
AUI-125 738 RAN1LV SPANIE IWATIIN SOLUtIO i? LOPLI, CaOE I/I
ENEIATION ON THE CiRAY.,UlJ MICHIGAN UNIV ANN ARBOR

SYSTEMS ENGINEERING LAG D A CAANAJI 01 AUG 82 SEL-t6
UNCLASSIFIED AFOSI-TR-3-O0?? AFOSA-8O-01S8 F/G 12/I NLI1m1111111111111111

11111 .' ' 1 0 Mj2M8 OQ

1.6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUQfAU OF STANDARDS~ -963-

NETWI

7FOSR-TR- ? 3 0 0 77 Report No. 162

Randomly Sparse Equation Solution
Ce by Loopless Code Generation

on the CRA Y-1

D.A. CALAHAN

May 1, 1982 K.-: T ,

• /.

Sponsored by Directorate of Mathematical and Information

Sciences, Air Force Office of $ientific Research,

under Grant No... --M' -(./.&

Systems Engineering Laboratory for pih' c re.eatS I

di.stribut or 1naimitod-

83 03 14 011

UNCLASSI F!ED
SECURITY CLASSIFICATION OF THIS PAGE (When Dets En ered)_

REPORT DOCUMENTAPTIOR PAGE READ INSTRUCTIONS
RE BEFORE COMPLETING FORM

I. REPOR" NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

_A_QSR-TR- 8 -0 0 0-A,- - i _

, L. -(and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

RANDOMLY SPARSE EQUATION SOLUTION Interim
BY LOOPLESS CODE GENERATION 6. PERFORMING O"G. REPORT NUMBER

ON THE CRAY-I -P1,
7. AUTNOR(s) S. CONTRACT OR GRANT NUMBER(s)

D. A. Calahan AFOSR 80-0158

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

University of Michigan AREA6WORKUNITNUMBERS
Dept. of Elec. & Computer Engring.
Ann Arbor, MI, 48109 1 F d //i3

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATEMay 1, 1982
Air Force Office of Scientific Research (1) NUMBEROFPAGES
Bolling AFB, Washington DC 20332 27

14. MONITORING AGENCY NAME & ADDRESS(f different from Controlling Office) IS. SECURITY CLASS. (of this report)

UNCLASSIFIED

15. DECL ASSI FICATION/ DOWNGRADING
SCHEDULE

IW. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (ol the abstrec entered In 91,ck 20, if different from Report)

18. SUPPLEMENTARY NOTES'

19. KEY WORDS (Continue on reverie side It neceeesar and Identify by block number)

Sparse matrices
Parallel processing
Vector processing
Linear algebra

20. ABSTRACT (Continue en reverse side ifnoc~eeary and identify by block number)

To solve dieectly a sparse unsymmetrix equation Ax = b, an
equation-ordering algorithm based on local equation decoupling
is proposed to maintain a high flow rate of scalar computations
within a floating point pipeline. Software is described to solve
highly-sparse unpatterned systems efficiently via explicit code
generation, Rates in the range of 15 MFLOPS on the CRAY-l are
achieved.

DD , rA. 1473 lITION OF, I NOV 65 13 OSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Deta Entered)

,'..- -.-- -
' ' ' '

.:

Randomly-Sparse Equation Solution

by Loopless Code Generation

on the CRAY-1

D. A. Calahan

Systems Engineering Laboratory

University of Michigan

Ann Arbor, Michigan 41109

August 1, 1982

SEL Report #162

Sponsored by the Directorate of Mathematical

and Information Sciences, Air Force

Office of Scientific Research, under

Grant 80-0158

Dl-T 7" _

Gbi~ , ' c : ¢ i or ,tion DiVison

-_- -

Abstract

To solve directly a sparse, unsymmetric matrix equation Ax = b, an

equation-ordering algorithm based on local equation decoupling is proposed

to maintain a high flow rate of scalar computations within a floating point

pipeline. Software is described to solve highly-sparse unpatterned systems

efficiently via explicit code generation. Rates in the range of 15 MFLOPS

on the CRAY-i are achieved.

' a - - --- I I.I-I-I -. I- --.---

I3

I. Introduction

Vector processors have forced a reconsideration of traditional compu-

tational algorithms. In the solution of sparse systems of equations, such

study has resulted in a proliferation of methods to service a variety of

sparsity characteristics.

Early work in general vectorized sparse methods [1], yielding codes that

appeared to the user similar to "traditional" scalar counterparts 123, had

limited intelligence to identify vector operations. For important classes

of both highly-sparse and relatively dense systems, special codes were later

found to achieve speedups of 3:1 to 20:1 over the general vector code. From

an algorithmic viewpoint, it appears that the notion of a general sparsity

code for vector architectures may be an anachronism (however, see [173).

