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PREFACE

A primary concern of Rand's Information Processing Systems program

is the development of Artificial Intelligence technology and its

employment in problem domains of practical importance. This research,

supported internally by Rand, was undertaken to document the methods

that today's expert systems use as they grapple with inexact but

valuable knowledge, and to suggest a new approach that avoids some of

the evident shortcomings. The Note should be of interest to knowledge

engineers who are designing expert systems, and to those users of expert

systems worried about how much credence to give to generated results.
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SUMMARY

Expert systems commonly employ some means of drawing inferences

from domain and problem knowledge, where both the knowledge and its

implications are less than certain. Methods used include subjective

Bayesian reasoning, measures of belief and disbelief, and the Dempster-

Shafer theory of evidence. Analysis of systems based on these methods

reveals important deficiencies in areas such as the reliability of

deductions and the ability to detect inconsistencies in the knowledge

from which deductions were made. A new system called INFERNO addresses

some of these points. Its approach is probabilistic but makes no

assumptions whatsoever about the joint probability distributions of

pieces of knowledge, so the correctness of inferences can be 8'aranteed.

INFERNO informs the user of inconsistencies that may be present in th

information presented to it, and can make suggestions about changing the

information to make it consistent. An example from a Bayesian system is

reworked, and the conclusions reached by that system and INFERNO are

compared.
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1. INTRODUCTION

The central postulate of knowledge engineering is that systems

achieve expert performance from rich, diverse knowledge bases rather

than from clever algorithms. The process of solving a problem in some

application area is seen as the task of combining domain knowledge and

information specific to the problem so that appropriate conclusions can

be drawn. As attention continues to shift to real-world problems of

practical importance, however, it has become apparent that the

corresponding domain and problem knowledge is usually less than certain.

Feigenbaum states, "Experience has shown us that [expert] knowledge is

largely heuristic knowledge--mostly 'good guesses' and 'good practice'

in lieu of facts and rigor" [Feigenbaum,1979, p. 71. On the other hand,

traditional methods of forming inferences are derived from logic and use

techniques such as the Resolution Method [Robinson, 1965] that deal only

with categorical information. This Note is concerned with how uncertain

knowledge can be used to find inferences that are well-founded even if

they are not categorical.

We start with a collection of propositions consisting of facts,

expectations, and hypotheses relevant to some problem domain. Subgroups

of the propositions are bound together by logical, causal, or other

mechanisms, so that knowing something about one proposition may have

consequences for others. The information available about the

propositions is not clear-cut, but vague, uncertain, or probabilistic.

The task of inference under uncertainty is then to maintain an

integrated "world view" represented by the sum of deduced and given

I" '- = ..I , , , , ,if " l ... ". ...... r. ...1]
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information about the propositions as more data are gathered or

alternative hypotheses are postulated. Early examples of problem

domains analyzed in this way include medical diagnosis and therapy

[Shortliffe and Buchanan, 1975], where propositions are symptoms,

diseases, and treatments; and geological analysis [Duda, Hart, Nilsson,

Reboh, Slocum, and Sutherland, 1977], with propositions about levels of

geological structure, geography, and exploitable mineralizations.

A useful model of this type of problem is the inference network

[Iuda, Gaschnig, and Hart, 1979; Gaschnig, 1981; Hayes-Roth, Waterman,

and Lenat, 1978], in which propositions are represented as nodes, each

having some measure of validity in The light of information gathered to

date. Interdependencies among propositions become links among

combinations of nodes. When information is injected at some point in

the system, the links allow it to be propagated to all nodes to which it

is directly or indirectly relevant and enable the validity measure of

these nodes to be altered in the process. When all the propagation

ripples have subsided, the new state of the network represents what is

known directly about the propositions or can be deduced from their

relationships to other propositions.

Section II explores some key ideas relevant to current inference

network systems. These lead to the conclusion that another approach is

warranted, and Section III introduces a new system called INFERNO. The

two major contributions of INFERNO are the guaranteed validity of any

inferences that it makes and its concern for, and assistance in

establishing, the consistency of the information about the problem and

its domain. Section IV illustrates the use of INFERNO and compares it

* **, ~1.~-I.I
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with one of the more powerful Bayesian systems in common use. Section V

summarizes and evaluates INFERNO's contribution to inference under

uncertainty and suggests directions for further work.

. ,.



II. KEY IDEAS IN INFERENCE NE'I 'ORK SYSTEMS

Figure I ,hows a simple inference network adapted from the AL/X

model of Reiter (1980) for diagnosing faults that arise on oil-drilling

rigs. In addition to providing a good example of many of the important

concepts, this particular network is used for a comparative study in

Sec. IV. The propositions or nodes are represented by boxes with

interrelationships given by directed links. The numbers that appear on

top of the boxes are the validity measures for the propositions, in the

form of probabilities that the proposition is true; their initial values

are the respective prior probabilities. Links are of two kinds: the

first kind correspond to antecedent-consequent implications and have two

values associated with them. If the antecedent proposition is found to

hold, the odds of the consequent proposition are multiplied by the first

value; if the antecedent is found to be false, the odds of the

consequent are multiplied by the second value; and if the antecedent is

found to have some intermediate probability p, the odds of the

consequent proposition are multiplied by an interpolated value

determined by p, the prior probability of the antecedent, and the two

values. The second type of link has no values and is used to produce

propositions that are Boolean combinations of other propositions. The

probability of these nodes is determined by the probabilities of their

constituent propositions.

The information in this network is general domain knowledge, in

that it is not restricted to the problem of diagnosing a single fault

occurrence. Typically, most knowledge codified in an inference network

- ___. ....._______________'__________
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Fig. 1 - An AU/X inference network



is applicable to a range of problems in the domain and usually jnclude~s

the interrelationships among all propositions of interest. This

information is often tedious to set up and debug but can then be used

repeatedly. To use the network on a particular problem, the general or

domain information is augmented with specific observations, hypotheses,

etc., such as "VOSDIIP has occurred with probability 0.95." The two

bodies of information, specific and general, jointly allow inferences to

be drawn for the particular case.

As this example illustrates, the information in an inference

network is divided between the part relevant to propositions that is

associated with nodes, and the part relevant to relations that resides

on the links among nodes. The distinction is important in practice,

because typically only the values associated with propositions can be

altered as a result of inference. With a few exceptions, such as PI

[Friedman, 1981], systems do not allow us to deduce the existence of a

connection between nodes.' Most systems do not even permit parameters

characterizing a relation (such as the values of an antecedent-

consequent link) to be modified. This is presumably because the

specification of interdependencies belongs to the general information

relevant to the domain and so is not expected to change from case to

case. The example also shows the two forms of interrelationship that

seem to be standard in all systems: expressing one proposition as a

'If it can be deduced that the proposition AvB is true, this is
equivalent to deducing that the relation "-A implies B" holds. However,
many systems use a form of one-directional inference (discussed later)
that precludes conclusions about A or B being drawn from Boolean combi-
nations such as AvB, with the result that the consequences of this sort
of ersatz relation are not discovered.

.... . .. . . .-. .,
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Boolean function of other propositions, and a kind of attenuated

implication of the form "if A, then (to extent E) conclude B".

In other respects, inference network systems show considerable

dissimilarity. The principal differences can be reduced to four areas

of special functional significance: (I) the way in which uncertain

information about propositions is represented, (2) the assumptions that

form the basis for propagating information, (3) the control structure

used for this propagation, and (4) the treatment of inconsistent

information. The following discusses alternative approaches in these

areas as exemplified in several systems. To avoid continual repetition

of references, the principal models used here are Prospector [Duda,

Hart, and Nilsson, 1976; Gaschnig, 1980, 1981]; P1 [Friedman, 1981]; the

system described in Garvey, Lowrance, and Fischler (1981); WAND [Hayes-

Roth, unpublished]; SPERII. [Ishizuka and Yao, 1981]; Konolige's

information-based approach [Konolige, 1982; Duda, Hart, Konolige, and

Reboh, 19791; AL/N [Reiter, 1980, 1981]; .IYCIN [Shortliffe, 1975]; ara

E.IYCIN [van Melle, 1979, 1980]. The widely known work of Zadeh (1979)

has been excluded from this list because his "possibilistic" approach

using linguistic quantification is so different from tho above systems

that comparison is difficult.

UNCERTAIN KNOWLEDGE ABOUT PROPOSITIONS

There are three common ways of representing uncertain information

about propositions. The most straightforward approach (employed in

Prospector and AL/X and used in the sample network) provides a

. -1,



subjective probability for each proposition. 2 I f l is the sum of all

informat ion available to tile system, each proposition A has associated

with it a value represent ing the probability P(A E) that A holds in the

light of E, derived under some regimen such as Bayesian inference. The

main point here is not how this value is derived, but the fact that what

we know or have inferred about a proposition is represented by a single

value.

luTwo criticisms have been advanced concerning this approach. The

first is that the single value tells us nothing about its precision,

which may be very low when the value is derived from uncertain evidence.

To say that P(AE) is 0.5 might mean either 0.500 + 0.001 or 0.5 + 0.3,

two very different pieces of information. Barnett writes, "There is

trouble representing what we actually know without being forced to

overcommit when we are ignorant" tBarnett, 1981). Garvey et al. note,

"A likelihood represented by a point probability value is usually an

overstatement of what is actually known" [Garvey et al., 1981]. The

second criticism is that the single value combines the evidence for and

against A without indicating how much there is of each. Intuitively,

the probability of A in the light of E might have the same value when no

evidence in E is relevant to A as when E contains strong but

counterbalancing arguments for A and against A.

