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1. INTRODUCTION

Factors which contribute to the dissipation of acoustic energy in

the chamber of solid rocket motors during combustion include - nozzle

performance, particulate matter, propellant structural response,

rotational flow, vortex shedding, etc. The most significant effect

appears to be the response of the propellant combustionzone to acoustic

pressure and acoustic velocity oscillations. A large body of literature

exists relative to this subject, the study of which has been pioneered

by Crocco [l], Cantrell and Hart [21, Culick (3,43, and others. Flandro

and Jacobs [5], among others, have noted that vortex shedding can also.

lead to an excitation of pressure oscillations in solid propellant

rocket motors. It is also quite possible that high speed mean flows

affect the stability [61 significantly. Effects of transonic flow,

shock waves, fluid viscosity at shear layers, turbulence, nonlinearity

(second order perturb"-ons), and radiation through high temperature

should also be of concern.

The topics of study in this paper are limited to the basic

question of correct stability integral formulati'n, and to three-

dimensional finite element applications for stability calcuations built-

upon the earlier work of Hackett [73. Because of the flexibility of the

finite element formulations, the present work can be extended, without

difficulty, to a more general case incorporating various effects such

as high speed flow, shock waves, oarticle and structural damping, turbu-

lence, and radiation.

In what follows we present the formulation which includes con-

sideration of vortex shedding and fluid viscosity. It dias been shown

that a simple and special case of the general formulation reduces to

3
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the well-known results such as "flow turning" as well as "velocity

and pressure coupling" terms. Numerical results of some simple geometries

are discussed, pending a full scale computer code development based on the

present formulation.

2. FORMULATION AND GOVERNING EQUATIONS

Consider a compressible, viscous fluid and the corresponding non-

dimensional equations for continuity, momentum, energy, and state, as

follows:

aui T + (P ui) 0 (2)

P +Pu. .. p - j- P, +u . 0 (2)
,3 Yj P,i Re +3 j1ji/

- - + PT .u.-- p )- -1) t- 2u
at y t , i y ,i i Re 3 ui,i uj,j u,j u3, i

-uj u..) - 0 (3)i j,i)

p = pT (4)

where the commas denote partial derivatives, the repeated indices imply

summing with the range of index i or j being 3. We use index notation

in preference to vector symbols in order to facilitate clarification in-

volved in integration by parts and computer coding in our later dis-

cussions. The nondimensional quantities are defined as-
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u ,- a P= , T = p(Y-l)a Po a

x PaL

L t Re

The presence of viscous terms is intended for development of shear

layers close to the burning surface although the effect of viscosity

is negligible in the flow domain with high Reynolds numbers.

Substituting Eqs. (1) and (4) into Eq. (3), we obtain

+"y/2 u+ - u 1 2' uji - u.~ u. i

at P i'i +Pi ui Re (3ui,i -,j ij ,i 3i ,

=0 (5)

To obtain the acoustic equation we take the spatial derivative of

Eq. (2) and subtract the results from the time derivative of Eq. (5).

i3o , ii - -) - ; )+ ij]

-Ypr[u,,j, + ]--' [2->R-'eLi,jji 5 uj,jiij Re -'{L ui. ~i uj j 3,

- ,i 3 -- .

J ,j j' j t l (6)

At this point we introduce the perturbation expansion to 0 (C) for

the velocity ui, pressure p, and density p in the form,

u. = ui + C ui + u) (7)

p =1+ Ep' (8)

0 -- + E " (9)

where the bar, asterisk, and prime denote the mean flow, vortical fluc-

tuation, and acoustic fluctuation, respectively. Expanding Eq. (6) in

terms of the perturbation variables and collecting the 0 (c) terms, we

5



arrive at the expression:

at ,., U.. ]E( +~Ij .U--.-U -, .U i_t_ u u i + uj uai t ,

+ u~ ' U. + U, (u + U, ),iii + .1 (Uj + Uui,3 3 ij ,i Re V ' i

2(y-lA a 2 - u* +-, -i ~ +* D- Re L-ui,± j + -3 ), u, (j. + j

- u.i (u + u>]) (10)

