
AD-A125 629 INTERACTIV['COMPUTER PROGIAM DEVELOPIENT STYdE STUDY /9
VOLUME 3 FUNCTIONAL..lU GENERAL DYNAMICS FORT NORTH Tx
FORT WORTH DIV H C COW I1 AL. JAN 83 DNA-2-014-VOL-3

UNCLASSIFIED RAOC-T-83-3-VOL-3 F30602-S1-C-001 F/O 2/2 NL

Emhl/E/I/I/El111111 II"

1110 1. ' 28 2.59

Ill- - II I~l

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANOARDS -963- ,

£&

,OW4*.S. VS NI4Sttn
ui s nao iw

naAll nALA

Vil ,I .

Z ncetw 4

- a-. -

be nseahl.to the, ganal4 "4$4i, icut ~s etns

R&P-Th43-3 * Vol in (of tlun#) be bnrnae .4 is f*Ovd t*
publtcat~n.,

0fl011

UNCLASSIFIED

SECURITY CLA$SIFICArTON OF T .S PAGE (WVhen Data Enterd)

REPORT DOCUMENTATION PAGE P D o 'T',-',7%-
. B~~~~FFr~p CCD.'-4rf r'. : qT- '

I. PFPOf-- NU.ASE R i2 r)VT ACCFSSION Nn.) I P -. 7-.

RADC-TR-83-3, Vol III (of three)_
4. TITLE (afd Sb:It) OF R0Tehnca R ort
INTERACTIVE COMPUTER PROGRAM DEVELOPMENT Fia K a epo
SYSTEm STUDY 6 Jan 81 - 30 Sep 82

Functional Description A. PE-ORl4N- 01.- DMA-2-014

7: AUTHOD!(-) 5. CONTRACT OR GRANT H'JIREN(,)

H.C. Con->, Jr. R.M. Bond
D.J. Rodjak C.G. Anderson F30602-81-C-0039
M.A. Goode R.C. Robertson

9- PERFORMiWG ORGAN17ATIOPJ NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT TASK

General Dynanics/DSD/Central Center AREA A woRk um'r NU630ERS

North Grant Lane
303

Ft Worth TX 76108 32050326
II. CO1:TROLLIIiG OF ICE OME ;'s0 ADDRESS 2, REPORT JATE

Rome Air Development Center (COEE) January °1g83

Griffiss AFB N7Z 13441 36 PAGES

14. MONITOR;NG AGENCY NAME & ACDRESS(l diffi.ent frome Controllna Office) 15. SECURITY CLASS. (o 1iIs rpot)

Same UNCLASSIFIED
IS.. OECL ASSI FIC:ATION/OOWN GRADIN G

p6.DISTRIor TION STATEMiNT (of thds Report) unlimi

Approved for public release; distribution unlimited

17. DISTRIBON STATEMENT (fath Ia. .h rt antired in Bloc* 20. if difloenr froem Report)

Same

!$. SUPPLEMENTARY NOTES

RADC Project Engineer: Roger Panara (COEE)

19. KEY WORDS (Contim* on revrse side if ntcesit y enld Identlfy 6v block Ahihbe,)

Software Engineering

programming environment
software tools

20. ABSTRACT (CotnI ue. on re.verse liad If necos.ary .d Identify by, block number)

Vol I (of three) describes the develop ent of the design and supporting

documentation for an incremental and evolving integrated modern encineerin

software production environment for the Defense Mapping Agency.

Vol II is the System/Subsystem Specification.

Vol III is the Functional Description.

DD " 1473 EDITION O 1 NOV65 Is OBSOLETE UNCLASSIFIED

SECURITe C.. ASIFICATION
0

' T IS AGE 'W%.n !)-t. Entqpod)

A ~ - - --- S-.- .-

FUNCTIONAL DESCRIPTION
TABLE OF CONTENTS

Section Title

1. GENERAL 4

1.1 Purpose of the Functional Description 4
1.2 Project References 4

1.3 Terms and Abbreviations 5
2. SYSTEM SUMMARY 6
2.1 Background 8
2.2 objectives 8
2.3 Existing Methods and Procedures 8

