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FOREWORD
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(AFWAL), Wright-Patterson Air Force Base, Ohio. The work was per-

formed under contract F33615-79-C-3209. Dr. V. B. Venkayya was

the AFWAL Project Engineer.

This report consists of two volumes. Volume I, entitled,

"Theory and Application," describes the theory behind the design

optimization method and gives design results. In Volume II,

"Program User's Manual," detailed instructions are given for

use of the ADDRESS (Automated Design of Damage Resistant Structures)

computer code on the Wright-Patterson Air Force Base CDC computing

system. The report covers work conducted between 1 June 1979

and 30 April 1982.
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SECTION 1

INTRODUCTION

The University of Dayton Research Institute (UDRI) has

completed an exploratory development contract with the Flight
Dynamics Laboratory (AFWAL/FIBR) to develop a computer program

for the design and analysis of damage resistant structures. In

addition, the Vought Corporation utilized UDRI computer output

to redesign an A7D aircraft outer wing panel. This report

documents the theoretical development behind the computer code

referred to as ADDRESS (Automated Design of Damage Resistant

Structures) and presents applications to typical aircraft

structures. Volume II of the report gives details of the computer
code. Detailed design information and a test plan for the A7D

panel are submitted under separate cover as required by the

contract.

This introductory section gives the background of the

technological requirement, and a statement of the overall objective.

It concludes with a summary of the major accomplishments.

1.1 BACKGROUND

By the very nature of their reason for existence, military
aircraft are susceptible to damage. The performance of a damaged

aircraft can be affected in a variety of ways depending on which
of the aircraft systems are affected and to what degree the damage

is inflicted. Structural damage to aircraft has been responsible

for a significant number of aircraft losses. Consequently, it is

extremely important that military aircraft maintain an adequate

degree of structural integrity under damaged conditions. The best
way to insure the structural adequacy of damaged aircraft is to

make the proper provisions during the design phase.

One obvious way to provide adequate residual strength for
damaged structures is to increase the size of the various members
and components which make up the structures. This simplistic

approach, however, is at odds with the constant quest to reduce
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aircraft weight and cost. Consequently, aerospace engineers strive

to design aircraft which are structurally adequate but which have

lower weight and/or cost than alternative designs. Conventional

methods (largely intuitive) permit engineers to reduce the

weight of initial designs by resizing. However, these procedures

do not, in general, yield designs which are "best" in any sense;

they are just better than previous trials. In addition, vulner-

ability is usually considered only as an afterthought. Con-

sequently, there is a real need for the development of logical

procedures, based on sound mathematical principles, which will

produce damage tolerant structural designs that satisfy a

criterion of merit such as minimum weight.

Although there has been considerable progress in structural

optimization, these developments have been largely academic.

However, there is now sufficient evidence to indicate that optimiza-

tion can be a valuable practical tool in reducing weight and cost,

and in improving performance. Therefore, in view of the above

mentioned need to provide damage tolerant military structures, the

aims of this current program have been to put optimization into the
damage tolerant design cycle. The objective of the program is

stated in the following paragraph.

1.2 OBJECTIVE

The primary objective of this research program was to

transition some of the theoretical developments into structural

optimization of the last 20 years into practical design tools so

that significant cost reductions can be achieved in the design

of future aerospace vehicles. Particular emphasis was focused

on damage-susceptible structures.

1.3 SUMMARY

An optimality criterion approach is presented which will aid
in the design of damage tolerant structures subject to stress,

deflection, and frequency requirements. Damage conditions are

2



treated in an integral manner in the resizing algorithm. An
iterative reanalysis procedure is used to improve the efficiency
of the static analyses that are needed as the optimization
proceeds. Several representative structural components have been
resized with the procedure and a test plan is outlined which will
help to verify the damage tolerant characteristics. For wing
structures, size and location of damage are the driving features
of the process. Criteria are presented to aid the analyst in
determining the critical stress allowables.

The major accomplishments of this contract are: (1) an
extensive revision and consolidation of several important Air
Force structural analysis and optimization codes; (2) an in-depth
investigation of structural reanalysis techniques; and (3) the
transfer of technology from a research environment to one of
design, fabrication, and testing. Additionally, the study of
representative structures aided in the establishment of ballistic
damage criteria.

In the computer code development area, it is now possible to
analyze, resize, and assess the effect of ballistic damage on wing
structures. Stresses, deflections, and vibration characteristics
can be computed and damage sensitivities established for both metal
and composite structures within the framework of a single computer
code. The program has detailed documentation and can be extended
to consider additional design requirements.

Reanalysis techniques were studied and mathematical criteria
established for the convergence of the static iterations. A new
design scaling technique was developed to meet a fixed frequency
requirement and an energy criterion simultaneously. The efficiency
of the reanalysis was found to be highly dependent on the program-
ming techniques used.

The redesign of the A7D outer wing panel presented herein
required that structural optimization technology be transferred
to an aircraft design environment. As a result of the computer

3



optimization studies, aircraft designers were able to develop a

lighter weight and more damage tolerant wing structure than could

be done by conventional means. Full-scale detailed design

drawings were made and a test plan developed to verify the

results of the structural optimization code.
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SECTION 2

REVIEW OF THE LITERATURE

Structural optimization algorithms have been continuously
improved over the last 20 years. There are a number of practical
approaches now available to large scale structural optimization
of airframe structures. However, there has been little attempt
to verify the validity of the optimized designs under actual
service conditions. Of particular concern for military aircraft
is the sensitivity of the optimized structure to loss or reduction
of stiffness in members due to damage. In this section
optimization for damage tolerance is reviewed, followed by a
discussion of the literature on structural reanalysis.

2.1 OPTIMIZATION FOR DAMAGE TOLERANCE

The body of the literature on structural optimization is
now quite large, but there have been relatively few investigations
dealing specifically with the optimal design of damage tolerant
structures. Arora, et al.2 have included strength, stiffness, and
damage requirements in an optimal design strategy. A design
sensitivity analysis is coupled with a steepest descent algorithm
to design damage tolerant structures. An application is made to
an open truss helicopter tail-boom. Venkayya, et al.3 present
an iterative technique which demonstrates the feasibility of
including damage considerations in a design procedure based on an
optimality criterion approach. Applications are made to truss
and wing structures.

Reference 2 enumerates an important list of basic
definitions regarding damage tolerant design. These definitions
are reproduced here because they apply to the current work also.
They are as follows:

(1) Damage-tolerant structure. A structure is called damage
tolerant or fail-safe if it continues to perform its basic
function even after it sustains a specified level of damage.

5



(2) Damage condition. A damage condition for the structure
is defined to consist of complete or partial removal of a selected
member or groups of members of the structure. Some nodes of the
structure may be removed as a result of the damage.

(3) Optimal damage-tolerant structure. A damage-tolerant
structure is called optimal if it is designed to minimize a merit
function, subject to constraints that must hold for the undamaged
structure and under projected damage conditions.

The open truss helicopter tail boom problem studied in
Reference 2 contains 108 axial bar elements and 38 nodes. The
members are grouped so that only 42 are considered free design
variables. It is important to note that use was not made in this
study of efficient reanalysis techniques to compute the response

for the damage cases.

Reference 3 makes extensive use of reanalysis procedures
to compute response to structural damage. Elastic strength,
yielding, and frequency and mode shape changes are estimated.
Applications are to optimized truss and wing structures; no
attempt was made to include the reanalysis procedures within the
framework of an optimization scheme. It was concluded that the
reanalysis procedures were simple, accurate, and a natural
extension of the finite-element based structural optimization

procedures.

2.2 REANALYSIS METHODOLOGY

In order to perform an optimization of a structural design
which is subject to multiple damage conditions, it is essential to
perform efficiently the reanalysis of the damage conditions. This
subsection contains a review of the literature which has application
to reanalysis problems. First, the methodologies for static
reanalysis are considered, followed by techniques for predicting
mode shape and frequency trends as structural modifications are

made.
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2.2.1 Reanalysis of Static Cases

Several categories of methods are available for the

reanalysis of structures with local modifications. The methods

all involve the solution of the modified linear equations and

may be classified as follows: (1) direct4-7 (2) iterative 3 ' 8 - 1 1

(3) implicit differentiation 1 2 - 1 5 , (A) reduced basis14-16, or

(5) mixed 17-18. In the current study, methods one and two were

investigated in detail due to their relative simplicity and

ease of programming.

By direct reanalysis methods the solution to the

modified static equations are obtained in one step. References 4,

5, and 7 solve the modified equations

([K] - [K1 ]){x} = {F} (2.1)

based on the stiffness matrix of the unmodified system

[K]{x} = {F} (2.2)

where [K] is the system stiffness matrix, 1K1 ] is the modification,

{F} is the applied load, and {x} and {Ix} are the response vectors

for the unmodified and modified structures, respectively. Use of
5

the Sherman-Morrison identity , a technique which gives an

explicit solution to equation (2.1) when [KI] is a vector outer

product, yields

{X}= [KI-I R 'j [K] {uj}I T [K] {F} (2.3)

j=1

where

-. = ({u} T[K]-I {uj} - _ )1 and

a. and u. are the eigenvalues and eigenvectors of the modificationJ J
matrix [K1 ], and R is the rank of [K1 ].

Kavlie and Powell7 point out the fact that the

Sherman-Morrison identify seems to require the explicit inverse
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of the [K] matrix. However, when equation (2.2) is used in (2.3),
it can be shown that simplifications occur which negate the
requirement of an explicit inverse of the stiffness matrix. A
main drawback of the method is more obviously the requirement of
the outer product representation of the modification matrix in
terms of all of its eigenvectors. The eigenanalysis plus the
matrix multiplications of equation (2.3) could easily exceed the
cost of resolution of equation (2.1) by the Choleski method, for
example.

Reanalysis methods which use iteration may be slow
to converge, if at all, when large changes in the design are made.

Kirsch and Rubinstein8 develop a method to improve convergence
based on an expression of the matrix of changes in stiffness as a
linear combination of two matrices. Phansalker 9 makes similar

conclusions, as does Switzky 0. Reference 10 improves the conver-
gence of the iterations by selecting good initial guesses for the

modified responses. Venkayya develops an iterative procedure
based on a Taylor series expansion of the response. Details of
this procedure are given in Section 3.3 herein.

References 12 and 13 propose using implicit differentia-
tion of the governing equations to obtain response gradient infor-
mation. In Reference 14, a combined Taylor series-iterative
technique using first-order sensitivities is developed and applied
with good results to space truss structures. Reference 15 documents
a similar study, and shows how sensitivity information can be
incorporated into an optimality criterion or a mathematical

programming method for structural optimization.

The work of Noor and Lowder 1 7 -18 develops a "mixed
method" for reanalysis; i.e., the fundamental unknowns include both
force and displacement parameters. The merits of the Taylor series
approach are assessed as applied with the mixed approach and compared
with the displacement method. It is also shown that the displace-
ment approach can be greatly improved by choosing the design
variables to be reciprocals of the sizing variables.
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The statement by Kirsch and Rubinstein8 that no single

method of reanalysis is superior in all cases for static problems

seems to summarize the reanalysis state of the art. A method

should be evaluated and selected on the basis of its ease of use,

computational efficiency, and convergence characteristics. In the

work reported herein, simple iterations in conjunction with an

acceleration technique fit the above criteria.

2.2.2 Reanalysis of Eigenvalue Problems

Reanalysis techniques for eigenvalue problems are

classified herein as either (1) derivative-based19-21 or (2)
S22-24iterative-based 2  . In the former case, implicit differentiation

of the eigenvalue problem is performed to obtain first order gradient

information. The iterative techniques may in some cases also lead

to gradients. However, iterations can also be used to estimate

discrete changes in the eigenvalues and eigenvectors.
19

Fox and Kapoor developed expressions for the rate of

change of eigenvalues and eigenvectors of a discrete model of a

vibrating system. For a given increment in the structural

variables, the modified eigenvalues and eigenvectors were computed

using a one term Taylor series expansion. The rates of change of
.th

the i-- eigenvalues were expressed by Fox and Kapoor in terms

of the rates of change of the mass and stiffness matrices and the
i th eigenvector.

Reference 19 presents two formulations for the rates of

change of the eigenvectors. In the first formulation, the
.th

expression for the i generalized mass is differentiated with

respect to the variables and the resulting system is solved for the

rate of change of the eigenvector. The system of equations

involves only the ith vector. The second formulation uses an

eigenvector expansion theorem to represent the eigenvector

derivative as a linear combination of all the vectors of the given

problem. The coefficients are then determined using the

orthogonality properties of the vectors. The disadvantage of the

second method is that it requires that all the vectors be computed.

Fox and Kapoor briefly comment that it may be possible to use a

9



partial sum to represent the eigenvector derivative. Hence, for

small structural changes, not all the vectors may be needed to

approximate the eigenvector derivatives.

