

ينغ : س**و** س

.

٠

i 1

> MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS - 1963 - 4

Report USAFSAM-TR. 83-2

DELAYED EFFECTS OF PROTON IRRADIATION IN MACACA MULATTA II. MORTALITY (15-YEAR REPORT)

Michael G. Yochmowitz, Ph.D. David H. Wood, Lieutenant Colonel, USAF, BSC Yolanda L. Salmon, M.A.

January 1983

Ŷ

2

Al

AD

FILE CU

3110

Interim report for Period 1964 – 1982

Approved for public release; distribution unlimited.

03

88

USAF SCHOOL OF AEROSPACE MEDICINE Aerospace Medical Division (AFSC) Brooks Air Force Base, Texas 78235

012

16

/AR 1 6 1983

NOTICES

This interim report was submitted by personnel of the Radiation Biology Branch, Radiation Sciences Division, USAF School of Aerospace Medicine, Aerospace Medical Division, AFSC, Brooks Air Force Base, Texas, under job orders 1921E18C and 775704Y1.

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely Government-related procurement, the United States Government incurs no responsibility or any obligation whatsoever. The fact that the Government may have formulated or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication, or otherwise in any manner construed, as licensing the holder, or any other person or corporation; or as conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

The animals involved in this study were procured, maintained, and used in accordance with the Animal Welfare Act and the "Guide for the Care and Use of Laboratory Animals" prepared by the Institute of Laboratory Animal Resources -National Research Council.

The Office of Public Affairs has reviewed this report, and it is releasable to the National Technical Information Service, where it will be available to the general public, including foreign nationals.

This report has been reviewed and is approved for publication.

Michael & Yochmowith MICHAEL G. YOCHMOWITZ, Ph.D.

Project Scientist

HN E. PICKERING, M.S.

Chief, Radiation Sciences Division

De Hart

ROY L. DEHART Colonel, USAF, MC Commander

UNCLASSIFIED	-	
SECURITY CLASSIFICATION OF THIS PAGE (When Dete Er	tered)	
REPORT DOCUMENTATION P	AGE	BEFORE COMPLETING FORM
I REPORT NUMBER	GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
USAFSAM-TR-83-2	MID /10	
4 TITLE (and Subtitle) DELAYED EFFECTS OF DOATON TODADIATI		Interim report
MAGAGA MUTATION IRRADIATI		1964 - 1982
MACACA MULATIA		6. PERFORMING ORG. REPORT NUMBER
II. Mortality (15-year Report)		CONTRACT OF CRANT NUMPER(s)
Michael G. Yochmowitz, Ph.D.		
David H. Wood, Lieutenant Colonel,	USAF, BSC	
Yolanda L. Salmon, M.A.		
9 PERFORMING ORGANIZATION NAME AND ADDRESS	(070)	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
USAF School of Aerospace Medicine	(RZB)	62202F
Brooks Air Force Base Texas 78235		1921-E1-8C and 7757-04-Y1
1) CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
USAF School of Aerospace Medicine	(RZB)	January 1983
Aerospace Medical Division (AFSC)	. ,	13. NUMBER OF PAGES
Brooks Air Force Base, Texas 78235	rom Controlline Office)	15. SECURITY CLASS. (of this report)
NA MORTORING AGENET NAME & ADDITED	• • • •	
		Unclassified
		150, DECLASSIFICATION, DOWNGRADING SCHEDULE
IT CISTRIBUTION STATEMENT fol the ebutract entered in	Block 20, il dillerent fra	m Report)
 SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessar) and 	(dentify by block number)	
Mortality		
Protons		
Cosmic radiation		
Raulation enects		
20. ABSTRACT (Continue on reverse side (finecessor) and f A radiation primate colony of 57 con has been followed since 1964. Lifes fically, the proton-exposed subjects Energies of 55 MeV and greater decre 360 rads. Females were more sensiti earlier in doses as low as 25-113 rad 55 MeV. Survival curve analysis four	deniity by block number; trols and 301 (pan of both the in the chronic ased life span ve to lower dos ds and in all e nd no differenc	217 proton) exposed subjects e exposed and, more speci- c colony was shortened. as did doses in excess of ses than males. They died energies tested except se among the onset of death
DD FORM 1473 EDITION OF 1 NOV 6% IS OBSOLE	те	
	SECURITY CL	ASSIFICATION OF THIS PAGE (When Data Entart

·· · -

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

20. ABSTRACT (Continued)

in the 3 highest energies (138, 400, and 2300 Mev); however, its onset was earlier in the 32-MeV exposure and later in the 55-MeV exposure than the total penetrating energies (\geq 138 MeV). Dose ordering effects were evident. In contrast to the controls, mortality rates began to accelerate at ~8 years in the 360-400-rad group; at ~2 years in the 500-650-rad group and ~1 year in the 800-rad group. The leading causes of death among the proton-exposed animals were primary infections (~30%), endometriosis (25%), and organ degeneration (~17%). Malignant tumors accounted for 18% of the deaths. If endometriosis is included in this group, the mortality from all forms of neoplastic conditions is 43% in the proton-exposed animals.

	6
À	
4	

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (Minen Data Entered)

DELAYED EFFECTS OF PROTON IRRADIATION IN MACACA MULATTA

II. MORTALITY (15-YEAR REPORT)

INTRODUCTION

In 1964 the USAF School of Aerospace Medicine (USAFSAM) and the National Aeronautics and Space Administration (NASA) initiated a series of studies on the acute effects of proton irradiation in rhesus monkeys. Subjects received monoenergetic exposures (32, 55, 138, 400, and 2300 MeV) representative of the proton spectrum in space. Acute effects were documented during the 120-day postexposure period. Those animals retained in the colony after this period along with subjects of similar age exposed to X-rays, electrons, and mixed protons became part of a lifetime study of delayed radiation effects. These animals and the nonirradiated controls are referred to as the "Chronic Radiation Colony."

Dalrymple and Lindsay (1) provided the rationale for the selected energies. In brief, the average cross-sectional diameter of this primate is about 10 cm. The 32-MeV proton with a depth of penetration of 1 cm was chosen to give information concerning skin and subcutaneous tissue. These protons did not have sufficient range to reach radiosensitive bone marrow and the gastrointestinal tract. The 55-MeV studies, with a 2.5-cm depth of penetration, permitted exposure to these regions, but approximately 25% of the total body volume was unexposed. The higher energies (\geq 138 MeV) provided a homogeneous depth dose distribution and increasingly greater production of high LET secondary radiation. The 400-MeV particle is of interest because it approximates the highest energy particle occurring in significant concentrations in the Van Allen belts. The 2300-MeV particle simulated very high energy galactic cosmic particles.

The acute effects have been published (2-6). Chronic postexposure effects and progress reports have also been published. These include: case report of granulocytic leukemia at 3 years (7); 4- and 5-year reports highlighting turnors and cutaneous and subcutaneous effects (8, 9); a 6-year finding of significant body weight decreases (10); a 6-7 year diagnosis of endometriosis (11, 12); a 9-year summary of mortality experience (13); and a 15-year summary of endometriosis findings (14).

This paper will explore the incidence of death, its onset, and its causes in the chronic radiation colony. We will discuss whether life shortening occurred; whether it accelerated the normal aging process by advancing all natural causes, all lethal diseases, or a specific disease. Sex differences will also be addressed.

MATERIALS AND METHODS

Table 1 summarizes exposure dates, test facilities, tissue penetration depth, and dose rate used in the original studies. Dosimetry methods and exposure details have been published (15, 16). Subjects were 2-year-olds as determined by dental exams. They were rotated in the proton beam in galvanized steel-wire-mesh cylinders at 2 rpm. This procedure allowed uniform whole-body exposures.

The Chronic Radiation Colony is maintained in an outdoor facility. Subjects are individually housed in cages protected by exterior closure flaps and heated to a minimum temperature of 55° F (13°C) by thermostatically controlled gas heaters. Animals are fed twice daily with a commercial laboratory primate diet treated with isoniazid. This diet is supplemented with fresh fruit biweekly. Water is available ad lib. Physical exams and tuberculin tests are conducted three times yearly on each subject. Dental hygiene is provided if necessary. Blood samples are taken for hematological and biochemical testing. Routine veterinary care including minor surgery and medications is provided, but heroic life-saving measures are not attempted.

keported doses are surface doses from both primary and secondary radiation based upon the calculations of Turner et. al (17). Depth doses in 32and 55-MeV studies were calculated to be 115% and 122% of surface doses, respectively.

RESULTS

Incidence

Table 2 summarizes the colony's mortality experience by energy and dose. The first death in this colony occurred 6 months post exposure in a male subject exposed to 1500-rad 1.6-MeV electrons followed at 7 months by a male subject exposed to 800-rad 55-MeV protons. A 200-rad 400-MeV subject was the first exposed female to die (17 months). In contrast, the first nonirradiated control died 18 months after the study was initiated and was a male. The first control female died at 59 months. (See Appendix A.)

