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i Introduction

Jackknifing techniques are increasingly being applied to data

analysis for bias reduction. In robust estimation, several studies

have recently been published giving asymptotic properties of jack-

U" knifed estimates. Cheng (1982) has demonstrated the validity of

jackknifing L-estimates under various conditions on the score function.

Efron (1982) has shown that jackknife turns out to be a special case

F of his bootstrap technique.

In problems of density estimation, improvement of kernel type

estimates was proposed by Schucany and Sommer (1977) through the

technique of combining several estimates using different kernels.

Usually it is possible to reduce bias in kernel-type estimates simply

by a judicious choice of a kernel. However, in that case, the

estimates of density functions can be negative. The situation has been

described by Stute (1982) in his paper showing that the use of non-

negative kernels does not allow the possibility of reduction of bias.

In this paper, the effect of jackknlfing using leave-out rules,

is studied. Pseudovalues in case of density estimates are defined and

optimal properties of the jackknifed estimates are given. It is shown

that the asymptotic behavior of the jackknifed estimates is the same

as that of the classical estimate. A Berry-Esseen type central

limit theorem showing the normality of the jackknifed cstimate is

also given.
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t 2. Pseudovalues

Let X1, X 2.. ,Xn be a random sample from a population with

cumulative distribution function F(x) and probability density

function f(x). Let K(x) be a given kernel function with the

following properties.

P(i) sup IK(x)l c

P(ii) f K(x)dx = 1

?(iii) lim jxK(x) = 0

P(iv) f x K(x)dx 0, i 1, 2, ... , r-l

and fixr K(s) dx <

Let F (x) be the empirical distribution function based on the
n

U random sample and let h be a sequtnce of constants. Then the
n

kernel density estimates of f(x), defiued by Rosenblatt (1956) and

Parzen (1962) are given by

n x-X.fx W (n h - K
n i=l

= hV f K(Z) dFn(Y) (2.1)

It is well known that the expectation of if (x),n

ie
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E[ (X) I f K(- -- )dF(y) C(x)

as n - and h + 0,
n

Also the variance of f (x),
n

Vtf n W) - 0 if in addition n h n " The above results can be

found in an extensive survey of probability density estimation by

Tapia and Thompson (1978).

Let F1 (x) is the empirical distribution function of the random

sample X1 ,...,X n with the observation Xi removed and let

^i x) f K(X-Y)dFi _ 1(y) where h is a sequence of constants
fn-x) I h n-l h n- ,t n-1

based on n-l observations.

Define the pseudovalues as follows.

r-r
hn h n-i ^i

s(x) - -r fn(x)- h fnl(x) (2.2)
h- hr h-rh-

M n n-l n n-I

The jackknifed estimate of the probability density function is then

defined by the following

n
fJ(x) =n fsl(X )  (2.3)

n a
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" 3. Properties of Jackknlfed Estimates

In this section, several properties of the Jackknifed estimates

are discussed especially its bias reduction property. The difficulty

of bias reduction without negative kernels, has been demonstrated by

several authors, e.g. Stute (1982, p. 419). Notice that for

sufficiently smooth F's, it Is always possible to reduce the bias

E[f (t)I-f(t), by choosing appropriate kernels K. Also among rhp
n

class of nonnegative K's, P(iv) can be achieved only for r ; 1, thus

giving h2 as the bEst possible error rate. For better results, one

n

has to include also these K's for which K(y) may be negative, leading

to an estimate of f (t) which may be negative.n

From now on, we shall assume that kernels satisfy the following

additional properties,

P(v) The rth derivatives of density function satisfy a

Lipshitz condition

f(r) (x)-f (r)(y) c I 0oY 1", 1

for all x, and y.

P(vi) {h } is a sequence of constants satisfyingn

lb hn - 1 + o(l),
hn_
hn- 1

P(vii) fpr+x K(x) dx <
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We prove the following theorem.

