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1.0 INTRODUC7ION

Current generation automated systems have only a limited capability for interacting
with their environment. This is due, in large part, to the fact they cannot
understand their environment. The lack of understanding is not caused by a lack of
data. A variety of sensors are available to capture information in digital form. The
problem is to understand this information.

The goal of this research was to develop new tools to aid in the automated analysis
of two dimensional arrays of pixels. Such arrays can be produced by optical,
infrared, or radar sensors. Understanding pixel arrays by examining individual pixels
is difficult because each pixel contains only a shred of evidence about the entity to
which it belongs. Looking at all the pixels together usually presents too complicated
a mass of information to be easily understood. For these reasons our theoretical
development and experimentation have all been based on the GBT method of
successively decomposing two dimensional space. By using GBT cells of varying
sizes, we are able to find areas of the image that contain enough pixels to represent
something significant but not so many as to defy comprehension.

The tools developed during this research are the function f2 that provides
information about shape and the vector T that provides a local quantification of
image texture. High values of f2 over a region indicate that the region contains a
solid, well compacted object, e.g, a rectangle or ellipse. Low values indicate the
image is fragmented. In the context of GBT, f 2 tells whether a region can be
understood as a whole or whether it must be decomposed.

The T vector allows the computation of the texture of any region as a convex sum of
the textures of its constituent parts. Preliminary results have shown that what the
T vector measures corresponds closely to the human perception of visual texture.

The result of this research is that two valuable tools for automated image
understanding have been developed and proven valuable in limited experimentation.
More work is required to see what further tools can be developed and to exploit the
full power of the tools we have now.

P
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2.0 STATEMENT OF THE PROBLEM

One of the major weakness of today's automated systems is their lack of ability to
convert analog data into internally usable form. This applies particularly to two
dimensional images. There are important military applications for understanding the
content of imagery from a variety of sources: images from camera carrying
platforms, radar images, and infrared images. Current automated techniques,
however, have only primitive capabilities.

The capability for converting analog images to digital form as an array of pixels
exists and is relatively mature. Pixel digitization is even accomplished in some
systems at the time of image capture. The question is: what do all those pixels
mean? Taken individually, each pixel can contribute only the tiniest understanding
of the overall image content. Yet the totality of pixels, taken together, usually are
too complicated for automated understanding. What is required is a method of
examining regions of various sizes and shapes so that entities that are both
significant and simple can be isolated from the rest of the image and analyzed.

The research reported here lays the foundation for performing this process. It uses
the Generalized Balanced Ternary (GBT) method of structuring space into a cellular
hierarchy as the basis for analyzing the behavior of picture functions. It shows how
to use shape descriptors, both classical and original, to understand the nature and
complexity of the picture function at cells throughout the GBT hierarchy. It further
gives techniques for piecing together the rigidly structured GBT cells to form
regions of arbitrary shape.

Besides its innovative use of the GBT structure in analyzinj imagery, two new tools
have been derived during this research: a function called f which gives information
about the shape of an image within a region and a quantification of regional texture
as a vector.

These new tools and the easy ways they interact within the GBT hierarchy provide a
significant advance along the path toward automated image understanding.

r
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3.0 SCOPE

The research performed under this contract was done from April 1, 1982 to
October 1, 1982 by Dr. Dean Lucas, Dr. Laurie Gibson, Mr. Tom Bundy, Mr. Jay
Elston, and Mr. Terry Elmore. Past research in the mathematics of Generalized
Balanced Ternary and its application to processing binary images was extended by
this work. In addition, commercial and experimental software systems previously
developed at Interactive Systems Corporation were used in the project. The
objectives of this research were as follows:

1. Demonstrate the capability of the Generalized Balanced Ternary approach to
extract from pixel data the features and regions of common texture in an
aerial photograph.

2. Derive aggregate measures for the representation of cartographic information
to be stored in a data file used in feature recognition and change detection.

The research proceeded in these steps:

I. Convert existing software for scanning and processing binary images to handle
the scanning of photographs. Develop histograming, image enhancement,
display, and hard copy functions.

2. Define texture.

3. Build software for computing texture and test on photographs.

4. Build software for the statistical analysis of texture (compute parameters of a
distribution and Mahalanobis distance).

5. Analyze the texture definition and its ability to distinguish intuitive textures.

6. Define aggregate descriptors.

7. Modify existing software to compute these descriptor functions for the
scanned images.

8. Test the descriptors on actual images and refine definitions. Select those that
seem most useful.

During the course of this project the following papers were presented which
announced preliminary results of the research.

1. "Spatial Data Processing using Generalized Balanced Ternary" presented by
Dean Lucas at the IEEE Computer Society Conference on Pattern Recognition
and Image Processing, June 1982, Las Vegas, Nevada.

2. "Automated Data Capture" presented by Laurie Gibson at the Symposium on
Automation Technology for Management and Productivity Advancement
through CAD/CAM and Data Handling, November, 1982, Naval Postgraduate
School, Monterey, California.

Page 3
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4.0 DESCRIPTION OF THE TECHNOLOGY

4.1 Picture Functions

The goal of this research was to develop tools to enable a computer to understand
the content of a picture. In order to understand the progress of the research and the
nature of the tools that were developed, it is necessary to start at the beginning,
with the basic notion of a picture function.

For our purposes, a picture function, p, is a real valued function defined on the
plane. In what follows we will address the points in the plane as complex numbers,
i.e., numbers of the form x + yi where x and y are real numbers and i 2 = -. In
practice, the values that a picture function can take on are often restricted.
Picture functions which take on the values 0 and I only are called binary picture
functions. We will use the term gray level when speaking of a picture function that
takes on integer values from 0 to 255 inclusive. Figure 1 is an illustration of a
binary picture function. The illustration is meant to be interpreted as follows: at
every point at which ink is present on the paper the picture function takes on the
value 1, where ink is not present it takes on the value 0.

0 _/

Figure 1. An Illustration of a Binary Picture Function.

Picture functions can be added together, multiplied together, and multiplied by
scalars to yield new picture functions. In what follows we will take advantage of
these algebraic properties of picture functions to try to express complicated picture
functions as sums or differences of simple picture functions. For instance, the
picture function illustrated in Figure I might be expressed as the sum of two more
easily understandable picture functions: one an ellipse, the other a rectangle.
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4.2 Classical Techniques

We are interested in developing tools for determining the content of pictures. Our
techniques are based on some relatively well known analysis functions. In this
section we restate these functions to remind the reader of their existence and
introduce our notation. In what follows, p is a picture function on the complex
plane, z = x + yi is a variable complex number, c is a fixed complex number, and R is
a region of the plane.

For q = 0, 1, , and m= 0, 1, , theqth moment of pm about c in the
region R is:

M(q,c,pm, R) = (zc)qp(z)mdz
zd

Let us illustrate and name some of the simpler of these moments. (The question of
the existence of these integrals is not addressed since it has no practical
consequences.)

0M(0,c~p ,R) = f dz = the area of R.
zeR

M(O,c,p,R) = f p(z)dz = the weight of pon R.
zER

M(l,c,p,R) = f (z-c) p(z)dz - the first moment about c of p on R.
zeR

M(2,c,p,R) = f z-c) 2 p(z)dz the second moment about c of p on R.
zeR

There are several other classical functions that are related to or derived from
moments. We define and name those functions that we will need later.

1 0
1'(p,R) = M(0,c,p ,R)/M(0,c,p ,R) the mean of p on R.

Var(p,R) = M(0,c,p ,R)/M(0,c,p ,R) - UL(pR) 2 = the variance of p on R.

S(c,p,R) = f I z-c, 2 p(z)dz = the scalar moment about cof p on R.
zER

c~(pMO c cR)c MTc,p,R) "= z p(z)dz/ f p(z)dz
c ( pR) zR zeR

= the centroid of p on R (note that the centroid is independent of
the fixed point c).

Page 5
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For many applications we will wish to use the centroid c*(p,R) as the fixed point c
about which we compute moments. Below we state several classical results
concerning moments about centroids of picture functions.

Xl(p,R) = Y2(S(c*,p,R) + JM(2,c*,p,R)J)/M(0,c *,p,R)

= the primary eigenvalue of p on R.
X2PR (~ * * *

X=(pR) =(S(c*,p,R) - JM(2,c ,p,R) )/M(0,c ,p,R)

= the secondary eigenvalue of p on R.

M(1,c ,p,R) = 0. In words, the first moment about the centroid is zero.

Ax(p,R) = W(angle of M(2,c ,p,R)

= the angle of the principal axis of inertia of p on R.

It may happen that we have computed moments and the scalar moment about a
point c which is not the centroid (the origin for instance). Since the second moment
and the scalar moment about the centroid are needed for computing eigenvalues, it
is handy to have a means of obtaining them directly. The formulas below provide
such a means:

M(2,c*,p,R) = M(2,c,p,R) - M(l,c,p,R) 2/M(0,c,p,R)

S(c*,p,R) = S(c,p,R) - M(l,c,p,R) (l,c,p,R)/M(0,c,p,R),
where M(l ,c,p,R) is the complex conjugate of M(l,c,p,R)

4.3 Examples

In order to show the utility of these classical analysis functions and tu lead into the
discussion of other functions, it is worth looking at some simple examples.

Let p be the binary picture function representing a rectangle of half height a and
half width b centered at the origin. Figure 2 illustrates this picture function. Some
relevant statistics for this picture function have been computed and are shown
beside the illustration. Figures 3 and 4 show the comparable illustration and
statistics for an ellipse and a rhombus both centered at the origin with semiaxes a
and b.

weight = 4ab
first moment = i 4

T second moment = (b a - a b)a
scalar moment = (b 3a + a 3b)

= { a2 /3 if a > b

b /3 if b > a

Xb- = { b2/3 if a > b
- a 2/3 if b > a

Figure 2. A Binary Picture Function of a Rectangle centered
at the Origin together with significant Statistics.

