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Abstract

Filtering and smoothing within a convex and closed family of stationary processes

is considered. The perfromance criterion adopted is the mean square error. Using

a saddle point game approach, we develop two classes of lower bounds for this error.

Those bounds can be used as evaluation measures in the design of robust filters and

smoothers.
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1. Introduction

The filtering and smoothing problems have enjoyed attention for a large number

of years. The bulk of the work concentrates around the parametric model [2]. The

assumption there is that the measures which generate the data and noise processes

are well known. Also, the term filtering usually refers to the extraction of

information data from noisy observations, while the term smoothing usually refers

to the removal of outliers strictly from information data. Unfortunately, the two

terms have been used sometimes inter-changeably in the literature. Finally, within

the framework of the parametric model, the bulk of the work has focused on linear

filters and smoothers, due to the mathematical tractability of the problem then.

The last seven years considerable attention has been given to the robust

filtering and smoothing problems. The assumption there is that either the process

that generates the information data, or the noise process, or both are statistically

ccntaminated. That is, the stochastic measures that generate the processes are

only members of a whole class of measures, rather than being well known. Tukey [3]

introduced a variety of empirical robust smoothers, among which the "L-smoothers"

(smoothers based on moving order statistics) prevail. Velleman [91 studied

numerically the performance of the L-smoothers, for information processes consisting

of a pure sinusoidal and additive noise with various outliers. Another class of

robust smoothers is based on robustified splines, where the basic reference on this

approach is provided by Huber [1]. The smoothers in [1], [3), and [9] are mostly

valuable in exploratory data analysis, where conclusions on nonobvious structural

properties of the information process are sought. On the other hand, Martin con-

sidered smoothers whose objective is either the generation of outlier-free time

series for fitting autoregressive-moving-average models [5], [61, or the estimation

of spectral density functions [14]. Then, in contrast to the methods in [1], [3]

and [9], more detailed knowledge on the statistical behavior of the smoothers is



20

needed. The smoothers proposed in [1], [3], [9]. [5], [6], and [14] are in general

nonlinear. A nice review on these smoothers, as well as an additional class of such

smoothers and interpolators is provided by Martin [7]. Using the terms smoothing

and filtering in their usual context (as explained in the beginning of the introduc-

tion), we can refer to studies on the asymptotic robust behavior of some linear

smoothers and filters. Stuck [8] studied the minimum error dispersion in linear

filtering, within the class of symmetric stable processes. Hosoya [13] considered

predictive linear smoothing within the convex class of processes that is modeled

by linear contamination of a well known nominal process. He formalized the problem

as a saddle point game in the frequency domain, and found the saddle point solution

in terms of spectral densities. For some work on robustification of Wiener filtering

see [16].

Despite the work on robust smoothing and filtering mentionLed above, a general

theory concerning the problem is still lacking. This lack makes the comparison of

* different smoothing and filtering schemes virtually impossible. A first effort

towards that direction, for nonlinear smoothers, is provided by Mallows [15], and

it is further carried on by Martin [7]. Mallows' work, however, is directed towards

the ana.ysis of robust smoothers rather than addressing the issue of how to design

such smoothers. The design issue for both smoothing and filtering is perhaps better

addressed if the qualitative aspects of robustness are first carefully considered.

Indeed, through the appropriate selection of performance measures, the theory of

qualitative robustness provides sufficient conditions that can be used as design

guidelines. For the class of memoryless processes, these sufficient conditions

were provided by Hampel and they can be found in [1]. For the class of stationary

processes with memory, the formalization of qualitative robustness and the sub-

sequent sufficient conditions can be found in [10]. A first qualitative formaliza-

tion of the filtering problem is presented in [12]. There, the approach u3ed in

[10] in conjuction with results from [Ii] are used and further extended, to provide

4
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sufficient conditions for robust filtering. As in robust parameter estimation, the

res~ults in [12] declare that linear filtering or smoothing may be highly nonrobust.

* On the other hand, an appropriate selection of a memoryless nonlinearity followed

by a linear filter may be robust. (Such a selection is presented in [12] for

3 filtering in additive, Gaussian, and memoryless noise). Therefore, Hosoya's

approach [13] may be nonrobust for some class of processes, if some nonlinear trans-

formation of these processes does not preceed the linear filtering. That is, for

U small deviations within the class of the processes, (the measure rather than the

spectrum) unreasonably large performance deviations may appear. In addition, as

compared to the performance of a linear filter or smoother, the performance induced

by an appropriate nonlinear such selection may be superior for all processes in the

considered class. Indeed, given a well known process, the matched linear filter

or smoother is, in general, the worst in terms of performance.

In the present document, we consider the filtering problem in a generalized

fashion. Specifically, we consider the problem of extracting the data generated by

a stationary information process with memory, from noisy observations, in general.

Wie include the case of no noise in our general formalization; thus we include the

smoothing problem. We assume that the information and noise processes (the latter

* may be absent) are jointly stationary, and we adopt the mean square performance

criterion. We assume that the noise process (if present) is well known, and we

allow the information process to vary within a prespecified convex and closed family

of stationary prccesses. We consider the class of filters or smoothers that consist

of a stationary (in general nonlinear) operation on observation data within a sliding

windorw of fixed and finite length, followed by a linear transformation. We first

show that for every fixed nonlinear operation, there exists a saddle game formali-

zation and a unique saddle point solution. Then, we develop two classes of lower

bounds on the saddle point error induced by every choice of the nonlinear operation.

We use the saddle point error induced by the class of linear filters or smoothers
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* as an upper bound to the saddle point error induced by all possible nonlinear

operations. The saddle point error performance of any given nonlinear operation

is then evaluated against the developed lower bounds and the above upper bound.