Rogers 2 0 explored the work of Fox and Kapoor further

and concluded that it could also be extended to eigenvalue

problems where the matrices are nonsymmetric and complex. The

expressions for the eigenvalues and eigenvectors included products

of both the left and right eigenvectors. Thus, it is necessary to

solve an additional system of equations to obtain the required

derivatives. The Rogers expressions are useful in studying design

trends in nonconservative systems.

Nelson21 developed a simplified procedure for

determining eigenvector derivatives which is more efficient than

previous methods when large systems are considered. The matrix

technique for determining the eigenvector derivative is similar to

the first formulation of Fox and Kapoor discussed above. However,

the original eigensystem of rank (n-l) is modified to convert it

to rank n and then solved for a vector which is used to compute

the eigenvector derivative. The system of equations was solved

without extensive matrix manipulations as indicated by Fox and

Kapoor.

Another class of methods 2 2 - 2 4 involves matrix iterations.

Rudisill and Chu22 proposed an iteration based on a rearrangement

of terms in the Rayleigh quotient. Both self-adjoint and nonself-

adjoint systems can be handled in this manner. Andrew23 proved

the convergence of the Rudisill-Chu iteration and examined its rate

of convergence. It was concluded by Andrew that the iterative

procedures should be used rather than the "direct method" (i.e.,

the approach in References 19-21) when the number of iterations

is less than n/3, where n is the order of the system.

Hemming, Venkayya, and Eastep24 studied the problem of

flutter speed degradation of damaged optimized lifting surfaces.

Since a modal flutter analysis approach was used, it was necessary
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to determine the effect of design perturbations (i.e., damage) on
the natural frequencies and mode shapes. The perturbed frequencies
were obtained by the use of the Rayleigh quotient. Mass and
stiffnesses in this quotient were for the damage structure. As a
first approximation, the modes for the undamaged case were used to
compute the approximate triple products. The modal vectors were
improved by solving a system of equations iteratively, which required
the decomposition of a different coefficient matrix for each
damage case.

In summary, it appears that iterative techniques
are more efficient than the Fox and Kapoor type of approach.
However, in the case when changes in the structure are large,
the convergence of these techniques is sometimes questionable.
The work reported herein uses an iterative procedure somewhat
along the same lines as Reference 24 with the improvement that a
new coefficient matrix need not be decomposed for each damage
case. In the cases of large damage, it is possible that stress
and deflection requirements are more important than frequency and
mode shape considerations. So the convergence of the iterations,
although an interesting mathematical problem, may be a moot
consideration when strength requirements are present.

11



SECTION 3

THEORETICAL DEVELOPMENT

in this section the theoretical development of the analysis

and optimization procedures for damage resistant structures are

given. The finite element technique is discussed, followed by

the vibration analysis algorithm used in this work. The reanalysis

procedures are next presented, and the section concludes with the

presentation of various aspects of the design optimization strategy

such as design scaling.

3.1 STATIC ANALYSIS

The structural model for the static analysis calculations is

based on the finite element displacement method.

The current library includes the following element types:

1. Bar (axial force member)

2. Membrane triangle

3. Membrane quadrilateral

4. Shear panel

5. Beam

The local coordinate system for the element types shown in Figure 3.1

is the same as in Reference 25. The bar element is a constant strain

line element and is equivalent to a NASTRAN rod element. Four

constant strain membrane triangles are used to form the quadrilateral

element by a merging process, followed by static reduction to

eliminate the interior node. The shear panel is formed in a

manner similar to the membrane quadrilateral; however, only shear

energy is considered in forming the stiffness matrix. The details

of the beam element are included in the next subsection. Further

details of the elements other than the beam are given in Reference

25.

The efficiency of the static analysis is highly dependent upon

the programming of the solution technique to the equilibrium

equations

12
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[K]{x} = {F} (3.1)

where [K] is the global stiffness matrix, {F} is the vector (or

vectors) of applied forces, and {x} is the solution vector (or

vectors) of displacements and rotations. The Choleski decomposition

technique was used for these studies.

The stiffness matrix is thus decomposed into the form

[K] = [L] [L]T (3.2)

where the components of the lower triangular matrix [L] are

2ii = (a k=l tik (3.3a)

Lji = aii k il Z ik Z jk/ ii r j>i (3.3b)

k=l

After decomposition, forward

[L] {y} = {F1 (3.4)

and backward substitutions

[L]T {x} = {y} (3.5)

are performed to obtain the solution. The efficiency of the

Choleski method is nearly double that of the Gaussian elimination
25procedure in 0PTSTAT2. In both ADDRESS and 0PTSTAT advantage is

taken of the special "skyline" form of the stiffness matrix so

that storage is minimized.

3.2 BEAM BENDING ELEMENT

Figure 3.2 shows the coordinate system and cross-sectional

properties of the beam bending element. The beam element is a

straight bar with linearly varing properties, and is capable of

resisting axial forces, bending moments about two principal axes,

and twisting moments. Node 3 is used to determine the cross-

section orientation of the beam.

14
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Figure 3.2. Beam Element Geometry.
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The shear center, mass centroid, and geometric centroid are
allowed to be distinct points. Any transverse force applied
through the shear center causes no torsion of the beam.26 When
the element is twisted, the twist takes place around the shear
center (center of twist). When the cross-section has one axis of
symmetry, the shear center will be located on that axis. For cases
when there are two axes of symmetry, the shear center will
coincide with the geometric centroid. The unbalance provided by
the mass centroid offset is useful in modeling high aspect ratio
lifting surfaces for vibration problems.

The nodal degrees of freedom (three displacements and three
rotations) lead to element matrices of order 12. Terms in these
matrices are functions of the following properties:

1. Mass centroid location - y z

2. Geometric centroid location - Yb' Zb

3. Cross-sectional area - A(x)

4. Moments of inertia - I (x), I (x), J(x)y z

5. Geometric unbalance - Gy (x), Gz (x), G yz(x)

6. Mass moments of inertia - K (x), K (x)y z
7. Mass unbalance - S (x), S (x)y z
8. Elastic moduli - E, G

9. Material density - P(x) (mass/length) or
p*(x,y,z) (mass/volume)

The above geometrical and inertia properties are interrelated and
are defined by the following integrals:

I dA = A(x) (3.6a)

A

y 2 dA = I(X) + b A(x) H (x) (3.6b)
A

16



I 2 2
z dA = I (X) + zb A(x) Y (x) (3.6c)

y by
A

I y dA = G y(X) = Yb Ax (3.6d)

A

I z dA = G (X) = zb Ax (3.6e)
A

I yz dA = G yz(x) = Yb Zb A(x) (3.6f)

A

jP* y dA = p K (X) + ya2 p A(x) -p K (3 . 6 g)
A

p* z2 dA = p K (X) + za2 p A(x) E p K (x) (36h)
f y a (36hA

I p* y dA = Sy (x) = p ya A(x) (3.6i)

A

f p* z dA = S (X) = p za A(x) (3.6j)
A
f p* yz dA = S yz(X) = p ya A(x) (3.6k)

A

The x, y, z displacements based on the Bernoulli assumptions

are, respectively,

U = u - yv,x - zw,x (3.7a)

V=v- zOx (3.7b)

= w + yex (3.7c)

The strain-displacement equations are

Cx = U,x - YVxx - zw,xx (3.8a)

17



Yxy = -ze O (3.8b)

Yxz = YO x'x (3.8c)

Use of these equations, together with the assumptions
Oy =oz =Tyz =0and the stress-strain relations

a = E c (3.9a)

T xy = G y xy (3.9b)

Tyz = G y xz (3.9c)

leads to the strain energy expression

1 JEIL U 2 + I(x) V, 2 + EI (x) w, 2
2 = • E~)Ux +Ez 'xx y xx

+ 2EI yz (X)V, xW, xx+ GJ(x) 0 2'

- 2EA(x) u, x (YbV, xx + zbW'xx)] dx (3.10)

where GJWx is the torsional stiffness.

Likewise, the equations (3.7) can be used in the kinetic energy

expression

to obtain for constant beam density,

T = •x O;+ý+ 2 Z+ (w _' K' 2

""2 + (Kz (X)+Ky (x))6•2
+2-yz (x)V xw z x

-2Ax~~y v~x+ z aW, x)

+2A(X)5 x (YaWý - Z aV)] dx (3.12)
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The displacement patterns are the following polynomials in

the variable ý = x/L

u = (l-E)u 1 + Eu2 (3.13a)

v = (1-3E2 +2E3 )v1 + L(E-2 2+E3)vX1

+ (3O -2_ 3)v 2 + L(-2 +E3 )vx2  (3.13b)

w = (1-3E2+2ý3 )w1 + L(E-22 +E3)WX1

+ (3E -2_ 3)w 2 + L(-2 +E3 )Wx2 (3.13c)

0 x= (-1 )exl + EOx2 (3.13d)

where the subscripts 1 and 2 denote the values at the ends of the

beam. It should also be noted that

vxi = 0zi (3.14a)

w = -eyi (3.14b)

since small rotations are assumed. Using these expressions in

Equations (3.10) and (3.12) leads to the quadratic forms for the

strain and kinetic energies,

U=1 {qT [k] {q} (3.14)

*1 TT = f {q} [m] q} (3.15)

respectively, where the generalized coordinates are ordered

{q) = {u lvwlWlxl,' yl,'zl'

u 2,v2,w2, x2,8y2, ez2 }

The [k] and [m] stiffness and mass matrices are of order 12 and

include the effect of a linear variation material and geometric

properties.
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3.3 STATIC REANALYSIS

The static, elastic deflection analysis for an unmodified

structure involves computing the solution of equations (3.1) as

discussed in Section 3.1. Efficient reanalysis methods should make

maximum use of the Choleski decomposition of the unmodified stiffness

matrix.

When a set of structural elements are removed or partially

removed due to damage, the reanalysis problem becomes

[K] {I} = MF (3.16)

where the modified stiffness and loading matrices can be written as

the original quantities minus known perturbations as follows:

(K] = [K] - [KI] (3.17)

{FI = {F) - {F11 (3.18)

The modified stiffness matrix can be positive definite for small

damage; however, [K1 ] will be just positive since it contains at

least n-m rows and columns of zeros where m is the total number of

degrees of freedom affected by the damaged elements.
3

The work by Venkayya, et al. shows how the perturbed response

vector, {xR, can be iteratively determined without directly solving

equation (3.16). The reanalysis formula which was developed is

{3(v+i) [Al {x(") } + -x} (3.19)

where [A] = [K]-I [K1 ]. This iteration starts with {X() = {x}.

To derive an iteration scheme including {F1 }, introduce the

perturbation parameter, c, which scales the damage terms of the

stiffness matrix and load vector as follows:

[K1] = e[K o (3.20a)

{FI} = E{F 0o (3.20b)
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As in classical perturbation theory, expand the modified response

in a power series

{x} = {xO} + E{xI3 + E2 {x 2 + 63 {x 3 } + ... (3.21)

where {x O} ={x} and {x11, (x21, ... are undetermined vectors.

Next, substitute equations (3.20) and (3.21) into equation
(3.16) and group terms into coefficients of e. This gives a

homogeneous system which implies that all coefficients are zero.
The following system is thus obtained:

{yo I = {x) (3.22a)

{yl} = [A]{yo} - [KI {FI1 (3.22b)

{yil = [A]{yi_I} i = 2,3,... (3.22c)

where (yi} = Ei{xiI and [A] = [K]-I[KI]. A (v+l) th-order accurate
estimate of {x} is obtained by adding the first v equations of
(3.22) to get

{x +i} = [A]{x( )I + {x) - [K]-I {F1) (3.23)

It is important to note that 1K]-I is never formed when equation
(3.23) is applied. The next response iterate is determined by
forward and back substitution based on the decomposition of the

unmodified stiffness matrix.

In the case that {F1) = {01, equation (3.23) has the form

{x(V+l)}= ([A]v+l + [A]V + ... + [AI+[I]) {x) (3.24)

It is easy to show that equation (3.24) is the first v+1 terms in
a Taylor series in c as follows. Note that the Taylor series
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{x(E)} = {xl + c{Xl(0)} + 62 (x5(0)}+...+()+l)fX+(0)}

+... (3.25)

where {xj(0)} denotes the j-th derivative of {x} at E=O. By direct

differentiation of equation (3.16) it can be shown that

{x. (0)} = n[K] -1 {xj (0)} = j! [A]n{x} (3.26)
J I

Use of equation (3.26) in (3.25) yields equation (3.24). Thus each

cycle of simple iteration is equivalent to adding an additional

higher order term to the Taylor series.

