7	AU-A125 737	THE LONG TERM UPPER AND HYDROGRAPHIC D. INSTITUTION MA R P NO0014-76-C-0197	OCEAN STUDY (LOTU (U) WOODS HOLE OC TRASK ET AL. FEB	IS) CRUISE SUMMARY EANOGRAPHIC 83 WHOI-83-7 F/G 8/10	1/)
	1				
			END DATE FINED 4 83 DTI		

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS - 1963 - A

-- ::

UNCLASSIFIED 2/83

REPORT DOCUMENT	READ INSTRUCTIONS BEFORE COMPLETING FORM	
REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
WH0I-83-7	AD-A125737	
TITLE (and Subtitio) THE LONG TERM UPPER OCEAN S	5. TYPE OF REPORT & PERIOD COVERED	
CRUISE SUMMARY AND HYDROGRA	PHIC DATA REPORT	Technical
OCEANUS 119 - MAY 1982	6. PERFORMING ORG. REPORT NUMBER WHOI-83-7	
AUTHOR(e)	B. CONTRACT OR GRANT NUMBER(#)	
Richard P. Trask and Melbou	N00014-76-C-0197; NR 083-400	
PERFORMING ORGANIZATION NAME AND	ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Woods Hole Oceanographic In	AREA & WORK UNIT NUMBERS	
Woods Hole, Massachusetts	02543	NR 083-400
CONTROLLING OFFICE NAME AND ADDRE	ESS	12. REPORT DATE
NORDA, National Space Techn	ology Laboratory	February 1983
Bay St. Louis, MS 39529	27-35 - 220, 230, 3	13. NUMBER OF PAGES
		43
MONITORING AGENCY NAME & ADDRESS	if different from Controlling Office)	15. SECURITY CLASS, (of this report)
		Unclassified
		15a. DECLASSIFICATION DOWNGRADING SCHEDULE
DISTRIBUTION STATEMENT (of this Report	,	<u> </u>
Approved for public release	: distribution unlimit	ed.
,, = = = = = = = = = = = = = = = = = =	,	· · · · ·

- 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)
- 18. SUPPLEMENTARY NOTES

This report should be cited as: Woods Hole Oceanog. Inst. Tech. Rept. WHOI-83-7.

- 19. KEY WORDS (Continue on reverse side if necessary and identify by block number)
 - 1. LOTUS
 - 2. Hydrographic data
 - 3. Sargasso Sea
- 20. ABSTRACT (Continue on reverse side if necessary and identity by block number)

Please see reverse side.

DD 1 JAN 73 1473

EGITION OF 1 NOV 68 IS OBSOLETE S/N 0102-014-6601 |

UNCLASSIFIED 2/83
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

LCURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20.

OCEANUS cruise number 119 (6-14 May, 1982) was the seventh in a series of cruises to the Long Term Upper Ocean Study (LOTUS) area centered at 34°N, 70°W. During this cruise five moorings were set at the LOTUS site; four for the LOTUS experiment and one, a profiling current meter mooring, for C.S. Draper Labs - MIT. In addition an engineering mooring was set at 39°30'N, 70°W. Two XBT sections were made along 70°W between 40°N and 33°N during the trip to and from the LOTUS site. Five CTD stations were also completed in the LOTUS area.

Part I of this report is a summary of the major cruise activities and part II presents the hydrographic data (CTD and XBT) collected during the cruise.

THE LONG TERM UPPER OCEAN STUDY (LOTUS) CRUISE SUMMARY AND HYDROGRAPHIC DATA REPORT OCEANUS 119 - MAY 1982

Ву

Richard P. Trask and Melbourne G. Briscoe

WOODS HOLE OCEANOGRAPHIC INSTITUTION Woods Hole, Massachusetts 02543

February 1983

TECHNICAL REPORT

Accession For

NTIS GRA&I
DTIC TAR

Unemnounced
Justification

Rv

Distribution/
Availability Codes

Avail and/or
Dist | Special

Prepared for the Office of Naval Research under Contract N00014-76-C-0197; NR 083-400.

Reproduction in whole or in part is permitted for any purpose of the United States Government. This report should be cited as: Woods Hole Oceanog. Inst. Tech. Rept. WHOI-83-7.

Approved for public release; distribution unlimited.

Approved for Distribution:

N. P. Fofonoff, Chairman

Department of Physical Oceanography

Abstract

OCEANUS cruise number 119 (6-i4 May, 1982) was the seventh in a series of cruises to the Long Term Upper Ocean Study (LOTUS) area centered at 34°N, 70°W. During this cruise five moorings were set at the LOTUS site; four for the LOTUS experiment and one, a profiling current meter mooring, for C.S. Draper Labs - MIT. In addition an engineering mooring was set at 39°30°N, 70°W. Two XBT sections were made along 70°W between 40°N and 33°N during the trip to and from the LOTUS site. Five CTD stations were also completed in the LOTUS area.

Part I of this report is a summary of the major cruise activities and part II presents the hydrographic data (CTD and XBT) collected during the cruise.

Table of Contents

	Page
List of Figures	4
List of Tables	5
Acknowledgements	6
Introduction	7
Part I Cruise Summary	12
Part II Hydrographic Data	16
a. CTD Data	16
b. XBT Data	32
References	39
Appendix Chronological Log of OCEANUS cruise number 119	40

List of Figures

Figu	re Number	Page
1.	Chart showing the LOTUS area in the Western North Atlantic	8
2.	A chart showing the locations of the LOTUS moorings set in May 1982.	13
3.	Mooring diagrams of the four LOTUS moorings.	14
4.	Chart of the LOTUS area showing the location of the CTD/IR stations made during OC 119.	19
5.	CTD station 1. Profiles of potential temperature and salinity, and Brunt Väisälä frequency and potential density for the upper 750 meters and for the entire cast.	22
6.	CTD station 2. Profiles of potential temperature and salinity, and Brunt Väisälä frequency and potential density for the upper 750 meters and for the entire cast.	24
7.	CTD station 3. Profiles of potential temperature and salinity, and Brunt Väisälä frequency and potential density for the upper 750 meters and for the entire cast.	26
8.	CTD station 4. Profiles of potential temperature and salinity, and Brunt Väisälä frequency and potential density for the upper 750 meters and for the entire cast.	28
9.	CTD station 5. Profiles of potential temperature and salinity, and Brunt Väisälä frequency and potential density for the upper 750 meters and for the entire cast.	30
10.	Chart showing the location of individual XBTs taken during the trip south and to the east.	33
11.	XBT section from southbound trip along 70°W between 40°N and 33°N.	34
12.	Short XBT section along 34°N between 70°W and 69°W.	35
13.	An overplot of all the XBTs taken in the LOTUS area during OC 119.	36
14.	Chart showing the location of individual XBTs taken during the homebound trip.	37
15.	XBT section from homebound trip along 70°W between 34°N and 40°N.	38
-1.	Cruise track of OCEANUS cruise number 119.	43

List of Tables

Table Number	Page
1. Table of LOTUS reports issued/to be issued.	9
Offsets between LORAN positions and geographical (satellite) positions.	11
 A summary of the mooring work conducted during OCEANUS cruise 119 in the LOTUS area. 	15
 A summary of the CTD/IR work conducted on OCEANUS cruise 119. 	20
5. Listing of CTD data and derived quantities for station 1.	. 21
6. Listing of CTD data and derived quantities for station 2	. 23
7. Listing of CTD data and derived quantities for station 3.	. 25
8. Listing of CTD data and derived quantities for station 4	. 27
9. Listing of CTD data and derived quantities for station 5.	. 29

Acknowledgements

The moorings set during OCEANUS cruise number 119 were jointly designed, prepared and deployed by the WHOI Buoy Group and the Ocean Structures and Moorings Section of the Ocean Engineering Department.

We are grateful for the skill of Captain Paul Howland and the personnel of the R/V OCEANUS. We also wish to thank Nancy Pennington for her assistance in organizing the graphics displayed in this report.

This work was supported by the Office of Naval Research under Contract No. N00014-76-C-01907, NR 083-400.

INTRODUCTION

The main purpose of OCEANUS cruise number 119 was to deploy four moorings for the Long Term Upper Ocean Study (LOTUS) (Briscoe and Trask, 1983) in the vicinity of 34°N, 70°W. Figure 1 shows the LOTUS area (33-35°N, 69-71°W) relative to the Gulf Stream, the East coast of the United States, and Bermuda. The site is in the mid-ocean away from the direct influences of topography and the Gulf Stream, in the path of hurricanes and Gulf Stream rings, and at the edge of the region of eighteen-degree water formation and of high eddy kinetic energy.