2.4 Proposed Methods and Procedures 11
2.4.1 Summary of Improvements 19

2.4.2 Summary of Impacts 20
2.4.2.1 Equipment Impacts 20
2.4.2.2 Software Impacts 20
2.4.2.3 organizational Impacts 20
2.4.2.4 operational Impacts 20
2.4.2.5 Development Impacts 21
2.5 Assumptions and Constraints 21
3. DETAILED CHARACTERISTICS 22
3.1 Specific Performance Requirements 22
3.1.1 Accuracy and Validity 22
3.1.2 Timing 22
3.2. System Functions 22
3.2.1 Minicomputer Hosted Tools 22
3.2.1.1 Requirements Tool 22
3.2.1.2 Design Tool 22
3.2.1.3 Coding Tool 23
3.2.1.4 Testing Tool 23
3.2.1.5 Documentation Tool 23
3.2.1.6 Configuration Control Tool 23

3.2.1.7 Project Management Tool 23
3.2.2 Support Activities 23

3.2.2.1 MPE Administrator/Toolsmiths 24
3.2.2.2 Training 24

3.2.3 Computer Links 24
3.3 Inputs-Outputs 25

3.4 Data Characteristics 28
3.5 Failure Contingencies 28
4. ENVIRONMENT 30

4.1 Equipment Environment 30
4.2 Support Software Environment 30
4.3 Interfaces 30
4.4 Security and Privacy 30

5. COST FACTORS 32
6. SYSTEM DEVELOPMENT PLAN 32

41

FUNCTIONAL DECSRIPTION

FIGURES

Number Title Pae

2.1 Sample Modern Programming Environment 7
2.3 Existing HOL Software Development 10
2.4.1 Project Management Overview 12
2.4.2 Proposed HOL Software Development - Overview 14
2.4.3 Proposed HOL Software Development 15
3.3.1 Requirements Tool 25
3.3.2 Design Tool 25
3.3.3 Coding Tool 25
3.3.4 Testing Tool 26
3.3.5 Documentation Tool 26
3.3.6 Configuration Control Tool 26
3.3.7 Project Management Tool 27
3.3.8 Training Tool 27

3

.avow

4 -- .------ ----- ----- ---

SECTION 1. GENERAL

1.1 Purpose of the Functional Description. This Functional
Description for the Defense Happing Agency's IDNA)
Interactive Computer Program Development System Study
(ICPDSS), Contract number-.F30602-81-C-0039 through Rome Air
Development Center (RADC) hAs written to provide the system
requirements of the Near-Term Hodern Programming Environment
(HPE). This will serve as a basis for mutual understanding
between the user and developer, as well as information on
preliminary design and user impacts. The description
presented is generic in nature. Each of DMA's centers will
have duplicates of the system described. For specific tool
recommendations reference the System/Subsysem Specification.

1.2 -- aect- References. These references provide
information on the history of the project, technical data
collected and the collection process, and documentation
concerning related projects.

a. Project Request (copy not included) - UNCL

Solicitation Number F30602-80-R-0206
Rome Air Development Center
Attn: Contracting Division (PK)
Griffiss Air F' . - Base, New York 13441

b. Technical Documentation previously developed:

CDRL A002 - Statement of Operation Need and
System Operational Concept - UNCL

CDRL A003 - Tool Evaluation Plan - UNCL
CDRL A004 - Tool Survey - UNCL
CDRL A005 - Alternative Analysis - UNCL

C. Significant Correspondence:

CDRL A001 - Monthly Status Reports - UNCL

d. Related Projects Documentation:

FEDSIM (Federal Computer Performance Evaluation and
Simulation Center) I.stallation Review - DHAHTC
- November 1980 - UNCL

DNA Operational Concepts (1982-1990) - May 1979 -
UNCL

DNA Programming Support Library (PSL) Interim
Evaluation Report, IBM/FSD - November 1980 -
UNCL

14

DMAAC/Scientific Computer Division - Software Life
Cycle Standards - February 1981 - UNCL

FEDSIM Installation Review - DMAAC - August 1980 -

UNCL
DMA Modern Programming Environment (MPE) -

January 1980 - UNCL
FEDSIM Optimization and Error Rate Studies -

February 1981 - UNCL

e. Additional Documentation

CDRL A007 - System/Subsystem Specification - UNCL
CDRL A008 - Final Report - UNCL

