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PREFACE

The research reported herein was funded by the Air Force Office of

Scientific Research (AFOSR), to address problems relating to explosion-

* induced spall in geologic materials of common concern to both AFOSR and

the Air Force Weapons Laboratory (AFWL).

The authors are indebted to Capt. Brian Stump and Drs. Robert Reinke

and Eric Rinehart of AFWL, and to Mr. Bill Best of AFOSR for numerous

discussions during the course of the research, which helped to better

define the mechanisms of spall in soil, and to identify the principal

0 physical quantities which control these mechanisms.
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SECTION I

Purpose and Scope

The purpose of the spall research described herein is defined in the

Statement of Work for Air Force Office of Scientific Research Contract

Number F49620-81-C-0066, viz:

1. Perform Analytical Studies and Finite Difference Calculations.

Formulate and perform one- and two-dimensional analytical studies and

calculations to obtain insight into spall mechanisms and important

material parameters. Include variations in wave type (e.g. reflected P
0

and S waves, horizontally traveling P and S waves, etc.), tensile failure

critera (e.g., maximum principal tension, hydrostatic tension, extensional

strain) and tensile strength. Include variations in material strength if
0

this parameter appears to be important in spall phenomena.

2. Develop a Spall Prediction Technique. Using the results of

Task 1, plus previous field data analysis, develop a method for predicting

spall characteristics in both single and multiburst near-surface

experiments. The prediction technique shall include the prediction of

spall radius, depth, initial conditions, and post-spall behavior, all as a

function of yield, height of burst, geology and material properties. The

extension of the method for prediction of spall for high yield nuclear

bursts shall be included.

As the research progressed, two things became clear:

1. Soil spall data from both chemical and nuclear explosive tests is

limited in quantity and quality; and

APPLIED PEJEAPCH AffOCIATE, InC.
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2. A fundamental understanding of soil spall requires an effective

stress approach, which explicitly treats both the soil skeleton stress-

strain response and the transient effect of flowing pore fluid.

Consequently, relatively more attention was given to soil tensile

stress-strain behavior, and also particularly to the pore air effect than0

originally planned, and somewhat less effort was spent on numerical

calculations (because satisfactory material models were not available).

The empirical analysis of single burst, near-surface explosion-induced

soil and rock spall was exhaustive, and led to the single-burst prediction

technique presented herein. However, the volume of test data for multiple

burst spall is so small, and the material behavior influence so strong,S

that a multiple burst spall prediction technique requires a combined

empirical and theoretical approach, and must await further research.

Section III of this report describes the theoretical basis and results

of one-dimensional finite difference calculations of vertical wave

propagation in a tensilely weak, hysteretic material with a free surface,

* using the computer program STEALTH ID. Multiple spall features are

predicted by these total stress calculations, which demonstrate the

ability of STEALTH 1D to both include gravity in propagation problems, and

0 to predict spall in tensilely weak material with given stress-strain

behavior.

Section IV reviews previous tests and analyses of the pore air effect,

* and presents several new analyses which show that pore air expansion and

pore air flow are not separate spall mechanisms, but rather two related

aspects of the same mechanism. Nonlinear differential equations are

* derived in a series of appendices, for both isothermal and adiabatic

2 APPLIED QEIEAPCH AIIOCIATEI'fC.



transient pore air flow through a rigid, porous, isotropic solid. Finite

difference approximations to the above differential equations are also

developed, some in a pseudo-linear form simple enough for even hand

computation. Two simple, discrete-element models of the pore air effect

are constructed and analyzed, one without and the other with mass.

Because these models are linear, their response can be represented in

closed form, which permits parametric studies. Both models exhibit rapid,

undrained response (compression) to a suddenly applied constant surface

fluid pressure, followed by gradual recovery (expansion) of the soil

skeleton as additional pressurized fluid flows into the pore spaces. The

model with mass is a fourth order model, in the sense that its closed form

analysis requires the solution of a fourth order, linear, ordinary

differential equation with constant coefficients. This involves the

solution of a fourth order algebraic equation, with one root several0
orders of magnitude larger than the rest. Although the closed form

solution of this equation was tedious, it was pursued because it provides

considerable insight into the two principal modes of physical behavior of

real soil, viz. undrained (composite) behavior and drained (separate)

behavior of the two phases, and their relative rates of volumetric

deformation. Finally, a general set of coupled, nonlinear, second order

partial differential equations is derived which simultaneously describe

both the propagation and diffusion phenomena which comprise the pore air

effect. These equations are general enough to accommodate any soil

effective stress-strain-strength relationship. Although written for one-

dimensional motion, they can readily be generalized for two- or three-

dimensional motion.

3 APPLIED PEEAPCH AIIOCIATEI, InC.



Sections V, VI and VII comprise an integrated, sequential treatment of

explosion-induced negative (gage) airblast rssure for both chemical and

nuclear near-surface bursts; an empirical analysis of all available soil

and rock spall data from single, near-surface explosions, both chemical

and nuclear; and an empirically-based predictive method for soil and rock

spall from single, near-surface explosions, both chemical and nuclear.

4 APPLIED PREAPCH AffOCIATf,INC.



* SECTION II

Introduction

The study of near-surface explosion induced soil spall is basically a

study of dynamic soil stress-strain behavior, and requires explicit

recognition of the particulate, multiphase nature of soil. This does not

mean that total stress approaches are not useful, but rather that their

basis and interpretation are rooted in the concept of effective stress.

Thus the finite difference calculations in Section III, and the empirical

analyses in Sections VI and VII use a total stress approach, but the
0

analyses of the pore air effect in Section IV use an effective stress

approach, and help explain the results presented in the other sections.

Much work remains to be done to develop a reasonably thorough

understanding of soil spall and its effect on near-surface explosion

induced ground motions. Much of that work is of a calculational nature,

involving parametric studies using the equations developed herein, and

comparing the calculated results with the results of predictions made

using empirical techniques also developed herein. From this point on the

further development of spall calculation and empirical predictiontO

techniques can best proceed in tandem.

5 APPLIED PI.EAPCH AffOCIATEI,InC.



SECTION III

Numerical Studies of Spall Under Explosive Loading

A. Purpose of the Calculations

• Mathematical simulation and prediction of explosive events in soil

require adequate treatment of tensile (spall) phenomena. Spallation,

whether caused by layering effects, wave interaction with the ground

surface, or some other phenomena, will significantly affect measured

ground motions (especially at later times) and therefore should be modeled

in a calculation. In order to illustrate the generation of spall and

examine the effect of varying physical parameters such as tensile

strength, a series of one-dimensional finite difference calculations was

performed for this study.

Figure 3.1 shows two situations which may lead to spall. In

Figure 3.1a, shock waves produced by an explosion at or above the earth's

surface are propagated much faster in an underlying layer of rock than in

the surface layer of soil. As a result, a compressive headwave moves

upward into the undisturbed soil. The angle from the vertical (e) at

which this wave propagates may be estimated as:

e = arcsin (Cs/Cr) (3.1)

where Cs and Cr are the confined wavespeeds in soil and rock, respectively.

In a situation where the lower layer has a much higher wavespeed than the

upper one (i.e., a high impedance mismatch), the headwave will travel

nearly vertically. Because of this, a one-dimensional, uniaxial

idealization is appropriate, as shown in Figure 3.1c. Such a 1-D

6 APPLIED PEFEAPCH AJIOCIATEf,InC.



calculational model of spall may also be adequate for the case of a buried

burst, as shown in Figure 3.1b. Here the primary waves move vertically

through undisturbed soil and reflect off the ground surface as tensile

waves which cause spall.

The one-dimensional model used for these calculations (Figure 3.1c)

may be considered to be an adequate simplification for studying many real

cases of spall. It is true, however, that certain occurences of spall can

be accurately simulated only in two or three dimensions. Such cases

require more sophisticated treatment of tensile behaviur and geometric

factors.

B. Computer Code Description
S

There are many one-, two-, and three-dimensional finite difference

wave propagation codes currently available. The particular code chosen to

perform this set of calculations was STEALTH [Hofmann (1978)]. STEALTH

1-D, 2-D, and 3-D are a set of "user-oriented" codes, and have been

applied to many different kinds of dynamic problems.

STEALTH is attractive for studing spall because of its ability to

accept different constitutive relationships and to allow the user to

impose a wide variety of boundary conditions. The generality of STEALTH,

although it requires a very large code, is also one of its strong points.

For example, a purely mechanical spall model worked in one-dimension could

be broadened to include pore fluid effects and still be implemented in

STEALTH I-D or 2-D, sparing any further development necessitated by code

differences.

C. Description of Calculational Set-Up

The calculations for this study were performed under uniaxial strain

7 APPLIED PEIERPCH AIIOCIRTEIflC.



conditions. A 27 meter grid, consisting of 160 zones was used, as shown

in Figure 3.2. The idealized site has a layered geology with 12 m of

"soil" over 15 m of "rock". Actually, the soil is simply a bilinear,

hysteretic material with an unloading wave speed (1122 m/s) equal to twice

the loading wave speed (561 m/s). The rock is modeled elastically with

equal loading and unloading speeds (2960 m/s). A Pmin (minumum bulk

stress) criterion was used to establish the soil spall-threshold. Because

of the one-dimensional nature of the calculations, this is equivalent to a

vertical principal stress cutoff criterion. The tensile cutoff (Pmin)

was varied for the soil, but the rock was not allowed to fail in tension.

Neither material was allowed to fail in shear.
S

Gravity is an important part of any spall situation because it creates

the 1g dwell signatures which are a primary identifier of spall in data

records. In-situ gravity stresses were established in the STEALTH grid by

applying a body force equivalent to 1g over the entire grid with a rigid

boundary at the bottom. The resultant oscillations were then numerically

damped (in STEALTH, this is known as "dynamic relaxation"). Within 100 ms

a static condition was achieved. Figure 3.3 shows grid velocities at

various depths during this relaxation phase. All information concerning

the grid was saved at 200 ms and subsequent calculations were restarted

from this time. Figure 3.4 shows the in-situ geostatic stresses in the

grid after gravity has been established. Note the discontinuity in bulk

stress at the soil-rock interface. This is a result of unequal K* 0

values for the two materials. This may or may not be indicative of actual

in-situ conditions at a soil-rock interface, because of uncertain geologic

history.

8 APPLIED PE/EAPCH AIIOCIATEU,INC.



C 7

The boundary condition at the top of the grid for all problems was a

free surface, i.e., zero stress (atmospheric pressure was neglected). In

order to simulate the effect of an infinite rock layer below the soil, a

transmitting (or nonreflecting) boundary was used at the bottom of the

grid after gravity had been established. A transmitting boundary allowing

incident waves, which has been used by [Moriwaki et. al. (1981)] for shear

waves, was adapted for compressional waves and the effect of gravity.

Basically, the velocity of the boundary point is calculated based on a

a = pcv relationship. Referring to Figure 3.5, Newton's Law for the

boundary element may be expressed as:

mx = FB (3.2)

where

m = boundary mass pAx (3.3)

EFB, the sum of the live forces acting on the boundary element, includes

(a - 0), the live stress in the zone above the boundary, and aB, the

boundary stress, where

OB - pc(k - 2X) (3.4)

The quantity c is the compressional wave speed of the imaginary

infinite media below the boundary, and X is the applied incident velocity

at the boundary. With the timing of the calculation as shown in

Figure 3.5., and using superscripts n and 1 to denote new and old times,

respectively, the current acceleration and velocities are:

- jt (3.5a)

R kn + k1 9 A x +x (3.5b)

e 9 APPLIED EICH AIIOCIRTErIfnC.



+ 
(3.5c)

Substituting in Equation (3.2) for m, k, and EFB yields

1 _k) ( a rn+ _ + il
( ) n at ) = (a - OG) - pC I 2 ) (3.6a)

and solving for the desired boundary velocity, in yields

(Rn I 2At(a - aG) cAt(kn + i  2cAt( n + I)3

=x(1 - c~t) + 2at(a - G) -2cat (Xn + xl)

inX AX (3.7)
(1 + cAt)

AX

Using the boundary condition defined by Equation 3.7, it is possible

to propagate a pulse up into undisturbed material while simultaneously

* allowing reflected waves to pass down through the bottom of the grid and

out of the problem. Figure 3.6 shows characteristic planes for two cases,

one with a pressure boundary at the bottom and another with the

* transmitting boundary. It is apparent that the latter case, Figure 3.6b,

with no increase in grid size, more closely models actual conditions, such

as those shown in Figure 3.1. Therefore the transmitting boundary allows

analysis of spall motions, unobstructed by peripheral reflections.

The velocity pulse used to generate spall in the top soil layer is

shown in Figure 3.2. It consists of a linear rise with subsequent

sinusoidal decay to zero. The peak velocity, Vpk. was varied, while

maintaining the pulse duration at 20 ms.

D. Discussion of Results

After establisning suitable boundary conditions, several calculations

i0 APPLIED PEIEAPCH AfIOCIATEf,INC.



were performed to meet the following objectives:

i) Examine the case of no spall, where the soil material is not

allowed to separate in tension;

ii) Examine a baseline spall problem, for which the general

characteristics of spall can be examined and against which the

results of parameter variations can be compared;

iii) Assess the effect of load pulse magnitude on spall;

iv) Assess the effect of soil tensile strength on spall;

v) Determine the importance of numerical noise in the calculations

which may produce spall motions; and

vi) Examine a case in which spall blocks are forced back together

("forced rejoin"), in order to ascertain the basic

characteristics of the resulting waveforms.

Table 3.1 is a matrix of calculations with values for the parameters

which were varied, viz: tensile cutoff and peak incident velocity at the

bottom of the grid. In addition, for all the calculations except No. 6,

* the tensile stress in a zone was required to exceed PMIN for three

cycles before spall was allowed to occur. All problems were started with

an established gravity stress field at time = 0 and were run for 250 ms.

SO The results from Calculation No. 1 illustrate what the waveforms in a

material with a large tensile strength would look like for the loading of

interest. The material remains intact and the oscillations can be easily

* predicted. Figure 3.7 shows the calculated stress and velocity time

histories at a depth of 0.5 m. (Note the sign conventions, which will be

used throughout this section.) Below each waveform the characteristic

* plane for the problem is shown. As reflected energy passes through the

11 APPLIED PE/EAPCH AIIOCIAT./,IfNC.



rock and out of the grid, the motions eventually damp out to zero.

When the tensile strength of the soil is reduced to a reasonable

level, motions are dramatically altered. Figure 3.8 shows a comparison

between the cases of spall (PMIN = 0.10 MPa) and no spall (PMIN =

100 MPa).

There are several spall-significant events in the calculation which

contribute to the waveform differences seen in Figure 3.8. The following

is a summary of these events in chronological order, along with a list of

the more pertinent parameters controlling them:

i) The upward propagating compressive pulse hits the boundary

between soil and rock (time = 5 ms). Part of the wave reflects
f0

back into the rock as a tensile wave, and part transmits through

as a compressive wave. At this point, the soil separates from

the rock (see Figure 3.9).

parameters: PMIN (soil and rock)

cu (soil and rock)

ii) The initial compressive wave travels upward, compressing the

hysteretic soil material (see Figure 3.10). Note that because a

net upward displacement is imposed on the bottom of the rock

layer by the incident velocity pulse, the final position of a

soil node is not dependent only on soil compression. When the

free surface is encountered (at approximately 26 ms), the wave

reflecL: as a tensile wave. At the depth at which

Preflected < PMIN

spall first occurs.

parameters: t = time of first spall

dsl = depth of first spall

12 APPLIED PE.EAPCH A/IOCIATEjINC.
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iii) The tensile wave continues to propagate downward at the soil

unloading wavespeed, and may or may not create more spall planes

depending on the material model being used. Eventually it

reaches the free surface which has been created between the rock

and soil. At this time (approximately 37 ms) the entire soil

• block realizes it is undergoing projectile motion. The tensile

pulse must reflect as a compression wave.

parameters: n = number of initial spall planes formed

ts,2...n = times of subsequent initial spall

plane formation

d ...n = depths of above

iv) There is a period of motion with constant acceleration

(projectile motion, ig dwell, freefall, etc.) for the soil.

Energy trapped within the discrete spall blocks moves between the

free surfaces of the blocks. This causes small oscillations

during the 1g dwell, whose frequency depends directly on spall

block size (see Figure 3.8). The magnitude of these trapped
0

waves may be high enough in some blocks to cause further spall.

parameters: td = duration of 1g dwell

(varies with depth)9O

v) Rejoin of spalled material begins at the rock surface. The time

at which rejoin occurs for each node is roughly determinable from

the initial velocity (k ) and displacement (xo) at the time0

spall occurs. The equation of motion for constant acceleration

(x = g) is:

, ~~x = x o + iot + 1 Xt 2 (.8

0 e 0 APLID E (3.8)
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where t = time from spall. Solving for the duration of spall,

* yields

+ 2x(x -
t d _ 0 0 d) (3.9)

In Equation (3.9), xd is the particle position at the time of

rejoin, and depends on the compressibility of the soil and the

incident velocity pulse. For estimating dwell time, xd may be

* set to zero, i.e., the pre-spall position. Figure 3.11

illustrates the calculation of dwell time at the 5 m depth.

parameters: tr = ts + td = time of rejoin

vi) Rejoin progresses from the bottom of the soil upwards. When two

spall blocks impact, a compressive signal travels both upwards

and downwards. An upward pulse encounters a free surface

* (because the block above has not rejoined yet) and reflects.

This reflection may cause further spall in the soil. The

downward pulse reflects and transmits at the rock boundary. A

* negative pulse (due to the impedance mismatch) follows this

reflection up and may also cause further spall. As a result,

spallation of zones accompanies rejoin and the number of spall

SQ planes increases due to impact, creating somewhat of a

"shattering" effect. Rejoin propagates slower as it approaches

the surface because the upper soil zones have been lofted

"0 somewhat higher.

parameters: vr - rejoin (or impact) velocities

vii) Subsequent spall motion occurs and may be referred to as

eQ secondary or multiple spall. During this phase, spall planes
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are simultaneously opening and closing. Figure 3.12 shows the

formation of several spall planes due to the first reflection,

and subsequent spall plane formation during the rejoin and

secondary spall phases. As rejoin energy is transmitted through

the soil/rock boundary and through the nonreflecting boundary,

motions damp-out and the grid elements come to rest.

parameters: tms times of multiple spall

tmr = times of multiple spall rejoin

,
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SECTION IV

The Pore Air Effect

A. Introduction

Spall in dynamically loaded granular soil occurs when soil masses

lose contact with each other and undergo ballistic motion (free fall).