At initiation, the chronic colony consisted of 358 animals: 57 controls (34 males and 23 females) and 301 exposed (173 males and 128 females). Calculated mortality is 24.5% in controls and 48.5% in the exposed. A chi-square test indicates that these incidences are significantly different (p<.01). Mortality by sex was 24% in control males, 26% in control females, 43% in all exposed males, and 56% in all exposed females. Chi-square tests found significantly more exposed males than control males (p<.05) and more exposed females than control females (p<.01) dying as illustrated in the top of Figure 1. Of the 146 deaths in the exposed animals, 105 have occurred in high-energy (32, 55, 138, 400, and 2300 MeV) proton-exposed rhesus monkeys. The initial number of subjects in the high-energy proton-exposed group was 217. Thus the 105 cases represent an incidence of 48.4%. This is significantly different from the control incidence of 24.5% (p<.01) by a chi-square test. In these proton-exposed animals, the mortality incidence by sex was 41.1% in males and 58% in females. Similar test procedures found more deaths in those cases than in

Radiation type	Inci den t energy	Tissue penetra- tion depth	Dose ^ä range (rads)	Dose rate (rads/ min)	Test facilities	Exposure date
Proton	32 MeV	l cm	280-560	100	Oak Ridge, Isochronous Cyclotron, TN	Jul 64
Proton	55 MeV	2.5 cm	25-600	12.5 ^b , 100	Oak Ridg e, Isochronous Cyclotron, TN	Apr 65
Proton	138 MeV	Total body	210 -6 50	55	Harvard Synchro- cyclotron Cambridge, Mass.	Jan 65
Proton	400 MeV	Total body	50-600	16	University Chicago Synchro- cyclotron Chicago, Ilï.	Mar 65
Proton	2300 MeV	Total body	56-560	25	Brookhaven Cosmotron Upton, N.Y.	0 ct 6 5
Electron	1.6 MeV	2 mm	1000-1500	100	Brooks AFB, TX	May 68
X-ray	2 MeV	Total body	446-716	10.7	Texas Nuclear Corp., Austin, Tex.	Jun 64
Electron	2 MeV	6 mm	900-1500	60	Brooks AFB, Tex.	Nov 69
Proton	5 MeV	0.4 mm	1500-2000	50	Oak Ridge, Isochronous Cyclotron, TN	Jun 67
Proton	Mixed	Variable	300-1200	25 to 30	NASA-SREL Hampton Roads, Va.	Apr 69

TABLE 1. BACKGROUND INFORMATION ON SUBJECTS INCLUDED IN LIFETIME STUDY

·····

 $^{\rm a}{\rm Doses}$ cited were measured at the body surface.

^bLower dose groups (25-, 50-, and 100-rad groups and one-half of 200-rad group) were exposed at the lower dose rate of 12.5 rads/min with the remaining subjects exposed at a rate of 100 rads/min.

TABLE 2. RATIO OF DEATHS TO SUBJECTS AT RISK

Dose	3	2	55		138	I	400		230	00	Tota	ls
(rads)	M	F	M	F	M	F	M	F	M	F	М	F
Controls		0/1	0/6		0/3	2/4	1/5	1/5	2/6	0/1	3/20	3/11
25-113			3/13	4/8			5/12	3/7	1/9	5/8	9/34	12/23
200-280	0/2	2/2	2/8	1/6	2/6	3/3	1/5	6/11	0/5	5/10	5/26	17/32
360-400			5/10	2/4	3/7	2/5	3/8	5/7	3/5	3/5	14/30	12/21
500-650	0/4	1/4	8/10	4/4	3/6	4/5	2/3	2/2	1/2	2/2	14/25	13/17
800			9/9								9/9	
TOTALS	0/6	3/7	27/56	11/22	8/22	11/17	12/33	17/32	7/27	15/26	54/144	57/104

Original Proton Studies Incident Energy (MeV)

Other Radiation Studies

Dose (rads)	1.6 4	eV E	2 Me	V X	2 M	eV E	5	MeV	Mix ene	ed rgy	Tota	als
	M	F	M	F	M	F	M	F	Μ	F	M	F
Controls				1/2	1/1	0/3	4/8	2/5	0/5	0/2	5/14	3/12
300									1/6	0/1	1/6	0/1
360-400			0/1								0/1	
446-538			4/5	7/11							4/5	7/11
600-716			7/9	5/6					0/4	1/2	7/13	6/8
900					0/2	1/2			0/3	2/5	0/5	3/7
1000	2/6										2/6	
1200					0/1	0/3			2/4	1/3	2/5	1/6
1500	6/6				1/2	1/2					7/8	1/2
TOTALS	8/12		11/15	13/19	2/6	2/10	4/8	2/5	3/22	4/13	28/63	21/47

their respective control groups (with $p_{<}.10$ and $p_{<}.01$) as shown in the bottom of Figure 1.

Next we examine whether there are any relationships among the various energies and dose groups of Table 2. Figure 2 summarizes the incidence among the various energies for combined groups of males and females as well as males and females individually. When data from both sexes are combined, animals receiving energy levels of 55 MeV and above had significantly higher incidences than the controls. In the males, however, only the 55-MeV energy differed from the control males (see middle panel, Fig. 2); whereas the females had significantly more deaths in the totally penetrating energies of 138 MeV and above (as shown in the bottom panel). In the 55-MeV females, differences were not significant, although the 50% incidence is close to the 54% incidence of the 55-MeV males. This result is a consequence of the smaller female sample sizes. The males appear to be less sensitive to the total penetrating energies. We will discuss this hypothesis further.

Figure 3 gives the incidence among the dose groups for combined males and females as well as each sex individually. In examining both sexes together, doses of 360 rads and above had significantly higher incidences (\geq 51%) than the controls (25%). This result also holds for the males alone (incidences \geq 47% in doses of 360 rads and higher vs 24% in the control males). On the other hand, females receiving doses as low as 25-113 rads had significantly greater incidence (52% vs 26% in control females). Again there is a hint that males are less sensitive to radiation than females. We examine this hypothesis next.

Mortality in both sexes is contrasted by dose and energy in Figure 4. In all doses including controls fewer males died (see upper panel). In particular, in the two lowest dose groupings (25-113 rads and 200-280 rads) significantly more deaths occurred in the females. This difference is less apparent in doses in excess of 360 rads.

The lower panel of Figure 4 gives the energy-sex comparisons. No male deaths were available for a 32-MeV contrast. With the exception of the partially penetrating 55-MeV energy, mortality was greater in the females. Significantly more female deaths occurred in both the 138- and 2300-MeV energies.

Time Course (Onset)

The proportions illustrated in Figures 5-27 are survival curves. They are Kaplan-Meier (18) product limit estimates of the probability that a subject will survive beyond time t. Most figures are divided into 3 panels which contrast the same energy or dose combinations. The first panel gives the contrast for both sexes; the middle panel is for males; and the right panel is for the females. The bottom curves in each panel indicate the group which is dying earlier (faster) since a smaller proportion of this group is expected to live beyond time t. Breslow's statistic (19) is used to report significant differences between survival curves. Only those figures which contain at least one panel with p<.10 are given. The remaining panels are provided to show why significance was not achieved in the other cases. This result may occur because sample sizes were too small, mortality experience was too erratic, or significance was almost achieved.

Figure 5 illustrates the mortality/survival experience in the entire colony (358 subjects: 301 exposed and 57 controls). The dotted curves were the exposed subjects; the solid lines the controls. Of note is the steady decrease in the exposed subjects' probability of surviving beyond time t in contrast to the controls' sporadic decrease in all 3 panels. For both sexes and the males, the exposure curves were almost uniformly lower than their respective controls and significantly earlier; $p_{<.01}$ in both sexes, and $p_{=.0677}$ in the males. It was not until almost 9 years post exposure that the exposed females were uniformly lower than the control females. Borderline significance (p=.094) was obtained between the two female survival curves in the right panel of Figure 5. Figure 6 fixes on the proton-exposed (217 subjects) versus the controls (57 subjects). These survival curves are quite similar to the entire colony's curves in Figure 5. There is a consistent decline in the proton subjects' probability of surviving beyond time t; both sexes and the male proton-exposure curves were almost always uniformly lower than their respective controls; it is only after ~9 years that the females became uniformly lower than the controls. The combined sex group (proton exposed) had significantly shorter life spans (p=.018) than did the controls whereas the individual sexes were close to borderline significance (α =.10).

Figure 7 contrasts the sexes for the 57 controls, 301 exposed subjects, and 217 proton-exposed subjects. The male control survival curve closely followed the female curve. Statistical significance (α =.10) was not detected for the given sample sizes. The second and third panels of Figure 7 indicate significance (p=.10) between the sexes. At ~10 years post exposure all the exposed females and the subgroup of proton-exposed females were dying at a faster rate than their respective males.

In the proton studies survival curves can be examined with respect to dose, energy, and sex. Tables 3-5 summarize p-values for these comparisons. Figures 8-21 use the same conventions as before. These figures are given when at least one of its three panels illustrates statistical significance (p=.10). The other panels are provided in order to note points of similarity and difference.

Figures 8-10 compare each energy with the controls. At 55 MeV (Fig. 8) the pooled sexes and the males had significantly (p<.01) earlier deaths than their respective controls. The consistently earlier deaths in these cases contributed to the highly significant results. It was not until almost 9 years post exposure that the death rate of 55-MeV-females exceeded that of control females. The total penetrating 138-MeV proton group (Fig. 9) had significantly (p=.10) earlier deaths in the combined sexes and the females. In these cases, death rates increased at ~2 and ~6 years post exposure. Data from the 400-MeV subjects (Fig. 10) reinforces the finding that uniformly earlier deaths did not appear until 10 years post exposure while significance occurred in only the combined sexes (p<.10).

