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Abstract

‘~1>’o solve directly a sparse, unsymmetric matrix equation Ax = b, an
equation-ordering algorithm bacsed on local equation decoupling is proposed
to maintain a high flow rate of scalarcomputations within a floating point
pipeline. Software is described to solve highly-sparse unpatterned systems
efficiently via explicit code generation. Rates in the range of 15 MFLODPS

on the CRAY-]1 are achieved.
r
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I. Introduction

Vector processors have forced a reconsideration of traditional compu-
tational algorithms. In the solution of sparse systems of equations, such
study has resulted in a proliferation of methods to service a variety of

sparsitycharacteristics.

Early work in genevral vectorized sparse methods [11,yielding codes that
appeared to the user similar to "traditional” scalar counterparts [2], had
limited intelligence to identify vector operations. For important classes
of both highly-sparse and relatively dense systems, special codes were later
found to achieve speedups of 31 ta 20:]1 aver the general vectar code. From
an algorithmic viewpaint, it appears that the notion of a general sparsity

code for vector architectures may be an anachranism (however,see [171}.

An exception octcurs where such speeddowns can be tolerated in the
interest of user convenience; for example, in a small highly-sparse system,
the equation solution time may be a small fraction of the equation-

formulation time and suchinefficiencies may be acceptable.

In general, such speedups are achievedeither by
(a) locally decoupling of equations so that the pipelines can be
"crammed” with independent computations associated with uncou-
pled equations; such methods are useful in highly-sparse systems;
(b) local coupling of equations so that vectors can be defined within

dense banded or locally blocked sparse systems.

Figure 1 illustrates that each of these apprcaches can be further clas-
sified. In the case aof dense systems, usually associated with elliptic fin-
ite element and finite difference problems, coupling is exploited either (a)
within a grid paint (node) - with many unknowns/nade {31 - ar within a fin-

ite element [41or (b) across grid points, yielding banded and profile systems

b -
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£(5). These are termed intranodal (intra-element), and internodal (inter-
element) coupling, respectively. In general, internodal coupling yields

denser submatrices, longer vectors, and so higher execution rates.

When highly-sparse equations are decoupled, a distinction must be made

between patterned and unpatterned systems,

In the former, it is presumed that (a) submatrices with identical spar-
sity patterns can be identified, and (b) these submatrices are stored with
similarly-positioned elements a constant stride apart. (This latter res-
triction is moare important for highly sparse systems, where ona cannot
afford to remap the matrix by gather/scatter operationsj however, the
existence of patterns usually implies that subsystem matrices can be
simultaneously farmulated in vector mode so that (b) is often satisfied.)
These conditions apply, for example, to large electronic circuit matrices

(71l8] and assure vectorizability.

The above vectorizable dense and patterned sparse matrix cases
account for the majority of sparse problems. Indeed, sparse matrices
become large usually by means of a formulation algorithm that guarantees

vectorizability.

However, there do exist relatively small ( £ 5000 equations) highly-
sparse problems with undiscernable patterns: some electronic circuits,
electrical power systems, small dissected 2-D finite element grids (&],
occurring perhaps as a part of a 3D iterative solution. In more exotic for-
mulations, an unpatterned matrix may represent only part of a large
sparse system (71, In any case, such structures pose a most difficult algo-
rithmic challenge, apart from their arguadle utility. It is to these prob-
lems that the report is addre=ssed. The results of the report were first

given in (14] and [19].
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One additional caveat is offered before proceeding. It will be neces-
sary to preprocess the sparsity structure before the numerical solutionis
carried out. On the CRAY-1l, this preprocessing time is several hundred
times the matrix solution time. Therefore, this procedure is appropriate

only when multiple numerical solutions gare required with the same spar-

sitystructure,

I1, Algorithms

A.Parallel Solution

Cansider anunsymmetric matrix equation of the form

Ax= b

where A is annxn matrixand xand b are nxl vectors, This equation is to he

solved by LU factorization, viz,

1. Factor A = LU, where L and U are lower and upper triangular

matrices, respectively,
2. Solve Ly=b fory (forward substitution),

3. Solve Ux= y for x (backwardsubstitution),
The matrix A is considered locally decoupled if the combined structure
ofits LU factors has the form {111,