2. The Model-Notation

Let [p,R,X] denote a stationary process, with measure V, name X, and R the

real line representing, in general, the alphabet of the process. Let [R,V,R]

represent a stationary channel with input and output alphabets represented, in

general, by the real line. Given V and V as above, we denote by [VV-1,R,Z] the

stationary process induced by the stationary process [li,R,X] and the stationary

channel [R,v,Rj. In the filtering and smoothing problems, [I,R,X] represents the

information process whose data sequences must be extracted. The channel [R,V,R]

* represents the transmission or observation noise and in the smoothing problem it

is deterministic. The process [PV-IR,Z] represents the observation process in

both the filtering and smoothing problems. Any filter or smoother operates then on

data sequences generated by the process [pIV ,R,Z]. We will denote by Xi, Z. the

random variables representing the ith datum from the information and observation

processes respectively. We will denote by xi , zi specific values of the random

variables X., Z. respectively. We will also denote:

1 1

x! = {xi s x _ j i
zi = 1zi , zi~ , .. };j

We assume that the measure p and the measures induced by the stationary channel

[R,1,R] are absolutely continuous. Then, we denote by f ,v(z -i) the (j-i)-dimensional

density function induced by the process [pV- ,R,Z] at the point z. in the (j-i)-1

I
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dimensional Euclidean space. We will use the symbol E for expected value. Then,

2 will denote the expected value of X 0 at the measure V, and E wi l
0. 0 1V I OZ

denote the conditional expectation of the random variable X0 conditioned on the

observation sequence Z , as induced by the process [V,R,X] and the channel [R,V,R].

*For convenience in notation, we will denote:

= vj (~)( E 11V XOki = zi(2)

Let us consider a sliding block window of length Z, operating on observation

sequences. Let k denote the number of sliding steps per shift of the sliding block

window, where 1 < k < Z. If k = 1, there is an one datum sliding per unique shift

of the sliding window. If k = Z, each unique shift of the sliding window corresponds

to a shift by a whole Z-size data block. This last case corresponds to a block,

rather than sliding block operation. For given k and Z, we will denote:

8(k) (z = E X0I ik t (3)
Ij P I Zik+l-/ = z

where z denotes a given value of an Z-dimensional data vector.

We will also denote then:

B T (k)ij (z t) = [O~k) (z)..... ? k)V(Z tI(4)

4 ; where the expression in [4] symbolizes a row vector, and T means transpose.

As we already mentioned, the stationary channel [R,v,R] may be deterministic.

Then, there is no observation noise and the data extraction problem becomes the

smoothing problem. Thus, in our general formalization, with the inclusion of the

channel [R,v,R], both the filtering and smoothing problems are included. Also, our
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model includes the filtering problem for a process embedded in additive noise,

with the noise and information processes being mutually independent.

In general, our objective is the design of an appropriate smoother or filter.

We will consider the existence of an, in general, sliding block window on the

observation sequences..., Z_I, Z0 , Zl, . ... . We will denote by t the size of the

window, and by k the number of data steps per single window sliding; where I < k < L.

We will denote by g. some stationary operation on 1-size data blocks. Then, we will

consider filters and smoothers of the following form:

-ik
G {a.} (z) a i gZ (zik+l-Z) ; 1< k < I (5)

i

; where z denotes an infinite sequence ...,z_lz 0,zl,..., and {a i is a set of

constant coefficients.

The filter and smoother form in (5) clearly represents a cascade operation of

an, in general, nonlinear operation (represented by gt) and a linear filter or

smoother (represented by {a.1). If i t ' and g. is allowed to move within the

total class of all possible operations, the cascade operation in (5) clearly

represents the totality of possible operations on the observation data. If I i,

and g, any operation per single datum, the operation in (5) includes linear filters

and smoothers. Therefore, the cascade operation in (5) represents (for varying

k,li,gl, and {a,}) all possible filters and smoothers, with both sliding-block and

block operational characteristics.

As mentioned before, the objective of the smoother or the filter is the

extraction of the data from the information process [p,R,X]. Due to the stationarity

of the model, we will assume without lack in generality that the operation

Gg/,k,{a}(z) in (5) corresponds to a mapping of the datum X0 from the process

[P,R,XJ. Then, adopting the mean square performance criterion, we will use the
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* following notation for the resulting mean square error:

) (6)

jj

For t + the parameters k and {a.} become absolute. Then, we will denote the

error in (6) as e(p,V, g.).

We will denote by F(k~ge) the class of filters or smoothers described by (5)

for given ge, Z, and k. This class is then generated by variations of the set

q! {ai}. We will denote by F(k,/) the class that is described by (5) for given k and

t. The class F(k,Z) is generated by variations of both ge and {a.}. We will denote

by F the class described by (5) for t " . This last class clearly includes all

possible filters and smoothers, and also:

F(k,ge) C F(k,1)C F ; V
(7)

F(k,t).F(k,r.m) ; V ; V m > ;V k

Let F(L) denote the class F(l,g1) for g(x) = x. Then, due to the relation-

ships in (7), we have:

F(L) C F(I,I)D F(k,/) ; Vk:l < k < Z; V ? > 1 (8)

Therefore, for the error expression in (6) we have:

inf e(P., k~g/,{ai}) > inf e(ji,',,l,gl,{a i}) >_

G k{a} F F(L) G k{a } c F(l,I)

> inf e(j, v,k,g/,{ai}) = inf e(pv, g(,) ; V t

G g,k,(.ai} c F Gg00 F ;V k: 1 < k < t

(9)

Thus, we can express the following proposition:

_________________________
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Proposition 1

KFor every given P and V, the class F(L) of linear filters and smoothers
represents a worst case. Specifically, the infimum of the mean square error in

(6) within this class is, in general, larger than the parallel infimum within

the class F(I,l). The global infimum is achieved within the class F.

Proposition 1 expresses formally what we stated informally in the introduct:

That the class of linear filters and smoothers can be used to represent an upper

bound on the mean square error.

In the present document, we are interested in robust smoothing and filtering.

We thus consider a family M of measures p, rather than a well-known measure 0"

For convenience in notation, we will assume that the noise channel [R,V,R] is well

known. In our general derivations, however, this assumption is not necessary. The

only assumption we need there is just the consideration of a convex and closed

family of joint measures.

Given a well-known noise measure V (that may be deterministic) and a convex

and closed family M of information processes II, we will model robustness as a

saddle point game, and we will search for saddle point solutions. We will

initially ignore the qualitative aspects of robustness, since we are basically

searching for performance lower bounds within the classes hl and F. We will come
4

back to qualitative robustness later.

We conclude this section by noticing that all the sets F(L), F(k,gg), F(k,z),

and F in (7) are convex, and by stating the general formalization for a saddle

point game. Given two sets M and S, given a payoff function K(U,X); where PCM and

XES, the game on MxS with payoff K(J,X) has a saddle point solution if and only if

there exists a pair (P*,X*) C MxS such that:

4
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4

The saddle point solution is unique if and only if the pair (p*,X*) that satisfies

(10) is unique. The quantity K(p*,X*) is called the saddle value of the game.