1.3 Terms and Abbreviations.

ANSI AMERICAN NATIONAL STANDARDS INSTITUTE
ASCII AMERICAN STANDARD CODE FOR INFORMATION INTERCHANGE
ADP AUTOMATED DATA PROCESSING
CDRL CONTRACT DATA REQUIREMENTS LIST
DMA DEFENSE MAPPING AGENCY
DMAAC DEFENSE MAPPING AGENCY AEROSPACE CENTER
DMAHTC DEFENSE MAPPING AGENCY HYDROGRAPHIC/TOPOGRAPHIC

CENTER
DoD DEPARTMENT OF DEFENSE
LAN LOCAL AREA NETWORK
FEDSIM FEDERAL COMPUTER PERFORMANCE AND EVALUATION AND

SIMULATION CENTER
HOL HIGH ORDER LANGUAGE
ICPDSS INTERACTIVE COMPUTER PROGRAM DEVELOPMENT SYSTEM

STUDY
MPE MODERN PROGRAMMING ENVIRONMENT
PERT PERFORMANCE EVALUATION REVIEW TECHNIQUE
RADC ROME AIR DEVELOPMENT CENTER
R&D RESEARCH AND DEVELOPMENT
SIP SOFTWARE IMPROVEMENT PROGRAM
UNCL UNCLASSIFIED

5I

SECTION 2. SYSTEM SUMMARY

This section provides a general description, written in non-
Automated Data Processing (ADP) terminology, of the proposed
DMA Modern Programming Environment (MPE). As an introduction
the following paragraphs provide a brief overview of the
purpose and components of a MPE.

A MPE is a means of improving the software development
process, thereby improving the quality of software in terms
of reliability, maintainability, and performance. This is
accomplished through the use of a standard, integrated set of
methodologies using automated software development tools.
These tools and methodologies cover all life cycle phases of
the software development process including requirements,
design, coding, testing and maintenance. Capabilities
outside the life cycle are project management and training
support. A MPE is confronted with continually changing
requirements and available tools. The MPE is upgradable as
this evolving process occurs. Figure 2.1 illustrates an
example of a MPE.

6

o 0

O1k;

0.0

o,

ta

.

E -

trt

0
DA W w)

gm E-4 Q,~ CC.2 -c

0 4 0 LoI

,44

crtr\iiid
-7w

I F4

User access to the illustrated MPE system is through
interactive terminals and standard, user-friendly interfaces
to the automated life cycle support tools. The development
system is based on a minicomputer thus removing development
activities from the production machines and forming a common,
standard environment for software development. Additional
provisions are early error detection through the use of
requirement and design tools and the generation of A more
complete and standard documentation produced through the use
of the automated life cycle support tools. These benefits in
turn provide for more easily maintainable, modifiable
software systems. One final requirement of a MPE is that it
can be easily modified and/or upgraded as the needs of its
users change.

2.1 Back aroud.. The Near-Term MPE design was developed to
provide DMA with the capability to meet its software
development needs in 1985 and to provide a baseline for a
system to meet DMA's 1987 needs. The Final Report, Section
2.0, provides information concerning the generation of the
near-term and far-term needs. The specific research
accomplished to identify solutions to DMA's needs is
described in the Final Report, Sections 8 through 15.

2.2 -- biectives. The Near-Term MPE specification
incorporates the design and supporting documentation for an
incremental and evolving integrated modern engineering
software production environment for DMA. The period of
concern is 1985 to 1987. Realization of the MPE will lead to
the establishment of a comprehensive and coherent framework
for specifying, designing, programming, testing and
maintaining software in a highly visible, traceable and cost
effective manner. The Final Report identifies R&D which must
be accomplished and changes in the system which must occur to
evolve from Near-Term to Far-Term MPE.

2.3 Existima Methods and Procedures. Software activities at
DMA fall into three major categories: 1) development of new
software, 2) addition of new capabilities to existing
software, 3) detection and correction of errors in existing
programs. Programs are also developed by outside vendors.
Most of the software developed is written in dialects of
FORTRAN and COBOL. Assembly language is also used but is not
addressed in this document. Multiple software life cycle
definitions are utilized; but in general all are generic to
the requirements, design, programming, testing, and
maintenance phased development process.

