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1. Introduction

-~ —_ Jackknifing techniques are increasingly being applied to data

L P M S e L (. B A A B

' analysis for bias reduction. In robust estimation, several studies

BOWEH N

have recently been published giving asymptotic properties of jack-

knifed estimates, Cheng (1982) has demonstrated the validity of

[ouli

jackknifing L-estimates under various conditions on the score function,

o Efron (1982) has shown that jackknife turns out to be a special case

it kil dh

of his bootstrap technique.

In problems of density estimation, improvement of kermnel type
estimates was proposed by Schucany and Sommer (1977) through the
l technique of combining several estimates using different kernels,

'E Usually it is possible to reduce bias in kernel-type estimates simply
by a judicious choice of a kernel. However, in that case, the
estimates of density functions can be negative. The situation has been
described by Stute’(l982) in his paper showing that the use of non-
negative kernels does not allow the possibility of reduction of blas,

In this paper, the effect of jackknifing using leave-out rules,

is studied. Pseudovalues in case of density estimates are defined and

optimal properties of the jackknifed estimates are given. It is shown

TR T TTTRE RN . .

that the asymptotic behavier of the jackknifed estimates is the same

as that of the classical estimate, A Berry-Esseen type central

limit theorem showing the normality of the jackknifed rstimate is

also given.
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2. Pseudovalues

Let Xl’ XZ""’xn be a random sample from a population with
cumulative distribution function F{x) and probability density
function f£(x). Let K(x) be a given kernel function with the

following properties.

P(i) sup |K(x)| <
P{ii) [ K(x)dx = 1
P(iii) lim |[xK(x)| = 0
X0
P(iv) fmxi K(x)dx = 0, i =1, 2, ..., -1

and f!xr K(x)|dx < »

Let Fn(x) be the empirical distribution function based on the
random sample and let hn be a sequence of constants, Then the
kernel density estimates of f(x), defized by Roszenblatt (1956) and
Parzen (1962) are given by

x-X,

~ _ n
E@) = ()™t ) K
i=1 n
_ 1,1 X= .
= h_ _i K(-Ki) dF_(y) (2.1)

It is well known that the expectation of fn(x),



g’

BIC (0] = 0! x(-";{f)dp(y) > E(x)

as n * = and hn + 0,

N
Also the variance of fn(x),

V[En(x)] + 0 if in addition n hn + @ The above results can be
found in an extensive survey of probability density estimation by
Tapia and Thompson (1978).

Let Fg;l(x) is the empirical distribution function of the random
sample Xl,...,Xrl with the observation Xi removed and let
gi_l(x) = E—l—-f K(EE:X)dFi_l(y) where hn-l is a sequence of constants

n-1 n-1
based on n-1 observations.

Define the pseudovalues as follows.

e n-1 1
fn(}() - T—'—_—r—““' fn_l(x) (2.2)

The jackknifed estimate of the probability density function is then

defined by the following

o>
”
-
[}
=R
I~

. Eié(x) (2.3)
1
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3. Properties of Jackknifed iistimates

In this section, several properties of the Jackknifed estimates
are discussed especially its bias reduction property. The difficulty
of bias reduction without negative kernels, has been demonstrated by
several authors, e.g. Stute (1982, p. 419). Notice that for
sufficiently smooth F's, it is always possible to reduce the bias
E[fh(t)]—f(t}, by choosing appropriate kernels K. Also among the
class of nonnegative K's, P(iv) can be achieved only for r = 1, thus
giving hs as the best possible error rate. For better results, one
has to include also these K's for which K(y) may be negative, leading
to an estimate of En(t) which may be negative.

From now on, we shall assume that kernels satisfy the following

additional properties,

P(v) The rth derivatives of density function satisfy a

Lipshitz condition

1F -] <o fxylt, 0w

for all x, and y.

P(vi) {hn} is a sequence of constants satisfying
hn
=1+ O(l)s
h
n-1
Pevii)  [|E kx)|dx < =,

v a .. e P m_m o B e = oy




T 2F T
) o
I [

F o ¥R TLT
| ~ B

SN OWE TR TR PR AT WOV SANTR R Y ST ARV WYY TS TR Y T TR oy ey U Y I T
PP . FERE e - . -

4 4

LA A A L

B a

M ta P oo amr e Bee e A e

We prove the following theorem,

Theorem 3.1. Under the conditions P(i) - P(vii) on kernel K(x),

hzf(t)(x) f 2'K(~z)dz

E[f ()] = £(x) + —
+oh:m).
Proof.
E[f_(x)] = ifk(—z)f(x+zhn)dz
= f(x) +—imK(—z)[f(x+zhn)-f(x)]dz.