3. The Game for Fixed Nonlinearity

p Let g, be a fixed, well-known stationary and deterministic operation. Lett

be known and finite. Then, let us consider the convex class F(k,ge) of filters and

smoothers, where F(k,g ) is defined in the previous section and k is assumed fixed

I and known. Let the noise channel [R,\),R] be well known, and let M be a convex and

closed family of information processes P. We will search for a saddle point game

* formalization and solution on MxF(k,g.), using as the payoff function the error

4I e(PV,k,g,,{ai}) in (6). We will first consider finite sequences Z of observation
i

data, and then asymptotically long such sequences.

(m-n-l) k
Let the smoother or filter operate on the limited length sequency Z-nk+l-e

of observation data. Then, the smoother or filter take the form:

m-n-i
G {a.} " z(m-n-l)k = ai g ik(z E (ak,_ g. M > I1ii

ti= -n

Define:

T ik
( = [gz(zik+l_ - n < i < m-n-] (12)

R(iJV~gt) E )v (Z) V(Z)' (13)
gV g

where the expression in (12) denotes a row vector. Then, it is straightforward

* to obtain the following result:

:4
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jnf e(1j~v,,k,,g,{a11) =E - E X -9 11'Vg)E V (z)

Ggk,{a} F(k,gt) IJV 0 Iv 0 gt 11,V 0 9Z

(14)

Z(m-n-l) k
where Z denotes the sequence r-nk+l-

The infimum in (14) is actually realized for:

{a*} : A Vg R (1,v,ge) E , V  X0 Vg/(Z) (15)

where A* denotes the column vector of the appropriate coefficients

{a. ; - n < i < m-n-li.

Let us consider the game on MxF(k,g/) with the payoff function e(V,V,k,gt,

{a. ; - n < i < m-n-li). We will show that the game has a saddle point solution.

We will do that in two steps.

Let us denote:

e(,iv,k,g ) = inf e(p,vk,g,{ai}) (16)

Ggk{a} F(k,gZ)

As the first step in the proof for the solution of the game, we present the

following lemma:

Lemma 1

The error e(1j,vk,gt) in (16) is concave in M. Therefore, there exists some

'* in M such that:

e(j*j V,k,g/) = sup e(p,v,k,gt)wJ M

The proof of lemma I is in appendix A.

The measure p* that satisfies the supremum in lemma 1 may not be unique. It is

unique, however, within a class M of measures that induces distinct expectations
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We express now the second step in the proof for the existence of a solution

I .to the game, in the following theorem.

Theorem 1

Let us consider the game on MxF(k,g/) with the payoff function e(]I,v,k, -V

{a. ; - n < i < m-n-l}). The game has a saddle point solution. That is, there

exists a pair (p*{a*)) in MxF(k,g/) such that:

VPEA e(ji,V,k,g ,a} < e(p*,v,k,gy,{a } < e(P*,V,k,gt,{a,})

V {a i }  F(k,gt)

The pair (p*,{a }) is such that:

e(1 ,v,k,gt,{a }) = e(P*i,Vk,g/) = sup e(l,V,k,g/)
i *

la I = A*

where A is given by (15).

According to the theorem, to find a folution of the game, it is sufficient

to first express the infimum in (16) for every V in M, and to then find the supremum

of the resulting expression, with respect to P in M. The proof of the theorem is

in appendix A, and a unique solution exists if uniqueness in lemma 1 is satisfied.

We will now consider the asymptotic case, where the observation sequences used

in the smoothing or filtering extend to the infinite past and the infinite future.

That is, we will in general consider noncausal filters and smoothers. This is done

for convenience here. Some causal filters of predictive nature and belonging to

the general class F(l,gl) have been considered in [121.
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Let the filter or smoother be allowed the following asymptotic form:

C O ik

Gk{ (Z) = a i gt(zlk~l_) (17)
gt i=-=o

Then, define:

H(w) ak e- j k w  (18)

GO

S (w) = e-jmw E , g (70-) g* (Zmk (19)
PIO99. 1 Li 1i-L ti Mk+l -i

where E , i t ik+l_/i gl (K iZ) = f(i-m), due to the stationarity of p,,V,

and the operation gt' and where * means conjugate.

Also, define:

CO

(w) e -jmw E (k) (zi) (Z (20)= e EJ ,V mPV I(0
~m = _CO

;where Z denotes some 1-dimensional vector of consequtive data from the observation
(k) Li1

process, and S (Q,(z ) the conditional expectation defined in (3).

The expressions in (18), (19), and (20) clearly signify Fourier transforms,

where H(w) is the asymptotic representation of the set {a I of coefficients. Sub-

stituting the error expression e(p,V,k,gt,{ai}) in (6) by e(pv,k,g,,H) in this

case, we easily find that the Fourier transform H (w) corresponding to the
, t

vector A in (15) is given by the following expression.

SPV, g/ (w)
H (w) S (21)

I'V 'gl SV,gl ( w )
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Also, the infimum e(U,V,k,gt) in (16) takes now the following form.

2 1 f
e(-,,k,gt)  E E1 X0 -I S2 (w) dw (22)

ISince the length of the observation sequences used by the filter or smoother
was never used in the proof of theorem 1, we can express a theorem parallel to it

for the asymptotic case.

Theorem 2

The game on MxF(k,g/) with the payoff function e(p, ,k,g ,H) has a saddleIt

point solution. That is, there exists a pair (p H in MxF(k,g/) such that:

VPM ; e(v,v,k,gZ,H*) < e( * ,k,g,,H*) < e(lp v,k,g,,H); V H c F(kg/)

The pair (p*H*) is such that

e(ji*,v,k,g/) = sup e(P,V,k,g/)
hEM

H*(w) = H** (w)
P'V'gl

; where e(p,v,k,g/) and H (w) are given by (22) and (21) respectively.

4

In this section, we showed that if in the cascade-type filter or smoother in

(5) we fix the operation gt' we can formulate a saddle point game in MxF(k,gp)

whose solution exists. Furthermore, this solution corresponds to mean-square

error minimization in the worst case. It does not necessarily guarantee perfor-

mance continuity within the class M. For such continuity the sufficient conditions

of the qualitative robustness [10,11,12] should be satisfied. That can be accomplished

through the appropriate selection of the operation gZ, and it may also require that
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only a subset of the set F(k,gt) be considered in the filter or smoother selection.

An example of the above can be found in [121.

