AD-A125 595

UNCLRASSIFIED

fHE CONSTRAINT HETHOD FOR SOLID FINITE ELEHEN*S(U) )
RSHINGTON UNIV LOUIS MO DEPT OF SYSTEMS gCIENCE AND

ATHEMATICS 1 N KRTZ 38 NOv 82 AFOSR-TR-83-
RFDSR 81-08252 12/1




It 4 S RS SRS AOR A

ORI

.‘. 1w PR R P R T N

-

T

-

fle

frEFEEEE
|
X}
N
=
N
N

lllllT I
— e
22 it e

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963 A

S L




vrvvy‘v. LA an A0 Ak o

OIS filE COPY

—_— s e — e e S

AFOSR-TR- 83 -0 080 N G

Final Scientific Report

Air Force Office of Scientific Research Grants .y AFOSR-81-0252
Period: 1 October 1976 - 30 September 1982

Title of Research: The Constraint Method for Solid Finite Elements

Department of Systems Science and Mathematics
School of Engineering and Applied Science
Washington University - Box 1040

St. Louis, Missouri 63130 St -

Approved Por pukiig relecase
. . . ’
distribtution unliimited. .

~

o oo 14 (i@




R N e e A v
B - N - - DR G CAC i A R - v DA O S PR AP A A 7S S Sl ahaid

N P tartaly

»
13
3
. . PAL 300
& HL TN ]

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

' REPORT DOCUMENTATION PAGE BEF O o DRy I ON S RN

‘; [T REPOLI NUMRERTD -~ & _ 2. GOVT ACCESSION NOJ 3. RECIPIENT'S CATALGG NUMBER
' s BFOSR-TR- < 5 -0 O8OOI Yl 595

. TYPE OF REPORT & PERIOD COVERED
¢ ’ . "¥inal Scientific Report

The Constraint Method for Solid Finite Elements 1 Oct, 1976-30 Sep. 1982
6. PERFORMING OG. REPORT NUMBER

[

4. TITLE (and Subtitle)

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

I. Norman Katz - .
AFOSR 81-0252

b
t 9. PERFORMING ORGANIZATION NAME AND ADORESS 10. nggnAu ERLEMEN'I-’. PROJECT, TASK
» Department of Systems Science and Mathematics ARFS & WORK UNIT NUMBERS
3 Box 1040, Washington University é) 4
{ St. Louis, MO 63130 5//( - 2304/43
: 11, CONTROLLING OFFICE NAME AND ADORESS ‘§f REPORT DATE
;_ . Air Force Office of Scientific Research (AFSC) ovember 30, 1982
f Directorate of Math. and Information Sciences 13. NUMBER °5$5'
- Bolling Air Force Base, DC 20332 =
¢ 8. MONITORING AGENCY NAME & ADDRESS(I{ different from Controlling Office) | 1S. SECURITY CL/ASS. (of this report)
q Unclassified
15a. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE
: 16. DISTRIBUTION STATEMENT (of this Report)
Lc _
1 . Approved for public releases

distributionunlimited,

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

]
1
19. KEY WORDS (Continue on reverae side if necessary and identify by block number)
Finite Element Analysis, Stress Analysis, Hierarchic Families of Finite
Elements, P-version of Finite Element Method, Numerical Analysis
Fl iy . :
> . S

PR

I -

20. ABSTRACT (Continue on reverse side if necessary and identily by block number)
The p-version of the finite element method is a new approach to finite element

- analysis which has been demonstrated to lead to significant computational savings,

often by orders of magnitude (this approach was formerl lled i
q method; the new term p-version is mogep descriptive). ansgntionaq:eaggggggﬁégt

(called the h-version) generally employ low order polynomials as basis functions,

Accuracy is achieved by suitably refining the aggroximating mesh. The p-version
uses polynomials of arbitrary order p>2 %or problems in plane elasticity where CO

continuity is required and polynomials of order p>5 for problems in plate bending
where Cl continuity is required.,

DD | 5n'3s 1473  eoimion oF 1 NOV eSS o‘ss\s?:

SECURITY CLASSIFICATION OF THIS PAGE (When Deta Entered)




SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered) B

Hierarchic elements which implement the p-version efficiently are used to-

gether with precomputed arrays of elemental stiffness matrices,

Some important research results are:

¥, 1In polygonal regions, under conditions usually satisfied in practice, if
the h-version converges with order of error in energy norm 0(1/Na) then
the p-version converges with order of error in energy norm 0(1/N2 ),
where N is' the number of degrees of freedom. This applies to planar
problems which require either CO or Cl global continuity.