Page 6
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a weight = 7rab
first moment 0T 3 3
second moment = (b a - a b)

Tr 3 3
scalar moment = (b a + a b)

a 2 /4 if a > b
b2 /4 if b > a

-bj X b2/4 if a > b
2 ita if 2 / if bn> a

Figure 3. The Comparable Picture Function and Statistics for an
Ellipse centered at the Origin with Semiaxes a and b.

weight = 2ab
~k -T first moment = 0 1

ai second moment = (b a - a b)

scalar moment (b 3 a a 3b)

b2 /6 if b > a

b 2 /6 if a > b

b-I "2 : a 2 /6 if b > a

Figure 4. The Comparable Picture Function and Statistics for a Rhombus
centered at the Origin with Semiaxes a and b.

To get a feel for the computation involved and to provide one more useful example,
let us explicitly derive the moments and scalar moment for a regular n-gon of outer
radius R. Specifically, for each integer n greater than two, we will construct a
regular n-gon centered at the origin from n isosceles triangles similar to the
triangle, T, shown in Figure 5. The n-gon is built as a union of n of these triangles
each successive triangle being rotated through an angle of 2ir/n from the position of
its predecessor. Thus, the set, 5, of points in the n-gon is:

() S= {ze j211i/n I zeT, j = 0, 1, . . ", n-li

where T is the triangle shown in Figure 5 and i2 
= -1. The picture function, p, which

describes this n-gon takes the value 1 on all points in S and 0 elsewhere.

Rcos( /n)

Figure 5. The Basic Triangle, T, from which an N-gon is constructed.

Page 7
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The qth moment of pm about the origin is computed as follows:

M(q,0,pm,C) f z q p(z)dz , by definition
zec

I z q p(z)dz, since p(z)m = p(z)
zEC

zq dz, since p(z) = I within the n-gon, 0 elsewhere

zeS
n- /n
n " zq ejqZr i /n dz, from(I)

j=0 zcT
n-1

(2) e djq2zi/
j =0 zcT

Let us examine the first portion of this expression. It is a geometric series

in eq2 i/n . If q is a multiple of nthen eq21i / n . 1 and the series sums ton. It q

is not a multiple of n then eq2 n i /n j I and the following holds:

n-I jq21i/n e q21 i 2 since eq2ri I and the denominator is not

E e qir nj=0 -e

zero.

Now let us compute the integral which is the second part of (2).

Rcos(T/n) xtan(ufn)

Szqdz = f 5 (x + yi) q dy dx, since these limits

zET 0 -xtan(ir/n)

describe T

(I + itan(U/n))q+l -(I - tan(/n)) q +l q 2  sq4Z(i/n),... . i(q + I)(q + 2)' - q 2 cs+(/)

by standard integration.

From these two considerations we cari describe all moments of the n-gon of outer

radius R described above:

0, if q is not a multiple of n

(3) M(q,0,p m ,C) { q+2cos (./)q+2 (l + itan(n/n))q+I" (I _ itan(/n))q+'

p 'C ' i(q + -)(q + 2)

otherwise.
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In particular the first and second moments of the n-gon are always zero since n must

be greater than two. The scalar moment is computed similarly:

S(OpC) : f 1z1 2 p(z)dz, by definition
zSC

= jz12 dz, since p(z) I in S and p(z) 0 elsewhere
zeS

n-1 /n2
= f IzeJq1wi  dz, from (1)

j=0 zcT

n-I f 1z1 2d7, since ejqzri/nl -

j=O zeT

Rcos(/n) xtan(n/n) 2 2
n f f x + y dydx

0 -xtan(lt/n)

(4) Y2n(tan(r/n) + tan3 (n/n)/3)R cos4 (I/n)

Since the first moment of the n-gon is zero its centroid is at the origin and the
moments we have just computed are, in fact, moments about the centroid. By
examining the formulas for eigenvalues given above, we can see that the effect of
the second moment being zero is that both eigenvalues are equal and are explicitly
computed as follows:

(5) X (pC) = X2(pC) - (O , ,C)

= Y(l + tan2(n/n)/3)R2 cos 2(T/n), by (3) and (4)

The results of these computations are summarized in Table 1.

weight = n tan (n/n) R 2 cos (Wn) = nR2 sin(n/n) cos(n/n)

first moment = 0

second moment = 0

scalar moment = Yan(tan(ff/n) + tan3(1/n)/3) R4 cos 4 (n/n)

X I = X 2 = Y (0 + tan2 (?/n)/3) R2 cos 2(Win)

Table I. Basic Statistics for an N-gon of Radius R.
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As a final example, we will compute the usual classical statistics for the binary
picture function illustrated in Figure 6. The picture function takes the value I
within each of the n rectangles shown and is 0 elsewhere. The computational steps
will be somewhat more abbreviated than in the previous example, leaving the reader
to fill in the details.

i.-h ..
K Kr

Figure 6. N identical rectangles aligned and equally spaced. Rectangles
are of height 2h and width w (0 < w < 1).

M(q,0,p,C) = f zq p(z)dz
zeC

n-I
= Z fw f (x yi)q dy dx

n-I q+1 q+z wk )q+2-k

i(q+l)(q+2) jEO k )w ((.~.) +k -hi

In particular, by substituting q = 0, 1, and 2, we get:

n-I
weight = Z 4hiw = 2nhw

j=0

I n-l 2
first moment about 0 = 9 (12jhiw + 6hiw 2)

j=0

= nhw(n + w - 1)

I n-l 2 3 2 3
second moment about 0 = T E (24j hiw- h iw 24jhiw 8hiw

j =0
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nhv (2n 2 3n + I -2h 2 + 3r- 3w + 2w )

Computing the scalar moment about the origin goes as follows:

S(O,p,C) = f I z 12 p(z)dz

n-I 2 2
j=0 -h x+ y dy dx

nhw(2n 2  3n + I + 2h2 + 3w 3w + 2w

From the weight and first moment we obtain the centroid:

*(pc) nhw(n + w - 1) n + w - I
= 2nhw - 2

Then the second moment and scalar moment about the centroid are computed from
the formulas provided above:

M(2,c*,p,C) = M(2,0,p,C) - M(1,O,p,C) 2/M(O,O,p,C)

= nhw (n 2 + w 2  I - h )

S(c*,p,C) = S(Op,C) - M(I,O,p,C) F (I,O,p,C)/M(O,O,p,C)
nhw (n2 + w2 24h2

In this example M(2,c ,p,C) is a real number which may be positive or negative
depending on the size of h. Therefore, I M(2,c*,p,C) I = ±M(2,c*,pC). it follows
that the eigenvalues X 1 and X 2 are the maxi.um and minimum, respectively, of
the following two expressions:

X nax
I I~ { (Y(S(c ,p,C) j M(2,c ,p,C))/M(O,c ,p,C)

X 2 ri n

Max" 2

2 h 2 2 2h
= i n ( 2(n 2 + w - 1 + 4h2

(n 2 + w 2  1 4 2 ))/2ntw)

nax 2 2 h2{ (n+w -I

mi n

4.4 f andf 2

We now wish to use some of the classical pattern descriptors that we have been
discussing to derive additional information about shape. The first three examples in
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the previous section provide the motivation. These were: a rectangle, an ellipse, and
a rhombus, each with semiaxes of length a and b. In each case the weight was a
multiple of the products of the lengths of the semiaxes by a factor that we will call
s. In each case the principal and secondary eigenvalues were, respectively, the
squares of the semimajor and semiminor axes divided by a factor that we will call t:

weight = sab

I = max {a 2 /t, b2 /t}

A2 = min fa 2 /t, b2 /t}

For these three examples s and t take on the values given in Table 2. Although the
relations described above are not true for all picture functions (a and b are not
always well defined), their essence can be exploited in deriving a general shape
description. Notice that:

weight 2 = s 2 a 2 b2

and X 2 - a 2 b2 /t 2

thus, W--ght 2 =S2t 2 .

1 X2

Weight {XI' X2) s t f f2

Rectangle 4ab {a 2 /3,b 2 /3} 4 3 6 36

Ellipse rab { a 2 /4, b2/4 } IT 4 21r 4r2

Rhombus 2ab { a2/6, b 2/6} 2 6 6 36

Table 2. Statistics for the Rectangle, Ellipse, and Rhombus.

The left-hand side of this expression contains terms that are computable fcr any
picture function while the right-hand combines two unknowns which individually
contain information about the shape of certain binary picture functions. With the
hope that the left-hand side may be of use as a shape descriptor for arbitrary picture
functions, we make the following definition:

f(p,R) ( M(O'c*p'R)
2  )

4X I (p,R) X2(p,R)

and, therefore, f(p,R) 2 = M(O c * ,pR) 2

4A1 (p,R)X 2(p,R)
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The four in the denominator is inserted to make some other expressions for f 2 less
cluttered. For instance, by substituting the formulas for X and X in terms of
moments into the above definition for f2, one obtains:

f2(pR) M(Oc ,pR)
4

S(c *,p,R)2 -[M(2,c*,p,R)1 2

In what follows let us consider the picture function, p, and the region, R, to be
implicit and suppress them from the notation. Thus, the above expression becomes:

f2 2 M(O,c*) 
4

S(c*)2 - IM(2,c*)12

To express the f2 function in terms of moments about an arbitrary point, c, we make
the following observations:

M(O,c*)4 = M(Oc) 4 for any c.