LTheorem 3.1. Under the conditions P(i) - P(vii) on kernel K(x),

hrf (r)(x) f zrK(-z)dz
E~f n -00

E[n (X)) = f(x) +

+ 0 'h 
r + )

n

Proof.

CO

E[fn(X)) = f K(-z)f(x4zhn)dz

cc

= f(x) + f K(-z)[f(x+zhn)-f(x)ldz. (3.1)
-03n

t Using the Taylor's expansion with integral remainder, we have,

z r hr-i
. n f(r-1)()

f(x+zh) f(x) + zh f (x) + ... + (r-)! (X)

x+zh (X+Zh )r n-(3.2)+ f nf~r ( )d " (3.2)
(r-l) !

X

Using P(iv), we have
t-I

E x f x+zh (x+zh -&') (

E[f (x)] f(x) + f f ( ) f(r))K()ddz (3.3)

xnz ((r-lh)tr-

J J(r-1
nn

x+zh (x+zh nxrzh (r) (r)(r-) [ (M-f (x)+f (x) ]K(-zWd-dz

f~r (x) f (z(z

ox+zh (x+zhn -
(r-1 n [f ()()-f ()(x) ]K(-z)d ,dz (3.4)

f-
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i U The second integral on the right of (3.4) In absolute v:,lue is

x+zh (x+zh r-1

<C f r-i)! I[-x l " K(-z)dIdz using P(v)
00 x

CO r-i
< c f IK(-z)Il l zh nf dj dz

F. c f IK(-z)llzh radz by P(vii)
r! n

=O(h r+). (3.5)

Combining (3.4) and (3.5), we get the result (3.1) proving the

theorem. /-7

Using the results of Theorem 3.1, we can find the bias of the

jackknifed estimate fj(x). The result is given in Theorem 3.2.

Theorem 3.2. Under the conditions P(i) - P(vii) for the kernel,

the bias of the jackknifed estimate f 3 (x) is

hr+l
n0( (3.6)

(h1n_ i h n ) i-

Proof. The expectation of the jackknifed estimate, from equation

(2.3), is given by

r
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E.,(.(hrr )- {-rE[f (xa (
Jn n- n n

-hr 
nj

SE[f ( x)I1}n-I n- i

.h-r h-r .- lfh-r Bia f W ~) K-~ d

Bias fj(x) = n n (n-) n t-)

-r

- (x+zhn (x) r I

Bias f x hn- - r -l- f f n n f(r)(K( z)d

nl f(r-l) !

-C (3.8)

i making the ransformation

7 -
nx = z hnn

,in the first integral and E, x = h Z n -In in the second integral in

(3.8), we have

& Lh(~hFr

Bis =- r- rfr(4(P~d



-r -r -I, (ha -n )

Bias f (x) (r-1)!

(r(r)

f fl(1-f)r-1uf(r) (x+l h1z)-f(r) (x ]hn-iz) ]K(-z)zrdIl dz
-' O0 0

-r -r)- ml rix cI
(hf f (i-n)r (h

(r-i) (hn z -hn az +rK(-z)dp dz

• (hn~hn~ila

( -h - )

.. h-r_h- r
n n-i

S hnl-h n

Assuming h = o(i), we have the bias reduced to
n n

h r+l
0( n - n

(h nl-hn)

since (--)r = (1 - h 1-ha r

h

hn-i n

n

Remark. The comparison of theorem 3.2 with theorem 3.1 clearly

demonstrates the reduction of bias of the jackknifed estimate f (x)

by at least of the term hr. By the proper choice of h , we can

reduce the second term also under certain smoothness conditions

on the probability density function f.