MYCIN uses an alternative approach in which there are two separate

values for the validity of each proposition. MB[A,E] is a probability-

like measure of belief in A given E, and MD[A,E] is a similar value for

2The adjective "subjective" means that the probability does not have
to come from ideas of relative frequency in the limit but can reflect

fair odds on the proposition being true.
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disbelief in A given E. If E could be partitioned into two parts, E+

favoring A and E- opposing A, MB(A,E] corresponds in intent with P(A!E+)

and MD[A,EI with P(-AIE-). However, the belief and disbelief measures

are independent and so cannot be probabilities, although they have the

same interpretation at their extremes; if MB[A,E] is 1, E provides

incontrovertible evidence that A is true. The two measures are combined

into a single assessment of A in the light of E, called the certainty

factor CF[A,E] and defined as MB[A,E] - MD[A,E].

The two-value approach is also subject to the criticism about

precision, since both of the belief measures are point values. It does,

however, overcome the second objection because the interplay of evidence

pro and con is manifest. This separation can be nullified if the belief

and disbelief measures are used not as distinct entities but only as an

amalgamated certainty (as is the case in MYCIN's successor, EMYCIN),

because the amalgamation restores what is essentially the original

single-value system. The scheme suffers from a new disability, however,

in that there is no foundation of theory underpinning and justifying the

interpretation and weighing of separate belief and disbelief measures.

The third approach is used in systems with different pedigrees,

including those that employ the Dempster-Shafer theory of evidence (such

as Garvey et al., 1981; Barnett, 1981 ) and others (SPERIL, WAND).

Instead of representing the probability of a proposition A by a point

value, this approach bounds the probability to a subinterval [s(A),p(A)]

of [0,1]. The exact probability P(A) of A may be unknown but bounded by

s(A) S P(A) 5 p(A). The precision of our knowledge about A is

immediately plain, with our uncertainty characterized by the difference

h iI .- i:" , . . . il II I r 
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p(A) - s(A). If this is small, our knowledge about A is relatively

precise; if it is large, we know correspondingly little. If p(A) equals

s(A), our knowledge about A is exact and reverts to the point

probability of the first approach. Notice that the inequality above can

be recast as two assertions: (1) that the probability of A is at least

s(A), and (2) that the probability of -A is at least I - p(A). Thus

this representation also addresses the second criticism, because it

keeps what amount to separate measures of belief and disbelief in A

derived from the available evidence. Finally, as with the first scheme,

there is the solid ground of probability theory on which to base the

interpretation of the values s(A) and p(A).

ASSUMPTIONS

We now turn to some of the assumptions underlying the ways in which

information is propagated in the network. Recent findings have cast

doubts on the appropriateness of many of these assumptions, and thus

indirectly on the methods of propagation that use them. The position

from which these assumptions are assessed is a conservative one: rather

than rely on questionable assumptions, it is preferable to accept the

penalty of less definitive inferences.

The systems that use Bayes' theorem provide a good starting point.

A seminal paper of Duda, Hart, and Nilsson (1976) is meticulous in

setting out explicitly the basis for the propagation scheme used in

Prospector and subsequently in AL/X. One trouble arises when two

distinct pieces of evidence El and E2 are relevant to a proposition A.

In order to update our assessment of A we need to compute P(A EI&E2),

--
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but knowing how to update A separately for each of El and E2 such as by

knowing each of P(El), P(E2), P(A&El), and P(A&E2) is not sufficient to

determine this. The general case would require propagation parameters

(such as the upper and lower values on links in the earlier example) for

every subset of inputs to a proposition or, equivalently, the complete

joint distribution of all propositions. In many large inference

networks, asking the system designer to specify separate values for each

possible combination of evidence relevant to a proposition would overtax I
his knowledge and presumably his patience, although some systems such as

PIP [Szolovits and Pauker, 1978] do require just this. Prospector and

AL/X sidestep this problem by making the conditional independence

assumpt ions

P(El&E2!A) = P(El:,A) x P(E2 A)

P(El&E2i-A) = P(E1 -A) x P(E2'-A)

and P(A1 EI&E2) can now be determined under these constraints. Although

they seem reasonable at first sight, Szolovits and Pauker report that

"The assumption of conditional independence is usually false" JSzolovits

et al., 1978, p. 1211. Pednault, Zucker, and Muresan go further still

(Pedrnailt et al. , 1981]. In consultation systems, the case-sptecific

itiformation can be often regarded as evidence on which "to distinguish

among competing hypotheses" [Duda et al., 1976, p. 1], where the

hypotheses are a subset of the propositions. in particular, if there

are three or more mutually exclusive and exhaustive propositions to

which the evidence is apparently relevant, Pednault et al. prove that

conditional independence implies strict independence. They then cite a
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theorem proving that conditional independence plus strict independence

is sufficient to establish that the evidence is really irrelevant to the

propositions! Since this is a preposterous conclusion, presuming the

network builder knew his onions, the contradiction shows that the

conditional independence assumption must have been false. 3

Systems of the >IYCIN family and those based on the Dempster-Shafer

theory of evidence both make similar assumptions for the purpose of

combining evidence. The former employ formulas that mirror the

calculation of probabilities of independent events; for example,

MB[A,El&E2] = MB[A,El] + MB[A,E2] - MB[A,El]xMB[A,E2]

which seems to indicate that MB[A,El] and MB[A,E2] are taken to be

independent. The latter uses a combination rule called the "orthogonal

sum" that assumes the evidence being combined is independent even if it

is imprecise [Barnett, 1981). But we observe in general that unless the

inference network resembles a tree, there will be one or more cases

where El and E2 are relevant to A but the sets of propositions

indirectly relevant to El and E2 are not disjoint. Diagrammatically,

this is

3 A recent paper [Pearl, 19821 shows how this difficulty can be cir-
cumvented if propositions can be generalized to multivalued variables.
If A, B, and C are mutually exclusive and complete propositions, they
can be replaced by a single proposition H with values A, B, and C. The
corresponding conditional independence assumption is thereby weakened,
and independence of the pieces of evidence relevant to H is no longer
implied.

. . . , -*



-13-

El

A

E2

Situations such as this are the rule rather than the exce,'tion in

practical inference networks--see ror example those given by Gaschnig

(1980)--and in such cases, El and E2 are clearly not independent. Since

once again the propagation schemes depend on an assumption that is at

least questionable, the inferences reached via such propagation also

contain seeds of doubt.

Konolige has developed a novel approach to Bayesian inference that

does not ruquire the conditional independence assumption. Imagine a

system with only three propositions, A, B, and C. The joint

distribution of these propositions is the set of eight elcmentary

probabilities P(A&B&C), P(A&B&-C), P(A&-B&C), ... P(~A&~B&~C). The

usual sorts of information specified in inference nets, such as prior

and conditional probabilities P(A) and P(AIB), can be mapped into

corresponding linear constraints on these elementary probabilities. In

the absence of assumptions such as conditional independence, the joint

distribution is underconstrained, and we will let (Z) denote the set of

.. .. 1" ' . "" " ',, . .. . .. I " 1
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distributions satisfying the constraints. Choice of different joint

distributions from (Z} will in general assign different posterior

probabilities to the propositions. Konolige argues that the best choice

of a single distribution from the candidates in {Z) is the one that

contains the least additional information about dependencies among the

propositions, and he shows that this is equivalent to selectilg the

candidate with maximum entropy. While the approach is clearly a

powerful and interesting one, difficulties remain. First, the best

choice of a candidate distribution may still happen to be incorrect and

thereby misleading, especially if the range of candidates in {Z) is

large. Second, the results can be sensitive to the way in which

propositions are formulated. As a trivial illustration, a single

unconstrained proposition will be assigned a probability of 0.5, but if

it is expressed as the conjunction of two unconstrained propositions,

its probability will be taken as 0.25. Third, the necessary

computations are feasible only if the problem can be decomposed into

small overlapping groups of propositions and if all constraints on the

joint distribution are linear (e.g., propositions cannot be asserted to

be independent).

Another type of assumption concerns the way Boolean combinations of

propositions are handled. Prospector, AL/X, and many others use the

"fuzzy" formulas for conjunction and disjunction:

P(AvBIE) = max( P(AIE), P(BIE) )

P(A&BIE) = min( P(AIE), P(BIE) )

This gives tl-- most pessimistic estimate possible for the probability of
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the disjunction but the most optimistic estimate for the probability of

the conjunction. It is unclear why a consistent approach should not be

taken, for example by using the corresponding optimistic estimate for

d isjunct ion:

P(AvB E) = rain( 1, P(AE) + P(B'E) )

The MYCIN and PI computations of belief and disbelief for conjunctions

and disjunctionis take a similar form to the fuzzy formulas, so the same

criticism applies. (

Finally, there is the question of how to update a consequence of

proposition A when A is known with less than certainty. The approach

taken in both the MYCIN and Prospector families is to interpolate from

the case where A is true.4 Several interpolation schemes are discussed

by Duda et al. (1976) and more recently by Paterson (1981). Choice of a

particular scheme seems to be a matter of taste, and it is unclear in

practice what effects the different schemes have on the conclusions

reached through chains of inferences.

In summary, current systems typically depend on assumptons of one

form or another. If these assumptions turn out to be unjustified in a

particular application, then the inferences drawn in that case are

erroneous to some degree. On the other hand, no system as yet seems to

allow the user to provide information about the independence of subsets

of the propositions when that independence is known. For example, if

propositions A and B are known to be independent, it would seem

beneficial to be able to assert (as opposed to assume) this information;

'Konolige's approach manages to avoid this difficulty also.
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the probability of A&B could be then computed accurately rather than

from either optimistic or pessimistic estimates.

CONTROL STRUCTURE FOR PROPAGATING INFORMATION

Many inference network systems were designed to operate in a

consulting environment. They therefore draw a clear distinction between

nodes representing propositions about which the system must be informed

and those ("hypotheses") that depend on other propositions. Such

consultation systems do not allow information in a case to be

volunteered about a hypothesis, the user can provide input concerning

only those propositions that cannot be inferred from others. The

distinction is significant because the flow of inference is constrained

to a single direction, from the propositions that constitute the "raw

evidence" to the furthest removed propositions (often called "goals").