There is no formal method of specifying software
requirements, although some customized methods do exist. The

8

design of programs is not formalized; but some organizations
do document their efforts through the use of program
specifications. The programming phase is labor intensive
with some system support utilities available to help automate
the process. Most automation has been developed for the
testing phase. Code auditing is automated but is not in
general use throughout DMA. The maintenance function relates
to the second and third categories of development previously

m entioned. The revision of software is a major effort at
DMA; but the current configuration management systems are not
automated or strictly enforced. Currently standards are
being developed and implemented to formalize many activities
and methodologies in the area of software development which
will enhance existing techniques. These standards include
content of documentation, utilization of personnel, and use
of tools and techniques to support each phase.

The management of software development projects is
accomplished with no use of automated tools. Some projects
are managed with manual methods such as PERT, but this is not
generally done.

Figure 2.3 illustrates the current software development and
maintenance procedures at DMA.

9

Z E-4

C4,

j?4J

00

a44

W

'-4

(z2

uN

z0
Ow uA
>40

1w

2.4 .. Proposed Mthods and Procedures. The near-term system
was selected to meet the immediate needs of DMA. As defined,
the system has a high probability for improving productivity.

A set of software tools residing on a minicomputer will be
utilized for the requirements, design, programming, testing
and maintenance functions of the software development life
cycle. The specific configuration is described in the
System/Subsystem Specification. For clarification,
'Maintenance functions' is defined as post production
software development activity requiring work in one or more
phases of the life cycle: requirements, design, programming,
testing. These would include activities such as the
correction of software errors discovered in production
programs and modifications or upgrades to programs already on
production status.

All software developed is monitored through the use of a
project management tool. Examples of inputs and ouputs of
the project management system are demonstrated in Figure
2.4I.1. Upon receiving a job request, the project management
tool is initiated for the job and at various points in the
scenarios, the project mahagement system is updated to
reflect pertinent decisions and actions.

lso

FA4

au

C be v
MU t4I

A.~ 00*

4J4*1

4A. ~ ~ S C ' g i

00 u 6

4J AUU 4*: 0 IdO j
It. w

6ji3~ t ~ J *

4A9U * .

.~s..512

For purposes of discussion, scenarios will be considered for
the following categories of software development:

1. maintenance to existing software which has not been
upgraded through the Software Improvement Program (SIP),
(Part of this program consists of an effort to improve
existing UNIVAC software.)

2. maintenance to existing software which has been SIP
upgraded,

3. software under development for which standards were
specified,

4.* new software to be developed by DMA for which standards
are to be specified, and

5. new software to be developed by contractor for which
standards are to be specified.

The techniques discussed are intended to demonstrate the
applicability of the recommended tools to the various
scenarios. specific usage methodologies will be developed
during the MPE system implementation as outlined in Section
19.1 of the Final Report.

The application of the RIPE tools to the DM~A environment is
illustrated in Figures 2.4.2 and 2.4.3.

13

CSTART

SCENARIO

DETERMINATION

TOOLS

APPROACH

~SOFTWARE
! TESTING

cSTODP

Figure 2.4.2 Proposed HOL Softvare Development - Overview

14

Scenario
START Number Description

1 Eisting software not SIP upgraded
1 2 Existing software upgraded by SIP

3 Software presently under development

Job 4 New in-house software
Request 5 New contracted software

Software
Maintenance yes

Task Scenario #3

no

Scenarios /94 & 95 ys 1

ANS Stnad

Figure 2.Io. ropsdHLSfwr eeomn

15s

Der eveopied do-nto n

Sc n ri s 0 and yesiu at o Sonaroo ed

Fi-r 2g. Popse HL oftware Deveofy t
paed ANS Stan de

15

iyes

runcti-w1 Job kitiot~ss O

4.t -~vtoa WEin~r

teeat Objecive.

Figur 2.4. Proosed OL Sotvaa Peeopw.~(pag 2lof2

16

Ma al--- -t.

Within the defined scenarios, one of tvo basic tool
approaches will be followed.

The first, referred to as the "automatic progrdaing
approach", will make repeated use of the subsets of am
automatic programming tool until performance criteria are
achieved. The usage of the various subsets is as follows:

- the graphics editor is used to enter program structures
(control maps) to functionally decompose requirements
and design specifications as well as changes, if any,
which are required as a result of performance testing,

- an analyzer verifies consistency and interfaces,

- source code is automatically produced from requirements
definition,

- the source code is compiled and linked, and

- the system is performance tested to determine
acceptability.