Ar exception occurs where such speeddowns can be tolerated in the

interest of user convenience; for example, in a small highly-sparse system,

the equation solution time may be a small fraction of the equation-

formulation time and such inefficiencies may be acceptable.

In general, such speedups are achieved either by

(a) locally decoupling of equations so that the pipelines can be

"crammed" with independent computations associated with uncou-

pled equations; such methods are useful in highly-sparse systems;

(b) local ceupling of equations so that vectors can be defined witbin

dense banded or locally blocked sparse systems.

Figure 1 illustrates that each of these approaches can be further clas-

sified. In the case of dense systems, usually associated with elliptic fin-

it# element and finite difference problems, coupling is exploited either (a)

within a grid point (node) - with many unknowns/node C3] - or within a fin-

ite element r43 or (b) across grid points, yielding banded and profile systems

4 - - -- -- - --- ----

4j

C53. These are termed intranodal (intra-element), and internodal (inter-

element) coupling, respectively. In general, internodal coupling yields

denser submatrices, longer vectors, and so higher execution rates.

When highly-sparse equations are decoupled, a distinction must be made

between patterned and unpatterned systems.

In the former, it is presumed that (a) submatrices with identical spar-

sity patterns can be identified, and (b) these submatrices are stored with

similarly-positioned elements a constant stride apart. (This latter res-

triction is more important for highly sparse systems, where one cannot

afford to remap the matrix by gather/scatter operations; however, the

existence of patterns usually implies that subsystem matrices can be

simultaneously formulated in vector mode so that (b) is often satisfied.)

These conditions apply, for example, to large electronic circuit matrices

[7][8] and assure vectorizability.

The above vectorizable dense and patterned sparse matrix cases

account for the majority of sparse problems. Indeed, sparse matrices

become large usually by means of .a formulation algorithm that guarantees

vectorizability.

However, there do exist relatively small (< 5000 equations) highly-

sparse problems with undiscernable patterns: some electronic circuits,

electrical power systems, small dissected 2-D finite element grids C63,

occurring perhaps as a part of a 3D iterative solution. In more exotic for-

mulations, an unpatterned matrix may represent only part of a large

sparse system C73. In any case, such structures pose a most difficult algo-

rithmic challenge, apart from their argualile utility. It is to these prob-

lems that the report is addressed. The results of the report were first

given in C143 and C1 53.

n n n n - - ut-I--i I I

5

One additional caveat is offered before proceeding. It will be neces-

sary to preprocess the sparsity structure before the numerical solution is

carried out. On the CRAY-1, this preprocessing time is several hundred

times the matrix solution time. Therefore, this procedure is appropriate

only when multiple numerical solutions are required with the same spar-

sity structure.

II. Algorithms

A. Parallel Solution

Consider an unsymmetric matrix equation of the form

Ax= b

where A is an nxn matrix and x and b are nxl vectors. This equation is to be

solved by LU factorization, viz,

1. Factor A = LU, where L and U are lower and upper triangular

matrices, respectively.

2. Solve Ly = b for y (forward substitution).

3. Solve Ux - y for x (backward substitution).

The matrix A is considered locally decoupled if the combined structure

of its LU factors has the form E113.

SU 1 2

-2 2 U2 3 .

L 2 1 D3 3

L 3 2

- -- - - - ~ -----.----.--------'.--..-. - - -- - - - -

6

where D r " is a diagonal matrix and L +1,r and U ,r+ extend from D rr to the

matrix boundary. The ordered steps to reduce the rth pivot block and the

associated right band side components are

D <- 1 (reciprocation) (1)

L D-1 (multiplication) (2)Lr+ 1,r r-L+ 1,r rr

A r+lP+ <- A r+,r+I-L + U r+ (mult./subtraction) (3)

Yr+ < YT+ 1 -Lr+ 1,rYr (mult./subtraction) (4)

where A r+ 1 ,r+ I represents the unreduced southeast corner of t he matrix

and Yr+ is the associated right hand side at the rth reduction step. The

block back substitution has the form

Yp <- Y U Y (5)

Xr <- YrD (6)

where z is the rth block component of the solution vector. Equations (1)-

(4) can be performed in three parallel steps. That is, except for the sub-

traction, all right hand side matrix elements - operands of unary and binary

floating point computations - are known on entry to the step. (The subtrac-

tions can be processed efficiently at the coding level but can not always be

performed in parallel.) Indeed, the sparser the equations, the greater the

decoupling (dimension of D) and the more parallel the solution.
rr

7

B. Pipelined Solution

Calculation of vector or scalar results in a pipeline requires that

operations in the pipeline at any time be independent. Without this

independence, results must be secured in registers or, worse, main memory,

before they can be operands for a succeeding computation. Independence

ideally permits pipelines to be crammed with vector or scalar operands.