The AL/X example of Fig. I illustrates this approach. Data can be given

concerning only the six propositions that have no input from other

propositions, and the inferences from this information follow the

directions of the links. Thus, like most systems, AL/X does not allow a

hypothesis to be posited for the purpose of drawing conclusions about

the pattern of evidence that might be expected to support it.

The distinction is carried one step further in Garvey et al.

(1981), where the "raw evidence" is regarded as coming from sensors.

Internal nodes whose only input comes from sensor nodes are treated

differently from other nodes, as illustrated below:

.-. ,
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Si

A

- - B

Mien two or more sensor nodes provide evidence supporting hypothesis A,

this evidence is combined using Dempster's orthogonal sum mentioned

previously; Si and S2 are taken as independent. But when two internal

nodes such as A and B provide (inferred) evidence supporting Z, no such

assumption is made, and all but the strongest evidence is ignored.

INCONSISTENT INFORMATION

The idea of evidence for and against a proposition was introduced

in the discussion of how information is represented. One particular

case arises when both sets of evidence are fairly convincing, i.e.,

where the given information supports powerful arguments that proposition

A is true but also counterarguments showing that A is false. Since both

the arguments and counterarguments are derived from the same given

information, the conflict is implicit in the information itself, and the

information can well be labeled inconsistent. Situations of this kind

arise frequently in expert domains-after all, most specialist areas

exhibit well-known controversies-so they should also be anticipated in

expert systems for such domains. Yet an examination of current

inference network systems reveals significant deficiencies in detecting

inconsistency and in treating it appropriately.

~-- -
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The con f I ict of ev idence, pro ,ild coil cannot eveni be det nted ill the

st ra i'ght forward Baye i an .pp ro i ty p iI i d hy 'ros pen tor and A L/X. As

wo s f ustr td i Fig. ], th e iIjpu for , articiIlir pirob(,i. ,onsi ts

Of cert,ilntieS Or problbi Iit ie,, to,- sOMe Or 111 of 1-11 inpuMt

propos it ions . These t cor-t' in11ti Cs I re, u1S ed t n det,,-m i 1In Iu t ipl ie'r s fo0r

the odds of higlier hypothe,. iS-type ropositions, ,Id thus informiOn

propagates. Any combinat ion of vailues for the input certaiint ies IS as

.iceptable as any other as far as the propaga tion ma!clii ery is

concerned; the only effect is to change some or al 1 of the compuited

certainties for the hypotheses. As a result , the concept of conflicting

p'oblem information Goes not exist in this formalism! The position

regarding the domain information, however, is not so simple. Specifying

the prior probability of each proposition and two odds multipliers for

each inferential link represents an overconstraint of the system, [Dlda

et al., 1976], so there would seem to be a mechanism for detecting

conflict. The trouble is that inconsistency of this type (produced by

overconstraint) is almost inevitable, so consistency is not an

achievable goal. In fact, the piecewise linear interpolation function

used by Prospector can be regarded as a way of living with

inconsistency. The case is clearer still when we turn to Konolige's

modified system (discussed previously). Here, any nondegenerate system

is guaranteed to be underconstrained, so inconsistency of problem or

domain information is simply not possible.

Recall that MYCIN keeps separate measures of belief MB[A,E] and

disoelief MD[A,E] for every proposition A in the light of evidence E.

On the surface, this offers the possibility of detecting inconsistency,
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w hit t o do a bou t i t wh ell ;t ocCuris .No system for uncertain inference

seems to have arrived at a satisfactory answer. For example, the

Dempster-Shafer systems cited above do niot appear to address the.

question, and inz fact the orthogonal sum operat ion that. they ulse to

combine evidence breaks down if the evidence is inconsistent. Again,
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WAND will simply refuse to accept a datum found to contradict previous

data, even though the previous information may be the cause of the

problem.

r

Yk
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III. INFERNO

There were several motivations for producing a new system, all of

which are apparent from the previous section:

1. An inference system should not depend on any assumptions about

the probability distributions of the propositions.

2. Conversely, it should be possible to assert common

relationships between propositions (such as independence) when

the relationships are indeed known.

3. There should be no distinction between propositions; it should

be possible to posit information about any set of propositions

and observe the consequences for the system as a whole.

4. If the information provided to the system is inconsistent, this

fact should be made evident along with some notion of

alternative ways that the information could be made consistent.

Tile first point is obvious enough: if no assumptions are made, no

errors will be generated (and propagated) by the process of deriving

inferences. This does not prevent the drawing of erroneous conclusions

from faulty information, but it does guarantee that any errors that

arise will be attributable to the data and not to the system. In the

absence of assumptions, the inferences that are made may be weak, and

requirement (2) above enables them to be strengthened where it is safe

tc do so. Requirement (3) concerns the ways that the system might be

used. It should be possible both to reason backward from hypothetical

situations and to reason forward from observations to conclusions using

~ * -
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REPRESE.NTAT I CIN

The dec is io arLhat no assumopt ions are to( be used mt hen propaga t ing

information immediately rules, out using point probabi lit ies in the

general case. INFERNO uses, a two-value, scheme similar in intent to the

interval approach [s(A),p(A)] above. It turns out that INFERNO can more

easily be described if the two values characterizing a proposition A are

t(A) and f(A), where

P(A) 2! t(A) and P(-A) ? f(A)

i.e., t(A) is a lower hound on the probability of A derived from the

evidence for A, and f(A) is a lower bound on -A derived from the

evidence against A. Evidence is for A if it allows the inference that

P(A) X and against A if it gives P(A) !5 X. We define (the information

about) proposition A to be consistent as long as
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t(A) + f(A) < 1

in which case, s(A) = t(A) and p(A) = I - f(A).

INFERNO uses relations among propositions that are patterned on and

extend those in WAND, although the interpretation of these relations and

the ways in which they are used in propagation differ from those in

WAND. The relations themselves and their interpretation are given in

Table 1; despite their somewhat arbitrary appearance, they seem

sufficient to express common interdependencies. In addition to variants

of weak implication and Boolean combinations of propositions, the

relations permit assertions that sets of propositions are independent or

mutually exclusive as in requirement (2) above, although INFERNO

currently uses this information only in the context of the relation in

which it appears. Notice that inhibits, requires, and unless can be

Table 1

INFERNO RELATIONS AND THEIR INTERPRETATION

Relation Interpretation

A enables S with strength X P(SIA) _ X
A inhibits S with strength X P(-SIA) - X
A requires S with strength X P(-A-S) - X
A unless S with strength X P(A]-S) - X

A negates S AF -S

A conjoins (S1, S . . n} A- &.S.1 2'n i1

A conjoins-independent (S1 S, . , S } A - & S.; and for all i#j,
1' 2 n i i

P(S.&S.) = P(Si)xP(S.)

A disjoins {S1, S . . S ) A -= VS.1'2'n 11i

A disjoins-independent (S S2, .. ,S n A V.S ; and for all i~j,1 ' n 1i

P(S.&S.) = P(Si)XP(S.)

A disjoins-exclusive (S 1 S 2 . S n A = V.; and for all ij,1' 2 "' n 11'

P(S&S.) = 0

(S1, S 2 . S n  mutually exclusive for all i~j, P(Si&S.) 0

1' ' n j[ 1 ... .. .
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defined in terms of enables and nega-tes; the discussion of propagation

and rectification will be simplified by lumping the four of them

together as "enables-type" relations.

PROPAGATION

Each proposition A initially has the trivial bounds t(A) = 0 and

f(A) = 0. These bounds may be changed by explicit information from the

case being studied or by inferences from other bounds through the

relations connecting A with other propositions. As more information is

provided or inferred, the range within which the probability P(A) of

proposition A is known to lie can only become smaller. This is

reflected in larger values for one or both of f(A) and t(A).

Suppose that we have just computed a higher value for one of the

bounds of a proposition. This new information is propagated by checking

all relations in which the proposition is involved and perhaps

increasing the bounds of other propositions to zisure that relevant

propagation constraints are satisfied. These constraints are summarized

relation by relation in Table 2 and are formally derived in Appendix A.

They make no assumptions whatsoever about the probability distributions

of any propositions and follow mainly from the universal inequality

max P(Si) :5 P(SvSv. ..VS) V - EiP(Si )

in various guises. Each inequality asserts that some bound is greater

than or equal to some expression involving other bounds, and is

interpreted as a form of production rule:
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Table 2

INFERNO PROPAGATION CONSTRAINTS

A enables S with strength X:
t(S) t(A) X .. ....................... (1.1)
f(A) 1 - (1 - f(S)) / X . ............. (1.2)

A negates S:
t(A) = f(S) .... ........................ (2.1)
f(A) = t(S) ... .......................... (2.2)

A conjoins (SI  So .. . , S ):

t(A) 1 1 - X (1-t(S. )) .............. (3.1.1)

f(A) f(S ) ... ........................ (3.1.2)

t(s ) t(A) .......................... (3.1.3)

f(S.) f(A) - Z - t(S.)). ...... (3.1.4)

A conjoins-independent (S, S2 . S :
S ' n

t( ) - H i( ...................... ( -. 1)

f(A) 1 1 - II (1 - f(Si)) ............ (3.2.2)

t(Si) t(A) / ]jI i(l - f(S.)) ...... (3,2.3)

f(Si) 1 - (1 - f(A)) / ] i t(S.) .. (3.2.4)

A disjoins (S1  S ... , n } :

t(A) t (S . ........................ (4 .1.1)
1

f(A) 1 1 Z.(I - f(Si)) ............ (4.1.2)

t(Si) 2 t(A) - Ij~i(l f(Sji)) ...... (4.1.3)

f(Si) 2 f(A) ........................ (4 .1.4)

A disjoins-independent (SI , S2, ... ' Sn } :

t(A) 2 1 - H.(I - t(Si)) ............ (4.2.1)

f(A) ? Hif(Si) ...................... (4.2.2)

t(Si) ? 1 - (1 - t(A)) / fji f(Sj) .. (4.2.3)

f(Si) 2 f(A) / ljoi (1 t(Sj)) ...... (4.2.4)

A disjoins-exclusive (SI 82 .... S n:

t(A) Iit(S ) .. ...................... (4.3.1)

f(A) 1 - I.(1 - f(S )) . ............ (4.3.2)

t(Si) ? t(A) - Ejoi(l - f(Sj)) ...... (4.3.3)

f(Si) f(A) + 1joit(S.) ............ (4.3.4)

(Sl, S2 ... , Sn  mutually exclusive:

f(Si -joit(Sj) ..................... (5.1)
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if the previous value of the bound on the left-hand side

is less than the value of the right-hand side

then the bound is increased to this new value.