2. Hierarchic CO elements for triangles or rectangles have been developed
and implemented for p>2. Hierarchic Cl triangular elements have been
developed and implemented for p>5. Hierarchic CO solid elements have
been developed for p>2 for bricks, tetrahedra, triangular prisms, and
rectangular pyramids. -

3. Mcdified Bernstein polynomials have been constructed over triangles whidh
provide a smooth approximation to functions in H2 These polynomials are
used to prove that the p-version of the finite e?ement method converges
in the Cl case (plate bending).

4, Explicit mappings have been constructed which map triangles with one
curved side into the standard triangle. These mappings have the property+
that the resulting elemental stiffness matrices can be integrated in
closed form. The need for numerical quadrature, which may be inefficient
in the p-version, is thereby obviated. The curved side can be either
parabolic or elliptic. The newly constructed mappings permit the p-ver-
sion to be applied to domains with curved boundaries of specified shapes.

5. The p-version analysis of stresses in a rhombic plate was completed.

The results compare very favorably with those of other codes.

SECURITY CLASSIFICATION OF Tu'c PAGE(When Data Entered)




X $C 1504
) 288 w0y OC.
e Lrrasqn 2 m.w—m sk 83FJ8WR dd ¢ .
& Y, A8AS 9 sdjjewRyley Patlddy jJo dossajoag *zaey uewioy °] 28/0¢/11
JUNLyNDIg f0dag a0 410000 Vw1319 90 032 1IMOHLNY 40 37113 ONY INVYN 3ivO
. 03AR0TI04 NIFP IAVYH STIVNAIIOYL SNOIANTANL L II(ONS 3O IUNSOTIDSI0 A 1INIL ONY NOIAVII§14NI0! 1aN0OUG AvHl $3181103D BOLIVELINOD
NOILVIIJILEID - i NOILDIS T )
w... . [ ] -
.-
L .
dUuoN
: %0 V0D Guewy SNV V) * wBannN sopn) dhg aprjavy)
: AIVHANCOINNS WIUNA UINNOIN Iy 4O OF WNOW LT RTE ST | .uq....-z:eu-:- WOLITNINOIUNE 4O
...,. SVASU 10V INOONNS 7Y tas) 13vuin0dung (re) 0 SSINUIY QMY Drvee "
Wi 08 L duoN,, (ITTO1sesunisgng sag paiades djsanjaasd jou pig pasid ed unwmenyuy wr .St.o..: viv0 4dveinOdEng ¢
H i (8xim13 oo 0ayley 14194, @ Furnmgued) SLIVELNOIBNS - 1} NOIJD IS . i
F. .
A . QUON
3
.
- ow | sia on $34 vIBnAN VYl
ullieso HOIILYIIVGaY MOV VI IgdY ANIAVH WO
FtisIvHiNOD N3 va VINWNT NOILY D141 NI NOIANIANI 40 DVA 1L ISIMOLNIANI 4O DY N
o-. ".-uvw..“u Jungond810
‘.. 'l”W("lct-.-w..Mu—b. wos val-!@u:: ¥WOLdVMAINO)D fogss 0 “w
" (210)% on ,,"sunp,, §1) (pariades ag o) pospsdes suousauy jje siv wer Qg P17 Y AVO NOIANIANI ¥
g
. teavumppueau] 1300yng, ) SNOILNIANI - | NOIALD IS
Tveis 1Y) CIFETTTRCD ] . O0ETE9 OW °*B8InOT °a§
. (200 ¥3443) 140dIY 40 IdAL ¢ 0y0T Xog ‘£3ysxaayup w3IBurysep
- 7570-18 ¥S0dvV °CTTE-LL u0Sav : 238y UBWION °I
e uIonnN 2 dvusnod ¢ {epo) dig spnisvp) WOLDIVYHANGD 40 $SIWOOY ONY INVYN |
: Win-c? ON LIhO (API§ IKIANVY U0 SUGHISUL 90G) (Axtr] 1n3u0)) (KiyFiy uaged,, 0F jueasan g)
UHAOHS IV WHOA S1DVHYLINOOENS ANY SNOILNIANI 40 138043
. . . - A , g : . . ai e PPN PRI U Y G Ny sbndhdndimtusdy




