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AB STRACT

A cellular pyramid is an exponentially tapering stack of
arrays of processors ("cells"), where each cell is connected
to its neighbors ("siblings") on its own level, to a "parent"
on the level above, and to its "children" on the level below.
It is shown that in some situations, if information flows top-
down only, from fathers to sons, then a cellular pyramid may
be no faster than a one-level cellular array; but it may be
possible to use simpler cells in the pyramid case.
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1. Introduction

There has been much research on parallel processors be-

cause they can provide significant speedups for many tasks.

Many multiprocessor machines and VLSI architectures have

been designed and studied, and some have actually been built

or are under construction [1-9]. Many parallel algorithms

Ihave also been studied. Image processing and graphics are

potentially important areas of application of parallel pro-

cessing because of the size and complexity of the data (pic-

tures) to be processed or generated. On special purpose pro-

cessors and general VLSI architectures for raster graphics and

image processing see [7-12].

The most natural and simple multiprocessor architecture

for image processing and raster graphics is a two-dimensional

array of processors where a processor is assigned to a pixel

(or a rectangular block of pixels), with neighboring pixels

(blocks) represented by neighboring processors which can communi-

cate with each other [13]. ILLIAC, MPP, and CLIP are examples

of cellular array machines [1-3].

An extension of the concept of a cellular array is a hier-

archical structure of processors called a pyramid. Variations

on the pyramid concept include recognition cones and quadtree

machines [14-17]. A basic pyramid machine consists of a series

of levels,each of which is a two-dimensional cellular array,

where the numbers of processors at successive levels decrease

. . . . . .I l ' | . .. |



by one-half in each dimension. The processors at higher levels

represent larger blocks of pixels (four times the number of

pixels represented by the processors on the level immediately

below);" with the highest level having only one processor

called the APEX or ROOT representing the entire picture. A

processor is linked to processors representing neighboring

blocks at its own level. It is also linked to the processor

(called its parent), at the level above it, representing a

bigger block of which it is a subblock, and it is linked to

the four processors (children) at the level below it, representing

each of its four subblocks.

A quadtree machine can be considered as a special case of

a pyramid where processors at the same level are not linked to

each other. The basic non-overlapping pyramid just described

has also been generalized to the so-called overlapped pyramids

where each processor can have up to four parents, and to pyra-

mids where each processor's neighborhood can be changed dyna-

mically [181. Pyramids to perform strictly bottom-up computa-

tion for image analysis, i.e., allowing only upward commnunica-

tion, have been investigated [19,20]. In this paper, we study

the performance of pyramids and quadtrees which allows informa-

tion to flow downward only.

Section 2 gives a more precise definition of a top-down

pyramid. Section 3 contains examples of the use of top-down

pyramids. The performance of top-down pyramids, in particular,

when compared to cellular arrays, is discussed in Section 4.
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2. Top-down pyramids and quadtrees

Let P(x,y) be a 2 n by 2n picture for some n>O, with pixels

having coordinates 0:Exf2n-1 and OLy!2 n-. A pyramid is an

(n+l)-level structure of square arrays of processors (some-

times called cells). Level 0 is the base array containing

2 n2 n cells. Level n contains only one cell called the ROOT

or APEX cell. In general level k(0Skin) contains 2-x2n

cells. Hence there are a total of (2 -1)/3 cells, less

than one-third more than in a cellular array. Let (i,j,k)

specify the processor (cell) at level k with coordinates (i,j)

in the k-th level array, 05k!n, 0is2 n-kl, Otj:2n-k-1. Then

k k(i,j,k) is assigned the block of 2 x2 pixels in P(x,y) such

that i2k x<(i+l) 2k and j2k <y<(j+1 )2k Cell (i,j,k) is con-

nected to its four siblings (i-l,j,k), (i+l,j,k), (i,j-l,k)

and (i,j+l,k). If i,j=0 or 2nk-, the border processors have

two or three siblings only. Processor (i,j,k) is also connected

to its parent processor (1 .J,[ ,k+l) for 0 k<n, and to its fourf22

children (2i,2j,k-l), (2i,2j+l,k-l), (2i+l,2jk-l), k2i+l,2j+l,k-l)

4 for O<k<n. In general, in a pyramid, the processors are identical,

the data flow at each communication link is bidirectional, and

the width of the data paths is assumed to be the same so that the

communication time is identical for all processors.