An approach to a convergence study of equation (3.23) is most

easily demonstrated by considering the {F 1 = {0} case. The

equation (3.24) is reminiscent of an iterative method for solving

a linear eigenvalue problem. Therefore, we can study the conver-

gence of equation (3.24) by considering the following eigenvalue

problem

1'i i = [A] { i} (3.25)

where pi and {@i} are the i th-eigenvalue and eigenvector, respectively,
or equivalently,

=i[K]{i [Kl]{ i} (3.26)

Since [K] and [K1 ] are at least positive semi-definite, with [K]

positive definite, then {x} has a unique expansion in terms of the

[K]-orthonormalized eigenvector of [A],

n
{x} = a c {ci} (3.27)

i=1 1

where ci = {4}T [K] {x}/a and a = max({ýi}T [K] {x}). Substitution
of equation (3.27) into (3.24) gives a geometric series in pi,
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n v+l
x C ý1?(3.28)

i=l j=0

Now, if
1 <1 (3.29)

the series converges to

n
{x} = a (Ci/(l-ci)){4i} (3.30)i=l 1 1 1

where the eigenvalues have been ordered as p > 2 > ... > n

Thus equation (3.30) is the theoretical limit of the iteration

formula (3.24) subject to the convergence criteria of equation

(3.29).

A useful quantity in damage assessment can be the ratio of

the strain energy in the damaged structure to that of the undamaged

one, i.e.,

U/U = {j}T[KI{x}/{xT [K]{x} (3.31)

By using equation (3.27) and (3.3), this is computed to be

n (c2/(_i n 2

U/U (c. /(1))/ c. (3. 32)i=l 1i1l11"

which by the extremal properties of Rayleigh's quotient is bounded

by

1/(1- n) < U/U < i/(l-pI) . (3.33)

Thus, if we define a sequence of stiffness damage perturbation

matrices, [Kj], j=l,...,N, where N is the number of damage cases,
and we define V1 (j) to be the maximum eigenvalue associated with

.th
the j eigenproblem (see equation (3.26)), then the potentially

most dangerous damage case has
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1i* = max (pi(j)

as its largest eigenvalue. It is easily verified that a first

order estimate of pI* is

i* = max(l+{E}T([I]-[Ki]{•) (3.34)
i

where (8, {}) are the dominant eigenpair of the undamaged stiffness

matrix; i.e., (0,{1}) satisfy

[K]{} R = RE} (3.35)

This system is easily solved by matrix iteration, and, hence,

a trial estimate of the most critical damage case can be quickly

identified by Equation (3.34).
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3.3.1 Collapse Analysis Based on Direct Stiffness Variation

If the [K1 ] modification matrix is of the special

form

[KI] = [I] (3.36)

the effect of direct stiffness variations (changes in the diagonal
terms of the stiffness matrix) can be quickly assessed by the
techniques of this section. For changes of the form above, the
equivalent iterative expression for the response of the modified

system is

{•(+l } n v±1 (_•)
= \ l cn {4i} (3.37)

i=l j=0

where (Xi,{Oi}) are the eigenpairs of

Ai{ i = [K]{oi} (3.38)

In order for the above iterations to converge,

le6 < Xi i = 1,...,n (3.39)

To see how this iteration and convergence criterion

can be applied, consider the following simple example. Let

5 4 3- Y

[K] = 4 7 4 ,{F

3 4 4

and c = 2. The first four iterates are

7938401 .884F.71

.069 . 7 3 1 .281 . 4 1 4L .586 .095 :258 .673

The iterates continue to increase in vector norm and essentially

become unbounded.
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An eigenanalysis using the power method on this matrix

shows after five iterations starting with a vector with unit

entries, gives X1 = 12.9, the largest eigenvalue. Using the

eigenshift technique on the system

([K] - X1 [I]){} ={ (3.40)

where

gives X1 = 1.2 as the smallest eigenvalue. Again the power method

is easily applied. Thus, by equation (3.39) we see that direct

stiffness modifications must be less than 1.2 in magnitude. When

they are larger than this, it causes the stiffness matrix to no

longer be positive definite and hence a kinematic instability or

collapse mode is possible.

In the above example, if e is reduced to 1.1, simple

iteration will converge to three place accuracy in 67 iterations.

Clearly, the need exists to accelerate the convergence of the

iterations if possible.

3.3.2 Acceleration of Convergence

Iterations of the form given in equation (3.23) are

an n-dimensional generalization of the simple fixed point

iteration problem27-28

xn+l = g(xn) (3.41)

This generates a sequence xl, x 2 ,... which we want

limx x
n

Figure 3.3 shows a convergent fixed point iteration and accelera-

tion by Aitkin's-A2 process. From the figure, note that
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rn = (x n-X n-l)/(x n-l-Xn_2) (3.42)

rn = (xn+l-Xn)/(xn-Xn_1 ) (3.43)

When r < 1 and
n

rn -rn -i < E (3.44)
r n

for some small c > 0, then Aitken's-A2 process consists of

extrapolating the straight line segment joining points 2 and 3 to

the intersection with the line y=x (point 4). The rationale is

that if r n < 1 and equation (3.44) holds, then the g(x) curve slope
is not rapidly changing and then a straight line extrapolation

will intersect the line y=x near E. The coordinate for the
extrapolated point is

2
A (Ax n)

Xn = Xn+ 1 - Ax2 X (3.45)

where
Axk = Xk+l - xk

and

A2Xk = Axk+l - Axk

In the ADDRESS code, the vector of modified responses
for each damage case are computed by equation (3.23). For two

consecutive iterates, the error is defined as

(vi (+l) N--N(v))2]1/2e u l)=maxL -1(ij - xi ) j(3.46)
j=l,.. , L 1iyl

where L is the number of load cases and N is the number of

unconstrained degrees of freedom. The ratio of consecutive errors
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r (v+l) e (v+l) (v) (3.47)

is tested to make sure it is less than 1.0 and
(vl) (v) (v+l)

(r(v+I) - r )/r < .1 (3.48)

is required before the extrapolation

-(x..V+l) - (v) 2
x. x(+l) xij - ij)

1) 1! (3.49)3 1xij(v+l)-2x (v)+x (v-i)

is performed. Equation (3.49) is the vector analog of equation (3.45).
Equations (3.44) and (3.48) are analogous where c is selected to be 0.1.

3.4 VIBRATION ANALYSIS

This subsection describes the analytical technique that was
used to solve the eigenvalue problem

I[M]{x} = IK]{xl (3.50)

where [M] is the global mass matrix (including non-structural mass

items), and [K] is the global stiffness matrix. The solution to
equation (3.50) is given by (Xi, {xi}), i=l,...,n where A. is the ith

eigenvalue (natural frequency squared), and {xi} is the ith eigen-
vector (mode shape). The order of the system is n, and the lowest m
(m < n) frequencies and corresponding mode shapes, and the generalized
masses are desired. The generalized masses are defined as

mi = {xi}T [M]{xi} i = l,...,m<n (3.51)

The ADDRESS system uses a simultaneous iteration algorithm29
(SIMIT) to compute the modes and frequencies. This method was
selected because of its excellent convergence characteristics and its
relative simplicity. The procedure takes a minimum of storage and is
easily adapted for the calculation of unrestrained modes. The basic
steps of SIMIT are as follows:
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1. Set random trial vectors [U] and orthogonalize

2. Solve for [Y]: [L]T Y] = LU]

3. Form [ZI: [Z] [M] IY]

4. Solve for [V]: [L] IV] = [Z]

5. Form [WI: [W] = [V] IT*] and estimate Xi (see below

for definition of IT*])

6. Form [U] by Schmidt orthogonalization of [W]

7. Test I!U-UI < C
8. If test of Step 7 passes, then solve [LIT [XI = [U]

and print the eigenvectors LX] and eigenvalues X1.
If test of Step 7 fails, then set [U] = [U] and

go to Step 2.

The key step in the method is a matrix iteration of the form
[A] [U] = [V] where [A] is a symmetric matrix, [U] is an n by m
matrix of iterated vectors. Note that all modes of interest are
simultaneously iterated. In practice, it is necessary to use about
twice as many trial vectors as the number of vectors desired. The
SIMIT method differs from the usual matrix iteration method in that
a sweeping matrix is not required. Also, the [K]- [M] matrix is
never formed.

As stated above, the matrix [A] must be symmetric. An
important step in the SIMIT technique is to transform the eigen-
value problem of equation (3.50) to the form

[A]{q} = A{ql (3.52)

where [A] is symmetric, which has the eigensolutions (Xi, qi),
i = l,...,n. This can be accomplished by defining

[A] = [LI-I [M] [L] -T (3.53a)

{q} = [L ]T{x} (3.53b)
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where [K] = [IL[]. Note that [A] so defined is symmetric and
that the eigenvalue problem described by Equations (3.52) and
(3.53) is equivalent to equation (3.50).

In practice, the matrix [A] is never explicitly formed.
Instead, for a given set of trial vectors [UI, the product [A][U]
is formed in the following steps:

1. Solve [LI T[YI = [U] for IYI by back substitution

2. Form IZI = [MI [Y] by premultiplication of [YI by [MI

3. Solve [LI IVI = [ZI for [V] by forward substitution.

It is easily verified that the above steps which make use of the
properties of the IL] matrix are equivalent to forming the matrix
product [AI[UI. In the ADDRESS program, IL] is stored in "skyline"
or variable bandwidth form.

The diagonal terms of [U]T IV] are used as the first estimates
of the eigenvalues. The eigenvectors must be modified before the
next step, since they would otherwise all converge to the vector
corresponding to the largest eigenvalue. In the terminology of
Reference 29, an "interaction analysis" is performed on the vector
which decouples them. The decoupled vectors, [WI, follow from the
matrix multiplication

[WI = [VI [T*I (3.54)

where [T*] has unit diagonal terms and skew-symmetric off-diagonal
terms given by

t*i.. = 2b../cij (3.55)1] 1 ij

where bij are the elements of the "interaction matrix"

[B] = [U]T[V] (3.56)

and
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and

c. = b.. - b.. + S (b b 2+16b 13 2 (3.57)

with S equal to the sign of b..-b... The [W] vectors are then made
11 JJ

orthogonal by the usual Grahm Schmidt orthogonalization process. By

efficient use of storage registers, it is not necessary to have

separate storage for the [B] and [T*] matrices.

The orthogonalized vectors [U], obtained from the [W] matrix

and then stored in [U] and the iteration is continued. The process

is completed by performing either a specific number of iterations

or by achieving a given small error on the Euclidean norm of

[u]-[U].

The final step of the procedure is to use back substitution

to recover the mode shapes for the original vibration problem of

equation (3.50). This is accomplished by solving equation (3.53b)

where the columns of the converged [U] are the {qi} vectors.

A number of investigators have used SIMIT (see Reference 29)

on large sized problems. Although the basis for the interaction

analysis as presented in Reference 29 is somewhat empirical,

numerical results have been consistently good.

In the case of unrestrained structures, the [K] matrix will

not be positive definite. In this case, use can be made of the

eigenvalue shifting technique. The quantity P[M]{x.i is added to

both sides of equation (3.50) where p is a predetermined positive

constant. Hence, the "shifted problem" becomes

[K]{x} = n[M]{x} (3.58a)

where

[K] = [K] + ji[M] (3.58b)

A + P (3.58c)

For the work herein, i is selected as
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=1 min (Kj. /M.) (3.58d)
J )J JJ

where K.. and M.. are the diagonal terms of the stiffness and mass
33 ]3

matrices, respectively. Hence, for unrestrained modal calculations,

equation (3.58a) is solved by the SIMIT technique, and the desired

eigenvalues are then recovered by solving equation (3.58c) for X..1

It is important to note that even the zero frequency node shapes are

obtained in the solution of equation (3.58a).

3.5 FREQUENCY AND MODE SHAPE REANALYSIS

A number of papers have been written on the rates of change

of eigenvalues and eigenvectors with respect to system parameters
24

(see References 19-23, for example). Hemming, et al. have

developed a technique specifically for the analysis of damaged

structures. The eigenvalues are determined from a Rayleigh quotient

procedure for the frequency calculation; however, the modified

vectors are iteratively determined from solving a system of equations

based on the decomposition of the stiffness matrix for the undamaged

structure.

The reanalysis procedure is derived by first considering the

vibration problem for the undamaged structure

[K]{xi} = Xi[M]{xi} i = l,...,m (3.59)

and a particular damage case

[K]{xi} = 3i[M]{•i} i = l,...,m (3.60)

where

[R] = [M] - [MI] = modified mass matrix

{3i} = {xi} - {Xil = modified eigenvectors

Ti = Xi - Xil = modified eigenvalues

and [K] is given by equation (3.17).
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.th
The iteration equation for the i- modified eigenvalue has

been selected to be the Rayleigh quotient for equation (3.60),

Xi(V) ={(V I)}T []ii(V)}/xi (V) T[]i(M (3.61)

where (v) denotes the iteration counter. The starting mode shapes

on the right side of equation (3.61) are taken to be the mode shapes

of the undamaged system. The iteration equations for the Ith

eigenvector are obtained by substituting equation (3.61) into

(3.60) and rewriting in the iterative form

[K] xi (V+l)} ( [M] + [KE]) {i(V) (3.62)

The flow of calculations is then as follows:

1. Solve equation (3.59) by simultaneous iteration and

save the decomposition of the stiffness matrix.

2. Evaluate equation (3.61) to get the first estimates

of the eigenvalues.

