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ABSTRACT

" Three-dimensional thin boundary-layer equations for laminar and turbulent

flows are solved by two different numerical schemes. The methods are applied

to the flow over bodies of revolution at incidence and the results are

compared with the available experimental data in order to study the range of

validity of the classical boundary-layer approximations in regions of

increasing circumferential gradients and flow reversal associated with the

early stages of a free-vortex type of separation. Comparison with the DFVLR

6:1 spheroid data of Meier et al and the 4:1 combination-body data of

Ramaprian, Patel and Choi indicate that the methods perform well in regions

where the boundary layer remains thin but the predictions deteriorate as the

boundary layer thickens. The results point out the need for the development

of methods to handle thick boundary layers and viscous-inviscid interactions.

1. INTRODUCTION

The viscous flow on a body of revolution at incidence is being used as a

vehicle for the development of general methoas for the calculation of three-

dimensional laminar and turbulent boundary layers. Although this is a simple

shape, it is of considerable practical interest not only in its own right but

also because it exhibits all the complex flow phenomena observed on other

geometries, such as airplane fuselages and ship hulls.

The two calculation methods employed here have been described elsewhere

[1,2,3] in some detail. For the present purposes it suffices to note that

both solve the usual thin boundary-layer equations but differ in their

numerical content and turbulence model. Thus, one of these [] uses the

Crank-Nicolson finite-difference scheme and the two-layer isotropic eddy-

viscosity model of Cebeci and Smith [4]. This method was also used recently
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[5] to perform calculations for four of the five test cases considered at the

1982 Eurovisc Workshop. The second method is more versatile insofar as it can

ac-omodate flow reversal in planes normal to the marching direction. This is

accomplished by the use of the ADI (Alternating-Direction-Implicit) numerical

scheme. Here the turbulence model is based on the turbulent kinetic energy

equation, a prescribed length-scale distribution and the assumption that the

directions of the stress and rate-of-strain vectors are coincident. Both

methods are capable of calculating laminar as well as turbulent boundary

layers. Transition is simulated by 'switching-on' the turbulence model at

prescribed positions.

This paper provides a summary of some of the calculations that have been

performed to date. Since the methods have been subjected to rigorous

numerical tests in laminar flows [1,3], attention will be focused on turbulent

boundary layers and situations involving transition.

2. TEST CASES

Experimental data fro- -o different bodies are now available for the

assessment of the calculation methods. The model of Ramaprian, Patel and Choi

[6] consisted of a hemisphere attached to a half spheroid (Fig. la).

Transition was fixed at X/L = 0.04 by means of a trip wire and mean-velocity

profiles were measured at several circumferential positions at each of the

seven longitudinal stations. The surface pressure distribution was also

recorded in some detail. Although three sets of data, corresponding to

incidences a = 0, 6 and 15 degrees, are available [6,7], we shall present

calculations only for the highest incidence.

The second experiment is being conducted at the DFVLR in the Federal

Republic of Germany [see, for example, 8-11] using a 2.4 m long, 6:1 prolate
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spheroid (Fig. Ib). A distinctive feature of this experiment is that no

tripping device is used and therefore the initially laminar boundary layer

becomes turbulent through a region of natural transition. Detailed

measurements of surface pressure distributions and wall shear stress have been

made at two Reynolds numbers and several incidences in the range 0 < a < 400.

However, measurements of mean-velocity profiles and Reynolds stresses are in

progress for the case a = 10 degrees at the higher Reynolds number,
UL

namely -U* 7.2 x 106 (U: 45 m/s), where U is the reference velocity in
namo 

OD

the wind tunnel, L is the length of the body and v is kinematic viscosity.

Consequently, for the purposes of the present paper, we shall concentrate on

this case although it is useful to briefly review the results of the purely

laminar-flow calculations which correspond to the experiments at the lower

Reynolds number.