In a top-down pyramid, the data flow to siblings is bidirec-

tional, but data can only flow from parent to children. In a

strictly top-down pyramid, there is no data flow among siblings.

Therefore, a strictly top-down pyramid is equivalent tr a top-

down quadtree. If a processor M needs information from its

I



sibling N, because of the lack of communication between

siblings, M would have to simulate N to calculate the result

provided the parent also gives M the instructions and data

given to N.

One motivation for studying top-down pyramids comes from

their potential usage in generating graphics images. 'The

description of the images to be generated can be input to the

qAPEX. Data and instructions can be transmitted downward to

the bottom level processors which can be connected directly

to and thus control the display (which we may assume to be a

mosaic-type panel display in which each element is directly

driven by a bottom-level processor). The processor at the top

level can divide the image to be generated into subimages for

each of its children whose job should thus be simpler and can

be further divided.
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3. Example: line generation

Consider the task of generating a digital straight line

joining two given points A,B whose coordinates (xa ,Y), (xb,

)are given to the APEX cell of a top-down pyramid. We

assume a 2n×2 n picture, as described in Section 2. The APEX

can find the equation (slope and intercept) of the line AB.

It can then find the intersection of the line AB and the

interior border lines x=2
n - l , x=2 n-1-, y=2n - l , y=2 n-l-,

which divide the picture into four quadrants. These inter-

sections together with A,B become endpoints of (possibly)

shorter line segments contained in the APEX's children blocks.

Note that at most three of the children will contain parts

of line AB. The equation of AB and the appropriate endpoints

will then be transmitted to the appropriate processors at

level n-l. The above procedure for finding intersections is

repeated at each level until the bottom level is reached.

Since each process at level 0 represents only one pixel, no

further subdivision is necessary and the pixel can decide if

6 it is on the line AB.

Let tI be the time needed to find the equation of TB, t2

the time to find the intersection of AB (knowing its equation)

and an interior quadrant border, and t3 the time for a pro-

cessor to transmit a datum (say an x or y coordinate) to its

children. Then regardless of the length of AB, it takes tI +

6 (4t2 +6t 3 )n units of time to generate line A-B.
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One important point that is worth noting in the above

algorithm is that the intersection of line KB and a quadrant

boundary may not be an integer. Rounding or truncation gives

very inaccurate line segments if n is large. Hence the num-

ber of significant digits in the fraction increases as the

lower levels of the pyramid are reached. One question that

arises is whether the number of significant digits will ever

become too large. If we consider the coordinates to be in

binary, then the number of significant bits after the binary

point increases by 1 as we go down the pyramid by one level.

But each dimension of the block represented by the processor

decreases by one-half and thus the number of bits needed to

address the pixels in the block decreases by 1. Hence the

total number of bits needed remains constant and the level

the processor is in tells the location of the binary point.



4. Comparisons

In Section 3 we showed that a top-down pyramid can generate

a digital straight line joining two given endpoints A=(xa Y

B=(xb,yb) in time proportional to the height of the pyramid

which is n for a 2n×2 n picture. In the algorithm, no inter-

action between sibling processors was needed; therefore a

strictly-top-down pyramid (top-down quadtree) gives the same

result. In sequential raster graphics, a straight line is

often generated by loading the frame buffer using some in-

cremental point plotting algorithm, and the time required is

proportional to max(JXa-Xb111ya-Yb) which can be as large

as 2n [21,22].

Consider a single instruction stream multiple data stream

(SIMD) machine M where the processors are interconnected as

a two-dimensional cellular array. M has a control unit which

broadcasts instructions (or data) to all the processors in

the array. Assuming that each processor represents one pixel,

M can generate a digital straight line as follows: the con-
.4 troller broadcasts the coordinates of the two endpoints A,B

and the instructions for each processor to check whether the

pixel it represents lies on the line AB. Then each processor

4 can set its pixel values accordingly. This can be done in

t4+2t 5 units of time where t4 is the time needed to check if

a pixel lies on AB provided the processor knows the coordinates

of the pixel in the picture. Note that t4 <t2. t5 is the time

needed to broadcast a coordinate to all the processors. In
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general, t5 is assumed to be a constant since the broadcasting

takes place at signal transmission speeds. This is reasonable

when the number of processors involved is modest. However, if

the number of processors is large, say on the order of a quar-

ter of a million for a 512 by 512 picture,direct (hardwired)

broadcasting requires too much power. Thus some fanout process

is needed. This means there is implicitly a tree for pyamidlike)

structure in which at each node (junction) there is some kind of

amplifier, power booster or repeater instead of a processor.

