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“ - Abstract

This investigation determines the induced currents on a finite

sized array of parallel wires when illuminated by a plane wave with

-

varying incidence angles by the method of moments. The arrays considered

'

are of various spacings, lengths, and widths, ranging from 5 to 36 wires

T ve

per wavelength, and one to two wavelengths in length. The effects of a

ground plane parallel to the array, and located one quarter wavelength
away, is also studied.

The analysis is accomplished by the method of moments using
piecewise sinusoidal expansion functions and Galerkin's method. An
algorithm is developed to accomplish the integration and matrix inversion.
It was written general enough for the user to specify: number of wires,
number of segmenés, wire length, wire diameter, wire spacing, spacing
above the ground plane, frequency, and magnitude of incident electric
field. The results illustrate the various effects that changing the wire
spacing, wire length, number of segments, and incidence angle have upon
the induced current. The results are also compared to the modified
physical optics approximation. The results of this investigation indicate

that the moment method is accurate enough to produce very reasonable

approximations of the induced current for rmost applications.
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ANALYSIS OF THE INDUCED CURRENTS ON A SECTION OF PARALLEL

WIRES IN FRONT OF A GROUND PLANE

I. Introduction

1.1 Background

Considerable work has been accomplished by many authors in the
analysis of the induced currents on wires. In many problems of this
nature, the boundary condition that the tangential electric field equal
zero along the wire surface must be satisfied. This approach will yield
a complex integral equation (Pocklington's Integral Equation). Classical
solutions to this integral equation, and therefore for the induced
currents, are tedious and solvable for only a few simple wire geometries.
Any wire geometries whose surfaces are not easily describable in a con-
ventional coordinate system are generally unsolvable by classical methods.

Because of the difficulty in obtaining completely accurate
éolutions for arbitrary wire geometries, justifiable approximations are
often made which yield good, approximate solutions. One commonly used
approximation is a physical optics technique. Fven the physical optics
technique, however, is limited to a few basic wire geometires. Most of
the previous studies are limited to four basic cases: (1) a single dipole,
(2) an array of parallel dipoles, (3) single wires of both finite and
infinite length, and (4) an array of parallel wires of infinite length.
Approximate solutions have been found for the induced currents for the
above cases when the wires are assumed to be in free space. A revicw of
the articles relevant to this thesis is given in the following section.

1
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This thesis will be an extension of case (4) above; the problem
to be considared is an array of this, infinitely conducting, parallel
wires of finite length. Approximate solutions will be found for the
induced current when the array is completely in free space and in the
proximity of a ground plane. At present, no detailed analysis of this
problem exists.,

The need to determine the induced currents on an array of parallel
wires has arisen in several situatijons, particularly when a wire array
antenna is being studied. A problem of this nature of interest to the
Air Force is a type of Cassegrainian antenna with wire reflector surfaces.

The general antenna geometry may be represented as in Figure 1.

RADIATED FIELD PATH

% WIRES

Figure 1. Side view of a Cassegraihian Antenna with wire
reflector surfaces.
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In order to determine the (far field) radiation pattern, the
induced currents on each of the wires must be found. Because of the
complicated geometry, completely accurate results are realistically
impossible to obtain. By making some justifiable approximations, the
problem can be reduced to a workable complexity, and approximate solutions
for the induced current can be obtained.

A fundamental approximation to be made concerns the geometry of
the wires and the ground plane. Working with the curved ground plane
and wire surfaces of the antenna is obviously undesirable; approximating
these surfaces as flat, rather than curved, considerably simplifies the
problem. This approximation can be justified by considering the entire
curved rear reflector to be subdivided into a large number of perfectly
flat sections. The approximation will approach the true condition as the
number of divisions increases. Therefore, the accuracy of the approximate
solution can be increased as desired by simply dividing the reflector
into a greater number of sections. If the induced current can be found
for any arbitrary flat section, then by superposition, the approximate
currents on the entire reflector will be known to any desired accuracy.

The problem, then, has been reduced to determining the induced
currents on the wires of an arbitrary, flat section. In order to remain
general, the solution must be valid for an arbitrary section which lies
on the edge of the reflector. To account for this possibility, the
currents may be forced to zero on at least one end of the array. However,

a more general problem will be considered where the current is forced to

zero at both ends of the array.
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While no exact analytical solution for wires of finite length
exists, the currents are often assumed to be represented by a modified
physical optics approximation. The usual physical optics approximation

is
J =2axH (1)

where 1 is a unit normal vector to the scattering surface

ﬁi is the incident magnetic field vector

js is the surface current density
The physical optics approximation is actually an approximate solution to
the surface current density 35 on a large, flat conducting plate. 1t
seems reasonable, then, that an array of closely spaced, parallel thin
wires can be approximated by a conducting plane, as in Figure 2. The
approximation will become increasingly better as the radius and the
spacing of the wires approach zero.

In order to account for the fact that the current may only flow

along the wire axis, the actual physical optics approximation is modified

as

33 = g-(20 x H) (2)

where € is a unit vector parallel to the wire axis as in Figure 2.

1.2 Review of Literature

As stated in the previous section, considerable work in obtaining
the induced currents on wire structures has been accomplished by various
authors. This section will briefly review those works which are most

relevant to this thesis.
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The first article to be reviewed was written by Jack H. Richmond
(Ref 1). It was one of the first articles written discussing digital
computer solutions of scattering problems. The paper introduced a new
technique for solving for the induced currents on perfectly conducting
and dielectric bodies. Before the paper was published in 1965, high
speed digital computers were relatively unavailable. The accepted tech-
nique for solving problems of this nature prior to 1965 were variational
and quasi-static methods.

Richmond states that considerable success for scatterers of
various shapes has been established; however, these techniques (varia-
tional and quasi-static methods) are limited to bodies which are small
in comparison to the wavelength, or at most are on the order of one
wavelength in maximum diameter. Larger scatterers are handled with the
aid of physical optics, geometrical optics, and the theory of diffraction.

Richmond's paper introduced a technique which generated a system
of linear equations by enforcing the boundry conditions at many points
within the scatterer or upon its surface. Then, with the aid of a digital
computer, this system of equations was solved to determine the current
distribution of the surface, or the coefficients in the mode expansion for
the scattered field. The distant radiated pattern was then found using
the approximated currents.

This technique is impractical without a computer, because a large
system of equations must be solved to provide a reasonably accurate
solution. Richmond expects the linear equation solution to be accurate
for bodies of arbitrary material, size, and shape. His paper briefly

reviews recent progress of the technique, discusses methods for reducing
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the computational effort, and illustrates an example by considering a
plane wave to be incident upon a single straight wire or dielectric rod
of finite length.

Richmond begiunus by stating that the electric field intensity is
the sum of the incident and scattered intensities. Since it is known
that the tangential electric field at the wire surface must be zero
(the wire was assumed to be infinitely conducting), the scattered field
equals the negative incident field. He writes the scattered field as
integral of the current density multiplied by an expansion function over
the length of the wire. The expansion function used here is a Fourier
Series.

Richmond states that even if the true current distribution were
actually known, the integral describing the radiated electric field
could not be evaluated analytically, except in the form of an infinite
series. He claims, though, that numerical integration is both possible
and feasible with a digital computer. It should be noted that any
solution employing this technique will only be approximate, because only
a finite number of terms may be realistically considered.

Results are given for the Fourier coefficients of the current
expansion on a wire illuminated by an incident plane wave. The length
of the wire is varied from 0.1 to 0.7 wavelengths; the diameter of the
wire is 0.01 wavelengths. The results show good agreement with the
experimental results (within 10%) when the integrals are evaluated with
fifth order Newton-Cotes formulas (which are exact for fifth order

polynoinials) using 1000 terms.
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Richmond also applied this linear equation technique to a
dielectric rod of 0.0625 inches in radius, 0.5 inches in length. Results
include a graph of the rod length versus the echo area per square wave-
length. His results show that the field scattered from the rod differ
significantly from that of the physical optics approximation (by about
10%) , but agree well with experimental data (within 10%).