D, Yo

. e g e o cn
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where D"‘ is @ diagonal matrixandL and l.lr extend from D?r to the

r+1,r 1
matrix boundary. The ordered steps to reduce the rth pivot block and the

associated right band side components are

D <- -} (reciprocation) (1)
rr re
. -1 ... .
r+1,r < Lr+1,rnrr (multiplication) 2)
Ar+1,r+1 <- Ar+1,r+1-Lr+1,rUr,r+1 (mult./subtraction) D

Y <- Y -L

r+1 r+1 (mult./subtraction) 4)

T+ i,rYr

where A represents the unreduced southeast corner of t he matrix
r+l,r+1
and Y‘.+1 is the associated right hand side at the rth reduction step. The

bloeck back substitution has the farm

Yr <= Yf-ur,‘r"-lyl"'-l 1§-))

X <- Y_D (&)
r Ty

where LI is the rth block component of the solution vector. Equations (1)-

(4) can be performed in three parallel steps. That is, except for the sub-
traction, all right hand side matrix elements - operands of unary andbinary
floating point computations - are known on entry to the step. (The subtrac-
tions can be processed efficiently at the coding level but can not always be
performed in parallel.) Indeed, the sparser the equations, the greater the

decoupling ( dimension of D"_ ) and the more parallel the solution.




B. Pipelined Solution

Calculation of vector or scalar results in a pipeline requires that
operations in the pipeline at any time be independent., Withaut ¢this
independence, results must be secured in registers or, worse, main memory,
before they can be operands for a succeeding computation. Independence
ideally permits pipelines to be crammed with vector or scalsr operands.
Thus, parallel and pipelined architectures make a similar demand on the

organization of an efficient solution algorithmj equations (1)-(&) are,

therefore, also the basis of the proposed pipelined solution,

C. Code generation

If the elements of the D". are stored a fixed address increment apart,

then conceivably floating point aoperations could be performed in vector
mode. However, assuming column-ordered matrix storage for compatibility
with existing programs, the cost of gathering the diagonals into this vector
storage format will likely not be worth the advantage aof vectorization.
Similar arguments apply to the other two highly sparse parallel steps. For
the CRAY-], with slow gather/scatter operations,it is assumed that float-

ing point operations should instead be performedin scalar mode.

To achieve the highest speed scalar operation, it was decided to gen-
erate explicit loopless scalar code in the manner of Gustavson [9]. This
avoids the issuing of address operations -~ castly on the CRAY-1 - since
the addresses are imbedded in the scalar code. Thus, when a series of con-
secutive reciprocations, (or multiplications, ar subtractions) is to be
performed, the code generator produces, in @ preprocessing step, @ sequence
of similar scalar operations with different addresses. DBecause the

instructions are identical except for addresses, the associated scalar

...
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fetches, floating point operations, and stores can be overlapped in a

predictable manner.

Table i1 gives a summary of the asymptotic rates of each of these gen-
erated code sequences, with and without overlapping. Since ¢the
multiplies/subtracts dominate the other computationin any but the spar-
sest matrix, the execution rate for a large matrix should approach that of
the multiply/subtract kernel (14.8 MFLOPS)., The detailed kernel overlapped

timings from a CRAY-1simulator {10] are given in Table 2.

D. Ordering

The restricted utility of this class of sparse matrix algorithms to
small highly sparse systems suggests that available ordering techniques
and software be modified, rather than new software be develpped. For this
reason, the following procedure represents a variation on the so-called
minimum-degree algorithm, but applied to unsymmetric matrices. It is
accepted apriori that specialized ardering software may execute more effi-

ciently.

First, the conventional MD minimizing algorithm is reviewed. At the kth
step in the ordering, let pr(m) and pcim); m = L,.n, represent the row- and
column-ordering permutation vectors, with pr(m) = pe(m) = m for k = 1.

