——

AD-A12% 628 NY!IACHVE MY!I PROORAN DEVELOPMENT SY.TEM STUDY 1/}

UNCTIONAL . . (U) Gﬂﬁlll. OYNAMICS FORT WORTM TX

IOIIN Dlv H C CONMN AL. JAN 83 DMA- 2 OM VOL 3
UNCLASSIFIED MDC TR-83-3-vOL-3 '30.02 Ol C-0030

g g

LEEs Rz
e =
2 e s

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS ~ 1963 A

‘ Y;"'E:M,'
T ‘ i PR

b

- S ———

.
¥

&'_-

o

12
Jc"

("3}

AD AX

 to the gmn pnhl:n;, mwu; fw utim"

W-M-é V 1 :
ey » Vo II! (ot ;w bas l'ian rm ud is

e b e e v

—— ——— e e -

UNCLASSTFIED

SECYRITY CLASSIFICATION QF THIS PAGE (When Dalp‘Enl'r'd)
———

PEAD [NISTRUC IO,

REPORT DOCUMENTATION PAGE | arraen e e S

S et

. REPORT NUKBER T GOVT ACGESSION Mn 1 meraiEn L SN T TN - 4

RADC-TR~83-3, Vol ITI (of three)| y

4. TITLE (and Sudittle) S. TYPE QOF REPORT &lngmoo_Z;\,:n-:,g

INTERACTIVE COMPUTER PROGRAM DEVELOPMENT Final Technical Report

1 - S 2
SYSTEM STUDY 6 Jan 81 30 Sep 8
Functional Description

6. PENFORMING OG5, REPORT HUMALR

DMA-2-014

T: AUTHORC

H.C. Con:., Jr. R.M. Bond

8. CONTRAZY OR GRAMT MUNMSER(S)

F30602-81-C-0039

D.J. Rodjak C.G. Anderson
M.A. Goode R.C. Robertson

0. PROGRAM ELEMENT. PROJECT TASK
AREA & WORK UNIT NUMBERS

637018
32050326

9. PERFORMING ORGANIZATION NAME AND ADDRESS
General Dynamics/DSD/Central Center
North Grant Lane

Ft Worth TX 76108

11, CONTRILLING OFFICE NAME S 34D ADDRESS 12, REPORT QATE
January 1983

Rome Air Development Center (COEE)
Griffiss AFB NY 13441 G e O Paees

14, MONITOR{NG AGEHCY NAME & ADDRESS(I! diffsrant trom Controlling Oltice) 1S, SECURITY CLASS. (of tints reoort)

UNCLASSIFIED
TS DECL ASSIFICATION/ DOWNGRADING

N /ASCH 311

Same

18. DISTRIBUTION STATEMENT (of this Raport)

Aporoved for public release; distribution unlimited

17. CISTRIBUTIONMN STATEMENT (of the abstrast antsred in Block 20, if differant from Raoort)

Same

8. SUPPLEMENTARY NOTES

RADC Project Engineer: Roger Panara (COEE)

19. XEY WORDS /Coantinue on reverss side if necessery and identify dy block numbee)
Software Engineering

programming environment

sof tware tools

20. ABSTRACT rContinue on reverse side {f necessary and identily by bBlock number)

Vol 1 (of three) describes the develop ent of the design and supporting
documentation for an incremental and evolving integrated modern encineerin
sof tware production enviromment for the Defense Mapping Agency.

Vol 1T is the System/Subsystem Specification,
Vol IIT is the Functional Description.

EQITION OF ' NOV 63 1S OBSOLETE

UNCLASSIFIED

SECURITY CLASSIFICATION 2F THIS PAGE “Whan Dety Enterad)

0D, 1205, 1473

R Lt I R N et aian S SLL, N W B VO 8 W, SA DR U P . ie e e e

' e

-~ A S L . o A ——— . ———n e e

. — ———— e o h ~— - ftnad
e ——— e

FUNCTIONAL DESCRIPTION
TABLE OF CONTENTS

Section Title Page
1. GENERAL 4
1.1 Purpose of the Functional Description 4
1.2 Project References 4y
1.3 Terms and Abbreviatiomns 5
2. SYSTEM SUMMARY 6
2.1 Background 8
2.2 Objectives 8
2.3 Existing Methods and Procedures 8
2.4 Proposed Methods and Procedures 1
2.4.1 Summary of Improvements 19
2.4.2 summary of Impacts 20
2.4.2.1 Equipment Impacts 20
2.4.2.2 Software Impacts 20
2.4.2.3 Organizational Impacts 20
2.4.2.4 Operational Impacts 20
2.4.2.5 Development Impacts 21
2.5 Assumptions and Constraints 21
3. DETAILED CHARACTERISTICS 22
3.1 specific Performance Requirements 22
3.1.1 Accuracy and Validity 22
3.1.2 Timing 22
3.2 System Functions 22
3.2.1 Minicomputer Hosted Tools 22
3.2.1.1 Requirements Tool 22
3.2.1.2 Design Tool 22
3.2.1.3 Coding Tool 23
3.2.1.4 Testing Tool 23
3.2.1.5 Documentation Tool 23
3.2.1.6 configuration Control Tool 23
3.2.1.7 Project Management Tool 23
3.2.2 Ssupport Activities 23
3.2.2.1 MPE Administrator/Toolsmiths 24
3.2.2.2 Training 24
3.2.3 Computer Links 24
3.3 Inputs-Outputs 25
3.4 Data Characteristics 28
3.5 Failure Contingencies 28
4. ENVIRONMENT 30
4.1 Equipment Environment 30
4.2 support Software Environment 30
4.3 Interfaces 30
b.4 Security and Privacy 30
S. COST FACTORS 32
6. SYSTEM DEVELOPMENT PLAN 32