4. The Unrestricted Game

In this section, we will consider the case where the filter or smoother is

described by (5) for Z ~ That is, the class F of section 2 is adopted. We will

search for a game formalization and solution on MxF; where M a convex and closed

family of measures V. As in section 2, we will use the symbol g. to signify filters

and smoothers in F. We will use the symbol g, even in the case where the filter or

smoother operates on observation sequences of finite length.

Let the filter or smoother operate on the observation sequence Zj. The, we
i

will denote as in (2):

PIVI(ij() E = V Z zj$ (23)

Given some measure p in M it is then well known that:

inf e(p,v,g.) = e(P,Vct ) = E X - E P, 
geF , (ij) P 0 PV,(i,j)

" , where e(p,v,g.) the mean square error in (6) for t -

Using the payoff function e(j1,V,g,), we are searching for a saddle point solution

on MxF. As in section 3, we proceed in two steps. The first step is represented

by the following lemma.

Lemma 2

The error e(P,V,a ) in (24) is concave in M. It is strictly concave

iff for any two pl,IJ2 in M the conditional expectations a vl,(i.j)(zJ-i) and

4,(l) in (23) are not equal almost everywhere on Rj - i .

29E(ij
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The proof of lemma 2 is in appendix B.

We now show the existence of a saddle point solution of the game on MxF with

payoff function e(V,v,g.), with a theorem.

Theorem 3

Consider the game on MxF with payoff function e(p,v,g.). The game has a

saddle point solution. That is, there exists a pair (P *,g) on MxF such that:

vpcM ; e(p,v,g*) < e(i ,v,g*) < e(p*,V,g) ; c e F

where e(p,v,g.) is given by (6) with £ .

The pair (p ,g) is such that:

P e(p*, g.) = sup e(pjV'c)PEM 1, (i'j))

0D= a
p ,v, (ij)

If there are no 1lP2 in M such that a (z - ) anda (z )
1 1 ,v,(ij) P2,v, (ij)

are equal almost everywhere on Ri, the pair (* ,g.) is also unique.

The proof of the theorem is in appendix B. Since in the proof, the dimen-

sionality (j-i) is no where used, the statement holds also asymptotically.

According to the theorem, to find the solution of the game, it is sufficient to

find the minimum mean square error in F for each measure p, and to then find the

supremum of the result on M.

It is clear that since F(k,g?)CF ; Vk,£,g , the error e(p,V,k,ge) in (16)

is, in general, bounded from below by the error e(p,,a V,(ij )) in (24) for

fixed Z and for every k,e,g., and V' in Md. Therefore, the supremum of e(P,V,k,gy)

on M is also then bounded fijm below by the supremum of e(,p,v,PV(ilj)) on M.

Thus, we can express the following corollary.
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Corollary 1

Given a convex and closed class M of measures 11, given the sequence ZJof
i

observations on which the filter or smoother operates, the saddle value

e(p ,v'ct* of the unrestricted game in theorem 3 bounds from below the

saddle value eQz ,V,k,ge) of the restricted game in theorem 1, for every kje, and

g* Choice. Thus, e(p ,v'c * V~ii ) acts as a global lower bound on the saddle

value performance of all the filtering and smoothing schemes.

We will conclude this section with the presentation of the solution of the game

in theorem 3, for two important classes M of information processes. We present the

results in two lemmaas, and we include the proof of the first lemma in appendix B.

Lemma 3

Let the noise channel [R,V,R] be either determainistic, or Gaussian, stationary,

and additive. If the latter is true, let also the process V be independent of any

information process. Let M be the convex and closed family of stationary processes

with equal means and spectral densities. Then, the solution of the game in theorem

3 is provided by the Gaussian process p * and the corresponding linear filter or

smoother az This is true for any dimensionality (j-i) of the filter or

smoother.

We observe that the saddle point solution of the game in theorem 3, within

the class of measures with equal spectral densities, is satisfied by the maximum

entropy measure within the class. The relationship between worst error and highest

entropy seems natural. In qualitative terms, a high entropy process is less pre-

dictable. Thus, any effort for the extraction of its data should result in higher

error.
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In the proof of lemma 3, in appendix B, we denoted by eL(pv) the infimum of

the error in (6), on the class F(L) of linear smoothers and filters, and at the

• .measure p. The quantity e.,,(,V) is a function of the p and V spectral densities

only, if both the measures p and V have zero mean and are mutually independent.

Let us consider a convex and closed family S of spectral densities, and !.et us

assume that eL(VI,v) is strictly concave with respect to the spectral density of

the measure p. This is in general true for the channel model in lemma 3 (see ref.

[131). Let us consider the convex and closed family M of measures p, such that

each V is zero mean, stationary, and has spectral density in S. Let us denote by

f the spectral density of the measure 'p. Then, there exists a unique spectral

density f* in S, such that:

eL (f*,f)= sup e L(f , f) (25)

; where f is the spectral density of the measure V, and we have represented

eL (u,1v) by eL(f , f ) instead.

It is now clear from the approach used in the proof of lemma 3, that we can

express the following lemma.

Lemma 4

Let the channel [R,V,RI and its relationship to any information process be

as in lemma 3. Let S be a convex and closed family of spectral densities, and

let the error eL(f , f V) be strictly concave on S sith respect to f . Let M be

the convex and closed family of stationary, zero mean processes, with spectral

densities in S. Let the measure V be zero mean. Then, the solution of the game

in theorem 3 is provided b. this Gaussian measure 1* whose spectral density f *

satisfies:

eL(f *,f = sup e L(f , f )P V f ES
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From lemma 4, it is clear that if the unrestricted family F of smoothers anC

filters is considered, the solution of a saddle point game within a convex and

-_ closed family of spectral densities is only an intermediate step towards the

solution of the larger game. Due to the relationships in (8), the above statement

holds even if F is substituted by F(k,t).

" 5. The Game in F(kt)

To this point, we have analyzed two extreme cases. In sectiin 3, we fixed

the parameters k and Z as well as the nonlinearity gy and we analyzed the game in

* the class F(k,gz) of smoothers and filters in (5). In section 4, we analyzed the

unrestricted game in the global class F of filters and smoothers. Here, we will

consider an intermediate case. Specifically, we will assume that the length t and

* the sliding step k of the sliding block window in (5) are fixed, and that the non-

* linearity g. and the set {a.l of coefficients may vary. Thus, we consider the1

class F(k,t) of smoothers and filters. In this case, we can not always formulate

a game in the strict sense. Our approach is somewhat different than the previous

approaches, and we first present the gist of it.