An important cause of spall near the ground surface, in the presence of

explosion--induced airblast pressure is the pore air effect. Although

sometimes Jiscussed as a parallel phenomenon with spall, the pore air

effect is best considered as a spall mechanism [Merkle (1980:24)].

(
The pore air effect is a consequence of soil being both particulate

and multiphase 'Lambe and Whitman (1969:18-19)]. Under the action of a

pore pressure gradient, soil pore fluid flows in the direction opposite

to that of the pore pressure gradient. An increase in the mass of pore

fluid stored in a saturated soil element occurs if the soil void volume

increases, and/or the pore fluid mass density increases. In general,

both can happen. If inertia is neglected, and the equations for pore

fluid flow and storage are combined, the result is a diffusion equation

which can be written with pore pressure as the unknown.
ft

If the pore fluid flow equation is assumed to be linear, the pore

fluid incompressible, and the soil skeleton linearly elastic, the result

is Terzaghi's consolidation equation [Terzaghi (1943:265); Taylor

(1948:e25)].

If the pore fluid flow equation is again assumed to be linear, the

pore fluid (air) to undergo isothermal compression, and the soil skeleton
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to be rigid, the result is a nonlinear diffusion equation [Zernow et al

(1973:13); Muskat (1937); Carman (1956)].

If the soil particles are assumed to be in a spalled condition, i.e.,

not in contact, and the pore air to undergo adiabatic compression, the

resulting sonic velocity (which applies to a propagation, rather than a

diffusion problem) is that for a heavy gas [Ullrich (1978:19); Merkle

(1980:35)]. In this model the mass of the heavy gas is supplied entirely

by soil narticles, and the compressibility entirely by pore air. There

is no viscous, diffusive flow in this model, but there is compressible

flow in the sense of compressive wave particle motion.

The above pore air models and other more general models are discussed

in detail below. Emphasis is on developing equations for pore air

pressure prior to spall, to gain insight into how pore air pressure can

cause spall.

Two pore air phenomena have been proposed as possible causes of spall:

pore air expansion, and

pore air flow.

Saying that pore air expansion causes spall can be misleading, because

adiabatic pore air expansion is accompanied by a pore pressure decrease,

which, by itself, would cause an increase in effective hydrostatic stressI,

carried by the soil skeleton, resulting in compression rather than

expansion of the soil skeleton. What actually happens when airblast

pressure acts on a soil surface is that air flows into the soil,

compressing the pore air near the loaded surface. The compressed pore

air has a tendency to expand rapidly, especially when the surface

airblast pressure decreases, and this rapid expansion produces a flow of
1S
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pore air toward the soil surface. The pore air flow in turn causes a

seepage or drag force to act on soil particles in the flow regime, which

tends to reduce the effective stresses produced by gravity and eventually

may cause spall. Thus it is pore air expansion and flow, together, which

can cause spall. A profitable way to view the pore air effect is to

consider the pore air seepage force (the negative of the pore pressure

gradient) as a body force acting on the soil skeleton, the deformation of

which is governed by effective stress. The effective stress carried by

the soil skeleton, and the pore air pressure are always such that the

soil void volume and the pore air volume are equal.

B. Previous Investigations
C,

1. Hampton (1964)

Hampton performed a shock tube study of dynamic pore air pressure in

three dry soils subjected to surface airblast pressure. The loaded soil

surface was confined by a screen (presumably to prevent lofting or

spall), because interest centered on the rate of attenuation of peak pore

air pressure in soil, as it affects the design of buried structures,

foundations for surface and buried structures, and model experiments on

soil-structure interaction. In particular, Hampton was concerned with

the depth to which pore air pressure induced in soil will penetrate, the

distribution of pore air pressure with depth, and the relative velocity

of pore air pressure propagation and effective stress waves. The study

was entirely experimental, but with a final recommendation that an

analytical theory of pore-air pressure propagation in soil subjected to

an air shock wave be developed. Hampton measured the physical

permeability, ko, of the three soils tested, with the following average
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results:

pea gravel: 2.42 X 10-6 CM2

20-30 Ottawa sand: 6.11 X 10-7 CM2

silty sand: 9.81 X 10-1
0 CM2

Physical permeability is used in the Darcy flow equation in the form

v dP (4.1)ds

where

v flow velocity, CM/SEC

ko  = physical permeability, CM
2

11 = viscosity, DYNE SEC/CM
2

P = pressure, DYNE/CM
2

s = distance, CM

The value of p for air is [Vennard (1954:7)]

"AIR = 3.77 X 10
- 7 LB SEC

FT
2

S= (3.77 X 10-7)(4.448222 X 105) 5 1.81 X 10-4 DYNE SEC
(30.48)2  CM2

Equation (4.1) is often written in the form

Sv = -BI - (4.2)

where the effective permeability coefficient, B1 , is given by the

expression

k*=0
B1  -(4.3)

For air flowing through standard 20-30 Ottawa sand, the above values yield
1C
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B1  6.11 X 10
- 7= 3.38 X 10C

-3  YM 4

1.81 X 10 - 4

0
2. Zernow et al (1973)

Zernow et al also performed a shock tube study of Number 30 silica

sand subjected to surface airblast overpressure. However, their

principal objectives were to determine the amount of near-surface soil

lofted (or spalled) by the airblast-induced "reverse percolation"

process, and to measure the resulting soil particle motions. Their study

was motivated by the possibility of dust cloud formation by a

near-surface nuclear detonation, caused by a combination of lofting and

airblast sweep-up. The possibility of such a phenomenon had been

suggested by Brode in 1971.

A theoretical description of the lofting process was also

accomplished, based on a linear form of the equation for isothermal

diffusion of air through a rigid, porous medium. The relevant equations,

which were not derived in the above report, are derived in Appendix A.

The basic linear diffusion equation employed to calculate pore air

pressure was

P D (A.6)

where the diffusion coefficient for isothermal flow is

. D- B1  (A.7)n

Although the shock tube soil samples were of finite length (35 IN for the

4 IN shock tube [Zernow, Figure 9], and 71 IN for the 8 IN shock tube
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[Zernow, Figure 22]), the boundary and initial conditions used to solve

Equation (A.6) were those for a halfspace [Carslaw and Jaeger (1959:64)]:

P(O,t) = P0
e-a t  (t>O) (4.4)

P(w,t) = 0 (t>O) (4.5)

* P(x,O) = 0 (x>O) (4.6)

The rationale for Equation (4.5) was that the standard soil samples were

supported by a vented end plate having a porosity of about 19 percent for

* the 4 IN shock tube and 16 percent for the 8 IN shock tube, whereas the

sample porosity was about 33 percent. This the authors argued would

simulate the flow resistance of the imaginary soil beneath the finite

to sample [Zernow, pp. 39 and 71]. Unfortunately, two facts contradict the

above argument:

a) No attempt was made to simulate the pore air storage

characteristics of the imaginary soil beneath the finite sample.

b) With a vented end plate it is difficult to conclude that the pore

air pressure at the sample bottom could have been anything but

close to zero (gage).

Therefore transient solutions to Equation (A.6) have been obtained in

Appendices B and C for the following boundary and initial conditions:

to

Appendix B (vented sample)

P(Ot) = P oe - t (t>O) (4.4)
00

P(lt) = 0 (t>O) (B.2)

P(x,O) = 0 (O<x<l) (B.3)
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Appendix C (unvented sample)

P(Ot) = P oe- t (t>O) (4.4)

7(lt) = 0 (t>O) (C.2)

P(xO) = 0 (O<x<l) (C.3)

* The reason for deriving the above solutions was to give the linear

diffusion theory as realistic a test as possible. If the linear theory

is judged inadequate for predicting dynamic pore air pressures, it should

* be because the phenomenon really is not linear, rather than because

inappropriate boundary conditions were used for the linear theory. The

linear theory should not be hastily abandoned, because as Zernow et al

point out, it serves as a source of useful physical insight in terms of

parametric variations.

Figures 4.1, 4.2 and 4.3 show dynamic pore air pressure isochrones

for a vented sample of finite length, subjected to a decaying exponential

airblast pressure on one face. Measured peak pore air pressures and

their time of occurrence are shown in Table 4.1, and the appropriate

0 linear diffusion parameters are calculated in Table 4.2. Calculated

values for comparison with the measured values shown in Table 4.1 are

shown in Figures 4.4, 4.5 and 4.6 and in Table 4.3. The agreement

between measured values of PMAX and tMA X shown in Table 4.1, and

corresponding calculated values shown in Table 4.3 is not good. Because

of this lack of agreement, and because Zernow's measured soil

permeability values have already been questioned by [Morrison (1979a:5)],

the above calculations were rerun for soil Groups 1, II and III using the

effective permeability for Ottawa sand calculated following Equation
,0
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(4.3) (3.4 X 10-3 CM4/DYNE SEC). Since this value is one-fifth that

shown in Table 4.1 for Groups I, II and III, the adjusted value for

Group IV in Table 4.4 was also taken as one-fifth that shown in Table 4.1

for Group IV. The comparison between calculated values of PMAX and

tMAX shown in Table 4.5 and corresponding values shown in Table 4.1 is

much improved. The degree of agreement could be further improved by

decreasing the assumed permeability even more to account for the greater

fraction of fine sand and silt size particles in Zernow's material than

in standard Ottawa sand. It thus appears that the early phase of the

pore air effect prior to spall can be described, at least approximately,

by a linear diffusion model.
C,

Note the upward pore air flow near the surface in Figures 4.8d, e

and f. This is the flow which can cause spall (lofting), and the depth

of spall can be estimated as the depth to the point at which the

isochrone slope is zero.

Figures 4.13 through 4.18 show the results of a linear diffusion

analysis of transient pore air flow in an unvented sample, using

Equation (C.29). The effect of the impervious boundary at x = 1 is

dramatic, and the tendency toward upward air flow much

greater than for a vented sample. The impervious boundary could be a

water table, a rock layer, or even a clay layer.

Because Zernow et al did not obtain satisfactory agreement between

measured pore air pressures and motions and those predicted using linear

diffusion theory, they developed a more accurate, nonlinear diffusion

theory. Their nonlinear theory considers the pore air flow to be

adiabatic rather than isothermal, and recognizes the spatial variation of
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pore air density. The equations are developed in Appendix D. Comparison

of measured and predicted peak pore air pressure and time to peak

pressure using the nonlinear theory was still not satisfactory, but

halfspace boundary conditions were again used instead of those for a

finite layer. Because of the unsatisfactory comparison, the authors

recommended further development of the nonlinear model to eliminate the

constraints of a rigid medium with constant properties.

The authors also stated that there was no information on how

permeability varies with porosity. However, this subject has been fairly

thoroughly studied [Taylor (1948:111); Leonards (1962:121); Lambe and

Whitman (1969:283); Mitchell (1976:346)].

3. Ulirich (1978)

Ullrich examined MISER'S BLUFF single and multiple burst data to

determine the limits of superposition as a means of predicting multiple

burst groundshock response using single burst groundshock data. He

concluded that superposition of single burst groundshock records yielded

good predictions of multiple burst groundshock motions at all depths

outside the multiple charge array, and for depths greater than 10 feet

inside the array. At depths less than 10 feet inside the array

superposition failed, and he suggested four mechanisms which caused

superposition to fail:

a) airblast pressure enhancement

b) soil rebound

c) soil tensile failure [spall]

d) pore air expansion

Ullrich used the term pore air expansion to describe "the expansion,
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during the negative overpressure phases, of air initially entrained in

the ground", and concluded that this mechanism was the dominant cause of

superposition failure in MISER'S BLUFF.

Ullrich noted that the single burst ground motion records used in the

attempted prediction of a near surface multiple burst ground motion

response near the center of a charge array did not show spall, but the

corresponding multiple burst ground motion record did show spall. This

situation points out the existence of two classes of spall prediction

problems in a superposition context:

a) how to combine component records which themselves show spall, and

b) how to combine component records which themselves do not show

spall, but which in combination will (in reality) cause spall.

Ullrich realized that the only fundamental approach to such nonlinear

problems is with an accurate, nonlinear material model, and he proposed

one for already spalled soil. The model is that of a heavy gas,

consisting of disconnected soil particles suspended in air. His analysis

used the term "piston model", but in fact the model can be used for two-

or three-dimensional analyses because it is basically a volumetric

model. Ullrich's equations are derived, using conventional soil

mechanics nomenclature, in Appendix E. Although Ullrich's model has been

called a "no flow" model, it does yield particle motion associated with a

compressive wave. It is a propagation, not a diffusion model, and does

not treat viscous flow of air through the soil skeleton or around the

suspended soil particles. Ullrich's model can be used in a computer code

when the soil volumetric strain is positive, and another diffusion model

used when the soil volumetric strain is negative.

25 APPLIED PEJEAPCH An/OCIATEI,IAC.



4. Morrison (1979a)

Morrison reviewed several previous studies related to the pore air

effect. He questioned whether Zernow's vented shock tube sample

adequately simulated a semi-infinite soil column, but did not attempt to

correct Zernow's linear solution for the vented case. Instead, he

presented a derivation of the nonlinear equation for three-dimensional

adiabatic diffusion of air through a rigid, porous, isotropic medium,

using air density as the dependent variable. The derivation is slightly

simpler when pressure is used as the dependent variable, and is presented

in Appendix F, including a pseudo-linear form simple enough for even hand

calculation.

Morrison indicated that a finite difference code (presumably one-

dimensional) had been developed, in which the porous medium behaves

elastically (and presumably linearly) in compression, but allows air flow

between zones when expanded. Neither equations nor numerical results were

presented, but the equations of motion were ascribed to the WONDY finite

difference code. Soil permeability is input initially, then altered as

the soil porosity changes. The computational sequence is as follows:

a) Using previous total stress and total density as inputs to WONDY,

solve equations of motion to obtain new displacements.,.

b) Calculate new strain and porosity.

c) Calculate new effective stress.

d) Calculate new permeability.

e) Assuming adiabatic compression without flow, calculate

intermediate pore air pressure.

f) Allowing adiabatic flow, calculate new pore air pressure.
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g) Calculate new pore air density.

h) Calculate new total stress.

i) Calculate new total density.

j) Return to (a).

5. Morrison (1979b)

In a briefing to the 1979 DNA Spall Workshop, Morrison described an

experimental device designed to apply transient negative (gage) airblast

pressure to the top surface of an unjacketed, vertical, cylindrical soil

sample, in an attempt to isolate the negative phase portion of the pore

air effect. Sixteen millimeter high speed photo movies were shown

illustrating the dramatic influence of porosity and particle gradation on
C,

near-surface particle motion, as summarized below:

Soil Type Pore Air Flow Particle Motion

sand very little particles retain
initial relative
position

MISERS BLUFF [very little] local fluidization
and extensive mixing
of layers

gravel with extensive fines carried through
fines gravel to surface;

little motion of gravel

*0 ,ftzr r-viewing previous data on airblast penetration from [Hampton

(1964)], and near-surface soil particle lofting from [Zernow, et al

(1973)], Morrison presented additional data on the effect of sub-

* atmospheric airblast pressure in MISERS BLUFF II-2 to show pore air

expansion effects. A definite correlation was established between

negative airblast pressure and both vertical extensional strain and

* vertical particle velocity. He then described the calculational model for
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pore air expansion discussed in [Morrison (1979a)], and presented some

preliminary results in which peak displacement and velocity were plotted

as functions of permeability and weapon yield for a given peak (negative)

airblast pressure. Morrison concluded that permeability may be an

important site characterization factor.

6. Rosenblatt, Orphal and Hassig (1979)

In another presentation to the 1979 DNA Spall Workshop, Rosenblatt

et al reported a fundamental approach to analysis of the pore air effect,

using the DICE computer code. They first presented a concise but

comprehensive summary of previous observations concerning the pore air

effect:

a) The magnitude of near-surface ground response to the small

secondary airblast peak (commonly called "repete") suggests the ground has

been highly dilated and has a relatively low impedance (for soil).
0

b) The very low propagation velocity of the above secondary

compression signal is consistent with the assumption of a two phase medium.

c) A secondary upward velocity appears to be associated with the

arrival of the airblast negative phase, and is hypothesized to be caused

by upward expansion (flow) of pore air.

d) Inclusion of Ullrich's "no flow" adiabatic expansion model

significantly improves the correlation between calculated and measured

near-surface soil vertical particle motion during the negative airblast

phase, for dry, high-porosity soils.

e) Then current pore air expansion models made no provision for pore

air flow or the associated viscous drag or seepage force on the soil

skeleton. Rosenblatt et al suggested that the pore air flow mechanism is
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an important part of the pore air effect.

f) The shock tube experiments by [Zernow et al (1973)] showed
(I

conclusively that, under their test conditions, gas permeation of the sand

column was necessary to produce significant upward column motion.

g) The above experiments also showed that upward soil particie

velocities are enhanced by: higher peak surface airblast pressure, more

rapid overpressure decay, smaller particle size, and an underlying

impermeable layer; and are reduced by: very high porosity and

permeability, and very low permeability. [In this regard, soil

susceptibility to the pore air effect is similar to soil susceptibility to

frost heave.]

Several questions were also raised:

a) Is the pore air effect two-dimensional, i.e., are horizontal

motions also affected?0
b) Is the negative airblast phase required to produce the pore air

effect, or just an upward pore air flow?

c) What is the influence of soil tensile strength?

d) How does pore air related behavior scale between HE and NE

surface bursts?

