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Geometric properties of digital disks are discussed.

An algorithm is presented that determines whether or not
a given digital region is a digital disk.
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1. Introduction

_—

Shape recognition is a basic part of image processing and

pattern recognition. Elementary shapes in the 2D Euclidean

e
'y ‘J‘l" s

plane, such as polygons and conic sections, are well defined

and understood. However, the objects in digital image proces-
sing and pattern recognition are not continuous objects but
their digital representations. The shapes of sets of digital
points are not well defined and not well understood.
D The connectivity and convexity of sets of digital points
have been studied extensively (2,3,6,8]. These are geometric
! properties closely related to the shapes of sets of digital
points. The convex polygonality of sets of digital points is
»{ discussed in [4]. This paper treats the shape of a disk for
sets of digital pqints. We discuss criteria for saying that a
set of digital points has the shape of a disk; what are the
o geometric properties that are satisfied by digital disks; and
how to determine whether or not a given set of digital points
= has the shape of a disk.
A measure of the circularity of sets of digital points is
discussed in [l1]. It gives a parameter that indicates the
o : closeness of a set of digital points to a digital disk. In [5],
sets of digital points which are digitizations of circles are
characterized. Also, an algorithm for a deterministic tape- ;?7‘4

bounded array acceptor to determine circularity is presented. -
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Our characterization of digital disks and algorithm are en-
tirely different from those given in [5]. Further, the algo-
rithm is for general purpose computers.

In the next section definitions and a previously known
result that is useful in this paper are given. Simple geo-
metric characterizations of digital disks are discussed in
Section 3. Section 4 derives further characterizations of digi-
tal disks that lend themselves to development of an algorithm
to determine whether or not a digital region is a digital disk.
The algorithm is presented and its complexity analyzed in the

same section.
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2. Definitions

The set of all points in 2D Euclidean space is denoted
by E. The set of all points in E with integer-valued coor-
dinates is denoted by D. A point in D is called a digital
point. Let S be a set of digital points. Then S denotes

the complement of S in D. A point of S is an interior point

if all of its four 4-neighbors [7] are points of S. A point

of S is a boundary point if it is not an interior point.

Digital region

A digital region S is any finite subset of D which is 4-

connected {4}].

Digital image of a region

Consider a region p in E. A set S in D is said to be the
digital image (or simply, image) of p, and p a preimage cf S,
if

(i) scp and

(ii) snp=@.

We denote the image of p by I(p).

Digital disk

A digital region Q is a digital disk if there is a disk g
whose digital image is Q. (See Figure 1l.)
Let q be a disk. The boundary (circumference) of q is de-

noted by 9q and the center by c(q). If x and y are points on 3q,
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the subset of 3g obtained by moving from x to y clockwise is
denoted by 3g(x,y). Thus the union of 3q(x,y) and 3q(y,x) is
3G. Given any pair of points x,y in E, we denote the line segment
between the two by xy. Given three points x,y, and z, the angle

" measured clockwise from Xy to xz is denoted by yxz. Given two
points x,y on 3q, g(x,y) denotes the subset of q whose boundary
is the union of xy and 3q(x,y). Let u be a point in E. The dis-
tance from u to 3q, denoted dist(u,3q), is defined as follows:
The line that passes u and c(g) intersects 3q at two points.
Let the one nearest to u be v. Then dist(u,3q) is the length of

uv. (See Figure 2.)

Convex digital region

A digital region S is said to be convex if there is a convex
region p whose digital image is S.

Given a digital region S, H(S) denotes its convex hull.

A result in [4] w'.'-h is used in this paper is stated as a

lemma below.

Lemma A
A digital region S is convex if and only if H(S) does not
contain any point of S.

The following corollary is immediate from the lemma.

Corollary B

A digital disk is convex.
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N 3. Geometric properties of digital disks
ﬁ

In this section we discuss simple geometric properties that
characterize digital disks. These are interesting geometric
characterizations, but they do not immediately lend themselves
to development of an algorithm that determines whether or not a
given digital region is a digital disk. Still, they are a basis
from which further characterizations of digital disks are de-

- rived that enable us to design such an algorithm.
! The first result is on a necessary and sufficient geometric
} property for a digital region to be a digital disk. The second

s is on a geometric property which implies that a digital region is
{ not a digital disk.
3

Before presenting these results, we introduce some notation.

Let x,y and z be three distinct points in E. Let xy denote the
half-line with endpoint x that passes y. We denote by h(yxz) the
unbounded subset of E that is obtained by rotating xy clockwise

to xz.