The deployment of the mooring array was the first of a series of four science deployments planned for the LOTUS experiment. The array deployed during OCEANUS 119 has been designated as LOTUS-3. The LOTUS-1 and LOTUS-2 mooring deployments were made during the LOTUS engineering test period (Trask et al., 1982). A C.S. Draper Labs - MIT profiling current meter (PCM) mooring and a WHOI engineering test mooring were also deployed during the cruise. As time and weather permitted CTD stations and XBT sections were made. Part I of this report summarizes the major cruise events. Part II presents the CTD stations and XBT sections made during the cruise.

Following each LOTUS cruise a report of similar content to this will be issued. Upon recovery of the entire moored array, annual data reports presenting the moored current meter and thermistor chain data, and meteorological data will be available. Table 1 gives the nominal contents and publication dates of the LOTUS report series.

Navigation

All navigation on OC119 and all positions shown in this report are based on LORAN-C and the geographical calculation performed by the Northstar 7000 LORAN-C unit. The Northstar algorithm provides a geographical position that is southeast of the true (satellite-based) position. From numerous simultaneous position fixes in the LOTUS area we have determined an average offset of the LORAN-based calculation. Some of our earlier engineering cruises used a Northstar 6000, which had an offset of similar magnitude to the 7000, but in the opposite direction.

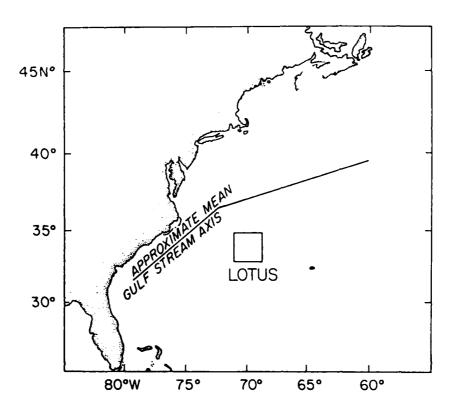


Figure 1. The location of the Long Term Upper-Ocean Study area.

Table 1. LOTUS-related WHOI Technical Reports.

PRESENTLY AVAILABLE REPORTS

Subject	WHOI No.	Date
A Summary of the Historical Data and Engineering Test Data.	82-53	Dec 82
*Cruise Summary and Hydrographic Data Report, OCEANUS 119, May 1982.		Feb 83
PLANNED FUTURE REPORTS		
Subject	Expected Avail	ability
An introduction to the experiment and its instrumentation.	May 83	
Cruise summary and hydrographic data report, October-November 1982.	Apr 83	
Meteorological Sensors and derived quantities LOTUS-3.	Apr 83	
Cruise summary and hydrographic data report, April 83.	Oct 83	
Meteorological data report, LOTUS-4.	Oct 83	
Current meter data report, LOTUS 3 and 4.	Oct 83	
Cruise summary and hydrographic data report, October 83.	Apr 84	
Meteorological data report, LOTUS-5.	Apr 84	
Cruise summary and hydrographic data report, April 84.	Oct 84	
Meteorological data report, LOTUS-6.	Oct 84	
Current meter data report, LOTUS 5 and 6.	Oct 84	
A summary of the LOTUS experiment.	Jan 25	

^{*} This report.

Table 2 shows the offsets and standard deviations for the Northstar 6000 and 7000, based on seven cruises over three years to the two-degree square around the LOTUS area.

Positions listed in Tables and Figures in this report are all the LORAN-7000 positions; to convert to absolute geographical positions the offsets shown for the Northstar 7000 in Table 2 should be added.

Table 2. Offsets (and standard deviations) \underline{from} LORAN position \underline{to} geographical position, based on simultaneous LORAN and satellite position fixes (GEOG = LORAN + OFFSET).

······································	OFFSET (S.D.)	OFFSET (S.D.)		
UNIT	NORTH	WEST	RANGE [km]*	BEARING	
Northstar 6000	-0.75'(.20)	90'(.20)	1.97 (.39)	135° (8)	
Northstar 7000	1.07'(.15)	1.24'(.16)	2.76 (.32)	316° (4)	

^{* 1} km = .54 nautical miles

Part I

Cruise Summary

OCEANUS 119

May 1982

Cruise number 119 of the R/V OCEANUS left Woods Hole on 6 May 1982 bound for the LOTUS area, i.e. the vicinity of 34°N, 70°W. The trip was the seventh in a series of cruises planned for the LOTUS experiment. The cruise was nine days long with the R/V OCEANUS returning to Woods Hole on 14 May.

A total of six moorings were set during OCEANUS 119. Five moorings were deployed in the LOTUS area and one, an engineering test mooring, was set to the north in the vicinity of WHOI Site D (39°30'N, 70°W). The LOTUS mooring array consisted of a surface mooring, a near-surface mooring and two subsurface moorings. The surface mooring has a 10' diameter discus buoy from which meteorological measurements are made. This mooring will be deployed for 6 months at which time it will be replaced by a nearly identical mooring. The other three moorings will remain in the water for 1 year. Additional details of the LOTUS moored array can be found in Briscoe and Trask (1983). A C.S. Draper Labs - MIT profiling current meter (PCM) mooring was also set in the LOTUS area in cooperation with C. Eriksen (MTT). Five CTD stations were completed in the LOTUS area and two XBT sections along 70°W between 40°N and 33°N and a short XBT section along 34°N between 70°W and 69°W were made.

The engineering test mooring (number 763) was deployed at Site D during the trip south. Upon arrival at the LOTUS area a bathymetry survey was conducted in the region where the four LOTUS moorings were to be deployed. The two subsurface moorings (numbers 764 and 765) were then set followed by the PCM mooring. The near-surface mooring (number 766) was set just prior to a period of inclement weather which delayed the deployment of the surface mooring (number 767) for two days. Figure 2 is a chart of a section of the LOTUS area showing the location of the four LOTUS moorings and the Draper Labs PCM mooring. Mooring diagrams of the LOTUS moorings appear in Figure 3. Table 3 summarizes the mooring deployment times and positions. Details of the CTD and XBT work are presented in Part II of this report. A chronological log of OCEANUS cruise 119 along with a plot of the cruise track appears in the Appendix.

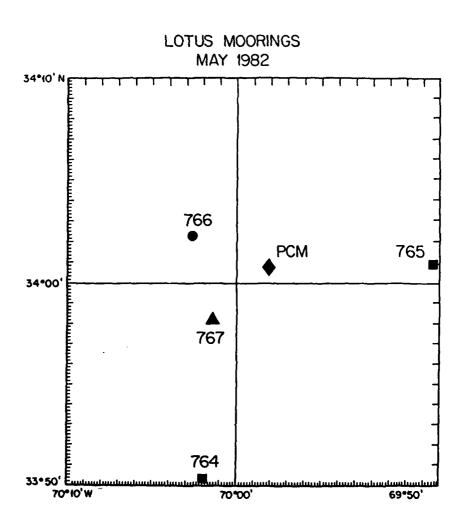


Figure 2. A chart of a section of the LOTUS area showing the location of the LOTUS surface mooring (), near-surface mooring (), and subsurface moorings () as well as the C.S. Draper Lab - MIT PCM mooring ().

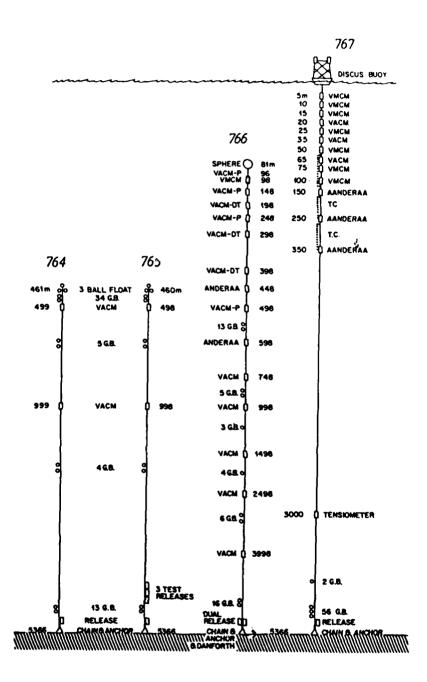


Figure 3. Mooring diagrams of the four LOTUS moorings set during OCEANUS cruise number 119 in May 1982.

Table 3. A summary of the mooring work conducted during OCEANUS cruise 119 in the LOTUS area.