Failure to pass performance testing results in repetition
of these steps until criteria are satisfied.

There appears to be no restriction on the size of system
which may be developed with such a tool. As systems are
developed, generic operations are developed, documented and
can be placed in a library for use as building blocks on
subsequent systems.

On occasions, there may be circumstances which dictate the
use of an approach other than automatic programming. Reasons
to utilize such an approach include systems which indicate
the use of COBOL, time critical applications, and
applications for which automatic programming is not cost
effective.

The second approach, referred to as the "conventional tools
approach", will make use of a requirements language, design
language, structured FORTRAN or COBOL, testing and
documentation tools through the life cycle. Utilization of
tools in the "conventional method" consists of repeated
application of the following procedures until performance
criteria are achieved.

-A requirements language is used for functional decom-
position of requirements specifications, and interface
and data flow analysis on the resulting program model.

17j

- A design language is used to originate the design or
make design changes, if any, which were mandated as a
result of performance testing.

- Source code is used to implement the original design or
modified to reflect changes brought about by design
changes, or performance testing results.

- A testing tool is used to detect syntax errors, perform
static analysis, and perform execution analysis.

- Performance testing is evaluated to establish the
acceptability of the system. Failure to pass
performance testing results in repeating the process.

one of -4hese tool application approaches is followed until
the preliminary test objectives are met. At this time, the
source is transmitted via data link to the target host for
final testing.

While testing on the target host, the project management
system is apprised of the test status. Upon successful
completion of final test objectives, job completion data is
processed by the project management system. This action
prevents the system status from being obscured from control
and insures a match between production software and the
associated documentation. Target host test objectives will
verify proper usage of machine dependent devices, software
and techniques. once final testing is completed and the
system is ready for production status, on-line documentation
such as requirements and design documents, source code and
test data should be updated and placed under configuration
control.

All coding will be accomplished in structured FORTRAN or
COBOL. Additionally, systems supporting documentation, text
editing, testing, configuration control and project
management will reside on the minicomputer.

The MPE administrator and toolsmith functions will support
the project management function as well as system management;
and a tool for building presentations and interactive lessons
will be utilized for training purposes.

The minicomputer and production mainframe will need to be
connected through a communications link. To support MPE
users in a timely manner and to provide adequate access,
multiple minicomputers will be required.

18

2.4.1_Summaryofm oeMnts. In Section 2.3, deficiencies
were identified. The solutions provided by the near-term MPE
are described in the following paragraphs.

The lack of a formal method of specifying requirements is
resolved through the use of an automated requirements tool,
which must be formalized through adoption into standards
being developed. Design also is to be formalized through the
use of an automated tool by a similar process. The use of
both of these tools represents functional improvements in the
existing software development process. Additional functional
improvements are the use of an automated configuration
management system, and the use of a project management tool.

The programming phase is upgraded by the addition of new
capabilities and is an improvement of degree rather than
function. The addition of new terminals allows for more
software development and maintenance to be accomplished
interactively rather than in batch mode. The system design
tool utilization decreases the labor intensive effort by
partially automating the process. Another improvement of
degree is the generation of project review documentation.
New documentation will be generated automatically as part of
the output of the software development tools in the
requirements, design, project management, and configuration
control activities.

By removing the software development process from the
production machines, and by supporting interactive
development through additional terminals, the time span
required for software development will be reduced. There
will be no competition with large production jobs for
computer time and turnaround time will be significantlyV.improved by the increased availability of interactive
terminals. Additionally, the incieased documentation
associated with development; the standardization of the
documentation; and the configuration control of all on-line
documentation should result in improved quality and
productivity in the software maintenance phase. The
documentation referred to here includes on-line requirements
specification and design documents, source code and test
data.

The only area where tasks are to be eliminated is when the
software development/maintenance effort warrants the
exclusive use of the automated programming software tool for
the development of a program. These programs will be
automatically generated from the requirements specification,
eliminating all manual activity associated with design,

19

programming, and testing. In this area configuration control
would be at the requirements specification level only.