The height of the tree is log b (number of processors) where b

is the fanout factor. Hence t5=t-logb(number of processors)

where t is the propagation delay time at each node.(In terms of

TTL logic, t is approximately 3 to 4 nanoseconds, but a 4-bit

add operation takes approximately 12 to 15 nanoseconds and read-

ing into a register takes approximately 10 to 12 nanoseconds [23].)

Therefore, strictly speaking, the broadcasting time t is propor-

tional to log (number of processors) with a small constant of pro-

portionality. But since almost all computations involve much

more than a simple addition, while t5 is much faster, it is notE

unreasonable to consider t5 as a constant. Under this assumption,

a straight line can be generated in a small constant amount of

time regardless of the size of the picture or the length of the

line.

The straight line generation example illustrates an important

property of strictly top-down pyramids (top-down quadtrees). The

information (or instruction) that starts at the APEX cell takes
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at least n (height of the pyramid) steps to get to the bottom

level cells. The instruction a level k cell (i,j,k) receives

from its level k+l parent (L!J,[IJ,k+l), and the instructions

(i,j,k) sends to its level k-1 children, may be different.

However, based on the top-down nature of the pyramid, these
i i

differences are only results of the information from ([j j

k+l) and the knowledge of which quadrant each child is in

which is nothing more than its coordinates. Therefore, %

a message from the APEX cell reaches the bottom level of Lop-

down pyramid, the only additional information the message can

possibly contain is the (global) coordinates of the processor.

Thus if each cell at the bottom level knows its coordinates

and it knows the input to the APEX, each cell can simulate its

level n ancestor at the first step, then simulate its level

n-l ancestor at the second step. Continuing in this way, at

the end of n steps, the results at the bottom array are the same

as if the information had trickled down the pyramid level by

level. Thus there is no need for any of the intermediate level

processors, i.e., one third fewer processors can be used and

what we have is a two-dimenisonal SIMD array machine. Because

there is no inter-level processor communication, the same task

can be performed by the array machine in time no more than that

needed by a strictly top-down pyramid. In many cases some of the

work, such as the quadrant border intersection finding in the

digital straight line generation example, done by the level 1 to

level n-1 processors, is no longer necessary.



Conversely, a top-down pyramid can simulate a cellular array

by having all the non-bottom level processors act as message

transmitters only. As soon as a processor receives a message,

it forwards the message to all its children without any pro-

cessing. Then the time it takes to generate a straight line is

t4+2t6 where t 6 is the time it takes a message from the APEX

to reach the bottom level. So t 6=nt where t is the time for a

q processor to forward a message. In terms of TTL logic, t is

approximately 20 nanoseconds. This is not much slower than a

cellular array and the intermediate level processors do not do

any computation.

The above discussion shows that every task which can be

performed by a strictly top-down pyramid can be done by a cellu-

lar array at the same or faster speed, when the processors in

both systems have the same processing power and each processor

in the array knows its coordinates in the picture. (Note that

in a pyramid, each processor only needs to know which child

it is of its parent, but not its global coordinates.) In the

above, we also implicitly assume that the processors can store

all the information from the controller or the APEX before the

computation starts, or at least the processors can accept all

the information without having to wait for the completion of

computations, or the computations are so simple that they are always

completed before further information arrives. In the rest of this

section, we will show that a top-down pyramid can be faster if



these implicit assumptions are not satisfied, because a

top-down pyramid has the advantages of a pipeline machine

architecture when information is fed to the APEX processor

to be transmitted down continuously.

First, consider the simple example of generating many

digital straight lines where the APEX is given the sequence

*q of pairs of endpoints. Clearly, the straight lines can be gen-

erated one at a time. As soon as the level i cell has trans-

mitted the proper information to its level i-l children, it

can accept the information for the next line from its parent

at level i+l. Thus the total time it takes a pyramid to gen-

erate m lines in an 2n× 2n image is less than 2(tl+(4t 2 +6t3 )n)+

m-i which is proportional to n+m. When the endpoints are broad-

cast by the controller, a cellular array can generate the same

m lines in time (2t3+t 4) -m. The orders of the two time complexi-

ties are about the same when man, but for large m, the pyramid

is faster.

