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ABSTRACT I 7

A
Geometric properties of digital disks are discussed.

An algorithm is presented that determines whether or not
a given digital region is a digital disk.
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1. Introduction

Shape recognition is a basic part of image processing and

pattern recognition. Elementary shapes in the 2D Euclidean

*plane, such as polygons and conic sections, are well defined

and understood. However, the objects in digital image proces-

sing and pattern recognition are not continuous objects but

their digital representations. The shapes of sets of digital

points are not well defined and not well understood.

The connectivity and convexity of sets of digital points

have been studied extensively [2,3,6,81. These are geometric

*, properties closely related to the shapes of sets of digital

points. The convex polygonality of sets of digital points is

discussed in [4]. This paper treats the shape of a disk for

sets of digital points. We discuss criteria for saying that a

set of digital points has the shape of a disk; what are the

geometric properties that are satisfied by digital disks; and

how to determine whether or not a given set of digital points

has the shape of a disk.

A measure of the circularity of sets of digital points is

discussed in [l]. It gives a parameter that indicates the

closeness of a set of digital points to a digital disk. In [5],

sets of digital points which are digitizations of circles are

characterized. Also, an algorithm for a deterministic tape-

bounded array acceptor' to determine circularity is presented.

1.72.



Our characterization of digital disks and algorithm: are en-

tirely different from those given in [5]. Further, the algo-

rithm is for general purpose computers.

In the next section definitions and a previously known

result that is useful in this paper are given. Simple geo-

metric characterizations of digital disks are discussed in

Section 3. Section 4 derives further characterizations of digi-

tal disks that lend themselves to development of an algorithm

to determine whether or not a digital region is a digital disk.

The algorithm is presented and its complexity analyzed in the

same section.
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2. Definitions

The set of all points in 2D Euclidean space is denoted

by E. The set of all points in E with integer-valued coor-

dinates is denoted by D. A point in D is called a digital

point. Let S be a set of digital points. Then S denotes

the complement of S in D. A point of S is an interior point

if all of its four 4-neighbors [71 are points of S. A point

of S is a boundary point if it is not an interior point.

Digital region

A digital region S is any finite subset of D which is 4-

connected [4] .

Digital image of a region

Consider a region p in E. A set S in D is said to be the
II

digital image (or simply, image) of p, and p a preimage of S,

if

(i) Sp and

[! (ii) SNp=o.

We denote the image of p by I(p).

Digital disk

A digital region Q is a digital disk if there is a disk q

*whose digital image is Q. (See Figure 1.)

Let q be a disk. The boundary (circumference) of q is de-

noted by Dq and the center by c(q). If x and y are points on aq,

.



the subset of 3q obtained by moving from x to y clockwise is

denoted by aq(x,y). *Thus the union of aq(x,y) and aq(y,x) is

3q. Given any pair of points x,y in E, we denote the line segment

between the two by xy. Given three points x,y, and z, the angle

measured clockwise from xy to xz is denoted by yxz. Given two

points x,y on aq, q(x,y) denotes the subset of q whose boundary

is the union of xy and aq(x,y). Let u be a point in E. The dis-

tance from u to 3q, denoted dist(u,aq), is defined as follows:

The line that passes u and c(q) intersects aq at two points.

Let the one nearest to u be v. Then dist(u,aq) is the length of

uv. (See Figure 2.)

Convex digital region

A digital region S is said to be convex if there is a convex

region p whose digital image is S.

Given a digital region S, H(S) denotes its convex hull.

A result in [4] w'"-h is used in this paper is stated as a

lemma below.

Lemma A

7A digital region S is convex if and only if H(S) does not

contain any point of S.

The following corollary is immediate from the lemma.

Corollary B

A digital disk is convex.
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3. Geometric properties of digital disks

In this section we discuss simple geometric properties that

characterize digital disks. These are interesting geometric

characterizations, but they do not immediately lend themselves

to development of an algorithm that determines whether or not a

given digital region is a digital disk. Still, they are a basis

from which further characterizations of digital disks are de-

rived that enable us to design such an algorithm.

The first result is on a necessary and sufficient geometric

property for a digital region to be a digital disk. The second

is on a geometric property which implies that a digital region is

not a digital disk.

Before presenting these results, we introduce some notation.

Let x,y and z be three distinct points in E. Let xy denote the

half-line with endpoint x that passes y. We denote by h(yxz) the

unbounded subset of E that is obtained by rotating xy clockwise

to xz.

Theorem 1. A digital region Q is a digital disk if and only if

there is a (Euclidean) disk q that satisfies one of the following:

(i) Every point of Q is a point of q and no point of Q

is a point of q. Also there are three points dl,d 2,

d3 of Q on Dq such that none of the angles dlc(q)d2,

d2c(q)d 3 and d3c(q)d1 are greater than w.

