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Abstract.

Applicative programming languages and languages for data-

flow machines are often described as va -oriented languages.

Other languages, such a Smalltalk, are described as object-

oriented. LISP has been described as both value-oriented and

object-oriented. What exactly do these terms mean?

This paper attempts to identify and clarify the differences

between vglues and objects and, hence, between value-oriented and

object-oriented languages. The paper then turns to the question

of whether objects should be included in applicative languages

and the role they can fill in those languages. The remainder of

the paper is a proposal for one approach to a true object-

oriented programming. This includes both an informal description

of object-oriented programming constructs and a formal semantics

for these constructs. Mondeterminacy, synchronization and

recovery from failures are briefly discussed.
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1.1 What are Values?

Value-oriented programming can be described as programming

without the use of variables, side-effects, or an updatable

memory. The basic idea is that the value of an expression

depends only on its operands, and that the only effect of execut-

ing an expression is the value it returns. Thus the operators in

an expression are mathematical functions.

Almost every programming language has a value-oriented sub-

set: its arithmetical expressions. The value of an expression

such as (3 + 2) depends only on its input operands (3 and 2, in

this case), and the only effect of executing the expression is

the value, 5, returned.

One of the desirable characteristics of values is their

predictability. We can tell the interfaces of an arithmetic

expression by simple inspection. Since all of the functions are

side-effect-free, all of the inputs and outputs of each functions

are manifest. This simplifies manipulation of value-oriented

expressions, and simplifies proving properties about them.

What is it about va ues that give them these characteris-

tics? We have noted that the most value-oriented parts of most

programming languages are there most mathematical parts, so it is

4 no surprise to find that mathematics is that discipline that most

consistently deals with values. Hence, we can discover many of

the characteristics of values by studying mathematical entities.

4
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What are these characteristics? The fundamental property of

mathematical entities is that they are abstractions (concepts,

universals). For example, the number two is an abstraction that

subsumes as its particulars all of the various pairs, whether

they exist in reality or our imagination, or in the present, or

the past or future. Because mathematical entities are abstrac-

tions, they do not change. Particular pairs may come into or go

out of existence, but the abstraction two remains. Also, the

number of marbles in a bag may be subsumed by the abstraction two

at one time, and the abstraction three at a later time, but nei-

ther abstraction has been altered. Similarly, it is not meaning-

ful to speak of the creation or destruction of a value; mathemat-

ical equations such as 5 = 2+3 describe timeless relationships

among values, not descriptions of their creation, modification,

or destruction. in this sense values are atemporal,; that is, the

concept time does not apply to them. It is just as meaningless

to apply time concepts to a number as it is to apply color con-

cepts.

Another characteristic of values is that they are universal;

that is, they are not particular. This is because an abstraction

is coextensive with the particulars it subsumes. For example,

the abstraction two is coextensive with all particular pairs, and

conversely, anything coextensive with all particular pairs is the

abstraction two. The result of this is that it makes no sense to

talk of "this number two" or "that number two" or to ask, "How

many number two's are there?" These are concepts that apply to



particular things, and values are universals, not particulars.

The characteristics of values can be summarized:

t values are atemporal;

* values are immutable;

* values are neither created nor destroyed;

t* * values are universal.

It can be seen now that applicative programming is essen-

tially value-oriented programming. In a purely applicative

language, there is no assignment operation and no idea of state.

Functions compute values solely on the basis of their inputs, and

have no side-effects. This is of course why applicative program-

ming is so mathematical; it is mathematics.

Consider an applicative subset of LISP (i.e., without RPLACA

and RPLACD, and with EQ restricted to atoms). In this language

lists can be treated like mathematical entities (specifically,

tuples) and the list processing operations can be treated like

* mathematical functions on these entities. Lists may be computed,

but they are not modified, created, destroyed, copied, or shared.

Again, applicative programming (value-oriented programming) is

*essentially mathematics.

1.2 What are Objects?

4 There is probably more confusion about the nature of

-4-
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object-oriented programming than about the nature of value-

oriented programming (see, for example, [Lomet76], [LometSO],

[Robson~l], (Rentsch82] and (MacLennan82]). In this section we

identify some of the characteristics of objects and object-

oriented programming.

In object-oriented programming systems such as Smalltalk,

all computation is viewed as simulation. Here, programming

language objects correspond to real-world objects, and manipula-

tions of real-world objects are simulated by sending messages to

the programming language objects. In Smalltalk, programming

language objects are grouped into classes (i.e., abstractions) of

similarly behaving objects.

What is an object? We can get a clue to its nature from the

common use of the term. In common usage an object is a material

entity existing in space or time. Let us consider what it means

for a programming language object to exist in time. This means

that it persists as an identifiable entity through some period of

time, which in turn means that it can come into existence at some

point in time (i.e., be created) and that it can go out of

4 existence at some point in time (i.e., be destroyed). This is a

common characteristic of objects in computers; for example,

objects in Smalltalk and Simula are created by explicit request

(the new operation), and are destroyed by a garbage-collector

when they are no longer accessible.

Just as real objects exist in space, programming language

-5-



objects may enter into a number of relationships, spatial and

otherwise, with other objects. For example, one object may be

part of another object, or (in an operating system) the owner of

another object. In a system like Smailtalk the attributes of an

- . object are represented by instance variables, whose values are

themselves objects. In data bases intended to represent real-

world knowledge, nodes representing objects are connected by

labeled arcs representing relationships among the objects.

Real-world objects not only exist in time, they also change

through time. That is, various factors can alter an object's

* relationships with other objects (such as position) and an

object's other attributes (such as size). This is in marked con-

trast to values, which, as we have seen, are immutable. Another

way to state this is that at any point in time an object has a

state,, which is the sum-total of its relationship with all other

objects in the system. Various laws then determine how the state

of an object can change in time. Of course, the ultimate change

in state that any object can undergo is its creation or destruc-

t ion.

6 In systems like Smalltalk the instance variables determine

the state of an object and the methods defined in the object's

class determine the object's behavior in time.

The mutability of objects leads to another of their impor-

tant characteristics: the notion of sharing. We have said that

values are universal, i.e., that the concept of instance does not

-6-



apply to them. This is not the case for objects. Since only a

finite number of properties are representable on a finite com-

puter system, it is quite possible that two programming language

objects have all the same properties, yet represent distinct

real-world objects. It is of course quite common in object-

oriented programs to have two different objects that at some

Doint in time have the same attributes. Thus, objects have an

identity independent of their state, which makes them particular

rather than universal. If two entities share access to the same

object, then if one entity changes the state of the object, the

change will be visible to the other entity. Conversely, if the

two entities each have access to distinct objects (that might

have the same state) then a change to the state of one will not

directly cause a change to the state of the other. The

shared/non-shared distinction is of course familiar from object-

oriented programming systems.

The characteristics of objects can be summarized:

$ objects are temporal; they exist in time;

1 objects are mutable, and have a state;

* objects can be created and destroyed;

* objects are particular, and can be shared.

