct Solution of Linear Equations on the CRAY-1," Cray Channels, pub. by Cray Research, Inc., vol. 3, No. 1, pp. 2-5.
- [15] Calahan, D. A., "Decoupled Solution of Circuit Matrices in Pipelined Processors," ICCC 82 Conf., N. Y., October, 1982.
- [16] Calahan, D. A., "High Performance Banded and Profile Equation Solvers for the CRAY-1: The Unsymmetric Case," Report #160, Systems Engineering Laboratory, University of Michigan, February, 1982.
- [17] Calahan, D. A., "A Vectorized General Sparsity Solver," Report #168, Systems Engineering Laboratory, University of Michigan, October, 1982.

Figure 1. Classification of sparse matrix vectorized

ŧ

algorithms and CRAY-1 available software

Figure 2. General flow chart of equation solver

pc - counter of total non-zero positions in **D**_{rr} and L_{r+1,r}

RM(CM)- row (column) marker array of dimension N; only N-k+1 representing unreduced rows (columns) are zeroed and tested.

r - block counter

k - pivot counter

nz - number of non-zero positions in L_{r+l,r} and D_r (= 1) added during kth pivot step.

Figure 3. Flow chart of limited-decoupling ordering algorithm; (A) represents coding to process case when more than 64 non-zeros are in a column

	Inner loop t	imingx	Execution rate							
	(Clocks)	(MFLOPS)							
<u>Kernel</u>	Non-overlapped+	Overlapped	Non-overlapped+	Overlapped						
Reciprocation*	27.2	7.50	2.94	10.7						
Multiplication	23.8	7.25	3.36	11.0						
Multi./Subt.	29.5	10.8	5.42	14.8						

xTiming includes instruction fetching.

ŧ

*Half-precision.

ł

+Result store overlapped with next operand fetch.

Table 1. CRAY-1 kernel performance

Table 2(a). Reciprocation kernel activity report

•

:

1

REG																																	
-	34567			-					-		-	-	2	2	2	2	5 4	24 1	24 1	5246	1246	246	52461	5746	574681	14681	14681	57 681	:7 681	37B681	57B 81	57B 81	7B 81
s.	012	7 7	ZΧ	χ	7 Z	7.7	Y Z O	ΛZΩ	Y Z O	<u>7</u> 20	02 T	1 Z O	120	120	120	130	5	2	2	Ē	1.0	1.0		5	5	m	ñ	m.	m		υ	ບ ບ	ပ
SB	×			-	-,-	-	-	-	-	-	Υ	-	-	-	١z	- ;	5		-	-	-	-	2	-	=	-	3	-	Ē	61	-	S	-
A. REG	01234567			-			-	-	-	-	-	-	-	-	-		-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-
	~		-	-		-	-	-			-	-		-	-	-	-		-	_	-	_	_	_	-	-	-	-		-		_	-
MEMORY BANKS	0123456789ABCDEF			-	_;	~	-	~	6	2	1 0 7	20	0	0	-		2	2	2	2		- 7		6 4 1	6	6	6	-	8	8	8	8	1
a z	ບ			X				2		0						3				đ			9	-		-	-	8			~		
2 2 2 3	m		2				63		0						2				a t			9					ω			×			ပ
8 ×	~	*	•		I	Ы		0						2				3			9					8			~			ပ	
ຽບ	-	>	2				0						2				3			٩					Ð			_			υ		
СЪ								-			_	_	_	_	_					-	-			_	_				_				
		06	921	169	146	951	961	179	186	166	1001	101	1021	1031	1041	1051	106	107	1081	1091	1101	1111	1121	1131	1141	1151	1161	11711	1181	1191	1201	1211	1221
P-ADDR	8	60A 90	60C 92	169	146	951	61A 96	179	186	166	1001	61C 101	61D 102J	101 .	1041	62B 1051	62C 106	1071	63A 108	63B 1091	1011	1111	1121	63D 113	64A 114	1151	64C 116	64D 11711	118	65B 1191	65C 1201	121	66A 1221
TRUCTION P-ADDR		141, A1 60A 90	1, A1 60C 921	fe6	176	951	J.A1 61A 96	1/6	186	166	1001	1 61C 101	5, A1 61D 1021	1031	1041	2 62B 1051	7,A1 62C 106	1071	3 63A 108	11,A1 63B 109]	1101	1111	1121	4 63D 113	13, A1 64A 114	1151	64C 116	1, A7 S1 64D 11711	118	5 65B 119	15, A1 65C 1201	121	66A 1221
TNSTRUCTION P-ADDR		S'I 141,A1 60A 90 (SLANK) 91	S2 1, A1 60C 92	 (EQLANK>	176	651	S3 3, A1 61A 96	 <b< td=""><td>186</td><td>166</td><td>1001</td><td>S1 /HS1 61C 101</td><td>S4 5, A1 61D 102]</td><td> </td><td>1041</td><td>S2 /HS2 62B 1051</td><td>S5 7, Å1 62C 106</td><td><blank> 1071</blank></td><td>S3 /HS3 63A 108</td><td>S6 11, A1 63B 109]</td><td> <b< td=""><td>1111</td><td>1121</td><td>S4 /IIS4 63D 1131</td><td>S7 13, A1 64A 114</td><td>< BLANK> 115 15 </td><td>T40 S1 64C 116</td><td>1, A7 S1 64D 11711</td><td><blank> 118</blank></td><td>S5 /HS5 65B 1191</td><td>s1 15, Å1 65C 1201</td><td> <b< td=""><td>T41 52 66A 1221</td></b<></td></b<></td></b<>	186	166	1001	S1 /HS1 61C 101	S4 5, A1 61D 102]	 	1041	S2 /HS2 62B 1051	S5 7, Å1 62C 106	<blank> 1071</blank>	S3 /HS3 63A 108	S6 11, A1 63B 109]	 <b< td=""><td>1111</td><td>1121</td><td>S4 /IIS4 63D 1131</td><td>S7 13, A1 64A 114</td><td>< BLANK> 115 15 </td><td>T40 S1 64C 116</td><td>1, A7 S1 64D 11711</td><td><blank> 118</blank></td><td>S5 /HS5 65B 1191</td><td>s1 15, Å1 65C 1201</td><td> <b< td=""><td>T41 52 66A 1221</td></b<></td></b<>	1111	1121	S4 /IIS4 63D 1131	S7 13, A1 64A 114	< BLANK> 115 15	T40 S1 64C 116	1, A7 S1 64D 11711	<blank> 118</blank>	S5 /HS5 65B 1191	s1 15, Å1 65C 1201	 <b< td=""><td>T41 52 66A 1221</td></b<>	T41 52 66A 1221
T A INSTRICTION P-ADDR		Si 141,A1 60A 90 SILANK> 91	S2 1, A1 60C 92	<blank> 93</blank>	176	651	S3 J,A1 61A 96	SBLARK> 971	186	166	1001	S1 /HS1 61C 101	S4 5, A1 61D 1021	 	1041	S2 /HS2 62B 1051	S5 7, Å1 62C 106	<blank> 1071</blank>	S3 /HS3 63A 108	S6 11, A1 63B 109]	 <b< td=""><td>1111</td><td>1121</td><td>S4 /HS4 63D 1131</td><td>1911 AP3 13.A1 144</td><td>< BLANK> 115 </td><td>T40 S1 64C 116</td><td>1, A7 S1 64D 11711</td><td><blank> 118</blank></td><td>S5 /HS5 65B 1191</td><td>S1 15, Å1 65C 1201</td><td> <b< td=""><td>T41 S2 66A 1221</td></b<></td></b<>	1111	1121	S4 /HS4 63D 1131	1911 AP3 13.A1 144	< BLANK> 115	T40 S1 64C 116	1, A7 S1 64D 11711	<blank> 118</blank>	S5 /HS5 65B 1191	S1 15, Å1 65C 1201	 <b< td=""><td>T41 S2 66A 1221</td></b<>	T41 S2 66A 1221

ł

. 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 $\begin{bmatrix} C & 7B & 8I \\ 18I & C & 7B & 8I \\ 17I & CG & 7BF & I \\ CG & 7J & I \\ CG & 107 & 0 \\ I & I & K & 0 \\ I & I & R & 0 \\ I & R$