]
4
A
.
A
1
X
‘
1
9
9
1
q
o
K
1
<

Yy T

T RS-
L PRI PRE AP
. B I (

H
I

TABLE OF CONTENTS

Page

I3

|
'
I
)

1, INTRODUCTION ceoceccscsocsesccccsosscssscsoscossscscosscesanosssosos 1
2, RESEARCH ACCOMPLISHMENTS .cecescccsecocscccocsacocssscccscssscnconse 2
2.1 Rate of Convergence of the P-version ..ceeececescscccccccscee 2
2.2 Hierarchic Families of Solid Finite Elements .eeccecsocevrcccs 6
2,3 P-version Analysis of a Rhombic Plate ..eccccecoccsscccscrones 14
2.4 Computer Implementation = COMET=X seeeeccsccorcccocscascoancas 16
2.5 A Sample Problem eueeeeesececccscessescescccsscsoossassosanase 17
3. REFERENCES tccovecscccccssccsascasscscsosncssesssccscssocssssssccses 18
4. TFIGURES sueveeecoccnsoovasnsscasscosccssssssssoacsoscssossonassssssscss 20
5. PAPERS PUBLISHED AND PRESENTED SINCE THE START OF THE PROJECT .... 27
5.1 Published PApPerS cececcescecsccssccscesccsasrseascsessoscscasscssscs 27
5.2 Presented PAPerS seececcesssssscoccssssresssssssoscscscscaseses 28

5.3 Seminars Presented at Government LaboratoriesS .ceccecvcescecess 29

TTTInr rameay

cooticn Zivision

A




— v-rm.r Dasmt s grn

.7*7rr'fr,r_rﬂvvv-
. L

PPy

1. INTRODUCTION

Two approaches to finite element analysis are now widely recognized in the
engineering and mathematical communities. In both approaches the domain Q is
divided into simple convex subdomains (usually triangles or rectangles in two
dimensions, and tetrahedra or bricks in three dimensions) and over each sub-
domain the unknown (displacement field) is approximated by a (local) basis
function (usually a polynomial of degree p). Basis functions are required to
join continuously at boundaries of the subdomains in the case of planar or 3
dimensional elasticity, or smootﬁly in the case of piate bending. The differ-
ence between the two approaches lies in the manner in which convergence is
achieved. These two approaches are:

l. The h~version of the finite element method. In this approach the degree p
of the approximating polynomial is kept fixed, usually at some low number
such as 2 or 3. Convergence is achieved by allowing h, the maximum diameter
of the convex subdomains, to go to zero. Estimates for the error in energy
have long been kr:.-. [1, 2, 3]. In all of these estimates p is assumed to
be fixed and the error estimate is asymptotic in h, as h goes to zero.

2. The p-version of the finite element method. In this approach the subdivi-
sion of the domain Q is kept fixed but p is allowed to increase until a
desired accuracy is attained. The p-version is reminiscent of the‘Ritz
method for solving partial differential equations but with a crucial distinc-
tion between the two methods. In the Ritz method a single polynomial
approximation is used over the entire domain Q@ (Q, in general, is not con-
vex). In the p-version of the finite element method polynomials are used

as approximations over convex subdomaing. This critical difference gives

the p-version a much more rapid rate of convergence than either the Ritz

method or the h-version as will be explained later. .-




The p-version of the finite element method requires families of polymo-
mials of arbitrary degree p defined over different geometric shapes. Polyno-
mials defined avef neighboring elements join either continuously (are in Co)
for planar or three dimensional elasticity, and smoothly (are in Cl) for plate
bending. In order to implement the p-version efficiently'on the computer,
these families should have the property that computations performed for an
approximation of degree p are re-usable for computations performed for the

next approximation of degree p + 1. We call families possessing this property

hierarchic families of finite elements.

The h-version of the finite element method has been the subject of inten-
sive study since the early 1950's and perhaps even earlier. Study of the
p~version of the finite element method, on the other hand, began at Washington

University in St. Louis in the early 1970's. Research in the p-version (formerly

“ called The Constraint Method) has been supported in part of the Air Force Office

of Scientific Research since 1976. In this report we review some of the more
important accomplishments during this funding period, and describe the curreant
status of the p-version of the finite element method.

2. RESEARCH ACCOMPLISHMENTS

2.1. Rate of convergence of the p-version

Extensive computational experiments have provided empirical evidence
that the rate of convergence in the p-version is significantly higher than
in the h-version. For example, a shell problem consisting of a circular

cylindrical shell with symmetrically located cutouts was subjected to a

uniform axial end shortening of known amount as shown below.