3. Solve equation (3.62) using the decomposition of the

stiffness matrix determined in Step 1. Iterate this equation

several times until the norm of the vectors changes less than

some specified amount.

4. Orthogonalize the last set of iterated vectors from

Step 3 with respect to the modified stiffness matrix.

5. Repeat Steps 2, 3, and 4 a prespecified number of times.

Each time Step 2 is performed, use the last set of eigenvectors

obtained from Step 4 as input.

The iteration scheme used herein is similar to that of

Rudisill and Chu.22 In their work, however, they are considering

the derivative problem rather than the perturbation problem.

In Reference 22, the eigenproblem is differentiated and terms are

rearranged so that eigenvector derivatives appear on both sides
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of the equation. This form is then used as the basis for a

fixed-point iteration scheme.

Several key questions arise in the use of iteration
expressions such as these:

1. Do the iterations converge?

2. Do they converge to a unique solution?

3. Is it the correct solution?

Reference 23 deals with such questions for the Rudisill-Chu itera-
tion method. The method converges for the dominant eigenvector/
eigenvalue; however, in other cases the solution characteristics
can depend on the initial guess for the eigenvector derivative.

For the perturbation method used herein, satisfactory
results have been obtained when the mass and stiffness changes
are small. This implies that mode shape changes are not large.
Numerical results are presented in Section 5 herein.

3.6 OPTIMIZATION FOR STRESS AND DEFLECTION REQUIREMENTS

Following a development similar to the optimality criterion
approach of Reference 30, the object of the optimization process is
to provide a structure which is satisfactory from a stress and
deflection standpoint and has minimum total weight. It is further
required that the structure also satisfy these requirements in its
damaged configuration or configurations.

The total structural weight of a finite element model with
"imns elements is

m
W p. A. 9. (3.63)i=l 1 11

where pi is the mass density and Aiti is volume of the ith element.
If the elements are bars, then A. is the cross-sectional area and1

ki is the length. For membrane and shear panels the Ai and Zi
are the thickness and area, respectively. The beam element

variables are the same as for the bars.
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A necessary condition for an optimal design is that the

function

m
= Pi A.Z. - AZ (3.64)

be stationary with respect to the design variables, Ai, where X
is a Lagrange multiplier and Z is a stiffness requirement. When
Z is selected as the strain energy of the structure, it can be shown
that the stationary conditions lead to the following statement of the
optimality criterion for the generalized stiffness requirement:

"The optimum structure for a generalized

stiffness requirement is the one in which the
ratio of the average strain energy density to
its mass density is the same for all elements."

When a displacement constraint is present, the stiffness
requirement has the form of the virtual work expression

Z = {F}T {r} (3.65)

where {F} is a unit load vector and {r} is the generalized displace-
ment vector. The unit load vector contains zeroes except in the
unit entry corresponding to the displacement constraint. Again, from
the stationary condition of the 4 function, the following statement
of the optimality criterion is given as follows:

"The optimum structure for a specified

displacement is the one in which the ratio
of average virtual strain energy density to
the mass density is the same for all elements."

Damage cases are handled in the same way that multiple loading
conditions are treated. The optimality conditions then take the
form

X e!)(2) +) pie + A2ei~2  + --- + Ape(p = 1;
+1 (3.66)

i = 1,...,m
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where

f{r}T[Ki {rj} / P. A.i. (Stress)

e.(j) =(3.67)
S{f}TIK]{r 9 / Pi A.L. (Deflection)

.th
and {fj1 is the displacement vector corresponding to the j unit

load vector. The [Ki] matrices are the stiffness contributions

of the elements for i1,...,m. The index p equals the number

of damage cases times one plus the number of loading conditions.

Resizing of the element areas takes place in accordance

with formulas of the type

(ai A) V+l = (i)v E 1 (3.68)

where a. is the normalized member size, A is a scale factor, v
1

denotes the iteration, and E. is a weighted average of the strain.th 1

energy density in the i element. The scale factor can be exactly

determined for stress and deflection constraints.

In the ADDRESS computer code, resizing takes place first for

the stress requirements and then for displacements. A specified

number of resizings take place to make the strain energy density

uniform in each element when subjected to the load case/damage

conditions. The design is scaled so that all the stress and

deflection requirements (if any) are satisfied. Resizing is

terminated in the energy mode (i.e., stress constraints) if the

weight increases. Resizing then takes place for the displacement

requirements and checks are made on stress levels and appropriate

scalings of member sizes are made. The algorithm is very similar

to the 0PTSTAT25 program except that additonal "pseudo load

cases" (i.e., damage cases) are included.
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3.7 OPTIMIZATION FOR VIBRATION REQUIREMENTS

Reference 31 develops an optimality criterion approach to
the minimum weight design of structures subjected to dynamic loads.
In many design problems, it is possible to characterize the
dynamic load problem as a requirement that a given natural frequency
not be lower than some specified value. Such frequency constraint
problems are solvable by direct search techniques which involve the
calculation of frequency gradients.

The optimality criterion approach does not treat a frequency
as a formal constraint as indicated above, but rather the object is
to obtain minimum weight with maximum stiffness. The optimality
criterion is that difference between the strain energy density and
the kinetic energy density (Lagrangian density) be uniform for all
the elements when the structure is vibrating in its mode of interest.
The resizing formula is the case in equation (3.68) where E. is the
Lagrangian density. The procedure31 for using the resizing formula

is as follows:

1. With an assumed relative design vector (such as
ai 1 2 = a= am = 1.0), the desired normal mode and corresponding
frequency w are determined.P

2. The relative strain energy and kinetic enerqy of each

element in this mode is determined.

3. Each design variable for the next iteration is determined
by substituting the relative energies in equation (3.68).

4. The design vector is normalized with respect to the
largest variable. This normalization eliminates the need for
determining the constant of proportionality, A. (The next section is
concerned with determining this constant.)

5. The procedure is repeated until the optimality criterion
is attained or a prespecified number of iterations have taken place.

Experience with the ADDRESS code has indicated that in the
case of damage with small nonstructural mass, a frequency requirement
is not a meaningful constraint. It is of interest, however, to
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check the frequencies before and after damage. The frequencies of

the optimal structure which is designed for stress, deflection, and

damage tolerance under multiple loads does not have frequencies which

are sensitive to changes in design variables.

If the structure is designed from only a frequency standpoint,

it may be possible that the particular mode being tracked is no
longer the mode with the smallest eigenvalue. For example, a uniform

wing design may have its lowest frequency in the first bending mode.

After several resizings, it may be possible for the first torsion

mode frequency to be below the bending frequency. At this point the

algorithm must shift to computing energies for the displacement

pattern of the torsion mode. Although such conditions were not

noted in the current study, they are of some potential importance.

Eigenvalue solutions (see Reference 32, for example) should contain

a Sturm sequence check in this case. This matter is further

discussed in Section 7.

3.8 DESIGN SCALING

The process for determining the scale factor A in equation

(3.68) is trivial in the case of stress and deflection constraints.

Stresses and deflections are simply inversely proportional to the

member sizes. For constraints on natural frequencies, the situation

is not as simple. This can be seen by observing that when the mass

and stiffness matrices are scaled in the Rayleigh quotient

2 {xi}T iN]{xi}
i = (3.69)

fxi}T[M]{xi}

the frequency will remain unchanged. This problem was noted by

Kuisalaas in Reference 33.

Frequencies can be modified, however, by scaling a portion

of the mass and stiffness matrices. Assume that the global mass

and stiffness matrices have the forms
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m

[M] = [M%] + a ci[Mi] (3.70a)
i=l

m

[K] = [KO] + a ci[Ki] (3.70b)
i=l

where the [M o and [K o matrices correspond to mass and stiffnesses

which remain fixed during the design scaling and optimization process.

The a i 's are a set of relative design variables which are to be

scaled by A to achieve a required natural frequency, wR'

Introduction of the unknown scale factor creates a new

eigenvalue problem with A as the eigenvalue. Rearrangement of

equation (3.69) using equations (3.70) and wi = WR' {xi} = {xR}

gives

A[A]{xR} = [B]{xR} (3.71a)

m 2
where [A] = a oi(WR [MSi - [Ki]) (3.71b)

i=l'

2
and [B] = [Ko] - W [M 0 (3.71c)

The smallest real eigenvalue, A*, of the above problem (if one

exists) will be the design scale factor which places the design

exactly on the constraint boundary, wi - W R = 0.

To demonstrate the above scaling procedure, the optimal

design of a tapered bar with a tip mass was studied. Figure 3.4

shows both a continuous model and a discrete model of the bar.

Reference 34 gives the optimal mass distribution as

M) = M cosh 2 (1L)/cosh 2(0 1 x) (3.72)

2/
where M° is the tip mass, L is the length, a1 = WRP/E, with p

4 0
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being the mass density and E is Young's modulus. The fundamental
frequency, wR' is fixed. The total optimal mass of the continuous
bar is

MT = M sinh (2 1 L) (3.73)

which is the integral of equation (3.72). For illustrative
purposes, the following data: L = 90 in., M = .05 lb.-sec. 2/in.,

2.59 x 10/ b.-sec.2/in. , E = 10.3 x 10 psi, WR - 2578 rad/sec

are used. Use of these values gives MT = .104 lb.-sec. 2/in. The
discrete model of Figure 3.4(b) consists of two axial bar elements
of equal length.

Using the above material properties, constraint curves can
be generated for various choices of the fundamental frequency, WR"
Figure 3.5 shows frequency contours in the M1 - M2 design space

for various choices of the eigenvalue X = PwRP2,/ 6E. The = .056
curve corresponds to the Reference 34 value of wR . For convex
feasible regions such as those indicated by Figure 3.5, the scaling
of the design along a vector from the origin to a feasible point
is a well defined process.

Figure 3.6 shows contours of constant eigenvalues in the
second mode. In this case the optimal design will be controlled
by side constraints on M1 and M2 as well as the eigenvalue
requirement. Thus, trends that are noted for the fundamental mode
may not carry over for higher modes.

The value of the fixed mass, M0 , also strongly affects the
frequency constraint. In Figure 3.7 three values of M were0
selected (.05, .10, and .20) and the contours of A = .056 were
determined. For M0 = .05 the optimal design is M1 = .076,
M2 = .034 and hence MT = .110 which is about six percent higher
than the continuous case. As M0 approaches zero, the optimal
design problem becomes meaningless without side constraints.
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The following design strategy achieves minimum weight for
a given fundamental frequency requirement;

1. Form the characteristic determinant for the system
shown in equation (3.71), treating A as the eigenvalue.

2. Find the smallest positive root A* and the corresponding
eigenvector {XR*}.

3. Compute the weight using A* as the scale factor.

4. Compute the Lagrangian densities, ei, for each element.

5. Resize according to Mi new = Mi old /ieiI

6. Normalize the Mi new design and go to Step 2.

7. Repeat Steps 2 - 5 a specified number of times or until
the weight increases.

The above scaling and resizing procedure tends to equalize
the energy (Lagrangian density) in all the elements and at the
same time brings the design to the required fundamental frequency.
It can be shown that the Lagrangian densities are directly proportional
to the rates of change of the eigenvalues with respect to the element
names. Thus uniform Lagrangian density implies equal sensitivity
to design changes. The energies can sometimes be negative for a
given element. This implies that increasing the element causes
a reduction in the frequency. Note that the element resizing
formula uses the absolute value of the element energies.

In the bar example, the mass and stiffness matrices are
tridiagonal. The Sturm sequence of polynomials

P1 = 1

P2 =c 1
2

P. = c P - b2 P i=2,...,n+l

are generated where the ci's are the diagonal and the bi's are
the upper and lower diagonals. Sign alternations need to be
checked to assure that the smallest eigenvalue is obtained. The
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root is determined by using the golden section minimization
technique35 on the absolute value of the polynomial Pn+l"Reference 32 contains a listing of the eigenroutine. This soft-
ware package also contains a Givens-Householder36 routine to
reduce equations (3.71) to tridiagonal form for more complex
problems which are not tridiagonal. The golden section technique
together with Sturm sequence checks is more efficient than the
usual bisection or secant procedure.

Figure 3.8 shows scaling and resizing steps in design space
for the two element bar. One scaling took the design from point A
to point B which lies on the constraint. An energy resizing
scaling step then brought the design to point C. Figure 3.9 shows
how resizing proceeds from a different starting point. Additional
resizings and scalings from point D tend to create a "zig-zag"
path in which little additional weight is removed.

The above design scaling technique for frequency requirements
needs further testing before it is included in the ADDRESS program.
The results in this section are intended to show that frequency
requirements can be met in a noniterative manner. The combination
of scaling and energy resizing appears to have considerable
promise for frequency constraints.
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SECTION 4

ALGORITHM FOR DAMAGE REQUIREMENTS

In this section the algorithm for the optimal design of

damage tolerant structures is presented. After the overview of

the approach, the organization of the calculations is presented.

This is followed by a discussion of the use of reanalysis procedures

and a description of the computer code which implements the

procedure.