Specific objectives of the reported effort, which was just beginning

at the time of the presentation, were:

a) Formulate a one-dimensional mathenatical model of "forward" and

"reverse" air flow into the ground, and "validate" it against reverse

percolation laboratory data reported by [Zernow, et al (1973)].

b) Using the above model, calculate relevant vertical ground motions

for the MISERS BLUFF II experiments.
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c) Calculate ground motions for a 1 MT nuclear surface burst, to

assess the importance of two-phase phenomena for nuclear yields of

interest and to investigate scalability.

Adaptation of the DICE code to handle soil/air interaction was

outlined, but the definition of stress in the soil skeleton appeared to be

different from the concept of effective stress used in conventional soil

mechanics. The formulation did allow permeability to vary with soil

porosity over a wide range of porosity, as well as with soil particle

size. The results of this work have since been presented in more detail

by [Rosenblatt, Hassig and Orphal (1982)], and are discussed below.

7. Morrison, Berglund and Kelly (1979)
S

Morrison, Berglund and Kelly performed a combined experimental and

theoretical study of soil subjected to transient negative (gage) airblast

pressure. Both their shock tube experiments and numerical computer

calculations were one-dimensional. The study deliberately provided an

isolated vlew of that portion of the pore air effect caused by the

negative phase of an explosively-produced air shock. The main problem

with such an approach is that in both chemical and nuclear explosions a

positive airblast phase precedes the first negative phase, so the soil is

not apt to have a zero internal pore air pressure distribution when the1O

external airblast negative pressure phase begins. Thus, the positive and

negative airblast phase effects cannot be isolated from each other. Of

course, if the entire process were linear, the positive and negative phase

effects could be considered separately and the results superposed.

However, there is good reason to believe that not all aspects of the pore

air phenomenon are linear, particularly the soil motions.
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The study had three stated primary objectives:

a) form a basic analytical model that describes soil motion due to

pore air expansion;

b) develop an experimental apparatus and technique that can

illustrate and measure the effects of pore air expansion; and

c) provide a comparison between data and theory so theoretical

limitations and poscibilities for future work can be defined.

Ex, ansion of pore air due to pressure differentials with depth, and

actual pore air flow throgh the soil skeleton are treated as separate soil

lofting mechanisms, with emphasis on the former. However, an effective

stress (or soil skeleton oriented) approach shows that the pore air

pressure gradient associated with flow constitutes a distributed body

force acting throughout the soil skeleton, and it is this distributed

seepage force which helps cause lofting or spall. Thus pore air expansion

and pore air flow are not two phenomena, but slightly different aspects of

the same single phenomenon.

The computer code employed was a revision of the one described by

[Morrison (1979a)], and employed the following features:

a) a one-dimensional wave equation, using total stress and total

density, and including gravity and artificial soil viscosity;
f

b) a soil stress-strain relation using effective stress but no

viscosity;

c) Ullrich's adiabatic relation between pore air pressure, soil

porosity and soil volumetric strain, Equatiun (E.9);

d) a total mass conservation equation which assumes no pore air

flow; and
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e) a one-dimensional, nonlinear diffusion equation for isothermal

pore air flow through a rigid, porous soil skeleton, Equation (A.5), which

assumes the validity of Darcy's law, Equation (A.1).

Three different expressions are given for the viscous stress used in

the one-dimensional wave equation: one in the text, one in an appendix,

and one in the computer program listing. No mention is made of the pore

air seepage force, or of the fact that both adiabatic and isothermal

conditions are assumed in the same set of equations. Therefore,

Appendix F of this report presents the derivation of a pseudo-linear

diffusion equation for adiabatic pore air flow through a rigid, porous

soil skeleton which is even simple enough for hand calculation.
S

The only mention of bottom boundary conditions imposed in the above

calculations is the observation that "Dramatic differences [50 to 75 mm

(2 to 3 in)] in deflections were observed when the total sample depth was

varied by only 25 mm (1 in)." However, only two tests are reported in

which only the sample depth was varied. Mention is made of a single

calculation having been made using an airblast input with both positive

and negative phases, but the results are not reported. A theoretical

analysis of the linear pore pressure response in a rigid, porous solid,

subjected to surface airblast loading having both a positive and a
,.

negative phase is presented in Appendix G of this report.

8. Merkle (1980)

Merkle examined current soil spall theories, including Ullrich's pore

air expansion mechanism. The pore air expansion equations were derived

using conventional soil mechanics nomenclature, and were shown not to be

restricted to one-dimensional effects. They define the propagation
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velocity of a pressure wave in a two-phase fluid, in which one phase is

compressible but massless, while the other phase has mass but is

incompressible.

9. Labreche (1980)

Labreche described a series of finite difference computer

calculations, using the codes WONDY and WONDY/POREAIR, to study the

differences, if any, between pore air effects for a 1 MT nuclear loading

and a high explosive loading scaled to 1 MT, both with the same peak

side-on airblast overpressure. The HE loadings selected for comparison

were from MISERS BLUFF Phase I Event 2 and Phase II Event 1. The soil

profiles used above were adjusted and scaled versions of the MISERS BLUFF

Phase I and Phase II test site profiles. Several other calculations were

made in support of vertical shock tube studies, and for comparison with

results obtained by others using a no flow model. The soil total stress-

strain model used in the WONDY code was the AFWL Engineering Model.

Two sets of calculations were run for the HE/NE comparison cases:

one set used the code WONDY, and ignored the pore air effect; the other

used the code WONDY/POREAIR and included the pore air effect. The

difference between the soil particle motions predicted by WONDY/POREAIR

and by WONDY alone was taken as the measure of the pore air effect. When

the WONDY/POREAIR code was used the pore air diffusion equations in

POREAIR were bypassed when the soil extensional strain reached a

predetermined limiting value, determined by the maximum staple soil

porosity. At this point the soil particles were assumed to be no longer

in contact, and to undergo ballistic motion. At this point the

airblast-loaded surface was effectively shifted down to the top of the
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first nonspalled element. During initial compression, WONDY/POREAIR

assumed soil porosity, permeability, pore air density and pore air

pressure to all be constant. Numerical stability was studied by varying

the WONDY propagation time step, At, and the necessarily smaller POREAIR

diffusion time step, At/N.

10. Morrison, et al (1981)

Morrison, Labreche, and Lamb reported in detail the results of

evacuation chamber tests and HE/NE comparison calculations which had been

outlined by [Labreche (1980)]. They also gave preliminary results of

vertical shock tube tests, in which the airblast load had both a positive

and a negative phase. They concluded that pore air effects are sensitive

to soil permeability, which in turn is affected by soil particle gradation

and degree of saturation, as well as to the water phase in a partly

saturated soil. Saturated soil exhibits no pore air effects, because

there is no connected gaseous pore air phase.

In this report, pore air expansion of soil is defined as "expansion

of the soil which results when the pore air pressure in the soil voids

exceeds the confining stress of the soil matrix". A literal

interpretation of the above definition implies a negative effective

stress. This was not intended. The situation envisioned by the
,.

definition is that of a finite soil mass, in which the pore air pressure

within some interior region exceeds the pore air pressure over some

surface region, thus producing an outward pore air flow, the seepage force0

from which tends to cause soil particle contact loss.

Near-surface displacement-time curves from evacuation chamber tests

were obtained from high speed photographs and also double integration of
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accelerometer data. The integrated accelerometer records indicated much

larger peak upward displacements than did the photographs, and the

accelerometers came to rest nearer the surface than they had been placed.

This led to the conclusion that the near-surface accelerometers did not

move with the surrounding soil (perhaps at least in part because their air

drag characteristics were different from those of soil particles).

11. Rosenblatt, Hassig and Orphal (1982)

Rosenblatt, Hassig and Orphal described some of the theoretical

fundamentals used to modify the DICE code to treat pore air effects

related to lofting, and gave results of their calculations. This is the

work outlined in their 1979 DNA Spall Workshop presentation discussed
0

above.

The conventional soil mechanics definition of effective stress is

presented in the theoretical discussion, but some of the calculations

(e.g. Figure 4.10(a)) appear to show a large effective stress at the

unjacketed surface of a soil mass loaded only by pore air pressure. Since

the effective stress at such a surface is always zero, it is not clear

that the DICE code actually used the conventional soil mechanics

definition of effective stress. This situation is encountered in

conventional geotechnical engineering practice in connection with a change

of water level in a reservoir or river. It also happens continually in

tidal areas.

Results of the DICE code calculations showed reasonable agreement

with some of Zernow's shock tube test results, although that was not the

stated objective of the calculations. In fact, the calculations used

different bottom displacement and pore pressure boundary conditions than
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those appropriate for Zernow's samples; they also kept the airblast decay

rate constant and varied soil permeability in obtaining results which were

compared with those of tests in which the airblast decay rate varied and

the soil permeability remained constant. Nevertheless, the DICE code

results' qualitative agreement with Zernow's indicate that the code has

the capability to model the essential features of the pore air effect.

C. Simple Discrete Models

* The above pore air effect analyses employ sets of equations which are

only partially coupled, in the sense that the equations describing stress

wave propagation and those describing pore air diffusion are solved

sequentially, rather than simultaneously for each time increment. The

difficulty of formulating and solving a completely coupled set of

equations for the pore air effect was recognized early in this study.

* Therefore, to gain insight into both the physical mechanisms and the

mathematical processes involved, some simple mathematical models were

constructed, the behavior of which could be analyzed in closed form.

* The first model, analyzed in Appendix H, actually arose during a

discussion of the response of an unjacketed soil test sample immersed in

water in a closed pressure vessel, when the fluid pressure suddenly

increased. This of course is the reservoir or tidal basin problem

mentioned previously. The simple piston model analyzed in Appendix H is

massless, so there are no inertial effects. The main thing this model

* shows is that when a saturated, unjacketed soil sample is subjected to a

sudden increase in external fluid pressure, the sample first undergoes
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undrained composite compression, in which the soil skeleton and the

internal pore fluid experience the same volume decrease. Subsequent

drainage allows compressed pore fluid to flow into the soil skeleton, and

the soil skeleton to expand to its original volume (if elastic).

The second model, analyzed in Appendix I, is the same as the first
0

except that both the soil skeleton and the pore air have mass. With this

model, initial, instantaneous undrained deformation does not occur (see

Equation (1.44)), because of the inertia of both soil skeleton and pore

fluid. However, the numerical evaluation of Equation (1.62) shows that a

small defonnation of the soil skeleton, associated with pore air

compression, does occur very rapidly. Subsequent deformation of the soil
S

skeleton, associated with pore air flow, occurs much more slowly. The

final equilibrium condition of this model is the same as that for the

massless model. The internal pore fluid eventually attains the same

pressure as the external fluid, and the soil skeleton returns to its

initial configuration.

Since both the above models are linear, their response to any

prescribed airblast input can be obtained by superposition.

D. General Equations

16 The advantage of the above two discrete models of soil pore air

behavior is that they are relatively simple and linear, so that their

response can be obtained in closed form. This permits parametric studies

* and physical interpretation of the results. Nevertheless what is obtained

is an exact solution to an approximate problem, rather than an approximate

solution to the real problem. The general equations describing the "real"

* one-dimensional pore air problem are developed in Appendix M. They are a
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set of coupled, nonlinear, second order partial differential equations

involving soil skeleton displacement and pore air pressure. The most

practical approach to their solution appears to be by the method of finite

differences.

0

0
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* SECTION V

Prediction of Negative Airblast Overpressures
From Near-Surface Explosions

* It will be shown in Section VI that a major portion of the shallow

spall observed in experiments with near-surface explosions, detonated

over granular materials with essentially zero tensile strength, results

* from the negative overpressure portion of the airblast loading. Thus,

the negative airblast overpressure must be known in order to develop a

model to predict this phenomenon. A review of the literature revealed

* that no method was available to accurately define the negative airblast

overpressure from near-surface explosions. Accordingly, available data

and calculations were reviewed, and a procedure developed for predicting

* the maximum negative airblast overpressure as a function of scaled range.

Figure 5.1 presents measured maximum negative airblast overpressure,

AP-, versus scaled range, R, from several nigh explosive near-surface

* detonations. Note that the maximum measured value of AP- is

approximately 48 kPa. Lack of data at higher values of AP- indicates

the difficulty of developing instrumentation to make such measurements.

,S Figure 5.1 also presents the results of numerical calculations

[Needham, 1969)] for a 500 ton high explosive surface tangent event. The

calculated values for 30 kPa and below are in reasonable agreement with

O the measured data in Figure 5.1, but indicate a somewhat flatter decay

rate with scaled range than an upper bound to the measured data. The

calculations for surface tangent and slightly aboveground detonations
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indicate the formation of a toe of detonation products near ground level,

which significantly influences the airblast parameters. The value of

R z 0.10 km/(kt)l/3 , at which a jump in AP- occurs, is the scaled

range at which a normal shock is formed. At smaller values of R, the

results approach a maximum value of -1 atmosphere.

An analytical approximation to both the measured and calculated data,

consisting of two straight lines, is also shown in Figure 5.1. The

equations for this proposed approximation are:

AP-= 36.0[ R]-0 .168 , kPa for R<0.15 km/(kt)I/ 3  (5.1)

and

AP- = 3.98[R]-I.329, kPa for W>0.15 km/(kt)l/ 3  (5.2)
0

This analytical approximation is nearly an upper bound to the measured

points. The breakover point and slope of the upper portion of the

analytical approximation are based on engineering judgment, and are iot

in exact agreement with the calculated values.

Measured airblast results from several large yield (10kt - 10mt)

nuclear events conducted in the Pacific are summarized in scaled format

in Table 5.1. The AP- versus R nuclear data are plotted in

Figure 5.2. Again there are no data at the larger AP- values, i.e.,

for AP->28 kPa. Results of calculations utilizing the I kt nuclear'0

standard [Needham (1975)] are also presented in Figure 5.2 for

comparison. The calculated values again indicate a flatter decay rate

than an upper bound to the measured data, but in this instance the0

calculated values are larger at most scaled ranges. The calculations

indicate a breakover point at an R of approximately 0.12 km/(kt)1/3 .

At smaller values of R the results approach a maximum value of
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approximately -1/3 atmosphere instead of the -1 atmosphere indicated for

high explosives.

The high explosive approximation for the peak negative airblast

overpressure was corrected by a factor of 2W to account for radiation

loss occurring in a nuclear detonation (1 kt nuclear = 1/2 kt high

explosive). This corrected line is shown in Figure 5.2. It provides an

excellent fit as an upper bound to the nieasured nuclear data. Thus, it

appears that a single straight line, cotrected by 2W, can be used to fit

both the nuclear and high explosive measured data at larger scaled

ranges. The nuclear breakover point is maintained at 0.15 km/(kt)1/3,

and the slope of the proposed upper line in the nuclear approximation is

reduced somewhat from the high explosive approximation. The proposed

equations for the nuclear approximations are:

AP- = 27.3[R]-0 .132, kPa for R<0.15 km/(kt)l/3  (5.3)

and

AP- = 2.90[R]-1.313 , kPa for R>0.15 km/(kt)i/ 3  (5.4)

* The two analytic approximations for predicting peak negative airblast

overpressure versus scaled range are presented in Figure 5.3. The yield

for the appropriate type of explosive is utilized without correction for

this figure. The curves provide upper bounds to the available measured

data. Considerable uncertainty exists at scaled ranges less than

0.15 km/(kt) 1/3 , and the above results should be used with caution for

scaled ranges below that value.
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* SECTION VI

Review of Spall Data From HE and NE Detonations

Spall has been recently studied by [Stump and Reinke (1980), Merkle

(1980), and Auld, et al (1981)]. For the purposes of this report, the

following criteria will be utilized to identify spall in ground motion

records:

1. -1g (-0.5 to -2.0) vertical acceleration dwell (>5 ms), which is

identifiable directly on a vertical acceleration record, or as

the slope of a vertical velocity record;
S

2. identifiable impulsive rejoin signal on both the vertical and

horizontal acceleration records;

3. rejoin amplitude (>0.05 m/s) observed on the vertical velocity

record.

These criteria are similar to those utilized by previous investigators,

but with numerical values specified.

[Auld, et al (1981)] suggested that the zone of spalled material

surrounding a near-surface explosion can be considered to consist of two

parts: a bowl-shaped volume of material, designated the "coupled spall

region"; and a shallow extension of the basic spalled volume, designated

the "negative airblast wing region". Figure 6.1 illustrates these two

zones as they might occur from a typical near-surface detonation. Any of

the possible spall mechanisms, or a combination of these mechanisms may

be responsible for the spall observed in the coupled region, e.g., direct

* waves, head waves, reflected waves, or surface waves. The predominant
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spall mechanism in the negative airblast wing region is the negative

overpressure portion of the airblast loading. Spall can occur in this

region only when the applied peak negative airblast overpressure exceeds

the tensile strength of the near-surface material. Accordingly, many

tests do not exhibit the negative airblast spal] wing because the

explosive charge was slightly buried (thereby suppressing the airblast),

the surface material had a significant tensile strength in comparison to

the applied peak negative airblast overpressure, or the instrumentation

was placed in holes backfilled with grout instead of with negligible

tensile strength material, e.g., sand. Note that "soil matching" grout

can be utilized to backfill instrumentation holes in the coupled spall
9

zone and spall can still be detected.

[Auld, et al (1981)] also suggested that a simple model can be used

to estimate the depth of spall in the negative airblast wing for a

material with zero tensile strength. This model equates the geostatic

vertical total stress at the depth of spall to the value of the peak

negative airblast overpressure at the range of interest, thereby

obtaining the equation:

zs = AP-Iy (6.1)

where

zs = depth of spall at the range of interest (see Figure 6.1);

AP- = peak negative airblast overpressure;

y = soil total unit weight.

For p - 1900 kg/m 3 , and AP_ in kPa, Equation 6.1 reduces to:

1000 AP0
zs = (9.80665)(1900) = 0.054 AP m (6.2)
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The pea', negative airblast overpressure must be known to calculate 7s

from Equation 6.2. Accordingly, the technique for predicting peak

negative airblast overpressure developed in Section V should be utilized.

