TECHNOLOGY
82-19

AD-A125 645 AUTOMATIC FEATURE EXTRACTION SYSTEMCU) PAR
CORP NEW HARTFORD NY J L CAMBIER DEC 82 PAR-
RADC-TR-82-288 F38602-78-C-8@850

UNCLASSIFIED

T T
I
O
I
N B
Y
O
O
O
O

F/G 20/6

NL

12 ‘

"\

) ~—~__,“- n et

. W VW
I ¥ Y

-

P N

S,

3
e
‘

* eoe

st it

SR
CEEEN

HEE] m_m_mun._m

I-O
——————
o ——
———
e ———
——a——

lo'

|

I

|-6
e
—
——
—
]

|

|

fizs flis |

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS-1963-A

.

.

PPV S I W
PP S

DTG FILE COPY

RADC-TR-82-200
Final Technical Report
December 1982

AUTOMATIC FEATURE EXTRACTION SYSTEM

PAR Technology Corporation

Dr. James L. Cambier

)

CJ .
A N QY
3 % “
APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED ("\ u@
\ B
Q K
YA
/
ROME AIR DEVELOPMENT CENTER -

Air Force Systems Command B
Griffiss Air Force Base, NY 13441 _ :

83 08 14 082

DA

Technical Mteetor ‘ ERaes
Intelligence & Mcounaiesance Division

~J0HN P. HUSS
Acting Chief, Plans Office

If your address has changed or if you wish to be removed from the RADC J
mailing list, or if the addressee is no longer employed by your organizatiomn, !
please notify RADC (IRRE) Griffiss AFB NY 13441. This will assist us in]
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices
on a specific ‘document requires that it be returned.

AL

iy

T Tl alat

P T T i R N S L e

UNCLASSTIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Dua‘Enurod)
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
T. R!PO:T NUMBER 2. GOVT ACCESSION Nf. ECIPIENT'S CATALOG NUMBER
RADC-TR-82-200 ﬂ/ﬁ‘/
S. TYPE OF REPORT & PERIOD COVERED
& TITLE (nd Suburle) Final Technical Report
AUTOMATIC FEATURE EXTRACTION SYSTEM> Z Feb 78 - 31 May 82
6. PERFORMING OG, REPORT NUMBER
PAR Report 82-19
7: AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
Dr. James L. Cambier F30602-78-C-0080
9. PERFORMING ORGANIZATION NAME AND ADORESS 10. ::gil“A OERLKEtII TTNPUR“O’JEERCST TASK
PAR Technology Corporation
63701B
Route 5, Seneca Plaza 12050302
New Hartford NY 13413
11. CONTROLLING OFFICE NAME AND ADDRESS . 12. REPONRT OATE
December 1982
Rome Air Development Center (IRRE) 3. NUMBER OF PAGES
Griffiss AFB NY 13441 162
Ta. MONITORINE AGENGCY NAME & ADDRESS(if dilferent {from Controlling Otfice) 18. SECURITY CL ASS. (of this report)
[UNCLASSIFIED
Same
TEFEEEEﬁEﬁﬁﬁﬁmiaﬁﬁiﬁﬁm?_'
IN/A
18. DISTRIBUTION STATEMENT (of this Report)
Approved for public release; distribution unlimited.
17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if difterent from Report)
Same
8. SUPPLEMENTARY NOTES -
RADC Project Engineer: Frederick W. Rahrig (IRRE) :i-
. Y
19. KEY WORDS (Continue on reverse side if necessary and Identily by block number) - !
Image Processing f”
Feature Extraction .f
Pattern Recognition .~
20. ABSTRACT (Continue on reverse side !{ necessary and identily by block number) ‘_:q
The AFES is designed to be a testbed for evaluation of semi-automatic and
computer-assisted techniques for automated production flow processes. Its -3
intended input sources included National Sensors and LANDSAT imagery, and 1
its functional capabilities are expandable to permit its use as an S
experimental testbed for feature extraction. Initial AFES capabilities)
are applicable to the extraction of planimetric, cultural, and landscape -:
characteristics as required for production of Digital Feature Analysis .,1
DD , %' 1473 =oimion oF 1 nov 6315 oBSOLETE UNCLASSIFTED ’ : '}
“ SECURITY CLASSIFICATION OF THIS PAGE (When Deta Entered) p
-1
-
.

UNCLASSTIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

_.Data (DFAD). The system's hardware configuration provides for input
scanning and conversion, image storage and retrieval, interaction with
multiple softcopy displays, feature delineation, and output plotting of
feature data. The major hardware subsystems include a host processor
which performs overall system control, data acquisition and storage, and
certain computationally intense procedures: a scanner/plotter subsystem
which allows input of image data from film and opaque source materials
and generates graphics plots; and a display subsystem which allows direct
user interaction with the imagery. . The AFES software includes a larce
collection of system and applications modules which support a wide
variety of functions. The operating system supports a multi-user
environment, a tree-structure, a complete software control system for
system and applications programs, program development aids, documentation
aids, and interfaces to all peripheral devices and subsystems.- Applica-
tions software provided with the AFFS supports pixel measurement
extraction; pixel classification via statistical pattern recognition;
image preprocessing, enhancement and filtering; image warping,
resampling, and point positioning; and symbolic image processing via a
rule-~based inference system.

UNCILASSTFTED

SECURITY CLASSIFICATION OF Tu's PAGEWhen Dace Entered)

—

i

VO NP RS UG Gy S I W TP |

SECTION

1.0

1.1

1.2

103

2.2

2.3

TABLE OF CONTENTS

INTRODUCTION, « . & ¢ + &

SCOPE e e o ¢ & o s o o

BACKGROUND., . + « « ¢« & &

TEST RESULTS., . . . « . .

1.3.1 Scanner/Pletter
Subsystem . . .

1.3.2 Software Testing.

REPORT CRGANIZATION . . .

AFES OVERVIEW

INTRODUCTION, . . + ¢ « &

AFES PURPOSE, .,

AFES GOALS. « .

2.3.1 Multi-user Facility
2.3.2 Easily Medifiable .
i

PAGE

1-1

1-1

1-6

2-1

2-2

2-2

R R S A A A A ORI ARG
2.3.3 Modularity. 2-2 %
2.3.4 Independence From Image E
Source. « « + 4 0 e 4 0. e 2-3 E
2.4 OVERALL AFES STRUCTURE, 2-3 ;
2.4.1 AFES Hardware Configur- g
ation .« « v v o 400 . 2-3 ;
2.4.2 UNIX Operating System . . 2-7
2.4.3 Applicatiens Seftware , . 2-18
2.5 SYNOPSIS OF TOPICAL DOCUMENTS . . . 2-19
3.0 AFES SYSTEM STRUCTURE . ., 3-1
3.1 INTRODUCTION. . &+ ¢ o ¢ ¢ o o « & & 3-1
3.2 AFES FILE STRUCTURE 3-2
3.2.1 UNIX Files. . . « + « . & 3-2
3.2.2 User Directeries. ., . . . 3-4
3.2.3 AFES Directories. 3-5
3.2.4 Image Files 3-13
3.3 PROGRAM DEVELOPMENT AIDS, 3-16
3.3.1 Video Editer. 3-16
ii
L
O

—y b satthdeibubetubetindetndhinedoindiotnd - TR L T T . PP " .

Documentation Fermat.

Subreutine Libraries.

Include Files . ., . .

Windew Code . , . . .

Pregram Testing . . .

Interface to Programs
Under AFES Contrel. .

SOFTWARE CONTROL.

3.4,1 Software Contrel.

3.4.2 System Update . .

COMMAND STRUCTURE . ., ., . .

3.5.1 Command Syntax. .

3.5.2 Modificatiens te the Shell

3.5.3 Inter-Processer Communi-

cations

Command Structure for

Master Processor.

Command Structure for

Di splay Processor . . .

A

3.6

3.7

u.o

4.2

4.3

DOCUMENTATION . . « « ¢ ¢ o o

3.6.1

3-6.2

Document Types. . . .

Decumentatien Aids. .

AFES ADMINISTRATOR., . . « . . &

3-7.1

3.7.2

3'7.3

Adding AFES Users . .

Maintaining Multiple
Releases, « « « o « o

Assuring System
Integrity . . « « « &

MEASUREMENT EXTRACTION AND
CLASSIFICATION. . « « + & » » »

INTRODUCTION. . « o ¢ ¢ o o o

MEASUREMENT EXTRACTION.

TRAINING AND CLASSIFICATION . .

4.3.1

4.3.2

4.3.3

Mean Nearest Neighbor

(mean nn) . . . « «

Condensed Nearest

Neighbor (cnds_nn). .

Mahalanobian (mahal).

iv

3-42

3-42

3-46

3-52

3-52

3-53

3-54

31

4-8

O ST

bd g
AR NI

Lt .
[TN L

4.3.4 Multivariate Categorical

Analysis (mca) e o & o o o u-g
4,.3.5 Unsupervised Classificatien
(cluster) e ®» & 5 o o s o u-g
5 . 1 INTRODUCTION e & ® e & & e & ¢ o s o 5_1
5.2 THEORY OF OPERATION 5-1
5.2.1 Preprocessing. . « « « . 5-2
5 . 2. 2 SIP. e o & o e o e v & o 5-3
5.3 IMAGE REPRESENTATION, « . & 5-4
5 . 3. 1 Regs e o & e ¢ s ° 0 o @ 5-5
50 3.2 LsegS- e & o o ® o ® o @ 5-6
5. 3.3 FeatS. s ¢ o e & & o o o 5-7
5 . u COMMANDS ® e o & e e & ¢ & e e o o 5-7
5.4,1 Invoking SIP 5-7
5.4,2 LISP Commands. 5-8 .
5. u.3 LISP Err@l"s. e e o o o 5"8 . 1
5.“.’4 LISP QuirkS- e s o s a e 5_9 .
e
b
v S
-]
o

.

[5.5

5.6

5.7

6.0

6.2

6.3

5.4.5

Sip Commands . . « + .

PRODUCTION RULES., . ., . . . + « « .

5.5.1

Rule Declaration

SAMPLE DIALOG . . . & ¢ ¢« ¢ o & « &

LIMITATIONS . . . & & ¢ o ¢ « o o &

5.7.1

5.7.2

5.7.3

5.7.4

Representatien
Limitatioens.

Rule Limitatiens

Number of Regiens. . . .

Spe ed ® o o o o & & e s @

AFES IMAGE PROCESSING LANGUAGE. . .

INTRODUCTION. . . + + ¢ o v o ¢ o &

TABLE STRUCTURES, . . « . ¢« + + « &

IPL COMMANDS. « ¢« « & o o o « ¢ & &

6.3.1

6.3.2

L ! L . L

Change Processing Image

(epi)e v v v 0 v 0 0w

Change Processing Methed

(CPM). & o 4 o o o« o o

vi

5-11

5-11

5-13

5-14

5-17

6-1

6-1

6-3

6-3

6.4

7.0

7.2

7.3

8.0

8.1

8‘2

8.3

8.4

6.3.3 Moedify Methed
(mod methed)

6.3. 4 Current Methods and

Images « « o ¢ « o o

CONTROL STRUCTURE

PHOTOGRAMMETRIC SOFTWARE. . . .

INTRODUCTION. . o « & « o o « &

THE AFES SYSTEM DESCRIPTION , .

7.2.1 System Requirements,
7.2.2 Maintaining Steree .
7.2.3 Mensuratien.
7.2.4 Peint Pesitioning. .

MENSURATION PACKAGE

SCANNER SUBSYSTEM . . « « « « &

INTRODUCTION. « + ¢ o &« o o« o &

AFES SCANNER SYSTEM

PHOTOGRAPH SCANNER/VIEWER UNIT.

GRAPHICS SCANNER/XY PLOTTER . .

I 3 A

B Sl oad o g E s B Bal arder)
Pacis SR N e A S M A R
LN O e T R At

6-4

6-5

6-6

7-2

7-3

7-3

7-4

8-7

A" I Ar S ps L Y RS AP -, . g
D A S e i e e N P A R P AP St e S .~ > T v >
- e N e e T s N RS LI P I e e e e PR AR A i
b TRt T LT T T e e L e T T T T T T Tl T e e T et e e e el B A N R T S - e T

R A Vs L H
o 41";_;'_. ,

8.5 LINE ARRAY CAMERAS, « . + & 8-8

el AP
. H P
. P

8.6 VIDEO PROCESSOR . . . v &« &« o o o 8-9

8.7 COMPUTER CONTROL SYSTEM 8-12

viii

LA VP SRR SR SIIPIATIPS I ORI

2-2

4-1

8-3

Figure

LIST OF FIGURES

MASTER PROCESSOR CONFIGURATION,

FULL-FUNCTION STATION CONFI-
GUR ATION L] L] . L] L) L] L] L Ll L] . L]

One Dimensienal Classification.
Two Dimensieﬁél Classificatien.
AFES Scanner System Diagram . .
AFES Scanner/Viewer Unit. . . .

Video Processor « « « « o o

ix

Page

2-5

8-11

o
e
Lol e

R
Py

=

1. INTRODUCTION

This document describes the results of the ceontract entitled Automatic
Feature Extractioen System, RADC No. F30602-78-C-0080, It is intended to
fulfill the requirements for CLIN 0005, Data Item 004.

The AFES contract was performed between 2 February 1978 and 31 May 1982.
Under the terms of the effort, a testbed image precessing system, including
hardware and software, was developed and installed at the Defense Mapping
Agency Hydrographic and Topegraphic Center in Brookemont, Maryland. This

report will describe the system and its capabilities.
1.1 SCOPE

The AFES is desigred to be a testbed for evaluation of semi-automatic and
~ computer-assisted techniques for automated production flow processes. Its
intended input sources include National Sensors and LANDSAT imagery, and its
functional capabilities are expandable to permit ite use as an experimental
testbed for feature extraction. Initial AFES capabilities are applicable to
the extraction of planimetric, cultural, and landscape characteristics as

required for production of Digital Feature Analysis Data (DFAD).

The system's hardware configuration provides for input scanning and
conversion, image storage and retrieval, interaction with multiple softcopy
displays, feature delineation, and output plotting of feature data. The major
hardware subsystems include a host processor which performs overall system
control, data acquisition and storage, and certain computationally intense
procedures; a scanner/plotter subsystem which allows input of image data from
film and opaque source materials and generates graphics plots; and a display

substation which allows direct user interaction with the imagery.

1-1

The AFES Software includes a large collection of system and applications
modules which support a wide variety of functions. The operating system
supports a multi-user environment, a tree-structured file system eminently
suited to image processing, modular software structure, a complete software
control system for system and applications programs, program development aids,
documentation aids, and interfaces to all peripheral devices and subsystems.
Applications software provided with the AFES supports pixel measurement
extraction; pixel classification via statistical pattern recognition; image
preprocessing, enhancement and filtering; image warping, resampling, and point

positioning; and symbolic image processing via a rule-based inference system.

The basic AFES capabilities as defined in the original Statement of Work
(PR No, I-7-4700 dated 77Feb10) were amended by PR No., I-0-U4779 dated 790ctOl,

This amendment provided for much of the system's modularity and flexibility,

and for most of the specific applications routines which have been included in
the AFES.

1.2 BACKGROUND

The development of technologies for exploitation of digital imagery is
mandated by DMA transition to all-digital source materials by the late 1980's.
A number of research programs preceding and concurrent with the AFES
development have addressed the use of digital imagery for the generation of

various DMA products.

The RADC Image Processing System (IPS) is a predecessor to the AFES which

provides arn interactive image processing capability for research related to
feature extraction and classification from reconnaissarnce sernsor imagery. The
earliest work leading to the developmerit of IPS consisted of integration of a .]
number of pattern recogrition software mcdules irn the late 1960's arnd early
1970's to form the On-Line Pattern Arnalysis and Recogrnition System (OLPARS).

The system was configured on a CDC-1620 computer with associated peripherals,

P
[
——ad

A

P
a
.

In the early to mid 1970's an image-processing front end to provide
m ltivariate vector data for input to OLPARS was developed on a PDP-11/20
minicemputer, Software included a custom designed operating system,
executive, and large 1library of application functions most of which were
written in assembly language. This system was initially called the Image
Feature Extraction System (IFES). A separate effort called Spectral
Combination for Reconnaissance Exploitation (SCORE) added multispectral
software to IFES, and the combined system was renamed Digital Interactive
Complex for Image Feature Extraction and Recognition (DICIFER). This total
package was a display-oriented minicemputer system dedicated to develeoping,
testing, and evaluating techniques for imagery expleitation. It was used for
processing of black and white and multispectral reconnaissance photography,
side-looking synthetic aperture radar imagery, forward-lecking infrared
imagery, LANDSAT imagery, and several other types of two-dimensional array
data. The addition of OLPARS structure analysis and classification logic to
DICIFER resulted in a complete pattern analysis capability based upon image
data. This system has since become known as the Image Processing System
(IPS).

The current IPS hardware configuration is the standard AFES configuratien
(less the scanner/plotter subsystem), consisting of a PDP-11/70 and PDP-11/34,
with mass storage, special processing, and display peripherals appropriate te
support the AFES software. Current contractual efforts such as Advanced
Pattern Recognition (F30602-80-C~0319) are devoted to enhancement of AFES
target recognition capabilities. The AFES control structure is being modified
and additional applications software is being added to apply statistical
pattern recogrition to region measurements, Edge-based image segmentation
algorithms are being added, and the AFES Symbolic Image Processor (SIP) is
being expanded to accommodate more flexible interaction between symbolic and

statistical pattern recognition algorithms.

v e v

Vs
A ey s

Py

PSP P

J
adh

1.3 TEST RESULTS

This section detail the results of the AFES Final Acceptance testing,
which was performed between November 1981 and April 1982. The majority of the

testing was performed over five one-week periods, with the test precedures for

these periods divided up as follows:

1. Scanner/Plotter Subsystem Testing

2. Feature Measures and Statistical Pattern Recognition. This included

commands from the meas and class menus.

3. Symbolic Image Processing, Program Development, and Administrative
commands. This group included commands from the sip, prog, and admin

mernus.

4, Display Commands. This included commands from the disp, itt, init, and

misc (on the workstation) menus.

5. Transforms, Input, and remaining Testbed commands. This category
included commands from the trans, input, test, and mise (on the hest
processor) menus.

Commands from the mens menu, the Mensuration Package, were tested separately

in conjunction with the testing of the senser model implementation.

1.3.1 Scanner/Plotter Subsystem

The scanner/plotter subsystem passed all of its performance tests, with
the exception of the maximum resolution, which was specified as 80 lp/mm. The
highest observed resolution was approximately 72 1lp/mm, but it sheuld be noted
that this is a highly subjective evaluation. 1In testing the AFES an attempt
was maderfo estimate resolution conservatively. It is not likely that this

resolution limitation will degrade the system's utility.

PPV GO,

1

bk

When the graphics scanner camera was tested, a number of dark vertical
lines were observed on the imagery. These were due to specks of dirt on the

sensor array which were mechanically disledged, correcting the problem.

Several minor mechanical and electrical problems were noted and later
corrected. The plotter pen cartridge tended to slip in its holder. This was
remedied by mounting an external collar on the cartridge where it protrudes
from the holder, which prevented it from slipping upward into the holder. The
second problem was a tendency on the part of the plotter control logic to
reset, disabling the plotter servos, when the pen seolenoid was activated.
This was caused by cross coupling between the limit switch input wires and the
pen solenoid wires. It was corrected by installing an extra shielded
twisted-pair cable between the plotter contrel box and the gantry to carry the
pen solenoid signal. Finally, the plotter arrived at DMA with a crack in one

corner of its glass top. The glass top was replaced.

1.3.2 Software Testing

The vast majority of the software test procedures were exercised without
incident. For each command a test procedure had been written which listed the
operator input required to exercise the command, and specified the response
expected on the part of the system, For the pixel measurement extractors
several small test images were generated, and the output data produced by each
measurement was printed. These results were then manually verified using the
algorithm on which each program was based. Any exceptions to correct
performance were noted on the test procedures, so that they could be corrected

and retested prior to the end of the test peri

/‘: N

ol
Just prior to testing of the image trans mation commands, such as the
Fourier and Hadamard transforms, a hardware failure occurred irn the AP-120
array processor. Hence the AP versions of these routines could not be tested.

The AP was later repaired and the routines were then tested successfully.

.....
.............. CRICILI EANAN

1.4 REPORT ORGANIZATION

The remainder of this report is devoted to detailed descriptions ef the
major components of the AFES, The sections which follow are available on-line
on the AFES as topical documents. A 1list of available documents may be

obtained by entering the command "doe" with no arguments.

Section 2 is an overview of the entire AFES system, and provides a brief
summary of its hardware and software structure and capabilities. Section 3
describes the utilization of UNIX system facilities, including seftware
control and on-line documentation., Section 4 is entitled Statistical Pattern
Recognition, and describes the various types of pixel measurement extractors
and statistical classifiers available on the AFES. A logical continuation of
image exploitation is provided in Section 5, which covers the AFES Symbelic
Image Processor (SIP), which is a rule based inference system for high level
classification of features. Section 6 discusses the AFES Image Processing
Language, which is the primary control structure for image exploitation
experiments, The warping, resampling, and mensuration software are covered in
Section 7, entitled Photogrammetric Software. Finally, Section 8 is a
description of the Scanner/Plotter Subsystem. It is derived from off-line
documentation of the subsystem, which was built under subcontract by Bendix
Research Laboratories. Appendix I lists the user commands available for

execution of AFES applications software.

PRI Y |

|

1-6

} SRV PSP

‘tate

IR
P

WY T
B R .‘, 1',

.‘. .
ERP AP

2. AFES OVERVIEW

2.1 INTRODUCTION

This section presents an overview of the Automatic Feature Extraction
System (AFES), and serves as a directory to a series of tepical documents
which describe the theery and implementatien of various system components.
The purpese and general goals of AFES will be described first, follewed by
discussions of its overall structure, and finally by a synopsis of the topical

documents.
2.2 AFES PURPOSE

The AFES is an integrated hardware/software cemplex. It is designed as a
testbed for applying image precessing, photogrammetry, pattern recognition,
and artificial-intelligence-derived techniques for semi-autematic map
generating and updating. The AFES has been designed as a complete man-machine
system for image understanding and efficient receiver of algorithms, The AFES
possesses facilities for easily reimplementing, integrating and testing
algerithms develeped elsewhere, as well as new algorithms. The system is
capable of handling beth digital and film sources. It alse contains elabeorate
facilities for image input and storage, and can be operated by persons
unfamiliar with computers, Accordingly, streng emphasis has been placed
throughout its development on such things as modularity, user interfaces, and
software support. These goals will be discussed in more detail in the next

section.
2.3 AFES GOALS

The AFES design specifications require that it be a multi-user system
which is easily modifiable, modular, and incependent of image source,

."| [}

’
L]
.
.
B
]
[
¢
>
’
.
.
0
]
»
14
s
]
[}
2
3
Al
F)
»
z
+
'
]
]
L
.
]
’
1
1)
.
+
*
3
[
’
,
’
]
.
.
.
[y
.
.
¢

2.3.1 Multi-user Facility

Multi-user implies that expensive resources can be fully utilized by
sharing ameng users, This has been accomplished by use of a waerk statien
configuration, in which each user has, for his exclusive use, interactive

devices and minimal computational capabilities apprepriate to his task.

Reseources shared with other users, including mass sterage devices, special
[types of processers, and image input devices, are controlled by a central

processer which is linked to a number of werk statiens.

2.3.2 Easily Medifiable

Easily moedifiable means that:

® new algorithms can be easily developed and easily incerporated inte any

part of the system,

® new algorithms can easily use all techniques and algerithms which have

been previously implemented en the system.

® new processes can be easily structured from a variety eof algerithms and

techniques.

2.3.3 Modularity

Modularity implies that:

¢ Previously programmed techniques are available to new algorithms.

q ¢ Processes may be reconfigured frem various modules so that these

precesses can execute on various processors available within the system.

Different flavors of processing can be easily develaped.

| - ————g s IO a : e a oo eda N

" Logmant

o System design, implementatien, maintenance and medification may be clean
and efficient.

2.3.4 Independence From Image Source

AFES must be independent frem its image socurce in erder to retain
compatibility with all present and future image socurces which it may be used
te expleit. While each new image source may require a different hardware
device to digitize the image data and different software medules for image
queing and fermatting, the result of the input process will be images in
standard AFES file format. The AFES file format has been designed for maximum
versatility, and accommedates beth single channel and multichannel imagery.

Eventual compatibility with all available digital imagery is an AFES geal.

2.4 OVERALL AFES STRUCTURE

This section will present more detailed information abeut the AFES
workstation configuration, software system, executive contrel, program

development aids, and applicatiens software,

2.4,1 AFES Hardware Configuration

The AFES hardware can best be described in terms of three main
categories; these are the master processor, the workstatien cenfiguratien, and
the scanner-plotter subsystem. The master processor functioens as the vehicle
for program development, data storage, and many processing operations. The
workstation concept provides for a set of dedicated interactive devices for
each user. The type of workstation used depends on the operator's task. 1In
general a number of workstations will be linked to ene master processor which
allocates shared resources among users, The werkstation configuration
provides the main human-machine interface for the accomplishment of image
expleoitation., The scanner-plotter subsystem is dedicated to the input/output

of source image data, as well as cartographic data generated frem processed

a DR b . PR W N P P WY VO S vy b

. ' ..
. . . L
PRI OwY G G SN IRY Wiy

-1

imagery. The scanner-pletter subsystem is included in Figure 2-1 as part of
the master precesser configuratien. However because of its unique hardware and

importance it will be discussed separately.

2.4,1,1 Master Processor

The master processor is a PDP-11/70 minicemputer with a variety of 1/0
devices, steorage units and processing resources (Figure 3-1). Input images
may be provided on magnetic tape, and tape drives are provided for access and
copying of image data. The design includes a scanner-plotter subsystem which
is linked to the processor via a communicatien link and a dual-ported disk
system so that film, map, er chart data may be digitized and stored on the
disk, and utilized by the system as needed. A second large capacity disk
system stores source images and intermediate results of image processing
functions executed on the master precessor., Processing resources include, in
addition to the capabilities of the PDP-11/70, a floating point array
processor Which is used to perform certain types of tasks involving numerical
computation on large blecks of data.

