Report No. NPS67-82-006

NAVAL POSTGRADUATE SCHOOL Monterey, California

THESIS

EFFECTS OF WIND ON THE AIRCRAFT OPTIMUM CRUISE PERFORMANCE AND FLIGHT PERFORMANCE ADVISORY SYSTEMS FOR F-4E AND F-5E AIRCRAFT

by

Jaemyong Lee June 1982

Thesis Advisor:

AD A 1 25587

OTIC FILE COPY

A. E. Funs

Approved for public release: distribution unlimited

Prepared for: Naval Air Development Center Warminster, PA 18974

© ? ~ ~

NAVAL POSTGRADUATE SCHOOL Monterey, California

Rear Admiral J. J. Ekelund Superintendent

David Schrady Acting Provost

This thesis was prepared in conjunction with research supported in part by Code 6051, Naval Air Development Center, Warminster, PA 18974.

Reproduction of all or part of this report is authorized.

Released as a Technical Report by

lle

W. M. Tolles Dean of Research

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (Then D	Jata Entered)	
REPORT DOCUMENTATIO	and the second se	READ INSTRUCTIONS BEFORE COMPLETING FORM
NPS 67-82-006	2. GOVT ACCESSION NO	
•. TITLE (and Sublitie) Effects of Wind on the Aircraf Performance and Flight Perform	nance Advisory	Master's Thesis June, 1982
Systems for F-4E and F-5E Airc		. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(+)		8. CONTRACT OR GRANT NUMBER(+)
Jaemyong Lee		N62269/81/WR/00831
. PERFORMING ORGANIZATION NAME AND ADDR	C88	10. PROGRAM ELEMENT, PROJECT, TAS AREA & WORK UNIT NUMBERS
Naval Postgraduate School Monterey, California 93940		65861 N
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
Naval Postgraduate School		June, 1982
Monterey, California 93940		231
14. MONITORING AGENCY NAME & ADDRESS(II dil	lerant from Cantrolling Office)	18. SECURITY CLASS. (of this report)
Code 6051 Naval Aim Development Contex		UNCLASSIFIED
Naval Air Development Center Warminster, PA 18974		134. DECLASSIFICATION/DOWNGRADING
Approved for public release: d		
Approved for public release: d		
Approved for public release: d 17. DISTRIBUTION STATEMENT (of the observed onto 19. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse elde il necessar	ered in Block 20, if different h	Yes Report)
Approved for public release: d	ered in Block 20, if different h rr end identify by block number Stems ift Optimum cruise	performance.
Approved for public release: d 17. DISTRIBUTION STATEMENT (of the observed and 19. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse etde if necessar Flight Performance Advisory Sy The wind effects on the aircra	ered in Block 20, 11 different A rr end identify by block number rstems ift optimum cruise nce, Safety of Flig r end identify by block member operational concep e-art hand-held ca stems (FPAS). The ased on the aircrailight performance	<pre>performance. ght pts being investigated is lculators to serve as principal function of a ft drag configuration, and parameters such as altitide</pre>
Approved for public release: d Approved for public release: d DISTRIBUTION STATEMENT (of the observed entry SUPPLEMENTARY NOTES SUPPLEMENTARY NOTES SUPPLEMENTARY SUPPLEMENTARY NOTES SUPPLEMENTARY SUPPLE	ered in Block 20, if different A rr end identify by block member vstems ift optimum cruise ice, Safety of Flig r end identify by block member operational conce e-art hand-held ca stems (FPAS). The ased on the aircra light performance ported herein is t	<pre>performance. ght pts being investigated is lculators to serve as principal function of a ft drag configuration, and parameters such as altitide</pre>

UNCLASSIFIED

SECUMTY CLASSIFICATION OF THIS FAGE/Man Role Baland

20. ABSTRACT (Continued)

mathematical relationships for the effects of the wind on the aircraft optimum cruise performance. This thesis also describes the operating procedure of a Hewlett-Packard HP-41CV hand-held calculator programmed to serve as an F-4E and F-5E Flight Performance Advisory System. The objective of the FPAS is to recommend optimal flight profiles to achieve maximum fuel conservation. Because of the constraints imposed by HP-41CV memory size, the F-4E FPAS is comprised of three programs, and the F-5E is comprised of a single program. \leftarrow

2

Accession For WIIS GRAAI DTIC TAB Unanaoustred Justification Γ By Distribution/ Availability Codes Avail and/or Dist Special

DD Form 1473 1 Jan 3 5/N 0102-014-6601

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE Then Data Entered

Approved for public release: distribution unlimited

Effects of Wind on the Aircraft Optimum Cruise Performance and Flight Performance Advisory Systems for F-4E and F-5E Aircraft

by

Jaemyong Lee Major, Republic of Korea Air Force B.S., Republic of Korea Air Force Academy, 1972

Submitted in partial fulfillment of the requirement for the degree of

MASTER OF SCIENCE IN AERONAUTICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL June 1982

Author:

Approved by:

hesis Advisor

Chairman, Depár tment of Aeronautics

Dean of Science and Engineering

ABSTRACT

One of several fuel-saving operational concepts being investigated is the application of state-of-the-art hand-held calculators to serve as Flight Performance Advisory Systems (FPAS). The principal function of a FPAS is to advise the pilot, based on the aircraft drag configuration, and gross weight, of the optimum flight performance parameters such as altitude and airspeed. The research reported herein is the development of the mathematical relationships for the effects of the wind on the aircraft optimum cruise performance. This thesis also describes the operating procedure of a Hewlett-Packard HP-41CV hand-held calculator programmed to serve as an F-4E and F-5E Flight Performance Advisory System. The objective of the FPAS is to recommend optimal flight profiles to achieve maximum fuel conservation. Because of the constraints imposed by HP-41CV memory size, the F-4E FPAS is comprised of three programs, and the F-5E FPAS is comprise of a single program.

TABLE OF CONTENTS

 Page

.

1

I.	INTRO	DDUCTION	11
II.	TECHI	NICAL DISCUSSION - REGRESSION PROCEDURE	13
III.		CTS OF WIND ON THE AIRCRAFT OPTIMUM CRUISE	15
	Α.	INTRODUCTION	15
	Β.	DERIVATION OF THE EQUATIONS	16
		1. Aerodynamics	17
		2. Wind Equations	20
		3. Second Order Analysis	23
IV.	F-4E	FPAS PROGRAM	35
	A.	INTRODUCTION	35
	Β.	F-4E PROGRAM DESCRIPTION	36
		1. Climb and Descent Mode Descriptions	37
		2. Optimum Cruise Program	37
		3. Bingo Program	48
		4. Maximum Endurance and Descent Programs	58
۷.	F-5E	PROGRAM	67
	Α.	F-5E PROGRAM DESCRIPTION	67
	Β.	CLIMB AND DESCENT METHOD USED IN F-5E PROGRAM	69
		1. Optimum Cruise for Short Range Mission	69
		2. Diversion Range for Both Engines	69
		3. Diversion Range for Single Engine	71

Page

	C.	PROGRAM INPUT/OUTPUT PARAMETERS	71
	D.	EQUATIONS FOR F-5E PROGRAM	72
VI.	F-4E	USER'S GUIDE	85
	Α.	CRUISING PROGRAM	85
		1. Loading the Program	85
		2. Executing the Optimum Cruising Program for F-4E	85
	Β.	BINGO PROGRAM	89
		1. Loading the Program	89
		2. Executing the Program	90
	C.	MAXIMUM ENDURANCE AND DESCENT PROGRAM	93
		1. Loading the Program	93
		2. Executing the Program	93
VII.	F-5E	USER'S GUIDE	96
	Α.	LOADING THE PROGRAM	96
	Β.	EXECUTING THE PROGRAM	96
		1. DATA Mode	96
		2. Optimum Cruise (Short Range Mission) Mode	98
		3. Diversion Range Mode	98
VIII.	ILLU	STRATIVE EXAMPLES FOR F~4E and F-5E FPAS PROGRAMS	100
	Α.	F-4E FPAS ILLUSTRATIVE EXAMPLES	100
		1. Optimum Cruise Program Example	100
		2. Bingo Program Example	102
		3. Maximum Endurance and Descent Program Example	103
	В.	F-5E FPAS ILLUSTRATIVE EXAMPLE	105

0111111

A Start and

R

Fi F

6

.....

Page

IX. CONCLUSIONS	108
APPENDIX A: COMPUTER PROGRAM FOR WIND ANALYSIS	110
APPENDIX B: DISCUSSION AND COMPUTER OUTPUTS FOR AN EXAMPLE OF WIND PROBLEM	113
APPENDIX C: F-4E AND F-5E FPAS FLOW CHARTS	121
APPENDIX D: F-4E AND F-5E FPAS PROGRAM LISTING	156
LIST OF REFERENCES	229
INITIAL DISTRIBUTION LIST	230

`,^

LIST OF FIGURES

Figure		Page
١	L/D Versus Lift Coefficient	19
2	Figure for True Airspeed, Wind Velocity, and Ground Speed	21
3	Specific Range Versus Velocity	25
4	SR Versus Velocity	26
5	U _g Versus Velocity	28
6	F-4E Optimum Cruise Summary	43
7	Method for Determining the Peak Altitude (HX) for the Bingo Program	45
8	F-4E Fuel Required to Climb	52
9	F-4E Distance Required to Climb	53
10	F-4E Descent	56
11	F-4E Maximum Endurance (Altitude and Bank Angle)	60
12	F-4E Maximum Endurance (Mach Number)	62
13	F-4E Maximum Endurance (Fuel Flow, Drag Count 0-80)	64
14	F-4E Maximum Endurance (Fuel Flow, Drag Count 80-140)	65
15	F-5E Diversion Range (Two Engines)	68
16	F-5E Diversion Range (One Engine)	70
17	F-5E Optimum Cruise Altitude for Short Range Missions	73
18	F-5E Constant Altitude Cruise (Specific Range)	74
19	F-5E Constant Altitude Cruise (Indicated Mach Number)	75
20	F-5E Penetration Descent	84
21	HP-41CV Keyboard Functions for Optimum Cruise Program	86
22	HP-41CV Keyboard Functions for Bingo Program	91

Figure

.

ſ

1

23	HP-41CV Keyboard Functions for Maxendurance and Descent Program	94
24	HP-41CV Keyboard Functions for F-5E Program	97
B. 1	ε Versus θ	114
B.2	V* Versus θ	115
B.3	GSR Versus θ	117
B.4	ε Versus θ (U _{W0} = 0.025)	118
B.5	ϵ Versus θ (U _{W0} = 0.125)	119
B.6	ϵ Versus θ (U _{W0} = 0.25)	120

ACKNOWLEDGEMENT

- <u>-</u> - -

In addition to my appreciation for the patience of my wife and children and their willingness to share myself with this study, I would like to acknowledge the advice and assistance provided by Distinguished Professor Allen E. Fuhs whose high sense of professionalism was a great inspiration for me and stimulated me to have great interests in science and technology.

I. INTRODUCTION

The total fuel cost for U.S. Navy aircraft alone in 1980 was \$1 billion and is forecast to continue to rise as the supply of natural petroleum diminishes and the price per barrel increases. OPNAVINST 4100.5A of 9 May 1978 set the goal for aircraft energy consumption as "5 percent reduction in fossil fuel energy consumption per flight hour by the end of 1985, using 1975 as baseline".

Accordingly, the Naval Air Development Center (NADC) has been investigating candidate fuel savings modifications and operational concepts for a variety of naval aircraft. The goal of this investigation, undertaken as part of the Naval Material Command sponsored Navy Aircraft Fuel Conservation (NAFC) program, is to identify, develop, and incorporate selected aircraft modifications and/or operational concepts aimed at increasing aircraft energy efficiency (reducing fuel consumption per flight hour). One of several operational concepts being addressed by NADC is the use of hand-held calculators as a Flight Performance Advisory System (FPAS). The principal function of the FPAS is to advise the pilot of the altitude and the airspeed combination that will yield maximum flight efficiency in terms of fuel consumption. At present, such information is manually derived by tedious manipulation of NATOPS or Flight Manual charts thereby discouraging frequent in-flight optimization. It is expected that F-4E and F-5E FPAS will simplify the task of in-flight optimization, resulting in increased frequency of usage and improved accuracy.

The HP-41CV hand-held calculator [Ref. 1] was selected because of its relatively low cost and incorporation of the latest hand-held calculator technology including alphanumeric display and large random access memory (RAM). In addition, this calculator can be configured with a read-only memory (ROM) providing increased memory capability.

While sophisticated on-board computers used by the commercial airlines resulted in reported fuel-savings on the order of 4%-8% [Ref. 2: pp. 7] it is recognized that the military fighter community is unlikely to realize such high fuel-savings. However, it is believed that simple, low cost FPAS, such as a hand-held calculator, could assist the fighter pilot to achieve fuel-savings on the order of 1%-2% [Ref. 2: pp. 7]. The research on FPAS reported herein was undertaken in conjunction with an investigation and the development of mathematical relationships that can be used to obtain optimum aircraft ground specific range when flying with a head wind or tail wind. More specifically, a means is developed for computing best ground specific range (BGSR) for an aircraft operating in wind conditions and computing the best range Mach number (BRMN) under wind conditions.

II. TECHNICAL DISCUSSION - REGRESSION PROCEDURE

Formulas used in the FPAS programs were developed from the charts in the performance section of the F-4E and F-5E Dash 1 Flight Manual [Refs. 3 and 4]. A multiple linear regression was performed on data points selected from the appropriate Flight Manual charts.

The form of the linear regression is:

$$Y = \sum_{i=1}^{n} a_i X_i$$
 (2-1)

Where a_i are constants and X_i are independent variables. The X_i can be powers of the independent variables; for example X_i could be DC squared where DC is drag count. Hence the regression uses a multivariable high order polynomial which allows numerous combinations of the independent variables (gross weight, drag count, temperature, etc.) to be used to form the regression.

The library programs available at the Naval Postgraduage School on the IBM 370/3033 computer system were used. The program used was MINITAB which was developed by Pond Laboratory at the Pennsylvania State University [Ref. 5: pp. 66]. Data are input in the form of independent and dependent variables for each point selected from a curve in the Flight Manual charts. Products of the independent variables and powers thereof can be defined in the program and used in the regression.

The first criterion used in selecting the best regression is the R-squared value. The definition of R-squared is given in [Ref. 5: pp. 72]. The R-squared value is a measure of how well the regression equation fits the data, with 100% indicating a perfect fit. As R-squared values approaches unity the regression has minimal error. The second criterion is the comparison between the actual dependent variable value and the value predicted from the regression formula. The final decision was made by assessing actual residual which equals predicted value subtracted from observed value.

n an an ann a Ann an Ann an

III. EFFECTS OF WIND ON THE AIRCRAFT OPTIMUM CRUISE PERFORMANCE

A. INTRODUCTION

U.S. Naval Air Development Center was investigating several candidate fuel-saving aircraft modifications and operational concepts for the aircraft. In supporting the Navy Aircraft Fuel Conservation (NAFC) Program, Professor Allen E. Fuhs developed mathematical models for the wind effects on the aircraft optimum cruise performance [Ref. 6]. All the equations and algebra were lengthy, and the mathematical model was limited to a first order analysis.

Here, in this thesis, a mathematical model was developed with second order analysis. Once the functional relationships between the aircraft specific range with no wind and flight velocity are known, the best range Mach number and ground specific range with wind can be determined with this model.

The functional relationships of the aircraft specific range with or without wind and true airspeed can be found by computer program 'BICSAC' [Ref. 2: pp. 8], which was developed by Naval Air Development Center. Input data consists of tables containing lift coefficients, angine thrust vs. fuel flow, and drag counts. All of these data vary from aircraft to aircraft. The method used to calculate the effects of the wind on the aircraft specific range using probabilistic approach [Ref. 2], which was developed by Naval Air Development Center, was reasonable. However, mathematical models of the wind effect on the aircraft specific range was sought; the models highlight the important aircraft parameters influencing ground specific range. Here the mathematical models of the wind effects on the aircraft specific range are derived and are used to calculate an example for a specific aircraft.

B. DERIVATION OF THE EQUATIONS

The equations were derived as follows: Specific Range is defined as NM/lbs. fuel:

SR = 0.592
$$(\frac{V}{W}_{f})$$
 (3-1)

where V is velocity in ft./sec. and W_f is fuel flow rate in pounds per second. The constant 0.592 converts ft./sec. to knots. Fuel flow rate (W_f) is multiplication of SFC and thrust:

$$W_{f} = (SFC)F \qquad (3-2)$$

where F is thrust in pounds. The thrust is equal to drag in level flight profile and can be represented as follows:

$$F = D = \frac{W}{(L/D)}$$
(3-3)

where D is drag, W is aircraft gross weight in pounds, and L/D is lift/ drag ratio. The effect of wind on ground specific range to be derived. Specific Range is defined as follows:

$$SR = \frac{V(L/D)}{(SFC)W}$$
(3-4)

where V is true airspeed in ft./sec., L/D is the lift/drag ratio for the aircraft, SFC is specific fuel consumption, and W is aircraft weight in pounds. Specific range, SR, is applicable only in the absence of wind. When the aircraft flys in a wind of velocity, V, the specific range becomes the ground specific range GSR which is

$$GSR = \frac{V_g(L/D)}{(SFC)W} = \left(\frac{V_g}{V}\right)_{SR}$$
(3-5)

Where V_g is aircraft velocity relative to the ground. Specific range is a function of true airspeed and has a maximum value at the peak of the SR versus velocity curve. L/D and SFC are needed as functions of V.

1. <u>Aerodynamics</u>

i. F

h Handala

Drag Coefficient is comprised of parasite drag and induced drag.

$$c_{\rm D} = c_{\rm D_0} + c_{\rm D_i}$$
 (3-6)

where C_{D_0} is defined as the drag coefficient without stores or lift. C_{D_i} is induced drag and is defined as follows:

$$C_{D_{i}} = \frac{\partial C_{D}}{\partial C_{L}^{2}} C_{L}^{2}$$
(3-7)

Lift/drag ratio can be represented as follows:

$$\frac{C_{L}}{C_{D}} = \begin{bmatrix} C_{D_{0}} + \frac{\partial C_{D}}{\partial C_{L}^{2}} C_{L} \end{bmatrix}^{-1}$$
(3-8)

Equation (3-4) indicates that a large value of L/D is desireable for large SR; to find the maximum L/D take the partial derivative of (C_L/C_D) with respect to C_L which gives the following relation:

a contract of the second

$$\frac{\partial}{\partial C_{L}} \begin{pmatrix} C_{D} \\ \overline{C}_{L} \end{pmatrix} = \begin{bmatrix} C_{D_{0}} + \partial C_{D} \\ - C_{L}^{2} + \partial C_{L}^{2} \end{bmatrix}$$
(3-9)

See Figure 1 which is a plot of L/D versus lift coefficient. As shown, the peak of the L/D curve is designated (L/D)*. Since $C_D = 2C_D_0$ at maximum L/D, the equation of (L/D)* is as follows:

$$(L/D)^{*} = \left[4 \frac{\partial C_{D}}{\partial C_{L}^{2}} C_{D_{0}}\right]^{-\frac{1}{2}}$$
(3-10)

An equation for C_L^* , which is the value of lift coefficient for $(L/D)^*$, is useful for fitting aircraft data. Using equation (3-9)

$$\frac{\partial C_{L}^{2}}{\partial C_{D}} = \left[2 (L/D)^{*} C_{L}^{*} \right]$$
(3-11)

Combining equations (3-10) and (3-11) yields

والمراجعة المتحمة بمادية المراجع

$$C_{L}^{*2} = \begin{bmatrix} c_{D_{0}} \frac{\partial C_{L}^{2}}{\partial C_{D}} \end{bmatrix}$$
(3-12)

One can calculate L/D versus lift coefficient combining the equations (3-8), (3-11), and (3-12). Equations (3-11) and (3-12) help select the parameters C_{n} . When the aircraft is in cruising flight, the aircraft weight is equal to aircraft lift:

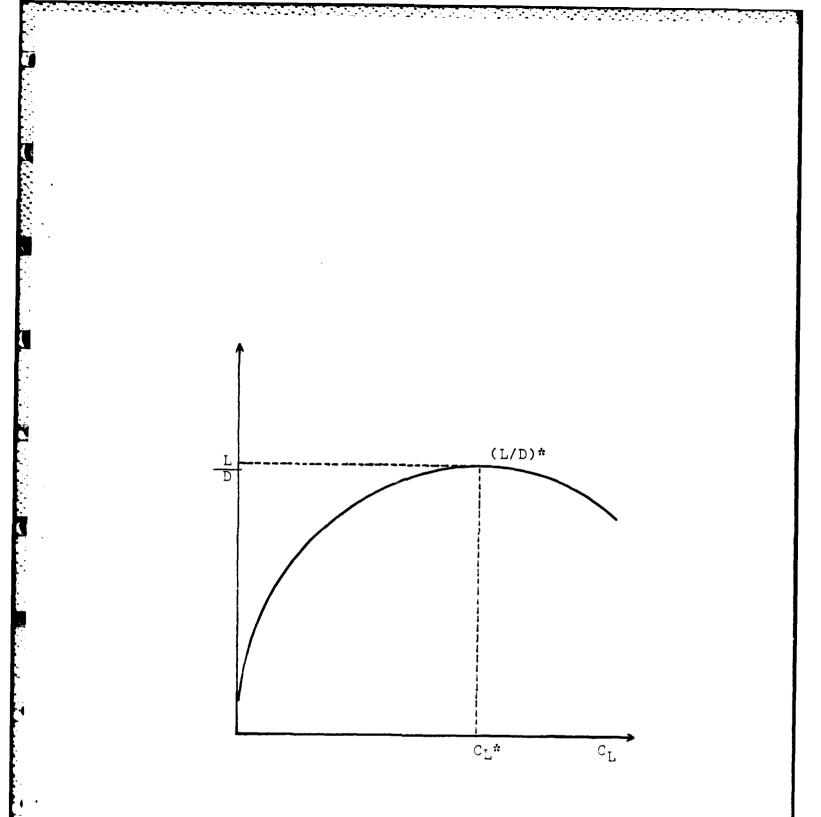
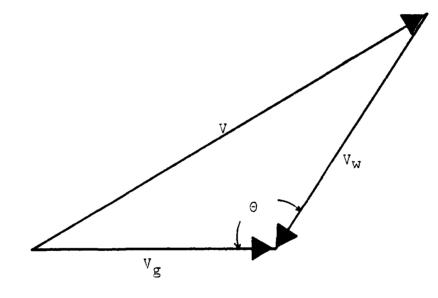


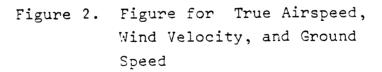
Figure 1. L/D Versus Lift Coefficient

$$L = W = \left[\frac{\rho V^2 C_L S}{2}\right]$$
(3-13)

where ρ is density at altitude in slug/ft³ and S is wing area in ft². Thus, the lift coefficient becomes:

$$C_{L} = \frac{(2W)}{(\rho V^2 S)}$$
(3-14)


Equations (3-8) and (3-14) can be combined giving L/D as a function of aircraft flight velocity


$$L/D = \left[\frac{\rho V^2 SC_{D_0}}{2W} + \left(\frac{\partial C_{D_0}}{\partial C_L^2}\right) \left(\frac{2W}{\rho V^2 S}\right)\right]^{-1}$$
(3-15)

Equation (3-15) can be inserted into equation (3-4). The goal is to express SR as a function of flight velocity. The only other term which is not expressed as a function of V in equation (3-4) is SFC. SFC is a complicated function of throttle setting, flight velocity, and altitude. Typical curves of SFC are given in the USAF Grey Book [Ref. 6]. In this thesis, curves of SR as a function of V are used. The curves are from [Ref. 2].

2. Wind Equations

Ground specific range is a function of ground speed and specific range which has been defined in the previous section. (See Figure 2 for the geometry of the velocity triangle.) Ground speed is a function of wind velocity, aircraft velocity, and the angle θ is measured from the

wind velocity vector to the vector for aircraft velocity relative to the ground. From the cosine law, ground velocity can be computed as follows:

$$V_{g} = V_{W} \cos\theta \pm \{V^{2} - V_{W}^{2} (1 - \cos^{2}\theta)\}^{\frac{1}{2}}$$
 (3-16)

The algebraic sign must be selected in equation (3-16). A choice has been made that when θ is 0 degrees, the wind is a tail wind. If it is 180°, then $\cos\theta$ is -1, and it is a head wind. The ground speed becomes V-V_w. Divide equation (3-16) by V to give the following relationship.

$$U_{g} = \frac{V_{g}}{V} = \frac{V_{W}}{V} \cos\theta + \left\{ 1 - \frac{V_{W}^{2}}{V^{2}} \left(1 - \cos^{2}\theta \right) \right\}^{\frac{1}{2}}$$
(3-17)

Substitution of equation (3-17) into (3-5) gives GSR as a function of velocity as follows:

$$GSR = \left[\frac{V(L/D)}{SFC \cdot W}\right] \left[\left\{ 1 - \frac{V_W^2}{V^2} \left(1 - \cos^2 \theta \right) \right\}^{\frac{1}{2}} + \frac{V_W}{V} \cos \theta \right] \right\}$$
(3-18)

Take the partial derivative of GSR with respect to velocity in order to find the velocity for maximum GSR. In order to make the equation simple, take the natural logarithm for equation (3-18)

$$\ln(GSR) = \ln(SR) + \ln(\frac{V_{g}}{V})$$
 (3-19)

The derivative of the Equation (3-19) is

$$\left[\frac{1}{\text{GSR}} \frac{\partial \text{GSR}}{\partial V}\right] = \left\{ \left[\frac{1}{\text{SR}} \frac{\partial \text{SR}}{\partial V}\right] + \left(\frac{V}{V_g}\right) \left[\frac{\partial (V_g/V)}{\partial V}\right] \right\}$$
(3-20)

The basic equation for finding maximum GSR becomes

$$\left[\frac{1}{SR}\frac{\partial SR}{\partial V}\right] = \left\{-\left(\frac{V}{V_g}\right)\left[\frac{\partial (V_g/V)}{\partial V}\right]\right\}$$
(3-21)

Substitution of equation (3-17) into the right hand side of equation (3-21) gives

$$\left[\frac{V}{V_{g}}\frac{\partial(V_{g}/V)}{\partial V}\right] = \binom{-1}{V} \left[\frac{\left\{-\binom{V_{W}}{V}\right\}^{2}(1-\cos^{2}\theta) + \frac{V_{W}}{V}\cos\theta\left[1 - \frac{V_{W}^{2}}{V^{2}}(1-\cos^{2}\theta)\right]^{\frac{1}{2}}}{\left\{\left[1 - \frac{V_{W}^{2}}{V^{2}}(1-\cos^{2}\theta)\right]\left[\left\{1 - \frac{V_{W}^{2}}{V^{2}}(1-\cos^{2}\theta)\right\}^{\frac{1}{2}} + \frac{V_{W}}{V}\cos\theta\right]\right\}}\right]$$

$$(3-22)$$

The approach will be to use curves for a specific aircraft for evaluation of the left hand side of equation (3-21). Equation (3-22) can be used for the right hand side of equation (3-21).

3. Second Order Analysis

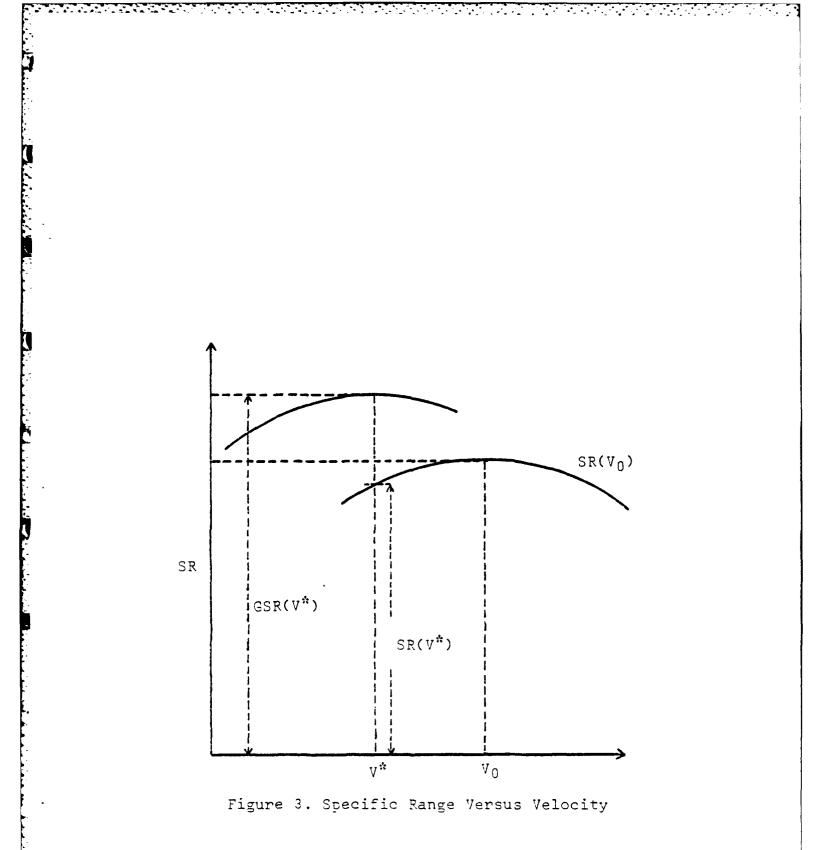
The first order analysis for finding the best range Mach number and the magnitude of GSR has been accomplished. See the Notes for AE 3001 Aircraft Energy Conservation [Ref. 6]. A second order analysis is accomplished in this section. Define U_g as ground speed divided by true airspeed, i.e., U_g = V_g/V; also define U_W = V_W/V. Define ε^* as $(V^*-V_0)/V_0$ and GSR=SR·U_g where V₀ is the velocity for maximum specific range with no wind, and V* is the velocity for maximum specific range with wind. SR can be expanded in a Taylor series about V₀ as follows:

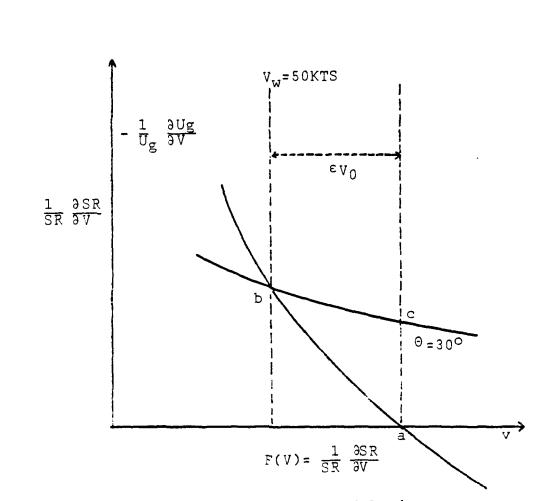
$$SR(V) = SR(V_0) + \left(\frac{\partial SR}{\partial V}\right) \left(V - V_0\right) + \left(\frac{\partial^2 SR}{\partial V^2}\right) \frac{\left(V - V_0\right)^2}{2}$$
(3-23)

The second term (∂ SR/ ∂ V) becomes zero when velocity is V₀ since ∂ SR/ ∂ V is evaluated at the peak of the SR curve where the derivative of SR with respect to V is zero. The graphical illustration can be found in Figure 3. In Figure 4 one uses straight line for first order solution. One assumes ab and cb are straight lines. An equation is needed for the curve passing through points a and b in Figure 4. Define F(V) as follows:

$$F(V) = (\frac{1}{SR}) (\frac{\partial SR}{\partial V})$$

Note that $F(V_0) = 0$. Then F(V) can be represented by a Taylor series expansion about V_0 as follows:

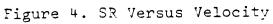

$$F(V) = F(V_0) + \left(\frac{dF}{dV}\right) (V - V_0) + \left(\frac{d^2F}{dV^2}\right) \frac{(V - V_0)^2}{2}$$
(3-24)


In this series representation of the F(V), dF/dV can be expressed in terms of SR by

$$dF/dV = - \left(\frac{1}{SR^2}\right) \left(\frac{dSR}{dV}\right)^2 + \left(\frac{1}{SR}\right) \left(\frac{d^2SR}{dV^2}\right)$$
(3-25)

The first term in equation (3-25) is also zero at V₀ for the same reason as mentioned above. Therefore, equation (3-24) can be rewritten using equation (3-25) as follows:

$$F(V) = \left(\frac{1}{5R}\right) \left(\frac{\partial^2 SR}{\partial V^2}\right) \quad (V-V_0) \tag{3-26}$$


•

. . .

·. ·

I

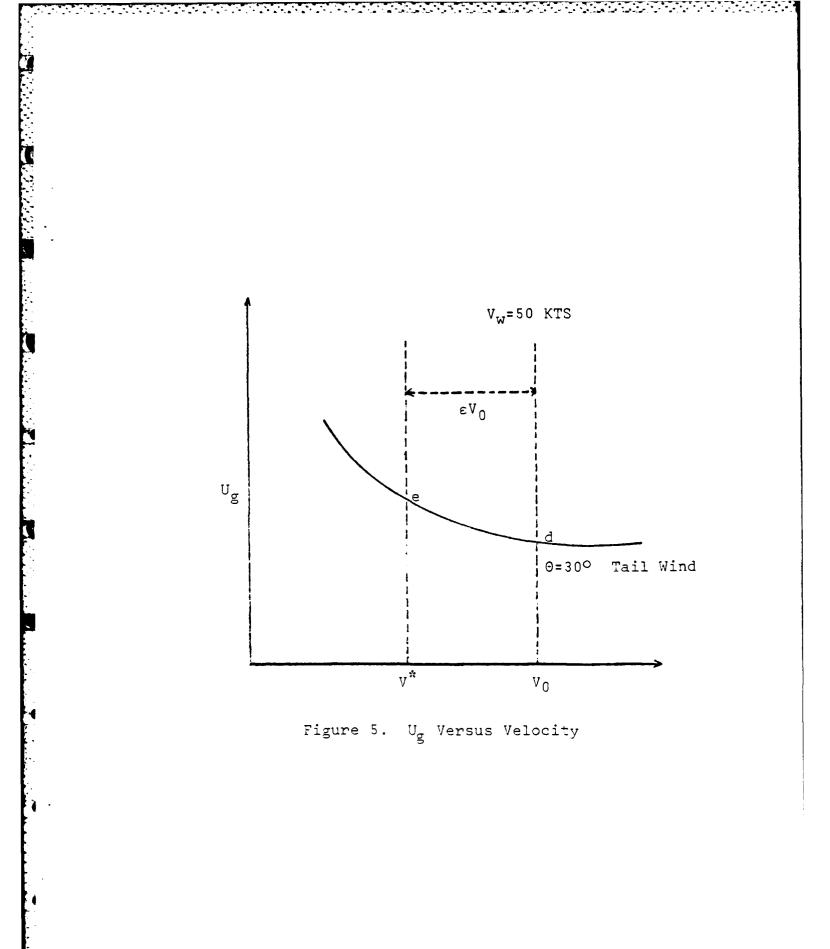
· · ·

Replacing V-V_0 with ϵV_0 gives

$$F(V) = \left(\frac{1}{SR}\right) \left(\frac{\partial^2 SR}{\partial V^2}\right) \quad \varepsilon V_0 \tag{3-27}$$

Equation (3-27) is appropriate for a first order analysis. An equation for the straight line passing through d and e in Figure 5 can be obtained by expanding equation (3-17) about V_0 . Recall $V=V_0$ (1+ ϵ) where ϵ is much less than unity. Define ${}^UW_0 = (V_W/V_0)$, which is much less than unity, also, when compared to unity, second order analysis retains terms like ϵ , UW_0 , ϵ^2 , ${}^{\epsilon U}W_0$, and UW_0 , but discards the higher order terms like ϵ^3 , UW_0 , etc. which are much less than unity. Then,

$$U_{W} \cos\theta = \left(\frac{V_{W}}{V_{0}(1+\varepsilon)}\right) \cos\theta = U_{W_{0}} \cos\theta (1-\varepsilon)$$
(3-28)


and, $(1-U_W^2 (1-\cos^2\theta))^{\frac{1}{2}}$ can be expanded using binomial expansion as follows:

$$1 - (\frac{1}{2}) U_{W}^{2} (1 - \cos^{2}\theta) - (\frac{1}{8}) U_{W}^{4} (1 - \cos^{2}\theta)^{2} + \dots \qquad (3-29)$$

The term (1/V) is the same as (1/(V₀ (1+ ε)), and this can be expanded using binomial expansion as follows:

$$\frac{1}{V_0} \quad (1-\varepsilon + \varepsilon^2 + \dots).$$

Neglect terms of order higher than second. Then the term U_W becomes $U_W_{n}(1-2\epsilon+\epsilon^2)$. Equation (3-22) can be written as follows:

$$\begin{bmatrix} \frac{V}{V_g} \frac{\partial (V_g/V)}{\partial V} \end{bmatrix} = \begin{cases} (-\frac{1}{V_0}) & (1-\epsilon+\epsilon^2) \end{cases}$$
(3-30)

$$\frac{\left[\left\{1 - \frac{1}{2} U_{W_{0}}^{2} (1 - 2\varepsilon + \varepsilon^{2})(1 - \cos^{2}\theta)\right\} \left\{U_{W_{0}} \cos\theta(1 - \varepsilon)\right\} - \left\{U_{W_{0}}^{2} (1 - 2\varepsilon + \varepsilon^{2})(1 - \cos^{2}\theta)\right\}\right]}{\left[\left\{1 - \frac{1}{2} U_{W_{0}}^{2} (1 - 2\varepsilon + \varepsilon^{2})(1 - \cos^{2}\theta)\right\} \left\{U_{W_{0}} \cos\theta(1 - \varepsilon)\right\} + \left\{\frac{U_{W_{0}}^{2} (1 - 2\varepsilon + \varepsilon^{2})(1 - \cos^{2}\theta)\right\}\right]}\right\}}$$

In the expression above, terms above third order can be neglected and equation (3-22) can be simplified as follows:

$$\begin{bmatrix} \frac{1}{U_g} \begin{pmatrix} \frac{\partial U_g}{\partial V} \end{pmatrix} \end{bmatrix} = \begin{pmatrix} \frac{-1}{V_0} \end{pmatrix} \begin{bmatrix} \frac{U_{W_0} \cos\theta - 2\varepsilon \cdot U_{W_0} \cdot \cos\theta - U_{W_0}^2 (1 - \cos^2\theta)}{1 + U_{W_0} \cos\theta - \varepsilon U_{W_0} \cos\theta - U_{W_0}^2 + U_{W_0}^2 \cos\theta} \end{bmatrix}$$
(3-31)

In order to continue the reduction of equation (3-31) to second order, $U_W = \cos\theta - \epsilon U_W = \cos\theta - U_W^2 + U_W^2 = \cos\theta$ is assumed to be X. The term (1/(1+X)) can be expanded using binomial expansion

$$\left(\frac{1}{(1+X)}\right) = 1 - X + X^{2} - X^{3} + \dots$$

$$\left(\frac{1}{(1+X)}\right) = 1 - U_{W_{0}} \cos\theta + \varepsilon U_{W_{0}} \cos\theta + U_{W_{0}}^{2} - U_{W_{0}}^{2} \cos^{2}\theta + U_{W_{0}}^{2} \cos^{2}\theta$$

Then, equation (3-31) can be rewritten in the following simplified form.

$$\begin{bmatrix} \frac{1}{U_g} & \frac{\partial U_g}{\partial V} \end{bmatrix} = \begin{bmatrix} -\frac{1}{SR} \end{bmatrix} \begin{bmatrix} \frac{\partial SR}{\partial V} \end{bmatrix} = \begin{bmatrix} -\frac{1}{V_w} \end{bmatrix} \begin{bmatrix} U_{W_0} \cos\theta - 2\varepsilon & U_{W_0} \cos\theta - U_{W_0}^2 \end{bmatrix}$$
(3-32)

Equation (3-32) is a valid second order representation of the term involving the derivative of U_g . From equation (3-25), d^2F/dV^2 at V=V₀ can be evaluated

$$\frac{d^2 F}{dV^2} = \left\{ \frac{d}{dV} \left[-\frac{1}{SR^2} \left(\frac{dSR}{dV} \right)^2 \right] + \frac{d}{dV} \left\{ \frac{1}{SR} \frac{d^2SR}{dV^2} \right\} \right\}$$
(3-33)

Equation (3-33) becomes

$$\frac{d^2 F}{dV^2} = \left[-\left(\frac{1}{SR^2}\right) \left(\frac{d^2 SR}{dV^2}\right) \left(\frac{dSR}{dV}\right) + \left(\frac{1}{SR}\right) \left(\frac{d^3 SR}{dV^3}\right) \right]$$
(3-34)

The first term drops out since (1/SR)(dSR/dV) is zero when evaluated at V_0 .