Therefore, it can be concluded that (1) the physical optics
approximation is probably not applicable to single dielectric rods and
wires of small radius, and (2) that this linear equation technique using
infinite series expansions will not be practical when arrays of wires
are considered, because Richmond used 1000 terms to obtain good results
for a single wire.

The second article to be reviewed was written by K. K. Mei;
numerical solutions of a dipole antenna are considered (Ref 2). Mei
begins by citing the integral equation used by Pocklington for Z directed
dipoles

2
fL 3(2)[—3— G(z,z°) + B%G(z,z")]dz" = -jweﬁi (3)
822 z

where J(z) is the current density _
-jBR

G(z,z”) is the free space Green's function, P
TR

A numerical solution of the integral equation is then obtained by approxi-

mating the integration at a finite sum of N points. A matrix equation is
therefore generated. In effect, Mei has simply "relaxed" the boundry
condition that the tangential electric field must be everywhere zero to

only be zero at N discrete points. This is known as the point matching
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. e solution of the moment method. Although the point matching technique is

only an approximation, good results were obtained.

-

In a separate article, Richmond considered scattering by an
arbitrary array of parallel wires (Ref 3). He considered three wires
not in the same plane, 30 parallel wires in a semicircle, and 15 parallel

wires in an I beam configuration. FEach wire is infinitely long. The

- !;r‘_f,':n-v—l p—

radius and spacing was 0.03 and 0.2 wavelengths, respectively.
A set of N linear equations is generated by representing the
current on each wire as the unknown quantity. This is not a point

matching technique since only one equation is generated for each wire,

ey —
AR |

along the center of each wire. Because each wire is infinitely long,
Richmond writes the current on each wire as an expansion of a Hankel
function. Thus, the electric field is defined as the product of a con-
stant, a current magnitude, and a Hankel function expansion.

This technique, then, is to represent “he current on each of the
infinitely long wires in the form of Hankel functions. A linear equation
is then written for each of the N wires. These linear equations are then
solved using matrix algebra.

Results were obtained for each of the above wire configurations.

A graph of electric field vs. incidence angle is presented which compares
Richmond's results with the physical optics approximation for conducting

strips of similar geometry. Richmond's results compare favorably. Thus,

¢ it is evident that solutions for the currents on an array of wires can be
obtained by assuming that the current is uniform along each wire. How-
ever, this necessitates the wirec to be infinitely long. Therefore, this
1

technique is not applicable to the problem of finitely sized arrays.
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In the fourth article under review, Wait investigates a similar
problem to that of Richmond, i.e., reflection from a parallel wire grid
(Ref 4). Wait outlines a solution for the problem of a plane wave which
is obliquely incident upon an infinitely long parallel wire array. He
assumes that the wires are small compared with the separation and the
wavelength.

The plane wave has an electric field which can be given by

E(x,y,z) = Aexp{jS(xcoswocose + ysinwlcose - zsinB)} 4)

as shown in Figure 3.

¢

Figure 3. Wait's planar wire grid with incident plane wave.

10
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With this assumption, the radius of the wires must be small com-
pared to the wavelength, since axial symmetry is assumed. Because the
wires are infinitely long, the solution can be found by using Hankel
functions, in a similar manner to Richmond. Although Wait gives no con-
crete examples or experimental data, his theory agrees with results
obtained by Richmond.

Scattering by an array of infinitely long parallel wires is also
the subject of the fifth paper reviewed. Michel, Pauchard, and Vidal
describe a mathematical solution to the scattering problem by an infi-
nitely long array (Ref 5). They claim that their technique applies to
conductors which are (1) continuous, (2) loaded with localized impedances,
or (3) cut in equal length segments and equally spaced in a colinear
allignment of dipoles. The continuous case is most similar to this thesis.

They assume the wires to be parallel and infinitely long.
Equations are generated using Hankel functions which are very similar to
those found by Richmond and Wait. The current on each of the conductors
'is represented by the product of constants, a current magnitude, and a
Hankel function expansion. Their paper, however, is more general than
Wait's or Richmond's, since theory accounting for the possibility that
localized impedances may lie on the conductors is included.

As an example, they give a double planar array of conductors
which is alternately continuous with no impedances, and also continuous
with impedances. These results are compared to the experimental radia-
tion pattern of a double planar array illuminated by a uniform, equi-
phase plane wave. Their theoretical results agree quite well with

experimental data.

11
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Thus, to this point, the only geometries of wires which have been
analyzed in detail are (1) single wires of infinite length, (2) dipoles,
or (3) wire arrays of infinite iength. No author has considered the
problem of a finite sized array of closely spaced, parallel wires.
Richmond, however, in a subsequent article, did consider a wire grid
model, where the wires are finite length (Ref 6).

Richmond shows that a point matching solution can be developed
for scattering by conductors of arbitrary shape. In his paper, he describes
a practical technique for calculating scattered fields of wire loops, con-
ducting plates, and bodies of arbitrary shape. He models a conducting

plate with intersecting wire arrays as shuwn in Figure 4.

N WIRES -

N WIRES

[ 4
® @ oo

Y

()

t-l

Figure 4. Richmond's wire grid model.
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Richmond's wire grid model is not like the problem under con-
sideration, since it contains two intersecting wire arrays. His case
does assume, however, that the wires are of finite length. The major
distinction is that the current is modeled to flow along either wire axis
or any combination thereof. This thesis is not considering a finite con-
ducting plate but rather a finite array of wires, where the current is
allowed to flow only along the wire axis.

Richmond solves for the induced currents on His wire grid model
by a point matching technique. Each of the finite length wires in the
wire grid model is divided into an equal number of segments of lengths.
Then, the tangential electric field is forced to zero only at a single
point at the midpoint of each segment. Therefore, a system of linear
equations is generated which can be solved by the aid of a digital com-
puter.

In a later paper, which is on the same topic, Richmond gives a
computer program for solving thin wire scatterers using sinusoidal bases
and Galerkin method (Ref 7). As examples to illustrate the validity of
this point matching technique, Richmond gives results comparing experimental
data with point matching solutions for circular wire loops, square wire
loops, sqLare wire grid models, conducting hemispheres, and conducting
spheres. Each shows good agreement (5 to 10% difference) with experi-
mental results.

Tne work which presented much of the basic moment method theory
used in this thesis also rerits a brief review. Stutzman and Thiele pre-
sented a good, fundamental explanation of the moment mecthod in their text,

Antenna Theory and Design (Ref 8:306-332). Although they omit much

13
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detail, a derivation of Pocklington's Integral Equation for a single wire
case using the Lorentz gauge condition and free space scalar Green's
function is presented. They include a section explaining how Pocklington's
Integral Equation resembles Kirchoff's Network Equations when expansion
functions are used. Two examples with results are included: they are
(1) point matching on a short dipole, and (2) a pulse-pulse Galerkin
solution for a short dipole. Although nc examples are included for the
piecewise sinusoidal expansions, a brief description of their efficiency
is given. 1Included in the Appendix is a program for calculating the
currents on a single array of parallel dipoles. Because their matrix is
block Toeplitz, it cannot be applied to this thesis, i.e., an array over
a ground plane, since this case does not produce a block Toeplitz matrix.

The final article reviewed was recently written (July '82) by
Kastner and Mittra (Ref 9:673-679). The paper is an analysis of a
corrugated surface twist reflector by a spectral iteration technique. It
is included in this review to illustrate that alternative techniques for
analyzing twist reflectors do exist. Although their corrugated surface
twist polarizer is not exactly the same as the Cassegrainian Antenna
reflector (Figure 1) of this study, both antennas are functionally similar,
i.e., they are designed to rotate the incident wave 90°. Instead of using
a wire array over a ground plane, their corrugated surface twist reflector
uses a set of thin metallic strips on top of a dielectric substrate which
is A/4 thick and is backed by a ground plane, thus forming a series of
troughs which are A/4 deep.