1.3 Objects in Applicative Languages.

It would seem that objects should be excluded from applica-

-7-



tive programming systems. They have many of the undesirable

characteristics of imperative languages, such as a changeable

state, a strong dependence on the time sequence of events, and

complications arising from the notion of sharing. In this sec-

tion we will argue that this is not the case, that objects have a

role in applicative languages.

The reason for this is simple: the purpose of a program is

often, directly or indirectly, the modeling of some aspect of the

real-world. Further, the aspects that we are interested in

modeling often involve the changing relationships among real-

world objects. The obvious approach is to use programming

language objects to model the real-world objects.

Given this observation it is not surprising that the con-

cepts of object-oriented programming first arose in connection

with simulation languages, in particular Simula [Dahl70].

Smalltalk, one of the most widely known object-oriented

languages, is based on Simula and takes the view that all pro-

gramming in simulation [Kay771. For these reasons many basic

ideas of simulation (see for example [Pritsker79], Chapter 3 and

[Maise172], Chapter 1) are fundamental to our notion of objects.

It will be objected that applicative languages do not need

objects to model the changing state of real-world objects. The

technique is familiar from the use of denotational semantics to

describe imperative languages. The total state of the system is

described by some value, such as a sequence or a function. This

~-8-



value is the input to an applicative state-transition function

that computes the value representing the new state.

Although this works, it is not very satisfactory. Functions

tend to accumulate large numbers of arguments, or highly struc-

tured composite arguments, that represent the state. This

defeats the goals of applicative programming by destroying the

clarity and mathematical tractability of programs. The problem

u becomes acute in operating-systems, real-time systems, graphics

software, data-base systems, and of course in explicit simula-

tions. For this reason the remainder of this paper will discuss

how objects can be best reconciled with applicative languages.

We must first note an obvious point: the entire state of

the universe cannot be simulated inside a computer. Therefore,

it becomes necessary to select the subpart of the universe

relevant to the problem, and the appropriate level of abstraction

for the simulation.

The result is that the state of the simulation is

represented by a finite number of objects connected by a finite

number of relationships. As the simulation progresses the rela-

tionships among the objects may change and objects may be created

or destroyed.

The relations and objects described above can be termed

corresponding objects and relations because they correspond to

the objects and relations in the real-world that they model. The

system may also contain non-corresponding objects and relations.

-9-
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These do not necessarily correspond to any real-world objects or

relations, but are used to implement the correspondinq objects

and relations. Thus, the distinction between corresponding and

:. non-corresponding objects and relations is analogous to the dis-

tinction in object-oriented programming languages between the

publicly visible objects and their abstract properties on one

hand, and the private objects and attributes used to implement

the public ones on the other.

The non-corresponding objects are analogous to theoretical

entities in a scientific theory: we cannot in general infer from

* them the existence of corresponding real-world objects. Thus,

like the implementation details of a Smalltalk or Simula object,

it is usually desirable if the non-corresponding objects and

relations be hidden. This can be accomplished by the proper con-

trol of name contexts. That is, an entity can only gain access

to an object or relation if that object or relation has a name in

a context accessible to that entity. This is analogous to having

a capability for an object in an accessible capability list.

Generally, only the implementor of a class of objects will have

* access to a context naming the non-corresponding objects and

relations used to implement that class of objects. Thus, infor-

mation hiding is easily accomplished.

The objects and relations that are intended to be

corresponding can be made public by giving them a name in a more

widely accessible context. Of course, the changeable name con-

texts that are used to accomplish this control are themselves

~-10-



objects.

How do the relations among objects come to be changed? In

the real-world such changes are expressed by causal laws, which

state how certain relations holding among objects cause these

relations to change in time. These laws are usually expressed as

a conditional statement about some class of objects. For exam-

ple, "an electron in conditions C will act in manner A."

The same approach can be used for controlling the changing

relations among objects in a programming system. This is similar

to what is done in object-oriented languages like Smalltalk:

classes of objects are defined which behave in the same way in

various message-receiving situations. Thus, the methods of

Smalltalk can be thought of as causal laws.

How do these ideas relate to applicative programming

languages? Note that values enter into the universe of objects

in several places. First, certain attributes of objects (e.g.,

weight) and relations among objects (e.g., distance) will be

values. Second, the relations that hold among objects at any

given time are themselves values, since relations are mathemati-

cal abstractions.

At each instant of time the causal laws must determine new

relations to be associated with the relation-names at the next

instant of time. These changes are expressed as transactions

that add tuples to, or delete tuples from, the relations. Appli-

cative programs can be used to determine the values to be

-11-



associated with the value-bearing attributes of an object. Thus,

value-oriented and object-oriented programming techniques can be

used together in a way that exercises the advantages of each.

Values and pure functions are used to model abstractions and

their relationships, while objects and causal laws are used to

model real-world objects and their behavior.

2. Intension versus Extension

It is necessary to distinguish between the intension and

extension of the relations in the computer that are used to model

4corresponding external relationships and properties. Two rela-

tions have the same intension if they are intended to model the

same external relationships or properties. Two relations have

the same extension (at a given point in time) if they apply to

the same objects (or tuples of objects and values). Notice that

two relations may be extensionally the same even though they are

intensionally different. F'or example, at a given point in time,

the same three objects may satisfy both the relations "blue" and

"round," but this does not imply that "blue" and "round" model

the same property. That is, *blue" and "round" have the same

extension but different intensions. Also, notice that one of the

objects might at the next instant become "non-blue" while remain-

ing "round." Thus, although the intension oE relations remains

fixed their extension can vary in time. F'rom time to time, rela-

tions with different intension can zoincilently have the same

extension.
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The same distinctions apply to objects. The intension of a

computer object is the real-world object it is intended to model;

the extension of a computer object is the set of relations to

which it belongs. Thus objects with different intensions can

coincidently have the same extension.

These notions of intension and extension might seem to con-

flict with Liebnitz' doctrine of the identity of indiscernibles,

* which says that two things that are alike in every way are ident-

ical. Symbolically,

x " y 4=0 IVP{P(x) 4* P(y)}

In the real world two things which agree in every property and

relationship are the same thing. In a computer system, however,

it is not possible to model every property and relationship; it

is necessary to select a finite number of these that are relevant

to the problem at hand. Therefore we can have two computer

objects that are intended to model distinct real-world objects,

but happen to agree in all the modeled properties and relation-

ships. That is, the two computer objects have different inten-

sions but the same extensions. These ideas are developed further

in [MacLennen73] and [MacLennan75], Chapter 3, which present a

mathematical theory of intensional relations and sets.

How can a programming system distinguish intensionally dis-

tinct relations that happen to have the same extension? Although

there are a number of solutions to this problem, the simplest is

to associate a unique ID with each intensionally distinct object

-13-



or relation. Then, two objects or relations are distinct if and

only if they have distinct IDs. At each point in time each rela-

tion ID is associated with a relation (i.e., a set of tuples)

that defines the relation's extension.

Notice that these IDs are internal identifiers analogous to

references or capabilities; they have no connection with any

names that programmers might use to refer to these objects or

relations. In fact, we will see later (Section 7) that program-

mers manipulate objects and relations by giving names to their

M s.