Finally, equation (3-33) becomes

$$\begin{bmatrix} \frac{d^2 F}{dV^2} \end{bmatrix}_{at \ V=V_0} = \begin{bmatrix} \frac{1}{SR} \end{bmatrix} \begin{bmatrix} \frac{d^3 SR}{dV^3} \end{bmatrix}$$
(3-35)

Therefore, substituting equations (3-25) and (3-35) into equation (3-24) gives

$$F(V) = \left\{ \left(\frac{1}{SR}\right) \left(\frac{\partial SR}{\partial V}\right)_{V_0} + \left(V^* - V_0\right) \left(\frac{1}{SR}\right) \left(\frac{\partial^2 SR}{\partial V^2}\right) + \frac{1}{SR} \quad \frac{\partial SR}{\partial V^3} \quad \frac{\left(V - V_0\right)^2}{2} \right\}$$
(3-36)

The first term of equation (3-36) drops out since $\partial SR/\partial V$ is zero when $V=V_{\Omega}$. Thus equation (3-36) can be simplified as

$$\left[\begin{pmatrix} \frac{1}{SR} \end{pmatrix} \begin{pmatrix} \frac{\partial SR}{\partial V} \end{pmatrix} \right] = \left\{ \epsilon V_0 \begin{pmatrix} \frac{1}{SR} \end{pmatrix} \begin{pmatrix} \frac{\partial^2 SR}{\partial V^2} \end{pmatrix} + \begin{pmatrix} \frac{\epsilon^2 V_0^2}{2SR} \end{pmatrix} \begin{pmatrix} \frac{\partial^3 SR}{\partial V^3} \end{pmatrix} \right\}$$
(3-37)

From equation (3-21), which is valid at V*, equation (3-37) and equation (3-32), the following relationships are obtained:

$$\begin{bmatrix} \frac{1}{SR} \frac{\partial SR}{\partial V} \end{bmatrix} = \begin{bmatrix} \frac{1}{V_0} \left\{ U_{W_0} \cos\theta - 2\varepsilon \ U_{W_0} \cos\theta - U_{W_0}^2 \right\} \end{bmatrix}$$
(3-38a)

and

$$\left[\frac{1}{SR}\frac{\partial SR}{\partial V}\right] = \left[\varepsilon V_0 \left(\frac{1}{SR}\right) \left(\frac{\partial^2 SR}{\partial V^2}\right) + \left(\frac{\varepsilon^2 V_0^2}{2}\right) \left(\frac{1}{SR}\right) \left(\frac{\partial^3 SR}{\partial V^3}\right)\right]$$
(3-38b)

In order to solve equation (3-29) for ε , ($\partial^2 SR/\partial V^2$) and ($\partial^3 SR/\partial V^3$) should be determined first of all. Several methods can be used to find the derivatives of SR with respect to velocity. The aerodynamic analysis along with an analysis for SFC is a method of determining the SR function with respect to velocity. However, in this thesis graphical data of SR as function of velocity for A-7E aircraft is used as one example. One can find the SR versus V chart in Herskovitz [Ref. 2: pp. 15]. Also, one can read the SR value with respect to aircraft velocity. Then the second and third derivatives of SR with respect to velocity can be determined as follows:

$$\frac{d^2 SR}{dV^2} \cong \left[\frac{f(x+2h) + 2f(x+h) + f(x)}{h^2} \right]$$
(3-39)

The equation above can be rewritten as follows:

$$\frac{\partial^2 SR}{\partial V^2} \doteq \left[\frac{SR_3 - 2SR_2 + SR_1}{(\Delta V)^2} \right]$$
(3-40)

Also

$$\frac{\partial^3 SR}{\partial V^3} = \left[\frac{SR_4 - 3SR_3 + 3SR_2 + SR_1}{(\Delta V)^3}\right]$$
(3-41)

Equation (3-38) can be solved for ε as indicated below. Define some constants for convenience.

$$a = \begin{bmatrix} \frac{V_0^3}{2SR} \end{bmatrix} \begin{bmatrix} \frac{\partial^3 SR}{\partial V^3} \end{bmatrix}$$

$$b = \begin{bmatrix} \frac{V_0^2}{SR} & \frac{\partial^2 SR}{\partial V^2} + (2U_{W_0} \cos\theta) \end{bmatrix}$$

$$c = \begin{bmatrix} U_{W_0}^2 - U_{W_0} \cos\theta \end{bmatrix}$$
(3-42)

Then equation (3-38) becomes:

$$a\varepsilon^2 + b\varepsilon + c = 0 \tag{3-43}$$

The roots are as follows:

$$\varepsilon = \left[-\frac{b}{2a} \pm \left(\frac{1}{2a}\right) (b^2 - 4ac)^{\frac{1}{2}}\right]$$
 (3-44)

The square root can be expanded with the binomial expansion. Then the roots become as follows:

 $\varepsilon_1 = -(\frac{c}{b})(1 - \frac{ac}{b^2})$ (3-45)

$$\varepsilon_2 = (\frac{b}{a}) (-1 + \frac{(ac)}{b} + \frac{(a^2c^2)}{b^4})$$
 (3-46)

and a second a second second

The sign of ε should flip when θ changes from 0° to 180°. When θ is zero degree, the wind is a tail wind. The aircraft should fly at a slower speed, and the sign of ε is minus. When θ is 180°, the wind is a head wind, and the aircraft should fly at a faster speed. The sign of ε is positive.

From the beginning of Section 3., the GSR and V* are defined as follows:

$$GSR = SR(U_q) \tag{3-47}$$

$$V^* = V_0(1+\varepsilon^*) \tag{3-48}$$

where ε should be ε_1 , since ε_2 is a number bigger than unity. If ε is bigger than unity, it is not physically reasonable. From equations (3-17) and (3-23), GSR can be written as follows:

$$GSR(V^*) = \left\{ \left[SR(V_0) + \frac{\varepsilon^2 V_0^2}{2} \quad \frac{\partial^2 SR}{\partial V^2} \right] \left[1 + U_{W_0}(1-\varepsilon)\cos\theta - \frac{1}{2} U_{W_0}^2(1-\cos^2\theta) \right] \right\}$$
(3-49)

Rearranging equation (3-49), GSR equation can be rearranged as

$$GSR(V^*) = SP(V_0) \left[1 + U_{W_0}(1-\varepsilon)\cos\theta - \frac{1}{2}U_{W_0}^2(1-\cos^2\theta) + \frac{\varepsilon^2 V_0^2}{2SR} \frac{\partial^2 SR}{\partial V^2} \right] \quad (3-50)$$

Sample calculations of ε^* , GSR, and V* using computer program are shown in Appendix A and B. The aircraft in the sample problem is the A-7E, with the following inputs: altitude 35,000 ft., drag count 50, and wind velocity 50 knots which is changing directions from head wind to tail wind. The ground specific range can be found in the Technical Publications [Ref. 2: pp. 17]. A computer program for a sample problem is included in Appendix A. The values of Specific Range in the program were taken from GSR versus velocity chart in Herskovitz [Ref. 2: pp. 17]. The solutions of the example problems are included in Appendix B. See Figures B.1, B.2, and B.3 for graphical results.

IV. F-4E FPAS PROGRAM

A. INTRODUCTION

والمراجع والمحافظ والمتحد المراجع

The U.S. Naval Development Center (NAVAIRDEVCEN) has been investigating several candidate fuel-saving modifications and operational concepts for Naval aircraft including the A-7E, F-4J, P-3C, and S-3A. One of several fuel-saving operational concepts being investigated is the application of state-of-the-art hand-held calculators to serve as Flight Performance Advisory System using an HP-41CV hand-held programmable calculator [Ref. 7]. The principal function of the FPAS would be to advise aircraft personnel of the flight conditions (speed and altitude) yielding maximum flight efficiency measured in terms of specific range. At present, such information is manually derived using charts in the Flight Manuals. Repeated utilization of these charts while in flight is not practical. It is expected that a computerized FPAS will simplify the task of planning for fuel efficient flight.

While the Aircraft Fuel Conservation Project is examining a broad range of FPAS options, including a microprocessor to supplement aircraft data processing equipment, the hand-held calculator option was selected as an interim solution because it offers immediate availability at a relatively low cost. The HP-41CV hand-held programmable calculator was selected because it represents the latest technology including alphanumeric display and 2200 bytes of random access memory (RAM). A programmable module of 8000 bytes of read only memory (ROM) is also available. Recently Hewlett-Packard developed new memory module which can add 1666 or more extended bytes of memory to the HP-41CV calculator. The purpose of this part of the thesis is to document the program and operational features of the F-4E/HP-41CV FPAS and F-5E/HP-41CV FPAS. While the features of the program documented in this thesis are by no means final, a foundation is formed for future development of military aircraft in-flight software.

A description of the F-4E and F-5E programs written for the HP-41CV calculator is contained in Chapters 4 and 5. The contents of Chapters 4 and 5 include a general overview of the entire program and the methodology used to generate the equations from the F-4E Flight Manual [Ref. 3], and from the F-5E Flight Manuals [Ref. 4], and a listing of program input/ output parameters and the equations used for each program mode. An annotated listing of the F-4E and F-5E FPAS program is contained in Appendix D. A program User's Guide is contained in Chapter 6. Several illustrative examples of F-4E and F-5E FPAS Program utilization are described in Chapter 8.

B. F-4E PROGRAM DESCRIPTION

The F-4E FPAS program is comprised of the following three subprograms:

- (1) Optimum cruise;
- (2) Bingo program; and
- (3) Maximum endurance and descent.

The optimum cruise program provides the aircrew with best cruise speed, altitude, and specific range for given aircraft gross weight and drag count. The optimum cruise program consists of pre-flight and inflight modes. The former is used by the aircrew for mission profile planning. The latter mode is exercised after takeoff using actual aircraft weight, drag count, and outside temperature.

The Bingo program provides the aircrew with fuel and distance required to climb to the optimum altitude; further, the Bingo program yields distance and fuel required to descend from optimum cruise altitude to desired altitude. This program also provides the aircrew with optimum cruise altitude, airspeed, fuel, and distance required to fly with minimum fuel consumption. The Bingo program is not only useful for the energy conservation but is also helpful for flight safety. The Bingo program is developed when the optimum cruise altitude is too high for short range missions. The method for finding the peak altitude of Bingo flight profile is provided in the Bingo program description.

The maximum endurance program was separated from the previous program because the previous programs exceed the memory of HP-41CV. However, the maximum endurance and descent programs are useful for loiter flight.

1. Climb and Descent Mode Descriptions

The data used in climb mode is based on climb speed of 350 KIAS with military thrust climb until interception of optimum cruise altitude. When optimum Mach number and cruise altitude are attained the optimum conditions are maintained on the cruise leg.

The data used in descent mode is based on descent airspeed of 300 KIAS with power set at 80% RPM and speed brakes retracted.

2. Optimum Cruise Program

a. Program Input/Output Parameters

The following is a listing of the applicable common input/ output parameters for each of the three F-4E programs and the F-5E program. The symbol, definition, and units used for each input/output parameters are shown as follows:

DC = Drag count B₩ = Base weight (lbs) SW = Store weight (lbs) FW = Fuel weight (lbs) TW = Tail wind components (kts) ALT = Present altitude (ft) TEMP = Present temperature (centigrade) G₩ = Gross weight (lbs) E₩ = Effective weight (lbs) SDT = Standard day temperature BRMN = Best range Mach number BRTAS = Best range true airspeed (kts) = Best range ground speed (kts) BRGS BRFF = Best range fuel flow (lbs/hr) = Best range altitude (ft) BRALT NBRALT = Next FAA best range altitude in feet, since FAA best range altitude is not always assigned to the aircraft in Instrument Flight Rule conditions. Thus one has to have alternative best range altitude. NFW = Fuel weight at which to initiate climb (lbs) CEILING = Because of aircraft configration limitation, the operator has reached his maximum altitude (ft).

Other parameters which are not specified in the above list are listed in each program description.

b. Performance Equations

This section briefly discusses the methodology used in deriving the equations for the F-4E FPAS program. The discussion of the performance equations is followed by a listing of the equations for the optimum cruise program.

The equations for the F-4E FPAS program were obtained through regression and graphical analysis techniques. Regression analysis employed linear regressions of polynomial, to curve fit the Flight Manual performance data for the F-4E. Sufficiently accurate curve fit for data from the Flight Manual could not be obtained using regression analysis in every case. Consequently other methods or variations of regression equations were applied. Alternate methods include piecewise curve fits over partitioned parameter intervals.

Most of the equations were derived using the package of Minitab with IBM-370 [Ref. 5: pp. 66]. Multiple regression techniques were employed.

For optimum cruise, which is a curve fit to the curves from the Flight Manual, equations were first derived for a standard day and zero wind condition and later adjusted to accommodate the effects of non-standard temperature upon air density and speed of sound and a "Rule of Thumb" performance head wind correction. The equation of head wind correction was derived by Naval Air Development Center, Warminster, PA [Ref. 7: pp. 4].

c. The Nature of the Temperature Variations

Implicit in the computation of best range altitude is a value for air density. The Flight Manual data assumes a standard atmosphere model. Thus, the first step in FPAS is to compute BRALT according to the Flight Manual data. This altitude is translated to an equivalent "density altitude" using an equation derived from ideal gas laws.

Correction of BRALT for Non-standard Atmospheric

<u>Temperature</u>. As indicated in the previous section, a correction is made to BRALT when the ambient temperature does not equal the value for the standard temperature. Assume the pressure in the atmosphere as a function of altitude equals that for the standard atmosphere. When the ambient temperature differs from standard temperature, the flight altitude is adjusted so that the ambient density equals the standard density at altitude, BRALT.

Define $h_{\rm l}$ as BRALT; define $h_{\rm 2}^{}$ as the corrected altitude. One wants

$$\rho_{a}(h_{2}) = \rho_{s}(h_{1})$$
 (4-1)

Where $\rho_a(h_2)$ is the actual density at altitude h_2 and $\rho_s(h_1)$ is the density for a standard atmosphere at altitude h_1 or BRALT. The density $\rho_a(h_2)$ can be expanded in a Taylor's series as

$$\rho_{a}(h_{2}) = \rho_{a}(h_{1}) + \left(\frac{d\rho}{dh}\right)_{h_{1}}(h_{2}-h_{1}) = \rho_{s}(h_{1})$$
(4-2)

Manipulation of equation (4-2) and introduction of the perfect gas law yields

$$\frac{d\rho}{dh} (h_2 - h_1) = \rho_s(h_1) - \rho_a(h_2) = \left(\frac{P_s}{R}\right) \left(\frac{1}{T_s} - \frac{1}{T_a}\right)$$
(4-3)

The equation for static equillibrium in the atmosphere is

$$\frac{\mathrm{d}P}{\mathrm{d}h} = -\rho g \qquad (4-4)$$

where P is pressure and g is the acceleration of gravity. To use equation (4-2), one needs a formula for dp/dh. From differentiation of the perfect gas law

$$\frac{dP}{dh} = RT \frac{d\rho}{dh} + \rho R \frac{dT}{dh}$$
(4-5)

Combining equations (4-4) and (4-5) yields

$$\left(\frac{d\rho}{dh}\right)_{h_1} = -\frac{\rho_s}{T_s} \quad \left(\frac{g}{R} + \frac{dT}{dh}\right)$$
(4-6)

Finally equations (4-3) and (4-6) can be combined to give an expression for the corrected altitude

$$h_{2} = h_{1} - \left\{ \frac{T_{s}}{T_{a}} - \frac{(T_{a} - T_{s})}{(\frac{g}{R} + \frac{dT}{dh})} \right\}$$
(4-7)

In subsequent discussion, h_2 will be identified as BRALT. If one assumes that $T_s \simeq T_a$ and that the atmosphere is isothermal, i.e., dT/dh = 0, then equation (4-7) reduces to

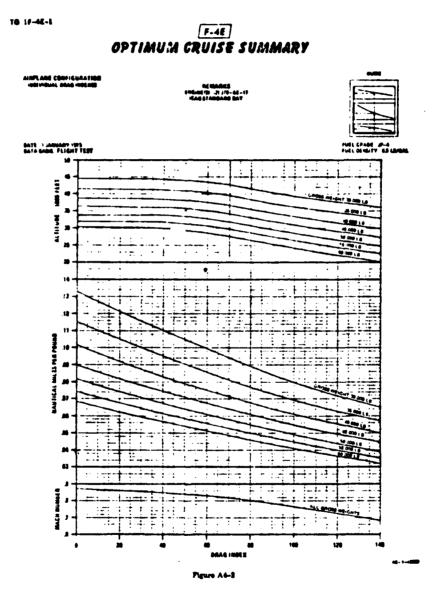
$$h_2 = h_1 - \frac{R}{g} (T_a - T_s)$$
 (4-8)

As one would expect, when T_a is greater than T_s , then the BRALT is lower than that value for flight in a standard atmosphere. The report by FAAC [Ref. 1], discusses the correction of BRALT for altitude in Appendix F of

the report. The formula derived by FAAC is equivalent to equation (4-8). Comparison of the derivation above with that of FAAC indicates FAAC did not state the correct assumptions involved in the altitude adjustment.

d. Equations for Optimum Cruise Program

Optimum cruise, which is defined by the Flight Manual for F-4E aircraft [Ref. 3], is the maximum value of specific range. Specific range is the nautical miles flown per pound of fuel consumed. Assuming both engines of F-4E are operating, three charts from the Flight Manual are relevant to determination of optimum cruise conditions. The three charts are reproduced here as Figure 6. The small insert in Figure 6 shows that the curves are entered with drag index. Hence, drag index is one of the independent variables. From the bottom curve in Figure 6, the best range Mach number, BRMN, is obtained. The bottom curve has been regressed yielding the equation


$$BRMN = .86672 + 3.228DC^2 - .000010812DC^3$$
 (4-9)

For the wind correction, the true airspeed, BRTAS, is needed. BRTAS is obtained from Mach number using speed of sound as shown in equation (4-10) below

BRTAS = BRMN
$$\cdot$$
 38.98 $\cdot \sqrt{(\text{TEMP} + 273.16)}$ (4-10)

According to [Ref. 1: pp. 5], the correction for tail wind is

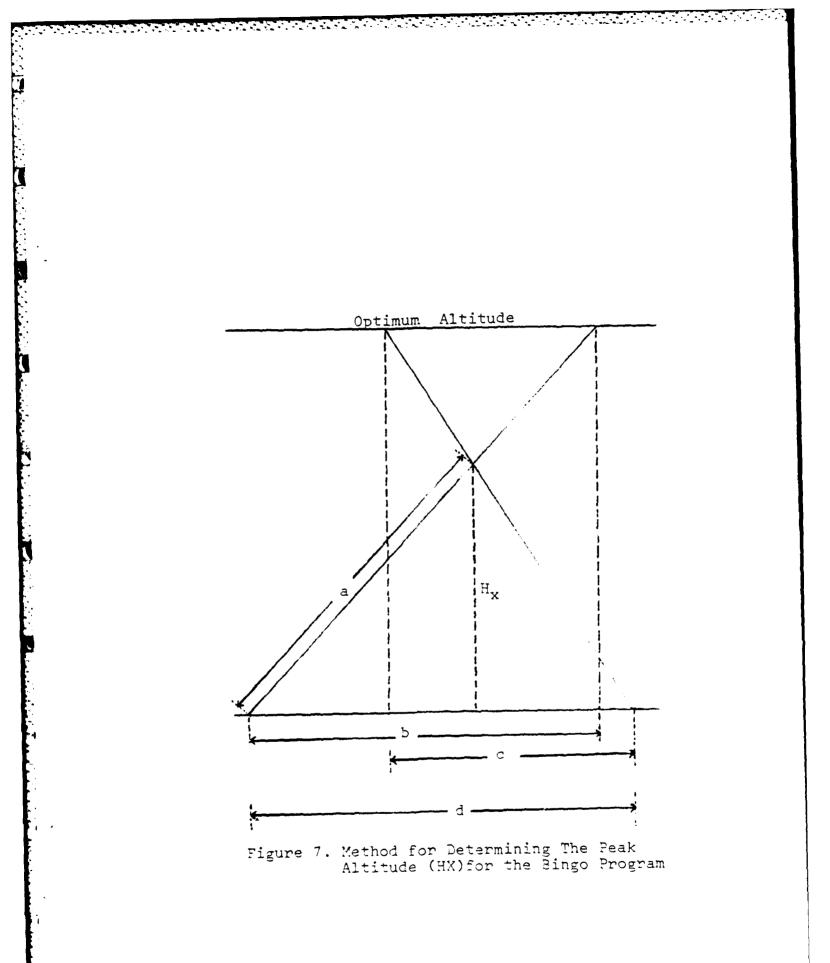
$$BRTAS = BRTAS - 0.25(TW)$$
 (4-11)

.....

Figure 6. F-4E Optimum Cruise Summary

At this point, one should note that Chapter 3 of this thesis derived an equation equivalent to equation (4-11). See equation (3-48). The empirical value of 0.25 given in equation (4-11) can be calculated from knowledge of specific range, SR; the second derivative of SR with respect to airspeed, $\partial^2 SR/\partial V^2$; the optimum flight velocity with no wind V_0 ; and the wind velocity V_W . For the A-7E aircraft the constant multiplying wind velocity was found to be -0.19. This value is a slightly less than the value of equation (4-11). The equation of Best Range Ground Speed becomes

$$BRGS = TW + BRTAS$$
(4-12)


which is a simple algebraic combination of tail wind and true airspeed. Continuing with the charts in Figure 7, the middle set of curves give specific range as a function of drag index and gross weight. The equation which generates these curves is

$$SR = .3467 - .011423GW - .0010658DC + .00017361GW^{2} - .000001143DC^{2}$$

- 1.01941 + 10⁻⁶GW^{3} + 4.026908 + 10⁻⁸DC^{3} - 1.48918 + 10⁻¹⁰DC^{4}
+ 9.065261 + 10⁻¹⁸(GW)^{4}(DC)^{4} - 1.36419 + 10⁻¹³(GW)^{3}(DC)^{3}
+ .000014286(GW)(DC) (4-13)

Note that SR is a function of drag index and gross weight.

The top curve in Figure 7 is best range altitude, BRALT, as a function of drag index and gross weight. The equation which is used in the HP-41CV to generate BRALT is

BRALT =
$$72.771 + .0142DC - 1.2681GW - .0000831DC + .012909GW^2$$

- .000011726DC³ - .00006205GW³ + 5.952454 · 10⁻⁸DC⁴ (4-14)

In Section B.1 above, a correction to BRALT was derived. Below 36,000 feet the temperature of standard atmosphere varies with altitude and is given by - $0.0019812 \cdot (ALT)$. Using the formula for standard temperature and the results of secion B.2. the corrected BRALT for altitude less than 36,000 feet is

$$BRALT = -.0019812(ALT) + 15 - TEMP \cdot 96.103 + ALT$$
(4-15)

Best range altitude corrected for above 36,000 feet is

1

$$BRALT = (-56.5 - TEMP) \cdot 96.103 + ALT$$
(4-16)

According to [Ref. 1], the temperature in standard atmosphere below the altitude of 36,000 feet is

$$SDT = -.0019812(ALT) + 15$$
 (4-17)

and the temperature for a standard atmosphere above the altitude 36,000 feet is

$$SDT = -56.5$$
 (4-18)

In many cases, most of the flight altitude is restricted with Federal Aviation Agency regulations under Instrument Flight Rules or Visual Flight Rules [Ref. 1: pp. 7]. When the aircraft heading is east and flying condition is IFR, the aircraft must maintain even altitude in thousands of feet. When the aircraft heading is west and flying condition is IFR, the aircraft must maintain odd altitude in thousands of feet.

When the flying condition is VFR and with FAA flight restriction, an aircraft which is flying heading east must keep even altitude in thousands of feet plus 500 feet and an aircraft which is flying heading west must keep odd altitude in thousands of feet plus 500 feet.

When the flying condition is IFR, the aircrew is not able to fly at an arbitrary altitude. The altitude will be assigned by ground radar controller. In that case, aircrew can ask the controller for specific altitude which he wants to maintain. In that case, the aircrew should know the Next FAA Best Range Altitude. The Next FAA Best Range Altitude is FAA Best Range Altitude plus 2000 feet; that is

$$NBRALT = FAA BRALT + 2000 ft \qquad (4-19)$$

Fuel weight at which to initiate his climb to Next FAA Best Range Altitude is gross weight minus effective weight which is base weight plus store weight, that is

$$NFW = GW - EW \qquad (4-20)$$
$$EW = BW + SW \qquad (4-21)$$

where the gross weight is given in equation (4-22). Equation (4-22) is derived from [Ref. 7],

$$GW = \frac{\{(.9005 - (1.814E - 05NBRALTP + .4656DC - .000103DC - .3957)\}^{2}}{(9.072 \cdot 10^{-6})}$$
(4-22)

where Next Best Range Altitude NBRALTP is defined as follows:

$$NBRALTP = NBRALT - 96.103(TEMP-SDT)$$
(4-23)

3. Bingo Program

a. Program Input/Output Parameters

The program input/output parameters are as follows:

GWDP = Gross weight at the descent point

FCR = Cruise fuel

GWSL = Given sea level gross weight

FCL = Derived climb fuel

HOPT = Optimum altitude

b. Bingo Program Description

This section discusses the actual logic of the program and methodology used. The program consists primarily of three parts. The first part is the climb mode, the second part is the cruise mode, and the third part is the descent mode. The term "Bingo" is defined here as any optimum maximum climb, cruise, and descent that begins and ends at sea Bingo program is useful for most F-4E missions including interlevel. ceptions, interdictions, close air support, cross country training flight, and actual emergency bingo situations. Figure 7 shows the geometry of determining the peak altitude of the Bingo program. After the program is initialized, the crew may enter drag count, initial climb altitude, desired altitude, fuel weight, store weight, gross weight, etc., and be provided with the optimum altitude, fuel required, and descent point for a given Bingo distance. In addition, all of the parameters required on the jet card, which provides the aircrew with the performance data, are available from the data key.

Several assumptions were made in executing the Bingo program. First, the distance to climb and descend from sea level to optimum altitude must be determined. The total distance, when compared to the input Bingo distance, determines whether the aircraft can reach the optimum altitude before descent must begin. If not, the lower "crossing altitude" must be determined. The derivation of the crossing altitude is shown in Figure 7. Note that any descent distance was computed prior to cruise fuel (if any) being calculated. Since aircraft weight is required at the descent point for computation, and cruise fuel is not known, a nominal cruise fuel as a function of Bingo distance is assumed. The gross weight at begin-descent point cannot be calculated explicitly, and an iteration procedure is not feasible for the HP-41CV. See Figure 7 for the method for determining the peak altitude (HX) of the Bingo program.

HOPT = optimum altitude (1000 ft.)

b = climb distance (nm)

c = descent distance (nm)

d = desired flight distance (nm)

HX = altitude to climb to and descent from

$$K = \frac{(6.076116 \text{ ft. x } 10^3)}{1 \text{ nm}}$$

 $\tan \theta = \frac{HOPT}{(Kb)}$

$$\tan \phi = \frac{HOPT}{(Kc)}$$

 ψ = 180° - θ - ϕ

From the law of sines

$$a = \frac{(d \cdot \sin \phi)}{\sin \psi}$$

and

 $HX = K \cdot a \cdot sin\theta$

Given sea level gross weight (GWSL), the gross weight at the descent point (GWDP) is then:

$$GWDP = GWSL - FCL - FCR \qquad (4-24)$$

where FCL is the derived fuel which is required to climb.

A climb distance of 68 NM, descent distance of 49 NM, and fuel use of 14.7 lbs/NM is assumed for average gross weights and optimum altitudes. These data came from average configuration of F-4E used in flight training¹. Then the FCR (estimated cruise fuel) equation is as follows:

The results are considered accurate enough for these profiles since descent fuel and distance are not sensitive enough to gross weight variations to significantly affect the total results.

It can be shown that for high speed jet aircraft, the influence of wind on Best Range Mach Number is essentially negligible for head and tail wind components up to 10% of the aircraft velocity. However, these

¹ Aircraft average GW = 40000 lbs., DC = 80. Descent Speed 300 IAS, 80% RPM, speed brake retracted.

components have been accounted for in the computation of Best Range Mach Number and Ground Specific Range using the same equation as the optimum cruise program.

c. Climb and Descent Mode Descriptions

Climb and descent mode is derived from Technical Order-1 F-4E performance chart [Ref. 3: pp. A3-12], see Figures 8 and 9. Use military power and maintain 350 KIAS for climb. For descent mode, set throttle 80% RPM and maintain speed at 300 KIAS with speed brake in.

d. Program Input/Output Parameters

The program input/output parameters are as follows:

- GW = gross weight (lbs)
- ALT = altitude (ft)
- DC = drag count

DT = temperature deviations from standard temperatures (deg)

FF = fuel flow (lbs/hour)

DIST = distance (nm)

- DISTCL = distance required to climb from sea level to desired altitude.
- TEMPD = temperature corrections for DISTCL
- HWIND = head wind corrections for climb performance
- TWIND = tail wind corrections for climb performance
- DDIST = distance required to descent from optimum altitude to desired altitude.
 - e. Equations of Bingo Program

The equation for fuel required to climb to optimum cruse altitude is defined by the Flight Manual for F-4E aircraft [Ref. 3: pp. A3-12]. The performance chart for fuel required to climb is based on

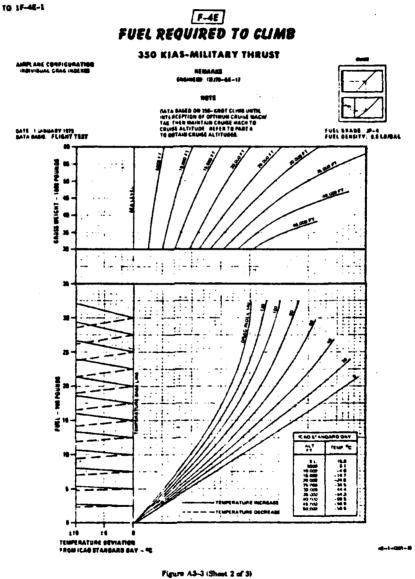
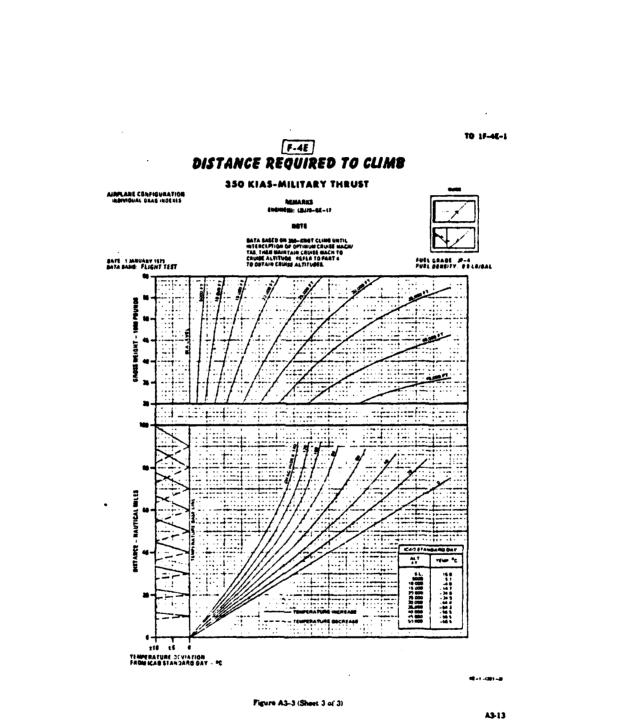
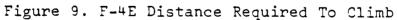




Figure 8. F-4E Fuel Required To Climb

climb speed 350 KIAS with military thrust. The data is based on 350 KIAS climb until interception of optimum cruise Mach/TAS and then maintaining cruise Mach to cruise altitud \cdot . All the data are based on flight test. The reproduced performance chart is in Figure 8. To use the fuel-required-to-climb chart, enter the charts with the initial climb gross Project horizontally to the right and intersect the assigned weight. cruise altitude, or the optimum cruise altitude for the computed drag Project vertically downward to intersect the applicable drag index. index line, and then project horizontally to the left to the temperature variation base line. Parallel the applicable guideline to intersect a vertical grid line corresponding to the degree of deviation between forecast flight temperature and standard ICAO dat temperature. From this point continue horizontally to the left to read the planning data. The equation for the fuel required to climb used the gross weight in thousands of pounds and altitude in kilofeet as inputs. For example, GW = 45,000 lbs is 45 as an input. The equation for fuel required to climb is

 $FRTCL = 20.56 + .012GW - 1.8627ALT - .2119DC - .0097GW^{2} + 0.04926ALT^{2}$ $+ .0003097DC^{2} - .0012384ALT^{3} + .000002118DC^{3} + .000001194GW^{4}$ $+ .000013231ALT^{4} - 1.62933 \cdot 10^{-8}DC^{4} + .029079(GW)(ALT)$ + .0051266(ALT)(DC) + .0029517(GW)(DC) (4-26)

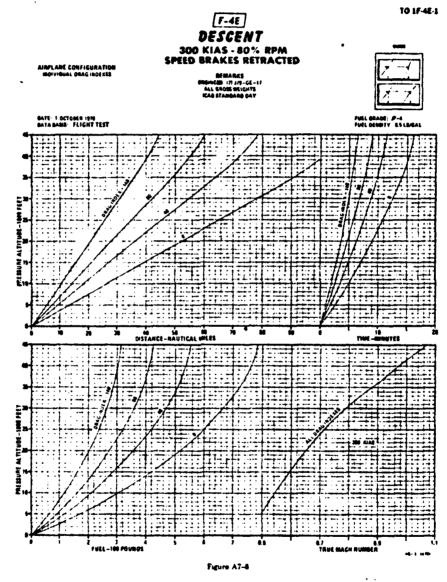
The performance chart for fuel required to climb has four independent variables. For the accuracy of the equation, one variable was separated from equation (4-26). The separated equation from the equation (4-26) is the temperature correction for fuel required to climb. The equation is

$TEMPF = -.183 + .12523DT + 1.0498FF - .002144FF^2$ (4-27)

The equation for distance required to climb to optimum altitude from sea level to desired altitude is regressed from the Flight Manual performance chart which is reproduced and incorporated in Figure 9. In Figure 9 the data are based on the 350 KIAS climb speed until intersection of optimum cruise altitude and then maintaining cruise Mach number at the cruise The original data are based on flight tests. The method to altitude. find the distance required to climb is the same as the method to use the fuel required to climb chart [Ref. 3: pp. A3-13]. The regressed equation is

DISTCL =
$$57.5 + 1.537$$
GW - 8.47 ALT - $.4076$ DC - $.04814$ GW² + $.1712$ ALT²
+ $.000112$ DC² - $.0013675$ ALT³ - $.0000813$ DC³ + $.000003133$ GW⁴
+ $4.87 \cdot 10^{-8}$ DC⁴ + $.09144$ (GW)(ALT) + $.011657$ (ALT)(DC)
+ $.006917$ (GW)(DC) + $.000003973$ (GW)²(ALT)²

.


+ .0000010795(ALT)²(DC)² (4-28)

.

The equation for distance required to climb has four independent vari-For the same reason as for equation (4-27), the equation of ables. temperature correction is separated from the original equation for better accuracy. The equation of temperature correction for distance required to climb is

 $TEMPD = 4.32 + .6257DT + .712DST + .00658DIST^2 - .0000411DIST^3$ (4-29)

The equation of fuel required for descent is derived from the performance chart in the Flight Manual. The performance chart is reproduced in Figure 10. The data on the performance chart are based on descent at 300

3

A7-9/(A7-10 blank)

Figure 10. F-4E Descent

KIAS until intersection of desired altitude using 80% RPM with the speed brake retracted. The chart showing fuel required to descend is comprised of two independent variables and one dependent variable. The independent variables are altitude in thousands of feet and drag count. The dependent variable is fuel required to descent from given altitude to sea level. Using the performance chart, the method for determining the fuel required to descend is as follows: enter the upper plot of the fuel required to descent chart at the cruising flight level, project horizontally to the right to intersect both drag reflectors at the applicable computed drag index. From the first intersection, project vertically downward to intersect and read the distance. The equation for fuel required to descend is

DSFL =
$$1.5092 + .2063ALT - .059534DC - .000681ALT2 + .00057143DC2
- .0000178ALT3 - $1.76596 \cdot 10^{-6}DC^3 - 2.25922 \cdot 10^{-7}(ALTDC)^2$
+ $2.612572 \cdot 10^{-11}(ALT)^3(DC)^3$ (4-30)$$

The equation for distance required to descend from optimum altitude to desired altitude is derived from the performance chart of F-4E Flight Manual. The performance chart is also reproduced in Figure 10. The data on the performance chart are based on the flight test using 80% RPM with descent speed 300 KIAS. The equation of distance required to descend from optimum altitude to desired altitude is comprised of two independent variables and one dependent variable. The two independent variables are Drag Count and Pressure Altitude. The dependent variable is fuel in units of 100 pounds. The equation for distance required to descend from optimum altitude to sea level is

The equations for cruise mode are the same as equations (4-9) to (4-18) as in the Optimum Cruise program.

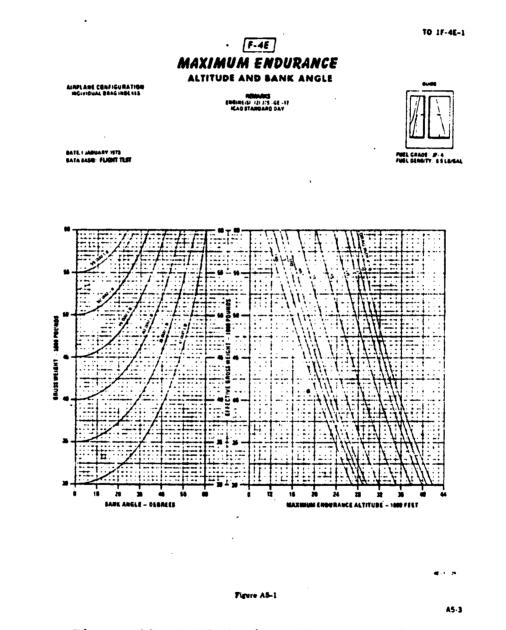
4. Maximum Endurance and Descent Programs

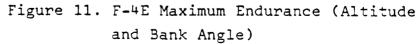
The Maximum Endurance and Descent Programs are separated from the previous program since the programs are worthwhile to use in flight but exceed memory size. The Maximum Endurance Program provides the aircrew with maximum endurance altitude and maximum endurance airspeed for given bank angle and fuel weight.