Thus, parallel and pipelined architectures make a similar demand on the

organization of an efficient solution algorithm; equations ()-(6) are,

therefore, also the basis of the proposed pipelined solution.

C. Code generation

If the elements of the 0 r are stored a fixed address increment apart,

then conceivably floating point operations could be performed in vector

mode. However, assuming column-ordered matrix storage for compatibility

with existing programs, the cost of gathering the diagonals into this vector

storage format will likely not be worth the advantage of vectorization.

Similar arguments apply to the other two highly sparse parallel steps. For

the CRAY-l, with slow gather/scatter operations, it is assumed that float-

ing point operations should instead be performed in scalar mode.

To achieve the highest speed scalar operation, it was decided to gen-

erate explicit loopless scalar code in the manner of Gustavson E93. This

avoids the issuing of address operations - costly on the CRAY-I - since

the addresses are imbedded in the scalar code. Thus, when a series of con-

secutive reciprocations, (or multiplications, or subtractions) is to be

performed, the code generator produces, in a preprocessing step, a sequence

of similar scalar operations with different addresses. Because the

instructions are identical except for addresses, the associated scalar

fetches, floating point operations, and stores can be overlapped in a

predictable manner.

Table 1 gives a summary of the asymptotic rates of each of these gen-

erated code sequences, with and without overlapping. Since the

multiplies/subtracts dominate the other computation in any but the spar-

sest matrix, the execution rate for a large matrix should approach that of

the multiply/subtract kernel (14.8 MFLOPS). The detailed kernel overlapped

timings from a CRAY-l simulator [103 are given in Table 2.

D. Ordering

The restricted utility of this class of sparse matrix algorithms to

small highly sparse systems suggests that available ordering techniques

and software be modified, rather than new software be developed. For this

reason, the following procedure represents a variation on the so-called

minimum-degree algorithm, but applied to unsymmetric matrices. It is

accepted apriori that specialized ordering software may execute more effi-

ciently.

First, the conventional MD minimizing algorithm is reviewed. At the kth

step in the ordering, let pr(m) and pc(m), m = 1,..n, represent the row- and

column-ordering permutation vectors, with pr(m) = pc(m) = m for k = 1.

Also, let npr(i) and npc(j) be the number of k+l,..n and j - k,k+l,...n, respec-

tively. There, among the non-zero elements @pv(i),pc(j) , the pivot positions

i k and Jk are chosen such that

ik'jk} - Ci,j: min (p -1) pc(j)- pr(i),pc(j) * o k.in,k~j<n}

The modified algorithm insures the local decoupling of equations and

variables, as follows. When pivot positions i k and jk are selected within

I -

9

block r, the rows and columns coupled to the block's pivot positions are

marked; pivoting is then prohibited on non-zeros in these rows and columns.

When no non-zero, unmarked pivots exist, a new block is initiated by incre-

menting r and clearing markers.

E. Limited Decoupling

The memory hierarchy of the CRAY-1 suggests that the full decoupling

allowed by this ordering should not be exploited. It is preferred that the

results from the first two steps of (2) and (3) be maintained in 64 scalar

(T) registers. This necessitates that the total number of elements in Dmr

and L +l, r be no greater than 64, since all elements of these two matrices

are required in (3) and (4). By correspondingly limiting the dimension of

D r in the ordering algorithm, the minimal degree criterion is, on the aver-

age, less constrained during a pivot selection than if maximum decoupling

were demanded within each block. In the limit, if the dimension of D is

constrained to be unity, a true MD criterion results and the MD operation

count should be achieved.

Viewed another way, since the scalar register file size is limited at 64,

a family of matrices increasing in size should be less impacted by the

limited-decoupling strategy as the size increases. Thus a matrix of large

dimension should achieve a nearly minimal (MD) operation count.

A flow chart of the limited decoupling algorithm is shown in Figure 3.

- *- - -- -~ - -m- - - - -

10

III. Software

A. Introduction

The program has two parts:

(1) A Fortran symbolic preprocessor that (a) orders the equations

according to the limited decoupling algorithms, (b) generates CRAY-i

machine code in a buffer array, and (c) writes this code into a file

in unformatted form.

(2) A program that (a) reads the code into main memory, (b) formu-

lates a set of equations of the prescribed sparsity from random-

valued numerical data, and (c) calls (from Fortran) a short inter-

face program that jumps to the code.

The flow chart is given in Figure 2. Note that the same code suffices to

solve multiple numeric solutions.

