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* 1. INTRODUCTION

Two approaches to finite element analysis are now widely recognized in the

engineering and mathematical comunities. In both approaches the domain Q is

divided into simple convex subdomains (usually triangles or rectangles in two

dimensions, and tetrahedra or bricks in three dimensions) and over each sub-

domain the unknown (displacement field) is approximated by a (local) basis

function (usually a polynomial of degree p). Basis functions are required to

qjoin continuously at boundaries of the subdomains in the case of planar or 3

dimensional elasticity, or smoothly in the case of plate bending. The differ-

ence between the two approaches lies in the manner in which convergence is

4 achieved. These two approaches are:

1. The h-version of the finite element method. In this approach the degree p

of the approximating polynomial is kept fixed, usually at some low number

such as 2 or 3. Convergence is achieved by allowing h, the maximum diameter

of the convex subdomains, to go to zero. Estimates for the error in energy

have long been lu:. (1, 2, 3]. In all of these estimates p is assumed to

be fixed and the error estimate is asymptotic in h, as h goes to zero.

2. The 9-version of the finite element method. In this approach the subdivi-

sion of the domain Q is kept fixed but p is allowed to increase until a

desired accuracy is attained. The p-version is reminiscent of the Ritz

method for solving partial differential equations but with a crucial distinc-

tion between the two methods. In the Ritz method a single polynomial

approximation is used over the entire domain Q (1, in general, is not con-

vex). In the p-version of the finite element method polynomials are used

as approximations over convex subdomains. This critical difference gives

the p-version a such more rapid rate of convergence than either the Ritz

method or the h-version as will be explained later.
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The p-version of the finite element method requires families of polyno-

mUals of arbitrary degree p defined over different geometric shapes. Polyno-

mials defined over neighboring elements join either continuously (are in C )

for planar or three dimensional elasticity, and smoothly (are in Cl) for plate

bending. In order to implement the p-version efficiently on the computer,

these families should have the property that computations performed for an

approximation of degree p are re-usable for computations performed for the

next approximation of degree p + 1. We call families possessing this property

hierarchic families of finite elements.

The h-version of the finite element method has been the subject of inten-

sive study since the early 1950's and perhaps even earlier. Study of the

*p-version of the finite element method, on the other hand, began at Washington

University in St. Louis in the early 1970's. Research in the p-version (formerly

called The Constraint Method) has been supported in part of the Air Force Office

of Scientific Research since 1976. In this report we review some of the more

important accomplishmaents during this funding period, and describe the current

status of the p-version of the finite element method.

2. RESEARCH ACCOMPLISHMENTS

2.1. Rate of convergence of the p-version

Extensive computational experiments have provided empirical evidence

that the rate of convergence in the p-version is significantly higher than

in the h-version. For example, a shell problem consisting of a circular

cylindrical shell with symmetrically located cutouts was subjected to a

uniform axial end shortening of known amount as shown below.
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The boundary conditions at the ends of the shell are

Wv - 0 u - constant- 0.2 x inches
Sx

The solution to this problem using the p-version of the finite element was

compared to the solution by other computer programs in [4]. The table shown

below gives the number of degrees of freedom needed by the different computer6
codes to attain the same degree of accuracy.

It is clear that the p-version requires far fewer degrees of freedom than the

next best code, TRISHL which was specifically altered to solve this problem.

6:
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CO.AIISON OF SOWE COMflITATIONAL PARAMETERS

In other sample problems the reduction of the number of degrees of freedom

used by the p-version is even more striking. In [5], the p-version is applied

to problems in elastic fracture mechanics with excellent results and in [6]

the p-version is used to analyze an edge-cracked panel and a parabolically

loaded panel. In Figures 1 and 2 the respective triangulations are shown and

in Figures 3 and 4, the error in strain energy is plotted against the recipro-

cal of the number of degrees of freedom.