The Descent Program provides the aircrew with distance and fuel required to descend from any altitude to assigned altitude.

a. Program Input/Output Parameters

The program input/output parameters for the Maximum Endurance and Descent Programs are:

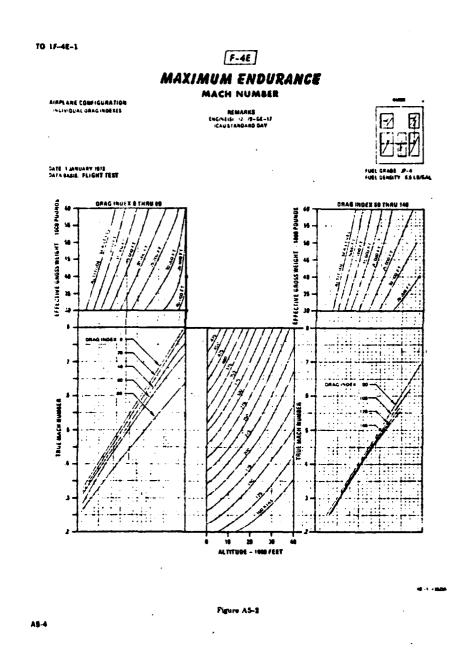

DC =	drag count
BW =	base weight (lbs)
SW =	store weight (lbs)
FW =	fuel weight (lbs)
GW =	gross weight (lbs)
EW =	empty weight (lbs)
BANK ANGLE	= bank angle (degrees)
ENDALT =	endurance altitude (ft)


- TMN = true Mach number
- FF = fuel flow (lbs/hr)
- EFGW = effective gross weight (lbs).
 - b. Descent Mode Descriptions

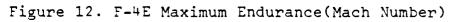
Descent mode is derived from Technical Order-1 F-4E-1 performance charts [Ref. 3]: to derive the charts, set throttle 80% RPM and maintain 300 KIAS with speed brake retracted.

c. Equations of Maximum Endurance and Descent Program

The equation for maximum endurance altitude is derived from the performance chart of the Flight Manual which is reproduced in Figure 11. The data in the performance chart are based on flight tests. Enter the altitude and bank angle chart with the average gross weight. If bank angles are to be considered, follow the gross weight curve until it intersects the bank angle to be used, then horizontally to the right to obtain effective gross weight. From this point proceed horizontally to the right and intersect the computed drag index. Reflect downward and read the optimum endurance altitude. The equation for maximum endurance altitude is comprised of four independent variables and one dependent variable. The independent variables are aircraft bank angle, gross weight, effective gross weight, and drag count. The gross weight and effective gross weight should be in thousands of pounds. The dependent variable is maximum endurance altitude in thousands of feet. The equation of maximum endurance altitude is

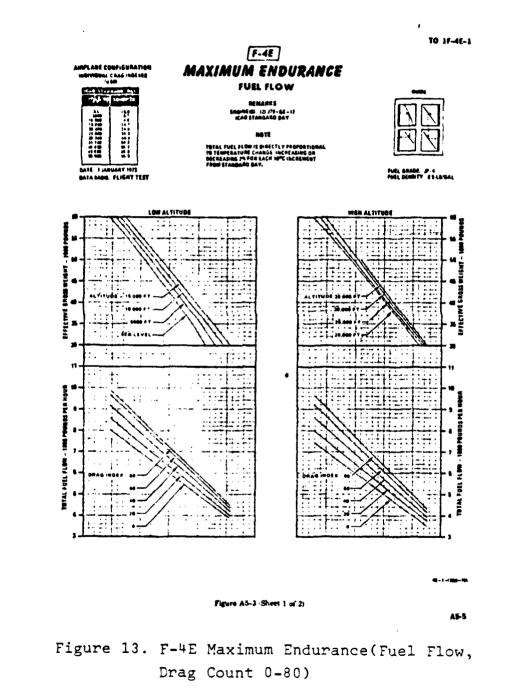

$$MEA = 61.95 + .13765DC - .751EGW - .006776DC2 + .00126EGW2 + .00005181DC3 + .0000266EGW3 - 1.08325 + 10-7DC4 + .000368(DC)(EGW) - 8.53165 + 10-8(DC)2(EGW)2 (4-32)$$

The equation of maximum endurance true Mach number is derived from the performance chart of Flight Manual which is reproduced in Figure 12. The charts are based on flight test data. The method to determine the maximum endurance Mach number is: enter the Mach number plots with the effective gross weight and proceed horizontally to intersect the optimum endurance altitude. Then descend downward and intersect the computed drag index and horizontally to read the Mach number. The equation is comprised of three independent variables and one dependent variable. The independent variables are effective gross weight in thousands of pounds, drag index, and altitude in thousands of feet. The dependent variable is true Mach The equation of Maximum Endurance True Mach number is divided number. into two equations. One equation is only for drag index from 0 to 80. The other equation is for drag index from 80 to 140. The first equation for Maximum Endurance True Mach number is:


METM = - .5945 + .04362EGW + .01661ALT + .0013355DC - .0005554EGW²

- .0002691ALT² - .000018519DC² + $6.365632 \cdot 10^{-12}$ (EGW)²

- $(ALT)^2 \cdot (DC)^2 3.9841 \cdot 10^{-17} (EGW)^3 (ALT)^3 (DC)^3$
- + .000016965(ALT)³ + 3.738059 \cdot 10⁻⁸EGW⁴ 2.72362 \cdot 10⁻⁷(ALT)⁴
- .00011123(EGW)(ALT) .00003831(ALT)(DC)
- .000015098(EGW)(DC) (4-33)


j.

The other equation for Maximum Endurance True Mach number, which is for drag count from 80 to 140, is:

$$\begin{aligned} \text{IETM1} &= .1055 + .01407 \text{EGW} - .007708 \text{ALT} - .001032 \text{DC} - .000178 \text{EGW}^2 \\ &+ .00088779 \text{ALT}^2 + .0000083 \text{DC}^2 - .000015405 \text{ALT}^3 \\ &+ 1.8173 \cdot 10^{-8} \text{EGW}^4 - 4.55763 \cdot 10^{-11} \text{DC}^4 + .0000641(\text{EGW})(\text{ALT}) \\ &- .000011756(\text{ALT})(\text{DC}) - .00001374(\text{EGW})(\text{DC}) \end{aligned}$$

The equation of maximum endurance fuel flow is derived from the performance chart of Flight Manual which is reproduced in Figures 13 and 14. The data in the performance chart are based on flight tests. According to the performance chart, total fuel flow is directly proportional to temperature change. The method for determining the maximum endurance fuel flow is illustrated in Figure 14. Enter the fuel flow plots with the effective gross weight, proceed horizontally to intersect optimum endurance altitude. Reflect downward to the computed drag index and then horizontally to read total fuel flow. The equation of the maximum endurance fuel flow is comprised of three independent variables and one dependent variable. The independent variables are effective gross weight in thousands of pounds, pressure altitude in thousands of feet, and drag index. The dependent variable is total fuel flow in thousands of pounds. The equation of maximum endurance fuel flow is divided into three equa-One is for drag count from 0 to 80 and for both high and low tions. altitude. The other is for drag count from 80 to 140 and altitudes above 15,000 feet. The third equation is for drag count from 80 to 140 and altitudes below 15,000 feet. The first equation for maximum endurance fuel flow is:

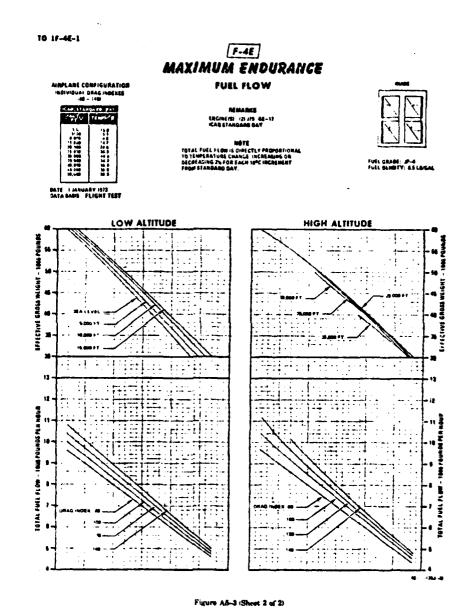


Figure 14. F-4E Maximum Endurance (Fuel Flow, Drag Count 80-140)

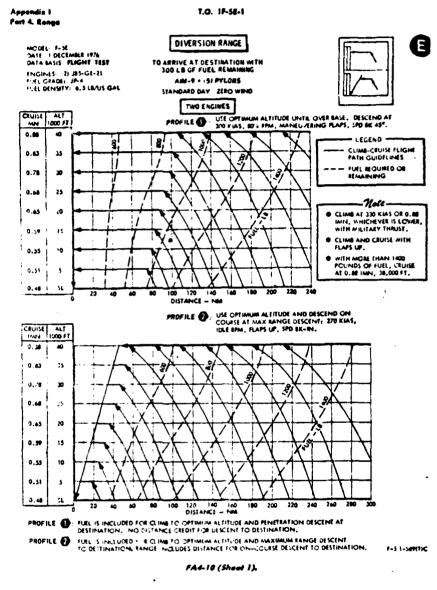
$$MEFF1 = - .2901 + .15044EGW - .022618ALT + .023143DC - .0001789EGW^{2}$$

- .000011ALT² - .00007903DC² + 1.27822 · 10⁻¹⁰(EGW)²(ALT)²(DC)²
- .000007566(EGW)(ALT)(DC) - 4.94287 · 10⁻¹⁶(EGW)³(ALT)³(DC)³
(4-35)

The second equation for maximum endurance fuel flow is

$$MEFF2 = -.8749 + .161209EGW - .037546ALT + .013263DC + .00000267(EGW)(ALT)(DC) - 1.58386 + 10-10 (EGW)2(ALT)2(DC)2 + 2.206628 + 10-15(EGW)3(ALT)3(DC)3 - 8.18252 + 10-21(EGW)4(ALT)4(DC)4 (4-36)$$

The third equation for maximum endurance fuel flow is:


The equations for the descent program are the same as the equations for descent used in the Bingo program. The equations for descent used in the maximum endurance and descent progras are equations (4-30) and (4-31).

V. F-5E PROGRAM

A. F-5E PROGRAM DESCRIPTION

The F-5E aircraft does not have a computer; consequently, the aircrew cannot determine the wind conditions in flight. Lack of Central Air Data Computer means that wind corrections cannot be applied in F-5E program, since the aircrew do not have means to correct for wind during the flight.

Most of the aircrew of the F-5E wanted to have a method to determine diversion range without using the Flight Manual in flight. The F-5E is a single-seat fighter, so the pilot does not have time to consult the Flight Manual in flight. The best way to use the diversion chart is to memorize salient features for the typical flight. Keeping track of the performance data during the flight is too difficult. The HP-41CV program provides the aircrew with altitude, Mach number, and specific range for best range cruise, and, also provides the aircrew with diversion range, diversion speed, minimum fuel required from given point to required destinations. In the diversion mode, single-engine performance is available as well as dual-engine performance. Diversion range with both engines operating is programmed to arrive at the destination with 300 lbs. of fuel remaining using the Profile-2 method in the Flight Manual. Profile-2 method for both engines operating is described in the performance chart of the Flight Manual which is reproduced in Figure 15. Special care should be taken about base weather condition, since the fuel remaining is not sufficient for flying to an alternate base. The data of

A4-24

Figure 15. F-5E Diversion Range (Two Engines)

this program are based on a standard day with zero wind. The configuration of the aircraft is assumed to be 2 AIM-9 with 5 pylons. The single engine diversion program uses basically the same conditions as for the diversion range program with both engines operating. The single engine diversion range program is based on the data of a single engine without using after-burner. The configuration of the aircraft with single engine diversion range program is assumed to be 2 AIM-9 with 5 pylons. The Profile-2 method was applied in the single engine diversion range program. The single engine Profile-2 method is described in Figure 16.

8. CLIMB AND DESCENT METHOD USED IN F-5E PROGRAM

1. Optimum Cruise for Short Range Mission

The climb method assumed for an optimum cruise mission in the program is military thrust climb. Descent distance computed for optimum cruise mode was programmed with the assumptions of using power idle, maintaining descent air speed of 270 KIAS with speed brake in and flaps up.

2. Diversion Range for Both Engines

Climb and descent procedure in this mode is as follows: Climb with maintaining airspeed 330 KIAS or Mach 0.88 IMN, whichever is lower using military thrust. Cruise with flaps up. With more than 1400 lbs. of fuel, cruise at Mach 0.88 IMN and at 38,000 ft. Fuel is included for climb to optimum altitude and maximum range descent to destination. Diversion range includes distance for on-course descent to destination. Use optimum altitude and descent on-course at maximum range descent using 270 KIAS with power IDLE and flaps up with speed brake in.

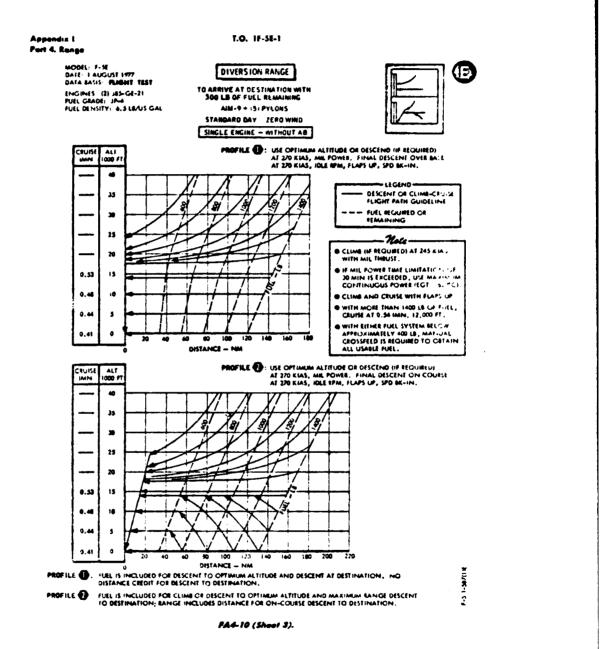
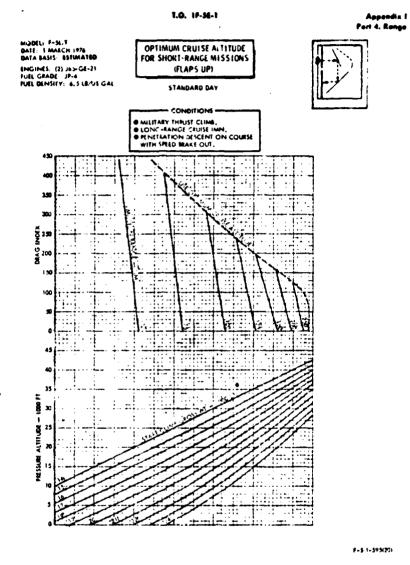


Figure 16. F-5E Diversion Range (One Engine)

3. Diversion Range for Single Engine

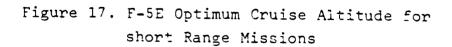
Climb and descent procedure in this mode is described here in accordance with the F-5E Flight Manual. If the flying condition permits, use the following climb and descent procedure: Climb at 245 KIAS with military thrust. If the time limitation of military power (30 minutes) is exceeded, then use maximum continuous power with maintaining the exhaust gas temperature at 650 degree centigrade. Climb and cruise with flaps up. With more than 1400 lbs. of fuel, cruise at 0.54 IMN and maintain altitude at 12,000 ft. With either fuel system below approximately 400 lbs., manual crossfeed is required to obtain all usable fuel. Use optimum altitude or descent (if required) at 270 KIAS with military power. Final descent is on course at 270 KIAS and IDLE RPM with flaps up and speed brake in. Fuel is included for climb or descent to optimum altitude and maximum range descent to destination. The range for a single engine diversion includes distance for on-going descent to destination.

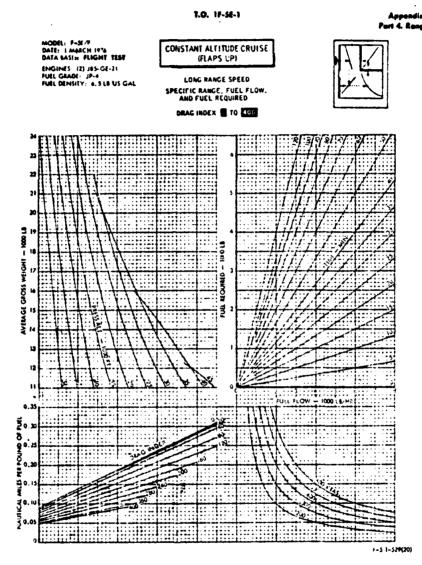
C. PROGRAM INPUT/OUTPUT PARAMETERS


The input and output parameters are essentially the same as F-4E input and output parameters.

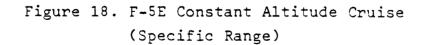
DS	= Optimum cruise distance for short range missions (nm)
DC	= Drag count
GW	= Gross weight (lbs)
ALT	= Altitude (ft)
AW	= Average gross weight (lbs)
DIST	= Distance required to go (nm)
IA	= Initial altitude (ft)

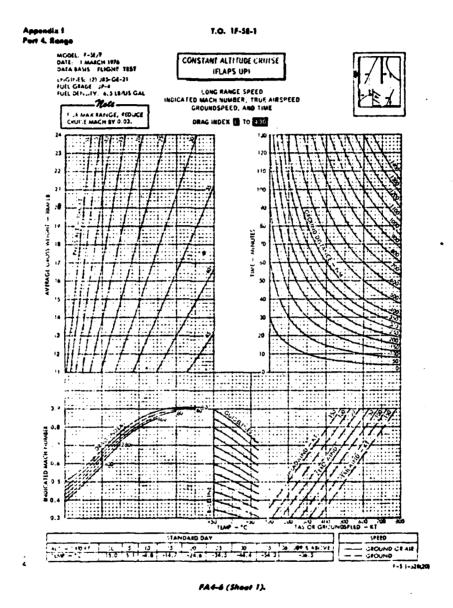
FALT = Final altitude (ft) OCA = Optimum cruise altitude (ft).

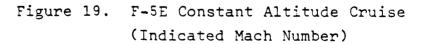

D. EQUATIONS FOR F-5E PROGRAM


The equations for F-5E program are based on the flight test data which are in the performance data chart of F-5E Flight Manual [Ref. 4: pp. A4-6]. Optimum cruise for short range missions, which is defined by the Flight Manual for F-5E aircraft [Ref. 4: pp. 9], is the maximum value of specific range for short range mission. A flight to a maximum range of 250 nautical miles is defined as the short range mission in the Flight Manual [Ref. 4: pp. A4-6]. Specific range is the nautical miles flown per pound of fuel consumed. Assuming both engines of F-5E are operating, three charts are relevant to determination of optimum cruise conditions. The three charts are reproduced here as Figures 17, 18, and 19. For a short range mission, the cruise altitude may optimize at a lower altitude than is required for a long range mission. The optimum cruise altitude for the short range missions chart, which is reproduced in Figure 17, presents the cruise altitude for short range mission as a function of climb-cruise-descent distance. If the intersection of the drag index and mission range distance plot falls outside the dashed "Use-optimum-cruisealtitude" line, obtain optimum cruise altitude from charts FA4-2 or FA4-3 in the Flight Manual [Ref. 4: pp. A4-10, 11]. To use the chart enter the chart with drag index, proceed right to the desired mission range distance, and then down to the start climb gross weight. From this point, proceed left to read pressure altitude for cruise. The equation of optimum cruise altitude for short range missions consists of three independent variables and one dependent variable. The three independent

FA4-1.


A4-9




FA4-6 (Sheet 2).

A4-15

A4-14

variables are drag index, mission range in nautical miles, and startclimb gross weight in thousand pounds. The dependent variable is pressure altitude in thousand feet. The optimum cruise altitude for short-range missions is:

$$0CA = 45.456 - .000212DC - .02316DS - 2.13493GW - .00004554DC^{2} + .0023214DS^{2} - .00627GW^{2} + 1.604969 + 10^{-7}DC^{3} - 1.24904E - 05DS^{3} - .0007469GW^{3} - 6.75362 + 10^{-11}DC^{4} - .00004143(DC)(DS) + .006857(DS)(GW) - 3.04712 + 10^{-12} (DC)^{2}(DS)^{2}(GW)^{2} + 8.193166 + 10^{-19}(DC)^{3}(DS)^{3}(GW)^{3} + 8.962771 + 10^{-15}(DC)^{3}(DS)^{3} - 2.43198 + 10^{-11}(DS)^{3}(GW)^{3} - 2.45711 + 10^{-13}DC^{5} + 6.334016 + 10^{-11}DS^{5} + 4.868 + 10^{-7}GW^{5}$$
(5-1)

The equation for indicated Mach number for optimum cruise range is derived from the flight performance chart in F-5E Flight Manual which is reproduced in Figure 19. The flight performance chart provides optimum indicated cruise Mach number as a function of average gross weight, pressure altitude, and drag index. The data on the performance chart are based on flight tests. The method to determine the indicated Mach number is as follows: enter the chart of Figure 19 with average gross weight in thousands of pounds, proceed right to the cruise pressure altitude, down to drag index, then left and read optimum indicated Mach number. The independent variables of the Optimum Cruise Indicated Mach Number are average gross weight in thousands of pounds, pressure altitude in thousands of feet, and drag count. The dependent variable is Optimum Cruise

$$DSR = .17836 - .00333(AGW) + .0037629(ALT) - .00031305(DC)$$

$$- .000126(AGW)^{2} + .00005315(ALT)^{2} - 1.06144 + 10^{-6}(DC)^{2}$$

$$+ 4.528377 + 10^{-9}(ALT)^{3} + 2.314 + 10^{-7}(AGW)^{4} - 3.15477 + 10^{-8}(ALT)^{4}$$

$$- 4.55793 + 10^{-12}(DC)^{4} + 4.368255 + 10^{-10}(ALT)^{5} - .00007685(AGW)$$

$$+ (ALT) + 1.496 + 10^{-5}(AGW)(DC) - 5.5628 + 10^{-6}(ALT)(DC)$$

$$- 7.73637 + 10^{-8}(AGW)^{2}(ALT)^{2} - 5.81959 + 10^{-10}(AGW)^{2}(ALT)^{2}$$

$$+ 7.246215 + 10^{-11}(ALT)^{2}(DC)^{2}$$
(5-3)

The equation for diversion range is derived from the diversion range chart in the F-5E Flight Manual which is reproduced in Figures 15 and 16. Each diversion range chart provides the maximum range obtainable for two optional return profiles with from 600 to 1400 pounds of available fuel The range pertains to an aircraft with AIM-9 missiles and remaining. five pylons and is based on 300 pounds of fuel remaining for approach and landing after descent is completed. A climb speed schedule and recommended long range cruise indicated Mach number are included in the F-5E program. The Profile-2 of both engine and single engine is chosen in the The Profile-2 is defined in Figures 15 and 16. If there F-5E program. is insufficient fuel for Profile-1, Profile-2 is recommended. The chart may be entered at the initial altitude with either the fuel on board or with the distance to be flown (to determine the fuel required). To determine range, enter the profile chart with initial altitude, move horizontally right to the pounds of fuel remaining curve, and then vertically down to read the air distance. To determine the optimum cruise altitude for two engine operation, start at this intersection and move up parallel to the nearest climb path guide line to intersect the nearest

Indicated Mach Number. The equation for Optimum Cruise Indicated Mach Number is:

المتعمدين المتعادين

$$DCIMN = .496 - 05152AGW - .00448ALT - .0022606DC + .0010828AGW^{2}$$

$$- .0001844ALT^{2} + 1.0873 \cdot 10^{-5}DC^{2} - 1.82326 \cdot 10^{-8}DC^{3}$$

$$- 1.72218 \cdot 10^{-7}AGW^{4} + 6.746013 \cdot 10^{-8}ALT^{4} + .0033928(AGW)(ALT)$$

$$+ 1.2486 \cdot 10^{-5}(ALT)(DC) - 2.19486 \cdot 10^{-6}(AGW)^{2}(ALT)^{2}$$

$$- 5.77016 \cdot 10^{-10}(ALT)^{2}(DC)^{2} - 7.82001 \cdot 10^{-8}(AGW)(ALT)(DC)$$

$$- 4.10904 \cdot 10^{-18}(AGW^{3}(ALT)^{3}(DC)^{3}$$
(5-2)

The equation for optimum cruise is derived from the performance chart in the Flight Manual which is reproduced in Figure 18. The performance chart in Figure 18 provides specific range (nautical miles-per-pound of fuel) as a function of average gross weight, pressure altitude, and drag count. The constant altitude cruise chart in Figure 18 must be used for mission planning when optimum range capability is desired. Enter the constant altitude cruise chart in Figure 18 with average gross weight, move right to cruise altitude and down to drag index. Move left and read nautical miles-per-pound of fuel (specific range). The three independent variables of the regressed equation are average gross weight in thousands of pounds, pressure altitude in thousands of feet, and drag index. The independent variable is nautical miles-per-pound of fuel. The equation of specific range (nautical miles-per-pound of fuel) is:

optimum cruise altitude. To determine optimum cruise altitude for single-engine operation, start at the intersection and move up or down parallel to the nearest guideline to intersect the nearest optimum cruise altitude. Single-engine operation may require either up or down movement, depending upon initial altitude. The equation for fuel required for diversion range for both engines operating is derived from the diversion range chart in Figure 15. The equation of fuel required for diversion range with both engines operating is comprised of two independent variables and one dependent variable. The two independent variables are distance in nautical miles and initial altitude in thousands of feet. The dependent variable of fuel required is in pounds. The equation for fuel required for diversion range (both engines operating) is:

the Carlos de La de Carlos de La designada

$$FD = 269.01 - 11.919IA + 11.866DIST + .0364IA .0661DST^{2}$$

- .00167IA³ + .00021275DIST³ + .0000579IA⁴
- .004439(IA)(DIST) - 7.81164 • 10⁻¹⁰DIST⁵ (5-4)

The equation of optimum cruise altitude for diversion range is derived from the same chart as used for the derivation of equation (5-4). The equation of optimum cruise altitude for diversion range is comprised of two independent variables and one dependent variable. The two independent variables are initial altitude in thousands of feet and distance from present position to desired point in nautical miles. The method for determining optimum cruise altitude for diversion range is described in the previous paragraph. The equation for Optimum Cruise Altitude for diversion range (both engines operating) is:

$$0ALT = .214 + .9098IA + .06382DIST + .00146IA^{2} + .004511DIST^{2}$$

- .0000117IA^{3} - .00002477DIST^{3} - .000001142IA^{4}
+ 2.426804 + 10^{-8}DIST^{4} - .0059984(IA)(DIST) (5-5)

The equation of optimum cruise indicated Mach number for diversion range for both engines operating is derived from the diversion range chart in Figure 15. The optimum cruise Mach number for diversion range is the Mach number to be maintained during the cruising. The equation has only one independent variable and one dependent variable. The independent variable is optimum cruise altitude in thousands of feet and the dependent variable is indicated Mach number. The equation of optimum cruise indicated Mach number for diversion range (both engines operating) is:

 $DRMN = .57567 - .007383ALT + .0006679ALT^2 - .00000733ALT^3$ (5-6)

The chart of diversion range for single engine without afterburner has two profiles. Profile-2 is chosen in the F-5E program. The chart may be entered at the initial altitude with either the fuel on board (to determine range available) or with the distance to be flown (to determine the fuel required). To determine range, enter the appropriate profile chart with initial altitude, move horizontally right to the pounds-of-fuel remaining curve, and then vertically down to read the air distance. To determine the optimum cruise altitude for single engine operation, start at the intersection and move up or down parallel to the nearest guide line to intersect the nearest optimum cruise altitude. Single engine operation may require either up or down movement depending upon initial altitude. Maximum range can be obtained only by climb or descent to optimum altitude. If the intersection plot of the initial altitude and fuel remaining curve coincides with the optimum cruise altitude, remain at that altitude for cruise. To determine the fuel required for a given distance to return to base, enter the chart with initial altitude, and move horizontally right to a point of intersection with the distance to At this point, read the fuel required, then proceed parallel to base. the nearest climb or descent path guideline to determine the optimum cruise altitude. The equation for single engine fuel required for diversion range is derived from diversion range chart for single engine which is reproduced in Figure 16. The equation consists of two independent variables and one dependent variable. The independent variables are initial altitude in thousands of feet and distance from given point to destination in nautical miles. The dependent variable is fuel required in pounds for single engine diversion range without using afterburner. The equation is:

The equation for single engine optimum cruise altitude for diversion range is derived from the same chart as the chart for equation (5-7). The method to use the diversion range chart for single engine without afterburner is described in the previous paragraph. The equation for single engine optimum cruise altitude for diversion range without afterburner has two independent variables and one dependent variable. The independent variables are initial altitude in thousands of feet and distance from a point to destination in nautical miles. The dependent variable is single engine optimum cruise altitude for diversion range in thousands of feet. The single engine optimum cruise altitude for diversion range is:

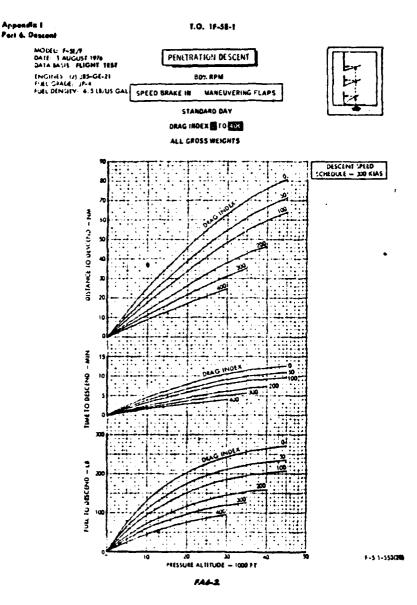
SOALT =
$$-3.9211 + .43701DIST - .49916IA - .0033565DIST2+ .058596IA2 + 8.214 · 10-6DIST3- .00124676IA3 + 1.09364IA4 (5-8)$$

The equation for single engine indicated Mach number for diversion range is derived from the same chart as the chart for equation (5-7) which is reproduced in Figure 16. Optimum cruise indicated Mach number in the chart is given in the column next to the altitude scale. The equation is comprised of one independent variable and one dependent variable. The independent variable is final altitude in thousands of feet. The final altitude is the optimum cruise altitude that must be maintained throughout the diversion range profile. The equation for indicated Mach number for diversion range with single engine without afterburner is:

SDRMN =
$$.46766 - .01597(FALT) + .002464(FALT)^2$$

- $.0000^7455(FALT)^3 - 1.44238 \cdot 10^{-9}(FALT)^5$ (5-9)

The equation for descent point from optimum cruise altitude to sea level is derived from the same chart as used for equation (5-4). The range to begin the maximum range descent to base is determined by reading the air distance at the intersection of the optimum cruise altitude line with the descent line. The equation has one independent variable and one dependent variable. The independent variable is cruise altitude and the dependent variable is the range at which to begin the maximum range descent. The equation for begin descent point from optimum cruise altitude is:


DRDSPT =
$$(\frac{45}{40})$$
 $\frac{ALT}{1000}$ (5-10)

The equation of single engine descent point for diversion range is derived from the same chart as the chart for equation (5-7). The range at which to begin the maximum range descent to base is determined by reading the air distance at the intersection of the cruise altitude line with the descent line. The independent variables of the equation is cruise altitude and the dependent variable of the equation is the range at which to begin the maximum range descent. The equation of single engine diversion range descent point is:

$$SRDSPT = \frac{ALT}{1000}$$
(5-11)

The equation for distance required from optimum cruise altitude to sea level is derived from the penetration chart in Flight Manual which is reproduced in Figure 20. The configuration of descent used in the chart is speed brake with maneuvering flaps. Descent speed schedule is 300 KIAS. The method to use the chart is as follows: enter the chart of Figure 20 at initial descent pressure altitude and proceed up to the value of drag index configuration. Interpolation is required for values between drag index curves on the graph. Next, read the distance. The independent variable is altitude and the dependent variable is the distance required to descend from cruise altitude to sea level. The equation is:

$$DIST = (-.00164DC + 1.3111)ALT$$
 (5-12)

A4-4

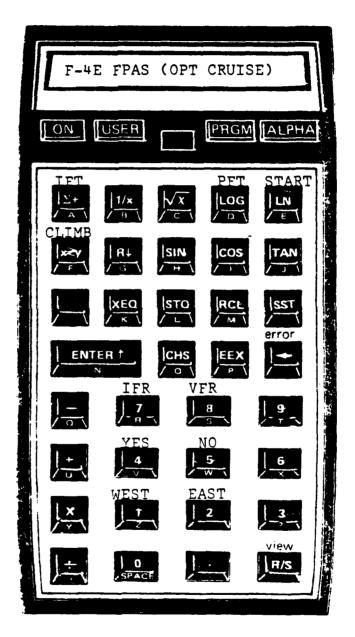
[

Figure 20. F-5E Pentration Descent

VI. F-4E USER'S GUIDE

A. CRUISING PROGRAM

1. Loading the Program


The following procedure is used to load the program:

- (1) Plug the card reader into the HP-4CV. Be certain the calculator is OFF.
- (2) Clear the memory by pressing the (ON) key while holding the error (\leftarrow) key depressed.
- (3) Execute the size function using size 022 as the input.
- (4) Assign the START, PFT, and IFT, modes to their respective keys as shown in Figures 21, 22, and 23. This must be done by executing an ASN function for each mode, keying in the alpha labels, and pressing the designated keys.
- (5) Put the calculator into USER mode by pressing the (USER) key. The word "USER" should appear in the lower left corner of the display window.
- (6) Read the 19 sides of magnetic cards into the card reader.
- (7) Execute the PACK function after all cards have been read in.
- 2. Executing the Optimum Cruise Program for F-4E

On the initial run-through program, the operator is assumed to be on the ground level prior to takeoff; therefore, initial flight information must be input.

a. Start Mode

- (1) Pressing the key labeled "START" puts the program in initial mode.
- (2) Once in the START mode the operator will be prompted for inputs of drag count, base weight, (F-4E aircraft weight), store weight (total), and fuel weight.

۰.

.

۰...

Figure 21. HP-41CV Keyboard Functions for Optimum Cruise Program

აი

(3) Whenever a prompt for or display of data occurs, the "R/S" button must be pressed in order to instruct the program to continue execution. The "R/S" button must be pressed after the data has been keyed in or after the display has been viewed.

- (4) The program will display the values of drag count and gross weight after the data has been input in order to verify the values have been correct.
- (5) The next press of "R/S" leads to a prompt for a "YES" or "NO" according to whether or not the operator will be subject to FAA flight restrictions. The "YES" and "NO" input buttons are provided on the calculator and labeled on the overlay face: furthermore, the calculator prompts for the answer:

Input a "4" or a "5" in the display window upon choosing a "YES" or "NO" input, respectively.

(6) Another depression of the "R/S" key prompts the operator for the next mode desired.

b. Option of FAA or START Key

If the operator wishes to change aircraft configuration,

START buttons enables him to do so.

- Pressing the FAA key enables the operator to re-input either a "YES" or a "NO" to the FAA prompt. Pressing the "R/S" key after the input returns the prompt for mode selection.
- (2) Pressing the "START" button enables the operator to change any or all of the drag counts, store weight, and fuel weight.

If one or more of the values are to remain the same, the previous value must be input again. The values of drag count and gross weight will be displayed as in the start mode for verification. The next press of "R/S" returns the prompt for mode selection.

c. Preflight Mode (PFT)

Next, the PFT mode may be selected in order to obtain initial cruise performance data.

- (1) Pressing the PFT key puts the program in pre-flight mode.
- (2) The PFT mode has two paths depending on whether or not the operator is subject to FAA flight restrictions:

- (a) If the operator is not subject to FAA flight restrictions, he will be first prompted for the standard day temperature. Upon pressing the "R/S" key, he will be prompted for the temperature at the altitude displayed to the right of the window. If the operator desires the standard temperature, he need only to press the "R/S" key again, otherwise the temperature key must be pressed. This input of temperature results in the display of the computed best range altitude and Mach number. A prompt for and input of the tail wind components (positive for tail wind and negative for head wind) results in the display of the best range data, true airspeed, ground airspeed, and fuel flow. Pressing the "R/S" key returns the program to the prompt for mode selection.
- (b) If the operator is subject to FAA flight restrictions he will have the standard day temperature displayed as in the path described above. The operator will be prompted to input the temperature and will also be prompted to input either an "EAST" or a "WEST" for the heading prompt and either "IFR" or "VFR" for the type of flight clearance. Input keys for each of these data are provided on the calculator overlay face and in the computer program. A "1" or a "2" displayed in the window corresponding to a "EAST" or a "WEST" input respec-tively, while a "7" or an "8" displayed corresponds to an "IFR" or a "VFR" input, respectively. All of the input values for the program executions are in the program. One can identify the differences of input values and can select Once these inputs have been keyed into the correct value. the program, the computer will compute and display the FAA best range altitude and true Mach number, prompt for the head component, and display the best range data for true airspeed, ground speed, and fuel flow. Pressing the "R/S" key returns the program to the prompt for mode selection.

Once the operator has reached his initial cruise altitude, he

may choose any mode available in the program.

- d. In-Flight Mode (IFT)
 - If the operator wishes to update his best range altitude he

must choose the IFT mode.

(1) Pressing the IFT key puts the program into in-flight program mode.

(2) As in the PFT mode, there are two paths of program execution depending on whether or not the operator is subject to FAA flight restrictions:

- (a) If the operator is not subject to FAA flight restructions, he will first be prompted for his current fuel weight. Following the display of the standard day temperature, the rest of the mode is identical to the path of the PFT mode. The best range conditions displayed will be the most fuel efficient altitude based upon the present fuel status of the F-4E and the measured *emperature and wind data. Pressing the "R/S" key returns the prompt for mode selection.
- (b) If the operator is subject to FAA restrictions, he will be prompted to input his fuel weight and his present altitude respectively. The standard day temperatures will be displayed on the display window. Upon the prompt for temperature, the STD (Standard Day Temperature) or another temperature may be input as described in the PFT mode, and best range Mach number will be displayed. A prompt for and input of the tail wind components results in the display of the best range data for true airspeed, ground speed, and fuel flow. Pressing the "R/S" key results in the display of the next FAA best range altitude change and the corresponding fuel weight at which to initiate his climb. If the word "CEILING" was displayed, the operator has reached the maximum operating altitude for his operating aircraft configuration. No further stepping of the altitude will be done after this point. Pressing the "R/S" key returns the prompt for mode selection.

B. BINGO PROGRAM

1. Loading the Program

This program applies to the HP-4CV without extended memory. However, with the extended memory module, follow the same procedure as described in this section.

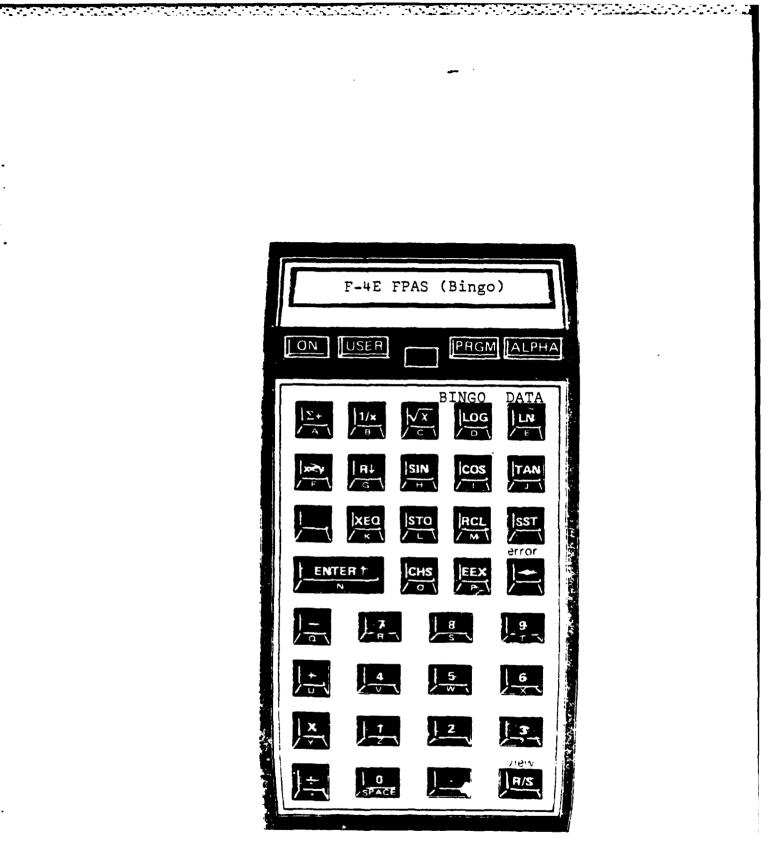
- (1) While pressing the error key (\leftarrow), turn on the calculator and release the error key.
- (2) Execute SIZE function using size 032 as the input.
- (3) Place the calculator in "USER" mode and begin reading in the cards.