Mooring ID	Date/Time Set	LORAN-C Anchor Position
764	8 May 82 1935 Z	33°49.23'N
LOTUS-3 South		70°00.73'W
subsurface		
7.5	9 May 82 0507 Z	33°59.80'N
765	•	69°47.16'W
LOTUS-3 East		
subsurface		
	9 May 82 1751 Z	33°59.6' N
PCM	, .m., v	69°56.8' W
MIT - Draper Labs		
Profiling Current Meter		
766	10 May 82 1608 Z	34°01.16'N
766	•	70°01.37'W
LOTUS-3		
near-surface		
	12 May 82 1924 Z	33°57.17'N
767		70°00.13'W
LOTUS-3		
surface mooring		

Part II

Hydrographic Data

a. CTD Lata

Five CTD stations were made during OCEANUS cruise 119 in the vicinity of the LOTUS area (Figure 4). The CTD measurements were made by a Neil Brown Instrument Systems internal recording conductivity-temperature-depth profiler (CTD/IR). Mechanical and operational details of the LOTUS CTD/IR are found in Trask (1981).

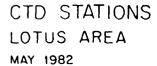
CTD/IR stations 1, 2 and 3 are all nearly full depth profiles. Station 1 is in close proximity to the surface and near-surface moorings deployed during the cruise. Stations 2 and 3 are situated one degree to the south and east of station 1 respectively. Station 4 consists of a series of shallow yo-yo's (several down and up profiles) between the surface and 200 m in the vicinity of the PCM mooring. These short profiles were made at approximately the same time and over the same depth range that the PCM instrument was designed to operate. Station 5, one degree to the north of station 1, was intended to be a full depth profile, however a large roll of the ship caused the sampling bottles to trip and the CTD/IR to shut-off prematurely at 2590 dbars. A summary of the CTD/IR stations taken during CCEANUS cruise 119 appears in Table 4.

Calibration and preliminary data processing procedures are found in Briscoe and Trask (1983); a brief summary is below.

Data Presentation

The CTD/IR data are presented in two forms, tabular listings and graphical profiles. The profiles are reproductions of the original computer plots. Included here are profiles of potential temperature, salinity, Brunt Väisälä frequency, and potential density referenced to the surface. Full depth profiles as well as profiles of the upper 750 meters are presented. In addition a potential temperature-salinity diagram is presented for each station. The listings of data include the above parameters plus sigma-t, potential temperature gradient, dynamic height, and sound speed, all at standard pressures as well as at the design depths of the instrumentation on the moorings.

The heading of the tabular listing includes the ship name (OC = OCEANUS) and cruise number, CTD number, year, year day, time, the latitude and longitude (LORAN-7000 position) of the CTD station when it started and the water depth at that station. Abbreviations used in the listings include PRESS for pressure, TEMP for temperature, SALIN for salinity, POTEMP for potential temperature, POTGRD for potential temperature gradient, POTDEN for potential density, BR-V for Brunt Väisälä frequency, SSPEED for sound speed and DYNHGT for dynamic height.


Summary of Calibration and Data Processing Procedures

The CTD/IR routinely undergoes pre-cruise laboratory calibrations at WHOI. The laboratory calibration of the temperature and pressure sensors is relied on totally for adjusting the calibration coefficients of those sensors. The conductivity sensor is calibrated using water samples collected at the bottom of each cast. Based on a comparison of the water sample salinities and the CTD/IR conductivity readings a conductivity cell factor is computed for each station. The cell factor is the scaling factor the measured conductivity must be multiplied by to obtain the "true" conductivity. The conductivity values of the entire cast are then multiplied by the appropriate cell factor to obtain the "true" conductivities.

The preliminary CTD/IR data processing is accomplished with a SEA DATA 12A cassette reader and Asynchronous Reader Interface in conjunction with a Hewlett Packard (HP) 85 desk top computer and HP 5.25 inch flexible disc drive, printer and 7225B plotter. The preliminary processing presently takes the raw down cast data from cassette and applies the appropriate calibration coefficients, edits wild points, applies a pressure and conductivity sensor time lag correction, pressure averages the data (2 dbar pressure range) and stores the data on flexible disc.

All salinity computations are based on the 1978 Practical Salinity Scale (Lewis and Perkin, 1981) as recommended by the Joint Panel on Oceanographic Tables and Standards. Further processing incorporates the new equation of state for sea water (Millero, et al., 1980) for computing density and its related parameters such as specific volume and specific

volume anomaly. Potential temperature at a reference pressure is computed using a fourth order Runge Kutta integration algorithm (Fofonoff, 1977) which uses the Bryden (1973) polynomial for adiabatic lapse rate. Sound speed calculations are based on the algorithms of Chen and Millero (1977). These algorithms are the basis of further computations which yield quantities of sigma-t, sigma-theta, dynamic height, potential temperature gradients and Brunt-Väisälä frequency. The Brunt Väisälä frequency calculation incorporates a sliding least squares fit to the potential density data over user specified smoothing windows. Four windows were chosen for this calculation. A smoothing interval of 10 dbars was used between 0 and 150 dbars, a 30 dbar interval between 150 and 1500 dbars, 62 dbar interval between 1500 and 3500 dbars and a 90 dbar smoothing interval between 3500 dbars and the bottom.

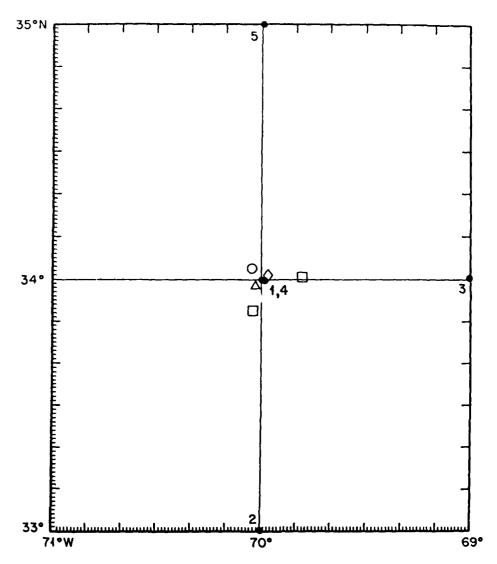


Figure 4. Chart of the LOTUS area showing the locations of the CTD/IR stations (\bullet) made during OC 119 and their proximity to the LOTUS surface mooring (Δ), near-surface mooring (\bigcirc), and subsurface moorings (\bigcirc) as well as to the PCM mooring (\bigcirc).

. -----

...

المرادي السجد

Table 4: A summary of the CTD/IR work conducted on OCEANUS cruise 119.

CTD Station	Date (year day)	Start Time (UTC)	Deployed Posit Lat. (N) Lo	ion Pressure R ng (W) (dbar	-
1	9 May 82 (129)	0732	33°59.94 69	°59.94 0-523	9
2	10 May 82 (130)	0243	33°00.01' 69	°59.61 0-519	6
3	10 May 82 (130)	2318	34°00.31' 69	°00.68 0-531	.6
4	13 May 82 (131)	0022	33°59.70' 69	°59.29 0-200)
5	13 May 82 (131)	0820	34°59.97' 69	°59.88' 0-259	0

Table 5: Listing of CTD data and derived quantities for station 1.