B. Inputs To Symbolic Phase

The symbolic phase reads the following data.

1. N- the number of equations.

2. NRMAP = 0 if numeric values stored in column order; NRMAP = 1 if

order of numeric values is given in NUMN

3. JA - an array of dimension N+1; JA(J) points to the first ele-

ment of the Jth column in array IA; JA(N+I) points to one beyond the

last element of IA.

4. IA - an array of dimension NA = JA(N+I)-I, containing the

column-ordered row indices.

5. NUMN - an array, usually of dimension NA; NUMN(J) gives the

location in data array A of the element corresponding to IA(W).

Although written as a self-contained research program (e.g., facilities

are provided to generate randomly-positioned matrices, to count opera-

tions, and produce a printer map), it is relatively clear which facilities

should be deleted for production use. Also, the above data could be

transferred in an argument list.

If NRMAP = 0, it is assumed that NUMN(J) = J, and NUM(J) is not refer-

enced further; the dimension of NUM need then be only unity.

C. Numeric Solution Phase

A Fortran test driver (Table 3) was developed to formulate a

randomly-valued matrix of the spa rsity prescribed by JA and IA. Moreover,

the values are mapped according to NUMN and, to insure numerical domi-

nance of the pivot positions, pivots are located from an array passed from

the symbolic program. The right band side is formulated so that the solu-

tion vector X has the value X(J) = J + 1.

The linkage in the code that performs the LU factorization, the forward

substitution, and the back substitution is made by the subroutine invoca-

tion

CALL EX EC(INST, A, B, X, N)

where

INST is an array containing the machine code

A is the matrix numeric values, packed according to NUMN and IA

B is the right hand side

X is the solution

N is the number of equations.

12

All reciprocations are half precision.

D. Ordering Subroutine

The equation-ordering program, being a critical element of this

software package, deserves separate documentation. A list of its calling

arguments follows.

CALL SPCPIV(N, NA, IA, JA, IROW, JCOL,

JROW, ICOL, INUM, JNUM, IMIN,

JMIN, IPR, IPC, ISIZE, IBLC,

IBLR, IBLOCK, IMINT, JMINT,

IMAP, ICALC, NMAP, NBL, IPIV,

ICMAX, IDP).

where

N* is the number of equations

NA* is the number of non-zero elements

NMAP is the number of elements of MAP

NBL is the expected number of diagonal blocks; .LE.N

ICMAX* must be set to 64 by user

ISIZE* is the maximum expected number of non-zeros of L and U (combined)

IPIV* =0 if limited decoupling is desired
= 1 if no decoupling is desired; MD ordering criterion is then used

IDP* -0 for unspecified tie-breaking in MD ordering
=1 for diagonal preference in tie-breaking

IA(J)* contains column-ordered row number of non-zero positions
of matrix; dimension is NA

IBLOCK(J) is the row number (=column number) of first element
of Jth diagonal block; dimension at least NBL 1; IBLOCK(N+ 1) = NBL+I

a-o

13

(The following arrays must have a dimension ofat least N or N4l)

JA(J)* is the location in JA of the first non-zero element
in the Jth column; JA(N+1) = NA+1

IPR(J) is the Jth pivot row number

IPC(J) is the Jth pivot column number

ICALC(M) is the number of floating point operations to factor
the matrix through the .Jth column

JNUM, INUM, IMINT, JMINT, IBLR, IBLC, IMIN, JMIN, JROW, ICOL

are working arrays

The following arrays must have a dimension equal to the number of expected

non-zeros of L and U combined, plus N, the number of equations.

IROW and JCOL are working arrays

IMAP contains information related to the map of L and U in
alternating row- and column-order; diagonal elements are
represented twice, requiring N additional locations.

IV. Performance

A. Choice of examples

Because the dimension of the matrix is limited by the size of code

stored in main memory, the number of applications of this procedure is lim-

ited. On the other hand, within this class of highly-sparse systems, the code

length and other performance aspects appear to be relatively sensitive to

sparsity features from different applications. Therefore, illustrative

problems have been chosen from a number of applications, namely,

1. Electronic circuit analysis,

*Input data to subroutine.

L4

14

2. General elliptic PDE solution (by nested dissection),

3. Oil reservoir analysis,

4. Electrical power systems analysis.

The first class of problems is unsymmetrical in structure; the latter

three classes are symmetrical in structure, but are assumed, for purposes

of this study, unsymmetrical in value. In all cases, off-diagonal pivoting

is allowed.

B. Effect of ordering

It is well-known that the operation counts associated with the order-

ings of highly-sparse matrices are sensitive to the tie-breaking procedure.