LOCKMEED TEST PROBLEM Ne 2
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The boundary conditions at the ends of the shell are

weys -g—: = 0 u = constant = 0.2 x 1073 inches

The solution to this problem using the p-version of the finite element was
compared to the solution by other computer programs in [4]. The table showmn
below gives the number of degrees of freedom needed by the different computer
codes to attain the same degree of accuracy.

It i3 clear that the p~version requires far fewer degrees of freedom than the

next best code, TRISHL which was specifically alterad to solve this problem.

.....
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COMPUTER SOURCE HUMBER OF DEGREES OF
CODE ELEMENTS. FREEDOM
SHELL 9 ?xcu GENERAL ATOMIC, '076‘ ' 257
STAGS LOCKHEED MISSILES AND 2 . 37
SPACE CORP,
REXBAT LOCKNEED MISSILES AND 21 AppRox 1125
SPACE CORP.
TRISHL NATIONAL AERONAUTICAL 100 637
. ESTABLISHMENT, CANADA
COMET-X  WASHINGTON UNIYERSITY" 10 500

(6-6~7-cas®)

COMPARISON OF SOME COMPUTATIONAL PARAMETERS
In other sample problems the reduction of the number of degrees of freedom

used by the p-version is even more 'striking. In [5], the p-version is applied

to problems in elastic fracture mechanics with excellent results and in [6]
the p-version is used to analyze an edge-cracked panel and a parabolically '
loaded panel. In Figures 1 and 2 the respective triangulations are shown and
in Figures 3 and 4, the error in strain emergy is plotted against the recipro-
cal of the number of degrees of freedom.

The following two theorems, which were recently proved, provide a
rigorous explanation for the efficiency of the p-version. In both theorems
2 1s a bounded polygonal domain 1in the plane. In Theorem 1, a model problem
for the Co\case is considered, and in Theorem 2, a model problem for th; C1
case is considered. In both cases, the problems are singularity problems,
that is the smoothness of the solutions are governed by the local behavior at

the vertices Ai of the polygons. Suppose that a, is the angle at vertex Ai’

i

and that polar coordinates (ri, ¢i) are used at A The solution in the

.
neighborhood of Ai is of the form
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pi(ri) 91(¢i)
Yi .
pi(ri) -r, gi(llog r1|), 61(¢i) is very smooth.

] depends upon a,.

The domain Q is assumed to be triangulated in such a way that A, coincides

1 b §

:V with a vertex of a triangle. The exact assumptions on 8y and 6i are given
{ ‘ in [6].

J. (6]

¢ Theorem 1 (model problem for c? Case)

g ~du+u=f inQ (L
Fe

us=0 on 3Q

Let u be the solution to (1) in the weak sense, and let up be the finite
element approximation to u, using polynomials of degree p with the triangu-
lation S fixed (i.e. u, is the solution to (1) using the p-version of the

t
E! finite element method). If u ¢ Hk(ﬂ), with k > 1, then
- " | el |

m
o -wll, gzcp o ¥ win (k-1, 2v,), v, =5 (2)

&y

where € > 0 is arbitrary.

t Theorem 2 (model problem for Cl case)
b
t 2
¢ A ws=f 1in Q 3
E. ow
[ we o " 0 on 3Q (clamped edge)
Let w be the solution to (2) in the weak sense, and let wp be the solution to

k. (3) using the p-version of the finite element method. If w ¢ Hk(ﬂ) with
r
q k > 2, then
|

[ ]

- = = .3 A s s e A e e e s _— - [P AP PP U U NP |
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v = wlly,q2 e 2™ [lwllL, w = ainGe-2, 26y, - 1) %)

yi(ci) = gmallest positive root of the equation

sinz(yi - l)ai - (Yi - 1)2 sin2 e = 0

The error estimates in (2) and (4) can be compared with analogous esti
mates for v, and W the solutions by the h-version of the finite element

method. Assume, for convenience that in (2) k - 1 > 271, and in (4)

T

k-2 3_2(7i - 1), that is convergence is determined by the nature of the

singularities at corners. Then the analogous estimates are

Y
)

o = uplly gz e Vllelly, v = mta v 2"

Y

-1
1w = wylly,q = b Dlwllys v = nin v, . "

If N is the number of degrees of freedom then p - Nllz, h - N2 ana

- -y/2
u = wlly g = 0™, [la = wlly o= o™

lw = w1, g o "y, | |w - volly o ow-M/2(r-1)y

Therefore, if the criterion used to compare methods is the number of dégrees

of freedom required to achieve a given error in emergy, then the rate of con-

vergence of the p-version is twice that of the h-version. This result provides

a rigorous proof for the extensive computational evidence that has been gathered,
and explains in part the efficiency of the p-version.