Table 6.1 summarizes the high explosive events which were examined in

• detail, to develop an understanding of spall phenomena and to develop

techniques for predicting the extent of spall associated with a

near-surface detonation. Emphasis was placed on large yield events

* (W>100 tons) and on events with sufficient instrumentation to produce a

good definition of the spalled region. The events summarized in

Table 6.1 were conducted on a wide range of geologic profiles, ranging

*from deep dry soil to layered soil over rock, with and without high water

tables. In addition, the near-surface materials ranged from dry powdery

silt, with essentially zero tensile strength, to highly competent

* granite. High explosive yields ranged from a fraction of a ton to 500

tons. Charge configurations consisted of slight height of burst (HOB),

surface tangent spheres (STS), surface tangent cylinders with

* hemispherical caps (STC), half buried spheres (HBS), berms, and slight

depth of burial (DOB). All high explosive events studied had

identifiable regions of spall, except the three shots conducted on

granite, i.e., MINERAL ROCK, MINE ORE, and MINE UNDER. There may have

been spall associated with the granite events; however, it is reasonable

to assume that high rock strength limited the spall region to the extent

* that violent cratering motions masked its presence.

Spall was detected on only one nuclear event, JANGLE-U. Ground

44 APPLIED PEEAPCH A/OCIaTE/,InC.



motion records were also examined for MIKE, CACTUS, KOA, PRISCILLA,

JOHNNIE BOY, SMALL BOY, and JANGLE-S, without detecting motions

satisfying the previously specified spall criteria. The high water table

associated with events conducted in the Pacific may have precluded

spall. Grouted instrumentation holes, old style instrumentation, and

0 less sophisticated data processing techniques may have contributed to

masking of spall in nuclear events conducted at the Nevada Test Site

(NTS). In addition, the ground motion instrumentation was placed too

deep (e.g., 1.5 m) to record much of the spall phenomena on all of the

nuclear events. Figure 7.1 shows the extent to which spall in the

negative airblast wing region can be overlooked by using a minimum gauge

depth of this magnitude. Figure 7.1 also indicates that using a much

shallower minimum gauge depth for high explosive experiments increases

the probability of detecting spall. Note that high explosive events at

NTS have produced significant spall regions. However, it should not be

concluded on the basis of these results that nuclear events do not

produce spall.0
The extent of the spalled volume of material can be defined by two

quantities: radius of spall, R., and maximum depth of spall, z.

Rs will vary widely, depending on whether the negative airblast spall

wing is present (see Figure 6.1). The depth of the negative airblast

spall wing is a slowly decaying function of range, and the radius of

spall for zero depth can only be crudely approximated. Accordingly, Rs

is arbitrarily defined for a depth of 0.5 m in this report, and values

corresponding to this definition are given in Table 6.1. The radius of

spall for any other chosen depth can be estimated by using Equation 6.2,
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or other techniques given below. In the coupled spall region there is

essentially no difference in the radius of spall for depths of zero and

3I 0.5 m. There have been a very limited number of close-in measurements

made on near-surface detonations, and the estimates of zs are based

almost entirely on extrapolation of data usi,.g a preconceived concept of

the general shape of the spalled volume. Therefore, there is a great

deal of uncertainty associated with zs.

Two general methods were utilized to estimate the values of R and

zs presented in Table 6.1. The first method consisted of evaluating

ground motion records using the established spall criteria. Each

instrumentation location was then labelled as showing spall (S),
C,

questionable spall (?S), or no spall (NS). If the instrumentation array

is sufficiently large and dense, the zone of spalled material can then be

estimated as shown in Figure 6.2. A second method was developed to

estimate the radius of spall from the magnitude of rejoin amplitudes

observed on vertical velocity records. It was noted that the radius at

which the near-surface vertical velocity rejoin amplitude approached zero

correlated well with the radius of spall defined by the first method.

For example, vertical velocity rejoin data from two of the PRE-MINE

THROW-IV (PMT-IV) events are presented in Figure 6.3, for a depth of

0.23 m. The radius of spall can easily be estimated by extrapolating the

data to the range where the rejoin amplitude is zero. However, this

radius of spall does not meet the above definition of Rs (i.e.,

z = 0.50 m); and since the PMT events had airblast spall wings, this

slight depth difference may produce significant variations in the radius

of spall. Also note that there is a dip in the rejoin amplitude data,
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which extrapolates to a range of approximately 10 m. This range

corresponds well to the R obtained from experiments where there was no

negative airblast spall wing, and suggests that high quality rejoin

amplitude versus range data can be used to estimate the radius of spall

for both coupled and negative airblast wing regions.

Figure 6.4 shows rejoin amplitude plotted against scaled range,

R(m/0.5 ton1/ 3 ), for all PMT events. This figure illustrates the main

difficulty in comparing spall data from different events, when the ground

motion instrumentation for each event is placed at a single depth which

varies from event to event.

These data suggest that the scaled value of Rs for z 0.50 m

adequately represent all PMT events, and that apparent differences in

R result from the depth of the ground motion instrumentation rather
5

than from differences in spall phenomena. The insert in Figure 6.4

illustrates a technique for crudely estimating the in-situ tensile

strength of the near-surface material. Equation 6.2 was used in

conjunction with measured values of AP- to estimate the maximum depth

of spall at various ranges, for a zero tensile strength material. The

difference between the geostatic vertical total stress at spall depth and

the applied value of aP- was assumed to result from the tensile

strength of the material at that depth. The four points obtained produce

a aT versus depth curve that is quite plausible for that particular

site.

The values of spall radius, Rs, at a depth of 0.5 m obtained by

either of the general methods previously described are summarized in

Figure 6.5 by plotting scaled radius of spall, Rs(m/100 ton1 /3 ),
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versus depth to the second layer, which may be either the water table or

competent rock. The data generally fall into two groups: those with a

negative airblast spall wing, and those without. Yield cube root

(W 1 3 ) scaling for the radius of spall appears to order the data.

Neither charge configuration nor details of the deeper geologic profile

greatly influences Rs when the negative airblast spall wing is

present. Of course the near-surface material must be very weak to

produce a negative airblast spall wing. Ts is influenced by the charge

configuration when the negative airblast spall wing is not present, and

the value of Rs increases with increased charge coupling

(HOB-STS-STC-HBS-Berm). A surface tangent cylinder appears to be

essentially equivalent to a half buried sphere instead of a surface

tangent sphere. The widest data scatter occurs for the STS events.

Similar observations have previously been noted with regard to cratering

parameters, such as the crater radius or depth. Again, there is no

indication of dependence on geological features, such as the depth to the

second layer.

R for the JANGLE-U event is also shown in Figure 6.5. This event

had a slight depth of burial (5.18 m) and should have produced results

comparable to the bermed high explosive event. A comparison of these two

data points will be used in Section VII to estimate a nuclear to high

explosive spall efficiency factor, and thereby develop a nuclear spall

prediction technique.

The range of R values for the various charge configurations is

summarized in Table 6.2 for both high explosive and nuclear events.

The dependence of Rs on charge configuration for the events with no
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negative airblast wing, i.e., with only a coupled spall region, suggests

that there might be a correlation between unscaled radius, Rs, and

crater size. However, yield cube root scaling collapsed the data better

than scaling by either crater radius or crater volume.

The relation between maximum depth of spall, zs, and depth to the

second layer (either the water table or competent rock) is shown in

Figure 6.6. It appears that there is no strong dependence on charge

configuration, as was the case in Figure 6.5. However, a dependence on

geology is indicated. The maximum depth of spall appears to be limited

by the depth to the water table when there is no shallower rock layer.

This limitation is indicated by the data for which the spall zone ends in
S

soil falling on or to the left of the line for which maximum depth of

spall equals depth to the second layer. However, as indicated by the two

data points for which the spall zone ends in rock, when spall does

penetrate into weak to intermediate strength rock (sandstone or shale),

the water table may not stop it. The data are limited but suggest that

the maximum depth of spall is less for the case of a water table over a

rock layer than for the case of dry soil extending to the rock layer.

The relation between maximum depth of spall and yield is shown in

Figure 6.7. A clear dependence on yield is indicated. In addition, the

geology dependence previously seen in Figure 6.6 is again evident, and

there is a suggestion that charge configuration may also be of some, but

lesser importance. These data are insufficient to account for detailed

differences in geology, but the following equations can be utilized to

estimate zs for a surface tangent charge configuration (either STC or

* STS):
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zs  depth of water table*

1/6or 3.2 (W,tons) ,m

whichever is smaller. (6.3)

A similar equation applies to the case where the charge is half buried

(HBS):

0z s = depth of water table*

or 5.0(W,tons) 16,m. (6.4)

Neither Equation (6.3) nor Equation (6.4) applies when a competent rock

layer is encountered above zs.

C,0

*If there is a rock layer at a depth of zs or less disregard the water

table.
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SECTION VII

Prediction of Spall Region for Near-Surface Detonations

A. Introduction

The prediction techniques presented in this section are based on the

negative airblast predictions from Section V and the measured spall data

presented in Section VI. Note that spall was detected on only one

S

nuclear event. Therefore, the extrapolation from high explosive to

nuclear involves a great deal of uncertainty, and these results should be

used with caution. Also, no spall was observed in very competent rock

such as granite.

As previously discussed, the volume of spalled material from a

near-surface detonation can be characterized by two parameters, the

maximum radius of spall, Rs, and the maximum depth of spall, zsp

Ris arbitrarily defined to be at a depth of 0.5 m, and may be

associated with either the coupled spall region or the negative airbast

wing, when this region is present (see Figure 6.1).
To make predictions of R s and z, the following information must

be known:

1. Yield (W): tons of TNT or kt of nuclear;

2. Charge configuration: surface tangent or half buried sphere

m u s(small HOB for nuclear is assumed);

3. Geology

a. depth to water table

b. depth to rock layer and type of rock

c. nature of the near-surface material (does it have a

negligible tensile strength?, i.e., asud kPa
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B. Spall Associated With High Explosive Detonations

When the near-surface material has a negligible tensile strength and

airblast is present, a negative airblast wing region can be expected. In

this instance the expected scaled maximum radius of spall can be

estimated from Figure 6.5 to be

150 1/3
(100)1/3 - 32 m/ton (7.1)

Additional definition of the shape of the negative airblast wing region

can be obtained through the use of Figure 7.1. This figure was derived

by combining the predictions of AP_ from Figure 5.3 with Equation 6.2.

0 Since the tensile strength of the near-surface material is assumed to be

zero, the results will be conservative. The predicted depth of spall can

be easily obtained for any scaled radius from Figure 7.1, and the shape

0 of the negative airblast wing region estimated. Note that the

theoretical scaled radius of HE spall for a depth of 0.5 m shown in

Figure 7.1 is 0.520 km/kt 1 3 . This scales to 240 m/100 ton 1 3 as

* indicated on Figure 6.5, and is considerably larger than the mean

measured value of 150 m/100 ton 1/3 used above in Equation (7.1).

When the near-surface material does not have a negligible tensile

strength no negative airblast wing develops and there is only a coupled

spall region. In this instance, the radius of spall is dependent upon

the charge configuration and the following equations, based on the data

* in Figure 6.5, can be utilized to make predictions:

HOB: Rs = 6100)113 1/3 (7.2)
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. STS: Rfs - 60 13 r/ton1/3  (7.3)

STC or HBS: T - 90 -19.5 rn/ton 1/3  (7.4)
(100)1/3 =

* The maximum depth of spall can be obtained from the following equations:

STS or STC: zs = depth of water table* or 3.2(W,tons)l6 ,m

whichever is smaller (6.3)

HBS: zs = depth of water table* or 5.0(W,tons) ,m

whichever is smaller (6.4)

The high explosive predictions should be accurate to approximately

* +33 percent.

C. Spall Associated With Nuclear Detonations

Referring to Figure 6.5, it can be seen that Rs is approximately

1/3 1/350m/(100 ton)113 for JANGLE-U and 140m/(100 ton) for the bermed

high explosive event presented. Assuming that any difference in the

* spall data from these two events is attributable to the energy available

to create ground shock, one obtains a nuclear to high explosive ratio of

approximately 36 percent. Rs for the coupled nuclear spall region can

be estimated from Figure 6.5 to be

Rs = (50)(10)1/3 = 108 m/ktl/ 3  (7.5)

In a similar manner zs can be estimated from Equation (6.3) as

*z s = depth of water table*

or (3.2)(1000)I16 = 10.1(W,kt)l' 6,m

whichever is smaller. (7.6)

*If there is a rock layer at a depth of zs or less, disregard the water

table.
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When the near-surface material has a negligible tensile strength a

negative airblast wing region can be expected. Definition of the shape

of this region can again be obtained through the use of Figure 7.1. For

this instance, the nuclear Rs can be estimated as:

Rs = (0.78)(150)(10)1/3 = 252 m/ktl/3  (7.7)

Equation (7.7) was obtained by taking the R ratio of nuclear to high

explosive from Figure 7.1 for a constant depth, which is 0.78, and

applying this ratio to Equation (7.1) with appropriate changes in yield.

0

(0

0

0
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* SECTION VIII

Summary and Conclusions

This report presents theoretical, numerical, and empirical analyses of

soil and rock spall due to near-surface explosions, both chemical and

nuclear.

Section VII presents an empirically based technique for predicting the

maximum radius of spall, Rs, and the maximum depth of spall, zs, for a

single near-surface explosion, either chemical or nuclear. The prediction

technique is based on analyses of airblast and explosive ground motion

data presented in Sections V and VI.

Section III presents a one-dimensional numerical analysis of spaNl in

a tensilely weak, hysteretic material with a free surface, using the

computer code STEALTH ID. The results must be considered preliminary, but

they do demonstrate the ability of STEALTH 1D to handle propagation

problems involving the creation of numerous new boundaries (spall planes),

as well as the influence of gravity. One problem which will arise in two-

dimensional spall calculations, which does not arise in one-dimensional

calculations, is how to handle rejoin grid mismatch, i.e., the fact that

two grid points which coincide prior to spall probably will not coincide

after rejoin. This situation also arises in numerical analyses of

explosive welding [Merkle and Cannon (1977)].

Section IV presents a series of theoretical analyses of the pore air

effect, a principal near-surface spall mechanism in airblast loaded dry

soil. Several of these analyses yield finite difference equations
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suitable for use in parametric studies. Even closed form linear analyses

demonstrate the dramatic influence of both boundary conditions and soil

permeability on the transient pore air pressure distribution which can

cause spall.

A fundamental understanding of soil spall, especially that caused by
0

local airblast loading, requires an effective stress approach in which

both the soil skeleton stress-strain-strength relations and the transient

effect of flowing pore fluid are considered explicitly. This approach

underlies other numerical and empirical analyses which yield results

useful to designers of hardened structures and their shock isolation

systems.

0

S

0
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* APPENDIX A

Isothermal Fluid Diffusion Through a Rigid Porous Medium

Darcy's law for percolation of a fluid through a porous medium can be

written in the form

v-B P (A.1)
1 3x

0 where

v = fluid discharge velocity (flow rate divided by total area)

B1  = effective permeability

P = fluid pressure

x = distance

Under isothermal conditions, the fluid is assumed to obey the perfect

gas law

P = ap (A.2)

where

0
a = constant

p = fluid mass density

When the porosity of the porous medium remains constant, the equation
,O

of fluid mass conservation takes the form

n =- -x(PV) (A.3)

0 where

n = porosity, defined by Equation (E.1)

Introducing Equations (A.1) and (A.2) into Equation (A.3) yields
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* or

V B1 3 (A.4)
-Rt = -n x(t

0 Equation (A.4) can be written in the nonlinear form

~ B 1  2 P2)(A.5)
7t= 2-nT2(

On the other hand, if the spatial variation of p is ignored in

Equation (A.3), substitution of Equations (A.1) and (A.2) yields

where

D (A.7)n

Equation (A.6) can be considered linear if the parameter D is assumed to

0 be constant.
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* APPENDIX B

Transient Linear Pore Air Diffusion in a Vented Layer

It is desired to calculate the dynamic pore air pressure, P(x,t),
0

satisfying the following conditions:

YP D 2 (O<x<l) (A.6)

P(O,t) = F(t) (t>O) (B.1)

P(l,t) = 0 (t>O) (B.2)

* P(xO) = 0 (O<x<l) (B.3)

First, consider the associated problem having homogeneous boundary

conditions [Hildebrand (1962:431); Taylor (1948:229)], which is

P 32 P
Dt = a (O<x<2H) (B.4)

ax

• P(Ot) - 0 (t>O) (B.5)

P(2H,t) = 0 (t>O) (B.6)

P(xO) = Pi(x) (O<x<2H) (B.7)

Using the method of separation of variables [Hildebrand (1962:430)], we

assume that

• QP(xt) = (xb(t) (B.8)

Substitution of Equation (B.8) into Equation (B.4) yields

OP= aO" (B.9)

* and, dividing both sides of Equation (B.9) by the product aOp = aP,
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assumed not to be zero everywhere, we obtain
'F1 

ii 0"

a (B.10)

Since 6 is a function of x only, and p is a function of t only, and yet

Equation (B.10) must hold for all values of x and t, it must be that both

sides of Equation (B.10) are equal to the same constant, i.e.,

1 = , = -2 (B.11)

* Equation (B.11) yields

U, + W26 = 0 (B.12)

+ aw 2 = 0 (B.13)

The solutions to Equations (B.12) and (B.13) are

O(x) = C1 cos wx + C2 sin wx (8.14)

and

(t) = C3 e- aw2t (B.15)

so that Equation (B.8) yields

P(xt) = (x)W(t) = (C4cos WX + C5sin wx)e- aw
2t (B.16)

0

where

C4 = CIC3  (B.17)

* and

C5 = C2C3  (B.18)

In order to satisfy Equation (B.5) it must be that

* C4 = 0 (B.19)
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and in order to satisfy Equation (B.6) it must be that

2wH = ni (n = 1,2,3, ... ) (B.20)

which means that

n=-f (n = 1,2,3, ... ) (B.21)

* Thus an infinite number of functions of the form

4H2

C5 sin e 1 e

each satisfies Equations (B.4), (B.5) and (B.6), and since Equation (B.4)

is linear and Equations (B.5) and (B.6) are homogeneous, any linear

0 combination of the above functions is also a solution. Thus we can write

n2 2at

P(x,t) = L B sin e 4H (B.22)
n=1 n 2H

The constants Bn (n = 1,2,3, ...) are determined from Equation (B.7).