00119	GTD 00:	1 198	3 2 12 9 01	730Z	34 00.0	ON 70 0	0.00W	corre	: 53aam
FRESS	TEMP	SALIN	POTEMP	POTGRD	SIGMA-t	FOTDEN	BR-V	SSFEED	DYNHGT
dbar	C	psu	°C	m [©] C/db	kg/m**3	kg/m*≭3	cph	m/s	dyn m
2.	19.654	36.531	19.653	0.00	26.039	26.023	0.00	1522.3	0.0000
<u>.</u>	19.652	36.554	19.651	2.28	26.056	26.041	2.78	1522.3	.0074
10.	19.617	36.547	19.615	12.50	26.060	26.046	5.98	1522.3	.0158
iá.	19.503	36.554	19.500	J.28	26.096	26.081	2.20	1522.1	.9271
20.	19.490	36.553	19.487	4.51	26.098	26.983	1.56	1522.1	.0345
25.	19.469	36.554	19.464	5.29	26.104	26.090	1.79	1522.2	.0459
50.	19.457	36.553	19.451	3.54	26.107	25.093	1.05	1522.2	.0540
Jé.	19,436	36.546	19.429	.12	26.107	26.093	.59	1522.2	. 0656
50.	19.435	36.546	19.426	.38	26.107	26.094	25	1522.5	- 0925 - 1325
వత.	19.362	36.547	19.350	5.74	26.127	26.114	5.40	1522.5	.1275
75.	19.155	36.547	19.142	28.18	26.181	26.169	4.47	1522.1	.1425
100.	18.873	36.552	18.855	2.47	26.257	26.246	2.00	1521.7	- 1861
125.	18.687	36.548	18.665	11.69	26.301	26.292	2.76	1521.6 1521.7	.2722 .2748
150.	18.581	36.549	19.554	4.90	26.329	26.321	1.75	1522.2	.2/48 .3515
200.	18.445	36.551	18.410	2.91	26.365	26.359	1.57	1522.4	. 44~9
250.	18.256	36.531	18.212	8.07	26.398 26.426	26.394 26.424	1.33	1522.9	5776
300.	18.179	36.530	19.086	2.65		26.446	1.71	1527.4	-5180
750.	19.042	34.525	17.981	3.54	26.446 26.469	25.470	1.7	1527.8	7045
400.	17.372	36.500	17.803	3.77 11.72	26.492	26.495	1.53	1524.1	-367
450. 550	17.704	36.475	17.526	.81	26.519	26.525	.57	1524.1	.8775
500. 550.	17.451 17.177	36.429 36.379	17.365 17.084	13.43	26.546	26.554	1.3	1524.1	.9577
500.	15.515	36.277	15.515	8.78	26.600	25.511	2.15	1527.1	1.0405
550.	15.736	76.120	15.632	22.28	26.687	26.695	2.5%	1521.0	1.1206
700.	14.978	35.994	14.870	5.24	26.760	26.768	2.4.1	1519.4	1.1972
750.	14.066	35.843	13.955	25.94	26.842		2.69	1517.1	1.2702
300.	13,050	35.687	12.937	21.04	26.933		2.49	1514.4	1.3390
egg.	10.549	35.344	10.437	3.86	27.143	27.145	2.73	1507.1	1.4534
1000.	8,822	35.191	8.709	34.49	27.316	27.315	7.00	1502.3	1.5689
1100.	7,048	35. 100	6.938	15.28	27.511	27.506	2.57	1497.1	1.6553
1200.	5.131	35.079	6.018	. 41	27.619		1.75	1495.2	1,7257
1000.	5.519	75.065	5.402	7.91	27.685		1.58	1494.4	1.7972
1400.	5.049	35.048	4.926	2.16	27.729		1.11	1494.1	1.8430
1500.	4.715	75.028	4.586	≘.ಂಪ	27.752		. 9-	1494.4	1.3959
1500.	4.523	3 5. 017	4.387	2.00			• 79	1495.2	1.9476
1800.	4.225	35.001	4.074	1.64	27.784		.72	1497.3	2.0499
2000.	3.995	34,989	5.828	~.30			.50	1499.7 1502.3	2.1485
2200.	7,810	34.987	7.626	7.81	27.817		. 5	1504.8	2,2475 2,3441
2400.	J. 590	34,980	3.389	. 15			. 58	1505.9	2.3915
2500.	7,465	34,970	3.256	. 45			. 55	1507.2	2.4788
2500.	3.345	34,966 34,956	7.149 2.980	1.15			.5a	1509.9	2.5026
2900. 3000.	3,215 3,031	34.944	2.779	1.06			. 68	1512.5	2.6254
5200.	2.984	34.935	2.616	.95			. 65	1515.3	2.7174
3400.	2.719	34.736	2.432	1.00			. 54	1518.0	2.9092
3400. 3400.	2.587	34,918	2.281	.04			. 55	1520.8	2.8976
7800.	2.477	34.910	2,152	.06		-	. 49	1527.8	2.7862
4000.	2.396	34.904	2.051	.57			. 41	1526.9	3.0747
4200.	2.356	74.899	1.988	. 22			.36	1530.2	I.1639
4400	2.333	34.895	1.942	.31			. 28	1500.5	3.2542
4600.	2.719	34.891	1.704	.12		27.892	. 25	1536.9	J. J462
4800.	2.309	34.888	1.871	.21	27.978		.23	1540.3	5.4402
5000.	2.510	34.885	1.347	.33			. 24	1547.8	3.536t
5200.	2.502	34.88 0	1.914	02	27.872	27.890	$\phi_*\phi\phi$	1547.3	3.6340

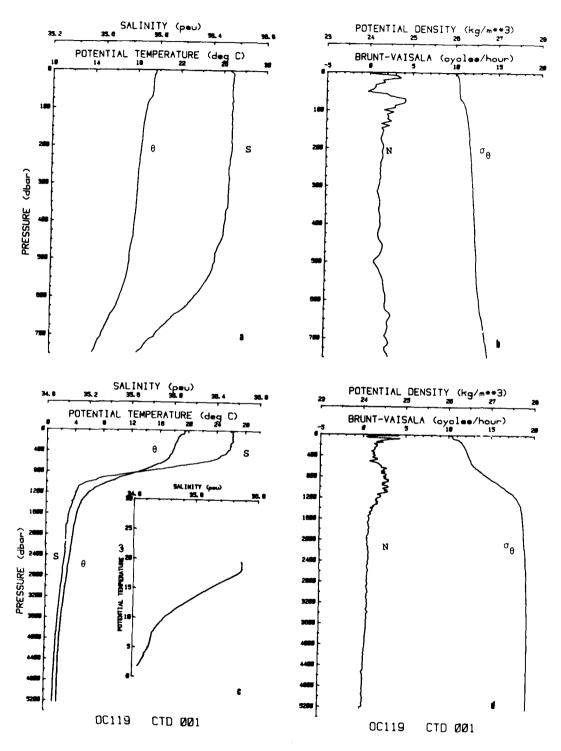


Figure 5. CTD station 1. Profiles of potential temperature (θ) and salinity (S), and Brunt Väisälä frequency (N) and potential density (σ_{θ}) for the upper 750 meters (a and b respectively) and for the entire cast (c and d respectively). θ -S diagram included in c.

Table 6: Listing of CTD data and derived quantities for station 2.

00119	OTD 000	- 10	82 130 O	243Z	55 00.0	1N 69 5	9.61W	corrD:	: 5408m
		_	FOTEMP		SIGMA-t	POTDEN	BR-V	SSPEED	DYNHGT
PRESS	TEMP OC	SALIN psu	- OLEME		Fq/m**3		cph	നാഗ്ട	লেখন ক
dbar				0.00	26.122	26.107	0.00	1521.9	പെടുക്കാർ
Ξ.	19,512	35.592	19.512 19.513	.22	26.124	26.109	1.00	1522.0	.0071
ي ف	19.514	36.595 ⇒.505	19.507	2.01	26.125	26.110	1.23	1522.1	.0152
10.	19.509 19.470	36.595 36.595	19.468	18.12	26,135	26.121	4.21	1522.0	.0266
16.	19,304	36.598	19.300	61.05	26.173	26.159	5.88	1521.5	.0540
20.	18.764	36.579	19.959	13.28	26.254	26.240	J.85	1520.8	0447
26. 30.	18.735	36.579	19.929	9.35	26,261	26.247	$\mathbb{D}_{\bullet} \otimes A$	1520.8	.0518
36.	18,723	36.577	18.916	1.77	26.253	26.250	1.15	1520.9	.∪622
50.	18.907	36.577	18.878	.06	26.267	26.254	.51	1521.0	.0974
56.	18.397	34.575	18.885	1.71	26.268	26.256	1.29	1521.2	.1157
75.	19.865	36.572	18.852	3.99	26.274	26.262	1.75	1521.7	.1540
100.	18.762	36.559	18.745	2.01	26.290	26.280	1.91	1521.4	.17 <u>4</u> 5
126.	18.596	36.551	18.574	8.09	26.327	26.517	2.59	1521.4	.2220
130.	13,401	36.548	18.375	5.01	26.374	26.565	1.95	1521.2	.2675
200.	18.355	JS.551	18.320	1.00	26.388	26.382	.00	1521.9	. 3485
250.	18.199	36.536	18.155	2.04	26.415	26.411	1.44	1522.3	. 4547
Zer.	18.100	74.571	18.048	2.37	26.436	26,435	1.33	1522.3	.5199
750.	17.993	36.519	17.932	1.34	26.454	26.454	1.24	1523.3	. 5041
456.	17.300	36.493	17.701	3.91	26.482	25,484	1.14	1527.5	. 5588
150.	17.504	76.464	17.527	2.3!	25.508	28.512	1.42	1927.8	
500	17.279	35.407	17.194	2.59	26.544	26.549	1.59	1523.6	.8568 .9790
550.	15.835	36.324	15.745	7.61	26.586	26.593	1.52	1523.0	1.0194
500.	15.101	36.191	15.004	34.80	26.657	26.665	2.88	1521.4 1519.5	1.0950
550.	15.282	36.051	15.180	10.30	26.737	26.744	2.13 2.63	1517.1	1.1702
750.	14.301	05.892	14.196	9.14	26.829	26.836	1.90	1514.7	1.2397
750.	13.379	35.752	13.271	~.05	26.916	26,921 26,979	2.53	1517.7	(.3057
300.	12.729	35.656	12.617	15.44	26.974 27.165	27.166	2.92	1505.8	1.4254
aco.	10.460	35.352	10.349	24.16 19.71	27.366	27.364	2.78	1500.6	1.5767
thoo.	8,378	35.166	8.259	11.00	27.551	27.545	2.35	1495.7	1.6061
1100	5.687	35.087	5.580	5.85	27.658	27.651	1.52	1497.5	1.5712
1200.	5.732	35.063	5.422 5.102	5.55	27.709	27,702	1.05	1495.1	1.7295
1500.	5.216	35.049	4.742	1.82	27.740		.92	1493.7	1.7924
1 doo. 1 = 00	4.862 4.597	35.035 35.020	4.466	5.85	27.759	27.752	.31	1107.9	1.8341
1500.	4.393	35.020	4.253	1.48	27.771	27.765		1494.7	1.3648
1600. 1 3 00.	4.222	35.010	4.071	. 07	27.792	27.787	-55	1497.5	1.9845
2000.	4.042	35.009	3.874	.81	27.810	27.807	.59	1499.9	2.0827
1200.	7.796	74.994	3.612	1.12	27.824	27.821	.77	1502.3	2.1796
2400.	5.587	34.982	3.387	.22	27.836	27.834	.72	1504.7	2.275]
2500.	1.475	34.976	J. 266	1.20		27.841	. 57	1305.9	2.7225
2500	7.769	34.968	3.153	∵.48	27.946	27.845	.51	1507.2	2.7695
2300.	7,207	24.959	2.768	.35	27.355		. ⊜0	1509.9	2.4628
7000.	0.001	34.950	2.780	. 46			.52	1512.5	2.5550
3200.	2.877	74.978	2.507	1.36			.56	1515.3	2.5454
34 00.	2.715	34.930	0.428	1.20			. 54	1518.0	2,7767
შარი.	2.574	74.922	2.269	1.58			.51		2.9249
J800.	2.471	34.914		.23			. 46	1527.8	2.9125
4000	2.417	74.909		. 14			. 34	t527.0 1530.2	7.0005 7.0892
4206.	2.371	74.906					.50	1533.4	5.1794
44.50	2.346	34.902	1.956	. 15			. 22	1537.0	3,2713
4600.	2.357	14.397					. 25	1540.4	7.7549
49 <i>0</i> 0	2.722	14.891					. 26	1540.3	1,4505
5000.	0.015	34.889	1.852	24	- 27.03/6	2/.074	• -	(