3. Condition-Action Rules

We describe the behavior of objects by using causal laws of

a special form, condition-action rules. A condition-action rule

says that if some objects are in a certain situation they will

act in a certain way. That is, if certain relations do or do not

hold for a particular objects, then those objects will establish

or disestablish certain other relations. We write these rules in

the form

<cause> =* <effect>

where <cause> defines the conditions under which the objects act,

and (effect> defines the actions that they take under those con-

ditions. These rules are very similar to production rules; we

explore the differences later (Section 9). Next we will discuss

the effect part of rules; the cause part is discussed later.

-14-
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We use a prefix notation for expressing actions; that is, we

use

P (x, y, z,

to mean that the tuple <x, y, z, ... > is to be added to the rela-

tion P. Similarly,

-P (x, y, z,

means that the tuple <x, y, z, ...> is to be deleted from the

relation P. In the above x, y, z, ... represent either simple

variables or constructor expressions, that is, expressions that

construct compound structures from other simple or compound

structures. For example, the constructor expression cons(x,y)

constructs the compound structure <cons,x,y>.

Since a single rule can cause a number of actions to occur,

the <effect> part of a rule allows the specification of a set of

additions or deletions. For example, the rule

... =0 Contents(s,y), Receive(x)

causes the tuple <s,y> to be added to the Contents relation and

the tuple <x> to be added to the Receive relation. As we said,

the tuples can contain the results of constructor expression

evaluation. For example, the rule

... --* Contents(s, cons(x,y)), a(s)

causes the tuple <s, <cons,x,y>> to be added to the Contents

-l 5-
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relation, where <cons,x,y> is the result of evaluating cons(x,y)

in the current context. The names "s," "Contents,* "consm etc.

must be bound in the current context, which is discussed later.

Conditions are specified by pattern matching. In a simple

case such as

Push(s,x,a), Contents(sy) - ...

U we are testing if there is a tuple <s,x,a> in th e PLsh relation

and a tuple <s,y> in the Contents relation. The meaning of this

condition depends on the bindings of the names that occur in it,

s, x," "a" etc. in this case. Any name that is bound to a

value or object ID will match that value or object ID; any name

that is unbound will match any value or object ID and bind the

name to that value or object ID. In the above example suppose

that all the lowercase names are initially unbound. Then

Push(s,x,a) will match arty triple in the Push relation and bind

its components to "s," "x" and "a." Next, Contents(s,y) will

match any pair in the Contents relation whose first element is

the "s" matched in the first condition. If this match succeeds

* then "y" will be bound to the second element of the pair. Thus

we have tested whether any object is both a first member of Push

and a first member of Contents.

The above conditions have a side effect of binding the names

"S," "x," Ny" and "a" to the components of the tuples that

satisfy the conditions. These bindings remain in effect during

execution of the effect part of the same ruler they are then

-16-



discarded. This allows us to perform actions on the values and

objects satisfying the condition.

In the above example we tested for the presence of a condi-

tion; we can also test for the absence of a condition. Had we

written

Push(s,x,a), -Contents(s,y) =

we would have executed the action part if there were not a pair

in Contents whose first element was the same as the first element

of any triple in Push.

With this explanation the meaning of a complete rule can be

understood. Consider:

Push(s,x,a), Contents(s,y) = -Push(s,x,a), -Contents(s,y),

Contents(s, cons(x,y)), a(s)

This means that if the Push relation holds for some objects s, x

and a, and if s holds the Contents relation to some object y,

then perform the following actions:

1. Disestablish the Push relation between s, x and a.

2. Disestablish the Contents relation between s and y.

3. Establish the Contents relation between s and cons(x,y).

4. Establish the a relation on s.

We can see that s is a stack. The meaning of the Push relation

-17-



is that some agent is attempting to push the object x on stack s

and is expecting an acknowledgement in a. The stack accomplishes

this by altering its Contents relation. It acknowledges its

action by placing itself in the Receive relation. An alternative

interpretation is that some agent sends the message Push(s,x,a)

to the stack. The stack responds by altering its Contents and

sending the stack back through a. Typically Push would be a

corresponding (public) relation and Contents would be a non-

corresponding (private) relation.

The above rule demonstrates a common situation: the condi-

tions that hold in the cause are disestablished in the effect.

For this reason we define an abbreviation: any rule with a con-

dition of the form *<name><tuple> can be replaced by a rule in

which this condition is replaced by <name><tuple> and an addi-

tional action -<name><tuple> is added. Thus, any tuple success-

fully found by a match of this kind is deleted from the relations

in which it was found before the action part of the rule is exe-

cuted. This automatic updating is convenient since it is the

usual case. Using it the Push rule can be written:

*Push(s,x,a), *Contents(s,y) = Contents(s, cons(x,y)), a(s)

These rules are similar to operation nodes in a data-flow

* language: when tuples of a certain form arrive in the input rela-

tions Push and Contents, the rule "fires" by removing the tuples

from the input relations and putting other tuples in the output

relations Push and a.

-13-
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Popping from a stack illustrates the use of more complex

patterns. Consider

*Pop(s,a), *Contents(s, cons(x,y)) - Contents(s,y), a(x)

The first clause in the condition searches for any pair <s,a> in

the Pop relation. The interpretation is that some agent is ask-

ing a stack for its top element and wishes it to be returned in

a. The second clause in the condition searches the relation Con-

tents for any pair whose first element is that same stack and

whose second element is something that matches the pattern

cons(x,y). If we assume that "cons" is already bound, then the

pattern cons(x,y) matches any triple whose first element is the

value of "cons." The remaining two elements of this triple are

bound to "x" and "y." The effect of this clause is to take the

triple that is the stack's contents and decompose it into its

components. Thus this rule reverses the effect of the Push rule,

as expected. Notice that rules are symmetric: the same relation

and constructor expressions can be used on either side.

4. Indivisibility of Rules

So far we have discussed the form of rules but not the exe-

cution cycle of the abstract machine on which they execute.

Although this will be defined precisely in Section 9, Formal

Semantics, we now address the issue informally. The basic rule

of execution is that on each cycle of the abstract machine one

rule is applied. That is, out of all the rules whose conditions
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are satisfied, we arbitrarily select one and execute its actions.

The effect of this is that rules are executed indivisibly.

The indivisibility of rules is important in a number of

applications that require the synchronization of concurrent

activities. For example, if there is exactly one x such that

MutEx(x), then we can ensure the mutual exclusion of two

processes by:

*MutEx(x) =0 ... begin process A ...

... finish process A ... =1 Mutex(x).

*Mutex(x) -n ... begin process B ...

finish process B ... =0 MutEx(x).

Since a rule is executed to completion in one cycle, either pro-

cess A or process B Is guaranteed to get exclusive access. In

the next section we apply this idea to a simple producer-consumer

synchronization problem.

5. Examples

In this section we present several simple examples of sets

of rules. First, extending the examples of Section 3, we have

these rules for stacks:

* *NewStack(a), *Avail(s) =0 Contents(s,nil), a(s).