The following two theorems, which were recently proved, provide a

rigorous explanation for the efficiency of the p-version. In both theorems

Q is a .bounded polygonal domain in the plane. In Theorem 1, a model problem

for the C case is considered, and in Theorem 2, a model problem for the C1

case is considered. In both cases, the problems are singularity problems,

that is the smoothness of the solutions are governed by the local behavior at

the vertices Ai of the polygons. Suppose that ai is the angle at vertex Ai,

* and that polar coordinates (rip i) are used at Ai. The solution in the

neighborhood of Ai is of the form

II
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i: pi (r) 0i i

Pi (ri) - ri g(Ilog ril), e1(.1) is very smooth.

Yi depends upon cg.

The domain 0 is assumed to be triangulated in such a way that Ai coincides

with a vertex of a triangle. The exact assumptions on g and 8 are given

g in [6].

Theorem 1 (model problem for C0 Case)

-Au +u- f in Q (1)

u 0 on 3

Let u be the solution to (1) in the weak sense, and let u be the finitep

element approximation to u, using polynomials of degree p with the triangu-

lation S fixed (i.e. u is the solution to (1) using the p-version of the

finite element method). If u e Rk(n), with k > 1, then

Iu -up 112,0 . -C P+ Il ll IV u - min (k-1, 2yi), Yi " (2)

i

where e > 0 is arbitrary.

Theore 2 (model problem for C1 case)

A2 w - f in 9 (3)

W"M-a " 0 on aa (clamped edge)in

Let w be the solution to (2) in the weak sense, and let w be the solution top

(3) using the p-version of the finite element method. If w e Hk (SI) with

k > 2, then
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11V - wl12,0 c P- I1+ 11lk' u m"n(k-2, 2(yi - 1)) (4)

.i(C&) - smallest positive root of the equation

sin2(Yt - 1)Gi " (Yi - 1)2 sin2 a, = 0

The error estimates in (2) and (4) can be compared with analogous esti

mates for uh and wh, the solutions by the h-version of the finite element

method. Assume, for convenience that in (2) k - 1 > 2-, and in (4)

k - 2 > 2(yi - 1), that is convergence is determined by the nature of the

singularities at corners. Then the analogous estimates are

llu -uhjji ch ' uIIk i l(2')

iv- hi12,0 - ch(Y-l) k I Yvi , rn -Yi (4')

If N is the number of degrees of freedom then p - N1 /2 , h - N-1 / 2 and

Ilu - Olll, foN-T ), Ilu - Uhi Il,O - °(N-y/2

1Iw - wPl1 2,0 - O(N-(Y-1), i w - wh112'n M O(Nl/2(-))

Therefore, if the criterion used to compare methods is the number of degrees

of freedom required to achieve a given error in energy, then the rate of con-

verzence of the p-version is twice that of the h-version. This result provides

a rigorous proof for the extensive computational evidence that has been gathered,

and explains in part the efficiency of the p-version.

2.2. Hierarchic Families of Solid Finite Elements

In order to Implement the p-version efficiently, families of finite elements

are needed with the hierarchic property: computations performed for an approxi-

mation of order p should be re-usable when raising the order to p + 1. More
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specificially, the stiffness matrix corresponding to the polynomial approxi-

_C mation of degree p should be a subuatrix of the polynomial approximation of

degree p + 1. In terms of basis functions, this implies that the basis func-

tions for a pth order approximation should be a subset of the basis functions

for a (p + l)st order approximation.

Hierarchic families for triangles both in the C case and in the C1 case

are described in detail in [7, 8, 9, 10, 11]. We now describe hierarchic

I families of polynomials for various three dimensional shapes. All of these

families are globally in C0.

tetrahedron. A hierarchic family for the tetrahedron can be constructed from

~ the hierarchic family for the triangle by using natural coordinates. The

linear element is:

nodal
variable shape function

u(l) L1

vertex u(2) L2
nodes

u(3) L3

* u(4) L14

The quadratic element has the same nodal variables and shape functions as the

linear element and the additional nodes:

i0
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nodal shape functions
variables

u (12) - L1 L2

u (23) 1 L
as~ 2 2 L3

edge uS (31) ,1 L3
nodes -14'

U (14) 1 LL
as ~ 14

us (34) L3 L 4

u (24) 1 L
as 2 2 L 4

The hierarchic family for a tetrahedron up to the element of degree 4

is shown in Figure 5. Boundary nodal variables correspond to vertices, edges,

and faces. Additional internal nodal variables are introducted to provide a

basis for a complete polynomial of degree p. Complete details are given in [12].

brick A hierarchic family for the brick can be constructed from the

hierarchic family for the rectangle. For convenience, we consider only the

square and from it we construct a hierarchic family for the cube. The hierar-

chic family for the square is given as follows.