They claim their spectral iteration approach is more efficient

than the conventional moment method or mode-matching techniques, since
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the spectral iteration approach requires no matrix inversion. Without
including all the details, the spectral iteration approach for this
problem is based on the fact that Green's function for both the regions
interior and exterior to the trough is expressible in terms of a Fourier
type series. Because of this, the authors indicate that in each of these
regions the integral operator that relates the E and H fields is exactly
invertible.

There are two different iteration sequences, depending upon
whether the incident wave is TE or TM. The general sequence, however, is
to (1) evaluate the outer region operator via two-step fast Fourier
transform (FFT), (2) obtain H or E, (3) evaluate the inner region oper-
ator and estimate E of H, and (4) repeate as desired for accuracy. The
reflection coefficient is computed at each step of the iteration, and
convergence is attained with three or four iterations.

The authors claim that the use of the FFT procedure, combined with
the small number of iterations needed to attain convergence, result in
a considerable amount of saved computation time as compared to the moment
method and mode-matching techniques which require a large matrix inversion.
Results are included for a sample twist reflector, and the authors cite
the results to be "very good".

Thus, the existing situation is that a general technique (the
moment method) exists for approximating the induced currents on finite
sized arrays. Richmond has demonstrated that the moment method produces
accurate results for his finite sized wire grid model and other geometries.
The problem of determining the induced currents on an array of finite

sized wires, though, has not been solved to date. The most similar
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geometries to the problem of this thesis which have previously been
solved are (l) an array of parallel wires of infinite length, and
(2) wires of finite length arranged in two intersecting, perpendicular

arrays as in Richmond's wire grid model, Figure 4.

1.3 Problem

The problem under consideration is to determine the induced
currents on an array of parallel wires of finite length, both in free
space and in front of a ground plane. This thesis will compare these

results with those of the modified physical optics approximation.

1.4 Scope/Assumptions

This thesis will determine the induced currents on an arbitrary
section (array of parallel wires in front of a ground plane). The wires
will be of finite length, and will have a small but finite diameter.
Length, diameter, and spacing will be varied in order to gain some
insight of their effect on the currents. As initial values, the diameter
will be approximately 0.1 of the wire spacing; the spacing will be 25
wires per wavelength.

To make the problem solvable under given constants, several
assumptions must be made. This thesis will assume the following:

(1) Ground plane is perfectly flat and perfectly
conducting (0 = «).

(2) Wires are perfectly conducting (0 = «).

(3) Wires are 0.25 wavelength in front of the
ground plane.

(4) The incident plane wave is at an arbitrary
angle of incident with matched polarization.

16
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(5) The wires have a small enough diameter and
are far enough apart so that there is no
variation of current around the circumference,
only along the length.

1.5 Approach

The analysis will be broken down into two cases. The first case
will be the analysis of the currents on a section of wire with no ground
plane present. The second case will be the analysis of a section of wires
with a ground plane present. Image theory will be used to model the wires
and ground plane as two rows of parallel wires separated by 0.5 wave-
lengths. 1In both cases, the polarization will be assumed to be parallel
to the wire axis (TMz mode) .

The actual analysis of the currents in each case will be accom~
plished by using the method of moments, as described by Stutzman and
Thiele. The method of moments is a technique for solving an integral
equation which can be readily implemented on a computer. This will be
done by approximating an integral equation by a set of linear algebraic
equations with the induced current being the unknown.

Each wire will be divided into N segments, with each segment
having an unknown current function. This current function can be any
type of continuous functions, i.e., pulse, triangle, etc. If pulse
functions are used, the technique is known as point matching, since only
the center point of each segment is forced to obey the equation. For
this study, sinuscidal functions will be assumed. By also assuming that
both the source segments and testing functions are sinusoidal, the pro-
cedure is referred to as Galerkin Method. The reason for using sinusoidal

bases (rather than other functions) is that the current is assumed to be

17
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sinusoidal in nature, and therefore more accurate solutions should be

obtainable with fewer of segments, thus reducing the size of the matrix

= R A

to be inverted. 1In this way, the numerical computational effort by the
computer is reduced.

Since the incident field is assumed to be known, we have a matrix

equation with one unknown of the form V = ZI , where

Va is the known Incident Field.

T Y

P
[
NI

is an impedence matrix representing the array cf wires,

% each of which is divided into N segments.

ia is the unknown current distribution.
I can then be found by using the computer to perform a matrix inversion
e of Z. Finally, these results will be compared to the modified physical

optics approximation.

T o

TV T

L 4
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I1. Development of Theory

2.1 Wire Geometry

As stated in Chapter I, this thesis will be a study of an array
of parallel wires, both in free space and in the proximity of a ground
plane. In both cases, the relative distance between any two arbitrary
segments must be known, because the integral equation is a function of
this distance. In order to determine this distance, it is necessary to
define an orientation of the array on a coordinate system. Although any
coordinate system may be used, a rectangular coordinate system is chosen

here for convenience.

2.1.1 Free Space Geometry

For this case, the array of wires is considered planar, and can
be expressed in two dimensions (temporarily ignoring the wire radius).

The array will be defined as in Figure 5, where

N = number of segments per wire
M = number of wires
WSY = spacing between adjacent wires

WL = wire length

L. = segment length
In this manner, any arbitrary segment can be specified by an array coordi-
nate (n,m). Because there are M wires, each with N segments, there will

be a total of

o]
1>

2 MN (5)

segments.,
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2.1.2 Ground Plane Case Geometry

The ground plane is assumed to be perfectly conducting. When the
array is located near the ground plane, the total electric field at a
point P will be the sum of two components: (1) the direct field, and
(2) the reflected field. Using Image Theory, the array and ground plane

can be modelled as two parallel arrays separated by twice the original

separation, as in Figure 6.

GROUND IMAGR
ARRAY  PLANE ARRAY

] ' |

|

.\H

l !

l( 0.25\ 7‘/ 0.25 ,\---»‘

Figure 6. 1Image Theory model for an array
near a ground planec.

Therefore, since the array is 0.25 wavelengths above the ground plane,
the equivalent geometry is two parallel arrays separated by 0.5 wave-
lengths. The orientation for this case will be similar to that in

Figure 5, except that the image array wlll exist in the X = -0.5)X plane.
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For this case, the segments are relabelled so that the total number of

segments

Pl
ne>

2MN (6)

for easier implementation to the computer program (see Appendix A).

2.1.3 Distance Between Two Arbitrary Segments

The purpose of this section is to define the geometry for calcu-
lating the distance between two segments. For purpose of identification,
one segment is labelled "observation' segment (obs), with its location

with reference to the origin given by

T bs = XXt Yy + 22 (N

Similarly, the other segment is labelled "source'", with its location with

reference to the origin given by

r = xR +v5 +2z°2 8
source yy z (8

For notational purposes, primed variables will refer to source segments,
and unprimed variables will refer to observation segments.
The distance between obs and source segments, then, is the magni-

tude of the difference between these two vectors, hence

=
>

|Esource - ;obsl = /(x"-x)? + (y-9) 7 + (27-2)° (9)

as in Figure 7.
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Figure 7. Representation of separation between segments.

2.2 Fields At An Arbitrary Wire Segment

This section develops the theory for the electric field at an
arbitrary observation segment caused by a current on an arbitrary source

segment. Beginning with the time-harmonic form of Maxweel's Equationé

VX E = -juwu (10)

VXH=jwueE +3J (11)

and using the definition for the magnetic vector potential A,

H=VXA (12)

Eq (11) can be written as:

VXH=VXVXA=jwe’E+7J (13)




" fvv—rE
e

-’

W S —_p

Yy

Using the vector identity
VXVXAL v - Vi
Eq (13) is also equal to
V(V-A) - VA 8 jue (-jwuh - Vd) + J
because the scalar potential ® is defined from:
Eb -jwA - vo
Rewriting Eq (15) as

V2A + w?ue”A - V(jwe™d + V+A) = -J

(14)

(15)

(16)

(17)

and employing the Lorentz condition (Ref 8:10) to specify the divergence

of the vector potential
VeA = —jwe”d
then Eq (17) reduces to:

V2R + w?ue’d = -3

which is known as the '"vector wave equation".