Associated with the master processer is the Pregram Development Station (PDS).
The PDS consists simply of a CRT terminal which is linked to the master
processor. It is designed for the user who simply wishes to edit and compile
programs, and to execute programs on the master processor for which image
display output is not needed. The multi-user, time-sharing operating system
used for the master processer can accommodate a 1large number of these

terminals without noticeable degradation in response time,.
2.4.1.2 Work Station

The hierarchy of work stations provided seeks to match the hardware
configuration used with the task to be performed. The types of workstations
have been termed the the Full Function Station (FFS) and the previoeusly

discussed Program Development Statien (PDS).

=Y

FDVHOLS YLVG IOV

2044

naLEASENS
¥y31107d
HIANNVYOS

0
B

NOILVHADIINOD HOSSIT0UJI UILSVYN
T-C 2an314

NOILV1S
vl j1n3nd013A30
_-::.co....

3dVa OILINOVYN

NOILVLS
NOILONNA
1ind

4088300ud
Avuuy
a0t 4v

2-5

PP STy

P

The FFS (Figure 2-2) provides the full complement of image preocessing and
interaction capabilities. A color display system is included, on which the
user may view source imagery or the results of precessing eperations. Twe
high reselution monochrome display systems and a stereo viewer are provided te
allow display of stereo imagery. Each display system has a trackball,
hardware cursors with functien buttens, and overlay memery te accommedate
operator interaction and display of auxiliary data. A Hewlett Packard Randem
Scan Display accompanies the FFS., This will be used as a status display to
provide the user with relevant infermatien, such as status eof background
processes and the name of the image that is associated with a particular
display channel. In addition, a Dunn coler camera system is interfaced to the
color display so that hardcopy of source or precessed imagery is preducible in
an efficient, convenient and timely manner. The FFS configuratien prevides
the environment necessary for integrated testing of image precessing functiens
and design and implementation of the types of software systems envisioned for
production of digital maps. The display system is centrelled by a PDP-11/34
display processor which also provides a minimal processing capability. In
particular, aperations which require frequent and/or randem access to image
data, but do not perform complex computations are well suited te execution en
the displiay processor, These may 1include such things as histegram
cemputation, contrast modificatien, edge detection, simple geometric
transformatiens, and other preprocessing er enhancement operations., Image
data may be transferred to and from the master precessor via a high speed

parallel data link,

Facilities for operator interaction for the FFS are designed to minimi=ze
the knowledge required to use the system. Commands issued by the warkstation
user may refer to processes which are executed en the master processor or the
display processor. To simplify operatien incoming commands are automatically
sorted by the display processor's command interpretor. Those which run on the
display processor are executed immediately, while others are transferred to

the master processor's command interpretor,
P

2-6

o — - RPN PP G S . . P R e .

110

Avaasia |
o.....«.«uo 3ZINDO0D3
NOAGNYY 30107
YZOIXCZOL

NOILYUNDIJNOD NOILYLS NOILONNS-TINS

SNOLING NOWLDNNA

HitM

NSIQ Zowy SNVENIVHL

®)| @O

ONILVOTd

z-z 2In81g

aquvoaaal

/3T08NOD
S,HOLVHId(

AlA O34ALS

AVidsia

«v«°w

Avidsia

BNOUHIONON] |2NOUHIONON

208

bve/ss dad

AUONIN
AUOMOTIN-FO

I

y088300ud
934V
0L/} dad

2-7

T

P P

PPy e, aglh ode 2 2 e o g O il i e e iy gy
X i- e n St

——

~y

Nk 2an am ann o0 s 0
a

-

AR S 0

VX

PP S S W)

In general, pregrams which require operator interaction are executed on
the display processor. In some cases a single command may start a process on
the display processer which will interact with the user to obtain input data
or parameters, then start a "batch” type process on the master processor to
perform a computation using the user's input data. Most user interaction
occurs via trackballs, cursors, and pushbuttons.

'

An additional interactive device is a voice recognizer, which may be
trained by each operator to interpret simple vocal coemmands and issue the
appropriate character strings to the display processor. This allows the
operator to enter commands when both hands are occupied contrelling
trackballs,

2.4.1,3 Scanner-Plotter Subsystem

The scanner-plotter subsystem consists of the scanner viewer, plotter
scanner, A/D converter, and PDP 11/34 ceontroller with dual floppy and RPO6
disk drives. The scanner viewer consists of two 9 X 18 inch stages, which

have optics for scanning or viewing images directly. The scanner for each

stage consists of a 1024 element CCD array with zoom optics and rotation.

capability. It will allew a scan of a 1024 by n pixel image with spot size

ranging from 5 to 30 microns continuously. The stages can move at different

rates in both x and y directions , allowing skew, rotatien, positioning and:

scale change of the scanned image when coupled with the other features. The

grey scale repeatability is one part in 256,

The plotter-scanner is a high accuracy plotter with CCD camera mounted in the
pen gantry for scanning of map data. The system will scan opaque or
transparency maps. The scale and rotation of the map scanner is fixed with
spot size being 80 microns. The plotter can utilize pen scribe., The scan time
for the scanner viewing is 8 seconds for a 1024 by 1024 pixel image, while the

scan time for the plotter-scanner is about 17 seconds.

2-8

aas sl oary

Y
.
e

1

o
ol

dodad ok alond o oA

[

The requests for scans are normally initiated from the PDP 11/70 master

processor.

2.4.2 UNIX Operating System

The UNIX operating system has been used to provide multi-user time
sharing capability. UNIX provides a convenient file structure which supports
independence frem the image source, an important AFES feature. The UNIX
operating system was also designed te support medularity and ease of
development. The "Programmer's Workbench" (PWB) version ef UNIX has been used
for AFES, PWB/UNIX provides the follewing features particularly important in
its application te AFES:

A hierarchical file system.

A flexible, easy-to-use command language.

Ability to execute sequential and backgreund precesses,

The Ned Editor-- a powerful text editor.

Flexible document preparation and text processing systems.

o Extensive software control capabilities,

e A high-level programming language conducive to structured programming
().

e The other programming languages LISP and FORTRAN,

e Powerful system I/0 routines.

A number of these features will be described in more detail below.

2-9

B A SR R R R R ARy e T T T T

+

;;

4

2.4.2.1 UNIX File System

The PWB/UNIX file system consists eof a highly uniform set of directories ?

and files arranged in a hierarchical tree structure. Each node in the tree is :

either a file or a directory; if it is a directory it may have branches to q

lower level nodes. If one considers a node in the directory tree to be a =y

directory called "dname", then entries in this directory are referred to by a ™
"pathname", for which the entries in dname would be "dname/nameil",
"dname/name2%, etc. Here "namel" and '"name2" may be directories or files.

The UNIX file system has as its reeot nede a directory containing names of a
large number of other directories, each of which contain a hierarchy of other
directories and files, This provides a systematic organizatienal structure.

Basic features of the file system are:

Simple, consistent naming conventions. Names may be absolute or relative

to any directory in the tree.

® Mountable and de-mountable file systems and volumes,

e File linking across directories,

e Automatic file space allocation and de-allecation transparent to the

user.

o Flexible file and directory protection modes. Directories and files are

uniquely associated with a particular user. Both image and user files

are coded as to access privileges, with the code indicating read, write,

o
4
9
]
9

and execute privilegés to the file owner, a specified group of users, or
to all users. This access control provides file protection and assumes

an important role in the UNIX software control system.

1

B

PULAPSA A S T S A P

L P)

® Facilities for creating, accessing, moving, and processing files,

directories, or sets of these in a simple, uniform way.

e Treatment of each physical I/0 device, ranging from interactive terminals

to main memory, as a file, allewing uniferm file and device I/0.

2.4,2,2 UNIX Shell

The UNIX command language, called the Shell, is used to implement the
AFES "Image Processing Language", which contrels file access and user
processes, and greatly simplifies execution of image processing functioens.
The capability for background processes prevides for a smoether precess flew
in execution of statistical pattern recognition routines en images, since some
precesses, such as classificatien, can be run in the backgreund while the

operator is using the terminal for ether reutines.

The UNIX Shell language alse allows the user to define a wide variety eof
variables which may be used to simplify command structure. For instance, a
user wishing to use the paradigm support software for statistical pattern
recognition may define a "working image" with which he wishes to experiment.
The pathname of this image is saved as a variable which may be accessed by
Shell routines which use the woerking image as input. Thus the user need not
specify a possibly long and complicated pathname each time he executes a
command which operates on the working image. Two files, .afesinit and
.envinit, set up the proper AFES envirenment for a particular user, by

initializing many of the necessary shell variables,.

2.4,2.3 System I/0 Routines

UNIX provides standard input and output files which are used whenever

possible. The user may specify any file or terminal to be used as standard

input or output, or may transfer the output of one program directly to the

input of anoether using these standard I/0 facilities,

2-11

s 2.4.2.4 AFES Software

The AFES software has been designed to suppert the features outlined in
Sectien 3. This invelves a discussion of the AFES file system, programming

access and aids, and applications software,

2.4.2.5 AFES Cemmands

It is appropriate to mentien AFES commands at this peint as they will be
referred te in the sections which follow. A more detailed diccussion can be

found under Applications Programs.

AFES commands are executable files which can be written in the Shell
command language or %"C", They are organized in "menus" according to the
functien they perform, and constitute components ef the AFES "Image Processing
Language". It should be noted that most menu commands with the exception eof
those in the "meas" section of the menu are shell files., The topical document

IPL describes the Image Preocessing Language in detail,

Command language routines, written in the Shell command language, may in
turn start up other system and application programs. These routines may be
written in LISP, FORTRAN, "C", or shell. This capability greatly simplifies
command string structure, since the command language routine can execute the
proper sequence of executable modules based upon a simple set of flags and

arguments preovided by the user,

2.4,2.6 AFES File System

The AFES file system is based on the standard UNIX file system, and many

AFES features are achieved through careful organization and implementatien eof
file structures. As in UNIX, the AFES file system also makes use of a root k
directery "/%, appropriately called the root. Entries in the AFES root

directory include, among others, working directories for temporary storage of 3

PRI T TP

" |

image files during processing sessiens such as "/w", "/u", which branches down
to personal user files, "/usr", which contains system routines, and "/tmp",
which contains temporary files. The reot node directories most important te
AFES are the /u, and working directories. The /u directery will be described

in sectiens which follow.
2.4.2.6.1 AFES Directery

The AFES utility and applications programs are all contained in a user
directory which has the pathname "/u/afes". There are a large number of

directories under /u/afes; they include the folleowing:

cmd Program development commands

bin AFES administrater commands

incl$z Include files for the current testbed system, release ne.
$z

bing$z Master processor command language (Shell) routines,

release no. $z

system System wutilities such as control commands for the

interprocesser link

lib$z Master processor library routines, release no. $z

obj$z Master processor executable modules, release ne. $z

smlib$z Workstation (PDP-11/34) library routines, release ne. $z
2-13

] A T L
A POV S LN

S
PO

-y

smebj$z Workstatien (PDP-11/34) executable modules, release ne. $z

smbkg$z Files which are te be run in backgreund at the

workstation, release ne., $z

sces All files placed under AFES contrel via the "addfilen
command

smbin$z Workstatien cemmand language (Shell) routines, release no.
$z

Library routines are subroutines used by many preograms, which are cembined
with the calling pregram to make an executable module. Object medules are
compiled versions of main pregrams. Separate library and object directeries
are proevided for the master processor and the workstation processor. While
the workstation routines are maintained by the same software centroel system as
the master precessor reutines, they are compiled in a slightly different way
due to differences in the capabilities of the processors.

The topical document "afeslayout" provides a more detailed descriptien of the
layout of directeries for the AFES testbed. Successive updates of the AFES
software, incorporating new programs and changes to existing programs, give
rise to new release numbers. "$z2" is a Shell variable which contains the
current release number, Hence "/u/afes/lib$z" is the pathname to master

processor library reoutines for the latest AFES release.

2.4,2.6.2 User File Directory

Each user has a personal directery containing pregrams under development,
These are usually maintained under the "/u" reet nede. While this directory
may centain only names of various files, it more often contains names ef other

directories which divide the user files into categories,

2.4,2.6.3 Image File Directery

The image directories lead to a tree of image files, The sequence eof
directery nodes in the working image directeories are designed to be a highly
organized record of all precesses which have been executed on an image. This
directory structure may be reviewed with the "examine" command, which allews
the operater to interactively examine the directery structure. Autematic
restart capability is provided by sterage of all status informatien in the
file structure so that a particular processing envirenment can be

automatically invoked when a user logs onto the system.

2.4,2.7 AFES Programming Aids and Practices

The goals of modularity and easy modifiability are attaired threugh
careful structuring eof pregrams, attention te consistent decumentatioen,
utilization of system, library and interface routines, standard image formats,

and strict software control,

2.4.2.7.1 Program Structure

AFES applications programs are written in a way which allews maximum
flexibility and versatility. Standard software interface routines are used
whenever possible, such as the "autematic window" cede, described in a later
section. Subroutines are written te previde as much applicatiean independence
as possible, so that they can be used by a large number of programs, thus

minimizing the number of subroutines,

2.4.2.7.2 Software Interfaces

One common type of user program anti .ipated in use of AFES as a test-bed
system is the measurement extraction routine which uses as its input the
intensity of a single pixel, or perhaps the intensities ef pixels contained

within a small window surrounding a single pixel. The user is wusually

kS
...
>’
‘
-4
.1

-~t1

-
&

L
A

f
PRV NN U LD W Y B S eres

Y A
® .

0 S

o & a1

Tp—

Al o g o as Al o

w

concerned largely with the routine which eperates on the pixels within the
window, and would rather not have to werry about the mechanics of moving the
window threughout the image. Routines of this type may perform, for example,
smeething, edge enhancement, or texture description eperations, To meet this
need AFES provides a number of include files, referred to c¢ollectively as the
"autematic window code", which may be inserted in the user window processing
code. This automatic window code interprets the program parameter string to
obtain names of input and output files, sets up memory allocation for input
and output image data, sets up the line-by-line and peint-by-point loops which
move the window through the image, and performs all necessary data conversions
teo input and eutput data. Thus anyone wishing te add new measurement reutines
has little more to do than to code the algoerithm for a single window in the
image and insert the appropriate include files. This allows for expandability
in the system. Considering the number of computatiens, window code also
executes rather quickly. Typical times for a 512 by 512 image range from

under one minute te twenty minutes,

2.4.,2.7.3 Utility Subroutines

The AFES subreutine libraries include a large number of functions which,
although they are more likely to be used by more advanced programmers, save
considerable programming time and help eliminate duplicatien of effert, and
support the modular design ef AFES, These routines have applicability in the
areas of file handling, display interaction, error handling, and numerical

operations, and include the following:

file locate and open image header and data files

data convert oeutput data from a given type to an arbitrary

format as specified in output image header

|

U 2.3

.....

input perform I/0 for single lines of image data

matrix perform matrix addition, multiplication, and inversien

display initialization of DeAnza display registers; curser and

trackball interactien

erreor standard routines for printing error messages.

2.4,2.7.4 Standard Image Format

The 1increasing variety in types ef image senseors available feor
acquisition of mapping infermation has lead to a concemitant increase in image
formats. AFES achieves a good deal of its versatility be reducing image data
frem all types of sources to a single, standard image foermat. Thus the image
processing operations are independent ef image source, and can accommedate

both current and future forms of imagery.

2.4.,2.7.5 Software Contrel

AFES has an extensive source cede centrel system which is maintained by
the AFES Executive. This system utilizes two UNIX components, the Seurce Ceode
Control System (SCCS) and the "Make" ceommand, to assure system integrity.

2.4,2,7.5.1 SCCs

SCCS maintains a record of all changes which have been made te a
program's source code, making it possible to reconstruct any earlier versien
of a program at any time. Each time a user moedifies one of his proegrams, he

is required to provide a short description of the reason for the change. This

generates a historical record of a program's evelutien, The AFES user
directory (/u/afes) contains source code for each pregram which is part of the

AFES system, thus preventing proliferation of multiple copies of a program

‘e 1
” Lt

P S

chad ol o 4

UU A

- e e e T R RO ey
R e . N

which may or may net be identical.

2.4.2.7.5.2 Make Cemmand

The UNIX "Make" cemmand utilizes file interdependency data in performing
recompilation of pregrams which have been medified. When a pregram is placed
under AFES Executive centrel, the auther specifies the names of all
subroutines or other files which the program utilizes. This infermation is
recorded in a "Makefile" placed in the same directery as the pregram. When a
file is modified the AFES Executive can pell all of the Makefiles to find and
recompile all pregrams which depend on the file which has been medified,

Usually a recempilatioen is performed, giving rise to a new "release" of AFES,

after a number of pregrams have been changed.

2.4.2.7.6 Documentation Access and Aids

Caonsistent and standardizatien ef decumentation has been stressed in
AFES. This facilitates both development and use of documentation within the
system. First a brief descriptien of the types of documentatien available will
be previded, followed by a leok at some of the AFES/UNIX capabilities which
are used by programmers in proeduction ef decumentation. The topical decuments

"afes dec" and "preg_dev" describes these features in detail respectively.

AFES provides several standard commands which allow the user to access
online documentation for programs under AFES control. As mentioned
previously, AFES commands are arranged in menus according to the function they
perform. Entering "menu" at a terminal will produce a list of the various
menus available. These will be explained further under Applications Software.
To gain a list of actual commands in a particular menu, the user should enter

"menu <sectiond",

il ~ W e W T TV L T e W

Every AFES menu command has a shert usage informatien file accessed by
executing the command "help <cemmand name>". This cemmand prints eut (en the
user's CRT) the proper argument sequence for the cemmand, indicating which
arguments are optional and which are required, The tepical decument,
"emd_syntax" describes syntax for AFES cemmands, and sheuld be referenced

prior to using the help command.

An on-line AFES manual is also maintained for menu coemmands, and may be
accessed by typing "man <{command name> afes". This provides the user with
extensive documentation abeut the program, including argument list, functienal

description, files used, and related cemmands or reoutines.

Another important source of informatien is that available threugh the
"doc" command. Document files are present for many AFES files including main
programs, subroutines and include files. Menu commands may or may net have an
associated "doc". Document files are essential because they are comprised of
the type of detailed system information about a program or file necessary for

making modificatioens. A document may be obtained by typing "dec <file named".

The bottom level documentation is preovided with the pregram source
listing. 1In addition to frequent comments interspersed within the ceode, a
standard documentation section, called a boilerplate, is provided at the
beginning of the pregram. This 1lists the author's name, the files,
subroutines, and macroes used, a program descriptien, the compile string, ete.

and is mest helpful in making subsequent modificatiens.

Program development aids are provided which allew the user te proeduce the
necessary documentation for his pregram with a minimum of time and effort
spent. The documentation commands "dec" and "man" operate on text files by
invoking the UNIX text processing function "nreff". This function perfoerms
extensive text formatting operations including autematic numbering of
subsections, printing of headings, indentation, etc. The AFES command,

"newfile", gives the user a standard format for production of the nroff source

[

a_._1_A

M FES S R e N S ey N N N e s R R W W AW T T B
BRI S N R [P T T e e . W CREP AL e U
- - ‘- - - . t. T ~ e . -, - - -, . IS N - . - ~ . - AT e T et T . - - PR - - - - . . - -, . ~ - -
. S . L U N SN T R e T e e e e e Te T e e e St L LT LTal Lt e N e e e

- files, so that the documentatien can be written by simply "filling in the
ﬂ blanks" in a prestructured decument outline.

T S NI

The source code documentation is written using the same type of

prestructured "beilerplate" used for man and doc files. The programmer simply
fills in all of the infermation required, including his name, files used,
pregram description, ete, Only the in-line comments provided with the socurce

code are left up to the programmer's persenal style,

A number of other program development aids have also been provided. Aids
such as the "add _to_afes" command allow the user te easily add new pregrams to
the AFES software contrel system, and prompt the user te provide the
informatien necessary to create entries in the proper Makefile. Commands are
provided which allew a user to access an existing AFES program, edit it, and
record the changes in the appropriate SCCS file, namely the "editfile" and
"deltafile" commands.

The result of the documentatien support is that all AFES decumentation is
produced in a censistent format, and the ease of decumentation enceurages the
proegrammer to produce the documentatien cencurrent with his develepment of the
program, This helps te avoid the last-minute large-scale decumentation

efforts which se often plague delivery of large software systems.

2.4,3 Applications Software

AFES is a powerful image proecessing system., Commands in the menu driven

system are an AFES wuser's key to image exploitation in the testbed
environment. These constitute the Image Processing Language. Most commands
are accessible at both the FFS and the PDS. Horever some menu sections are
appropriately available at one workstation only. For example, since the color h
and monochreme display monitors are interfaced to the FFS, display commands ;
are only available at this station. A summary of AFES commands can best be

given by briefly examining the menus.

! 2-20 :

T vy

rﬁ
E

[ARENUI SO

% tst - AFES test-bed commands, including many used in statistical
pattern recognition.

input - Commands used to enter images into the AFES envirenment
prog - Program development commands

misc - A list eof miscellanecus commands

meas - Measurement extractors

mens - Mensuratien commands

class - Classifiers

symb Symbolic processing commands (accessible en the 11/70 enly)

admin - AFES administrater commands (accessible on the 11/70 only)

disp - Display commands (accessible on the 11/34 only)

init - Display initialization commands (accessible on the 11/34
only)

itt - Cemmands which make use of Intensity Transformation Tables ;i
(ITT's) on the DelAnza display (accessible on the 11/34 only) .

A listing of the contents of those menus is previded by Appendix I.

2-21

,‘.'"v "

[SR Rl s Ao st G SRS & Ae iR 2 ae g

L0

Yo

¥

ey

M Sl Ll ad o 3
-

2.5 SYNOPSIS OF TOPICAL DOCUMENTS

This sectien prevides a list and brief description of tepical decuments

provided with AFES which are designed te preovide a top-level view of system

design and capabilities. Each document gives a theeretical treatment of the

particular techniques invelved, discusses their discrete-data versien where

appropriate, and describes t' eir implementatien in AFES,

Tepical Decuments

preg_dev

afeslayout

auto_yndw

cmd_syntax

inel file

keys e

afes_ovrv

afes_doc

—~ Pregram develepment under AFES

- Layout of AFES directories

- A guide to construction of code using the AFES automatic

window.

- This is a description of the syntax feor AFES commands

The nature and use of include files

- Describes usage of Rand (Ned) editor

Description of control functiens for the Rand (Ned)

editor

- Automatic Feature Extraction System -- An Overview

- An explanation of the documentation available on the

AFES

2-22

-~

PSP T P

appl prog Applications Pregramming Under AFES

afes_shell - Descriptien of AFES modificatiens te the shell

dstfile ~ A description and use of the display status file,

sip — An overview of Symbolic Image Processing en the AFES

afes ipl - An overview and descriptien ef the Image Processing
Language usage and syntax.

afes_sys - AFES System Structure describes in more detail the file
system software, control system, command structure, and
documentatioen,

im_cemp ~ Image Compressien describes varieus techniques far image
compression, and AFES toels for their implementation.

HuRRR The following topical decuments are not on-line, and are

available in hardcopy only.

Image Enhancement and Preprocessing - A theoretical discussion of image
enhancement and preprecessing, followed by its

implementation in AFES,

Measurement Extraction and Classification - This describes the AFES
support and applications software for statistical pattern

recognition.

Warping and Resampling - The Warping and Resampling paper gives a
theoretical background for various types of image warping
processes, and describes the programs provided in AFES for

Wwarping and image registration,

2-23

v
"
L

. s,

R QAR

o aa_ e a_a ek L

i

3. AFES SYSTEM STRUCTURE

3.1 INTRODUCTION

This section explains the philesophy behind and implementation of the
software system, as structured for AFES, at the system programmer level. The

following topics are covered in detail in the succeeding subsections:

e File Structure

e Program development aids

o Software contrel

e Command structure

® Documentation system

e AFES administrator

A strong motivating force in the development of the AFES system has been to
provide a framework from which a user/programmer can test concepts and/or
develop programs in a simple manner, while at the same time, to encourage him
to follow geod software development techniques, These techniques, which
include such things as medularity, structured programming, user interfaces,
on-line documentation, etc., while highly desirable, can make life tedious for
a programmer, So, it is one of the aims of AFES to help him follow t»-se good
programming techniques with a minimum of a priori knowledge and effort. This
goal has been accomplished, as will be described fully, by the union of many
of the commands available within UNIX/PWB inte a highly mobile user
environment made possible by the UNIX command language, called the Shell.

3-1

’;j.: ST T R N A et NN v I ey ICACERE e
r-__ =
- -
& s
- =
2
o 3.2 AFES FILE STRUCTURE Ai

=

"4

The motivation behind the design of the AFES file system has been te
provide a file handling envirenment (be it source files, image files, or

whatever) in which the pregrammer is relieved of as many of the cumberseme

tasks such as opening and clesing files, maintaining directeories, insuring
file integrity, etec., as is practicable. The AFES file system accemplishes
this task by combining many of the UNIX functiens such as the shell, SCCS,

Make, to form an integrated enviromment for file handling.

3.2.1 UNIX Files

From the point of view of the user, there are three kinds ef files in

UNIX: ordinary disk files, directories, and special files.

3.2.1.1 Ordinary Files

A file in UNIX may consist of almest anything a user might want to place f‘
in it., Files of text consist simply of a string of characters terminated by
an EOF character, If the text were to be displayable, for instance, newline

characters would demarcate physical lines in the display.

Binary programs are sequences of werds as they will appear in memory when -
the program is loaded. Image files consist of a string of unsigned 8 bit
bytes which describes the intensity of pixels to be displayed on one of the
image displays. The structure of a file is controlled by the programs which

use them, however, not by the system.

Filenames, as supported under UNIX, must be 14 or fewer characters in
length., Under AFES they must be 12 or fewer characters, the first character

must be either an upper or lower case alpha character and no control er

bt mudndh ik

special shell characters may occur in the name.