(4.1)

"IDNIC QUAWTIY

( J - 1) j .> 2, even CO SMM mew

' Q () j _> 3, odd

4
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satisfies

Qj (+l) 0 QW (0) -0 1 2, ... , j -

Q i) (0) - 1.

!j

Now, consider the square of side 2 as shown in the figure. Basis functions

Nu(i) corresponding to the nodal variables u(i) i - 1, 2, 3, 4 are

N (1 3(l- (1 + + n)U(I) " (- 4 ~ l n)(3) n l+4(+"

(5)

N (l+W ) N ( - O)( +. n)u 2) 4u (4) (1

and it is easily seen that these basis functions span the same space as

,, i.e. they contain the complete linear polynomial. Also these nodal

0
variables enforce C continuity across sides. Now denoting by (ij) the mid-

point of side ij, basis functions corresponding to the nodal variables u (12),

Un(23), u (34), u (41) are

N (12) -Q 2 (&) (1 - n) N (34) Q 2(-0(l + n)

(6)

N (.23) - (1 + C)Q2 (n) N (41) - (1 - C)Q(-n)Un Un

and these basis functions added to the ones in (5) span the same space as

2 2 2 2
1, 2 , n,n , i.e. they contain a complete quadratic and they enforce

C0 continuity along sides. The basis functions (5) are taken for the hierar-

chic rectangular C linear element, and those in (5) and (6) for the quadratic

element.

For j > 3, we have

N u(12) - Q ( )(l - n) N (34) - Q (-&)(1 + n)

Nunj (23) - (1 + &)Q (n) Nun ( 4
1 ) - (l - &)Q (-n)

• . • • • - fl
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as the bapais function for Jth order tangential derivatives at midsides, and

foi j > 4 we add the internal modes

(1- 2 -(1 J-4-ii 1 0, ... , - 4.

These basis functions span the same space as a complete polynomial of degree

and the two monomials of degree J+l, 0n, n•

0
Thus, the hierarchic C square element of degree p > 2 has (1/2) (p+l) (p+2)+2

basis functions, two more than the dimension of the complete polynomial of

degree p. The two extra Lerms correspond to 9P n nP., By scaling the sides

of the square the elements are easily transformed into rectangular ones.

The hierarchic family for the brick can now be donstructed. Linear element:

nodal variable shape function

u(2) T

u(3)_ (1+O)(1+n)(1-)

vertex u(4) I (1-9)(i+n)(1-C
nodes 8

U(5) -0 ( 1O-n) (1+;)

u(6) ( l

u(7) -(1+0 (I+n (1+0)

Su(8)

6I



The quadratic element adds the shape functions as follows:

nodal variables shape functions

1

U (23) 1

Us (34) j q2( 0 (1+n) (1-

Us (41) 1 (l-)Q 2 (n) (1-C)
u (55) (1-0(1-n2W
as 4 )UlrQ2(~

edeUss (26) .4 (1+&)(l-n)Q2(r.)
edge ________

nodes1noe uss (37) .4 (1+4) (l-n)Q2(C)

u s (48) (-)(+n(+)

Us (56) W 2(1(-0) (1-9)
u (67)

so 4 ('+C) Q2 (1+4

u (78) 4" Q ( 9) (1+n) (1-K;)

.- ue(81) .1 (1- 4)Q2 (n) ('+C)

Higher degree elements add edge modes, face modes and internal modes. More

details are given in [12, 13].

triangular prism A hierarchic family for the triangular prism can be

constructed by combining the hierarchic families for the triangle (in natural

coordinates) and for the square (in rectangular coordinates)
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4 -s
z