*Push(s,x,a), *Contents(s,y) =0 Contents(s,cons(x,y)), a(s).

*Pop(s,a), *Coontents(s,cons(x,y)) = Contents(s,y), a(x).

0 *Destroy(s,a), *Contents(s,x) = a(x).
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Notice that we have added rules for both creating and destroying

stacks. The creation rule fetches an unused object from the

relation Avail to make into a stack. Typically NewStack, Push,

Pop and Destroy would be public names and Contents would be

private to the implementor.

We could have added to these rules a relation Stack(s) that

asserts that s is a stack. This relation would effectively

define the type of s. It is not necessary to define this rela-

tion since we can classify anything in the first position of a

tuple in Contents as a stack. The integrity of the type is

preserved by keeping the Contents relation private to the imple-

mentor.

To see how concurrent processes can use this model for syn-

chronization, consider a simple producer sending messages to a

consumer through an unbounded buffer. An agent puts a message m

in the buffer by sending Produce(m,6). An agent consumes a mes-

sage by sending Consume(c) and receiving the next message m by

*c(m). This is expressed by the following rules:

*Initialize(a) =0 Pindex(0), Cindex(0), a(0).

*Produce(x,a), *Pindex(k) =0 Buffer(k,x), Pindex(Suc(k)), a(k).

*Consume(a), *Cindex(k), *Buffer(k,x) =0 Cindex(Suc(k)), a(x).

where Suc(x) denotes the successor of x.

Notice that the indivisibility of rules ensures that simultaneous

Produce messages will get distinct Pindexes and that simultaneous

Consume requests will get consecutive buffer elements.
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6. Notational Extensions

The syntax for condition-action rules described previously

is termed the canonical form for rules. In this section we make

several notational extensions to the canonical form to simplify

expressing rules.

6.1 Compound Rules

Suppose we wished to write rules that perform one action if

P contains a pair of the form <x,x> and a different action if it

contains any other pair <x,y>. The following to rules will not

1accomplish this, since a pair <a,a> will match the pattern

P(x,y):

P(x,x) 0 Action 1.

P(x,y) Action 2.

What we would like to say is: first try the pattern P(x,x) and

only if this fails try P(x,y). This idea can be expressed by

using a negative condition:

P(x,x) = Action 1.
4

-P(x,x), P(x,y) = Action 2.

We allow the following notational abbreviation for this common

4 case:

P(x,x) = Action 1

else P(x,y) =4 Action 2.

I
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This extends in the obvious way to more that one else-arm and to

more than one condition in the cause parts.

6.2 Sequential Blocks

Often we want the mechanism of an object to move sequen-

tially through two or more states. This can be programmed expli-

citly by using a relation, say 0, to represent the state of the

object. For example,

C0  E0  0(1, ( )-

*0(1, ), C1  El, 0(2, )-

*%(n, ), Cn En"

where v represents all the unbound variables of C0 . This allows

a rule to fire only if the object is in the proper state. We

allow a group of rules of the above form to be written as a

sequential block:

Co * {E0; C =0- El; ... ; Cn = En )

The semicolons are suggestive of the sequential execution of

statements in conventional programming languages. Notice that

the variables in CO essentially become global variables of the

entire block.

Sometimes rules in sequential blocks have empty cause parts,

for example "z=)E," since the rule is to be applied uncondition-

ally when the object is in the proper state. Tn these cases we
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allow the arrow to be dropped: "E."

6.3 Procedure Calls

The communication mechanisms we have described are asynchro-

nous, that is, a message is sent by an action such as

Lookup(d,n,a) (a request to look up name n in directory d and

return the result in a) and a result is received by a condition

such as *a(x). Any amount of processing might be done by the

sender between the Lookup and the reply.

In many situations the sender cannot go on; it must wait for

a reply. For example,

*R(n,a) Lookup( Public, n, Receive), 2(a).

*Receive(s) , *2(a) =0 Pop(s,a).

where we assume the only purpose of 2 is to convey a from the

first rule to the second. In these cases we are doing synchro-

nous communication. Since synchronous communication is so com-

mon, we allow the above example to be written:

*R(n,a) = Pop( Lookup( Public, ni, a).

U The square brackets indicate that Receive is to be passed as the

last argument and that we are to wait for a reply (through the

private Receive relation) before continuing. 4 relation name

followed by an argument list in square brackets is termed a pro-

cedure call or, more briefly, a call.

-
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Next we consider a slightly more complicated example. Sup-

pose that we have two nested calls; what would this mean?

1 *R(n,a) -0 a( Pop( Lookup( Public, n] I ).

If we reduce this in the same way as the previous example we get

the three rules:

*R(n,a) =0 Lookup( Public, n, Receive), 2(n,a).

*Receive(s), *2(n,a) = Pop( s, Receive), 2(n,a).

I *Receive(x), *2 (n,a) a(x).

A problem is apparent: The last two rules have essentially the

same left-hand sides; this means that either of these rules could

accept the result returned by Lookup, which is incorrect. To

ensure the proper synchronous communication these rules must be

more tightly bound. Since a particular instantiation of a rule

is uniquely determined by the rule and the bindings performed by

the cause part, we can tag each communication with this informa-

tion. Therefore, to reduce the rule

*R(n,a) == P( Pop( Lookup( Public, n] ] ).

to the canonicdl form, we must create new relations 2, p and cr,

and replace the rule by these three:

*R(n,a) = Lookup( Public, n, p), 2(n,a).

2(n,a), *p(s) * Pop(s,a).

*2(n,a), *C(x) =:O a(x).

The separate private relations p and a are used to distinguish
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different acts of communication in the original rule.

This process can be generalized in a straight-forward way to

handle effects that contain any number of synchronous calls. To

show this we present an algor-ithm that reduces a rule containing

any number of synchronous calls to a set of rules in the canoni-

cal form. We suggest that this description be skipped on a first

reading.

q First, rearrange the rule so that it has the form

C(V) =0All' .. , Amp B1, ... ,I Bn 1

I where the Ai are the actions containing calls and the B1  are

actions not containing calls. C(V) represents a cause part con-

taining the free variables

V = vir ... p Vf

Number all the calls in the rule (1) from 1 to N. Invent new

private names r1, , r.4 and P1 *~P*The P1will be the

relations used to receive the values from the calls; the ri will

be bound to the returned values. Create new relations I ,~

4 and 011 , ,, The relations 4i will be used to receive the

reply relations to be bound topi

Replace rule (1) by the rules:



. . . . - • - - . . . _ . , . ." - ° ° ". - " J - " " " - - ' ' " " ° " ° ° - " -

C(V) 1 T (v), Bl, ... , Bn , NewRel(01), ... , NewRel(ON). (2)

• (V) , 01 (Pl) , ... , N(PN) - ().(3)

E(J) - A1 .

(4)

2(U) 0 AN.

*(U) -0 . (5)

where U = V, Pi' "''' PN" Rule (2) captures the parameters in

relation T, initiates all the actions that do not contain syn-

chronous calls and initiates requests for N new reply relations.