' N c
TR ST

——d b b

el

i .
S - - PR Py . o a4 a4 & m s m m o~ s .~ e a oa

3.2.1.2 UNIX Directoery Structure

In order for the system to previde linkage between a physical file and
its name a directory structure is maintained. The UNIX system has a
hierarchical directory structure with the character "/" being the designated
separator between levels. The "/" , as a limiting case, refers to the roet
directory from which all searches for a path name beginning with the "/
start. For example, teo find the file named "file.c", whose complete pathname
is "/u/mike/bin/file.c", the system would search "reot" for a directory named
"u", It would then search "/u" fer a directory named "bin", ete., until it
either successfully lecates "file.c" or fails at seme point in the search. 1If
the pathname does net begin with "/", then the system will begin the search in
the user's current directory which can be determined by the "pwd" command.
When a user logs in, his current directory will be set to a unique one
assigned te him by the system manager. When he executes the "cd" command his
current directory may be changed te the argument given, ie. "cd /u/mike/tmp"
or to his legin directery if no argument is given, ie, "ed". A new user will
be given a login directery ie. "/u/mike" which contains a "bin" directory as a
lower nede ie, "/u/mike/bin". The importance these directories play in

command execution will be discussed in section "5",

3.2.1.3 File Ownership

In UNIX the mapping previded by a directory entry between a file name and
the physical file is referred to as a "link". 1In the case of a normal user,
any file he creates will have a link te it which is associated with his legin
name. He will determine the privileges associated with that file at the time
of creation., He may change the read/write/execute privileges via the "chmod"
command for three categories of user: owner, group, world. A non-directory
file may appear in several directories under possibly different names, each of
which constitutes a 1link of equal status to the file. With the correct
privileges the file may be modified by referring to any of the links to it,

P POOv BV

Under most circumstances a file weuld only have one link teo it and woeuld be

medifiable only by the creator of the file. Only the ewner of a file, or the

"super user" may change the privileges to a file,

3.2.1.4 Special Files

Under UNIX, pregram output which might nermally be to a disk file may be
redirected to any device, such as a terminal, line printer, etc.. UNIX makes
this possible by the use of special files. There is a special file associated
with each device in the /dev directory., One would write te a device by
writing to the special file the same way as te any other file. A similar

capability exists for redirectien of input.

3.2.2 User Directories

The important directories to the general UNIX user are as foellews:

/u - contains directories for each login name

/bin - contains system commands
/usr - contains system routines, commands, and libraries
/tmp - provides directery for creatien of temporary files

Two additional directories of importance to image processing in. general and

AFES specifically are:

/1 - permanent storage for image files
/W - temporary storage for image files

e : L R
-'l'.u P

LVIPRPY W)

™1

Ad

& -, S,
o ‘a e . T
B LS PR R I

g

. Tv-fhvv". RN .‘1

AR ¢ SR

3.2.3 AFES Directories

All files which are a part of the AFES software envirenment, whether
seurce code, "include file", object code etc., are maintained by the AFES
administrator in one of the subdirectories of "/u/afes". Twoe releases of afes
directories are maintained by the administrator te support the cencept of on-
going development in the higher release while maintaining a workable lower
release for operator use., When an AFES user logs on, a shell variable "“$z"
Wwill be set to the number of the release to which he is linked. For each
directory below which has "$z" as the suffix to the name there will,
therefore, be two directory names which differ only in the substitution value
of "$z". In the case of the "afes" 11/70 library directories, for instance,
their names might be "/u/afes/1ib8" and "/u/afes/1ib9", where "g" jis the
release in which on-going development takes place. The layout of the AFES
directeries is very important to the total picture of program development, so
the following description of the directories will be useful in the sections te
follow:

Py

[

ol

PP UP PRI

M

maa s a s 4 24k

e

(Each level of indentation represents the next level in the
hierarchical directory)

u
afes
bin
cemd
inecl$z
libsz
objs$z
bing$z
modules
manuals
manA_Z
mana 1
manm_2
documents
docA_z
deca e
docf j
dock o
deocp t
decu_z
smlib$z
smobj$z
smbing$z
modules
smbkg$z
smomd
sces
cmd
files
manA Z
mana]
manm 2z
docA Z
doca_e
doef j
dock e
decp_t
decu_z
fort
macro
make
inecl

3-6

The following is a description of the directeries and their centents,

® /u/afes/cmd

This directory contains the pregram development commands for AFES., A
list of these commands is available via the menu command with “preg" as
section name. All of these pregrams are modifiable oenly by the AFES

administrater, and they are all shell command files,

e /u/afes/bin
This directery contains the AFES administrator cemmands. Available via
"menu admin" and modifiable and executable oenly by the AFES administrater
or other shell routines.

e /u/afes/incl$z
This directery contains the Makefile and include files for the testbed

system. All reutines referencing AFES include files do se via
-I/u/afes/incl$z in the compile string.

® /u/afes/lib$z
1
This directery contains the Makefile and object files necessary to build :
the AFES 11/70 1library., It is built by the administrater via the o
makelib command and installed in /usr/lib/libafes$z.a . This makes it !l}
accessible by using the -lafes$z switch in cc or 1d commands. 1
e /u/afes/obj$z .
)
-
This directory centains the object medules necessary to build the testbed 1
executable modules in /u/afes/bin$z/medules, The modules will be remade
only by the administrator via afesupdate. The user may modify the source]
)
3-7
L4

h
-
r files via editfile and deltafile , but the ebject files must be remade by
:ﬂ the administrater.
L -
& g
s e /u/afes/bing$z]
: g
L .'d
h The directory for all testbed reutines. All reutines in this directory 9
f are intended to be shell cemmands which may or may not interface to an '1
executable module in the /u/afes/bin$z/medules directery. ,
:] e /u/afes/bin$z/manuals :J
3 ~
g Since manuals are very release oriented, there is a copy for each
release., This directery centains sub-directories each of which contains N
nroffed versions eof the man files, Each directory represents an ;J
g |
alphabetic range based on the first character of the manual name. -1
e /u/afes/bin$z/documents ‘:;
v
d
Doc files are alse release oriented so a copy of each nreffed file This ;‘i
directory contains sub-directeries each of which centains nreffed -
versions of the decument files., Each directery represents an alphabetic :Z‘
range based on the first character of the document name.
Lo
e /u/afes/bin$z/modules 'j:w
These are the actual testbed or measurement extraction command medules f’?
-1
which are built by the user, They are only updated by the administrater, .
3
e /u/afes/smlib$z "
This directory contains the Makefile and object files necessary to build _:
‘ the "small" library fer the 11/34, It is built by the administrator via)
3 1
! the makelib command and installed in /usr/lib/libsmall$z.a . This makes]
@ i
4
S 3-8
) ?
o

.,
N SR

U S " Ak d

it accessible by using the -lsmall$z switch in cc or 1ld commands.

/u/afes/smobj$z

This directory contains the object modules necessary to build the 11/34
executable modules in /u/afes/smbin$z. The modules will be remade only
by the administrater via afesupdate. The user may modify the source
files via editfile and deltafile , but the object files must be remade by

the administrater.

/u/afes/smbin$z

The directory for all 11/34 shell cemmands., This directory contains all
commands in the testbed menu on the 11/34, These commands are down-
loaded to the 11/34 by Make to the directory /u/afes/bing$z. This

directory is in the search path for commands for all users on the 11/34,

/u/afes/smbin$z/modules

The directery for all 11/34 executable modules, The modules will be
down-loaded to the 11/34 by Make to the directory /u/afes/bin$z/modules.
This directory is in the search path for commands for all users on the

11/34.

/u/afes/sces

This directory contains only directories as shown above. All files which
are placed under AFES control via the addfile command are stored by SCCS
as g-files in one of the sub-directories. The files with no suffix go in
cemd; those with ".d" in one of the doc directories; ".m" in one of the
man directeries; those with ".f" in fort; those with ".s" in macro; those
with " k" in make; those with ".,h" in incl; and those with all other

suffixes go in files, The Makefiles in the system refer to the g-files

3-9

S o i nbunaiiusnd - sl I‘““J

'

s f . R s
S L, e e . o

o

A DU i gk (na s A D e S Saa i "e i S g Tt e L A ie-fre o

e I Ta el et e tal s et e N R R . s e . W te et N
- I T % SO - L P A T R R T

found in the appropriate sccs directory for source cede dependency.
e /u/afes/smbkg$z

This directory gentains dummy command names which are down-loaded to the
11/34 by Make to the directory /u/afes/smbkg$z. This directory is in the
search path for for all users on the 11/34. The shell knews to execute

these commands in backgreund on the 11/70,

e /u/afes/smemd

This directory contains program development command which are down-leaded
to the 11/34 by Make to the directory /u/afes/cmd. This directery is in
the search path for fer all users on the 11/34. This allows a user to

execute commands in the "prog" section of the menu en the 11/34.,
3.2.3.1 Source Code

As indicated in the description of /u/afes/sces, all source code files
(alpha-numeric files) which are placed under AFES control via the addfile
command are stored as SCCS read only files in one of the sub-directories of
/u/afes/sccs. Once a user places one his programs under AFES control he
relinquishes ownership of the file to the AFES administrator. He may,
however, modify the file as required by following the procedures delineated in
section 4 on Software Control to follow. For eon-line information concerning

source files the programmer may execute "dec prog dev",
3.2.3.2 Object code

The term objectcode in the AFES environment refers to the file preduced
by the compilation of a source code file before entering the link/load stage.
This type of file is preduced by using the "-c" switch with the C compiler.
In the AFES directories 1libz, objz, smlib$z, and smebj$z this intermediate

. P o A e s a e oa -

e
'S

R L S
B IR

stage of compiled cede is maintained by Makefiles, The reason for this
arrangement will also be explained in section 4,

3.2.3.3 Executable Cede

The next level of file we refer te is executable cede which is produced

when the appropriate object cede files and libraries are linked and external
references are reselved. These files are maintained in the AFES directories
bin$z/modules, and smbin$z/medules. The files in bin$z/modules are not
executed directly by the user but may be executed by shell routines such as

"classify".

Executable coede available only to the AFES administrator differs frem the
testbed executable code in that the Makefile in /u/afes/bin maintains the

commands without the intermediate object coede stage.

3.2.3.4 Executable Shell Files

These are alpha-numeric files interpreted by the shell command language.
They are maintained by makefiles in certain directeries as described above,

They essentially provide the user interface to the AFES environment.

3.2.3.5 Libraries

Due to hardware differences between the 11/70 and 11/34, the library
reutines must be compiled differently for the two precessors. Therefore, a
library is maintained with two releases for each processor., For information
as to what routines are available and how to include a library in the load
string, the AFES command 1istlib(1lsl) with the parameter afes or small may be
executed. The libraries are maintained in the directories as described above
by the makelib command which installs a cepy of the archive file libafes$z.a

and libsmall$z.a in the /usr/lib directory. This allows a user to link to the
library by typing -lafes$z or -1lsmall$z in his compile/load string.

3-11

. . . . D T S AP I P S S G {

L S AT
ol - N - .‘ P
P Gy

PPy

1 -
RS |

............

3.2.3.6 Includes

The C compiler has a preprocessor which will replace a line indicated by X

. *_q

#include "filename" Qﬁq

]

with the contents of the file "filename". 1In AFES, include files must have %*

the suffix ".h". They are all maintained by makefiles in the incl$z o
directories as deseribed above. Extensive use is made of includes in the

Window Code which will be described in sectien 3.3.5.

3.2.3.7 Documents

The term doc file refers te a file which is accessed by the doc command.
This file 1is release dependent and maintained in a sub-directory of
/u/afes/bin$z/documents as described above, A doc file has a ".d" suffix
which is produced when a user executes newfile to preduce a doc file for
either an AFES file or to create a topical decument. The version stored under
SCCS control is in NROFF format and is NROFFED before being stored in a one of

the documents sub-directeories.
3.2.3.8 Manuals

There must be a manual for each command which appears in one of the AFES
menus. Manuals are preduced via the newfile command which will create a file
with a standard boilerplate where the name will be the same as the command

with the suffix ".m" added. This file is release dependent and maintained in

a sub-directory of /u/afes/bin$z/manuals as described above. The versien .

stored under SCCS control is in NROFF format and is NROFFED before being f‘

stored in one of the manuals sub-directories, \ 1

-

R

_1

. ,

F 3

!" ‘1

L 3-12 1

B

4

> .J
s .

_._1

{]

| " R L ” . . N

- e Ot (e Tl el ouit] e e e e T TR

3.2.4 1Image Files

There are two directories in which image files are stered in AFES: /i and
/Ww. The /i directery is where all permanent image files in afes are stered;
and /w is where all feature extractien and classification proecessing is
performed. An image stored in the /i directoery may or may not have an AFES
image header file associated with it depending on how it Qas entered inte the
directory. In order for an image to be used in the AFES environment it must
be in AFES standard format. The user may accemplish this task via the

enter_image(eni) cemmand. When a user is added to AFES a directory with the

name of his login is made in the /w., All image processing output will occur
under this directory as will be described in section 5., Every image created
in this hierarchical tree will have two files which describe it, a "data"
file, and a "hdr" file whose makeup is described by the doc file for

image hdr.h. The follewing items are included in the header:

A. ver_nr (2-word integer) - The version number is used te flag changes in
the header so that programs will not de inexplicable things when using a
file with an old header. Hopefully a program can be constructed teo
update the header if this becomes necessary. The current version number

is available under the macro name "VER_NR" in image hdr.h .

B. depth (2-word integer) - This is the number ef lines in the image.

C. width (2-werd integer) - This is the number of pixels in each line.

D. type (short) - This describes the organization of the raster data. The
follewing types have been defined:

1. Raw data, interleave by pixel - all data for a particular pixel is

in a contiguous chunk of sterage.

—
|

1va»f-r
)

DRSS A JhSte Jhmns Tamte

E.

H.

SR s S M SestPume Sns et S aediE® M it SVt Resa it ~sentt_ s s 4
A . e T TRTE TR Al . e e LN

L R N . TR AU AR S I T PP S R

2. Feature raster aata, interleave by pixel - all data for a particular
pixel is in a contiguous chunk of storage. (The distinction between
the previous twe types is archaic and will be removed frem future

versions.)

3. Feature raster data, band sequential - all of each cemponent
(channel) is in a contiguous chunk of storage. This may be used for

files intended for the color display.

4, All else, This will include statistics files.

n_chan (short) - This is the number of channels of image data. The
maximum allowed value of n_chan is available under the name "MAX CHAN" in

image_hdr.h .

format[MAX CHAN] - (MAX CHAN 1-byte characters) This string gives the
format of the vector elements. Each character in the string may be

'e! (1-byte character data),

's!' (1-word short integer data),

'f1 (2-word floating point data), or 0 (no more channels),

usage[MAX CHAN] (MAX CHAN 1-byte characters) - This gives the usage of
vector components . Each character in the string may be

'f! (feature),

'n' (classifier node),

'p' (position information),

'g' (general non-image information, such as a covariance matrix),

or

'0' (no more channels).

1 marg (short) - This is the number of columns of garbage at left of

image.

"

bl ,.‘J.._L‘ 'AJ

aadd

A

—

T

r_marg (shert) - This is the number of columns eof garbage at right of
image.

t_marg (shert) - This is the number of lines of garbage at top of image.

b_marg (shert) - This is the number of lines of garbage at bottem of

image.

t_rew (short) - This is the positien ef the top row of this image within

its source image.

1_cel (shert) - This is the pesitien eof the left column eof this image

within its source image.

tran_type (1-byte character) - This indicates the type of transformatien

used
lal
'p'
'1!
'2'
'3'
!ul
'5!

transformation parameters is available under the name "TRAN SIZE" in

image_hdr.h .

traq_parm[TRAN_SIZE] (TRANSIZE 2-word fleating point numbers) - These are
the parameters of the transformation from the photo coordinates,

scale{l4] (2-word floating poeint numbers) ~ Scale facter for pelynemial

transformation

to get frem the photo coerdinates, Recegnized values are
(affine),
(projective),
(1st order polynemial),
(2nd order pelynemial),
(3rd order pelynomial),
(4th order polynemial), and
(5th erder polynomial). The maximum allowed number eof

e R R T S ——"

v*'«I AN
P hd 2 ’
PRI
. tam’ .
o

3.3 PROGRAM DEVELOPMENT AIDS

Program development aids within AFES are geared te make a pregrammer's
task as pleasant as possible while enceuraging him teo develop disciplined
programming techniques. To aid in the develepment of a pregram are UNIX/PWB
features: a centext videe editor, the structured C language, standard errer
and I/0, system libraries, to name a few., AFES has added many features in the
area of pregram development, such as commands to initialize a file with

HOSARS - DAV ~ At
- B . LA . N e .

standard documentation formats (boilerplates) te enceurage decumentatioen,
additional AFES libraries, "Windew: Code" (which handles all everhead and file
manipulation for feature extracters), a simple pregram testing envirenment and
easy integration of pregrams inte the AFES envirenment,

3.3.1 Video Editer

UNIX supports a command-driven line editer called ed which is useful in
some applications. In addition to this editer, the RAND context editer is
available to programmers via the e command. This powerful editer allows the
user to view a full screen of text while editing the file. This makes the
concept of filling out preformatted documentation (beilerplates) pessible.
The editor is used by several ef the AFES commands to facilitate documentation
of files and other required items. Some useful teeols of this editer include
support for multiple file windews, glebal changes, interface to external
filters, and many manipulative commands. Fer detailed infermatien as te its

usage, refer to the on-line documents for "e" and "keys e".

3.3.2 Documentatien Format

As mentioned above, all documentation required in AFES is preformatted.
The execution of certain AFES program development commands automatically

enters the screen editor with the correct beilerplate. The newfile command

brings in the boilerplate for preducing a seurce file in a particular
language. The boilerplates for seurce files are asseciated with the suffix of
the file and are maintained in the /u/afes/bin directory in the following
files:

afesdoc - C documentatioen
featdoc -~ C routine to be written using windew code

shelldec - shell file documentation
lispdec - lisp documentatien
fortdec - Fortran documentation
macredec -~ assembler decumentatien

After creating the source reutine, the user will be asked if he wishes to
create decumentation, If he answers yes, then a boilerplate for producing the
appropriate documentation is entered inte the editor, The file
/u/afes/bin/manual is for manuals and /u/afes/bin/decument is for doc files.

The newfile can also be used later to create documentatien files,.

3.3.3 Subreutine Libraries

The UNIX system provides a number of subroutines te aid in pregram
developmerit, In addition to these subroutines are many which have been added
by AFES. The "cc¢" compiler will search the system "s" library autematically
for subroutines. To cause the search of additional libraries the programmer
must specify the "-1lname" argument, where name is the name of a library to be
searched for a subreutine. The following is a brief description of the

libraries available, their contents, and the compile string required.

3.3.3.1 System Library

This library centains subroutines which allew the user the most basic
entry level inte the UNIX operating system. The routines in this library
allow him to manipulate the file system, fork and execute process, determine

system or file status, set and catch interrupts and errors, ete. In additien

Tl

it provides a set of math functiens and seme basic string manipulatien
subreutines. No switch is necessary te cause this library to be searched.

3.3.3.2 String/error/sys Library (-1lpw)

This library contains three sets of subroutines, the string set, error
seEL_;ad“sys set. The string set is a cemprehensive set of alpha-numeric
manipulatien reutines, The error set consists of general-purpose erreor
handling, signal-setting, and signal-catching, and clean-up routines, The sys
set of subroutines provides interfaces to system calls that process erreor
conditions and call fatal(). In additien, a few functions which are not

available elsewhere are provided.
3.3.3.3 Input/Output library (-13)

This library is a portable I/0 package which offers the convenience of
automatic buffer allocation and output flushing where appropriate. It is, in
most cases, the preferable library for I/0 since it is system independent

where the system library is not. It is somewhat less efficient, however, due
to buffering of I1/0.

3.3.3.4 Write Library (-lwrt)

This library consists of an interface to syswrite that handles all errer

conditions.
3.3.3.5 Afes 11/70 Library (-lafes$z)

This library consists of some general purpose routines, image precessing

routines, image header routines, and an error subreutine which sheuld be

called by any AFES C subroutine which generates errer messages.

.

3.3.3.6 Afes 11/34 Library (-lsmall$z)

This library consists of subroutines which may be called by reoutines
which are intended to be run en the 11/34, It consists ef matrix manipulatien
reutines, display reutines, curser reutines, histegram routines, and the error

reutine,

3.3.4 Include Files

The include files available in AFES censist ef, ameng other things, the
files necessary to support the Windew Code package. This package enables one
to construct a feature extractioen reutine, 1In additien there are include
files to describe hardware in the system, such as, the DeAnza 1link and
displays. For a 1list of all the include files one may execute the

match_files(mtf) command and enter the pattern: ¥.h

3.3.5 Window Code

The Window Code (as described fully in section 2 of the topical document,
"Program Development Under AFES") enables a programmer te interface an image-
processing reutine with a minimum of effort. Essentially, one writes a
section of code which processes a window of image data and surreunds it with
the AFES include files which provide all the linkage to the data and header
fer an image and perform all file manipulatiens for him.

3.3.6 Program Testing

All programs written using the Windew Code may be tested prier te
inclusion into AFES by two methods., The first method is to execute the

program with an existing image as input and create an output image. The user

L g
JUNASPEP ¢

-';.'.; ;_I ' ‘

Ldd

’-4,
ad

......

AR

may then display the output image or examine the image data directly. The
second method is to move the lead module to his persenal "bin" directery under

il Lo

$C which is searched by the shell. The user ceuld then enter the name of the

4 p.

command, be it a measurement extractor or classifier, inte the methed file

along with any required parameters (omitting the input and eoutput file names).

s PO

He could then execute the ext_measures(xms; command in the case of a

measurement extracter, or train in the case of a classifier. The system will
find the user's version of the file in his directory and execute it as if it
Wwere already integrated into AFES. The same technique could be used if it had
already become part of AFES but needed modification. No other user would be
effected until the changes were complete and the user had entered the changes

into the system.

3.3.7 Interface to Programs Under AFES Control

The primary commands enabling a programmer teo place a file, subroutine, g
or command under AFES contrel, are located in the "prog" sectien of the AFES

menu. The following is a 1list of these pregrams as they appear in the menu:

PAIPIISPITS 158 TIOW,

-

3-20

The follewing commands are available for afes program
development:

#%#% GCeneral Informational Commands ###

help - gives syntax required to execute a UNIX/AFES
command based en the syntax descriptien
in section 5

afestext (txt) - gives brief description of AFES file
taken from the information entered by the
user when the file was first added to AFES
via the "addfile" command

man - gives detailed description of either a UNIX
or AFES command. Includes explanation of
switches and ethe:- parameters.

dec - gives program documentation for afes files
and other topical items describing AFES.
menu - gives listing of available commands in AFES

##% Basic File Inspection Commands ¥###

catfile (etf) - lists contents of AFES file to standard
eutput

copyfile (epf) - get read-only cepy of afes file in werking
directory

loekfile (1kf) - look at afes file via the "e" editor
(read-only)

prntfile (prf) - print listing of afes file on line printer

listlib (1sl1) - list all available routines in one of the

AFES libraries ("afes" or "small")

#%#% Miscellaneous File Inspection Commands #*##

match_files (mtf) ~ list all afes files matching a certain
pattern

what_file (wtf) - list current informatien abeut an AFES
command, object, module, include file, etc.
as controlled by the AFES Makefiles,

listdelta (1sd) - list all deltas (changes) to afes file to
include version #, date of change,
person making change, and reason for change

differ (dfr) - list the differences between two versions of !:_
AFES file o
':1
>
-
T
e
1
%
P
o
3-21 N
LAS
!
1

#%% File Creation Commands ###%

newfile (nwf) - create source file with afes standard decu-
mentation based on the filename suffix

add_doc (ade) - prepend afes standard decumentation to
existing source file

afesnroff(arf) - format text file (used in checking manuals,
and decuments)

spell - check spelling in text file

addfile (adf) - place file under afes SCCS centrel

place file or command (te be run en 11/70)
under afes Make contrel
place file or command (te be run en 11/34)
under afes Make contrel

add_to_afes (ata)

add_to_small(ats)

#%% File Modification Commands ###%

editfile (edf) - get copy of afes file for editing in werking
directory and lock out other modifications
to the file

deltafile (dtf) - record changes to afes file and delete user
copy and release the file for further
modifications

killedit (ked) - cancel edit session, delete user copy of
file from working directory, and release the
file for modification

backup (bkp) - make a previous version of an afes file the
latest one (all previous versions are
restorable)

modifytxt (mdt) - modify brief description of afes file which
was eutered during execution of the addfile
command (this informatien is used by the
AFES libraries in preparing a description of
available subroutines).

listfiles (1sf) - list all afes files user is currently modify-
ing or all afes files user has ever created
or modified

All of these commands operate within the envirenment of "“software contrel" as
will be explained in the next section. They provide the true programmer

interface into the AFES system.

3-22

3.4 SOFTWARE CONTROL

A significant ameunt of time can be, and usually is, lest in any software
development preject due to insufficient contrel ef pregrams during the
development, integratien, and subsequent medificatien cycle. The greater the
number of individuals invelved, of ceurse, the greater the impact of poor
pregram management., In the AFES envirenment all source files which are to be
incerperated inte AFES as an include file, library routine, cemmand, etc., are
first placed under centralized centrol ¢f the AFES Administrater. There are a
large number of AFES commands te aid in this process which will be elucidated

in a later sectioen,

3.4.1 Seftware Centrel

Seftware contrel is the mechanism by which AFES accemplishes the task of
maintaining continuity in a dynamic programming envirenment(testbed). The
mechanics of seftware centrel involve centralized file ownership, monitoring

of file editing, and retentien of intermediate changes (versions) to files.

3.4,1.,1 File Ownership

With any project where multiple programmers are providing input into the
system, be it system or application programming, one of the major oebstacles to
smosth integration is the problem of multiple versions eof roeutines floating

around. Invariably someone needs a routine for a specific application.