3. CALCULATIONS

All calculations have been performed in a body-fitted (x,y,e) coordinate

system, in which x is measured from the nose along the surface, y is normal to

the surface and 8 is the angle measured from the windward plane of symmetry.

In the presentation and discussion of the results, however, we shall refer to

the distance X measured along the axis of the body. The components of mean

velocity along (x,y,e) are (U,V,W), respectively, and the components of skin-
12

friction (wall shear) coefficient Cf- Tw/1 pU 2 along (x,e) will be denoted by

Cfx and Cfz, Tw being the resultant wall shear stress and p the density.

(a) Laminar Flow

Laminar boundary layer calculations were performed, by both the Crank-

Nicolson (CN) and the ADI methods, for the DFVLR spheroid at a 10u , assuming

-- ----



4

inviscid-flow pressure distribution, and starting at the forward stagnation

point. As discussed in [3], the CN method is able to calculate the boundary

layer only in the region between the windward plane and a line on the body

along which the circumferential component of velocity changes sign (from

positive to negative) or, equivalently, Cfz vanishes. This method can,

however, be used to perform a separate calculation along the leeward plane of

symmetry. The ADI method, on the other hand, continues to provide a solution

on both sides of this circumferential flow-reversal (CFR) line.

Figure 2 shows a comparison between the CFR line indicated by the DFVLR

measurements of wall shear stress at the lower Reynolds number of 1.6 x

106 (U. = 10 m/s) and those predicted by the two methods. It is seen that the

results of the two methods agree quite well with each other and both

predictions are in excellent agreement with experiment.

The circumferential distributions of the components of wall shear stress

at three representative axial stations, as determined by the ADI method, are

compared with the corresponding experimental results in Fig. 3. The

disagreement between the data and these laminar calculations at 0 = 150U, X/L

= 0.381 and in 120u < 6 < 165u, X/L = 0.64, is due to a growing wedge of

turbulent flow on the leeside beyond the CFR line. The circumferential

distributions of the physical boundary-layer thickness, 6, and the

displacement thickness, 6 , shown in Fig. 4 for X/L = 0.64 indicate the

thickening of the boundary layer in the vicinity of the CFR line.

A particularly noteworthy feature of the ADI solutions is illustrated in

Fig. 5 where several axial and circumferential velocity profiles at X/L =

0.508 are plotted in the neighborhood of the CFR line which is located

at e = 110. The results show the rapid circumferential thickening of the

boundary layer and the development of a two-layer structure. These features

4 ---- top
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are associated with the convergence of streamlines near the wall into the CFR

line from both sides while the flow in the outer part continues to go from the

windward to the leeward side as required by the external inviscid flow.

Whether the solutions in this region can be regarded as physically realistic

may be questioned since one may doubt the continued validity of the boundary-

layer approximations and, as mentioned earlier, the experiments indicate

transition to turbulent flow. Nevertheless, these are solutions of the first-

order equations and need to be analyzed in detail in order to determine what

additional terms in the equations should be retained and how to couple such a

viscous flow with the external inviscid flow to develop a more general

solution procedure.

(b) Turbulent Flow

For the combination body tested at Iowa [6], calculations were performed

for the case of a = 15u using the measured pressure distribution. The

experiments indicated a substantial difference between the actual and the

inviscid-flow pressure distributions due to viscous-inviscid interaction and

therefore the use of the former represents a better test of the boundary-layer

calculation methods.

The calculations were started at station 1 (X/L = 0.176) with the

measured mean-velocity components. The CN method was also used to separately

calculate the boundary-layer development along the leeward plane of symmetry

which is not accessible to the three-dimensional calculations beyond the CFR

line.

An overview of the results is provided by Figs. 6-8. In general, the

agreement between the calculations and experiment is quite good on the

windward side but quantitative differences arise on the leeward side, beyond
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the CFR line, where the boundary layer is rather thick and the viscous-

inviscid interaction is strong. The growing disagreement between the

calculations and experiment on the leeward side may be attributed to the thick

boundary-layer effects rather than a gross inadequacy of the turbulence

models. Detailed measurements of the Reynolds stresses are required to verify

this.