Also, let n and n be the number of k+1,..n and j = kk+1,..n, respec-

prii) pcij)

tively. There, among the non-zero elements e y the pivot positions

priidpelj)

ik and jt are chosen such that

{it’jk} = {i,jimin (n"(i)-l)(nn(j)—l); .pr(i),pc(j) # O k{iink{jin)

The modified algorithm insures the local decoupling of equations and

variables, as follows. When pivaot positions i, and jk are selected within

k

it
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block r, the rows and columns coupled to the block's pivot positions are
marked; pivoting is then prohibited on non-zeros in these rows and calumns,
When no non-zero, unmarked pivots exist, a new block is initiated by incre-

menting r and clearing markers.

E. Limited Decoupling

The memory hierarchy of the CRAY-1l suggests that the full decoupling
allowed by this ordering should not be exploited. It is preferred that the
results from the first two steps of (2) and (3) be maintained in 64 scalar

(T) registers, This necessitates that the total number of elements in D".

and L be no greater than 64, since all elements of these two matrices

r+1,r
are required in. (3) and (4), By correspondingly limiting the dimension of

Dﬂ. in the ordering algorithm, the minimal degree criterion is,on the aver-

age, less constrained during a pivot selection than if maximum decoupling

were demanded within each block. In the limit, if the dimension of D“‘ is
constrained to be unity, a true MD criterion results and the MD operation
ctount should be achieved.

Viewed another way, since the scalar register filesizeis limited at 64,
@ family of matrices increasing in size should be less impacted by the
limited-decoupling strategy as the size increases. Thus a matrix of large

dimension should achieve a nearly minimal (MD) operation count.

A flow chart of the limitad decoupling algorithm is shown in Figure 3.
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II1. Software

A,

Introduction

The program has two parts!

(1) A Fortran symbolic preprocessor that (a) arders the equaticons
according to the limited decoupling algorithms, (b) generates CRAY-1
machine code in a buffer arrtay, and (c) writes this code into a file
inunformatted form.

(2) A program that (a) reads the code into main memory, (b) formu-
lates a set of equations of the prescribed sparsity from random-
valued numerical data, and (c) calls (from Fortran) a short inter-

face program that jumps to the code.

The flow chart is given in Figure 2. Note that the same code suffices to

solve multiple numeric solutions.

B. Inputs To Symbolic Phase

The symbolic phase reads the following data.

1. N - the number of equations,

2. NRMAP = Q0 if numeric values stored in columnorder;i NRMAP =1if
order of numeric values is given in NUMN

3. JA - an array of dimension N+1; JA(J) points to the first ele-
ment of the Jthcolumnin array IA; JA(N+1) points to one beyond the
last element of [A.

4. TA - an array of dimension NA = JA(N+1)-1, containing the
column-ordered row indices.

3. NUMN - an array, usually of dimension NA; NUMN(J) gives the

locationindata arrayAof the element corresponding to IA(U).
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Although written as a self-contained research program (e.g., facilities
are provided to generate randomly-positioned matrices, to count opera-
tions, and produce a printer map), it is relatively clear which facilities
should be deleted for production use. Also, the above data could be

transferredinan argument list.

If NRMAP = 0Q,it is assumed that NUMN(J) = J, and NUM(J) is not refer-

enced furtherj the dimension of NUM need then be only unity.

C. Numeric Solution Phase

A Fortran test driver (Table 3) was developed to formulate a
randomly~valued matrix of the sparsity prescribed by JA and IA. Moreover,
the values are mapped according to NUMN and, to insure numerical domi-
nance of the pivot positions, pivots are located from an array passed from
the symbolic program. The right band side is formulated so that the solu-

tion vector X has the value X(J) = J + 1.

The linkage in the code that performs the LU factorization, the forward
substitution, and the back substitution is made by the subroutine invoca-

tion
CALL EXEC(INST, A, B, X, N)

where
INST is an arraycontaining the machine code
Ais the matrix numeric values, packed according to NUMN and IA
Bis the right hand side
X i1s the solution

N is the number of equations,
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All reciprocations are halfprecision.

