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ABSTRACT

This work explores the feasibility of enhancing the
electrical handling capabilities of a flowing gas by means
of acoustically generated disturbances. Air flowing between
electrodes, which are mounted perpendicular to the flow, is
excited by acoustic drivers, mounted on two sides of a test
section, in an attempt to increase the glow-discharge power
input to the electrodes prior to breakdown and subsequent
arcing.

Although equipment failure precluded obtaining the
desired results, lessons learned regarding flow rate, power
required, and test section size, encourage further experi-
mentation in this area. Careful consideration to obtaining
an optimum Strouhal number with regards to the acoustic

excitation appears cesirable.
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I. INTRODUCTION AND BACKGROUND

Much research is being conducted in the area of laser
technology. Lasers are being developed for use in all facets
of life, both in military and non-military applications. For
military applications, high-powered lasers are of great in-
terest and much work has been spend on ways to improve
efficiency and output power capabilities.

In order for a laser to operate, three basic conditions
must be satisfied ([Ref. l]. There must exist an active
medium, or a collection of atoms or molecules which will emit
radiation in the optical range of the electro-magnetic spec-
trum. There must be a population inversion of the atoms in
the active medium, and there should be some sort of optical
feedback present in the system to sustain the lasing
phenomenon.

The workhorses of the laser industry have been the
electrically pumped, gas lasers. Specifically, the helium-
neon atomic gas laser attains a population inversion, or is
pumped by placing a high voltage across the gas filled cavity.
The higher the voltage applied, the higher the pumping rate,
and therefore, the greater the output of the laser. This
relation between the voltage applied and the output of the
laser would lead one to believe that the output is limited

only by the electrical potential available to the input

WAL I S e e R S At Tl BN AR A A




electrodes, but this is not the case. As the voltage across
the electrodes is increased a point is achieved where the
gas medium breaks down, and allows "arcing”" to occur between
the electrodes. This, of course, collapses the power into

the active medium, and the lasing action ceases through most

of the volume.

There have been numerocus experiments conducted which prove

YTy

the merits of flowing the gas medium through the cavity as well

as of creating turbulence within the flow. Both of these have

-y

R the effect of raising the power handling capability of the gas

medium significantly. Most recently, Wainionpaa [Ref. 2]
showed the effects of increasing flow with and without turbu-
lence, both in a cross flow and parallel flow configuration

of the electrodes. His method of inducing turbulence into the
flow was a physical grid placed in his test section upstream
of the electrodes. These results were verified in the work

reported in Appendix A. A more efficient means of causing

turbulence might be to use some sort of outside interference
such as sound. The advantage of this method appears to be

g that there would be no physical blockage of the gas flow which
would decrease the pressure drop through the test section.
This, in turn, would decrease the required input flow pressure.
3 By inducing sound into the flow the capability of introducing

S - oure sinusoidal interference becomes possible instead of the
"white" noise introduced by physical grids. The frequency of

E the excitation may also be easily varied, and the capability
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of superimposing various frequencies could enhance further
the utility of this technique.

There have been many efforts to examine flow disturbances
caused by acoustic waves in a gas, but few of the studies were
concerned with the specifics of the sound required to cause
turbulence, and none of the studies examined the power handling
capabilities of the acoustically disturbed gas.

As early as 1858 there was a scientific curiosity about
the acoustic sensitivity of gas jets. Leconte [Ref. 3]
noticed that the flame-jet from coalgas jumped in response to
certain notes played from a cello. His observations led him
to remark that jets must be musically inclined. This phenome-
non was first known as the sensitive flame, but Tyndal showed
that combustion was completely inessential, and that the
phenomenon could be observed in any gas jet given suitable
conditions. As early as 1879 Rayleigh introduced strobosco-
pic illumination and analyzed the instability problem.

In 1960 Hiroshi Sato [Ref. 4] made a study of the transi-
tion of a two-dimensional jet. The response characteristics
of laminar jets to external excitation were investigated in
detail by using sound as the exciting agent. He found that
the effects of the excitation was gquite remarkable when the
frequency of the excitation coincides with that of the self
excited sinusoidal fluctuations.

Freymouth, in 1965 [Ref. 5], introduced artificial dis-

turbances via sound f£rcm a loudspeaker into the boundary




T

T.

..........

layer of a jet. The growth of the disturbances in the
boundary layer was investigated by a hot-wire anemometer
technique. His experiments showed that velocity fluctuations
contained higher harmonics of the sound frequency which
depended in a complicated manner on the position of the
hot-wire probe in the layer.