The current ordering algorithm is not necessarily optimized in this respect

(see £123 and C133). However, two options have been incorporated in the pro-

gram:

(a) choosing the "first-found" tied pivot, and

(b) preference for diagonal pivots.

In general, it has been found desirable for symmetrically-structured

matrices to favor diagonal pivots. Unsymmetrically-structured matrices

yield mixed results.

Floating-point operation counts for a number of problems are given in

Table 3, with MD ordering and with the limited decoupling algorithm. The

penalty incurred for decoupling is moderate and decreases on a fractional

basis as the matrix size increases (as previously predicted). These results

are not surprising, since in many model finite difference problems [6),

minimal operation counts are associated with the decoupling proposed here.

15

C. Code length and performance

Table 4 gives the timing and storage results of a number of problems.

The "effective" MFLOPS are the actual MFLOPS multiplied by the degrada-

tion due to the extra floating point computations necessitated by forced

decoupling, visa vis MD ordering (see Table 3).

The following should be noted.

(1) The code length is approximately equal to the number of floating

point operations, in 64-bit words. This allows one to estimate the

feasibility of code generation for a problem with a krown complex-

ity. For example, from Table 4, a million-word memory would seem

to be adequate to store code for the largest real-valued electrical

power system problem and, perhaps, a 1000-equation complex-valued

system. Electronic circuits in the range of 5000 equations should

be readily handled. Five-point 2-D square finite difference grids

solved by nested dissection [63 have by a known solution complexity

of 1 20 n 3 ; these can be solved for m -36.

(2) The code generation time, exclusive of writing the code to a

file, is approximately 18 jisec per floating-point operation, or

200-400 times the equation solution time. Together with the

storage results above, approximately 18 second, suffice to gen-

erate a million words of code. In general, the code generation time

is less than the equation-ordering time for highly-sparse problems;

denser matrices, such as those associated with D-4 ordered reser-

voir grids, have the opposite relation.

(3) The execution rates (MFLOPS) is relatively insensitive to

variations in the matrix size and density. For example, the highly-

sparse power system and electronic circuit matrices yield rates in

4 - -- ----- ' - -.-- - -

16

the range of 11.6-15 MFLOPS, whereas the denser grid-related

matrices can be solved at 16-18 MFLOPS. (Of course, model grid

problems can be solved at for higher rates by band-related methods

[163). This insensitivity is due to the independent (parallel)

element-level operations that are associated both with dense

matrices and with decoupled sparse matrices.

It is reasonable to conclude that l MFLOPS represents a Lower bound

of the solution rate of anu sparse matrix requiring fewer than one million

floating point operations.

t.:

A

.-- ----- u-uu

17

References

E1] Calahan, D. A., P. G. Buning, and W. N. Joy, "Vectorized General Sparsity

Algorithms with Backing Store," Report #96, Systems Engineering

Laboratory, University of Michigan, January, 1977.

E2] Gustavson, F. G., "Some Basic Techniques for Solving Sparse Systems

of Linear Equations," in Sparse Matrices and Their Applications, Ed.

by D. J. Rose, and R. A. Willoughby, Plenum Press, 1972.

C33 Calahan, D. A., "A Block-Oriented Sparse Equation Solver for the

CRAY-i," Report #136, Systems Engineering Laboratory, University of

Michigan, December, 1980.

C4] Duff, I. S., and J. K. Reid, "Experience of Sparse Matrix Codes on the

CRAY-I," Report CSS 116, AERE Harewell, October, 1981.

[52 Calahan, D. A., "High Performance Banded and Profile Equation-Solvers

for the CRAY-1: The Unsymmetric Case," Report #160, Systems

Engineering Laboratory, University of Michigan, February, 1982.

£63 George, J. A., "Nested Dissection of a Regular Finite Element Mesh,"

SIAM J. Num. Anal., vol. 10, 1973, pp. 345-363.

173 Calahan, D. A., "Multi-level Vectorized Sparse Solution of LSI Cir-

cuits," Proc. IEEE Conf. on Circuits and Computers, Rye, N.Y., October,

1980, pp. 976-979.

£83 Vladimirescu, A. and Pederson, D. 0., "A Computer Program for the

Simulation of Large-Scale-Integrated Circuits," Proc. International

Conf. on Circuits and Systems, Chicago, April, 1981.

C93 Gustavson, F. G., W. M. Liniger, and R. A. Willoughby, "Symbolic genera-

tion of and Optimal Crout Algorithm in Sparse Systems of Linear

Equations," J. ACM, vol. 17, pp. 87-109.

18

[103 Orbits, D. A., "A CRAY-i Simulator," report #118, Systems Engineering

Laboratory, University of Michigan, Ann Arbor, 671 Engineering

Laboratory, University of Michigan, Ann Arbor, September, 1978.