P(x,O) = Pi(x) = Z B sin (.23)
Sn= n 2H

Equation (B.23) is a Fourier sine series, and since, with
irX

*2H e (B.24)

we have

2H mnx snx dx w
i f s si n snn dx =- f sin me sin ne do

0 0

H '
=- f [cos(m-n)e - cos(m+n)e]de10
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H [sin(m-n)e sin(m+n)e r 0 (4n) (8.25)Ir m-n m+n j 0

and

2H n2 nrx 2H 2

f sinsn de
* 0 2H0

f (1 - cos 2ne)de = H (B.26)
I

0

then if both sides of Equation (B.23) are multiplied by sin mx/2H, and

the results integrated on x from 0 to 2H, the result is

2H
f Pi(x) sin - dx = BmH
0

so that

0 2H mix

Bn = f Pi(x) sin -x dx (B.27)
n =H 0  iH

We now consider the problem identical to that defined by

* Equations (A.6), (B.1), (B.2) and (B.3), except that the function F(t) in

Equation (B.1) is assumed to be constant, i.e.,

P(O,t) = F (t>O) (B.28)

* The approach to this problem is to assume that [Carslaw and Jaeger

(1959:99)]

P = U + W (B.29)

* where

= 0 (O<x<l) (B.30)
dx 2

U(O,t) = F (t>O) (B.31)

U(l,t) = 0 (t>O) (B.32)
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I 1

and

W 2W
a* D 2 (O<x<l) (B.33)

W(O,t) = 0 (t>O) (B.34)

W(l,t) = 0 (t>O) (B.35)

W(x,O) = -U(x) (O<x<l) (B.36)

The expression for U is easily found to be

* U(x) = F(I - x}) (B.37)

and the expression for W is found from Equation (B.22)

0 n2 2 Dt

W(x,t) = B sin -'- e 2 (B.38)
n=1

where Equations (B.27), (B.36) and (B.37) yield

B 2F (1 - x) sin u dx (B.39)

The integral on the RHS of Equation (B.39) can be integrated by parts by

setting

u - (B.40)

du - x (B.41)

dv = sin T- dx (B.42)

V Cos nwx (B.43)
nir

so that
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I n  1w n1 r

1 ) Cos cos dx

1 (B.44)
nw

and therefore

8 2F (B.45)
n _w

Thus, Equations (B.29), (B.37), (B.38) and (B.45) yield

x= -2 ZnI D 12

P(x,t) = F (1 -T4) - n=0 sin F e (B.46)

[cf. Carslaw and Jaeger (1959:103)].

We can now return to the original problem defined by Equations (A.6),

* (B.1), (B.2) and (B.3), for which the boundary value in Equation (B.1) is

a function of time. Because the system is linear, the solution can be

written as a Duhamel integral in the form

t
P(x,t) = f F(x)h(x,t-x)dx (B.47)

0

I. where

h(x,t-x) = solution for a unit impulse at (O,x).

However, what we have obtained above is not h(x,t-x), but its integral,

* s(x,t-x) = solution for a unit step at (O,x).

In order to use the step function response, we integrate Equation (B.47)

by parts, by setting

* u = F(x) (B.48)

du = F'(x)dx (B.49)
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dv = h(x,t-x)dx (B.50)

v = -s(x,t-X) (B.51)

so that

t t
P(x,t) =-F(x)s(x,t-x) I + f F'(x)s(x,t-x)dx

0 0

t
= -F(t)s(x,O) + F(O)s(x,t) + f F'(x)s(x,t-x)dx (B.52)

0

* where, from Equation (B.46), we have

0o n27r2D(t-,x)

s(x,t-x) -= - X -2 sin ni x e (B.53)
T n=1

00 n2ir2Dt

s(x,t) : (1 -) - sin n e 2 (B.54)
* n=I

Now if

F(x) = P0e -rA (B.55)

0 so that

F(O) = P0  (B.56)

and

F'(x) = -aPo e- ax  (B.57)

then the terms in Equation (B.52) are

00 n2 Dt

F(O)s(x,t) = P0  - - 2 sin-x e (B.58)

0o T nnir2n

and
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t tf F'(x)s(x,t-x)dx = -mPo(1 - x) f e-x dx

0 00

n - 22Dt (n 2 i 2 D\a
2 Po n 12  t n 2 v

+1Z sin fx f e dx
n=1 "n 0

= Po(1 -4) [e0x 1 t

2 2n 212D

2 cP - n 2f Dt a x

+ 1 sin -- 1 e[e....w = 1 n 2 2 D

12 a 0

= Po(1 -- )(e- t - 1)
0 T)(

Go n n2 r2 Dt )

20 1fxe 2 -Ct- L0o nZ sin- (B.59)

P n=1 n sni 2n e 2)D

12-- a

Finally, substitution of Equations (B.58) and (B.59) into Equation (B.52)

yields

0 P(x,t) = P - ) e - a t

n 2 2 2Dt

Q 2 -- T--I e 2 -ae-

2 ni n nnir (B.60)
n-- n - n2--2 a
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If we set

Dt T (B.61)

D2 (8.62)

x (B. 63)

then Equation (B.60) can be written in the form

P(E,T) P P0 [jE.

/0 2 2e-n 2wr2 T -B
* _2 Z -. sin ni yn e ~) (B.64)
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* APPENDIX C

Transient Linear Pore Air Diffusion in an Unvented Layer

It is desired to calculate the dynamic pore air pressure, P(x't),

satisfying the following conditions:

= D (O<x<l) (A.6)

-f7ax

P(O,t) = F(t) (t>O) (C.1)

-- (lt) = 0 (t>O) (C.2)
a

P(xO) = 0 (O<x<l) (C.3)

The above solution can be most easily obtained as the first half of the

* solution, symmetric about x = 1, for which

ap= 0a2P(o<x<21) (C.4)

0 P(O,t) = F(t) (t>O) (C.1)

P(21,t) = F(t) (t>O) (C.5)

P(xO) = 0 (O<x<21) (C.6)

We will again use the solution for homogeneous boundary conditions

defined by Equations (8.22) and (8.27).

We now consider the problem identical to that defined by

Equations (C.4), (C.1), (C.5) and (C.6), except that the function F(t) in

Equations (C.1) and (C.5) is assumed to be constant, i.e.,

P(O,t) = P(21,t) = F (t>O) (C.7)
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As in Appendix B, we assume a solution of the form

P = U+W (C.8)

where, in this case

d - 0 (Ox<21) (C.9)
dx 2 -

U(O,t) =F (t>o) (C.10)

U(21,t) =F (t>o) (C.11)

* and

aw=D22W (O'zx<21) (C.12)

*W(o't) = 0 (t>0) (C.13)

W(21,t) = 0 (t>O) (C.14)

W(x,0) = -U(x) (0x<21) (C.15)

The expression for U is easily found to be

U(x) = F (C.16)

and the expression for W is obtained from Equation (B.22)

CO ~n 2ff2Dt

W~xt)=_Z snw 4i 412

--2-)1-nsi ne (C.17)

where Equations (B.27), (C.15) and (C.16) yield

B F 21  nix x 2 F Confxl 2 1

n 7f sin IT dx FW 1os 70 L J 0

= -- (1 - cos nw) =--IF (n odd)
ni niT

=0 (n even) I (.8
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cf. [Taylor (1948:232)]. Thus Equations (C.8), (C.16), (C.17) and (C.18)

yield

F' Csi (2n-1)irx -(2n-1) 
2 r2 Dt

P(xt) = F L1 - z sin -7r e 41 (C.19)

We can now return to the original problem defined by Equations (C.4),

(C.1), (C.5) and (C.6), for which the boundary value in Equations (C.1)

and (C.5) is a function of time. Equation (B.52) again applies, where

from Equation (C.19),

00 (2n-l)wx - (2n-1)2w2D(t-x)sin 2 -412

s(x,t-x) = 1 - e (C.20)- n=1 2n - e1C.0

CO (2n-1)wx - (2n-1) 2w2Dt
s(x't) = 4 sin 21 412 (C.21)

-t n-1  2n1 e

Assuming the boundary value inputs are again defined by Equations (B.55),

(B.56) and (B.57), the ter.Ts in Equation (B.52) are

FO (2n-l),rx -(2n-1)2r2 Dt1-

F(O)s(x,t) = P0 [1 z sin( 21 (2n-1 Dte 412 (C.22)0n=1 2n - 1 e(.2

and

t t
f F'(x)s(x,t-x)dx =-aP0 f e- i dx

* 0 0

4P sin(2n-l e (2n-1) 2 w2 Dt [L(2n-1) 2 2r2 D a

2n - 1n e 4 f e dx
n=1 0

* 71 APPLIED EIEAPCH wIiOCIRmTEInc.



= P0 [e-=x]

0

SP (n)(2n-1)22Dt (2n-1 )( 2e7t 2 D, 1

*(2n-1),rx 2 (2n-1 It~
+40P0  sin - 21-- e 41 2 e 4(023

2n- 12222

Wn=1 (2-1 n- D ,TD-C

S41 2 0

p Po(e - a t _

400 l)7 sin (2n-l).ffx e 41- 2 -2Dt t
Z 21 = e- (C.23)

n=1 2 n (2 n-1 2 2D 4
• 41 2

Finally, substitution of Equations (C.22) and (C.23) into Equation (B.52)

yields

P(x,t) P 0oe-0 t

( 2n-1) 2 w2Dt

•O (2 - w F(2n-1)2w2D e 412 -ae-t

4P o Z- sin 21' 412
o n=l 2n - L,1 (2n-1)2 2 D j

41 2 -

'S (C.24)

cf. [Carslaw and Jaeger (1959:105)].

If we set

T (C.25)
412 -

•41 2
412 (C.26)
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X-T (C.27)

0 2n -1 = N (C.28)

then Equation (C.24) can be written in the form

P(C,T) = P 0 e - T

Zo iN21r2e - N22T- eT ]C.9

00

0
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* APPENDIX D

Adiabatic Fluid Diffusion Through a Rigid Porous Medium

Darcy's law for percolation of a fluid through a porous medium can b,

written in the form

lx(A.1)

* where the terms in the above equation are defined in Appendix A.

Under adiabatic conditions, the fluid is assumed to obey the relation

P = apy (D.1)

0 where y = 1.4 for air, and the remaining terms are defined in

Appendix A.

When the porosity of the porous medium remains constant, the equation

of fluid mass conservation takes the form

rd?= - -L-(pv) (A.3)

• where n is porosity, as defined by Equation (E.1). Introducing Equations

(A.1) and (D.1) into Equation (A.3) yields

1
y anaPat 1 aPBlx a

or

9p ByP -1/y lY (.2)
-5- = n Tx 7-x(.2

Setting y = 1 in Equation (D.2) yields
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t-n -a x ax

and neglecting the spatial variation of p (i.e., P1y) in Equation

(0.2) yields

ap BjIyP a2p a2  (D.3)

at n 7 2

where

• BI YP

D - nP (0.4)

Equation D.3) can be considered linear if the parameter D is assumed to

* be constant.

If no assumption is made concerning the terms in Equation (D.2), and

the RHS is expanded, the result is

9P B YP1 1- 1P 1/ P1

1 - - + a (D.5)

which is the nonlinear equation used by [Zernow, et al (1973:101)]. The

,0 first term in brackets on the RHS of Equation (D.5) reflects the spatial

variation of p; the second term reflects the spatial variation of v.

Si-e Appendix F for a finite difference approximation to Equation

* (D.5).
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APPENDIX E

Propagation Velocity in Spalled Soil

It is assumed that the soil skeleton is distended, and therefore

0 occupies volume but carries no load. Thus the material can transmit

hydrostatic pressure, but not shear.

The standard soil phase diagram applies,

0 V

and the following definitions apply:

VV
0 porosity: n = -T (E.1)

total density: ST = M (E.2)

VT

volumetric strain: c -T- 1 (E.3)
TO
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The sound speed, c, at pressure, P, for the mixture of soil particles

in air is give. the equation
• 2 = 1 dP

S -T dP (E.4)
PT T

VT

* where

VT = VTO(' + c) (E.5)

* dVT = VTO d (E.6)

_ s5vs ( 1-no\

PT - V TO(lpc) skT c/ (E.7)

Thus, Equation (E.4) can be written in the form

c2 + c)2 dP (E.8)

For rapid pressure changes, the relation between pore air pressure and

pore air (void) volume is the adiabatic equation

POVvo) : Po(n (E.9)

where y = 1.4 for air. Therefore, we have

dP YP 0 no+I-(Y+l) (E.10)-=  no (n o  (.O

so that Equation (E.8) can be written in the form

2  sn ( -oyp °0 non_ ) y+ l

_ P 0  (-+n)2 (no)Y (E.11)
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and finally I1/2 Y+1

C = [ Po (+e) no)T(E.12)

* strain by [Merkle (1980:38)].

0
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* APPENDIX F

Three-Dimensional Adiabatic Fluid Diffusion Through a Rigid, Porous,
Isotropic Medium

* Darcy's law for fluid diffusion through a porous, isotropic medium can

be written in the form

v = -B1VP (F.1)

where

v = fluid discharge velocity vector

BI  = effective isotropic permeability

P = fluid pressure

V -~--x I el + .e + e = gradient vector operatorx2 e2 x3 3

x1, x2, x3 = rectangular Cartesian coordinates

e e e2 ' e3 = unit vectors in the three coordinate directions

Under adiabatic conditions, the fluid is assumed to obey the relation

P = apy  (F.2)

where

a = constant

p = fluid mass density

y = ratio of specific heats (= 1.4 for air)

When the porosity of the porous medium remains constant, the equation

of fluid mass conservation takes the form
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ni = -V (p) (F.3)

where

nf porosity

Introducing Equations (F.1) and (F.2) into Equation (F.3) yields

0 1_1
n P Y  1 aP = [i plyp

y a -= BlV " ) V

* or

ap _____1_1/y V . (puT gP) (F.4)
at n

Setting y = 1 in Equation (F.4) yields

3P B 1=n.(PVP) (F.5)

0
and neglecting the spatial variation of p (i.e., p1/Y) in Equation F.4

yields

9 )P B1 YP2 2S-n V2 P = DV  P  (F.6)

where

D = BYP (F.7)
n

Equation [F.6] can be considered linear if the parameter D is assumed to

be constant.

If no assumption is made concerning the terms in Equation (F.4), and

the RHS is expanded, the result is [Hildebrand (1962:278)]
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ByPl 1  -1 2 u/21 B
at - n IP 2 + P =p B IPI 2 + ypV2p)t n(F.8)

The first term in parentheses on the RHS of Equation (F.8) reflects the

spatial variation of p; the second term reflects the spatial variation of

V.

If we set

P ij,k = pressure at (xiYj,tk)

then the two dimensional finite difference approximation to Equation (F.8)

-is [Crandall (1956:246,376)]

• Pi,j,k+l- Pi,j,k = B1 (Pi+l,j,k - Pi-l,j,k) 2+ (Pi,j+l,k Pi,j-l,k

At n 4h 2

+ P i-l,j,k + Pi+l,j,k + Pi,j-l,k + Pi,j+l,k - 4Pi,jk)1
i P,-,k' h2  '

(F.9)

where

h = Ax = Ay (F.1O)

so that

+BAt (Pi+l,j,k Pi-l,j,k 2 + (P i,j+l,k- Pij-,k
) 2

i,j,k+l =  i,j,k L 2 4

•+ YP i,j,k ( P i - l , j ~ k + Piljk+ P i~- + P i ~ ~ - Pi jk]Piljk i,j-l,k i,j+l,k i,j,k

(F.11)

For the one dimensional case, Equation (F.11) reduces to
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P i,k = P ik+ I [i ,k + YP i  P i+l ,k - 2Pi,k+ Pi-1,k)
ikl i,k ~12 }+ i,k(+. ~ k 11n(F.12)

An alternate formulation of the above equations results in a pseudo-

linear partial differential equation without any approximation.

Substituting Equation (F.1) into Equation (F.3) yields

nt -" (-pBI7P) BlV (F.13)

Now Equation (F.2) can be written in the form

p a . . (F.14)

so that substituting Equation (F.14) into Equation (F.13) yields

(P --) = B " (pll. V) (F.15)

0 at ( ) n

Now on the RHS of Equation (F.15) we have

,P pll = lly 1+  -p1/Y+ (F.16)

so that Equation (F.15) can be written in the pseudo-linear form

(pl/y)B1 V2(pl/ y+l) (F.17)
tt = n(l/y +1)

The one-dimensional form of Equation (F.17) is
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a B1  a2 (P/Y+l) (F.18)
-t = n(1/y + 1)x--2

For thr isothermal case, setting y = 1 reduces Equation (F.18) to

Equation (A.5). The finite difference approximation to Equation (F.18) is

SI/Y .+1 l/ B p 2pT + pT
_i,k l -_-, i,k 1 i+ ,k (F.19)

At ()n(1/y ( 2

so that

1 1 1 1

I/y . i/y + Bl(At) p + 1 + 1 + 1

wi,k1 i,k n(1/y + l)(Ax)2 (1i-l2k k + i+1,k )

0 where

pIY +l = (puT +)l+Y (F.21)
1,k+1 ,k1

0
and

p - /y
i,k+l =  i,k+l )  (F.22)

A similar pseudo-linear formulation can be constructed with p as the

dependent variable. Substituting Equation (F.2) into Equation (F.18)

yields

1/ 1+1
- t(a PY) = n(/ T V2 [(apy)y ]

* or

ap Ba V2 (P +Y) (F.23)- t=n~ly + 1)
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The one-dimensional form of Equation (F.23) is

Bla 2(
- n(ly + 1) 'Y) (F.24)

The finite difference approximation to Equation (F.24) is straightforward,

but not quite as convenient for computation as Equations (F.20), (F.21)

and (F.22), since pressure boundary conditions must be converted to

density. Equations (F.20), (F.21) and (F.22) are even convenient for hand

computation.