Each constraint is activated whenever any bound mentioned in its right-

hand side is changed. As an illustration, consider the hypothetical

relation "A conjoins {Q,R)." From constraints (3.1.1) through (3.1.4; in

Table 2,

" t(A) must be checked whenever t(Q) or t(R) is increased.

" f(A) must be checked whenever f(Q) or f(R) is increased.

" t(Q) and t(R) must be checked whenever t(A) is increased.

• f(Q) must be checked whenever f(A) or t(R) is increased, And

likewise f(R) for f(A) or t(Q)

If one of these bounds is increased in line with the onstraints, that

increase must be propagated in turn. If the current value of a bound

satisfies the constraint, then of course no change need take place and

no propagation is involved.

There are two detrimental comments that must be made about this

propagation mechanism. First, while the constraints can be derived from

the interpretations of Table 1, the converse is not true; the

constraints are weaker than the interpretations. Consider, for

example, S the two relations

A enables B with strength X

C conjoins-independent {A,B}

sThis example is due to Norman Shapiro.
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whose interpretation from Table 1 consists of the assertions

P(BA) > X

C E A&B

P(A&B) = P(A)xP(B)

From the latter, one can deduce (inter alia) that P(B) -> X. The

constraints in Table 2 do not allow this inference because knowledge of

the independence of A and B is confined to the single relation that

asserts it. The values of the bounds inferred by the propagation

mechanism will always be correct but in some cases may be weaker than

those that can be derived using the interpretations rather than the

constraints.

The second point concerns the termination of propagation. It turns

out that if the information about propositions is not consistent, a

propagation chain with ever-increasing bounds can arise. Consider the

relation "A conjoins-independent (Q,R}" and suppose the bound t(Q) is

increased to a value, X say. By propagation constraint (3.2.1), t(A)

must be increased to X x t(R), and by substituting this value in

constraint (3.2.3),

t(Q) > X x t(R) / (1 - f(R))

If t(R) + f(R) > 1, this would require t(Q) to be greater than X, so

there is a positive feedback loop. Shapiro provided an elegant

demonstration that the same problem-can arise even when the data are

consistent. It is possible to construct a set of relations whose

corresponding constraints are satisfied only by a unique assignment of
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irrational values to the bounds. But since the bounds are initially

zero and the propagation constraints compute only rational functions of

the set of bounds, this unique solution cannot be found by a finite

number of such computations. In practice, however, inference network

systems usually prohibit changes propagating back to the source of the

original disturbance. 6 With this prohibition, propagation will aiways

terminate, even when one or more propositions have inconsistent bounds.

The result again is that the bounds computed by INFERNO are correct

consequences of the data but may not be the tightest bounds that can be

inferred from the data.

The propagation rechanism can bc illustrated is.ng the small

network shown in Fig. 2. There are five propositions labeled A through

E and three relations among them: C is the conjunction of A and B,

where nothing is known about the joint distribution of A and B; E is the

disjunction of C and D and these are known to be independent; and B

directly suggests E with P(EIB) at least 0.8. Suppose that in some case

A D C conjoins {A,B}

C E disjoins-independent {C,D}

B EB enables E with strength 0.8

Fig. 2--A small inference network

'Friedman (1981), for example, describes this prohibition as "an ax--
iom of plausible inference." An undesirable side effect of the prohibi-
tion is that any relaxation-style computation of values is precluded,
leading to bounds that are weaker than the relations would otherwise
support.
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P(C) is found to lie in the interval (0.55,0.651, i.e., t(C) 0.55 and

f(C) = 0.35. The relation "C conjoins {A,B}," constraint (3.1.3), and

t(C) combine to give the inference that t(A) and t(B) must be at least

0.55. Since t(D) and f(D) are initially zero, the relation "E

disjoins-independent (C,D)" and t(C) give t(E) = 0.55 by constraint

(4.2.1). If it is now learned that the probability of B is 0.9 (i.e.,

t(B) = 0.9 and f(B) 0.1), the following inferences can be made:

f(A) = 0.25 from constraint (3.1.4), f(C), and t(B)

t(E) = 0.72 from constraint (1.1) and t(B)

t(D) = 0.2 from constraint (4.2.3), t(E), and f(C)

The sum of our knowledge of the propositions, both given and inferred,

is shown in the fragment of INFERNO output in Fig. 3. Notice that a

"A": range 0.55 - 0.75
LB from Pr("C") > 0.55, by conjoins
UB from Pr("B") > 0.9, by conjoins

"B": range 0.9 - 0.9
LB by assumption
UB by assumption

"C": range 0.55 - 0.65
LB by assumption
UB by assumption

"D": range 0.2 - 1
LB from Pr("E") >= 0.72, by disjoins-independent

"E": range 0.72 - 1
LB from Pr("B") >= 0.9, by enables

Fig. 3--INFERNO output
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justification is given for each nontrivial lower bound (LB) or upper

bound (UB) on the probability of a proposition. This justification is

either "by assumption" when the information was supplied to INFERNO or

another bound and a relation that together triggered the inference.

CONSISTENCY" AND RECTIFICATION

When t(A) + f(A) > I for some proposition A, the information about

A is inconsistent and one or both of the bounds must be incorrect.

Since the propagation constraints are provably correct, this

inconsistency can arise only from contradictions implicit in the

information given to the system, i.e., the ;nterdependencies among the

propositions expressed by the relations or the explicit bounds on the

probabilities of propositions. Whenever INFERNO detects that a

proposition is inconsistent, it places a flag ** in front of it. In

addition, those constraints whose derivation requires the consistency

axiom are weakened by using looser bounds t'(A) and f'(A); r'(A) is the

smaller of t(A) and 1 - f(A), and f'(A) is defined similarly.

In tile example of Fig. 3, it was inferred that P(E) lay in the

interval [0.72,11. What would happen if the system was explicitly

informed that P(E) <- 0.5? The INFERNO output in Fig. 4 shows the

consequences of this additional assertion. Taking proposition B as an

example, we are told that t(B) = 0.9. We can infer from flE) and

constraint (1.2) that f(B) is at least 0.375. These bounds on the

probability of B are clearly incompatible.

INFERNO can be asked to suggest combinations of changes that will

make all the information consistent. Each change takes the form of
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"A": range 0.55 - 0.6
LB from Pr("C") >- O.55, by conjoins

L'B from Pr("C") < 0.5, by conjoins

"B": range 0.9 - 0.625
LB by assumption
L'B from Pr("E") <= 0.5, by enables-inverse

"C": range 0.55 - 0.5

LB by assumption

LB from Pr("E") <= 0.5, by disjoins-independent

"D": range 0.2 - 0

LB from Pr("E") > 0.72, y disjoins-independent
LB from Pr("C") < 0.5, by disjoins-independent

E range 0.72 - 0.5

LB from Pr("B") > 0.9, by enables

UB by assumption

Fig. 4--Output with inconsistencies

lowering the value of an externally specified bound or reducing the

strength of an enables-type relation. A combination of changes that is

sufficient to make the bounds on all propositions consistent is called a

tectification.

The first step is to examine each inconsistent proposition A in

turn, to see how its bounds could be made consistent. This can be

achieved by lowering t(A) to 1 - f(A), lowering f(A) to I - t(A), or

changing both bounds to intermediate values; INFERNO currently considers

only the first two alternatives. Suppose that we are trying to lower

some bound to a value V. There are two possib-lities:

* The bound was supplied explicitly as input to the system. In this

case, it can clearly be changed only with the consent of the user.
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The bound was inferred from a propagation constraint and the values

of one or more antecedent bounds. Once more there are two cases:

-- If the propagation constraint came from an enables-type

relation, then the ielation itself can be weakened. INFERNO

calculates the reduced strength of the relation that would have

produced the desired value V.

-- Whatever the nature of the relation, the inferred value is a

function of the antecedent bounds. INFERNO looks for lower

values of these bounds that would have allowed the lower value V

to be inferred.

In the last case, the lower values of the antecedent bounds must then be

analyzed in a similar fashion, so that finding changes is a lot like

propagation in reverse The backing-up constraints are similar, biut not

identical, to the propagation constraints. Appendix B lists them

without proof, since their derivation parallels that of the propagation

constraints.

The process of finding changes is not exact in the current

implementation of INFERNO. First, the system considers only single

changes that will make a proposition consistent; trying to reduce the

value of t(AvB), for example, can present a problem. Second, it does

not verify that there are no relations other than the one referenced in

its justification that also constrain the value of the bound to

something greater than V. There is no fundamental difficulty (other

than program complexity) in removing these limitations.

The second step involves assembling the changes discovered by this

process into rectifications. Each rectification contains one change
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from eac.h of the incons ist ent propositins , so tile co jun ct ion of the

changes is sut fic itelt to tix the entire (ol lect ion of propos it ions

(.subject o the caveat above). Som of the iicos istent propos it ions

may have iatching ol compatible changes associated with them, so there

a're often fewer hanges in a rectification than there are inconsistent

propos it !ois.