7 . .. - . . . . . .



(ii) Every point of Q is a point of q and there are two

points dl,d 2 of Q on aq such that all the digital

points on aq(dld 2 ) are points of Q and all the digital

points on aq(d 2,d1 ) are points of Q. Moreover, the

rest of the points of Q are points of q.

Proof: Suppose that given a digital region Q, there exists

a disk q satisfying either (i) or (ii). If q satisfies (i),

then Q is the digital image of q and hence, is a digital disk

by definition. So assume that q satisfies (ii). Let

i = min 1 {dist(d,aq)} and
dEh(dlC(q)d2)flQ

6 2 = min [dist(d,aq)}.
dEh(d2 c(q)d1 )nQ - {dl,d 2 }

Let 6 = *min{61 ,62 }. Then 6>0, since obviously 61,62>0. Let

s be the radius of q that bisects the angle d1c(q)d2 , and c' be

the point on s such that the distance between c(q) and c' is 6.

(See Figure 3.) We denote by p the disk whose center is c' and

whose circumference contains dI and d2. Due to the construction

of 6, it is obvious that q-p does not contain any point of Q and

p-q does not contain any point of 0. Thus, every point of Q is

a point of p and no point of U is a point of p. Therefore, Q

is the digital image of p and hence, is a digital disk. This

completes the proof of the "if" part.

Next, suppose that a digital region Q is a digital disk.

Then there is a disk p whose digital image is Q. If there

are three points dl,d2 ,d3 of Q such that none of the angles
.2"



d c(p) d2, d2c(p)d3 and d3c(p)dI are greater than w, then we

are done because p satisfies (i). So assume that there are

no such three points of Q on 3p, and consider the following

cases:

Case 1 There are at least two points of Q on 9p.

Then there are two points dl,d 2 of Q on p such that

there is no point of Q on Bp(d2,dI) and the angle d2c(p)d1

is greater than ff. (See Figure 4.) Let s be the radius bi-

secting the angle dlc(p)d2 . Consider point c that, starting

from c(p), moves continuously away from c(p) along the radius

s. As c moves, consider the disk q whose center is at c and

radius is cdl(=cd2). As soon as 3q(d 2 ,dI) touches points of Q

or 3q(dl,d2) toucches points of U or both, point c stops its

movement.

Suppose 3q(dl,d 2) touched points of Q. Note that even if

p(d1 'd2 ) had points of Q, Dq(dl,d2 ) has no point of Q. Thus,

every digital point on aq(dl,d 2) is a point of Q and every digi-

* tal point on aq(d 2 ,d1 ) (there may not be any) is a point of Q.

Therefore, q satisfies (ii) and we are done. So suppose that

aq(dl,d 2) did not touch any point of Q but 9q(d 2,dl) touched

points of Q. If there is a point d3 of Q on Dq(d 2 ,dI ) such

that the angles d2c(q)d3 and d3c(q)dI are both less than n,

then q satisfies (i) and the proof for case 1 is complete.

Assume that there is no such point of Q on 3q(d 2,dl). Let d

be the point of Q on Dq(d 2,d1 ) such that the angle d3c(q)d1 is

"'+' :... , , , .:' ." .' . ''.' -. . " . ". -+ . " -' + - " • - , +" " "- • " • • . " -" " -" 4 - , :



smallest, which still is larger than n. Now we are back to

the original condition of case 1 except that now d3 replaces

d2. We repeat the process until the new disk q satisfies

either (i) or (ii). This process terminates, since Dq(dl,d 2)

eventually touches a point of Q. This completes the proof

for case 1.

Case 2 There is one point of Q on p.

Let dI be the point of Q on Bp and s be the radius of p

whose endpoints are dI and c(p). Consider point c that start-

ing from c(p) moves continuously toward dI along s. The point

c stops moving when aq touches points of Q for the first time,

where q is the circle whose center is at c and radius is cdI .

If there are two points d2 ,d3 of Q on Bq such that none of the

angles dlc(q)d2 d2c(q)d3 and d3c(q)dI are greater than n,

then q satisfies (i). If not, this case is reduced to case 1.

Case 3 There is no point of Q on ap.

Let q be the largest disk such that its center coincides

with the center of p, i.e., c(q)=c(p), and there are points

of Q on Dq. Now the case is reduced to one of the above cases

depending on the number of points of Q on Dq and their relative

positions. This completes the proof of the "only if" part.

The proof of the theorem is now complete. o
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Theorem 2. Let Q be a digital region and p a disk. If there

are two points dl,d 2 of Q on ap such that both subsets p(dI ,

d 2 ) and p(d2 ,dl) contain points of i, then Q is not a digi-

tal disk.