8
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* APPENDIX G

Transient Linear Pore Air Diffusion in a Vented Layer Subjected to Surface
Airblast Loading Having a Negative Phase

All the equations of Appendix B apply, up to and including Equation

(8.54). In place of Equation (B.55) we assume that

F(x) = P e-a(1 - X-) (G.1)
00

so that

* F(O) : P0  (G.2)

o 0 -ax
F'(x) = -aPoe- ( -e -

= -c(1 + -- )P e a--o (G.3)

a00 0 0

If we set

Fi(x) = -a(1 + - o-)P ecx (G.4)

' F(x) =-a Poxe-ax (G.5)
'k 0

then Equation (G.3) can be written in the form

S F'(x) = FI(x) + FI(x) (G.6)

The terms in Equation (B.52) then are
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00 n2-ff2Dt

F(O)s(x,t) : P o(1 -X) - sin -7- e I (G.7)

and

f Fi(x)s(x,t-x)dx Po(I + Jxo) (1 - )(e- t  1)
0

1 CO -t n2 i2 D \

2(a -0 Z 1 sin-sin e 2 (G.8)

'~on=1 n' 7re Dx x G

2 a

0 and finally

t t

ooh e ()s(x,t-i)dn u Pion (i - f h e d

x G.0

0
00 n2Tr2Dt t (JA2D a

2Po n Ux = 2 1 2G
d-OOd sin, e f d (G.9)-f' = n0

Both integrals in Equation (G.9) are of the form

t rI = f xer dx (G.10)
• 0

which can be integrated by parts by setting

•U = x (G.11)

dU = dx (G.12)

dV --erx dx (G.13)

* V = e (G.14)
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* so that

X rx e t __ erx d

I e f er dAL
0 r 0

I( )e er] t  = t 1 ert +1 (G.15)

0 Thus, Equation (G.9) yields

t 1 t +
f F(x)S(x,t-)dA = P0 -(1 ) -
00 a C

• 2(G.16)

n n2 D 2 Dt

2 0  1 sin nfiX e [ t C 1atl
0 o n=1 n s {(n 2 1 2 n2 2 D - a (n 22D 2D a) 2 iJ

When Equations (G.7), (G.8) and (G.16) are substituted into Equation

(B.52), the coefficients of key functions are

p(1 -T): 1 + e- a  eat 1 1_
0a1 a aX' aX"
0a,0 aX0 ax0

I + t 1 - at (. t)e-at (G.17)

0 ax0x0

and with

n D (G.18)

2 nwx -Ft a +

sin - T e : + F o~a
87 - PI Xo(fn - )2
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- + rn (G.19)

rn  n

a+1

2P 0  nwx +ct X __ i2oisin Cae-t 0o a + at

n -F n  -a x o(rn  _ A) o( n  - a)

1! aIn 2+ r at ( G 0)
n  x o(rn - a x(r n-

0 Thus, if we set

ra + n 2 n  
(G.21)Fn  x O(rn  a )2

then Equation (B.52) takes the form

P(x,t) = P0 [(1 - })(1 - )t eat

-2 sin f eiX -n) t at 1ea tl
n=l n +  [en - Xo(r n  a c) e

0 (G.22)

If we set

Dt T (B.61)

12

Da - (B.62)

2_ -(G.23)

0

X (B.63)
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6

then

+ /n 2 2 D+

9n D / 2 D  a
i2 -a 0- - cz

0

+ n27r,(G.24)n2 2 7r (n2 F 2

and

nt =(G.25)

so that Equation (G.22) can be written in the form

P(ET) P 0 (I - )(i - OT)e - 8T

CO
2 -nl 1r [e n T  sOB T eB]
S =-sin n (1 + o- -n J

(G.26)
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* APPENDIX H

A Simple Piston Model for the Pore Air Effect

Ks

+ +
0 .

The volume change of the soil skeleton depends on effective stress.

p- u = ksx (H.1)

The volume change of the initial volume of pore fluid depends on the pore

pressure.

0 u = kwY (H.2)

The rate at which new pore fluid flows into the soil void space depends on

the pore pressure difference.

0 --4 (y - x) = (p - u) (H.3)
dt C v

Written together, Equations (H.1), H.2) and (H.3) take the form
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ksx +u = p

kwy - u = 0 (H.4)

-Cvi + Cv + u = p

Eliminating the pore pressure, u, we obtain

Cvi - Cv + ksx = 0
* (H.5)

-Cvk + Cv + kwy = p

or, in matrix form

* c~, [1 '] {: + [k kwl{] 1 H6

In operator notation, Equations (H.5) take the form

(CvD + ks)x - CvDy = 0 (H.7)

-CvDx + (CvD + kw)y = p

We eliminate y as follows:

(CvD + k s)(CvD + kw )x - C vD(Cv D + k w)y = 0

(+) -(C VD) 2x + CVD(CvD + kw)Y = CvDp

[Cv(k s + kw)D + kskw]X = CvDp (H.8)

Wher Equation (H.8) has been solved for x, the first of Equations (H.4)

yields the solution for u:

u m p - ksx (H.9)

and the second of Equations (H.4) yields the solution for y:

-ku (H.10)
w

Equation (H.8) can be written in the form

D + ksk ) x = )Dp (H.11)C v (kAs + kwTOkRS + kC.
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or

(D + a)x =bDp (H.12)

where

C ks s+k W) (H.13)

b = 1(H.14)
k s+kW

The complete solution to Equation (H.12) for which x(O) =0 is [Cheng

(1959:15)]

x(t) = b f dP. eat)d (tO (H.15)

0 x

The integral on the RHS of Equation (H.15) can be integrated by parts by

setting

U e-a(t-A) (H .16)

dU =ae a(t") dx (H .17)

dV = ildx (H .18)
dx

V = p(X) (H.19)

0 so that

-a 4*-1 t t - ~ -x
x(t) = bp(x)ea~x - ab f p(x)ea~x dx

0 o

bp(t) - bp(O)e-at - ab p -ea( t-A) dx (H.20)

0

When

p(O) = 0 (H.21)
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Equation (H.20) reduces to

x(t) = b [p(t) - a f p(.x)e-a( t-x) dx] (t.O) (H.22)

When p(t) is a step pulse, i.e., when

p(t) -0 (tczO)

= P (t>0) (H.23)

dt= P6(t)

then Equation (H.15) yields

x(t) = bP f( t ~e dx

0 0

= bPe at = P e- at (t>0) (H.24)

* Equation (H.9) then yields

u(t) = P 1- (rT -) eat] (t>o) (H.25)

and Equation (H.10) yields

y0t) kr [i w r . ) eat t0 (H.26)

Note that Equations (H.24) and (H.26) yield

x(+ ko) P (H.27)
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The reasonableness of the above solution can be examined by

constructing the model associated with Equations (H.5) or (H.6), which is

shown below.

C.

Initial application of the step pulse P produces equal instantaneous

displacements x(O+) and y(O+), so that no dashpot force acts. The

springs ks and kw resist the load in parallel. At t = - the spring

k w resists the entire load, and the soil piston has returned to its

original position.

The response is composite compression followed by recovery. Initial

undrained loading produces a sharing of internal stress between the soil

skeletun and the pore fluid, in such a manner that the initial volume

changes of soil skeleton and pore fluid are equal. Subsequently, drainage

occurs in response to the difference between the back pressure and the

pore pressure, as a result of which the pore pressure eventually becomes

equal to the back pressure. At this point the change in effective stress

in the soil skeleton is zero, and its initial undrained volume change has

been recovered.
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When p(t) is an impulse, i.e.,

p(t) = 6(t) (H.28)
0

then Equation (H.22) yields

h(t) = -abe - at (H.29)

The fact that an upward displacement results from a downward impulse can
0

be explained by the fact that a downward impulse can be viewed as the

successive application of two step pulses, the first downward and the

second upward.

04

6eH

Equation (H.24) therefore yields

h(t) = bP[e -at - e- a ( t - At) ]

b0[ d at
= bP[-d (e- )at]

= -abe- at(Pat) = -abe - at  (H.30)
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0

q

The net upward displacement following a downward impulse is due to the

fact that displacement recovery begins immediately following the

application of a step pulse. This is caused by flow of pore fluid into

the soil skeleton in response to the difference between the backpressure0

and the pore pressure.

9)
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* APPENDIX I

A Simple Dynamic Piston Model for the Pore Air Effect

07

A-s• .q

6i

The equation of motion for the soil skeleton is

(p - u) - KsX M s (1.1)

The equation of motion for the pore fluid is

u - Kwy = MwS (I.2)

0 The rate at which new pore fluid flows into the soil void space depends on

the pore pressure difference

d (y - x) =I (p - u) (1.3)

Written together, Equations (1.1), (1.2) and (1.3) take the form
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*w +~ +KWY - U 0 (1.4)

-Cx + C ,y + u p

*Eliminating the pore pressure, u, we obtain

Msx + C v-C v+ K x 0

*w M -Cv + Cvy + Kwyp

or, in matrix form

[Ms Mw -1 + 1 + [Ks Kw{Y 0

(1.6)

In operator notation, Equations (1.5) take the form

Ljx L2Y= 0(1.7)

-L2x + L3Y =P

where

Ll= M5D2 + CvD + Ks (1.8)

L2= CID (1.9)

L3 = MwD2 + CvD + Kw (1.10)

To eliminate y from Equations (1.7), we proceed as follows:

L 1 L 3x - L2L3y =0

*+ -L-x-2 2 L P 2p

(L L3  L 2)x =L~p(.1

Expanding Equation (I.11), we obtain
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[MD 2 + CvD + Ks)(MwD2 + CvD +Kw) - C2 D2 ]x C Dp

or

4 D3  D2

([MSMwD 4 + C v (Ms + Mw)0) + (MsK w + MwKS)

(1.12)
* + Cv(K s + Kw)D + Ks K w]x = CvDp

When Equation (1.12) has been solved for x, the first of Equations (1.4)

yields the solution for u:

u = p - (MsD2 + Ks)x (1.13)

and the third of Equations (1.4) yields the solution for y:0

It
y(t) = x(t) + C! f [p(x) - u(x)]dx (1.14)

vO0

* Equation (1.12) can be written in the formD 4 + C v (Ms +, M ]oD3 ( Ms w+ w K , S D
+D +  (w D + x MS Dp (1.15)

* or

(D4 + bD3 + cD2 + dD + f)x = gDp (1.16)

where

Cv (Ms + MW )

sEw
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MsK w +M wKsc S= WSw (I.18)

Cv (Ks + Kw

d= MsMW (1.19)

f - sw (1.20)

C v - (1.21)

g M M

Consider first the homogeneous form of Equation (1.16), which is

(D4 + bD3 + cD2 + dD + f)x = 0 (1.22)

If we assume a solution of the form

xH(t) = Cecit (1.23)

then substitution of Equation (1.23) into Equation (1.22) yields

( 4 + ba3 + c 2 + da + f)Ceot = 0 (1.24)

Assuming that Ceo t * 0, Equation (1.24) yields

c+ b 3 + c 2 + d + f = 0 (1.25)

The solution of Equation (1.25) is obtained in Appendix J.

Having solved Equation (1.25), we write Equation (1.23) in the form

4 Qjt
" xH(t) = 1 Cje (1.26)

J=1

We now return to Equation (1.16), which can be written in factored form

* [(D-aI)(D- 2)(D-0 3 )(D-a 4 )]x = gDp (1.27)

The particular solution to Equation (1.27) is developed in Appendix K.

The complete solution to Equation (1.16) is the sum of the homogeneous

* solution, given by Equation (1.26) and the particular solution, given by
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Equation (K.16):

0 X(t) = x H(t) + xp(tM

= 4 Cej + dx eatx dl (t>0) (1.28)

0 Thus

4f
j~)=Z 1  C7e ' j

40 + c - ej(t-A) d(t>0) (1.29)
f dxe 3  dl

0 2(t = e Yc2ajt +--2 [p(t) + a4(t)

+ 2td A ze. i(t-x) dxl (t>0) (1.30)

4 att [ + .Bt+
(1t 3 Ci Llje +1T + a(t + a 2(t)

+C3 tx 9Re .J(t-x dxj (t>0) (1.31)

00

X(0) = A C. (1.32)

i-i 3

* (O) = [. + -. [(O) + czp(0)] (1.34)
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x(0) , C + A[ (O) + y~j(O) + ct2.o] (.5

When p(t) is a step pulse, i.e., when

p(t) = 0 (t<0)

= P (t>0) (1.36)

=t PS(t)

then

p(0) ) = ) = = ()=0 (1.37)

so that for a system initially at rest, Equations (1.32), (1.33), (1.34)

* and (1.35) reduce to

S 1 1 I C1  0

al a2 a3 a 4 C 2  0

2 2 2 2 (.8

a, a 2 a 3 (4 C 3  0

3 3 3 3
al a C4  0

The coefficient matrix in Equation (1.38) is nonsingular, provided

a (W~) (1.39)

because its determinant is a Vandermonde determinant [Bellman (1960:186)],
0

and therefore it must be that

C1 = C2 = C3 = C 4 = 0 (1.40)

In this case no homogeneous solution is required to satisfy the initial
0

conditions, and therefore the particular solution is the complete

solution. Equation (1.28) yields

x M5 t = x (t) = gP 1 -e (t>0) (1.41)
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so that

i(t) = gP ~ e (t>O) (1.42)
_ lr.

2
4 (t) e aP t (t>O) (1.43)

From Equations (1.41), (1.42) and (1.43) we obtain

4

* x5(O+) = 1

1 +

+ 1+ 1a 7

a2 (a2_
1 [2 3 0)a + a3043 - -0 (03+a14)01l + 03043

*+ 1 4-alY + ald- [23 (ala23 + ala2]

-Q au+2(12)(a-x)( a

+ (a1+a2)(cI3-a4) -(ci3+cz4)(cz3-cY4

=0 (1.44)
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4 c

23 + 2

ala2+ a 2 _

+ 1 ~3[4 (c11+c2)ca4 a2] -a4[a3 -(cal+c12)a3 al2]

0 (a3-Y~~~~ (m1-m2)a3 2)(4a)u-2

+ (a 3 -a 4 )Q1 42 - (a3-Yc 4a3'14

0~ (1.45)

and

* (0+)~ 3

2 2
Cl1 + a2

a (1c2 (a1lc13)(dz-a47 C2% c

2 2
+ a3 -T+ a4

(a3-al)(ci3-i2)(i3-z4) Ta 1)Na4'2)(Qa37
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22 22
1 c1 2 (a3+a4)a2 + 03a4 ] 02[a 1- (a3+a4)o1 + 0304 ]

=- a (al-3)(, l-04)(a2- a3)(a 2- a4)

2[a2 2
+ 1 3[ - (a1+a2)4 + all2] - 43 - 1(al+c2)C3 + alcL2]

+ -4  3-(a3a1)a3-a2)((a4-a1)(L4-02)

0 - (al+a2)(al-M2)C3a4 - (Q3+a4)(al-a2)a1a 2

- (al-a2) (al-a3) (al-a4) (a2_a3)a 2_a4)

* + (a3+a4)(a3-4)alQ2 - (al+a 2)(a3-a 4)a 3a4
(a3-a 4 ) a3-a 1) (a 3-a2 ) (a 4-a1) (04 -a2)

=0 (1.46)

A numerical example shows that two roots of Equation (1.25) are real and

the remaining two are a complex conjugate pair: All real quantities are

negative.

CL1= -m (1.47)

a 2  -n (1.48)

a3  -q + is (1.49)

a4 =-q- is (1.50)

Equation (1.41) can therefore be written in the form

[l Me-mt + le-nt + 1 e-qt+ist + 1 e-qt-ist (Xs~t = r 7r 12 w3 r4 (.1

Now

eist = cos st + i sin st (1.52)

e-ist cos st - i sin st (1.53)

so that Equation (1.51) can be written in the form
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+ ( + ) e qt cos st + i( iJ) e-q' sin st] (1.54)

or

x s(t) = P(Ae-mt + Be-flt D D1e- qt cos st + D 2 eqt sin st) (1.55)

where

A- = 11.51

B = n ( 2 + 2 (1.57)
2 201)(a2c'3 (' 4 (n-m)[(q-nm I

D 1 - + -' [See last two terms of Equation (1.44).]

(a10)- (a3+a4)

* -m + n - 2q (1.58)
2(-q + S ][(n-.q) +

2 r3 'r4 [(a3- a1)(a3-a2)(a3 -a4T Toa:1)N(aQ (a43)

1 [a -(za24 + C1a2 + [a a+2a

2 (2 - 023c4 + 2ch1 2 )0 12

i [2q 2 _ 2s 2 _ (m+n)(2g) + 2mn]

[(m-q) 2 2][(n-j) ] S
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mn (m+nlg + q2-2(.9

-s[(m-q) 2~ + 2 ][(n-q) 2 + S2](.9

Equation (1.55) can be simplified by a trigonometric substitution.