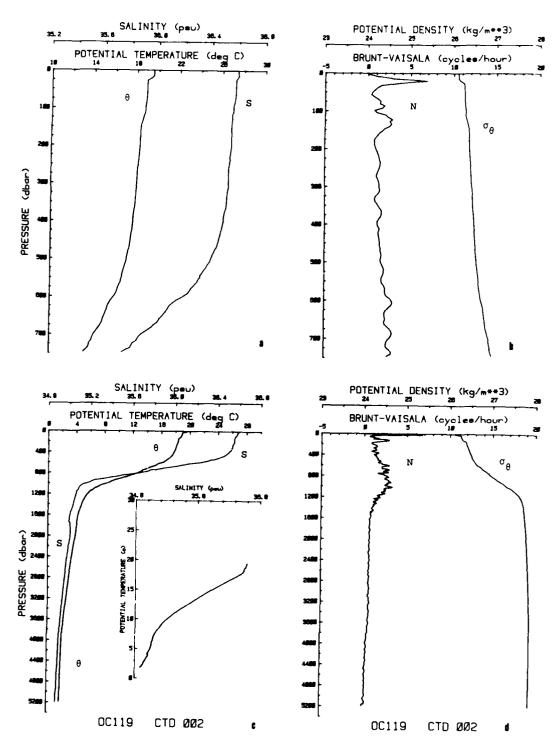


Figure 6. CTD station 2. Profiles of potential temperature (θ) and salinity (S), and Brunt Väisälä frequency (N) and potential density (σ_{θ}) for the upper 750 meters (a and b respectively) and for the entire cast (c and d respectively). θ -S diagram included in c.

Table 7: Listings of CTD data and derived quantities for station 3.

90119	ort oo	. 19	91 170 Z	J19Z	34 00.0	IIN 59 0	0.58W	idnet	: 5163m
FRESS	TEMP	3AL IN	POTEMP	FOTGED	SIGMA-t	POTDEN	PF	CSPEED	Danier
dbar	2 ^C	DELL	² €	774	kg/m*#3		uph	n. 3	dyn m
2.	21.759	16.429	21.757	0.00	25.389	25.373	O. Oak	1527.3	of payages
±.	21.795	36.441	21.794	-7.72	25.389	£5.377	-1.50	1528.0	1000
1	11.795	36.475	21.793	2.05	25.385	25.369	-2.25	1528.1	.0207
	21.810	25.429	21.807	-2.18	25.375	25.760	-1.08	1529.2	.0360
20.	21.807	36.427	21.803	2.34	25.375	25.350	.44	1528.2	.0358
īš.	21.313	36.439	21.308	-2.51	25.375	25.360	14	1528.4	.0612
:0.	21.817	Jo. 430	21.311	-2.42	25.374	25.060	50	1528.4	.0715
75.	21.771	26.430	21.764	21.22	25.387	25.372	5.10	1528.4	. 1977
50.	20.597	34,490	20.588	52.79	25.729	25.715	~.੬੩	1525.9	.1025
-5.	20.271	15.521	20.259	64	25.367	25.354	7,21	1525.0	577
-5.	20.225	36.531	29.212	5.79	25.887	25.875	2.37	1525.1	1739
	19.711	38.501	19.593	5.78	26.000	25.990	7.24	1524.0	.2296
126.	19.428	36,542	19.405	52.11	26.106	26,0 9 7	3.27	1507.7	.2827
150.	19.296	75.582	19.269	-14.42	26.171	26.163	2.94	1523.8	.7270
200.	19.560	76.545	18.524	15.55	26.306	26,700	2.79	1522.8	4 2 144
250.	9.469	76.546	18,425	3.73	26.355	26.351	1.70	1523.0	.5089
7.0.	18.263	36.530	18.211	5.31	26.394	26.397	1.40	1527.7	.5955
27202	19.128	36.527	18.067	5.55	26.426	25,425	1.74	1501.7	.5319
done.	19.023	35.515	17.953	3.00	25.444	26.445	.35	1524.2	. 7688
1.5	: 2, 394	Já.496	17.915	4.42	25.461	25,455	1.71	1524.7	.0553
500.	17.537	76.460	17.547	7.89	26.498	26.504	1.∋5	1524.7	. 2414
5504	17,282	36.399	17.189	12.27	26.537	26.544	1.69	1524.4	1.0261
500.	16.775	36.340	15.334	.54	26.575	26.584	1.61	1524.1	1.1/92
550.	15.371	75.240	15.284	20.14	26.527	26.637	2.05	1523.2	1.1924
	15.510	36.104	15.499	40.44	26.703	26.712	2.47	1521.5	1.2718
750.	14.702	35.950	14.587	3.41	26.787	26.797	1.90	1519.5	1. 48
300.	17.928	T5.805	15.710	19.82	26.863	26.872	2.51	1517.1	1.4205
2.5.5	12.002	35.544	11.981	16.13	27.029	27.035	2.07	1512.4	1.5537
10000	9.193	35.182	7.078	12.32	27.248	27.248	2.72	1503.5	1.5577
1100.	7.211	35.076	7,100	. 57	27.469	27.465	2.40	1497.7	1.7587
1200.	5.821	75.020	5.711	13.92	27.512	27.605	2.14	1493.3	1.8294
1700.	3. 770	J5.054	5.253	J.65	27.594	27.587	1.41	1495.8	1.3896
1400.	4.785	35.034	4.363	4.89	27.725	27.719	1.20	1493.8	1.9450
1500.	4.658	35.008	4,531	2.30	27.742	27.735	. ⊋ 4	1494.1	1. ,665
1.000.	1.461	04.994	4,326	1.96	27.753	27.745	- 71	1495.	2.0517
1900.	4.240	34.997	1,097	1.08	27.776	27.771	.70	1497.4	2.1544
26.00.	4.037	34.987	3.845	. 46	27.796	27.792	- 71	1499.3	2.2557
2200.	7.347	34.98J	I.558	2.01	27.811	27.808	. 54	1502.4	2.1552
0460.	7.576	54.980	3,470	.71	27.825	27.824	.32	1505.1	2.4541
2500.	3.555	14.975	3.345	1.08	27.933	27.833	. 58	1506.3	2.5029
1500°	7.471	34.974	3.252	2.85	27.841	27.841	.58	1507.6	2.5510
2 ឆ្នាំ១១ »	7.285	54.959	J. 049	- ⇒4	27.847	27.348	.54	1510.2	2.5465
7000	3.115	34.948	2.862	1.70		27.856	. 50	1512.9	2.7417
7200.	2.951	34.937	2.680	41	27.861	27.854	- a9	1515.5	2.8351
7400	2.727	24.927	2.504	19	27.867	27.871	. 58	1518.3	2.9275
1500	2.528	74.715	2,721	.34	27.975	27.979	.57 50	1521.0	1.0139
7900.	2.514	34.911	2.188	34		27.385	.54	1524.0	I.1988
4000.	1.417	74.707	2.071	1.05	27.881	27.888	. 47	1527.0	J.1394
4200.	2.785	14.997	1.788	.17	27.881	27.890	. 27	1570.0 1577.5	3.2879 3.7796
44	2.325	74.897	1 775	.12	27.881	27.892 27.891			0.1706 0.4706
4300. •3≈≎	2.714	34.889	1.701	05		27.891	.27	1576.9 1540.3	7.5548
4300	2.711	14.985	1.873	. 04			.17	1547.9	7.5511
5000.	2.311	34.983	1.348	. 13	27.374	27.989	. 21	1547.3	7.7592
5200.	2.710	54.87°	1.922	01	2.071	27.07	. ~ .		_ • • • -