((5(c) -,c

s(C*)2 
2 

(s(c) _ -- 90c) 2

S(c) 2  - 2S(c) Wi(lc) M(lc) + M(lc) 2 .(c)2

M(Oc) M(O,c) 2

= M(2,c)M(2,c) - M(2,c)M(l ,c) - M(2 ,c M(Ic) +M(l c)
M(Oc) M(Oc) M(0,c)

therefore

s(c*)2  M(2,c) 2  = S(c) 2 - IM(2,c)12 . -O1-(M(2,c)M(I,c) 2 +

M(2,c)M(l,c)2 - 2S(c)IM(l,c)12 )

and
f2 =M(0,c) 4

S(c)2 _ IM(2,c)1 2 + (M(2,c)r1(l,c)2 + 2(2,c)M(l,c)2 - 2s(c)lM(l,c)12)/M(Oc)

Table 2 contains values of f and f 2 for the rectangle, ellipse, and rhombus. Notice
that the values are independent of the lengths of the semiaxes, a and b, and are
identical for the rectangle and rhombus. This is no accident as we shall see when we
discuss invariants. Before going on let us see what can be learned by applying the f2
function to our other two examples: the regular n-gon and the aligned rectangles. For
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the n-gon, we use the definition of f2 in terms of moments about the centroid and
take advantage of the fact that the second moment about the centroid is zero:

f2*4

S(c*)' - IM(2,c*)

(n tan(IT/n) R2 cos2 (T/n))

(Y2n(tan('/n) + tan
3 (n/n)/3) R 4cos

4 (11/2)) 2

4n2 tan2 (/n)

(0 + tan 2(w/n)/3)
2

2n tan(n/ n)

I + tan2 (7r/n)/3

Table 3 gives the values of f and f2 for the regular n-gon as n goes from 3 to 30.
Some aspects of the table are worth examining. For an equilateral triangle (3-gon), f2
is exactly 27. For a square, f2 is 36. This latter result was amply clear from Table 2
since a square is a special case of both a rectangle and a rhombus. For a regular
hexagon, f2 is 38.88 (2235/52 exactly). This result will be of interest later. As for
the rest of the table, it appears that the values of f are increasing and converging. By
examining the derivative of f and the limit of f as n goes to infinity one can prove
that f is an increasing function of n that converges to 2w. That f converges
to 2n for an n-gon was to be expected from Table 2 since f on an ellipse, hence a
circle, was 21.
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n f f2

3 5.1962 27.0000
4 6.0000 36.0000
5 6.1783 38.1716
6 6.2354 38.8800
7 6.2583 39.1657
8 6.2689 39.2990
9 6.2744 39.3681

10 6.2775 39.4068
11 6.2793 39.4299
12 6.2805 39.4444
13 6.2812 39,4538
14 6.2817 39.4602
15 6.2821 39.4646
16 6.2823 39.4678
17 6.2825 39.4701
18 6.2827 39.4718
19 6.2828 39.4731
20 6.2828 39.4741
21 6.2829 39.4749
22 6.2830 39.4755
23 6.2830 39.4760
24 6.2830 39.4763
25 6.2830 39.4767
26 6.2831 39.4769
27 6.2831 39.4771
28 6.2831 39.4773
29 6.2831 39.4775
30 6.2831 39.4776

Table 3. Values of f and f 2 for the regular n-gon as n goes from 3 to 30.

Let us see how f 2 behaves on our last example from the previous section, the
alignment of n identical rectangles shown in Figure 6. Using the formula for f2 interms of moments about the centroid,

f2 36 (2ntm) 4

(nhw)2((n2  - (2 + , 2 
- I - 4h2 )2

36 x 16(nim)
2

4(4n 2h2 + 4,2h 2 - 4h2)

36n
2w2

n +w + 1.
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Recall that n is a positive integer giving the number of rectangles and w is a number
between 0 and I giving the width of each rectangle. When n or w is I, f2 takes the
value 36. For the former case there is just one rectangle and in the latter the n
rectangles are merged into one long rectangle. Therefore, the value 36 is consistent
with our earlier observations on rectangles.

f2 decreases as w decreases, going to zero as w goes to zero. This property gives
some insight into the behavior of f 2: low values of f 2 on binary picture functions
indicate relatively small dark areas separated by relatively large spaces. f2 decreases
as n increases, converging to 36w 2 as n goes to infinity. This means that whenever n
is large, f/6 is a good estimator for the proportion of darkened area along a line of
identical rectangles.

This example is of more than academic interest since lines of identical (or almost
identical) rectangles occur frequently in applications. When h is small compared with
w, a line of rectangles looks like a dashed line. When h is very large compared with
w, a line of rectangles looks like a family of parallel lines. The value of f , however,
is independent of h. This is no accident as will be evident below.

Table 4 lists the formulas we have derived for f2 based on our examples together with
some other formulas that the reader is encouraged to derive independently.

Shape Described by Binary Picture Function f 2

Rectangle 36

Ellipse 412 (=39.4784)

Rhom bus 36

Regular n-gon 2ntan(lT/n) )2
I + tan (Tr/n)/3

3622

Line of n rectangles of width 36n 2w2

w 0 < w <1) n +w -1

Semicircle •9 4 = 35.3124)
97T - 64

R_r2
Annulus of inner and outer 47r2  (-- r --)2

radii r and R R2 +r

Table 4. Formulas for f2 for Various Types of Picture Functions.
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4.5 Properties of f and f2

Throughout this section we will assume that the region, R, within which we are
examining a picture function, is the entire complex plane, C. This allows a slight
notational simplification. For instance, we will write M(qc,p,C) as M(q,c,p).

We are concerned in this section with what happens to our various measures of picture
properties, particularly f and f2, when the picture undergoes certain simple changes.
The first change we will deal with is translation, rotation, and scaling of a picture.
Specifically, if we have an existing picture function, p, we will construct a new
picture function, p*, which takes on the same value at the point v(z + w) as p takes on
at the point z:

p*(v(z + w)) = p(z).

Here v and w are fixed complex numbers. Adding w to z has the effect of translating
the picture by the vector w. Multiplying z + w by v rotates z + w about the origin by
the angle of v and scales z + w in magnitude by the factor I V I, These operations
are illustrated in Figure 7.

(z+w)

VA

- Az

w

Figure 7. How Translation, Rotation, and Scaling are accomplished by
Addition and Multiplication of Complex Numbers.

Let z= v(z + w). Then the following relations hold:
p* (z*) = p*(v(z + w)) = p(z), by definition
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(z* _ C)q = (vz + vw -cv~ vq _ (c/v _-))

dz* = IvvI 2dz, the Jacobian of the scaling transformation is I v 12

so, M(q,c,p*) = f (z* _-~p(z)~*

=vq Iv12 .f (z _ (c/v _ w))q p(z)dz

(6) = Vq 1v12 M(q, c/v - w, p)

or, alternatively, = vq fvI 2  f 2 q zk(w _-/~-pzd
zeC k=O

(7)- = q lvl 2  2 (q) (w _ c/v)q-k M(k,O,p)

Similarly, p~~* z

(8) = lvi 4 S(c/v - W, P)

Letting q be 0 and 1 in (7) we find:

M(0,c,p*) = Iv12 M(0,,P)

M(I,c,p*) =v 1v12 ((w -c/v)M(O,0,P) + M(l,O,p))

Therefore, c*(p") = c + M(,c,P*) the definition of the centroid of p* on C

=C + v(w - c/v +

= v(c*(p) + w)

so that c *(p) =JL w

This last relation, when plugged into (6) and (8), makes the comparison of moments
about centroids easy:

M(q,c*(p*),p*) =vq I v 12 M(q,c*(p),p)

S(c*(p*),p) =lIv 14 S(c*(p),p)
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The relations among eigenvalues and f 2 for p* and p then follow immediately:

X I(p *  Y(S(c (p*),p*) + M(2,c*(p*),p *))/M(O,c*(p*),p*)

I yI12 l(p)

similarly, X2(p*) = Iv12 X 2 (p)

and f2 (p* ) = M(Ocp*)2

4X (p*) X(p*)

= f 2 (p)

This last result is important in understanding the utility of the f function: the value
of f does not change when a picture is translated, rotated, and scaled.

The f function has one other useful property that we will now proceed to demonstrate:
the value of f does not change when a picture is stretched along any single axis. This
is different from the scaling operation treated above since multiplication by a
complex number scales in two dimensions. Here we are referring to scaling in one
arbitrary dimension while leaving the orthogonal dimension unaltered. This type of
operation, for instance, will convert a circle into an ellipse.

We have already seen that f(p) is unchanged by translation and rotation of the picture
function p. Therefore, we can assume that the picture function that we will be
stretching has its centroid at the origin and is to be stretched in the direction of the
X axis. No generality is lost since any picture function can be translated until its
centroid is at the origin and rotated until the axis to be stretched lies along the X
axis.