Considering the vorticity, defined as,

Eijk uk,j ' i ijk Uk,j i ' i = i + i(

the acoustic equation, Eq. (10), is recast in the form

Pii P h (12)9t 2

where

a.ht - "i  
+- uu + j u),ii - Ei jk uj k

u + u -u U ,
+ k + k,±i  [(j Re (j + 3 j i

+ 2-y(-y-) a 2 + U) u. (u + URe at 3 u ij k" ~j ( *

- ui (u + u)j (13)

with c ijk being the permutation symbol. The vorticity transport equation

is obtained by taking a curl of the vector form of Eq. (2), and collect-

ing the terms of 0 (E),

- - C ijk C kmn [U m Cn + (urn* +um') nl# - -R-i,j = 0 (14)

Equations (11), (12), and (14) represent the most general
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vorticity-coupled acoustic problem in which the viscous action of the

fluid is fully taken into account. Here the main objective is to

determine the growth r at e given by the stability integral. This sub-

ject is discussed in the following section.

3. THE STABILITY INTEGRAL

3.1 Vorticity-Coupled Acoustic Instability

To begin we must first consider the boundary conditions at the

burning surface. In the direction normal to the surface, the momentum

equation, Eq. (2), takes the form, in terms of 0 (C),

-P n = f (15)

with

f y *jU, +Q~ u) +u u. .ku. ~+ u~ + U, ka 1 j 1* + ,-

R i + u:~ +-j + u"),j ni (16)Re , i 3uj 3 -

The oscillatory motion of the acoustic media is modeled by

iktp pe (17a)
u -feikt * ^*ikt (17b)
i:= i e i =

i it (17c)

where k is the complex dimensionless frequency given by

k = w- ia (18)

Here, the imaginary part is known as the growth rate. The instability

atof acoustic pressure is signified by the growth of a proportional to e t

7.



Substituting Eq. (17) into Eqs.(12)and (15) yields, respectively,

h = ikUi~ + ikyZ p - u U~)~ + u~;i-E~ ~ + a1 ~

+ Ujk,)] + -e- + + 5 (uj + ),i
k ~ ~~~~ ~ 

, je1 
u i i , j i 3 ji

+ 2iky(y-l)[ 2 -  (* ^*
Re 3 i,i jJ i,j j",

(u + ()1,9)

and

- ik . ) \ + u . u +

+ u. ) - +L+ + ) (u + (20)

The foregoing process leads to a nonhomogeneous Helmholtz equation

p .. +kp2 = , (21)
,1i

subject to the boundary condition

Sini = -f (22)

For the solution of Eq. (21) we make use of the Green's function

(8]. It can easily be shown that

(k2 - 2 E J f N df + f P dr (23)

where the unperturbed mode shape PN and the wave number kN are determined

from the classical acoustic problem,

PN,ii + k 2 N =0 (24)

PN,ni 0 (25)

Note that E 2 is given by the integral

N
E2 f 2~ dO (26)

N SPN

8
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It should be noted that a correct integration of the _7ht-hand side

of Eq. (23) is the most crucial aspect of the present study. That is,

integration by parts must be carried out until all Neumann boundary con-

ditions are brought to the surface. Since h in Eq. (19) contains the

terms from the momentum equation differentiated once,it is now necessary

that they be integrated by parts twice in order to produce the Neumann

boundary conditions. For example, consider a single term taken from

Eq. (19) substitued in Eq. (23) -and integrated by parts:

1 PNdl f uj)i ni UNU f d1 (27a)

Integrating by parts now the second term of Eq. (27a)yields

- j> i PNid = uujni +fuju. PN,ii d 27b)

In order to demonstrate the advantage of tensor notations over vector

notations in the process of integrations by parts, we consider a following

example (eighth term of Eq. (19) substituted in Eq. (23).