Using the Taylor's expansion with integral remainder, we have,
zrhr—l

EGetzh) = £00) + zh 700 + .o+ oy £ P @0

x+zhn £f+zhn-€)r—l
(r-1)!

-+

Using P(iv), we have

© xtzh (x+zhn-ﬂ)t-] (r)
£(x) + | f ey [ CIR(-2)dvae

-0

BLE_ ()]

Let 1
© x+zh (x+tzh _~{)
e e LA R L GO LN COPIYCEIE L
-0 x

(1)
- f K(-2) (2h) § +

o x+zhI (x+zh )r 1

e (1P @-£ 7 0 K (-2)dkaz

- X

e B e e e B e s e Ko e A e A B e e R % e —m s e e - A ot e M A e M e e o, Al

(3.1)

(3.2)

(3.3

(3.4)



I AR

v

Ty

r r

L A PRI ] B A A A A

Mk Attt Atk 2nL AN A At S L Sl

r'."‘“"'.

TR W VOV TR TR (T e oWy tywe e
N . Lo

T e

o

f

prnane

1

The second integral on the right of (3.4) in absolute value is

w x+zh (x+zh —C)r—l
n n

<c f f BT C*xlu K(-z)df.dz using P(v)

© X

-1

© x+zh (x+zh —E)r
<o f IR |fam® T IR g

o X A
=5 [ ke[ [T by pvid)
= 0™, (3.5)

Combining (3.4) and (3.5), we get the result (3.1) proving the

theorem., / /

Using the results of Theorem 3.1, we can find the bias of the

jackknifed estimate fJ(x). The result is given in Theorem 3.2,

Theorem 3.2. Under the conditions P(i) - P(vii) for the kernel,

the bias of the jackknifed estimate fJ(x) is

—) (3.6)

Proof. The expectation of the jackknifed estimate, from equation

(2.3), is given by

PR P S U N ST SV U WY - - aea Mm% A s & m.m ba S Bl fo o ma A 3 oa 2




o BIF (0] = (0 T-bTT )™ (TR (0]

-r 1
hn_lE[fn_l(x)]}

-« IS . ~ A
= Bias fJ(x) = E(fJ(x)) - £(x)
. = (n"T 37T =1 mT o, 2 )
o = (b " ~h 7 )7 {h " Bias £ (x)
- - . g
) “hn—l Bias fn_l(x)} (3.7)
: Using (3.3), we have
-1
i R x x+zh_ (x+zh —E)r
. _ -r , =Y =~1y,~T n n (r) _
Bias f£,(x) = (h_"=h__,) “{h B ,{ —G-n7 £ (B)K(-2)dE dz
< = x+zh (x+zh _E)r—l ()
; - hT n-1 n-l £ 7 (B)K(-2) dEdz
! hn-—l_i }{ (r-1)!
1 . (3.8)
Making the transformation
- F-x =2z hn n
in the first integral and § ~ x = zhn_ln in the second integral in
(3.8), we have
Y
’
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“r_, -T =1
Bia 2 (x) = (hn hn"l)
K s 4 = T !

[ 7R e ® o -5 O (eanby ) IK2)zran a2

~r
(h,

=T 71
NS LRS!
- (r-1)!

[ [Ta=-m % h -h )% TK(-2)dn de
®Q

a
_ 0((hn_hn—l) )
-r . -Tr
hn _hn—l
hn— —hn
Assuming —h = o(1l), we have the bias reduced to

since (h_n_)r = (1 -
n~-1 n

Remark, The comparison of theorem 3.2 with theorem 3.1 clearly
:“ demonstrates the reduction of bias of the jackknifed estimate EJ(x)
by at least of the term hg. By the proper choice of hn’ we can
reduce the second term also under certain smoothness conditions
on the probability density function f.