=
=
@
1=
®
o]

WWWWWWWwWwWwNNNNN
« 6 & 2 & o 8 0 b s 0 8 0
WWwWwWwWwwwweEsewa
e & o & o o+ 2 » 2

ONOONEWNSWN

FUNCTIONAL DECSRIPTION
FIGURES

Title

Sample Modern Programming Environment
Existing HOL Software Development
Project Management Overview

Proposed HOL Softvare Development -~ Overview
Proposed HOL Software Development
Requirements Tool

Design Tool

Coding Tool

Testing Tool

Documentation Tool

Configuration Control Tool

Project Management Tool

Training Tool

———— e . e - - o R, e e e e

L - — PN R TTTITY MO it s ool 5 iy A S o Tl W s

SECTION 1. GENERAL \
N

1.1__Purpose_of the Functional Description. This Functional

Description for the Defense Mapping Agency's {DH¥A) <

Interactive Computer Program Development System Study
(ICPDSS), Contract Number .F30602-81-C-0039 through Rome Air
Development Center (RADC) is written to provide the systenm
requirements of the Near-Term Modern Programming Environment
(MPR) . This will serve as a basis for mutual understanding
between the user and developer, as well as information on
preliminary design and user impacts. The description
presented is generic in nature. Each of DMA's centers wvill
have duplicates of the system described. ., For specific tool
recomnendations reference the System/Subsy§$§m Specification.
1.2 Project References. These references provide
information on the history of the project, technical data
collected and the collection process, and documentation
concerning related projects.

a. Project Request (copy not included) - UNCL

Solicitation Number F30602-80-R-0206
Rome Air Development Center

Attn: Contracting Division (PK)
Griffiss Air F-.. :» Base, New York 13441

b. Technical Documentation previously developed:

CDRL A002 - Statement of Operation Need and
System Operational Concept - UNCL

CDRL A003 - Tool Evaluation Plan - UNCL

CDRL A004 - Tool Survey - UNCL

CDRL AO0O5 - Alternative Analysis - UNCL

Ce. Significant Correspondence:
CDRL AO001 - Monthly Status Reports - UNCL
d. gelated Projects Documentation:

FPEDSIM (Federal Computer Performance Evaluation and
Simulation Center) Iastallation Review -~ DMAHTC
- November 1980 - UNCL

DMA Operational Concepts (1982-1990) - May 1979 -
UNCL

DMA Programming Support Library (PSL) Interinm
Evaluation Report, IBM/FSD - November 1980 -
ONCL

e ———— e . e e 4 o —— o g ot e % < e

- ——— e

DMAAC/Scientific Computer Division - Software Life
Cycle Standards - February 1981 - UNCL

FEDSIM Installation Review -~ DMAAC - August 1980 -
UNCL

DMA Modern Programming Environment (MPE) -
January 1980 - UNCL

FEDSIM Optimization and Error Rate Studies -
February 1981 - UNCL

Additional Documentation
CDRL A007 - System/Subsystem Specification - ONCL

CDRL A008 - Final Report - UNCL

s_and_Abbreviations.

DMAHTC

DoD
LAN
FEDSIN

HOL
ICPDSS

MPE
PERT
RADC
RED
SIP
ONCL

AMERICAN NATIONAL STANDARDS INSTITUTE
AMERICAN STANDARD CODE FOR INFORMATION INTERCHANGE
AUTOMATED DATA PROCESSING

CONTRACT DATA REQUIREMENTS LIST

DEFENSE MAPPING AGENCY

DEFENSE MAPPING AGENCY AEROSPACE CENTER

DEFENSE MAPPING AGENCY HYDROGRAPHIC/TOPOGRAPHIC
CENTER ,

DEFARTMENT OF DEFENSE

LOCAL AREA NETWORK

FEDERAL COMPUTER PERFORMANCE AND EVALUATION AND
SIMULATION CENTER

HIGH ORDER LANGUAGE

INTERACTIVE COMPUTER PROGRAM DEVELOPMENT SYSTEM
STUDY

MODERN PROGRAMMING ENVIRONMENT

PERFORMANCE EVALUATION REVIEW TECHNIQUE

ROME AIR DEVELOPMENT CENTER

RESEARCH AND DEVELOPMENT

SOFTWARE IMPROVEMENT PROGRAM

UNCLASSIFIED

TTTTRAL LT TR et M, M s S ey . - -

T a—-—

SECTION 2. SYSTEM SUMMARY

This section provides a general description, written in non-
Automated Data Processing (ADP) terminology, of the proposed
DMA Modern Programming Environment (MPE). As an introduction
the following paragraphs provide a brief overview of the
purpose and components of a MPE.