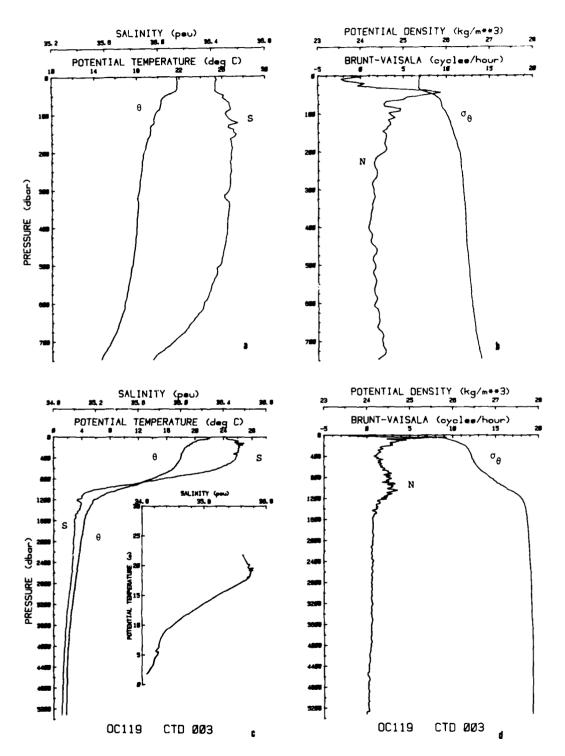


Figure 7. CTD station 3. Profiles of potential temperature (θ) and salinity (S), and Brunt Väisälä frequency (N) and potential density (σ_{θ}) for the upper 750 meters (a and b respectively) and for the entire cast (c and d respectively). θ -S diagram included in c.

Table 8: Listing of CTD data and derived quantities for station 4.

00119	CTD 004 19		982 133 0022Z		33 59.70N 69 5		59.29W	corrD	: 5766m
PRESS dbar	TEMP C	SALIN psu	POTEMP OC	POTGRD m [©] C∕db		POTDEN kg/m**3	BR-V cph	SSPEED	DYNHGT
2. 6. 10. 16. 20. 26. 26. 50.	20.192 20.225 20.227 20.220 20.221 20.229 20.233 20.231 20.176	36.532 36.512 36.511 36.513 36.512 36.511 36.510 36.511 36.513	20.191 20.224 20.225 20.217 20.218 20.224 20.228 20.224 20.167	0.00 -3.23 57 1.37 -3.69 -22 35 21.14	25.897 25.872 25.871 25.874 25.873 25.870 25.869 25.869 25.886	25.882 25.857 25.856 25.859 25.859 25.859 25.856 25.855 25.855	0.00 -3.02 .38 .91 44 -1.30 .45 1.14 4.86	m/s 1523.7 1523.9 1523.9 1524.0 1524.1 1524.2 1524.3 1524.4 1524.4	dvn m 0.0000 .0079 .0159 .0288 .0368 .0497 .0587 .0715
56. 76. 100. 126. 150. 200.	19.665 19.571 19.278 19.130 18.997	36.526 36.525 36.534 36.537 36.541 36.549	19.653 19.557 19.260 19.107 18.970 18.733	3.02 16.06 15.36 8.71 3.14 14.52	26.032 26.056 26.139 26.179 26.217 26.282	26.019 26.044 26.128 26.170 26.208 26.276	2.63 3.75 3.41 2.46 1.59	1523.5 1523.6 1522.8 1522.9 1522.9	.1017 .1044 .1545 .2009 .2504 .2952

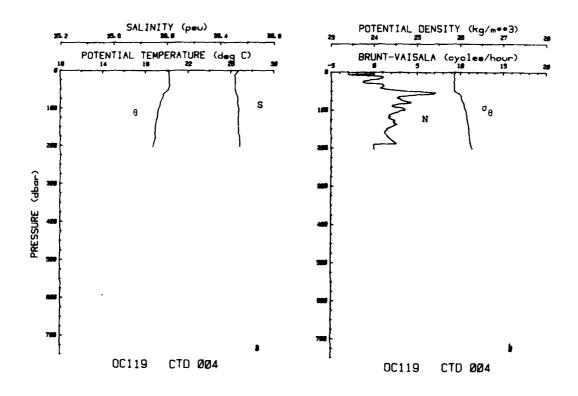


Figure 8. CTD station 4. Profiles of potential temperature (θ) and salinity (S), and Brunt Väisälä frequency (N) and potential density (σ_{θ}) for the upper 200 meters (a and b respectively).

Table 9: Listing of CTD data and derived quantities for station 5.

00119	CTD 005 1982 1		82 133 0	820 <i>z</i>	34 59.97N 69 5		9.98W corrD		: 5094m
FRESS	TEMP	SALIN	FOTEMP	POTGRD	SIGMA-t	POTDEN	BR-V	SSPEED	DYNHGT
dbar	υC	psu	°C	m [©] C/db	Fg/m**3	Eg/m##3	cph	m/s	dyn m
2.	20.788	36.519	20.787	0.00	25.726	25.710	0.00	1525.7	0,0000
Ġ.	20.779	36.513	20,778	3.08	25.724	25.709	-1.54	1525.4	.0089
1	20.798	36.510	20.796	-8.74	25.717	25.701	-1.97	1525.5	.0196
15.	20.801	36.509	20.798	01	25.715	25.700	51	1525.6	.0716
20.	20.799	36.509	20.795	.83	25.716	25.701	.63	1525.7	.0411
26.	20.800	36.509	20.795	.04	25.715	25.701	.39	1525.8	.0556
zo.	20.798	36.509	20.792	.93	25.716	25.701	- 55	1525.8	.0547
్చ.	20.797	36.509	20,790	.79	25.715	25.702	. 93	1525.9	.0782
50.	20.769	36.511	20.759	2.91	25.725	25.712	1.43	1526.1	1.00
66.	೨೦. ೮೮5	36.533	20.323	21.71	25.859	25.847	6.83	1525.2	.1451
75.	19.775	36.530	19.761	19.87	26.006	25.994	3.79	1523.9	.1559
100.	19.492	36.527	19.474	6.75	26,077	26.067	2.41	1523.4	.2154
125.	19.196	35.558	19.173	10.74	26.179	26.169	J.95	1523.1	.2655
150.	18.962	36.566	18.935	15.44	26.245	26.237	2.54	1522.8	. <u>~</u> 000
200.	18.515	36.544	18.578	1.38	26,317	26.311	2.12	1522.6	. 2994
350.	18.428	36.544	19.384	3.62	26.364	26.560	1.50	1522.9	.4892
700.	19.313	JA 554	18,240	5.91	26.387	26.385	1.14	1523.4	.5755
750.	13.214	36.5TO	18.153	1.24	26.407	26.407	1.13	1524.0	.აბ24
4000	(3.090	35.522	18.020	3.62	26.432	26.434	1.17	1524.4	7,100
450.	17.971	Ja.510	17.893	3.20	26.452	26.457	1.54	1524.9	.8767
500.	17.763	35.480	17.676	2.24	26.481	26.488	1.18	1525.1	.9271
550.	17.575	36.452	17,481	2.74	26.505	26.514	1.61	1525.3	1.0001
a00.	12.190	36.3 8 0	17.091	14.29	26.544	26.553	1.58	1524.9	1.0942
550.	15.910	35.314	16.701	4.03	26.585	26.595	2.06	1524.5	1.1777
700.	15.969	36.163	15.856	14.26	26.666	26.676	2.50	1522.5	1.2592
750.	15.002	35.997	14.386	6.01	26.757	26.767	2.07	1520.3	1.7074
900.	14.084	35.948	13.965	7.21	26,842	26.851	2.27	(519.)	1.4109
900.	12.200	35.572	12.077	27.34	27.013	27.019	3.00	1513.1	1.5471
1000.	9.525	35.259	9.508	41.13	27.237	27.238	2.80	1505.3	1.5529
1100.	7.925	ಫ ರ. 1ರಥ	7.308	6.52	27.410	27.408	2.66	1500.5	1.7594
1200.	6.562	35.078	5.445	19.00	27.561	27.556	2.08	1495.8	1.8384
1700.	5.757	35.062	5.548	5.87	27.652	27.647	1.32	1495.3	1.9048
1400.	5.247	35.049	5.118	8.58	27.707	27.701	1.42	1494.9	1.9642
1500.	4.963	35.043	4.832	7.97	27.735	27.729	1.00	1495.4	2.0197
1500.	4.721	35.034	4.583	5.91	27.756	27.750	. 97	1496.1	2.0734
1300.	4.007	75.002	4.155	-1.72	27.776	27.771	- 76	1497.7	Z.1774
2000.	4.073	34.990	3,904	2.55	27.792	27.788	•63	1500.0	2.2793
2200.	7,907 7,759	24.986	3.721	1.61	27.806	27.804	- 66	1502.7	2.3803
2400. 2500.	. 558	74.985	3.555	.51	27.921	27.820	.60	1505.5	2.4803
		34.983	3.446	.86	27.830	27.829	.70	1506.7	2.5299
2600.	7.542	34.972	7.322	. 29	27.832	27.833	. 54	1507.9	2.5789