(4) If you failed to read in the program with "USER" mode, then assign the DATA and BINGO modes as described in Figure 22. This must be done by executing an ASN function for each mode, keying in the alpha labels, and pressing the designated keys.

ان میں ایک بر ایک ایک ایک کر ایک میں ایک کر ایک میں ایک کر ایک کر ایک کر ایک کر ایک کر ایک میں ایک ایک کر ایک ک ایک ایک میں ایک ایک کر ایک ک

- 2. Executing the Bingo Program
 - a. Initialization

To begin the flight planning, and to initialize the FPAS for a mission, the program is first set up with mission configuration. To initialize, key (SHIFT) which is assigned to (ε +) key. Then enter values based on the cues displayed:


- (1) TOGW? = Input the take-off gross weight in pounds.
- (2) STOREWT? = Input the weight of all ordnance stores in pounds.
- (3) FUELWT? = Input the total fuel on-board in pounds.
- (4) DC? = Input the total drag count.

"INIT O.K" signifies that initialization is complete and options may be selected.

b. Bingo Options

Bingo is defined here as a military climb, best range cruise, and descent flight profile from sea level to optimum cruise altitude and back to sea level. This option provides the minimum necessary information to execute an optimum Bingo profile as well as all of the data necessary for the jet card when used for flight training. Press Bingo which is assigned to (\sqrt{x}) .

- (1) DISTANCE? = Input the total distance in nautical miles to go.
- (3) DELTMP? = Input the sea level outside air temperature in centigrade.

ľ

Figure 22. HP-41CV Keyboard Functions for Bingo Program

(4) HEAD WIND? = Input the velocity of the head wind components in knots (tail wind is negative). The calculator will not display results for several minutes to compute the Bingo profile. It will then display the necessary informations as follows: (1) LEVEL DIST = Distance required to maintain level flight between the climb and descent envelope. (2) MN = Indicated Mach number at level flight altitude. (3) TAS = True airspeed of the given Mach number. (4) GRSP = Ground airspeed of the given true airspeed. (5) CRTIME = Time required for cruising. (6) CRUSFUEL = Fuel required for cruising mode when the total distance is greater than the distance from climb to descent. = Fuel required to cruise at level flight alti-(7) CRFUEL tude when the total distance to fly is less than the distance from climb to descent. (8) CLBDST = The distance required to climb to the optimum cruise altitude in feet. (9) CLFUEL = Fuel required to climb from given altitude to desired altituce in pounds. (10) OPTFL = Best range optimum cruise altitude in feet. (11) DESPT = Begin descent point from optimum altitude to desired altitude in nautical miles. = Fuel required to descent from optimum altitude (12) DESFUL to desired altitude. (13) TOTFUEL = Total fuel required from climb, cruise, and for descent. (14) No CRUISE LEG = This indicates that your selected distance was too short to allow a complete climb to the optimum altitude. In this case the optimum flight level displayed is the altitude to which you should climb and then begin your descent.

(15) CRDIST = Distance required to cruise at level flight
 altitude when the total distance to fly is less
 than the distance from climb to descent.

C. MAXIMUM ENDURANCE AND DESCENT PROGRAM

- 1. Loading the Program
- (1) Plug-in the card reader and equivalent four memory modules into the HP-41C. For HP-41CV only plug-in the card reader.
- (2) Clear the memory by pressing the (ON) key while holding the error(←) key pressed.
- (3) Execute the SIZE function using size 021 as the input.
- (4) Assign the DATA, END, and DES modes to their respective keys (see Figure 23). This must be done by executing an ASN function for each mode, keying in the alpha labels, and pressing the designated keys. If the calculator is in the USER mode when the calculator is reading the program, then all the functions are automatically assigned to the key as in Figure 23.
- (5) Put the calculator in USER mode by pressing the (USER) key. The word "USER" should appear in the lower left corner of the display window.
- (6) Read the 18 sides of magnetic cards into the card reader.
- (7) Execute the PACK function after all cards have been read in.
- 2. Executing the Program

a. Endurance Mode

- (1) Pressing the END key puts the program into the Endurance mode.
- (2) The Endurance mode prompts for inputs for fuel weight and bank angle, then computes and displays the endurance altitude, fuel flow, and true Mach number. Pressing the "R/S" key returns the prompt for mode selection.

b. Descent Mode

- (1) Pressing the "DES" key puts the program into the descent mode.
- (2) In the program, the operator will be prompted for drag count, his initial altitude, and his desired final altitude.

F-4E	FPAS (MAX END	DESC)
	USER		MALPHA
	1/x		
XXX / F			S TAN
	XEQ		
ENT			
-)- <mark>7</mark> }-∺-∖	8	9, - T - V
		5. W	<u>6</u>
×		2	3.
L÷.	O SPACE		R/S

.

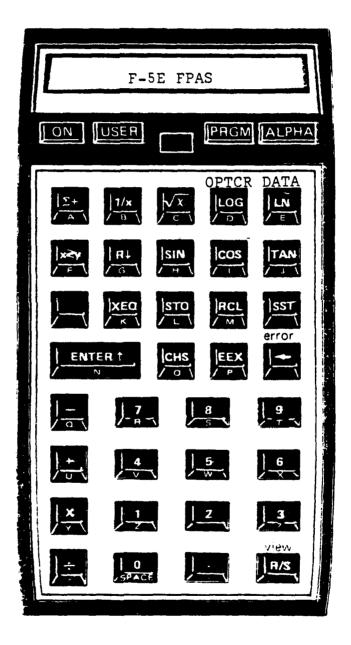
Figure 23. HP-41CV Keyboard Functions For Maxendurance And Descent Program

(3) After inputting the data, the program will display the distance that will be traveled in descending and fuel that will be used during descent.

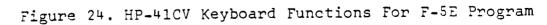
- (4) Whenever a prompt for or a display of data occurs, we "R/S" button must be pressed in order to instruct the program to continue execution. The "R/S" key must be pressed after the data has been keyed in or after the display has been viewed.
- (5) Pressing the "R/S" key then returns the program to the beginning of the program execution.

VII. F-5E USER'S GUIDE

A. LOADING THE PROGRAM


- (1) Plug-in the card reader for HP-41CV and equivalent to four memory modules into the HP-41C.
- (2) Clear the memory by pressing the (ON) key while holding the error (\leftarrow) key depressed.
- (3) Execute the SIZE function using size 013 as the input.
- (4) Turn on the "USER" key before reading the card into the card reader. Then the calculator will automatically assign the function as shown in Figure 24. If you missed turning on the "USER" key before reading the card into the calculator, then assign the DT, DR, and DISP modes to their respective keys as in Figure 24. This must be done by executing an ASN function for each mode, keying in the alpha labels, and pressing the designated keys.
- (5) Read the 19 sides of magnetic cards into the card reader.
- (6) Execute the PACK function after all cards have been read in. PACK function could be done easily by pressing the (GTO) and then pressing the (.) key two times.

B. EXECUTING THE PROGRAM


On the initial run of the program, the operator is assumed to be on the ground level prior to take off. Therefore, initial flight information must be input; however, if you have all the aircraft performance data with you on the performance card then you can use the program during the flight.

1. DATA Mode

Pressing the key labeled "DATA" puts the program into the data mode. Once you are in the OATA mode, the operator will be prompted for inputs of drag count and average gross weight (lbs). Select any mode you want.

.

2. Optimum Cruise (Short Range Mission) Mode

Pressing the "OPT CR" key, Figure 21, puts the program into optimum cruise for short range mission mode. The operator is prompted for the following inputs:

CLGW? = Gross weight when you want to start climbing.

DIST? = The distance from your base to the destination.

Press the "R/S" key after each input. Then the calculator computes and displays the following data:

OPCALT = Optimum cruise altitude for short range mission.

MN = Optimum cruise IMN for optimum cruise altitude.

Then the calculator again prompts for input as follows:

DITG? = This asks you what is the distance from your position to destination?

Then you can read the following displays:

DSCND AT	=	begin descent atnm from destination.
N/FUEL=	=	<pre>specific range i.e., nautical miles per pounds of fuel.</pre>
CR FUEL=	=	fuel required for cruise from given point to begin descent point. This display does not include the fuel required for descent.

3. Diversion Range Mode

The calculator will prompt you to input data as follows:

F>1400? HIT 1 = If fuel remaining is more than 1400 lbs, then press 1.

If you depress 1 then the display shows as follows:

S12M54D38M88 = If you have both engines operating then
maintain altitude 38,000 ft. and Mach
number .88 or if you have a single
engine operating then maintain altitude
12,000 ft. and Mach number 0.54.

If you have fuel less than 1,400 lbs. then press any numerical number you want except 1. For example, 2 or 5 or any number you want except 1. If you pressed the arbitrary number except 1, then the calculator will prompt you for the following input:

- DIST? = What is your total distance from your position to destination?
- IALT? = What is your present altitude you are flying now?
- NO,ENG? = Do you have two engines in operation or one engine in operation?

If you have both engines operating then press 2 or if you have one engine flame out and only one engine operating then press 1. Then the calculator will display the following data:

- ALT = ____ = Optimum cruise altitude for recovery to destination.
- MN = ____ = Best range IMN at optimum altitude.
- FUEL = ____ = Minimum fuel required to the diversion range profile with remaining fuel 300 lbs. at destination.
- DESPT = ___ = Begin descent point from optimum altitude to the destination.

VIII. ILLUSTRATIVE EXAMPLES FOR THE F-4E AND F-5E FPAS PROGRAM

The following examples will illustrate various manner in which the F-4E and F-5E FPAS programs can be used to conserve fuel.

A. F-4E FPAS ILLUSTRATIVE EXAMPLES

1. Optimum Cruise Program Example

Prior to filing a flight plan, it is desired to determine the most fuel efficient cruise altitude and airspeed for a take-off configuration with drag count 50, base weight 30,000 pounds, fuel 17,000 pounds, and 5,000 pounds of stores. For illustration purposes, we will assume that the tail wind is 20 kts., and temperature at given altitude is 20° centigrade below the standard air temperature. This example execution of the program will show how to use the optimum cruise program.

a. Data Mode

DISPLAY	INPUTS	COMMENTS
DC?	50	Enter drag count
BW?	30,000	Enter base weight (lbs)
FW?	17,000	Enter fuel weight (lbs)
DC=50		
G W= 47050		
FAA?OK4NO=5	4	Depends on flight restrictions.
MODE?		What mode do you want?

b. Pre-Flight Mode

Press (LOG) key, PFT mode is assigned to (LOG) key.

DISPLAY	INPUTS	COMMENTS
SDT=54		Standard temperature at best range altitude.
TMP?AT34629	-74	Enter temperature deviations from standard air temperature.
HDG E?W?E=1W=2	1	Enter heading east=1, west=2.
I,VFR?1=7V=8	7	Enter IFT=7, VFR=8.
FAABRALT36000.		Best range altitude with FAA flight restrictions.
BRMN=0.840		Best range Mach number at best range altitude.
TW?	20	How much tail wind? Tail wind is 20 KTS.
BRTAS=467		Best range airspeed at best range altitude.
BRGS=487		Best range ground airspeed.
SR=7.E-2		<pre>Specific range (NM/lbs-fuel)</pre>
MODE?		Select another mode.

c. Climb Mode

This mode gives you the information of fuel required to climb and distance required to climb. Press ($X \ge Y$) key which is assigned to the climb mode.

DISPLAY	INPUT	COMMENTS
FW?	15,000	Present fuel weight.
INITALT?	1,000	Start climb altitude.
FIN ALT?	30,000	Desired altitude.

DEL TEMP?0Deviation of temperature from standard
day temperature.DIST=49Distance required to climb from altitude
1,000 to 30,000 ft.FUEL=2,133Fuel required to climb from altitude
1,000 to 30,000 ft.

2. Bingo Program Example

The following sample mission problem is presented to exercise all functions of the Bingo program to acquaint the user with the utility of the program.

a. Mission

The F-4E is to fly a high-low-high interdiction mission, including low level ingress to a weapons delivery, return to base with Bingo to the alternate airfield.

b. Flight Planning

Load the FPAS in accordance with the User's Guide. You can use this program for pre-flight mission planning or for performance reference during the flight. Select the "USER" mode. Press the (LN) key which is assigned to the DATA mode.

DISPLAY	INPUT	COMMENTS
TOGW?	45,000	
STOREWT?	5,000	
FUELWT?	15,000	
DC?	40	
INIT OK		Initial done.
MODE?		Select mode. Press (LOG) BINGO button.
DISTANCE?	200	

DISPLAY	INPUT	COMMENTS
FUELWT?	15,000	
	-	
DELTMP?	0	
HEAD WIND?	0	
CLBDIST=69		Required climb distance.
CLFUEL=2142		Fuel required to climb.
OPTFL=36,030		Best range altitude.
MACH=0.840		Best range Mach number.
TAS=470		True airspeed.
RSP=470		Ground airspeed.
CRTIME=8.29		Cruise time.
CRUSFUEL=875		Fuel required for cruising.
CRDIST=65		Distance required for cruising.
DESPT=66		Begin descent point.
DESFUL=525		Fuel required for descent.
TOTFUEL=3,543		Total fuel required.

3. Maximum Endurance and Descent Program Example

The Maximum Endurance and Descent Program consists of maximum endurance and descent mode. The DATA mode is assigned to the (Σ +) key and the Endurance mode is assigned to the (LN) key. The descent mode is assigned to the (LOG) key. First press the (Σ +) key.

DISPLAY	INPUT	COMMENTS
DC?60		
BW?	35,000	Input base weight.

DISPLAY	INPUT	COMMENTS
STWT?	8,000	Input store weight.
FW?	14,000	Input present fuel weight.
DC=60		Shows the drag count.
GW=57,000		Total gross weight.

If you want to select the Endurance mode, press the (LN) key with is assigned to the Endurance mode.

DISPLAY	INPUT	COMMENTS
BANK </td <td>20</td> <td>Bank angle in degrees.</td>	20	Bank angle in degrees.
ENDALT=21,500		Best endurance altitude.
FF=8,749		Fuel flow at maximum endurance altitude.
ENDTMN=0.703		Maximum endurance true Mach number at maximum endurance altitude.
OK?		Are those data reasonable?

If you want to select the descent mode, press the (LOG) key which is assigned to the descent mode.

DISPLAY	INPUT	COMMENTS
INALT?	30,000	Initial descent altitude from maximum endurance altitude to desired altitude.
FINALT?	10.000	Desired descent altitude.
IAS=300		Descent speed 300 KIAS.
DIST=32		Descent distance from 30,000 ft. to 10,000 ft.
DESFUEL=261		Fuel required to descent from altitude 30,000 ft. to 10,000 ft.
0K?		Are those data acceptable to you?

B. F-5E FPAS ILLUSTRATIVE EXAMPLE

The following sample mission problem is presented to exercise all functions of the Bingo program to acquaint the user with the utility of the program. One can use this program as pre-flight mission planning for optimum altitude for short range missions. However, the diversion range for dual engine and single engine could be used during the flight.

(1) First press the DATA key which is assigned to the (Σ^+) key.

DISPLAY	INPUT	COMMENTS
01?	60	
AVGW?	15,000	Input average gross weight.
MODE?		Select a mode.

(2) Press the Optimum Cruise key which is assigned to the (LOG) key.

DISPLAY	INPUT	COMMENTS
CLGW?	17,000	Input start climb gross weight.
DIST?	200	Input the mission range.
OPCALT=34,555		Optimum cruse altitude.
MN=0.84		Best range Mach number at best range altitude.

(3) After you take off and reach the best range altitude, find the distance from your position to target using any navigation aids such as Tactical Air Navigation or Inertial Naviation systems. Then proceed as follows:

DISPLAY	INPUT	COMMENTS
DITG?	150	Input distance from your position to target.
DESCND AT 41.9		Begin descent from 41.9 NM from target.

DISPLAY	INPUT	COMMENTS
N/FUEL=0.20		Nautical mile per pound of fuel.
CR FUEL=537		Fuel required from present position to begin descent point.

(4) Press the Diversion Range key using the (LN) key. This mode gives dual engine and single engine diversion range information as follows:

DISPLAY	INPUT	COMMENTS
F>1400?HIT1		If the remaining fuel is greater than 1,400 lbs.
S12M54D38M88		If it is single engine, maintain altitude 12,000 ft. and Mach number 0.54.
		If both engines are available then main- tain altitude 38,000 ft. and Mach Number 0.88.

(5) If your fuel on-board is less than 1,400 lbs., then enter any number except 1.

DISPLAY	INPUT	COMMENTS
F>1400?HIT1	2	If fuel is less than 1,400 lbs.
DIST?	200	Input distance from your present position to base.
IALT?	2,000	Initial altitude for climb.
NO, ENG?	1	For single engine enter l
	(1 or 2)	For dual engines enter 2.
ALT=14,000		Diversion altitude.
MN=0.52		Best range Mach number.
FUEL=1971		Minimum fuel required from present position to destination.
DESPT=14		Begin descent point from destination.

(6) If you want to see the inputs of the computations, again press the DISPLAY key which is assigned to the $(X \ge Y)$ key.

IX. CONCLUSIONS

As part of the U.S. Navy Aircraft Fuel (nservation Program, the use of Computerized Flight Performance Advisory Systems (FPAS) by the aircrew was conceived as a potentially cost-effective fuel-saving operational concept.

In Chapter III, equations were given for the best range Mach number. BRMN, and the ground specific range, GSR, were derived as a function of wind velocity V_W and wind direction, θ . A second order analysis was developed in which the derivatives of specific range, SR, with respect to flight velocity, V, play an important role.

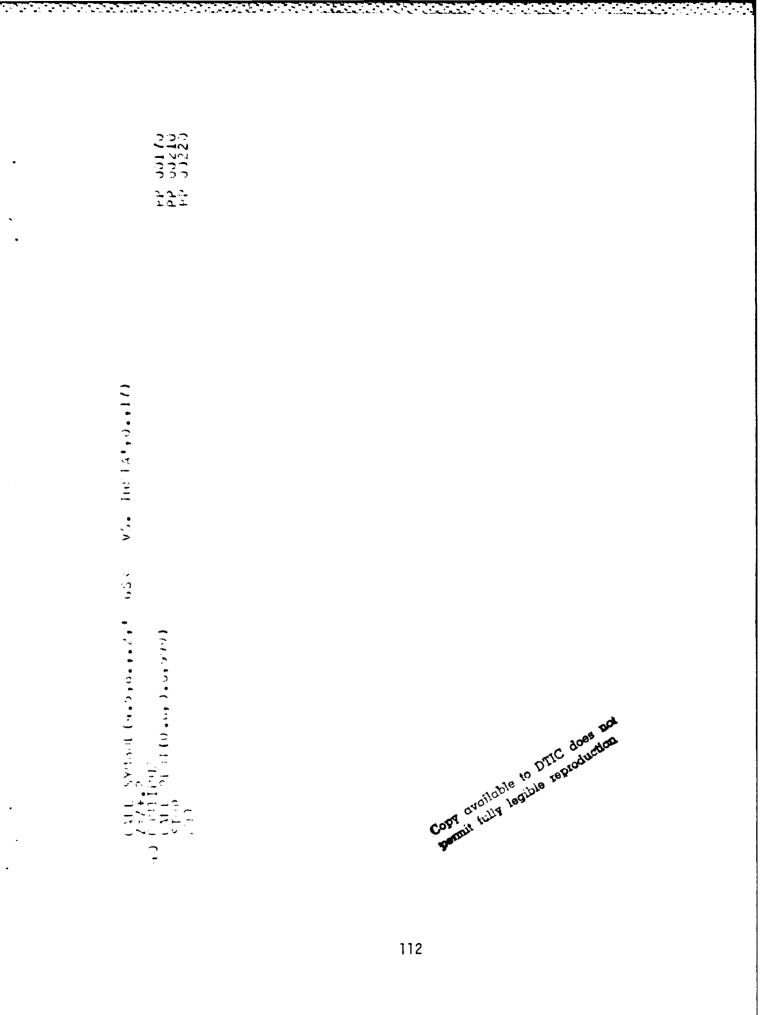
The results of sample calculations for ε , GSR, and V* using the second order analysis of Chapter III were reasonable when compared with the results computed by Naval Air Development Center [Ref. 2].

The mathematical relationships developed in this thesis can be utilized by any aircraft whenever the functional relationship between specific range and velocity is known. The specific range and velocity curve can be determined without difficulty [Ref. 2: pp. 9]. It is recommended that a controlled experiment be set up to evaluate in-flight accuracy and relevancy of the results of the equations reported herein.

The accuracy of the Flight Performance Advisory System methodology has been verified against the F-4E and F-5E Flight Manuals [Ref. 3 and 4].

The Flight Performance Advisory System programs developed can be readily utilized in both preflight and in-flight environments. The FPAS program developed in this theses are intended as a convenient, reliable augmentation to the F-4E and F-5E Flight Manuals. The computer programs for HP-41CV do not replace the manual, but rather make its performance data more accessible and usable.

APPENDIX A COMPUTER PROGRAM FOR WIND ANALYSIS


000000000000000000000000000000000000000	0000000 0000000 00000000 0000000000000			- - - - - - - - - - - - - - - - - - -
てて	てこしてこして	ししししししし	こしししし	トトッ イト こしして
C (1) (2) (2) (3) (3) (4) (4) (4) (5) (5) (5) (6) (6) (6) (6) (7) (7) (7) (7) (7) (7) (7) (7	1 - 1	284 V + 400. V		
		110	Copy avail permit fully	able to DTIC does not I legible reproduction

•		

Ø

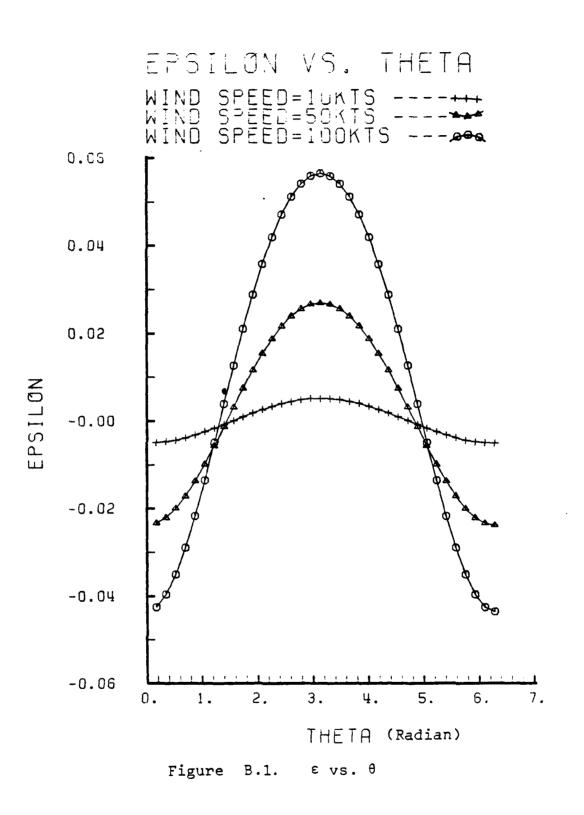
5

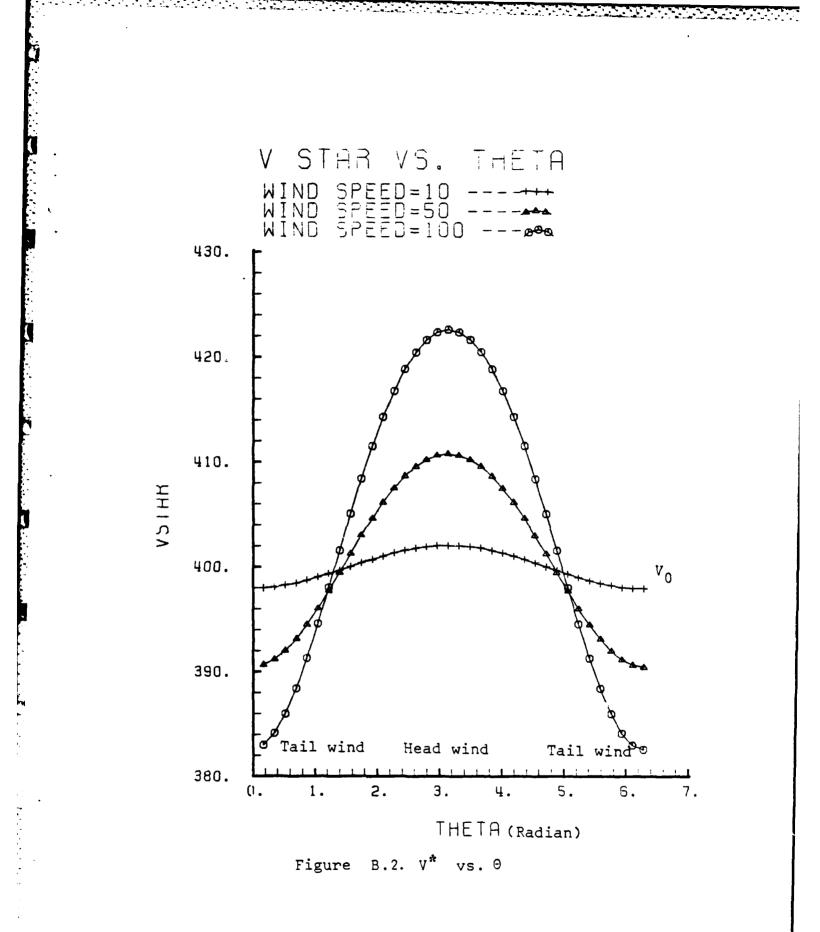
D + C.G.T.H.T.A.(J.D - • 541407 #2 + (L - (CASTLLT 2 2 + D 2 = • 51 * UL(D) 05 k (J) • VSTAP (J) 05 k (J) • VSTAP (J) 1 • (L FAT (F + CT - D 1 + D) P 2 (K) = - C P 5 (K) + F 5 + D + F 5 + D - C 2 + F 5 + D	<pre>1.PS(1) = r PS2 1.P(0) = r PS(1) = r PS(1</pre>).ul.Aus(FPSZ)).ul.tu.tu LPS1 U
= (Sr2+(FrS(J)) + Sr2+02 Sr2+5) + (0.01) (J) = (O+(1+FrS(J)) + (Sr2)) + (Sr2) (J) = (O+(1+FrS(J)) + (Sr2)) + (Sr2)) + (Sr2) (J) = (O+(1+FrS(J)) + (Sr2)) + (Sr2)) + (Sr2) + (Sr2)) + (Sr2) + (Sr2	= (Sr2+(FS(U))+2*+028*+5)*000) = (Sr2+(FS(U))+2*+028*+5)*000) = (F3(U))+FS(U)+2*+028*+000) = (F3(U))+2*+028*+000) = (F3(U))+7*+048*+000) = (F3(U	(1))*t.c5(TH [*] TA(J))-*5#40.04942+(10054Th [*] T
1 1 <td>1 1<td></td></td>	1 1 <td></td>	
1H.13 1 - 51<	1.05 1.05 1.05 1.05 1.05 1.05 0.05 1.05 1.05 1.05 1.05 1.05 0.05 1.05 1.05 1.05 1.05 1.05 0.05 1.05 1.05 1.05 1.05 1.05 0.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 <td></td>	
<pre>1 25 1 26 1 26 201 201 201 201 201 201 201 201</pre>	<pre>////////////////////////////////////</pre>	
<pre>/f 2/1 (* + + 1 - 9 -) - at - (f t 2/1 (*) - 0 - 2 / 2) 1 / 2 (*) - 2 / 2 (K) = - 2 / 2 / 2 (K) = - 2 / 2 / 2 (K) = - 2 / 2 / 2 (K) =</pre>	<pre>////////////////////////////////////</pre>	~ ~ ~ ~
0 0	0 0 <td>~</td>	~
0.14 LV(1) *1110 VFLL(1TY=*F5.1) *1110 VFLL(1TY=*F5.1) *122 *122 *1111 VFLL(1TY=*F5.1) *122 *1111 VFL(1) *1111 VFL(1) *1111 VFL(1) *1111 VFF(1) *1111 VFL(1) *1111 VFL(1) *1111 VFL(1) *1111 VFL(1)	0.1611V(1) 0.1611V(1) 0.1111V(1)	
2	(1) (10, 10, 10, 10, 10, 10, 10, 10, 10, 10,	
()) (5) ()) (5) ()) ()) ()) ()) ((1) 1 (1) (1) (1) (1) (1) (1) (1) (1) (1	
2 3) 1 LV(1) 2 2 2 1) 2 4 14 15 VS 35 4 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	711 LV(L) 711 LV(L) 711 LV(L) 711 LV(L) 91 711 LV(STER, 30, N) 711	10, • 3 .
())) 2	Татобак УЗ ССК.) Патобак VS ТИСТАС) Патобак Зеети	
	uz. VSIAK VS THE 12.) Tr. VSIAK VS THE 12.)	
Try VST dry School States States States School States School States School States School States School Scho		
<pre>AnySTER_SCOLUTION AND AND AND AND AND AND AND AND AND AN</pre>		а селоте и спания и самала и и и и и и и и и и и и и и и и и и

(8

APPENDIX B

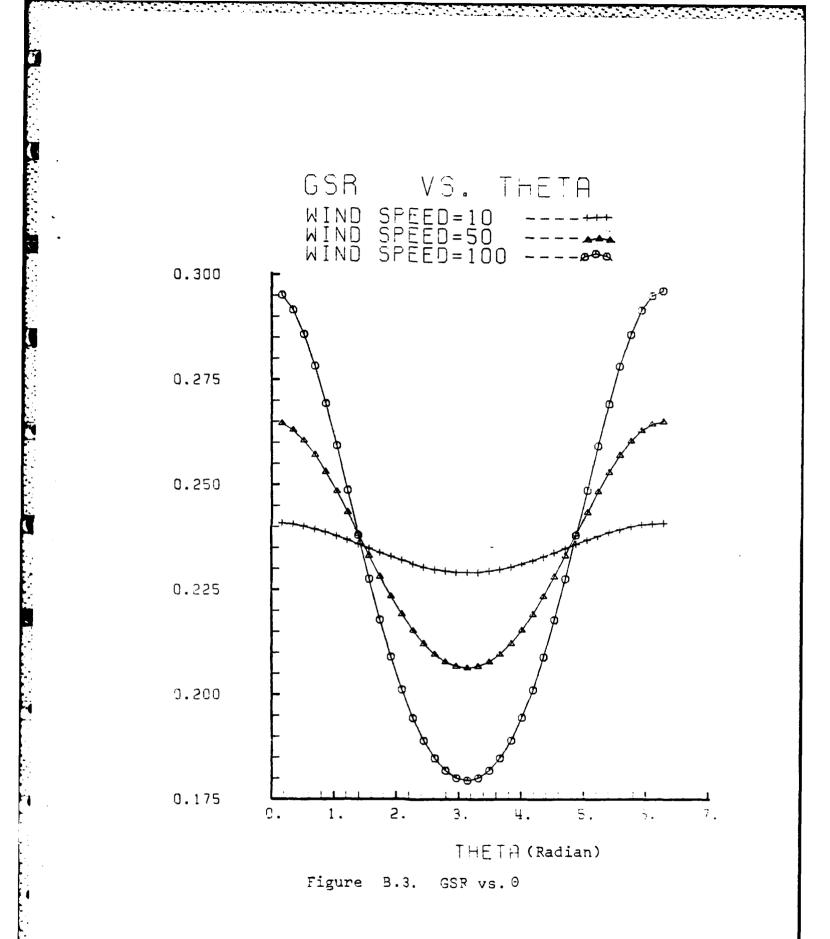
DISCUSSION AND COMPUTER OUTPUTS FOR EXAMPLE OF THE WIND PROBLEM

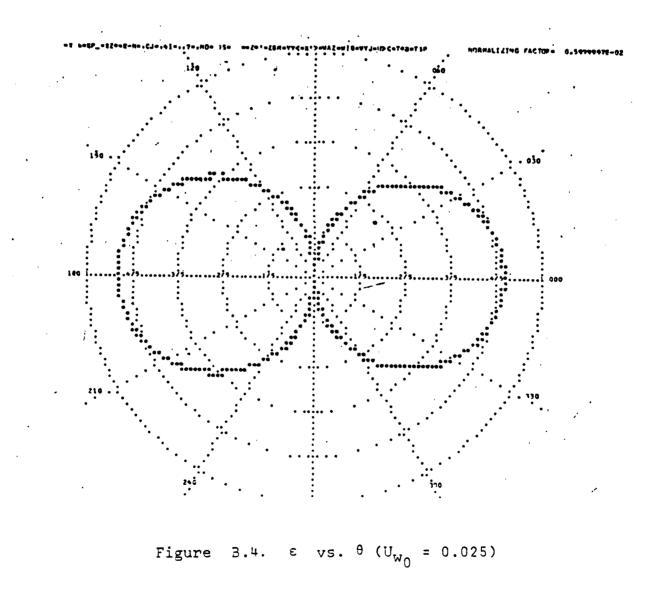

This appendix contains sample calculations for the A-7E aircraft based on information contained in Reference 2. Specifically, the information on specific range as a function of aircraft velocity shown in Figure 3 of Reference 2 was used in equations (3-39) to (3-41). The input parameters were:


> $V_0 = 400 \text{ kts.}$ $SR(V_0) = \frac{0.235 \text{ nm}}{1b. \text{ fuel}}$ Altitude = 35,000 ft. Gross weight = 20,000 lbs Drag count = 50.

In Figure B.1, V* as a function of Θ is presented for three wind velocities as follows: 10,50, and 100 knots. The corresponding values of ${}^{U}W_{0}$ are 0.025, 0.125, and 0.25. The dimension of Θ in Figure B.1 to Figure B.3 is radians. Both the V* curve in Figure B.1 and the ε curve in Figure B.2 have similar shapes as one would expect from equation (3-48).

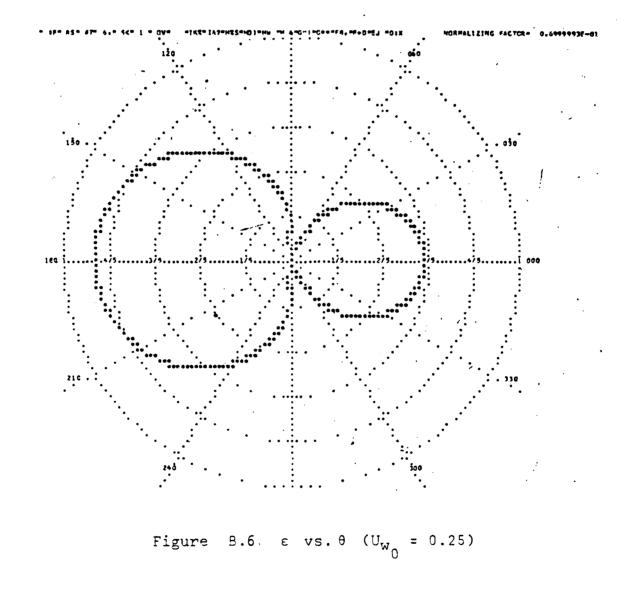
For a tail wind, i.e., for θ starting at zero and increasing to the intersection of the V* and V₀ curves, the aircraft flies slower. Conversely for a head wind, the aircraft flies slower.