With these caveats we construct from our picture function, p, a new picture function,
p , which takes on the same value at the point sx + yi as p takes on at x + yi. Thus

p*(sx + yi) = p(x + yi)

Here s is a real number corresponding to the amount of stretch along the X axis. The
effect of this operation is illustrated in Figure 8. Since we will be dealing for the
first time with integrals in the real variables x and y it is convenient to introduce
some new notation:

I(m,n) =f f jTynynp(x + yi)dxdy.
-m -00

Letting z* sx + yi, the following holds:

p*(z*) : p*(sx + yi) = p(x + yi) : p(z)
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Z = (sx + yi (q skfiq-kxk>,q-k
k=0

dz* sdxdy, s is the Jacobian of the stretching transformation

so, M(q,0,p*) = f. z* q ( dz *

z c

k=O

k=0 :

Letting q be 0 and I we find:

M(OOP) =sM(0,0,)

M(l,0,p*) = sil(0,I1) + s 21(1,0)

so that c*(p *) =(,,)~~,Q (,)
M(0,0,p*) 1(0,0) 1(0,0)

1 S

X4Yi z sx+yiz

Figure 8. The Effect of Stretching a Picture Function by a Factor s in the X Direction.
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By looking at our original definition of the centroid, c*(p), it should be clear that
I(l,0)/1(0,0, and iI(0,1)/I(0,0) are the real and imaginary parts, respectively, of c*(p).
Thus the above expression states that the centroid of the stretched picture function,
c (p), is obtained from the original centroid by multiplying its real part by the
stretch factor s. Since we have assumed that c (p) = 0, it follows that c*(p*) = 0 as
well. This simplifies the computation of higher moments:

M(2,c*(p*),p*) = M(2,0,p )

= -sl(0,2) + 2is 2 (l,l) + s31(2,0) by (9)

S(c*(p*),p*) = S(o,p*)

= s jjs2x2 + y 2dxdy

sI(2,0) + sI(0,2)

so, S(c*(p*),p*) 2 = s6I(2,0)2 + 2s4I(2,0)I(0,2) + s2I(0,2) 2

and I M(2,c*(p*),p*) 12 = s 3 (2,0) 2 - 2s 4 I(2,0)1(0,2) + s 2 1(0,2)2 + 4s 4l(l,l) 2

Therefore, S(c*(p*),p*) 2 
- I M(2,c*(p*),p*) 12 = 4s4(i(2,0)1(0,2) - 1(1,1)2)

Because the picture function p* is identical with p when s is set equal to 1, it follows
that:

S(c*(p),p) 2
- I M(2,c*(p),p) 12 = 4(1(2,0)1(0,2) - 1(1,,)2)

We use these relations with the formula for f 2 to obtain the desired result:
*- *4(

f 2(p*) M(O,c*(p),p )4

S(c*(p*),p*)
2- IM(2,c*(p*),p*) 12

s4M(0 c (p),p) 4

s (S(c (p),p) 2 IM(2,c(p),p)l )

f 2(p)

The fact that a picture may be stretched along any axis without modifying the value
of f and f2 explains some of our earlier findings. A rectangle and rhombus have the
same value, 36, for f2 since they can both be formed by stretching a square. It is easy
to see that any parallelogram can be formed from a square in this manner so all
parallelograms will have f 2 = 36. Similarly, any triangle can be formed from an
equilateral triangle (a regular 3-gon) by two stretching operations and appropriate
translation, rotation, and scaling. Since we have seen that f2 for a binary equilateral
triangle is 27, that value is the same for any triangle represented as a binary picture
function. Applying the above result to our example of the aligned, equally spaced
rectangles, we can see why the value of f2 is independent of the rectangle's height:
changing height is just a stretch operation.
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The invariance of f 2 under stretching of the picture is important for another reason.
Shapes in the plane appear as stretched when they are viewed from a position other
than the perpendicular. A circle on the ground, for instance, is seen as an ellipse
from an aircraft which is not directly overhead. Thus, for planar shapes, the
invariance of f 2 under stretching is equivalent to the insensitivity of its shape
recognition properties to the location of the viewer.

We close this section by reporting one last property of f and f 2 . Suppose the picture
function p is multiplied by the re I number a to obtain a new picture function ap
where ap(x) = a(p(x)), then f(ap) =eTa If(p). The reader is invited to try his hand at
demonstrating this relatively straightforward fact.

4.6 Generalized Balanced Ternary (G&T)

Until this point, we have dealt with picture functions that were defined at every point
in the plane. Now we will deal with picture functions that are defined only on a
discrete set of points in the plane. The discrete set we will be working with is the set
of points that are addressable via the 2-dimensional Generalized Balanced Ternary
(GBT) system. GBT is described at some length in the appendix to this report. The
salient facts upon which the present development depends are stated below.

GBT is a spatial addressing system which supports the addressing of a fixed hierarchy
of cells. The highest addressable cells are regular hexagons which we sometimes call
zeroth level aggregates. The next higher cells all consist of seven hexagons grouped
as one central hexagon and its six neighbors. These are called first level aggregates.
In general, an nth level aggregate is composed of a central (n-l)st level aggregate and
its six neighbors. Thus, an nth level aggregate contains 7 n hexagons. Figure 9 shows
a third level aggregate and some of tL' addressing notation.

Since the distance between adjacent hexagon centers is 1, the inner radius must be
Y2. If follows that the outer radius of each hexagon must be II'3- as shown in
Figure 10.

A point is said to be addressable in GBT if it is at the center of any of the hexagons
that make up the GBT grid. A correspondence between points addressable in GBT and
a discrete subset of the complex numbers can be set up in the following way. The
complex numbers 0 and I mapped to the centers of the hexagons whose GBT addresses
are 0 and I respectively. The complex number i is mapped so that the vector from 0
to i is orthogonal to the vector from 0 to I in clockwise rotation. The point onto
which i is mapped is not addressable in GBT. All other complex numbers are mapped
linearly. The resulting correspondence between GBT addressable points within a first
level aggregate and complex numbers is shown in Table 5.
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Complex Numbers GBT Addresses

0 0

1 1

(I , f3i) 3

+ 2

-1 6

M - /3) 5

Table 5. The Correspondence between Addresses in the Central
First Level Aggregate and Complex Numbers.

It turns out that the set of complex numbers which correspond to GBT addressable
points under this mapping is closed under addition and multiplication. This means that

f GBT addressable points are a discrete subring of the complex numbers. The
importance of this algebraic property derives from the fact that the various shape
measures that we have described earlier depended upon the multiplication and
addition (plus integration) of complex numbers. Thus, we have reasonable hopes for
applying the same or similar formulas to GBT based discrete picture functions.

There are two other reasons for considering GBT based picture functions. One has to
do with the technology for converting pictures to digital form. This is usually done by
sampling the picture over a small region with some sort of scanning device and
returning a single value that corresponds to an average of the picture function over
that region. This value is generally viewed as being assigned to the centerpoint of the
sample region. These values together with the points to which they are assigned are
often called pixels (short for picture elements). Converting a picture function into
pixels by a scanning process effectively discretizes the picture fuction. Thus, GBT, as
a discrete system, provides a good framework for handling digitized images.

The last reason for considering picture functions based on GBT is the natural
aggregation mechanism GBT provides. Our eventual goal is automated understanding
of the content of images. A pixel, in itself, provides almost no information on the
content of the image of which it is a part. Except for very simple cases, however, all
of the pixels taken together provide too overwhelming a mass of complicated
information to be easily comprehended by a computer. The GBT aggregate structure
provides a sequence of intermediaries between these two extremes. The idea is that
there must exist aggregates for a given location in a given picture that contain
enough pixels so that significant entities can be discerned but not so many that the
complexity is overwhelming. This theme of using aggregates to carve a picture up

f" into understandable portions will be expanded upon considerably in the sections that
follow.
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4.7 G and H Functions

In this section we wish to define functions that are the discrete analogues of the
complex moment and scalar moment functions that we used in the earlier sections. In
what follows v is a variable GBT addressable point, c is a fixed complex number, p is a
picture function defined on GBT addressable points, R is a region in the plane, and q
and m are nonnegative integers. By analogy with the functions M and S of Section
4.2, we define:

G(q,c,pmR) = E (v_c)qp(v)
m

vER

and H(c,p,R) = E lv_cJ 2p(v).
%C R

In order to use these functions to derive some of the useful shape descriptions we
have been using in previous sections (e.g., eigenvalues and f 2), we must find their
explicit relationship with M and S. The catch is that we do not know the values of p
except at the GBT addressable points. We overcome this difficulty as follows. First,
we define a new picture function p*(z) at each point zCC by p *(z) = p(v) where v is
the closest GBT addressable point to z. This means that p*(z) has the same value as
p(v) throughout the interior of the hexagon that contains v. That p*(z) is ill defined
on hexagon boundaries does not matter in what follows since the hexagon boundaries
are a set of measure zero. Second, we insist the region R be composed of whole
hexagons. Thus if v is in or out of R then all points interior to the hexagon which
contains v are in or out of R, respectively. Letting h(v) be the hexagon that contains
v, it follows that:

M(q,c,p*m,R) (z_c)qp*(z)mdz

zCR

f (z-c)qp *(z)m dz

vER zEh(v)

= Z p(v)m  f ((z-v) . (v-c))qdz
vCR zEh(v)

Z p(v)m  L (q)(vc)k f (zdv)q-kdz
vCR k=O zeh(v)

Now the integral in this last expression is just the (q-k)th moment about its center of
a regular 6-gon of outer radius 1/v3. Its values are given as formula (3) of Section
4.3. Using this formula for q less than 6 we see that:

f" (zv)q-kdz / 3/2 when k = q

z=h(v) 0 otherwise
Therefore, when q is less than 6, the qth moment simplifies as follows:

M(q,c,p*M,R) Z p(v)m(v-c) q /-3/2
vCR
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= V/2 G(q,c,p ,R).

As moments higher than 2 are not used in deriving our current shape descriptors, this
result is all we need. The relationship of the S function to G and H functions is
derived as follows:

S(c,p*,R) f Iz-c2 p *(z)dz
zER

E p(v) f J(z-v) + (v-c) 2dz
vCR zeh(v)

= zp~) l-v2 Ivc2
E p(v) f Iz-vI 2+ jv-c( + (i- )(v-c)

vCR zCh(v)

+ (z-v)(--E)dz

p(v) (f Iz-vI 2dz + Iv-cl 2 fdz
vCR

+ (v-c)f(z-E)dz + (-E)f(z-c)dz).