The third step is to rank tile rectifications in1 order of potential

(it iliity. The ru le of thumb used here is that small Isdj ustment s of

values do less violence to tile in ut information than gross alterations

and are theretor -,. re likely to be acceptable to tile user. As a simple

model, we deffine Lhe reluctance of tho iier to accept) a change to be

the magnitude of tile rodification that it entails, either the numeric

reduction in strength of an enables-type relation or the difference in

the old anid new values of a bound. The reluctance of a rectification is

similarly taken as the sum of tile reluctances of the changes it

contains. Alternative rectifications are presented in order of

increasing reluctance, so that those suggested first are more likely to

be reasonable.

If there are many inconsistent propositions, each with many

alternative changes, the process of finding and ranking all possible

rectifications is combinatorially explosive, and there would be too many

rectifications to display to the user anyway. This problem is

t-ircumvented by establishing a parameter (R, say) so that only the R

best rectifications are ever displayed. The processes of generation and

ranking are then combined; if a partial rectification has a reluctance

greater than that of all the R best rectifications found so far, then no
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rect it icat ion cont aining the part ial rect if ication need ever be

generated. ,ith this technique the time taken to assemble the best R

rectifications from the changes found in the first step appears to be

practicNlly iin(l pellpdent of the number of inconsistont propositions and

so is feaisible even for Ia rge tnetworks.

'11o INUFRNO out put in Fig. slows these processes applied to our

cent inning example. We look first at proposition B. Since t(B) was

supplied expliCitly, B could be made consistent if the giv,n value of

t(B) were reduced to 1 - f(B), i.e., to 0.t25. Alternatively, we could

reduce fiB) to I - t(B) or 0.1. But f(B) was inferred from the given

v.ilue of ti H and the relation "B enables E with strength 0.8" via

constraint (1.2). If either f(E) were 0.28 or the strength of the

relation were 0.356, f(B) would have. been 0.1 and B would have been k
consistent. By this reasoning, there are three changes, any one of

which would make the bounds on B consistent:

* reducing t(B) from 0.9 to 0.625,

* reducing f(EL) from 0.5 to 0.28,

. reducing the strength of "B enables E" from 0.8 to 0.556,

with reluctances 0.275, 0.22, and 0.244, respectively. After changes

have been found for all contradictory propositions, INFERNO shows the

various rectifications that can be constructed. Notice that reducing

f(E) to 0.28 satisfies all sets of changes and so is a rectification in

its own right. This is comforting because the system became

inconsistent only when f(E) was increased beyond 0.28! Again, partially

weakening f(E) to 0.45 will fix proposition C, while reducing the
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"B" can be resolved by (haiging:
Pr("B") from 0.9 to 0.625

Pr("E") from 0.5 to 0.72

[ "B" enables "E" with strength 0.8 J to 0.556

"C" can be resolved by changing:
Pr("C") from 0.55 to 0.5
Pr("E") from 0.5 to 0.55

"D" can be resolved by changing:
Pr("E") from 0.5 to 0.6

Pr("C") from 0.55 to 0.375
Pr("B") from 0.9 to 0.688

[ "B" enables "E" with strength 0.8 ] to 0.611

E" can be resolved by changing:

Pr("E") from 0.5 to 0.72
Pr("B") from 0.9 to 0.625

"B" enables "E" with strength 0.8 ] to 0.556

Alternative rectifications:

Pr("E") from 0.5 to 0.72

Total reluctance 0.22

t "B" enables "E" with strength 0.8 ] to 0.556
Pr("E") from 0.5 to 0.55

Total reluctance 0.29

"B" enables "E" with strength 0.8 ] to 0.556
Pr("C") from 0.55 to 0.5

Total reluctance 0.29

Pr("B") from 0.9 to 0.625
Pr("E") from 0.5 to 0.55

Total reluctance 0.32

Pr("B") from 0.9 to 0.625

Pr("C") from 0.55 to 0.5
Total reluctance 0.32

Fig. 5--Changes and rectifications
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strength of "B enables E" will fix the other inconsistent propositions,

so this pair of changes is also a rectification.

The rectifications constructed by this algorithm are sufficient

rather than necessary to make all propositions consistent and so may be

excessive when possible interrelationships between the changes are taken

into account. In the second rectification above, the reduced strength

of 0.556 for the enables relation was computed on the basis of f(E)

being 0.5. Since we also reduced the value of f(E) to 0.45, the change

in strength is slightly more than it need be. Of course, changes can be

made one at a time and the residual rectifications recomputed after each

change; this would give a new strength of 0.611 for the relation "B

enables E".

NAM .....1
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IV. A COMPLETE EXAMPLE

This section returns to the AL/X inference network of Fig. I that

was discussed in Sec. II, recasts it as INFERNO relations, and runs the

network on a case given by Reiter (1981). The purpose of this exercise

is to highlight the differences between the Bayesian inferencing

employed by AL/X (using the conditional independence assumptions

mentioned earlier) and INFERNO's conservative approach with rio

assumptions.

The comparison of these systems immediately runs afoul of their

being based on different world models. The Bayesian approach requires

that the prior probability of each proposition A be known and computes

the posterior probability of A given all evidence E. Inferential links

between propositions A and B are defined in terms of the conditional

probabilities P(BIA) and P(BI-A) that again refer back to the prior

probability distributions. In contrast, INFERNO makes no reference to a

prior distribution but represents by P(A) what is known about the

proposition A so far. The acquisition of evidence is viewed as a means

of further constraining P(A). This may appear to be a fine distinction,

but consider, for example, the inequality P(BIA) -> X. In a Bayesian

system, this constrains only the prior distribution, and if P(AIE) turns

out to be 1, it does not follow that P(BIE) is at least X. INFERNO

would interpret the inequality as a constraint that must be satisfied by

any assignment of probability intervals in any particular example, and

the addition of further evidence could not weaken this constraint. Thus

the findings that P(A) = I while P(B) -< X would be regarded as
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inconsistent with the earlier inequality. This difference significantly

qualifies the following comparison.

The Boolean relations employed by AL/X are transferable immediately

to INFERNO. Let the prior probability of proposition B be prior(B),

i.e., the prior odds of B are given by

odds(B) = prior(B) / (1 - prior(B))

Consider an inferential link from A to B with odds multipliers is (if A

is found to be true) and In (if A is found to be false), respectively.

If A is found to be true, in the absence of other evidence the posterior

probability of B is given by

odds(BIA) = Is x odds(B)

and the posterior probability of B is then

posterior(BIA) = odds(BIA) / (odds(BIA) + 1)

If A is false, we get a corresponding probability by replacing Is with

In in the odds formula. This link thus becomes a pair of INFERNO

relations:

A enables B with strength posterior(B A)

B requires A with strength (1 - posterior(BI~A))

Each link is being translated here in isolation, but this should be an

accurate translation if the network designer assigned the values of Is

and In in isolation (as, incidentally, he is advised to do in Reiter

(1980, p. 10)) and when A is known with certainty. Differences will

- ' £'-'? II • ••~~ 1. 1111 mfi]i~ ... . 'd, :. * , ' *..b
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arise when A is known with less than certainty and w'hen multiple

inferential links relate to the same proposition, as AL/X then makes use

of assumptions that have no counterpart in INFERNO.

The case to be analyzed is defined by probability assignments to

the propositions representing raw evidence. AL/X uses quantiLies called

certainty factors (not to be confused with MYCIN's use of the term) in

which -5 means false, 5 means true, and 0 means that no information is

available. Values in the range 0 to 5 are interpolated linearly between

the prior probability of the proposition and 1, with a similar

interpolation in the negative range. For the case being analyzed, the

certainty factors and probabilities are shown in Table 3. The certainty

factor of 0 for proposition RVNOISECOOL presents a minor pioblem. It

could be interpreted as implying the probability shown, but AL/X takes

it to mean that the information is either unavailable or is conflicting

Table 3

AL/X CASE FOR ANALYSIS

Certainty Equivalent
Proposition Factor Probability

RVLIFTIND 5 1

VOICCRCHART 4.5 0.9

RVNOISECOOL 0 0.001

VO1SDHP 5 1

PCV302FTBAD -4 O.0002*

SCIVSHUT 5 1

*This value is below INFERNO's minimum

probability and is treated as 0.
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and makes no use of it. This is more accurately reflected in INFERNO as

the absence of any statement about the probability, which is the policy

followed in this example.

An annotated transcript of the presentation of this case to INFERNO

appears as Appendix C. In INFERNO's world view, the information

concerning probabilities and relations is inconsistent. PCV302FTBAD is

false, for example; thus, so is LIFTPRESS and hence VO1SDHP, directly

contradicting another piece of evidence. INFERNO is asked to find

alternative rectifications and prints the best ten of them. The first

rectification is simply to adjust the probability of PCV302FTBAD to

0.204, and this seems plausible--the information about this proposition

was indefinite on the certainty scale and only its very low prior

probability of 0.001 caused -4 to be mapped to a near-definite 0.0002 on

the probability scale. If this rectification is made, the information

becomes consistent, and the findings of AL/X and INFERNO regarding tha

goal propositions can be compared in Table 4. The results obtained by

both systems agree well in general endency, but AL/X's lie outside the

Table 4

COMPARISON OF FINDINGS BY AL/X AND INFERNO

Proposition AL/X INFERNO

SCIVCAUSE 0.909 0.802 - 0.883

PCV302EQERR 0.057 0.204

RVLIFTEARLY false 0.000 - 0.118

RVSOLSIIORT false 0.059 - 0.199

RVSWSHORT false 0.033 - 0.199
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probability limits derived by INFERNO; this is not altogether

surprising, since one of the input probabilities had to be altered to

achieve consistency. INFERNO's bounds also give a good measure of the

uncertainty of the various conclusions, as can be noticed from SCIVCAUSE

being more tightly bounded than RVSWSHtORT.