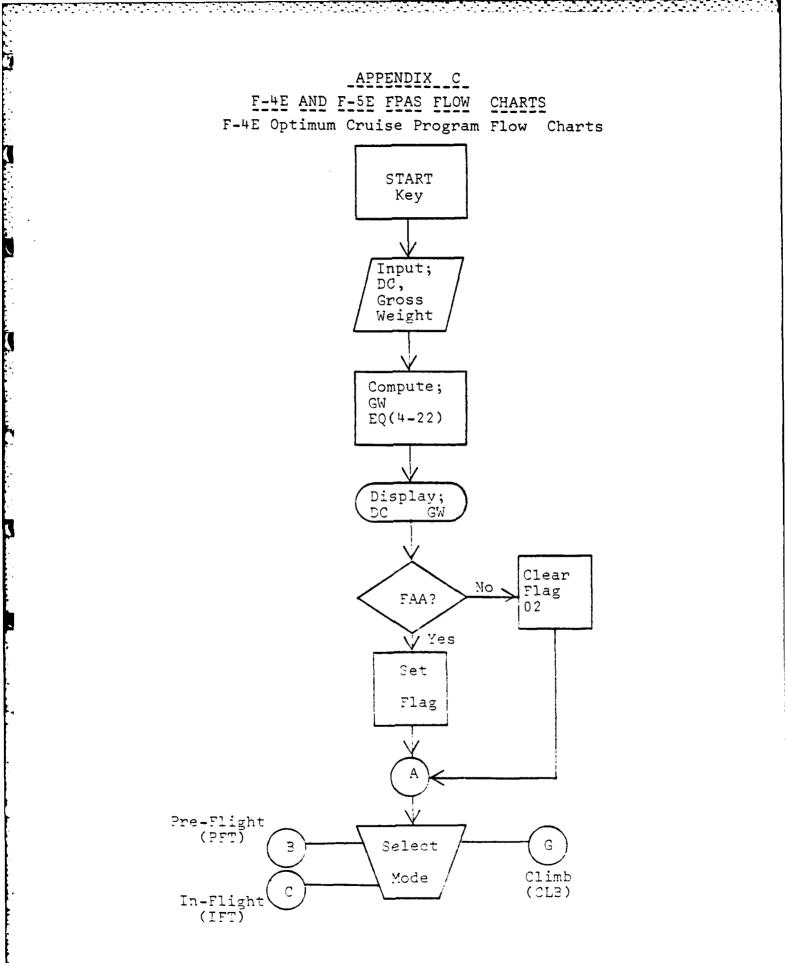

The sign of ε should flip when θ changes from 0° to 180°. When θ is 0°, the wind is a tail wind. The aircraft should fly at a slower speed,

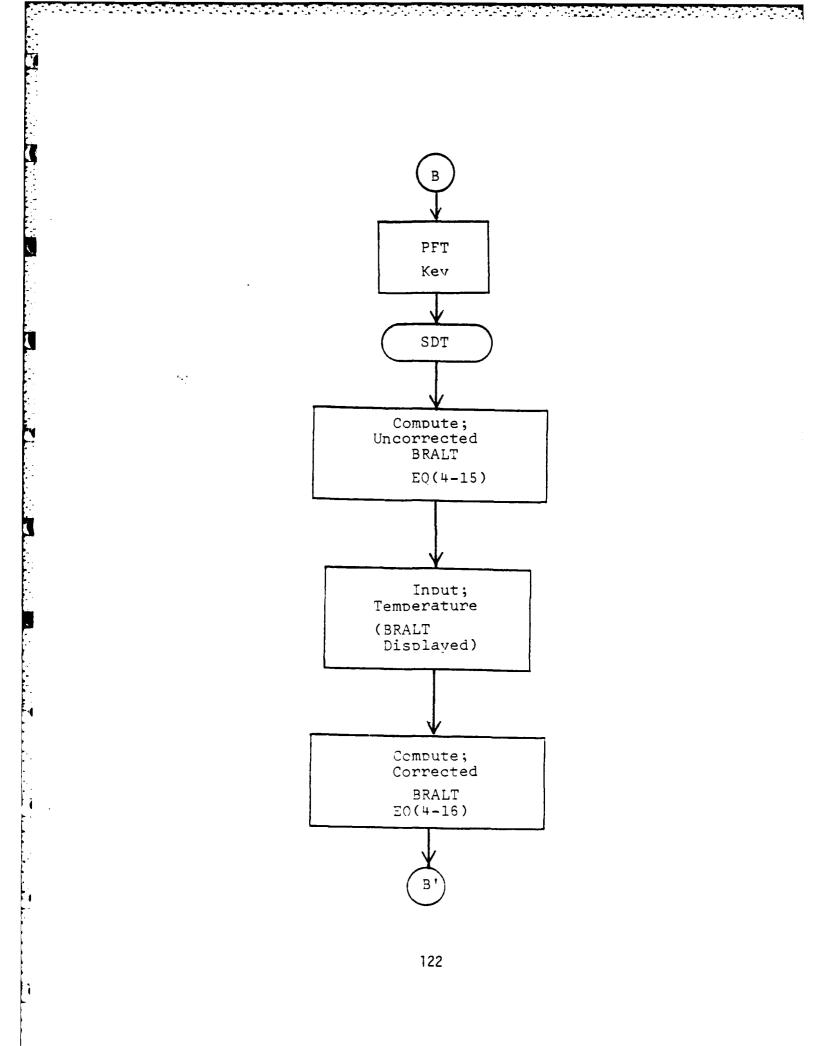


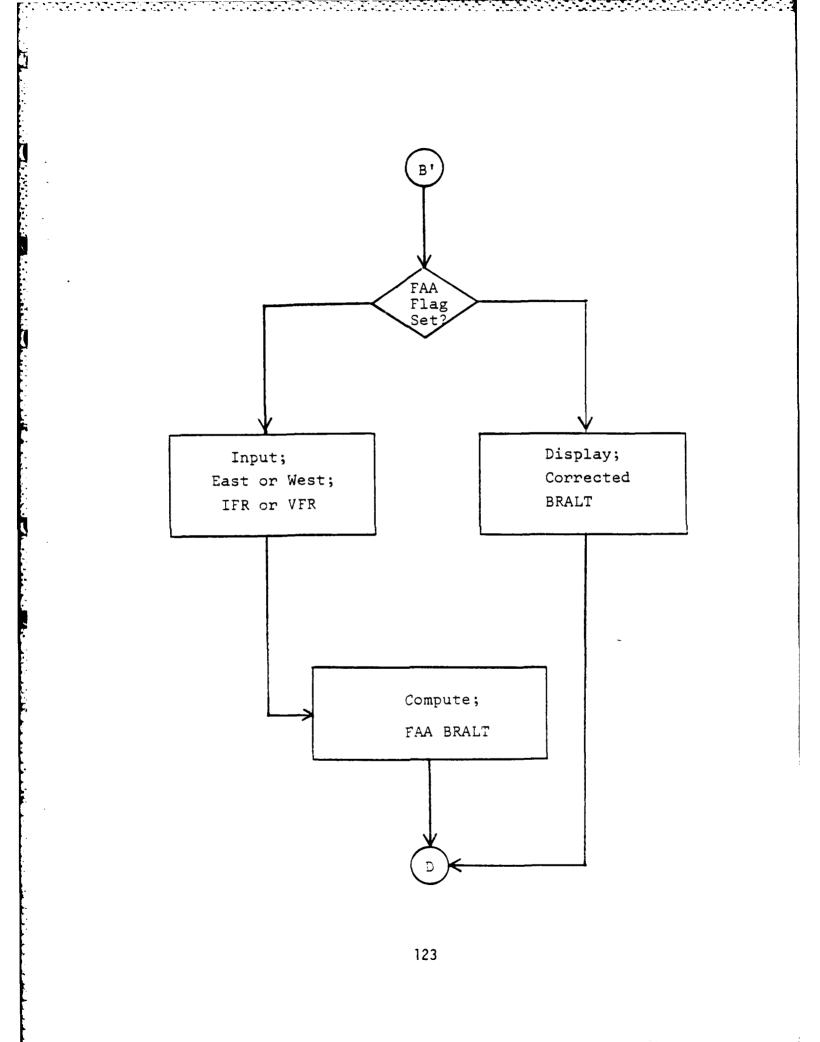
and the sign of ε is minus. When θ is 180°, the wind is a head wind, and the aircraft should fly at a slower speed. The sign of ε is positive.

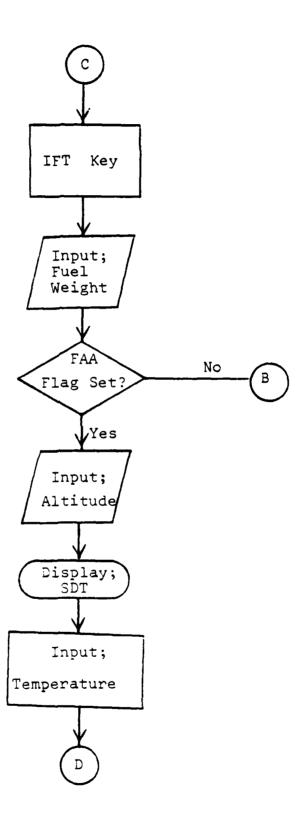

The Figures B.3, B.4, and B.5 are polar plot of $|\varepsilon|$ vs. θ with the wind speed at 10 kts., 50 kts., and 100 kts., respectively. Note that as the wind speed increases from 10 kts. to 50 kts., the size of the left hand circle in Figure B.4 increases relative to the right hand circle. Also note, in Figure B.2, the V* with wind direction 1.571 Radian (90°) is approximately 405.5 kts.

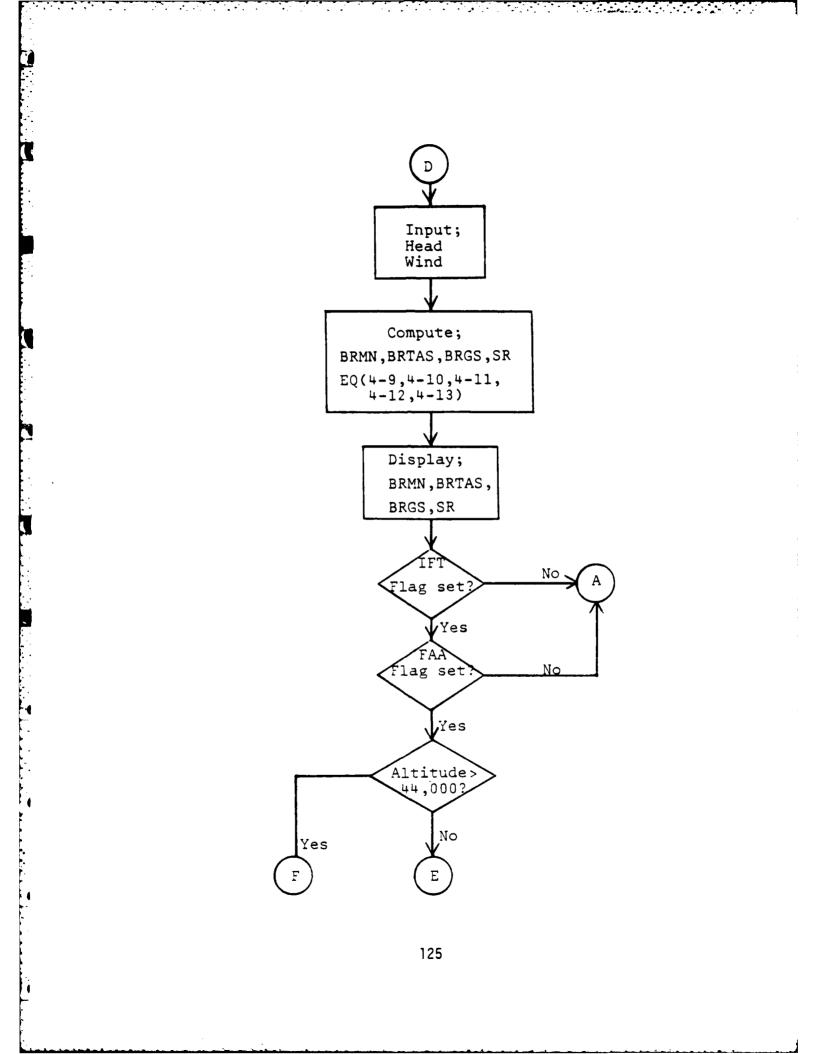



Polar Plot of ε vs. Theta (wind 10kts)

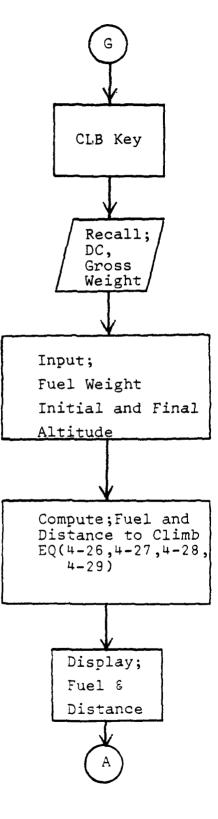

and the second second

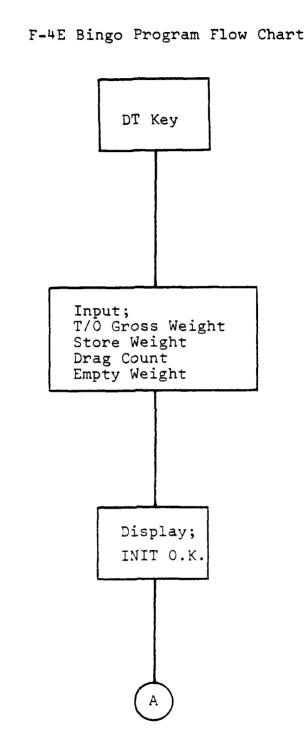


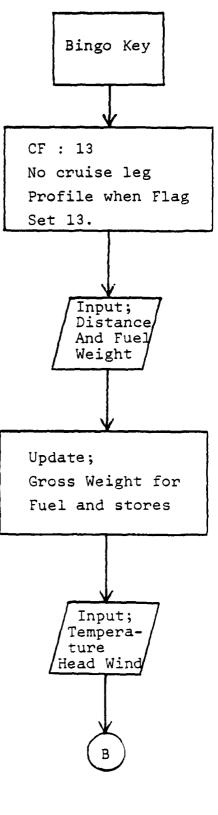

Polar Plot of ε vs. Theta (wind 100kts)

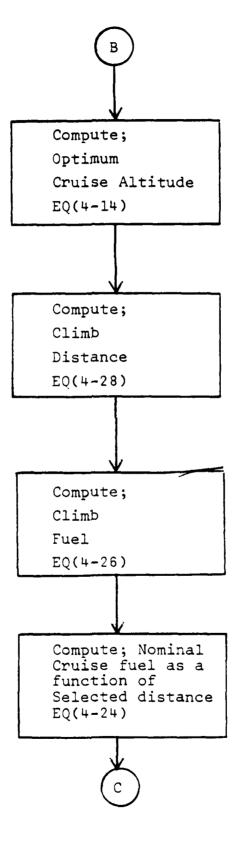

An Build and a start of the second second and a second and a second second second as the second s

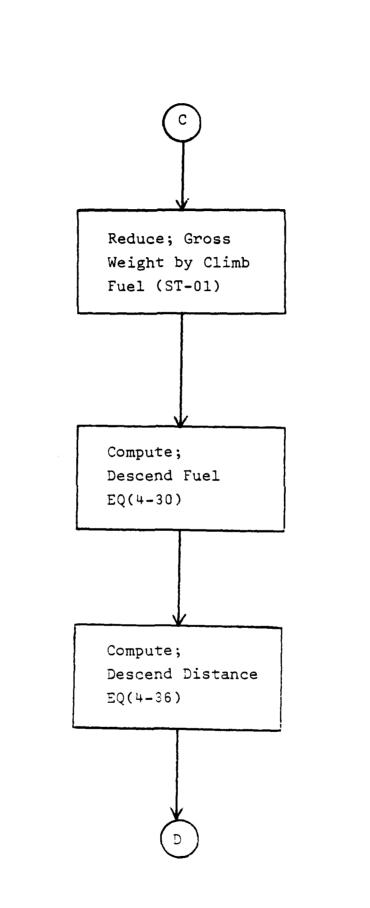


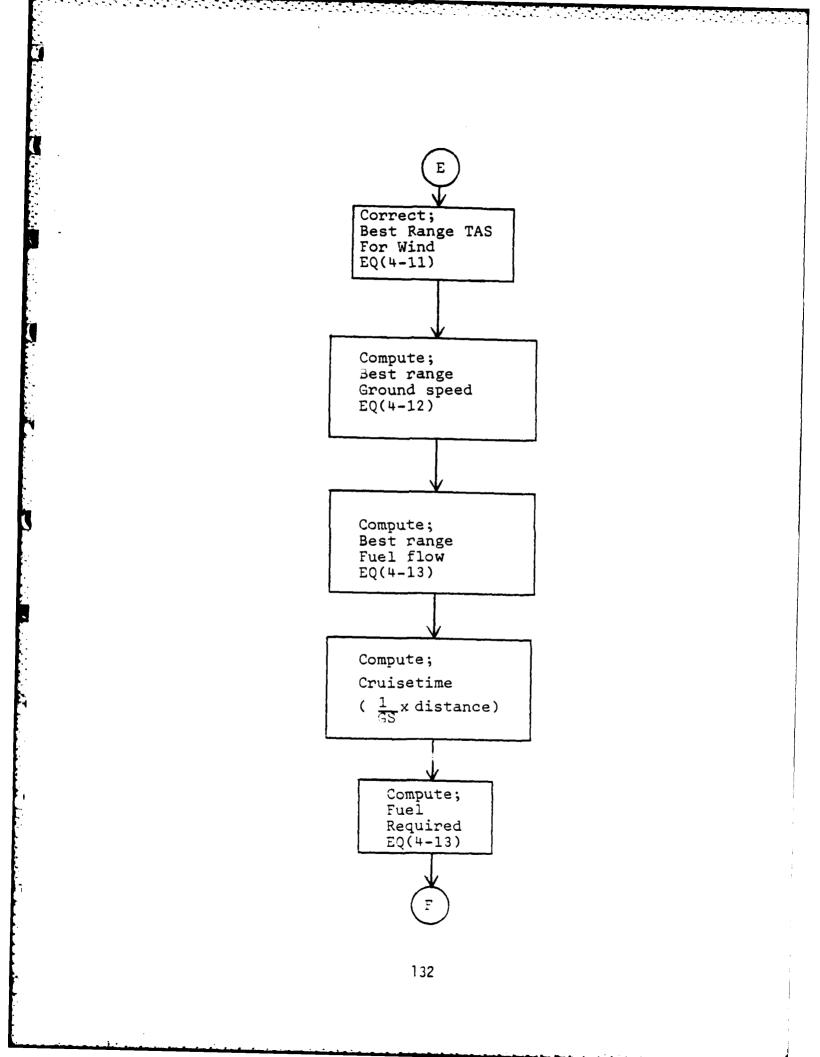


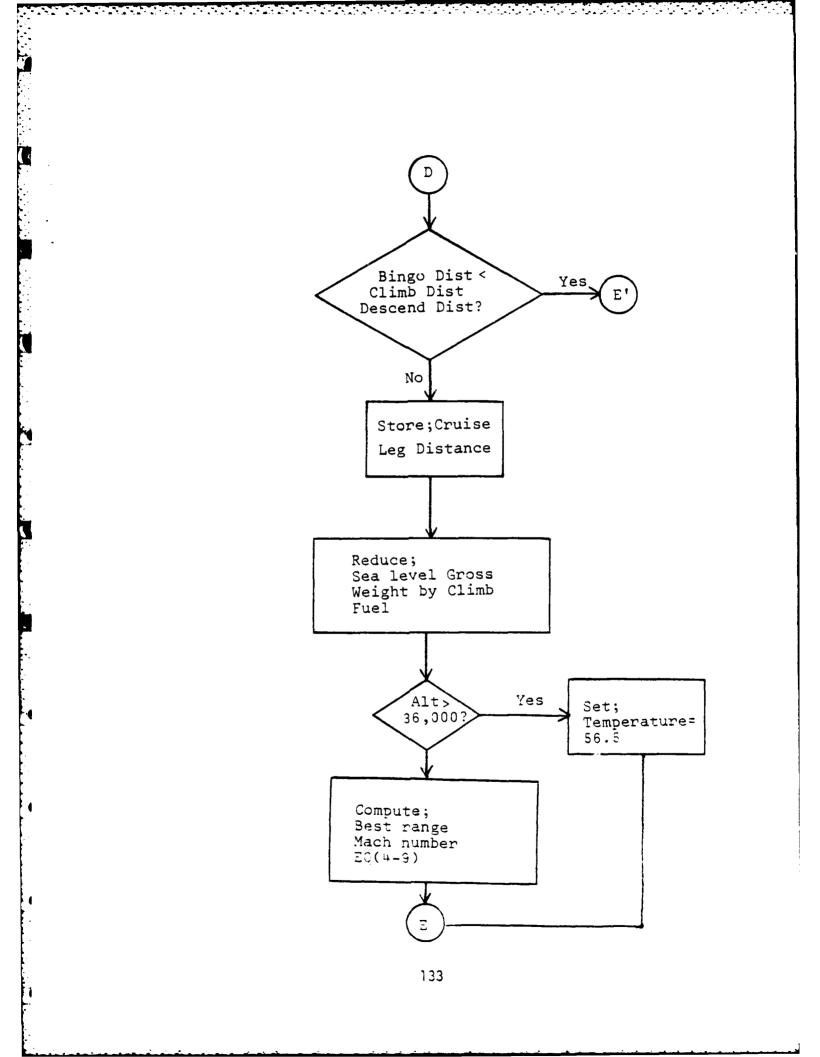

.

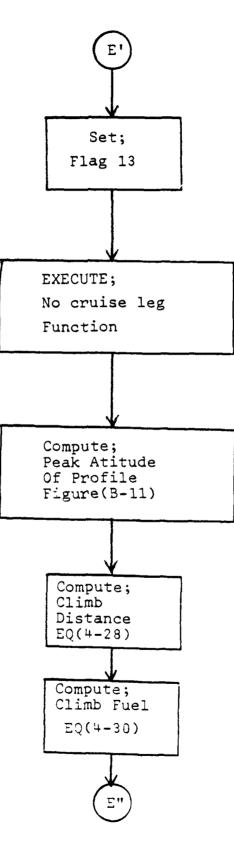

C

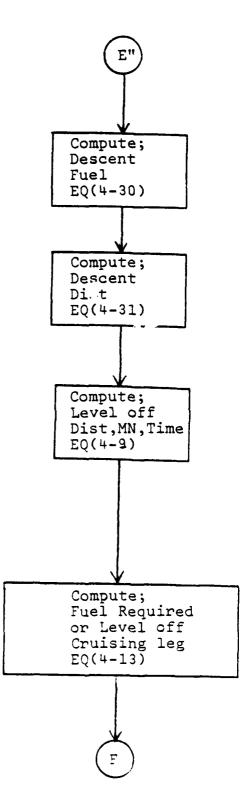


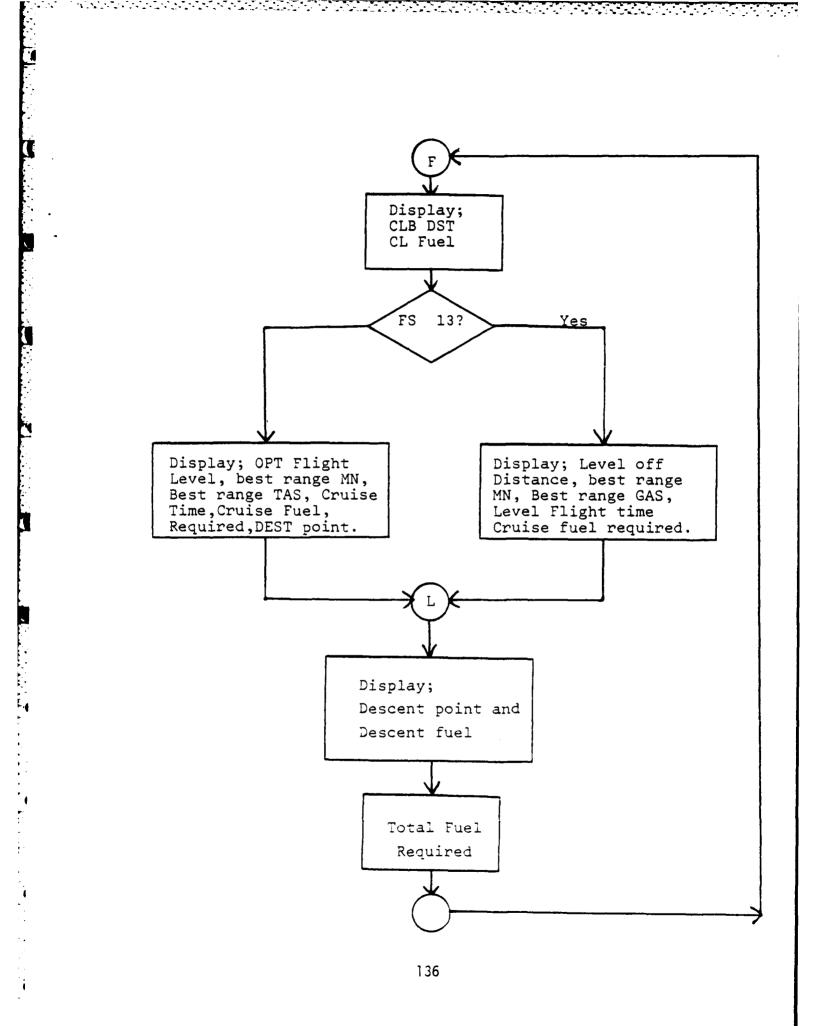


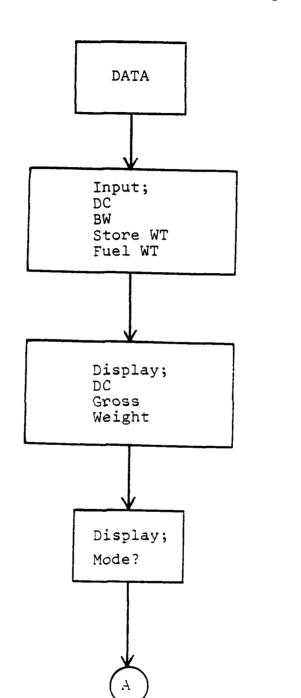

ŧ,


129

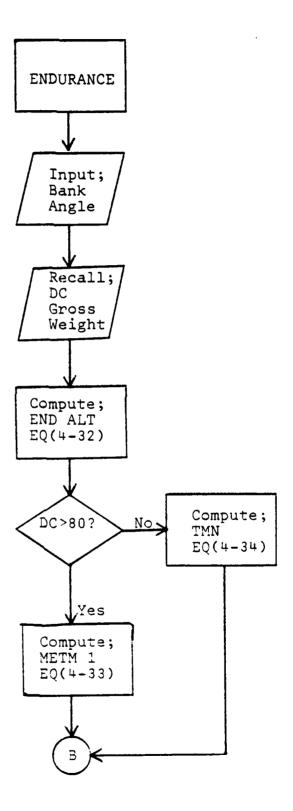


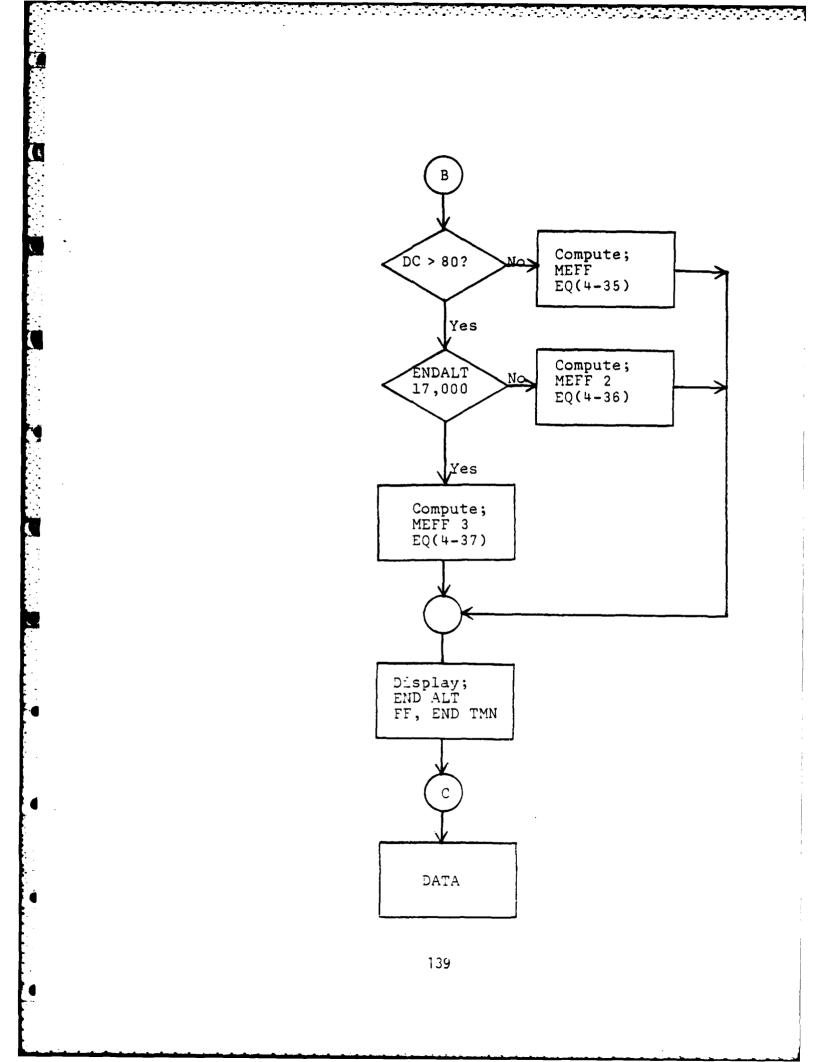


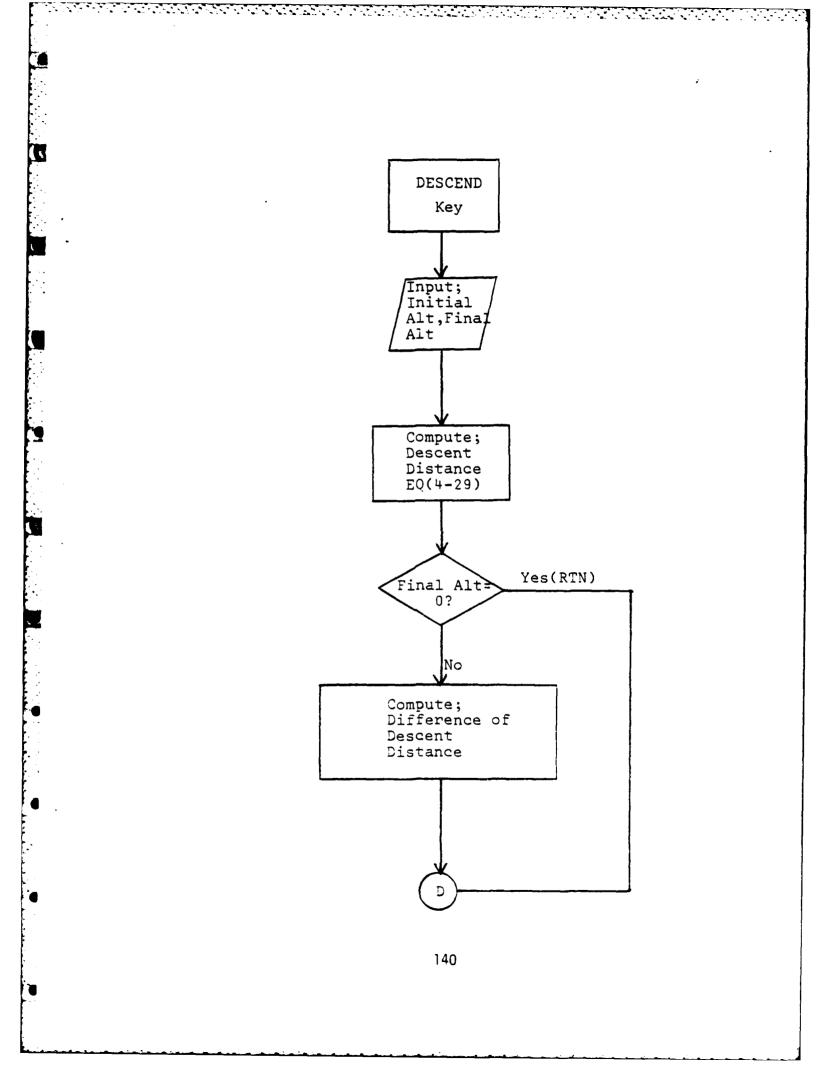


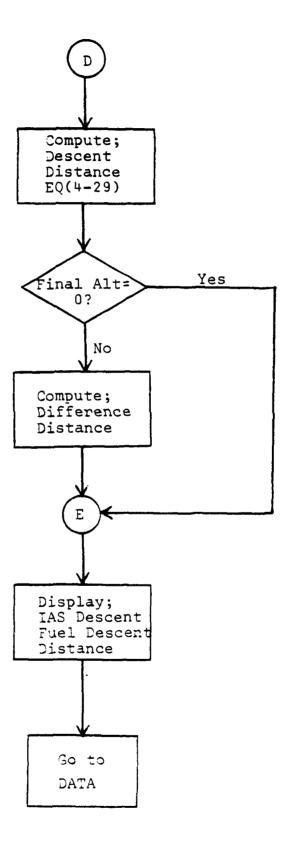


135

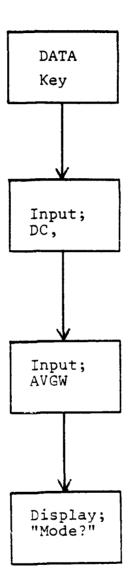


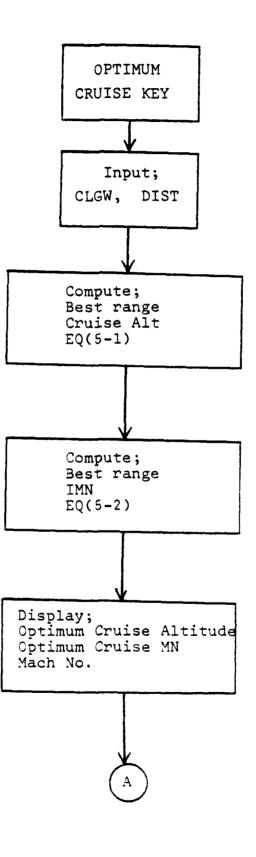




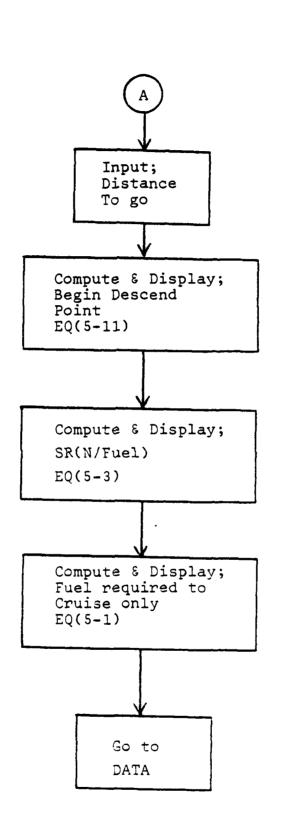


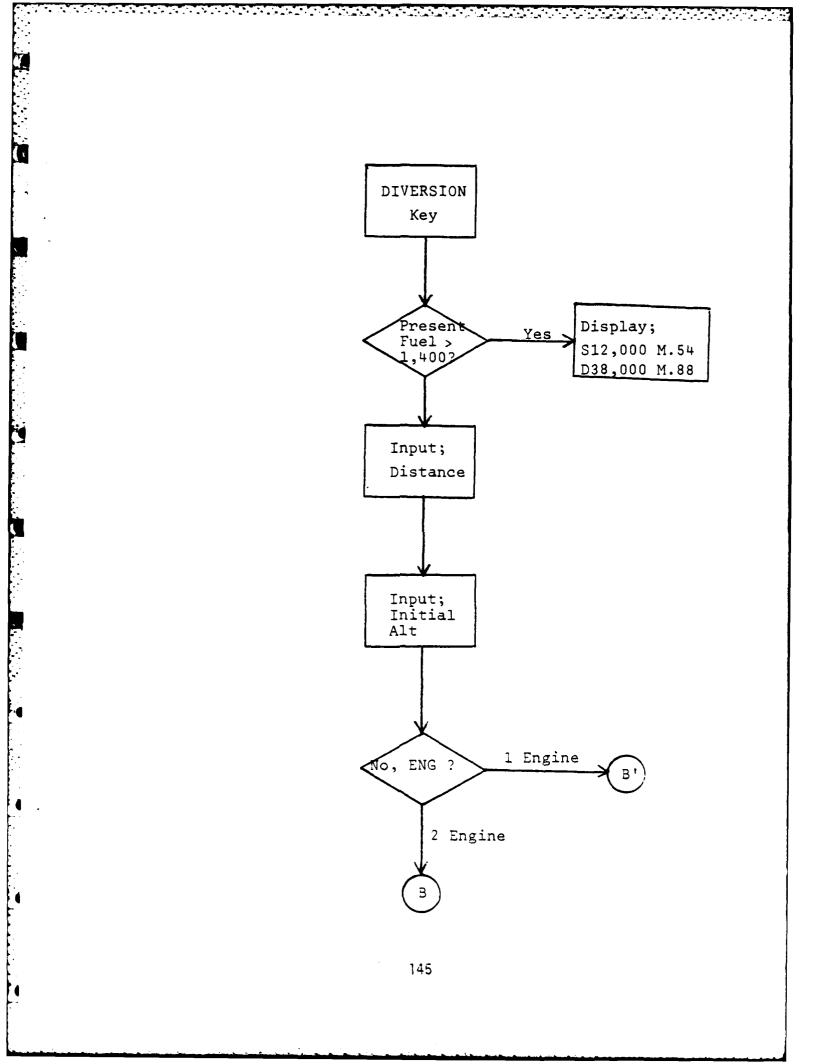
F-4E Maximum Endurance and Descent Program Flow Chart