Proof: Given a digital region Q and a disk p, suppose that

two points d1 d2 of Q on p are such that points el and e2

of Q are in p(dl,d 2) and D(d 2 ,d1 ), respectively. If either

el or e2 is a point on the line segment d1d2, then there is

no disk that contains both di and d2 but not e or e2 and so

SQ is not a digital disk. Hence, assume that neither el nor

e is a point on dld2. Suppose that Q is a digital disk.

Then there is a disk q whose digital image is Q and in parti-

cular, dI and d2 are points of q and el is not. Thus, Dq

intersects ap at two points on ap(dl,d2 ). (See Figure 5.)

Since two circles may intersect at most at two points, p(d2 ,d1 )

is a subset of q. Hence, e2 is a point of q, which contradicts

-the fact that Q is the digital image of q. Therefore, Q is not

a digital disk. o

-"
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4. Algorithm

An algorithm is presented that determines whether or not

a given digital region is a digital disk. Since the results

derived in the previous section do not lead to an efficient

algorithm, further characterizations of digital disks are

-} needed. A few of them are given as lemmas after introducing

some necessary notation.

We represent a polygon by the sequence of its vertices

listed in the order of clockwise traversal of its boundary.

Consider a digital region Q and its convex hull H(Q). Since

H(Q) is a polygon, it may be represented by the sequence of

its vertices (v 1 ,V 2 ,...,vn), where the v.'s are obviously points

of Q. We denote the set {vlv 2 ,...,v n} of the vertices of

H(Q) by P. Let R denote the set of digital points that are

boundary points of Q. (See Figure 6.) Given any pair of two

distinct points vi'v j of P, viv j denotes the line through the

two points with its sense in the direction from vi to v. Let
1 ),

- P(viv-) and R(vi'v.) denote the subsets of P and R, respective-

ly, that lie to the left of viV Thus P(vi,vj)UP(vj,vi)=P-{vi,vj}

and R(vi,vj)UR(v,vi)=R-(R{xlx is on v--vj}). (Sp.e Figure 6.)

Let v be the point of P(vi'v-) such that the angle v vv. is

not greater than the angle viv'v j for any v' in P(vi,v.), and

let minang(P(v.,v.)) denote this angle. That is, minang(P(vi,vj))=

min{v.vv j vEP(vi,v j)}. Similarly, maxang(R(vi,v ))=max{viwvji
w1R(v), v j ) }1
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The digital region Q is convex if it is a digital disk by

Corollary B. So it is obvious that the convex digital region

Q is a digital disk if and only if there is a disk q that

contains the vertices of H(Q) and does not contain any point

of 0. This observation and the results in the preceding sec-

tion lead us to the following lemmas.

Lemma 3

Given a digital region Q, let vi and v. be any two distinct

vertices of H(Q). If maxang(R(vi,vj))+maxang(R(v ,vi))-,,

then Q is not a digital disk.

Proof: Let w be a point of R(vi ,vj)such that the angle viwvj is

equal to maxang(R(vi,vj)). Denote by q the disk whose circum-

ference is determined by vi1 vj and w. If w' is a point of

R(vj,v i) such that the angle vjw'vi is equal to maxang(R(vj,vi)),

then vjw'vi>-viwvj , and w' is a point of q(vj,vi). Therefore,

v. and v. are points of Q on 3q and q(vi,v) and q(vj,v i) each

has a point of Q. Hence, Q is not a digital disk by Theorem 2. o

Lemma 4

Given a digital region Q, let v. and v. be any two distinct

vertices of H(Q). Suppose that the following conditions are

satisified:

° .:: (i) minang (P (vi vj ) )+minang (P (vj, vi))-,

(ii) maxang(R(vi,vj))+maxang(R(vj,vi ))<n, and
1)h"
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(iii) minang(P(vi~v))>max ang (R (v i ,v j  and

minang(P(vj,v i ))>maxang(R(vj,vi)).

Then Q is a digital disk.

Proof: Assume without loss of generality that minang(P(vi,vj))_

minang(P(v.,v i)). Consider the following two cases:

Case 1 minang(P(vi,v ))+maxang(R(vj ,v))<71.

Let v be a point of P(vi,v.) such that the angle vivv. is
1 I

equal to minang(P(vi,v.)). Then let q be the disk whose circum-

ference contains the points vi, v and v. Since for every v'

of P(vi#vj) , the angle viv'vj is not less than minang(P(vi,vj)),

v' is a point of q. If a point x lies to the left of vTv. and

the angle vjxvi is larger than or equal to -minang(P(vi,vj)),

then it is a point of q(vj,vi). Since minang(P(vj,vi))>_-minang

(P(vi,vj)) the angle vjv'v i - minang(P(vi,vj)) for every v'

of P(vj,vi). Hence, every point of P(vj,v i) is a point of q(v.,

vi). Therefore, every vertex of H(Q) is a point of q and thus Q

is contained in q. Now we show that no point of Q is a point

of q. For any point w of R(vi1 vj), the angle viwvj is less than

or equal to maxang(R(vi,vj)) which is less than minang(P(vi,vj)).