Next, consider another example in which the pixel values of

a picture to be generated depend on the results of a certain

computation which is a function f of the binary representation

(x0 X1... Xn, y0yl... yn) of the coordinates (x,y) of the pixels

and some input value z. The computation of f(x,y,z) is a se-

quence of calculations g0 ,gl,... gn such that g0 uses only the

values of x0 ,Y0 and z, g, uses only xlyl,z and the result of go,

...'gi uses xiyi,z and the result of gi-l,...;f(x,y,z) is the

e



result of g n For instance, input z may be the coordinates of

some points, and the task is to perform certain transformations

of the coordinates of the pixels are within a certain range of z.

1- 61 If there are m input values z11z 2 "'.., Zm then a cellular array

can generate the picture in O(mn) time since it has to finish

processing one value before it can start on the next one. If a

top-down pyramid structure is used, the m input values can be

fed into the APEX continuously. While the level i cells are

calculating g .(z.(z the level i+l cells are calculating g --

(z.~ ) Thus, the picture can be generated in O(n+m) time.

This is almost an ideal situation where the pipeline feature of

top-down pyramids is being used to its fullest advantage, because

the entire computation can be divided so that the processors at

each level do one n thof the work and the partial results are

needed by the processors on the next level.

When a pyramid is used for image processing or raster graphics,

if each processor represents only one pixel, the number of proces-

sors is very large. A 512x512 image needs one quarter (or one

third) of a million processors for a cellular array (or a pyramid).

Therefore it is a good idea to use processors which are as simple

as possible. A pyramid structure has the possible advantage that

only simple processors are needed since only parts of the tasks

(hopefully simpler than the entire task) need be performed at

each level. For example, consider the simple coordinate matching

problem using very simple processors which can compare only one



bit at a time. A SIMD cellular array takes c nm time to match

m n-bit numbers, whereas a pyramid takes c 2n+m time. More-

over, in the cellular array, every processor is doing the match-

ing process all the time, whereas in a pyramid, many of the

processors can be doing something else.

In the above, we have considered strictly top-down pyramids.

The power of a (not strictly) top-down pyramid, where sibling

communication is allowed, is almost the same as that of a strict-

ly top-down pyramid. A strictly top-down pyramid can simulate

the top-down pyramid in at most four times the computation time,

since all the information obtained from the siblings comes from

computation on information from the parent cell and the coordi-

v nates of the siblings, which are known and thus can be simulated

one by one.



5. Concluding remarks

For certain tasks, if we assume that a controller can

broadcast to all the processors in a small constant amount of

time, then a top-down pyramid is not always faster than a cellu-

lar array. It is not much slower than a cellular array either

because it can always have the bottom level act as a cellular

array and the other processors simply forward the instructions

downward without using their processing power. However, when

a task can be divided up into subtasks for various levels' pro-

cessors to perform, the pipeline architecture features of a top-

down pyramid can be used effectively and great speed-up over

cellular arrays or sequential processing can be achieved.

Another advantage of pyramids is that the processors used

can be simpler than those in a cellular array since the entire

task is divided up into subtasks which should in general be

easier to perform. The processors do not need to know the

global coordinates of the pixels; thus the lower level processors

need to process fewer bits. This is significant if the number

of processors involved is very large. One possibility for further

study is to have processors of different powers at different

levels. If a bottom level processor is responsible for only one

pixel, it can be the simplest.

Unrestricted pyramids which allow information to flow both up-

ward and downward are potentially useful for raster graphics, too.

In particular, in interactive graphics the description of a picture

-- - - - - - -- -I
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to be generated can be input at the APEX. When an interactive

* . input device points to some pixels or draws some curves, the

input at the bottom level of the pyramid can be transmitted

upward (and sideways) to be processed. An upper level cell

which sees a bigger block of the image can also send informa-

tion down to its children based not only on information from

I its parent and siblings but also from the state of the part of

the picture it oversees. Using pyramids for interactive raster

graphics deserves further study.

I
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