, ! 2

nodal variable shape function

u (1) h(l-Z)

u (2) L 2 (l-Z)

vertex u (3) L3 (1 - z)

modes u (4) L (l + Z)

u (5) L (1+z)

U (6) L3 (1+ z)

The quadratic element adds the following shape functions:

nodal variable shape function

Uss (12) N2(, L2)(l-z)

u s (23) N2 (L2 , L3)(l-z)

edge u (31) N2 (L3 ' L)(1-z)
nodes s

u s (45). N2 (L1, L2 )z

uso (56) N2 (L2, L3 )z
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nodal variable shape function

u (64) N2 (L3, Ll)z

edge use (14) Ll Q2 (z)
nodes Uas (25) L2 Q2 (z)

u (36) L3 Q2 (z)

1 1
N2 (Li, Lj)m - -2 L 1j - second edge mode for triangle

(X) -1 z(z - 1) - second edge mode for rectangle.

Higher degree elements add edge modes, face modes and internal modes. Further

details are given in.[12, 13].

square pyramid. It can be shown [13] that no hierarchic family exists

which consists of polynomials alone. However it is possible to supplement

certain rational functions in such a way that the element of degree p contains

a complete polynomial of degree p and additional rational

functions. Furthermore, because of the special form of *mw

these rational functions, integration of all shape func-

tions which appear in the elemental stiffness matrix can (.)

4 be performed in closed form. No numerical quadrature

is required. The linear element is:

nodal variable shape function

u (1) 1 (l - _) (1 2 ) (

1 2nvertex u (3) (+ (i+ (-
modes 1 ) 2+

1u (4) 2 ) + (1

ui
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Each of the vertex modes is a linear combination of 1, 9, n, C,
1-C

Higher degree elements again add edge modes, face modes and internal modes.

Further details are given in [3].

*- Combinations

Hierarchic families of the different shapes shown here have been con-

structed so that they join together continuously. Thus geometries such as the

ones shown below can be modeled using as few elements as possible. In this

q way the subdivision of the polyhedral domain 92 can be made very coarse and

accuracy can be obtained by increasing p, without using added degrees of

freedom to describe the geometry. As has been shown (at least for two dimen-

sional problems) the rate of convergence in the p-version is twice that

obtained for the h-version. Therefore subdividing

•KEI h

in this way leads to computational efficiency, since it makes maximum use of

the p-version. It also requires significantly simpler input.

42.3 P-Version Analysis of a Rhombic Plate

The problem of the stress analysis of a rhombic plate is a difficult one

which has attracted much attention [14, 15, 16, 17]. We consider the rhombic

plate shown in Figure 6, which is simply supported, uniformly loaded and whose

acute angles are 30 degrees. A very strong singularity occurs at the obtuse

vertex when plate bending theory is applied to this problem, and this singularity

leads to p - 0.4 in Theorem 2, Equation (4). As a result many finite element
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models of the rhombic plate either fail to converge or converge very slowly.
I1

! The hierarchic C1 family used in the p-version contains corrective rational

functions. These rational functions absorb the singularity very well and lead

.. to the best results thus far obtained for this problem. Shown below are the

values for the deflection at the central point, we, using the C1 p-version

analysis, with p - 5 and with different numbers of elements. These results

are compared with results obtained by other methods

C °p-version

no. of elements 1 2 3 4 5 6 7

no of degrees 8 16 25 33 42 51 60
of freedom

w 2.8938 3.1520 3.4651 3.8217 4.0049 4.0217 40824c

% error 29.2 22.8 14.9 6.4 1.8 1.4 0.x

other codes

no. of degrees of freedom % error

Sander [14] > 1000 24
I

Argyris [15] Z 1300 2

Basu, Szabo et al [16] Z 130 2

Basu, Szabo et al [16] 180 1

Morley [17] exact value (analytic expression) = 4.08
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* 2.4. Comvuter Implementation - COMET-X

CMET-X is an experimental computer code which implements the p-version

of the finite element method by using the hierarchic families which have been

constructed. COMET-X is maintained by the Center for Computational Mechanics

at Washington University and it is the only computer code in existence which

implements the p-version.COMET-X can be used as a code to implement the h-

version as well simply by fixing the polynomial order p and refining the mesh.