So w is not a point of q(vi,v j). Since w is obviously not a point
of q(vj,vi), it is not a point of q. Consider a point of R(vj,vi),

denoted w. The angle vjwvi is not greater than maxang(R(vj,vi)),

which in turn is less than u-minang(P(vv)). Thus, w is not a

point of q(vi,vi and so is not a point of q. We have shown that

.) . . , . . .* * * 4 5 I. . . . .



every point of Q is a point of q and no point of Q is a point

of q. Therefore, Q is a digital disk. (It is not difficult to

see that q satisfies condition (i) of Theorem 1.)

Case 2 minang(P(vi,vj))+maxang(R(vj ,vi ))>_n.

Let w be a point of R(vj,v i ) such that the angle vjwv i is

equal to maxang(R(vj,vi)). Consider the disk q whose circum-

ference has points vi,w and vj. Since for any point w' of

R(vj,v i), the angle v.wv. is not greater than maxang(R(vj,vi)),

w' is either a point on Dq(vj,v i) or a point of q. Let w' be

a point of R(vi,v.); then the angle viw'v. is less than v-v wvi ,

so w' is not a point of q. Next we show that every point of Q

is a point of q. If v is a point of P(vj,v i ), then the angle

vjvvi is greater than the angle vjwvi and hence v is a point of

q(v.,vi). If v is a point of P(vi,vj), then the angle vivvj

is greater than or equal to i-vjwvi . Thus, w is a point of

q(vi,vj ). We note that q satisfies condition (ii) of

Theorem 1, and so Q is a digital disk. o

Now we are ready to present an algorithm to determine whe-

ther or not a given digital region is a digital disk.

Algorithm DIGITAL DISK(Q)

II Given a digital region Q, the algorithm deter-

mines if Q is a digital disk. If it is, the

algorithm prints True and halts, otherwise it

prints False and halts. I

Step 1. Construct the convex hull H(Q).

If H(Q) has a point of Q then print (False); stop.
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Step 2. Construct the following two sets of digital

points:

P = {Vl'V 2 '''''Vnl' where (vi'v2 '''Vn) = H(Q)" 

R ={wl,w 2,...,wm}, the set of boundary points of 0.

Step 3. For i=l to n-l do

for j=i+l to n do

3.1 evaluate minang(P(vi ,v )), minang(P(vj,v i ) ),

maxang(R(vi,v j)) and maxang(R(vj,v i)).

3.2 if maxang(R(v i ovj ))+maxang(R(vj ,v i ) ) >_,

then print (False); stop.

3.3 if minang(P(virv j ) ))+minang(P(vj , i )

maxang(R(vi,v ))+maxang(R(vj,vi))<,, and

minang(P(vi,v ))>maxang(R(v i ,v )) and

minang(P(v. ,v i ) )>maxang(R(vj ,v) )

then print (True); stop.

Step 4. Print (False); stop.

Suppose that the digital region Q resides in a set of NxN

digital points. We assume that the region is represented by

its run length code [7].

Theorem 5. Algorithm DIGITALDISK determines whether or not a

3
given digital region is a digital disk requiring O(N3) time and

O(N) work space.

- . - . **!* * * ~ - - - - - . - - - - - -
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Proof: For a digital disk Q, the condition for q in Theorem 1

implies and is implied by the condition for q in Lemma 4. Thus,

the correctness of algorithm DIGITALDISK is immediate from

Theorem 1, Lemma 3 and Lemma 4.

The work space needed by the algorithm is for H(Q)(=P), R and

* a few temporaries. Since P has at most 2N elements and R at most

4N elements, O(N) space is all that is required.

* The steps 3.1, 3.2 and 3.3 are executed at most 4N2 times be-

cause n is at most N. The execution time of Step 3.1 is O(N) be-

cause at most 6N angles need be evaluated. Steps 3.2 and 3.3

* each take constant time. Therefore, the time complexity of the

algorithm is O(N 3 ). 3

* .L ... . *.. . . . . . . . . . . . . .



5. Conclusion

*A definition of digital disks is given which is consistent

with the definition of digital convexity and digital polygonality.

With this definition, we were able to derive a few simple geometric

properties that characterize digital disks. Moreover, an algo-

rithm to determine digital disks was developed from these charac-

terizations. The algorithm is conceptually simple and very easy
.3

to implement. Its O(N 3 ) time complexity, however, seems rather

3
excessive, and it is not likely that O(N ) is the lower bound.
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