In 1968 Becker and Massaro [Ref. 6] used sound from a
loudspeaker pointed at the nozzle of a jet. They found a
marked acoustic selectivity at Reynolds numbers below 10,00Q,
with the intensity of the exciting tone showing no visible
effect above a certain level. At a critical frequency, the
jet flared near its roots, and the initial angle of spread as
much as doubled. The points of appearance of ring vortices
and of turbulent breakdown moved closer to the nozzle. The
dominant frequency was never ambiguous. There were discrete
resonant frequencies found, which gave a discontinuous rela-
tion between the frequency of the most highly amplified
disturbance and the nozzle velocity. They concluded that
this was due to the resonances of the nozzle chamber. The
sensitivity of the jet to applied acoustic excitation was
most acute at nozzle Reynolds numbers below 7600. At higher
Reynolds numbers the disturbance pattern was spotty and the
response was very much weaker.

Crow and Champagne [Ref. 7] used a loudspeaker to study
the orderly structure in jet turbulence. They showed that

the eifect of a loudspeaker on the turbulence very much
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depended on the Strouhal number of the excitation, where

st =£f x D/ Ue
and £ is the frequency of excitation, D is the characteristic
length of the cavity, and Ue is the exit velocity of the gas.
They found that, with D constant and f an integer multiple of
the cavity resonant frequency, if the exit velocity was varied
to maintain a Strouhal number of 0.3, the excitation had the
most dramatic effect on the flow. They also found that the
turbulence intensity peaked at a distance x / D = 4 down-
stream of the driver.

In 1974 Miksad [Ref. 8] built a small turbulence tunnel
and mounted a loudspeaker on the side of the test chamber.

He then did an experimental study of the instability and
transition of a laminar-free shear layer by sound excitation.
He found in his experiments that transition from laminar
instability to turbulent breakdown covered approximately five
wavelengths of the excitation frequency downstream.

In 1975 Bechert and Pfizemaier [Ref. 9] studied the am-
olification of broadband jet noise by pure tone excitation.
During their experiments they were able to generate the most
noise amplification when the Strouhal number was about 0.48.
Moore, in 1977 [Ref. 10] very closely agreed with this after
his study of the role of shear layer instability waves in jet
exhaust noise showed that excitation at a Strouhal number of

0.5 caused the most turbulence.

10
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Kibbens [Ref. 1l] built a somewhat unique system to
study the "Discrete Noise Spectrum Generated by an Acous-
tically Excited Jet". He injected sound at the nozzle exit
through a peripheral exciter chamber which was driven from
a loudspeaker enclosure, connected to the exciter chamber
through flexible tubing. The exciter chamber was divided
into four segments, each driven from an individual supply
hose azimuthally coherent pressure wave at the exciter
chamber exit. By measuring the sound pressure level in
the flow downstream of the nozzle exit he determined that

a Strouhal number of 0.45 produced the highest peaks.




II. EXPERIMENTAL APPARATUS

There are two main parts of the experimental apparatus:

the flow system which developed the flow of air through the

discharge gap; and the high voltage discharge circuit which
developed the electric field between the discharge electrodes,
} and provided a means of measuring the voltage and current

through the discharge.

A. FLOW EQUIPMENT
The flow system used was the same as was designed for
research in Ref. 12 and subsequently used in the work of

Refs. 13, 14, 15, and 2. Modification for the present .

"Yd—r—-\ T'_v‘-vvr-"—-,” o~
:

research included discarding the turbulence generating
screens, and configurating the test section with inserts

to mount acoustic drivers flush with the inside of the test

section, facing the cavity electrodes from opposite sides
(Figure 1).

The flow system consists of an air compressor, a water-

LD At S Sae S e s

cooled heat exchanger, flow rate control valves, a plenum
chamber, and a converging nozzle to the test section. The

air is exhausted directly to the atmosphere from the constant

LA SN gt ath g ane 4

area test section. Figure 2 shows the test section schema-
tically. The air is supplied by a three stage Carrier
centrifugal compressor with a 40Q0 cubic feet per minute

] capability at two atmospheres maximum pressure, through a
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water-cooled heat exchanger which maintains flow temperature
at approximately 90 degrees Fahrenheit through an impact-type
water and particle separator. Flow can be regulated by three
gate valves. Flow velocities to 100 meters per second are
obtainable.