Theorem 1. A digital region Q is a digital disk if and only if
there is a (Euclidean) disk g that satisfies one of the following:
(i) Every point of Q is a point of q and ﬁo point of Q
is a point of gq. Also there are three points dl'dZ’
d, of Q on 3g such that none of the angles dlc(q)dz,

dzc(q)d3 and d3c(q)d1 are greater than .
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(ii) Every point of Q is a point of g and there are two
points 4, +d, of Q on 3q such that all the digital
points on aq(dl,dz) are points of Q and all the digital
points on 3q(d,,d,) are points of Q. Moreover, the

rest of the points of Q are points of q.

Proof: Suppose that given a digital region Q, there exists

a disk q satisfying either (i) or (ii). If g satisfies (i),
then Q is the digital image of g and hence, is a digital disk
by definition. So assume that q satisfies (ii). Let

§; = min _ {dist(d,3q)} and
dEh(dlc(q)dz)ﬂQ

62 = min {dist(d,3q)}.
d¢h(d,c(q)d;)nQ - {d;,d,}

Let § = %*min{él,dz}. Then §>0, since obviously 61,62>0. Let
s be the radius of q that bisects the angle dlc(q)dz, and c' be
the point on s such that the distance between c(gq) and c' is §.
(See Figure 3.) We denote by p the disk whose center is c¢' and
whose circumference contains d, and d2. Due to the construction
of §, it is obvious that g-p does not contain any point of Q and
p-q does not contain any point of Q. Thus, every point of Q is
a point of p and no point of Q is a point of p. Therefore, Q
is the digital image of p and hence, is a digital disk. This
completes the proof of the "if" part.

" Next, suppose that a digital region Q is a digital disk.

Then there is a disk p whose digital image is Q. If there

are three points dl,dz,d3 of Q such that none of the angles




dlc(p)dz, dchﬂd3 and d3c(p)d1 are greater than w, then we

are done because p satisfies (i). So assume that there are
no such three points of Q on 9p, and consider the following

cases:

Case 1 There are at least two points of Q on 3dp.

Then there are two points dl,d2 of Q on p such that
there is no point of Q on ap(dz,dl) and the angle dzc(p)d1
is greater than 7, (See Figure 4.) Let s be the radius bi-
secting the angle dlc(p)dz. Consider point ¢ that, starting
from c(p), moves continuously away from c(p) along the radius
s. As ¢ moves, consider the disk g whose center is at ¢ and
radius is cdl(=cd2). As soon as 3q(d2,dl) touches points of Q
or aq(dl,dz) toucches points of Q or both, point c stops its
movement.

Suppose Bq(dl,dz) touched points of Q. Note that even if
Bp(dl,dz) had points of Q, aq(dl,dz) has no point of Q. Thus,
every digital point on 8q(d1,d2) is a point of Q and every digi-
tal point on Bq(dz,dl) (there may not be any) is a point of Q.
Therefore, q satisfies (ii) and we are done. So suppose that
aq(dl,dz) did not touch any point of Q but Bq(dz,dl) touched
points of Q. If there is a point d3 of Q on aq(dz,dl) such
that +he angles dzc(q)d3 and d3c(q)dl are both less than T,
then q satisfies (i) and the proof for case 1 is complete.
Assume that there is no such point of Q on aq(dz,dl). Let d,

be the point of Q on aq(dz,dl) such that the angle d3c(q)d1 is

..........
..........




smallest, which still is larger than w. Now we are back to
the original condition of case 1 except that now d3 replaces
d2. We repeat the process until the new disk q satisfies
either (i) or (ii). This process terminates, since aq(dl,dz)
eventually touches a point of Q. This completes the proof

for case 1.

Case 2 There 1is one point of Q on p.

Let dl be the point of Q on 39p and s be the radius of p
whose endpoints are dl ana c(p). Consider point c that start-
ing from c(p) moves continuously toward d1 along s. The point
c stops moving when 3g touches points of Q for the first time,
where q is the circle whose center is at c¢ and radius is cdl.

If there are two points dz,d of Q on 3q such that none of the

3
angles dlc(q)dz, dzc(q)d3 and d3c(q)d1 are greater than 7,

then q satisfies (i). If not, this case is reduced to case 1.

Case 3 There is no point of Q on 3p.

Let g be the largest disk such that its center coincides
with the center of p, i.e., c(q)=c(p), and there are points
of Q on 3q. Now the case is reduced to one of the above cases
depending on the number of points of Q on 3 and their relative
positions. This completes the proof of the "only if" part.

The proof of the theorem is now complete. o
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Theorem 2, Let Q be a digital regién and p a disk. If there
are two points d,,d, of Q on 3p such that both’ subsets p(d,,
dz) and p(d,.d,) contain points of Q, then Q is not a digi-

tal disk.