u. .. P dS] = ,jj fudr~ - fu ^ d
i,jji N PN  Q - uiPN, i

rfui JniPN dF - f uinjPNi dF + f ijPNij d.Q (28a).,

If we pursue the above process in vector notations, we will encounter

difficulty in obtaining the last term of Eq. (28a). To see this we begin

with

~ N N N

fV.72 PN~2 f J  PN^d Jf 2 .Pd

= f n"2u dF- f (n •V) u V P d + ( ?) d2
S(28b)

9



In integrating by parts IV2u V - N dS2, only the boundary term can

be obtained in vector notations. To obtain the domain term, the quantity
2u. VP must be expanded into individual terms. Other than in special

cases such as this, however, the vector notations can be used to perform

integration by parts. But care must be exercised to ensure correct

product operations.

An evaluation of the rest of the integrals in Eq. (23) leads to

(k-kNEN iyk nF u d + ik(y+l) uiP nidl - ikN UiiPNd

-ikN (2y+l) uiPNPN idQ + y f- u.u+d)PNin.dr - 'J, u j/d^N ~ ~ ~ ~ ~ ~ . u 42 PN N "d J+a)N (j+1)N

- - + -d 1

+Re. i + i ,jPN, ij + 3 u, + uP n,dr

I ~~~2iky (y-1 ,*- ,

- fi.L ui, u. +N 1n - i~ + "~Pn~

+ Re i + Q,

- j~ i ( U + uj d  (29)

Note that, in view of our choice made in Eq. (25), we set = PN and

k = kN in Eqs. (19) and (20). Squaring both sides of Eq. (18) and in

view of u=wN kN at a = 0 for neutral stability, we obtain

k2- ' - 12ak + a 2 (30)

10



Comparing Eq. (30) with Eq. (29), we may solve for the growth rate a

(2<<j2cj) by equating the imaginary parts,

CL r ~~(R) p,+(Yl2 _ N, ,- ( )- ,. 3

(A) (B)

Pinj + (Q + u),) n dr

I (c

(D)

kN~~e i. ^*-J) Nt 3 )j ~

(E)

+ ( +i j .(1 2 (*+ .()

+ U. N, ij p u u j + k -N~iN,iii

IN j

D (F)

+2Yy-)I ,*k G^Z()P

Rek " u i  + . - i  j + ,

(G)

- Y i +Uj PN + d (31)

where the superscripts CR) and (I) refer to the real and imaginary parts,

respectively, and the various terms are definei as:

CA) Surface combustion

(B) Surface convection

(C) Surface viscous damping

(D) Combustion into domain

(E) Convection into domain

(F) Momentum viscous damping

(G) Dissipative energy



It should be noted that the mean flow vorticity Ei. the vortical

fluctuation i and the vortical component of the velocity G'. must be

known in order to evaluate the integral, which we shall discuss in

Section 3.2. It is possible, however, to evaluate the stability integral

in an alternative form without explicit values of the vorticity. To this

end, we proceed with the convective term (u - V)u instead of V( u2  X

Thus we return to Eq. (23) and examine the integral of the form

f~ y fj (u) uX (Ui J U),i pN dQ (32)

Integrating Eq. (32) by parts twice, we obtain the growth rate similar

to Eq. (31) except that the terms designated as (B) and (E) are replaced

by'

Br+uj + + ui)(I) u. ^,,ndr (33a)

(E) 2 - - k I i)7* + jlN,i

+ + + + i.)u p Nij d (33b)+Iu uj +i ^Nij

A careful examination of the integrals above is in order. Recal that the

counterparts of a(B) and a in Eq. (31) were obtained from(B) (E)

fV . V(4u2)_ U X E] P dJ= [fuju) dQ (34)
f 2 j),i- Eijk~k,jiJ PNd~£2 £2

The vorticity can be easily removed from Eq. (34) by setting - 0. This can

not be done in the case of Eq. (32). The vortical component u can be set equal

to zero in both Eqs. (32) and (34) with = 0 in Eq. (34), but this will not

12



make both equations equivalent. In other words, the effect of irrota-

tionality cannot be assured from Eq. (32) simply by setting u 0 0, and

we are aware that

[(u~~) J + ciaV) - VI 1 ( + ea') (4 + EiY E6)]

If the viscous effect is neglected, then the terms designated by

(C), (F), and (G) will be eliminated. Thus
a

-q [(A) + (B) + (D) + (E)] (35)

Evaluation of the integrals given by Eqs. (31) and (35) requires

adequate analytical or numerical models for the mean flow and vortical

and acoustic components of the velocity. These topics will be discussed

in Section 5.