(NewRel is a public relation that provides previously unused

relation IDs.) Rule (3) receives the N new reply relations and

combines them with the parameters into a unique activation record

in the 2 relation. (4) denotes a set of rules - one for each

action containing synchronous calls. These rules will be pro-

cessed in later steps of the algorithm to eliminate these calls.

Rule (5) will be modified in later steps of the algorithm to per-

form clean-up functions such as deleting the activation record.

For each rule in the set (4), as long as that rule contains

a synchronous call, write the rule in the form

4 2(U), pl(rl), ..., Pm(rm) Pn (rn) = E(f[X)). (5)

where by E(f[X]) we mean an action containing the call fiX],

where X is any actual parameter list. The first time this step

is performed n will be zero (i.e., there are no "pi(ri)").

Recall that at the beginning of the algorithm we numbered the

calls from 1 to N; suppose that f[X] is the k-th call. Further,
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suppose that the conditions have been reordered so that rl ... ,

r, occur in X and r r occur in E(-). Rewrite rule (6)m  r m + n

as these two rules:

(),pl(rl), ... , pm(rm) = f(X'pk). (7)

2(U), pm +l(rm+l), "-I Pn(rn), Pk(rk) -0 E(rk). (8)

Rule (7) initiates the execution of f; rule (9) waits for its

*result and continues the execution of E.

The above process is continued until there are no more calls

in the set (4). Call the relations updated in the actions A1 ,

..., Am the final actions. The above reduction process will

result in m rules of the form (8), one for each final action:

I (U), pl(rl), ... , pn(rn) Ai(Y). (9)

We replace each of these rules by:

2(U), pl(rl), ... , pn(rn) Ai(Y), /&(Pl, '- Pn (10)

The purpose of the relation L is to signal the completion of the

final actions. For each such rule (10) created we add the condi-

S tion *A(pl, ... , pn) to the cause part of rule (5). When this

has been done for all the final actions, the modified rule (5)

will have the form:

*2(U) * ( pi ) *. ( pj ) (11)

When each of the m final actions has been completed, this rule

• deletes the activat; 3n record in 5 and the completion signals in
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When this algorithm has been completed we will have a set of

rules with this structure (rule numbers are shown in

parentheses):

*Creation of parameter record and reply relations (2)

*Creation of activation record (3)

*Call processing (7, 8)

*Final actions (10)

*Destruction of activation record (11)

6.4 Valueless Procedures

The procedures described above are value returning; they

return a value that is used in the expression in which the call

occurs. In sequential blocks it is often useful to have value-

less procedures, that is, procedures that have an effect but do

niot return a value. For example, the block

Push tS,x] ;

R(2) 1

in which Push is valueless, can be reduced to this block:

Push (S, x,p)
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*p(y) = R(2) }

In this case *p(y) waits for an acknowledgement and ignores the

returned value.

6.5 Applicative Expressions

It is often useful to be able to evaluate applicative

(value-oriented) expressions in the effect part of rules. For

example, suppose that we represent name directories by associa-

tion lists. The rules to put names in these directories and to

look up their values can be written:

*Define(d,n,x,a), *Contents(d,y)

=* Contents( d, cons( pair(n,x), y)), a(d).

*Lookup(d,n,a), Contents(d,x) =4 a (assoc (n,x)).

In the second rule above assoc(n,x) is interpreted as an applica-

tion of the function assoc to the values n and x. This rule can

be reduced to the following, which explicitly calls for the

evaluation of the expression:

*Lookup(d,n,a), Contents(d,x) =0 a( Eval[ assoc(n,x), Current] )

where assoc(n,x) is now interpreted as a simple data structure

constructor and Current is the current environment.

Since a rule must always be executed to completion before

another rule can fire, it might seem that the effect of a non-

terminating computation would be to hang the entire system. That

this is not the case can be seen by eliminating the synchronous
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call from the above rule:

*Lookup(d,n,a), Contents(d,x)

-0 Eval( assoc(n,x), Current, p), 2(d,n,a,x).

,•*p(y), *2(d,n,a,x) -0 a(y).

If Eval never returns a result then the second rule will never

fire, but this will not prevent other rules from firing. Since

all rules involving applicative expressions ultimately reduce to

rules in the canonical form and since rules in the canonical form

are never non-terminating, we can see that execution can never be

stopped by non-terminating applicative expressions.

6.6 Applicative Conditions

Consider the following simulation problem. A relation

Sched(x,t) means that an event x is scheduled to happen at time t

and a predicate Clock(t) means that the current time is t. We

want to write a rule to cause some effect E whenever the clock

time is at least as late as the time at which an event is

scheduled to happen. We allow this rule to be written as fol-

lows:

*Sched(xt), Clock(t') if t' >t =0 E

In general we allow any Boolean-valued applicative expression to

appear following an "if" in the cause part of a rule. To illus-

trate the reduction of these rules to canonical form we show the

reduction of the scheduling example:
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Sched(x,t), Clock(t'} )I (t >t), (x, t,t').

*Sched(x,t), Clock(t'), *TI (true), *Z(x,t,t') E.

*11(false), *I(x,tt') - .

Here 11 and are two new relations associated with this rule.

Notice that the relation Sched is not updated until after the

value of the applicative expression t' >t has been returned by

Eval and is known to be true. Also notice that the conditions on

Sched and Clock are retested in the second rule. This is because

they may no longer be true by the time Eval has returned its

result.

As an example of the use of applicative conditions we

present a simplified form of the file system described in David

Reed's thesis [Reed78]. Let LastRead(r,t) mean that record r was

last read at time t and let Value(r,t,x) mean that the value of

record r at time t was x. The value of r at any time T can be

read and passed to an action A by:

Value(r,T,x), LastRead(r,t); T<t = A(x).

Value(r,T,x), *LastRead(rt); T>t =0 LastRead(r,T), A(x).

I
Updating a record r to a new value y effective at time T is

denoted by Update(r,T,y). This operation is only allowed if r

has not been read effective at a later time:
[

Update(r,T,y), LastRead(r,t); T>t = Value(r,T,y).

Update(r,T,y), LastRead(r,t); T< t = AbortUpdate(T).

The purpose of AbortUpdate is to clear out any time T updates
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that might have already been made. It is accomplished by:

AbortUpdate(T), *Value(r,T,x) =m

else *AbortUpdate(T) =1

6.7 State Variables

Often we use private relations to refer to the internal

state of an object. For example loc(B,L) might mean that the

screen location of a graphic object B is L. It is often con-I
venient to think of these relations as state variables that are

private to the object. Consider a rule such as this:

Active(self), loc(self,L), *R(x) =0 S(x,L).

Clearly L represents the current value of the state variable loc.

Therefore we allow this rule to be abbreviated

Active(self), *R(x) =O S( x, @loc).

In general, if R is a relation and @R appears in an action of a

rule, then we replace @R by a new variable v and place the condi-

tion R(self,v) in the cause part of the rule. Notice that this

assumes that one or more of the other conditions bind "self."

Often this is the "self" bound as a global variable in the cause

part of a sequential block.