The air flow was measured by a pitot static probe

inserted in the exhaust opening of the test section.

B. DISCHARGE CIRCUIT

The discharge circuit consists of a high voltage power
supply, high voltage leads, current and voltage instrumenta-
tion, the pin rack anodes and the cathode.

Power is supplied to the pin anodes by a Universal
Voltronics Labtrol Model BA50-70 which provides up to 50
kilovolts and 70 milliamperes direct current. The control
unit for the power supply incorporates a voltmeter and an
ammeter to monitor the output. It is internally regqulated
and limited to break the circuit when either the output
voltage exceeds a pre-set voltage or the current becomes

excessive.

The pin-anode section consists of three rows of stainless
steel pins, thirteen in each row, all connected in common.
The vins are 0.875 inches long and 0.25 inches apart in each
row. The rows are 0.5 inches apart. This pin-anode rack is

mounted in the top of the test section pointing downward

(Figure 1).

[
(6]




The two cathode plates are constructed of stainless

steel, 2.22 x 4.44 inches in size. They are mounted in the

bottom of the test secton side by side on the same horizontal
plane, one directly under the pin-anode section, the other

slightly downstream. The two cathodes are electrically

insulated from each other. Provisions are made to allow
movement of the cathodes up or down in order to change the
physical distance from the pin-anodes.

For measurement purposes the output from the cathodes
E is fed through a precision 20 kilohm resistor, across which
{
; is connected a Textronic Model 555 Oscilloscope, and a Weston
! Model 931 Micro-ammeter is placed in series with this load.
Excitation to the flow is provided by a Hewlett Packard Model
200CD signal generator. The variable frequency output of the
T signal generator is fed into a Citation II, 50 watt/channel
dual-channel amplifier. The output of the amplifier is
— coupled to driver units which are mounted in the side walls
of the test section (Figure 1l). The driver units used for
these experiments are Altec Model ID30C-16, rated at 30 watts
; (Figure 3). A Hewlett Packard Model 3400A RMS voltmeter is
used to measure the voltage applied to the i put of the
driver unit, for the purpose of recording the power needed
to obtain various levels of excitation. This output system

is depicted schematically in Figure 4.
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III. NATURE OF THE PROBLEM

SR As stated earlier, previously conducted research
utilizing acoustic excitation of a flowing gas was mainly

concerned with the nature of the flow itself, and some of

RS — doooe

what form the excitation should take, i.e., what intensity
and frequency best works for exciting the flow. Virtually
all of the previous works were concerned with turbulence

along the boundary layer, and what effect the acoustics had

upon that turbulence.

LA AL AL SAAS AN A . g

In this research the guestion to be answered is how

much can the electrical power handling capabilities of

the flowing gas be altered by the acoustically excited
turbulence throughout the entire flow around the pin
anodes. This problem took on two phases: determine how
much sound was required to initiate the turbulence, and
how much would this disturbance change the electrical
power handling capabilities of the gas. Once these

questions were answered we would have some ideas of how

efficient this power enhancement idea might be.

13
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IV. METHOD OF INVESTIGATION

As depicted in Figure 1, the test section was mounted
with two speakers, one on each side, with the cone section
threaded into holes which had been drilled for mounting.

The cone of each speaker was made to sit flush with the
inside surface of the side panels so as not to physically
disturb the flow of air. The sound has directed at the area
of the pin-anodes in order to initiate "turbulence" around
the area of most interest. This idea of positioning the
speakers directly at the pins may have contributed to the
unsatisfactory results to be discussed later.

With the test section set up as described, the procedure
was to position a Kulite pressure probe in the end of the
section downstream of the pin-anodes. Under no-flow condi-
tions, inputs to the speakers of various frequencies and
intensities would be measured through the probe on a
spectrum analyzer. 1In doing so, the probe may be calibrated
for turbulence measurement as a function of power applied to
the speakers, and the optimum frequercy, i.e., the cavity
resonant frequency, of the test section may be found by
observing which frequency displays the highest peak on the
spectrum analyzer.

If the probe position is varied across the width of the

section, a plot of the turbulence levels across the cavity
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for various frequencies may be obtained. This would be
useful for focusing the noise at various positions in
relation to the pin-anodes. This would enable investigation
of the power handling characteristics as a function of where
the sound was focused.