Proof: Given a digital region Q and a disk p, suppose that
two points dl,d2 of Q on p are such that points e; and e,
of Q are in p(d,,d,) and p(d,,d,), respectively. If either
e, Or e, is a point on the line segment dldz’ then there is
no disk that contains both dl and d2 but not e, or e, and so
Q is not a digital disk. Hence, assume that neither e; nor

e, is a point on dld Suppose that Q is a digital disk.

2
Then there is a disk g whose digital image is Q and in parti-
cular, dl and dz are points of g and ey is not. Thus, 99
intersects 9p at two points on ap(dl,dz). (See Figure 5.)

Since two circles may intersect at most at two points, p(dZ'dl)
is a subset of g. Hence, e, is a point of g, which contradicts
the fact that Q is the digital image of g. Therefore, Q is not

a digital disk. o
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4. Algorithm

An algorithm is presented that determines whether or not
a given digital region is a digital disk. Since the results
derived in the previous section do not lead to an efficient
algorithm, further characterizations of digital disks are
needed. A few of them are given as lemmas after introducing
some necessary notation.

We represent a. polygon by the sequence of its vertices
listed in the order of clockwise traversal of its boundary.
Consider a digital region Q and its convex hull H(Q). Since

H(Q) is a polygon, it may be represented by the sequence of

its vertices (Vl’V2"“’Vn)' where the vi%;are obviously points
of Q. We denote the set {vl,vz,...,vn} of the vertices of

H(Q) by P. Let R denote the set of digital points that are
boundary points of Q. (See Figure 6.) Given any pair of two
distinct points vi,vj of P, V.v. denotes the line through the

1]

two points with its sense in the direction from vy to Vj' Let

P(vi,vj) and R(vi,vj) denote the subsets of P and R, respective-
ly, that lie to the left of Vivj' Thus P(vi,vj)UP(vj,vi)=P-{vi,vj}
and R(v,,v.)UR(v.,v.)=R-(RN{x|x is on wv.v.}). (See Figure 6.)

i’7j j'Oi i3
Let v be the point of P(vi,vj) such that the angle vivvj is

not greater than the angle viv'vj for any v' in P(vi,vj), and

let minang(P(vi,vj)) denote this angle. That is, minang(P(vi,vj))=

mln{vivvaVEP(vi,Vj)}. Similarly, maxang(R(vi,vj))=max{viwv3

WER(Vi'vj) }0




The digital region Q is convex if it is a digital disk by
CorollaryB. So it is obvious that the convex digital region
Q is a digital disk if and only if there is a disk gq that
contains the vertices of H(Q) and does not contain any point
of Q. This observation and the results in the preceding sec-

tion lead us to the following lemmas.

Lemma 3

Given a digital region Q, let vy and vj be any two distinct
vertices of H(Q). 1If maxang(R(vi,Vj))+maxang(R(vj,vi))zn,
then Q is not a digital disk.

Pronf: Let w be a point of R(vi,vj)sudqthat the angle VWY is
equal to maxang(R(vi,vj)). Denote by q the disk whose circum-
ference is determined by vi,vj and w. If w' is a point of
R(vj,vi) such that the angle vjw'vi is equal to maxang(R(vj,vi)),
then vjw'vizn-viwvj, and w' is a point of q(vj,vi). Therefore,

v and vj are points of Q on 9g and q(vi,vj) and q(vj,vi) each

has a point of Q. Hence, Q is not a digital disk by Theorem 2. ©

Lemma 4
Given a digital region Q, let vy and vj be any two distinct
vertices of H(Q). Suppose that the following conditions are

satisified:

]
(ii) maxang(R(vi,vj))+maxang(R(vj,vi))<n, and

(i) minang(P(vi,vj))+minang(P(v.,vi))Zn,




(iidi) minang(P(vi,vj))>maxang(R(vi,vj)) and
minang(P(vj,vi))>maxang(R(vj,vi)).

Then Q is a digital disk.

Proof: Assume without loss of generality that minang(P(vi,vj))f

minang(P(vj,vi)). Consider the following two cases:

Case 1l minang(P(vi,vj))+maxang(R(vj,vi)km.