2.Lj.2 Su m ar of= ImpactL& The anticipated impact on the
existing equipment at DMA involves only the addition of
hardware. A communications interface will be necessary
between an existing mainframe and the proposed minicomputer.
With the exception of communications software, 'no new
software will be required on existing hardware. Software
development will be reduced on existing systems and moved to
new equipment, requiring the users to learn additional
aspects of computer access and software development. For the
costs associated with this system reference Section 20.0 of
the Final Report. Personnel will be required to support
operation of the new computers and the MPE administrator and
the toolsmith functions.
2.4.2.1 _Eie_ ats. One or more mainframe

communication ports will require configuration to
minicomputer access. The ports/channels selected must
operate at a high baud rate. The specific number of
ports/channels to be dedicated will vary as multiple
minicomputer systems are installed.

2.4.2.2 Software Impacts. The communications configuration
software will need modification to support the system
hardware changes described in Section 2.4.2.1 of this report.
It is anticipated that no other existing software will be
added to or modified.

2.4.2.3 .. O.ganizaional___ Impats. The positional
responsibilities of personnel will not need modification, but
an addition will be required. One organization must control
the system configuration of the multiple minicomputers to
maintain intersystem software compatibility. A group should
be responsible for the configuration management of all
production software once a baseline has been achieved.
Personnel will be required to support the operation of the
minicomputers and the MPE administrator and toolsmith
functions.

A&L9__QREatioa!__pRacts. The programming standards of
DMA will require modification/extension to support and
enforce the new aspects of software development. These
include methods and tools to be used, documentation to be
produced, project review management procedures, and
configuration management techniques. System users will
require training to utilize the new minicomputers as well as
the hosted tools within the defined standards.

20

2.4.2.5 Developuent Impacts. Since it is recommended the
proposed system first be implemented under an experimental
system configuration, no effort will be required by the user
community prior to system development. System development
would be aided by identifying a core of personnel to perform
the system analysis first rather than providing access to the
general populace.

2.5 AssumRtions and Constraints. The assumptions associated
with this description include: (a) the capability of
communicating over a link between a minicomputer using a
standard interface and a production mainframe; (b) that
physical space is available for the minicomputers and
terminals; (c) workload will increase; and (d) skill level of
personnel will be upgraded.

Constraints assumed to be applied to this description
include: (a) security and (b) standards.

1

21

-... *.....-SPOON

SECTION 3. DETAILED CHARACTERISTICS

3L1..1 Speific Performance Reguirements. The specific
performance requirements of the system based upon the DNA
needs as described in the Final Report are described
qualitatively in the following paragraph.

The system shall provide users with an interactive access
capability to software development hardware and support
tools. This capability will provide for improved software
development/maintenance productivity by providing automated
support, quicker access, and improved response time.

anld Vl i diK t Not applicable

XI.2 Timin zNot applicable

32 ... aS M Functions. The Near-Term MPE functions as a
tool to provide life cycle support to the software
development process. In this section the individual
functions of each major element will be described as well as
the function of the aggregate.

3.2.1 hiniconMuter Hosted Tools. A large minicomputer will
be utilized to host the MPE including requirements
specifications, design, coding, testing, documentation,
configuration control and project management tools. The
computer should support multiple terminals distributed
according to functional responsibility.

3.2.1.1 Reqairements Tool. The specification and
documentation of the requirements of a computer program
should be partially automated through the use of a software
support tool. This tool should allow the interactive
development of a requirements specification document using a
defined methodology, and analysis of the specification for
data flow and control sequences. When the program specified
can be categorized to fit within certain constraints, the
requirements tool should be able to directly generate a high
order language (HOL) program to accomplish the specified
task.

3±2.1.2 Desjn Tool. The design of certain categories of
programs will be accomplished utilizing design support
software. Whether the task is accomplished by an individual
or a team, the tool will provide precise, accurate and
orderly transitions between requirements, design and coding
activities as well as intra-design activities. The tool will
provide, through a prescribed methodology, the capability to

22

4 - - -- - -*-.----*---*-----.-.-- ---- ---.

describe the design in simple, understandable constructs that
are easy to code; allow for checking of the design
constructs; and translate the design into a readable design
document.