If we assume 0 = , = 0, and Re - o in Eq. (31), we obtain

TcP, - 1 , f (R)+ +

_r J N u-( 1 )

+ 2.

k U. . P N i dr + fj-.-' N2  (2y + 1) u. p NPkN 3 ~ , JJ L1iN2 ~

k N N,ii dj (36

Here the velocity normal to the boundary surface is expressed in terms

of the admittance, A=A (R) + iA(l) and the mean flow Mach number

.such that

n, .;(R). . /  (37)u i i i  i n i

whereas the acoustic fluctuation velocity in the domain is given by

^p- 3.i
u N,i (38)

13



Invoking the relationships of Eqs. (24) and (25) and setting ui,i = 0

(incompressible flow), one obtains

0a Nl.[(R) ~n + U 2nj dr (39)a i1=0 n' y i N N

which is the familiar expression as derived by Culick [see Eq. (2.29) of

Ref. 4 neglecting particle distributions]. This is the simplest form

representing the possible unstable motions in a solid propellant rocket

motor. It has the ingredients such as velocity coupling (burning rate

changes in response to velocity fluctuations parallel to the surface) and

pressure coupling (burning rate changes in response to pressure fluctua-

tions on the surface).

Culick, [3,4] further defines the "flow turning" as an averaged appro-

ximation to viscous effects which appeared in one-dimensional analysis but

did not arise in the three-dimensional inviscid flow. This claim has also

been substantiated by the present authors as shown in Eq. (39).

Let us now investigate the terms which result from Eq. (33a,b). The

stability integral for the case of Re assumes the form

= -1 Y( P n(R) , + (-+i) ui ^

a -E. 2  ui  PNni P u Np r
N

+k-L ui V1) + u 1ul P~nj Idr

+ - ~ p2 (2)+l) - P P _(i I+ ()
+ JI - u PN - l uiPNPNi i j,j i u, N,i

+( i ) ji)-i j) PN,ij di (40)

14



Now, using the relation given by Eq. (38), we have

a 2q Ni + N n i

+- (u P P +j nP] d
k i Nj N,i j PN,i N,i n

_ i _ (2'y+l) Ui N iNjjN,i

+ uip PN

J,j PN,iN,i +u N,jPNij + N,ij)I d

For ui,i = 0, and using Eqs. (24) and (25), we obtain

cua = G i ni N + ui n i +- 7 uj nj d

(A-1 (A-2) (B)

i N,j PN,ij j PN,iPN,i(42)

(D)

According to Culick [3,4], the first two boundary terms are defined as

combustion (at surface) and the last boundary term is known as the mean

flow/acoustic interaction or "flow turning". 'Note that the "flow turning"

term has appeared from the integration of Eq. (32) by parts "twice". The

boundary term which results from the first integration cancels with a

term from a boundary integral of Eq. (23). Upon integrating by parts

"once more", we obtained the boundary terms in Eq. (33a) which finally led

to the "flow turning" term. Recall that it arises from the convective

term of the momentum equation. The same term, designated as "B" in Eq. (31)

was called "surface convection". Conversely, the domain terms arising from

15



the convective terms of the momentum equation, designated as "D", were

called "Convection into domain". These convection terms correspond to the

popular definition of the "flow turning" as a consequence of injecting

mass into the acoustic wave, which must supply acoustic energy to the

mass in order that it be brought up to the local velocity [3,4]. Such

action must combine both surface and domain integrals, linking the surface

activities into the domain.