Let us denote by N1 the class of all possible operations gt. For some V and

gt, consider the infimum e(p,v,k,g/) in (16). For every p, we will find some

operation gt, in N and some nonnegative function h(p,,k,ge,,), such that:

4
0 < h(qVp,k,g/,) ; 6 N P1  (26)

We will show that h(1,V,k,g, ) is concave in v; thus if M is some convex and

closed family of measures p, there exists some i in M, such that:

h(P,V,k,g/,e) < h(p ,v,k,g/, *) ; V pe M (27)

If the pair (P *,g/, ) that satisfies (27) happens to be such that:
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h(p*,V,k,gtV*) = e(ii ,,k,gtV,) (28)

then it is clear from theorem 1, expression (27), lemma 1, and expression (16),

that the pair (p * t P*) is also the solution of the game on F(k,g ,*)xM with

payoff function e(PV,k,gV *,{a ). That is, the pair (1*,gt,*) satisfies then

the following saddle game expression:

VPCM ;e(U,V,k, gt,p,,A V < e(p*,V,k,g e,P*) < e(P*, ,k,gt,{ai});

;V(g/,{ai}) e F(k,t) (29)

where A * is given by (15).

However, the equality in (28) may not be satisfied in general. Then, the

quantity h( ,,g,, in (27) will provide just a lower bound on the saddle

value e(JI v,k,gt, *) of the game in (29).

We will now proceed with the search for the operation gl,, in Ne and the study

of the quantit., h(PV,kgt,) We will first consider finite sequences Z of

observation data, and then asymptotically long such sequences.

As in section 3, let the smoother or filter operate on the limited length

sequence Z(m-n-l)k of observation data. Then, the form of the smoother or filter

is as in (11). Let 8. (z ) and B (z ) be as in (3) and (4) respectively.•~1 I,, 8, ,(k),Ii, j

Let us define:

M i_ (, M i E ) = E , ,,(k),n,m n l(Zik+l _ B1, I(k),-n,m-n-1(zjk

(30)

where Mij(,JV) = Mi j(p,v) due to the stationaiity assumed, * means conjugate, and

T means transpose.
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Clearly, the matrices M (jI,V) in (30) are square, and nonnegative definite.
i-j

Consider the mat:ix MO(J,V) and define:

AM (PV) : it minimizes with respect to the vector A the error expression

0

E n ,X- - ( Z  (31)2 A2

h(PV,k,gV) =E PX 0 - 0  0

Lemma 5

Let p~ be given, and let e(1i,v,k,gt) be the infimum in (16).

Let

•' P gl, (Z l)  0 V()) ,-n,m-n-l (Z

Then,

0 < h(PV,k,gl' ) < e(v,v,k,g) ; V gZ e NZ

; where h(1,v,k,gt,,) is given by (32)

The proof of the lemma is in appendix C. The result in it corresponds to

expression (26) in the gist of the approach. We observe that g,(z l ) is a linear

combination of conditional expectations of the type given by (3). We now proceed

with the next step in our approach, by stating another lemma whose proof can be

found in appendix C.

Lemma 6

The error h(P,v,k,gt,,) in (32) is strictly concave in p, on some convex and

closed family M of measures p. Therefore, there exists a unique V* in M such that:

h(p ,v,k,gt,,*) > h( ,V,k,gt, ) ; V VcM
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We now summarize parts of our discussion in this section in conjuction with

some straightforward observations, in a corollary.
r

A • Corollary 2

Given a convex and closed class M of measures p, given the sequence ZJ of

observation data on which the filter or smoother operates, the supremum h(p* ,k, g,p,)

in lemma 6 bounds from below the saddle value e( ,v,k,gt) of the restricted game

in theorem 1, fox fixed k,t, and all gZ choices. Furthermore, the lower bound

represented by h(p ,v,k,gt,,*) is in general tighter than the lower bound given by

the saddle value e(p*, ,, * ij)) of the unrestricted game in theorem 3 and

corollary 1, for filters or smoothers in the class F(k,t). The two bounds approach

each other as Z increases, becoming asymptotically identical.

Let us now consider the asymptotic case, where the observation sequences used

in the smoothing or filtering extend to infinite past and infinite future. Then,

we will use the notation and the procedure used in section 3. Let us define the

following Fourier transforms:

S (X,X) e x:~ jnX-jmx M (Z Z a ( (Z)t (33)

m--0 n=-O

e- jnX Ep , Sn~p(Z 2 (34)

Then, the asumptotic coefficients {ai} of the vector AMo(V,v) are given by

the following expression:

,- iH(w) S , ,(w,X) dw (35)
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The error h(p,v,k,gt,,) in lemma 6 takes then the following form:

] 2 17 ()d

h(V,k,g V ) = EV X0 2 H( S (dw (36)

where H(w) the Fourier transform of the filter {an} given by (35).

As in section 3, the properties of h(p,V,k, gt,,), expressed by lemmas 5 and 6,

* are also valid in the asymptotic case. Thus, if M is a concave and closed class of

measures p, the sup h(p,,k,g, exists, it is unique, it is realized by some V

* in M, and is such that:

• = sup h(p,v,k,gt )
P.EA

Also, the conclusions in corollary 2 are still valid in the asymptotic case.

We will conclude this section with the consideration of the special classes

of information processes that were studied in lemmas 3 and 4, in section 4. We

will express our conclusions in a lemma whose proof is in appendix C.

Lemma 7

Let the noise channel [R,v,R] be either deterministic, or Gaussian, stationary,

additive, and with measure independent of the measure of the information process.

Let M be either one of the following two convex and closed families of stationary

processes:

1. M is the class of processes with identical means and spectral densities.

2. M is the class of processes with identical means and with spectral

densities lying within a convex and closed family S of spectra.

For both the above families M, the measure p in lemma 6 is the Gaussian

measure, with spectral density uniquely determined for the class in 2.
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Comparing the result in lemma 7 with the results in lemmas 3 and 4, we see

that for both the considered families M, the two lower bounds represented by

theorem 3 and lemma 6 are evaluated at the Gaussian measure. Furthermore, the

first bound is exactly equal to the mean square error induced by the Gaussian

measure on F. Then, the properties of qualitative robustness [10], [111, [12] are

in general violated if the filters or smoothers that correspond to the above lower

bounds are selected. This is so, because boundness and asymptotic continuity (as

in 110]) are not in general satisfied then.