3.2.1.3 Coding. Tool. Data entry will be performed
interactively when generating new code or documentation.
This activity should be supported by state-of-the-art word
processing and text editing capabilities. The HOL(s) used
for coding should be ANSI standard and fully compatible
(without considering device dependent extensions) with the
target production machine's compiler(s) to which completed,
tested programs will be sent for final compilation and
production status. A precompiler may be used as necessary to
produce this standard code and allow the use of structured
programming constructs. The use of these constructs
increases the readability of the code and therefore the
maintainability of the resulting program.

3.2.1.4 Testinq Tool. The testing support tool should
provide static and dynamic analysis of the specified HOL
source code including usage, path flow and coverage
statistics. Additional capabilities to enhance
documentation, such as the output of cross-reference tables
and summary data or pretty-printing the source input should
also be included.

3.2.1.5 Documentation Tool. Program developers should be
able to create and maintain documentation on-line through the
use of a word processor. This would also allow for
configuration management of the documents associated with a
program along with other on-line documentation as described
in the following sections.

3.2.1.6 Configuration Control Tool. Configuration control
will be supported through the use of a data control system.
The configuration management of textual material, for
example, HOL code, documentation, including on-line
requirements and design definitions, and test data, should be
provided.

3.2.1.7 Project Mana__§ement Tool. Project management should
be supported through the use of interactive tools that
perform resource allocation and analysis, time and cost
analysis, and report processing.

3.2.2 __Support Activities. Due to the complexity of the
proposed Near-Term environment, the evolutionary process
required to achieve the Far-Term environment, and a need for
a focal point for identification/resolution of problems,

23

- - - - --- sm---{- |

support activities must be provided to supplement the
development/maintenance environment.

3.2.2.1 MPE AdministratorLToolsmiths. These would be
support positions which would primarily serve as the focal
point for management to observe the system activities and as
an information source for MPE training. Personnel involved
with this function would be knowledgeable in the current
tools and methodologies contained in the MPE as well as the
minicomputer environment. Specifically, the MPE
administrator would be responsible for an overall
understanding of the MPE and its use. Toolsmiths would aid
the MPE administrator by each having a thorough knowledge of
a particular component of the MPE system. Tasks would
include performing error rate studies, helping users with
software development problems and the identification of needs
not satisfied within the user/management communities.

3.2.2.2 Training. A microcomputer based system for the
development and delivery of lecture material should be used
as part of a comprehensive training program to provide low
cost, self-paced training to personnel outside the production
environment.

3.2.4 Computer Links. Communication links must be
established among the host minicomputers and between the
minicomputers and production mainframe. This is necessary in
order to efficiently utilize the proposed environment. The
primary function of the minicomputer/mainframe link will be
to transfer completed, tested systems to the mainframe for
production use. The minicomputers will be connected through
a local area network (LAN) providing communication and backup
capabilities thus improving system reliability.

.2

24

3.3 Inputsu:2tputs. The following figures present the
inputs and outputs of the major functional components of the
Near-Term MPE.

INPUTS PROCESSING - OUTPUt,

DATA ---------------- > * DATA ANALYSIS * > ERROR REPORTS
CONTROL STRUCTURE---> * CONTROL ANALYSIS * > SYSTEM MODEL
DEFINITIONS --------- > * LOGIC ANALYSIS > GRAPHICS DISPLAY
FUNCTION ------------ > * FORTRAN SOURCE > FORTRAN SOURCE

• GENERATION *

Figure 3.3.1 Requirements Tool

------ PROCESSING HEM O-TPU-

** ** ** ****** *** *** **

STRUCTURE DEFINITION---> * LOGIC ANALYSIS * -.-- > DESIGN DOCUMENT
OPTIONS ----------------> * FORMATTING * - > CUSTOMIZED REFERENCE TABLES
DESIGN ----------------- > * FLOW ANALYSIS * .-- > INVOCATION HIERARCHY
MANAGEMENT INFORMATION-> * SUMMARIZING * ---- > DESIGN STATISTICS SUMMARY

Figure 3.3.2 Design Tool

------ HEM _ ------- P-R1211 --- ----

S.... GENERATED DATA

* COMPILATION * > EXECUTABLE MODULE
PROGRAM SOURCE ---- > * LINKING > . OBJECT MODULES
OPTIONS ------------- > * LOADING > SOURCE LISTING