A MPE is a means of improving the software development
process, thereby improving the quality of software in terms
of reliability, maintainability, and performance. This is
accomplished through the use of a standard, integrated set of
methodologies using automated software development tools.
These tools and methodologies cover all life cycle phases of
the software development process including requirements,
design, coding, testing and maintenance. Capabilities
outside the 1life cycle are project management and training
support. A MPE is confronted with continually changing
requirements and available tools. The MPE is upgradable as
this evolving process occurs. Figure 2.1 1illustrates an
example of a MPE.

WALSAS
NOI121d0idd

HALSAS
NOILDNJ0dd

IL INIRJOTIARA

WALSAS
NOIlDNa04d

juseuoitTaug burtmueiboid uiapoy oldues

ONINIVEL
ﬁl

AD0TOQOHIIN
q INFWIOTIARG
Q3ILVYIAINI

WALSAS

aiasvd
HALAIWOIINIW

LA S1001
140d4dNs

d10AD dJI171

QALVHROIAV

1¥04dNS INIWIOVNVKH

SHILITIGVAVD Q3SVIEONI

SINIWAYINOIY ONIONVHO

Lz ®anb1g

STVNIWJAL
[]
e
L]

34,Q

EVIall | TONSARIN

e ——— o —

e m——— W e e -

-

P ——e - - b e e S —tm e A s vt i T

. ——————— R

User access to the 1illustrated MPE system is through
interactive terminals and standard, user-friendly interfaces
to the automated life cycle support tools. The development
system is based on a minicomputer thus removing development
activities from the production machines and forming a common,
standard environment for software development. Additional
provisions are early error detection through the use of
requirement and design tools and the generation of a more
complete and standard documentation produced through the use
of the automated life cycle support tools. These benefits in
turn provide for more easily maintainable, modifiable
software systems. One final requirement of a MPE is that it
can be easily modified and/or upgraded as the needs of its
users change.

2.1__ _Background. The Near-Term MPE design was developed to
provide DMA with the <capability to meet its softvare
development needs in 1985 and to provide a baseline for a
system to meet DMA's 1987 needs. The Final Report, Section
2.0, provides information <concerning the generation of the
near-term and far-term needs. The specific research
accomplished to identify solutions to DMA'S needs 1is

described in the Pinal Report, Sections 8 through 15.

2.2____0Objectives. The Near-Term MPE specification
incorporates the design and supporting documentation for an
incremental and evolving inteqrated modern engineering
software production environment for DMA. The period of
concern is 1985 to 1987. Realization of the MPE will lead to
the establishment of a comprehensive and coherent framework
for specifying, designing, programming, testing and
maintaining software in a highly visible, traceable and cost
effective manner. The Final Report identifies RED which must
be acconplished and changes in the system which must occur to
evolve from Near-Term to Far-Term MPE.

2.3 _Existing Methods_and_Procedures., Software activities at

DMA fall into three major categories: 1) development of new

software, 2) addition of new «capabilities to existing
sof tware, 3) detection and correction of errors in existing
programs. Programs are also developed by outside vendors.

Most of the software developed is written 1in dialects of
FORTRAN and COBOL. Assembly language is also used but is not
addressed in this document. Multiple software 1life «cycle
definitions are wutilized; but in general all are generic to
the requirements, design, progranmnming, testing, and
maintenance phased development process.

There is no formal method of specifying software
requirements, although some customized methods do exist. The

. . -

-

L m——— . - - - - m s e o -

- —————

design of programs is not formalized; but some organizations
do document their efforts through the use of program
specifications. The programming phase is labor intensive
vith some system support utilities available to help automate
the process. Most automation has been developed for the
testing phase. Code auditing is automated but is not in
general use throughout DMA. The maintenance function relates
to the second and third categories of development previously
mantioned. The revision of software is a major effort at
DMA; but the current cnnfiguration management systems are not
antomated or strictly enforcead. Currently standards are
being developed and implemented to formalize many activities
and methodologies in the area of software development which
will enhance existing technigques. These standards include
content of documentation, utilization of personnel, and use
of tools and technigues to support each phase.

The management of software developnment projects is
accomplished with no use of automated tools. Some projects
are managed with manual methods such as PERT, but this is not

generally done.

Figure 2.3 illustrates the current software development and
maintenance procedures at DMA.