6. The Asymptotic Lower Bounds for A Class M

In this section we will evaluate the lower bounds of theorem 3 and lemma 6,

for the first class M of information process in lemma 7, and for the same noise

channel specifications as in the lemma. We will consider the asymptotic case, and

for the bound in lemma 6 we will assume arbitrary sliding step k, and finite

arbitrary length Li of the sliding block window. We will assume zero mean informa-

tion and noise processes.

Let us denote by f (w) and f (w) the spectral densities of the noise and each

information process v in Mi, respectively. Let us also denote:

Ri(m) = E 'L- X mkl- (37)
Vl-LI mk+1-ie

i T mk (38)
RV v(m)E I-Li mk+l-i

The exprvssion in (37) is not p-dependent within the class M . Considering

the asymptotic case with infinite past and future, and due to lemma 3, we have a

well known expression for the lower bound in theorem 3. Indeed, if V1* is the

Gaussian measure within the class M1, this lower bound is given by the following

expression:



24
.4

e(Ii ,v,g) sup e(P,V, C i f (w) dw 1 d (3w9)JIEA ' 'II = 27r -1 2r_ f (w) +f V(w)dw(9

IIC.

We now proceed with the evaluation of the lower bound in lemma 7, for the class

.I  From the proof of lemma 7, in appendix C, we have:

(k) (Z) E X0Tmk [R,(O) + nk(0))-1 z ; V PM (40)

(k) .
where in M , , (z ) is not 1-dependent.

*(k) dAlso, for the Gaussian measure ' , we have for (z defined by (3):

(k) z) _(k), z)
* ( V Y, r ; V m (41)

Using expressions (40) and (41), we have then:

E Y (k) Z *(k) l- E * ()*,(Z )  *(k) Z
E ,v yn,vv(Z ) E ,,I n,, ( * (z)

d ix {XT xn [R (0) + R,)01( lE- E41 X0 mk+_/ (42)

Let {ri(pi)} be the autocovariance coefficients determined by the spectral

density fl (w), within the class M1 . Those coefficients are -independent within

the class M We then obtain:

C00
j e j n x e r( ..) e - j nx rnl) (43)
nE n0 nkl1'"

n = -  n=- oo) n=-b5

But after some manipulations, we obtain:

Co k-l x+2Tri

e-jnx rk( )= e k f ( ) 0 < M <m-1 (44)

n=-oo i=O
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Substituting expression (44) in expression (43), we also obtain:

Sk- i x+2ri _ x+2mTi
f-j n x ET = f|1- l,...,e ke

n=-OC i= 0

(45)

We now substitute expressions (45) and (42) in expression (33), to obtain in a

straightforward manner:

k-i k-i

qS~*(Xx fL 11 fx+2Tti) f(jX+2Trn)

i=O n=O

x+27Ti x+2i (Z-I)

[l,...,e ,...,e k ][R (O) + RV(0)] •

A +2 Trn +2_n ( - )
"k kT

-[ ,...,e k ..... ,e ] (46)

For arbitrary finite t and some k such that 1 < k < Z, the lower bound in lemma

6 will be given in this case by the expression:

2g -2 fP(w)dw - (2Q 2ff H(x) S ,,, (X,x) H*(X) dx dX (47)

where S ,,,(X,x) is given by (46), and H(x) is the solution of (35) with
P V,a

S ) determined by o(k) , , (k) (z t(mp9z ) = Ym,p,v(z ).

It is easy to see that for k = t = 1 the bound h(J ,V,l,gl,,*) is the minimum
error Ev IX0 - , a.Z. 12 with respect to the filter {ai}. Therefore,

I19 =-M 1 I

h('o" ,V,l,gl,,) is then identical to the global lower bound e(p*,'v,g*) in (59).

This was expected since both bounds are realized at the Gaussian measure p , and

for this measure the error minimization on F(l,l) is identical to the error

minimization on F and F(L).
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As in lemma 7, the bound h(PVkge*) in (47) is a strictly concave function

of f (w), for all k and Z. Therefore, if the class U in lemma 7 is considered
<2

rather than the class M, there will be a unique spectral density fP, which will

maximize the bound h(VI* within the convex and closed family S of

- spectral densities. This maximun value will be the lower bound of lemma 7 in M2P

then. Similar argument holds for the global lower bound e(ji ,g.)of (39), in M

7. Conclusions

Given some convex and closed family M of information processes, we developed

qtwo classes of lower bounds on the performance of filters and smoothers in M. The

mean square performance criterion was adopted. The developed bounds are functions

of conditional expectations of the type expressed by (3). Thus, they are, in

general, functions of high order statistics in 1. In other words, these bounds are,

in general, tightly associated with the family M, in measure rather than in spectral

characteristics only. So, if the class IM is, for example, described by the linear

contamination of a nominal measure, and if the Gaussian measure is not included in

M, then the developed lower bounds will be nonlinear. Therefore, the adoption of

linear filtering (as in [13]) will, in general, result in inferior performance

across M then.
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Appendix A

Proof of Lemma 1
2

In the expression of e(1J,V,k,gt) in (14), the term E 2 i linear with, ~~ X0 iSlnerwh

respect to p. Thus, we must only show that the expression

K(ij,,g/) = E X0 VT (Z) R-I( ,v,g.) E X0 V (Z) (A.1)

is convex in M.

Let p 1 M and p2 C M. Then, since M is convex and closed, for any E : 0 < c < 1

we also have [Ei + (1-s)V 2] M.

To simplify the notation, let us denote:

=E 1  ~X0 V (z) i =1,2
1 i (A.2)

R= .,R( Vpgt) ; i = 1,2

Then, it is clear that:

E EPI+(IE)P2, {X0 Vg/(Z) = E El + (1-) E2
(A.3)

R(Ep +(I-)p ",V,g) = E R + (l-E) R2

Substituting (A.3) in (A.1), we find:

K(F 1 + (1-E) P2 9v,g/) = [s E1 + (1-C) E2
]T [E R + (1-0 R 2] -l [ E1 + (1-C) E2]

(A.4)

For convexity, we want to prove that:

2 K(S ji + (1-c) 12'vge) > 0 (A.5)
£=0
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We will need the following known equation:

W M- 1 W - MWx k- (x) (A.6)IC. ax (x) = - (x) x

; where M(x) a nonsingular square matrix, and x a scalar variable appearing in the

components of the matrix M(x).