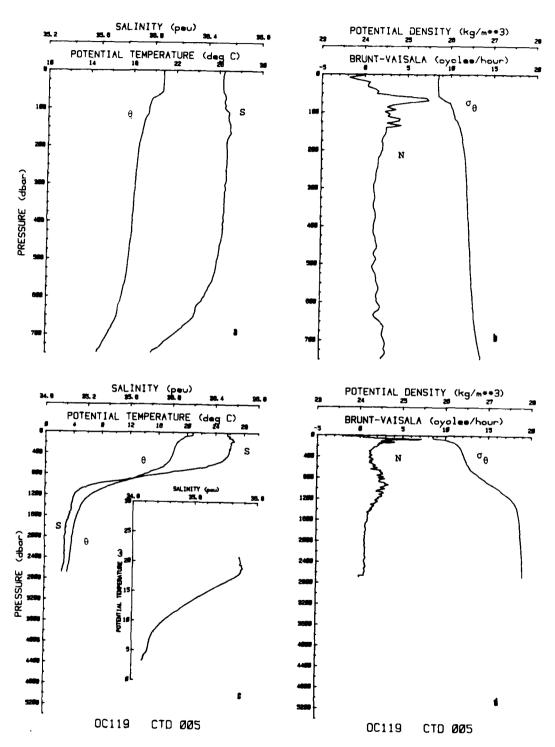


Figure 9. CTD station 5. Profiles of potential temperature (θ) and salinity (S), and Brunt Väisälä frequency (N) and potential density (σ_{θ}) for the upper 750 meters (a and b respectively) and for the entire cast (c and d respectively). θ -S diagram included in c.

b. XBT Data

Expendable bathythermograph data were collected approximately every 20 km (i.e., hourly) during the trip to and from the LOTUS area along 70°W longitude. The section made while traveling south begins at 40°N and ends at 33°N. The homebound section begins at 34°N and ends at 40°N. A short section to the east along 34°N between 70°W and 69°W was also completed.

A description of the instrumentation and preliminary data processing procedures associated with the XBT's appears in Briscoe and Trask (1983).

A malfunction of the Bathy Systems digital XBT recorder during the southbound trip prevented data from being recorded on cassette tape. For this reason the section was repeated during the homebound trip during which time the Bathy Systems recorder functioned properly. Strip chart records however were made during both sections.

The depths of the whole degree isotherms were transcribed from the strip chart records and plotted. Figure 10 is a chart showing the location of individual XBTs taken during the trip south and to the east. Figure 11 shows the XBT section from the southbound trip and figure 12 shows the section made to the east while in the LOTUS area. Figure 13 is an overplot of all the XBTs made in the LOTUS area during OC 119 (numbers 56-63). This presentation shows the range of temperatures observed due to the combined effects of the temporal and spatial variations. Figure 14 is a chart showing the locations of the XBTs taken during the homebound trip. The corresponding XBT section appears in figure 15. Vertical exaggeration of the XBT sections is 1:463.

All LOTUS XBT traces are supplied to the National Oceanographic Data Center for inclusion in the National files for general access and usage.

PRECEDING PAGE BLANK-NOT FILMED

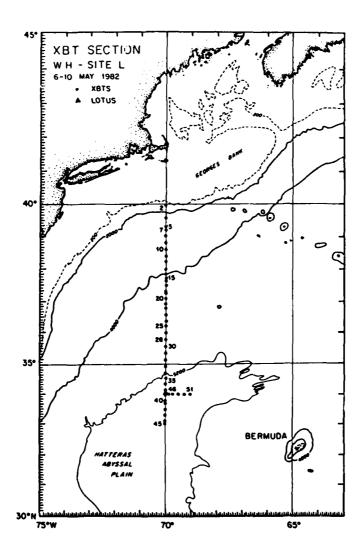


Figure 10. Chart showing the location of individual XBTs taken during the trip south and to the east.

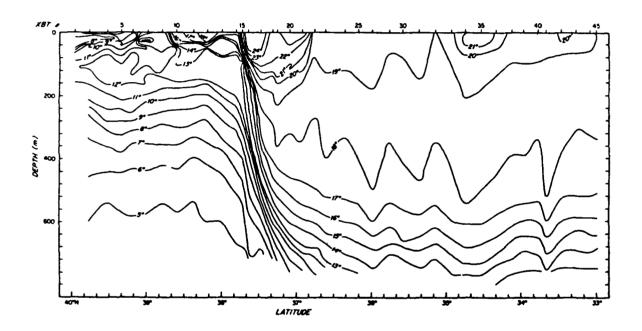


Figure 11. XBT section from southbound trip along 70°W between 40°N and 33°N.

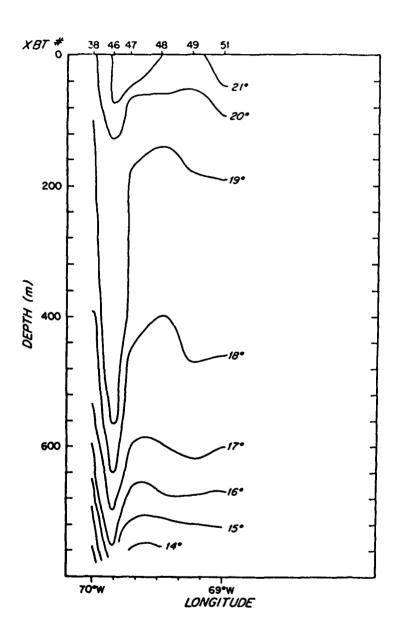


Figure 12. Short XBT section along 34°N between 70°W and 69°W.



Figure 13. An overplot of all the XBTs taken in the LOTUS area during OCEANUS 119.

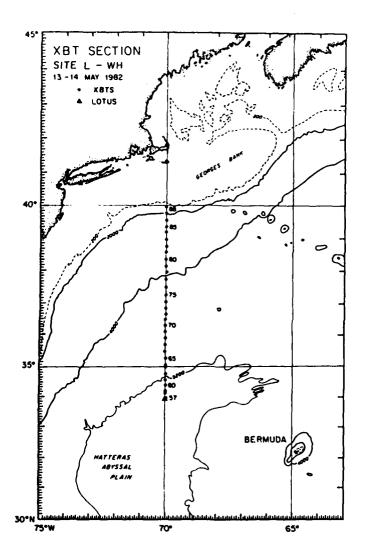


Figure 14. Chart showing the location of individual XBTs taken during the homebound trip.

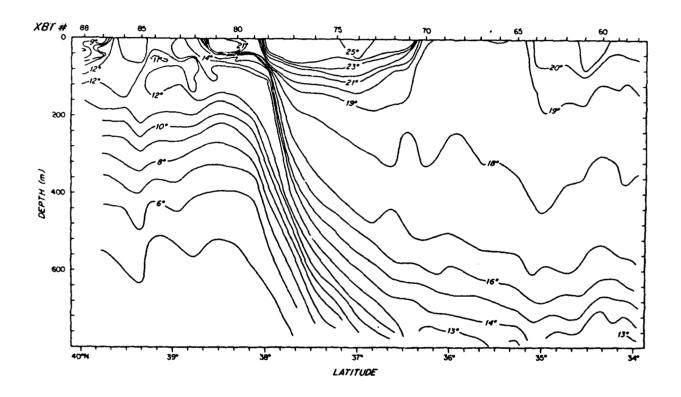


Figure 15. XBT section from homebound trip along 70°W between 34°N and 40°N.