The latter two terms in this expression vanish since the first moment of a hexagon
about its c nter (and its complex conjugate) are zero. The integral in the term
with I v-cl is r3/-2 as we have seen above. The first integral can be evaluated by
formula (4) of Section 4.3:

f Iz-vl 2 dz =

zeh(v) 24/3-

Therefore, S(c,p ,R) = E p(v)( -  + Iv-cl
vCR 24V5r

3 H(c,p,R) + - G(O,c,p,R)
24/-3

/-3 5:-2(H(c,p,R) + g G(O,c,p,R))

We use the above expressions for M and S in terms of G and H to find the new
formulas for our family of shape descriptors.

c*(p*,R) c + G(c.p,R) 
=

CO&,c,pR) G(O,u,p,R)

X,(p*,R) (H(c*,pR) +5+ IG(2,c*,p,RI )

G(O,c ,p,R) G(O,c,pR)
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* H(c ,pR) 5 IG(2,c ,pR)I )
2G(0,c,p,R) + G(O,c*,p,R)

G(Oc ,pR)

' Tg A1 p,R)AT p,R)

3_ G(O,c*,p,R)4
*5 2 , 12

(H(c* ,p,R) + 3 G(O,c ,p,R))2 - IG(2,c ,p,R)

4.8 Agglomeration

Suppose we want to compute the values for G and H functions for a picture function,
p, about a point, c, in a region, R. Suppose further that R is a disjoint union of t
regions, R. (j = 1, * * *, t), and we know the values of G and H functions for p
about a point c. in each region R.. We would like to use the values of the functions in
the subordinate regions, Rj, to compute their values on R. The method for
accomplishing this is derived below:

t
G(q,c,pm,R) = E (v - c. + c. - c) q P(v)m

j=1 vR.

t C

t (q)(V-c )k(c c)q-kP(V)m

j=l vP. k=O k i

(q t mq
=: k ) j ( j -: k , p ,R; )

t

H(c,p,R) - I Iv - c. + c _ c12 p(v)

j=l vFj J

t 12+ c 1
E Z (Iv-c + 1 cj-c 1 2 +j-c)

j=i vC.

+ (v-c.)(Ej-))p(v)

t -

Z (H(cj,p,Rj) + Ic.cIL2 G(O,cj,p,Rj)
j-1

+ (c.-c) ?,(1,cj,p,Rj) + (C.- .) G(1,cj,p,Rj))

The utility of the above formulas is that they provide a means of computing our
family of shape descriptors for a region without having to deal with the potentially
large volume of pixels within that region. All that is required is the knowiedge of the
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values )f appropriate G and H functions on a set of regions R that partition R. This
feature is particularly well suited to computations within the GBT aggregate
hierarchy.

Suppose our goal is to compute useful moments about the centers of GBT
aggregates. Inductively, we can assume that we have computed all such moments for
aggregates at level n-I and below. To compute the moments at level n, we have only
to use the formulas derived above based on the partition of each level n aggregate
into its seven level n-I subordinates. The computations are further simplified since
the terms c:-c are just the offsets of the centers of the subordinates from the center
of the parent aggregate and are therefore known a priori. In the implementation
work, this was the principle used for computing moments of higher cells. It is far
more efficient than computing all moments based on pixels.

4.9 More Examples

To illustrate the principles discussed above, let us compute our family of shape
descriptors for a picture function, p, that assigns the value I to all GBT addressable
points within an nth level aggregate, A(n), and 0 to all other GBT addressable points.
Accordingly let A., j = 0, , 6, be the 7 immediate subordinates of A(n), let
c(n) be the center of A(n), and c the center of Aj. Then,

6
G(q,c(n),p,A(n)) = (q) Z (c c(n))q-kG(k,cj,p,Aj)

kOk j=0 J

q 6
= (q)G(kc(n-1),p,A(n-1)) Z (c. c(n))q k

k=0 k j=0

The latter expression follows from the observation that all G(k,cj,p,Aj) are identical.
But, for q-k less than 6:

6
E (c. c(n))q-k = 7 if q-k = 0

(=0 - 0 otherwise

This fact is established by an argument similar to that used for n-gons in Section 4.3.
Thus, for q less than 6,

G(q,c(n),p,A(n)) z 7G(q,c(n-l),p,A(n-1))

= 7nG(q,c(0),p,A(0))

But, G(q,c(O),p,A(O)) = Z. (v-c(0))q p(v) "

veA(0)

= (c(0) - c(o))q

if q= 0
0 otherwise
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Therefore,

G(q,c(n),p,A(n)) = { n if q : 0
Oif 0 < q < 6.

In particular we have,

M(0,c(n),p,A(n)) = -37-

M(l,c(n),p,A(n)) = 0

c*(p,A(n)) = c(n)

and M(2,c*,p,A(n)) = M(2,c(n),p,A(n)) = 0.

We apply similar logic for the H function:

6 2
H(c(n),p,A(n)) = 0 (H(c.,p,Aj) + jc.-c(n)2 G(0,c.,p,A.)

j=0 j ~~
+ (c.-c) G(l,cj,p,Aj) + (cj-c) G(l,c.,p,Aj))

The last two terms vanish since gradients of full aggregates are zero.

Each Ic.-c(n) 12 is the square of the distance from the center of a level n aggregate

to the center of its jth level n-I subordinate. For the central subordinate this

distance is zero. For the six others, each Ic.j-c(n)12 = 7 n-. We have seen above
that G(0,c(n-l),p,A(n-l)) = 7n-1. Therefore,

H(c(n),p,A(n)) = 7H(c(n-l),p,A(n-l)) + 6 X 72n- 2

This is a classical recursion of the form r(n) = ar(n-l) + bcn whose solution is
n - cn+l

r(n) = a"r(0) + b a-c

Applying this solution with a = 7, b = 6 x 7-2, and c = 72, we find

H(c(n),p,A(n)) = 7nH(c(0),p,A(0)) + 7n-l( 7 n_,)

= 7n-I ( 7 n . I) since H(c(0),p,A(0)) = 0.

Applying the formulas for eigenvalues and f from Section 4.7 we find:
H(c(n),p,A(n)))'(p'A (n ))  = X 2(p A (n ))  Y2 ( G(0,'c(n),p,A(n)) +

= Y2(7-n + = 36 x 7n I
2x7 x62
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f = wt Y 18 x V x 7 n +

2(X X 36 x 7 - 1

Values for f and f . for aggregates of levels 0 through 10 are given I. Table 6. Notice
that f2 on a level zero aggregate is 38.88 as we would expect from our previous work
on n-gons. Judging from the entries in the table, the values seem to be decreasing
with n and converging. By checking the derivative of f and taking the limit, the
reader can confirm that f decreases as n increases and converges to 7/3/2 (f2 to
36.75) as n goes to infinity.

n f f2

0 6.23538 38.88300
1 6.08633 37.04341
2 6.06562 36.79170
3 6.06267 36.75595
4 6.06225 36.75085
5 6.06219 36.75012
6 6.06218 36.75002
7 6.06218 36.75000
8 6.06218 36.75000
9 6.06218 36.75000
10 6.06218 36.75000

Table 6. Values of f and f 2 for a picture function which is
one within a level n GBT aggregate and zero elsewhere.

As a final example we have computed the value of f 2 for all 28 rotationally distinct
first level GBT aggregates and indicated them in Figure 11. The two aggregates
containing a single darkened hexagon have f = 38.88 as we would expect from our
results on n-gons in Table 3 and our results on level zero aggregates in Table 6. The
completely filled first level aggregate has f2 = 37.04 as expected from Table 6. For
the special case of first level aggregates, f 2 differentiates completely between
connected and disconnected patterns. Notice that each aggregate in Figure 11 is
connected or disconnected if its f 2 value is greater or less than 15. An examination
of the various shapes and f2 values gives some insight as to the behavior of f2 on more
general binary patterns.
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Not Defined 37.04 30.27 16.81

38.88 20.82 23.71 10.68

38.88 31.61 33.01 11.46

33.81 16.30 23.71 34.71

33.81 33.00 9.50 24.41

13.18 23.96 9.50 24.41

10.10 25.99 5.20 15.19

Figure I. Values of f2 for the 28 Rotationally Distinct Classes
of Binary Picture Functions on First Level GBT Aggregates.
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4.10 Texture

The shape descriptors that have been presented in the preceeding sections are quite
powerful in identifying and separating objects from their background in an image
provided the picture function has the value I on the objects and 0 on the background.
In most applications, however, this is not the case. In a photograph, for instance,
what our eye and brain recognize as a single entity may be made up of pixels of many
different values. The human mind classifies different regions as being a part of the
same entity, not because the pixels in the regions all have the same value, but
because the regions have the same overall appearance. Let us refer to the notion of
the general appearance of a region of a picture as its texture. In this section we wish
to present a formal definition of the texture of a discrete, GBT based picture function
in a region R. In the chapter on implementation we will show how this definition
relates to our human notion of visual texture.

In what follows, let A(n) be an nth level GBT aggregate with immediate
subordinates A., j = 0, * ", 6. We will use A(k) < A(n) to say that A(k) is a kth
level aggrega 4 that is contained in A(n). First let us relate mean and variance to G
functions. Recalling the definitions from Section 4.2 and relations of Section 4.7,

P(p,A(n)) = M(0,c,p,A(n)) = G(O,c,p,A(n))
0 0M(0,c,p0,A(n)) G(0,c,p ,A(n))

1 G(0,0,p,A(n))7 
n

Var(p,A(n)) : M(0,c,p 2,A(n))/M(0,c,p 0 ,A(n)) - p(p,A(n)) 2

=1I G(,,2,n) _1 )2
- G(,p ,A(n)) - -L G(0,0,p,A(n))

Another useful concept, the local variance, Var*, of p on A(n) is defined by:

6 2 _2.Var*(p,A(n)) = EJ U(p,A.) - 1(p,A(n))

The local variance ignores the fact that there is variability within the immediate
subordinates A. of A(n). It would be the true variance if p was uniform on each A..
Suppose v is a GBT addressable point and we have a picture function p defined with J

a universe that consists of a level m GBT aggregate that contains v. Then we define
the texture of p at v as follows:

T(p,v) = (Var*(p,A(l)), Var*(p,A(2)), , Var *(p,A(m)))

where each A(k) is the unique kth level aggregate containing v. For a region R "re
define the texture of p in R by:

T(p,R) = R E T(p,v)
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where n(R) is Che number of GBT addressable points v in R. Suppose R is a disjoint
union of L regions R1 , , Rl _. Then,

! L
T~p, R) n R T(p, v)
T~pR) j=0 vCR

L n(R.)
- E .nT- T(p,R)

j=0

This says that the texture of a region partitioned into subregions can be written as a
convex sum of the subregion textures each weighted by the relative size of the
subregion.