Differentiating the expression (A.4) twice with respect to C, and through the

application of expression (A.6), we find after some manipulations:

a 2 - ]T R-1
- K(E P + (1-C) = 0 2[E l - R, R2

1 E21 R2
1 [El - R1 R2' E21 (A.7)

The expression (A.7) is clearly nonnegative since R2 is a nonnegative definite
2

matrix (correlation matrix). Thus, (A.5) is satisfied and the proof is complete.

Proof of Theorem 1

Due to lemma 1, there exists some P in M that satisfies the supremum

Su e(pVk . Even if p1* is not unique, for every 6 : 0 < C < 1 and every

vcM we have that [(1-) p* + c p] 6 M. This is due to the convexity and closeness

of the set M. Also, even when there are more than one measures in M that satisfy

the supremum sup e(PV,k,gt), there exists among them at least one p*, such that:

e((l-O)1* + E <,,k,gt) < 0 ; V PEM (A.8)

Due to (16), and using the expression in (14), we easily obtain:

Se(l-c)l* + C iV,k,gel) = 0 e(P* ,V,k,g.) + e(I,V,k,gt,{a }) (A.9)

where {a} A ** and A* given by (15).

From (A.8) and (A.9) we conclude then:

There exists some p * in M4 that satisfies the supremum in lemma I and
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is such that:

e(1i,v,)k~g,{a*}) < e(WV ,v,k,gt,{a}j) ;V PEM
wi

The part

e( *,v,k,gt,{a}) < e(P ,v,k,ge,{a }) ; V {a.) e F(k,g)

is trivially true since {a satisfies the infimum in (16) at the process p*.

The proof of the theorem is now complete.

I

'4

4

I,
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Appendix B

* Proof of Lemma 2

Let p11J belong to M. Let E 0 < E < 1. Then, since M is convex and

*closed we also have [C p + (l-E)1p2  C M. Using the symbol f , (z' Ji) for the

(j-i)-dimensional density function induced by pi and V, as introduced in section 2,

we easily iind:

J-i C f Pj (z J-i)at 1V~i (z J )+(l-C) f (z J )az (z J-

-t ( z(2z i9i )( l

(B.1)

Directly from (B.1) we also find:

a +l-)jV~ ~)(z i i fIlV (z Ji)f12'N(z Ji)[aVV(ij) (zii)i a-1 i)( -

2'*E (z -)+(l-c)f (z )]j

(B.2)

2 L zi - ) = - ( j i -f (zJ i -if ( -i) z - 2 a ( i

a (i -i ) efp (zj-)+(l-E:)f (zji)]

(B.3)
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a t(zi 1)j - ~ 0' [ c t1) - '2 V ( P) z -)cs EPJ+(1-E))I2 ,(i,j) 0 P23 (zi [j 1 (i, j

(B.4)

a 2  (zi f 1 (z91 ) ( f IlV(z '

aE 2 Oael 1 +(l1S0l1 2, V, (i,j) (z 0 2 [1 1zjif ( -
L1 "% 112 ') % )

a 2  2 z 4 L(zJi

D iI zas5TaEl +l-s-s-), P 2( s) v()~ / (i ( z.2,,i

2+ 2 l-IE,-82

cp 1+(l-~p2%141+(l-E) c11 1V (j)(ZP 21-Iii

Applying expressions (B.2) - (B.5) in expression (B.6), we finally find:

E ~~~ -12.zj-

2 E 'f 11, ( z J- i) zJ- 0 (z Ji )j2

(B .7)
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The expression in (B.7) is nonnegative. It is strictly positive iff

j-i
,(z and a (z are not equal almost everywhere in R - '.

Thus, E a 2 (zj-i) is convex in M. Since E X 2is linear in M, we• ~ ~ ' 1hs 1 , ,V,(ili) V X0  i ieri ,

conclude that e(p,v, a,) is concave in M.
SI~,(i~j)

Proof of Theorem 3

According to lemma 2, there exists some p* in M that realizes the supremum of

e(p,v, C ,1 ,(ij)) in M. Even if there are more than one such measures, there

exists at least one such that:

For every E : 0 < 6 < 1, and every V in M:

- e(!- )v*+ .,V, P a(l-C)*+- ,V(i~j) = < 0 ; V IJSM (B.8)