All 32-MeV males are alive. This fact increases the ability to detect higher death rates in comparison with the more penetrating energies. Figure 11 illustrates this group's significant (p < .05) difference from the 55-MeV

TABLE 3. PROTON ENERGY COMPARISONS

_....

	1eV		Both sexes	Males	Females	Figure
0	٧S	32	.8722	.1953	.4288	-
0	٧S	55	.0023	.0045	.3358	8
0	vs	138	.0609	.3525	.0973	9
0	vs	400	.0741	.4019	.1729	10
0	vs	2300	.2417	.6101	.1549	-
32	vs	5 5	.0818	.0363	.9761	11
32	vs	13 8	.1537	.0784	.5105	12
32	vs	400	. 1889	.0903	.8280	13
32	vs	2300	. 3180	.2089	.7394	-
55	vs	138	.4396	.1208	.3790	-
55	vs	400	. 1717	.0708	.8334	14
55	vs	2300	. 0788	.0098	.6803	15
138	vs	400	. 7376	.9217	.5184	-
138	٧S	2300	. 3826	.1913	.5330	-
400	vs	2300	. 6478	.2963	. 7911	-

p-Values Based Upon Breslow's Statistic in Comparing Kaplan-Meier Survival Curves

TABLE 4. PROTON DOSE COMPARISONS

Dose	(rads)	Both sexes	Males	Females	Figure
0 v	s 25-113	.5899	.7719	.3622	-
0 ν	s 200-280	.3339	.6625	.2350	-
0 ν	s 360-400	.0831	.2091	.2666	16
0 v	s 500-650	.0003	.0121	.0203	17
0 ν	s 800	*	.0001	*	22
25-113 v	s 200-280	.6960	.6685	.8714	-
25-113 v	s 360-400	.1634	.1062	.8728	-
25-113 v	s 500-650	.0009	.0051	.0612	18
25-113 v	s 800	*	.0001	*	22
200-280 v	s 360-400	. 3200	.0673	.8789	19
200-280 v	s 500-650	.0036	.0073	.0485	20
200-280 v	s 800	*	.0001	*	22
360-400 v	s 500-650	.0338	. 1732	.1002	21
360-400 v	s 800	*	.0001	*	23
500-650 v	s 800	*	.0001	*	23

l

p-Values Based Upon Breslow's Statistic in Comparing Kaplan-Meier Survival Curves

*No females were available for comparison.

•.

TABLE 5. SEX COMPARISONS

p-Values Based Upon Breslow's Statistic in Comparing Kaplan-Meier Survival Curves

Proton Energies	<u>p</u>	Figure
32 MeV (M) vs 32 MeV (F)	.0578	24
55 MeV (M) vs 55 MeV (F)	.2495	-
138 MeV (M) vs 138 MeV (F)	.1014	24
400 MeV (M) vs 400 MeV (F)	.1597	-
2300 MeV (M) vs 2300 MeV (F)	.0091	24
Proton Doses (rads)	<u>p</u>	Figure
25-113 (M) vs 25-113 (F)	.0272	25
200-280 (M) vs 200-280 (F)	.0202	25
360-400 (M) vs 360-400 (F)	. 4094	-
500-650 (M) vs 500-650 (F)	.4381	-

9

-.

males; also the difference in the pooled sexes where the 55-MeV death rate exceeded the 32-MeV death rate after 4 years. Figures 12 and 13 indicate higher death rates in 138- and 400-MeV males (p<.10) than in the 32-MeV males. The suggestion that increasingly higher energies will have greater death rates is not supported. Males exposed to the partially penetrating 55-MeV protons have a higher death rate (p<.10) than the 400-MeV males (Fig. 14) and the 2300-MeV males (p<.01; Fig. 15); the death rate among the 55-MeV pooled sexes was also greater (p<.10) than the combined 2300-MeV group (Fig. 15).

What is not significant may be as important as what is. In this light we note (c.f. Table 3) that no differences could be detected among the survival curves of the 3 total penetrating energies.

In the proton studies, a dose threshold is observed in the vicinity of 360-400 rads. In Table 4 this dose range is the lowest where a survival curve was different from that of the controls, p=.0831 (c.f. Fig. 16, left panel). The two greater dose classes were very significant; i.e., for 500-650 rads, p<.01 in the combined sexes and p<.025 in the individual sexes (Fig. 17); while at 800 rads, p<.01 in the males (c.f. Fig. 22, left panel). Mortality acceleration began at ~8 years in the 360-400-rad group, ~2 years in the 500-650-rad group, and ~1 year in the 800-rad group.

The separation in survival curves between the lowest dose range tested, 25-113 rads, and the two highest was also very significant. Figure 18 illustrates the difference with the 500-650-rad group. For combined sexes and males, p<.01; for females, p<.10. At 800 rads (Fig. 22, middle panel), p<.01 for the male contrast. Mortality rates greater than in the 25-113-rad group were evident at \sim 2 years for 500-650 rads, and \sim 1 year for 800 rads.

The difference between 200-280 rads and 360-400 rads in Figure 19 continues to suggest a dose ordering effect since the highest dose had a consistently higher mortality rate in the combined sexes approximately 12 years post exposure and a significantly greater rate than the males, p<.10. This result is reinforced in Figure 20 where 500-650-rad pooled sexes and males have a significantly smaller probability of survival (p<.01) than their 200-280-rad counterparts as did the females with p<.05. This fact is also the case when comparing 200-280-rad and 800-rad males as in the right panel of Figure 22.

The pooled sex comparisons between 360-400 rads and 500-650 rads was significant (p<.05) in Figure 21, as was the male comparison in Figure 23 (p<.01). Both of these figures illustrate that at higher doses, animals began dying earlier and in greater numbers.

Figure 24 indicates that females expired earlier and faster than males at 32, 138, and 2300 MeV. The same result held for the lowest doses tested (25-113 rads and 200-280 rads), as shown in Figure 25.

Contrasting the partially penetrating 32- and 55-MeV energies with the total penetrating 138-, 400-, and 2300-MeV energies found earlier deaths among the 32- and 55-MeV males (p<.05; Fig. 26). Our final survival curve comparison in Figure 27 illustrates that at the higher energies females started to die earlier than their male counterparts at ~ 6 years post exposure (p<.01).

Analysis of Probable Causes of Death

Pathology reports were reviewed by experienced veterinarians. For each animal that died, a probable cause was assigned from one of the following categories:

- 1. primary infectious process including parasitism
- 2. specific organ system degeneration
- 3. endocrine disorders
- 4. tumors of bone, skin, muscle, and blood
- 5. tumors of nervous tissue

· • · · ·

- 6. tumors of viscera
- 7. endometriosis
- 8. bloat (acute gastric dilatation)
- 9. unknown

In some cases subjects had several disorders which contributed to their demise. In these instances, reviewing officials were asked to identify the single most probable cause of death. This procedure may lead to an undercount in the above 9 categories. For example, Wood et al. (14) report 38 cases of endometriosis among the proton exposed; while only 26 cases of endometriosis were classified as a cause of death among the same group of subjects.

Given the possible undercounts, Table 6 summarizes these findings by dose and energy for the original proton studies and all the controls. Table 7 provides this information for the remaining studies in the Chronic Radiation Colony.

Figure 28 illustrates the probable cause of death as a percentage of the total deaths for the proton-exposed subjects. The leading causes in this group were primary infections (30%) followed by endometriosis (25%) and organ degeneration (17%). Examination of the colony's remaining 41 deaths among electron, x-ray, and mixed proton studies lead to a remarkable similarity with the proton exposed. Here, infections accounted for 24\% of the 41 deaths; organ degeneration 20\%, and endometriosis 24\%. In both the proton-exposed and the other studies tumors of bone, skin, muscle, and blood explained approximately 10% of the deaths.

DISCUSSION AND CONCLUSIONS

The original experiments were acute studies. They were done with subjects irradiated at the same age and cannot delve into relationship between the effects produced and the age of the subjects. Furthermore, they were not

TABLE 6. FREQUENCY OF DEATH BY CAUSE*

• • • • ·

Original Proton Studies

		20	E	Inciden [.]	t Energ	y (MeV)	40	n	221	1 0
Dose(rads)	M	52 F	M5	F	M	F	401 M	J F	M	F
25-113			2(1) 1(2)	1(2) 2(7) 1(9)			2(1) 1(4) 1(8) 1(9)	1(1) 2(7)	1(1)	1(1) 3(7) 1(9)
200-280		1(1) 1(7)	1(4) 1(9)	1(1)	1(1) 1(6)	1(2) 2(7)	1(1)	2(2) 3(7) 1(8)		2(1) 1(3) 2(7)
360-400			3(1) 1(2) 1(5)	1(1) 1(7)	2(1) 1(4)	1(1) 1(7)	1(1) 2(4)	5(7)	2(2) 1(4)	3(7)
500-650		1(7)	2(2) 2(4) 3(5) 1(8)	2(1) 1(2) 1(5)	2(1) 1(4)	3(2) 1(9)	1(1) 1(2)	1(1) 1(1)	1(1)	1(1) 1(9)
800			3(1) 3(2) 3(5)							

ALL CONTROLS

	M	F
0 rads	3(1) 3(2) 2(9)	2(1) 1(2) 1(7) 2(8)

*Causes are in () and are coded as:

1 = infections
2 = organ degenerations

- 3 = endocrine disorders
- 4 = bone, skin, muscle, and blood tumors
- 5 = nerve tumors
- 6 = viscera tumors
- 7 = endometriosis
- 8 = bloat (acute gastric dilatation)
- 9 = unknown

.