υ		ណ		C		н		×			£			0			0				ນ		D			3
	щ		U		H		2	¥		T			O			0	•			S		D			3	
	ы	U	,	۲	4		¥		Σ			0			0			ç	n		D			38		
ы		U		H		×		£			0			0			S			Þ			3	•		۲
231	241	26 271	28	291		321	331	351	361	371	381	391	401	411	42 J	le t				471	f 8 f	161	501	511	521	Ę.
-			-			-	• •		-	-	-		÷	-	-	<u> </u>	- 1	- •	-	-	-	-	-	-		-

668 670 670 670 670 670 710 710 710 720 720 720 720 720 720 720 720 750 750

2, A7 52 <BLANK> 56 /H56 52 17, A1 <BLANK> T42 53 21, 11 23, A 1 25.A1 27, 11 5. A7 S5 3, N7 S3 6, A7 56 4 . N7 54 7. N7 S7 <BLANK>
<BLANK>
S2 /HS2
55 <BLANK>
S1 /NS7
S2
CBLANK>
<BLANK>
T43 S4

 SI ZHSI <BLANK>
T44 S5 < B L A HK > < BLANK> < BLANK> 145 S6 T46 S7 56 s, 64 O л E **z** 0 **6** 0' œ :n H D > \simeq H **"** × 35 ŝ

ŧ

Table 2(b). Multiply kernel activity report

00000 0M 3 35 3 01234567 3 2 2 S. REG ρ. 2 E+ H 22 0 0 O 000 વિંહ 2 ž S œ 10 D 35 R MEMORY BANKS A A. REG K C 0123456789ABCDEF A 01234567 REG × 34 MEMORY BANKS 0000 ZZ O 3451 3461 3481 3481 3361 3371 3381 N 52| 53|T 1351 1491 1501 1072 11 # 8 3421 343 174 541551551 571 591 601 611 8621 1631 1641 661 3671 3681 3691 8 1400 14 1B P-ADDR 1408 141C 1428 1420 143B 143C 145D 146A 14 OC 1440 1440 1450 4, 11 6, 11 12, 11 INSTRUCTION 2, A1 10, A 1 142.11 51*FS2 S3*ES4 S1*FS2 hS3+ES 52 T40 53 51ANK> 54 T41 T42 <BLANK>
<BLANK>
S2 T44
T01 S7 T43 S6 T45 56 < BLANK> < BLANK> < BLANK> < I LA NK> T00 T 0 2 56 S 1 5 4 S 2 sı sı st si Si 5 J 5 3 < C 0 **A** 0 $\mathbf{\Sigma}$ \mathbf{z} æ SE 5 5 32 × 54 N3 0 2 1 5**1**. 115 115 115 115 115 115 112 113 113 113 15 15 15 15 15 15 15 IS.

. --

- 7

ŧ

ыы

清清

0000

ດເດັດ -----

! :

١

S	c	n	A	н	Ц
ŝ	ς Ω	A	#	:	ы.
1 0	6	a	н	•	
Ś	6	` с	æ	4	-
3701 3721 3721 3731	3751 3761 3771 3781 3791	3811 3821 3831 3831 3841 3851	3861 3871 3881 3891 3891 3901	3941 3941 3941	3961 3971 3981 3981 3981 3991 3991

1468 1478 1477 1477 1477 1470 1470 1500 1500 1510 1510 1528 1538 1538 1538 1538 1548 1548

S1*FS2 24,A1 14, 11 16. A 1 22, A1 20, A 1 S1*F52 **hSJ***ES S1+FS2 53*FS4 53*FS4 <BLANK>
<BLANK>
S2 T46
T03 S7 S6 S1*F S1 <BLANK> S2 T50 T05 S7 < BLANK>
< BLANK>
S4 T47
T04 S6 <BLANK>
<BLANK> <BLANK>
<BLANK>
S4 T51
T06 S6 SJ r07 51 53 53 53 56 51 56 51 S7 0 9 0 80 97 ບ 🗅 54 (4) $\mathbf{O} \equiv$ ¥ a 🗠 z IS IS IS S I I S I I S I I S I I S I I S I I S I I S I I S I I S I 115 115 115 115 SI IS IS IS