Let v be a point of P(Vi’vj) such that the angle vivvj is

equal to minang(P(vi,vj)). Then let g be the disk whose circum-
ference contains the points Vir V and Vj' Since for every v'

of P(vi,vj), the angle viv'vj is not less than minang(P(vi,vj)),

v' is a point of g. If a point x lieé to the left of vjvi and

the angle vjxvi is larger than or equal to n-minang(P(vi,vj)),
then it is a point of q(vj,vi). Since minang(P(vj,vi))Zn-minang

(P(vi,vj)), the angle vjv'vizn - minang(P(vi,vj)) for every v'

of P(vj,vi). Hence, every point of P(Vj'vi) is a point of q(vj,

Vi)’ Therefore, every vertex of H(Q) is a point of g and thus Q
is contained in q. Now we show that no point of Q is a point

of gq. For any point w of R(vi,vj), the angle viwvj is less than
or equal to maxang(R(vi,vj)) which is less than minang(P(vi,vj)).
So w is not a point of q(vi,vj). Since w is obviously not a point
of q(vj,vi), it is not a point of q. Consider a point of R(Vj'vi)'
denoted w. The angle viwv, is not greater than maxang(R(vj,vi)),

]
which in turn is less than n-minang(P(vi,vj)). Thus, w is not a

point of q(vj,vi), and so is not a point of g. We have shown that




every point of Q is a point of g and no point of @ is a point

of gq. Therefore, Q is a digital disk. (It is not difficult to

see that g satisfies condition (i) of Theorem 1.)

Case 2 minang(P(vi,vj))+maxang(R(vj,vi))2n.

Let w be a point of R(Vj’vi) such that the angle vjwvi is

equal to maxang(R(vj,vi)). Consider the disk g whose circum-
ference has points VW and Vj' Since for any point w' of
is not greater than maxang (R(v.

J
»v;) or a point of g. Let w' be

R(vj,vi), the angle vjwvi

w' is either a point on aq(vj

a point of R(vi,vj); then the angle viw'vj is less than n-vjwvi,

,vi)) ’

so w' 1is not a point of g. Next we show that every point of Q

is a point of gq. If v is a point of P(vj

vjvvi is greater than the angle vjwvi and hence v is a point of

,vi), then the angle

q(vj,vi). If v is a point of P(vi,vj), then the angle vivvj
is greater than or equal to n—vjwvi. Thus, w is a point of
q(vi,vj). We note that g satisfies condition (ii) of

Theorem 1, and so Q is a digital disk. o

Now we are ready to present an algorithm to determine whe-
ther or not a given digital region is a digital disk.
Algorithm DIGITAL_ DISK(Q)
|l Given a digital region Q, the algorithm deter-

mines if Q is a digital disk. If it is, the
algorithm prints True and halts, otherwise it
prints False and halts. |

Step 1. Construct the convex hull H(Q).

If H(Q) has a point of Q then print (False); stop.

.......................................................
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Step 2. Construct the following two sets of digital
points:

P = {vl,vz,...,vn}, where (vl,vz,...,vn) = H(Q).

R = {w;,Wy,...,w}, the set of boundary points of Q.
Step 3. For i=1 to n-1 do

for j=i+l to n do

ot 3.1 evaluate minang(P(vi,vj)), minang(P(vj,vi)),
; maxang(R(vi,vj)) and maxang(R(vj,vi)).
5‘ 3.2 if maxang(R(vi,vj))+maxang(R(vj,vi))zn

then print (False); stop.

5 3.3 if minang(P(vi,vj))+minang(P(vj,vi))zn,
maxang(R(vi,vj))+maxang(R(vj,vi))<n, and
' minang(P(vi,vj))>maxang(R(vi,vj)) and
minang(P(vj,vi))>maxang(R(vj,vi))

7 then print (True); stop.

- Step 4. Print (False); stop.

Suppose that the digital region Q resides in a set of NxN
digital points. We assume that the region is represented by

its run length code [7].

. Theorem 5. Algorithm DIGITAL DISK determines whether or not a

given digital region is a digital disk requiring O(N3) time and

O(N) work space.




Proof: For a digital disk Q, the condition for q in Theorem 1
implies and is implied by the condition for q in Lemma 4. Thus,
the correctness of algorithm DIGITAL DISK is immediate from
Theorem 1, Lemma 3 and Lemma 4.

The work space needed by the algorithm is for H(Q) (=P), R and
a few temporaries. Since P has at most 2N elements and R at most
4N elements, O(N) space is all that is required.

The steps 3.1, 3.2 and 3.3 are executed at most 4N2 times be-
cause n is at most N. The execution time of Step 3.1 is O(N) be-
cause at most 6N angles need be evaluated. Steps 3.2 and 3.3
each take constant time. Therefore, the time complexity of the

algorithm is O(N3). o

.....




5. Conclusion

A definition of digital disks is given which is consistent
with the definition of digital convexity and digital polygonality.
With this definition, we were able to derive a few simple geometric
properties that characterize digital disks. Moreover, an algo-
rithm to determine digital disks was developed from these charac-
terizations. The algorithm is conceptually simple and very easy
to implement. Its O(N3) time complexity, however, seems rather

excessive, and it is not likely that O(N3) is the lower bound.
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Figure 1. A digital

Figure 2.

disk.
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