I)
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V. CONCLUSION

The study reported here was undertaken to develop a useful

mechanism for plausible reasoning in the context of uncertain knowledge

and culminated in the specification and implementation7 of INFERNO. A

detailed description of the system's attributes was given in Sec. II,

but a brief reiteration seems appropriate here. INFERNO is cautious

because it does not depend on assumptions about joint probability

distributions of propositions, so its conclusions about the probability

bounds of propositions are provably correct consequences of the given

information. The absence of assumptions would be expected to lead to

weaker conclusions, but this tendency is partially offset by enabling

sets of propositions that are mutually exclusive or independent to be

identified, with the result that probability bounds can be tightened in i

some cases. The system does not distinguish between hypotheses and

evidence and thus can be used for forward (data-driven) inference,

backward (hypothesis-driven) inference, or any mixture of these two

modes. Finally, INFERNO incorporates a strong notion of the consistency

of the information presented to it, and by reasoning backwards about

conclusions, it can provide approximate but informative suggestions for

remedying any inconsistencies.

As illustrated in the previous section, conventional inference

networks can be recast to "equivalent" INFERNO formalisms subject to the

7 INFERNO has been implemented in a mixture of Pascal and C for a VAX
11/780 minicomputer and should be relatively portable among UNIX sys-
tems. It is quite economical to run: the entire output in Appendix C,
including finding the alternative rectifications, required about 3
seconds of CPU time.
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qualification of an underlying non-Bayesian world model. In the oil-rig

example, AL/X and INFERNO reached conclusions that were certainly not

identical, but which would both support the same diagnosis of the

problem. The main advantages of the approach embodied in INFERNO are

(1) it requires less information, since it does not need anything

corresponding to the prior probability of a hypothesis; (2) it brings

out the conflicts that may be implicit in the evidence; and (3) its

probability bounds give a measure of the potential error in the

conclusions, a feature that has no direct counterpart in Bayesian

systems such as AL/X.

INFERNO has also been applied to several more demanding test

domains, including a diagnosis network for carburetor malfunctions (also

taken from AL/X), several of the published Prospector submodels,

transportation planning via a network of unreliable routes, allocating

resources among compeLing but interdependent projects, and assessment of

an opponent's poker hand using clues from his bidding and draw. The

last case was the only one in which the system proved to be relatively

weak. Some prior probabilities in this domain can be calculated, so a

Bayesian approach would be potentially more powerful. However, systems

such as AL/X do not have any mechanism for enforcing the mutual

exclusivity of propositions or for computing accurately the probability

of conjunctions or disjunctions of propositions, so the poker domain

would probably be a difficult one for them also.

Perhaps the most novel features of INFERNO are its concern for

consistency and its rectification-constructing mechanisms. This

approach provides a valuable tool to help the user debug the knowledge
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or to adapt general rules for a particular problem. In addition it has

a somewhat unexpected application in planning whereby the user

deliberately introduces contradictions! Consider for example a

transportation planning domain in which the goal is to move some

combination of loads to their appropriate destinations. One inference

from the available information might be that achieving this goal has a

probability strictly less than 1. If the goal is also asserted to be

satisfied, the information will thus become inconsistent; but the

possible rectifications suggested by the system will include

combinations of changes sufficient to guarantee achievement of the goal.

Thus INFERNO can be used to isolate those characteristics of the domain

that bear most significantly on the accomplishment of the planning

objective.

In summary, INFERNO is a powerful and flexible too] for dealing

with uncertain knowledge, as long as the knowledge can be cast in the

form of a fixed set of propositions and relations among them.

Nevertheless, several areas for possible improvement suggest themselves.

First, it would be handy to have the ability to incorporate Bayesian

submodels where the required information is available and the necessary

assumptions are found to be valid. Second, real-world tasks often

entail budgetary and other numeric but nonprobabilistic constraints, and

some formalism is needed for marrying numeric and probability-bounding

constraints. Finally, INFERNO is essentially a zeroth-order system in

which propositions and relations concern individuals. A quantified

relation such as "A(x) enables B(x) for every x" can be represented only

as a collection of zeroth-order relations obtained by instantiating over
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every individual x, an unsatisfactory approach if there are many such

individuals. We are investigating ways in which an INFERNO-like

approach can be moved to a first-order environment.

I:i
i
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Appendix A

DERIVATION OF PROPAGATION CONSTRAINTS

The following derivations are straightforward manipulations of a

few relations, using the idontities

P(Z) + P(-Z) =

t(Z) <_ P(Z) :5 1 - f(Z)

for any proposition Z. Note that the second presumes the consistency of

information about Z.

1. A enables S with strength X

The interpretation of this relation gives

P(S) - P(S&A) = P(A) x P(S A) > P(A) x X

so I

P(S) 2! t(A) x X .. ........................................ (1 .1)

By inverting the earlier relation,

P(A) _ P(S) / X

and thus

P(-A) = 1 - P(A) - 1 - (1 - f(S)) / X ................ (1.2)

2. A negates S

The constraints are immediate consequences of the idc.tities above.

3. Conjunction

If A is the conjunction of {S1 , $ 2' , n), then -A is the

disjunction of {-S1, -S . ~Sn). Thus the derivations for the

various conjunction constraints are mirror images of those for

disjunction, interchanging both signs and the bounds t and f throughout.

ph4 Bga-No FI~b
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4.1. A disjoins {S , S2 .... S n

The basic relation used here is

max I'(S.) - P(A) <_ E.P(S.)1 1 1

The left-hand inequality gives the two constraints

P(A) - P(S.) > t(S.) ... ............................... (4.1.1)
1 1

P(-S.) > P(-A) > f(A) .. .............................. (4.1.4)

The righL-hand inequality gives

P(-A) -> 1 - I.(1 - f(S )) ............................ (4 .1.2)
1 1

and by rewriting it in the form

P(S.) -> P(A) - I P(S )

we get the constraint

1(S,) > t(A) - E (1 - f(S.)) ....................... (4.1.3)
i - i j

4.2. A disjoins-independent (SI, S . n

The rule for combining the probabilities of independent events is

P(-A) = if.P(-S.)1 1

giving

P(A) = 1 - P(-A) - 1 - 11(1 - t(Si)) . ............... (4.2.1)

P(-A) n> lif(S) ... ...................................... (4.2.2)

Rewriting the rule above as

P(-S.)i = P(-A) / fj.iP(-Sj)

gives

P(-Si) 2! f(A) / It. i(I - t(S.)) .. ...................... (4.2.4)

P(S.) = i - P(-S.) - I (I t(A)) / H p i f(Sj) .... (4.2.3)
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4.3. A disjoins-exclusive (SI , S. ....... S n

The rule in this case -

P(A) = E .P(S.)1 1

hence

P(A) 2! 1t ..... ..................................... (4.3.1)

P(-A) = - P(A) 1 - F.(1 - f(S)) .................... (4.3.2)
1 1I

Rearranging the rule, i
P(Si) = P(A) - Z P(Sj)

which gives

P(S.) _ t(A) - Ep i (I f(S )). ....................... (4.3.3)

P(-S.) = 1 - P(S.) > f(A) + Zj it(S.) .............. (4.3.4)

5. (S1 S , Sn I mutually exclusive

The rule is

EiP(Si) _ 1

or

P(Si) :5 1 - E .3 iP(S.)

Thus

P(-S.) = 1 - P(S ) > Ej.it(Sj ....................... (5.1)
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Appendix B

CONST.RAI-NTS FOR BACKING UP INCONSISTENCIES

A enables S with strength X

t(A) 5 t(S) / X

f(S) :5 1 - (1 - f(A)) x X

A negates S:J

t(A) = f(S)

f(A) = t(S)

A disjons (Sl S 2' S n:

t():5t1i Jil - J

f(A) f(S.i)

t(S .5 t (A)

1( ~ k~i,j (I- fSk + 1 -t(A)

f(S. i ! f(A) + Z .s.(1 - f(S.i))

A disjoins-independent (Sl S 2' S' ' I

t(A) 5 1 - (I - t(S.d) x fl. .f(S.)

f (A) -. f (S) x It.j~.(1 t(S.i))

t~s !5 1 (1 - ( ) 3j i( (

t(S) !5 1 -f(A) / (f(S.) x JI kij(I - t(Sk)))

f(S.i) !5 f(A) / n joi f(S.)

1( 31 )3 1 tA) (l tS Xnt~ ( )

1 Am1,3
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A disjoins-exclusive (SI, S 2 ' S n

t(A) t(S.) + z o (I - f(S)

f(A) f(S ) - z it(S )

t (S. t(A) - 1 3ji (

t(S) :5 f (S El,$it(S) k f(A)

f(S. !5 f(A) + Vi (1 - f(S.i))

f(S) !5 t(S. + I ki.j(I - f(S)) + I t(A)

(S1 , S, 2'. S) mutualily exclusive

t(S) f(S) - kij(Sk

ko.li k
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Appendix C

INFERNO RUN WITH AL/X EXAMPLE

+----------------------------------------

Define the various relations
I corresponding to AL/X links.