2.2. Hierarchic Families of Solid Finite Elements

In order to implement the p-version efficiently, families of finite elements
are needed with the hierarchic property: computations performed for an approxi-

mation of order p should be re-usable when raising the order to p + 1. More
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specificially, the stiffness matrix corresponding to the polynomial approxi-
mation of degree p should be a submatrix of the polynomial approximation of
degree p + 1. In terms of basis fuuctions, this implies that the basis func-
tions for a pth order approximation should be a subset of the basis functions
for a (p + 1)st order approximation.

Hierarchic families for triangles both in the C0 case and in the Cl case
are described in detail in [7, 8, 9, lb, 11]. We now describe hierarchic
families of polynomials for various three dimensional shapes. All of these
families are gloBally in Co.
tetrahedron. A hierarchic fémily for the tetrahedron can be constructed from
the hierarchic family for the triangle by using natural coordinates, The

linear element is:

nodal 3
variable shape function

u(l) L1
vertex u(2) Lz
nodes
u(3) L3
u(4d) L4 1

The quadratic element has the same nodal variables and shape functions as the

linear element and the additional nodes:




T T

nodal shape functions
var:;ables
1
Ugg (12) 2L L
1
Ugg (23) “3ly L,
-1
edge Ugg (31 R
nodes 1
: uge (14) R A
1
ugg (34) “2l L,
‘ 1
Yss (24) ) I'2 L4

The hierarchic family fo:r a tetrghedron up to the element of degree 4
is shown in Figure 5. Boundary nodal variables correspond to vertices, edges,
and faces. Additional intermal nodal variables are introducted to provide a
basis for a complete polynomial of degree p. Complete details are given in [12].
brick A hierarchic family for the brick can be constructed from the
hierarchic family for the rectangle. For convenience, we consider only the
square and from it we comstruct a hierarchic family for the cube., The hierar-

chic family for the square 1is given as follows.

(-:.nO R
Q
{«1,-1) 0 2 1.-1)
( l HIERARCHIC QUADRATIC
j—!(aj-l) j > 2, even SR eLewent
Q(8) = {
3 Qj 1(8) j >3, odd

Fous |




-----

a2 , ,f,‘m, ————
;1' RERREA ]

R Ty
-

B4En Jon Ate

satisfies

QJ(;l-_l)-o in) (0) =0 i=2, ..., -1

ng) (0) = 1.

Now, consider the square of side 2 as shown in the figure. Basis functions

Nu(i) corresponding to the nodal variables u(i) i =1, 2, 3, 4 are

Ny "FA-0@ -1 N =Fa+od+n
()
Ny " A+ DA - Nyy =% (L= DA+

and it is easily seen that these basis functions span the same space as
1,§,n,8n i.e. they contain the complete linear polynomial. Also these nodal
variables enforce C0 continuity across sides. Now denoting by (ij) the mid-
point of side ij, basis functions corresponding to the nodal variables uEE(lz),

unn(23), uEE(34)’ unn(41) are

N (12) = (&) (1 - n) N (36) = Q(=E)(1 + n)
Ueg 2 Ueg 2
(6)
N (23) = (1 + D, N (D) = (1 - £)Qy(-n)
nn nn

and these basis functions added to the ones in (5) span the same space as
l,e,n,sz,sn,nz,zzn,snz, i.e. they contain a complete quadratic and they enforce
C0 continuity along sides. The basis functions (5) are taken for the hierar-
chic rectangular Co linear element, and those in (5) and (6) for the quadratic
element.

For j > 3, we have

N
u

40 = @a-m N,

3 Ej(34) - Qj(-E)(l + n)

N, 423 = A+ 0§ 6D = Q- 00

n nj
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as the basis function for jth order tangential derivatives at midsides, and

for 3 > 4 we add the internal modes

3-4-1 4

a-ea-nd 120, vuuy § = 4.

These basis functions span the same space as a complete polynomial of degree
and the two monomials of degree j+1, Ej n, Enj.