Applying this result to an nth level aggregate, A(n), we get:

(10) T(p,A(n)) = Z T(pA.
j=0

If we sum up the first n components of T(p,A(n)) the result is Var(p,A(n)). To
demonstrate this result let us assume that it is true for all aggregates of level n-I and
below and proceed by induction:

n n 6
E T(p,A(n))k Z E T(p,Aj)k

k=1 k=1 j=0

S6 n-I.
F Z ,  T(p,Aj~ + Vat (p,A(n))

, 9 k=l k

6
E Var(p,Aj Var (p,A(n))

7j=0

S 6 G(0,0,p2 ,A) 6
n Z GA- Z G(#,,0,p,A )2

7n j=O 7- j=

+ 7 Z= --2n- -2 G(0,0,p,Aj) -7' G(0,0,p,A(n))2

- Var(p,A(n))

The definition of texture provided here makes the texture at a GBT addressable point
a function of the behavior of the picture function in all of its superior aggregates.
Since this behavior cannot be determined by looking at the point alone, there is some

Page 33



question as to how one computes texture. The method is suggested by formula (10).
Suppose, inductively, that we have computed the first k components of the texture
vector for each kth level aggregate for k < n-I and stored it at that aggregate
address together with the mean for that address. Then we can compute the first n
components of the texture 'or A(n) as follows:

l 6
fork < n, T(p,A(n))k = T(pA)k

T(p,A(n)) n = Var*(pA(n))

16 2_1 62
- . 1(p,A1 ) 2  ! 62

Z p7, - 79 ( Z' 1(p,A)

j=0 j=0

Proceeding by this method, each nth level aggregate knows the first n components of
its texture vector. Since the GBT data access scheme requires that each superior
aggregate of an nth level aggregate, A(n), be traversed to reach the data associated
with A(n), the texture components higher than n can be retrieved during this
operation. In this manner the texture of any aggregate at any level can be found in a
manner natural to the GBT data management process.

The discussion of texture provided above leaves one major question unanswered. What
does this mathematical formulation have to do with our human notion of visual
texture? A preliminary answer is provided in the next chapter.
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5.0 IMPLEMENTATION

In the previous chapter the notion of visual texture was given formal mathematical
definition. In addition, a family of measures which describe the behavior of picture
functions over areas was developed. In the case of texture, it was necessary to
compute the texture for a variety of samples to see how this formal definition
related to intuitive ideas about texture. Aggregate descriptors were studied by
using them in one image analysis application, raster to vector conversion. The work
that was done attempted to find and demonstrate the utility of the theoretical
constructs of Chapter 4.0 to problems of understanding imagery. The results, while
preliminary, indicate the richness of this approach. They are described in this
chapter.

5.1 Texture

In order to examine texture, a set of sample images was collected. These were
photocopied from ohotographs to insure uniformity of resolution in the image
media. The samples were scanned at a 100 micron resolution using an Optronics
C-4100 Colorscan System. For each pixel v, a gray scale value, p(v), was assigned
where p(v) is an integer and 0 < p(v) < 255. Figures 12 through 16 are from
electrostatic plots of these scans. The sample textures are labele ,exture I
through texture 5.

Each scan was of such an area that there were thirty-two level four aggregates
completely filled with pattern. Those aggregates on the boundary which were not
completely filled were ignored.

For a given texture, each full level four GBT aggregate was assumed to be a sample
of the texture. Its texture vector was computed.

Suppose A is such a level four aggregate. In Section 4.10 the texture of A is defined
to be (V1 (p,A), V2 (p,A), V3 (pOA), V4 (p,A)) where Vk(P,A) is the mean of the local
variances of the level k aggregates subordinate to A and the local variance of a level
k aggregate is just the variance of the mean of p over each of its seven level k-I
subordinates. Table 7 gives the mean texture vector for each sample together with
the standard deviation in each component. From these it can be seen that the
vectors of each texture cluster together. To get some indication of the separation
of these clusters, the Mahalanobis distance was used. This statistic measures the
distance in terms of statistical variation to the mean vector of a multivariate
normal distribution. It is defined:

d(v,11) = (v - Va)t  Z.-1  (v - 11)

where pi is the mean vector, Z is the covariance matrix, and v is a vector. Table 8
shows the average, maximum, and minimum distances from the vectors of one
texture to the mean of another. It was found that for samples 1, 2, and 4, if v is a
vector of texture T and w is a vector of a different texture, v is closer to the mean
of the T distribution than w is. While such a result does not hold in general (textures
3 and 5 do not have this property with respect to each other), it does indicate that
samples of like texture form well-defined clusters.
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Mean Standard Deviation

Texture 1 (234, 313, 191, 78) (65, 86, 92, 40)

Texture 2 (270, 457, 695, 551) (83, 95, 161, 272)

Texture 3 (623, 553, 533, 141) (343, 82, 68, 56)

Texture 4 (476, 673, 200, 24) (169, 64, 34, 14)

Texture 5 (1258, 746, 356, 48) (418, 97, 76, 24)

Table 7. Mean Vectors and Standard Deviations for Sample Textures.

Texture I Texture 2 Texture 3 Texture 4 Texture 5

Texture 1
Average 1.8 13.8 14.2 7.9 33.5
Maximum 3.0 28.1 49.0 23.6 51.9
Minimum 0.7 8.0 3.5 3.8 3.3

Texture 2
Average 8.8 1.9 6.5 8.2 13.5
Maximum 10.8 2.9 17.0 11.4 18.6
Minimum 6.3 1.1 3.6 7.3 6.0

Texture 3
Average 13.8 12.4 1.8 7.6 4.7
Maximum 19.0 22.1 3.1 10.3 6.5
Minimum 6.7 7.1 0.8 6.0 2.7

Texture 4
Average 8.5 51.1 17.9 1.9 8.5
Maximum 15.4 96.7 26.5 3.3 13.6
Minimum 3.7 31.6 12.0 1.2 6.2

Texture 5
Average 6.2 25.3 6.0 4.3 1.9
Maximum 7.7 53.6 11.9 5.3 3.1
Minimum 3.2 11.6 2.5 3.1 1.2

Table 8. Mahalanobis Distance. A row contains the average,
maximum, and minimum Mahalanobis distance to the
mean of a texture as computed for all samples of the
texture represented by the column.
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Figure 12. Sample Texture 1. From a Photograph of Loose

Woven Fabric.
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Figure 13. Sample Texture 2. From a Photograph of Pleated
Fabric.
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Figure 14. Sample Texture 3. From a Photograph of

Herringbone Wool Fabric.

Page 39



v
...... ..

NL
Figure 15. Sample Texture 4. From a Photograph of Nubby

Wool Fabric
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Figure 16. Sample Texture 5. From a Photograph of Straw.
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5.2 Shape Descriptors

The work done with the family of aggregate descriptors defined in Section 4.0 used
existing software for processing binary (0 or I gray scale valued) images. This
software takes the output of a scan file and populates a GBT file. I was enhanced
to compute and store the aggregate descriptors for all aggregates at levels one
through four. This file can be accessed through a graphics device. Figures 17
through 21 are electrostatic plots of displays. The operator can also ask for the
descriptors of a fourth level aggregate which is shown on the screen.

The descriptors were used in an algorithm designed to replace an original raster
image with a vector representation. This algorithm can be outlined as follows:

I. Take a raster image and populate a GBT file.

2. Compute descriptors among them: weight, gradient, the eigenvalues X 1
and X2 P the angle of the second moment.

3. Classify each aggregate based on its descriptors. The classes are: line
segment, line edge, full, and other.

4. Start with a level four aggregate A. If A is classed as a line segment, fit a line
to A. If A is classed as a line edge find other edges, agglomerate the
statistics, and fit a line to the rasters. If A is full, do nothing. If A is "other",
look at its level three subordinates. Handle them according to their
classifications. The result of this algorithm is a file of line pieces that can be
displayed graphically to see how well he aggregate descriptors represent the
raster patterns.

The examples described here are taken from a scan at a 50 micron resolution of an
electrical circuit diagram. Figure 17 shows a horizontal line in that diagram in
raster form with the GBT aggregates overlaid. Table 9 gives the values of some of
the descriptors for the fourth level aggregate in the center of Figure 17. Table 10
shows the corresponding values for aggregate B in Figure 19 and for each of its
seven subordinates.

Weight: 338.0

f2. 34.9

X1 : 203.7

X'2: 3.0

Angle of Second Moment: 1800

Table 9. Descriptors for Level Four Aggregate A in Figure 17.
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Figure 17. A Portion of a Raster Scanned Diagram. The
Descriptors for the Fourth Level Aggregate A are
given in Table 9.
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Figure 18. Based on Descriptors, a Line Segment is computed
( for the Aggregate A.
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Figure 19. A Portion of a Raster Scanned Diagram. The
Descriptors for the Fourth Level Aggregate B are
given in Table 10.
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Figure 21. Based on Descriptors, Line Segments are computed
for the Subordinates of B.
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Aggregate B

Weight: 484.0

f 2: 1.2
X 1 22.16
X2 : 171.4

Angle of Second Moment: .780

Subordinates 0 1 2 3 4 5 6

Weight: 21.0 142.0 130.0 70.0 117.0 0.0 4.0

f2: 16.0 36.0 33.6 30.9 32.5 0.0 15.6
I: 12.8 32.2 30.2 16.0 17.2 0.0 1.7

X2: .4 3.3 3.1 1.9 4.6 0.0 .1

Angle of Second Moment: 1750 1780 1790 1730 1580 00 1850

Table 10. Descriptors for Level Four Aggregate B in Figure 19
and for its Subordinates shown in Figure 20.