P

jusudoleoaaq 8ienl3os TOH DulIsIAI g*2 @2aub14

VLVd AYVITIXQV

S@IVD HAIVIOLS
ANIT-NO

IS4l
0011 ‘

104100 IVAINA

JOvd0Ls
ANT1-NO

ON1a0d
9 NOISAd
WV4504d

INFWO00d
SINTWAVINOAY

NOI1ViVdddd
ASYL

SS3o0dd $53004d
TVANVR TVANVH
SNIVLS
SSan0ud f LNAWAOVNVH

TVANVR 103rodd

10

o ——— - -

. — e e

e = ——— e s - Prvsuny [[

2.4 Proposed__Methods_and_Procedures. The near-term systen

was selected to meet the immediate needs of DMA. As defined,
the system has a high probability for improving productivity.

A set of software tools residing on a minicomputer will be
utilized for the requirements, design, programming, testing
and maintenance functions of the software development life
cycle. The specific configuration is described in the
System/Subsysten Specification. For clarification,
'Maintenance functions' 1is defined as post production
software development activity requiring work in one or more
phases of the life cycle: requirements, design, programnring,
testing. These would include activities such as the
correction of software errors discovered in production
programs and modifications or upgrades to programs already on
production status.

All software developed 1is monitored through the use of a

Toject management tool. Examples of inputs and ouputs of
the project management system are demonstrated in Figure
2.4.1. Upon receiving a job request, the project management
tool is initiated for the job and at various points in the
scenarios, the project management systemr is updated to
reflect pertinent decisions and actions.

11

ROTAIBAQ judmMObeUPY 3ID3[01g

S3UTRIISU0D padds -
83AT3(q0 I8

o1} 9 WfI3ad -
Louspuadap aujyomw -

ddW uo
3893 jo sniwIe -
93a3339(q0 Bupieag
Lawuywyyaag

Kdmvandoe -
SIUFRIISUOD 3Z§8 -

3Fan 03 saujINOI -

pasn adenduey -

s1a3auming
TeUO}IVIALO)

938310 03 81038313do -

8133jameany
Surmmpasoayg dT3vmoyny

Jurmadsuny
09foad

L*h*Z @anbry

)83 TRU3
3o snymys

2jaydwo) 3dafoxg

sagnpayas
83awy) ieg

3130day seaaBoxg

B304 JUIIIND
Sujjunodoy 3180)
8310day £IFAFIDY
833043y Idanosay
Sapoy YSTUTd pu® 3I83§
J30day 1088323pdigd
ITNPAIYDS IpoN

8dads avpuaIew)

suojizod Surssie -
IPWI0] JUIIIND -
siajomuing
Yoy IRIUSENdOq

p3agnbaz sapou
pasn 81003

¥8pnq
pauSisse Tauuosaad

£333033d

UoRIPIIFUl qof

12

e ———— e g &

- — e e

—

~———

——— s - -

 e————

For purposes of discussion, scenarios will be considered for
the following categories of software development:

1. maintenance to existing software which has not been
upgraded through the Softvare Improvement Program (SIP),
(Part of this program consists of an effort to improve
existing UNIVAC softwvare.)

2. maintenance to existing software which has been SIP
upgraded,

3. software under development for which standards wvere
specified,

4. new software to be developed by DMA for which standards
are to be specified, and

5. nevw software to be developed by contractor for which
standards are to be specified.

The techniques discussed are intended to demonstrate the
applicability of the recommended tools to the various
scenarios. Specific usage methodologies will be developed
during the MPE system implementation as outlined in Section
19.1 of the Final Report.

The application of the MPE tools to the DMA environment is
illustrated in Figures 2.4.2 and 2.4.3.

13

PoNtas sy g

Piqure 2.4.2

ey

e e 2 % S e 2 e, o b

START

v

SCENARIO
DETERMINATION

v

TOOLS
APPROACH

v

SOFTWARE
TESTING

v

s e . W e—— -

STOP

Proposed HOL Softvware Development - Overview

14

o S —— e =

N

© e - ——— e - e et o e e o e St el -

Scenario
_Number Description

1 Existing software not SIP upgraded
Existing software upgraded by SIP
Software presently under development
New in-house software

w s wuN

" New contracted software

Software
Maintenance
Task
?

Scenario #3

Softwar

Developed

Using MPE
?

Scenario #1

Scenarios #4 & #5 yes

Modify code to
ANSI Standards

v

F. documentation
on-line

Scenario #2

4 ®:
Retrieve on-line documentation ‘
"——— and configuration controlled "——_—'

items

Proposed HOL Software Development

i 2.“.3
Fignre {(page 1 of 2)

15

———— e -

etut. " L requireamce
Update Tapanty)

Functiowal Decompositisa of

and gendrate code

R —
v

.
wmir resting

fonduct functioma

and per
tests oo WL

Perform fisal
tasting @» target|
conputer

Dpéste o0 line docunentatioe
®me plece wder configuration
control

@ Represents dats woovitoriag points
that interfsce with the project
Banagesent tool

Job Initiation

Documentation Psrameters
Automstic Programming Parameters
Coaventional Parameters

Test Objectives

Prelininary Yest Objactives
Project Complete

MOV W N -

t
i .4.3 Proposed HOL Software Developmen
Figure 2 (page 2 of 2)

16

R
o meman o e e ——

C e e x e

e =t oA~ i e e o S St e
—— —— -

———— . .