A solution to this vector wave equation is (Ref 8:13)

A= I/ 32-_3.1(_5 -
source 4TR
volume

dv

24
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(19)

(20)




or in terms of the scalar Green's function

[rf

source
volume

JY(R)dv”~ (21)
e—ij

where Y(R) = TR Creen's function.

From the definition of the scalar potential, Eq (16), E can be expressed

in terms of A. This can be done by taking the divergence of Eq (18}

V(V*A) = -jwe’ Vo (22)

and solving for V®, yielding

N | oy
Ve = JTwe” V(V-4) (23)

Substituting Eq (23) into Eq (16) leaves

1
we”

<]
1]

-ijOK + 3 V(7+4)

1
jwe

]

(Aw?ue” + V23) (24)

or, because the propagation constant B2 = w?pe” , then

= _ 1 9= 2=
E—JTE)?(BA-%-VA) (25)

By finally inserting the Green's function wave equation solution Eq (20)

into Eq (25), the desired result is obtained:

= 1 Irs ) ) -
E= jwe” source [V2U(R) + B%Y(R)]Tav (26)
volume
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Some clarification is needed, however, on what is meant by
“"source volume". If a typical source segment is defined in cylindrical

coordinates as in Figure 8,

Figure 8. A typical segment in free space.

then:

E=,-l—,

3 C7PP(RY + B2W(RY]Tpdp de dz” (27)

0
oy
)

It will be assumed here that the conductivity of alr approximately equals
the conductivity of free space, so that €” = € . Because it was assumed
that the conductivity of the wire was infinite (0 = «), all of the current
density 1s assumed to exist only upon the wire surface (at p = a), not on

the interior rcgion. Hence,

L2n
E=~2—7 7 [VU(R) + B2Y(R)]Tdd"dz" (28)
jw€° o 0

26




Since it was stipulated that the wire must be very small in
diameter, it can be assumed that the current only flows along the wire
axis, not transverse to it. Therefore, this assumption implies that only
a Z electric field will exist; the z component of the electric field

expressed in Eq (28) is then:

= —Ji—-?%F Egi-w(R) + BZY(R)1Jd¢ dz”" (29)
z jweo oo az2 v ’

Also because the wires are of small diameter, it can be assumed that the
current density is equally distributed on the circumference of the wire

surface in an infinitely thin shell (only at p = a), so
I(z") = J(z7)2ma (30}

Then, substituting Eq (30) into Eq (29) and integrating yields the final
desired result:

L

1 52 -
E, = Fuc, g [5;3—w<R) + B2Y(R) ]1(z")dz (31)

Before continuing, it should be noted that the assumption of the
current existing only upon the wire surface will necessitate a modifica-
tion to Eq (9). The observation points of each segment are along the
wire axis; with the above assumption, the source points are on the wire
surface. This difference, the wire radius a, must be taken into consid-
eration. If the radius were not included, it would be possible for R to
equal zero when the source and observation segments were the same. If R
did equal zero, Green's function would become infinite, which would

require consideration of the shape of the principle volume and the
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principle value of the integral. Fortunately, this is not necessary in

this case. Eq (9) should therefore be modified to include the radius as:

R=va? + (x-x)2 + (y'~y)2 + (27-2)? (32)

2.3 Method of Moments

The method of woments is a technique for numerically approxi-
mating a solution t. an integral equation of the first kind, like Eq (31).
Schelkunoff demonstrated that this ‘echnique is analogous to solving

Kirchoff's network equation (Ref 8):

Q
ZZ JI .=V (33)
q’=1 qq9 q q
where
Q = total number of segments
th
q=49q source segment
- th .
q =q observation segment

By defining a function K(R) as

I S 2
K(R) = 55 bz v(®) + 870 ()] (34

then Eq (31) can be expressed as:

K(R)I(z")dz" (35)

=
i
O -

Furthermore, the current on a wire can be approximated by a series of

orthogonal expansion functions Fn such that

™Mz

T) % 5 I F () (36)

n=1
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where

in is the nth complex expansion coefficient
Fn is the nth expansion function (yet to be described)
n is the number of segments per wire

Then, using Eq (36) in Eq (35) yields

N L
E, = r f In Fn(z’) K(R) dz~ (37)
n=1 o

Since In is not a function of source segment length z”, it can
be removed from the integrand:

N
E = I

L
, 'in / Fn(z‘) K(R) dz (38)
n [o]

1

Eq (38) is now in the form of Kirchoff's voltage equation if:

Vq = EZ (39a)
Iq,:In (39b)
L
Z .=/ TF (z7) R(R) dz~ 39¢
qq” = L Fy(2) KO (39¢)
For notational simplification,
L
qu, = g Fn(z') K(R) dz” = f(z,27) 40)

For a single wirec with N segments, there will be N independent

equations. Tor an array of wires, however, with Q total scgments, there

29
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will be a system of Q equations

Ez(zl) = Ilf(zl’zl) + sz(zl’ZZ) T IQf(Zl’zQ)

Ez(zz) ® Ilf(ZZ’zi) + sz(zz,zg) + ... + IQf(zz,zé)
Ez(zQ) ~ Ilf(zQ,zI) + sz(zQ,zé) S IQf(zQ,zé) %))

which can be more conveniently expressed in matrix notation as:

[vq] = [zqq,] [Iq,] : (42)

The Iq's can then be found by simply premultiplying Eq (42) by [qu,]_l,

obtaining:
= —1
[r,-1= 1Tz, -1 [v] (43)

The previous few paragraphs are an explanation of the general
form of the method of moments (Ref 8:310-312). Specific forms of the
method of moments are obtained by choosing different expansion functions
F_ in Eq (36).

Although any set of orthogonal functions may be used for ékpan—
sion functions, the simplest and most intuitively obvious choice may be a

pulse function:

1 for z© in L
Fn(z') =
0 else (44)

where L is a segment of the wire length WL/N.
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This choice of expansion functions is commonly used with the "point

=
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matching solution'". It is so labelled because the boundry condition
(tangential electric field equals zero) is only enforced at N discrete

points. A physical interpretation of this is shown in Figure 9 (Ref 8:311).

41n LCTUAL CLRRENT.

NT

Figure 9. Staircase approximation to an actual
current distribution.

Exactly accurate solutions are obtained using this method if N

equals infinity. In practice, however, good approximations are obtained
by making N sufficiently large. N cannot be made arbitrarily large,
.. however, due to difficulties encountered with the large computational
2 effort.
E
| Stutzman and Thiele state that approximately fifty segments per
o : .
3 wavelength are needed to obtain reasonable results (Ref 8:324). For a !
b
single wire as they studied, the point matching approach is adequate.
i However, when a large array is encountered (as in this thesis of 25 wires
;.
: .
' 31
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per wavelength), it becomes evident that the point matching approach

will become computationally unfeasible. For example, i1f this thesis were
to attempt a point matching approach, the size of the array to be inverted
would be (50 segments times 25 wires implies) a 1250 by 1250 array; this
is clearly an unreasonable task for all but the most advanced computer
systems. Obviously, a different expansion function must be chosen. -

This thesis will use piecewise sinusoidal expansion functions

(PWSEF) defined as

sinB(z-z__;)

N>

£ z<z (45a)
sinB(zn~zn_l) n

F (z) 4
n sinB(zn—z)

sinB(zn+1-zn)

N>

z $z< z, (45b)

+1

which are pilctured in Figure 10 (Ref 8:324).

tnlZ')

_Eq45a

-~

$

Zn'—l Zyy Zn’+ | Z

Figure 10. Pilecewise sinusoidal expansion function.
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Each ségment will overlap with adjacent segments to approximate the

current on the entire wire, as shown in Figure 11,

1(2)

el

APPRUX, CURRENT

LA L ]z

Figure.ll. Five segment piecewise sinusoidal
current approximation.
PWSEF are chosen because the actual current is anticipated to be
sinusoidal, and therefore the closest approximation should be PWSEF,
The greatest advantage in using PWSEF instead of pulse functions is the
inherent reduction in segments. To obtain the same degree of accuracy,
Stutzman and Thiele find that "almost ten times fewer segments are
required for the PWSEF as for the pulse expansion function" (Ref 8:325).
Therefore, using PWSEF, only about five segments per wavelength
are neceded. This reduction, then, makes the study of a 25 wire per wave-
length array feasible using the moment method with PWSEF. Now, only a
125 by 125 array (250 by 250 for ground plane case because of image array)

need be inverted. This 1s possible for many computer systems.
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In order to obtain the best possible approximation, the boundary
condition (tangential electric field equal zero) must be enforced as
"closely" as possible. The point matching technique is not an exception-
ally good approximation because the boundary condition is only enforced
at one point in each segment. Instead, a better technique is to attempt
to enforce the boundary condition in an "average' sense (as many points
as possible) over the segment. This is what is done in an approach known
as the method of weighted residuals (Ref 10).