COMET-X currently has the following capabilities:

A. Element types: Stiffeners, triangular elements, triangular elements

with one side curved, rectangular elements, solid elements of the shapes

described earlier.

B. Types of Analysis: Laplace and Poisson equations, plane elasticity,

elastic plate bending, stiffened elastic plates, 3-dimensional elasticity,

temperature distribution in 3-dimensions.

C. Special Capabilities: non-uniform p-distribution, elastic fracture

mechanics computations in two dimensions, nearly incompressible solids,

linear boundary layer problems.

D. Pre- and Post processing capabilities including graphics and visual displays.

The capabilities and usage of COMET-X are described in detail in [16].
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2.5. A Sampl. Problem

As an example of a problem analyzed by the p-version using hierarchic

solid finite elements, [ 18], consider the finite element model of a gear

casing, shown below. The model on the right was used in COMET-X, the one on

the left was used by NASTRAN. Stress contours shown in Figure 7 were obtained

from COMIET-X.

U7

COME-X NSTRA

Finie ElmentMeshs fo a Gar-Csi.
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13. "Implementation of a C1 Triangular Element Based on the p-version of the
Finite Element Method", presented at the Symposium on Advanced and
Trends in Structural and Solid Mechanics, October 4-7, 1982, Washington,
D.C.

5.3. SemarsA Presented at Goverment Laboratories

1. "Advanced Stress Analysis Technology" BY B. A. Szabo and I. N. Katz,
presented on September 8, 1977 at the Air Force Flight Dynamic Labora-
tory, Wright-Patterson Air Force Base.

abstract,

With one exception, all finite element software systems have element
libraries in which the approximation properties of elements are frozen.
The user controls only the number and distribution of finite elements.
The exception is an experimental software system, developed at Washington
University. This system, called COMET-X, employs conforming elements
based on complete polynomials of arbitrary order. The elements are hierar-
chic, i.e. the stiffness matrix of each element is embedded in the stiff-
ness matrices of all higher order elements of the same kind. The user con-
trols not only the nm-er and distribution of finite elements but their
approximation properties as well. Thus convergence can be achieved on
fixed mesh. This provides for very efficient and highly accurate approxi-
mation and a new method for computing stress intensity factors in linear
elastic fracture mechanics, The theoretical developments are outlined,
numerical examples are given and the concept of an advanced self-adaptive
finite element software system is presented.

2. "The Constraint~ Method for Finite Element Stress Analysis", by 1. N.
Katz, presented at the National Bureau of Standards, Applied Mathe-
matics Divison on October 19, 1977.

abstract

In conventional approaches to finite element stress analysis accuracy
is obtained by fixing the degree p of the approximating polynomial and by
allowing the maximum diameter h of elements in the triangulation to approach
zero. An alternate approach is to fix the triangulation and to increase the
degrees of approximating polynomials in those elements where more accuracy
is required. In order to implement the second approach efficiently it is
necessary to have a family of finite elements of arbitrary polynomial degree
p with the property that as much information as possible can be retained from
the pth degree approximation when computing the (p+l)st-degree approximation.
Such a HIERARCHIC family has been formulated with p !. 2 for problems in plane
stress analysis and with p !. 5 for problems in plate bending. The family is
described and numerical examles are presented which illustrate the efficiency
of the new method.
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3. '"no p-version of the Finite Element Method", by I. N. Katz and B. A.
Szabo, presented at Air-Force Flight Dynamics Laboratory Wright-
Patterson Air Force Base on April 23, 1981.

abstract

The theoretical basis of the p-version of the finite element method has
been established only quite recently. Nevertheless, the p-version is already
seen to be the most promising approach for implementing adaptivity in practi-
cal computations. The main theorems establishing asymptotic rates of conver-
gence for the p-version, some aspects of the algorithmic structure of p-version
computer codes, numerical experience and a posteriori error estimation will be
discussed from the mathematical and engineering points of view.
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