Once the optimum frequency is found and the probe has
been calibrated, readings can be taken under flow conditicns
to determine the turbulence spectrum present for various
flow rates.

Finally, the gquestion at hand may be investigated. Two
approaches may be taken to determine the effects of the
turbulence within the flow; (1) apply a given voltage to
the pin-anodes and measure the current flow into the cathode
with no sound excitation present. Then apply the excitation
frequency and observe the change of current through the
cathode as a function of frequency, (2) for each flow condi-
tion measure the amount of voltage on the pin-anodes and
the current through the cathode required to cause breakdown
of the gas and arcing to occur. Then apply a given intensity
and frequency of noise around the pin-anode area and remeasure
the power required to cause arcing. The procedure is repeated
for various frequencies and/or intensities to obtain a plot of
the change in power versus turbulence spectrum applied to the

pins at wvarious flow rates.
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V. RESULTS

Calculations were made (Appendix B) to approximate the
resonant cavity frequency and the acoustic power required
to cause turbulence within the flow of air. The calculated
frequency was approximately 1.5 kHz, which turned out to be
fairly close to the 1.37 kHz actually measured through use
of the Kulite probe and spectrum analyzer.

The acoustic power required to cause turbulence enough
to enhance the power handling capability of the gas was
calculated to be about 50 watts.* Since no past work was
found which created turbulence with sound except along a
boundary layer, this calculation has not been verified.

During calibration of the Kulite Probe one of the
speakers failed. This was thought to be due to power in
excess of the 30 watts being applied at the input. During
a second experiment using only one speaker, care was taken
to limit the power into the speaker but it failed neverthe-
less. Investigation into the cause of the failure led to
the conclusion that the power applied to the speakers at a
relatively pure tone was of intensity enough to cause the coil

wire to burn out due to ohmic heating. Since the 3Q watt

*Private conversation with Prof. H. Medwin, Physics
Department, Naval Postgraduate Schocl, Monterey, CA, August
1982.
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power rating of the speakers was specified as a "pink noise"*
rating, the intensity of the sound allowed at any one frequency
is much less than that delivered by 30 watts of pure tone at

a discrete frequency. Time restraints prohibited reordering

of driver units in time for this report.

During the second run with just one speaker, a trial
attempt was taken at altering the current through the cathode
of the test section with an applied voltage to the pin-anodes
and an input to the driver unit varied in intensity and fre-
quency. This attempt proved fruitless as the current was not
appreciably affected by either a change in intensity or in
frequency of excitation. The same attempt was made at various
flow rates of the air with the same results. Due to subsequent
failure of the second driver unit, further investigation of
these findings has yet to be done. Several theories as to
why the results were poor can be formulated. Firstly, there
simply was not enough acoustic power available. As no horn
was utilized, the acoustic coupling might have been ineffi-
cient. It should be also noted that, during these runs, a
thin £ilm of milar tape was placed over the driver cone.

This was to insulate the cone electrically from the pin-anode
discharge in the case of arcing occuring through the gas. It
was discovered in earlier experiments that, since the speaker

cone was physically closer to the pin-anodes than the actual

* Q .
Noise whose spectrum level decreases with increased
frequency to yield constant energy per octave of bandwidth.
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cathode, the arcing would go from anodes to the speaker cone
unless the milar tape was used. To protect the equipment
against current surges, the tape was used and may have further
attenuated the acoustic power going into the test section.

The power from the speaker may have been inadequate due to the
single tone output capability and/or the attenuation from the
milar tape. Also, this trial attempt was made using only one
driver because one had already failed. Better results may
have resulted if two driver units been available.

Secondly, research shows [Refs. 7, 8] that when a boundary
layer or jet stream was subjected to acoustic excitation the
turbulence did not fully develop until the flow was a distance
downstream of the excitation equal to several wavelengths of
the excitation frequency. Since, in the present experiments,
the effects of the excitation were measured precisely where
the excitation was applied, the turbulence within the flow
simply may have developed further downstream, lending to the
desired effect not occurring. If the excitation were applied
somewhere upstream of the pin-anode area, possibly enough
turbulence would develop around the pins to give more favor-
able results.