+----------------------------------------

"VO1SDHP" enables "L1FTPRESS" with strength 0.668;
"LIFTPRESS" requires "VO1SDHP" with strength 1.000;

"VOICCRCHART" enables "LIFTPRESS" with strength 0.980;

"LIFTPRESS" requires "V01CCRCttART" with strength 1.000;

"LP&SCIVSHUT" conjoins ("LI FTPRESS","SCIVSifUT"};

"LP&SCIVSIIUT" enables "SCIVCAUSE" with strength 0.909;
"SCIVCAUSE" requires "LP&SCIVSHUT" with itrength 1.000;

"PCV302FTBAD" enables "PCV302EQERR" with strength 0.968;
"PCV302EQERR" requires "PCV3O02FTBAD" with strength 1.000;

"LIFTPRESS" enables "PCV302EQERR" with strength 0.231;
"'CV302EQERR" requires "LIFTPRESS" with strength 0.998;

"LIFTPRESS" enables "RELVLIFT" with strength 0.668;
"RELVLIFT" requires "LIFTPRESS" with strength 1.000;

"RVNOISECOOL" enables "RELVLIFT" with strength 0.501;
"RELVLIFT" requires "RVNOISECOOL" with strength 0.997;

"RVLIFTIND" enables "RELVLIFT" with strength 0.801;
"RELVLIFT" requires "RVLIFTIND" with strength 1.000;

"NLIFTPRESS" negates "LIFTPRESS";

"LIFT&NLIFTP" conjoins ("RELVLIFT","NLIFTPRESS");

"LIFT&NLIFTP" enables "RVLIFTEARLY" with strength 0.667;
"RVLIFTEARLY" requires "LIFT&NLIFTP" with strength 1.000;

"NRELVLIFT" negates "RELVLIFT";

"NLIFT&IND" conjoins ("RVLIFTIND","NRELVLIFT");

"NLIFT&IND" enables "RVSOLSHORT" with strength 0.500;
"RVSOLStlORT" requires "NLIFT&IND" with strength 1.000;

"NLIFT&IND" enables "RVSWSHORT" with strength 0.286;
"RVSWSIIORT" requires "NLIFT&IND" with strength 1.000;
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+ - - - - - - -- - - - - - - - +-

Enter the probabilities
defining this particular case.

+-------------------------------------

assume "RVLIFTIND'";
assume "VO1CCRCHART" with probability 0.9;
assume "VOlSDHP";
assume "PCV3O2FTBAD" false;
assume "SCIVSHUT"F

show events;

"VlSDHiP: range I - 0I

UB from "LIFTPRESS" being false, by enables-inverse

"LIFTPRESS": range 0.882 - 0
LB fron Pr("VOlCCRCHART") >= n.9, by enables
UB from "PCV302EQERR" being false, by enables-inverse

"V~lCCRCHART": range 0.9 - 0
LB by assumption
UB from "LIFTPRESS" being false, by enables-inverse

"LP&SCIVSHUT": false
UB from "LIFTPRESS" being false, by conjoins

"SCIVSHUT": true
LB by assumption

"SCIVCAUSE": false
UB from "LP&SCIVSHUT" being false, by requires

*~"PCV3O2FTBAD": range 0.204 - 0

LB from Pr("PCV3O2EQERR") >= 0.204, by requires-inverse
UB by assumption

"PCV3O2EQERR": range 0.204 - 0
LB from '.-r("LIFTPRESS") >= 0.882, by enables
UB from "PCV3O2FTBAD" being false, by requires

*"RELVLIFT": range 0.801 - 0

LB from "RVLIFTIND" being true, by enables
UB from "LIFTPRESS" being false, by requires

"RVNQISECOOL": range 0.8 - 0
LB from Pr("RELVLIFT") >= 0.801, by requires-inverse
UB from "RELVLIFT" being false, by enables-inverse
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"RVLIFTIND": range 1 -0

LB by assumption
UB from rfRELVTJFTI being false, by enables-inverse

"NLIFTPRESS": range 1 - 0.118

LB from "LIFTPRESS" being false, by negates
UB from Pr("LIFTrPRESS") >= 0.882, by negates

"LIFT&NLIFTP": false
UB from "RELVLIFT" being false, by conjoins

"RVLIFTEARLY": false
UB from "LIFT&NLIFTP" being false, by requires

"NRELVLIFT": range I - 0.199
LB from "RELVLIFT" being false, by negates
UB from Pr("RELVLIFT t ) - 0.801, by negates

"NLIFT&IND": range 0.1 - 0
LB from "NRELVLIFT" being true, by conjoins
UB from "RVLIFTIND" being false, by conjoins

"RVSOLSHORT": range 0 .05 - 0
LB from Pr("NLIFT&IND") >= 0.1, by enables
UB from "NLIFT&IND" being false, by requires

"RVSWSI[0RT": range 0 .029 - 0
LB from Pr("NLIFT&IND") >= 0.1, by enables
UB from "NLIFT&IND" being false, by requires

4----------------------------------------

Find ways of making the
information consistent.

+----------------------------- -----------

show rectifications;

"VO1SDHP" can be resolved by changing:
Pr("VOISDHP") from 1 to 0

"VO1SDHP" enables "LIFTPRESS t ' with strength 0.668 ]to 0
"LIFTPRESS" enables "PCV3O2EQERR" with strength 0.231 1to 0

Pr("PCV302FTBAD") from 0 to 0.154

"LIFTPRESS" can be resolved by changing:
"LIFTPRESS" enables "PCV3O2EQERR" with strength 0.231 to 0

Pr("VOlCCRCHART") from 0.9 to 0
( "VOICCRCHART" enables "LIFTPRESS" with strength 0.98 1to 0
PrC"PCV3O2FTBAD") from 0 to 0.204
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"V01CCRCHART" can be resolved by changing:
Pr("VOlCCRCHART") from 0.9 to 0

"VO1CCRCHART" enables "LIFTPRESS" with strength 0.98 ] to 0
"LIFTPRESS" enables "PCV302EQERR" with strength 0.231 ] to 0

Pr("PCV302FTBAD") from 0 to 0.204

"PCV302FTBAD" can be resolved by changing:
Pr("PCV302FTBAD") from 0 to 0.204
1 "LIFTPRESS" enables "PCV302EQERR" with strength 0.231 ] to 0
Pr("VOlCCRCHART") from 0.9 to 0
[ "VOlCCRCHART" enables "LIFTPRESS" with strength 0.98 J to 0

"PCV302EQERR" can be resolved by changing:
Pr("PCV302FTBAD") from 0 to 0.204
[ "LIFTPRESS" enables "PCV302EQERR" with strength 0.231 ] to 0
Pr("VOCCRCHART") from 0.9 to 0
1 "VO1CCRCHART" enables "LIFTPRESS" with strength 0.98 ] to 0

"RELVLIFT" can be resolved by changing:
Pr("RVLIFTIND") from I to 0

"RVLIFTIND" enables "RELVLIFT" with strength 0.801 1 to 0
"LIFTPRESS" enables "PCV302EQERR" with strength 0.231 ] to 0

Pr("PCV302FTBAD") from 0 to 0.185

"RVNOISECOOLt " can be resolved by changing:
[ "RVNOISECOOL" enables "RELVLIFT" with strength 0.501 1 to 0
[ "RELVLIFT" requires "RVNOISECOOL" with strength 0.997 ] to 0.199
Pr("RVLIFTIND") from I to 0.004

"RVLIFTIND" enables "RELVLIFT" with strength 0.801 ] to 0.003
"LIFTPRESS" enables "PCV302EQERR" with strength 0.231 1 to 0

Pr("PCV302FTBAD") from 0 to 0.093

"RVLIFTIND" can be resolved by changing:
Pr("RVLIFTIND") fi-m 1 to 0

"RVLIFTIND" enables "REIVLIFT" with strength 0.801 1 to 0
"LIFTPRESS' enables "PCV302EQERR" with strength 0.231 1 to 0

Pr("PCV302FTBAD") from 0 to 0.185

"NLIFTPRESS" can 'e resolved by changing:
I "LIFTPRfId>S" enables "PCV302EQERR" with strength 0.231 ] to 0
Pr("VOICCRCHART") from 0.9 to 0
[ "VO1CCRCHART" enables "LIFTPRESS" with strength 0.98 ] to 0
Pr("PCV302FTBAD") from 0 to 0.204

"NRELVLIFT" can be resolved by changing:
Pr("RVLIFTIND") from 1 to 0
[ "RVLIFTIND" enables "RELVLIFT" with strength 0.801 1 to 0
[ "LIFTPRESS" enables "PCV302EQERR" with strength 0.231 ] to 0
Pr("PCV302FTBAD") from 0 to 0.185

-- .... -" "-_ '' .i ' _
"' '
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"NLIFT&IND" can be resolved by changing:
Pr("RVLIFTIND") from 1 to 0

"RVLIFTIND" enables "RELVLIFT" with strength 0.801 ] to 0
I "LIFTPRESS" enables "PCV302EQERR" with strength 0.231 1 to 0
Pr("PCV302FTBAD") from 0 to 0.018

"RVSOLSHORT" can be resolved by changing:
[ "NLIFT&IND" enables "RVSOLSHORT" with strength 0.5 ] to 0
Pr("RVLIFTIND") from I to 0
I "RVLIFTIND" enables "RELVLIFT" with strength 0.801 1 to 0
"LIFTPRESS" enables "PCV302EQERR" with strength 0.231 ] to 0

Pr("PCV302FTBAD") from 0 to 0.009

"RVSWSHORT" can be resolved by changing:
[ "NLIFT&IND" enables "RVSWSHORT" with strength 0.286 ) to 0
Pr("RVLIFTIND") from 1 to 0

"RVLIFTIND" enables "RELVLIFT" with strength 0.801 1 to 0
[ "LIFTPRESS" enables "PCV302EQERR" with strength 0.231 3 to 0
Pr("PCV302FTBAD") from 0 to 0.005

Alternative rectifications:

Pr("PCV302FTBAD") from 0 to 0.204
Total reluctance 0.20

"LIFTPRESS" enables "PCV302EQERR" with strength 0.231 3 to 0
Total reluctance 0.23