A residual field Eiiz can be defined as

res _ s i
Etan Etan + Etan (46)

res
0.

Clearly, the exact solution occurs when Etan = In any approximate

, re . .
solution, Etai # 0 ; however, the best approximation would be to make
res

Etan approach zero in some "average" sense. This can be done by defining

a Weighting Function wn(z) such that:

res
tan(z)dz = ( n=1,2,...N 47)

L
W

J n(z)E

o
The weighting function wn(z) is similar to the expansion function
Fn(z) ; it can be any set of orthogonal functions. If the weighting and
expansion functions are chosen to be the same (in this case, piece-wise
sinusoidal), then the technique is known as the Galerkin method. As
previously stated, this thesis is using the Galerkin method; therefore,

wn(z) = Fn(z) . Then using Eq (46), Eq (47) is equivalent to:

L L
.S i Yy =
g wn(z)htan(z)dz + £ wn(z)Etan(z)dz =0 (48)
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Sivce a current on a wire will produce a scattered field ES, and
because there are only 2 directed wires, Eq (31) can be interpreted to
represent the scattered field which was caused by the induced current.
Eq (31) can then be substituted into Eq (48) for E:an , yielding:

1
[jwe

L
/ Dsor v(®) + 82(®) 11(2")dz " Jaz
o0

{ W (2)

= -/ Wn(z)E:andz (49)
L N

The right side of Eq (49) is recognized to be the "average"

induced voltage, Vq ; it will be discussed in the following section. The

left side is equal to the induced current multiplied by the cross imped-

vy
-

ance qu, between the source and observation segments. It can be

simplified by realiziag that:

o¢

9 3
ZU®) = - 52 bR (50a)
F T R = 52 YR (50)

Using Egs (50a) and (50b) in Eq (31) and integrating twice by

f
;. parts yields (Ref 8§:329):
E = a%“ (v (r) g%? 1(z7) + I(z7) é% ¢(R) ]

. o z

]
; 1 b

- + o/ 5 1@ + 821D w2’ (51)
; JOOL

¢
! _
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Since the current is being approximated by PWSEF, for a single

~th

q source segment, Eq (51) becomes:

Z

+

An interesting simplification occurs because PWSEF were chosen.

. 5 . .. 9
E = Eé; [ (r) 32T (2D + Fq,(z ) 55 ¥(R)]

Eq (44) and twice differentiating, it is discovered that:

9z~”?

1 —..3_2__ d 2 - -
jwe, { 5277 Fq- (27 + B°F -2 Ju(R)dz (52)
Using
(53)

- = - 2 . »
Fq»(z ) B Fq (z9)

This indicates that the bracketed expression in the integrand of Eq (52)

is zero (Ref 9:370).

z

Eq (52) then reduces to:

. 3 . . 9

Evaluating Eq (54) over a typical source segment (pictured in

Figure 10), and denoting the distance from the obs point to

R ., and R .
q

and Zq,+1 as Rq'—l ’
poo i
z we
o
o
- w(Rq’_l) Bz’
9
FYR- D) B2
! hd _‘a ™
- q)(i\q;) az- N

q -+l

3
[w(Rq) Y Fq;(zq;)

F ~ (» e
q (7q _1)
%

F .(z .
q ( q +

q q

(54)
source
segment
Z -2 .,
q -1 q

, respectively, Eq (54) cquals:

P
+ Fq,(zqa) g;'w(Rq)

"F)Z;)
q ¢ q -1

+ Fq,(zq,+1)

)

9z

VR o))

)

t
l‘)(Rq “+1
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The first and seventh bracketed terms cancel, and Fq,(zq,_l) =

Fq'(zq'+1) = 0 , leaving

o BcosB(zq, ~ zq'—l) BcosB(zq,+1 - zq,)

- -
z  we, {w(Rq)[ sinB(zg . + 2 - ) sinf(zg -y - 24)

B8
- Y(R . ) —=
-1’ sinB(z . - .
q B(&q Zq _.1)
B
- YR . ) — = }
q +1 51nt3(zq,+1 Zq')
which, using the trigonometric identity
sin (o + B) = cosasinB - cosBsina
can finally be expressed as:
s . e—jBRq'—l
EZ = _JBO{R - SinB(z . = Z .
q -1 q q°-1)
"jBR - s _
) e q 31n8(zq»+1 zq'_l)
Rq,51n8(zq, - zq,_l)31n8(zq,+1 - zq,)
+ e-JBRq'+l )
Rq;+lsln6(2qf+1 - Zq)
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Then, the expression for qu, can be given using Eq (58):

Z .= [ 1E%dz
a9 obs a2z
seq

. z
2 sinB(z - z__,) q+l sinB(z‘gj_1 - z)

=[s 4 + f ]
sinB(z_ - z__.) sinB(z -2z)
zq__1 q q-1 q q+l q
. Ti30¢ e—jBRq,_1 _, cosB(zqf+1 - zq,) e-jBRq'
J R . SinB(Z s = Z a ) SinB(Z - - 2z 1) R .
q -1 q q -1 q +1 q q
-jBR )
T Q.+l sdz (59)
q,+1s1n zq,+1 zq

Stutzman and Thiele present a similar but less detailed derivation
for their simpler case of a single wire. Eq (59) agrees with their

result if appropriately simplified (Ref 8:331).

2.4 TInduced Voltage by Incident Plane Wave

This section describes the qth voltage matrix element, Vq . From

Eq (49), the "average" weighted voltage is:

_ i
vq = { wq<z) E. ., 42 (60)

i
Etan must be determined for a plane wave of arbitrary incidence angle
with matched polarization, as stated in the initial assumptions. An

arbitrary plane wave can be specified by the '"plane wave solution" to the

vector wave equation as:

5 - Eo e+jBn'r (61)
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o where

m Eo is a constant vector, to be specified
}ff B 1is the propagation constant

b . -

. n is the propagation vector

r is the radius vector from the origin

Since matched polarization is assumed, then E0 Eoﬁ , because

e A

the wires are % directed. By expressing the radius vector T in terms of

rectangular coordinates, then

= an e+jB((sin6cos¢)x + (sinfsing)y + (cosb)z) 62)

so that:
zq sinB(z - =z ) zq+1 sinB(z - 2z)
v o=l 5 — o', oy
q zq_l 31nB(zq - zq-l) zq 81n8(zq+l - zq)
. Eo% e+j8((sin6cos¢)x + (sinBsind)y + (cosB)z))dz 63)

Now, both qu, and Vq have been expressed in a form suitable for
computer implementation (see Appendix A). Results for different wire
spacings, lengths, and incidence angles are given in the following

chapter.
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III. Results

This chapter presents the results of the computer program and
compares them with the physical optics approximation. The parameters
investigated include: (1) wire spacings, (2) number of segments per
wire, (3) wire lengths, and (4) varying incidence angles. Unless other-
wise indicated, all results were obtained with the same set of input
values. These are:

Number of wires = as indicated
Segments per wire = as indicated
Wire length = 1.0 meters
Wire radius = 0.005 meters
X wire spacing = 0.50 meters

Y wire spacing = determined by widtﬁ X;riiray

Frequency = 300.0MHz

1

Propagation constant B = 2m/A

|E | = 1.0 volts
o

it

Width of array 1.0 A = 1.0 meters

The current is in units of AMPS, voltage in VOLTS, and length in METERS.
For each of the different cases studied, both current density

magnitude and phase is presented in either a "horizontal cut' or a

“"vertical cut"”. These terms need to be properly defined for accurate

interpretation. A horizontal cut is the current on the center segment of

each wire across the width of the array. For example, with 5 segments

per wire, a horizontal cut presents the 3rd, 8th, 13th,...(Q-2)th seg-

ments. Conversely, a vertical cut presents the current of the center of
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the wire array for the length of the wire. For example, with N=5 and M=7,
a vertical cut presents the current on the center wire, segments 16, 17,

18, 19, and 20.