Notice that since M is convex and closed, [(l-)p +eP] c M. But from (24) we have:

~~~~) a *E~vij E(1_6)p* c X 2 E _ l~~ E ~ t2l)J 1JV (Z

(B.9)

Applying then the results in (B.I)-(B.5) in (B.9), we find:

4e ((-E)I +S )PV, P() 1*+C i,V,(i j)) _ 0

= -[E , X0 - E a 2,Q (ij)(z-i)]+ EX2

SE (i,j)i) -

2 EzJ-i) f1, (v Z a P (Z

- 2 4, a*,V9 (iZj) Q f ,( j-i)

(B.10)
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But,

d (z a*z
1  

II v, (,v,(j
E~ a (z P')

(B .11

e(.±,v cZi11 ,V(ij) W E( z ~ (z a~* (zl~vij

d ez f pvc "V, (v(ij) E -z tv i Ji) ( ,-i =- * ij

EE (z -2 ji- j
PI Pa) ~ p(i,j) ( V) x( *vj i EI)(z + 1  V,(i j) ( j )(

(B.1)

Substi ttn EB1) XB.12E an (z1),i (B.1) we1bt)n

~~ V e(I-) i~1,V 0( ) V,,i,) (i~ ivct*

11J+ V, 0ij P.1 0v(jj -1 V ij

Fuinally ifro (B.11),an (B.1)ad(.3,i (B1) we obtain:

e(,V t *V. ) e(jvcllV.) a eVV xl*V (B5))
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Expression (B.15) proves the left part of the game. The right part is

trivially satisfied due to (24).

Proof of Lemma 3

Consider the linear class F(L) of filters and smoothers, as introduced in

section 2. Let us denote by eL(]I,V) the infimum of the error in (6) in F(L), at

the neasure p. Then, due to the fact that eL(P,V) is only a function of first and

second order statistics, we have that for any pi' 12 in the class M of the lemma:

eL(PI9V) = eL(112 ,2V) = eL (*,V) ; V PiV2 C M (B.16)

; where by p we have denoted the Gaussian measure in M.

Bue due to (9) we have:

eL(1,V) > e(p,v, c , ) ; V PM (B.17)

Also, for the Gaussian measure i* we have:

eL(1 V,) = e(.I*,V, c c,) (B.18)

where (B.18) is true since pi and V jointly Gaussian here.

Thus, from (B.16), (B.17) and (B.18), we obtain:

eL(p*,v) = e(p*,v, ax * ) > e(.,V, a ) ; V )I'M
UL ' 1, V 1JV

Thus, it is clear that the pair (W*, ax , ) is a solution of the game in theorem

3. The solution is unique if for any P1,12 in M the conditional expectations a (z)

and ot 2,(z) can not be equal almost everywhere.

23
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Appendix C

Proof of Lemma 5

SFor any gt' the infimum e(p,\,k,g/) is given by expression (14). We see in a

relatively straightforward manner, that the following equation holds ; where A*1 ,, g/

is given by (15):

E 'X 0 VT(Z) R- (PV,gf) E X Vg(Z) = , z (z ) ,g , (k),

(c.1)

Let A be an arbitrary vector. Then, substituting A , by A in (C.1) and

applying the Schwartz inequality, we obtain:

E g (Z )T <ZE.E g ,g.(Z t)JAT ,( , ,__

P. (k)(k -n-m- -l(Zt

<- P,, ! lt(zl , , , 11 j, >,(k)_n,m_-_n-l~ l

E, 112 11z( t . [AT Mo(P,.,) 141 (C.2)

I with equality everywhere in (C.2) iff:

gt(z/) C AT B (A(k),_n,m~nl(Z (C.3)

6 For gt(z/) as in (C.3), the upper bound in (C.2) is maximized for vector A

such that it minimizes the mean square error expression

I T - n )2
E , X0 -A Bl,V,(k),-nm-n1(Z . The proof is now complete.

6
Proof of Lemma 6

We will present the proof in two steps.

i) Consider the matrix MO(p,V) in (30). Let A be some arbitrary m-

I dimensional constant vector. We will show that the quadratic form

I
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AT 0(p,V)A is convex in p on M. We will refer to the proof of lemma 2,

in appendix B. Let p1I,1 2 C M, let E : 0 < e < 1. Then, [(l-E)p2 + 11i]S M.

It can be easily seen that each l(k) (A in the matrix
|.•~161 +(0(01 Vl(-)2

1 21
MC 1 i-)pV) has the same form as in (B.1). Then, using the

expressions (B.I)-(B.5) and differentiating the quadratic form

A TME 11 +(l-e)p V)A twice with respect to 6, we obtain:
2

3 2 A T Mi'22E (Z 2
A2 E ['(k) Zl ,2ia. l, (Z) -

2 Ale = 0V ,)av36 2 0 Vij P

(c.4)

where {a.} the components of the vector A.1

The expression in (c.4) is strictly positive for nonzero A and notrivial

measures. Thus, ATM 0(i,V)A is then strictly convex in p on M.

ii) We will show that AMf0(PV)jk0 (V ,V)' A(vi,v) is strictly convex in p on M.

Since E X2 is linear in 1, this will also show that h(I, ,k,g, ) is
1.0

strictly concave in 11 on M. Let .iP2 E M. Let c : 0 < C < 1. Then

1(1-6)p 2+c lC1] M. Due to part i) of the proof, we have:

M( Vi(i-) 2 ,'v) = AT0 1+(l-) 1V)M0(e I+(l-E)P2'V)AM (e vi+(l-£)2'V)

A(c I(I- ,1)2 ,V 0 \ ,S (1 2I'-MH29 120 0 0

+ (I-)A (C PI+(l-E)P 2c) 2 ,M))0(i 2 ,V)AM ( I +(-£)p 2 ,V ) (C.5)0 0

But, by definition:

A T( I+(I-C)P2, )M0(PI,1V)AM0(E: ji+(I-C)ll2,V) < A 01lv)

02' 0M0 02'c.60 (C.6)
AT (

A 0 E 1+(-CP 2 ) 0(1 2 V AAf0 (E 1+lCj1 <M0 (1'V
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From (C.5) and (C.6) we thus obtain:

M0 1 +(1-6)p2,V) < E XM0 (PSIV) + (1-6) 'M0(P 2 ,v) (C.7)

where A M(,)M 0 (,V) AM (,V)
-0 0 0

Proof of Lemma 7

i) Given p, let us define:

(k) ( t. X0 Tk+ ] I  (C.8)
E'P X k+lzf[R R1Rtpvtz ) + (C.9)

T

Rl E ~mkl- xmkl- (C.9)

mk ymk
R E Y mk (C.10)

. (k) k 1. (
PVt 'V Ymk+l-t kZ -

The ym (z ) is the linear mean square estimate of X0, given Zmk+l_
For he Gussan masur * (k)

For the Gaussian measure is exactly the same with the
( )  

(k)
8(k)mv in (3). If in the matrix M0 (,V) we substitute ,(, (zY)

by y(k) (z), we will obtain a matrix M (P,v) with the same convexity

properties as in M0 (,v) and with a maximum inner product AM0, (PV )

(denoted in the proof of lemma 6), that is in general lower than the

inner product XIM (P,V) in (32). This is clear from the proofs of lemmas

* 5 and 6. Also, the components of the matrix M0,Y (,V) are strictly functions

of covariance coefficients (see (C.8)), thus the matrices M0, (pv) are

identical within the class MI . Thus, also:

A409 Y(1l,v) M09Y (112 )%) ; V Vl,12 E A1  (C.11)

Also, given p in

0

AMO Q(1,v) < XM (P'v) (0.12)
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0

If the Gaussian measure in MI we finally obtain combining (C.11)

and (C.12).

Mo(]*V) = Mo ,Y (*,") > XM O y (PV) ; V em1  (C.13)

This proves the lemma for the class MI .

ii) As in part i) of the proof of lemma 6, for any vector A the quadratic

form ATM0,y (,v)A is strictly convex in p. It is also a function of

u spectral characteristics only. Thus, it is strictly convex in fP on S;

where f the spectral density of the process V. Following exactly the

same procedure as in part ii) of the proof of lemma 6 we can then show

that there exists a unique f in S such that

AM Y, f* (P,V) < XM0,Y,f (j'V) ; V f C S (C.14)

where A ,f (Pv) the inner product X A 0, (p,v) if the process v has

spectral density f.

Thus the measure * for the class M2 of the lemma is the Gaussian with

spectral density f*, signified by (C.14).

The dimensionality of the observation sequence was never used in our

proof. Thus, our results hold asymptotically, as well as nonasymptotically.

0

0

S

".
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