Pr("PCV302FTBAD") from 0 to 0.185
Pr("VOlCCRCHART") from 0.9 to 0

Total reluctance 1.09

Pr("PCV302FTBAD") from 0 to 0.185
"V01CCRCHART" enables "LIFTPRESS" with strength 0.98 1 to 0
Total reluctance 1.17

Pr("PCV302FTBAD") from 0 to 0.154
Pr("VOlCCRCHART") from 0.9 to 0

"RVLIFTIND" enables "RELVLIFT" with strength 0.801 1 to 0
Total reluctance 1.86

Pr("PCV302FTBAD") from 0 to 0.154
"V01CCRCHART" enables "LIFTPRESS" with strength 0.98 ] to 0

I "RVLIFTIND" enables "RELVLIFT" with strength 0.801 ] to 0
Total reluctance 1.94

Pr("PCV302FTBAD") from 0 to 0.154
Pr("VO1CCRCHART") from 0.9 to 0
Pr("RVLIFTIND") from 1 to 0

Total reluctance 2.05
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Pr("PCV302FTBAD") from 0 to 0.154

[ "VOICCRCHART" enables "LIFTPRESS ' with strength 0.98 ] to 0
Pr("RVLIFTIND") from 1 to 0

Total reluctance 2.13

"VOlSDHP" enables "LIFTPRESS" with strength 0.668 ] to 0
Pr("VOICCRCHART") from 0.9 to 0

"RVLIFTIND" enables "RELVLIFT" with strength 0.801 ] to 0
Total reluctance 2.37

"VO1SDHP" enables "LIFTPRESS" with strength 0.668 to 0
"VOICCRCHART" enables "LIFTPRESS" with strength 0.98 1 to 0
"RVLIFTIND" enables "RELVLIFT" with strength 0.801 ] to 0
Total reluctance 2.45

----------------------------------------+

Adopt the first rectification I
I given above.
-----------------------------------------

assume "PCV302FTBAD" with probability 0.204;

show events;

"VOlSDHP": true
LB by assumption

"LIFTPRESS": range 0.882 - 0.883
LB from Pr("VOICCRCHART") > 0.9, by enables
UB from Pr("PCV302EQERR") <= 0.204, by enables-inverse

"VOlCCRCHART": range 0.9 - 0.901
LB by assumption
UB from Pr("LIFTPRESS") <= 0.883, by enables-inverse

"LP&SCIVSHUT": range 0.882 - 0.883
LB from Pr("LIFTPRESS") >= 0.882, by conjoins
UB from Pr("LIFTPRESS") <= 0.883, by conjoins

"SCIVSHUT": true
LB by assumption

"SCIVCAUSE": range 0.802 - 0.883
LB from Pr("LP&SCIVSHUT") >= 0.882, by enables
UB from Pr("LP&SCIVSHUT") <= 0.883, by requires

"PCV302FTBAD": range 0.204 - 0.204
LB by assumption
UB by assumption

C..
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"PCV302EQERR": range 0.204 - 0.204
LB from Pr("LIFTPRESS") >= 0.882, by enables
LB from Pr("PCV3O2FTBAD") - 0.204, by requires

"RELVLIFT": range 0.801 - 0.883
LB from "RVLIFTINIV being true, by enables
LB from Pr("LIFTPRESS") <= 0.883, by requires

"RVNOISECOOL": range 0.8 - 1
LB from Pr("RELVLIFT") >= 0.801, by requires-inverse

'RVLIFTIND": true

LB by assumptionI

"NLIFTPRESS": range 0.117 - 0.118

LB from Pr("LIFTPRESS") <= 0.883, by negates
UB from Pr("LIFTPRESS") >= 0.882, by negates

"LIFT&NLIFTP": range 0 - 0.118
LB from Pr("NLIFTPRESS") <= 0.118, by conjoins

"RVLIFTEARLY": range 0 - 0.118
UB from Pr("LIFT&NLIFTP") <= 0.118, by requires

"NRELVLIFT": range 0.117 - 0.199
LB from Pr("RELVLIFT") <= 0.883, by negates
LB from Pr("RELVLIFT") - 0.801, by negates

"NLIFT&IND": range 0.117 - 0.199
LB from Pr("NRELVLIFT") >= 0.117, by conjoins
LB from Pr("NRELVLIFT") <= 0.199, by conjoins

"RVSOLSHORT": range 0.059 - 0.199
LB from Pr("NLIFT&IND") >= 0.117, by enables
LB from Pr("NLIFT&IND") <= 0.199, by requires

"RVSWSHORT": range 0.033 - 0.199
LB from Pr("NLIFT&IND") >= 0.117, by enables
UB from Pr("NLIFT&IND") <= 0.199, by requires

.I~-OW



-59-

REFERENCES

1. Barnett, J.A., "Computational Methods for a Mathematical Theory of
Evidence," Proc. 7th International Joint Conf. Artificial Intelli-
gence, Vancouver, 1981, pp. 868-875.

2. Duda, R.O., P.E. Hart, and Nils Nilsson, Subjective Bayesian Methods
for Rule-Based Inference Systems, Technical Note 124, Artificial In-
telligence Center, SRI International, 1976.

3. Duda, R.O., P.E. Hart, N.J. Nilsson, R. Reboh, J. Slocum, and G.L.
Sutherland, Development of a Computer-Based Consultant for Mineral
Exploration, SRI International, 1977.

4. Duda, R.O., J. Gaschnig, and P.E. Hart, "Model Design in the Pros-
pector Consultant System for Mineral Exploration," Expert Systems in
the Micro Electronic Age (D. >Iichie, ed.), Edinburgh University
Press, 1979.

5. Duda, R.O., P.E. Hart, K. Konolige, anc R. Reboh, A Computer-Based
Consultant for Mineral Exploration, SRI International, 1979.

6. Feigenbaum, E.A., "Themes and Case Studies of Knowledge Engineer-
ing," Expert Systems in the Micro Electronic A (D. Michie, ed.),
Edinburgh University Press, 1979.

7. Friedman, L., "Extended Plausible Inference," Proc. 7th Internation-
al Joint Conf. Artificial Intelligence, Vancouver, 1981, pp. 487-
495.

8. Garvey, T.D., J.D. Lowrance, and M.A. Fischler, "An Inference Tech-
nique for Integrating Knowledge from Disparate Sources," Proc. 7th
International Joint Conf. Artificial Intelligence, Vancouver, 1981,
pp. 319-325.

9. Gaschnig, J., Development of Uranium Exploration Models for the
Prospector Consultant System, SRI International, 1980.

10. Gaschnig, J., "Prospector: An Expert System for Mineral Explora-
tion," State of the Art Report on Machine Intelligence (A. Bond,
ed.), London: Pergamon Infotech, 1981.

11. Hayes-Roth, F., "Probabilistic Dependencies in a System for Truth
Maintenance and Belief Revision," unpublished working paper, The
Rand Corporation.

12. Hayes-Roth, F., D.A. Waterman, and D.B. Lenat, "Principles of
Pattern-Directed Inference Systems", Pattern-Directed Inference Sys
tems (D.A. Waterman and F. Hayes-Roth, eds.), New York: Academic
Press, 1978.



-60-

13. Ishizuka, M., and J.T.P. Yao, "Inexact Inference for Rule-Based Dam-
age Assessment of Existing Structures," Proc. 7th Intertational
Joint Conf. Artificial Intelligence, Vancouver, 1981, pp. 837-842.

14. Konolige, K., "An Information-Theoretic Approach to Subjective Baye-
sian Inference in Rule-Based Systems," unpublished draft, SRI Inter-

nat iona 1.

15. Paterson, A., AL/X User Manual, Intelligent Terminals Ltd., Oxford,

1981.

It. Pearl, J. , Distributed Bayesian Processing for Belief Maintenance in
Hierarchical Inference Systems, Cognitive Systems Laboratory, UCLA,

Report UCLA-ENG-CSL-82-11, 1982.

17. Pednault, E.D.P., S.W. Zucker, and L.V.Muresan, "On the Independence
Assumption Underlying Subjective Bayesian Inference," Artificial In-
telligence, Vol. 16, 1981, pp. 213-222.

18. Reiter, J., AL/X: An Expert System using Plausible Inference, Intel-

ligent Termials Ltd., Oxford, 1980.

19. Reiter, J., "AL/X: An Inference System for Probabilistic Reasoning."
M.Sc. Thes;is, Department of Computer Science, University of Illinois

at Urbana-Champaign, 1981.

20. Robinson, J.A. , "A Machine Oriented Logic Based on the Resolution
Principle," Journal of the Association for Comaut Machinery, Vol.
12, 1965, pp. 23-41.

21. Shortliffe, E.l., and B.G. Buchanan, "A Model of Inexact Reasoning
in Medicine," Mathematical Biosciences, Vol. 23, 1975, pp. 351-379.

22. Stallman, R.M., and G.J. Sussman, "Forward Reasoning and
nfpendency-Directed Backtracking in a System for Computer-Aided Cir-

cuit Analysis," Artificial Intelligence, Vol. 9, 1977, pp. 135-196.

23. Szolovits, P.S., and S.G. Pauker, "Categorical and Probabilistic
Reasoning in Medical Diagnosis," Artificial Intelligence, Vol. 11,

1978, pp. 115-144.

24. van Melle, W., "A Domain-Independent Production Rule System for Con-
sultation Programs," Proc. 6th International Joint Conf. Artificial
Intelligence, Tokyo, 1979.

25. van Melle, W., A Domain-Independent System that Aids in Constructing
Knowledge-Based Consultation Programs, Department of Computer Sci-
ence, Stanford University, Report STAN-CS-80-820, 1980.

26. Zadeh, L.A., "A Theory of Approximate Reasoning," Machine Intelli-
gence, Vol. 9, (i.E. Hayes, D. Michie, and L.I. Mikulich, eds.),
London: Ellis Horwood, 1979.

, il -