References

- Briscoe, M. G., and R. P. Trask, 1983. The Long Term Upper Ocean Study (LOTUS), An introduction to the experiment and its instrumentation.

 Woods Hole Oceanographic Institution Technical Report, in preparation.
- Bryden, H. L., 1973. New polynomials for thermal expansion, adiabatic temperature gradient and potential temperature of sea water. Deep-Sea Res., 20, 401-408.
- Chen, C-T., and F. J. Millero, 1977. Speed of sound in sea water at high pressures. J. Acoust. Soc. Amer., 62, No. 5, 1129-1135.
- Fofonoff, N. P., 1977. Computation of potential temperature of sea water for an arbitrary reference pressure. <u>Deep-Sea Res.</u>, 24, 489-491.
- Lewis, E. L., and R. G. Perkin, 1981. The practical salinity scale 1978: conversion of existing data. Deep-Sea Res., 28, 307-328.
- Millero, F. J., C-T. Chen, A. Bradshaw, and K. Schleicher, 1980. A new high pressure equation of state for sea water. <u>Deep-Sea Res.</u>, <u>27A</u>, 255-264.
- Trask, R. P., 1981. Mechanical and operational details of a Neil Brown Instrument Systems internally recording conductivity, temperature, depth (CTD) profiler. Woods Hole Oceanographic Institution Technical Report 81-74.
- Trask, R. P., M. G. Briscoe, and N. J. Pennington, 1982. Long Term
 Upper Ocean Study (LOTUS), A summary of the historical data and
 engineering test data. Woods Hole Oceanographic Institution Technical
 Report 82-53.

Appendix

OCEANUS 119

Chronological Log

Days are Year Days, Times are UTC

126/82	
1415	Depart from Woods Hole.
1800	Science meeting in library.
2000	Fire and boat drill.
2114	Familiarizing watch with XBT and PDR operation procedures.
2300	Hourly XBTs started.
	PDR started for trip south.
127/82	
0224	Ship stopped for release tests on the hydro-wire.
0351	Bearing problems with Markey winch. Release test terminated at
	approximately 800 m. Slow rehaul.
0437	Commenced launch of engineering test mooring number 763.
0630	Engineering mooring anchor away.
0700	Hourly XBTs resumed.
1700	Hydro-wire streamed aft.
1900	XBTs temporarily discontinued due to course change.
2200	XBTs resumed.
128/82	
1337	Starting bathymetry survey along 70°W between 34°00.00'N and
	33°49.2'N.
1450	On station (33°45'N, 79°W) for release tests.
1643	Release tests complete. Steaming to start position for mooring
	launch.
1714	Commenced launch of subsurface mooring number 764.
1935	Subsurface mooring anchor away.
2120	Ranging on the release.
2357	Starting bathymetry survey along 34°N between 70°05'W and
	69°45'W.

129/82	
0144	Steaming to start position of subsurface mooring launch.
0210	Commenced launch of subsurface mooring number 765.
0507	Subsurface mooring anchor away.
0732	Starting CTD station number 1 at 33°59.94'N, 69°59.94'W.
1025	CTD station completed.
1125	Start release tests for PCM mooring.
1221	Release tests completed.
1346	Moving to PCM launch start position.
1430	Commenced launch of PCM mooring.
1751	PCM mooring anchor away.
1850	Recovered three glass balls seen on surface immediately aft anchor drop.
1916	Started near-surface mooring release tests.
2104	Release tests completed.
130/82	
0243	Starting CTD station number 2 at 33°00.01'N, 69°59.61'W.
0557	CTD station completed.
0630	Steaming to launch position for near-surface mooring.
1305	Commenced launch of near-surface mooring number 766.
1608	Near surface mooring anchor away.
1647	Ranging on the release.
1814	Steaming to 34°N, 69°W.
1830	Hourly XBTs resumed on the hour along 34°N to 69°W.
2318	Starting CTD station number 3 at 34°00.31'N, 69°00.68'W
131/82	
0225	CTD station completed.
	Underway to mooring 765.
0615	Disabled release on mooring 765.
0620	Attempted a CTD station down wind of mooring 765, but sea
	conditions were too rough to deploy CTD.
1020	Hove to, 30-40 knot winds, large swell.

132/82	
0000	Hove to, large seas running.
0802	Weather improving.
1030	Testing releases for surface mooring.
1245	Moving to surface mooring launch start position.
1444	Commenced launch of surface mooring number 767.
	Buoy in water.
1925	Surface mooring anchor away.
2100	Zodiac leaves ship with five scientific personnel and one crew.
	Three persons to dive on mooring to inspect VMCM propellor
	blades. Two persons to attach meteorological sensor.
2153	Zodiac returns to ship. Divers report VMCM propellors look good.
2212	Ranging on the surface mooring release.
2251	Starting to collect C. Olson's water samples.
2323	Collection of water samples completed.
133/82	
0022	Starting CTD station number 4 near the PCM mooring (33°59.7'N,
	69°59.29'W). Shallow station (0-200 m) in conjunction with
	scheduled PCM excursion.
0130	CTD station completed.
0820	Starting CTD station number 5 at 34°59.97'N, 69°59.88'W.
1039	CTD station number 5 completed.
	Underway northward along 70°W.
	Hourly XBTs resumed for trip home.
124/02	

134/82

1100 Last XBT on homebound section.

1950 Docked at Woods Hole.

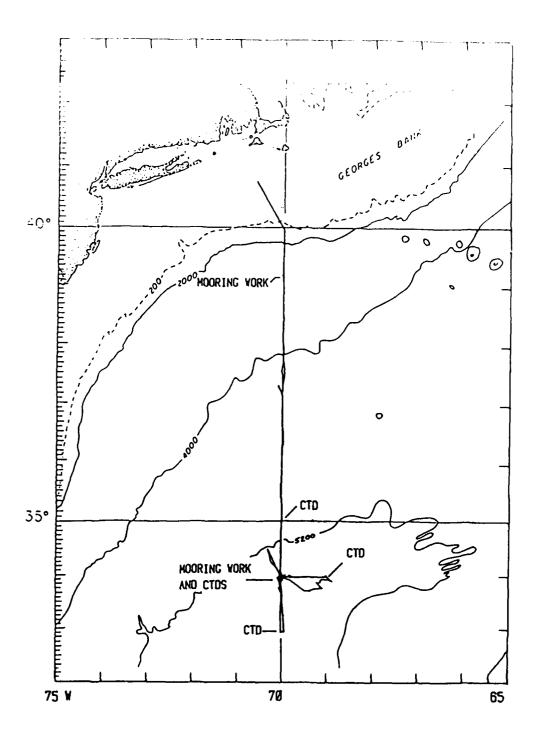


Figure A-1. Cruise track of OCEANUS cruise number 119.

MANDATORY DISTRIBUTION LIST

FOR UNCLASSIFIED TECHNICAL REPORTS, REPRINTS, AND FINAL REPORTS PUBLISHED BY OCEANOGRAPHIC CONTRACTORS OF THE OCEAN SCIENCE AND TECHNOLOGY DIVISION OF THE OFFICE OF NAVAL RESEARCH

(REVISED NOVEMBER 1978)

Deputy Under Secretary of Defense (Research and Advanced Technology) Military Assistant for Environmental Science Room 3D129 Washington, D.C. 20301

Office of Naval Research 800 North Quincy Street Arlington, VA 22217

ATTN: Code 483 ATTN: Code 420C

ATTN: 102B

CDR Joe Spigai, (USN) ONR Representative Woods Hole Oceanographic Inst. Woods Hole, MA 02543

Commanding Officer Naval Research Laboratory Washington, D.C. 20375

ATTN: Library, Code 2627

12 Defense Technical Information Center Cameron Station Alexandria, VA 22314 ATTN: DCA

> Commander Naval Oceanographic Office NSTL Station Bay St. Louis, MS 39522

ATTN: Code 8100 ATTN: Code 6000 ATTN: Code 3300

NODC/NOAA Code D781 Wisconsin Avenue, N.W. Washington, D.C. 20235

Mr. Michael H. Kelly Administrative Contracting Officer Department of the Navy Office of Naval Research Eastern/Central Regional Office Building 114, Section D 666 Summer Street Boston, MA 02210

DATE FILMED

83