[113 Calahan, D. A., "Parallel Solution of Sparse Simultaneous Equations,"

Proc. l1th Allerton Conf. on Circuits and Systems Theory, University

of Illinois., 1973, pp. 729-738.

E123 Wing, 0., and J. W. Huang, "A Computational Model of Parallel Solution

of Linear Equations," IEEE Trans., vol. C29, no. 12, pp. 632-638.

E133 Lipton, R. J., D. J. Rose, and R. E. Tarjan, "Generalized Nested Dissec-

tion," SIAM J. Numer. Anal., vol. 16, 1979, pp. 346-358.

C143 Calahan, D. A., "Direct Solution of Linear Equations on the CRAY-l,"1

Cray Channels, pub. by Cray Research, Inc., vol. 3, No. I, pp. 2-5.

E15] Calahan, D. A., "Decoupled Solution of Circuit Matrices in Pipelined

Processors," ICCC 82 Conf., N. Y., October, 1982.

C163 Calahan, D. A., "High Performance Banded and Profile Equation Solvers

for the CRAY-I: The Unsymmetric Case," Report #160, Systems

Engineering Laboratory, University of Michigan, February, 1962.

C173 Calahan, D. A., "A Vectorized Gensral Sparsity Solver," Report #168,

Systems Engineering Laboratory, University of Michigan, October,

1982.

19

SGENERAL SPARSEI

.25 - 35 MFLOPS

PATTERNED; UNPATTERNED; RECTANGULAR; DIAGONAL;
SIMULTANEOUS SPARSE SCHEDULED SCALAR INTRANODAL & INTERNODAL;

SOLVER; SOLVER INTRA-ELEMENT BLOCKED PROFILE
- 70MFLOPS 15MFLOPS - 141 MFLOPS - 126MFLOPS

Figure 1. Classification of sparse matrix vectorized

algorithms and CRAY-1 available software

- - - - - - -- - - - -- - - --t- - - - - -'- -

20

Column-ordered
matrix structure

Equation
ordering

I
Code gonerto

Write code
to tile

(a) Symbolic preprocessor phase

Read code
into memory

Formulate
equations

Solve
equations,

(b) Numeric solution phase

Figure 2. General fli , chart of equation solver

_ _ _ _ _ _

k-11

Find non-zero pivot
position Q k)with

minimum incremental
operation count among
unmarked and unreduced

V rowas and columns

Nov N
kound?

Yes

unreduced~~~ row (colmns o n-zerotsed

in ro blc kcounterk

k~~~ > pio coue

conter ofto non-zero positions in and L (1 deddrn t

k -pivot stente

non-zeros are in a column

Inner loop timingi Execution rate
(Clocks) (MFLOPS)

Kernel Non-overlaoDed+ OverlaoPed Non-overlapped+ Overlapped
Reciprocation* 27.2 7.50 2.94 10.7
Multiplication 23.8 7.25 3.36 11.0
Multi./Subt. 29.5 10.8 5.42 14.8

xTiming includes instruction fetching.

*Half-precision.

+Result store overlapped with next operand fetch.

Table 1. CRAY-I kernel performance

- - -_

(1 " C'4 N C4 (4 (N NI C4 ?%tJr r -P r l f r-
400000000000 u3nnn)nAuinru~~~

Nq t, N N N N t- N N tN tN N~ tIl mn efnM M r ~ nf
:P4 b- t4u u

en

* N

0mo
- - - - - - - - - - - -

09
Sr InS

4J 0
u

-1-

4. 4 N 0 C4 _- %Q 0 U

0 L

wiU u . N hmm0 0mmm000 C v N N C4

Q 04 N 4 f n _ _r= 1 .

r- 0 -Ln ~~

E-4Z4

b4. t4 N . a b

= ;m 1% = tn =q t

4 3.4 .30 -3 . -

-M .-2' -,J =3 .-4 LM.-m2 o : o -- oU) c -
tiSn S VS M v M flCAV in)nv tn inv nn vf7J E-4 v oCtfV -4

E- dc N - .s 'flD!0O ~ ~

tn t t rt U)U) Cf) tn ' :nUUU~iu tn l t t imtnp.U)U MM rM

0- -4 H --4 . - "0404 " - - - 4 " 0

00000000000

w 4 =~ b4 o W.=z b:

O rR~ L H ~ ~0 0 C

u a H bd 3c a 1 U2 z

U32 t4~i 0 0) me

HQ 0 0 0o WA~

-- - - in m- - - T - -- -- ---- - 3- ul0 A-r

.' 'r- r- r- C)0 -~ N Cj N rnel -- :: g' L uLr.