~

Variance of fJ(x)

Using the expressions for jackkifed estimate in (2.2) and (2.3)

we have the variance of the estimate, Oj as follows:




-9-
RN PR S I ~r-l, X~y
0 =n (b hn_l) Var{hn K( hn)
_ prmly  x-y
hpe1 KG=)
n-1
=A+B
- where
S IR TR T TR T R L W b4
| A= (- T )T T K R
- -r-1 -
- b T KRG 1 E(y)dy
n-1
e n L mF =2 fi-T=1. X~
. B=n ' (h"-h*)7*[[n” [k(—zhn)
L

- R ET ) £(y)ay)?
n-1

Notice that with z = (x-y)h;l, we have

e Tl T_p - (m2, -2r=1
A n (hn hn-l) hn

® hn r+l1 h 2
[ [K(2)-G—)"""K(z 78-)1%E (x-zh_)dz
) —w n-1 ln—l n
=1y, "F_yoF -~ =2Y o P
= (mh)7 M F-h TR ST (s )
) n-1
hn hn
« K@)-K@z 3 ) K(z 0 ) h
n~-1 n-1 n ,r+l 2
[ A ] - ——— [ -1}
o 1 - n 1 - n n-1
hn-l hn—l
.
f(x -z hn)dz.
’
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h
In the limit when —= + 1, n h =+ w o h +*0asn*r®
h ! n n ’
n-1
@
lim(n h A) = £(x) [ (= K'(2)4K(z) (r+1))dz,
n-"m 0 - 0
£ * 1
s0 that A=L&) [z K0 (2) + K(2) (r+1)]2dz + O(=—) .
n hn o n hn
(-]
We use the conditions that IZZ[K'(zﬂzdz < @ gnd f K¥(z) = 0(m™?)
m

Also note that from theorem (3,2), we have

r+l
B = S{(x) + Ly
n x 0( h h l-u)
( n-1" n)

Hence, we have,as n * @,

- %iﬁi _i {z K'(z) + (r+1)X(z2)}%dz

Ca

1
n h

+ of )

as B contains terms of much lower order than U(n-lh;l).
Notice that Oj > 0 since zK'(z) + (r+1)K(z) L 0 for all integrable

t [] = - -(t+1)

functions K (z). If zK'(z) + (r+1)K(z) = 0, then K(z) = z

which is not integrable.
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4, Central Limit Theorem for the Jackknifed Esatimate

Since the estimate is a sum of n independently distributed random

variables, the following theorem can be proved under the usual

Al

f;_l(x) are asymptotically normal,

n
conditions of central limit theorems since fn(x) and similarly

Theorem. As n » o,

§J(x)—f(x)

Tiﬂ* $(y)

Pr {

To find the Berry-Esseen bounds, we need (2+§)-th moment of

the jackknifed estimate (2,2) which is an average of f;(x), i=1,2,..1,n

given by (2.1). Using the expresssions in terms of kernel K for

féi)(x) and fi_l(x), we can write the (2+8)-th moment of fJ(x). By

Jensen's inequality, we have

i i ~y 2448 g 248
Hyys = E|fs(x)—EfS(x)1 < A2+6{E|fs(x)|
. 2468
+ IE(f;(x))l }
i 2+6
<28, Elf ()] )
where A

24§ 1S constant depending on § and

~y 248 g 2+§
GifgDh < Elfg0]

244

’ it
Hemee jiy ¢ = Tlgyg < 20Ay B|£5(0)]
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Now

L 248 —(248) L -r ~r \~(240)
Ef4 (0| n (b -hpoy) :

-r-1 , x-y -r-1,,  x-y 249
c [ T REED) - b TURGED T () dy
n n-1

- n—(2+6)(h—r_h—r )-(2+6) pr (r+1) (2+6)+1
n n-1 n

h h
C IR - T SR ez b )z
n n-1

<c n—(2+6)(h;r-h;fl)_(2+6)h;(r+l)(2+6)+1'

h h 248
Since [[K(z) - (—E:l)‘(r+l)K(z—E——)] f(x-zh_)dz
hn hn—l "

246

hn
<c@ - )
hn-l

Hence
h -(248)
—(2+6)h—1-6(__2;_ - 1)

Hots = 2+9 C.n n h
n-1

C
n1+<5 h1+<S
n

Giving

1
Moy = O(———").
2 (n h )1+5

n

248
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Fer estimation of Hy pqe We use the conditions,
Wy

24§ 248
[ 2w

-

T 24S _ 1
[ KT¥(z)dr = 0(;5;3)

m
Now we state the Berry-Esseen type theorem for fJ(x). For reference

see Chao and Teicher (1978, p. 299).

Theorem 4,1

n(EJ(x)-EEJ(x))
sup | P{ S < x} - ¢(x)l_i
J

< o28
— 602+6
J

The above result gives the uniform convergence of the central limit

theorem for the jackknifed density estimate.

n
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