The line fitting algorithm processes aggregate A in this way:

1. Check Weight. A weight of 338 corresponds to 14% filled, neither a "full"
aggregate nor so little as to make the other measures misleading.

2. Check f2, An f2 of 34.9 indicates a pattern which is connecteJ and very
rectangle-like (recall that f 2 for a rectangle is 36).

3. Consider X I and X' In this case they indicte a long, thin rectangle, a line
segment.

4. The angle of the second moment is 1800 (from the vertical). Thus the angle of
the major axis is half 1800 or 900.

5. Approximate this pattern with a horizontal line segment passing through the
centroid of the pattern. Figure 7 shows the line segment that was computed.

6. Since the scan resolution is 50 microns and X 2 = 3, compute and store an
average line width of .0012 inch.

This technique allows the rasters in this portion of the diagram to be replaced rather
quickly with a concise description of the pattern which they represent. In this way,
all of the simple areas of the diagram can be converted from raster form. The next
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example demonstrates how more complex regions are handled The algorithm
processes aggregate B in this way.

1. Check Weight. A weight of 484 indicates 20% of the aggregate is filled, a
significant portion.

2. Check f 2 . f2 is 1.2 for aggregate B. The pattern in B is divided into disjoint
pieces. Because of this, B cannot be accurately represented with a single
line. Classify B as "other" and process its seven subordinates.

3. Check Weight. Those subordinates with weight sufficient to be considered are
0, 1, 2, 3, and 4. Subordinates 5 and 6 are less than 5% filled.

4. Check f2 . Subordinates 1, 2, and 4 each have a high f2 : 36, 33.6, and 32.5.
Subordinate 3 is not as high but still indicates a solid, connected piece.

5. Consider X and X In subordinates 1, 2, and 4 they indicate a long, thin
1 2*shape from .0012 to .0018 inches wide. These subordinates are classified asline segments.

6. In the case of subordinate 3, because of its f 2 and X values, the centroid of
the pattern ;s examined. It lies very close to the aggregate boundary. This
subordinate is classified as a line edge.

7. The last step in this process tries to match subordinate 3 with "the other edge"
of the line. In this case, 0 and 3 are agglomerated. The resulting statistics
indicate a line segment which is computed.

Figure 21 shows the final results of this algorithm on aggregate B.

Preliminary work with the descriptors defined in Chapter 4.0, has shown that these
descriptors can be used to understand complex images. The representations obtained
merely by substituting line segments in aggregates have been much more accurate
than previous vectorizations. This approach is also fast since large, simple areas of
the image are processed at one time. More detailed computations are reserved for
those areas where complexity is indicated.
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6.0 FUTURE RESEARCH DIRE&CTIONS

6.1 Texture

The results on texture presented in this report provide a solid beginning for future
research and development. Texture has been quantified; important properties of
that quantification have been demonstrated; and the quantification has been shown
to correspond to the intuitive idea of visual texture. What remains is to use this
quantification of texture in computers to decompose complex images into relatively
simple pieces so that shapes, properties, and relations of entities in the image can be
more easily analyzed. This Will require a major effort but the potential rewards are
great.

Table II shows the status of various questions regarding needed follow on work on
texture.

Question Answer Comment

Can texture be defined Yes. And the texture so Accomplished in the
for a discrete picture defined has useful math- current research.
function in a region of ematical properties.
GBT addressable points?

Can a similar definition Probably. Requires more research.
be provided for other
sampling and aggrega-
tion schemes?

If so, are the textures of Unknown. Requires more research.
the same picture func-
tion under two different
schemes comparable?

Can a similar definition Unknown. Requires more research.
of texture be provided
for continuous picture
functions independent of
sampling?

Is texture related to the Probably. This relates to the pre-
notion of fractal func- vious question.
tions?
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Question Answer Comment

Does texture as defined Preliminary, yes. Accomplished in the
on GBT grids correspond current research.
to our human idea of
visual texture?

How can textural simi- By clustering in space Spatial clustering was
larities and dissimilari- and probably other done in this research.
ties be measured? methods. More work is required.

Can a computer be pro- Probably. Requires more research.

grammed to automati-
cally decompose an
image into regions of
similar texture?

If so, will such a decom- Probably. Requires much research
I ) position be similar to a and experimentation.

decomposition provided
by a person?

If it is achieved, would Yes. The decomposition pro-
such a decomposition be cess would be directed
suited for further pro- at that goal. However,
cessing to derive shapes, much research and ex-
features, and relations perimentation is re-
of entities in the image? quired.

Table 11. Questions and Answers about Research on Texture.

The main need is to proceed forward from the current base to achieve techniques for
automated image decomposition into regions of similar texture. Other issues
relating to quantifying texture in a more general setting also need to be examined.

6.2 Shape

During this research we developed and showed the properties of a powerful shape
descriptor called f 2. We further showed how f2 and other shape descriptors could be
used in conjunction with the GBT cellular hierarchy to analyze shape over regions of
varying size. The current situation is that we have developed powerful tools but
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have not yet learned how to use them well. The most important area of future
research is to learn how to use the current tools efficiently to solve a variety of
image understanding problems. Other significant areas are the deriving of new
shape descriptors and the development of a knowledge data base against which
descriptions of entities in images can be compared.

Table 12 shows the status of various questions regarding needed follow on work on
shape descriptors.

Question Answer Comment

Are there functions Yes. Many are classical The f 2 function and its
which are useful in de- and one was developed properties are described
scribing the shape of a in this research, in this report.
picture function within a
region?

Could there be other Almost certainly. Only second moments
useful functions for de- were used to develop
scribing shape? f . Use of higher mo-

ments should yield other
functions.

Do we know how to use No. We have only pre- Much research is re-
the current functions to liminary results. quired.
best advantage?

Do the current functions Yes. In the current re- GBT aggregates are a
have any utility inde- search only the texture natural vehicle for com-
pendently from the GIRT vector is GBT depen- puting picture function
system? dent. descriptors.

Are shape descriptors all No. A knowledge data The current work pro-
that is needed to under- base is necessary for un- vides only for the under-
stand entities within derstanding. standing of simple geo-
images? metric shapes. Much

further research is re-
quired.

Can the shape descrip- Almost certainly. A More research in this
tors in GBT cells be ex- successful first effort area is needed.
tended to arbitrary re- was made during this re-
gions? search.

Table 12. Questions and Answers about Research on Shape Descriptors.
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8.0 APPENDIX. GENERALIZED BALANCED TERNARY

WHAT IS GBT?

GBT is a method of representing a two dimensional surface that enables a computer to
work easily with data distributed on that surface. When a person looks at data in two
dimensions, a map sheet or a photographic image, for example, he quickly sees the
general content of that map or photograph, and can examine certain aspects of the
content in detail if he chooses to focus his attention. Computers which use conventional
representations for planar data have difficulty performing this simple chore. Such
systems permit easy examination of the smallest components of the data, be they pixels,
bits, bytes, or vectors, but have no efficient mechanisms for examining the data in
aggregate form. As the saying goes, they cannot see the forest for the trees.

The GBT method of structuring a surface permits data to be aggregated so that an
automated system can examine the general content of the data without looking at the
detail. Because of this capability, an algorithm can determine at a high level if the
generalized information suffices for the algorithm's purpose or whether finer information
is needed. In the latter case, the GBT structure permits the layered accessing of finer
and finer data until the finest granularity is reached. This capability for selective access
to successive levels of detail is taken for granted in human perception, but it has
presented a significant problem in designing systems for machine perception. It is
fundamental, for example, to the notions of scene analysis, feature extraction, and
pattern recognition. The GBT system solves this problem.

GBT is not only a method for representing space, it is also an addressing scheme that
allows access to that representation. Further, it contains an algebraic system which
operates on the addressing scheme. These aspects of GBT will be described below. A
GBT structure can be implemented in any dimension, however, a discusson of dimensions
other than the second is beyond the scope of this paper. GBT stands for Generalized
Balanced Ternary, a term signifying that GBT is the higher dimensional analogue of the
one dimensional system known as balanced ternary.

THE SRUCTURE AND ADDRESSES

The GBT structure is one of a hierarchy of cells. At each level, the cells are constructed
of cells from the previous level according to a rule of aggregation. The basic cells of
this structure are hexago as. Figure 1 shows the hexagonal covering of the plane. This
covering has the uniform adjacency property, that is, each element of the covering is
adjacent to exactly six other elements and shares with each exactly one-sixth of its
boundary. In contrast, a covering of the plane with squares does not have uniform
adjacencies. Some squares are adjacent at a point while others share a side.

A first level aggregate is formed by taking a single hexagon and its six neighbors (see
Figure Za). The first level aggregates also cover the plane and have the uniform
adjacency property. In general, an aggregate at level n is formed by taking a level n-I
aggregate and its six neighbors. It can be shown that the planar covering and uniform
adjacency properties hold at each level. Figures 2b and 2c show second and third level
aggregates.
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The GBT addressing system is based on the following scheme. In an aggregate, the

center cell is labeled 0 and the outer six cells are labeled, in clockwise order, 1, 3, 2, 6,
4, 5 (see Figure 2). Each hexagon in the plane has a unique GBT address, a sequence of

digits corresponding to the labels of the cells above that hexagon.

Each digit of the address corresponds to an aggregate level. For example, the address
536 labels the hexagon in the 6 position of the first level aggregate, which is in the 3

position of the second level aggregate, which is in the 5 position of the third level
aggregate, which is at the 0 or center position at all higher levels. The hexagon 536 is

shaded in Figure 3.

The digit 7 is used to address entire aggregates rather than hexagons. Thus, the first
level aggregate shaded in Figure 4 has address 117. The second level aggregate outlined

in the same figure has address 677.