If we set

R VD, + 2(1.60)

* =tan 1 02 (1.61)

-mt-

x s(t) = gP[Ae-m + Be-nt - Re.- qt cos(st+8)] (1.62)

For the case at hand, Appendix L gives

*m = 0.115726598 X 10-4 MSEC-
1

n = 0.538700000 X 10 7 MSEC'1

q = 0.462842340 X 10-6 MSEC-
1

*s = 0.425932181 X 100 MSEC-1
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g = 1.508 X 100 FT
LB(MSEC)

so that

( -q)2 + s2 = 0.1814182229 MSEC
-2

(n-q)2 + s= 2.9019769 X 1013 MSE-2

and therefore

A = 12= 1.023227294 X 10-6 (MSEC)
3

(n-m)[(q-m) + s2 ]

B = 1 2= -6.396745516 X 10-21 (MSEC)3

(m-n)[(q-n) + s2]

Di m + n - 2q = 1.023227293 X 10
-6 (MSEC)3

[(m-q)2 + s2][(n-q)
2 + s2

_ m- (m+n)q + -2 s 2

2 2 2 + _ 2 2 - 2.660848297 X 10-11 (MSEC)3

s[(m-q) + s ][(n-q)2 + s2 ]

2 2
R = -D,+ D =1.023227293 X i6(MSEC)3

1 01 22 
-3

= tan-  - = 1.489942369 X 10-  DEG
D1

so that Equation (1.62) gives

,0 xS(t) 3 543026759 X 10- 6 e-0 .115726598 X 10-4 t

P

- 9.646292238 X 10-21 e-0. 538
700000 X 107t

- 1.543026758 X 1U- 6 e-0 .4628423 40 X 10-6t

, [cos(O.425932181t + 2.600440001 X 10-5)] FT/LB
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Differentiation of Equation (1.62) yields

* Xs(t) = gP[-mAe-mt - nBe-nt + qRe-qt cos(st+8)

+ sRe - qt sin(st+B)] (1.63)

0 Equation (1.63) can be simplified by another trigonometric substitution.

S

0

If we set

r =.q2 + s2 - 0.425932181 MSEC -1  (1.64)

* 0 = tan -1 q/s = 6.225759401 X 10-5 DEG (1.65)

then Equation (1.63) can be written in the form

s (t) = gP[-mAe- t - nBe- nt + rRe - qt sin(st+0+0)] (1.66)

where

s + 0 = 1.552199963 X 10- 3 DEG

so that Equation (1.66) gives

Xs(t) -015258X1-4t
= -1.785692374 X 10-11 e- 115 726 59 8 X 10 t

P

* + 5.196457629 X 10- 14 e-0 .538 700000 X 107t
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+ 6.572247524 X 10- 7 e
-0 .4 62842340 X 1O- 6t

[sin(O.425932181t + 2.709100001 X 10-5)] (1.67)
FT/(LB MSEC)

Differentiation of Equation (1.66) yields

0
Rst M gP[m2 Ae- mt + n2Be- nt - qrRe-q t sin(st+o+O)

+ srRe -q t cos(st+B+0)]

= gP[m 2Ae-mt + n2Be -nt +r2Re- qt cos(st+0+20)] (1.68)

where

C,

6 + 20 = 1.614457557 X 10-3 DEG

so that Equation (1.68) gives

S(t) 10-16 e--0.115726598 X 10-4 tp -2.066521035 X 1

- 2.799331725 X 10
-7 e-0 .538700000 X 10

7t

+ 2.799331722 X 10-7 e-0 .462842340 X 10-6t

[ Lcos(O.425932181t + 2.817760001 X 10-5)] (1.69)

FT/LB(MSEC)
2

The impulse response function can be obtained from Equation (1.62), or

from the fact that an impulse is the successive application of two step

pulses.
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h Xt -x()-X (t-At) A- [x (t)]At
PAt - Pest

0

-'s (t) = [-mAe-mt - nBeflnt + r~-q sin(st+o+O)] (1.70)

-

0 - 1.785692374 X 10 e-115726598 X 104t

+ 5.196457629 X 10-14 e-0.538700000 X 10
7t

+ 6.572247524 X 10-7 e
-0 .462842340 X 10- 6t

• [sin(O.425932181t + 2.709100001 X 10-5)] (1.71)
* FT/(LB MSEC)

The model associated with Equations (1.5) or (1.6) is identical to

that associated with Equations (H.5) or (H.6), shown following Equation

* (H.27), except that the pistons have mass.
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*I

A suddenly applied force p(O+) will produce no initial acceleration of

mass Ms because there will be no initial relative velocity

y(O+) - x(O+), and therefore no initial dashpot force to cause such an
0

acceleration. For awhile the mass Mw will drag the mass Ms along with

it, but when the system comes to rest the mass M5 will return to its

initial position and the spring Kw will carry the entire final load.
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APPENDIX J

Solution of a Fourth Order Algebraic Equation

• Consider the fourth order algebraic equation with constant coefficients

a4 + ba3 +c2 + d + f =0 (1.25)

The solution of Equation (1.25) is classic, but although involved, the

* resulting equations need not be as useless as is commonly believed

[Sokolnikoff and Sokolnikoff (1941:91)].

To eliminate the cubic term, let

a= - (J.1)

so that

Sa4 = z4  z3b + z 2b2  1zb3 + 1b (J.2)

a =z 3 - T z2 b+ ,- zb2  16-Tb (J.3)

z2 _1 zb + 12 (J.4)

Substituting Equations (J.1), (J.2), (J.3) and (J.4) into Equation (1.25)

yields

z4 zb 3 z2b2 1 3 --b4

- 8 b -6-zb + 256

+ b(z3 _ 3 z2b + 3 zb2 _ 1 b3)

b 1- --

+ c(z2  1 1 zb + 12

+ d(z - b) + f
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4 + b b2 + c) Z2 + 1. b 3  1 bc + d) z

+(-L.b 4+~ 1 2 bd +f) = 0 (J.5)

or

* + qz 2 +rz +s =0 (J.6)

where

q q- b 2 + c (J. 7)

r . b 3 -Ibc + d(J8
r8 2(.)

256 16 4

Equation (J.6) can be expressed as the product of two second order

0 polynomials, having their linear terms equal in magnitude and opposite in

sign, of the form

[(z-l) 2 _ (m~ln) 2[1(Z+l) 2 _-n 2

= (Z-1) 2 (z+l) 2 - (Z-1) 2 (m-n) 2 _-zl 2 (n)2

+ (m+n) 2 (m-n) 2

=(z2 1-2 ) 2- (z 2_21z+12 )(m 2 -2mn+n2)

*-(z 

2+21z+12 )(m 2+2mn+n2 ) + (M2_n2) 2

=(z4-212 z2+14 ) - (m 2 -2mn+n2)z 2

+ (21m 2-4]mn+2ln2)z - (1 2 m2 _ 21 2mn4-12n2)

-(m 2 2nn2)z 2- (21m 2+4lmn+21n2 )z

- (12 m2+212mn+12n2) + (r4-2m2n2+n4)

= -4 2( 12+m2+n2 )z2 - 8 lmn z

+ [(14+m4+n4) - 2(12m2+m2n2+n212)] -0
(3.10)
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0

Comparison of Equations (J.6) and (J.10) shows that

-2(I2 + m2 + n2) q (J.11)

-8 lrmn = r (J.12)

(14 + m4 + n4) - 2(lm 2 + m2n2 + n2 12 ) = s (J.13)

so that

12 + m2 + n2 =-- (J.14)

1 12 m2 + mWn 2 + n 212 _(1)2 q 2_4s(.5
S2 2 4 - 2

*~~ in ~mn = 4 = ~--~-.(J.15)

Equations (J.14), (J.15) and (J.16) define the coefficients of a cubic

equation, of which 12, m2 and n2 are the roots.

* k3 + - k2 + ( 4 k r 2=-) 0 (J.17)

When 1, m and n have been found by solving Equation (J.17), being careful

to ensure that

Imn =- -r (J.18)

then the initial form of Equation (J.10) can be written in the form

(z-l-m-n)(z-l+m+n)(z+1-m+n)(z+l+m-n) = 0 (J.19)

and therefore the four roots are

zI  I + m + n (J.20)

z2  1 - m- n (J.21)

z 3 -1 + m - n (J.22)

z - - m + n (J.23)

Equation (J.17) can be written in the form

* 115 APPLIED PEIEAPCH AIIOCIATE, IfC.



k3 + Ok2 + yk2 + =0 (J.24)

where

t 8 1 (J.25)

2* 2 4s~j~ (3.26)

6 -r (J.27)

* In order to eliminate the second order term in Equation (J.24), we set

w- (J.28)

so that

3 3 2 1 2 1 3 3.9k = w _ Ow + - 0 w _ 2 0 (J.29

k2 - w2  2 1 2 (3.30)

Substituting Equations (J.28), (J.29) and (J.30) into Equation (J.24)

* yields

(w3- w2 + l2w- 13 2+ O(w - w +. 12) + Y(w- + 6 = 0

* or

B2 _A 2+3  ) O(.
w3-(7- y)w (3.

0 or

or

w3 - Pw - Q = 0 (J.32)

* where
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62
P - (J.33)

By 2 3

Q = - 26  -6 (J.34)

To obtain a solution of Equation (J.32), we assume that

w = A + B (J.35)

so that

w3 = A3 + 3A
2 B + 3AB 2 + B

3

= A3 + B3 + 3AB(A + B)

= A3 + B3 + 3ABw (J.36)

Equation (J.36) can Lt written in the form

w3 - 3ABw- (A3 + B3 ) = 0 (J.37)

Comparison of Equations (J.32) and (J.37) shows that

3AB = P (J.38)

SA 3 + B3 = Q (J.39)

Equation (J.38) yields

A3B3  (§)3 (J.40)

Thus the sum and product of A3 and B3 are specified, which means that

they are the roots of the quadratic equation

_2 (A3 + B3) + (A3B3 ) = 0

or

C2 _ Qc + (P)3 0 0 (J.41)

Thus

. 17LD S A Z O(Q)2 _ (.P )3 (J.42)
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2 B V()3 ( -43)

* Ifwe set

R 2 ( ) (3 (J.44)

then Equations (J.42) and (J.43) can be written in the form

A3 = + -J (J.45)

B B3 =T- (J.46)

When R<O, i.e., when

) 3> (Q)2 (J.47)

then Equations (J.45) and (J.46) take the form

0A 3 -=Q + i (.E) 3 _ (Q) 2 (3.48)

B- = V(P -)3 (Q)2 (.49)

In this case, A3 and B3 can be represented in the complex plane as

shown below.

* r A 3
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Thus we can write

A3  e'3  (J.50)

3 P .V P3;* e- 3e (J.51)

* where

3e =cos-,3.2

P)3

so that

*A. = .e (j =1, 2, 3) (3.53)

Bk v e- e k (k = 1, 2, 3) (J.54)

where

Q 1OS (J.55)

4+ 2-f (3.56)

Now~~ Eqato (33)rqursta 2wf (J.57)

3

w. A. + Bk(J.59)
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must be such that A. and Bk are complex conjugates. Therefore it must

be that k = j, so that

il~j -itj

wi r (el + e )

= 2Vf' cos i. (j = 1, 2, 3) (J.60)
0J

The above three roots are all real.

When R>O, i.e., when

P (.61)

then both A3 and B3, as defined by Equations (J.45) and (J.46) are

* real.

If we set

o1=Q +F (J.62)

0- (3.63)

and

Ao = 1.
111/3 sgn I  (J.64)

S ° = 10211/3 sgn 02 (J.65)

then

A 0 e (J.66)

Bk = B0ek (J.67)

where
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= 0 (J.68)

C2 = 2 (J.69)

2w (J.70)

Now

AB 3 =2 P (J.71)
0 07

which means that the choices of Aj and Bk in the relation
wj = Aj + Bk  (J.59)

must be such that A. and Bk are, again, complex conjugates, and

therefore

WI = A1 + B1 = A0 + B0  (J.72)

S2w. 2v

w2 = A2 + B3 = Ae + Be

-- 7 (A + Bo) + i -(A - B) (.73)

.2-f 2w

w3 = A3 + B2 = A0 e + Boe

(A + Bo) - i - (A - Bo) (J.74)

In summary, to solve Equation (1.25) we do the following:
,5

C v(Ms + Mw) (1.17)

MsMw

MsK w + MwKs' c = s. (1.18)

s w
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Cv (Ks + KW) (.19)

KsKw (1.20)f -

* cv (1.21)

then

3 b2 + c (J.7)

1 b3 bc + d (J.8)

S 3b 4 + 1 2 - bd f (J.9)
T 1-6 c

0 then

(J.25)

• Y 2 4s (J.26)

r2 (J.27)

'0

then

82 
(J.33)

Q By 2s3  (J.34)

S then
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R = (Q)2 ()3 (J.44)

* If R<O:

0 1 = COS-1 f - 3 (J.55)

e3

33

k= MAX(k, k2, k3) (J.78)

* op =cos-  3kI 3)

kii =2 f co(ep + 2w)- (J.80)

k 2p cos(e~ 2w (J.81)

3 7

• cos-(sgn ki) (J.82)

1k= r cos 2 w (J.83)

11 1/2 1k11  /11

8Ikl I kli

k I I  1 2 (cos n + i sin Q) (J.84)

8 +1 = orl 12
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n Iki 11
2 (cos p + i sin Q) (J.85)

* The rationale for Equations (J.83), (J.84) and (J.85) is explained

following Equation (J.94).

If R>O:

Q + + (J.62)

a2Q-VR" (J.63)

Ao = ICl
11/3 sgn a, (J.64)

IaBo = IY211/3 sgn a2  (J.65)

p= (A + B) +]2 + (A B)2 1/4 (J.86)

Cos(J.87)

1= r (J.88)
8p 2

m = p(cos Q + i sin Q) (J.89)

n = p(cos Q - i sin SI) (J.90)'0

The rationale for Equation (J.88) is explained following Equation (J.94).

Equations (J.72), (J.73), (J.74), (J.86) and (J.87) can be represented

graphically as shown below.
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0

B n2 isthe complex conjugate of m2 (mirror image across the x-axis).

Finally, we have

b (J3.91)

b2l m~~ (3.92)
-7 = l - r-n n-

® b
C:4 = -1-r + - - (J.94)

12

Equations (3.83) and (3.88) ensure that 1 will be real, and that Equation

(J.18) will be satisfied. The correctness of the assumption that 1 is

real can be verified as follows:

Notice that Equation (3.16) requires that the product of the three

roots of Equation (3.17), i.e. 1222, be a nonnegative,

real number.
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2

If the three roots, I2 , m2 and n are all real, then either one

is nonnegative and the other two are negative, or all three are

£ nonnegative. In either case, m2 and n2 have the same sign,

which is assured by Equations (J.84) and (J.85).

If one root is real and the other two are complex, then the complex

roots must be complex conjugates. Since the product of the

complex conjugate roots is nonnegative, the real root must also be

nonnegative.

Thus, we can always assume that

12 > 0 (J.95)

and therefore that 1 is real.

The coefficients (invariants) of a fourth order polynomial equation

will be real if and only if complex roots occur only as complex conjugate

pairs.6

Ii = al + C2 + c3 + a4 = (ai+a2) + (a3+a4) (J.96)

12 = o1a2 + Q1a3 + a,4 + a2a3 + a2a4 + a3a4

q)
= 1a2 + (a1+02)(a3+a 4) + a3a4 (J.97)

13 - a20304 + a1a3a4 + a1 c2a4 + a1 2"3
0

=3 a4(41+a2) + ai2(a3+Q4) (J.98)

14 = ala2a3a4 = (i2)(aa34) (J.99)
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* APPENDIX K

Solution of a Fourth Order Linear Ordinary Differential Equation With
Constant Coefficients

Consider the frjrth order, linear ordinary differential equation with

constant coefficients

(D4 + bD3 + cD2 + dD + f)x= gDp (1.16)

which can be written in the factored form

[(D-a I)(D-Q2)(D-Q3) (D=a4)]x gDp (1.27)

where a1 a 2, a3, and a4 are the roots of the equation

a+ b 3 + cQ2 + da + f 0 (1.25)

The particular solution to Equation (1.27) can be written in the form

x p(t) = 1 gDp (K.1)
p 1) (D-a2)(0-a3)(D 17

Now if we set

A + B (K.2)(D-al)(D-a2 ) =D-a-I D---01 2K2

then it must be that

D A-A 2 + BD - Ba1 = 1 (K.3)

and therefore that

B = -A (K.4)

* so that

A(aI - a2) = 1 (K.5)

and therefore

A- 1 (K.6)
al - a2
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0

and

B 1 (K.7)
t 2- al

Thus, we have

S1 + (K.8)
(D_=I)(D_) = (i_ 2 ) (D-C1 ) (a2 _r 1)(D- 2 )

If we set

Si - =Rij (ij) (K.9)

D -i Di (K.1O)

then for distinct roots,

1 1 1 (K.11)

13 i RjiDj

We then have

1 1 1
_120 2_D_ + 21 02 _

1 2 3 F3~~R 2 D + _U3_

1 1 1 +- 11

R R1 D + R I + R__ ( R1 -  R D 1
- R12R1 3D1  R21R23D2  12 31 32 3

1 + 1 + R32 - R3 1

R R D R D12131 R21R23D2 1231323

1 1 1 (K.12)
* - R12R13D1 + R21 R2 3 D2  R3 1R3 2 D3

and, in general,

* D 1  . = -1 (K.13)DID2D 3  128N  = L jD
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where

lrfj =jRj j ... R ~- jjl... RjiN (K.14)

Now the particular solution for D4is, from Equation (H.15),j

1 d t (t-x)
*gFt -g]= g f e ~ dx (t>O) (K.15)

D 0 dx

Equation (K.13) therefore yields

* 1 _R 4 'a(t
x (t) g I g 1fq- e J dxk (t>O)
p D 1 D2D 3 4  dt 0 d (K.16)
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* APPENDIX L

Numerical Solution of the Characteristic Equation

* Equation (1.25) will be solved for one cubic foot of dry sand,

constrained to undergo one dimensional compression and loaded by a 100 PSI

airblast.