Figure 1 shows an extended example using all of these abbre-

viations. It is part of the definition of a graphic object that

appears as a square on the screen. The similarity to Smalltalk

will be apparent to readers familiar with that language.
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-.". *Show( self, reply) ,
/ { Color[ @scribe, black];

Draw[self];
" / reply(self) }." /i

*Erase( self, reply) =0
f Color[ @scribe, background];

* Drawfself];
reply(self) }

/
/ *Draw( self, reply) =0

/ Goto[ @scribe, @origin];
Drawux[self 0]Turn[ @scribe, @tilt];

/ DrawAux[ self, 0];
reply(self) }

*DrawAux( self, 4, reply) = reply(self) else

*DrawAux( self, k, reply)
{ Go[ @scribe, @size];

*Turn[ @scribe, 90];
DrawAux( @self, k+l];
reply(self) I

Figure 1. Part of a Graphic Object

U7. System Structure

In this section we !iscuss a possible organization for an

object-oriented programming system. Although this is not the

only possible organization, it will illustrate many of the

characteristics of these systems.

* Consider the problem of information hiding, th3t is, making

the corresponding relations visible and the non-corresponding

relations invisible. For example, in the definition of stacks,

* 0the relations NewStack, Push, Pop and Destroy are to be visible

to all potential stack users, while the relation Contents is

visible only to the implementor of stacks. This is accomplished

* •by placing the names of the corresponding relations in a public
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directory while keeping *Contents" in the private directory of

the implementor. Suppose that all environments contain at least

two bindings: 'Private* is bound to the private directory and

"Public" is bound to the public directory. Then, using the rules

for directories defined in Section 6.4 and supposing NewRelti

returns a new relation object, we can define the private relation

Contents by:

Define[: Private, "Contents", NewRelti I;

The distinction between public and private relations pro-

vides a gross level of discrimination between kinds of access. A

4 finer level of discrimination is required to maintain fidelity to

the causal model of objects. For example, we might have a class

of objects that have a publicly visible attribute Velocity. The

value of this attribute might be determined by non-corresponding

causal laws private to this class of objects. Thus it makes

sense for other objects to inquire the value of this attribute,

but not to alter it. With just the public/private distinction,

we only have two choices: (1) make the attribute private, in

which case other objects can not use it in conditions, or (2)

make the attribute public, in which case it is vulnerable to

actions by other objects.

We solve this problem by a simple form~ of capability based

addressing (Dennis66]. We assume that each relation i3 denoted

by a capability, which is a pair <rs,id> in which id is the

object identifier for the relation and rs is the set of access
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rights permitted to possessors of this capability. The three

possible access rights correspond to the possible uses of rela-

tions in rules: read, add and delete.

When a relati-n is created a capability bearing all rights

is returned. Thus,

Define( Private, "Push", NewRel[] 1;

defines the private name "Push" to be a new relation that can be

used in any way. To restrict access to relations we assume the

existence of procedures RemoveR, RemoveA, RemoveD, RemoveRD,

that create a new capability that is like a given capability

except that it has certain rights removed. Thus, if we want to

define a public name "Push" with just add-rights that is the same

as the private Push, we would write:

Define( Public, "Push", RemoveRD[Push] 1;

The capability management procedures make use of relations

private to the capability manager; these rules have this form:

*RemoveR(c,a), Cmap(c,r), Has(c,A), Ras(c,D), *AvailCap(d)

=0 Cmap(d,r), Has(d,A), Has(d,D), a(d)

else *RemoveR(c,a), Cmap(c,r), Has(c,A), *AvailCap(d)

= Cmap(d,r) , Has(d,A) , a(d).

else *RemoveR(c,a), Cmap(c,r), Has(c,D), *AvailCap(d)

I Cmap(d,r), Has(d,D), a(d).

* IFigure 2 shows a complete definition of stacks. In this defini-
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tion we have used a procedure NewRules[S] which takes a set of

* rules in symbolic form, S, associates these rules with a new

object, activates the rules and returns the object. The result-

ing rule object is given a private name to allow later operations

on it (such as editing or deactivating the rules).

Define( Private, "NewStack", NewRel[] ];
Define[ Private, "Push", NewRel[] 1;
Define[ Private, "Pop", NewRel(] 1;
Define( Private, "Destroy", NewRel[i 1;q Define[ Private, "Contents", NewRel[] ];

Define[ Private, "Rules", NewRules[
'*NewStack(a), *Avail(s) =0 Contents(s,nil), a(s).
*Push(s,x,a), *Contents(s,y) = Contents(s,cons(x,y)), a(s).
*Pop(s,a), *Contents(s,cons(x,y)) =0 Contents(s,y), a(x).

* *Destroy(s,a), *Contents(s,x) =0 a(x). ']];

Define[ Public, "NewStack", RemoveRD(NewStack]];
Define( Public, "Push", RemoveRD[Push]];
Define[ Public, "Pop", RemoveRD[Pop]];
Define( Public, "Destroy", RemoveRD[Destroy]];

Figure 2. Input Commands to Define Stack Objects

Interactive programming is a typical situation in which the

object-oriented viewpoint is preferable to the value-oriented

viewpoint. Since a person sitting at a terminal responds to con-

ditions and takes actions in time, we consider a person to be an

object. To allow people (real objects) to interact with objects

4 in the computer (simulated objects) we represent people by surro-

gates, called user objects. Therefore users can be put into and

removec from relations either by their own actions or by the

actions of other objects acting on the users' user objects.

The user object is atomic as far as the users are concerned.

At a lower level of abstraction (the system level) the user
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object resolves into a number of smaller objects representing the

display screen, the keyboard, the directories etc.

In their interactions with the rest of the system user

objects act like any other objects. However, because these

objects act as proxies for people they have some special charac-

teristics. Since the future action of users cannot be defined by

a finite set of rules, the system must provide a way of interact-

I ing with users. This includes methods of informing them of the

relations that hold on their user objects and means for allowing

them to direct their user objects to take actions. Both of these

can be accomplished by allowing users to enter rules or parts of

rules.

To account for the fact that users might never repeat their

actions under the same conditions, the commands that users type

are formally considered to be part of an open-ended sequential

block. Thus each command is implicitly parameterized by an

ever-changing attribute that can be thought of as time. The

definitions shown in Figure 2 are typical commands that a user

* might type at a terminal.

All the commands in Figure 2 are synchronous calls - the

action must be completed (or aborted) before the user can con-

tinue. Parallel activities can be initiated by simple uncondi-

tional actions, for example:

Compile( Progl, Replyl), Compile( Prog2, Reply2);
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The user can also type actionless conditions, e.g.,

Replyl(result) - ;

which causes the user task to pause until the conditions are

satisfied. Complete rules are useful for recovering results from

parallel tasks, e.g.,

*Replyl(result) =0 Define( Private, "Binary", result];

Since applicative expressions are allowed as parts of actions

users can also call for the evaluation of applicative expres-

sions:

Display( fac(3) ];

6

Thus the command language is the same as the object-oriented

language; the value-oriented language is embedded in the object-

oriented language. This seems to be the best relationship of

object- and value-oriented languages; it can be seen in several

existing systems (e.g., LISP and Backus's AST).