Presuming he hears that someoene has written such a program, he often cannot

locate the current version. Then if he needs to modify it even slightly he fﬁ

el

usually creates a new file. The tendency here is for a proliferation of

P R

special purpose programs. This does not encourage the programmer to work in a 4

modular environment. If many people have incerporated a reutine into their 'ﬁ

routines then the task of update in case of change becomes enormous. One of ' ;

the major requirements for system development to proceed at any kind of f}i
)

-

»

.

3-23 :

>]

reasonable pace in the abeve scenario is an immense overall knewledge of the
system by a few individuals. If for seme reasen these people leave the

project, it may require menths for the preject to recover.

Centralized file ownership is one of the ways AFES aveids the abeve
preblems. All files which make up the AFES system are owned by the AFES
administrator. They are stered in ene of the AFES SCCS directeries according
te their suffix as described in section 3.2 of this decument. All program
development commands listed in section 3.3.7 access these files in various
ways for the pregrammer without requiring him to knew where the actual source
files are located. He can therefere be sure he has the correct cepy ef the
file. He also has many commands at his dispesal to determine what reutines
are available in AFES and gather informatioen about them. He is enceuraged teo
write roeutines which may be beneficial te ethers through provision eof an
easy-to-use interface to the two AFES libraries. Easy access to all AFES
files also allews a programmer to explore the software to any depth desired.
The wuser may place a file under AFES SCCS contrel via ‘"addfile",
"add_to afes”, or "add_to_small”. The "addfile" command merely places the
source file under the afes centralized contrel in the form of an SCCS file.

The other two commands will execute M"addfile" if required.

3.4,1,2 Source Code Control System (SCCS)

Having centralized ownership of files, the next step is to centrel the
modification of files. This task is accomplished using the PWB product called
the Source Code Controel System (SCCS). SCCS stores the original versien ef a
file and all subsequent modifications to it. Any versioen ef the file can be
produced by applying the modifications or "deltas" (as they are referred te by
SCCS), up to the the version desired, to the eriginal file,

A very important concept in the AFES enviroenment is that of multiple

releases. This is accomplished nicely by SCCS. 1In AFES twe releases are

maintained at all times. The lower release is intended te be an operational

3-24

et

) .
Aatacwiy -

’

WO ST |

POV

AV
v s §

S
adndrdendd e

¥,
bt

L

AL P

R

Dot v dndend d b

1
A

release at all times with the enly changes being the correction of discovered
bugs. The higher release is where program development is to take place and
may be disabled at times. When a user is added to AFES by the AFES
Administrater he is given a read-only file in his legin directery with the
name ".afesinit". This file is executed upen login and every time a shell is
exec'ed. Among other things, this file sets the $z shell variable to a
default release # which is carried through by all the preogram development
commands. When a file is entered inte the AFES system it is assigned an SCCS
Identification string(SID) where the first number is the release to which the
user is linked. The second number is the level of the delta, which is always
equal to ™" injtially. During the course of the project the program
development release will beceme the operational release and a new release, one
higher, will be created. One branch from the last delta in a previous release
is allowed to develop as a programmer sees the requirement. The following is
an example of the evoelution of an SCCS file where the file was entered inte

the system while the programmer was linked to release 4,

0 4.2.1.2
/
;
0 4.2.1.1
/
/)
0 0 (I R P 0 0
4.1 4,2 ¥,3 | 5.1 5.2
release 4 H release 5

The history of the abeve file shews that after it was initially entered two
editfile/deltafile sequences were executed. The pregram development system
then became the operational system thus versien 5.1 was made by the AFES
Administrator via the nextrls command. The programmer then went threugh the
edit sequence once while in release 5 and two more times while being linked to
release 4, The 5.2 version may have occurred before or after the 4.2,1,1 or
4.2.1.2 versions. The listdelta(lsd) command could be used to list all the

deltas or only those in the release to which the programmer is linked. The

3-25

]

"

L .
PPN Yy

T, . H
PO Sy P -

19

R

two releases are totally independent, however,

3.4.1,3 File Editing

When editing a file under AFES control the user always gets the latest
version in the release te which he is linked. TIf he wishes some previous
version in the release to be the latest he may execute the backup command. He
never loses any of the versions, however. One difference the pregrammer will
notice between the listing of a file he has retrieved via editfile from the
same version retrieved via the catfile command will be the absence of any date
or time informatien in the documentatien beilerplate. Instead, the programmer
will notice some capital letters which are preceeded and fellaowed by the %
character. These are recognized by SCCS and the apprepriate substitutioens for
them are made when a listing of the pregram is requested. They provide the
programmer infermatien as to the version #, the date of the listing, date of
last update, etc.

3.4.,2 System update

After a programmer has made changes te a file which is under AFES centrel
he needs to be sure that the changes are reflected throughout t. e system.
This‘is accomplished by the AFES Administrater as will be fully explained in
sectien 8. Briefly, a file in AFES which is intended to be used in the
system, be it an ineclude file, subroutine, or main routine, must be placed

under "AFES Make control. The commands to do this are add.te_afes and

add_to_small.

3.4.2.1 File dependencies
The concept of file dependency means that ene entity in the system is

dependent on one or more files in the system. Whenever any of these other

files is modified the entity needs to be updated in some manner. The entity

3-26

- . PP u ; PN U U S P U i PR R ¥ -

b RENERE AL NERTE

X

OBIIIODN |

L L
LT
S txr e

o l e e,
o A

. e
PRSP

.
v,

i

may be ne mere than a file which contains the centents of two other files; in

case of a change to either of the files, the entity is reloaded with current

versiens of the files. The entity may be,hewever, a complex executable medule
which is dependent on a number ef include files, library subreutines, and
other source files. If any eof these files change the module must be
recompiled and leaded.

3.4.2,2 Make command

The Make command in UNIX/PWB provides a mechanism by which the system can
be kept up to date in a semi-autematic manner. The AFES Administrater is the
only one who actually executes this command and he dees so indirectly via the
afesupdate or tstbed_make(tst). These routines move aroeund in the AFES
directeries and get an updated cepy of the Makefile for the directery and then

execute the Make command. There are Makefiles for each of the twe releases of

AFES maintained. The follewing is an excerpt from the makefile for the "obj8"

directery as an example:

3-27

+—

B - BRI
[
=
o

YEVTITITY

ikt d

AN R M Rt iR 2ot Jia i Ry Ly RS PR A Jitte Sytay S A 2w e it iy ac - e T T —~r
. AT e T e e N e T T T e T . R AT s T e -'H_‘\v\‘ A S e a4 TN s

T T R T LI L R A A A TSI AN I

Makefile

will make all the ebject files in /u/afes/obj$z

This is a release dependent makefile and all pregrams
are dependent upon shell variable $z for release #.
C
F

C = /bin/ce -q -0
= /bin/cc -0 =12
= /u/afes/1ib8
INCL = /u/afes/incl8
CMD = /u/afes/scecs/cmd
FILES = /u/afes/sces/files
FORT = /u/afes/sccs/foert
BIN = /u/afes/bin
OBJ = /u/afes/obj8
PROG = /u/afes/cmd
APLIBS = -1V -1
WINDOW = /u/afes/obj8/WINDOW _LIB /u/afes/obj8/WINDOW_INCL

7 LISt e

update : makeall

D e o o

t!] makeall :: WINDOW_INCL

WINDOW INCL : /u/afes/incl8/image_hdr.h /u/afes/incl8/wndw_init.h
/u/afes/incl8/wndw_proc. h /u/afes/incl8/wndw_fin, h
/u/afes/1ncl8/wndw buff.h /u/afes/1n018/wndw read.h

- /u/afes/incl8/wndw_next.h /u/afes/incl8/wndw_write.h

: /u/afes/incl8/wndw _tidy.h /u/afes/1n018/wndw end.h
f‘ /u/afes/inecl8/in_conv.h /u/afes/incl8/out_conv.h
echo "">WINDOW_ INCL

makeall :: WINDOW LIB
WINDOW LIB : /u/afes/1ib8/if v_siz.o /u/afes/1ib8/if loc.e
/u/afes/1ib8/if r hdr.o /u/afes/1ib8/if w hdr o
F /u/afes/1ib8/error.o
echo "">WINDOW_LIB

makeall :: lapl.o

lapl.o : $(FILES)/s.lapl.c $(WINDOW) $(INCL)/image hdr.h
$ (PROG)/copyfile lapl.c
$(CC) -c lapl.c -I$(INCL)
-rm -f lapl.c

makeall :: efilt.e

efilt.o : $(FILES)/s.efilt.c $(LIB)/s_read.o $(LIB)/s write.o
> $(LIB)/if_open.o $(LIB)/f1ush hdr.o $(LIB)/error.o

¢ $ (PROG)/cepyfile efilt.c

. $(CC) -c efilt,c =I$(INCL)

-rm -f efilt.c

3-28

AR

T

The purpese of this Makefile is te keep the object code up te date for lapl.o
and efilt.o. The Makefile in bin$z will lead the ebject module with
appropriate subreutines and libraries., The twe are maintained separately far
clarity. The lines at the beginning are cemments as are any lines preceeded
by the # sign. Next are a list ef macro definitiens which may be substituted
in the boedy of the Makefile with the $(NAME) string, where NAME is the string
to the left of the "=" in the macre definitien, The first executable line of
the Makefile is always made if no argument is given, so it is a conventien Bf

[AFES to have a dummy line there which is dependent on "makeall" which is
:! dependent on all the items defined in the Makefile. When "make" is executed,
g all items are checked and updated as required. The single ceolon indicates

g dependency and the double coelon allows. for a centinuatien ef dependencies. 1In

the case of lapl.o, it is dependent on the SCCS source file feor lapl.c, the
WINDOW macre, and the include file image hdr.h. If any of these change the
make command will execute all of the lines following the line of dependencies
up to the next item. 1In this case it will get the current copy of lapl.c,
compile it and then remove the file lapl.c. In the case of efilt.e, it is
dependent on the SCCS source file for efilt.c, the afesd library reutines
s read.o, s write, if open.o, and flush hdr.e. Tﬁe make will proceed as with
lapl.e.

3.4.2.3 Placing a Command Under AFES Make Control
As mentiened earlier the two commands which allow one te place an item

under AFES make control are "add_te afes" and "add_to small". These coemplex

commands are dependent on the highly structured AFES directery layout. These

commands allow ene to start with either a high level item such as a command or
at a lower level such as an include file. If one starts with a cemmand, the
SCCS files will be searched for the main reoutine or shell file as apprepriate.
If not found the reutine "addfile" will be executed automatically for the -“T
routine. The user will then be asked questiens such as file dependencies and
the same process will be repeated for all lewer level reutines. Finally the
Makefiles associated with the command will be modified autematically and the

3-29

user will be prempted te add apprepriate help and menu entries. If a user
wishes te modify the makefile entry for any file he may execute add_te_afes or
add_to_small again for that file and the makefile entry will be replaced.

3.5 COMMAND STRUCTURE

There are many command categeries in the UNIX/AFES system, with the added
complexity of multiple processors. The primary UNIX feature used te soelve
command problems is the UNIX shell. All command searching is accemplished by
the shell, which net only functions as a terminal command interpreter, but
which may also take as input a program written in shell syntax. The shell
plays an important rele in making the AFES cemmand envirenment clean and easy
te use. Currently, the command linkage between the 11/34 display processer
and 11/70 host computer is previded by the DeAnza link. The link supperts
remote display commands and transfer ef image data between precessers, as well

as, execution of commands remotely.

3.5.1 Command Syntax

In the Unix system there are some general principles followed in the
syntax used in command generatien., Hewever, there are ceontradictions and seme

inadequacies which the follewing AFES syntax will reselve.

All the commands in the afes system are of the Unix form:

command_name parameter,..

The following symbols have special meaning in describing the command syntax

via help, or man:

3-30

f:‘-‘; L“ ’4.‘-’..'-'..' ": S

S M

IS B3]

- [
5oy

T '

aelts 4.[

<> The angle brackets are for greuping items
together and have the highest priority.

(1 The square brackets indicate to the user than

all flags or parameters enclesed are eptional
as a group.

This is the exclusive-or eperater which

is used to show the operator when enly one
parameter or group of parameters in a given
set is allewed,

Q) If a comment is required for increased understanding
it will be enclosed in parenthesis. They should be
avoided if possible.

i~~~ RSP

- The "dash" alone means the cemmand should
read from standard input.

-a The "dash" immediately followed by one or
more characters represents a flag which
the user must type exactly as shown. The
terminator fer the flag is a space or left
angle bracket.

o & A rend

-a<nam> This is the symbol for a flag "-a" fellowed
immediately by the user's input for "nam%,ie.
-afilel , where filel is the name or a file
to be processed. -
i
name An item offset with spaces or "< >" is a e
parameter which the user must enter his .bi
response to, such as in the preceeding example. !11
.‘:]
For the current release all parameters and flags rist be entered in the order :If
as shown in the help command. The following examples are given te aid in fﬁﬂ
understanding the syntax rules: !;ﬁ
]
» i
e
.i
-:
» |

3-31

Ce a4

bt .

''''''''''
....................

cmd parml1 parm2

cmd [parml parm2]

emd parm1 [parm2]

emd [parmi) parm2 BER oppgr HEM
(since the command cannet tell
whether it is parameter one or two if
enly one is entered.)

emd -i -j<name> parml

cmd [-i<name>] [-j] parm

cmd [<~i name>] parm (name is required with the ~i flag)

cmd -1 |} -r

omd <~i [-z<blecks>] [-s<sized] > || <-0 [-z<blecks>]>

3.5.2 Modifications te the Shell

Several changes have been made to the Interactive UNIX shell te adapt it
for use by the afes system. These changes have mostly been made to allew the

afes system to maintain shell variables and te use the inter-precessoer link.

The AFES shells are based on ISC version 3.40 shell but have been

upgraded te ISC versien 3,45, Additional space has been allocated for parsing
(':' operator in expressions) to allow the use of lenger strings.

An additienal feature has been added to the file scanning precedure in
the shell., Besides accepting ':' and ';' as legal delimiters, the afes shell
also accepts '%'. When a file to be executed is found in a directery which is
delimited by a '%', the pregram itself is net run. Instead, the name of the
program is stored in shell variable I and a pregram named 'interface' in that
directory is executed. The use of this feature in the shell is to specify
commands which, when typed on the 11/34, should be handled by executing the

program of the same name on the 11/70. The transferring of the command to the

11/70 and taking care of the output is done by ‘'interface'.

3-32

e oo e . - PRI I PR Y P A A e W '*

Afes software is dependent on the values of various shell variables
including variable $z which contains the current afes release and variable $x

which has the path of the current working image. When certain afes programs f;
are run, the values of these shell variables in the top level shell must be &;
changed. This is handled by forcing 'next' cemmands on the shell. After the ij
shell executes an 'afeslink' command (alse knewn as 'lnk') the shell forces a ff
- 'next $C/.afesinit' and after a 'chg_wrk' (alse 'cw') the shell forces a 'next i:
- $C/.envinit’', ::
1! The follewing commands have been added te the shell te suppert the afes ;?
" Image Processing Language(IPL): 3;
. cpi phote view frame T
cpm methed id -f
vrb [-] T
They allow the changing of current processing image, current processing method ;&j

and detail of erreor messages respectively. In detail, the follewing shell

variables are changed:

NS

for cpi,

$s - set to precessing photo

$t ~ set to precessing view

$r - set to precessing frame

$x - set to $q/$s/$t/$r

$y - set to $x

$p - set te contents of file $x/.spectral

for cpm,

$w - set to processing methed

The "vrb" command functions much like "opt" in that it determines the level of

- -
{
R
0
[l
(I
B

detail of afes error messages an operator will receive. It sets the shell
variable n te accomplish this., "vrb -" will give the most detailed output and

"yrb" the least detailed.

3-33

- N om P a P b BRI TP P . e

P S

A SResc an S an aE o S an SEM. o an oe o0

Some other shell variables which are used by afes are variables $D and
$H. Variable D is used to store the current date in a form used by seme afes
programs and variable H is used to stere the name of the afes error file used
to store error output for programs executed acress the link. The afes shell
also has an expanded acceounting file osutput. The full command is written te
the accounting file rather than just the program name. This will allow users
te recover lists of commands they have executed. If a persen weuld like te
repeat a series of commands or use a similar series on a different image, he

does not have te depend just en memory.

There is a special version of the afes shell called 'transh' which is
used for commands sent acress the link with the 'tran' command. This shell is
always given ene command to execute and is net expected to read commands frem
the terminal. All references te typing out a prempt or typing out the message
about mail have been removed along with the check for logout after being idle
for 15 minutes (it is never idle). This versien ef the shell uses a different
startup reutine (/ete/tran.init) from the usual shell (/etc/sh.init). Alse an
extra character is expected prepended to the argument of the '-c¢' switch.
Rather than let the shell decide if it is the legin shell, the shell is
considered to be the login shell (variable F set to 1) if the first character
in the '-c' argument is a space (or anything except a zere) and not the login

shell if the first character is a zero.

3.5.3 Inter-~Processor Communicatiens

As mentioned in the preceding sectien, most of the changes to the shell
were in support of the inter-processer link between the 11/34 and the 11/70.
The 11/34 is the display station where the user may use the DeAnza displays
and any commands available on that processor. All commands in the "“tst"
section of the menu are executed on the 11/70 based on the user's current
working method and image. If he executes one of these commands from the

11/34, the mechanism is such that it is started up in backgreund much as if he

3-34

=

had been on the 11/70 and executed the "run_in bkg(rib)" command. He will
then be netified by mail when the process is complete and may examine the

status via the "bkg" cemmand.

The primary reutines which accemplish the link are the "tran" and "1lnd"
cemmands. The tran command formats the request and assumes the identity of
the user executing a "tran -c", On the ether side of the link the precess is
started by the "lnd" command which executes a shell with the same privileges
and identity as the initiator ef the command. A reoutine called "get udata"
was added to the system to determine user identity.

The tran command passes a structure bleck acress the link which is

decoded by "lnd" for execution. The type of informatien is: cemmand,

parameters, erreor file, user infermatien. The tran -c¢ cemmand saves the
log_infe returned via the get udata call in p->leginfo which is part of the
p->name bleck., If there is a third argument field te the "tran" cemmand , it
is taken as a file name on the other side by "lnd" te which stdout and stderr
are te be redirected. The 1nd reutine will fork a version eof the shell in

/bin/transh which assumes the identity given in the loginfo bleck via the
logpost() functien. If there is no fourth argument to the "tran" command then
the shell will be started with $F = 1 which is like a login shell. Otherwise, :
if there is a fourth argument to the "tran" command, the shell will then be ‘ﬁ
started with $F=0 so some of the initializatien in the .afesinit will neot take

place unnecessarily for this cemmand string. To save time, the /bin/transh

does a next for /ete/tran.init instead of /ete/sh.init. The two commands }ﬂ
which take care of the "tran" details for the user are "modlink" and "shlink". b?

The "shlink" forces the shell to perform like a login shell with all shell
knowledge. The "modlink™ is faster but has more limited knowledge.

P

Besides command execution, the tran cemmand alse allows the user to
transfer a file in either direction across the link; and to see if a file en) j
the other processer is readable, writable, or is a directory.
Y

3-35

—_—, . RIMACIM L T
T e R T N A A A A R IS A A el
® .
...
X
b
& .
: .

K

.

3.5.4 Command Structure fer Master Precessor

.
anl

The commands available to a user depend upen the sh.init shell command

a
)
¢

/)

which is executed when the user logs in and when a shell is exec'ed. This

<
file has been modified se that .afesinit is executed if found in the user's X
login directory. For AFES users, it is present and therefere executed. One 5'
4

of the things done by .afesinit is te set up the $X shell variable which is
used by the shell to determine which directories to search when a command is

entered. The ".afesinit" file is as fellows:

set z = 8 1

set X = ":$B:/u/afes/emd:/bin:/usr/bins/u/afes/bingz:" s

if $G = 0 set X = "$X/priv:" i

set u = "/u/afes/bingz" -]

set v = "$u/modules" i

set q = "/w/$L" B

if $F = 1 then 9

set o = ¢ 3

if 1 =d "$q" mkdir $q -

if ! -4 "$q/tmp" mkdir $q/tmp R

set H = $q/tmp/.small]

if "$S" 1= transh then 5

if‘ "$A" = "n then k"‘ﬂ

$v/acent name (= A B

endif - o

endif ﬁ@

next -a $C/.envinit o

endif i;

next f@

3

.9

As was discussed in a previous section the "$z" shell variable is set te the]

release to which the user is linked. For afes users the shell searches the :k

following directories for commands: current directery, user's personal bin 1

directory, the AFES program development directory, the system bin directory, :

and the system users bin directery, and the AFES testbed directory. Given the
order of search, it is possible for AFES or any other user to have his ewn

version of a system command such as the "man" command.

3-36

Al Ll L ——im - TP YA S U S S S I S PO S U RS |

- - ClainCy ;
~ CIiR] - ChC e Ol . PO T M i |
Ot g . B A IR UL AP
L I N A N T S R O T e A N R e N o e e S

} The following shell variables are set at 1legin, any time a shell is :

exec'ed, or after afeslink: i!

f} $u - afes test bed directory :%
- $v - afes modules directory -

$q - user's image work directory e

The follewing are enly set at login eor after executing chg wrk:

$o0 - default display is celer ’

) $H - directery for stdeut or stderr for remote commands
{ $A - account file name for accounting system

If the shell were a login shell then ".envinit" is executed after ".afesinit",
This alse happens any time the chg_wrk cemmand is executed. This is a coepy S
the ".envinit" shell file: !&

if -r $q/.photo then é:{
set s = <$q/.photo

endif ff
: if -r $q/.view then)
{ set t = <$q/.view ™=
- endif

if -r $q/.frame then i:k
set r = <$q/.frame -

endif Ce
if -r $q/.cur_method then b
set w = <$q/.cur_method ;
endif)
set x = "$q/$s/$t/$r? .
set y = "$x" -,
if -r $q/.spectral then o
set p = <$q/.spectral -
endif o
next R
NS
ARAN |
e
The follawing shell variables are set by ".envinit": {;}
»
vy
Y
)
b
—
3-37 1
1
3
—

baialatata i ittt siatedntichutdtiintudendnel ‘4~m

D SN S

AR ARG AAMEA A

e -

. . et et . AT AR - . M N e e M "
T T T T e T L e T L e e e T e e T

.

..... ar
........ - - h‘-_"_

$s - current working pheto

$t - current working view

$r - current working frame

$w - current working method

$x - path to current werking image

$y - path te image fer statistical processing
$p - spectral type of current werking image

3.5.4.1 Shell Interfaces te User Programs

The UNIX shell is really the executive for the AFES system. Being a
powerful command interpreter, it allows for the support of various paradigms
without the expense of a great deal of the project's development time. Since
our control code can, for the most part, be written in this high level
language, modifications are more easily made. The two paradigms currently
being developed for AFES are: statistical pattern recognition, and Artificial
Intelligence. The user has the concept of a current werking environment when
he logs in, The shell is initialized to reflect this environment as described
above, This environment is maintained whether the user is legged in to the
11/70 or the 11/34. Since the input to the shell in this case is the
terminal, this is considered the foreground environment. The user may run
shell command files which we refer to as the Image Processing Language(IPL) in
background which set up a different environment but do net modify the

foreground. The IPL will be covered in detail in section 6.
3.5.4,2 Command Types
The program development commands, which were listed in sectien 3.7, are

available to the programmer at all times. The menu command is available to

lead the user to commands he may execute.

3-38

e

N et el

-

S

SR |

»

. _4;.1_41 PP U TR ..1

The following command sections are available via the
menu cemmand:

tst - Afes test-bed commands

input - entering images inte the afes envirenment
preg - Program development cemmands

misec - Miscellaneous commands

meas - measurement extracters

trans - 1image transformation ceommands

class - classifiers

symb - symbelic processing cemmands

admin - Afes administrater cemmands

The type of commands in each of these menus will described in the following
sections,

3.5.4.2.1 ¢tst

These commands allow the user to enter images for experimentation, enter
or modify a working methed, change working image or methed, define measurement
sets for training, train a classifier, classify the image, examine the outputs
of the pracess tree, clean up previous output, run a precess in background and
monitor its status, get runtime information for a command, change precessing
method or image, and execute symbolic precessing. The commands alloew for
small changes such as the additien of a new region without having to
recalculate measurements for existing regions, These shell files execute

modules in the /u/afes/bin$z/modules directory as required.
3.5.4.2.2 Input
These commands allow a user to enter an image into the afes format from

either the disk or Landsat tapes. This imagery can be either monochromatic or

polychromatic; monoscopic or stereo.

3-39

FEPUE S IS Sy S Y a a v -

i U e ¢
SN . e
e PRI M D

LR 2R B

.
e e v .
E N

- - -. - - -~ - o) -
L R e N L T R Y o

h .

am e N - e . .
P T Y I I . ALSAEHACYS
T T o T y e e T e e T u A s

3.5.4.2.3 prog

These commands make up the program development commands cevered in

section 2.

3.5.4,2.4 misc

These commands are a greup of general purpese cemmands which may aid the

user in link usage, file examinatien, or debugging.

3.5.4.2.5 meas

The term "measurement extractor®, in the statistical pattern recegnition

paradigm, is any measurement which is applied te a sample of the data te be ﬁ
classified. For image precessing, measurements are not made on individual ‘?
pixels but on a window of these pixels with the purpeose being to reduce neise. ;
The goeal of statistical pattern recognition is to accomplish a separatien in i
measurement values between visually distinct areas of the image, which are fﬂ
referred to as classes, ie. trees, field, development, etc. Measurement X

extraction is based on the user's current werking methoed as will be described X

in section 6,

3.5.4.2.6 trans

These commands allow a user to execute a number of transforms on the rows -

and columns of a image, such as: fft, fast-hadamard, etec.

3.5.4.2.7 class

This menu contains classifiers which may be entered into the current

ad

working method file and trained if required and executed via the "classify"

command.

340

A NI SN SR da ddm i D), P S P S P D Y A Nl A .o s —— —im J

CRACIACEMORE) PR ECI ACRIL S Syan b gan /e Sy vin Jete Yatet S04n) dn St A R R

3.5.4.2.8 symb

These commands are available to the user only after executing "sip",
which is the rule-based symbolic precesser,

3.5.“'.2-9 admin

The AFFES administrater has a number eof commands at his dispesal which

enable him te maintain the AFES system.