3.1 Wire Spacings

A fundamental question to be considered is for what range of
wire spacings is this moment method technique applicable. It is known
that the technique can be used successfully for a single wire case, as
demonstrated by Stutzman and Thiele (Ref 8). However, an objective of
this thesis was to determine if a parallel wire array could sufficiently
model a flat, conducting plane. This involves using “enough" wires to
achieve a 'reasonable" approximation.

As was stated in Chapter I, it is expected that the moment method
results should be;ome more accurate as the number of wires/wavelength is
increased. Results in Figures 12 and 13 verify this expectation to a
certain extent. The purpose of establishing these results is to deter-
mine if a trend exisgs as the number of wires is increased.

For a normally incident plane wave upon a flat, conducting sheet,

the physical optics approximation would yield a current density of.

El _ 2e+jkx
. ﬁi _ Ae+jkx
°t 376.7
ST = 8e2fixdl = —2 2 5.31mA/m
s 376.7

This does not totally agree, however, with what the actual distribution
is expected to be. One would expect the actual current to be basically
uniforim (flat) across the center of the shect, with perhars a perturbation
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near the edge caused by the abrupt boundary change. The current along
each wire (vertical cut) should be sinusoidal, with the endpoints of
each wire equal to zero.

It is evident from Figures 12 and 13 that the moment method seems
to be more accurate than the physical optics approximation. The hori-
zontal cut indicates a basically flat distribution across the center with
a perturbation at the edge, as is physically expected. The physical
optics approximation is flat and of the correct order of magnitude, but
does not represent any effects caused by the edges. The vertical cut
is symmetric and sinusoidal, as expected. The current is zero at the
ends of the wire, but Figure 14 does not apparently indicate this
because the current at the center of each sinusoidal piece was plotted,
not the current at the exact endpoint of the wire. Note that the physical
optics approximation does not show the currents approaching zero at the
ends of the wire.

The current distributions alsc tend to "flatten out'" in the
center region as the number of wires is increased, as expected. A word
of caution is in order, however. Although this flattening trend is
present through 36 wires/wavelength (which should be enough for most
applications), it may not continue to exist for arbitrarily large numbers
of wires/wavelength., Tt was initiallyv assumed that the wire diameter
was "small enough'" so that there was no circumferential current variation
on the wires. If the spacing/diameter ratio becomes too small, this
assumption may become invalid. Although the lower limit of this ratio
has not been identified by this thesis, good results are achievable as

low as (1/36)/0.005 = 5.55:1. This point may be an aspect of future study.
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3.2 Number of Segments per Wire

As presented in the theory, more accurate results should be
obtained by using a greater number of segments/wire. Theoretically,
there is no upper limit; there is an uppér limit imposed, however, by
k! the increased computational effort incurred and the available computer

resources. The question this section investigates is whether increasing

the number of segments (beyond five) is worth the additional effort.
Figures 14 and 15 display the induced current (horizontal and
vertical cuts, respectively) for a 122 array with five wires. By

increasing the number of segments, one would expect a more accurate dis~

Py

tribution of the current along the length of the wire, with little or no
change across the array (in the horizontal cut). Note that the physical
optics approximation is unchanged for each case, since changing the number
of segments has no meaning with this approximation.

Results show good agreement with actual expected behavior. The
horizontal current distribution changes little in both general shape

and magnitude for all five cases. This is reasonable, since one would

not expect the current across the wires to be appreciably affected by

changing the sampling increment along the length of the wire. 7The verti-~

*. cal current also changes as expected. The midpoint current remains
relatively constant while the endpoints decrease nearly in order of
magnitude.

(] ' This sixfold increase in the number of segments shows no signifi-
cant change in the horizontal current or the center region of the vertical
current, but does indicate the expected decrease near the endpoints of the

[ ] wire. Since it is known that the current must be zero at the ends of each
45
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wire, the region of interest is the relatively uniform center region.
Because increasing the number of segments/wavelength beyond five con-
tributes little additional information, it can be concluded that five

segments/wavelength is sufficient to obtain reasonably accurate results.

3.3 Wire Length

Figures 16 and 17 present the horizontal and vertical current

distributions on a 1A wide array for four values of wire lengths. The

-

purpose of this section is to determine if the moment method will reflect

the expected changes along the wire length.

Cn il s g

Results for the horizontal cut are reasonable. All four curves
are symmetrical with respect to the center wire, and tend to flatten out
as the wire length is increased. This is reasonable, since as the array

size is increased, one would expect the edges to have less of a distorting

Q¢

effect upon the center region, thus allowing the current to become more

|

uniform. The decreasing trend is explained by considering the vertical

cut, Figure 17.

Currents on the vertical cut also change appropriately as the
wire length is increased. Figure 17 indicates a trend to form two main

lobes (d) as the length is increased to 2.0\, which scems quite acceptsble.

{
E. As these two lobes are formed, the center scgment (#10) value must be
E decreased accordingly; this in turn causes the decrease in the horizontal
$; cut, Figure 16. Therefore, the primary effect of increasing the wire
] length is to cause the appropriate number of lobes to form along the
length of the wire, and to cause the horizontal current to shift accord-
o ingly. Note that the physical optics approximation reflects no change
- in either eut as the wire Teneth is inereased.
e 48
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3.4 Varying Incidence Angle Effects

The horizontal and vertical current distributions are determined
for different sized arrays when the plane wave incidence angles (8, ¢)
are varied along their major axis, i.e., when 6 is varied and ¢=0, and
when ¢ is varied and when 6=m/2. Phase plots of each are also included
in this section, since there will be phase variations in both cuts.

The first array considered is 1A%, using 26 wires of five segmenfs
each. Results for this example are presented in Figures 18 through 23.
For 6 variations, Figures 18 and 20 present the horizontal and vertical
currents, respectively. Physically, one would expect little change in
shape for the horizontal cut as © is varied, since all segments will still
lie on the same phase front for all 0's. This is exactly what is shown
by Figure 18. For this and all other examples, the physical optics

approximation of the current and phase is calculated by:

with Ei - (Sine)EoiejB((sinecos¢)x + (sinbsind)y + (cosf)z) (64)
_ 2Eo(sin8)(cos¢)

then IJSI = YT (65)

and ¥ JS = %g-(xsinecos¢ + ysinfsing + zcosH) (66)

For each 0, the physical optics approximation is of correct order of
magnitude, but does not represent the distortion of the current near the
edges.

The currents for the ¢ variations, Figures 19 and 21, are also
in agreement with expected results. The horizontal current is symmetric
at normal incidence, and varies as ¢ is varied. Note that the physical

optics approximation shows only a shift in magnitude, which dees not
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seem to agree with actual physical behavior. The vertical cut of the
current, Figure 21, however, is symmetric for each case. This is
entirely reasonable, since a change in the ¢ component of the incident
plane wave would not be expected to affect the shape of the current in
the 0 direction. There is only a shift in magnitude, which is probably
caused by the change in the horizontal current.