3.2 Vorticity Stability Integral

Recall that the coupling of vorticity with an acoustic field given by

Eq. (31) is yet to be evaluated from the acceptable velocity profile in

the shear layer. The influence of direct acoustic feedback and presence

of unstable shear flow are to be taken into account.

One option for the solution is to establish an independent stability

integral for vorticity. To this end, we return to Eqs. (14), (17b), and

(17c), and write

Re i,jj + k~i = Hi (43)

where

=-i E ijk kmn um n + (Gm + G ) &n Jj (44)

subject to the boundary condition

i ^*^
R" ' ~ nj = -Fi

16
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It is evident that Eq. (43; represents diffusive waves due to production

of vortex streets, and that the state of instability is once again

determined from the Green's finction technique [8]. It can easily be

shown that

2 f Z.^ N f Z*N

(k - kN) DN  Hi N* d + F i i dF (45)

where

)2 dl N*N ^ *N

N i d ijk 'ikm uk,jum,£ d2

The unperturbed mode shapes ZN and the wave number k are calculated
u N

from the homogeneous equations

^ N ^ ,N
i* + k = (46)

R ei~jj a.e

, n. -0 (47)

i,j

The vorticity growth constant av can be derived by the relation (18)

and (45),

v - IEi k  kn(m*N + a *N ) *N dNi d (48)

Note that the term associated with acoustic fluctuation velocity G' in

Eq. (44) drops out as a result of squaring the imaginary number which

appears also in Eq. (38), thus making this term a real part. If desired

for a computational standpoint, we may replace the vorticity in terms of

velocity,

^*N *N

-ijk%,j (49a)

SEijkuk,j (4 9b)

17
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Evaluation of Eq. (46) or Eq. (48) is now straightforward once the

*N *N

mean flow u and fluctuating velocity ui or the vorticity i can be

numerically determined using the finite element method. The hyperbolic

tangent velocity profile for the mean flow and shear layers [9-12] may

be used for one-dimensional integration.

The growth rate for the vortex shedding a represents an independentv

vorticity instability equivalent to the solution of Orr-Summerfeld equation.

When vortex shedding frequency approximates the classical acoustic frequency,

periodic flow separations can produce significant pressure oscillations.

To this end we perform the eigenvalue analyses for both Eqs. (24) and (46)

and we enter the results into Eq. (31).

4. FINITE ELEMENT ANALYSIS

The use of finite elements in fluid mechanics problems has in-

creased significantly in recent years. An application of this method

to combustion instability was first studied in [7). Our current effort

is directed toward extending the work of [7) to incorporate the new terms

in the stability integral as described in Section 3.

To begin we return to a classical acoustic problem characterized by

Eq. (24) and Eq. (25). The Galerkin finite element equation takes the

18



form (13],

(P, + k2 p d2 = 0 (50)

where D is the test function which is set equal to the trial (ba~is)

function such that

p(Xt) a p a (t) (51)

Here x and t denote spatial and temporal variations, respectively, the

subscript a representing the global node number witha= 1,2, - - - ,n

n being the total number of plobal nodes.

It follows from Eq. (50) that the finite element eigenvalue

equation is of the form

A k2B = 0 (52)

where

AaS = a,i 4) dS , B = 4) D dQ (53)

The normal modes PN required for the stability integral can then be

determined from Eq. (51). Non-axisymmetric geometries for slots,

segments or irregular flow domain are modeled routinely using the Fourier

series expansion [7].

Similarly, the vorticity transport Eq. (40 is cast in the form

A i k  kB i k  (4

IA-k =0 (54)

where

ik i B ik = f "a"a'ik dQ2 (55)

A 6 Re %,j(Djikd c

The well-known QR algorithm [141 is invoked for the solution of eigenvalues

No *N
and eigenvectors. As a result, the normal modes or u. are calclated

and substituted into the stability integrals, Ea. (31) and Eqr(48).

19
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Once the normal modes are determined either numerically or

anlayticalty, the evaluation of stability integrals by finite elements

is most appealing. Highly nonlinear, complicated functions can be

integrated quite accurately via Gaussian quadrature,using the iso-

parametric finite elements [13).