tn di cn 9 t ' PC t) -9 V

~- r- - ' C. r) r'- LM ~ -
N~ i (4 N ac em -CN

A 7 A A V) A Al A A U) A A M A

.3 .J4 N . -4 ~ - .J. -3 .. U V) .4%0

v M rn VE- vV "IV i4 vVA)V- v H v VE V tAU)V,/ -

H HH HH HH HH HH HH HH H H H H H H H

- ~ ~ ~ ~ ~ ~ ~ juu -00000-----0 ------ -----

mZ2 2 2~ (-44n m n0mt 0mC ,C
94

m -t - - -4E0E4E -L -

cn 3 0- .3 N3 j Y0O 'C YO 'C fb - .

tn a
t,~

u -Q
w 0L

4 .M

1-4

.41 b4 W. W

-U

-44

gL bg 0.3 2 'E-4 U

1-4 2 b4 geU-u

- 4MW.zOE-

m m ,Tc - - ? - 0L nL Mt 0 0~ 0 0 ~ %D% . Q% 0w%

(D C4 14 N -- en U l t- _r - V) 1- --

-4

ol -4-
4-4 n

le -C .ff s

-3 AU- -3 A4 (NJ * r* q4
en mc-T%- M n' r. -I M eqC l n z

" I- V) (A4 v mc,)v V nn Ve - n 2&-Vdn F- n M vtAt

-) E-4 m- x3 0 3 r4

E- l tn t tncr.A ine n :)t ei ntnne n enenen) ~Utfltn n

t - - 4 - - - -- - - -4 4046 -

o 0 '5M Ln LO U)~ LMt ML ~ .M0 ZQ00-

0A LM Ln LA

in 0% a c

oi -C U~ ca 9Q LA 0 1%P4%0 4 u 0 A~O~ 04 Im 4 im u 09 =O u
%0 14 - - r%. -10 0 - % - NC0 4 q - fnen _r z :9

-7 "r -J LnL Ln U n U LL L Ln Ul Ln U) Ln LALn LA

A %D A -AS AA

C- Nr On F- en=- ' 0 3 l-~L r tn =L~ -t %D M(C 19
t() t ZL 4 LA V)v n-4 t/ A v M F04 tn Zt Lf V(/2 E-) Znvt-4 (/

-r s-3 00 04 .0

H 1-4 1-4 P- 42L VLA-4 -.- 0~~UE. L C V -4 Cflt/V -fl4

4i~ IOS0% 4 0~~.! -' a~

C3 Lm UUUoUU 8-4 44. co 4q o 4 t -4 o -A P 4 64
ca EEEE

--
-r cA - OU u. W II. U1"J 92 ol 2 -= 7

- - - - - - - - - - - - - - - - - - -

o4- - - - - - - - - - - - - - - - - - -
04rl b. 4 H H6-4

En c

> O

41i

f*- co A :

Un U w- H 0

41) a4 r c -) - mI .9 I f wmoD-

N,
>1

:3I 0 N Nq N (NN N C4N C4(N C4 C,4N(N N

E- - 6N- (4(N f

' o un %10 ko r 0- r ~ '

E-4 tn -,i r13 Cl En N -

A A AO 0 A A 1 0 A A I'- A A tnAI
t4 W0 (N t4 b 4 (Dcr -ON4 ba b b

H- 2 E- v) &4 tn E-4~ VI 2m =o

-C- -CJ

-W0 9- a% 13 w Q a

-4 b" 0-4HH . 04HH- 0-4 .46. H H H-4 -4 -4 -4

&4r E- E-4C E- E- 014 41 -

('4-4:4 04 . P"4C 0.0 P-0 C'4 b-0 4 (*'4

4 CA ad a. r"

C4l Mc E- ItQm)~ P4V Ir- I c

* E-. fl 2~~~~~E- E- E-4Cl V)- A-C CI 4 U)Cf

L-4 44 4r L

-4 L b

U z c Ac calE U >490 mO 4M C3 .Q co -U

r- N C4~uI C4 'flrnlI I AAflf" C)I Mn _-r -t _-r Uf

--~~~, N C4 cm------,--- r%---

C*** GENERAL TEST DRIVER FOR NUMERIC SOLVER
C** THE DIMENSION OF THE FOLLOWING SHOULD BE .GE. # OF EQUATIONS +'1

DIMENSION SUMR(801), SUMC(B1), IPIV(801), B(801), X(801), JA(801)
C "w THE DIMENSION OF THE FOLLOWING SHOULD BE .GE. # OF NONZEROS OF

C MATRIX
DIMENSION IA(9000)