	Sex	
Study	M	F
1.6 MeV, 1000 rads	1(1) 1(8)	
1.6 MeV, 1500 rads	2(2) 2(4) 1(6) 1(8)	
2 MeV X, 446-530 rads	1(1) 1(2) 1(6) 1(8)	1(1) 1(4) 1(8) 4(7)
2 MeV X, 600-716 rads	3(1) 2(2) 2(6)	2(1) 3(7)
2 MeV E, 900 rads		1(7)
2 MeV E, 1500 rads	1(1)	1(2)
Mixed Energy 300 rads	1(8)	
Mixed Energy 600-716 rads		2(7)
Mixed Energy 900 rads		1(2)
Mixed Energy 1200 rads	1(4) 1(1)	1(2)

TABLE 7. CAUSES OF DEATH IN OTHER RADIATION STUDIES*

*Causes are in () and are coded as:

l = infections 2 = organ degenerations

3 = endocrine disorders

4 = bone, skin, muscle, and blood tumors

5 = nerve tumors

6 = viscera tumors

7 = endometriosis

8 = bloat (acute gastric dilatation)

9 = unknown

designed to investigate the lifetime effects of radiation on survivors. As a result, many of the experimental combinations contain no data or sparse amounts of data, making a detailed analysis difficult. Nevertheless, it was possible to support several medically relevant conclusions with valid statistical inferences. When all proton-exposed animals were considered as a group, the minimum dose to produce significant life shortening fell between 360 and 400 rads. When only females were considered, the significant life shortening could be demonstrated at doses between 25 and 113 rads. Increased mortality in the females was due almost entirely to the incidence of fatal cases of endometriosis. These findings support the conclusions made in a separate report on endometriosis that the radiosensitivity of the endometrium may be a limiting factor in determining maximum permissible doses for females in extended space operations. The report on endometriosis also demonstrated that total-body penetrating radiations, both proton and x-rays, were more effective in promoting endometriosis than nonpenetrating radiations. It is not surprising; therefore, that the mortality rate in females is significantly greater than in the males in the higher energy groups (\geq 138 MeV). This sex difference became apparent after a latent period of approximately 10 years.

Mortality rates in both the proton and other radiation type groups were greater than in the controls. For proton-exposed animals, this effect was observed only in those energies of 55 MeV and above where tissue penetration depths were 2.5 cm. Apparently, the population of cells irradiated by 32-MeV particle in nonfatal acute exposures was not critical to the long-term survival rate in our subjects. Here tissue penetration depths were approximately 1 cm.

Besides an increase in mortality over the controls, it has been shown that deaths occurred earlier in both the 301 exposed and the 217 proton subset. In comparing time of death, no difference could be found among the 3 totally penetrating proton energies (138, 400, and 2300 MeV). However, the time of death in the 32-MeV exposure was later and in the 55-MeV exposure earlier than these energies. Thus, there is little evidence that increasingly higher energies will have earlier death. In comparing time of death with respect to the proton dose groups, no differences were detected below 360 rads. Above this threshold, increasing doses were associated with earlier deaths. Mortality acceleration began after ~8 years in the 360-400-rad group, ~2 years in the 500-650-rad group, and ~1 year in the 800-rad group. It has also been demonstrated that females died earlier than their male counterparts in 32-, 138-, and 2300-MeV energies and in the 25-113-rad and 200-280-rad dose groupings.

Primary infections and parasitism were the leading cause of death in the colony, resulting in approximately one-third of the deaths in both the irradiated and control animals. The most striking difference in cause of death was the 18% rate of malignant tumor-related deaths in the proton-exposed animals. If endometriosis is also considered in this group, the mortality from all forms of neoplastic conditions is 43% in the proton-irradiated animals compared with 7% (1/14) in control subjects. The number of deaths in the controls was not sufficient to permit any comparison of deaths due to other causes.

Comfort (20) defines "precocious aging" if it ..." (i) caused the force of mortality to rise more rapidly in affected than in control animals; (ii) it brought forward the age of onset of diseases which affect the control, but did

not greatly alter the sequence or the incidence of causes of death; (iii) it made any characteristic feature of the aging syndrome in that species... appear at a proportionately lower age." The anticipated lifespan for the Macaca mulatta is 30+ years (21). At the 15-year point we have identified "semi" precocious aging. Death rates are higher in the exposed than in the controls. Diseases which affect the controls are occurring earlier. However, sufficient time has not yet elapsed to evaluate the characteristic aging syndrome in the controls.

In summary, females appeared to be more sensitive to the life-shortening effects of proton irradiation than males, with a threshold dose occurring in the 25-113-rad range compared with a 360-400-rad threshold dose for all irradiated animals. The reason for the difference in mortality between irradiated and nonirradiated animals was the high incidence of deaths due to radiation-induced neoplastic change including malignant tumors and endometriosis. The death rate in all irradiated animals became significantly higher than in the control animals ~5 years post irradiation. (Here, significance is identified as the first time an exposure probability of surviving beyond time t was less than the one-sided 95% confidence interval for the control's probability of surviving beyond time t.)

ACKNOWLEDGMENTS

We wish to thank Mr. Ted Campbell, Mr. David Hughes, Sgt Chris Piland, and AlC Jim Dlugokinski for managing this data base and assisting in this summarization.

REFERENCES

- 1. Dalrymple, G. V., and I. R. Lindsay. Protons and space travel--an introduction. Radiat Res 28:365-371 (1966).
- Dalrymple, G. V., I. R. Lindsay, J. J. Ghidoni, J. C. Mitchell, and I. L. Morgan. Some effects of whole-body 32-MeV proton irradiations on primates. Radiat Res 28:406-433 (1966).
- Lindsay, I. R., G. V. Dalrymple, J. J. Ghidoni, J. C. Mitchell, and I. L. Morgan. Some effects of 55-MeV protons and primates. Radiat Res 28: 446-464 (1966).
- Dalrymple, G. V., I. R. Lindsay, J. J. Ghidoni, J. D. Hall, J. C. Mitchell, H. I. Kundel, and I. L. Morgan. Some effects of 138 MeV protons on primates. Radiat Res 28:471-488 (1966).
- Dalrymple, G. V., I. R. Lindsay, J. J. Ghidoni, J. C. Mitchell, and I. L. Morgan. Some effects of 400-MeV protons on primates. Radiat Res 28: 507-528 (1966).
- 6. Lindsay, I.R., and G. V. Dalrymple. Acute somatic effects in primates of protons to 400 MeV. Radiat Res Suppl. 7:330-335 (1967).

- Siegal, A.M., H. W. Casey, R. W. Bowman, and J. E. Traynor. Leukemia in a rhesus monkey (<u>Macaca mulatta</u>) following exposure to whole-body proton irradiation. Blood 32(6):989-996 (1968).
- 8. Casey, H. W., P. S. Coogan, and J. E. Traynor. Late effects of 32 MeV proton irradiation in primates. Radiat Res 39:634-642 (1969).
- 9. Traynor, J. E., and H. W. Casey. Five-year follow-up of primates exposed to 55 MeV Protons. Radiat Res 47:143-148 (1971).
- Kirk, J. H. Body weight decreases in some proton exposed primates. Space Life Sciences 3:271-277 (1971).
- Mackenzie, W. F., G. A. Splitter, and M. G. Valerio. Endometriosis in primates. Proceedings of the Third Conference on Experimental Medicine and Surgery of Primates, Lyon, 1972 (E. E. Goldsmith and J. Moor Janowski, Eds). Medical Primatology, pp. 288-297, 1972.
- Splitter, G. A., J. H. Kirk, W. F. Mackenzie, and C. A. Rawlings. Endometriosis in four irradiated rhesus monkeys. Vet Pathol 9:249-267 (1972).
- Krupp, J. H. Nine-year mortality experience in proton-exposed <u>Macaca</u> mulatta. Radiat Res 67:244-251 (1976).
- 14. Wood, D. H., M. G. Yochmowitz, Y. L. Salmon, R. A. Boster, and R. L. Eason. Proton irradiation and endometriosis. (to appear in Aviat. Space and Environmental Medicine).
- Mitchell, J. C., G. V. Dalrymple, G. W. Williams, J. D. Hall, and I. L. Morgan. Proton depth-dose dosimetry. Radiat Res 28:390-405 (1966).
- 16. Williams, G. H., J. D. Hall, and I. L. Morgan. Whole-body irradiation of primates with protons of energies to 400 MeV. Radiat Res 28:372-389 (1966).
- Turner, J. E., C. D. Zerby, R. L. Woodyard, H. A. Wright, W. E. Kinney, W. S. Synder, and J. Neufeld. Calculation of radiation dose from protons to 400 MeV. Health Physics 10:783-808 (1964).
- Kaplan, E. L., and P. Meier. Non-parametric estimation from incomplete observations. J Am Statist Assoc 53(1):457-482 (1958).
- Breslow, N. A generalized Kruskal-Wallis test for comparing K samples subject to unequal patterns of censorship. Biometrika 57:579-594 (1970).
- 20. Comfort, A. Natural aging and the effects of radiation. Radiation Res Supp. 1:216-234 (1959).
- 21. Van Wagenen, G. Vital statistics from a breeding colony. J Med Primatol 1:3-28 (1972).