The following cemmands are available te the Afes administrater:

makelib - make afes library
nextrls - creates next release of afes
inmk - Determines which files are not in Makefile
afesupdate - updates the afes commands via "make",
tstbed make(tst) - update the tstbed cemmands via "make".
adduser - adds user to afes

(login and type /u/afes/bin/adduser)
rmf - remove sces file
cleanup - removes all deltas from an afes file
makemake - make the makefiles up to date
deita_priv(dtp) - list users with delta privileges te a file

add_name(adn) give user edf/dtf privileges to a file

3.5.5 Command Structure for Display Precesser

The command structure for the display is similar te that of the 11/70 in
that the shell is initialized via .afesinit and .envinit on the 11/34 shen the
user logs in on that processor. A convention has been followed when a version
of a shell cemmand is required on both processors but the code must be
different. The convention is to create a new file with the alpha portion of
the name preceded by the letters "sm"., 1In the case of .afesinit it would be:
.smafesinit. The same convention is followed for some of the directories
maintained by the Make command on the 11/70 but whose executable commands are

"tran'd" acress the link to be executed by a user on the 11/34, This is the

3-41

ChaiAminaai)

.........

IR AR AR

s L
.
e

- '
P o .
b aa a4 g 4

P e

PN

o b asuh

-
o

e T

L -
(L
=

.wAakff—jqaf1II*.
Py »

case with the "tst" section of the menu whose commands are stered in
"/u/afes/bin$z" en both machines but whese code for the 11/34 is maintained in
"/u/afes/smbin$z" on the 11/70. All of this is, ef ceurse, transparent to the
user with the exception being that the menus on either system will differ
slightly.

In addition to the menus available on the 11/70, the user has the

follewing menus available on the 11/34:

disp - DeAnza display commands
itt - Display itt commands
init - Display initializatien cemmands

3.6 DOCUMENTATION

The AFES system maintains multiple levels aof decumentation en-line, where
each level 1is geared to satisfy specific needs, from command syntax to
detailed program documentation. The AFES system provides an interface to the
programmer which encourages him to incerporate needed decumentation and
relieves him from the task of remembering all the levels required. The end
result will be a system beth usable and modifiable witheut requiring one to

spend an inordinate amount of time just learning the system.

3.6.1 Document Types

There are a number of different types of documentation in the AFES
system; and the access to this documentation varies greatly depending on the
type. The main documentation for any file will be found internally in the
file. The next level of documentation for a file is called a doc file. For a
l1ist of commands the user has the menus hy section. For each command in the
AFES system the user has access te help information. If the help infermatien
is insufficient he may refer to the man file for the command. Finally, the

user has access to various tepical documents to aid in his development of

3-42

.....................
...

pregrams under AFES,

3.6.1.1 Source Cede Documentatioen

The internal source cede documentatien is required for any seurce file
under AFES contrel aether than ascii tables, such as menus., A different format
for documentatien exists for each type of file depending on the suffix. A
list of the fermat files for each type was given in section 3.2,

*Tamd

3.6.1.2 Document Files

4 A doc file is required for every file in the AFES system eother than a
*i shell file which appears in a menu. Shell files which appear in a menu will
oenly have a man file associated with them. A main C file which is entered in
a menu will have both a doc file and a man file, All other files, such as,

tables, subreutines, include files, etc. will have a doc file.

3.6.1.3 Menus

3.6.1.3.1 PDP-11/70 Menus

The fellowing is a list of the menu files and the directories in which

they are steored:

3-43

;ﬁ; /u/afes/incl$z:

a menulist - which is a list of the menu sectiens given te the
t!! user if he executes "menu" witheut a sectien name.
>

§ menupath - a file used to asseciate a menu sectien with the

p physical directery in which the menu resides.

! menutst - testbed commands

menumeas - measurement extracters

menuclass - classifiers
menuinput - image input inte the afes envirenment
menumise - miscellaneous cemmands

menutrans - image transformatien cemmands

menusymb - symbelic processing commands

/u/afes/bin:

menuadmin - Administrater commands
/u/afes/cmd:

menuprog - program develoepment

3.6.1.3.2 PDP-11/34 Menus

/u/afes/smbkgé$z:

3-4Y

S SR Aatdie g Gt Bl Ay iu aummaran
'
-

]
| S W

2}

Ny W v wTes s
RO BFRA R "‘_, TN
. - e .. Lt
R L e P

" DA e
A A

. o
etat e

RRANS P ARy~ Y
. B G e .

- ¥
.~

v 0 > - L Te AR L
PEOSERATOCE AT LIl AR LI R A L L PR N .

menusmlist - list of the menu sections given to the
user if he executes "menu"™ withoeut a section name.

menusmpreg - program develepment commands
menusmtst - testbed commands

menumeas - measurement extractors

menuclass - classifiers

menusminput - image input inte the afes envirenment

menusmmisc - miscellanesus commands

menutrans - image transfermatien commands
menudisp - display cemmands

menuitt - itt commands

menuinit - display initializatien

The user makes entries to these menus via the add_teo_afes and add_to small
commands, but he may alse modify any eof the menu files via the

editfile/deltafile sequence if necessary.
3.6.1.4 Help Files

The following is a list of the help files and the directeries in which
they are stored AFES system:

/u/afes/bin$z:
helplist - This is the help file for all release
dependent commands in UNIX such as found
in the menu sections: tst, meas, class.

/u/afes/bin:
cmds - This is the help files for the entire
UNIX system in which all AFES program
development and administrator cemmands
are kept.

The help command in AFES tries to find the command in the "helplist". If that

3-u45

L L .

s

-
"

- T e e -
PP S WA

e e e e e e T e
N T S A A

C NI . et e T et > et DA T ettt LIS L I N PRI - " -
W7 At e et T et T T T T e T T R P P N et et WS At Wt et atlatoat W TlaT W T

fails it executes the system help command which searches the "cmds" file, The
"helplist" can be modified by any user via editfile/deltafile if necessary.
The "cmds" can enly be modified by the administrater.

3.6.1.5 Manual Files
All of the manual files under AFES SCCS centrel are in NROFF fermat.

They can be modified in the same manner as any ether AFES file, An nreffed

version ef the files, per release, are maintained in the /u/afes/bin$z/manuals

directory. The man command will execute the UNIX man cemmand for the default
directory if the user does not specify the afes section of the manual as a
parameter. If the command is net found in the system manuals then the AFES

manuals are searched for the command.
3.6.1.6 Document Files -

All of the "doec" files under AFES SCCS contrel are alse in NROFF format.
They c¢an also be modified in the same manner as any other AFES file., A LY
nroffed version of the files, per release, are maintained in the
/u/afes/bin$z/documents directory. The doc command will cat a copy of the doc

file to standard output(normally the terminal).

3.6.2 Documentation Aids

To aid the user in the creation of all of the documentation required by

AFES there are a number of techniques employed. These include using a shell

,4 .JT o,
. Ce e e
et oa ORI A

interface to bring the correct Dboilerplate required for all file -

documentation, be it source code, doc file, or manual; integrating the NROFF

..

formatting routines into the decumentation; prompting the user for required

menu and help entries when adding a command.

e ey -
PO O™ §

3-146

& w J Bl
" e - o™ Mk I IO AT ST e Y e R T TN TR T e Y TN T
A A S AN O N SR N o SR A NS DR/ e e T S e e s T N T N e T A

—— - ~
DRI N DR I LA Py) I I I T R R I e R N e e D

N
3.6.2.1 Beoilerplate

; The boilerplates for seurce files are unique to the language, C, Fertran,

- or shell but the infermatien required is essentially the same. The
boilerplates make use of certain SCCS variables such as date of last
modificatien., The user will fill in the information as required for his

) routine and delete the portions which are net applicable, The commands which

=N enter him in the Ned editer with a fresh boilerplate are newfile(nwf) and

2 add.dec(ade)
. The add_doc command will prepend the beilerplate to an existing file which

» was not begun by newfile.

The following is a detailed description of how one weuld fill out the
boilerplate for a C reoutine:

e FILE NAME
This is the source file name to be used by the compiler or loeader E:
commands. It may centain several entry points but the name of the file ﬁ;
may or may net be one of them. For C routines under afes, the suffix -

A must be ".c" with a total length of 12 or less characters,

e VERSION
The version number is supplied by SCCS via translation of the %I%

“ variable. The follewing is the meaning of the number:

release,level.branch.sequence

For afes the number is limited to one branch off the main trunk.

N .
7

3-47 %

e DATE OF LISTING

The date of the listing is alse supplied by SCCS via translatien ef the
%fH%%T% variables.

o PROGRAMMER

The persoen respensible for this program.

e DATE OF LAST UPDATE

Provided by SCCS via translation of the %G%%U% variables.

e ENTRY POINTS

This is a 1list ef the entry points, ie. main and/er functiens centained

in this file. There must be at least one.

e INPUT/OUTPUT FILES

This is a list of all data files which are epened by functions within
this file. The complete pathname and the r/w mecde should be included. A
descriptien of the data file layout sheuld be included in a file
accessible via the doc cemmand. For example, if a file is opened which

follows a particular standard then list the standard by dec name.

o INCLUDE FILES

Include file names are to have the suffix ".h" and be 12 characters or
less in length. They are to be loaded by the compiler from the working
directery, ie. no pathnames are allowed, The variables which are
declared or defined inside an include file are to centain their
descriptions within the include file and need not be repeated in the

doecumentation of the C pregram which references them.

3-48

r~ CTNT AT)

.
RRNL I LG LA DL PR & S D

e MACROS

C proevides certain_ language extensions by means ef a simple macre
preprecesser. All macres defined by the "#define" cempiler centrel
statement will be listed under this sectien and will contain comments
describing the input arguments, if used, and the purpese of the macrao,

e GLOBAL DA.A STRUCTURES AND VARIABLES

Glebal data structures and variables are theose which are defined eutside
any functien and are, therefore, available by the same name te many
functiens. If the variable is defined in anether seource file, then an
extern declaration is required. Otherwise, the variable is defined in
this section which is outside the first left brace. There will be only
oene declaration or definitien per line and a descriptien en the same

line.
e ENTRY

This is the beginning of the function dependent documentatien which will
be required for each main er function entry in the source file. The
entry will b~ listed here as it is in the function definitien statement

prior te “*he first left brace of each functien. In addition, each

argument will be listed beneath the entry with one entry per line and a
comment describing it. ?f;
' -
~
e ARGUMENT RETURNED -
R
For each function there will be an explicit return, er an exit in the
case of a main entry. The type of argument returned and its pessible !_;
values, if significant, will be listed under this heading with one per ";
line. The default type will be integer. The type of argument will : ?
correspond to the function type. ZPE
L
3-49 L
P

FUNCTION

This sheuld be a one er twe line explanatien eof the functien eof this
entry. The same thing will be used for the addfile cemmand,

DETAILED PROGRAM DESCRIPTION

The first part of detailed descriptien sheuld be the method of solutien
or algeorithm used by this routine, if applicable, The reason for its
existence could alse be mentiened here. Any theoretical references would
be listed here,

Next, there will be a step by step descriptioen as to how the functien ef
this reutine was performed. This will be in a structured (if then else)

English such as:

prepend a "-" to the help argument
while an input line exists
if the line begins with "-argument®
write "argument:0 .
while an input line exists
if the line begins with "-"
then take geod exit
else output th@ line
end of if
end of while
end of if
end of while

FUNCTION CALLS

There will be two majer headings under functions; File Internal, and File
External. Function entries defined in the same source file are placed
under the File Internal heading. All functions which require explicit
inclusion by file, or by library name ("-1" flag) during compile and lead
will be included under the File External heading, and will have the

library name follewing the variable,

3-50

o o COMPILE STRING

j Included ~* this point will be the actual compile string which would be
7

- used to produce an ebject file of the seurce file, or an executable

module if it has a "main" entry point,
e EXECUTABLE CODE

b This is the main body of the functien., A few additienal items may appear
(- at this point before the first left brace., The actual declaration of
y static variables, the function entry itself, and its input arguments(if
ﬁ; any), will appear prior to the left brace. After the left brace any
:5 local variables will be declared. There will be one per line and each
one will have a comment on the same line. They will be grouped by type,

ie. integer, char, etc. There is ne prescribed order of the groupings.

Next will begin the actual executable code, which will contain major
{ comments for logical segments and minor comments as required. The end of
each function will be an explicit return or exit with value. All actual
code generation should use tab indentatien corresponding to conditienal

levels in the code.
3.6.2.2 Formatting Routines

A major contributor to easy documentation is the NROFF fermatter. This
formatter allows one to easily medify a document, label levels, provide
autematic numbering of sequential items, etc. Please refer te the off-line
manual for NROFF for details as te how to use it, All of the AFES
boeilerplates are written so the user enly has to fill in the blanks. He eonly

A needs to understand NROFF if he wishes to create a more detailed document,

T

AAJJ

3-51

"-.‘ .‘ . .
o

MOt i RS- Ny
S MRS

3.6.2.3 Prompts for Menu and Help Entries

Every command which the user wishes to add te the AFES system must be
added via the "add te afes" or "add_te small" commands, where add te_small is

for 11/34 commands only. These commands are essentially the same with the
difference being in the type of items oene might wish to add. The enly
significance of these commands, in the area of doecumentatien, is te cue the
user to add the apprepriate entries in the correct menu and help file., This
is accomplished by entering the ned editor with the correct file. The user
then duplicates an entry replacing the name with the command name being

entered.
3.7 AFES ADMINISTRATOR

As mentioned briefly under Software Control, the AFES administratoer is
the manager of AFES software. He is the one who adds users to AFES, maintains
multiple releases of AFES seftware, and assurgs system integrity. His task

has been made as automatic as pessible to re&hce human erroer toe a minimum,

\
|

3.7.1 Adding AFES Users

When a user is te be added to the AFES environment the AFES administrater
must first add the user te the Unix system by creating an entry in the
/etc/passwd file and creating a login directory for him. The AFES
administrator then logs in as the user and executes the /u/afes/bin/adduser
command. This command will bring a copies of the ".,afesinit" and ".envinit"

files into the user's login directory on beoth systems and make an entry in the

"everyone" file for AFES mail. The next time he logs in he has access te AFES

e aary
PRI .o T
. o
. PR

F commands and all directories he needs will be created.

\

b

. 1

: .9

b. oo

-

. '@

| B .

a 3-52 y
‘ N

[@

- - —

......................

3.7.2 Maintaining Multiple Releases

As was mentioned earlier, the AFES administrater maintains twe releases
ef AFES files and commands, The higher-number release is stered in
/u/afes/.toprelease for reference by some commands. One additienal release
(lower) is alse maintained. The default release is determined by the $z shell
variable which is set when ene legs in or is changed when ene executes the lnk
command. The Administrater receives mail any time a file under AFES make
control is modified via edf/dtf. He will update the entire system via the
afesupdate command. If no one has medified a file in the lewer release(which
is usually the case) he will seo indicate when executing afesupdate. This has
the effect of changing the modification dates ef the lower release files
effected and obviating any recempilation ef files. In the upper release the
makefiles are first made via the makemake command. Next the individual AFES
directories are remade. The libraries are updated via the makelib cemmand.
The 11/34 must be boeted and the link established before executing afesupdate
or tst since any updated commands are down-leaded toe the /u/afes/smbin$z
directory on the 11/34,

At logical stopping places during :he develepment of AFES the
Administrater will decide that the higher release should become fixed as the
operational release and the lower release deleted. He may accomplish this
task via the nextrls cemmand. He must make sure there are ne AFES files being
edited before executing this cemmand. This cemmand will de a "get -e" and
"delta" for every file in the afes system in the next higher release. It will
then make all the directoeries required and copy all the files inte these
directories, All users will be notified to link to the new release for

development of programs.

3-53

........

s

s matsas-_sas

_____ e I P N RS R N . R SRR T A R S S A iyt S -l e T A el
......... PR PR BT . e e e e e e e e e e L e L AT N ALt A '_;!,...*.*!.'.«m‘-n.-.\'.._.;’.‘..._.&" “__th.'
%
N
P
i

3.7.3 Assuring System Integrity

The AFES framework of SCCS/MAKE has made the job of system integrity as
straightfoerward as pessible but the AFES Administrater must still be semewhat
involved with the development ef pregrams in the AFES envirenment, He must
make sure that pregrammers are adding the praper decumentation at all levels
and that any changes te routines which might affect others are ceoeordinated.
If a user fergets to add a routine which makes his 1leading fail the

Administrater must circumvent the mistake so ether files which need te be
remade can proceed. At the same time he must identify the problem to the
programmer, The AFES Administrater is the catalyst which keeps everything

running smoethly and efficiently.

Y YWY YTwYw

M SN B Al A A o o

DTSRI

L
iy

3-54

RS AR S A0 Ak
| S

[
{
|
)
b
:
l

|

D-A125 645 272 -

RUTOHRTIC FEATURE EXTRRCTION SVSTEH(U) PAR TECHNOLOGV
[o1] HARTFORD RY J L CAMBIER DEC 82 PAR-82-1

A RADC- TR -82-200 F30602-78-C- 0088
UNCLASSIFIED F/G 20/6 NL

ﬂ'|
g 3

NS
m
“2.0
1.8
1.6

& SEEE]

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAYU OF STANDARDS-1963-A

lizs s

4, MEASUREMENT EXTRACTION AND CLASSIFICATION

4,1 INTRODUCTION

This sectien 1is intended as an intreductien teo statistical pattern
recognition in general, and its implementatien in the Automatic Feature
Extraction System (AFES) in particular. It preceeds from an intreductien of
basic cencepts to the actual implementation ef these cencepts within the AFES
framework.

Statistical pattern recegnition is simply the implementatien of the
childhoed concept of learning by similarity. If a yeung child is shown
several pictures of other animals, he can recegnize which of the animals are
dogs. He recognizes them in spite of the many differences in details between
the example dog pictures and the pictures he is subsequently asked to
identify. The child is able to recegnize the dogs among the ether animals
because their pictures are "similar" te the pictures he was initially shown.
Hence the child perceives the essential characteristics of what is a deg and
what is not a dog. He is then able to differentiate and generalize based en

these characteristics.

Statistical pattern recognitien is applied te image understanding and
feature extraction in a similar manner. There is, however, a significant
difference between how the child recognizes images and how the computer learns
to recognize images. The child can normally identify for himself the
essential characteristics which make a picture of a dog really a picture of a
dog. However, in computerized statistical pattern recognition and feature
extraction the operator or researcher must identify for the computer the
essential characteristics of the area types which are to be identified.
Indeed the selection of the characteristics which are to be measured in order

to determine the similarity of one thing to another is the critical step.

"<,
N

A e daavana amd

¢
o

.................

: Once the desired measurements for determining similarity have been ‘
;' selected, classificatien becomes straightferward.

"y
D AARAR

The subsections which fellew describe the processes of measurement
: extraction and classificatien in more detail. Selection eof measurement and
H classification algoerithms fer a particular applicatien nermally requires
T considerable experimentatien with test imagery. The AFES provides a
'}Z: convenient mechanism for formulating and executing image exploitatien
experiments, called the AFES Image Processing Language. It is described in
Section 6 of this report.

+ 4,2 MEASUREMENT EXTRACTION

, Measurement extraction is the assignment of numerical values to
' characteristics of objects. To more clearly understand the cencept behind
:;' measurement extraction, consider for a moment an example net directly related
;ﬁ_' to images. Suppose the problem at hand is te characterize a particular ebject

as to whether or not it has been made of wood., Previously other examples of
weod have been shown to the computer program or te an individual who must use
measurable quantities for characteristics. Characteristics which come to mind
might be shape, density and texture of the object. Shape, while it is a

characteristic of the object, would not be good for classification inte weod

or neoet woed., Woed can be made inte a variety of shapes as can cencrete,

plaster, plastic and other materials. Density might well be a good
E_ characteristic since it is relatively easy to measure, and also would serve to X
L" separate wood from most of the other materials listed above. Feeling to the -
[fingertips might also be a good measurement, in the sense of discriminatien,

except it might be very hard to automatically reduce feeling to a number, even

; though it is a measure easily distinguished by a human observer. Feeling then '14
:. is an example of an essential characteristic which is not easily measured by)

machines for use in statistical algorithms. Measurements for computerized

classification must be both meaningful and efficiently implemented.

et et i

Y

In the example of wood versus net wood, we are therefore led to density
as a good measure to use in classification. In some cases the use of two or
more measurements will yield better classification results. Consider the
following example. Suppose that we desire te sert finished weed according te
species of tree by imaging the wooed with a TV camera. At this peint we will
deal with enly two types of weod--birch and ash. How sheuld we preceed? We
know for a fact that ash is usually darker in celer than birch. Therefore, we
could measure the brightness of some samples. If the average brightness value
exceeds some value or threshold we will classify the weod as birch; if below
the threshold we classify as ash., Once again we are classifying based en a
single measurement, yielding a measurement vecter, (x1), in ene dimensienal
measurement space. If we want to differentiate even more accurately between
birch and ash, we can introduce a second measurement, We alse knew that ash
has a more prominent grain pattern than dees birch., Woed grain can be
measured threugh the light to dark transitiens in the sample. If this
frequency of change per unit distance is above some determined thresheld, the
object will more likely be ash than birch., Thus, we can use grain as a
measurement, x2. Our classification of ash versus birch is now based on a
vector X, where X is comprised of two compenents, x1 and x2. We say that X is

a measurement vector in two dimensienal measurement space.

We can now be more explicit about hew a computer actually performs
classification, This explanation will alse make clear why selectien of
appropriate measurements for the classification process is se important. In
the example given for classifying a piece of weed as either ash or birch,
based on a single measurement, we said that if brightness were above a certain
threshold level k, we would classify the piece as birch; otherwise the piece
would be classified as ash. This process can be thought of as partitioning
the number line inte two sets, one set consisting of all numbers abeve the

threshold and the other set centaining the remaining numbers,

-, .
s Vo

This is illustrated in Figure 4-1,

Set 2 (Ash) Set 1 (Birch)
. — -
'd N N
| — >
0 k P
Brightness

Figure 4-1 One Dimensional Classification

In the example using two measurements, brightness and grain frequency,
the classification process may be thought of as partitioning the plane inteo
two sets. Two possible ways of positioning the plane are shown in Figure 4-2.

2 N set 2 Set 1 x2 N\
i (Ash) (Birch) Set 2
Pe Set 1

a

i

n ~

brightness < xI :> xl
(a) (b)

Figure 4-2 Two Dimensional Classification

The examples illustrate the concept of "mapping inte measurement space".
The meezwrement space of Figure U-1 is one dimensienal and the measurement
space of Figure 4.2 is two dimensional., "Mapping into" measurement space
means locating the point in the measurement space which corresponds to the

item to be classified. The point in measurement space is determined by the

P I S U

1
3
"

o

o
0
-

%
ra

aad o

L _4 '

PR WO

f v, [
hdnt i d ot 4‘-_-2 -

ol

measurements made on the object. Thus, in Figure U4-1, the point marked "pn»
correspends to a piece of wood whese brightness is a little greater than k.
The poeints marked "P" in Figure U4-2(a) and 4-2(b) correspond to a piece of
wood whose brightness and grain have approximately equal numeric value.

Choice of measurements defines the measurement space. Cheice and
training of classifier partition the defined measurement space into sets. The
choice of a classifier determines the general shape of the set beoundaries
(i.e. straight lines, ellipses etc.) and the training precisely locates these
boundaries (i.e. slope and intercept of the straight 1line, centreid and
eccentricity of the ellipsoid ete.). Though the examples were of one and two
dimensional feature spaces enly, statistical pattern recognition often is dene
in higher dimensien spaces., (Thus, lines become hyperplane in the general
problem). Classificatien, per se, of an ebject is accoemplished by determining
which set of points in measurement space contains the point cerresponding to
the object to be classified.

Thus, the central rele of measurement selection can be readily
appreciated. If the measurements are such that peoints in measurement space
corresponding te the same class of objects cluster clesely together and are
far (in measurement space) frem peints cerresponding to objects of different
class, the precise shape and lecatien of boundaries (i.,e, cheice and training
of classifier) become unimportant. If the measurement space points fail to
meet the criteria of same class closeness and different class separatien, no

classifier can work well.

AFES has a large number of measurement extractors available including
edge detectors, texture measures, and transforms. Below is a list of the
measurement extractors available in the AFES, and a brief description of their

purpose.

A4

Py
. N .

p—p—p—p———y

E .

acf

aredge
athres
avg
bestfit
bthres
ent_peaks
contr

ep hist
epq
ep_smosth
filt _itt
gray_crect
gray_match
hyperb
int_stdv
lapl
maxcentr
maxint
median
mincontr
minint
mitch
mnvar

moments
pntedge
rang
roberts_x
sobel
sumdxdy
sum_peaks
unshrp msk

4,3 TRAINING AND CLASSIFICATION

Ultimately characteristies such as thoese described
section are used by a classifier teo assign the input data to one of a finite
number of categories,
determine the essential characteristi~s of some object, one must first provide

samples of that object.

. T

called training.

supervised

— .

The process of giving an example of an object is
Training is performed in conjunctien with what is termed
classification, nsupervised classification does not require

R . = Linah et B s B s
A . K NN A AR N AR ACI TP R T ™. S
=t e T s T Tt T T T e Lt e et et e et Tt Ll et Tt e T e T T el -]

run on the output from mnvar, acf computes the
autocerrelatien ameng points

area edge detector

finds the total area of a windew above a thresheld value
average (mean) ever a windeow

Gradient of "best plane" fit te 2 x 2 windew

finds the tetal area of a windew below a thresheld value
Hsu texture measure which ceunts peaks and treughs
local measure ef contrast

counts peaks of a smoethed histegram of a square window
equal prebability quantized image

perferm edge preservation smoothing

apply an itt transfermatioen te a file

make a correction image from a constant calibration image
apply a correction image to an image

calculates the hyperbolization eof a histegram

finds the standard deviation ef the intensities

Four point Laplacian

finds the maximum centrast value of a window

finds maximum intensity of a window

median over a windew

finds the minimum centrast value of a window

finds minimum intensity eof a window

First phase eof Mitchell texture measurement

calculates the variance, statistical

difference, skewness or kurtesis of an image

finds the kth moment of a window

poeint edge detector

finds the range of intensity values of a windew
Roberts’ . .3s edge detector

Sobel edge detector

Simple gradient edge detecteor

Hsu texture measure which sums heights of peaks

apply an unsharp mask to sharpen edges of a window

in the preceding

This process is called classificatien. 1In order to

.;-J Adaal Lo .