Within the defined scenarios, one of two basic tool
approaches will be follovwed.

The first, referred to as the "automatic programming
approach", will make repeated use of the subsets of an
automatic programming tool wuntil performance criteria are
achieved. The usage of the various subsets is as follows:

- the graphics editor is used to enter program structures
(control maps) to functionally decompose requirements
and design specifications as well as changes, if any,
which are reguired as a result of performance testing,

- an analyzer verifies consistency and interfaces,

- source code is automatically produced from requireaments
definition,

- the source code is compiled and linked, and

- the system is performance tested to determine
acceptability.

Failure to pass performance testing results in repetition
of these steps until criteria are satisfied.

There appears to be no restriction on the size of systenm
which may be developed with such a tool. As systems are
developed, generic operations are developed, documented and
can be placed in a library for use as building blocks on
subsequent systenms.

On occasions, there may be circumstances which dictate the
use of an approach other than automatic programming. Reasons
to wutilize such an approach include systems which indicate
the use of COBOL, time critical applications, and
applications for which automatic prograeming is not cost
effective.

Tha second approach, referred to as the "conventional tools
approach", will make use of a requirements lanquage, design
language, structured FORTRAN or COBOL, testing and
documentation tools through the life cycle. Utilization of
tools in the “T™conventional wmethod"™ «consists of repeated
application of the following procedures until performance
criteria are achieved.

- A requirements language is used for functional deconm-

position of requirements specifications, and interface
and data flov analysis on the resulting program model.

17

IUUNIIG USSR SE S S

A design language is used to originate the design or
make design changes, if any, which vere mandated as a
result of performance testing.

- Source code is used to implement the original design or
modified to reflect changes brought about by design
changes, or performance testing results.

- A testing tool is used to detect syntax errors, perforam
static analysis, and perform execution analysis.

- Performance testing is evaluated to establish the
acceptability of the system. Failure to pass
performance testing results in repeating the process.

One of -these tool application approaches is followed until
the preliminary test objectives are met. At this time, the
source is transmitted via data link to the target host for
final testing.

While testing on the target host, the project management
system is apprised of the test status. Upon successful
completion of final test objectives, job completion data is
processed by the project management systen. This action
prevents the system status from being obscured from control
and insures a match between production software and the
associated documentation. Target host test objectives will
verify proper usage of machine dependent devices, software
and techniques. Once final testing is completed and the
system is ready for production status, on-line documentation
such as requirements and design documents, source code and
test data should be updated and placed under configuration
control.

A1l coding will be accomplished in structured FORTRAN or
COBOL. Additiornally, systems supporting documentation, text
editing, testing, configuration control and project
management will reside on the minicomputer.

The MPE administrator and toolsmith functions will support
the project management function as well as system management;
and a tool for building presentations and interactive lessons
will be utilized for training purposes.

The ainicomputer and production mainframe will need to be
connected through a communications 1link. To support MPE
users in a timely manner and to provide adequate access,
sultiple minicomputers vwill be required.

18

——— ———— s w4 & e e JEN.

2.4.1_ _summary of Improvements. In Section 2.3, deficiencies

vwere identified. The solutions provided by the near-term MPE
are described in the following paragraphs.

The lack of a formal method of specifying requirements is
resolved through the use of an automated requirements tool,
which must be formalized through adoption into standards
being developed. Design also is to be formalized through the
use of an automated tool by a similar process. The use of
both of these tools represents functional improvements in the
existing software development process. aAdditional functional
improvements are the use of an automated confiquration
management system, and the use of a project management tool.

The programming phase 1is upgraded by the addition of new
capabilities and is an improvement of degree rather than
function. The addition of new terminals allows for more
software development and maintenance to be accomplished
interactively rather than in batch mode. The system design
tool utilization decreases the labor intensive effort by
partially automating the process. Another improvement of
degree is the generation of project review documentation.
New documentation will be generated automatically as part of
the output of the software development tools in the
requirements, design, project management, and configuration
control activities.

By removing the software development process from the
production machines, and by supporting interactive
development through additional terminals, the time span
required for software development will be reduced. There
will be no competition with 1large production Jjobs for
conputer time and turnaround time will be significantly
improved by the increased availability of interactive
terminals. Additionally, the increased documentation
associated with development; the standardization of the
documentation; and the configuration control of all on-line
documentation should result in improved quality and
productivity in the softwvare maintenance phase. The
documantation referred to here includes on-line requirements
specification and design documents, source code and test
data.