D. Ordering Subroutine

The equation-ordering program, being a critical element of this
software package, deserves separate documentation. A list of its calling

arguments follows.

CALL SPCPIV(N, NA, 1A, JA, IROW, JCOL,
JROW, ICOL, INUM, JNUM, IMIN,
JMIN, IPR, IPC, ISIZE, IBLC,
IBLR, IBLOCK, IMINT, JMINT,
IMAP, ICALC, NMAP, NBL, IPIV,

ICMAX, IDP).

where
N# is the number of equations
NA # is the number of non-zero elements
NMAP is the number of elements of MAP
NBL is the expected number of diagonal blacks; .LE.N
ICMAX #* must be set to 64 by user
ISIZE* is the maximum expected number of nan-zeros of L and U (combined)
IPIV# =0 if limited decoupling is desired
=1 if no decoupling is desired; MD ordering criterionis then used
IDP=» =20 for unspecified tie-breaking in MD ordering
=] for diagonal preference in tie-breaking
IA(J)* contains column-ordered row number of non-zero positions

of matrixidimension is NA

IBLOCK(J) is the row number (=column number) of first element
of Jthdiagonal block;j dimension at least NBL+1; IBLOCK(N+1) = NBL+1
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(The following arrays must have a dimensionofat least Nor N+1)

JAWD) # is the locationin JAof the first non-zero element
in the Jthcolumnj JA(N+1) = NA+1

IPR(J) is the Jthpivot row number
IPC(J) is the Jthpivot column number

ICALC(J) 1is the number of floatingpoint operations to factor
the matrix through the Jth column

JNUM, INUM, IMINT, JMINT, IBLR, IBLC, IMIN, JMIN, JROW, ICOL

are working arrays

The following arrays must have a dimension equal to the number of expected

non-zeros of L and U combined, plus N, the number of equations.

IROW and JCOL are working arrays
IMAP contains information related to the mapofL andU in

alternating row- and column-orderjdiagonal elements are
represented twice, requiringN additional locations.

IV. Performance

A, Choice of examples

Because the dimension of the matrix is limited by the size of code
stored in main memary, the number of applications of this procedure is lim-
ited. On the other hand, within this class of highly-sparse systems, the code
length and other performance aspects appear to be relatively sensitive to
sparsity features from different applications. Therefore, illustrative

problems have been chosen from a number of applications, namely,

1. Electroniccircuit analysis,

#Input data to subroutine.

i ———— s e
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2. General elliptic PDE solution (by nested dissection),
3. 0il reservoir analysis,

4, Electrical power systems analysis.

The first class of problems is unsymmetrical in structure; the latter
three classes are symmetrical in structure, but are assumed, for purposes
of this study, unsymmetrical in value. In all cases, off-diagonal pivoting

is allowed.

B. Effect of ordering

It is well-known that the operation counts associated with the order-
ings of highly-sparse matrices are sensitive to the tie-brreaking procedure.
The current ordering algorithm is not necessarily optimized in this respect
(see [12] and [13]). However, two options have been incorperatedin the pro-

gram:

(a) choosing the "first-found” tied pivot, and

(b) preference for diagonal pivots.
In general, it has been found desirable for symmetrically-structured
matrices to favor diagonal pivots. Unsymmetrically-structured matrices

yield mixed results.

Floating-point operation counts for a number of problems are givenin
Table 3, with MD ordering and with the limited decoupling algorithm. The
penalty incurred for decoupling is maderate and decreases on a fractional
basis as the matrix size increases (as previously predicted). These results
are not surprising, since in many model finite difference problems [&],

minimal operation counts are associated with the decoupling proposed herae,
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C. Code length and performance

Table 4 gives the timing and storage results of a number of problems.
The "effective" MFLOPS are the actual MFLOPS multiplied by the degrada-
tion due to the extra floating point computations necessitated by forced

decoupling, visa vis MD ordering (see Table 3),

The following should be noted.