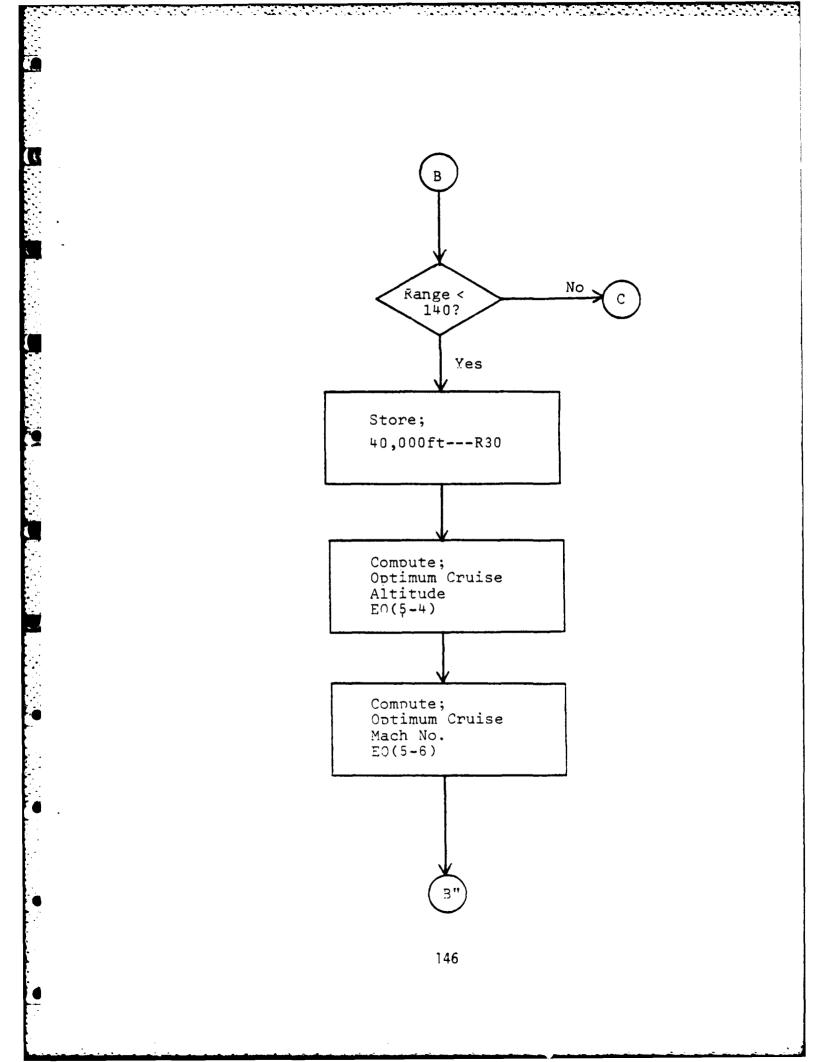


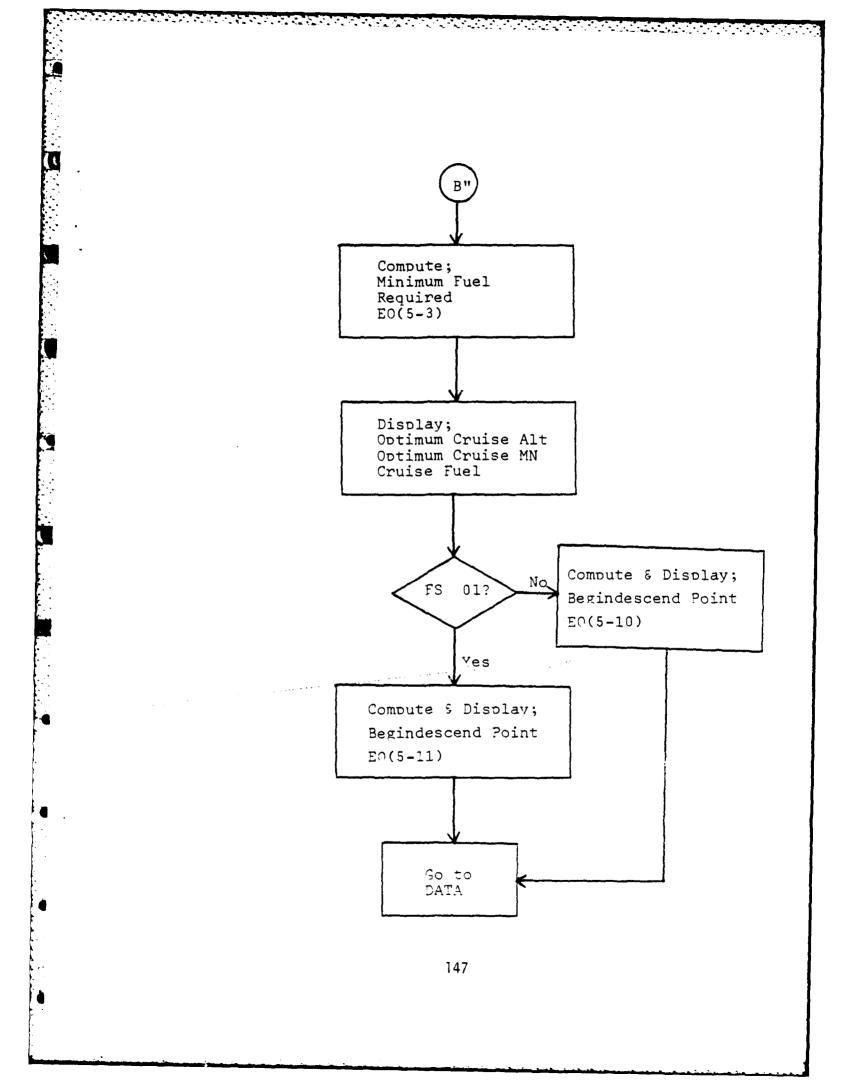


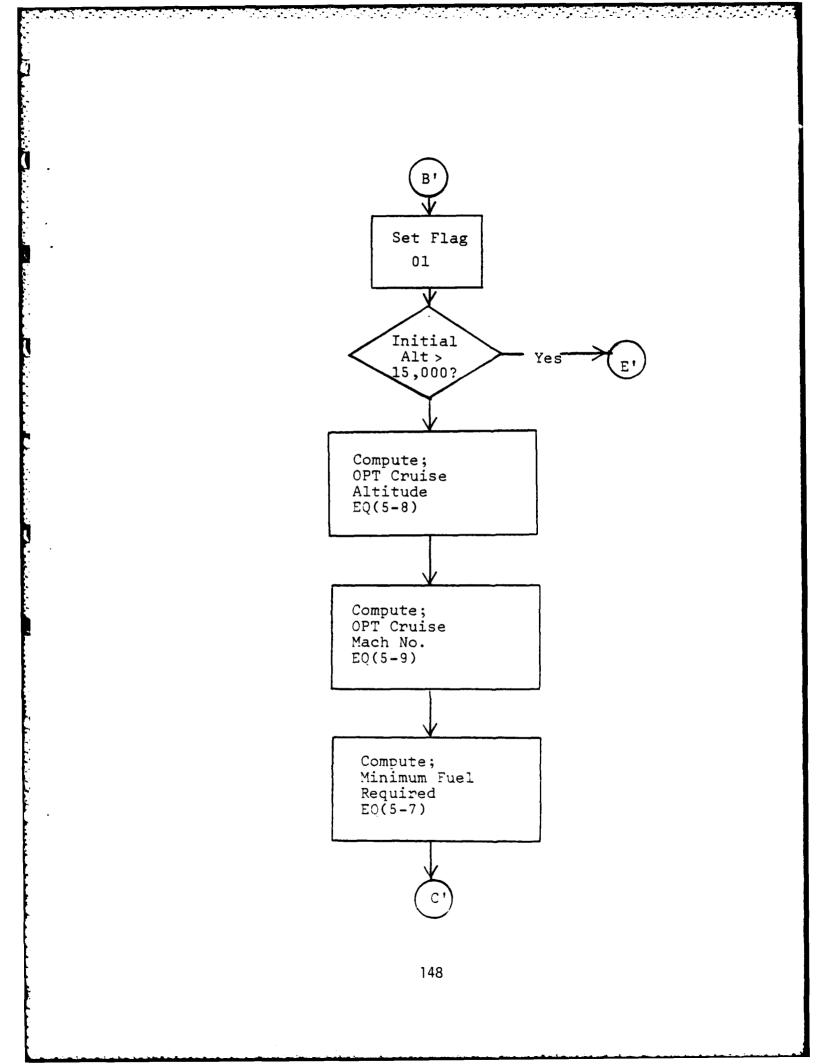
v". •

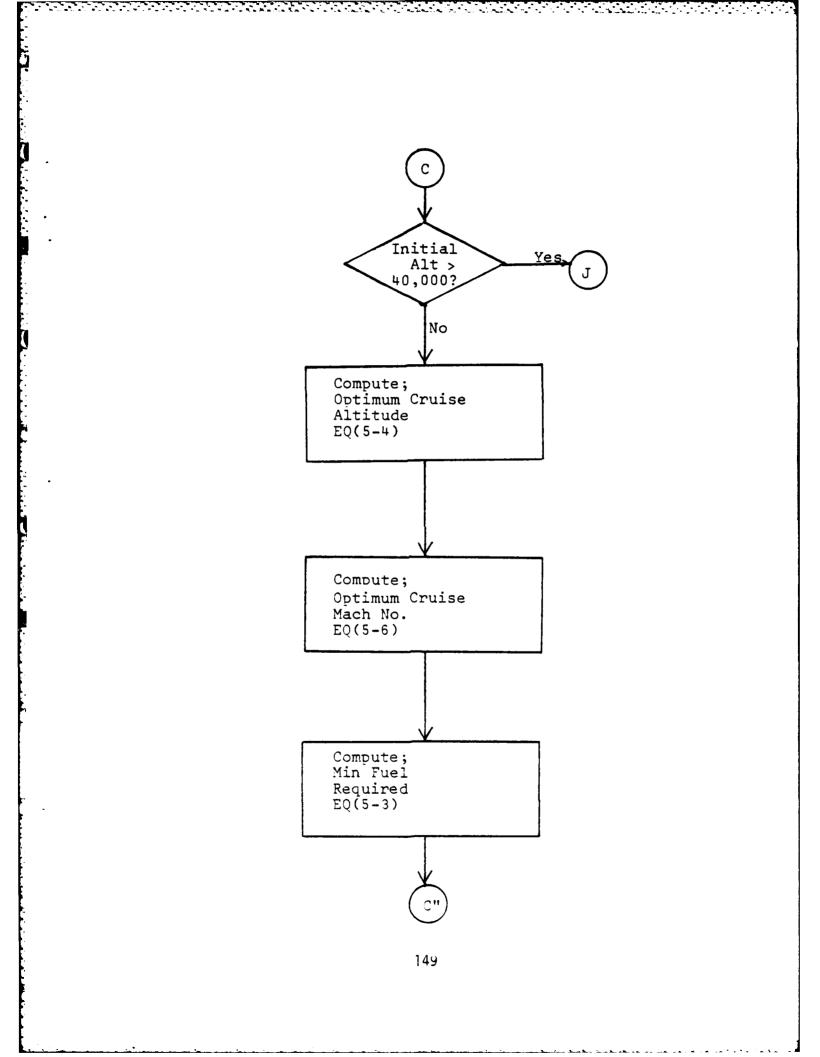

Ĺ

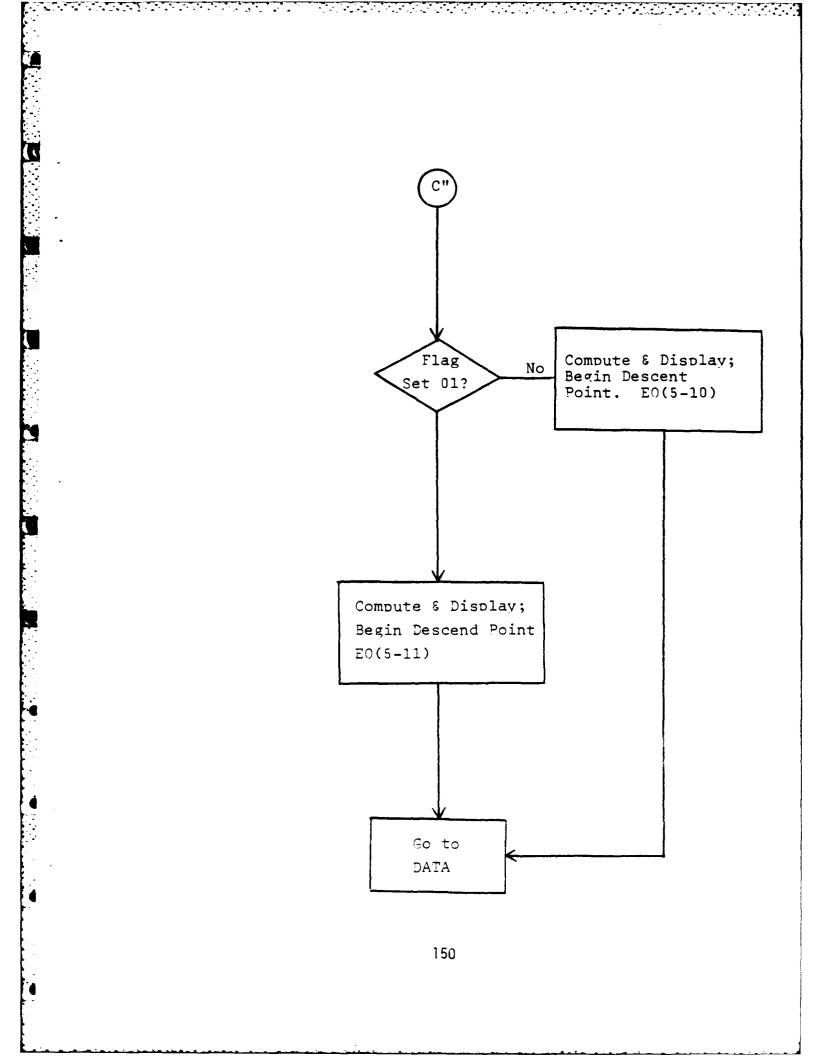

F-5E Program Flow Chart

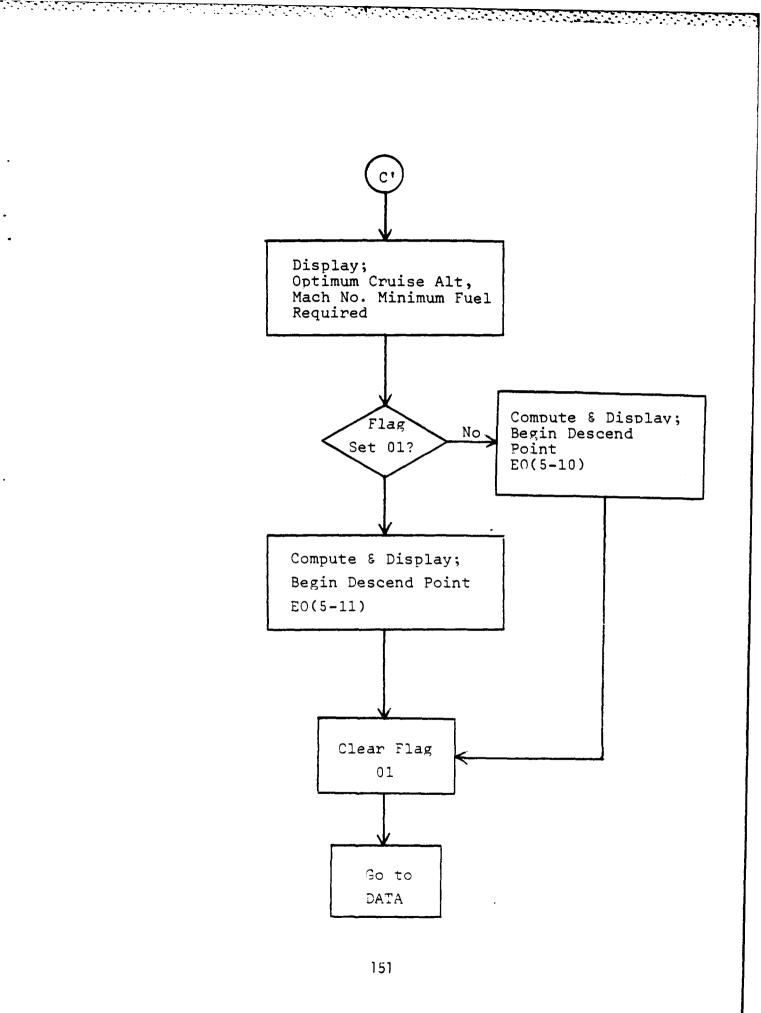


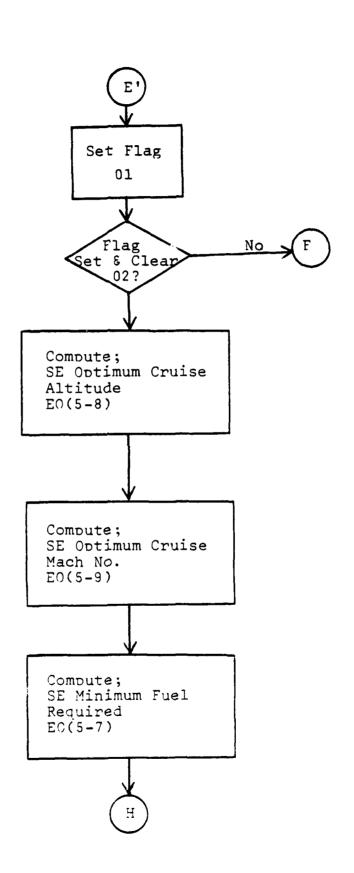


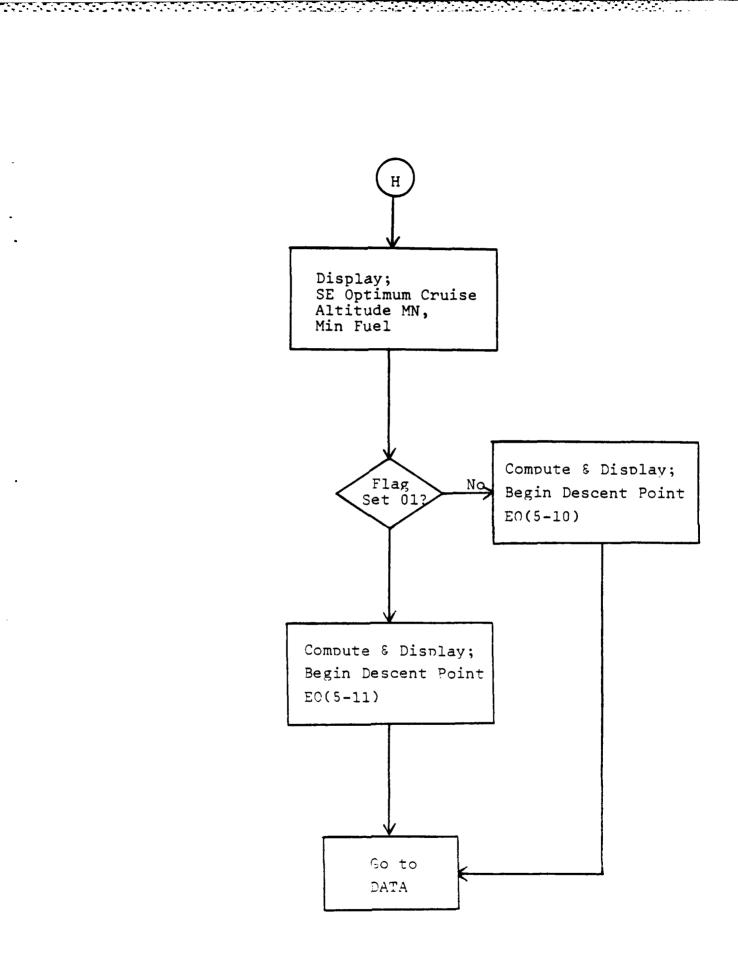

.

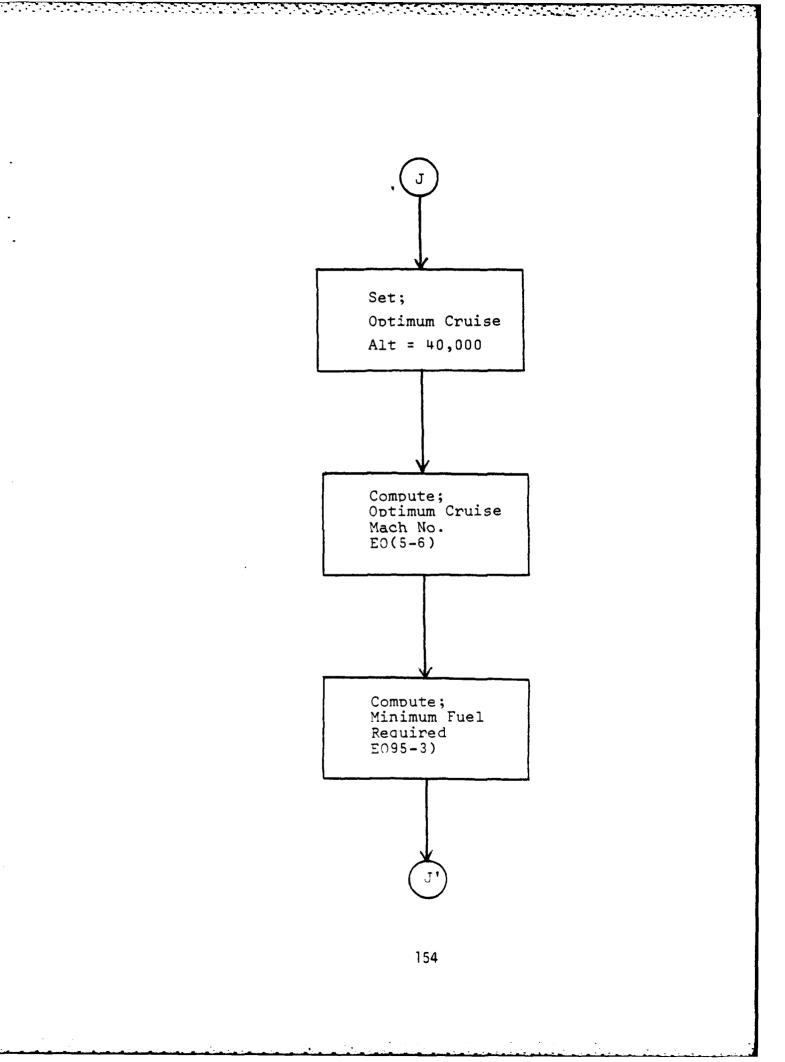


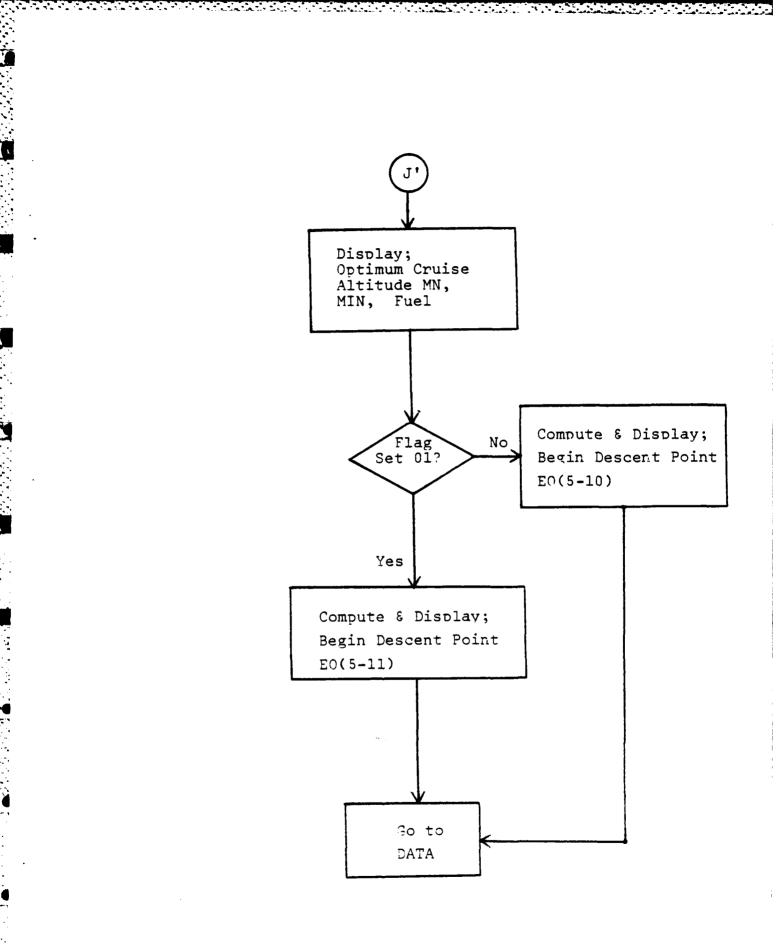












. .

F-4E AND F-5E FPAS PROGRAM LISTINGS

F-4E Optimum Cruise Program Listing

Statement	Comments
01+LBL START-	Label "Start"
92 CLRG	
93 - 0C2-	Input Drag Count
04 PROMPT	
93 STO 02	
06 "B#?"	Input Base Weight
07 PROMPT	
08 ENTERT	
09 1000 10 /	
10 7 11 STO 04	
12 "SN2"	Input Stong Woight
13 PROMPT	Input Store Weight
14 ENTERT	
15 1000	
16 /	
17 STO 95	
18 "F#?"	
19 PROMPT	
20 ENTER*	
21 1000	
22 /	
23 STO 06	
24 RCL 04	
25 RCL 05	
26 + 27 sto 07	
28 RCL 05	
29 +	
30 STO 03	
31 FIX 0	
32 "DC="	Display Drag Count
33 ARCL 02	
34 AVIEN	
75 STOP	
36 RCL 03	
37 1000	
38 * 74 - 531-4	
39 ti≩a=t na cent v	Display Gross Weight
40 AROL X 4. Avien	
-2 STOP	
43 1FAA=4 NOFAA=5"	ELA Doctoriotions?
44 PROMPT	FAA Restrictions?
45 "FAR YES? NOT"	or No?
46 PPONPT	

Statement	Comments
47 4	
48 X=¥?	
49 GTO 10	Go to 10
50 CF 02	
51 GTO A	
52+LBL 10	Label "10"
53 SF 02	Set FAA Flag
54 GTO A	1.05.07
55+L6L A 56 CF 03	Label "A"
57 "NODE?"	Select Mode
58 PROMPT	Select mode
59+LBL "PFT"	Label "PFT"
60 GTO 05	Go to 05
61+LBL 05	
62 72.771	
63 RCL 02	
64 .0142	
65 *	
66 +	
67 RCL 03	
68 -1.2681	
69 *	
70 +	
71 RCL 02	
72 Xt2	
730000831	
74 #	
75 + 76 RCL 03	
76 KUL 03	
78 .012909	
79 *	
88 +	
81 STO 21	
32 RCL 02	
83 ENTERT	
84-3	
85 718	
86000011726	
87 *	
38 ST+ 21	
89 RCL 03	
90 ENTERT	
91-3	
42 Y1X	
9300005285	

Statement	Comments
94 *	
95 ST+ 21	
96 RCL 02	
97 Xt2	
98 Xt2	
99 5 .9545 4	
166 *	
101 .00000001	
192 #	
103 ST+ 21	
104 RCL 21 105 STO 08	
105 STU 00 106 GTU 77	
107+LBL 99	Subroutine "99"
108 36000	Altitude $\leq 36,000$?
109 RCL 08	Altitude 200,000:
110 X(=Y?	
111 GTO 20	Go to 20
112 -56.5	
113 STO 09	Altitude Above 36,000?
1:4 "SDT="	Display SDT.
115 ARCL 09	
116 AVIEN	
117 STOP	
118 RTN	
119+LBL 20	Label "20"
1200019812	
121 RCL 08	
122 :000	
123 *	
124 *	
125 15	
126 +	
127 STO 09	Display Standard Day
128 "STENP <opalt>=" 129 ARCL 09</opalt>	Display Standard Day
129 HKUL 89 130 AVIEW	Temperature at Optimum Cruise Altitude
130 HVICH 131 STOP	Cruise Altitude
132 RTN	
132 RIN 1330LBI: 77	Label "77"
133VCDC 77	
135 RCL 08	Execute 99
136 STO 10	
137 670 15	Go to 25
138•180 25	Label "25"
179 230 92	Lavel 23
• 12 / 26	

Copy available to DTIC does not permit fully legible reproduction

<u>Statement</u> 140 GTO 30 141 GTO 35 142•LBL 30 143 "EAST=1 WST=2" 144 PROMPT 145 "HDG?E?W?" 146 PROMPT 147 1	<u>Comments</u> Go to 30 Go to 35 Label "30" Heading Ea Heading We
148 X=Y? 149 GTO 50	Go to 50
150 CF 01	
151 GTO 51	Go to 51
152+LBL 50	Label "50"
153 SF 01	
154 GTO 51	Go to 51
155+LBL 51	Label "51"
156 RCL 10	
157 INT 158 2	
159 ENTERT	
160 MOD	
161 X=0?	
162 GTO 18	Go to 18
163 RBN	
164 FS2 81	
165 610 12	Go to 12
166 GTO 13	Go to 13 Label 18
167+LBL 18 168 RDN	Ladel 18
169 FS? 01	
170 GTO 13	Go to 13
171 GTO 12	Go to 12
172+LBL 13	Label "13"
173-1	
174 +	
175 1000	
176 #	
177 STO 16 178 GTO 55	
179+LBL 12	Go to 55
180 1000	Label "12"
181 *	
182 STO 16	
183 GTO 55	Go to 55
184+LBL 55	Label "55"
185 *1FR=7 ¥FR=8*	

.

ي الحالية الحالية ا

Heading East Input 1 Heading West Input 2 Go to 50 Go to 51 Label "50"

• ~

Statement	Comments
186 PROMPT	
187 *IFR?VFR?*	Input IFR 7
188 PROMPT	VFR 8
189 7	
198 X=Y?	
191 GTO 60	Go to 60
192 GTO 61	Go to 61
193+LBL 60	Label "60"
194 RCL 16 195 0	
196 +	
197 STO 16	
198 GTO 62	
199+LBL 61	Label "61"
200 RCL 16	
201 500	
202 +	
203 STO 16	
204 GTO 62	Go to 62
205+LBL 62	Label "62"
206 RCL 16	
207 FIX 0	
208 "FRABRALT="	Display FAA Best Range
209 ARCL X	Altitude
010 007 0 0	-
210 AVIEN	-
211 STOP	
211 STOP 212 GTO 36	Go to 36
211 STOP 212 GTO 36 213+LBL 35	Go to 36 Label "35"
211 STOP 212 GTO 36 2130LBL 35 214 RCL 10	
211 STOP 212 GTO 36 213+LBL 35 214 RCL 10 215 1000	
211 STOP 212 GTO 36 213+LBL 35 214 RCL 10 215 1000 216 *	
211 STOP 212 GTO 36 213+LBL 35 214 RCL 10 215 1000	Label "35"
211 STOP 212 GTO 36 213+LBL 35 214 RCL 10 215 1000 216 * 217 FIX 0	
211 STOP 212 GTO 36 2130LBL 35 214 RCL 10 215 1000 216 # 217 FIX 0 218 "BRALT=" 219 ARCL X 220 AVIEN	Label "35"
211 STOP 212 GTO 36 213+LBL 35 214 RCL 10 215 1000 216 * 217 FIX 0 218 "BRALT=" 219 ARCL X 220 AVIEN 221 STOP	Label "35"
211 STOP 212 GTO 36 213+LBL 35 214 RCL 10 215 1000 216 * 217 FIX 0 218 "BRALT=" 219 ARCL X 220 AVIEW 221 STOP 222 GTO 36	Label "35" Display Best Range Altitude To to 36
211 STOP 212 GTO 36 213+LBL 35 214 RCL 10 215 1000 216 * 217 FIX 0 218 "BRALT=" 219 ARCL X 220 AVIEW 221 STOP 222 GTO 36 223+LBL 36	Label "35" Display Best Range Altitude
211 STOP 212 GTO 36 213+LBL 35 214 RCL 10 215 1000 216 * 217 FIX 0 218 -BRALT=- 219 ARCL X 220 AVIEW 221 STOP 222 GTO 36 223+LBL 36 224 .86772	Label "35" Display Best Range Altitude To to 36
211 STOP 212 GTO 36 213+LBL 35 214 RCL 10 215 1000 216 * 217 FIX 0 218 -BRALT=- 219 ARCL X 220 AVIEN 221 STOP 222 GTO 36 223+LBL 36 224 .86772 225 RCL 02	Label "35" Display Best Range Altitude To to 36
211 STOP 212 GTO 36 213+LBL 35 214 RCL 10 215 1000 216 * 217 FIX 0 218 *BRALT=* 219 ARCL X 220 AVIEN 221 STOP 222 GTO 36 223+LBL 36 224 .86772 225 RCL 02 22600095	Label "35" Display Best Range Altitude To to 36
211 STOP 212 GTO 36 213+LBL 35 214 RCL 10 215 1000 216 * 217 FIX 0 218 -BRALT=- 219 ARCL X 220 AVIEN 221 STOP 222 GTO 36 223+LBL 36 224 .86772 225 RCL 02 22600005 227 -	Label "35" Display Best Range Altitude To to 36
211 STOP 212 GTO 36 213 • LBL 35 214 RCL 10 215 1000 216 * 217 FIX 0 218 * BRALT=* 219 ARCL X 220 AVIEN 221 STOP 222 GTO 36 223 • LBL 36 224 .86772 225 RCL 02 22600005 227 * 228 +	Label "35" Display Best Range Altitude To to 36
211 STOP 212 GTO 36 213+LBL 35 214 RCL 10 215 1000 216 * 217 FIX 0 218 *BRALT=* 219 ARCL X 220 AVIEN 221 STOP 222 GTO 36 223+LBL 36 224 .86772 225 RCL 02 22600095 227 * 228 + 229 RCL 02	Label "35" Display Best Range Altitude To to 36
211 STOP 212 GTO 36 213 • LBL 35 214 RCL 10 215 1000 216 * 217 FIX 0 218 * BRALT=* 219 ARCL X 220 AVIEN 221 STOP 222 GTO 36 223 • LBL 36 224 .86772 225 RCL 02 22600005 227 * 228 +	Label "35" Display Best Range Altitude To to 36

Sta	tem	<u>ent</u>
232	*	
233	÷	
	sto	21
275	RCL	A2
276	ENTE	0L 94
237		
	Ϋ́tΧ.	
		15375
240		0010
		06081
		00001
242		51
243	ST+	21
244	RCL	12
240	STO	
240	FIX	3 41-4
247	- BKE	₩=- * 0
248	HKUL	. 12
249	BRI ARCL PROF TW3	1 1 1
200	- 1 M -	/-
251	PRO	121
	ST0	
	gt0	
2541	LSL	01
255	.346 Sto RCL	57
25t	STO	21
257	RCL	83
258	01	1423
259	*	
	\$1+	
	RCL	82
262	00	10658
263	#	
264	ST+	21
265	RCi -	63
266	xt2	
267	. 606	17361
268	Ŧ	
269	ST+	21
270	RCL	02
271	<u>λ</u> †2	
272	86	30001147
273	¥	
274	ST+	21
275	RÚL	03
275	ENTE	-R+
27-	ST+ RCL 2+2 00 * ST+ RCL ENT(3 * *	
378	≓†X	

Comments

Display Best Range Mach Number

Input Tail Wind

Go to 01 Label "01" Compute Best Range Fuel Flow

Statement 279 -1.01941 288 * 281 .000001 282 🔹 283 ST+ 21 284 RCL 02 285 ENTERT 286 3 287 YtX 238 4.026908 289 * 298 .00090001 291 * 292 ST+ 21 293 RCL 02 294 Xt2 295 X12 296 -1.48918 297 * 298 .0000000001 299 * 300 ST+ 21 301 RC_ 03 302 Xt2 303 Xt2 304 RCL 02 305 Xt2 306 3*2 307 + 368 9.065261 309 * 310-10 311 ENTERT 312 -18 313 Y#X 314 * 315 ST+ 21 316 RCL 83 317 ENTERT 318-3 319 Y1X 720 RCL 02 321 ENTERT N2 3 323 YAY т. ж

1

Comments

Compute Best Range Fuel Flow

Statement
325 -1.36419
326 *
327 19
328 ENTERT
329 -13
330 Ytx
331 #
332 ST+ 21
333 RCL 03
334 RCL 82
335 *
336 .000014286
337 #
338 ST+ 21
339 RCL 21
340 STO 14
341 670 17
342+LBL 17
343 FIX 4
344 RCL 19
345 273.16
- 3 <u>4</u> h +
347 SQRT 348 38.98
348 38.98
349 *
350 RCL 12
351 *
352 RCL 11
353.25
354 *
355 +
356 STO 13
357 XE9 21
358 GTO 16
359+LBL 21
360 RCL 13
36: RCL 11
362 + 363 STO 15
364 RTN
365+LBL 16
366 FIX 0
367 "BRTAS="
368 ARCL 13
369 PROMPT
370 *BRGS=*

Comments

Label "17" Compute Best Range True Airspeed

Label "21" Compute Best Range Ground Airspeed

Label "16"

Display Best Range True Airspeed

<u>Sta</u>	<u>tement</u>	
371	ARCL 15	
	PROMPT	
777	"SR="	
373 774		
	ARCL 14	
	PROMPT	
576	FS? 03	
377	GTO 96	
378	gto a	
379+	LBL 90 FS2 02	
380	FS2 02	
381	GTO 91	
382	GTO A	
383•	GTO 91 GTO A LBL 91	
334	44NNN	
785	PCI 10	
705	ACC 10 A/A0	
200	44000 RCL 10 X>Y? GTO 94	
30/ 700	GTO 93	
388	610 93	
3894	LBL 93	
	RCL 10	
391		
<u>792</u>	+	
393	STO 10 131.946 RCL 10	
394	131.946	
395	RCL 16	
396	-1.1806	
397	*	
398	+	
744 -	Dri 20	
400	RCL 02 16622	
491	*	
491		
492	+ RCL 10	
483	KUL 10	
494	X12	
405	06952	
495	*	
407	•	
498	STO 21	
449	RCL 10	
418	ENTERT	
4 <u>.</u>	3 YAX .0089906	
412	YAX	
4:7		
4.4	* 2020 - 1.020 *	
3.5	- STO 21 RCL 10 ENTER+ 3 Y+X .0009906 * ST- 21 FCL 32 Y+2	
- U 		
•	266 96 ∋∳3	
•	1 4	

. . .

ŝ

<u>Comments</u> Display Best Range Ground Speed Display Specific Range Go to 90 Go to A Label "90" Go to 91 Go to 91 Go to 4 Label "91" Go to 94 Go to 93 Label "93" Compute Next FAA BRALT

-	•	• *	- 1	•	٠	÷ 1
•	•••		•			

Statement	<u>Comments</u>
4180004368	
419 *	
420 ST+ 21	
421 RCL 02	
422 ENTERT	
423-3	
424 YtX	
425000019404	
426 *	
427 ST+ 21	
428 RCL 02	
429 ENTERT	
430 4	
431 YtX 432 1.084781	
433 *	
434 10	
435 ENTERT	
436 -7	
437 YtX	
438 *	
439 ST+ 21	
440 RCL 10	
441 RCL 02	
442 *	
443 .0054296	
444 * 446 ST: 01	
445 ST+ 21 446 RCL 21	
445 RCL 21 447 RCL 07	
448 -	
449 STO 18	
458 8	
451 X>Y?	
452 GTO 94	Go to 94
453 GTO 97	Go to 97
454+LBL 97	Label "97"
455 RCL 18	
456 RCL 06	
457 X>Y2	0a ta 00
458 GTO 92 454 GTO 93	Go to 92
4684LBL 94	Go to 93 Label "94"
461 BEEP	LAUCI 34
462 MEILING*	Display Ceiling Altitude
463 AVIEN	orspray certing Arcicule

Statement	Comments
464 STOP	
465 GTO N	Go to A
466+LBL 92	Label "92"
467 RCL 10	
468 FIX 0	
469 1000	
470 *	
471 BEEP	Dicplay Novt D
472 "NBRALT="	Display Next Bo Altitude
473 ARCL X	Altitude
474 AVIEN	
475 STOP 476 RCL 18	
475 KUL 18 477 1000	
478 *	
479 FIX 0	
480 "NFW="	Display NFW
481 ARCL X	bispidy min
482 AVIEN	
483 STOP	
484 GTO A	
485+LBL *IFT*	Label "IFT"
486 SF 03	
487 "FW?"	Input Fuel Weig
488 PROMPT	
489 ENTERT	
490-1000	
491 /	
492 STO 06	
493 RCL 07	
494 +	
495 STO 03	
496 FS2 02	Ca ta 90
497 GTO 80 498 GTO 05	Go to 80
498 570 85 4990181 80	Go to 85 Label "80"
500 -ALTO-	Input Altitude
501 PROMPT	Input Articude
562 1000	
562 1000	
504 STO 10	
505 370 08	
506 XEQ 99	
507 *TEBP?*	Input Temperatu
SUB PROMPT	
FAG 875 19	

. . .

Best Range

ight

ture

Statement	Commer
518 RCL 19	
511 -	
512 STO 00	
513 GTO 36	Go to
514+LBL -CLB-	Labe1
515 "FW?"	Input
516 PROMPT	
517 1000	
518 /	
519 STO 86	
520 RCL 07	
521 +	
522 STO 03	-
523 XEQ 07	Execut
524 XEQ 04	Execut
525 RCL 12 526 FIX 0	
527 "DIST="	<u>.</u>
528 ARCL X	Displa
529 AVIEW	to Cli
530 STOP	
531 RCL 14	
532 FIX 0	
533 100	
534 *	
535 "FUEL="	Displa
536 ARCL X	Climb
537 AVIEN	
538 STOP	
539 GTO A	Go to
540+LBL 04	Label
541 RCL 18	
542 STO 08 543 XEQ 06	
543 XEQ 06	Execut
544 ST0 14	
545 0	
546 RCL 17	
547 XV=Y?	
548 RTN	
549 RCL 17	
550 \$70 08	
551 XE0 06	Execute
552 37- 14	
553 RTN	
554+LBL 06	Label '
555 28.56	

Į į

•••

<u>nts</u>

Anna and a

36 "Climb" Fuel Weight

te 07 te 04

ay Distance Required imb

y Fuel Required to

A "04"

:e 06

e 06

"06"

Statement 556 RCL 03 557 .012 558 * 559 + 560 RCL 08 561 -1.8627 562 * 563 + 564 RCL 02 565 -.21129 566 * 567 + 568 RCL 83 569 Xt2 570 -.08972 571 * 572 + 573 RCL 08 574 X+2 575 .04926 576 * 577 + 578 RCL 02 579 Xt2 588 .0003097 581 * 582 + 583 RCL 88 584 Xt2 535 RCL 08 586 * 587 -.0012384 588 * 589 + 598 ST0 21 591 ROL 02 592 ENTERT 533-3 594 595 .000002:18 596 # 547 51+ 2. 548 RC1 03 59- 250 Right AE

Comments

Statement	
682 *	
603 ST+ 21	
604 RCL 08	
685 Xt2	
686 Xt2	
697 .000013231	
608 *	
609 ST+ 21	
610 RCL 02	
611 Xt2	
612 Xt2	
613 -1.62933	
613 -1.62933 614 *	
615 .00000001	
617 ST+ 21	
618 RUL 03	
617 ST+ 21 618 RCL 03 619 RCL 08	
620 =	
621 .029079	
622 *	
623 ST+ 21	
624 RCL 08	
625 RCL 02	
626 🔹	
627 .0051266	
628 *	
629 ST+ 21	
630 RCL 03	
631 RCL 02	
632 *	
633 .00295 17 634 *	
634 *	
635 ST+ 21	
636 RCL 21	
637 STO 13	
538 - . 183	
639 RCL 20	
640 .12523	
641 *	
642 +	
643 RCL 13	
644 1.8498	
645 #	
646 +	
647 RCL 13	

Comments

.....