The only area where tasks are to be eliminated is when the
software development/maintenance effort warrants the
exclusive use of the automated prograaming software tool for
the development of a program. These programs will be
automatically generated from the requirements specification,
eliminating all manual activity associated wvwith design,

19

RS— ———— e o - SOV S P U Y - e -

programming, and testing. 1In this area configuration control
would be at the regquirements specification level only.

2.4.2 Sumpary of _Impacts. The anticipated impact on the
existing equipment at DMA involves only the addition of
hardvare. A communications interface wvill be necessary
between an existing mainframe and the proposed minicomputer.
With the exception of comaunications software, no new
software will be required on existing hardware. Software
development will be reduced on existing systems and moved to
new equipment, requiring the users to learn additional
aspects of computer access and software development. For the
costs associated with this system reference Section 20.0 of
the Final Report. Personnel will be required to support
operation of the new comiuters and the MPE administrator and
the toolsmith functions.

2:4.2.1_ ___Equipment Impacts, One or more mainframe
communication ports will reguire configuration to
minicomputer access. The ports/channels selected must

operate at a high Dbaud rate. The specific number of
ports/channels to be dedicated will vary as multiple
minicomputer systems are installed.

2.4.2.2 Software_Impacts. The communications configuration
software will need modification to support the systen
hardware changes described in Section 2.4.2.1 of this report.
It is anticipated that no other existing software will be
added to or modified.

2.4.2.3______Organizational Impacts. The positional
responsibilities of personnel will not need modification, but
an addition will be required. One organization must control
the system configuration of the multiple minicomputers to
maintain intersystem softwvare compatibility. A group should
be responsible for the confiquration management of all
production software once a baseline has been achieved.
Personnel will be required to support the operation of the
minicomputers and the MPE administrator and toolsaith

functions.

2:4.2.4 Operational _Impacts. The programaing standards of
DMA will require modification/extension to support and
enforce the new aspects of software development. These
include methods and tools to be used, documentation to be
produced, project review management procedures, and
configuration management techniques. System users vill
require training to utilize the newv minicoamputers as well as

the hosted tools within the defined standards.

20

- .

.

m;—,gh e

2:.4.2.5 Development _Impacts. Since it is recommended the
proposed system first be implemented under an experimental
system configuration, no effort will be required by the user
community prior to system development. System development
would be aided by identifying a core of personnel to perform

the system analysis first rather than providing access to the
general populace.

2.5 _Assumptions_and_Constraints. The assumptions associated
with this description include: (a) the capability of
communicating over a 1link between a minicomputer using a
standard interface and a production mainframe; (b) that
physical space 1is available for the wminicomputers and
terminals; (c) workload will increase; and (d) skill level of

personnel will be upgraded.

Constraints assumed to be applied to this description
include: (a) security and (b) standards.

21

SECTION 3. DETAILED CHARACTERISTICS

3.1 Specific Performance Requirements. The specific
performance requirements of the system based upon the DMA
needs as described in the Final Report are described

qualitatively in the following paragraph.

The system shall provide users with an interactive access
capability to software development hardware and support
tools. This capability will provide for improved software
development/maintenance productivity by providing automated
support, quicker access, and improved response tinme.

21.1__Accuracy_and_vValidity. Not applicable

3.1.2__Timing. Not applicable

3.2___System__Functions. The Near-Term MPE functions as a
tool to provide 1life <cycle support to the software
developnent process. In this section the individual

functions of each major element will be described as well as
the function of the aggregate.

3.2.1__Minicomputer Hosted_Tools, A large minicomputer will
be utilized to host the MPE including regquirements
specifications, design, coding, testing, documentation,
configuration control and project management tools. The
computer should support multiple terminals distributed
according to functional responsibility.

3.2.1.1 Requirements Tool. The specification and
documentation of the requirements of a computer program
should be partially automated through the use of a software
support tool. This tool should allow the interactive
development of a requirements specification document using a
defined methodology, and analysis of the specification for
data flow and control sequences. When the program specified
can be categorized to fit within certain constraints, the
requirements tool should be able to directly generate a high
order language (HOL) program to accomaplish the specified
task.

3.2.1.2___Design__Tool. The design of certain categories of
programs will be acconmplished utilizing design support
softvare. Whether the task is accomplished by an individual
or a team, the tool will provide ©precise, accurate and
orderly transitions between requirements, design and coding
activities as well as intra-design activities. The tool will

provide, through a prescribed methodology, the capability to

22

' P

e g et
et .. W - S s o e e

Sl —— e ————— N

e i e e

describe the design in simple, understardable constructs that
are easy to code; allow for checking of the design
constructs; and translate the design into a readable design
document.