Thus, the hierarchic Co square element of degree p > 2 has (1/2) (p+l) (p+2)+2
basis functions, two more than the dimension of the complete polynomial of
degree p. The two extra ierms correspond to Epn, gnP. By scaling the sides
of the square the elements are easily transformed into rectangular onmes.

The hierarchic family for the brick can now be fonstructed. Linear element:

® (1.1.1.)®

® ©

(irhd%:> '

nodal variable shape function ®
u(l) $ (- 1-n) (1-8)
u(2) F 1+ (- (1-0)
u(3) £ (1+6) (1#+n) (1-8)
vertex u () % (1-8) (1#n) (1-0)
u(s) F (1-8) (1-n) (1)
u(6) L @0y -m) 40
u(?) £ (Q+E) (1+n) (140)
u(8) 3 (1-8) Un) (1+0)

s |
® A li"




- The quadratic element adds the shape functions as follows:

5~ A/RAEAEER 9 S

nodal variables shape functions
& u,, (12) 2 0, (8) (1-n) (1-3)
> a,, (23) 3 (1+0Q,(m (1-0)
; a,, (36) 2 4,0 (+m) (1-7)
N
h a, (1) T 1-D9,(M )
| u_g (55) 3 -8 (2-m, (®)
, u _ (26) 3 1+ (1-mQ, (2)
; edge i
. nodes 1
u,, G 3 (1+8) (1-m)Q, ()
ug, (48) Z (1-8) (1+n) (140)
u,, (56) % 0, () (1-n) (14%)
u,, (67) 3 +E)Q, () (242
) 2 Qu(8) (14n) (140)
u,, (81) 3 1-0)q, (n) (142)

Higher degree elements add edge modes, face modes and internal modes. More
details are given in [12, 13].

triangular prism A hierarchic family for the triangular prism can be

constructed by combining the hierarchic families for the triangle (in natural

. coordinates) and for the square (in rectangular coordinates)

LN Sum e o mun mme.e

AAAAAAA e et e et A e aa S G




4 3 \ t 2
l 2
' nodal variable shape function
u (1) L, (1-2)
u (2) L, (1-323)
vertex u (3) L a-2
modes e (&) L1 1+ 2
u (5) L (1+32)
u (6) L, (1+32)

The quadratic element adds the following shape functions:

nodal variable shape functien
uss (12) Nz (L1’ Lz) (1—2)
us. (23) NZ(LZ, L3) (1—2)
edge (31) N,(L,, L,)(1-2)
nodes Uss 2 L3 L1
Uoe (45). NZ(Llf Lz)z
u.g (56) NZ(LZ’ L3)z
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& ,
>—c nodal variable shape function
r
LI (64) N, (L3, Ll)z
p edge Yss (14) I'1 Qz(z)
_ nodes
) Usg (25) L, QZ(Z)
» Uog (36) L3 Qz(z)
{
1
Eﬂ NZFLi’ I‘j) =~-3 L:L Lj = gecond edge mode for triapgle
__ Qz(z) - % z(z - 1) = gsecond edge mode for rectangle,
T‘ Higher degree elements add edge modes, face modes and internal modes. Further

details are given in [12, 13].

. square pyramid. It can be shown [13] that no hierarchic family exists
L( which consists of polynomials alone. However it is possible to supplement

- certain rational functions in such a way that the element of degree p contains

a complete polynomial of degree p and additional rational

h functions. Furthermore, because of the special form of Quan 3 .
| these rational functions, integration of all shape func- z\
:I tions which appear in the elemental stiffness matrix can ) @
;. be performed in closed form. No numerical quadrature
is required. The linear element is:
b ‘ nodal variable shape function
u (D) ja-E2ra-85a-0
; u (2) ja+¥Ha-EHa-0
f vertex e ® sa+Esra+8Ha-0
u (4 sa-Eya+85a-0
u (5) 2a+0




........................................

Z'I.: 2if.:

«lbe
; Each of the vertex modes is a linear combination of 1, §, n, 5, fg% .
& . Higher degree elements again add edge modes, face modes and internal modes.
[' Further details are given in [}13].