The symbols 0, 1, Z, 3, 4, 5, 6, and 7, used as GBT digits, are also used in octal and

decimal notation to express integers. Using them in this new context allows GRT
addresses to be handled directly by computer hardware and software. Care must be
taken, however, not to confuse the addresses with integers.
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FIGURE 1: The Hexagonal Covering of the Plane
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Figure ZA: First Level A&ggegt

Figure 2B: Second Level Aggregate

Figure ZC: Third Level Aggrega te

FIGURE 2 The Aggregaite Structure
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FIGURE 3: The Location of the Hexagon

536

I
1 5 10 3 5 1 35 to 3 5 1 3 1 4 6 2 4 30 2

1 4 6 2 4 30 2 3 50 3 5 1 3 6 15 0 3 5 1 3 6 1 4 - 2 5 36 4 2 204 2 1 3 1 6 4 24 2 20 5 3 1 61 6 4 , 2 35 3 1 4 2 '60

4 5 60 1 5 1 6 1 4 10 2 5 30 3
4 - 5 L 25 3 4 2 30 5 3 610 1 6 4 so

1 6 4 0 2 5 3 1 3 a A 2 5 3 5 1 3.5 50 3 1 4 5 3 1 4 6 2 4 20 2
4 6 2 3 1 6 /a 40 5 3 6

4 20 3 1 6 4 - 2 60
5 1 6 4 2 40 5 J 6 4 2

40
4 - 2 5 3 1 3 6 1 4 6 5 3

4 2 06 4 2 10 5 3 6 4 26 L 4 6 2 4 30 2 5 20 3 5 1 3 6 1
5 5 3 1 6 4 2 202 QQ 5 3 4 26 1 4 6 2 4 20 2 5 MR 3 1 3 6

5 3 1 6 4 2 LO40 5 3 6 2

6 4 6 2
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FIGURE 4:

Two Examples of the Use of the Failing Sevens Notation
to Address Hi gh r-&Mre gates

1 17

11 5 10 5 3

0 5 1 3 1 4 6 2 4 2
30 5 3 1 6

2 .5 5 3 1
5 3 3 3 6 1 4 6 4 = 2 20
4 2 5 3 1 6 4 - 2

4 2 20 5 3 1 6
1 3 6 1 4 6 2 40 2 5 60 3 5 1 3 1

40 2 5 60 3 5 1 3 6 1 4 6 2 4 10 2 5 20 3

5 1 3 6 1 4 6 4 In 5 3 1 6
Lu 3 3 1 6 4 z 50 5 3

4 2 30 % 1 6 4 lop 3
1 6 4 - 2 50 5 3 1 5 4 z zu

S 3 1 6 2 3 3 1 6 2
50 5 1 6 4 2 20 5 3 1

4 5 2 4 20 3 5 3 6 1 4 6 4 40 0

5 3 6 2 4 2 3 3 5 1 3 6 1 4 6 2

40 5 3 1 6 4 to 5 1
4 6 z 2 5 1 3 5 1 3 6 1 4- 6 2 4 X! 2

6 1 4 6 2 4 30 2 5 50 3 5 1 3 6 1
5 0 3 OS 1 3 6 1 6 4 2 20
4 2 5 3 1 6 4 2

6 1 4 6 2 4 20 2 5 40 3 5 1 3 6

5 3 1 6 4 2 12
4 -V 2 5 3 6 677

6 4 6 2
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THE ARITHMETIC

In order for the GBT addressing system to be useful, there must be efficient methods for
doing planar addition, subtraction, and multiplication entirely in terms of GBT
addresses. These methods are discussed below:

1. Addition: Addition of GBT addresses parallels integer addition in that if an addition
table for the seven digits is given, any two addresses can be added. From Figure 5,
we can derive the basic GBT addition table. Using standard planar parallellogram
addition, we see, for example, that 1+2=3, 3+6=2, and 5+6=4. If 3 and 2 are added,
the sum is outside the central first level aggregate, 3+Z=Z5. Thus, Table I is
obtained. Addition of multidigit addresses is very much like adding multidigit
integers. For example (see Figure 6), to add 153 rnd 45, add 3+5=1, then 5+4=52, and
carrying the 5 to the next column, 5+1=16. Thus, 153+45=1621. Figure 6B shows
these vectors in the plane.

2. Subtraction: Subtraction is accomplished by the process of complementing and
adding. The complement of a GBT address is its digitwise sevens complement. The
complement of 61542 is 16235, for example. In Figure 5, we see that 3 and 4 are
complements, as are I and 6, and 53 and 24.

3. Multiplication: GBT multiplication is similar to addition in that it is a digitwise
operation. The multiplication table (Table Z) shows that the GBT product of two
digits is just their integer product modulo 7. An example of multidigit
multiplication is:

254 x 62:

Z54
x 62

431 (= 2 x 254)
523 (= 6 x 254)

5261 (= the GBT sum)

Figure 7 illustrates this product geometrically.
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FIGURE 5: Key to Planar Addition Table
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+ 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6

1 1 12 3 34 5 16 0

2 2 3 24 25 6 0 61

3 3 34 25 36 0 1 2

4 4 5 6 0 41 52 43

5 5 16 0 1 52 53 4

6 6 0 61 2 43 4 65

TABLE 1: GBT Addition
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Figure 6A

Add the Addresses 153 and 45:

(1)(5) C)Denotes a Carry
153

45
1621

Figure 6B

.15

FIGUR 6: he GB Sumof 130an 4
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* 0 1 23456
0 0 0 0 0000

1 0 1 23456

2 0 2 46135
3 0 3 62514

4 0 4 1 5263

5 0 5 31642

6 0 6 54321

TABLE 2: GBT Multiplication
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FIGURE 7: The GBT Product: Z54 x 6
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' THE GBT DATA BASE STRUCTURE

Any set of GBT addresses generates a tree structure. The tree derived from a list of 9
four digit GBT addresses is shown in Figure 8. This tree originates from a root node
which corresponds to the universal cell containing all addressable cells. Attached to the
root node is a node corresponding to the first of a set consisting of those next lower level
cells beneath the universal cell which contain any of the cells on the list. Generally,
each node in the tree corresponds to a cell in the GBT cellular hierarchy. Everv node
within a particular level of the tree structure is linked to its siblings in sorted order by
the digit of the GBT address corresponding to the level. The first node within the list is
attached to the parent cell for that level. Any given node can have, at most, seven
subordinates, but may have fewer.

This tree structure provides an easy way of accessing data by general location. Figure 9
shows the location of the cells whose addresses are listed in Figure 8. Suppose someone
were to ask for a list of the addresses stored in the tree which are within four units (1
unit is the distance between hexagon centers) of 4221. A simple computation shows that
any such address must be a subordinate of one of the cells 4277, 6577, 6477, and 43177.
The latter cell is not part of the four digit universe used in this example, and therefore,
is not checked. To check the contents of 4Z77, we start at the tree root, follow a pointer
to cell 4777, then to cell 4Z77. Then we follow all pointers from the 4277 node to
discover the addresses 4201, 4207, 4Z45, and 4Z67. These are placed on a list of
candidate addresses. To check 6477 and 6577, we first descend from the root node to
cell 4777 then to the node corresponding to 6777. At the cell 6777 information is stored
within the cell describing the subordinates to the cell. It is at this point we discover that
there is no pointer to 6477, so there can be no stored addresses subordinate to that cell.
We then follow the pointer from cell 6777 to cell 6077 and from there to cell 6017 and
finally to cell 6577. By following all subsequent pointers from cell 6577 we locate cells
6562 and 6566 which are added to the list of candidate addresses. The next step is to use
the GBT subtraction operation and vector length measurement to eliminate those
addresses on the list which are more than four units from 4221. This step eliminates
4245 and reduces the list to 4Z01, 4207, 4Z67, 656Z, and 6566, all of which are (at least
partially) within 4 units of 4221.
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FIGURE 8:

A List of Addresses and the Corresponding Tree Structure

Nodes in the tree corresponding to addresses on the list are circled.

ADDRESSES: 4201, 4Z07, 4245, 4267, 6023, 6177, 656Z, 6566

Root Node

First Digit

Second Digit 0 5

Third Digit 0 4626

Fourth Digit 5 31 6

(
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FIGURE 9: The Locations of Cells on the Address List
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General GBT data accesses operate in the same manner as the above example. If a
region R is to be searched, the addresses of a small number of large cells which cover R
are determined. Then these cells are searched by examining their subordinate nodes in
the data structure until all stored subordinates of these cells are accessed. Then, this
list is checked against the boundary of region R to determine which cells actually
intersect that region. This is a relatively direct procedure for accessing by location in
that it avoids any consideration of addresses which lie outside the set of cells which
cover R. This locational access technique is not of great utility if the number of
addresses stored in the data structure is small. However, in large data bases, maps or
imagery, for instance, which contain multiple millions of points, some such access
mechanism is imperative to rapid operation.

The tree structure shown in Figure 8, and described above, is wasteful in that some nodes
exist in the tree solely to provide a linkage between a larger cell and a very small
number (1 or Z) of subordinates. These problems can be overcome by the structure
indicated in Figure 10. This abbreviated tree structure does not contain separate nodes
for many of the parent cells of addresses which are stored. Instead, the suffix digits of a
stored address, or stored addresses, are listed in a node corresponding to an address
which may be several levels above the stored addresses in the hierarchy. A new level in
the abbreviated tree structure is created only when the number of cells below the parent
cells becomes large enough that it is no longer efficient to use list processing methods
for the cells. The effect of the abbreviated tree structure is that stored addresses may
be accessed by passing through fewer nodes than in the full tree structure of Figure 8.
The locational access properties of the full tree are preserved in the abbreviated version.

/
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FIGURE 10:

An Abbreviated Tree Correspondi,-g to the same Address List as Figure 8

The address terminator lists shown in boxes are pointed to
by the node lust above them.

Root Node

4" 6

Lower Nodes

4201 6023
4207 6177

Address 4245 6562
Terminator 4267 6566
Lists
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