(1) The code length is approximately equal to the number of floating
point operations, in &4-bit words. This allows one to estimate the
feasibility of code generation for a problem with a krown complex-
ity. For example, from Table 4, a million-ward memory would seem
to be adequate to store code for the largest real-valued electrical
power system problem and, perhaps, a 1000-equation complex-valued
system., Electronic circuits in the range of 5000 equations should
be readily handled. Five-point 2-D square finite difference grids
solved by nested dissection [&] have by a known solution complexity
of & 20 n3; these canbe solved for m £ 36,

(2) The code generation time, exclusive of writing the code to a
file, is approximately 18 psec per floating-point operation, or
200-400 times the equation solution time. Together with the
storage results above, approximately 18 seconds suffice to gen-
erate a million words of code, In general, the code generation time
is less than the equation-ordering time for highly-sparse problems;
denser matrices, such as those associated with D-4 ordered reser-
voir grids, have the opposite relation.

(3) The execution rates (MFLOPS) is relatively insensitive to
variations in the matrix size and density., For example, the highly-

sparse power system and alectroniccircuit matrices yield rates in
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the range of 11.6-13 MFLOPS, whereas the denser grid-related
matrices can be solved at 146-18 MFLOPS, (Of course, model grid
problems can be solved at for higher rates by band-related methods
{163). This insensitivity is due to the independent (parallel)
element-level operations that are assaciated both with dense
matrices and with decoupled sparse matrices.
; It is reasonable to conclude that 11 MFLOPS represents a lower bound
of the solution rate of any sparse matrix requiring fewer than one million

I floating point operations.
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lbecourLing | COUPLING
PAT TERNED; UNPA TTERNED; REC TANGULAR; DIAGONAL;
SIMULTANEOUS SPARSE| [SCHEDULED SCALAR| | INTRANODAL % INTERNODAL;
SOLVER; SOL VER INTRA-ELEMENT| |BLOCKED PROFILE
- 70 MFLOPS 15 MFLOPS - 141 MFLOPS - 126 MFLOPS

Figure 1, Classification of sparse matrix vectorized
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Figure 2. Genaral flow chart of equation solver
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non-zeros are in a column
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a2
Inner loop timingx Execution rate
(Clocks) (MFLOPS)

; Kertnel Non-overlapped+ gverlagged Non-overlaggeg-!- Dverlag_ged
Recipraocation# 27.2 7.50 2.94 10.7
Multiplication 23.8 7.25 3.3b6 11.0
Multi./Subt, 29.5 10.8 5.42 14.8

xTiming includes instruction fetching.
#Half-precision.
+Result store overlapped with next operand fetch.

Table 1. CRAY-1kernel performance
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Caess

GENERAL TEST DRIVER FOR NUMERIC SOLVER

Chna THE DIMENSION OF THE FOLLOWING SHOULD BE .GE. # OF EQUATIONS +°1
DIMENSION SUMR(801), SUMC(801), IPIV(801), B(801), X(801), JA(801)
C % THE DIMENSION OF THE FOLLOWING SHOULD BE .GE. # OF NONZEROS OF
C MATRIX '
DIMENSION IA(9000)
Chus THE DIMENSION OF THE FOLLOWING SHOULD BE .GE. # OF NONZEROS OF LU
DIMENSION NUMN(10000), A(10000)
cuns DIMENSION THE FOLLOWING ARRAY TO HOLD THE CODE
DIMENSION INST(100000) -
Chia SOME EQUIVALENCES COULD BE MADE BETWEEN ABOVE ARRAYS
READ (5,10) N, NRMAP
10 FORMAT (1615)
NP1 = N + 1
READ (5,10) (JA(J),d=1,NP1)
NA = JA(NP1) - 1
READ (5,10) (IA(J),Jd=1,NA)
IF (NRMAP .NE. 0) READ (5,10) (NUMN(J),Jd=1,NA)
CHid ROW INDEX OF PIVOT POSITIONS
READ (3,10) (IPIV(I),I=1,N)
Cess ZERO LU STORAGE
DO 20 I =1, 10000
20 A(I) = 00
Chzs UNIFORMLY-DISTRIBUTED NEGATIVE OFF-DIAGONAL VALUES
NNN = 999
DO 30 J = 1, NA
JJ = J
IF (NRMAP .NE. 0) JJ = NUMN(J)
30 A(JJ) = =URAND(NNN)
DO 40 J = 1, N
SUMR(J) = 0.
SUMC(J) = 0.
40 B(J) = 0
Chxs FORMULATE EQUATIONS SO SOLUTION IS X(I) = I + 1
DO 60 I = 1, N
I1 = JA(I)
I2 = JA(I + 1) =1
DO 50 J = I1, I2
ICOL = IA(J)
Jd = J
IF (NRMAP .NE. 0) JJ = NUMN(J)
SUMC(I) = SUMC(I) - A(JJ)
SUMR(ICOL) = SUMR(ICOL) - A(JJ)
50 B(ICOL) = B(ICOL) + A(JJ) ®* (I + 1)
60 CONTINUE