* From [Terzaghi and Peck (1967:28)] we obtain

W = 115 LBS

115 LB SEC 2
M s  = -T 2 -2 = 3 . 5 7 1 4 - F I -0 FT

n = 0.30

* VA Vv = 0.30 FT
3

and since [McGuire (1968:181)]

LBS

YA = 0.07651
FT

we have

* A = (0.07651)(0.30) = 0.022953 LBS

M=0.022953 -4 LB SEC232.2 7.128 X 10 FT- .2 FT

From [Bowles (1977:269)] we have

Ks = 600,000 LBS

and if we assume isothermal compression, we obtain
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dp dV (L.1)

p V

so that

dp = - dV (L.2)

0 and

AA dp - A dy (L.3)

pA2  (100)(144)(1)2 LBS
V 40.30 _= 48,000 T

Assuming an effective permeability, as given by Equation (4.3), of
(0

B 1  5.054 X 10
-10  M4

N SEC

* - (5.054 X 10-I0)(4.448222) _ 2.605 X i04 FT

(0.3048)4 LB SEC

we have

C v = 1(1 FT3) = 3,839,249 LB SEC
v 1 FT

Thus, we obtain

b = v(Ms + Mw ) _ (3.839 X 106) (3.5714 + 0.0007)
MsM w  (3.571) (0.0007128)

* = 5.387 X 109 SEC 1

MsKw + MwKs (3.571)(48,000 + (0.0007128)(600,000)
C M Mw (3.571)(0.0007128)

= 6.751 X 107 SEC
-2
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0

d Cv (Ks + Kw ) (3.839 X 106) (600,000 + 48,000)
MsMw  (3.571)(0.0007128)
S

9.773 X 1014 SEC -3

KsKw  {600,000(48,000 = 1.31 X 1013 SEC -4

Ms] M 3.571)(0.0007128)

Cv 3.839 X 106 = 1.508 X 109 FT

g = Mw (3.571)(0.0007128) LB SEC3

Changing from SEC to MSEC, we obtain

b = 5.387 X 10
6 MSEC -1

c = 6.751 X 101 MSEC
-2

d = 9.773 X 10
5 MSEC -3

f = 1.131 X 101 MSEC
-4

0 g = 1.508 X 100  FT
LB MSEC 3

The following double precision FORTRAN computer program was used to

q) calculate the roots of Equation 1.25. The only differences between the

program instructions and the equations given in Appendix J are due to lack

of double precision functions for the inverse sine and cosine.

* PROGRAM AIR(INPUT,OUTPUT)
DOUBLE PRECISION B,C,D,F,Q,P,S,B1,C1,D1,PP,QQ,RR,TH

1 COS1,COS2,COS3,THP,Y,SQL,SQM,SQN,RM,RN,XL,SM,YM,
2 XN,YN,S1,S2,EX,AO,BO,RHO,
3 OMEGA,XR1,YR1,XR2,YR2,XR3,YR3,XR4,YR4

B = 0.5387D+07
* C = 0.6751D+02

D = 0.9773D+06
F = 0.1131D+02
PI=4.0*DATAN(1.ODO)
Q=-O.375*B**2+C
R=O.125*B**3-0.5*B*C+D

* S=-(3.O*B**4)I256.+(C*B**2)I16.0-0.25*B*D+F
BI=Q/2.0
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Cl=(Q**2-4.O*S)I 16.0
D1=-R**2/64.
PP=(B1**2)/3.O-C1
QQ=( B1*C1)/3.O-(2.O*Bl**3)/27.O.-D1
RR= (QQI2.O)**2-(PPI3.O)**3
IF(RR.GT.O.O)GO TO 10
TH=-QQ/(2.O*DSQRT(-RR))
TH=DATAN(TH)
TH=(PI/2.O-TH)/3.O

* COSI=DCOS(TH)
COS2=DCOS(TH+(2 .*PI )13.0)
COS3=DOCS(TH-.2.O*PI )/3.O)
COS1=DMAX1(COS1 ,COS2,COS3)
Ti!P=DSQRT(1. O-COS1**2)/COS1
TH P.=DATA N (THP )

* COS2.=DCOS(THP+(2.0*PI)/3.O)
COS3=DOCS(THP-(2.O*PI)/ 3.0)
Y-2.O*DSQRT(PP/3.0)
SQL=~Y*COSI-B1/3 .0
SQM=Y*COS2-B1/ 3.0
SQN=Y*COS3-B1/3 .0

* RM=DSQRT(DABS(SQM))
RN=DSQRT(DABS(SQN))
OMEGA=O.5*(PI/2.0-2.O*DATAN(DSIGN(1.00O,SQM+SQN)))
XL=DSQRT( SQL)
XM=RM*DC0S (OMEGA)
YM=RM*DSIN(OMEGA)

* XN=RN*DCOS(QMEGA)
YN=RN*DSIN(OMEGA)
GO TO 20

10 S1=QQ/2.0+DSQRT(RR)
S2=QQI2. O-DSQRT(RR)
EX=1.13.
AO=( (DABS(S1) )**EX)*DSIGN(1 .ODO,S1)
BO=( (DABS(S2))**EX)*DSIGN(1.ODO,S2)
RHO=( (O.5*(AO+BO)+B1I3.O)**2+O.75*(AO-BO)**2)**.25
OMEGA=(AO+BO+2.O*B113.O)I (DSQRT(3.ODO)*(AO-BO))
OME GA=DATAN (OMEGA)
OMEGA=0.5*(PI/2. O+OMEGA)

S XL=-R/ (8.O*RHO**2)
XM=RHO*DCOS (OMEGA)
YM=RHO*DSI N(OMEGA)
XN=XM
YN=-YM

20 XR1=XL+XM+XN-B/4.O
S YR1=YM4'YN

XR2=XL-XM--XN-B/4.0
YR2=-YM-YN
XR3=-XL+XM-XN-B/4 .0
YR3=YM-YN
XR4=-XL-XM+XN-B/ 4.0
YR4=-YMWYN
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PRINT 100,B,C,O,F,XR1 ,YR1,XR2,YR2,XR3,YR3,XR4,YR4
100 FORMAT(1OX,2D16.9)

STOP
£ END

The roots are

C = -0.115726598 X 10-4 MSEC-1

CE2 = -0.5387001000 X 10 7 MSEC-1

a= -0.462842340 X 10-6 + 0.425932181i MSEC-1

a34 = -0.462842340 X 10-6 _ 0.425932181i MSEC-
1

*The invariants are

I, = a,+ a2 + a3 + a4= -5,387,000

2? = a102 + (ml1+a2)(a3+a4) + a34= 67.51

* 13 (01+a2)a3a4 + 01a2(c13+Q4) -977,300

14 = a 12a 3a4 11.31
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* APPENDIX M

General Equations for the Pore Air Effect

* The soil phase relationships are well known. Consider the element of

dry soil shown below.

0w
IV

* The void ratio, e, is the ratio of void volume to solid volume,

e Vv (M.1)
Vs

whereas the porosity is the ratio of void volume to total volume.

Vv (M.2)

Since total volume equals solid volume plus void volume,

VT = Vs + Vv (M.3)

Equations (M.1) and (M.2) can be written in the forms
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Vv Vv nVT n
e V- V -V _VT -

s v OT n(M. 4)

V v V v eVs e (M.5)

V s  Vv  Vs  s

* For one dimensional wave propagation and pore air diffusion, we have

the following situation:

Y0'/ 77./

PoRE AIp- So/. S'KELEToA.p RA IS . ( " S4-,-

The volume of solids in a given soil element remains constant, so that

[Taylor (1948:227)]

VTO = dxl = Vs + Vvo = Vs + eoVs = V (1 + eo) (M.6)

and therefore,

= VTO dx'l (M.7)Vs= +-e~ = + eo

The equation of motion for the soil skeleton is

-_ a2u

Eo dx'i - 2R dx'l = --
ax ax ss at
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or

£aa P S a 2u (M. 8)
ax F-_oat

where, by definition

+ p (M. 9)

Effective stress is a function of strain,

0 (c) (M.10)

strain is related to void ratio,

ax (M.11)

VTO - (1 + e)V 5 -- 1+ e) s e (M.12)

and void ratio is therefore related to strain.

e = e0 + (+ e ) au (M.13)

For adiabatic flow,

p p=apy (M.14)

a

au B V zL ~ iap (M.15)

and the equation of conservation of air mass is

2. [P n(v a -U--)]dx1 ap a pe
ax a at - at ~a v' at(ae s
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(j

or
a [ au 1 a

a ) = -1 + e° at (Pae
)  (M.16)

Inserting Equation (M.9) in Equation (M.8) yields

S2U 1 + eaIu 1Y + a (M.17)
at PS ax ax

and from Equations (M.1O) and (M.11) we obtain

®2
a -aa a -E T a

2u (M.18)
aX ae aX

a x

where

ET =ao (M.19)

Thus, Equation (M.17) can be written in the form

a2u 1 + e0  a2u R (M.20)II t-- .'s [ET a-- x

Inserting Equation (M.15) into Equation (M.16) yields

1 a (Pae) = B1 - (a " 2) (M.21)

Inserting Equation (M.14) into Equation (M.21) yields

1 +F at a 1 a a ax

or
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1 1B1 2 1
(pY

or

(n u [ /y)] + pl/y a2 u B1  a2  + 1

axaxat =  + 1  a ax

0 Y

or

S_(p /) _ 1 1 2 1 P1/y 2u (M.22)
(n + -Lu) ( +
0a ax Lj y 1) a

An alternate form of Equation (M.22) is

1 11 I8 !lTP. 1/l/Y a I
1pY 1P 1 a( ax - axat]

at (n + a)
o ax

no 1 { B1 1 Y p()2 + p1/yp) _ py }no +  LU Ya a X2 a xa-t"
0 ax

* or

ap i B1()2 + Yp( )l _ 

a ~ 1ax{l[.4 )] ~ aatJ(M.23)at -n + -u a xa
tO 0 aX

Equations (M.20) and (M.22) are coupled, nonlinear, second order

partial differential equations for the soil skeleton displacement, u, and

* ethe pore air pressure, p. Gravitational acceleration does not appear

explicitly in Equation (M.20), because the stresses involved are assumed

to be "live" stresses, i.e., stresses in excess of those existing under

geostatic conditions. It is the live stresses which cause motion. Note,
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however, that when live stresses are used, they must be expressed in terms

of live strains. This means that if the stress-strain relation, Equation
q

(M.10), is nonlinear the geostatic stress-strain condition must be

determined, because it must be used as the point of departure for the live

stress-live strain relation.

The effective permeability, B1, has been assumed constant in

Equations (M.15), (M.21), (M.22) and (M.23), although B1 is known to

vary with strain. This assumption appears reasonable prior to spall,

because the strain required to cause particle separation is small, and

because the exact relation between effective permeability and strain is

often not precise.

1

0

0
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* Table 3.1. One-Dimensional Calculations

Calc. Description Tensile Cutoff Peak Incident Comments
No. Pmin' MPa Velocity, m/s

1 no spall allowed 100. 1.0 3 cycles to
spall

2 baseline spall 0.10 1.0 3 cycles to
calculation spall

3 load variation 0.10 2.0 3 cycles to
spall

4 no tensile 0.00 1.0 3 cycles to
strength spal 1

5 higher tensile 0.30 1.0 3 cycles to
strength spall

6 immediate spall 0.10 1.0 1 cycle to
* spall

7 forced rejoin 0.10 2.0 1.0 MPa
O.P. with
expon.
decay at

• 300 ms
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* TABLE 4.2

CALCULATED LINEAR DIFFUSION PARAMETERS
FOR ZERNOW'S 8-INCH SHOCK TUBE VENTED SAMPLES*

GROUPS B1  n D TD  a

CM4 /DYNE SEC CM2/ SEC SECT

I,II 1.7X10-2  1/3 3.51X10 5  10.79 5.0 0.463

0 III 1.7X10-2  1/3 3.51X105  10.79 6.9 0.639

IV 3.OX10-2  0.85/2.4 5.84X10 5  17.94 5.0 0.279

*Note:
S

BIP 6.89 X 106 B1
n n

* OtD D(1.O)
TD = (180.34)7

120 (180.34) 2 a
0 1
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TABLE 4.3

CALCULATED PEAK PORE AIR PRESSURE AND TIME

OF OCCURRENCE FOR ZERNOW'S 8-INCH VENTED SAMPLES*

GROUP D X p MAX T MAX t MAX

CM 2/SEC IN PSI SEC

*I 3.51X105  0.463 33.0 0.465 46.1 0.35 0.032

II 3.51X10 5  0.463 57.6 0.811 16.2 0.40 0.037

III 3.51X10 5  0.639 60.0 0.845 12.3 0.37 0.034

WIVa 5.84X105  0.279 33.0 0.465 48.1 0.39 0.022

IVb 5.84X105  0.279 57.6 0.811 16.9 0.43 0.024

*Note:

x x

W7T

* 1 2 T MAX -(180.34)
2 T MAX

tMAX D D
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TABLE 4.4

ADJUSTED LINEAR DIFFUSION PARAMETERS FOR
ZERNOW'S 8-INCH SHOCK TUBE VENTED SAMPLES*

GROUPS B1  n D TD

CM4/DYNE SEC Cm2/SEC SEC -1

III 3.4X10 -3  1/3 7.03XI04  2.16 5.0 2.31

III 3.4X10 -3  1/3 7.03X104  2.16 6.9 3.19

IV 6.0X10 -3  0.85/2.4 1.17X10 5  3.59 5.0 1.39

**Note:

D BP 6.89 X 106 B1
n n

DtD D(1.O)

D  (180.34)

12(1_ (180.34)2 a

D D
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TABLE 4.5

CALCULATED PEAK PORE AIR PRESSURE AND TIME
OF OCCURRENCE FOR ZERNOW'S 8-INCH VENTED SAMPLES,

USING ADJUSTED LINEAR DIFFUSION PARAMETERS*

GROUP D x p MAX T MAX t MAX

CM /SEC IN PSI SEC

1 7.03X10 4  2.31 33.0 0.465 34.4 0.21 0.097

II 7.03X10 4  2.31 57.6 0.811 12.0 0.26 0.120

III 7.03X10 4  3.19 60.0 0.845 8.9 0.24 0.111

*IVa 1.17X10 5  1.39 33.0 0.465 38.9 0.25 0.069

IVb 1.17X10 5  1.39 57.6 0.811 13.6 0.30 0.083

*Note:

t 1 2T MX (180.34) 2T MAX
MI~AX MA -
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TABLE 4.6

ADJUSTED LINEAR DIFFUSION PARAMETERS FOR
8-INCH SHOCK TUBE UNVENTED SAMPLES*

GROUPS B1  n 0 TD

CM 4/DYNE SEC CM 2 /SCSEC- 1

* ,11 3.4XI10 3  1/3 7.03X10 4  0.540 5.0 9.25

III 3.4X10-3  1/3 7.O3X10 4  0.540 6.9 12.77

IV 6.OX10O3  0.85/2.4 1.17X10 5  0.897 5.0 5.56

*Note:

D B P =6.89X10 6 B 1

0n n

TD DtD D(1.0)

412a~

D D
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TABLE 4.7

CALCULATED PEAK PORE AIR PRESSURE AND TIME
OF OCCURRENCE FOR 8-INCH UNVENTED SAMPLES,
USING ADJUSTED LINEAR DIFFUSION PARAMETERS*

GROUP D x P MX T MX tA

CM 2/SEC IN PSI SEC

0I 7.03X10 4  9.25 33.0 0.232 70.9 0.010 0.019

ii 7.03X10 4  9.25 57.6 0.406 44.2 0.050 0.093

III 7.03X104  12.77 60.0 0.423 38.8 0.045 0.083

l Va 1.17X105  5.56 33.0 0.232 73.4 0.010 0.011

IVb 1.17XI05  5.56 57.6 0.406 51.5 0.085 0.095

* *Note:

- - 14

* 412 T MAX _(360.68) 
2T MAX

tMAX D -D
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* TABLE 5.1

Scaled Airblast Parameters, Large Yield
Pacific Nuclear Data (lOkt - lOmt)

Scaled Range Peak Positive Peak Negative
Overpressure Overpressure

R,_km/(kt)l/3 P+ , kPa 'P-, kPa

0.134 345 27.6'
0.151 297 15.2
0.194 159 13.8

* 0.244 94.5 12.4
0.933 10.0 1.86
0.956 10.1 0.90
0.977 10.3 2.74
2.948 2.21 0.66
2.996 1.65 0.56

* 4.060 1.17 0.44
0.048 1131 101?
0.207 175 21.9
0.244 130 13.8
0.394 48.3 9.03
0.580 24.4 4.34

U' 2.063 2.62 0.90
2.063 3.10 1.17
0.205 121 14.4
0.281 77.2 11.6
0.381 60.8 9.10
0.221 128 14.8

* 0.298 85.2 8.62
0.662 18.7 4.00
1.042 9.30 2.17
1.590 3.83 0.97
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TABLE 6.2

Maximum Scaled Radius of Spall,-R s ,
for Various Explosive Charge Configurations

0 Charge Configuration Rs (m/lO0 ton1 /3 ) Fs (m/lO0 tonl 3 )
with Negative without Negative
Airblast Wing Airblast Wing

TNT HOB No Data 32
TNT STS 125-200 40- 80
TNT STC or HBS 140-200 90-105
TNT Berm N/A 140

Nuclear DOB N/A 48
(1
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Layering Zoning Material Models

0 -0 m {'- Free Surface 0 Soil:

60 zones
I at 0.1 m , M2 =

L 561

5
Soil 61 A- rn/s

p 2.0 g/cc Cu = 1122 m/s0 .30'F X

10 - 60 zones aMIN , varied

at 0.15 m Axial Strain, %
12 m

a)
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Rock t
p 2.5 g/cc MRc+ -M2 =U

C0.20 = = 2960 m/s
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Transmitting Boundary with
30 Incident Velocity, V(t):

Linear Rise

V(t) NSinusoidal Decay
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Fig. 3.2. One Dimensional (Uniaxial Strain) Spall Calculations
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Relaxation frequency = 65 rad/sec

l
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0.5 m depth

E

4-)
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stable grid at approx 100 ms
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Fig. 3.3. Application of Gravity to Grid with Dynamic Relaxation
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y I
One-Dimensional Grid, Ay = 1

x
• i-3

* j i-2

Body Force
Gravity

--cG) aG = Gravity Stress

X 1 Mb = Boundary Mass
Ax- _ F

I Ax/2
* r-i I Transmitting Boundary

T Point

0B

* New Time tn

Old Time :t

Current Time (tn + tl)/2

Timestep = At : tn - t

Note: Assuming small strains

0

Fig. 3.5. Transmitting Boundary with Incident Velocity
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Fig. 3.6. Characteristic Planes for Two Boundary Conditions
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