(c) Laminar and Turbulent Flow

The experimentally determined line of transition in the higher Reynolds

number tests on the DFVLR spheroid at a = 10u is shown in Fig. 9. This line

demarcates the most upstream positions at which the wall shear stress reaches

a minimum value in the local circumferential direction.

The measured pressure distributions in this case agreed quite well with

potential flow over most of the body but systematic departures were noted in a

region surrounding the CFR line on the leeward side. Although calculations

have been performed with the measured as well as the potential-flow pressure

distributions to study the influence of viscous-inviscid interaction, for the

purposes of the present paper, we shall present only the solutions obtained

with the potential-flow pressure distribution.

The boundary-layer calculations were started at the forward stagnation

point in both the ADI and the CN methods. In both cases, the turbulence model

was activated at the aforementioned transition line as it was crossed at each

value of e. Thus, in the region 0.22 < X/L < 0.56 the boundary- layer

calculations involve laminar, transitional and turbulent flow in the

circumferential direction. The intermittency function in the Cebeci-Smith

eddy-viscosity model used in the CN method is the same as that employed in

two-dimensional flow to mimic transitional flow over a finite streamwise
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distance. However, in the turbulent-kinetic-energy equation used in the ADI

method, no attempt has been made to tailor the model constants or functions to

optimize agreement with data even in two-dimensional flows. This difference

should be taken into consideration in the discussion and interpretation of the

subsequent results.

Fig. 9 shows a short CFR line in the laminar flow ahead of transition on

the leeside. This is essentially the same as that calculated at the lower

Reynolds number. It disappears after transition but a new CFR line is

predicted in the turbulent flow further downstream. This line is of course

closer to the leeside than the corresponding line in purely laminar flow,

indicating the greater capability of turbulent flow to overcome the adverse

circumferential pressure gradient before flow reversal. The experimentally

observed CFR lines are again in good agreement with the calculations.

Detailed comparisons between the calculations and measurements are

presented in Figs. 10 and 11. The former shows the variation of the two

components of skin friction along a few representative generators while the

latter compares the calculated velocity profiles with those measured at X/L =

0.64. It is evident from Fig. 10 that the skin-friction coefficients

predicted by the two methods in the region of laminar flow are in good

agreement with each other and with the experimental values. The solutions

through the transition regions give remarkably good representation of the data

despite the rather crude manner in which transition is simulated. In the

turbulent flow, the agreement between the data and the results of both methods

is again good although the experiments indicate generally higher stresses.

The velocity profiles shown in Fig. 11 substantiate the observations made on

the basis of wall shear stress distributions. In particular, it is seen that

the predictions are in good agreement with the data over the windward side

- --- - a--|- -
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except at e 00, but systematic departures occur in the neighborhood of the

CFR line (e - 140 u at X/L = 0.64). The disagreement in the profile

at e = 0u is due to the fact that the experimental flow is not fully turbulent

at this station.

4. CONCLUSIONS

From the variety of results presented here it is apparent that three-

dimensional boundary-layer calculation methods considered here have reached a

stage where they can be used with confidence on practical geometries provided

the boundary layer remains thin and the first-order equations remain valid.

Laminar and turbulent-flow calculations in regions of circumferential-flow

reversal, which are accompanied by increasing boundary-layer thickness, large

circumferential gradients and strong viscous-inviscid interaction, indicate

special features which need further study especially to develop practical

methods for the prediction of thick boundary layers and to couple such methods

to the external flow to account for viscous-inviscid interactions.
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(a) Combination body [6]

(b) Spheroid [a]

Fig. 1. Shapes of models tested

Fig. 2. Circumferential flow reversal line; spheroid, lominonr

flow. * Expt, - AMI ------ ;N.
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