Table 2(c). Multiply/subtract kernel activity report

A. REG S S. REG R 01234567 A 01234567		- 7 8 -	1 1 7 8 1 1 1 798 1	1 798		1 798	1 1 298 1		181 C98 B 1	C9 B					I FIEDC	I I EDC G I	I LEDC H G I	I CIEDC H G I	ELED IN G	l D III O IAI			I I IHJL I	I I MINUL I	HI MIHJL	IC IWN C	I T INN III	I T WN I I	I T WN III	I I PNN I
)RY BANKS A 56789ABCDEF A (1 - 2		 	· ·			-	_		 	 		C I I			-	-	(I				-	-				
CPCKKK 1 A B C 012345	56517 56617	56718 7	5681 8 7 56919 8	5701 8 5711 8	5721 9 8	5731 9 8	5751 9 8	5761 9	577IC 9	5781 C 9			5821 D	5831 0	5 84 1	585		5871 H	5881 I H	5891 I H	5921 L K	5931 H	5941	5951 M	5961 M	597 N M	598] N M			6011 0
P-ADDR	210 A	210C	211A	2110)			211D	212A		212C			213A	2138	2130	213D		2149		214D	215A	2150	215C		2168		216C		217A
T A INSTRUCTION G	<u>∵</u> 2 347 , A1 blank>	54 61, A2	SJ 351, A1	<pre><blank> <blank> <s7 pre="" t00<=""></s7></blank></blank></pre>		-	-	S6 S2*FS7	S2 265, A1	< BLA NK>	51 126.A2	VBLANK		SO S3-FS6	S7 100	S6 S4+FS7	S4 1, A2	< BLA NK>	53 267, Å1	<blank></blank>	S5 S1-PS6	S7 T01	S6 S2*FS7	S2 266, A1	< BLANK>	S1 113, A2	< BLANK>	351, A1 SC	 Sulank>	S.) S3-FS6
sr.	15 / 15	IS 8	15 9 IS 9	IS A				IS B	IS C	IS	IS D	^		IS E	IS F	IS G	IS H	1S	I SI	IS	L ST	TS K	IS T	K SI	IS	IS N	IS	IS 0	IS	IS P

ŧ

ł

<u>~ ~ ~ ~ ~ ~ ~ ~ ~</u> \$ CIPNM IPNM FIPNM FIPNM FIPNM 111 54 2] - . F > 0 × MIC 1 6 3 ທິທິທິທ zzz 0000 0 6371 6371 6371 6331 6431 6421 6421 6421 6441 6 141 6 151 6 161 6 18 1 619 6171 220D 221A 221B 221C 222A 222B 222C 222D 223A 223B 223D 217B 217C 217D 230B 224B 224C 224D 225A 225B

- 1. S.