Variance of fW(x)

Using the expressions for jackkifed estimate in (2.2) and (2.3)

we have the variance of the estimate, (7j as follows:

---- * --
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C2n-I(h '-hr )-2 Varfhr- K(=Y)
J n n-i n ha n

hn-I K(h
n-i

A A+ B

- where

A n -h(r hr)-2{fh -r-1[K(!x
n

--h 1 K(~ X I )]2 (y)dy

= t~ h- n--1 _

B n1(h -hr )- 2[fh-r-1 [k(x-y)
nl n-i n hn

-r-lK( X-Y )f(y)dy]sn-il h -

Notice that with z = (,x-y)h-', we have
n

A n J(h-r~hr 1)-2 h- 
2r-1

n n-i n

CWh ri h
f [K(z)_( hn r K(z 11 ")] 2f(x-zh n)dz

n-i n-I

I -r -- r -~h

=(n h (h -h )i 1
nl n n-i n h n-

h 1

fn-i n-i n r+1-i ,

h n-I hnn-

f(x -z h n)dz.
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h
In the limit when n 1,n h h n 0 as

n-n asn

lim(n h A) = f(x) f (z K'(z)+K(z)(r+l)) 2dz,

so that A , ..- - -f ) f [z K'(z) + K(z)(r+l)]2dz + 0n -h nh
n n

We use the conditions that fz2 [K'(z 2 dz < and f K2 (z) O(m - 2)

m

Also note that from theorem (3,2), we have

1hr+l1 n

t B n [f(x) + o( ( )
(hm hn)

Hence, we have, as n + 0)

2 fx) {z K'(z) + (r+1)K(z)} 2dz

+0
n h

as B contains terms of much lower order than ,(n 1h).

Notice that & > 0 since zK'(z) + (r+Il)K(z) 1 0 for all integrable
functions K'(z). If zK'(z) + (r+l)K(z) 0 0, then K(z) = z(r+l)

which is not integrable.



4. Central Limit Theorem for the Jackknifed Estivmate

Since the estimate is a sum of n independently distributed random

variables, the following theorem can be proved under the usual

- conditions of central limit theorems since n(X) and similarly

f (lX are asymptotically normal,

Theorem. As n -,

fj(x)-f(x)
.:.Pr {,< y) + (y)

-j

To find the Berry-Esseen bounds, we need (2+6)-th moment of

the jackknifed estimate (2.2) which is an average of f (x), i=1,2,,.,,n

given by (2.1). Using the expresssions in terms of kernel K for

S)n andf _1(x), we can write the (2+6)-th moment of fW(x). By

Jensen's inequality, we have

1 2+6 2+6
+6= ElfS(x)-Ef (x)I < A2+6{Elf'(x)l

2+6
+ IE(f'(x))I }

2+6
< 2 A 2+6 EIf (x)I }

where A 2+6 is constant depending on 6 and

2+6 2+6
Elf (x) ) E fx) I

2+6
Hence p2+6 = Z 2 +- 6 < 2nA2 + Elfs(x)
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Now

2+5 -(2+) -r -r )-(2+6)

Elf'(x)I n n- 1

p m f [1 -r-1 K('-) - h-r-K( N.)] 2+6 f(y)dy
n h n-i h n-1n n

n-(2+6) (h-rh--r )(2+6) hn(r+l)(2+6 )+i

n n-i n

f[Kz) r~ K z n 2+5M(z) - ( )(+)K(z----n--n )]2+f(x-z h )dz

n hn-i

S-(2 + 6 )(h rl)-(2+6) h- (r+l) (2+ 6 )+1
_ n -n

h h 2+6

Since f[K(z) - ))--r n f(x-zh )dz
hn hn-in

h 2+6

n-i

Hence
h" -(2+5)

2 2n A2 6 C n-(2+ 6)h-l-6  i)
2 - 2n hn-1

C
1+6 h1+6

n n

Giving

12+6 O( h 1+6
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For estimation of 12+6, we use the conditions,.

f z 2+6 (K (z))2+dz

+' 1
f K2+6(z)dr - o 2+)

MR m m

Now we state the Berry-Esseen type theorem for fj(x). For reference

see Chao and Teicher (1978, p. 299).

Theorem 4,1

11(fji (x)-Ei fj(x))

supfP{ (j x < x) - <x)( c

< C 2+6

< 6 2+6

a

The above result gives the uniform convergence of the central limit

theorem for the jackknifed density estimate.
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