4.1 OVERVIEW OF THE APPROACH

A conventional approach to optimization and damage assess-

ment may proceed along the following steps:

(1) Define the undamaged structure.

(2) Solve the optimized problem -

find {d}

such that W({d}) - minimum

and Gi{d} > 0 i = I,...,Nc

where {d} = design variable vector

W = merit function (weight)

Gi = ith constraint on undamaged structure

N = number of constraints.c

(3) Perform vulnerability analysis of damage configuration using

the {d} determined in (2).

(4) Adjust {d} to obtain satisfactory performance of the damaged

structure.

The last step could involve engineering judgment and the use of

criteria based on experience with similar design problems.

The more general approach taken herein is to include

additional constraints for the damage configuration in the problem

statement as follows:

(1) Define the undamaged and damaged configurations.

(2) Solve the optimization problem -
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find d

such that W(d) -÷ minimum

and Gi(d) > 0 i =c

and gli(d) > 0 i =cl

gmi(d) > 0 i = l,...,Ncm

where gki= ith constraint on the kth damage model

m = number of damage models

Nck = number of constraints on the kth damage model

and d, W, Gi, Nc are as before. The constraint conditions include

requirements on stress, deflection, natural frequency, and limits

on member sizes. As shown in Figure 4.1, this general approach
also includes the possibility for modification to the applied

loads in the damage models.

4.2 ORGANIZATION OF THE CALCULATIONS

Calculations to perform the optimization for damage tolerance

requirements are arranged as given in the flow description below

for a typical design step:

(1) Assemble stiffness (and mass, if required) for the latest

design.

(2) Perform static solutions for all design conditions not

containing damage. Save the factored stiffness matrix for

use in (4).

(3) If required, perform solutions for natural frequencies and

mode shapes of the undamaged structure.

(4) For each design condition containing damage, define the

change in stiffness and solve for the response of the damaged

structures using reanalysis techniques. Find changes in

frequencies and mode shapes of the damaged structures, if

required.
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(5) Compute element forces, stress, etc. of the undamaged and

damaged configurations in preparation for resizing. If an

element is damaged in a certain design condition, generate

null stress vector (or other appropriate responses) for that

conditions

(6) Perform resizing, element by element, using optimality

criteria.

(7) Go to (1) to begin the next redesign cycle, if required.

The above computation scheme integrates damage reanalysis

into the optimization procedure in such a way that the presence of

damage in certain design conditions is transparent to the resizing

segment of the program. Solutions for damage conditions are

returned as additional response vectors, for which noncritical

stress states are to be generated in any damaged elements. Thus,

the optimization can proceed as usual with behavioral constraints

for damaged design conditions treated in an analogous manner as

for additional loading cases in an undamaged structure.

4.3 THE ADDRESS PROGRAM STRUCTURE

The computer program ADDRESS, developed under this project,
was designed from the outset to be easily modified and to
incorporate state of the art numerical methods. The code was

developed in standard ANSI FORTRAN and contains no features which

preclude its portability. The code was written in a structured

form and arranged in modular routines with liberal use made of
internal documentation.

From a conceptual point of view, the overall program control
organization is shown in Figure 4.2. The "Executive Control", a

main program, calls the "Analytic/Optimization Control" which, in

turn, performs the analysis and optimization by calls to the

energy (stress), displacement, and frequency control segments.

The Executive Control is detailed in Figure 4.3. Its primary
functions are to set up the structural model (both original and
damaged) and to control the optimization process.
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EXECUTIVE CONTROL

" INPUT/INITIALIZATION

- ELEMENT STIFFNESS, MASS AND

CHANGE IN STIFFNESS, MASS

MATRIX ASSEMBLY AND

BOUNDARY CONDITIONS

DESIGN STRATEGY (STEP BY STEP

DECISIONS)

-- ANALYSIS/OPTIMIZATION CONTROL

Figure 4.3. ADDRESS Executive Control.
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The design strategy, shown in Figure 4.4, currently consists
of a preselected number of cycles of energy mode resizing, followed
by displacement mode resizing if required. Frequencies are checked
at each step. Stress and deflection scaling takes place to assume
a feasible design after each step.

Details of the energy, displacement, and frequency mode
controls are given in Figures 4.5, 4.6, and 4.7, respectively. The
energy and displacement modes are nearly identical to the strategy
of the OPTSTATCOMP program. The frequency mode control involves
the use of the SIMIT technique for the undamaged structure and the
vibration reanalysis procedure of Section 3.5 herein. Further
details of these procedures are given in the ADDRESS User's
Manual.
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ANALYSIS/

OPTIMIZATION

CONTROL

STRESS (ENERGY MODE)

DISPLACEMENT CONSTRAINT

MODE

FREQUENCY MODE

DESIGN VECTOR AVERAGING

(STEP SIZE MODIFICATION)

Figure 4.4. ADDRESS Analysis/Optimization Control.

57



ENERGY MODE

EQUATION SOLUTION

(UNDAMAGED CASES)

ITERATIVE REANALYSIS
ANALYSIS (DAMAGED CASES)

L"ELEMENT FORCE, STRESS,

ENERGY (ALL CASES)

SCALING FOR STRESS

CONSTRAINT (CRITICAL CASE)

L-- ELEMENT RESIZING

Figure 4.5. ADDRESS Energy Mode Control.
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DISPLACEMENT

MODE

EQUATION SOLUTION

(UNDAMAGED CASES)
"-' ANALYSIS

ITERATIVE REANALYSIS

(DAMAGED CASES)

"DUMMY LOAD CASES

(DAMAGED/UNDAMAGED)

ELEMENT RESIZING

Figure 4.6. ADDRESS Displacement Mode Control.
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FREQUENCY

MODE

DECOMPOSITION

(UNDAMAGED CASE)

- SIMULT. ITERATION

ANALYSIS (UNDAMAGED CASE)

- FREQUENCY/MODE

REANALYS IS

(DAMAGED CASES)

Figure 4.7. ADDRESS Frequency Mode Control.
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SECTION 5

APPLICATIONS OF THE ADDRESS PROGRAM TO
REPRESENTATIVE STRUCTURES

The ADDRESS program was applied to several representative
structures. Analysis, reanalysis, and optimization results are
presented in this section. Comparisons are made with programs
obtained from the Air Force such as DANALYZ (vibration program)
and OPTSTATCOMP (optimization program with composites capability).
The effects of damage on the structural response and the optimal
member sizes are noted. Results are presented for the
following structures:

"* Ten bar truss

"• Simple wing box

"* Intermediate complexity wing (ICW)

A major design and analysis study of the A-7 outer wing panel
was also conducted. These results are given in the next section.

5.1 TRUSS RESULTS

The optimal design of the ten bar truss shown in Figure 5.1
has been studied in detail by a number of investigators (see
Reference 30, for example). Two independent load cases (LCl, LC2)
shown in Figure 5.2 are applied together with the two damage
cases (DC1, DC2) shown in Figure 5.3.

The constraints are that member stresses not exceed 20,000 psi
and that nodal deflections be less than or equal to 2.0 inches.
In the first damage case, 95% of the material is removed from
member 9, and in the second case 95% of the stiffness in members
2, 5, and 6 is removed. The material properties are based on

aluminum.

Six truss designs were studied as shown in Table 5.1. The
first truss design has all the member sizes equal and is the
lowest weight uniform design which satisfies all the constraints
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TABLE 5.1
DESCRIPTION OF TRUSS DESIGNS

Truss Weight
Design Description (ib)

1 Uniform 8267

2 Optimal for LC1 5077

3 Optimal for LC2 4823

4 Optimal for LC1, 2 5455

5 Optimal for LCI, DC1 6866

6 Optimal for LCI, DC1, 2 9581

TABLE 5.2

SUMMARY OF TRUSS RESULTS

6 = Maximum Deflectionmax
NOE = Number of Overstressed Elements

max 
•max

TD LC DC NOE (in) TD LC DC NOE (in)

1 1 1 0 2.5 4 1 1 5 5.6
2 0 2.3 2 0 2.1

2 1 0 2.6 2 1 6 6.2
2 1 2.2 2 4 -9.4

2 1 1 5 10.8 5 1 1 0 2.0
2 1 2.0 2 7 15.2

2 1 6 11.6 2 1 3 -10.4
2 5 -283.5 2 7 14.3

3 1 1 3 8.9 6 1 1 0 1.9
2 0 2.4 2 0 1.7

2 1 5 8.9 2 1 0 2.0
2 4 -7.8 2 1 1.6
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under the first load case. Designs 2, 3, and 4 are optimal for

the load cases indicated without damage to any of the members.

The fifth and sixth designs include the indicated damage conditions

when the structure is loaded under the first condition. As can be

seen from the table, the addition of damage considerations causes

an increase in weight, just as multiple load cases increase the

weight of the optimal design.

Table 5.2 is a summary of load and damage tolerance studies

performed on the six truss designs. The uniform design performs

quite well compared to the optimal designs which do not include

damage tolerance. The designs which are optimal for only one load

case are quite sensitive to changes in loading or addition of

damage. The sixth design, which is optimal for the first load

case and both damage conditions, is also satisfactory under the

second load case when only the first damage is imposed.

The above calculations were performed with the aid of a

small scale computer program which is documented in Appendix E of

the ADDRESS User's Manual. Its primary purpose is to reanalyze

the damaged truss structure using simple iteration. Insight was

gained into the number of iterations required to obtain convergence.

In general, no more than five iterations are required to achieve

stress and displacements within 5% of those obtained from an exact

analysis. This applies to damages of the level used in this

problem. For damages which introduce a kinematic instability in

the truss, the iterations diverge.

5.2 SIMPLE WING BOX

To check the efficiency of the ADDRESS calculations, a

small-scale finite element model of a straight, rectangular wing

box was developed. The model is shown in Figure 5.4 and is

composed of 24 bar, shear panel, and membrane cover elements.

There are a total of 48 unrestrained degrees of freedom in the

model corresponding to the three degrees of freedom at each of the
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sixteen unrestrained nodes. The covers in bay 3 were reduced in

mass by 25% and in stiffness by 50% to simulate a ballistic damage.

The wing was subjected to loads of 10,000 lb. at the four

tip nodes in the negative z-direction. Constraints consisted of

the requirement that no member have stresses in excess of

20,000 psi and that displacements be no greater than 2.0 inches.

The structure is designed for minimum weight such that the stress

and deflection requirements are not exceeded for the original or

the damaged wing box.

Three cycles of energy resizing were employed with scaling

to meet the constraints. The element weights are shown in

Table 5.3. Elements were linked such that top and bottom covers

are of the same thickness, shear panels vary together, and bars

(posts) are all the same. The results show that after one

iteration the weight has reached a near constant value of 307 lb.

Table 5.4 gives comparisons between using a complete

analysis at each step and using the reanalysis techniques

discussed in Section 3. An accuracy requirement of 0.005 on both

the displacements and the mode shapes was required. The table

shows that although the computing times are small, the computing

time is reduced by 75% for the static analysis and by over 50% for

the vibration analysis.

5.3 INTERMEDIATE COMPLEXITY WING

The intermediate complexity wing model of Reference 30 is

shown in Figure 5.5. It contains a total of 158 membrane, bar,

and shear panel elements. To test the convergence of the static

and vibration reanalysis iterations, 25 elements were damaged in

the leading edge tip area as shown in the figure. Two separate

load conditions corresponding to a subsonic, forward center of

pressure load and a supersonic, near uniform pressure loading

were assumed. The maximum deflection occurred at the indicated

deflection control point for the supersonic loading.
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TABLE 5.3

SIMPLE WING BOX WEIGHTS FOR ENERGY AND
DISPLACEMENT RESIZING

Element Connectivity Initial Cycle 1 Cycle 2 Cycle 3
Number Type MA MB MC MD Weight Weight Weight Weight

1 C 1 3 7 5 37.088 8.177 7.537 7.505

2 C 2 4 8 6 8.177 7.537 7.505

3 C 5 7 11 9 30.542 30.935 30.979

4 C 6 8 12 10 30.542 30.935 30.979

5 C 9 11 15 13 37.719 37.493 37.463

6 C 10 12 16 14 37.719 37.493 37.463

7 C 13 15 19 17 50.250 50.634 50.650

8 C 14 16 20 18 50.250 50.634 50.653

9 SP 1 2 6 5 14.835 6.730 6.745 6.745

10 SP 3 4 8 7

11 SP 5 6 10 9

12 SP 7 8 12 11

13 SP 9 10 14 13

14 SP 11 12 16 15

15 SP 13 14 18 17

16 SP 15 16 20 19

17 B 1 2 0 0 .593 .014 .010 .010

18 B 3 4 0 0

19 B 5 6 0 0

20 B 7 8 0 0

21 B 9 10 0 0

22 B 11 12 0 0

23 B 13 14 0 0

24 B 15 16 0 0

Total Weights (all elements) 420.128 307.328 307.238 307.234

C = Cover
SP = Shear Panel

B = Bar
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TABLE 5.4

COMPARISONS OF ANALYSIS AND REANALYSIS
COMPUTER TIMES FOR SIMPLE WING BOX

Computing Time (sec)

Calculation Initial Cycle 1 Cycle 2 Cycle 3 Total

Static Analysis (sec) .31 .30 .30 .29 1.20

Static Reanalysis (sec) .08 .07 .07 .06 .28

Eigen Analysis (sec) .21 .24 .24 .25 .94

Eigen Reanalysis (sec) .11 .10 .10 .09 .40
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Table 5.5 shows the iteration history and compares it to

the "exact" analysis of the damaged structure. Figure 5.6 shows

the error in the tip deflection as a function of computing time.