Table 3. Example driver for nuneric paase
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Chas

70

T —— e e s b % bt £ S e i e mram < =  re

. —— e

FIND PIVOTS AND FORCE DOMINANCE

DO 80 I =1, N

I1 = JACI)
I2 = JA(T + 1) = 1
DO 70 J = I1, I2
ICOL = IA(J)
JJ = J
IF (NRMAP .NE. 0) JJ = NUMN(J)
IF (ICOL .NE. IPIV(I)) GO TO 70
B(ICOL) = B(ICOL) - A(JJ) # (I + 1)

A(JJ) = .01 + 1.1E0 * AMAXT1(SUMC(I) + A(JJ),SUMR(ICOL) + A(JJ)

)
B(ICOL) = B(ICOL) + A(JJ) * (I + 1)
GO TO 80

CONTINUE

80 CONTINUE

90

Chas

100

READ (8,90) NINSTW

FORMAT (I6)

READ (8) (INST(I),I=1,NINSTW)
A IS COLUMN-ORDERED PACKED MATRIX
B IS RIGHT HAND SIDE
X IS SOLUTION
N IS # OF EQUATIONS

CALL SOLVE(INST, A, B, X, N)

WRITE (6,100) (X(I),I=1,N)

FORMAT (5E12.4)

STOP

END

Table 3. Continued
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R L L

L 3

# of

equations

289

443

450

507
2323

5300

Description

17x17 5 pt.
2-D grid

Elec. Power System

Electronic circuit
4-bit adder

0il reservoir
0Dil reservoir

Elec. power system

No

Decoupling

13
4

520460

7528

46931

6479
60000

65000

Decoupling

59626

9394

7122

108478
1407069

534077

Table 4. Floating point operationcounts to factorize matrices

# of
equat. Description
160 Elec. Power
Sys.

289 17x17 S-pt
grid nested
dissect.
391 0il reserv,
D-4 ordered
443 Elec. Power
Sys.

450 Elec.cir.
4-bit adder
907 0Oil reseryv,
D-4 ordered
1746 Elec.cir.
16-bit adder
9300 Elec. Power
Sys.

Code stor. FP
(&4-bit wds) oper.
7691 7945
63375 39102
43096 46296
14157 14001
12791 12370
113566 125117
45758 43779
383233 634837

MFLOPS MFLOPS

15.3

14,5

16.5

14,7

14.3

17.3

14.3

11.6

Eff.

12.6

11.7

13.9

15.4

14.2

10.1

Table S. Result summary., Different operating systems
(CCOS and CTSS) were used to solve different problems; unexplained

variability was noted in CTSS timings.

- ——

o e - ———__ g s, Bhgmtutin._. SOl

Time
(msac)

Code

Ordering Gen,
90.5 145
758 12350
583 796
311 250
314 213
1823 2260
3520 695
94313 25700

Solu.

.520

4.046

3.06

58.37