S...> COMPILATION ERRORS

Figure 3.3.3 Coding Tool

25

* *

FORTRAN/COBOL CODE--> * STATIC ANALYSIS * . > STATIC ANALYSIS REPORTS

TEST OPTIONS - > * CODE INSTRUMJENTATION * --- > INSTRUMENTED CODE
$ EXECUTION ANALYSIS * -> EXECUTION ANALYSIS REPORT
* SOURCE CODE *

Figure 3.3.4 Testing Tool

-----Urza----- ---- PROCjI. _ ---- QRM- --
• ************ *

* REFORMATTING
ENGLISH TEXT -------- > * MERGING OF TEXT * - > FORMATTED TEXT
MULTIPLE FILES ---- > * GLOBAL/SELECTIVE CHANGE*
PROCESSING COMMANDS-> * AUTOMATIC PAGINATION *

* SPELLING CHECKING

Figure 3.3.5 Documentation Tool

S.***** ** * * * *** * ***** *

* SELECTIVE COMPILATION * .. > LATEST VERSION
DOCUMENTS ----------- * FILE GENERATION *-- PREVIOUS VERSIONS
PRO3RAMS ------------ > * FILE SECURITY * .. > UPDATED MODULES
COMMANDS ------------ > * FILE MANIPULATION *-- PROGRAM HISTORY

* DATA COLLECTION *
• *

Figure 3.3.6 Configuration Control Tool

26

-, - --- - - -- - -- .-.

CALENDARS ---- -- - -> > NETNORK CHARTS
EVE NT ----- --------- > * TIME ANALYSIS * -> SAR CHARTS
RESOURCES ----- ------ > * RESOURCE ALLOCATION > -. TAILORED REPORTS
UNIT COSTS ---------- > * COST CONTROL -... > HISTORICAL DATA

S* .. > NETWORKS

Figure 3.3.7 Project Management Tool

LESSON MATERIAL ----- * > > FORMATTED LESSONS
COMMANDS ------------- * DEVELOPMENT > . LESSON FILES
LESSON FILES --------- * DELIVERY *
USER ---------------- > * SUPPORT 5
AUTHOR --------------- * TRAINING

Figure 3.3.8 Training Tool

3.4 DatdChAactristics. Not applicable

3.5 Failure Contingaencies. Potential failures could occur
in any of the software tools described on the minicomputer.

a. Back-p.L Redundancy in the minicomputer hardware
and software will be available through the use of
multiple, identically configured systems connected
through a LAN.

b. Fallback. All systems can be simulated through
manual processes or deferred in the case of massive
system failure with the exception of the language
processors. These particular processors will be
redundant, one per host computer.

c. Restal. Not applicable

27

),i -- ~ ~ ~ --- -- - . - -..-----

SECTION 4. ENVIRONMENT

The "system" being described is an environment. The
environment "surrounding" the Near-Term environment proposed
is the production facilities of DMA. The software,
interfaces and security of the production environment are
beyond the scope of this document. The interface between the
Near-Term MPE minicomputer systems and target production
systems will depend UDOn DMA decisions in developing the
planned local networks.

1aipfnEnvironment. Not applicable

4.2 SupEort Software Environment. Not applicable

4.3 Interfaces. Not applicable

4.4 Security and Privaci. Not applicable

28

I

SECTION 5. COST FACTORS

The proposed system represents only the first stage in a
process to introduce a modern programming environment (MPE)
into DMA. This system is a base from which a 1985 MPE will
evolve using methodologies and tools now being developed by
DoD and industry. The growing digital product line of DMA
will require an increase in the quality and quantity of
application software which cannot be met strictly with
staffing methods. Alternatives to this system have been
evaluated and the methods and data are presented .in the Final
Report.

SECTION 6. SYSTEM DEVELOPMENT PLAN

This section is not applicable under the current contract. A
generalized plan for development is presented in the Final
Report.

29

MISION
Qf

Romn Air Dn~etCent"r
AAI~N d~AiUOI #O* J~Ws, 4 pp'to0t CM, ft I

Cemftu&Ltx4 nd fao~jltl C31AWUmw et*L

end~~~~~~ eCseigAptaUA4&" jUWtd~tit.t WUnt" k
ewAC,~

tog AC't

AA~t~tmb4U4 ow

*DAT

IEI
DTI'