The computing cost for five iterations is seen to be about

one-half that of the "exact" analysis. At the same time, the tip

deflection determined by the iteration is within 1% of the exact

value. The time savings on larger problems is even greater since

iteration involves only successive forward and back substitutions.

To check the vibration analysis capability, the ICW model
was run using the Air Force's DANALYZ program and compared to the

simultaneous iteration (SIMIT) technique used in ADDRESS. Several
damages were imposed on the wing covers as shown in Figure 5.7.

Table 5.6 summarizes the frequency calculations using DANALYZ and

SIMIT to compute the first four modal frequencies. Good
correlation was obtained in all cases. Mode shapes compared to

three decimal places. Mode shapes appear to be relatively
insensitive to structural damage for this problem (see Figures 5.8

through 5.19).

Table 5.7 gives results of the iteration procedure for the
ICW damage condition of Figure 5.5. The iteration column of
Table 5.7 indicates the number of times which modes and frequencies
have been recomputed using the iteration scheme of Section 3.
It is interesting to note that not all frequencies converge at the

same rate. For mode one and three, one iteration was sufficient to

achieve a high degree of accuracy. Mode two, however, required

three iterations to achieve similar accuracy. The efficiency of

the reanalysis is also quite good. The table shows that computing

time can be reduced by over 50% for this problem.

5.4 COMPARISONS WITH OPTSTATCOMP

The efficiency and accuracy of the ADDRESS program was
compared with that of OPTSTATCOMP for several of the problems in

the previous subsections. In some cases, direct comparisons are
not possible since different minimum sizes or number of resizings
were used.
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TABLE 5.5

CONVERGENCE OF STATIC REANALYSIS FOR ICW
TIP DEFLECTION AT DEFLECTION CONTROL POINT

Iteration Tip Deflection

Number (inches)

undamaged 20.3512

1 21.1567

5 21.6716

10 21.6911

15 21.6916

20 21.6916

exact* 21.7018

"*"Exact" in the sense that a complete analysis
was performed without iteration.
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TABLE 5.7

FREQUENCY REANALYSIS RESULTS FOR ICW

CP Sec. f1 f2 f3Iteration (CYBER 74) (Hz) (Hz) (Hz)

0* - 40.93 132.76 168.63

1 2.42 45.94 132.58 189.03
2 3.58 45.70 131.15 189.80
3 4.74 45.67 130.97 189.59
4 5.90 45.66 130.91 189.56

exact** 12.17 45.66 130.87 189.52

*Frequencies at iteration zero are for the
undamaged wing.

**Exact frequencies and CP times for a complete
eigen analysis of the damaged structure.
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Table 5.8 shows the results for the ten-bar truss example.

The ADDRESS program and the OPTSTATCOMP program were both run

for five cycles of energy resizing. Reference 30 shows that if

more than ten iterations are used, the weight should converge to

about 5062 pounds when minimum sizes of 0.1 square inches are used

for this load case.

Tables 5.9 and 5.10 show the ADDRESS and OPTSTATCOMP results,

respectively, for the metal ICW model discussed earlier. The

stress optimization using both programs yields a final design

weight after five cycles of approximately 193 pounds. The

ADDRESS program seems to produce a slightly lower weight than

OPTSTATCOMP after one cycle. Direct stress allowables are taken

to be 25 ksi in both tension and compression.

A stress and deflection optimization comparison is shown in

Tables 5.11 and 5.12 for the ICW. The first four cycles are

based on energy, and the remaining ones are resizing for the

deflection requirement. In the ADDRESS program, if the weight

more than doubles in the displacement resizing mode, then execution

is terminated and the previous design is taken to be the final one.

The OPTSTATCOMP program continued to resize for five cycles of

displacement calculations, even though the doubling of weight

criterion was met. It then returned to the energy based design of

cycle 5.

A composite ICW Model based on the data of Reference 19 was

also run. Only stress requirements were included. Tables 5.13 and

5.14 show the comparative results. Due to the higher minimum

layer requirement used in ADDRESS (.0053) compared to OPTSTATCOMP

(.005), the weights of the cover elements shown in Table 5.13 are

higher. As with the metal ICW, the composite version was resized

for two load conditions.

Figure 5.20 shows the total number of layers in the top and

bottom covers obtained from the two programs. In Figure 2.21 the

number of layers is broken down into numbers in the 00, 900, ±450

directions. The 00 direction is taken to be the direction of the

center spar.
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TABLE 5.8

COMPARISON OF ADDRESS AND OPTSTATCO04P
TEN-BAR TRUSS DESIGNS

Weight in Pounds

Element ADDRESS OPTSTATCOMP

Number Weight Weight

1 1106.4 1093.2

2 3.6 17.6

3 861.7 884.1

4 530.5 524.8

5 3.6 .4

6 3.6 24.8

7 434.4 466.5

8 1067.0 1049.8

9 1061.1 1049.7

10 5.1 35.2

Total Weight 5077.0 5146.1
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TABLE 5.9

ADDRESS RESULTS FOR METAL ICW WITH STRESS CONSTRAINT*

Weight in Pounds

Element Initial Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5
Type Weight Weight Weight Weight Weight Weight

Covers 328.98 191.33 189.24 182.29 177.66 171.35

Shear Panels 102.44 23.62 23.09 22.54 22.29 21.78

Bars 6.74 .25 .24 .22 .22 .21

Total Weight 438.16 215.20 212.57 205.05 200.17 193.34
(all elements)

TABLE 5.10

OPTSTATCOMP RESULTS FOR METAL ICW WITH STRESS CONSTRAINT*

Weight in Pounds

Element Initial Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5
Type Weight Weight Weight Weight Weight Weight

Covers 328.98 193.98 189.04 182.20 177.61 171.23

Shear Panels 102.44 23.94 23.04 22.51 22.26 21.75

Bars 6.74 .26 .24 .22 .22 .21

Total Weight 438.16 218.18 212.32 204.93 200.09 193.19
(all elements) IIIII_

*Allowables set at 25 ksi.
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TABLE 5.13

ADDRESS RESULTS FOR COMPOSITE ICW
WITH STRESS CONSTRAINT

Element Initial Cycle 1 Cycle 2 Cycle 3 Cycle 4
Type Weight Weight Weight Weight Weight

Covers 124.94 117.13 98.15 93.27 92.89

Shear Panels 70.73 43.42 27.62 27.06 27.38

Bars 4.65 2.75 1.49 1.45 1.47

Total Weight 200.33 163.30 127.26 121.78 121.74
(all elements) ....

Weight in Pounds

TABLE 5.14

OPTSTATCOMP RESULTS FOR COMPOSITE ICW
WITH STRESS CONSTRAINT

Element Initial Cycle 1 Cycle 2 Cycle 3 Cycle 4
Type Weight Weight Weight Weight Weight

Covers 124.94 86.03 76.03 71.24 71.24

Shear Panels 70.73 33.80 28.42 27.10 27.59

Bars 4.65 2.02 1.53 1.43 1.47

Total Weight 200.33 121.85 105.98 99.77 100.30
(all elements) I I I

Weight in Pounds
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NOTE: Top figures are from
ADDRESS: bottom 119)

.figures ( ) are from
OPTS TATCOMP.

One OPTSTATCOMP layer / 9)
= .005 in. 20 /20/

One ADDRESS layer (19) >0
= .0053 in. 20

//

29)

I ($5)

/ (60) / (94

,Z) 3. ,

(I 39)

Figure 5.20. Total Number of Layers in the Top Skin of
Composite ICW.

95



NOTE: Top figures are from --Y 0 l, 4

ADDRESS; bottom
figures ( ) are from
OPTSTATCOMP.

One OPTSTATCOMP layer
= .005 in.

One ADDRESS layer 1- y ",
- .0053 in. %

'-I I0

v \8,156

S/ ',•38,,1,56

Figure 5.2., DitrbtinofFiesn0 0,±5

o , o

Directions in the Top Skin of Composite ICW.
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Table 5.15 summarizes the execution times for the two programs
on the problems just discussed. One major reason for the faster
ADDRESS time is in the coding of the decomposition of the stiffness
matrix. Subroutine GAUSS Was replaced with subroutine LLT which
has the DO-loops reorganized. This section of code in ADDRESS
now runs about four times as fast as the OPTSTATCOMP code. If
reanalysis had been used in these examples, the running times
would have been improved even more.
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TABLE 5.15

EXECUTION TIMES FOR OPTSTATCOMP AND ADDRESS

Execution Times - CYBER 175
Problem

OPSTATCOMP ADDRESS

TEN BAR TRUSS 0.9 0.5
Stress and Displacement
Optimization

METAL WING 38.9 23.8
Stress Optimization

METAL WING 53.5 28.7
Stress and Displacement
Optimization

COMPOSITE WING 76.9 51.7
Stress Optimization
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SECTION 6

DESIGN STUDIES FOR A-7D OUTER WING PANEL

To demonstrate the ADDRESS computer program, a major task
of this work was to perform a design vulnerability and optimization
study on an existing aircraft lifting surface component. This
section describes the UDRI and Vought Corporation efforts to
model, resize, and further refine the design of an A-7D outer wing
panel. Both metal and composite models are considered.

The work described in this section involved several distinct
subtasks. Vought, acting as a subcontractor to the UDRI,
participated as a consultant in the selection of the A7D outer wing
panel as the candidate structure for redesign. During the analysis
task Vought supplied UDRI with geometry, loads, material properties,

and ballistic damage requirements. The UDRI then set up the finite
element model and performed optimization studies using ADDRESS.
Member sizes were then supplied to Vought and additional design

criteria were applied. The final designs were checked again
using the ADDRESS program to obtain final weights and to check the
stress levels. A test plan and design drawings were generated by
Vought for fabrication and testing purposes. These items are
documented as a separate contract item.

6.1 FINITE ELEMENT MODELING OF THE A-7D OUTER WING PANEL

The A-7 aircraft is an attack fighter designed for carrier-
based operations. Figure 6.1 shows the overall aircraft arrange-
ment. The portion of the wing structure which was modeled in this

study is shaded in the figure.

Figure 6.2 shows the A-7 wing structure in some detail. The
portion of the wing inboard of the hinge line is all metal. The

outer wing panel can be replaced and is of metal or composite
construction. Further structural detail of the outer panel is
shown in Figure 6.3. It is this general arrangement of Figure 6.3
which formed the basis of the finite element model.
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The A7 wing structure was tested originally for the static

loads described in Table 6.1. A review of these design loads
determined that the condition LAD-i produces the highest skin

stresses and was therefore included as a load case. The second
loading used was the RPO-2A condition which is primarily a torsion

loading.

Figures 6.4 and 6.5 show the shear, moment, and torque

diagrams for the LAD-i and the RPO-2A load cases, respectively.
These distributions apply to the entire wing from the fuselage to

the tip. Only the portions of the curves outboard of the wing
fold line (y = 142 in.) were used to generate the discrete loads.

An overview of the UDRI finite element model is shown in

Figure 6.6. The seven-spar arrangement was used in both the metal
and composite design studies. The model contains 113 nodes and

453 finite elements. Nodes 104 through 113 are fully restrained

to simulate a fixed condition at the wing hinge line. The nodes
numbered in the figure apply to the top surface with the missing

numbers applying to the lower surface. The wing tip tapers to a
line of nodes 1 through 7, and hence there are no corresponding

lower surfaces at span station 93.

Two damage zones are also indicated in Figure 6.6. Damage
zone number one consists of the eight covers (upper and lower)

shaded near the tip. The second damage zone is near the root and
consists of four covers. Two other cases were also considered for

several computer runs. In one of these, rib and spar elements were

also damaged as well as the indicated covers. The final damage

case consisted of reducing the stiffness of all the covers from
root to tip between the third and fifth spar from the leading edge.
In all damage cases, 75% of the element thickness was removed to
simulate the effect of ballistic damage to the zone.