8. Formal Semantics

8.1 Abstract Syntax

In this section we present a formal semantics for the execu-

tion of condition-action rules. (The casual reader is advised to

skip this section.) The formal semantics will be expressed as a

series of function definitions that define a mapping from
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abstract rules into state transition functions. The abstract

syntax for rules is shown in Figure 3; the correspondence between

the abstract and concrete syntaxes should be obvious.

rule = cause effect
cause = predicate +

effect = predicate +

predicate = name constructor + - name constructor
constructor = item
item = name + constant + constructor

Figure 3. Abstract Syntax for Rules

8.2 State Space

As discussed in Section 2 (Intension versus Extension)

*Q intensionally different relations are distinguished by having

different IDs. Since the extensions of intensional relations can

change in time, a state is considered a mapping from IDs into

extensional relations. The definition of the state space is

shown in Figure 4.

states = IDs - relations
relations = P(tuplesl
tuples = elements
elements = objects + values + tuples
objects atomic-objects + relation-objects
where P(s) denotes the powerset of the set s.

* Figure 4. The State Space

Recall that relations are manipulated through capabilities

that control read, add and delete access to the underlying rela-

* ations. Therefore we define the set relation-objects to be the

set of all capabilities. This set has three exhaustive but not

mutually exclusive subsets,
i
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ReadCaps, AddCaps, DeleteCaps C relation-objects

relation-objects = ReadCaps U AddCaps U DeleteCaps

Note that a capability that bears multiple rights (e.g., add and

delete) will be a member of several of these sets (e.g,, AddCaps

and DeleteCaps). The function Cmap takes a capability to its

underlying relation ID:

Cmap: relation-objects -3o IDs

These notions are formally defined in Figure 5.

rights = {R, A, D}
rights-sets = P(rights)
relation-objects = rights-sets X IDs
Cmap(r) - 2(r)
ReadCaps = rc 1 relation-objects I R I l(c))
AddCaps = c I relation-objects A I 1(c)}
DeleteCaps - (c I relation-objects I D I 1(c))

Figure 5. Capabilities

8.3 Multiple-valued Functions

Our goal in this section is to define a state transition

function for condition-action rules. Notice, however, that the

execution of rules is in general non-deterministic. That is,

from the current state the state transition function may define

several successor states. In other words, the state transition

function is multiple valued. What this means of course is that

we have a state transition relation rather than a state transi-

tion function. Although we will define a relation Cycle

r states Xstates such that Cycle(s,s') is true if and only if s'

is a possible successor state of s, it will often be more con-
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venient to think of Cycle(s) as a multiple-valued function. This

will allow us to use a more familiar functional notation in our

definitions. Unless specified otherwise, in the following sub-

sections *function" will refer to both single-valued and

multiple-valued functions.

Since we will be dealing with multiple-valued functions, it

will be necessary to talk about sets of multiple-valued func-

U tions. We write D - R for the set of all multiple-valued func-

tions with domain D and range R. This notation is analogous to

D -+ R, the set of all single-valued functions from D into R.

Of course mathematically D -0 R is just DXR, but our notation

will better emphasize the functional viewpoint.

Although we introduce additional notation as we need it, the

reader can find a complete description of the functional and

relational operators we use in [MacLennan8l1] and [Ma:Lennan831.

8.4 Semantics of Rules

Our goal in the following sections is to define a function

Cycle: states =0 states

that describes the non-deterministic transition from state to

state. We will do this by first defining a single-valued func-

tion

Rule: rule -- envsXstates =: states

that takes rules into multiple-valued functions that take
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environment-state pairs into states. Note that the arrows are

right associative and less binding than the cross. We use the

convention of writing the names of abstract syntactic categories

in lowercase (e.g., "rule") and the names of the corresponding

semantic functions with a leading uppercase letter (e.g.,

"Rule").

We will define the Rule function in a top-down order. The

effect of the cause part of a rule is to test for the cause being

true of the state and, if it is, to extend the environment by the

names bound in the pattern matching process. This extended

environment is then used during execution of the effect part of

the rule. The definition of Rule is:

Rule[c,e] (E,s) = Effect e] E' s

where E = Causetc] s E

where c and e are the cause and effect parts of the rule and E'

is the extended environment. Note that function application is

assumed to be left associative; thus Fxy means (Fx)y.

We first address the effect part of a rule because it is a

little simpler. The type of Effect is:

Effect: effect -* envs -4 states =* states

The effect part of a rule is composed of a series of actions that

are executed in order in the given environment. Thus the state

transition function defined by the effect is just the composition

of the state transition functions defined by its constituent
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actions:

Effect[A I, A2, ... , An] E

=(Action[A ]E) .. (Action[AI) (Action[A1 ]E)

There are two kinds of actions: additions and deletions.

The type of their semantic function is

Action: predicate - envs - states =* states

To process an addition, nc, whose name part is n and whose con-

structor part is c, we must evaluate c in the current environment

and add it to the relation that results from looking up n in the

current environment. The updated relation is

[s'Cmap'Eln U (Constructor[c]E}

where s is the current state, Cmap is the capability mapping

function and E is the current environment. This new relation

must replace the old value associated with the relation ID in the

state. We use tx:y]/f to mean a function like f except that x is

mapped to y. Therefore the new state is defined by

* Action[nc]Es =

[([AddCaps--+Cmap] (En)) : as'Cmap'E]n U (Constructor(c]E})]/s

Here AddCaps-*Cmap is the capability mapping function with its
I

domain restricted to add-capabilities, since s-->f means the

function f with its domain restricted to s. This ensures that we

do not add to a relation unless we have an add capability for it.
4
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The semantics for deletions is analogous:

Action[-nc]Es

K ((DeleteCaps -*Cmap] (En)) : (sCmap*Eln -(Constructor[c] E}) I/s

The formal semantics for constructors is straight-forward:

Constructor: constructor -), envs -), tuples

Constructor~item1 ... itemn]E

=<Item~item1 ]E, .. ,Item~itemnIE>

Item: item -~elements

Item~name1E =E(name)

Item~constant]E =constant

Item[constructor] Constructor(constructorl

Next we address the cause part of rules. The type of the

semantic function for causes is:

Cause: cause 4 states -+ envs =0 envs

As expected, cause parts leave the state unchanged but (tern-

L. porarily) modify the environment. The semantics of a cause is

just the composition of the semantics of its constituent condi-

tions:

Cause (C1, C2 1 . Cn1 S

= (Cond[Cnls) .. (Cond[C 21s)(Cond(Ci]s)

The semantics of conditions is defined by the function Cond:

Cond: condition -* states -~envs envs
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First we address the semantics of positive conditions,

Cond[nc]sE, where n is the name of a relation and c is a con-

structor. To accomplish this we define a function

match: constructor -) relations -) envs -0 envs

that will determine if the pattern c occurs in the relation that

is the meaning of n in the current environment and state. Thus,

Cond[nc]sE = match[c] (ReadRel s E n)E

where (ReadRel s E n) is a (readable) relation whose name is n in

the environment E and the state s:

ReadRel s E = s'[ReadCaps->Cmap]'E

Next consider match[c]RE; this must determine if the pattern

c occurs in the relation R and, if it does, return an environment

that is an extension of E that includes the bindings made by the

pattern matching process. Now, suppose we have a function Fin-

dEnvs:

FindEnvs: relations - envs - P(envs)

such that FindEnvs[c]RE returns all extensions of E that can

result from matching c in R. We want match to be a multiple-

valued function that can return any one of these extensions of E.