•

مساهدة ف

1

Statement	<u>Comments</u>
648 X12	
649 802144	
650 * 651 +	
652 RTN	
653+LBL 87	Label "07"
654 "INITALT?"	Input Initial Altitude
655 PROMPT	
656 1 000 657 /	
658 STO 88	
659 STO 17	
660 "FIN ALT?"	Input Desired Final
661 PROMPT	Altitude
662 1000	
663 / 664 STO 09	
665 STO 18	
666 STO 08	
667 XEQ 08	Execute 08
668 STO 12	
669 8	
670 RCL 17 671 X(=Y?	
672 RTN	
673 RCL 17	
674 STO 08	
675 XEQ 08	
676 ST- 12 677 RTN	
678+LBL 88	Label "08"
679 57.5	Subroutine 08
688 RCL 83	
681 1.537	
682 * 683 +	
634 RCL 88	
685 -6.47	
686 *	
687 +	
688 RCL 02	
6894076 690 *	
591 t	
692 RCL 03	
693 Xt2	

- 1 -

Statement 694 -. 84814 695 # 696 + 697 RCL 98 698 Xt2 699 .1712 700 * 791 + 702 RCL 02 703 Xt2 794 .000112 795 * 796 + 707 ST0 21 708 RCL 08 709 ENTERT 719 3 711 11% 712 -.0013675 713 * 714 ST+ 21 715 RCL 92 716 ENTER† 717 3 718 YtX 719 -.00000913 728 * 721 ST+ 21 702 RCL 03 723 X+2 724 242 725 .000003133 725 * 727 87+ 21 728 RCL #2 729 kt. 138 kt2 732 * 732 * 737 - 14 1. 774 900 47 775 - 112 - 24 8 F --144

Comments

Statement	Comments
740 RCL 08	
740 RCL 00	
742 *	
743 .011657	
744 *	
745 ST+ 21	
746 RCL 03	
747 RCL 82	
748 *	
749 .006917	
750 *	
751 ST+ 21	
752 RCL 03	
753 Xt2	
754 RCL 08	
755 Xt2	
756 #	
757 .000083973	
758 *	
759 ST+ 21	
760 RCL 08	
761 Xt2	
762 RCL 02	
763 Xt2	
764 *	
765 .0000010795	
766 *	
767 ST+ 21	
768 RCL 21	
769 DEL TEMP?-	Input Temp
770 PROMPT	From Stand
771 STO 20	Temperatur
772 4.32	•
773 RCL 20	
774 .6257	
775 *	
776 +	
777 RCL 21	
778 .712	
779 *	
780 +	
731 RCL 21	
782 X+2	
783 .00658	
784 *	
785 +	
786 RCL 21	
190 BUE 21	

Input Temperature Deviation From Standard Day Temperature

- -

172

.

<u>Sta</u>	tement
787	Xt2
788	RCL 21
789	*
790	0000411
791	*
792	+
793	RTN
794	END

Comments

End

F-4E Maximum Endurance and Descent Program Listing

Statement	Comments
Ø1+LBL *DATA*	Label "Data Mode"
02 *DC?*	Input Drag Count
03 PROMPT	
84 STO 82	• · • · · · · · · · · ·
05 "BH?" 06 prompt	Input Base Weight (1bs)
97 1999	
98 /	
09 STO 04	T
10 "STNT?" 11 pronpt	Input Store Weight (1bs)
12 1999	
13 /	
14 STO 85	
15 *FW?*	Input Fuel Weight (lbs)
16 PROMPT 17 1000	
18 /	
19 STO 06	
20 RCL 05	
21 RCL 94 22 +	
23 STO 07	
24 RCL 06	
25 +	
26 STO 93 27 FIX 9	
28 °DC=-	Dicplay Drag Count
29 ARCL 02	Display Drag Count
30 AVIEN	
31 STOP	
32 RCL 03 33 1000	
34 *	
35 "GW="	Display Computed Gross
36 ARCL X	Weight
37 AVIEN 38 stop	
39 "NODE?"	What Mode do You Want to
40 PROMPT	Select?
41+LBL "END"	Label "Max Endurance"
42 RCL 03	Input Pank Accil
43 "BANK&?" 44 PROMPT	Input Bank Angle
45 COS	
46	

\$	Statement
47	STO 0 8
	61.72
49	RCL 02
	.87729
51	
52	
	STO 11
	RCL 08
	-,725
56	
	St+ 11
	RCL 02
	Xt2
	0942425
61	*
62	ST+ 11
63	RCL 88
64	ST+ 11 RCL 08 X†2 00078
66	100010
66	*
67	ST+ 11
68	RCL 02
	ENTERT
70	3
	YtX
72	.000021858
73	
	ST+ 11
	RCL 08
	ENTERT
77	
78	YtX
79	.00003
80	*
-81	SI+ 11
	RCL 82
83	ENTERT
84	
	YTX
	RCL 98
	ENTERT
88	-
	YtX
90	
91	
92	*

Comments

Compute Maximum Endurance Altitude

Statement Comments 93 10 Continue to Compute Max Endurance Altitude 94 ENTERT Endurance Altitude 95 -12 Endurance Altitude 96 YfX 97 * 96 ST+ 11 99 RCL 02 100 Xf2 101 RCL 08 102 Xf2 103 * 103 * 106 10 107 ENTERT 108 -8 108 YfX 11 113 STO 09 114 GTO "TMM" 116 .1055 Mach Number" Drag Count 117 STO 11 (80-140) 118 .01407 (80-140) 119 RCL 08 Compute Maximum Enduranc 121 ST+ 11 122 RCL 09 123007708 124 * 125 ST+ 11 122 RCL 02 128 * 129 ST+ 11 130 RCL 08 131 X72 132000178 133 * 134 ST+ 11 13 135 * 104	
94 ENTERt Continue to Compute Max 95 -12 Endurance Altitude 96 YfX 97 * 96 YfX 97 * 97 * 98 ST+ 11 99 RCL 02 100 Xf2 108 Xf2 101 RCL 08 109 Xf2 103 * 104 -1.14143 105 * 106 10 107 ENTERt 108 -8 109 YfX 109 YfX 108 * 110 ST0 09 114 GT0 "TNN" 114 GT0 "TNN" Go to 'True Mach Number' 115+LBL "WETM1" Label "Maximum Enduranc 116 .1055 Mach Number'' Drag Count 117 STO 11 (80-140) 118 .01407 (80-140) 119 RCL 08 Compute Maximum Enduran 120 ST+ 11 122 RCL 09 123007708 124 * 125 ST+ 11 126001032 127 RCL 02 128 * 129 ST+ 11 136 RCL 08 131 Xf2	
PF Entern Endurance Altitude 95 -12 Endurance Altitude 96 YfX 97 * 98 ST+ 11 99 RCL 02 100 Xf2 11 101 RCL 08 102 Xf2 103 * 104 -1.14143 105 * 106 10 106 18 107 ENTER1 108 -8 109 YfX 106 19 11 Sf+ 11 113 ST0 09 114 GTO 'TNM' 114 GTO 'TNM' Go to 'True Mach Number' 115 LBL 'WETM1' Label 'Maximum Endurance 116 .1055 Mach Number'' Drag Count 117 STO 11 (80-140) 118 .01407 119 RCL 08 120 * Compute Maximum Enduran 121 ST+ 11 12 122 RCL 09 123007708 124 * 12 125 ST+ 11 12 126 * 11 127 RCL 02 128 * 129 ST+ 11 12 130 RCL 08 131 X72 133 * 134 ST+ 11 135 RCL 09 131 X72	imum
35 -12 96 YfX 97 * 98 ST+ 11 99 RCL 02 100 Xt2 101 RCL 08 102 Xt2 103 * 104 -1.14143 105 * 106 10 107 ENTERt 108 -8 109 YfX 108 -8 109 YfX 110 * 111 ST+ 11 112 RCL 11 113 STO 09 114 GTO "THN" 115+LBL "METM1" Label "Maximum Endurance 116 .1055 Mach Number" Drag Count 117 STO 11 118 .01407 119 RCL 08 Compute Maximum Enduran 120 * 121 ST+ 11 122 RCL 09 123000708 124 * 129 ST+ 11 126000132 127 RCL 02 128 * 129 ST+ 11 130 RCL 08 131 Xt2 132000178 133 * 134 ST+ 11 135 RCL 09 <td>Пнан</td>	Пнан
97 * 98 ST+ 11 99 RCL 02 100 X12 101 RCL 08 102 X12 103 * 104 -1.14143 105 * 106 10 107 ENTER1 108 -8 109 Y1X 110 * 111 ST+ 11 112 RCL 11 113 STO 09 114 GTO "TNN" Go to "True Mach Number 115 LBL "METM1" Label "Maximum Endurance 116 .1055 Mach Number" Drag Count 117 STO 11 (80-140) 118 .01407 119 RCL 08 Compute Maximum Endurant 120 * True Mach Number 121 ST+ 11 122 RCL 09 12300708 124 * 125 ST+ 11 126001032 127 RCL 02 128 * 129 ST+ 11 130 RCL 08 131 X+2 132000178 133 * 134 ST+ 11 135 RCL 09	
98 ST+ 11 99 RCL 02 100 X12 101 RCL 08 102 X12 103 * 104 -1.14143 105 * 106 10 107 ENTER1 108 -8 109 YtX 110 * 111 ST+ 11 112 RCL 11 113 STO 09 114 GTO "TMN" Go to "True Mach Number 115 LBL "METM1" Label "Maximum Endurance 116 .1055 Mach Number" Drag Count 117 STO 11 (80-140) 118 .01407 119 RCL 08 Compute Maximum Endurant 120 * True Mach Number 121 ST+ 11 122 RCL 09 12300708 124 * 125 ST+ 11 126001032 127 RCL 02 128 * 129 ST+ 11 120 RCL 08 131 X+2 132000178 133 * 134 ST+ 11 135 RCL 09	
99 RCL 02 100 Xt2 101 RCL 08 102 Xt2 103 * 104 -1.14143 105 * 106 10 107 ENTERt 108 -8 109 YtX 110 * 111 ST+ 11 112 RCL 11 113 STO 09 114 GTO "TMH" Go to 'True Mach Number 115 LBL "METM1" Label "Maximum Enduranc 116 .1055 Mach Number" Drag Count 117 STO 11 (80-140) 118 .01407 119 RCL 08 Compute Maximum Enduran 120 * True Mach Number 121 ST+ 11 122 RCL 09 123007708 124 * 125 ST+ 11 126001032 127 RCL 02 128 * 129 ST+ 11 130 RCL 08 131 Xt2 132000178 133 * 134 ST+ 11 135 RCL 09	
100 Xt2 101 RCL 08 102 Xt2 103 * 104 -1.14143 105 * 106 10 107 ENTERt 108 -8 109 Ytx 110 * 111 ST+ 11 112 RCL 11 113 STO 09 114 GTO "TNN" 115 LBL "NETM1" 115 STO 09 114 GTO "TNN" 115 LBL "NETM1" 115 STO 09 114 GTO "TNN" Go to 'True Mach Number' 115 STO 09 114 GTO "TNN" 115 STO 09 114 GTO "TNN" 115 STO 09 114 GTO "TNN" 115 STO 11 117 STO 11 118 .01407 119 RCL 08 121 ST+ 11 122 RCL 09 123000708 124 * 125 ST+ 11 126001032 127 RCL 02 128 * 129 ST+ 11 130 RCL 08 131 Xt2 132000178 133 *	
191 RCL 08 102 Xt2 103 * 104 -1.14143 105 * 106 10 107 108 -8 109 YtX 109 * 111 ST+ 11 112 RCL 11 113 ST0 09 114 GTO "TNH" 115 LBL "NETM1" 116 .1055 Mach Number" Drag Count 116 .1055 Mach Number" Drag Count 117 STO 11 118 .01407 119 RCL 08 Compute Maximum Endurant 120 * 121 ST+ 11 122 RCL 09 123007708 124 * 125 ST+ 11 126001032 127 RCL 02 128 * 129 ST+ 11 130 RCL 08 131 Xt2 132000178 133 * 134 ST+ 11 135 RCL 09	
102 Xt2 103 * 104 -1.14143 105 * 106 10 107 ENTERt 108 -8 109 Ytx 110 * 111 ST+ 11 112 RCL 11 113 STO 09 114 GTO "TMN" 115 VLBL "NETM1" 115 VLBL "NETM1" 116 .1055 Mach Number" Drag Count 117 STO 11 118 .01407 119 RCL 08 Compute Maximum Endurant 120 * 121 ST+ 11 122 RCL 09 123007708 124 * 125 ST+ 11 126001032 127 RCL 02 128 * 129 ST+ 11 130 RCL 08 131 Xt2 132000178 133 * 134 ST+ 11 135 RCL 09	
103 * 104 -1.14143 105 * 106 10 107 ENTERt 108 -8 109 YfX 110 * 111 ST+ 11 112 RCL 11 113 STO 09 114 GTO *TNN* 115 *LBL *NETM1* 115 *LBL *NETM1* 116 .1055 Mach Number* Drag Count 117 STO 11 118 .01407 119 RCL 08 120 * 121 ST+ 11 122 RCL 09 123007708 124 * 125 ST+ 11 126001032 127 RCL 02 128 * 129 ST+ 11 130 RCL 08 131 Xf2 132000178 133 * 134 ST+ 11 135 RCL 09 137 RCL 09 137 RCL 02 138 - 11 135 RCL 03 131 Xf2 135 RCL 03 131 Xf2 131 Xf2 135 RCL 03 131 Xf2 135 RCL 035 R	
104 -1.14143 105 * 106 10 107 ENTER† 108 -8 109 YfX 110 * 111 ST+ 11 112 RCL 11 113 STO 09 114 GTO *TMN* 15+LBL *METM1* 115+LBL *METM1* 116 .1055 Mach Number* 117 STO 11 118 .01407 119 RCL 08 Compute Maximum Endurant 120 * 121 ST+ 11 122 RCL 09 123007708 124 * 125 ST+ 11 126001032 127 RCL 02 128 * 129 ST+ 11 130 RCL 08 131 Xt2 132000178 133 * 134 ST+ 11 135 RCL 09	
105 * 106 10 107 ENTERt 108 -8 109 YfX 110 * 111 ST+ 11 112 RCL 11 113 STO 09 114 GTO *TMN* 15+LBL -METM1* 115+LBL *METM1* 116 .1055 Mach Number* 117 STO 11 (80-140) 118 .01407 119 RCL 08 Compute Maximum Endurant 120 * 121 ST+ 11 122 RCL 09 123007708 124 * 125 ST+ 11 126001032 127 RCL 02 128 * 129 ST+ 11 130 RCL 08 131 X†2 132000178 133 * 134 ST+ 11 135 RCL 09	
107 ENTER† 108 -8 109 YfX 110 * 111 ST+ 11 112 RCL 11 113 STO 09 114 GTO *TNN* 105 09 114 GTO *TNN* 105 09 114 GTO *TNN* 115 LBL *WETM1* 116 .1055 Mach Number* 117 STO 11 118 .01407 119 RCL 08 Compute Maximum Endurant 120 * 121 ST+ 11 122 RCL 09 123007708 124 * 125 ST+ 11 126001032 127 RCL 02 128 * 129 ST+ 11 130 RCL 08 131 Xt2 132000178 133 * 134 ST+ 11 135 RCL 09	
108 -8 109 YfX 110 * 111 ST+ 11 112 RCL 11 113 STO 09 114 GTO *TNN* 115*LBL *METH1* 115*LBL *METH1* 116 .1055 Mach Number* 117 STO 11 118 .01407 119 RCL 08 Compute Maximum Endurant 120 * 121 ST+ 11 122 RCL 09 123007708 124 * 125 ST+ 11 126001032 127 RCL 02 128 * 129 ST+ 11 130 RCL 08 131 Xt2 132000178 133 * 134 ST+ 11 135 RCL 09	
109 YfX 110 * 111 ST+ 11 112 RCL 11 113 STO 09 114 GTO *TNN* 115*LBL *WETM1* 115*LBL *WETM1* 116 .1055 117 STO 11 118 .01407 119 RCL 08 Compute Maximum Endurant (80-140) 118 .01407 119 RCL 08 Compute Maximum Endurant (80-140) 118 .01407 119 RCL 08 Compute Maximum Endurant (80-140) 121 ST+ 11 122 RCL 09 1230007708 124 * 125 ST+ 11 126001032 127 RCL 02 128 * 129 ST+ 11 130 RCL 08 131 X*2 132000178 133 * 134 ST+ 11 135 RCL 39	
110 * 111 ST+ 11 112 RCL 11 113 STO 09 114 GTO "TNN" Go to 'True Mach Number 115+LBL "WETM1" Label "Maximum Enduranc 116 .1055 Mach Number" Drag Count 117 STO 11 (80-140) 118 .01407 119 RCL 08 Compute Maximum Enduran 120 * True Mach Number 121 ST+ 11 122 RCL 09 123007708 124 * 125 ST+ 11 126001032 127 RCL 02 128 * 129 ST+ 11 130 RCL 08 131 X+2 132000178 133 * 134 ST+ 11 135 RCL 09	
111 ST+ 11 112 RCL 11 113 ST0 09 114 GT0 "TNN" 115+LBL "WETH1" 115+LBL "WETH1" 116 .1055 117 ST0 11 118 .01407 119 RCL 08 120 * 121 ST+ 11 122 RCL 09 123007708 124 * 125 SI+ 11 126001032 127 RCL 02 128 * 129 SI+ 11 130 RCL 08 131 X†2 132000178 133 * 134 ST+ 11 135 RCL 09	
112 RCL 11 113 STO 09 114 GTO "TNN" 115+LBL "METM1" 116 .1055 117 STO 11 118 .01407 119 RCL 08 120 * 121 ST+ 11 122 RCL 09 123007708 124 * 125 ST+ 11 126001032 127 RCL 02 128 * 129 ST+ 11 130 RCL 08 131 X†2 132000178 133 * 134 ST+ 11 135 RCL 09	
113 STO 09 114 GTO "TNN" 115+LBL "METM1" 115+LBL "METM1" 116 .1055 117 STO 11 118 .01407 119 RCL 08 120 * 121 ST+ 11 122 RCL 09 123007708 124 * 125 ST+ 11 126001032 127 RCL 02 128 * 129 ST+ 11 130 RCL 08 131 X†2 132000178 133 * 134 ST+ 11 135 RCL 09	
114 GTO *TNN* Go to 'True Mach Number 115+LBL *METM1* Label "Maximum Endurance 116 .1055 Mach Number" Drag Count 117 STO 11 (80-140) 118 .01407 The mathematic structure 119 RCL 08 Compute Maximum Endurant 120 * True Mach Number 121 ST+ 11 Compute Maximum Endurant 122 RCL 09 True Mach Number 123007708 True Mach Number 124 * True Mach Number 125 ST+ 11 True Mach Number 126001032 True Mach Number 127 RCL 02 128 * 129 ST+ 11 130 RCL 08 131 X†2 132000178 133 * 134 ST+ 11 135 RCL 09 ST+ 11	
115+LBL -WETH1* Label "Maximum Endurance 116.1055 Mach Number" Drag Count 117 STO 11 (80-140) 118.01407 Compute Maximum Enduran 120 * Compute Maximum Enduran 120 * True Mach Number 121 ST+ 11 Compute Maximum Enduran 122 RCL 09 True Mach Number 123007708 True Mach Number 124 * True Mach Number 125 ST+ 11 Compute Naximum Enduran 126001032 True Mach Number 127 RCL 02 East 129 ST+ 11 Tabel Number 130 RCL 08 Tabel Number 131 X+2 Tabel Number 133 * Tabel Number 135 RCL 09 St+ 11	1
116 .1055 Mach Number" Drag Count 117 STO 11 (80-140) 118 .01407 (80-140) 119 RCL 08 Compute Maximum Enduran 120 True Mach Number True Mach Number 121 ST+ 11 True Mach Number 122 RCL 09 True Mach Number 123 007708 True Mach Number 124 * 125 125 ST+ 11 126 126 001032 127 127 RCL 02 128 129 ST+ 11 130 130 RCL 08 131 131 X+2 132 133 * 134 134 ST+ 11 135 135 RCL 09 99	
117 STO 11 (80-140) 118 .01407 119 RCL 08 120 * Compute Maximum Enduran 121 ST+ 11 True Mach Number 122 RCL 09 123007708 124 * 125 ST+ 11 126001032 127 RCL 02 127 RCL 02 128 * 129 ST+ 11 130 RCL 08 131 X+2 132000178 133 * 134 ST+ 11 135 RCL 09 131 ST+ 11	
118.01407 119 RCL 08 Compute Maximum Enduran 120 * True Mach Number 121 ST+ 11 True Mach Number 122 RCL 09 123007708 123007708 124 * 125 ST+ 11 126001032 127 RCL 02 128 * 129 ST+ 11 130 RCL 08 131 X†2 132000178 133 * 134 ST+ 11 135 RCL 09 09	
120 * True Mach Number 121 ST+ 11 122 RCL 09 123007708 124 * 125 ST+ 11 126001032 127 RCL 02 128 * 129 ST+ 11 130 RCL 08 131 X+2 132000178 133 * 134 ST+ 11 135 RCL 09 131 X+2	
121 ST+ 11 122 RCL 09 123007708 124 * 125 ST+ 11 126001032 127 RCL 02 128 * 129 ST+ 11 130 RCL 08 131 X+2 132000178 133 * 134 ST+ 11 135 RCL 09	ce
122 RCL 09 123007708 124 * 125 ST+ 11 126001032 127 RCL 02 128 * 129 ST+ 11 130 RCL 08 131 X+2 132000178 133 * 134 ST+ 11 135 RCL 09	
123007708 124 * 125 ST+ 11 126001032 127 RCL 02 128 * 129 ST+ 11 130 RCL 08 131 X+2 132000178 133 * 134 ST+ 11 135 RCL 09	
124 * 125 ST+ 11 126001032 127 RCL 02 128 * 129 ST+ 11 130 RCL 08 131 X†2 132900178 133 * 134 ST+ 11 135 RCL 09	
125 ST+ 11 126001032 127 RCL 02 128 * 129 ST+ 11 130 RCL 08 131 Xt2 132000178 133 * 134 ST+ 11 135 RCL 09	
126001032 127 RCL 02 128 * 129 ST+ 11 130 RCL 08 131 X†2 132000178 133 * 134 ST+ 11 135 RCL 09	
128 * 129 ST+ 11 130 RCL 08 131 X+2 132900178 133 * 134 ST+ 11 135 RCL 09	
129 ST+ 11 130 RCL 08 131 X+2 132000178 133 * 134 ST+ 11 135 RCL 09	
130 RCL 08 131 X+2 132000178 133 * 134 ST+ 11 135 RCL 09	
131 Xt2 132999178 133 * 134 ST+ 11 135 RCL 89	
132000178 133 * 134 ST+ 11 135 RCL 89	
133 * 134 ST+ 11 135 RCL 89	
134 ST+ 11 135 RCL 89	
135 RCL 89	
136 Xt2	
137 .00088779	
138 •	

.

<u>Sta</u>	tement
139	ST+ 11
148	RCL 82
141	RCL 82 X†2
142	. 8888883
147	. 9999883 *
144	ST+ 11
145	RCL 89
145	ENTERT
147	7
140	YtX
	000015405
159	
	+ ST+ 11
	RCL 08
	X12
	X†2
	1.8173
156	
157	
	ENTERT
159	
160	YtX
161	*
162	ST+ 11
163	ST+ 11 RCL 02 X†2
164	Xt2
	Xt2
166	-4.55763
167	
168	
	ENTERT
	-11
	YtX
172	*
	ST+ 11
174	RCL 08
	RCL 09
176	
177	.0000641
178	*
179	ST+ 11
180	RCL 09
181	RCL 02
182	*
183	00001756
184	*

Comments

Compute Maximum Endurance Cruise Altitude

<u>Statement</u> 185 ST+ 11 186 RCL 08 187 RCL 02 188 * 18900001374	<u>Comments</u> Continue Maximum E
198 * 191 ST+ 11 192 RCL 11 193 STO 10 194 GTO 26 195+LBL 26 196 XEQ *MEFF*	Label "26 Compute M
197 BEEP 198 RCL 09 199 1000 200 * 201 FIX 0 202 "ENDALT="	Fuel Flow
203 ARCL X 204 AVIEN 205 STOP 206 FIX 0 207 RCL 01 208 1000 209 #	Display M Altitude
210 "FF=" 211 ARCL X 212 AVIEN 213 STOP 214 FIX 3	Display M Fuel Flow
215 "ENDTHN=" 216 ARCL 10 217 AVIEN 218 STOP 219 "OK?" 220 PROMPT 221 "NODE?" 222 PROMPT	Display M True Mach
223+LBL *NEFF* 224 80 225 RCL 02	Label "Ma Fuel Flow
226 X/Y? 227 GTO "NEFF2" 2282901 229 RCL 08 230 .15044	Go to "Ma Fuel Flow DC (80-14

Continue to Compute Maximum Endurance Altitude

Label "26" Compute Maximum Endurance Fuel Flow

Display Maximum Endurance Altitude

Display Maximum Endurance Fuel Flow

Display Maximum Endurance True Mach Number

Label "Maximum Endurance Fuel Flow"

Go to "Maximum Endurance Fuel Flow (low altitude DC (80-140)

178

Sta	ter	nent
231	*	
232		
	STO	11
	RCL	
235	0	22618
236	*	
	ST+	
	RCL	
		3143
240		
	ST+	
242	RCL	68
243	Xt2	
244		901789
245 246	¥ 67.	
240	ST+	11
247 240	RCL Xt2	87
249	- 94	000117
250	U	00111
	st+	11
	RCL	
	Xt2	
254		100790 3
255		
	ST+	11
	RCL	
	RCL	
259	•	
	RCL	09
	*	
	STO	88
	Xt2	
264	1.27	7822
265	*	
	10	-
	ENTE	:KT
268	-10	
269	Ytx	
2 79 271	* ST+	11
111 272	RCL	
273		00 10007566
74		10001 000
	+ ST+	11
	RCL	

•

Comments

Compute Maximum Endurance Fuel Flow (DC 0-80)

Statement	Co
277 ENTERT	
278 3	Co
279 YtX	Ma
280 -4.94287	Fu
281 *	
282 10	
283 ENTERT	
284 -16	
285 YtX	
286 *	
287 ST+ 11	
288 RCL 11	
289 STO 01	
290 RTN	1
291+LBL *NEFF2*	Lal
292 RCL 89	
293 17	
294 X(Y? 295 GTO "NEFF3"	Go
2968749	au
297 RCL 08	
298 .161209	
299 *	
300 +	
301 STO 11	
302 RCL 09	
303 037546	
304 *	
305 ST+ 11	
306 RCL 02	
307 .013263	
308 *	
309 ST+ 11	
310 RCL 08	
311 RCL 09	
312 *	
313 RCL 02	
314 * 315 STO 89	
315 510 60 316 .00000267	
316 .00000267	
317 + 318 ST+ 11	
319 RCL 00	
320 Xt2	
321 -1.58386	
322 *	

۰.

Comments

Continue to Compute Maximum Endurance Fuel Flow (DC 0-80)

.abel "MEFF2"

o to "MEFF3"

Statement		
323	10	
	ENTERT	
	-10	
326	YtX	
327	*	
328	ST+ 11	
329	RCL 99	
330	ENTERT	
331	RCL 00 ENTER† 3	
332	YtX 2.206628	
333	2.206628	
334	*	
335	10	
336	ENTERT	
337	-15	
338	YtX	
339		
	ST+ 11	
	RCL 00	
	Xt2	
	X12	
	-8.18252	
345		
346	15	
	ENTERT	
390	-21	
- ("N#	YtX	
751	ST+ 11	
752	RCL 11	
757	STO 01	
754	RTN	
	LBL THNT	
356	RCL 82	
357	80	
358	X(=Y?	
359	GTO "WETH1"	
360		
361		
362	RCL 08	
363	.04362	
364	*	
365	\$T+ 11	
	RCL 09	
367	.016611	
368	*	

Compute Maximum Endurance Fuel Flow (Low Altitude DC 80-140)

Label "True Mach Number for Maximum Endurance"

Go to "METM1" Compute Maximum Endurance True Mach Number

Statement 369 ST+ 11 379 RCL 02 371 .0013355 372 * 373 ST+ 11 374 RCL 08 375 Xt2 376 -. 9005554 377 * 378 ST+ 11 379 RCL 89 388 Xt2 381 -.0002691 382 * 383 ST+ 11 384 RCL 02 385 Xt2 386 -.000018519 387 ST+ 11 388 RCL 89 389 RCL 08 398 * 391 RCL 02 392 * 393 STO 00 394 Xt2 395 6.365632 396 * 397 10 398 ENTERT 399 -12 488 YtX 401 * 402 ST+ 11 403 RCL 00 494 ENTERT 405 3 406 Y1X 407 -3.98411 408 * 409 10 418 ENTERT 411 -17 412 YtX 413 * 414 STF 11

Comments

Continue to Compute Maximum Endurance True Mach Number

Sta	tement
415	RCL 09
416	ENTERT
417	3
418	YtX
419	.000016956
420	.000016956 *
421	ST+ 11 RCL 08 X†2 X†2
422	RCL 08
423	Xt2
424	Xt2
425	3.738059
426	
427	10
	ENTERT
429	
	YTX
431	
432	ST+ 11
	RCL 09
	Xt2
435	Xt2
436	-2.72362
437	
438	
437	ENTER† -7
448 441	YtX
442	¥
447	- STA 11
444	ST+ 11 RCL 08
445	RCL 09
446	
447	00011123
448	*
	ST+ 11
	RCL 89
	RCL 02
452	
453	00003831
454	*
	ST+ 11
	RCL 08
	RCL 82
458	
459	000015098
460	Ŧ

Comments

Continue to Compute Maximum Endurance True Mach Number

Statement 461 ST+ 11 462 RCL 11 463 STO 10 464 GTO 26 465+LBL *#EFF2* 466 17 467 RCL 09 468 X>Y? 469 GTO "MEFF3" 470 -. 8749 471 RCL 88 472 .161209 473 * 474 + 475 ST0 11 476 RCL 09 477 -. 837546 478 * 479 ST+ 11 480 RCL 02 481 .013263 482 * 483 ST+ 11 484 RCL 08 485 RCL 89 486 * 487 RCL 92 488 * 489 STO 00 490 .00009267 491 * 492 ST+ 11 493 RCL 00 494 Xt2 495 -1.58386 496 * 497 10 498 ENTERT 499 -10 500 Y1X 501 * 502 ST+ 11 503 RCL 00 504 ENTERT 505 3 506 Y+X

Comments

Label "MEFF2"

Go to "MEFF3"

Compute Maximum Endurance Fuel Flow (Low Altitude DC 80-140)

Statement 507 2.206628 588 * 589 10 510 ENTERT 511 -15 512 YtX 513 * 514 ST+ 11 515 RCL 00 516 Xt2 517 Xt2 518 -8.18252 519 * 520 10 521 ENTERT 522 -21 523 YtX 524 * 525 ST+ 11 526 RCL 11 527 STO 01 528 GTO 26 529+LBL *HEFF3* 530 3.5516 531 RCL 98 532 .86342 533 * 534 + 535 STO 11 536 RCL 89 537 -. 21834 538 * 539 ST+ 11 540 RCL 02 541 .013415 542 * 543 ST+ 11 544 RCL 08 545 Xt2 546 .0010054 547 * 548 ST+ 11 549 RCL 09 558 Xt2 551 .0031995 552 *

٠.

Comments

Continue to Compute Maximum Endurance Fuel Flow (Low Altitude 80-140)

Label "MEFF3"

Compute Maximum Endurance Fuel Flow (High Altitude DC 80-140)

	atement
553	ST+ 11
554	RCL 02
555	Xt2
	80086319
557	
	ST+ 11
	RCL 08
	RCL 89
561	RCL 02
562	*
563	
565	.999913187 *
522	st+ 11
567	RCL 11
JQ(520	STO 01
300 5/0	RTN
37 8 4	XEQ 01
	XEQ 03
	XEQ 05
	BEEP
	FIX 0
	·IAS=-
	ARCL 06
	AVIEN
	STOP
580	•DIST=•
581	ARCL 97
582	AVIEN
583	STOP
584	RCL 08
585	160
586	*
	DESFUEL=
	ARCL X
	AVIEN
590	STOP
591	*0K?*
592	PROMPT
593	GTO "DATA"
	LBL 01
595	"INALT?"
	PROMPT
597	1000
598	1

Continue to Compute Maximum Endurance Fuel Flow (High Altitude DC 80-140)

Label "Descent"

Display Distance Required to Descent

Display Fuel Required to Descend

Go to Data Label "Ol" Input Initial Altitude

St	ate	ment
599	STO	84
		HALT?"
	PRO	
	100	
603		-
	STO	85
	RCL	
686	XEQ	92
607	STO	8 6
688	RTH	
689	•LBL	02
610	300	
611	RTN	
612	HLBL RCL	83
613	XEQ	64
215	STO	84 97
616	31U Å	Or
	RCL	85
618	X=Y	?
619		
629		
621		
622		
623		
624		
625		
626	KUL	92
627 ∠ 20	412	
628 429	+ 10	
629 639	CNTC	.D+
630 631	-5	-~ 1
632	Y†X	
633	*	
634	STO	
	-1.9	
	RCL	9 2
	*	
	.01 *	
	# 5T+	11
	2.53	
	\$T+	11
	RCL	11
	RCL	89

Input Desired Descent Altitude

Label "02" Descent Airspeed 300 KIAS Label "03"

Label "04"

Statement
645 *
646 STO 11
647 RCL 11
648 RTN
649+LBL 85
650 RCL 84
651 XEQ 96
652 STO 88
653 0
654 RCL 05
655 X(=Y?
656 RTN
657 XEQ 06 658 ST- 08
659 RTN
660+LBL 06
661 STO 09
662 1.5092
663 RCL 89
663 RCL 09 664 .2063
625 #
666 +
666 + 667 STO 11 668 RCL 02
668 RCL 02
669 0 59534
670 *
671 ST+ 11 672 RCL 89
673 Xt2
674099681
675 *
676 ST+ 11
677 RCL 82
678 Xt2
679 . 990 57143
680 +
681 ST+ 11
682 RCL 09 683 ENTER†
683 ENTER† 684 3
685 Y+X
6860000178
687 *
688 ST+ 11
689 RCL 82
690 ENTERT

۰.

.

Label "05"

Label "06"

Statement 691 3 692 Ytx 693 -1.76596 694 * 695 .888881 696 * 697 ST+ 11 698 RCL 02 699 Xt2 700 RCL 89 701 Xt2 702 * 783 -2.25922 784 * 705 10 796 ENTERT 797 -7 798 YtX 709 * 710 ST+ 11 711 RCL 09 712 ENTERT 713 3 714 YtX 715 RCL 02 716 ENTERT 717 3 718 YtX 719 * 720 2.612572 721 * 722 18 723 ENTERT 724 -11 725 YtX 726 * 727 ST+ 11 728 RCL 11 729 RTN 730 STOP 731 RCL 08 732 .END.

Comments

F-4E Bingo Program Listing

٠.

ų,

Statement	Comments
01+LBL "DT" 92 FIX 0	Label "Data"
03 CLRG 04 "TOGW?" 05 PROMPT 06 STO 21	Input Take-Off Gross Weight
07 STO 23 08 "STORENT?" 09 PROMPT	Input Store Weight
10 STO 22 11 ST- 23 12 "FUELNT?" 13 PROMPT	Input Fuel Weight
14 ST- 23 15 1000 16 ST/ 01 17 ST/ 22	
18 ST/ 23 19 ST/ 21 20 -DC?- 21 PROMPT 22 STO 02	Input Drag Count
23 -INIT OK- 24 PROMPT 25 -MODE?"	Select Mode
26 PROMPT 27 GTO "BNGO" 28+LBL "BNGO" 29 GF 13	Go to Bingo Label "Bingo"
27 CF 13 30 "DISTANCE?" 31 PROMPT 32 STO 04	Input Distance
33 *FUELNT?* 34 PROMPT 35 XEQ 03	Input Fuel Weight
36 "DELTMP?" 37 PROMPT 36 STO 03	Input Temperature Deviation from Standard Day Temperature
39 "HEADWIND?" 40 PROMPT 41 STO 11	Input Head Wing Component
42 GTO 05 434LBL 05 44 XEA 21 454LBL 06 46 XEQ 22	Go to 05 Label "05" Execute 21 Label "06" Execute 22

190

<u>Statement</u> 47 XEO 24 48 RCL 04 49 117 50 - 51 14.7 52 * 53 X(0? 54 CLX 55 +	<u>Comments</u> Execute 24
56 1 000 57 /	
58 ST- 01	
59 XEQ 25	Execute 25
60 XEQ 27	Execute 27
61 RCL 86	
62 + 63 RCL 84	
64 X(=Y?	
65 GTO 07	Go to 07
66 -	
67 CHS	
68 STO 04 69 RCL 21	
70 RCL 05	
71 1000	
72 /	
73 -	
74 STO 01	
75 RCL 07 76 -2	
77 *	
78 ST+ 03	
79 XEQ 18	Execute 18
80 XEQ 28	Execute 28
81 RCL 10	
82 38.98 83 *	
84 RCL 03	
85 ENTERT	
86 273.6	
37 +	
38 SQRT	
89 * 9025	
91 ENTER†	
92 RCL 11	

 . • .

Statement	Comments
93 CHS	
94 *	
95 +	
96 STO 09	
97 RCL 11	
98 CHS	
99 +	
100 STO 17	
101 XEQ 29	Execute 2
102 1/X 103 sto 16	
183 510 16	
194 I 105 RCL 11	
105 RCL 11	
107 /	
108 +	
109 *	
110 STO 16	
111 RCL 04	
112 +	
113 STO 20	
114 RCL 04	
115 RCL 17	
116 /	
117 68	
118 *	
119 STO 18	
120 GTO 08	Go to 08 Label "07
121+LBL 07 122 SF 13	No Cruise
123 5	Bingo Pro
124 ST- 00	Diligo Pro
125 0	
126 STO 20	
127 STO 18	
128 6.076116	
129 STO 24	
130 180	
131 STO 29	
132 RCL 07	
133 RCL 06	
134 /	
135 RCL 24	
136 / 137 ATAN	
137 HTHN 138 STO 27	
130 310 21	

xecute 29

o to 08 abel "07" o Cruise Leg of ingo Profile

192

• · ·	
Statement	Comments
139 ST- 29	
140 RCL 07	
141 RCL 13	
142 /	
143 RCL 24	
144 /	
145 ATAN	
146 STO 28	
147 ST- 29	
148 RCL 04	
149 RCL 28	
150 SIN	
151 +	
152 RCL 29	
153 SIN	
154 /	
155 RCL 27	
156 SIN 157 *	
158 RCL 24 159 *	
160 STO 07	
161 RCL 21	
162 STO 01	
163 XEQ 22	Execute 22
164 XEQ 24	Execute 24
165 1000	EXECUTE 24
166 /	
167 ST- 01	
168 XEQ 25	Execute 25
169 XEQ 27	Execute 27
170+LBL 08	Label "08"
171 FS? 13	
172 GTO 09	Go to O9
173 GTO 10	Go to 10
174+LBL 09	Label "09"
175 RCL 06	
176 RCL 13	
177 +	
178 RCL 04	
179 X(=Y?	_
180 GTO "AA"	Go to AA
181 RCL 06	
182 RCL 13	
183 + 184 CHS	
197 603	

and the second second

٠.

all and a set of the s

Statement	<u>Comments</u>
185 RCL 94	
186 + 187 STO 30	
	Display Level Off Distance
189 ARCL X	
190 FIX 2 191 TONE 9	
192 AVIEN	
193 STOP	
194 XEQ 28	Execute 28
195 "NN=" 196 ARCL X	Display Level Off
197 AVIEN	Cruising Mach Number
198 STOP	
199 XEQ 29	Execute 29
290 1/X 201 RCL 30	
202 *	
203 STO 30	
204 "CRFUEL=" 205 ARCL X	Display Fuel Required to Cruise
206 AVIEN	to cruise
207 STOP	
208 GTO 10 209+lbl "AA"	Go to 10 Label "AA"
219 "NOCRUSELEG"	Display No Cruising Leg
211 PROMPT	
212 GTO 10	Go to 10
213+LBL 10 214 gto "Dátá"	Label "10" Go to Data
215+LBL "DATA"	Label Data
216 BEEP	
217 "CLBDST=" 218 ARCL 06	Display Distance Required to Climb
219 AVIEW	
220 STOP	
221 100	
222 RCL 05 223 *	
224 *CLFUEL=*	Display Fuel Required
225 ARCL X	to Climb
226 AVIEN 227 Stop	
228 1000	
229 RCL 07	
230 *	

and the second

ĩ

Ì

194

.....