Table 6.2 shows the nodal coordinates and the three components

of the applied loads for both load cases. The point loads were
iteratively determined in such a way as to match as closely as
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* 113 Nodes (104 through 113 are fully 29.73"

restrained)

* 309 Degrees of freedom '
• 1-94 Membrane covers 1 2 3 A 3 0, 7

* 95-142 Shear panels (ribs) / IN\
* 143-194 Shear panels (spars)

* 195-296 Bars (rib caps)

* 297-400 Bars (spar caps) 22

* 401-453 Bars (posts)

34

Covers Damaged 
93.37

46

1606

1062
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TABLE 6.2

NODAL AND APPLIED LOAD DATA FOR A-7D OUTER WING PANEL

Node X Y Z
No. in in in F- LCI Fx -LC2 Fy -LC F -LC2 F -LC1 F LC2

1 74.80 92.70 0.00 0.00 0.00 0.00 0.00 17.83 15.26

2 80.89 93.23 0.00 19.77 16.92

3 84.04 93.31 0.00 21.13 18.08

4 87.19 93.39 0.00 22.29 19.08

5 89.61 93.37 0.00 23.07 19.74

6 92.02 93.34 0.00 20.54 17.58

7 104.53 92.99 0.00 
16.47 14.10

8 72.00 89.51 0.43 160.47 158.48

9 72.23 89.34 -1.76 160.47 158.48

10 78.07 89.35 1.39 178.12 175.89

11 78.07 89.35 -1.39 178.12 175.89

12 81.54 89.35 1.46 190.47 182.85

13 81.54 89.35 -1.46 190.47 182.85

14 85.00 89.35 1.54 202.83 200.30

15 85.00 89.35 -1.54 202.83 200.30

16 87.71 89.34 1.55 195.77 193.3.

17 87.71 89.34 -1.55 195.77 193.32

18 90.42 89.33 1.56 218.71 215.99

19 90.42 89.33 -1.56 218.71 215.99

20 102.97 89.30 1.13 259.30 256.06

21 102.97 89.30 -1.13 259.30 256.06

22 63.26 78.64 .60 528.12 474.33

23 63.52 78.44 -1.95 528.12 474.33

24 67.78 75.18 1.61 475.12 421.24

25 67.78 75.18 -1.62 475.12 421.24

26 71.73 72.67 1.75 427.43 373.45

27 71.73 73.67 -1.75 427.43 373.45

28 75.67. 72.16 1.88 474.44 320.35

29 75.67 72.16 -1.88 474.44 320.35

30 79.09 70.80 1.88 342.64 288.49

31 79.09 70.80 -1.88 342.64 288.49

32 82.50 69.44 1.87 300.25 246.02

33 82.50 69.44 -1.87 300.25 246.02

34 92.84 65.30 1.31 178.37 123.89

35 92.84 65.30 -1.31 178.37 123.89

36 49.71 61.79 .74 265.72 775.63

37 49.99 61.56 -2.33 265.72 775.63

38 53.91 56.10 1.94 362.88 667.49

39 53.91 56.10 -1.96 362.88 667.49

40 59.27 53.96 2.12 468.13 571.16

41 59.27 53.96 -2.13 468.13 571.16

42 64.63 51.81 2.29 565.29 473.01

43 64.63 51.81 -2.29 565.29 473.01

44 69.31 49.94 2.23 638.15 399.40

45 69.31 49.94 -2.24 638.15 399.40

46 73.99 48.07 2.18 727.21 309.44

47 73.99 48.07 -2.18 727.21 309.44

48 83.92 44.10 1.58 889.14 109.86
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TABLE 6.2 (Continued)

Node
No. in in in F - LC1 F - LC2 F - LCI F - LC2 F - LC1 F - LC2

_____x x ¥ z z
49 83.92 44.10 -1.58 0.00 0.00 0.00 0.00 889.14 109.86
50 29.80 37.04 .95 -201.38 1213.24
51 30.19 36.75 -2.88 -201.38 1213.24
52 36.27 31.83 2.37 149.15 1038.66
53 36.27 31.83 -2.38 149.15 1038.66
54 42.63 27.41 2.61 499.67 864.09
55 42.63 27.41 -2.62 499.67 864.09
56 48.98 22.98 2.86 850.20 689.51

57 48.98 22.98 -2.86 850.20 689.51
58 55.47 20.43 2.72 1135.00 547.67
59 55.47 20.43 -2.72 1135.00 547.67
60 61.96 17.87 2.57 1463.62 384.00

61 61.96 17.87 -2.57 1463.62 384.00
62 71.25 14.16 1.97 1857.96 187.61
63 71.25 14.16 -1.97 1857.96 187.61
64 0.Oc 0.00 1.22 -126.60 1(8.95
65 .56 -. 37 -3.84 -126.60 268.95
66 17.85 6.48 2.82 -25.14 214.19
67 17.85 6.48 -2.83 -25.14 214.19
68 28.98 6.48 3.00 63.65 166.23
69 28.98 6.48 -3.05 63.65 166.23
70 40.11 6.48 3.19 143.97 122.93
71 40.11 6.48 -3.26 143.97 122.93
72 48.76 6.48 2.96 207.38 88.70
73 48.76 6.48 -2.99 207.38 88.70
74 57.40 6.48 2.72 270.80 54.47

75 57.40 6.48 -2.72 270.80 54.47
76 66.29 2.33 2.33 346.89 13.40

77 66.29 2.39 -2.33 346.89 13.40
78 13.12 -. 02 2.67 -29.36 216.48
79 13.12 -. 02 -2.91 -29.36 216.48

80 16.54 2.60 2.84 -16.68 209.98
81 16.54 ,2.60 -2.80 -16.68 209.98
82 27.86 2.46 3.07 59.42 168.56
83 27.86 2.46 -3.04 59.42 168.56
84 39.18 2.32 3.29 152.43 118.36
85 39.18 2.32 -3.27 152.43 118.36
86 47.01 2.32 3.00 207.38 88.70
87 47.01 2.32 -3.04 207.38 88.70
88 54.83 2.32 2.71 266.57 56.76
89 54.83 2.32 -2.80 266.57 56.76
90 16.54 .58 2.87 -8.22 205.07
91 16.54 .58 -2.84 -8.22 205.07
92 27.86 .58 3.08 76.33 159.43
93 27.86 .58 -3.05 76.33 159.43
94 39.18 .58 3.29 160.88 113.80

95 39.18 .58 -3.27 160.88 113.80
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TABLE 6.2 (Continued)

Node z
No. in in in F - LC] F - LC2 F - LCL F - LC2 F - LCI F - LC2I Ix x y y z z

96 46.23 .58 3.03 0.00 0.00 0.00 0.00 211.61 86.42

97 46.23 .58 -2.98 211.61 86.42

98 53.27 .58 2.77 262.34 59.04

99 53.27 .58 -2.68 262.34 59.04

100 59.37 .47 2.62 304.62 36.22

101 59.37 .47 -2.62 304.62 36.22

102 65.45 .39 2.36 346.89 13.40

103 65.45 .39 -2.36 346.89 13.40

104 16.54 -1.12 2.70 0.00 0.00

105 16.54 -1.12 -2.68

106 27.86 -1.12 2.99

107 27.86 -1.12 -2.98

108 39.18 -1.12 3.28

109 39.18 -1.12 -3.27

110 45.45 -1.12 3.00

111 45.45 -1.12 -2.98

112 51.71 -1.12 2.72

113 51.71 -1.12 -2.70

FX, Fy, Fz loads are in pounds.

LCI = Load Case 1
LC2 = Load Case 2
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possible the shear, moment, and torque diagrams. The cumulative

effect of the loads at the root matches the load diagram exactly;

however, due to the skewed pattern of the nodes, the load data

in the midsection of the wing matches only to within ±10%.

Figures 6.7 through 6.10 provide further details of the
model. The wing taper and tip modeling discussed above can be

clearly seen in Figure 6.7. Figure 6.8 shows the cover numbering

scheme. The rib and spar panel numbers are shown in Figures 6.9

and 6.10, respectively.

6.2 MATERIAL PROPERTIES AND DAMAGE CASES

Material properties for the metal A7D outer panel were based

on typical 7075-T6 aluminum:

E = Young's modulus = 10.3 x 106 psi

v = Poisson's ratio = .33

p = Mass density = .1 lbf/in3

G = Shear modulus = 3.9 x 10 6 psi

with the following stress allowables:

aTU = Allowable stress in tension = 72 ksi

UCY = Allowable stress in compression = 63 ksi

aCR = Allowable stress in shear = 43 ksi.

The composite design was based on 5208/T-300 graphite/epoxy tape

with a layup consisting of 50% (00 plies), 40% (±450 plies), and

10% (90* plies):

E1 = 12.2 x 106 psi
E2 = 4.5 x 106 psi

v =.4

p = .057 lbf/in3

G =2.7 x 106 psi

with the following stress allowables:

aTUI = 102.0 ksi

UTU2 = 15.0 ksi
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acyI = 45.6 ksi

OCY2 = 45.6 ksi

T = 30.5 ksi

where the 1 and 2 subscripts denote properties in the longitudinal

and transverse directions, respectively.

It was found that significant factors in the optimal design

were the selection of the allowable skin stress level and the

maneuver load factors after damage. The allowable stresses in

tension for the skin after damage were computed in terms of the

allowable, aTU' of the undamaged structure from the expression

OU = 6 (N IN *)a (6.1)

TU d z' z)0TU

where 6d is a damage reduction factor based on impact fracture ord 37

residual strength considerations. In developing the specific

criteria, References 38 and 39 were used extensively.

For the metal design, the a* for the cover elements was

computed by equation (6.1) using 6 = 16, Nz = 7, and N* = 3.

Two sets of allowables were used for the composite designs. The

nominal set was

0* = 21.4 ksi
Tul
a*U2 = 3.2 ksi0 CyI = 45.6 ksi

a*y2 = 45.6 ksi

T*R = 30.5 ksi
CR

A second set or "reduced" set consisted of

01* = 11.3 ksi
TUl

o•2 = 4.3 ksi
GTyI = 45.6 ksi
0GY2 = 45.6 ksi

TR= 27.0 ksi

CR

Details of the selection of these values and their relationship to

ballistic damage are given in Reference 37.

118



Table 6.3 lists the damage cases studied. Cases 1, 2, 3, and

8 are for the metal wing. In Case 1 the wing was sized for stress

constraints considering two applied loads, and no ballistic damage.

Case 2 included damage to the two cover areas indicated in

Figure 6.6. In Case 3 the ribs and spars were also damaged. The

last metal design, Case 8, allowed for damage to all cover elements

from the root to the tip between the third and fifth spar.

Cases 4 through 7 represent studies for the composite panel

design. Case 4 included no damage, Case 5 included the cover

damage of Case 2, Case 6 was the same as Case 5 but used the above
"reduced" allowables, and Case 7 included the same damage as Case 3.

6.3 DESIGN RESULTS

The ADDRESS computer program was used to resize the metal and

composite A7D panels. Table 6.4 summarizes the weights for the

eight cases discussed in the previous section. Three cycles of

energy resizing were used and the weights computed after each cycle.

It is noted in Table 4 that the initial weights are not the same

in all cases. This is due to the fact that the designs were

uniformly scaled to reach the stress allowables for the various

cases.

Figures 6.11, 6.12, and 6.13 give an indication for the

Case 2 metal design how the material was redistributed among the

covers, spars, and ribs. The various levels of shading correspond

to the indicated range of the member sizes.

Figure 6.14 summarizes the Case 5 composite design of the

covers. Ribs and spar element sizes were very similar to the metal

design.

Using criteria for local failure set forth in Reference 37,

the Case 2 and Case 5 optimal designs were further modified. The

values of the member sizes so obtained are given in Table 6.5.