[T
et A2l 4

4-6

s Ak o a

training, and will be discussed later.

Samples acquired for training must meet two criteria, They must be
separable and they should be of informational value., Separability implies
that if statistical or quantitative measurements are extracted frem each
training sample, and the vectors containing these N measurements are plotted
in N dimensional space, areas (velumes) representative of each training sample
in the plot should be distinect and not overlapping. The N-dimensional épace
corresponding to the N-measurements is, in mest Pattern Recognition
literature, termed the "feature space"., However, here we will call this space

the measurement space to aveid confusion with the use of "features" to

describe cartegraphic features.

Additionally, in practice the training samples must be representative of
the population one is looking for. If one wishes to identify ceniferous trees
in an image, and uses a sample containing many species of trees, the sample is
net a true representation and will result in misplaced and misshaped
partitions, If training samples are not distinct from each ether, or do not
present the operator with information helpful in solving his task, subsequent
classification results may be poor and impossible to interpret. Thus, in
practical cases the selection of training samples is quite impertant te the

entire process,

Once the desired measurements have been determined classificatien can
begin. As previously mentiened, classification is a decisien-making algorithm
which uses the measurement space derived threugh training toe place the input
data into the appropriate category or class, It should be mentioned that
several training regions may be defined for a single class, For example in
defining a class called vegetation, the user may outline samples of both
woodland and farmland as training regions. In cases where two or more sample

regions are available, the measurements are combined to form a single vector

for the entire class,

]
1]
]
'
v
'
s
»
'
.
[
.
'
1
'
v
.
B
1
»
f
.
.
[
'
v
3
¢
*
.
3
’
¢
L
.
,
»
»
D
-

2o
2 k T, v ..

Te B H
PRy

S,

.o om

How a classifier actually determines the category inte which a pixel

should be placed varies with the particular classifier algerithm. Those ;
available under AFES will now be discussed. 5
4.3.1 Mean Nearest Neighbor (mean._nn) g
i}
L~i Mean Nearest Neighbor 1is one of the mere simple classification '3
- strategies. The mean or average value is determined for each class ef }
training regions based on the output of the measurement extracter(s). An ﬁ
E!l unknown pixel may be classified by computing the distance between the pixel ;
g feature value and the mean feature vectars for the varieus classes, The pixel
will be assigned te the "closest" category, i.e. the class having the smallest
difference between pixel value and the vector.

4.3.2 Condensed Nearest Neighbor (ends_nn)

Condensed Nearest Neighbor uses consistent subsets aof the training
samples to perform a Nearest Neighbor classification. A consistent subset is

defined as a stored subset of the training sample which when used as a

reference set for the Nearest Neighbor rule correctly classifies all remaining
pixels in the sample. An algorithm is used to determine a consistent subset 1
for each training region. In cases where more than ene region is defined feor ;

a particular class, the subsets are combined. The Nearest Neighber rule is

- then applied using the differences among the input pixel versus the subsets te

p

; determine the appropriate class.
&
b 1
. 4,3.3 Mahalanobian (mahal) 1
;]
; The Mahalarobian classifier, as with mean nearest neighber, determines a :
{
,. mean vector for each class of training regions. In additien the cevariance ~
3 :
& matrix i3 calculated for the sample regions, providing informatien as te the :
- dispersion of the data in any direction within a class. The distances between

- the input pixel and the various classes are computed. These distances are A

® 1
{ 3
b ™y
i '1

R

= 4.8 R
t 1
1 1
o .
S =

o
e
~ .

N A T T N T T T e T e T T T T e T e e e T s s s e e e T e T T e T T T T e T T

-

then normalized according te the spread of the data in the respective class as
determined by the covariance matrix. This yields the Mahalanebis distance.
The pixel is then assigned te the class to which it is clesest using the

minimum Mahalanebis distance ameng the pixel and the varisus classes.

4.3.4 Multivariate Categorical Analysis (mea)

The Multivariate Categorical Analysis classifier is similar te the
Mahalanobian classifier. Compromises have been included te enhance
performance, resulting in a cheaper algorithm with respect to execution time.
For a detailed discussion of "mca", the reader should reference "Multivariate

Categorical Analysis - Bendix Style" by Robert Dye of Bendix Cerperatien.

4.3.5 Unsupervised Classification (cluster)

An unsupervised classifier is one that dees not utilize any training
samples. Clustering techniques greup the input data inte clusters, so that
elements in a cluster have a high degree of gimilarity and elements belenging
to other clusters have a 1large degree of dissimilarity. The technique
employed in the "cluster" uses a new measure of similarity called the Mutual
Neighborhood Value (MNV)., This measure considers the conventienal Nearest
Neighborhood ranks of two samples with respect to each other, The
conventional Nearest Neighberhood rank is computed using the Euclidean
distance. The MNV of any two pixels then is the sum of the ranks with respect
to one anether. If the MNV is equal or less than seme specified thresheld the
samples are grouped together inte a cluster. This algerithm is quite
versatile as it needs ne specification of the expected number eof clusters, and
can discern spherical and nonspherical clusters as well as 1linearly
nonseparable clusters and clusters with unequal pepulatiens. Since this
explanation is bread at best the reader should reference "Disaggregative
Clustering Using The Concept of Mutual Nearest Neighberhoed" by K. Gewda and
G, Krishna from "IEEE Transactions eon Systems, Man, and Cybernetics", Volume

SMC-8, No. 12, December 1978 for a more detailed description.

4-9

- ol

PP SO SV S LA WA

This discussien of statistical pattern recognitien has fecused on
measurement and classificatien processes, areas where researchers centinueusly
seek more accurate and efficient algerithms, Classificatien schemes which may
be trivial fer a human eobserver may preove nearly impessible for the computer,
For example locating a military base 1is easily accomplished by a photo

The observer focuses on pattern ef buildings versus the

interpreter.
surrounding area. For the computer, however, no true cencept of "contextual

clues" exists, Thus the computer may focus on 1lengths of edges and

orientation of the image. and the computer may still have difficulties since
many characteristics of military bases such as reoads and heusing are similar
Yet the computer is often able to make distinctiens

The thrust of

to civilian settlements.
very difficult for humans, such as fine changes in texture,
research then should be to incorporate those contextual clues which humans use
te perform classificatiens intoe schemes plausible for machines. In this way

Wwe can take advantage of the positive aspects of both humans and computers.

—r
e TR

P

¥
I3
H
o o 7
. e I'. e,
‘.A ot s_r 4

. .
il

PR Tt et
Ty A '

.l . .
(AR Al

k]
§

-
24

P
-
.

oS
3
A

P
-

PRI L L
Cr [
T

b s SNCICE
[R
S

aiaiicacs 4k

Sk

ey C.

B ' i
D Y PR AN LN

i .
BV WAY P

A]
cad

~

5. SYMBOLIC IMAGE PROCESSOR

5.1 INTRODUCTION

This section describes "sip", a Symbelic Image Preocesser., sip is a high

level interactive system designed te precess images symbelically., It is

-

Al S R e al TP L
N T Ty a Lt
S f e e e

primarily intended te be a test-bed for new pattern recegnition algerithms of
a heuristic rather than a statistic nature. As such, sip is an attempt to

apply the results of Artificial Intelligence research to image expleitatien.

sip has been written in the LISP programming language. The LISP dialect
used is the University of Maryland's implementatien ef the University of

Wisconsin Univac 1100 LISP. It is net necessary to know LISP in eorder to use
sip. It is very helpful, nenetheless, to be somewhat familiar with it. This
is especially true in writing productien rules, for which it is suggested that
one understand LISP in some detail. Preductioen rules are covered in greater
depth below.

Because sip i3 an experimental system and because it is written in LISP,
new users may find it difficult to get started. To alleviate this problem, an
effort has been made to make sip a hospitable envirenment in which to process
images. Every sip command is listed in a menu, accessible from the shell via
"menu symb". Manuals for sip are available from the shell and frem sip via
the "man" command. Also, a "help" command is present in sip. Finally, there

are this document and the code itself, which is well documented.

5.2 THEORY OF OPERATION

sip, when used to process an image, wWill in general be the last AFES)
-~
program to access that image. All of the more traditienal AFES statistical R

pattern recognition should occur before sip is run. The general processing

flow is as follows: K
-
'f“
5-1]

>

el

.
3
h .

. o . L. - N . N .
- - - . - L N i N ~ - . PR TIPS . ¥ Semal = N Lttt o

[3 a

DBl Sl SBn MBS Smstesm ark Jat . NN el om A A s ol a0 o0 i e o

F
i
L
.‘

1. Enter image

2. Define a classification methed

3. Train and classify

4, Examine classificatien results

5. Edit the classified image

6. Preprocess the image

7. Run sip

We now discuss the last two steps in greater detail.

5.2.1 Preprocessing

Image preprocessing is a prerequisite for symbelic image precessing.
Preprocessing is needed because of the way in which images are represented
symbolically., The symbolic representation of an image is very different from
any pixel-based representation., The exact format for symbolic representatien

is discussed below in the section entitled "IMAGE REPRESENTATION",

Preprocessing is perfermed on the 11/34 by a program cailed "sip preproc"
also known as "spp". sip preproc takes the classified current working image
as input, This image is displayed on the DeAnza display. A series of
programs; '"region_nam", '"region atr", and 'region bnd"; is executed by
sip_preproc. They assign names to regions, extract region attributes, and
extract boundary information respectivelvy. The results are transferred over
the link to the 11/70 where sip can access them, The entire preprocessing
sequence takes roughly ten minutes., Less time i3 required when there are

fewer regions in the image. The user should refrain frem executing any other

5-2

—y P Sy N S A S T S U S T

$
1

A

-
R

Y
I

'
[}
Ly

B

’ .
PO & X

i Rl

PWPYIST IS

e .)
A_L)J'J')J‘~{ L An

PO

PP PP Y W

P PLPAPLIRTS N P

TTEVEVE

Vanad " *

L AN) AR Nt i ol

commands that use the link while sip preproc is running.

5.2.2 SIP

Once an image has been preprocessed at the 11/34 workstatien it may be
manipulated symbelically on the 11/70 using sip. sip must run en the 11/70
because it is written in LISP and so oaccupies vast amounts ef memory. It
would be desirable to run sip frem the 11/3% in erder te use the display as
processing preceeds, however this is not possible with the current 1link

configuration,

There are several actions a user can take while 3ip is running. He may
access, via "enter", the preproecessed image. Information abeut individual
regions, edges or features as well as infermatien about the entire image can
be computed and printed. Attributes that can be computed include area,
edgelength, average intensity, locatien, perimeter, and class type. Several
ad jacency relations are also previded. Regions may be merged tegether under
operator control te define features. Better still, rules can be defined to
recognize features; such rules are executable without user intervention, When
processing is complete the user can check his results, and save the updated
symbolic image via "store", ‘'restore" can be used to retrieve a previously
"store"d symbolic image. This procedure can be repeated until the desired

features have been satisfactorily recognized.

Thanks to the interactive nature of sip, the effects of any operatien can
be verified immediately. It may happen that after performing some eperation
it becomes necessary to undo it. There are twoe ways to do this., First, if
the symbeolic image has been "store"d and the stoered versien is okay, then
"restore" may be used to back up. If there is ne usable stored version then

"enter" may be used to retrieve the original, unmedified symbelic image.

l.'

O Ze aF S e agh ome b

Pt o

IR e gnae o e aae

5.3 IMAGE REPRESENTATION

There are two concepts central te symbolic image processing under the
AFES that should be elaberated upen befere discussing image representatien.
The first cencept will be called a sip object for want ef a better term. It
is an entity that represents some poertion of an image. A sip aebject can be a
region, edge or feature. r#, 119 and island:13 are typical names of objects,
sip objects are the fundamental things we refer te and talk abeut in the

symbolic image doemain.

The second concept concerns attributes. An attribute is a preperty
associated with an ebject. Some attributes of oebjects are "area", "class",
"includes" etc. The attributes of an object are stored on a preperty list
maintained by LISP. The sip function "printprops" will display the attributes
of a sip object. 1In general, regions, edges and features will have different
sets of attributes. These attributes that apply to regions are: ™"area",
"center", "class", "intensity", "level", "part of". Those attributes that
apply to edges are: "edgelength", "level", "image". Only a few attributes
apply to features. They are: "class", "includes", "part ef". Te medify an

attribute one can type in LISP:

(put 'object-name 'attribute-name 'attribute value)

To access an attribute one can either execute the appropriate sip function if

such a function exists or else type:
(get 'object-name 'attribute-name)

It may be possible to compute an attribute for a feature if the attribute
is not explicitly defined for that feature. For example, suppese there is a

feature called island:13 that includes r8. To find the area of island:13 sip

would first 1look for an area attribute for island:13. Finding none, an

54

R & WRRAN0

PSP N W

wy

8 8 ORI |

v e e
YL

...1-3

e o
ot -8
P

o b TN

PR 15 AT TR R
a4 PN

Pt]
2 _a 8. 2 ¢

e

N

) an e e

e It a2 ea)

i 200 41

Lme s (2 e an g

-

PP

TTTTEATT .“.'j

.......

attempt would be made to sum the areas of any included regions. In this case
enly r8 is included se the area of r8 weuld be the result.

Up te this peint the words region, edge and feature have been used
Wwithout being precisely defined. We new rectify this situatien. A regioen is
defined as a connected set eof pixels of the same class.

Each region is surrounded by a boundary cempesed of edges. An edge is
not a pixel nor a set of pixels; if is a set of "spaces between pixels", An
edge has one region en each side, each such region is hemogeneous with respect
to class. No edge can have the same class on both sides, An edge can be a
loop, for example an island surrounded by water might have an edge which is a

loop.

A feature is a set of one or more regions that have been recognized as
constituting something netewsrthy. The regions in a feature are not
necessarily adjacent; a storage tank farm ceuld consist of several separated
Storage tanks; a fletilla may coensist of several separated boats. Features
can be either cultural or tepegraphical in nature. There is a fundamental
difference between features and regioens in that features must be identified
from regions. This can be accomplished either manually using "combine" or

autoematically using proeductien rules.

There are three data structures present in sip to represent images. One,
called "regs", describes regions; anether, called "lsegs", describes edges;

and the third, called "feats", describes features,

5.3.1 Regs

regs is a data structure that describes regions, It is implemented as a
list. There is one entry in regs for each regien. Each such entry contains
the region name and a set of edges that constitute the region's boundary. The

edges are grouped and ordered se that the edge order indicates which edges are

T e
e als gaie a-

L

'e .
)L

PPN, SIS VIR T WD SIS CEPe

!
.

|

AR AN '.-f."-"ﬁr Ir R
.

v;rvvov Iy] -

=

v

Al

v TYr—

Sk ad Al o

next te one anether. For example, suppose we have a doughnut shaped region ri
whose outer beundary censists ef 11, 12, 13, and 14; and whese inner beundary

cansists eof 15. Then we would find the follaewing entry in regs:

(rd ((11 12 13 14) (15)))

To retrieve the entry from regs for a particular region, say rid, the fellawing

LISP functioen can be used:

(assoc 'r4 regs)

To view all of regs just type "regs" (without the quetation marks). r0 is by

definition the rest eof the world that is net in the image.

5.3.2 Lsegs

lsegs is a data structure that describes edges., It is also implemented
as a list, There is one entry for each edge. Each such entry centains the
edge name and a list of regions on either side of the edge. For example,

suppose 13 separates rd4 from r9. Then the following entry might be present in

lsegs:

(13 (rd4 r9))

To retrieve the entry from lsegs for a particular edge, say 13, the following

LISP function can be used:

(assoc '13 1lsegs)

To view all of lsegs just type "lsegs" (without the quotation marks).

5-6

1
PV WS SR

e

Y
0

[y —1‘-'1'.'1

L L e o -u{ .
. A . . . A . .

—

ANARLIEL S i

5.3.3 Feats

feats is just like regs. Only the names are changed. Features are
stored on a list with their beundaries. feats is updated by the "combine"
functien or by the "make" functien in preductien rules. To retrieve the entry
in regs fer a particular feature, say island:13, the follewing LISP function

can be used:

(assoc 'island:13 feats)

To view all of feats just type "feats" (without the quetatien marks).

5.4 COMMANDS

5.4.1 Invoking SIP

sip is invoked frem the shell by typing "sip", optionally followed by a
list of input filenames. Any such input files are read in by LISP and treated
like LISP source code. Production rule files, if present, should be loaded in
this fashien. LISP will not complain if a named file is not present, the file

name is just ignored.

The sip program itself is only a shell interface., It first executes
"pump" to pipe some LISP code te initialize a few importsnt file names. Then
LISP is run with $v/sip.cmp as input, along with any other files as explained
above. $v/sip.l 1is the actual source code for symbolic image processing. To
look at the code, execute "1lkf sip.l1". It is liberally commented. $v/sip.cmp
is the compiled version of sip.l1. Compiling the source code results in a

five-fold improevement in speed.

There may be up to a 15 second pause after "sip" is typed before loading
is complete, A message will be printed and the user will find himself

communicating with the LISP interpreter.

5-7

Y N S N s oA

'@
'aa aah s s s a s

'@

''''''

e
o)
Al

The LISP interpreter signals that it is ready by printing "Eval:", Any
sip command (or other LISP function) may new be typed. The command will be

L v
Lt T e
NPTy S W SR 2

T T
P r
™1

l.. .

evaluated and the resultant value displayed befere control returns to the LISP

.
b

interpreter. This read-eval-print cycle continues until one exits LISP.

oy
_ 5.4.2 LISP Commands)

) The LISP interpreter will attempt to evaluate every expression given it, Zjﬂ
- If it is given a single variable name, called an atom in LISP, it will print :
_L! out the contents of that atom. This is useful for viewing regs, lsegs, feats,

R < CERSEEEY
’ PR
P

RERAAEY

§ classlist, or rulelist. Typing the name of an atem that has not yet been

defined is an error.

To execute a LISP function, one must enclese the function name and
arguments in parentheses. Since sip command are just LISP functioens this is

the way sip commands get executed.

Some functions require that their arguments be quoted. Quoting an object
consists of prefixing it with a single quete. Most, but net all, sip
functions require that their arguments be quoted. Failing to use a quote

where it is needed is a significant cause of LISP errers.

5.4.3 LISP Errors

One kind of error, leaving out a quote, was mentiened abeve. When it

occurs LISP will usually type: -

WARNING, atom-name IS UNBOUND
Help:

At this point the LISP interpreter is confused and is asking for help,
The simplest cure is to send an interrupt by hitting the rubout key. This

tells the interpreter to forget whatever it is doing and get back to "Eval:"

. v e e
: ki
P O ey oy il g g

tiadhandhdh

5-8

a
ey et el -y

mode.

Another frequent error is the misspelling of atom er functien names. The
message is the same as above. 36 is the cure.

Forgetting the parentheses around a function is net an errer as far as
LISP is concerned. The interpreter treats the functien name like an atem and
prints the LISP code for that function. This is usually net what you want,
As long as LISP prompts with "Eval:" ne special action needs to be taken te
get out of trouble.

There are many other possible LISP erroer modes, mest of them
characterized by the "Help:" prompt. The safest thing te do is to send an
interrupt. An interrupt will always get LISP back together ne matter what the

interpreter was doing.

5.4,4 LISP Quirks

OQur version of LISP is somewhat nen-standard. Here are the mere SRS

important anemalies:

case The LISP interpreter igneres upper and lower case distinctiens. It o
is all converted to lower case internally. The one exceptien is
within double quotes, but this does net concern us here. Upper and

lower case characters can be intermixed within atem names without

ill effect. The judicious cheice of case may make LISP coede more ,.

readable. See $v/sip.l1 for example.

EOF The end of file character, alse known as EOF or centrel-d, is used

to exit frem LISP in response to "Eval:", EOF in respense teo

"Help:"™ will normally get you back te "Eval:"™ mode. Thus, two EOF's

will always suffice to get out of LISP, "(return)" in respense to

"Eval:" will also cause LISP to exit.

Uhaan an s GERe L a)
. .

T —

P
[N

Comments The cemment character is a questien mark. All text on a line te the

0

Real

Loading

right eof the comment character is ignered.

The LISP interpreter will net evaluate an expression until the
parentheses balance. 350 one can type an expression on more *han one
line; evaluatien will net preceed until the leftmest parenthesis has
been matched. Square or angle brackets can be used in place of
parentheses. As a bonus, a special ceonvention allows one to de seme
autematic parenthesis balancing. The rule is: any clesing bracket;
), 1, er >; will generate the correct clesing brackets te clese all
opening brackets; (, [, or <; te the left back threugh the eopening
bracket corresponding te the closing bracket that was written. For
example, writing a] will force closure of all lists starting with (
or < back to the left until an unclesed [is found to clese.

In order to distinguish real numbers from dotted pairs LISP requires
that real numbers be prefixed by a percent sign. Real numbers are
preceeded by a percent sign en eutput, and must be preceded by one
when input. FExamples of real numbers are: %1.0, %-.57, %357.110e-
12. This is a kludge that hepefully will be fixed in updated

versions of the interpreter.

When loading LISP seurce code files, the interpreter does not
generate any error messages. Therefore it is possible that a file
you thought was loaded has been ignored. In the case of productioen
rule files this can be checked by typing "rulelist" to see if the
rules were defined. To load a file while LISP is running, the user

can type:

(load "file-name")

~ 4

Shell There is a special Unix LISP command, "(sh)", that enables one teo
temporarily suspend executien eof the LISP interpreter and begin

execution of a shell. Any shell command can then be issued. An EOF
(control-d) from the shell will return the user te LISP.

5.4.5 Sip Commands

A list of sip commands is available from the shell by typing "menu symb",
A more detailed descriptien can be had by typing "man sip afes:., For even
more detail about individual commands there is an ori-line afes manual for
each. There are twe sip commands that de not have en-line documentation, the
help and man commands. The sip help command, as opposed to the afes help
command, can be run in sip by typing "(help)". It prints a list of all
available sip commands and their syntax. The sip man command, as opposed to
the afes man command, can be run is sip by typing "(man manual-name)". This
will cause the execution of the afes command "man manual-name afes" from sip
by forking a shell. This is especially useful for reading en-line manuals for
sip commands while sip is running. Fer these reasoens this document will not
describe the commands further, with the exception of preduction rules,

Suffice it to say that sip commands cenfoerm in every way to LISP syntax.

5.5 PRODUCTION RULES

Production rules are a means of expressing domain dependent knowledge in
declarative form. Any preduction rule system consists of three components; a
set of rules, a data base, and a rule interpreter. 1In the sip system the
ruleset can be stored in a file or typed into sip directly. The database
consists of the symbolic image as stored in memory and the rule interpreter is

just the LISP interpreter.

Rules have four parts, The first is the word "rule". This tells the
production rule system to define a rule., Next is a name to assign to the

rule, The name is arbitrary and can have any desired length, Then comes a

B} L.
e e

i

|
|
1
;
)
!
y

b
¢
M
k.
o

- —— -
. .'i.‘l.
yoa e PR PR
' [

nat

Pk o

set of conditions which, if true, will cause the specified actions to be
performed. A typical rule might be:

(RULE FINDPARKS
(IF (CLASS_IS (trees tree grass veg))
(AREA_IS (BETWEEN 200 5000))
(SURROUNDED BY (resid urban) (GREATERP %.90))

)
(THEN ()

(MAKE park)
)

Here, key words are capitalized for clarity, since LISP ignores case. Typing
this code in or loading it frem a file will only define a rule, not cause its
execution. To execute a single rule the user should type in the rulename
surrounded by parentheses., As the rule executes, each region will be examined
to see if the condition part of the rule is true. If it is then the specified
action is taken before the next region is examined. If the condition is false
then no action is taken before the next region is examined. It is possible to

execute all rules at once by typing:

(mapc rulelist eval)

Basic documentation on the clauses used for production rules is available
via "man rule afes". This manual should be read before continuing with this
section. Examples ¢ production rules are available .ia "1lkf rule exam". The

fallowing subsection describes the internal workings of production rules,

L gt ot

W

A
WY

P B NPT I RO

vy

b B A

..............

5.5.1 Rule Declaration

When a preduction rule is defined, the rule macre is executed to set up
the rule. The rule name is first added te rulelist, the list of defined

rules. Then the following cede is created and executed:

(CSETQ rulename
(LAMBDA ()
(MAPC regs
(LAMBDA (region)
(SETQ regisen (CAR region))
(COND (conditionpart actienpart))

" MGRERRE - IRt
g 7~ DA S T

- Thus when rulename, a function ef ne arguments, is executed, each region

;{ will be checked to see if the conditien is true. If s6, then evaluate

actionpart. Each region is checked in this manner,

Note that the 1local variable "region" helds the region name, The
preduction rule clauses area is, class is, perim is, surrounded by, and make

all use "region" implicitly. A knowledgeable preduction rule user (defined as

anybody who has read this far) can add his own clauses using "region". For

example, a rule to print the names and classes of all regions whose class is

- urban or industrial could be written:

4 (rule urb_ind '
?- (if (class_is (urban industrial))) z
f (then () ‘

{ (print region) |
L (print (class region)))

-

- & A A L A e Ll

R

To change the class type of all shadows froem shadow te unknewn we might

use:

(rule shad_unk
(if (class_is (shadew)))
(then ()

(put region 'class 'unknown)

Finally, here is a rule to recognize rivers (which I will arbitrarily say

have an area/perimeter ratio less than 5).