3.2.1.3 Coding__Tool. Data entry will be performed
interactively when generating new code or documentation.
This activity should be supported by state-of-the-art word
processing and text editing capabilities. The HOL(s) used
for coding should be ANSI standard and fully compatible
(vithout considering device dependent extensions) with the
target production machine's compiler(s) to which completed,
tested programs will be sent for final <compilation and
production status. A precompiler may be used as necessary to
produce this standard code and allow the use of structured
programming constructs. The use of these constructs
increases the readability of the code and therefore the
maintainability of the resulting program.

3.2.1.4 Testing__Tool, The testing support tool should
provide static and dynamic analysis of the specified HOL
source code including usage, path flow and coverage
statistics. Additional capabilities to enhance
documentation, such as the output of cross-reference tables
and summary data or pretty-printing the source input should

also be included.

3.2.1.5_ _Documentation__Tool, Program developers should be
able to create and maintain documentation on-line through the
use of a word processor. This would also allow for
configuration management of the documents associated with a
program along with other on-line documentation as described
in the following sections.

3.2.1.6 Confiquration Control Tool. Configuration control
will be supported through the use of a data control systen.
The configuration management of textual material, for
example, HOL code, documentation, including on-line
requirements and design definitions, and test data, should be
provided.

3.2.1.7 _Project Management Tool, Project management should
be supported through the use of interactive tools that
perform resource allocation and analysis, time and cost
analysis, and report processing.

3.2.2 Support __Activities, Due to the complexity of the
proposed Near-Term environment, the evolutionary process
required to achieve the Par-Term environment, and a need for
a focal point for identification/resolution of problens,

23

support activities must be provided to supplement the
development/maintenance environment.

3.2.2.1 MPE__Administrator/Toolsmiths. These would be
support positions which would primarily serve as the focal
point for management to observe the system activities and as
an information source for MPE training. Personnel invelved
with this function would be knowledgeable in the current
tools and methodologies contained in the MPE as well as the
minicomputer environment. Specifically, the MPE
administrator would be responsible for an overall
understanding of the MPE and its use. Toolsmiths would aid
the MPE adwministrator by each having a thorough knowledge of
a particular component of the MPE systen, Tasks would
include perforaing error rate studies, helping users with
software development problems and the identification of needs
not satisfied within the user/management communities.

3.2.2.2 Training, A bnicrocomputer based system for the
development and delivery of lecture material should be used
as part of a comprehensive training program to provide low
cost, self-paced training to personnel outside the production
environment,

3.2.4 Computer Links. Communication 1links must be
established among the host mrinicomputers and between the
minicomputers and production mainframe. This is necessary in
order to efficiently utilize the proposed environment. The
primary function of the minicomputer/mainframe link will be
to transfer completed, tested systems to the mainframe for
production use. The minicomputers will be connected through
a local area network (LAN) providing communication and backup
capabilities thus improving system reliability.

24

C ey -

————— .

3.3 Inputs-Outputs, The following figures present the

inputs and outputs of the major functional components of the
Near-Term MPE.

INPUTS PROCESSING QUTRUT
(22232222 22223222 22 2 1)
* *
DATA----=--=-cooooo- > & DATA ANALYSIS L I P > ERROR REPORTS
CONTROL STRUCTURE---> * CONTROL ANALYSIS & = ----- > SYSTEN BODEL
DEFINITIONS-~----==-= > * LOGIC ANALYSIS ¢ = =—=--- > GRAPHICS DISPLAY
PUNCTION=-=—=w—me=m= > * FORTRAN SOURCE & ----- > PORTRAN SOUBCE
* GENERATION *
* *
E2 222 2 2222222223 2 3 2)
Figure 3.3.1 Requirements Tool
. INPUTS PROCESSING QUTRUT
2222223222222 22 2 2)
»
STRUCTURE DEPINITION---> * LOGIC ANALYSIS # =----> DESIGN DOCUMENT
OPTIONS-~----—-——---=nuc > * PORMATTING % ----> CUSTOMIZED REFERENCE TABLES
DESIGN-—~==--—co—c-omen > * PLOW ANALYSIS * —---> INVOCATIOR HIERARCHY
MANAGEMENT INFORMATION-> * SUMMARIZING * ----> DESIGN STATISTICS SUNMARY
» *
EEEBRESHEERSEEEEEB SR
Figure 3.3.2 Design Tool
INPOTS PROCESSING QUTRUT
(22222222 232 222222 2 7]
s - > GENERATED DATA
* COMPILATION L > EXECUTABLE MODULE
PROGRAM SOURCE------> # LINKING * —eee- > OBJECT MODULES
OPPIONS-~--==~w=o==x > * LOADING $ —eee- > SOURCE LISTING
* s —eee- > COMPILATION ERRORS
SEEEB RS LSS EEEESL SN

Figure 3.3.3 Coding Tool

25

L

INPUTS

——

——-—RROCESSING ____

PORTRAN/COBOL CODE-->
-------- >

TEST OPTIONS

SEEE RS SR SRSV EERA NS R SR

* *
& STATIC ANALYSIS *
¢ CODE INSTRUMENTATION *
* *
* *
* *
]