Therefore, define

match = E -'indEnvs

where I (x) is any set containing x so _ -(S) is a multiple-
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valued function that returns any element of the set S.

Consider the function Constructor[c]E; this evaluates the

constructor c in the environment E to yield a tuple t. Therefore

* (Constructoric]) it is any environment in which the evaluation

of c yields t. Therefore (Constructor[c]) -1 matches the pattern

c against a tuple and yields any environment that allows the

match to succeed. Its type is

(Constructor[c]) -I: tuples -1 envs

6If unimg[f]x represents the set of all y such that f(x,y) then

* unimg[(Constructor[c]) - 11t is the set of ell such environments

and its type is

unimg[(Constructor[c]) 1: tuples =0 P(envs)

Now suppose that we have a function (defined later)

minext: envs -* P(envs) =O P(envs)

such that minext E S is the set of all the minimum extensions of

E that are in S. It is then easy to see that

f- (minext E) * unimgE(Constructor[c) -I t

is any minimum extension to E that results from matching pattern

c against tuple t. Now, if img[f]S is the set of all y such that

for some xGS we have f(x,y), then it is easy to see that

img[4-. (minext E) unimg[(Constructor c]) -]IJR
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is the set of all extensions to E that can result from matching c

against any tuple in R. Simplifying this expression we get our

definition for FindEnvs:

FindEnvs(c]RE = [(minext E) * img[(Constructor[c]) -I]]R

It remains to define minext E S, the subset of S containing

the minimum extensions of E. Observe that unimg[t]E is the set

of all supersets (extensions) of E. Therefore

S fk unimg[G]E

is the subset of S containing just extensions to E. We want to

find the minimum elements of this set, which is just the initial

members of the subset relation restricted to this set:

minext E S = init[ 9 T (S 11 unimg[C]E) I

This completes the definition of positive conditions.

The semantics of negative conditions is simpler than posi-

tive conditions. First define

Cond[-nc]sE = nomatch[c](ReadRel s E n)E

Negative conditions are simpler because they don't update the

environment. Therefore, nomatch[c]R is just an identity function

* restricted to those environments in which c doesn't match a tuple

in R. Recall that FindEnvs[c]RE is the set of all extensions to

E such that c matches a tuple in R. Therefore, if FindEnvs[c]RE

= then there are no such environments; in other words c does
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not match any tuples in R. Thus, the set of all environments in

which c doesn't match a tuple in R is the inverse image of the

empty set under FindEnvs(c]R. By using this set to restrict the

domain of the identity function we get the definition of nomatch:

nomatch[c]R = [unimg (FindEnvs[c]R) -1 o] -*Id

where Id is the identity function.

q8.5 Semantics of Execution

We have now described the semantics of an individual rule;

it remains to define the state transition semantics of the entire

system. Recall that a rule has to be evaluated in the proper

environment. Therefore we postulate the existence of an ID

p a IDs such that sp(i,r,E) means that i is the ID of a rule r

that must be evaluated in environment E. Hence,

sp: Ids -* ruleXenvs

Next we define a function Trans i s, which means a transition of

state s by rule object i:

Trans: IDs -> states = states

Trans i s = Rule(r] (E,s) where (r,E) = spi

Thus Trans(i) is the state transition function for rule object i.

To complete the state transition semantics we need a

multiple-valued function Cycle such that Cycle(s) is any state

that follows immediately from s. Thus,
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Cycle: states states

We want Cycle(s,s') to be true if there is any rule object i such

that Trans[i](s,s'). Now, Rng Trans is the range of Trans, i.e.,

the set of all Trans(i] for any i. Therefore U(Rng Trans) com-

bines all of these individual transition functions into one.

Cycle can now be defined:

u Cycle = U (Rng Trans)

Notice that Cycle(s,s') means that state s can lead to state

se in one transition; we would like to extend this to repeated

transitions. Notice however that object-oriented systems are

often non-terminating and non-deterministic, therefore their

denotational semantics can not take the form of a single-valued

function. Rather, a denotational semantics for an object-

oriented system is a relation that relates past states to possi-

ble future states. Defining this relation is our next task.

Let Cycle* be the reflexive transitive closure of the rela-I*
tion Cycle; then Cycle*(s,s') means that state s can lead to

state s' in zero or more transitions. Thus we define CanReach =

Cycle so that CanReach(s,s') means that state s can lead to

state s'.

• The definition of CanReach is too permissive for many pur-

poses since CanReach(s,s') is true if there is any set of inter-

mediate states that will get us from s to s'. Sometimes we want

to know if a state can lead to another state that is a dead end,
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i.e., that we can't get out of. We can express this idea as fol-

lows. Let co:.t(j) represent a constant function that always

returns a distinguished value, I. Then extend Cycle to a total

function

Cycle / const(J)

so that (Cycle/const(J)]s is I if Cycle(s) is undefined. Notice

also that this total function is I preserving. Mow consider the

relation

Reaches = [Cycle / const(j)]

If Reaches(s,L) then we know that s can lead to an state that we

can't get out of. If this is not true, then Reaches(s,s') means

that s can safely reach s'.

9. Summary

Several similarities will have been observed between this

work and previous work. For example, in [Lomet76] and [Lomet8O]

David Lomet describes a distinction between values and objects

that is very similar to ours. We recommend these papers to the

reader as an interesting alternate approach to the value/object

distinction. However, we believe that our simulation based

notion of an object is more fundamental than Lomet's storage

based idea.

As has been noted, the idea of a set of alterable relations

on a finite universe of objects is similar to the knowledge
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representation networks used in artificial intelligence applica-

tions and the set of causal laws has similarities to both produc-

tion systems and PROLOG programs. A fundamental difference

between our work and these systems is that our notion of a pro-

duction does not require any backtracking. Furthermore, we know

of no other attempt to make these ideas the basis of an entire

programming system.

IThis paper extends previous work in several areas. First,

it clarifies the nature, purpose, and roles of values and objects

in programming languages. Second, it argues that objects are

important programming devices and should be included in applica-

tive languages. Finally, it proposes a specific form in which

objects can be accommodated. This includes the distinction

between corresponding and non-corresponding objects and rela-

tions, and the use of name contexts and capabilities to hide

non-corresponding objects and relations. Finally, it proposes

that the manipulation of objects be specified by causal laws that

determine sets of transactions to alter the state. It is shown

how these concepts may be combined with applicative programming

* ideas.
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