(rule findriver
(if {class_is (water))

(lessp (quotient (area region) (outerperim region)) 5)

)
(then @)
(make river)
))

Production rules should be kept in a file and loaded when sip is inveked.
In this way the rules can be easily edited with your faverite editor. Of
course, you may type them into LISP directly if you prefer,

5.6 SAMPLE DIALOG

4 sip rules #%% yser types "sip rules"
ULISP V1.7 Cepyright 1978,R.L.Kirby
Eval: SYMBOLIC IMAGE PROCESSOR UP AND RUNNING

Value: t

Eval: (enter) #%% yser types "(enter)"
LINES READ: 93
REGIONS READ: u47

5

0eena
[T AR TR
TN %Y RY]

e

CLASSES READ: 4
Value: ¢

Eval: regs %% yser types "regs"
Value: ((r0 ((11))) (r1 ((11) (166 150 137 129 121 18 14 13 123 122 125 17
16 115 136 134 133 127 126 132 143 140 139 142 168

169 170 164 159 160 161 163 165 172) (178) (181) (187) (188) (189) (190) b
3 (191) (192) (193))) (r3 ((166 151 137 130 121 19 14 L
3 12 123 124 136 135 133 128 126 131 143 144 141 142 167 169 171 164 158 154 o
g 155 156 161 162 165 173) (147 146 149 152) (174) (175) >
i! (176) (177) (179) (180) (182) (183) (184) (185) (186))) (ru ((12 13))) (r2 !

{ ({115 15 17 119 113 110 112 116 118 120 122 124)))
(r8 ((15 16))) (r7 ((18 19))) (r10 ((120 117 116 111 110 114 119 125))) (r9
. (111 112))) (r11 (113 118))) (r12 ((117 118)))

.o ‘,'._,_..'_.' e

(r14 ((127 128))) (r16 ((129 130))) (r17 ((131 132))) (r19 ((134 135))) (r21 ;
((140 138 144))) (r23 ((139 138 141))) (r27 ((145 -
147))) (r29 ((148 146 145 152))) (r30 ((148 149))) (r28 ((150 151))) (r32 i
((153 155))) (r33 ((157 154 153 156 160))) (r35 ((158 5
157 159))) (r36 ((162 163))) (r43 ((167 168))) (r39 ((170 171))) (r37 ((172 ‘fﬂ
173))) (r5 ((A78))) (r6 ((175))) (r13 ((176))) (r15]
((177))) (r18 ((178))) (r20 ((179))) (r22 ({180))) (r24 ((181))) {(r25 ((182))) Efi
(r26 ((183))) (r31 ((184))) (r34 ((185))) (r38 S
((186))) (rk0 ((187))) (r41 ((188))) (r#2 ((189))) (ri4 ((190))) (rd5 ((191))) 3
(r#6 ((192))) (r47 ((193))))]
Eval: (area 'rli) #¥% yser types "(area 'ri)n f;
Value: 7615 bi
Eval: (neighbors 'ri) ®&% yser types "(neighbors 'ri)n o
Value: (r3 ri1) : 3
Eval: rulelist #%% yser types "rulelist" ?
Value: ((findtanks) (findbridges) (findboats) (findislands) (findparks)) 3
Eval: (findislands) ##% yser types "(findislands)" ! :
island: 1 #%% 5ip finds an island ’
Eval: feats #ER® yser types "feats" 2
((island:1 ((178)))) *#%% compare this with ri8 above .
®

5-15 :

o

-

L

AAID.00 0 ER AD SN AR innd
e .

Y

———

Eval: (area 'island:1) ®&% yser types "(area 'island:1)"
Value: 8718

Eval: (printprops 'island:1) #%¥% yser types "(printpreps 'island:1)"
island:1

((includes r18) (class . island))

Value: nil

Eval: (printpreps 'ri18) ##% yser types "(printprops 'ri8)"
ri8

((part_of island:1) (level . 2) (intensity . U40) (center 216 . 131)

(area . 8718) (class . veg)) #%% neotice part of and area values

Value: nil
Eval: (EOF) #¥#* yser types control-D
%

5.7 LIMITATIONS

5.7.1 Representation Limitatiens

There are some shortcemings to the current representation scheme.
Possibly the most serious is that regions are segmented based upon class type.
In order to recognize a feature, its component regioens must be segmented. For
example, to find roads in a city requires that the road be of a different
class frem its surroundings. But if reads, houses and factories are all
classified as "urban", it will not be possible to recegnize the road alone,
The solution to this problem seems te lie in the development of classificatien

methods that can distinguish reads from other urban areas.

There are some attributes of regions that one would like to have around
but are difficult to measure or represent. Shape is one such attribute, It
would be nice to be able to declare in a production rule that storage tanks
are round, trucks are rectangular, etc. We do noet now have this capability.
Although there several sip functions that deal with adjacency, none deal with

the proximity of one region to another in a more general seunse. Fuzzy

5-16

2 e kA o _a P S . . P

LT e

Sh e

.-l v
RIS WP S T PR oA

‘.’ o :' '.‘ :,' K
IR

]
. PN S
PUPTRT OIS T PV REIET |

SRR

~4

U

L
PO W X

— s g v -
- e K KN o
bnd i ad alobon Y ILR

Y

-

.7}7

cencepts like this are difficult te express in any programming language.

5.7.2 Rule Limitations

As currently implemented, productien rules can enly take one region at a
time and make a feature of it, 1In order to combine more than oene region into
a feature it is necessary to manually use the "combine" sip command. This
should be remediable with some more work. It might alsoc be desirable to let
production rules operate on edges and features as well as regions, Perhaps
eacnh rule should specify whether it is to look at regs, lsegs, feats or some
combination thereof. One last drawback of rules is that if the same rule is
run more than once on the same image, it will recognize the same features each
time, giving several names to the same actual feature. The "make" function

should be fixed to prevent this.

5.7.3 Number of Regions

Running as it does on a PDP-11, sip has sterage limitatioans, There is an
upper limit of roughly 200 regions that can be fit isto memory at once
depending upon the boundary configuration. This is actually not as many
regions as it may seem, So some editing will be required on most images before
sip preproc is run. im edit can be used to manually reduce the region count,
and rm_noise can be used to automatically reduce the region c¢ount. If there
are too many regions, LISP will print a nasty message when "(enter)" is typed.

To process more regions we could use a larger machine, such as a VAX.

5.7.4 Speed

The preprocessor, which takes roughly 10 minutes of PDP-11/34 time, is
nne bottleneck, but its performance is not readily improved upon. sip itself
uses compiled code, and so runs fairly guickly. Typical times are 15 seconds

to get sip running, 20 seconds to "enter”, and 5 seconds to "restore',

7 G SRR

sy
aash et aaaiaweh _LjL.:J..:A.J_'A'AA.

N) Ce
L P VAP S AN

f ‘
PPy

e la s a a a A

s.a.a & 4.5 _ahk

6. AFES IMAGE PROCESSING LANGUAGE

6.1 INTRODUCTION

The purpese of the AFES Image Processing Language (IPL) is to previde the
experimenter with a language which he or she can use to specify the AFES tools
and parameters for an image processing experiment, and te set up a sequence of
experiments to be run autematically in a "batch" mede. Such a sequence of
experiments could invelve application of a series of different processes te a
single image, repeated alteratien of the functienal parameters of a single
process, application eof a single process/parameter set te a sequence of
different images, or any combination thereof. For example, ene might wish te
apply a number of different edge enhancement operators (e.g. Sobel, Roberts,
Cross, Laplacian, etc.) to an image then assess the results of each ene. Or a
pixel classificatien procedure might be applied repeatedly te an image, with
each iteration using a different combination of measurement extracters ar
different values of measurement extracteor parameters, e.g. window sizes,

thresholds, weighting factors, ete.

The Image Processing Language consists of a table structure which
specifies how an experiment is to be ceonducted, a set of speci2l commands for
modifying the table, and a control structure which supervises the definitien
and application of the experimental procedure. Each user has one or more

private versions of each of these structures,

6.2 TABLE STRUCTURES

The first structure specifies what image is to be processed. The AFES
identifies an image according to photo, view, and frame. The photo is the
basic unit of source material, such as a single film clip. This is divided
into views, with one view being the size of a typical AFES image, e.g. 1024 x

1024 pixels., The view is further divided into frames where a frame may be the

-
L

I
RN § PR

'Y

s L . .
h e daaaca aa L alalsoaidibnd

o
e ek

S o i A . X i

left or right conjugate of a stereo pair or simply a single (monescopic)

-
rﬂ imaze.

Qiﬂ The second basic table structure for the IPL is the AFES "method file",
Eii It constitutes of a "recipe"™ for an image processing experiment, A typical
methed file for statistical pattern recognitien as applied to individual

pixels might be:

measurements:
avg 3
lapl

classifier:
mahal [eptienal arguments]
(training set)

class:
trees
regions:
treest
trees2
class:
water
regions:
lake1
riveri
river2
class:
- urban
. regions:
- industry1i
o residentiall
comments:
<user comments>

13
E. The measurements are the AFES pixel measurements to be extracted from
5 each image pixel. A list of available measurements is contained in the meas

menu.

0 & SRy

-

~d

R R

A SN

]
-
4
1
)

7

aaadaad

o ambocdh

T Y
1 + [N

_h""""'x I

i

L 0 208 4 e e o
[t} S

M 3 S
S N

The particular classifier to be used is the next entry. A variety of
supervised and unsupervised classifiers are listed in the class menu. 1In the
above example, the Mahalanebian classifier is used, which requires supervised
training. Hence, a specification ef the training regions toe be used for each
desired output class is given. Each user has a cellection of training regions

which are defined interactively via the get_region command.

Initial versions of AFES support method files for pixel classificatien;
future extensions are anticipated which will incerporate similar types of
specifications for edge-based region extraction (as opposed to pixel-based

extraction), region classificatien, and symbolic precessing.

6.3 IPL COMMANDS

The image processing language uses a set of special commands which
perform non-interactive modification ef the table deseribed in the preceding
section and apply procedures defined in the method file to the image defined

by the current photv, view, and frame.

6.3.1 Change Processing Image (cpi)

The purpose of cpi is to c¢range the image being processed from within the
image processing program, Typical wuses would involve applying the same
processing method to a number of different images.

The syntax is:

cpl <Kpnotod> <view> <frame>

6.3.2 Change Processing Method (cpm)

The cpm command allows the IPL program to change from one processing
method to another. A user would typically have defined a collectioen of

metnods, each given a unique name or "method-id". The syntax for changing the

6-3

PP PN

A s
NUPCIE G WY

S APV VT

Ly

24 s 0 od 4 Cd

N

'@

R A A A DO S ire S A AR e Jud e in o T

P . ~ L A AT
. e e T T e T e e e T, L e e AR C N
N . N - v N T L PRI A R T YOl Y Y

method from within an IPL pregram is:

cpm <methed-id>

6.3.3 Medify Method (med_methed)

The mod-method command is the most powerful special function which the

IPL uses. It allows the user to alter the processing method from within a

,. e e e e . -
P Amdesl . VIR TV

program. A number of flags are used te specify how the methed is to be

YR

changed.

RSNy

The command syntax is:

&
.

ce e Loy

S .

PRI

e mod_method(mdm) [<-ma "add measure" ["del measure"]> ||

p = <-md "measure"> || <-c classifier> ||

s <-ra class region> }| <-rd class [region]> |
<-o "comments"> || <-sv method id> <<1s8>] 1

1
¢

where, as usual, <arg> denotes a mandatory argument and [arg]l an optional
4

argument,
The following is a descriptien ef the flags and how they work:

3

b

?.n - ma -the first argument string in quotes is a measurement string to be
. added. The second argument string in quotes is optional and represents
. an old measure to be deleted from the method file. When the second

@ argument is present the function is a replace measurement.

- md ~delete the measurement string in quotes

o - c -changes the classifier name and/or any optional arguments

E - ra -adds the region to the class and adds the class if needed

,vrl‘r".‘, h

"h.'vﬁ""

Suprpp—p———
- PR L

rd -deletes region from class and entire class if the optional region

name is not given

- o -adds comment line in quotes to comments section

- sv -saves the current methed including classified output under a new

method name

1ls -lists the contents of the method file te standard output

The "-sv" switch would be especially useful if a methed works very well and
the user would like to save it but continue experimenting with the current

method.

6.3.4 Current Metheds and Images

A user performing image processing experiments may run the required
programs in the foreground. That is, when a program is started, input from
the terminal is suspended until the program finishes and returns contrel teo
the terminal. IPL programs executing in foreground operate on and use the

AFES current "working image" and "working method".

UNIX also provides the capability to initiate "background" processes,
i.a.,, input from the terminal continues while the background process executes,
IPL programs can run in the background and in fact it is eften convenient for
them to do so, so the user can ceontinue with program development, foreground
experiments, etc., while a lengthy IPL program executes in the backgroeund. In
this situation, AFES orovides a separate current image and method for each
backgrouad process., These are referred to as the "processing image" and
"processing method" to distinguish them from the "working" image and method
associated with foreground processes, The "“processing" image and method are

automatically invoked by cpm and cpi commands whish are executed by an IPL

6-5

R 2 S ATy

FYI |

.

P .
I TVEV SR Y s

aoaa

TN W

L/ s e
s
: o

v =Y v vwy ygveT

program in background. The impoertant things to remember are that (1) an IPL
pregram running in the foregreund always operates on and uses the current
"working" image and method, and that (2) a background IPL program will alse
operate on and use the current working image and methed unless it centains

explicit cpm and cpi coemmands to change te a current "processing" image.

6.4 CONTROL STRUCTURE

The preceding sectiens describe the tables which define how an image is
to be processed and the commands which allow modification of the table by a
ovackground precess, i.e., an IPL program. The last component is the contrel
structure which ties these commands together into a stand-alene program. This
structure is the shell, the UNIX command language. This paper will net
attempt to provide a full descriptien ef the shell; rather, its use to
generate IPL programs will be described. Readers unfamiliar with the shell
should read the PWB/UNIX Shell Tuterial by J.R. Mashey, published by Bell
Telephone Laboratories and included in the UNIX system documentation.

An TPL pregram consists of a sequence of shell commands and IPL special
commands which reside in a file identified by some program name. After
creating a program file, it must be marked as executable using the "chmod"
command. Up to nine arguments can be passed to a shell program; these are
referenced in the program itself as a character sequence of the form $n where
1 is 0 to 9, $0 is the name of the program, while $1 toe $9 refer to the
arguments which follow the program name when it is executed. The following

examples are taken from the topical document entitled "AFES System Structure."

e
) A

-»
danal

PP

P

Aanan a4 any . o

AT A AP

: 'tnis file runs the methed "test 1" on
'the photo: syracuse

: 'for these views: viewl, view2, view3
: Yand this frame: mone

set a = 1

cpm test1

while 32 ! = 4
cpi syracuse view"$a" mono

cfy

set a + 1

end
'this file runs the methods "testi-test3" on
"the phote syracuse center mono

set a + 1

cpi syracuse center mono
while $a 1= U4

cfy

set a + 1

end

: 'For the photo -syracuse center mono

: 'this file starts with method - test1

: 'trains the classifier for the method
'makes a copy of test1 named test2

: "makes test2 the current processing methed

: 'deletes class "trees" from test2

: tadds class "green" with region "field"

'The confusion matrices may be examined later

epi syracuse center mono
cpm testl

train

min -sv test2

cpm test2

mdm -rd trees

mdm -ra green fields

min -3 "oontr 6/ avg 20"

R

N, carameter of the method files mav be modified by the "mdm" comnand and any
parzmeter of the "epi" or M"epm" commands may be modified. The user may
examine the output visually as wWwith "map"™ for a classifier output or tabularly

S with the confusiosn matriy fo- the train command.

.'.

aeand i b

ldd

PRSI ICIY | '.LP" I S W P

PO WY

7. PHOTOGRAMMETRIC SOFTWARE

TR T

7.1 INTRODUCTION

- This section describes the phetogrammetric seftware available en the
Automatic Feature Extraction System. It is intended to previde insight into

the design of the software as well as give guidance te the mathematical
conversions followed during implementatien,

The AFES is designed for experimentation with digital imagery. However,

the Scanner/Viewer Subsystem prevides for hardcepy as one eof the primary

"rT 'T'i. v

inputs to the testbed. As a result the topic of all digital phetegrammetric E:
techniques is addressed in light ef hardcopy seurces. Some aspects of a truly f;
all digital system are mentiened but are noet the main tepic of this repert. F:
Certainly many of these techniques discussed are applicable to the all digital ﬁ;ﬁ
environment. :ii
3
Section 7.2 begins with a brief summary of the goals of the AFES design. ff
Subsectiens within 7.2 discuss specific requirements which are met by .Q
photogrammetric processes, including maintaining stereo and performing ;:
mensuration and point positioning, Sectien 7.3 which follows, provides a f
detailed descriptien of the AFES mensuration package. :

S
. . b .
PUPTITNY ¥R W

7.2 THE AFES SYSTEM DESCRIPTION

Y
'R 4

LAk JBID. & & 2r woa o 4

g e
P SR

The Automatic Feature Extraction System (AFE3) 1is an 1integrated
hardware/software complex. It is designed as a test bed for applying image ;i
i processing, photogrammetry, pattern recognitioi, and artificial intelligence g
" derived techniques to Defense Mapping Agency (DMA) requirements for semi-) 1
1 automatic map generation and updating. The AFES has been designed as a M

X
i s ad

complete man-machine system for image understanding, and an efficient receiver

of algorithms. AFES possesses facilities for easily reimplementing,

P ———
¢ -
-,

.,
o A
-A___'A_'JA-AAAL-_._A“_.;A:L PN -

|
!
|
|
]
L

.............

integrating and testing algerithms developed elsewhere, as well as new

h .
deind,

algorithms. The system centains elaborate facilities for image (input) and

IR o R
ok , .

sterage, and can be operated by persens unfamiliar with computers,

Film and map inputs te the system are processed by the viewer/scanner and

B A R

plotter/scanner, respectively. The viewer/scanner is capable of scanning a
Ei 1024 x 1024 pixel image with 256 grey levels in approximately 17 secends. The f‘j

- image size on the film plane is variable from 5 mm square to 30 mm square with
T arbitrary rotation and skew up te 20 degrees. The viewer/scanner is ?i;
:] photometrically calibrated and geometrically accurate, The map E‘d
g plotter/scanner accommodates both opaque and transparent input with scale and %
4 rotation fixed. The output from the plotter/scanner is a high quality -
¥‘ manuscript. -
' 3
' 7.2.1 System Requirements o

There are a variety of interactive, interpretive functions that require

photegrammetric processing. The essential problem is to take measurements on

SR

the displayed imagery and produce coordinate outputs in a ground reference
system. In addition, the analyst interprets the photes in stereo for most
tasks in his normal woerking environment. The automatic maintenance of the

stereo model is an essential function of the AFES test bed. t:

The AFES experimental functiens require three basic categories of
photogrammetric processing the maintenance of a stereo model on imagery being

’ scanned, object mensuration, and point positiening. The system was not

required to perform as a stereo compiler with real time rectification.
Instead the user selects subimages to work on in stereo, Design requirements

did not call for constant real time mapping of object space to image space.

1
¢ 1t was envisioned that discrete points would be measured as opposed to)

functions requiring coastant point rollection such as profiling. Therefore,
care was taken to allow the greatest flexibility in selecting scenes to be

scanned, and positioning the cursor for point selection., The system operates

-
-
T r

L 7-2

1"‘77"‘ Ea

Lo §

P

as an image space plotter with a rectified duplex ef stereo cursers on the
screen for the eperater te measure, The rest of the sectien will discuss each

of the three basic processes that AFES is designed to perform,

7.2.2 Maintaining Steree

The task of maintaining the stereo model is accomplished by keeping the
epipolar 1lines parallel to the viewer's eye Dbase, This condition is
maintained threugh different mathematical computations for different sensors,
The scale of each image must also be adjusted so that each is displayed at the
Same scale., Finally, a curser must be displayable in stereo for manual
delineation of features in the imagery. Since the primary image input is
stereo hardcopy images from the scanner, the main body of code for stereo
maintenance is designed for centrel of the scanner. There are routines,
however, for rectifying twe conjugate images for stereeo viewing if their

source is other than the scanner.

The maintenance of stereo requires kneowledge of the orientation
information which 1is output froem a triangulatieon or block adjustment
procedure, AFES relies upon the output of other photegrammetric systems to
provide the appropriate attitude and positien data for images being processed.
There are no oerientation adjustment routines provided on the AFES for this

purpose.

7.2.3 Mensuratien

Some of the ground space measurements that are obtained from the image
data are relative measures. That is, the height of a tower or length of an
object are often required. This mensuration process can be performed by local
image measures of shadow or local differential parallax. In the AFES however,
there is enough information available that rigorous models can be used even
for mensuratien, The mensuration programs operate in a lecal vertical space

as does the point positioning software,

7-3

- - A a4 . m A i m. m .- _a - - a Pl i 2 amd

P ¥

e

PPV P

" ST WTwTY

,-v—Tv“vf
RN MR .
ol ot

)~ ESteas~iscoc

ot A i AR AN

-
R |
The routines available for mensuration are interactive. They allew the
operater to measure height changes and planimetric distances. Incerperated E:
into the software that manipulates the region data generated oy the
Statistical Pattern Recognitien Medules are measures that relate areas of :fﬁ_ﬁj
contiguous regions to areas on the ground. These routines are based on lecal :'3._'7-3
scale derived by height informatien and the sensor models. i;
7.2.4 Point Pesitioning 3
There are two methods of point positioning which would be applicable to E j
the AFES. The first is point positioning with rigorous sensor model. This R
could be performed stereoscepically or monoscopically with elevation data b
included. Alternatively, a warping precedure can be used to fit a single jb 1
image to a ground coordinate system. Unfortunately, this warping procedure !j
does not incoerporate any relief distortion., However, in areas of relatively
flat terrain a warping procedure would be adequate and the algorithms are very f'. .'4
fast.]
2 4
The AFES uses both rigorous models and warping for point positioning. m_'
The rigorous models are incorporated in a series of interactive routines which 3
311nw the operator to select in stereo or monoscopically the points which he 1
wishes to measure. The system supports several sensor models and prevides !1
outputs in a variety of ground coordinate reference systems. The warping ’
software accepts control point data froem the operator while the operator i
measures the points on the sub-images displayed. The corresponding point :
values are then used to generate the geometr’'c transformation frem image to 'j
ground. These geometric transformations, based on two dimec.asicnal polynomial |
transforms, are then utilized by the resamplineg reutines Lo generate an image 1
registered to the ground reference grid of the central points, The transforms]
for registration include first threugh fifth order polynomials. ! 4
]
’]

T-1
]
1
. . R N

7.3 MENSURATION PACKAGE
"The AFES "mensurate" command allows the user to perform mensuration tasks
- interactively., Measurements for these commands are performed on the specified
display channel[s], which are specified as an argument to 'mensurate',
® -3 : use the left and right monechrome display channels
® -¢ : use the red and green color display channels (anaglyph)

e -R : use the red channel only

e -G : use the green channel eonly

e -B : use the blue channel only)

K

e -1 : use the left channel enly k
=9

e -r ! use the right channel only -p : if present as a secend argument ke
specifies current header infermation data is present in mensuratien form o

that matches what is currently on the display ;

-

Upon invocatien, after a short delay for preprocessing the header infermation,)
the prompt 'enter command > ' will appear on the terminal. If the return key _f
is typed in response to this prompt a menu will be printed out en the -]
l terminal. The prompt, for entering a command after the initial prempt, will be !‘4
a '>'. A menu of available commands can alse be found during executien by j
typing 'commands'. -:
Available mensuration commands include: !.1
:

|

» ‘

‘;<

]
4

4

]
4
l’ L
4

/
J
4
L
4
L
L
4

..............................

-

N SEASAGD P S
i

spts ¢ Stereo point positioens

relpts : Finds relative point pesitions

height ! height of objects

N1 RPN

distance : xy distance between points -
phopts : Find photo peint positions (stereo) l;

3
mpts : single photo local xy points

mphopts : single image phote points

oo, '

quit ¢ End executien of program (or stop) -
save : save output in a file D
commands : List available commands) :
sh : Escape temporarily to another shell : i
E"
geographic : output in geographic coordinates L
geocentric : output in geocentric coordinates ._f
b
r lambert ¢ output in lambert coordinates
v
. local : output in local xyz
')
. mercator : output in mercator ~oordinates
4
e

polar : output in pelar ceerdinates
utm ! eutput in utm coerdinates
More explicit usage for each command is given below.

If 'mpts' is the command selected then a curser will appear on the choasen
display. An optional argument to this command is 'left' or 'right'. This can
be abbreviated by using an 'l eor 'r'., The optioenal argument is enly needed if
operating in steree mode and the right display is to be selected. (The left
display is the default display in stereo mede). If operating in anaglyph
stereo consider the red image channel to be the left display and the green
display as the right display. The left trackball butten selects a point. The
right trackball button toggles the cursor from crosshair to dot. The center
button has no effect. After a peint has been chosen the user enters the
elevation of the point on the terminal. The local xyz ground coerdinates are

then printed on the terminal.

The command 'mphopts'! allows the user to select phote points for a single
image channel. An optienal argument to this command is 'left' or 'right'.
This can be abbreviated by using a '1' or 'r'. The optional argument is only
needed if operating in stereo mode and the right display is to be selected. A
cursor will be displayed on the center of the selected or default display.

There are two modes of operatien for the trackball while in 'mphopts!'.

I. Tf the center button (red button) is up, curser movement will Dbe
controlled by the trackball. The left trackball button when depressed
will select an image point for transformation to the photo system. The
resultant phote point will be written to standard output (the terminal
is tne default standard output)., The right button on the trackball

when pressed toggles the cursor from a cresshair to a dot, or a dot to

a crosshair,

T-7

~— PR . . e e e e .
¥ I . Lt 2 SRR .
. . . SERERIC R .o

L e . B

) 4
.o
snscsadsiadl

L B A

Y 4

et

. 'Y:ﬁT‘V-Y T -w

i E000RE"~ 2NN
. ’ t .

A B e 4

— Y

II. If the center butten is down, the trackball will be in a zeom and
scroll mode. In this mode, mevement of the trackball will scroll
(hardware scroll) in x and y with the trackball motion, The left
button when pressed increases the zoem facter, The right button
decreases the zooem factor. A 1X zoem factor is the initial state,

Possible zoom factors are 1X, 2X, u4X and 8X.