MORTALITY IN CHRONIC RADIATION COLONY

ماديني المراجع

.

Figure 1. Mortality among 57 controls, 301 exposed, and 217 proton-exposed subjects. (Levels of significance determined by a chi-square test.)

Figure 2. Mortality (by sex and energy) among 217 proton-exposed subjects. (Levels of significance determined by a chi-square test.)

الم المعان ال

، ، م مولو رياني منظمين ، ، .

Figure 3. Mortality (by sex and dose) among 217 proton-exposed subjects. (Levels of significance determined by a chi-square test.)

MORTALITY IN BOTH SEXES

Figure 4. Mortality sex comparisons among proton-exposed subjects. (Levels of significance determined by a chi-square test.)

.

.....

. .

.

Kaplan-Meier survival curves for the proportion surviving beyond time t among 57 controls and 217 proton-exposed. The bottom curve in each panel indicates which group is dying earlier (faster). The first panel gives the contrast for both sexes; the middle panel is for males; and the right panel is for the females. Figure 6.

.....

23

-.

. .

1

ł

ł

.

. .

29

+-

f

. .

i

; } ;

1

- -

_

.

....

39

-.

.

40

;

216 DEATHS 10TAL 5 26 17 32 28 8 **8**2 Ŧ BRESLOW P = 0.62822006-200 RADS (11) 2006-200 RADS (F) 2006-200 RADS (F) TOTAL MONTHS POST EXPOSURE PROPORTION SURVIVING 8 8 2 Ŷ 2 8.8 **.**. 8.2 9.6 440404++ - o z 216 DEATHS TOTAL 9 34 12 23 21 57 8 **8**8 BRESLOW P = 0.0272₹ 25-113 RMDS (N) 25-113 RMDS (F) 707AL PROPORTION SURVIVING MONTHS POST EXPOSURE 8 8 2 ₽ ž 8.8 8.2 **8**.6 8.4 ~~~~~ 41

Figure 25. Kaplan-Meier survival curves for comparing sexes among 25-113-rad and 200-280-rad doses.

•·· ·

. -

.

APPENDIX A EXPOSURE DATA

ŧ

Service March

MOPTALITY DATA

fonk ey Id	SEX	ENERGY	3000	I RRAD DATE	DATE OF DEATH	CAUSE OF DEATH
ж0	ž	t 6 MEV	1000 RADS	6805	AL.IVE	ALIVE
36L	Ŧ	1.6 MEV	1000 RADS	6805	ALIVE	ALIVE
Nati	Σ	1.6 MEV	1000 RADS	6805	AL, I VF	ALIVE
54T	Σ	1.6 MEV	1000 RADS	6805	77(15)	ACUTE GASTRIC DILITATION
78M	Σ	1.6 MEV	1000 RADS	6805	ALIVE	ALIVE
04N	Σ	1.6 MEV	1000 RADS	6805	7011	INFECTIONS
18J	Σ	1.6 MEV	1500 RADS	6805	7605	ORGAN DEGENERATION
28P	Σ	1.6 MEV	1500 RADS	6805	7912	ORGAN DECENERATION
44L	Σ	1.6 MEV	1500 RADS	6805	7109	BONE, SKIN, MUSCLE AND RLOOD TUMORS
54N	Σ	1.6 MEV	1500 RADS	6805	7212	VISCERA TUMORS
707	Σ	1.6 MEV	1500 RADS	6805	7211	PONE, SKIN, MUSCLE AND BLOOD THMORS
64J	Σ	1.6 MEV	1500 RADS	6805	6810	ACUTE CASTRIC DILITATION
S01	[2.	2 MEV X	CONTROLS	6403	2069	INFECTIONS
SII	ía.,	2 MEV X	CONTROLS	6505	ALIVE	ALIVE
J16	Σ	2 MEV X	360 RADS	6404	ALIVE	ALIVE
E91	Ŀ	2 MEV X	446 RADS	6404	ALIVE	ALIVE
K38	Σ	2 MEV X	446 RADS	6403	ALIVE	ALIVE
R85	٤.,	2 MEV X	446 RADS	6404	ALIVE	A. IVE
625	لعہ	2 MEV X	1146 RADS	6404	7504	ENDOMETRIOSIS
ê	x	2 MEV X	538 RADS	6403	7407	ORGAN DECENERATION
5	Ŀ.	2 MEV X	538 RADS	6403	7503	ENDOMETRIOSIS
E17	ţı.	2 mev x	538 RADS	6403	7801	ENDOMETRIOSIS
5 55	£.	2 MEV X	538 RADS	6403	7 104	ENDOMETRIOSIS
F14	Σ.	2 mev X	RADS אצל	6403	7801	ACUTE CASTRIC DILITATION
F32	Σ	2 MEV X	538 RADS	6403	8004	INFECTIONS
F39	Ĺ.	2 MEV X	ትንዶ RADS	6403	7411	BONE, SKIN, MUSCLE AND BLOOD THMORS
F.	ĹĿ	2 mev X	LAB RADS	6403	ALIVE	ALIVE
F73	<u>ل</u> ي.	2 mev x	538 RADS	6403	7210	ACUTE GASTRIC DILITATION
F75	í۲	2 MEV X	5 38 RADS	6403	6811	INFECTIONS
G17	٤.	2 mev x	538 RADS	6403	ALIVE	ALIVE •
C90	Σ	2 MEV X	538 RADS	6404	7912	VISCERA TUMORS
C7 1	ír.	2 mev X	624 RADS	6404	6709	INFECTIONS
E41	ĹĿ	2 mev X	624 RADS	6403	ALIVE	ALIVE
E66	Σ	2 mev X	624 RADS	6403	7212	ORGAN DECENERATION
E98	Σ	2 MEV X	624 RADS	6403	7111	INFECTIONS
F21	(EL	2 mev X	624 RADS	6403	7105	ENDOMETRIOSLS
F24	Σ	2 MEV X	624 RADS	6403	7605	ORCAN DECENERATION
F38	Σ	2 mev X	624 RADS	6403	7512	INFECTIONS
G19	נە.	2 mev X	624 RADS	6403	7206	INFECTIONS
G66	Σ	2 mev X	624 RADC	6403	ALIVE	ALIVE
K30	Σ	2 MEV X	624 RADS	6404	ALIVE	AI.IVE

DATA	
MURTALITY	

onkey 1d	SFX	ENERGY	DOSE	I RRAD DATE	DEATH	LAUSE OF DEATH
E64	Σ	2 MEV X	7 16 RADS	6404	7209	INFECTIONS
G62	Σ	2 MEV X	716 RADS	6403	8008	VISCERA TUMORS
H59	ir.	2 MEV X	7 16 RADS	6403	1177	ENDOMETRIOSIS
H61	Ŀ.	2 MEV X	716 RADS	6403	7 108	ENDOMET RIOSI S
K22	Ŧ	2 MEV X	716 RADS	6404	7604	VISCERA TUMORS
DS2	Σ	2 MFV E	CONTROLS	6911	7501	INFECTIONS
115	Ŀ	2 MEV E	CONTROLS	6911	ALIVE	ALIVE
67R	لع	2 MEV E	CONTROLS	6911	ALIVE	ALIVE
69R	ĹĿ.	2 MEV E	CONTROLS	6911	ALIVE	ALIVE
DV4	Σ	2 MEV E	900 RADS	6911	ALIVE	ALIVE
ECU	Σ	2 MEV E	900 RADS	6911	ALIVE	ALIVE
03R	ß.	2 MEV E	900 RADS	6911	ALIVE	ALIVE
89R	(Jan	2 MEV E	900 RADS	6911	7509	ENDOMETRIOSIS
E.6	Σ	2 MEV E	1200 RADS	6911	ALIVE	ALIVE
57R	ſ۲.	2 MEV E	1200 RADS	6911	ALIVE	ALIVE
65R	ja.,	2 MEV E	1200 RADS	6911	ALIVE	ALIVE
661	٤.	2 MEV E	1200 RADS	6911	ALIVE	ALIVE
DTB	Σ	2 MEV E	1500 RADS	6911	7511	INFECTIONS
ED2	Σ	2 MEV E	1500 RADS	6911	ALIVE	ALIVE
19R	<u>(</u> ب	2 MEV E	1500 RADS	6911	ALIVE	ALIVE
61R	ţĿ.	2 MEV E	1500 RADS	6911	7212	ORGAN DECENERATION
DL2	Σ	5 MEV	CONTROLS	6912	ALIVE	ALIVE
EJ4	Σ	5 MEV	CONTROLS	69 12	ALIVE	ALIVE
15E	Ŀ	5 MEV	CONTROLS	6804	ALIVE	ALIVE
314	Σ	5 MEV	CONTROLS	6706	ALIVE	ALIVE
36P	Σ	5 MEV	CONTROLS	6804	ALIVE	ALIVE
48P	Σ	5 MEV	CONTROLS	6804	7012	UNKNOMN
50K	Σ	5 MEV	CONTROLS	6804	78u2	ORGAN DECENERATION
6P5	íL.	5 MEV	CONTROLS	6706	ALIVE	ALIVE
607	د)	5 MEV	CONTROLS	6707	8004	ENDOMETRIOSIS
6V ¹	Σ	5 MEV	CONTROLS	6706	2609	ORGAN DEGENERATION
61S	íL,	5 MEV	CONTROLS	6912	ALIVE	ALIVE
SN6	ل ع.	5 MEV	CONTROLS	6706	7706	ACUTE GASTRIC PILITATION
96N	Σ	5 MEV	CONTROLS	6804	7607	UNKNOWN
S77	٤.,	32 MFV	CONTROLS	6407	ALIVE	ALIVE
161	ĹŦ.	32 MEV	280 RADS	6407	6806	INFECTIONS
E88	Σ	32 MEV	280 RADS	6407	ALIVE	ALIVE
F30	Σ	32 MEV	280 RADS	6407	ALIVE	ALIVE
H57	<u>ن</u> ـ ۱	32 MEV	280 RADS	2019	7503	ENDOMETRIOSIS
E63	ند (32 MEV	SURADS	1040	ALIVE	ALIVE
- L-1	ia.	32 MH/V	SUD RADS	P407	AL LVF	AI TVF