م شرم

<u>St</u>	atement
231	"OPTFL="
	ARCL X
	AVIEN
	STOP
	FS? 13
	GTO 14
	FIX 4
	-MACH=-
239	ARCL 10
	AVIEN
	STOP
242	FIX A
243	FIX 0 "TAS="
244	ARCL 09
245	AVIEN
	STOP
	"OAT="
	ARCL 03
249	"WIND="
250	ARCL 11
251	-CRSP=-
252	ARCL 17
253	AVIEN
254	STOP
255	FIX 2
	"CRTINE="
	ARCL 13
258	RVIEN
259	STOP FIX 0
268	FIX 0
261	RCL 20
262	CRUSFUEL="
	ARCL X
	AVIEN
	STOP
	CRDIST=
	ARCL 04
	AVIEN
	STOP
	LBL 14
	"DESPT="
212	ARCL 13
273	AVIEN
275	STOP
274	100 RCL 14
619	PUL 17

Comments Display Best Range Cruising Altitude Go to 14 Display Best Range Mach Number Display Best Range True Airspeed Display Ambient Air Temperature **Display Wind** Display Ground Speed Display Time Required to Cruise Display Fuel Required to Cruise Display Distance Required to Cruise

Label "14" Display Begin Descent Point

Statement	Comments
277 * 278 "DESFUL=" 279 ARCL X 280 AVIEW 281 STOP 282 RCL 20 283 RCL 05 284 100 285 * 286 + 287 RCL 14 288 100 289 *	Display Fuel Required to Descent
290 + 291 FS? 13 292 GTO *FF* 293 GTO *TF* 294+LBL *FF* 295 RCL 30	Go to FF Go to TF Label "FF"
296 + 297 GTO *TF* 298+LBL *TF* 299 *TOTFUEL=* 360 ARCL X 301 AVIEN	Go to TF Label "TF" Display Total Fuel Required
302 STOP 303 FS? 13 304 GTO 89 305 GTO "DAYR" 306+LBL H 307 "CURRNT ALT?" 308 "PROMPT"	Go to O9 Go to Data Label "H" Input Current Altitude
309 1000 310 / 311 STO 29 312 GTO 20 313+LBL 03 314 1000 315 / 316 STO 01 317 RCL 22 318 ST+ 01	Go tO 20 Label "O3"
319 RCL 23 320 ST+ 01 321 RCL 01 322 STO 21	

Charles and the second second second second

٠.•

<u>Sta</u>	ten	ent
323	RTN	
3244	LBL	28
325	350 RTN LBL	
326	RTN	
327	LBL	21
328	72.7	71
729	STO	31
330	RCL .014	92
331	.014	2
332	*	
333	ST+	31
334	RCL	01
335	-1.2	681
336	*	
	ST+	31
338	RCL	62
339		
340	88	00831
341	*	
	ST+	31
343	RCL	91
	Xt2	
345	.012	989
346	*	
	ST+	31
	RCL	
349	ENTE	Rt
350	3	
351	XtX.	
352	00	0011726
353	*	
354	ST+	31
355	ST+ RCL ENTE 3 YtX	01
356	ENTE	Rt
357	3	
358	YtX	
359	00	1886285
360	*	
361	ST+	
362	RCL	
363	ENTE	Rt
364	4	
365	Ytx	
366	5.95	244
3t7	*	
368	. 986	86481

Comments

Label "21"

Label "20"

<u>St</u>	atement	
369	*	
370	ST+ 31	
371	RCI 31	
773	STO 47	
372 777	510 Br	
575	RIN	
374	+LBL 22	
375	57.5	
376	* ST+ 31 RCL 31 STO 07 RTN *LBL 22 57.5 STO 31 PCL 01	
377	RCL 81	
770	1.537	
379	-	
379	* 	
380	ST+ 31	
381	-8.47	
382	RCL 07	
383		
	ST+ 31	
30J	RCL 02	
386	4076	
387	*	
388	ST+ 31	
389	RCL 01	
1	Xt2	
201	Xt2 04814 * ST+ 31	
271 200	-	
572	*	
593	51+ 51	
394	RCL 87	
	Xt2	
396	.1712	
397	*	
290	ST+ 31	
200	RCL 02	
	X†2	
	.000112	
182	*	
03	ST+ 31	
	RCL 87	
105	ENTERT	
196	3	
107	YtX	
89	0013675	
09	*	
10	ST+ 31	
11	RCL 02	
	ENTERT	
	3	
	ytx	
14	110	

Label "22" Subroutine for Climb Distance

Statement		
41500000913		
416 *		
417 ST+ 31		
418 RCL 01		
419 XT2		
420 Xt2		
421 .800883133		
422 * 423 ST+ 31		
424 RCL 02		
425 X+2		
126 X12		
27 .000000487		
128 *		
129 ST+ 31 130 RCL 01		
130 RCL 81		
131 RCL 07		
132 *		
133 .09144 134 *		
135 ST+ 31		
136 RCL 87		
137 RCL 02		
38 *		
39 .011657		
48 *		
41 ST+ 31		
42 RCL 01		
43 RCL 02		
44 *		
45 .006917 46 *		
47 ST+ 31		
48 RUL 81		
49 RCL 07		
50 *		
51 Xt2		
52 .000003973		
53 *		
54 ST+ 31 55 RCL 07		
55 RCL 07 56 RCL 02		
57 *		
58 Xt2		
59 .0000010795		
68 *		

Comments

Continue to Compute Distance Required to Climb

Sta	atement
461	ST+ 31
462	RCL 31
463	STO 86
464	RTN
	♦LBL 24
466	20.6
	STO 31
	RCL 01
407 478	.0119
	+ ST+ 31
	RCL 97
473	-1.86
474	-1.86 *
475	ST+ 31
476	RCL 02
477	ST+ 31 RCL 02 211 *
478	*
4/9	ST+ 31 RCL 01
480	KUL 01 V40
401	Xt2 8897
483	*
	ST+ 31
	RCL 07
	Xt2
	.0493
488	
489	ST+ 31
470 491	RCL 02 Xt2
492	. 8883
493	*
494	* ST+ 31 RCL 07 ENTER†
495	RCL 07
496	ENTERT
497	
498	YtX
	0012 *
	+ ST+ 31
	RCL 02
	ENTERT
	3
505	
596	.000002118

A House and a state of the

a second second second

Comments

Label "24" Subroutine for Climb Fuel

_Statement 587 * 508 ST+ 31 509 RCL 01 518 ENTERT 511.4 512 Y+X 513 .000001194 514 * 515 ST+ 31 516 RCL 07 517 ENTERt 518 4 519 YtX 528 .888913231 521 * 522 ST+ 31 523 RCL 02 524 ENTERT 525 4 526 YtX 527 -1.62933 528 * 529 .00000001 538 * 531 ST+ 31 532 RCL 01 503 RCL 07 554 🔹 535 .029079 536 * 537 ST+ 31 538 RCL 87 539 RCL 92 540 * 541 .0051266 542 * 543 ST: 31 544 RCL 81 545 RUL 82 544 + 547 .0029517 546 🔹 54: 57- 71 550+LBL 1771 55. 1193 552 Entre

Â

ł,

.

Comments

201

Label "TT"

<u>Sta</u>	teme	<u>ent</u>
553	.125	523
554	RCL	99
555	*	
556	+	
557	+ 1.04 RCL	98
558	RCL	31
559	*	
568	+	
561	RCL	31 31 92144
562	Xt2	
563	00	2144
564	*	
- 363	+	
366	STO RTN	92
	HBL	95
	1.50	
	STO	
	.206	
572	RCL	97 97
573		VI
	ST+	31
575	RCL	02
576	05	i9534
577	*	
578	ST+	31
579	RCL	07
580	Xt2	
581	ST+ RCL X12 00	6681
582	*	
583	ST+	31
584	RCL	92
585	812	
586		15713
587 500		74
	ST+	
	RCL	
591		.K I
	YtX.	
593		00178
594	*	
595	ST+	31
	RCL	
597	ENTE	
598	3	

Comments

Label "25" Subroutine for Descent Fuel

Statement 599 YtX 688 -1.76596 601 * 682 .000001 603 * 604 ST+ 31 685 RCL 87 606 Xt2 607 RCL 02 608 Xt2 609 * 618 -2.25922 611 * 612 .0000001 613 * 614 ST+ 31 615 RCL 07 616 ENTERT 617 3 618 YtX 619 RCL 02 620 ENTERT 621 3 622 VtX 623 * 624 2.612572 625 * 626 10 627 ENTERT 628 -11 629 YtX 630 * 631 ST+ 31 632 RCL 31 633 ST0 14 634 RTN 635+LBL 27 636 -1.895 637 STO 31 638 RCL 07 639 3.228 640 * 641 ST+ 31 642 RCL 02 643 -. 20426 644 #

-

Comments

Label "27" Subroutine for Descent Distance

Sta	ater	<u>ment</u>
645	ST+	31
646	RCL	87
	X†2	
	0	473
649		
	ST+	
	RCL	
	X12	33984
654		30704
	- ST+	71
	RCL	
	ENTI	
658	3	
	YtX	
660	. 00	148
661	*	
662	ST+ RCL	31
663	RCL	82
664	ENT	ERt
665	3	
655	TTX	
667 220	00	0011666
000 229	* ST+	71
670.	RCL	97
671	Xt2	
672	812	
673	06	9001797
674	2	
675	ST+	3:
676	RCL	87
	RCL	82
678		
679	01	6636
680		74
	ST+ RCL	-
	RCL	
é84	*	06
685		
686		0009093
637	*	
688	ST+.	31
58	RÚL	31
650	STC	15

... .

- - - A

Gemmen._

Statement	Comments
691 RTN 692+LBL 28 693 .86772 694 STO 31 695 RCL 82 696 800054 697 *	Label "28" Subroutine for Best Range Mach Number
698 ST+ 31 699 RCL 02 700 Xt2	
791000910812 702 * 703 ST+ 31	
704 RCL 02 705 ENTER† 706 3	
707 YtX 708 1.135375 709 *	
710 .00000001 711 * 712 ST+ 31 713 RCL 31 714 STO 10	
715 RTN 7160LBL 29 717 .3467	Label "29"
718 STO 31 719 RCL 01 728011423 721 *	Label "26" Subroutine for Best Range Fuel
722 ST+ 31 723 RCL 02 7240010658	
725 * 726 ST+ 31 727 RCL 01 728 X+2	
729 .00017361 730 * 731 ST+ 31	
732 RCL 02 733 Xt2 734000001143 735 *	
736 ST+ 31	

. . . .

 .

......

Sta	tem	ent
737	RCL	81
738	ENTE	ERT
739	3)1941
740	YtX	
741	-1.8)1941
742	*	
743	. 886	9991
744		-
	ST+ RCL	
	ENTE	
748		(K)
	YtX	
		26908
751		
		10000
753	*	
	ST+	
	RCL	82
	Xt2	
757	Xt2	
758 759	-1.4	8918
760 760	÷	100000
761	*	0000001
762	ST+	31
763	RCL	91
764	Xt2	
765	Xt2	
766	RCL	02
747		94L
	Xt2	94
768	Xt2 Xt2	92
768 769	Xt2 Xt2 *	
768 769 770	Xt2 Xt2 * 9.0	55261
768 769 770 771	Xt2 Xt2 * 9.8 *	
768 769 770 771 772	Xt2 Xt2 * 9.80 * 18	55261
768 769 770 771 772 773	Xt2 Xt2 * 9.00 * 18 ENTE	55261
768 769 770 771 772 773 774	Xt2 Xt2 * 9.00 * 10 ENTE -18	55261
768 769 770 771 772 773 774 775	Xt2 Xt2 * 9.00 * 18 ENTE	55261
768 769 770 771 772 773 774	Xt2 Xt2 * 9.0(* 10 ENTI -18 YtX	55261
768 769 770 771 772 773 774 775 776 777 778	Xt2 Xt2 * 9.00 * 10 ENTI -18 YtX * ST+ RCL	55261 ER† 31 01
768 769 770 771 772 773 774 775 776 777 778 779	X12 X12 * 9.00 * 10 ENTE -18 Y1X * ST+ RCL ENTE	55261 ER† 31 01
768 769 770 771 772 773 774 775 776 777 778 779 788	X12 x12 * 9.00 * 10 ENTI -18 Y1X * ST+ RCL ENTI 3	55261 ER† 31 01
768 769 770 771 772 773 774 775 776 777 778 779	Xt2 Xt2 * 9.00 * 10 ENTI -18 YtX * ST+ RCL ENTI 3 YtX	55261 ER† 31 01 ER†

Comments

Subroutine for Best Range Fuel

_
<u>Statement</u>
783 ENTERT
784 3
785 Ytx
786 *
787 -1.36419
788 *
789 18
790 ENTERT
791 -13
792 YtX
793 *
794 ST+ 31
795 RCL 01
796 RCL 82
797 *
798 .000014286
799 *
800 ST+ 31
801 RCL 31
802 STO 15
803 RTN
894+LBL 18
805 36.1
806 RCL 07
807 X(=Y?
808 RTN
809 -56.5
810 STO 03
811 RTN
812 END

Label "18" Subroutine for Temperature Correction

End

F-5E Program Listing

Statement 01+LBL "BT" 02 "DI?" **83 PROMPT** 64 STO 62 05 "RVGN?" **86 PROMPT** 87 1000 98 / 09 STO 03 10 "NODE?" 11 PROMPT 12+LBL "0" 13 *CLGW?* 14 PROMPT 15 1000 16 / 17 STO 05 18 "DIST?" 19 PROMPT 20 STO 06 21 45.456 22 RCL 02 23 -. 000212 24 * 25 + 26 ST0 12 27 RCL 86 28 -.02316 29 * 30 ST+ 12 31 RCL 85 32 -2.13493 33 * 34 ST+ 12 35 RCL 02 36 812 37 -.00004554 38 🔹 39 ST+ 12 40 RCL 06 41 Xt2 42 .0023214 43 * 44 ST+ 12 45 RCL 05 46 Xt2

Comments Label "Data Mode" Input Drag Count Input Average Gross Weight Select Mode Label "O" Optimum Cruise Mode Input Start Climb Gross Weight Input Distance • • • • Compute Optimum Cruise Altitude

Statement		
47	88627	
48		
	ST+ 12	
	RCL 02	
	ENTERT	
60	7	
53	¥+x	
54	1.694969	
55	s YtX 1.684969 *	
56	10	
57	* 10 ENTER† -7 Y†X	
58	-7	
59	YTX	
- 58		
61	ST+ 12	
62	RCL 96	
63	ENTERT	
- 64	3	
65	YtX	
66	-1.24904	
67		
68		
	ENTERT	
	-5	
	YtX	
72	*	
- 73	ST+ 12	
- 74	RCL 05 ENTER†	
75	ENTERT	
76	3 YtX 0007469	
11	TTX 0007469	
78 79	000/407	
- (7	* ST+ 12	
00	RCL 02	
	KUL 02 Xt2	
	Xt2	
85		
	18	
87		
88	-11	
- 39		
90	*	
91	ST+ 12	
	RCL 02	
	-	

Continue to Compute Optimum Cruise Altitude

Statement
93 RCL 06
94 *
9500004143
96 *
96 * 97 ST+ 12
98 RCL 06
98 RCL 06 99 RCL 05
100 *
101 .006857
102 +
103 ST+ 12
104 RCL 02
105 RCL 06
106 *
107 RCL 05
198 *
109 STO 00
110 Xt2
111 -3.04712
112 *
113 10
114 ENTERT
115 -12
116 YtX
117 *
118 ST+ 12 119 RCL 00 120 ENTER†
119 RCL 00
120 ENTERT
121 3
122 Y 1 X 123 8,193166
123 8.193166
124 #
125 10 126 ENTERT
120 ENVERT
128 YtX
129 *
130 ST+ 12
131 RCL 02
132 RCL 06
133 *
134 ENTERT
135 3
136 7tX
136 7†X 137 8,962771
138 *

Comments

Continue to Compute Optimum Cruise Altitude

Statement
139 10
140 ENTER† 141 -15
141 -13 142 V+V
142 YtX 143 *
144 ST+ 12
145 RCL 06
146 RCL 05
147 * 148 ENTER†
149 3
150 YtX
151 -2.43198
152 *
153 10
154 ENTER†
156 YtX
157 *
155 -11 156 Ytx 157 * 158 ST+ 12
159 RCL 02 160 ENTER†
160 ENTERT 161 5
162 YtX
163 -2.45711
164 *
165 18
166 ENTERT
167 -13 168 YtX
169 *
170 ST+ 12
171 RCL 06
172 ENTER† 173 5 174 YtX 175 6.334016
173 0 174 V+V
175 6.334016
176 *
177 10
178 ENTERT
179 -11 180 YtX
180 Ytx 131 #
182 ST+ 12
183 RCL 05
184 ENTERT

(

Comments

Continue to Compute Optimum Cruise Altitude

Comments

Store Ol Compute Indicated Mach Number

Statement			
231 .000019928			
232 *			
233 ST+ 12			
234 RCL 02			
235 3			
236 YtX			
237 -8.57126			
238 *			
239 10			
240 ENTERT			
241 -9			
242 YtX 243 *			
243 * 244 ST+ 12			
244 ST 12 245 RCL 01			
246 4			
247 YtX			
248 -2.79396			
249 *			
258 10			
251 ENTERT			
252 -7			
253 YtX			
254 *			
255 ST+ 12			
256 RCL 02			
257 4 259 VAV			
230 118			
258 Y1X 259 9.583365 260 *			
261 10			
262 ENTER† 263 -12			
263 -12			
264 YTX			
265 🔹			
266 ST+ 12			
267 RCL 03			
268 RCL 01			
269 *			
270 .00017962			
271 * 272 ST+ 12			
273 RCL 01			
274 RCL 02			
275 *			
276 .0000008431			

Comments

Continue to Compute Indicated Mach Number

	Statement	Comments
	277 *	Continue to Compute
	278 ST+ 12	Continue to Compute
	279 RCL 03	Indicated Mach Number
	280 RCL 82	
	281 * 282 .0000 02254	
	283 *	
	284 ST+ 12	
	285 RCL 12	
	286 STO 87	
	28703	
	288 ST+ 07	Store Register 07
	289 RCL 07	
	290+LBL "NH"	Label "NM"
	291 .17836	Compute Specific Range
Ň	292 RCL 03	(Nautical Miles/Pounds Fuel)
	293 00 333 294 *	
	295 +	
	296 ST0 12	
	297 RCL 01	
	298 .0037629	
S	299 *	
	300 ST+ 12	
	301 RCL 02	
	39200031305	
	303 *	
	304 ST+ 12	
Γ	305 RCL 03 306 Xt2	
	307000126	
ţ.	308 *	
• •	309 ST+ 12	
	310 RCL 01	
	311 Xt2	
Ę.	312 .00005315	
	313 *	
N	314 ST+ 12	
	315 RCL 02	
h .	316 Xt2 717 -1 06144	
	317 -1.06144 318 *	
	319 10	
	320 ENTERT	
	321 -6	
	322 Y+X	

214

ľ.

<u>Sta</u>	tement
323	*
324	* ST+ 12
325	REE M2
326	ENTERT
327	3
328	Y t X
	4.528377
330	
331	10
	ENTERT
333	
334	YtX
335	
	ST+ 12
	RCL 03
	Xt2
337 740	Xt2
340 741	.000000231
341 742	+ 674 19
747	ST+ 12 RCL 01
344	X+2
345	X+2
346	Xt2 Xt2 -3.15477
347	*
348	10
	ENTERT
350	
	YtX
352	
	ST+ 12
	RCL 02
	Xt2
	Xt2
	-4.55793
358 750	
359 360	10 ENTER†
361 361	-12
362	YtX
363	*
364	- ST+ 12
364 365	RCL 01
366	ENTERT
367	5
368	YtX

.

Comments

Continue to Compute Specific Range

Sta	tem	<u>ent</u>
369	4.36	8255
370		
371	10	
372	ENTE	Rt
373	-10	
374	YtX	
375	*	
	ST+	
377	RCL	03
378	RCL	91
379	*	
380		9997685
381	*	
382	ST+	
	RCL	
	RCL	82
	*	
386		301496
387		
	ST+	
	RCL	
	RCL	8 2
391		
392	-5.	5628
393		
394	10	
395	ENTI	ERT
396	-6	
397	YtX	
398	*	_
399	ST+	12
400	RCL	03
401	Xt2	•
	RCL	01
	Xt2	
494		
		73637
496		
407		
498		EKT
409	-	
410		
411	* .ет.	1.2
412 413	ST+	
413 414		9 3
4(4	A12	

Comments

Continue to Compute Specific Range

Statement	Comments
415 RCL 02	Continue to Compute
416 Xt2	Specific Range
417 *	opeoning henge
418 -5.81959	
419 #	
420 10	
421 ENTERT	
422 -10	
423 YtX	
424 =	
425 ST+ 12	
426 RCL 01	
427 Xt2	
428 RCL 82	
429 Xt2	
430 *	
431 7.246215	
432 *	
433 10	
434 ENTERT	
435 -11	
436 YTX	
437 *	
438 ST+ 12	
439 RCL 12	
440 STO 08	
441 FIX 2	
442 RCL 01	
443 1000	
444 *	
445 FIX 0	
446 "OPCALT="	Display Optimum Cruise
447 ARCL X	Altitude
448 RVIEN	
449 STOP	
450 F1X 2	
451 "HN="	Display Optimum Cruise
452 ARCL 97	Indicated Mach Number
453 RVIEW	
454 STOP	
455 *DITG?*	How Long from One's Position
456 PROMPT	to Destination?
457 STO 12	Input Distance to Fly
458 RCL 02	The second second
459 90164	
459 100101 459 *	

Statement	Comments
461 1.3111	Compute Begin Descending Point
462 + 463 RCL 01	
464 *	
465 "DSCND AT"	Display Begin Descending Point
466 ARCL X 467 AVIEN	
468 STOP	
469 CHS	
470 RCL 12 471 +	
472 STO 12	
473 FIX 2	
474 "N/FUEL="	Display Specific Range
475 ARCL 08 476 AVIEN	(Nautical Mile Per Pount of
477 STOP	Fuel) Compute Fuel Required to Cruise
478 RCL 12	
479 RCL 08 480 1/X	
481 *	
482 FIX 0	
483 *CR FUEL=*	Display Fuel Required to Cruise
484 ARCL X 485 AVIEN	
486 STOP	
487 GTO "DT"	Go to Data Mode
488+LBL "DR" 489 "F>1400?HIT1"	Label Diversion Range
490 PRONPT	If Fuel Quantity is Greater
491 1	Than 1400 lbs. Press l
492 X=Y? 493 GTO 01	
494 *BIST?*	Input Distance
495 PROMPT	
496 STO 00 497 "TALT?"	Tanut Initial Alaibuda
498 PROMPT	Input Initial Altitude
499 1000	
500 /	
501 STO 01 502 "NO,ENG?"	Both Engines in Operation or
503 PROMPT	One in Operation? Press 1 or 2.
504 1 FOR MEND	
505 X=Y? 506 GTO "SED"	If One Engine in Operation
344 414 VER	Go to SED

-

. ÷.

۰.

۰., ٠. ۰. •

Sta	tement
507	CF 01
	RCL 00
	140
	X(=Y?
	GTO 49
	.214
	RCL 01
514	0000
515	. 9089 *
517	+ RCL 00 .06382
510	AC700
519	.00302
520	+ +
521	RCL 01
521	Xt2
322	.00146
523	.00140
524	
525	
	RCL 00
527	X12
	.004511
529	
530	
	STO 12
532	RCL 01
533	ENTERT
534	3
533	YTX
536	YtX 0000117 *
537	*
5.38	ST+ 12 RCL 00
539	RCL 00
940	ENTERT
541	3
542	Y 1 X 00002477
543	
	*
	ST+ 12
	RCL 01
	Xt2
	Xt2
549	000 001142
550	*
551	ST+ 12
552	RCL 00

(1

Comments

۰.

٠.

Compute Diversion Range Cruist Altitude

Statement		
557	Xt2	
	Xt2	
	2.426804	
556		
557		
	ENTERT	
559		
260	YtX	
561	*	
562	ST+ 12	
563	RCL 01 RCL 08	
564	RCL 68	
565	*	
566	9959984	
567	* 0059984 *	
568	ST+ 12	
569	RCL 12	
570	48	
571	X<=Y?	
572	GT0 40	
	RCL 12	
	STO 83	
	GTO DF-	
	HBL 40	
577		
	STO 83	
	LBL "DF"	
	269.01	
501	DOL AL	
582	-11.919	
587	*	
594	•	
525	-11.919 * * RCL 00	
502	11.866	
587	*	
588	- ▲	
	RCL 01	
	Xt2	
	.0364	
592		
593	RCL 00	
595 592	0661	
596 597		
598	+	

0	mne	n	ts

Continue to Compute Diversion Range Cruise Altitude	

Label "40"

Compute Fuel Required for Diversion Range

Sta	tement
	STO 12 RCL 01
	ENTERT
602	
	YtX
	00167
605	
	ST+ 12
	RCL 00
	ENTERT
609	
	YtX
611	.00021275
612	*
613	ST+ 12
614	RCL 01
615	ST+ 12 RCL 01 Xt2 Xt2 .0000579 *
616	Xt2
617	. 8000579
618	*
619	ST+ 12
	RCL 01
622	RCL 00
622 297	+ 004439
624.	*
	ST+ 12
	RCL 00
	ENTERT
628	
629	YtX
630	-7.31164
631	*
672	10
633	ENTER†
634	-10
635	Y†X
636	*
	ST+ 12
	RCL 12
	STO 01
64 0	.57567
	RCL 03
642 643	007383 *
643 644	* *
,	•

N. N.

.

Comments

Continue to Compute Fuel Required for Diversion Range

<u>Sta</u>	atement	
645	RCL 03	
	Xt2	
647	.0006679	
648	*	
649	•	
650	ST0 12	
451	RCL 03	
452	7 KUL 00	
652 457	J V4V	
633 454	YtX - 00000777	
0JT 255	00000733 *	
033 252	+ 6TA 13	
0J0 /67	ST+ 12 RCL 12	
0J(250	STO 87	
000	510 87	
637	GTO DISP-	
5 60 1	LBL SED	
	SF 01	
662		
	RCL 01	
	X>Y?	
	GTO "SD1"	
	4.876	
667	RCL 00	
668	4382	
669	*	
670	+	
671	RCL 01	
672	1.22133	
673	*	
674	+	
675	RCL 96	
676	Xt2	
577	RCL 00 X†2 .013185	
578	*	
579		
	RCL 01	
581		
582	00067869	
583	*	
	+	
	ST0 12	
	RCL 00	
	ENTERT	
588	3	
	ytx	
590	00011187	
, , q		

Comments

Continue to Compute Fuel Required for Diversion Range

Go to 'Display' Label "Single Engine Diversion Range"

Go to 'SD1' Compute Single Engine Cruise Altitude for Diversion Range

Statement
691 *
692 ST+ 12
693 RCL 00
694 ENTERT
695 4
696 YtX
697 3.167149
698 *
699-10
790 ENTERT
701 -7
702 YtX
703 * 704 ST+ 12 705 RCL 01 204 DS1 00
704 ST+ 12
705 RCL 01
706 RCL 00
706 RCL 00 707 * 708010543 709 *
708010543
709 *
710 ST+ 12
711 14
712 RCL 12
713 X>Y?
714 GTO A
715 STO 03
716 GTO *SF*
717+LBL A
718 14
719 STO 03
720+LBL -SF- 721 287.62
721 207.02 799 DC1 00
722 RCL 00 723 9.6549
724 +
724 * 725 +
725 + 726 RCL 01
727 -10.862
728 *
729 +
730 RCL 00
731 Xt2
73201335
733 +
734 +
735 RCL 01
736 Xt2

Comments

Continue to Compute Single Engine Cruise Altitude for Single Engine Diversion Range Go to 'SF' Label "A" Compute Fuel Required for Single Engine Diversion Range

Statement		
737	.1838	
738	*	
739	+	
	STO 12	
	RCL 00	
742	ENTERT	
743		
(44 745	YtX	
(43 746	.80094175	
746	+ ST+ 12	
749	ST+ 12 PC1 01	
749	ENTERT	
750	3	
751	YtX	
752	RCL 01 ENTER† 3 YtX 00314 *	
753	*	
754	SI + 12	
755	-2.948	
756	ST+ 12	
757	RCL 01 RCL 00	
758 759		
	+ 86898	
761		
	ST+ 12	
	RCL 88	
	Xt2	
	RCL 01	
	Xt2	
767	*	
768	.000002731 *	
769	*	
110	ST+ 12 RCL 12 STO 01	
775	KUL 12	
777	FS2C 82	
	RTN	
	GTO "SM"	
	LBL "SH"	
	.46766	
	RCL 03	
	01597	
780		
781		
782	RCL 03	

1.

Comments

Continue to Compute Fuel Required for Single Engine Diversion Range

Label "SM" Compute Single Engine Cruise Mach Number for Single Engine Diversion Range

JUGCEMENT						
777	107	0				
775	.183 *					
7.38						
739	+					
74ê	STO	12				
741	RCL	66				
	ENTE					
743	3					
744	VeV					
744	110	04175				
(43	. 000	04140				
746	*					
747	* ST+ RCL ENTE	12				
748	RCL	01				
749	ENTE	Rt				
750	٦.					
751	V4V					
760	YtX 08	714				
752 753	98	214				
753	*	_				
754	ST+ -2.9	12				
755	-2.9	48				
756	ST+	12				
757	RCL	91				
	RCL					
759		•*				
	86	ممم				
	00	070				
724						
761	*					
762	* ST+	12				
762 763	¥ ST+ RCL	12				
762 763 764	* ST+ RCL Xt2	12 00				
762 763 764 765	* ST+ RCL Xt2 RCL	12 00				
762 763 764 765 766	* ST+ RCL Xt2 RCL Xt2	12 00				
762 763 764 765 766	* ST+ RCL Xt2 RCL Xt2	12 00				
762 763 764 765 766 766	* ST+ RCL Xt2 RCL Xt2 *	12 80 81				
762 763 764 765 765 766 767 768	* ST+ RCL Xt2 RCL Xt2 *	12 00				
762 763 764 765 765 766 767 768 769	* ST+ RCL X†2 RCL X†2 * .000	12 00 01 082731				
762 763 764 765 765 766 767 768 769 779	* ST+ RCL Xt2 RCL Xt2 * .000 * ST+	12 00 01 082731 12				
762 763 764 765 765 766 767 768 769 770 771	* ST+ RCL X†2 RCL X†2 * .000 * ST+ RCL	12 00 01 002731 12 12				
762 763 764 765 765 765 765 765 765 769 770 770 771 772	* ST+ RCL X†2 RCL X†2 * .000 * ST+ RCL ST0	12 00 01 002731 12 12 01				
762 763 764 765 766 767 768 769 779 771 772 773	* ST+ RCL Xt2 RCL Xt2 * .000 * ST+ RCL ST0 FS?C	12 00 01 002731 12 12 01				
762 763 764 765 766 767 768 769 770 770 771 772 773 774	* ST+ RCL X†2 RCL X†2 * .000 * ST+ RCL ST0 FS?C RTN	12 00 01 002731 12 12 01 01 02				
762 763 764 765 766 767 768 769 779 771 772 773 774 775	* ST+ RCL Xt2 RCL Xt2 * .000 * ST+ RCL ST0 FS?C RTN GT0	12 00 01 002731 12 12 01 502 SM-				
762 763 764 765 766 767 768 769 779 771 772 773 774 775	* ST+ RCL X12 RCL X12 * .0000 * ST+ RCL ST0 FS?C RTN GT0 LBL	12 00 01 002731 12 12 01 302 				
762 763 764 765 766 767 768 769 770 778 778 778 778 774 775 776 777	* ST+ RCL Xt2 RCL Xt2 * .000 * ST+ RCL ST0 FS?C RTN GT0	12 00 01 002731 12 12 01 302 				
762 763 764 765 766 767 768 769 770 778 778 778 778 774 775 776 777	* ST+ RCL X12 RCL X12 * .0000 * ST+ RCL ST0 FS?C RTN GT0 LBL	12 00 01 002731 12 12 01 02 -SH- -SH- 66				
762 763 764 765 766 767 768 769 770 778 778 778 778 774 775 776 777	* ST+ RCL X12 RCL X12 * .0000 * ST+ RCL ST0 FS?CC RTN GT0 LBL .467 PCL	12 00 01 002731 12 12 01 02 TSNT 55 65 03				
762 763 764 765 766 767 768 769 770 778 778 776 777 778 779	* ST+ RCL X12 RCL X12 * .0000 * ST+ RCL STO FS?CC RTN GTO LBL .467	12 00 01 002731 12 12 01 02 TSNT 55 65 03				
762 763 764 765 766 767 768 769 770 778 778 776 777 778 777 778 779 730	* ST+ RCL X12 RCL X12 * .0000 * ST+ RCL ST0 FSPC RTN GT0 LBL .467 PCL 01 *	12 00 01 002731 12 12 01 02 TSNT 55 65 03				
762 763 764 765 766 767 768 769 779 770 778 779 778 779 779 779 730 731	* ST+ RCL X12 RCL X12 * .000 * ST+ RCL STO FS?CC RTN GTO LBL .467 PCL 01 *	12 00 01 082731 12 12 01 02 				
762 763 764 765 766 767 768 769 779 770 778 779 778 779 779 779 730 731	* ST+ RCL X12 RCL X12 * .0000 * ST+ RCL ST0 FSPC RTN GT0 LBL .467 PCL 01 *	12 00 01 082731 12 12 01 02 				

Statement

(1

Comments

Continue to Compute Fuel Required for Single Engine Diversion Range

> Copy available to DTIC does not permit fully legible reproduction

Label "SM" Compute Single Engine Cruise Mach Number for Single Engine Diversion Range

permit fully legible reproduction

<u>Sta</u>	atem	ent
123 784 785 786 787 788 787 788 789 798 791 792 793 794 795	X12 .002 * STO RCL ENTE 3 Y1X 00 * ST+ RCL ENTE	2464 12 03 28† 10007455 12 03
798 799 800 801 802 803 804 805 805	YtX -1.4 * 10 ENTE -9 YtX	R† 12
808 809 810 811 812 813 813 814 815 816	STO GTO LBL SF 0 10.3 RCL 05 *	07 -DISP- -SD1- 1 00 77
819 820 821 822 823 823 824 825 825 825 825	X†2 # + RCL	494 96 91

Comments

Compute Single Engine Cruise Mach Number for Single Engine Diversion Range

Go to 'Display' Compute Single Engine Cruise Altitude When Cruise Altitude is More Than 15,000 ft.

Copy available to DTIC does not permit fully legible reproduction

Statement					
829	*				
070					
971	STO 12 RCL 00 Entert				
031	DC1 06				
036	KUL 00 Enteda				
834	ENIERI				
034	s Ytx				
	8008926				
836	~.00000720				
	ST+ 12				
	RCL 01				
	Xt2				
	X12				
	080006418				
843					
844	ST+ 12				
845	RCL 99				
846	ENTERT				
847	ENTER† 5				
848	YtX 3.815037 *				
849	3.815037				
850	*				
851	10				
852	ENTERT				
853	-11				
854					
855					
	ST+ 12				
	RCL 01				
858	RCL 09				
859					
860	011218				
861					
862	ST+ 12				
863	RCL 01				
864					
865	RCL 80				
866	Xt2				
867	*				
868	.0000005161				
869	*				
	ST+ 12				
	RCL 12				
	STO 03				
	SF 82				
874	XEQ *SF*				

Comments

Continue to Compute Single Engine Cruise Altitude (Altitude Above 15,000 ft.)

Compute Fuel Required for Single Engine Diversion Range (Altitude Above 15,000 ft.)

Statement	Comments
875 SF 01	_
876.54	
877 STO 97	
878 SF 01 879+LBL =D1SP=	
880 RCL 83	Label "Display"
881 1000	
882 *	
883 FIX 0	
884 "ALT="	Display Cruise Altitude
885 ARCL X 886 AVIEN	
887 STOP	
888 FIX 2	
889 "NN="	Display Mach Number
890 ARCL 07	
891 AVIEN	
892 STOP	
893 FIX 0 894 "FUEL="	
895 ARCL 01	Display Fuel Required for
896 AVIEN	Diversion Range
897 STOP	
898 FS? 01	
899 GTO "S1"	
900 RCL 03	
901 1.125 902 *	
903 "DESPT="	Dicplay Pasis Descent P. 1
904 ARCL X	Display Begin Descent Point
905 AVIEN	
906 STOP	
907 GTO "DT"	Go to 'Data'
998+L8L *S1*	
909 RCL 03 910 "DESPT="	Dicplay Perin Decemb D : :
911 ARCL X	Display Begin Descent Point (Single Engine)
912 AVIEN	(Shigre Linghie)
913 STOP	
914 CF 01	
915 GTO *DT*	Go to 'Data'
916+LBL 81 917 *\$12N54D38N88*	Label "01"
918 PROMPT	
919 .END.	End
	End

1.5

1

2.1

and the second second

LIST OF REFERENCES

- 1. Naval Air Development Center, <u>F-4J/HP-41C Pocket-Sized Flight Perfor-</u> mance Advisory System, Report 3576, May 1981.
- Herskovitz, J., <u>A Simple Approximation to the Effect of Head Wind on</u> the A-7E Optimum Cruise Specific Range and Mach Number, Naval Air Development Center Memo, ACSTD-TM-2025, 30 October 1980.
- 3. U.S. Air Force, Technical Order 1F-4E-1 Flight Manual, August 1981.
- 4. U.S. Air Force, Technical Order 1F-5E-1 Flight Manual, February 1979.
- 5. Ryan, Jr., T.A., Brian, L. J., and Barbara, F. R., <u>Minitab Reference</u> <u>Manual</u>, W. R. Church Computer Center, U.S. Naval Postgraduate School, March 1981.
- 6. Fuhs, A. E., <u>AE3001 Aircraft Energy Conservation Class Note</u>, July October 1981.
- 7. Hwelett-Packard Company, <u>The HP-41C/41CV Alphanumeric Full Perfor-</u> mance Programmable Calculator Owner's Handbook and Programming Guide, September 1980.

INITIAL DISTRIBUTION LIST

		No.	Copies
1.	Defense Technical Information Center Cameron Station Alexandria, Virginia 22314		2
2.	Library, Code 0142 Naval Postgraduate School Monterey, California 93940		2
3.	Department Chairman, Code 67 Department of Aeronautics Naval Postgraduate School Monterey, California 93940		I
4.	Distinguished Professor A. E. Fuhs, Code 67Fu Department of Aeronautics Naval Postgraduate School Monterey, California 93940		3
5.	Chief of Staff Republic of Korea Air Force Dae Bang Dong, Young Deung PO Gu Republic of Korea Air Force Headquarters Republic of Korea		10
6.	Col. Jong Man Lee Office of Air Attache Emuassy of the Republic of Korea 2320 Massachusetts Avenue, Northwest Washington, D.C. 20008		1
7.	Mr. Wayne Stevens Northrop Aircraft Division 1 Northrop Avenue Hawthorne, California 90250		1
8.	F-4E Department McDonnell Douglas Corporation Box 516 St. Louis, Missouri 63166		1
9.	Mr. Michael Herskovitz, Code 6051 Naval Air Development Center Warminster, Pennsylvania 18974		2

INITIAL DISTRIBUTION LIST (Continued)

No. Copies

2

10. Lee Jae Myong Dae Bang Dong, Young Deung PO Gu Republic of Korea Air Force Headquarters Republic of Korea