Thirdly, several of the references show a correlation
between desired effects of the acoustic excitation to the
Strouhal number of that excitation. The physical significance
of the Strouhal number is that it is a measure of the ratio
of the excitation vibrational speed (frequency x characteris-

tic distance) to the flow translational speed. Recall that

24




AR §
, _

Becker and Massaro [Ref. 6] found that St = 0.3 worked best,
Beckert and Pfizemaier [Ref. 9] found that 0.48 suited their
experiments best, and Kibbens [Ref. 11] narrowed his results
down to St = 0.45. The point is that for each of those
cases a particular Strouhal number worked best. In our
experiments the Strouhal numbers we were working with can

be calculated easily:

St = fD/Ue

where £ = 1370 Hz

D = 4.44 inches = 0.37 ft.

U, = 82 ft/sec (3.95" H,Q)
St = 6.182

or if Ue = 98 ft/sec. (5.55" Hzol
St = 5.172

These Strouhal numbers are obviously much higher than
those found in previously reported experiments. Note that
the flow rates in the previous works were on the order of
Mach 0.3 or 0.4. Similar flow rates in our experiments
would result in St = 1.5 since the flow was only at about
Mach 0.075. This would indicate that either the character-
istic length, D, or the excitation frequency, F, should be
lowered. The excitation frequency, however, must be an
integer multiple Of the cavity resonance frequency, which
is 1370 Hz, therefore it cannot be lowered below that wvalue.
The characteristic length could be shortened by building a
new test section. This probably will be required due to the

limited flow rate available to the existing system.
25




&

DI SIR S B St R N . Lo R e g e

D ARas o an

Assuming that the flow rate may be increased to
120 ft/sec., in order to decrease the Strouhal number to
around 0.5 the characteristic length should be:

(0.5) (Vi/ £
= 0.044 ft.

D

= Q.526 inches
Another possible solution might be to increase the
excitation frequency up to a point where the characteristic
length used was exactly the spacing between the pins in

the anode section.
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VI. CONCLUSIONS AND RECOMMENDATIONS

Due to the equipment failure during the experiments,
there was very little data available to analyze. Previous
works do indicate, however, the feasibility of acoustic
enhancement of the power handling characteristics of a
flowing gas. The gas can be excited acoustically and the
benefits of turbulence in the flow has already been proven.

In order to continue with these experiments it is
recommended that more powerful speakers be made available.
Also the ability to input over a wide band of frequency
simultaneously might be helpful. This would enable more
power to be input to the speakers without overdriving them
with the intensity.

A test section which is smaller than the one used in
these experiments appears to be desirable. Also, it is
recommended that experiments be conducted to determine how
far upstream of the anodes the excitation should be applied
in order to develop the turbulence sufficiently around the
anode area. In order to lower the Strouhal number of the
excitation, which appears desirable, a higher flow rate

must also be achisved.
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APPENDIX A

As a follow-on to previous thesis research [Ref. 2] the
author conducted preliminary work involving the effects on
power handling characteristics of a flowing gas due to
increased flow rate of the gas and/or turbulence within the
flow.

Voltage and current readings were recorded at various
electrode spacings for numerous flow rates, both with and
without turbulence. Turbulence was created within the flow
by means of physical grids placed in the flow upstream of
the electrodes. Input power versus flow rate was plotted for
three separate electrode spacings (Figures Al, A2, and A3).

Conclusions of the previous works were verified in that
the power handling capability of the flowing gas was increased
with increased flow rate and was greater at each flow rate
when turbulence was present in the flow.

An oscilloscope was used to measure the current through
a downstream the cathode with respect to time. The results
showed a series of spikes whose time density appeared to
depend solely on the flow rate of the gas rather than the
electrode spacing or power applied to the electrodes. This
may imply a flow-related current pulsation which may ulti-~

mately be related to turbulence.,
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APPENDIX B

A. Sample calculations of power required to cause turbulence

At a frequency of 3kHz:

2.5 x lO2 cm/sec = Turbulence "intensity"

3.45 x 102 / 3 x 103 = wavelength

\'4

A

0.1 meters = 4 inches

Let 7z = 4mm

distance between pin anodes

z = =2 x m™x £ (4mm)

0.4 x 104 cm/sec

= 0.1 x S<ound

p =1 kg/m3 (air density at STP)

c¢ = 345 m/sec (speed of sound at STP)

3.45 x lO2 kg/m2 sec

©
»
Q

"

watt = kg mz/sec3

). [ ]

- Power/unit area (;)2
3 X lO4 W/m2

1.963 x 10”3 m?

x (p x c)

i
He

Area = (Scm)2/4

Power = 3 xlO4 X Area = 58.9 watts

[Reference 16]
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