126,A2 S5
slank> 2.A2 605,A1 3, A 2 52*F57 604, A S4*PS7 S1-F56 102 S3-FS6 102 S1-FS6 T03 S2*FS7 S4+FS7 < PLANK> S5 S1-F S7 102 S6 S2*F S2 S2*F <BLANK> S 3 <BLANK>
<BLANK>
T77 S5 50 T77 T01 T77 517 53 S 6 ÷ 50 56 56 54 52 54 s1 C.S S NO m at ŝ ð O 24 D **BOH** \sim æ 5 ISI I S I I S I I S ра Са SI SIS IS S S S S

```
C****
       GENERAL TEST DRIVER FOR NUMERIC SOLVER
THE DIMENSION OF THE FOLLOWING SHOULD BE .GE. # OF EQUATIONS + 1
C***
      DIMENSION SUMR(801), SUMC(801), IPIV(801), B(801), X(801), JA(801)
THE DIMENSION OF THE FOLLOWING SHOULD BE .GE. # OF NONZEROS OF
C ***
C MATRIX
      DIMENSION IA(9000)
       THE DIMENSION OF THE FOLLOWING SHOULD BE .GE. # OF NONZEROS OF LU
C###
      DIMENSION NUMN(10000). A(10000)
        DIMENSION THE FOLLOWING ARRAY TO HOLD THE CODE
C###
      DIMENSION INST(100000)
        SOME EQUIVALENCES COULD BE MADE BETWEEN ABOVE ARRAYS
C###
       READ (5,10) N, NRMAP
   10 FORMAT (1615)
       NP1 = N + 1
       READ (5, 10) (JA(J), J=1, NP1)
       NA = JA(NP1) - 1
       READ (5, 10) (IA(J), J=1, NA)
       IF (NRMAP .NE. 0) READ (5,10) (NUMN(J), J=1, NA)
        ROW INDEX OF PIVOT POSITIONS
C###
       READ (3,10) (IPIV(I),I=1,N)
C###
        ZERO LU STORAGE
       DO 20 I = 1, 10000
   20 A(I) = 0.
        UNIFORMLY-DISTRIBUTED NEGATIVE OFF-DIAGONAL VALUES
C###
       NNN = 999
       DO 30 J = 1, NA
         JJ = J
         IF (NRMAP .NE. O) JJ = NUMN(J)
   30 A(JJ) = -URAND(NNN)
       DO 40 J = 1, N
         SUMR(J) = 0.
         SUMC(J) = 0.
   40 B(J) = 0
        FORMULATE EQUATIONS SO SOLUTION IS X(I) = I + 1
C###
       DO 60 I = 1, N
         I1 = JA(I)
         I2 = JA(I + 1) - 1
         DO 50 J = I1, I2
           ICOL = IA(J)
           JJ = J
           IF (NRMAP .NE. 0) JJ = NUMN(J)
           SUMC(I) = SUMC(I) - A(JJ)
           SUMR(ICOL) = SUMR(ICOL) - A(JJ)
         B(ICOL) = B(ICOL) + A(JJ) + (I + 1)
    50
    60 CONTINUE
             Table 3. Example driver for numeric phase
```

```
C###
        FIND PIVOTS AND FORCE DOMINANCE
       DO 80 I = 1, N
I1 = JA(I)
         I2 = JA(I + 1) - 1
DO 70 J = I1, I2
ICOL = IA(J)
           JJ = J
           IF (NRMAP .NE. 0) JJ = NUMN(J)
IF (ICOL .NE. IPIV(I)) GO TO 70
           B(ICOL) = B(ICOL) - A(JJ) + (I + 1)
           A(JJ) = .01 + 1.1E0 # AMAX1(SUMC(I) + A(JJ),SUMR(ICOL) + A(JJ)
      1
           ١
           B(ICOL) = B(ICOL) + A(JJ) + (I + 1)
           GO TO 80
   70
         CONTINUE
   80 CONTINUE
       READ (8,90) NINSTW
   90 FORMAT (16)
       READ (8) (INST(I), I=1, NINSTW)
C***
        A IS COLUMN-ORDERED PACKED MATRIX
C
C
C
        B IS RIGHT HAND SIDE
        X IS SOLUTION
        N IS # OF EQUATIONS
       CALL SOLVE(INST, A, B, X, N)
       WRITE (6,100) (X(I),I=1,N)
  100 FORMAT (5E12.4)
       STOP
       END
```

Table 3. Continued

J.

# of equations	Description	No Decoupling	Decoupling
289	17x17 5 pt. 2-D grid	52060	59626
443	Elec. Power System	7528	9394
450	Electronic circuit 4-bit adder	6931	7122
507	Oil reservoir	96479	108478
2323	Dil reservoir	1 360000	1407069
5300	Elec.power system	465000	534077

Table 4. Floating point operation counts to factorize matrices

# of equat.	Description	Code stor. (64-bit wds)	FP oper.	MFLOPS	Eff. MFLOPS	Ordering	Time (msgc) Code Gen.	Solu.
160	Elec. Power Sys.	7691	7945	15.3		90.5	145	.520
289	17x17 5-pt grid nested dissect.	63375	591 02	14.5	12.6	758	1250	4.06
391	Oil reserv. D-4 ordered	43096	46296	16.5		583	796	2.79
443	Elec. Power Sys.	14157	1 4001	14.7	11.7	311	250	.948
450	Elec.cir. 4-bit adder	12791	12370	14.3	13.9	31 4	213	.864
507	Oil reserv. D-4 ordered	113566	125117	17.3	15.4	1823	2260	7.24
1746	Elec.cir. 16-bit adder	45758	43779	14.3	14.2	3520	695	3.06
5300	Elec. Power Sys.	585253	634837	11.6	10.1	54313	25700	58.37

Table 5. Result summary. Different operating systems (CCOS and CTSS) were used to solve different problems; unexplained variability was noted in CTSS timings.

いちとう たいちをう

ŧ