QUTRDT

STATIC ANALYSIS REPORTS
INSTRUMENTED CODER
EXECUTION ANALYSIS REPORT

EXECUTION ANALYSIS #* —--a- >
SOURCE CODE
(23 E 2 LS 23122232322 %3
Figure 3.3.4 Testing Tool
e INPUTS PROCESSING QUTRUT
SEASS S EEEBEERESASEE RSB ES R
* *
&« REPORMATTING .
ENGLISH TEXT-=-==~== > & MERGING OF TEXT % ---~-> FORMATTED TEXT
MOLTIPLE PILES--—~--> % GLOBAL/SELECTIVE CHANGE®
PROCESSING COMMANDS-> * AUTOMATIC PAGINATION *
* SPELLING CHECKING .
* *
SEEESSES S S S AN R LR RS SR SR SR RS
Figure 3.3.5 Documentation Tool
______ INPUDS ______ ——---PROCESSLNG QUTRUT
CESEL OSSPSR L LRSI ECER LRSS
* L
s SELECTIVE COMPILATION ¢ -----> LATBST VERSION
DOCUMENTS=~m==m-=m --> % PILE GENERATION * —ceee > PREVIOUS VERSIONS
PROGRANMS=-=~---mv—m --> * PILE SECURITY ® -—----> UPDATED MODULES
CONMMANDS-=——w=—c=e=a- ~=> % PILE MANIPULATION % ---w--> PROGRAR HISTORY
* DATA COLLECTION *
* *
SENSHRELEEESEER LR RGBSR

Figure 3.3.6

26

Configuration Control Tool

e gt

INPUTS ————-PBOCRISING ______ QUTRUZ .

SHESEE LA EEL S SRR INNE S SN

CALEFDARS--===~===m= > ¢ ee-e- > NETWORK CHARTS

BVENTS-=-=--==~mmommne > * TIAE ANALYSIS *« -eeee > BAR CHABTS

RESOURCES-=-~~=~-====~ > ¢ RESOURCE ALLOCATION % -~--- > TAILORED REPORTS

UNIT COSTS~-~-~===-- > ¢ COST CONTROL * —eee- > HISTORICAL DATA
* ¢ —-ee- > NETWORKS
SESESBELR VS RES LB EEEESS

Figure 3.3.7 Project Management Tool
INPOTS —————BROCESSING ____ QUTROT

EESELENRRBRS S0 S 00R

LESSON MATERIAL----- > « e > PORMATTED LESSONS

COMMANDS=~~-====mmun > * DEVELOPMENT Ot > LESSON FILES

LESSON PILES-------~ > * GELIVERY .

USBR-—=~===-~==mm=—no > * SUPPORT .

AUTHOR--=-~=vooo—==x > * TRAINING *
(A2 A2 LSRR 222 2L 2]

Pigure 3.3.8 Training Tool

3.4__Data_Characteristics. Not applicable

e e L -

<5 Failure__Contingencies. Potential fajilures could occur
n any of the software tools described on the minicomputer.

a. Back-up. Redundancy in the minicomputer hardware
and software will be available through the use of
multiple, identically configured systems connected

: N through a LAN.

p

b. Fallback. All systems can be simulated through
manual processes or deferred in the case of massive
system failure with the exception of the language
processors. These particular processors will be

redundant, one per host computer.

C. Restart, Not applicable

27

. . .- o~ y RS o
e e ng O e sl 8 TS s 07 ¢ 15 PR

. ‘ [It

. . e o - o ey e mema B e o . e —— g e e .- e - = . RV

[JP S o]

I
——— e e -

e an AN, e ——— -

SECTION 4. ENVIRONMENT

The "systen" being described is an environment. The
environment "surrounding" the Near-Term environment proposed
is the production facilities of DHMA. The software,
interfaces and security of the production environment are
beyond the scope of this document. The interface between the
Near-Term MPE minicomputer systems and target production
systems will depend upon DMA decisions in developing the
planned local networks.

4.1 Equipment_ Environment. Not applicable

4,2 Support_Software Environment., Not applicable

4.3 _Interfaces. Not applicable

4.4 Security and Privacy. Not applicable

28

[———e - e e i b —— e e s o - -

SECTION 5. COST FACTORS

The proposed system represents only the first stage in a
process to introduce a modern programming environment (MPE)
into DMA. This system is a base from which a 1985 MPE will
evolve using methodologies and tools now being developed by
DoD and 1industry. The growing digital product line of DMA
will reguire an increase in the quality and gquantity of
application software which cannot be met strictly with
staffing methods. Alternatives to this system have been
evaluated and the methods and data are presented ip the Final
Report.

SECTION 6. SYSTEM DEVELOPMENT PLAN

This section is not applicable under the current contract. A
generalized plan for development is presented in the PFinal
Report.

29

P, B O " Ry

' o

i v e s ety . Wi . . . o, ot P e At - - B L~

S -

END
DATE
FILMED