MIFTALITY DATA

١

CAUSE ୦୮ DEATH	ENDOMETRIOSLS	ALIVE	ALIVE.	ALIVE	ALIVE	ALIVE	ALIVE	ALIVE	ALIVE	ALIVE	ALIVE	ALIVE	ENDOMETRIOSIS	ALIVE	ALIVE	ALIVE	ALIVE	ALIVE	ALIVE	ENDOMET RIOSIS	ALIVE	ALIVE	ALIVE	ALIVE	INFECTIONS	OPGAN DEGENERATION	ALIVE	ORGAN DEGENERATION	UNKNOWN	ALIVE	ALIVE	ALIVE	INFECTIONS	AL.IVE	ALIVE	ALIVE.	ALIVE	ALIVE	INFECTIONS	ALIVE	ALIVE
DATE OF DEATH	77 12	ALIVE	ALIVE	ALIVE	ALIVE	ALIVE	ALIVE	ALIVE	ALIVE	ALIVE	ALIVE	ALIVE	7811	ALIVE	ALIVE	ALIVE	ALIVE	ALIVE	ALIVE	7110	ALIVE	ALIVE	ALIVE	ALIVE	8101	8109	ALIVE	7206	2107	AL1 VF.	ALIVE	ALLVE	7057	AI.IVE	ALIVE	ALIVE	ALIVE	ALIVE	7510	ALIVE	ALIVE
I RRAD Date	6407	2009	6407	6407	6407	6407	6504	6504	6504	6504	6504	6505	6505	6505	6505	6504	6504	6504	6505	6505	6505	6505	6504	6504	6504	6504	6505	6505	6505	6505	6505	6505	6505	6504	6505	6505	6504	6505	6505	6505	4049
الدينية	SUR RADS	560 RADS	56C RADS	560 RADS	560 RADS	560 RAPS	CONTROLS	CONTROLS	CONTROLS	CONTROLS	CONTROLS	CONTROLS	25 RADS	25 RADS	25 RADS	25 RADS	25 RADS	25 RADS	25 RADS	50 RADS	50 RADS	FADS	50 RADS	50 RADS	50 RADS	50 RADS	100 RADS	100 RADS	100 RADS	100 RADS	10 ^C RADS	100 RADS	100 RADS	200 RADS	200 RADS	200 RADS	200 RADS	JO RADS	200 FADS	200 RADS	ZHI RADS
ENERCY	32 MEV	32 mev	32 MEV	32 mev	32 MEV	32 mev	55 MEV	55 MEV	55 MEV	55 MEV	55 MEV	55 MEV	55 MEV	55 MEV	55 MEV	55 MEV	55 MEV	55 MEV	55 MEV	5. MEV	55 MEV	55 MEV	55 MEV	55 MEV	55 MEV	55 MEV	ά C MEV	55 MEV	55 MEV	55 MEV	55 MEV	55 MEV	55 MEV	55 MEV	55 MEV	55 MEV	い MEN と	ંગ MEV	55 MEV	55 MEV	55 MEV
SEX	íL.	is.	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Ŀ	Σ	Σ	íL,	Σ	Σ	Σ	ír.	i 1.	Σ	(e.	Σ	Σ	Σ	ía.,	ĹIJ-	Le.	X.	Σ	Σ	Σ	Ĺ	íu.	Σ	ís.	tı.,	í.	íz.,	Σ
MONKEY I D	F65	FI	G86	JU4	J70	J 82	P46	074	016 0	96N	V02	V86	L05	0 32	R78	S 55	1761)	V04	266	F63	161	MOH	R97	000	(BB4	V16	146	4 6'1	/ CN	N76	#L D	020	ΝZU	61d	16d	R38	TUS	ቲታ	7.57	179	281

ŧ

VKEY	ζĘΥ	AUMANA	DUSE	LIRRAD DATF DATF	ATE OF EATH	CAUSE OF DEATH	
_	252			ŝ			
	Σ	55 MEV	200 RADS	6504 A	LIVE	ALIVE	
	Σ	55 MEX	200 PADS	6505 A	LIVE	ALIVE	
	Σ	55 MEV	200 RADS	6505 A	LIVE	ALIVE	
	: 2	S.C. MEV	SOLA UNC	6505 7	206	BONE, SKIN, MUSCLE AND BLOOD TH	SHOMI
	: 2		200 RADS	6505 7	303	UNKNOMN	
	2 3		SUD BADS	6504 A	1.1 VE	ALIVE	
	= 1			ACO5	1145	A) 1 VF	
	£	N B C	400 HAUS	4 COC0			
	ĹĿ.	55 MEV	400 RADS	4049	210	INFECTIONS	
	ե	55 MEV	400 PADS	6505 A	LIVF	ALIVE	
	<u>(</u>	55 MEV	400 RADS	6505 7	711	ENDOMETRIOSIS	
	. (a.	SS MEV	400 RADS	6505 A	LIVE	ALIVE	
	, 2	5- M EV	400 RADS	6504 A	LIVE	ALIVE	
	: 3	AF MEV		6505	104	INFECTIONS	
	E 3			0200 0200	1105	ALTVF	
	E 3				1145		
	E :		400 MAUS				
	Σ		400 HAUS	ChCo	202	NERVE LUMURS	
	Ť	55 MEV	400 RADS	2 G05g	201	INFECTIONS	
	Σ	55 MEV	400 RADS	6505 7	210	ORGAN DECENERATION	
	Σ	55 MEV	400 RADS	6505 7	601	INFECTIONS	
	Σ	55 MEV	400 RADS	6505 A	LIVE	ALIVE	
	Σ	55 MEV	600 RADS	6505 6	911	BONE, SKIN, MUSCLE AND PLOND TU	SHOW
	Σ	55 MEV	600 RADS	6505 7	500	ACUTE CASTRIC DILITATION	
	(1 .	55 MEV	600 RADS	6505 7	502	INFECTIONS	
	Σ	55 MEV	600 RADS	6504 7	200	ORGAN DECENERATION	
	Ŀ.	55 MEV	600 RADS	6505 7	611	ORGAN DECENERATION	
	6 .	55 MEV	600 RADS	6505 7	308	NERVE TUMORS	
	Σ	55 MEV	600 RADS	6504 6	111	NERVE TUMORS	
	(r.	55 MEV	600 RADS	6504 7	512	INFECTIONS	
	Σ	55 MEV	600 RADS	6504 A	TIVE	ALIVE	
	2.	55 MEV	600 RADS	6505 A	ILIVE	ALIVE	
	2	55 MEV	600 RADS	6505 6	610	NERVE TUMORS	
	ž	55 NEV	600 RADS	6505 7	708	NERVE TUMORS	
	: X	ELC MEN	600 RADS	6505 7	706	ORGAN DECENERATION	
	: 7		SUN BADS	6505	501	RONF SKIN MUSCLE AND BLOOD TH	IMURS
	5 3		SUM DANS	A FILE	612	ORCAN DECENERATION	
	5 3				206	INFECTIONS	
	c 7			650k	808	ORCAN DECEMERATION	
	2 3	DJ TEN	SUN PAR	6405	512	INFECTIONS	
	E 3		SON RADE	P P P P P P P P P P P P P P P P P P P	803	INFECTIONS	
	2 2	LC MFV	BIID RADS	6504 6	811	NERVE TUMORS	
	2		SOD RADS	6405	606	NERVE THIMDRS	
	E						

. .