Combinations

ﬂ! Hierarchic families of the different shapes shown here have been con-

¢ structed so that they join together continucusly. Thus geometries such as the
t ones shown below can be modeled using as few elements as possible. Iq this

f‘ way the subdivision of the polyhedral domain Q2 can be made very coarse and

n accuracy can be obtained by increasing p, without using added degrees of

freedom to describe the geometry. As has been shown (at least for two dimen- .

q sional problems) the rate of convergence in the p-version is twice that
obtained for the h-version. Therefore subdividing

e ed
L]

W

' R —
L}

- -

in this way leads to computational efficiency, since it makes maximum use of

the p-version. It also requires significantly simpler input.

¢ 2.3 P-Version Analysis of a Rhombic Plate

The problem of the stress analysis of a rhombic plate is a difficult one
which has attracted much atténtion [14, 15, 16, 17]. We consider the rhombic
plate shown in Figure 6, which is simply supported, uniformly loaded and whose
acute angles are 30 degrees. A very strong singularity occurs at the obtuse

vertex when plate bending theory is applied to this problem, and this singularity

¢ leads to u = 0.4 in Theorem 2, Equation (4). As a result many finite element
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models of the rhombic plate either fail to converge or converge very slowly.
The hierarchic C1 family used in the p-version contains corrective rational
functions. These rational functions absorb the singularity very well and lead
to the best results thus far obtained for this problem. Shown below are the
values for the deflection at the central point, we, using the C1 p-version
analysis, with p = 5 and with different numbers of elements. These results

are compared with results obtained by other methods

C1 p~version

no. of elements 1l 2 3 4 5 6 7

no of degrees 8

of freedom 16 25 33 42 51 60

w 2.8938 | 3.1520 | 3.4651 | 3.8217 |4.0049 | 4.0217 | 40824

% error 29.2 22.8 14.9 6.4 1.8 1.4 0.x

other codes

no. of degrees of freedom % error
Sander [14] > 1000 24
Argyris [15] ~ 1300 2
Basu, Szabo et al [16] ~ 130 2
Basu, Szabo et al [16] < 180 1
Morley [17] exact value (analytic expression) = 4.08
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2. 4. _Computer Implementation - COMET-X

COMET-X is an experimental computer code which implements the p-version

of the finite element method by using the hierarchic families which have been

constructed. COMET-X is maintained by the Center for Computational Mechanics

at Washington University and it is the only computer code in existence which

implements the p-version. COMET-X can be used as a code to implement the h-

version as well simply by fixing the polynomial order p and refining the mesh.

Al

c.

COMET-X currently has the following capabilities:
Element types: Stiffeners, triangular elements, triangular elements
with one side curved, rectangular elements, solid elements of the shapes
described earlier.
Types of Analysis: Laplace and Poisson equations, plane elasticity,
elastic plate bending, stiffened elastic plates, 3-dimensional elasticity,
temperature distribution in 3-dimensions.
Special Capabilities: non-uniform p-distribution, elastic fracture
mechanics computations in two dimensions, nearly incompressible solids,
linear boundary layer problems.
Pre- and Post processing capabilities including graphics and visual displays.

The capabilities and usage of COMET-X are described in detail in [16].
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2.5. A Sample Problem

-

x As an example of a problem analyzed by the p-version using hierarchic

A solid finite elements, [18], consider the finite element model of a gear
casing, showm below. The model on the right was used in COMET-X, the one on
ﬁ!! . the left was used by NASTRAN. Stress contours shown in Figure 7 were obtained

- from COMET-X.
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Finite Element Meshes for a Gear Casing
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(h=04", E= 30,000 ksi, v=0.3, A= 5/6) |
UNIFORM LATERAL LOAD= 0.l ksi

60°-Skew Simply Supported Plate Under
uniformly Distributed Load

Figure 6. The Rhombic Plate Problem
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Partial Differential Equations - III (1979) pp. 278-286.
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"The p-version of the Finite Element Method for Problems Requiring Cl
Continuity", by Douglas W, Wang (Doctoral Dissertation), Department of
Systems Science and Mathematics, Washington University (August 1982),
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Katz, International Symposim on Innovative Numerical Analysis in
Applied Engineering Science, Versailles, France, May 23-27, 1977,
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Precomputed Arrays", by M. P. Rossow and I. N. Katz, Second Annual ASCE
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"Cl Triangular Elements of Arbitrary Polynomial Order Containing
Corrective Rational Functions', by I. Norman Katz, SIAM 1977 National
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"Hierarchical Complete Conforming Tetrahedral Elements of Arbitrary
Polynomial Order", by I. Norman Katz, presented at SIAM 1977 Fall
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1978 National Meeting, Madison, WI, May 24-26, 1978.
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sis of a Model Bar Problem", by I. Norman Katz, presented at the SIAM
1978 Fall Meeting, Knoxville, Tennessee, October 20- November 1, 1978.