For example, the stability integral is written in the form

F ( ) = f i -i G (&, n, ) d dr d (56)

This leads to the Gaussian quadrature process,
m m m

01U wiw w kG(& i n ,Ck)(7

i=l j=1 k=l
where the weighting functions wi , w. , wk and abscissae i, nj, k are

chosen for an adequate number of Gaussian points.

5. APPLICATIONS

5.1 General

The stability integrals given in Section 3 and the finite element

equations as shown in Eq. (57) will be discussed. We begin with boundary

conditions defined on the burning surface (rb) and the nozzle entrance

(fn ) as represented by the admittance functions:

u ni
"-% p.!on rb (58)

1 xon PA o (59)

20



where % and M are the mean flow Mach numbers on f b and P respectively.
M nn'

At this point, it is important *o realize that the different forms

of convective terms in the momentum equation would give different results

for combustion instability phenomena,

Case 1: V(21 u2) - u x (60)

Case 2: (u Vu(61)

The difference is particularly significant when dominated by vortex

sheddings. To see this, we rewrite Eq. (23) in terms of admittance

functions for the Cases 1 and 2, respectively,

Case 1:

o--aa +(62)

where

1R (R)R 2
a(R)- Pzdr +An MJ d + u J~PNP n dra - - b J Nd b n n N n r N,i .

b n

+i N d Re J-( l i ̂ N, ij nj + 3 N,iN,jj..ldP

+ - Ui N - (2y+l) ui P'4 -PI , N,j N,ii

+ £ijk k PN,i PN,j + i/ ' PN,ijPN,ij + 3 PN, iiPN,j d

(63a)

1 [r -Y M ,1p . .n]'()^

- n ,ii +  Ij ('t Pk n, d+i N j N,i 3 ii Ni

+ +~ . U.P

-u u k - u u ) Vd~l(6i
-li,j uj,i ,i1 uj,i N
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Case 2:

1 (R) R 2Pb+ M P d(

a q A bNd +An nfr n n d

(A-i)

- 2 1 u PN, P n + UiP P, jn.. dP(+i1) ui ni d + i i

JN, Ni J 1 NiN )

(A-2) (B-1) (B-2)

Rek PN,i PN,ij nj + N,jj N,i dN - ; y i

(C) (D-1) (D-2)
i~ N( +.. .. .

u~ (~i N,jj PN,i+uj,j PN,i PN,i + ui PN,J PN,ij

(E-1) (E-2) (E-3)

N, Pi PN, ij) + kRe ( ̂N, ij PN ,ij Ni i ~j/

(E-4) (F-i) (64a)

E- iniNi, k Re P i u P,

N- k N -u*u u u I N-(*( )N~ Ln J N N~ NJ j~ P~

*()(I) +
j N,ij + N,ij kNe ,J

)2y (v-j 2 ^*(R) *(R)^*(: ^ c .z - -U.u
3 le3 Re '3 u i,i u ,j i

- *(R)\ 1 j1 (64b)u j,i j ,i )PN

Here N denotes the coupling of vortical velocity fluctuations u. and the

local acoustic pressure PN'
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(a) Conical Shape Grain Geometry
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(b) Vortical Fluctuations Coupled with the Acoustic
Field PN

Figure 1 A Physical Model of the Problem
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5.2 Vorticity-Uncoupled Acoustic Instability

We consider the axisymetric conical geometry (Figure la) with a

transitional angle 0 and a port diameter D which diverges into 2D at the

nozzle entrance, the transition beginning at z =L/3. It is assumed that

aMb = 10 in/sec, y 1.2, and V = 0.1 in2/sec. It is further assumed

that the mean flow velocity is given by [16],

einr + - co _/R (65)

where R is the radius as a function of z and e and e are unit vectors
r z

in the radial and axial directions, respectively.