The phase relationships for both cuts are shown in Figure 23 and
24. As expected, the phase in the horizontal cut is dependent upon ¢,
but independent of 6. The physical optics approximation predicts a
linear phase change for each ¢ as shown, which is calculated from Eq (64).
The moment method technique also indicates a similar linear change, with
a slight distortion near the edges as shown. The vertical cut of the
phase, Figure 23, is also reasonable. As expected, there is no change
in phase for ¢ variations, only O variations. The physical optics
approximation predicts a linear change, as shown. The moment method
results show a similar, but not exactly linear variation, which may be
caused by reflections from the ends of the wire, which will tend to
induce a "standing wave' on the wire as 6 is decreased.

A second case was also studied to investigate current behavior
on an array for various incidence angles. 1Its dimensions were chosen as
1A wide by 2X long (13 wires of 10 segments each) to determine the
currents, especially in the vertical cut. Since the previous example has
already established that the horizontal currents are independent of 0,
and the vertical currents arc independent of ¢, these graphs are omitted.

The horizontal cut, Figure 24, indicates a definite change in

the distribution as ¢ is changed, as expected. Again note that the
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physical optics approximation reflects no change in shape, only a shift
in magnitude. Also of interest is the fact that the relative changes
in the horizontal cut for the moment method results are less than the
corresponding results for the previous example (see Figure 19). Again,
this is an indication that the center region becomes more "isolated"
from current variations as the size of the array is increased.

The vertical cut for 0 variations, Figure 25, is also reasonable.
The current for normal incidence illumination is symmétric, and has the
two-lobed structure, as expected for a 2)X long wire. As 6 is varied,
the current becomes asymmetric, and in fact resembles a standing wave
pattern. The physical optics approximation shows no change in shape for
different 0's, only a shift in magnitude.

The phase relationships for this example are shown in Figures 26
and 27. The horizontal cut of the phase agrees well with physically
expected behavior. For changes in 0, there is no change in general shape,
only a shift in magnitude, as expected. As 0 is decreased, the ratc of
phase change across the array tends to increase, indicating that the rate
of phase change is proportional to the incidence angle. The vertical cut
of the phase, Figure 27, shows similar agrecment. Changes in ¢ have
little effect on the vertical phase, except a small shift in magnitude,
as expected. As the incidence angle increasingly deviates from normal,
the rate of phase change increases proportionally. Note that the physical
optics approximations predicts an exactly lincar phase shifet, whereas the
moment method predicts the same general trend, but also includes minor

variations and distortions near the edges/ends.
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3.5 Array 0.25)\ Above a Ground Plane

The current magnitudes and phases for an 18 wire, 5 segment
array 0.25)A above a ground plane are presented in Figures 28 through 31.
Again, because of the independence of 8 and horizontal currents and ¢ and
vertical currents, these graphs are omitted.

The horizontal cut with varying ¢ is shown in Figure 28. As
expected, the normal incidence case is flat and symmetric, with increasing
changes as ¢ is increased. The interesting point to consider is how
these results differ from a same sized array not over a ground plane, as
Figure 19, The physical optics approximation for the two situations
(both over and not over a ground plane) are the same. This is because
the array is being modelled as a completely reflecting ground plane itself,
which in effect completely shields the actual ground plane behind it from
the incident wave (at least for normal incidence--this is not true for
all incidence angles, and this point will be elaborated upon subsequently).
The moment method technique shows that the current in both situations
have the same general magnitude, but that the current on the horizontal
cut of the array above a ground plane increases at a greater rate across
the array. This is reasonable, as one would expect the ground plane to
reflect the incident wave back onto the array and increase the current
density.

The vertical current cut, Figure 29, is also somewhat different
than its free space counterpart, Figure 20. Again, the physical optics
approximation is the same for both situations. The moment method
results, on the other hand, are of the same gencral order of magnitude,

but are different in shape for cach situation. MHere again, the moment
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method results appear more accurate than the physical optics approxima-
tion, since different results would be expected for different situationms.
Similar conclusii-as can be made concerning the horizontal and
vertical phase relationships for both situations. The horizontal and
vertical phases for the array over a ground plane (Figures 30 and 31)
are expected to differ from the array in free space results (Figures 22
and 23). Again, there is no difference between each for the physical
optics approximation. The moment method technique differ, as expected.
An important point of the geometry of the problem should be
noted. As was previously stated, the physical optics approximation
models the array as a conducting sheet, and therefore, the actual ground
plane is completely shielded from the incident wave at normal incidence.
At any oblique angle, however, part of the incident wave will pass by
the edge of the array, and still illuminate the ground plane; this in
turn may then be reflected back onto a different section of the array
(see Figure 32). This effect is not accounted for in the results of the
physical optics approximation as presenged in the previous example. To
properly account for this effect would drastically complicate the
presently simple approximation, and would thereforc defeat the whole
purpose of using it. The moment method, on the other hand, has already
taken this effect into account by virtue of Image Theory, with no addi-

tional modification or complexity.
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IV. Conclusions and Recommendations

4.1 Conclusions

4

[

1

(

p

] The objective of this thesis was to determine the induced currents
&

i!! on an array of wires both in free space and in front of a ground plane

. using the method of moments, and then to compare the results to those

- obtained by the modified physical optics approximation. The induced cur-

rents for the momcu: method were determined by developing a general algo-

rithm (Appendix A). Results were obtained for a variety of different cases.

In general, moment method results agree well with expected physi-
cal behavior, but do not agree closely with the physical optics approxi-
mation for most cases. The moment method and physical optics approxima-
tions tend to agree in general magnitudes, but sometimes differ signifi-
cantly with respect to the general shape of the current distribution. For
example, consider an array illuminated by a normally incident plane wave.
The physical optics approximation would indicate the current to be exactly
uniform across the entire array; the moment method shows relative unifor-
mity in the center region, with a perturbation near thec edges. For this
case, the moment method appears to be more accurate, since one would

physircally expect a deviation near the edge caused by the abrupt boundary

change.
Also, the physical optics approximation shows no change in the
4 shape of the distribution as the incidence angles are varicd; it only
reflects a change in magnitude. This docs not appear to be phvsically
realistic. It can be concluded that the physical optics approximation

q does not adequately represent "edge' cffects. The physical optics
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approximation also does not reflect the fact that the current must

equal zero at the endpoints of each wire. It does, however, produce a
reasonably close approximation to the current along the center region of
the wires. From this, it can be generally concluded that the physical
optics approximation may be useful for larger sized arrays, to obtain a
"rough'" idea of the current magnitude, but not useful to determine the
shape of the distribution with any great degree of accuracy. Its
greatest advantage is in its simplicity. TFor a large enough array, it
provides a good idea of the current magnitude with minimal effort.

The moment method, on the other hand, requires considerably more
effort (i.e., large matrix inversions), but appears to be far more
accurate. The accuracy can be increased by increasing the number of
wires and segments, but this cannot be done arbitrarily, since there will
be an upper bound imposed by the available computer resources. However,
reasonably accurate approximations of the currents are obtainable with
a modest number of segments, as is evidenced by this thesis. Some other
conclusions of the moment method technique are:

1. The accuracy of the solution tends to increase as the wire
spacing is decrcased, i.e., as more wires/wavelength are used. Reasonable
results are obtainable for as few as five wires/wavelength, but as many
as 30 wi 1 provide an obviously better result. The recader is cautioned
that the wire spacing/diameter ratio may not be decreased too small,
since doing so may invalidate the assumption that there is no circum-
ferential curreant variation on the wires. Although this rhesis madz no

definite determination of the lower limit of this ratio, good results
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were obtained with a ratio as small as 5.55:1. The actual lower limit
may in fact be substantially less than this value.

2. The accuracy of the solution will increase as the number of
segments/wire increases. Although there is theoretically no upper limit,

little additional accuracy is gained when the number of segments used

is increased beyond 10/wavelength. However, very reasonable results are
obtainable with as few as five segments/wavelength,

;'l 3. This moment method technique appears to adekquately represent
the various effects caused by changing the wire lengths and/or incidence
= angles of the illuminating plane wave. Results indicate that the current
;s distribution develops a second lobe as expected when the wire length is
increased to 2.0\, Also indicated was the independence of the horizontal

current to changes in 0, as well as the vertical current to changes in ¢.