WRIALITY DATA

49

ŧ

. eUSF DF DEATH	ORGAN DECENERATI N	NERVE TUMPER	ALIVE	ALIVE.	ALIVE	ALIVE	ALIVF	ORIAN DETENERATI N	ACUTE CASTPIC DULITATION	ALIVF	DRGAN DEGENERALION	ENDOMFTRI OSIS	INFECTIONS	ALIVE	ENDOMET'RI OSI C	ALIVE	ALIVE	VISCERA TUMURS	BONE, SKIN, MUSCLE AND PLOOD TUMORS	ALIVE	ALIVE	ALIVE	ALIVE	INFECTIONS	INFECTIONS	INFECTIONS	ALIVE	ENDOMETRIOSIS	ALIVE	ALIVE	INFECTIONS	ALIVE	ALIVE	ALIVE	UNK NOWN	BONE, SKIN, MUSCLE AND PLOOD TUMPRS	ALIVE	PRCAN DECENERALION	INFECTIONS	ORGAN DECENERATION	ORGAN DECEMERATION
DATE OF Deates	5612	7004	ALIVE	ALIVE	ALIVE	ALIVE	ALTVF	P007	7011	ALIVF	21872	7401	7510	ALIVE	7805	ALJVE	ALIVE	8008	7810	ALIVE	ALIVE	ALIVE	ALIVE	7912	7605	7803	ALIVE	7611	AL.IVE	ALIVE	7001	ALIVE	ALIVE	ALIVF.	67012	1504	ALIVE	6705	6069	21712	7 104
IFRAD DATE	66-05	6504	6501	6501	6501	6501	6501	6501	6501	6501	6501	6501	6501	6501	6501	6501	6501	6501	6501	6501	6501	6501	6501	6501	6501	6501	1049	6501	6501	1059	6501	6501	6501	6401	1:059	6501	6501	6501	6501	6501	6501
tinse	SUO RALS	800 RADS	CONTROLS	CONTRCLS	CONTROLS	CONTROLS	CONTROLS	CONTROLS	CONTROLS	210 RADS	210 RADS	210 RADS	210 RADS	210 RADS	210 RADS	210 RADS	210 RADS	210 RADS	360 RADS	360 RADS	360 RADS	360 RADS	360 RADS	360 RADS	360 RADS	360 RADS	360 RADS	360 RADS	360 RADS	360 RADS	500 RADS	500 RADS	SOD RADS	500 RADS	500 RADS	500 RADS	500 RADS	500 RADS	650 RADS	650 RADS	650 RADS
FTERGY	V34: 55	55 MEV	138 MEX	138 MEV	138 MEV	138 MEV	138 MEV	138 MEV	138 MEV	128 MEV	138 MEV	138 MEV	138 MEV	138 MEV	138 MEV	138 MEV	138 MEV	138 MEV	138 MEV	138 MEV	138 MEV	138 MEV		138 MEV	138 MEV	138 MEV	138 MEV	136 MEV	1 30 MEV	138 MEV	138 MEV	138 MEV	138 MEV	13° YEV	138 MEV	138 MEV	1 40 MEV				
SEX	Σ	2.1	Le.,	Σ	ы.	Σ	Σ	is.	ia.,	Σ	ia.	ĹŁ.,	Σ	Σ	ſĿ.	Σ	Σ	Σ.	Σ	Σ	b .	iz . 1	Σ.	Σ	£	<u>ل</u> د (المق	Le. 1	Σ	Σ	Σ:	Σ:	Σ	Σ	٤.	Σ	(L.	(L	Σ	ل , ا	ъ.
MONKEY ID	744	M52	107	512	117	L16	L22	1.25	127	0 <u>9</u> 6	H67	H75	96r	K48	K 67	K7 0	K84	K92	56 156	184	K13	ŝ	K44	K78	K94	Г <u>1</u> 3	с 6. С	57	179	061	4 1 1 1 2	104 100	000	K02	K19	K 34		SE CO	550		K/ 3

-

MCFIALITY DATA

DATH
lΤΥ
TAL
Ę.

CAUSE DF DEATH -	INFECT LUNS	ALIVE	ALIVE	ALLVE.	ALIVE	ALIVE	ALIVE	ALIVE	ALIVE	INFECTIONS	ALIVE	INFECTIONS	ALIVE	INFECTIONS	ENDOMETRIOSIS	ACUTE GASTRIC DILITATION	ALIVE	BONE, SKIN, MUSCLE AND BLOOD TUMORS	ALIVE	ALIVE	ALIVE	ALIVE	ALIVE	INFECTIONS	ENDOMETRIOSIS	ALIVE	ALIVE	UNKNOWN	ALIVE	ALIVE	ALIVE	ALIVE	ENDOMETRIOSIS	ORGAN DECENERATION	ENDOMETRIOSIS	ORGAN DEGENERATION	ALIVE	INFECTIONS	ENDOMETRIOSIS	ACITE GASTRIC DILITATION	ALTVF
DATE OF DEATH	7.102	ALIVE	ALIVE	ALIVE	ALIVE	ALIVE	ALIVE	ALIVE	ALIVE	7701	ALIVE	7212	ALIVE	8101	1077	8008	ALIVE	6712	ALIVE	ALIVE	ALIVE	ALIVE	ALIVE	7112	8002	ALIVE	ALIVE	7601	ALIVE	ALIVE	ALIVE	ALIVE	7702	11511	1077	7008	ALIVF	6512	7805	5608	A) IVF
I RRAD DATE	2039	6503	6503	503	6503	6503	6503	6503	6503	6503	6503	6503	6503	6503	6503	6503	6503	6503	6503	6503	6503	6503	6503	6503	6503	6503	6503	6503	6503	6503	6503	6503	6503	6503	6503	6503	6503	6503	6503	6503	6603
DOSE	CONTROLS	CONTROLS	CONTROLS	(I)NI KOFS	CONTROLS	CONTROLS	CONTROLS	CONTROLS	CONTROLS	CONTROLS	50 RADS	50 RADS	50 RADS	50 RADS	50 RADS	50 RADS	50 RADS	100 RADS	100 RADS	100 RADS	100 RADS	100 RADS	100 RADS	100 RADS	100 RADS	100 RADS	100 RADS	100 RADS	100 RADS	200 RADS	200 RADS	200 RADS	200 RADS	200 RADS	200 RADS	200 RADS	200 RADS	200 RADS	200 RADS	SUD TAPS	SUBA OUC
ENERGY	400 MEV	VID MEV	HOU MEV	400 MEV	400 MEV	400 MEV	400 MEV	400 MEV	400 MEV	400 MEV	400 MEV	400 MEV	400 MEV	1100 MEV	400 MEV	400 MEV	400 MEV	100 MEV	400 MEV	400 MEV	400 MEV	400 MEV	400 MEV	400 MEV	400 MEV	400 MEV	400 MEV	HOU MEN	400 MEV	400 MEV	400 MEV	HOU NEV	400 MEV	400 MEV	400 MEV	400 MEV	400 MEV	400 NEV	400 MEV	400 MEV	BOD MEV
SEX	Ŀ.	Σ	Le. 1	L . (Σ	Ŀ.	íe.	Σ	2	Σ	Σ	Ŀ.	Σ	æ	ís.,	Σ	í	Σ	Σ	Σ	Σ	Σ	<u>ل</u> عا	Σ	(L	(z.	í.,	£	Σ	(s.	ís.,	¥	Ŀ.	(L.	٤.	(s.,	Ŀ	Σ	ís.	(s.	6
MONKEY ID	L75	012	R39	R41	266	S69	66S	T 68	170	178	L32	PUS	P12	P24	35	S62	S65	L18	L74	L78	192 L92	POU	60 3	Butc	R59	R71	S73	88 88 88 88 88 88 88 88 88 88 88 88 88	T62	199 1	M15	M16	N81	N87	P03	604	P23	P48	P85	564	ъК 2

~ **..**.

----.

DATA
7.