The classical acoustic modes PN are given by the formulas

PN = cos (k2Zz) cos (me) J (kr) (66)

with

k+ (67)
2k mn

where m = 0, 1, 2, - - - - k = 7/L with t. 0, 1, 2, - - --- and

k are the roots of
mn

dr M(kr) = 0 at r = R (z)

To evaluate ea in Eq. (64a), the vorticity-uncoupled growth rate, we

make use of Eqs. (65-67), rewrite Eq. (64a) in terms of finite elements,

and transform the integrand into the form of Eq. (57). To demonstrate

the accuracy of calculations we choose the results of terms given by

(A-2) and (B-1) which are shown in Table 1. Here we used 4 x 4 Gaussian

points, = 0, L/D-i A(R) = R)-n n-b = 1. A comparison with

analytical calculations indicates an excellent agreement.
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Mode C(A-2) aC(B-1)

(£mn) Analytical Present Study Analytical Present Study

(100) -4.400 -4.400 2.000 2.000

(200) -4.400 -4.400 2.000 2.000

(010) -6.253 -6.253 0.849 0.848

(110) -6.253 -6.253 1.683 1.683

Table 1. Acoustic Instability Growth Rate - Integrals (A-2) and

(B-I) in Eq. (64a).

Figure 2 shows the acoustic instability growth rate a aversus the

transition angle for several modes. It is interesting to note that,

for both Case 1 and Case 2, the tangential mode tends to be more 
unstable in

comparison with other modes, and that instability increases with 
larger

transition angles. However, for a given mode, Case 1 exhibits more in-

stability than Case 2. To the best of our knowledge this has not been

brought to the attention of the combustion community (17]. Furthermore,

it has been demonstrated in Table 2 that the effect of viscosity 
(C+F)

is negligible in the cylinder of uniform diameter 
(no flow separation).

It should be noted that an alternative approach is 
to perform the

eigenvalue analysis for Eq. (52). The acoustic modes PN are then cal-

culated and used in the evaluation of stability 
integral. For irregular

geometries (non-axisynmetric) such as occur in the star-shaped pro-

pellants we must resort to the eigenvalue analysis. 
Numerical results

using the'procedure as employed in [7] are forthcoming in a subsequent

paper.
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Integrals

Mode
(Zmn) A C D E F

(001) Case 1 -.0762 0.0 -.0000 .6793 - .1998 -.0421

Case 2 -.0762 -3.7400 -.0000 .6793 - .5994 -.0421

(010) Case 1 5.3288 0.0 0.0024 -2.3040 0.6777 -.1102

Case 2 5.3288 0.0 0.0024 -2.3040 -1.953 -.1102

(100) Case 1 -7.0292 0.0 0.0061 6.4790 -1.9060 -.0221

Case 2 -7.0292 2,9130 0.0061 6.4790 -7.561 -.02

(110) Case 1 -1.4362 0.0 0.0035 2.9720 - .3740 -.1144

Case 2 -1.4362 -5.0640 0.0035 2.9770 03 -.0225

(200) Case 1 -4.8580 0.0 0.0060 4.1420 -1.2180 -.0225

Case 2 -4.8580 2.1220 0.0060 4.1420 1-5,00 -.UZZ-

L I

Table 2. Growth Rates for L = 4 , Eq. 64a.

5.3 Vorticity-Coupled Instability

A complete three-dimensional analysis for the vorticity-coupled in-

stability must follow the eigenvalue analysis as required by Eq. (54).

The vortical modes i and disturbances u. thub calculated may be sub-

stituted into aH in Eq. (63b) or Eq. (64b). Similar calculations for

Eq. (47) can be carried out for the case of an acoustic-uncoupled

vorticity instability.

In this paper, however, it is our plan not to be involved in the

eigenvalue analysis but to show an analytical approach using the hyper-

bolic tangent velocity profile for a shear layer [10-12]. Here we

assume the stream function Ip (r,z,t) representing a single oscillation
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Figure 2 The Acoustic Growth Rates aa Vs. Transition Angles for

Different Modes, L/D = 4 and ab 10 in/sec.
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of a disturbance to be of the form [9].