C’i The moment method also indicates the distortion near the ends of the
array, the trend toward zero current at the endpoints of the wire, and
the different distributions of current for the array in free space as

opposed to the array above a ground plane. The physical optics approxi-

mation reflects none of these.

Thus, the moment method works well in approximating the currents

E. on arrays both in free space and near a ground plane. The physical

e

E optics approximation provides a very '"rcugh" idea of the current magni-
[ tude at the center of the array, but does not reflect many of the

VC important asp.cts of the shape of the distribution, especially near the
[ 3

l

edges/cndpoints of the array. The physical optics approximation may be

more useful for larger sized arravs, however, where the center region

is more independent of "edge effects’. For smaller arrays (en the order

R, T T T, TT Ty TR o e v
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of the ones in this thesis), however, the physical optics approximation

does not provide a very accurate solution.

4.2 Recommendations

Although very good results can be obtained with the values used
in this thesis, even greater accuracy may be desired. To accomplish
this, one may choose to incorporate a larger number of wires/wavelength.
As previously stated, this may invalidate the assumption that there is
no circumferential current variation on the wires. Therefore, a logical
extension of this work could be to better determine the lower limit of
the wire spacing/diameter ratio. Or, perhaps even better if possible, to
exclude this assumption entirely and rewcrk the theory to account for a
possible circumferential current variation.

Secondly, the major disadvantage of the moment method is the
large, time-consuming matrix inversion required. A paper was recently
published (July 1982) by Kastner and Mittra (Ref 9:673-679) describing
a new spectral iteration technique which analyzes a similar problem with
no large matrix inversions; instead, it employs a Fourier-series
approach. Possible future study may include a detailed comparison of the

two techniques.
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Appendix A: Computer Program

This appendix contains the computer program. Included below is
a brief description of the general development and operation of this

program.

Before beginning, it should be noted that a program (for a single
wire case) has already been written (Ref 8:568). This program, however,
is significantly different; it allows for the more general case of wires
located near a ground plane. The major difference between the two pro-
grams is that this program does not inherently assume that a (block)
Toeplitz matrix will be obtained. It does not exploit the fact that a
Toeplitz matrix is highly symmetric (and therefore more easily inverted);
in fact, it assumes the most general case that the matrix is totally
asymmetric.

The program actually solves Eq (43) using Egqs (59) and (63). In
order to accomplish the matrix inversion, it calls upon the International
Mathematics and Statistics Library (IMSL) functions DCADRE and LEQ2C.

The IMSL is a set of subroutines which should be available at most com-
puter installations. Some minor problems developed with the use of
DCADRE, however, which are worth mentioning.

DCADRE is the IMSL subroutine to evaluate a real integral, given
the integrand, the limits (finite), and the maximum allowable error,
AERR. The problem occurred in trying to use DCADRE to evaluate the
complex integral in Ej (59) and (63). The solution used was to break

the complex integral into real and imaginary parts, evaluate cach
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separately, and then recombine into complex form. Also, because of the
repetitious nature of the integrand, several common terms were extracted

and made into function subprograms, as shown below.

-30 Zq sinB(Z - qul)
INIC = == s Zf STn (B*D2) [BRCKT1]dz (A-1a)
q-1 .
Z .
~30 q+1 smB(Zq+1 - 2)
INTD = 2 57 zf TEYCPT) [BrCKT1]dz (A-1b)
q
z .
-30 fq sinB(Z - Zq—l) ]
INTE = SIn(eDD) . STaC 0D [BRCKT2]dz (A-1c¢)
q-1
Zq+1 sinB(Z -Z)
‘. _ -30 q+1 r _
. INTF = SIn(BDD) zf Sin(B*DZ)——q— [BRCKT2]Az (A-14)
i O 1
r -
L such that
[
F Total Integral = (INTC + IND) + j(INTE + INTF) (A-2)
where
b .
; sin(B*R_._.) 2cos(BxDZ)sin(B%*R _.)
e BRCKT1 = { =l - 4
1 R R .
q -1 q
sin(B*R ., .)
4 (A-3a)
R A+l
¢ q
’
¢
¢ -
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cos(S*qu_l) 2cos(B*DZ)cos(B*Rq,)

BRCKT2 = { R - o
q -1 q
cos(B%xR ., ,)
+ ———14 (A-3b)
q +1
and Rq'—l , Rq' , and Rq,+1 are evaluated by functions RBOT, RMID,

and RTOP, respectively.

OPERATION

The program was written in FORTRAN V. It requires the use of
IMSL subroutines DCADRE and LEQ2C. Because of the matrix manipulations,
it requires a larger than average amount of memory and CPU time.

Although the amount will vary depending upon the system used, the user
should request approximately 256K words memory and 9000 seconds (150 min.)
of CPU time for a 250 element array.

The user should specify N, M, WSY, etc., according to the input
format statement. The output is dependent upon the four control param-—
eters SWEEP, PV, PZ, and TYPE.

SWEEP must be an integer value @ or 1. @ indicates that only an
incident plane wave of normal incidence (THETA = m/2, PHI = @) will be
evaluated. 1 indicates that the incidence angle will be varied in 1/16
increments along the THETA and PHI axis from @ to 7©/2.

PV must be an integer value § or 1. @ indicates that the voltage
array Vq,(q) is not to be printed. 1 indicates print Vq,(q) .

PZ must be an integer value @, 1, or 2. ¢ indicates do not

print impedance array qu, . 1 indicates to print only the first row of
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qu, « 2 indicates to print entire qu, array. It is recommended that
option P or 1 be used, since 2 can produce a tremendous amount of unneces-
sary output,

TYPE must be an integer value ® or 1. P indicates that the free
space case is to be studied, i.e., no ground plane. Here, Q=MN so the
DIMENSION statement is MN in magnitude. 1 indicates the ground plane
case. Here, Q=2MN, so each array in the DIMENSION statement should be
accordingly doubled.

NOTE: WA and WK arrays in the DIMENSION statement are work areas

for the IMSL subroutines. See any IMSL Operator's Guide for further

details.
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INPUT
" DATA
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S PRINT IT |

= OUT FOR

s VERIFICATION
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S ) L DO LOOPS

» ,

- CALL SUBROUTINE | YCOORD_(SOURCE)
) SAMIR" TO “-f”'

- IETERMINE IF e YCOORD (OBS
"OBS" & “SOURCE" l

- SEGMENTS ARE ON | DELT.

2 SAME WIRE |
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E‘ - Figure A-1. <Computer program flowchart.
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Figure A-1 (Continued)
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4. IER ____VICALLS FUNCTIONS INTC, INTD, INTE, & INTF,
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4 IMAGPT | THEY IN TURN CAIL IMSL SUBROUTINE "DCADRE" !
WHICH INTEGRATES THEM BY USING THR RESFECTIVE !

- P|INTEGRANDS FUNCTIONS G, D, E, & F, THESE ARE |
.. p| NRITTEN IN TERMS OF mncnons “BROKTL" & !
p| 'BRCKT2", WHICH ARE FUNCTIONS OF THE OBS TO |
SOURCE SEGMENT DISTANCES “RBOT", "RMID", ,
»| & "RTOP". !

b} INTC ja— b{ n_cA*B_R_E—H ~—#{ FUNCTION € M- —

>[ INTD 4 —- bi DCADRE Ll——> FUNCTION D 4

e . e
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Figure A-1 (Continued)
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USING THE INTEGRANDS V1, V2, V3, & V4,

Bt

V2
S

AER > S
___RERR o SUBROUTINE "VOLT"
< IER CALLS INTVi, INTV2, INTV3, & INTVE,
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€ _VIMAG_ | "DCADRE™ IS CALLED TO INTEGRATE EACH
’—__.’___:';“_:::3 ’
L;{Imn Q- & DGADHEL‘---'-q V1
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Figure A-1 (Continued)
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Figure A-2 (Continued)
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Figure A-2 (Continued)
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Figure A-2 (Continued)
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