C*"' THE DIMENSION OF THE FOLLOWING SHOULD BE .GE. # OF NONZEROS OF LU

DIMENSION NUMN(10000), A(10000)
C**" DIMENSION THE FOLLOWING ARRAY TO HOLD THE CODE

DIMENSION INST(100000)
C"'* SOME EQUIVALENCES COULD BE MADE BETWEEN ABOVE ARRAYS

READ (5,10) N, NRMAP
10 FORMAT (1615)

NP1 = N + 1
READ (5,10) (JA(J),J=1,NP1)
NA = JA(NP1) - 1
READ (5,10) (IA(J),J=1,NA)
IF (NRMAP .NE. 0) READ (5,10) (NUMN(J),J=1,NA)

C"'* ROW INDEX OF PIVOT POSITIONS
READ (3,10) (IPIV(I),I=1,N)

C"'* ZERO LU STORAGE
DO 20 I = 1, 10000

20 AMI = 0.

C"'* UNIFORMLY-DISTRIBUTED NEGATIVE OFF-DIAGONAL VALUES
NNN = 999
DO 30 J = 1, NA

JJ = J
IF (NRMAP .NE. 0) JJ = NUMN(J)

30 A(JJ) = -URAND(NNN)
DO 40 J = 1, N

SUMR(J) = 0.
SUMC(J) = 0.

40 B(J) = 0
C"'* FORMULATE EQUATIONS SO SOLUTION IS X(I) I + 1

DO 60 I = 1, N
II = JAI)
12 = JA(I + 1) - 1
DO 50 J = 11, 12

ICOL = IA(J)
JJ = J
IF (NRMAP .NE. 0) JJ = NUMN(J)
SUMC(I) = SUMC(I) - A(JJ)
SUMR(ICOL) = SUMR(ICOL) - A(JJ)

50 B(ICOL) = B(ICOL) + A(JJ) ' (I + 1)
60 CONTINUE

Table 3. Example driver for nuneric piaoe

j

C*** FIND PIVOTS AND FORCE DOMINANCE
DO 80 I = 1, N

II = JA(I)
12 = JA(I + 1) - 1
DO 70 J = II, 12

ICOL IA(J)
JJ = J
IF (NRMAP .NE. 0) JJ = NUMN(J)
IF (ICOL .NE. IPIV(I)) GO TO 70
B(ICOL) = B(ICOL) - A(JJ) * (I + 1)
A(JJ) = .01 + 1.1EO * AMAX1(SUMC(I) + A(JJ),SUMR(ICOL) + A(JJ)

1)
B(ICOL) = B(ICOL) + A(JJ) * (I + 1)
GO TO 80

70 CONTINUE
80 CONTINUE

READ (8,90) NINSTW
90 FORMAT (16)

READ (8) (INST(I),I=I,NINSTW)
C * * A IS COLUMN-ORDERED PACKED MATRIX
C B IS RIGHT HAND SIDE
C X IS SOLUTION
c N IS # OF EQUATIONS

CALL SOLVE(INST, A, B, X, N)
WRITE (6,100) (X(I),I=1,N)

100 FORMAT (5E12.4)
STOP
END

Table 3. Continued

I

of No
equations Description Decoupling Decoupling

289 17x17 5 pt. 52060 59626
2-D grid

443 Elec. Power System 7528 9394

450 Electronic circuit 6931 7122
4-bit adder

507 Oi Ireservoir 96479 108478

2323 Oil reservoir 1360000 1407069

5300 Elec. power system 465000 534077

Table 4. Floating point operation counts to factorize matrices

Time
(ms-Fc)

of Code stor. FP Eff. Code
equat. Description (64-bit wds) oper. MFLOPS MFLOPS Ordering Gen. Solu.

160 Elec. Power 7691 7945 15.3 -- 90.5 145 .520
Sys.

289 17x1 7 5-pt 63375 59102 14.5 12.6 758 1250 4.06
grid nested
dissect.

391 Oil reserv. 43096 46296 16.5 -- 583 796 2.79
D-4 ordered

443 Elec. Power 14157 14001 14.7 11.7 311 250 .948
Sys.

450 Elec.cir. 12791 12370 14.3 13.9 314 213 .864
4-bit adder

507 Oil reserv. 113566 125117 17.3 15.4 1823 2260 7.24
D-4 ordered

1746 Elec. cir. 45758 43779 14.3 14.2 3520 695 3.06
16-bit adder

5300 Elec. Power 585253 634837 11.6 10.1 54313 25700 58.37
Sys.

Table 5. Result summary. Different operating syster,
(CCOS and rTSS) were used to solve different problems; unexplained
variability was noted in CTSS timings.

ATE
0
L E

m
-dpp