* ^* ikt* (r,zt) = tP (r,z) e (68)

where k is the complex dimensionless frequency defined in Eq. (18). We

further assume that the disturbance amplitude of the stream function

(r,z) has the same form as in [10]

(rz) = e- 'y e]z (69)

where p and a are real quantities representing the various mode shapes

which may depend on the geometry, and y' and z' are the coordinates

normalized with respect to the boundary layer thickness e at the
0

separation point (z' - 0) and measured from the inflection point as

shown in Figure la. That is, the disturbance effect of vortex shedding

on the acoustic field is assumed to begin at the critical point (z'= 0)

and vanish downstream before entering the nozzle. Figure lb shows the

disturbance function *R coupled with the acoustic field pN for a
5and c" for an ineompress-

longitudinal mode. The velocity disturbances uz r

ible axisymmetric flow are given by

* " l(70)
z r ar r - z

The mean flow representing a hyperbolic tangent velocity profile [10-121

assumes the form

Uz =1I (1 + tanh y') (71)

The shear layer thickness o is found experimentally to be a function of
0
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oLH (sec - 1 )

Z=l, m=n=0 Z=2, m=n=0 (sec)

0.2 92.919 -132.770 -6.437
105.043 -108.990

0.2 0.6 30.522 - 42.930 5.135

34.493 - 54.611

0.334 3.198 -0.000
2.137 - 2.869

0.2 85.758 -125.730 -2.059
97.814 -102.746

0.6 0.6 28.168 - 40.050 14.789

32.116 - 52.588

0.426 2.1361.0 -0. 000
2.315 - 4.244

0.2 78.260 -117.662 -2.360
95.345 -160.654

1.0 0.6 25.704 - 38.040 4.025
31.305 - 51.912

1.0 0.465 1.246 -0.000
2.259 - 4.543

Table 3. Growth Rates aH and a v, the Upper Numbers are for

Case 1 and the Lower Numbers for Case 2, =1T/2.
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Reynolds numbers and the jet diameters,

e cD (72)

o Re (S)

where

Re (S ) = U 0 D/v (73)

with U0 being the free stream velocity, and c0.6
2 for cylindrical

geometries [12].

For various vortical mode shape combinations of p and B the growth

rates a H and av are calculated for the two first longitudinal modes

(Table 3). Here the same physical constants are used as in Figure 1

with =i7/2. Note that a is independent of the acoustic mode and a=0

for any tangential modes. The results indicate that aH is strongly

dependent on B while slightly dependent on U for the two longitudinal

modes, and that the higher mode is more stable than the lower one. Note

also that the trend of av is similar to that of aH but av has the largest

instability occurring atBu 0.6, and neutral stability at-=l for all U's.

For the first longitudinal mode, the values of a H are in the range of

the case investigated in [9].

6. CONCLUSIONS

A significant improvement over the current practice of combustion

stability calculations is achieved. A three-dimensional formulation of

stability integral for the coupled acoustic-vortex fluctuations leads to

new integral terms accounting for the various phenomena previously

neglected.
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One of the terms in threedimensional combustion instability

integral, identified as "flow-turning", was shown to be the result of

integrating by parts, twice, one of the convective terms of the

momentum equation. The most crucial factor is the correct procedure for

integration by parts which will affect the accuracy in determining the

instability. It has been shown that in a three-dimensional case, the use

of tensorial approach is more efficient than the vector notations.

The viscosity effect is small as expected for the uniform cylinder.

However, it will contribute greatly if the geometry becomes irregular.

A new vortical instability integral is derived, which represents

the classical hydrodynamic instability. This avoids solution of the

three-dimensional Orr-Summerfeld equation. A simple case of hyperbolic

tangent velocity profile is used for shear layer instability calculations.

In the case of an acoustic-coupled vortical instability, it is noted that

no contribution results from tangential modes.

In this study, we utilize an analytical form of classical normal

modes for the cylindrical acoustic field. For irregular geometeries, how-

ever, we must resort to the standard eigenvalue analysis to obtain the

acoustic and vortical mode shapes and frequencies. With such data we

return to the stability integral and proceed Identically as shown in the

simple examples given in this paper.
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