The command 'mphopts' terminates when the same point on the image is selected

twice in succession.

The commands 'relpts', 'height', 'distance', 'phopts', 'spts' all use the
same trackball operation. A description of the functions of the trackball and
its buttons will be given here. If -s was specified as an argument to
mensurate(msr) the left and right monochrome displays are used., There is a
trackball for each display. The left trackball has the foallowing functions

when a command is being executed,

The left button selects a point on the left and right displays beneath the

cursors positiens,

The right button on the left trackball changes the cursors type. If the
cursors were crosshairs aad the button is hit they are changed to dots.

If the cursors were dots they are changed to crosshair.

The center button on the left trackball controls what happens when the left
trackball is moved. If the button is in the up position, trackball
movement will control movement of both cursors., If the ™ **on i3 down
the cursers will remain fixed and the left and right image will be

scrolled.

The right trackball has the following fiuntinas:

7-8

¥y o
PRI SEOGUCOUASAIIY G PP

[
FSUENY

P

PRSP 4

Bl 4 _aad

e,

I,‘
L
»
ey
4
[

B s AAAR R I A s an sy &g g

"y

——

The left butten on the right trackball allows for an increase in the zoem eof
the displays when hit. The maximum zoom is 8X., The zoem is centered
around the position eof the cursor on the left display.

The right button on the right trackball allews for a decrease in the zoom of
the displays when hit. The minimum zoeom is 1X. The unzeem is centered

around the positioen of the curser on the left display.

The center button on the right trackball determines what happens when the
right trackball is moved. If the butten is up then movement eof the
trackball will move the curser eon the right display in the x direction
only. If the button is down then movement of the right trackball will

move the cursor on the right display in the y directioen only.

If the -c is used then the red and green image planes are used in the stereo
mode. A single curseor appears on the display and a point is selected when the
cursor, the desired point on the red image and the corresponding point green
images appear at the same positien. The trackball has the following functiens

to enable image point selection.

The left button always selects a point when pressed.

The right button changes the cursor from a crosshair to a det or a dot to a

erosshair. (There is one exception explained below)
The center button changes the mode of operatien for trackball movement. There
are 3 modes of operation for the trackball., Annotation memory for the

display (characters written on the display) show the current mode.

move cursor - allows movement of the cursor with the trackball

7-9

E

T JEEIEEREEY I .
e . .

' ‘AI.A<‘4I ll... T . S . 3

PV WY N W DN SR 0. e 1 B LI}

-,

e .
.”.L R
PERY Y S PP ET 4

,,ww,.-.,- ,
a - - .

LA Be At o S Sk mun ans iuCiun dEEERS A4 duhane

———TYTTY
-a

seroll red in x - allows the red image to be scrolled in x only. The
general proecedure is to use this mode te correct x parallax. The

curser can be 'fleoated' in this mode and positiened on a peint.

scroll green - allow the green image to be scrolled in beth x and y.
Also in this mede the right hand trackball butten centrels a zoom
mode, Pressing the right hand butten will zeem fram 1X to 2X to UuX
to 8X and back to 1X while in this mede,

The command 'height'! is used te find difference in elevation ef twe
points. Two point pairs are selected on the images with the cursers. The
height is output on the terminal. If the value returned is pesitive the first
point had a higher elevation. To terminate the height command select the same

point consecutively.

The command 'distance' is used te find the xy distance between two
points. Two point pairs are selected on the images with the cursers. The
distance between the two points are output en the terminal, To terminate this

command select the same point censecutively.

The command 'relpts' is used te give relative point pesitions. The output
system is a lecal vertical system. Two point pairs are selected on the images.
The local xyz ground coordinates and the residual parallax are returned after
every point chosen. After the second point is chosen for each set the
difference in x,y and z are printed and the distance between the points in

xyz. To terminate this command select the same point censecutively.

The command 'spts' is used to compute point positions in one of several
available coordinate systems. The default system is local vertical. The
output system can be changed to a different projection by typing the name of
the map projection desired while in a command mode for 'mensurate' (a command
mode is when a '>' appears as a prompt). Available output systems are:

geographic, geocentric, lambert, mercator, polar, utm, Parameters for map

e et im AL e e e e e m A 3 o o a A A B e e e o ket e o o m. A a A A e o el o el e A

v &

TV,

U O NP

= - . e IR P
O)

il ey A ad s

-

[
N

prejectiens (such as standard parallels or central meridean) should be entered

by using the command 'gee' en the workstatien befere 'mensurate' is executed.

Besides having output printed on the terminal it can be saved in a file
as well. To do this just type 'save' while in a command mode (when '>' is the
prompt) for 'mensurate'. A message will ceme back asking the name of a file
where you want the oeutput to ge. If the file already existed the output will
be appended to the end of the file. If the file did net exist it will create
and write to that file. If a carriage return is hit fer the response the
commands will ne longer write to this file. All commands that preduce terminal
output will write to the 'save' file if one exist. The command 'save' must be
typed any time 'mensurate' is run if there is to be saved eutput. The cemmand

'stop' or 'q' will stop end execution of 'mensurate'. The command 'sh' will
fork a new shell.

A e A A

o AAJE S SN A
PR .

HEP

it 4

e S AR J
AR g

1S

Lt Al o oty 2

it At}

8. SCANNER SUBSYSTEM

8.1 INTRODUCTION

The AFES Scanner System provides the means by which stereo photegraphs
and graphic input materials are scanned and digitized fer use in the AFES
system. The scanner system is a separate cemputer centrolled system which
incerporates 1linear array charge coupled device (CCD) image sensers in
conjunction with computer contrelled translation stages te perform the
scanning functiens required by the AFES System. Scanner eperatioen is
essentially independent ef the rest of the AFES System, and it performs
scanning and digitizing operations simultaneeusly with other AFES system

operations,

The scanner system consists ef a steree photograph scanner/viewer unit,
a graphics scanner/XY pletter, a contrel cemputer, special real-time digital
video proecessing hardware, and a contrel interface. The photegraph scanner/
viewer has two phetograph stages equipped for both scanning and viewing. The
use of twoe stages permits selected areas of either photegraph of an oriented
stereo pair te be scanned and digitized en demand. Input map base material
and other graphics are scanned with the graphics scanner which alse serves as
an XY plotter for eutput graphics plotting. The coentrel computer is the
central control element of the system. It contrels the scanner serves and
video processer to implement scanning and digitizing functiens. It alse
coentrols the flow of data between the scanner and the rest of the AFES System,
and provides the means for operater communication with the scanner system.

The following subsectiens provide a more detailed descriptien of each

cemponent of the scanner,

e

‘e
'S .

R LR

P
P
b

8.2 AFES SCANNER SYSTEM

A diagram of the AFES scanner system is shown in Figure 8-1. Major
subsystems include the twe phetegraph scanners, the graphic scanner, video
precessing and senser control hardware, the contrel interface and a Digital
Equipment Corporatien PDP 11/34 system centrel computer, For operator
interaction during setup, a coentrel panel and CRT terminal are also included.
The main interface between the digitizing system and the AFES system computer -1
(PDP 11/70) is through one port of a dual access mass storage disk unit. The

P A

primary function of this interface is to permit transfer of image data from

F I

i

the scanner system to mass storage without interfering with other AFES system
operations., A PAR-developed contiguous file allocatien algorithm has been
implemented for this dual-perted disk, which permits fast access to image
files by the scanner, which must ;rite to contiguous disk blecks., At the same
time, these images can be accessed as erdinary UNIX files on the PDP-11/70
side.

I - IR
PETTSIN GNP

The two photograph scanners consist eof servo-driven XY vphoto stages,

servo-driven zoom and rotation eptics and solid state linear array photesensor

Sy L SO 1
PISTREIN . . .
AR L S S
[T L LNSINY - A

subsystems. Photegraph scanning is accemplished by moving the stage at a

5

| - constant velocity in one direction and sampling lines of imagery along another

F! direction with the array sensor. Since the array is read out sequentially,

this procedure results in a raster-type scanning of the photograph, similar to

that produced by a TV camera but at a slower rate. The output of the scanner

Al
3
P W

is a video signal which is transmitted to the video processing hardware. The

computer-controlled zoom allows for scanning the photographs at a wide range

VT

R SIS

of resolution. Minimum pixel size is about 5 microns and maximum pixel size

is about 30 microns. The minimum pixel size was defined based on informal

iafiet o o sl ah e S & S b an i

T
-

studies of various spot sizes conducted by PAR and government personnel. The
range of 5-30 microns stems from the capability of the optical zoom system. '
Actual maximum resolution as measured during acceptance testing is
approximately 80 lp/mm, The scanner can produce image data in a raster format

which is approximately 1000 pixels wide and of arbitrary length. Normally,

M K3 B an Man b aan age 4 4
PPNV S G Y S

[

-

(@<}
|
n

DD S o JI SN ARA N SR a0
Y 9 -
-

EMROICS W DO M SRR TN AR

3
.x., wei8erq we3Iskg Iauueds SAIV - 1-8 2an3Ty

.MM 405532044 03p1A 4333014 H
] e 03pLA AX/J3uueds 1
3 SNYINN sJdjsued) 1e31big sajydeay]
L oL/tt 03 e300 VWO h
Ui 1043uU0)]
ﬁ 493ndwo) .

g L043u0) 03ptA ® - u
% ve/LL dad]
U.‘. Su0l31S0q

. —————————— 0AUDS

2 i CEY-JWEL T}

X AStQ SSIIIY SNYINN [043U0) [s|eubLS [dued |043UO0) ..wnw___nxuw..nummm

_ teng 03 Jui1 pue UOL3ILSOd OAUIS

: e3eq 0L/11 — =

:

. 1

TR B
o
3
1
the raster is 1024 by 1024 pixels. The cemplete contrel of pheto stage motien L
m and optical retation allows for correction of skew image distertien while E:
T._ scanning. This feature 1is particularly useful in scanning paneramic '_‘
?'_ﬁ photographs. .
s
b The graphics scanner is essentially an XY plotter with a linear array L
{ camera mounted on the plotting head. This scanner has fixed optics and scans 1
{ the map or feature manuscript at a constant magnification. The graphics
L. scanner provides for either frent or back illuminatien of the image. This 'Z:T-'
:‘ allows both transparent and opaque manuscripts to be scanned. The scanning ':j
t‘ technique for the graphics scanner is essentially similar to that of the ,f
t' photograph scanner. The camera is moved in one direction while image 1lines '15
! are sampled along an orthogonal directien. Because of the fixed optics, y
fﬁ however, the graphics scanner always produces a rectangular raster format and E‘;
: a fixed resolution of 80 micres.]
The videe precessing and camera centrel hardware operates in cenjunctien)
f‘ with the three scanners to produce digitized image data. This hardware [1
= provides synchronization and control signals to the detecter array camera
[electronics for image line sampling and serial transfer of image data from the .'_ ;
A scanner to the video processing hardware. Image information cemes frem the V.j
. scanner in the form of sampled analeg video. Since enly ene set of video t:
i processing hardware is required for the three scanners, video selection '
* circuitry is previded for connecting any one of the scanners te the video]
processing hardware. Video precessing includes analog-to-digital (A/D) f1
E‘l conversion, compensation for senser dark level, compensation for sensor gain, ’_1
s geometric corrections, and transformation of image intensity data. i
3 The scanner system has its own Digital Equipment Corperation PDP 11/34
%l control computer which runs under the RSX-11M operating system. This computer ’_ <
{ controls overall operation of the scanner system, interacts with the operater
during setup, and communicates with the AFES main PDP- 11/70 computer. For
scanning operation, the PDP-11/70 pregrams generate commands to initiate
q)
3]
ip 8-u ‘
{ g
) ._

phetograph or graphics digitization. Infermation is passed to the scanner
system computer indicating which scanner to select, photograph or graphics
coordinates for the center of the scan, magnification to be used, rotation of
the array, and scan metien parameters. The computer then generates the
necessary servo commands and centrel commands to scan and digitize an image,
read scan line data inte the PDP-11/34 memery, and transmit this data to the
mass sterage disk. Once the process has been initiated, it preceeds
independently te scan and store a digital image. During scanning the PDP-
11/70 is free to perform other AFES System operations, assuming those
eperatiens do not interfere with the storage of digitized image data on the

dual access disk unit by the image digitizer system computer.

The scanner system cemputer handles the real-time transformations from
photo coordinates te stage coordinates for scanning and pesitioning the
photegraphs. These transformations are established at setup time by
performing an interier orientatien for each of the two photographs., To
provide for manual motion ef the photeographs during interior orientation, the
system has a control panel with an incremental input centrel. This is
connected to the computer through the contrel interface. To permit entry and
display of data, a CRT terminal is previded with the computer system. This
facilitates entry of orientatien data and provides for display of data for

monitoring image digitizer system eperatien.

8.3 PHOTOGRAPH SCANNER/VIEWER UNIT

The stereo photegraph scanners are contained in a single unit which rests
on an equipment cabinet the size of an effice desk (see Figure 8-2). The unit
centains two 9 inch by 18 inch serve-contrelled photeograph XY stages, two line
array cameras, zoom optics for beth cameras, and stereo viewing opties. The
photograph stages are of stage-on-stage design with reund ways and ball
bushings. Optical encoders quantize X and Y motion to a precision of 2
micros. An accuracy of 5 micros rms is achieved by applying correctiens to

the serve outputs within the computer,

e, . -]
St e s

. '.;..‘ ..
Ty . . '.I

'®

e

DN O WP

)

.

RS Stab i A

P T T ey

L P CLTo e - B PR e e

kr.-l;l..":."l"' E

Servoe-controlled zeem optics assemblies previde computer control ef

_I scanning magnification over a 6:1 range. The zoom optics are based on a

5 commercial zoom microscepe assembly adapted for serve centrol, The

magnification range of the scanner eptices is about 0.43X to 2.6X for pixel

sizes in the range of 5 micros te 30 micres. The 1line array camera can be

p retated through + 20 degrees to permit scanning aleng the stereo baseline.
. This rotation is alse serve-centrolled frem the computer,

In addition to the scanning eptics, a steree viewing optical system is

provided for performing photograph interior eorientatien and lecating cenjugate
stereo imagery. The viewing optics consist of the optics from a Bausch and
Lomb stereeo zoom transfer scope modified for use in the AFES Scanner system.

The viewing optics have image rotation and zoem magnification capabilities,

Magnification range is frem 6X to U0X and maximum field of view is 30
millimeters. Optical reference marks for manually measuring photegraph
positions are lumineus marks multiplexed into the viewing optics at a peint

immediately below the photegraph stages. Photographs are mounted emulsien

down on the stage glass and are viewed and scanned frem below. Illuminatien

of the photographs is from the tep. The illumination lamps are operated from

.

Wwell regulated DC power supplies, one of which can be contrelled by the

computer. As the scanner magnification is varied, the illumination level is

W
& - X ~

automatically ad justed by the computer to keep the line array camera eperating

at its nominal output level.

To provide the requisite operator control functions fer setup and

interier orientation, a centrel panel is mounted on the phetograph - A

LJn et e ARR. o o 0 "
PEEEN-S P

scanner/viewer unit in front of the operater. This panel centains a rate input

1 control for slewing the various scanner servos, and pushbuttens teo contrel

servo power and for selecting the servo axis to be contreolled. A busy lamp en
the panel signals the operator when the computer is engaged in performing a -

scan and digitize operation and cannot respond te eperater inputs.

IS SR

44
PRI S

8-7

e 4

N - P . . - —_ PP : i d

e . .
M .

= N

e e e s

-E" i

.I.“‘ir-' I

T

W m, e T T e T T Ve e

8.4 GRAPHICS SCANNER/XY PLOTTER

The graphics scanner censists ef a linear array camera mounted on the
drafting head of an XY pletter. The linear array is aligned with the X axis
of the pletter and cannet be rotated. Magnification of the scanner is fixed
at abeut 6X. This allews the 13 mm linear array to cever about 80 mm on the
map or feature manuscript. The eptical axis ef the camera is offset a
precisely knewn ameunt frem the stylus chuck of the pletter. This allews the
stylus to be used as a reference pointer te the center of the image to be
scanned. Scanning is accomplished by meving the pletter at a censtant
velecity in the Y direction while sampling and reading eut image lines in the
X direction. The scanner scans and digitizes a complete 1024 by 1024 pixel

image in about 8 secends.

Beth transparent and epaque manuscripts can be scanned with the graphics
scanner. Frent illuminatien is previded fer scanning epaque manusecripts such
as maps. For transparent material, the backlighting of the plotting table is
used. A portable control panel allows the operater to manually centrel the
pletter serves at the pletter, This is used for set-up of map base er feature

graphics on the XY plotter.

8.5 LINE ARRAY CAMERAS

The basic photesensing device of the three scanners is a 1024 element
charge-coupled device (CCD) 1linear array. This device is an integrated
circuit ceoentaining charge-integrating photo sites and CCD analog shift
registers. The phote sites convert photons te electrenic charge and integrate
the charge during an integration period. To read out the device, the charge
packets are all simultaneously transferred (in parallel) to two CCD analog
shift registers. The shift registers are then read out serially and their

outputs cembined te obtain a single video output signal from the device,

8-8

r
[

i

g

P AU L

- gy

CBWA L e e

PYSSINICS TR SN

PR < .
) 1 < .
s L

T e
H .
Y

. 1
224k

D |

Ao e

39, MEDO M ALAMCS

In the AFES Scanner System, the array sensers are incerporated in

prepackaged linear array camera systems. The camera contains the necessary
circuitry for driving the array and sampling its eutput to preduce a sampled
analog video signal at the output of the camera. Since the photemetric
fidelity of the array is net by itself adequate for the AFES system, external
videe processing circuitry is provided which cerrects dark current and gain

variatiens acress the array.

The photo sites of the array are 8 x 13 micreos elements on 13 micres
centers with 5 micres channel stop bands between them. The array of 1024
elements is about 13 mm long. The geometric stability ef the array is

excellent since the photo sites are fixed on the device substrate.

Dynamic range of the array device itself is typically 500:1. The camera
electronics, however, add some noeise that reduces this range to a minimum of
200:1, eor + 1 part in H#400. Dynamic range is defined as the ratio ef
saturation voltage to random output neise (peak-to-peak) on a per-cell basis,
Variations in dark current and gain from cell te cell generate noise which is
much greater than the randem noise, but the dark current and gain effects can

be compensated and, therefore, do not limit dynamic range.

8.6 VIDEO PROCESSOR

Video signals from the scanners must be sampled and converted to 8-bit
binary data for storage and manipulation in the AFES system. Furthermore, the
photometric fidelity of data directly from the scanner, while perhaps suitable
for stereo viewing and map display, is not suitable for automatic feature
extraction. The individual elements in the sensor array exhibit different
dark current neise and sensitivity (gain) characteristics. These variations,
while repeatable for each element, are toe 1large to obtain adequate
photometric resolution across the array. For images which are to be precessed
by automatic feature extraction, the video data must, therefore, be further

processed to remove dark current and gain variation effects. It is alse

‘o

EVSRSN B SVEING W VIR S-S S

'@

YT

Ty
'

desirable te ebtain 1loga. ithmic as well as linear image data. The A/D
conversien, photcsetric cerrection, and 1log/linear transfermatien are all

performed by the video processing subsystem.

A diagram ef the video processing subsystem is shown in Figure 8-3,
Video signals frem the three 1linear array cameras enter the video select
circuitry where one of the three signals is selected as the video source, The
selected video is then amplified by a video amplifier to raise the signal
level and reject any common mode noise picked up as a result of transmissioen
from the camera to the video precessor, The video is then sampled periedically
and converted to a 10-bit binary data stream. The sampling is performed
synchronously with serial readout of the array, so successive digital data
words correspond toe outputs of successive sensor elements along the array. If
the image is to be used only for viewing, the image data may be stored
directly in the output buffer. If the image is te be processed by automatic

feature extraction, corrections are made to the individual image data werds,

As shown in Figure 8-3, the output eof the A/D converter is applied to
summing circuitry where an 8-bit value is subtracted to correct feor dark
current. Each cell of the 1K by 8 random access memory (RAM) contains a dark
signal correction value for one element of the sensor array. After dark
signal correction, the image data is ceorrected for variations in gain of the
individual elements. This is done by multiplying each data sample by a gain
facter. Each cell of a 1K by 9 RAM contains a gain ceorrection factor for one

array element.

The output of the multiplier is a stream of 10 bit data words, This data
can be either stored directly as 8-bit words in the output buffer or applied
to a log transform randem access memory (RAM). If the RAM is bypassed, the
output data is a linear functien of photograph transmission. If the output
data is obtained from the transform RAM, a logarithmic response is obtained.
Since the RAM can implement almost any mapping, other rather arbitrary

functions can be implemented by loading the transform RAM with data for the

8-10

P et PP SRS P O)

4

LI
LA
W PP YR P

1
A

S K} , .
<_~.A_‘_~‘_‘_A‘A‘ B - s 'I.I'LL

camaad

N A YA YR S TR TR Ih RUN 1

g 405532044 03pIA - ¢-g @anlByg]

rey

SIIHdVY9)

WYY
¥iiing NOILI33S NOISY3ANOD
ek f€———1 oN1ddWH NOI1233S [0301A
WO 01 viva 03Q1A . a/v 0301A 2 OLOHd
vivd 391 wiia

|

-

IS

AVY9 N | 03014

L 010Hd

13

P R PN NPT, WA ISP PN

E
3

U S G S Y S

wiaay

WY

B # a nw NO1L33¥¥02
g NOILI3Y¥09 WHOLS
o NIVD Avo
] - N
NO1193¥40) !
g NO11401510 .

- 21130039 A

8-11

- ¥

- SSIUTOY AMOWIW

o ™ R e ahi bl diniii ediaimiiiteided b indddanlindi b

pas o o
- .

MAB AR Sh i a4 oo carch e i oh o ge 0 0 0
: . - - i ‘

e
-~

v

L

desired transfermatien,

The output buffer RAM cellects the image data during readout and
proecessing of one line of image data. Successive processed image data samples
are stored in successive lecatioens in the buffer. When the line is completed,
the scanner ceontrel computer initiates a direct- memery access (DMA) transfer
of the buffer centents into the computer memery. To previde better storage
efficiency and higher speed of transfer, the data is packed by transferring
two successive 8-bit samples as one 16-~bit werd ever the PDP-11/34 UNIBUS,

Because the optical systems of the scanners intreduce geemetric
distortions, correctiens must be made to the image data to obtain good
geometric linearity. This is accomplished by applying small corrections to
the output buffer memory address references during readout. The corrections
are stered in a geometric correction RAM and are added to the memory address
of the output buffer RAM. The corrections are only applied when the image
data is read out; all ether data transfers to and from the buffer RAM use the
nermal sequential addressing. All RAMs in the video precessor can be loaded
and read from the computer through the DMA transfer device. The video
processor memories can, therefore, be modified during system operation. The
video processor can also be tested for proper operation by transferring test
data to and from the various RAMs in the video processor. Modification of RAM

contents during system operation is used in automatic calibration precedures.

8.7 COMPUTER CONTROL SYSTEM

The control computer and its peripherals comprise a major part ef the
system. The various contrel sequences, computations, and data transfers
necessary to implement the various functions of the system are performed by
the contrel computer under the direction of its stored programs. The computer
is a PDP 11/34 with 32K words of memory and a fleoating point processor.
Peripherals include a CRT terminal, fleppy disk unit, DMA transfer interface,

RPO6 dual access mass storage disk unit, and a special control interface. The

8-12

DT U S W S S ¥ L — A 3 s .t L.

S Mt Bbat i e d

4 -._ .-".l . . '. e
i . "
I RPN 1L

-y

R A0

l

PRI

L

e
.e

1l el
e

‘. .
B e C
o s'a 4 'a'a 2 4 &

-
e

PSR |

i ntidoecadhtd L - [.

B4

e

T
‘4'4',':-

I‘l
1

wzv TV TV EY ..W ,.v

A |

R

L

T

——
-

A4

CRT terminal is used primarily for operater interactien with the system. It
allews the operator te enter and display data, select modes of operatien, and
initiate various functions of the system. The floppy disk unit is used te
read programs from a permanent storage medium during system startup. The DMA
transfer interface is used to transfer blocks of data between the computer
memory and the various RAMs of the video precessor, The RPO6 dual access disk
unit is used to stere image data for transfer to the PDP-11/70 AFES cemputer
system. During image scanning and digitizing, image data is written inte the
RPO6 on a line-by-line basis. When a cemplete image i3 digitized and stered
on the disk, the PDP-11/70 computer reads out the data by way of the ether
disk access pert.

The contrel interface unit centains parallel input/output (I1/0) and serve
c ,ntrel hardware to allow the cemputer te centrol the three scanners and the
video processer. Serve control exercised by the computer includes the twe
axes of each photo stage, the X and Y axes of the graphics scanner, the
magnification eptics, and the rotatien eptics. Limit switches on the varieus
servo systems are sensed through the parallel input hardware of the interface.
Parallel I/0 hardware is used to control and sense status of the videeo
precessor, In addition, an eperatoer control panel is serviced threugh

parallel I/0 hardware of the interface unit.

The various functional capabilities ef the stereo image digitizer system
are implemented primarily by the computer programs. These programs respond to
inputs from either the operator or the 11/70 computer and perform the various
programmed functions of the system. They generate motien commands fer the
servo travel, and take appropriate remedial action. During the performance of
the various system functions, the pregrams control the sequences of operations

and the flow of data threugh the system.

¥

o

Saa a1

. ,’."."' .

24

R g]

TR G S

- L 2N
PP G

e .
f
PRI WA N

-t

pv g

MISSION

RADC plans and executes nresearch, development, fest and
selected acquisition programs in'&gppod‘a&tomud, Control
Communications and Intelligence (C’I) activities. Technical
and engineering support within areas of technical competence
48 provided to ESD Program Offices [POs) and other ESD
elements. The principal nical mission areas are
communications, electromagnetic guidance and control, sur-
veillance of ground and aerospace obfects, intelligence data
collection and handling, infonmation system technology,
{onosphenic propagation, solid state sciences, microwave
physics and electronic neliability, maintainability and

h b ility. .

*Y

‘e ,
PO AN e