`
•
41
7

														NOCHI 1007 PH			RUOUR																								
CAUSE OF	DFATH	,.						ETRIOSIS			ETRIOSI 7		ETRIOSIS	SKIN, MUSCLE AND	ETRIOSIS		SKIN, MUSCLE AND	SNOIL		ETRIOSIS		DECENERATION	TIONS	2	SNOLL			TI ONE THE TIME	1 FOIRS				SNOTE	ETRIOSIS			ETRIOSIS		N.M.	ETRIOSIS	
ía.`	TH	VF ALIVE	VE ALIVE	VE ALIVE	VF. ALIVE	VE ALJVE	VE AL.IVE	P ENDOM	VE ALIVE	VE ALIVE	6 ENDOM	VE ALIVE	1 ENDOM	1 BONE.	H ENDOM	VE ALIVE	6 BONE,	1 INFEC	VE ALIVE	6 ENDOM	VE ALIVE	3 OPCAN	4 INFEC	ION XINI I	d INFEC	VE ALIVE	VE ALIVE	1 OHGAN	VE ALIVE	VE ALIVE	VF ALIVE	VE. ALIVE	7 INFEC	D ENDOM	VE ALIVE	VE ALIVE	DOM ENDOM	VE ALIVE	ONXNO 6	1 ENDOM	VE ALIVE
PRAD DAT	ate hea	111 EOS	503 ALI'	503 ALI'	503 ALT	503 ALI'	503 ALI'	101 203	503 ALT	503 ALI'	503 7200	503 ALI'	503 791	503 801	-03 150 ¹	503 ALI'	503 7600	503 681	503 ALIV	503 770	503 ALIV	503 750	203 7604	01/L E09	503 7804	510 ALIV	ALIV ALIV	06/ 010		PID ALIV	510 ALT	010 ALI	510 690	510 7710	510 ALIV	510 ALIV	510 7716	510 ALIV	510 7705	510 801	510 ALI
	ă	0 0	S 6	ড ত	6 9	S S	S S	S	S	S S	S S	S 6	S 6	S S	S 0	S S	S S	S S	S S	ور د	S O	S S	S S	S S	<u>ه</u>	s S	0 I	53 0 0	5 VC 9 VC	. v	S O	S	S O	S	S O	S S	S S	S S	S	9 9 9	S S
	N SE	200 RAL	200 RAD	200 RAD	200 RAU	400 RAD	4UU RAD	400 RAD	400 RAD	400 RAC	400 RAD	400 RAD	400 RAD	400 RAD	400 RAC	400 RAD	400 RAD	400 RAD	400 RAD	400 RAD	600 RAD	600 RAD	600 RAD	600 RAD	600 RAD	CONTROL	CONTROL		CONTROL	CONTROL	CONTROL	56 RAD	56 RAD	56 RAD	56 RAD	56 RAD	56 RAD	56 RAD	113 RAD	113 RAD	113 RAD
	ENFROY	A 40 MEV	4 NO MEV	100 MEV	UD MEV	400 MEV	IPO NEV	400 MEV	400 MEV	400 MEV	400 MEV	100 MEV	400 MEV	400 MEV	400 MEV	100 MEV	400 MEV	400 MEV	100 MEV	400 MEV	400 MEV	400 MEV	100 MEV	400 MEV	100 MEV	2300 MEV	2300 MEV	2300 MEV	2300 MEV	2300 MEV	2300 MEV	2300 MEV	2300 MEV	2300 MEV	2300 MEV	2300 MEV	2300 MEV	2300 MEV	2300 MEV	2300 MEV	2300 MEV
	Kas	ц.	Σ	Σ	Σ	Σ	Σ	(IL-	íL.	նւ	Ŀ	Σ	۶.	Σ	ís.	Σ	Σ	Σ	Σ	í2.	Σ	Σ	GL.	Ŀ.	Σ	Σ	Σz	E 3	C (L.	Σ	Σ	ís.	Ŀ.	ís.	ír.	(2.,	íL,	Σ	íL.	(e.)	Σ
NKEY	10	543	ŝ	36 8	14	88 88	70	17	.87	417	427	ŝ	Ē	506	215	P72	96	32 4	808	÷ E	18	22 2	680	ب ک	90 90	Rec	22		3 ₹	1A4	5AO	611	203	<u>13</u>	35	J47	<u>755</u>	126	ŝ	5	J 04

·

C de Mille

TOMOR

· · ·
H.
-
õ
~
<u>`</u>
÷
<
£

r		
•		
ь.		

CAUSE OF DEATH	INFECTIONS	ALIVE	INFECTIONS	ENDOCRINE DISORDERS	ALIVE	INFECTIONS	ALIVE	ALIVE	ENDOMETRIOSIS	ALIVE	ALIVE	ALIVE	ENDOMETRIOSIS	ALIVE	ENDOMET RI OSI S	ENDOMETRIOSIS	BONE, SKIN, MUSCLE AND BLOOD TUMORS	ALIVE	ENDOMETRIOSIS	ALIVE	UNUAN PEREMENALION	ALIVE ALIVE	ORCAN DECEMERATION	ALIVE	INFECTIONS	INFECTIONS	UNKNOWN	ALIVE	ALIVE	ALIVE	ALIVE	ALIVE								
DATE OF DEATH	7510	ALIVE	8004	8001	ALIVE	7510	ALIVE	ALIVE	7412	ALIVE	ALIVE	ALIVE	2409	ALIVE	7401	7601	7110	ALIVE	7401	ALIVE	1067	ALL VE	8104	ALIVE	8010	7303	1201	ALIVE	ALIVE	ALIVE	ALIVE	ALIVE								
I RRAF DATE	6510	6510	6510	65 10	6510	6510	6510	6510	6510	6510	6510	6510	6510	6510	6510	6510	6510	6510	6510	6510	6510	6510	6510	6510	6510	6510	65 10	0100	01 00	01 C0	6510	6510	6510	6510	6510	690H	690 th	6904	6904	6904
DOSE	113 HADS	113 RADS	113 RADS	113 RADS	113 RADS	11 STADS	113 RADS	225 RADS	25 RADS	225 RADS	225 RADS	225 PADS	225 RADS	225 RADS	225 RADS	225 RADS	2255 RADS	225 RADS	225 RADS	225 RADS	225 RADS	225 RADS	395 RADS	395 RADS	395 RADS	395 RADS	395 RADS	305 RADS	SOF TAUS	SUA RAUS	305 RADS	560 RADS	560 RADS	560 RADS	560 RADS	CONTROLS	CONTROLS	CONTROLS	CONTROLS	CONTROLS
ENERGY	2300 MEV	2300 MEV	2300 MEV	2300 MEV	2300 MEV	2300 MEV	2300 MEV	2300 MEV	2300 MEV	2300 MEV	2300 MEV	2300 MEV	2300 MEV	2300 MEV	2300 MEV	2300 MEV	2300 MEV	2300 MEV	2300 MEV	2300 MEV	2300 MEV	2300 MEV	2300 MEV	2300 MEV	2300 MEV	2300 MEV	2300 MEV	2300 MEV	2300 MEV	2300 MEV	2300 MEV	2300 MEV	2300 MEV	2300 MEV	2300 MEV	SOLAR FLARE	SOLAR FLARE	SOLAR FLARE	SOLAR FLARE	SOLAR FLARF.
.тех	Σ	Σ	Σ	Σ	Σ	Σ	Σ	ls.	Ĺ	ţr.	íĿ.	ír.	(L	íĿ.	Σ	Σ	ís.	Σ	(2.	Σ	íL.	T	ĺ۵.	ĹĿ.	Σ	ĺĿ.	LL 1	a, 3	EЗ	5 2	: 2	Σ	Σ	ĹĿ	<u>ن</u> ه.	Σ	Σ	Σ	Σ	Σ
UT XJ XVV	19A	V72	٧٦٩	V76	V88	MON	6A8	S53	U15	U21	U23	U3 3	049	U57	0th	V98	w15	024	W3 3	W34	6EM	0A2	U u 1	043	144	E.	083				986	016	036	u67	N37	ASO	AWU	BH6	HOH	N#0

....

.

MORTALITY PATA

CAUSE OF	DEAT	ALIVE	ALIVE	ALIVE	ACUTE GASTRIC DILITATION	ALIVE	ENDOMETRIOSIS	ENDOMETRIOSIS	ALIVE	ALIVE	ALIVE	ALIVE	ORGAN DESENERATION	ALIVE	ALIVE	ALIVE	INFECTIONS	BONE, SKIN, MUSCLE AND BLOOD TUMORS	ALIVE	ALIVE	ALIVE	ORCAN PEGENERATION									
DATE OF	DEATH	ALIVE	AL.IVE	ALIVE	1001	ALIVE	8 103	60 <i>L</i> L	ALIVE	ALIVE	ALIVE	ALIVE	7504	ALIVE	ALIVE	ALIVE	7809	7807	ALIVE	ALIVE	ALIVE	7907									
I RRAD	DATE	5904	6904	6904	6904	6904	6904	6904	1069	1069	6904	6904	t069	1069	6904	1069	t069	1069	6904	1069	1069	6904	6904	f069	6904	1069	2069	1069	6904	6904	6903
	DUSE	CONTROLS	CONTROLS	300 RADS	300 RADS	300 RADS	300 RADS	300 RADS	300 RADS	300 RADS	600 RADS	600 RADS	900 RADS	900 RADS	900 RADS	900 RADS	900 RADS	900 RADS	900 RADS	1200 RADS S.E.	1200 RADS S.E.	1200 RADS S.E.	1200 RADS S.E.	1200 RADS T.E.	1200 RADS T.E.	1200 RADS T.E.					
	ENERCY	SOLAR FLARE	SOLAR FLARE	SOLAR FLARE	SOLAR FLARE	SOLAR FLARE	SOLAR FLARE	SOLAR FLARE	SOLAR FLARE	SOLAR FLARE	SOLAR FLARE	SOLAR FLARE	SOLAR FLARE	SOLAR FLARE	SOLAR FLARE	SOLAR FLARE	SOLAR FLARE	SOLAR FLARE	SOLAR FLARE	SOLAR FLARE	SOLAR FLARE	SOLAR FLARE	SOLAR FLARE	SOLAR FLARE	SOLAR FLARE	SOLAR FLARE	SOLAR FLARE	SOLAR FLARE	SOLAR FLARE	SOLAR FLARE	SOLAR FLARE
	SEX	le.	íe.	Σ	Σ	Σ	Σ	Σ	Σ	L .	z	Σ	Σ	Σ	ل عہ	Ŀ.	(L.	Σ	£	Σ	Ŀ	لعہ	L	Ŀ	Σ	Σ	Σ	եւ	Σ	ía.	(z.,
MONKEY	01	7X7	8,45	AY4	AY8	PCO PCO	BE2	BH4	H28	07K	BE6	808 808	BV6	0thH	33H	55K	57H	AMO	BH8	B1.6	050	63H	87H	93C	AW6	BM8	BP2	67.0	AB8	41.	6 Y 3

.....

END DATE FILMED