The weights shown in Table 6.6 summarize the "idealized" (ADDRESS)

and "design" (Reference 37) weights. The first set of idealized
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TABLE 6.3

A7D OPTIMIZATION CASE DESCRIPTIONS

Case Description

1 Metal, no damage

2 Metal, 2 damages (covers only)

3 Metal, 2 damages (all elements)

4 Composite, no damage

5 Composite, 2 damages (covers only)

6 Case 5 with reduced allowables

7 Case 6, 2 damages (all elements)

8 Metal, 1 damage in second and
third bay from root to tip
(covers only)
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TABLE 6.4

A-7D CASE WEIGHTS FOR ENERGY RESIZINGS

Case Elements Initial Cycle 1 Cycle 2 Cycle 3
Weight Weight Weight Weight

1 C 325.1 88.3 73.4 69.7
SP 181.5 36.7 28.0 25.9
B 92.9 19.3 15.4 14.6
Total 599.5 144.3 116.8 110.2

2 C 350.1 114.9 94.1 82.7
SP 195.5 46.5 33.6 28.9
B 100.1 25.5 20.5 19.1
Total 645.7 186.9 148.2 130.7

3 C 361.1 125.2 107.3 99.2
SP 201.6 50.8 38.0 33.9
B 103.2 27.2 21.6 20.0
Total 665.9 203.2 166.9 153.1

4 C 254.6 60.6 53.6 52.7
SP 248.4 31.8 24.9 23.7
B 127.2 17.2 13.4 11.8
Total 630.2 109.6 91.9 88.2

5 C 277.4 84.3 75.1 70.9
SP 270.7 43.2 31.2 27.8
B 138.6 24.3 18.6 16.0
Total 686.7 151.8 124.9 114.7

6 C 529.2 152.3 138.7 131.7
SP 516.4 74.2 52.3 46.9
B 264.4 40.0 29.9 25.3
Total 1310.0 266.5 220.9 203.9

7 C 546.7 165.6 155.6 151.8
SP 533.5 81.4 59.2 54.3
B 273.2 42.6 30.9 25.2
Total 1353.4 289.6 245.7 231.3

8 C 350.4 111.4 92.5 82.4
SP 195.6 44.5 32.7 28.4
B 100.2 24.6 20.4 19.1
Total 646.2 180.5 145.6 129.9

C = Covers
SP = Shear Panels

B = Bars
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TABLE 6.5

FINAL DESIGNS FOR METAL AND COMPOSITE A-7D
OUTER WING PANEL

Element Metal Composite Element Metal Composite
No. Type Design Design No. Type Design Design

1 4 .432 .530 47 4 .069 .110
2 .343 .435 48 .080 .125
3 .052 .065 49 .040 .060
4 .051 .060 50 .054 .085
5 .052 .065 51 .247 .263
6 .051 .060 52 .304 .259
7 .052 .065 53 .253 .280
8 .051 .060 54 .301 .268
9 .052 .065 55 .269 .299

10 .051 .060 56 .319 .279
11 .121 .170 57 .272 .315
12 .121 .170 58 .346 .284
13 .036 .040 59 .124 .180
14 .036 .040 60 .141 .205
15 .059 .068 61 .039 .055
16 .055 .060 62 .036 .050
17 .059 .068 63 .096 .170
18 .055 .060 64 .096 .170
19 .059 .068 65 .138 .220
20 .054 .060 66 .127 .200
21 .059 .068 67 .284 .420
22 .054 .060 68 .273 .400
23 .036 .040 69 .340 .510
24 .036 .040 70 .365 .545
25 .045 .070 71 .309 .455
26 .036 .060 72 .327 .475
27 .076 .103 73 .167 .205
28 .059 .080 74 .073 .130
29 .080 .098 75 .090 .170
30 .059 .080 76 .099 .180
31 .078 .098 77 .157 .250
32 .059 .080 78 .145 .225
33 .078 .098 79 .274 .390
34 .059 .080 80 .286 .420
35 .036 .040 81 .554 .825
36 .036 .050 82 .531 .785
37 .072 .105 83 .504 .745
38 .082 .125 84 .563 .830
39 .134 .049 85 .036 .050
40 .097 .143 86 .036 .050
41 .134 .157 87 .134 .225
42 .097 .145 88 .117 .215
43 .132 .157 89 .173 .270
44 .096 .145 90 .163 .255
45 .130 .159 91 .227 .335
46 .094 .147 92 9 .220 .325
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TABLE 6.5 (Continued)

Element Metal Composite Element Metal Composite
No. Type Design Design No. Type Design Design
93 4 .886 1.335 141 5 .036 .035
94 4 .912 1.375 142 .036 .035
95 5 .098 .082 143 .801 .722
96 .040 .040 144 .063 .063
97 .040 .040 145 .063 .063
98 .040 .040 146 .063 .063
99 .040 .040 147 .063 .063

100 .036 .035 148 .063 .063
101 .042 .039 149 .043 .041
102 .050 .050 150 .049 .047
103 .050 .050 151 .063 .063
104 .050 .050 152 .063 .063
105 .050 .050 153 .063 .063
106 .036 .035 154 .063 .063
107 .036 .035 155 .063 .063
108 .063 .063 156 .036 .035
109 .063 .063 157 .036 .035
110 .063 .063 158 .063 .063
111 .063 .063 159 .063 .063
112 .036 .035 160 .063 .063
113 .074 .074 161 .063 .063
114 .090 .090 162 .063 .063
115 .090 .090 163 .036 .035
116 .090 .090 164 .072 .061
117 .090 .090 165 .080 .080
118 .112 .112 166 .080 .080
119 .036 .035 167 .080 .080
120 .100 .100 168 .080 .080
121 .100 .100 169 .080 .080
122 .100 .100 170 .075 .063
123 .100 .100 171 .037 .035
124 .036 .035 172 .125 .125
125 .036 .035 173 .125 .125
126 .036 .035 174 .125 .125
127 .036 .035 175 .125 .125
128 .036 .035 176 .125 .125
129 .036 .035 177 .060 .054
130 .036 .035 178 .041 .035
131 .036 .035 179 .055 .035
132 .036 .035 180 .077 .062
133 .036 .035 181 .137 .054
134 .036 .035 182 .055 .077
135 .036 .035 183 .092 .123
136 .036 .035 184 .134 .127
137 .036 .035 185 .169 .162
138 .055 .048 186 .174 .167
139 .039 .035 187 .227 .210
140 .036 .035 188 __ .312 .292
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TABLE 6.5 (Continued)

Element Metal Composite Element Metal Composite
No. Type Design Design No. Type Design Design

189 5 .338 .314 305 2 .036 .035
190 .223 .228 306 .036 .035
191 .338 .346 307 .060 .060
192 .347 .352 308 .060 .059
193 .036 .035 309 .036 .035
194 1 .063 .055 310 .036 .035
195 2 .036 .035 311 .036 .035
196 .036 .035 312 .036 .035
197 .036 .035 313 .036 .035
198 .036 .035 314 .036 .035
199 .036 .035 315 .036 .035
200 .036 .035 316 .036 .035
201 .036 .035 317 .036 .035
202 .046 .040 318 .036 .035
203 .036 .035 319 .036 .035

320 .036 .035
i 321 .036 .035

322 .036 .035
274 .036 .035 323 .036 .035
275 .060 .067 324 .036 .035
276 .036 .035 325 .036 .035
277 .036 .035 326 .043 .035
278 .026 .035 327 .041 .035
279 .036 .035 328 .036 .035
280 .036 .035 329 .039 .035
281 .036 .035 330 .036 .035
282 .036 .035 331 .037 .035
283 .036 .035 332 .036 .035
284 .036 .035 333 .036 .035
285 .036 .035 334 .036 .035
286 .036 .035 335 .036 .035
287 .036 .035 336 .036 .035
288 .036 .035 337 .036 .035
289 .036 .035 338 .036 .035
290 .036 .035 339 .036 .035
291 .036 .035 340 .107 .073
292 .036 .035 341 .096 .068
293 .036 .035 342 .063 .044
294 .036 .035 343 .099 .068
295 .036 .035 344 .083 .057
296 .036 .035 345 .115 .080
297 .734 .659 346 .109 .076
298 .422 .386 347 .102 .073
299 .036 .035 348 .103 .074
300 .036 .035 349 .096 .072
301 .036 .035 350 .104 .077
302 .036 .035 351 .045 .035
303 .036 .035 352 .059 .040
304 .036 .035 353 1 .036 .035
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TABLE 6.5 (Continued)

Element Metal Composite Element Metal Composite
No. Type Design Design No. Type Design Design

354 2 .036 .035 405 2 .036 .035
355 .066 .047 406 .036 .035
356 .045 .035 407 .036 .035
357 .189 .145 408 .036 .035
358 .167 .129 409 .036 .035
359 .686 .555 410 .036 .035
360 .654 .529 411 .036 .035
361 .460 .338 412 .036 .035
362 .470 .344 413 .036 .035
363 .195 .133 414 .036 .035
364 .212 .144 415 .036 .035
365 .036 .035 416 .036 .035
366 .036 .035 417 .036 .035
367 .054 .050 418 .036 .035
368 .073 .066 419 .036 .035
369 .042 .047 420 .036 .035
370 .057 .059 421 .036 .035
371 .050 .053 422 .036 .035
372 .094 .098 423 .036 .035
373 .124 .106 424 .036 .035
374 .118 .097 425 .036 .035
375 .121 .106 426 .036 .035
376 .084 .075 427 .036 .035
377 .068 .063 428 .036 .035
378 .052 .048 429 .036 .035
379 .176 .127 430 .045 .040
380 .159 .114 431 .036 .035
381 .148 .118 432 .036 .035
382 .154 .126 433 .036 .035
383 .237 .190 434 .036 .035
384 .217 .172 435 .036 .035
385 .397 .284 437 .036 .035
386 .358 .251 438 .036 .035
387 .281 .194 439 .036 .035
388 .378 .277 440 .127 .130
389 .149 .099 441 .205 .212
390 .125 .077 442 .036 .035
391 .298 .199 443 .036 .035
392 .313 .207 444 .036 .035
393 .473 .337 445 .142 .145
394 .527 .375 446 .248 .253
395 1.206 .969 447 .036 .035
396 1.279 1.016 448 .036 .035
397 .036 .035 449 .036 .035
398 .036 .035 450 .036 .035
399 .036 .035 451 .036 .035
400 .036 .035 452 .036 .035
401 .036 .035 453 .036 .035
402 .036 .035
403 .036 .035
404 .036 .035
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TABLE 6.6

A7D WEIGHT SUMMARY

Metal Composite
Case Wingbox Wingbox

Idealized Weight 116.9 lbs 88.2 lbs
(static criteria but with
no ballistic damage)

Idealized Weight 130.7 lbs 114.7 lbs
(UDRI results)

Final Design Weight 160.6 lbs 123.3 lbs
(Vought results)
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weights represents the undamaged structure which is sized according
to static stress requirements. The second set of idealized weights

represents the structure sized according to ballistic damage

criteria (only covers damaged). The idealized weights are based
solely upon the ADDRESS program output for the undamaged and damaged
wingboxes. The design weights reflect a mix of UDRI output and
Vought baseline wingbox data as reflected on the design drawings.

The design weights for the metal and the composite wingboxes
increased due to the method by which the structure was sized. The

method used made an element-by-element comparison of Vought input
data with ADDRESS output. The larger of the two values was then
used in the design. This method assured that the wingboxes would
meet all static, fatigue and fracture requirements as well as the

ballistic damage requirements. The design weight for the metal

wingbox increased more than the composite design for the following

reason. In sizing the metal wingbox, a comparison was made to the
baseline A-7D outer wing. The skins of the baseline wingbox were
thicker in some regions than the ADDRESS output and the Vought
input (from a NASTRAN model). The metal skins were sized according

to this information to assure that the wingbox met all static, fatigue
and fracture requirements. A comparison of the computer runs for the
metal wingbox shows that the majority of the increase from 130.7 lbs.
to 160.55 lbs. was due to the increase in skin weights.

1
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SECTION 7

COMMENTS AND CONCLUSIONS

An analytical procedure has been developed and demonstrated

which provides optimal design information for lifting surfaces

subjected to strength, stiffness, and damage requirements. The

optimality criterion approach provides a framework in which effi-

cient reanalysis techniques can be used to handle the multiple

requirements. An examination of the optimal design which includes

the effect of damage shows that the ADDRESS program provides alter-

nate load paths around damaged structural members.

Execution times have been reduced by 33% to 50% compared to

similar computer runs using 0PSTATC0MP or DANALYZ. The ADDRESS

program because of its modularity provides a framework within

which new program features can be easily added.

Computer output has been used by an airframe company (Vought

Corporation) to establish viable designs for given damage con-

ditions. Even with a fairly coarse finite element model, useful

information can be obtained which assists the designer in arriving

at lower weight, damage tolerant designs.

One disadvantage of the method appears to be that resulting

designs obtained from ADDRESS have locally increased member sizes

near the damage zone. Some type of redistribution technique is

needed to compensate for this problem. One approach is to run the

ADDRESS program for a wide variety of damage conditions and then

take as the candidate design the envelope of the maximum member

sizes so obtained. Another approach would be to impose a low level

damage to every member and then optimize for this single uniform

damage condition.

In general a more organized approach is needed for the selec-

tion of the most critical damage conditions. The capability is

available within ADDRESS to treat this problem in a limited manner.

It is possible to damage any individual element and determine by

reanalysis the response of the structure. The most critical

elements or groupings of elements could thus be identified and

appropriate optimization runs then performed. The ADDRESS program
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is currently limited in the number of damage cases it can handle
and would need some modifications to be used in the above manner.

The problem also exists that it is difficult to convert a
given ballistic damage condition into a single mass or stiffness
reduction factor for the ADDRESS program. The bar, shear panel,
and membrane structural model has limitations in representing com-
plicated ballistic damage effects. On the other hand it is
probable that far from the local damage, the member sizing is
independent of the details of the damage. Further studies on a
component level would be needed to establish a sound basis for the
selection of reduction factors to be applied to the bar, shear
panel, and membrane model. Mathematical programming techniques
applied at the component level in a separate analysis and optimi-

zation program could provide useful input the the less sophi-
sticated overall model which is resized by optimality criteria.

Further work is also needed to quantify the effects of bal-
listic damage on the applied loads. From an aerodynamic point of
view, this load redefinition could be quite complex due to non-
uniform airflow through or near the ballistic damage.

Other constraints need to be considered in the damage optimi-
zation problem. A constraint on the ratio of bending to torsional
frequencies for a high aspect ratio wing could be quite important
from an aeroelastic stability standpoint. Constraints on diver-
gence and flutter speeds need to be considered together with the
strength requirements.
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