"Smooth Approximation to a Function in Hg(D) by Modified Bermstein
Polynomials over Trangles'" by A. G, Kassos, Jr. and I. N. Katz, pre-
sented at the SIAM 1979 Fall Meeting, Denver, Colorado, November 12-14,
1979.

"Triangles with one Curved Side for the p-version of the Finite Element
Method" by I. Norman Katz, presented at the SIAM 1980 Spring Meeting,
Alexandra, VA, J-ne 5-7, 1980.

"Hierarchic Square Pyramidal Elements for the p-version of the Finite
Element Method" by I. Norman Katz, presented at the SIAM 1980 Fall
Meeting, Houston, TX, November 6-8, 1980.

"The Rate of Convergence of the p-version of the Finite Element Method
for Plate Bending Problems', by Douglas W. Wang and I. Norman Katz,
presented at SIAM 1981 Fall Meeting, October 6-8, 1981, Cincinatti, Ohio.

"The p-version of the Finite Element Method", by I. Norman Katz,
presented at the 1982 Meeting of the Illinois Section of the Mathematical
Association of America, Southern Illinois University at Edwardsville,
April 30-May 1, 1982.

"Computer Implementation of a Cl Triangular Element based on the p-version
of the Finite Element Method", by Douglas W. Wang and I. Norman Katz,

presented at the SIAM 30th Anniversary Meeting, July 19-23, 1982  Stanford,
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13. '"Implementation of a Cl Triangular Element Based on the p-version of the
Finite Element Method'", presented at the Symposium on Advanced and
Trends in Structural and Solid Mechanics, October 4-7, 1982, Washington,
D.C.

5.3. Seminars Presented at Goverment Laboratories

1. '"Advanced Stress Analysis Technology" BY B. A. Szabo and I. N. Katz,
presented on September 8, 1977 at the Air Force Flight Dynamic Labora-
tory, Wright-Patterson Air Force Base.

abstract

With one exception, all finite element software systems have element
libraries in which the approximation properties of elements are frozen.
The user controls only the number and distribution of finite elements.
The exception is an experimental software system, developed at Washington
University. This system, called COMET-X, employs conforming elements
based on complete polynomials of arbitrary order. The elements are hierar-
chic, 1.e. the stiffness matrix of each element is embedded in the stiff-
ness matrices of all higher order elements of the same kind. The user con-
trols not only the number and distribution of finite elements but their
approximation properties as well. Thus convergence can be achieved on
fixed mesh. This provides for very efficient and highly accurate approxi-
mation and a new method for computing stress intensity factors in linear
elastic fracture mechanics, The theoretical developments are outlined,
numerical examples are given and the concept of an advanced self-adaptive
finite element software system is presented.

2. "The Constraint Method for Finite Element Stress Analysis", by I. N.
Katz, presented at the National Bureau of Standards, Applied Mathe-
matics Divison om October 19, 1977.

abstract

In conventional approaches to finite element stress analysis accuracy
is obtained by fixing the degree p of the approximating polynomial and by
allowing the maximum diameter h of elements in the triangulation to approach
zero. An alternate approach is to fix the triangulation and to increase the
degrees of approximating polynomials in those elements where more accuracy
is required. In order to implement the second approach efficiently it is
necessary to have a family of finite elements of arbitrary polynomial degree
p with the property that as much information as possible can be retained from
the pth degree approximation when computing the (p+l)st-degree approximation.
Such a HIERARCHIC family has been formulated with p > 2 for problems in plane
stress analysis and with p > 5 for problems in plate bending. The family is
described and numerical examplaes are presented which illustrate the efficiency
of the new method.
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3. "The p-version of the Finite Element Method”, by I. N. Katz and B. A.
Szabo, presented at Air-Force Flight Dynamics Laboratory Wright-

p

:! Patterson Air Force Base on April 23, 198l.
3 abstract

L

9

- The theoretical basis of the p-version of the finite element method has
b been established only quite recently. Nevertheless, the p~version is already
seen to be the most promising approach for implementing adaptivity in practi-
cal computations. The main theorems establishing asymptotic rates of conver-
gence for the p-version, some aspects of the algorithmic structure of p-version
computer codeg, numerical experience and a posteriori error estimation will be
discussed from the mathematical and emgineering points of view.
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