
7 AD- A12 586 ON DIGIT L CIRCLES(U) 
ARYL ND UN IV COLLEGE P RK~COMPUTER VISION LAB A NAKAMURA ET AL. JUL 82 TR-li93

hI S AFOSR-77-3271

pUNCLASSIFIED F/G 12/i Nmhhhhhh~h7i
* flflf flflfl lfll W



.2.

I - L 32irn

11IL

ti i li 111lLO

L "L

111111111 A.

- . uII

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963 A

4I

4



A iFOBR-TlL 83-0072 '

tR-119 3  July, 1982

FOSR-77- 3 2 7 1

q ON DIGITAL CIRCLES

Akira Nakafura*t
Kunijo Aizawa*

COMPUTER SCIENCE
TECHNICAL REPORT SERIES

F F-

UNIVERSITY OF MARYLAND
C, COLLEGE PARK, MARYLAND

C--,

~~g4 20742

LI- 5~ppToVed f or ptibli(c relOaSO
CA 

ditib93 ullimited*

'83 03OSR-4-327



a/

I!

TR-1193

AFOSR-77-3271 July, 1982

F1  ON DIGITAL CIRCLES

Akira Nakamura*t
Kunio Aizawa*

ABSTRACT

This paper characterizes sets of lattice points which
are digitizations of circles.

AIR 07 71 t, Il. . . ". '

. .7 • -!i .

°! : "... ..- 2 .) 12

Chief, Tci:i infformation Division

*Department of Applied Mathematics, Hiroshima University,

Higashi-Hiroshima, 724, Japan

tComputer Science Center, University of Maryland, College Park,
MID, 20742

The support of the U.S. Air Force Office of Scientific Research
under Grant AFOSR-77-3271 is gratefully acknowledged, as is the
help of Janet Salzman in preparing this paper.

I



1. Introduction

Image processing and pattern recognition are mainly con-

* - cerned with classifying shapes or patterns which appear in

pictures, and the classification is based on geometric proper-

ties of the patterns. To do such tasks by digital computers,

the pictures must be digitized, i.e., converted into arrays of

lattice points. Due to this conversion, it is not always obvi-

U ous how to recognize that a set of lattice points must have ari-

sen from a real pattern that has a given geometric property. For

example, how do we characterize sets of lattice points which

are the digitizations of real straight line segments? This and

some related questions have been discussed in [1].

In this paper, we will consider the same problem for circles (i.e.,

disks). First, we discuss the case where the center of the circle

is at a lattice point. For this case, we give conditions for a

set of lattice points to be a digital circle. By making use of

this result, it is also proved that the set of digitized circles

is accepted by a deterministic tape-bounded array acceptor.

Next, we consider the case where the center of the circle is not

at any lattice point. The discussion for this case is not so

easy, but is interesting. For this case, we give an algorithm

to decide whether or not a given set of lattice points is a

digital circle.

It is assumed that the readers are familiar with the basic

definitions and notations of digital pictures.
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2. Digitization of circles

Let S be a bounded subset of the plane. For purposes of

computer analysis, it is usual to represent S by a finite set

of lattice points, i.e., points with integer coordinates.

This set, S, is called the digital image of S, and the mapping

that takes S into S is called digitization.

S can be defined in various ways; we list here several

of them:

(a) S is the set of lattice points contained in S; this

is called the subset digitization of S.

(b) S is the set of lattice points such that S comes closer

than the city block distance to them, i.e.,

This is called the open cell digitization of S. (If

c
we imagine an open unit square Pc centered at each

lattice point P, we have PES iff snpC)0.)

(b') Analogous to (b), using half-open cells P*, i.e.,

i- _x<i+ , j-hy< j+ .

(b") Analogous to (b), using closed cells P.

In this paper, we will use the subset digitizaion of S.

The finite set of lattice points B is called a digital circle6

iff there exists a circle A such that B=A under the subset digi-

tization.
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2.1 Circle with its center at a lattice point

In this subsection we assume that the center of the circle is

at a lattice point. In this case, we can give a necessary

and sufficient condition for a given set S of lattice points

to be a digital circle. Let PQ represent the distance between

points P and Q. Further, referring to Figure 1, the octants

Uof the plane defined by a center are eight 450 wedges. They

are labelled in counterclockwise order with Roman numerals,

starting immediately above the positive x-axis. We will con-

sider the following conditions on a finite set S of lattice

points:

(1) S is connected and has no holes.

(2) There exists a center C satisfying the following condi-

tions:

(a) Le: C's coordinates be (0,0). Then the border of

S is symmetric with respect to the four lines x=0,

y=0, y=x, y= -x. Also, in octant I the border of

S does not decrease along the x-axis by more than

one step at a time; and for the other octants, sym-

metric conditions hold.

(b) Referring to Figure 2, for every two border corner4
points P.,P.' we have max Cp. 2 <m Cn mt C where

J j
P! is defined as follows: If P. is in octant I,
J 3

then P! is the lattice point immediately above P.
I J

if P. is in octant II, then P! is the lattice point
J 3

immediately to the right of Pj. For the other oc-

* tants, P! is similarly defined.J



We will denote the above conditions on S by CDC. Then

we have the following theorem:

Theorem 1 A given finite set S of lattice points is a digital

circle iff it satisfies the conditions CDC.

Proof: Condition (2)(a) is explained in Figure 3. It is obvi-

ous that CP i > CPi+I"

Therefore, it is sufficient for the proof that we consider

a circle with radius r such that max CP. : r < min CP!. //
ij

For the case where the center is at a lattice point, we

can show by making use of Theorem 1 that the set of digital cir-

cles is accepted by a deterministic tape-bounded array acceptor

(DTBA). The definition of a DTBA is given in [2]. Roughly

speaking, a DTBA is a deterministic acceptor T over the cell

space whose behavior is restricted as follows:

(i) The movement of T is bounded to the area of the input

array.

(ii) T can rewrite any symbol in the cell that it reads.

Theorem 2 There exists a deterministic tape-bounded array

acceptor T which accepts the set of digital circles.

Proof: First, T marks a cell with C. This cell corresponds

to the center. If this cell fails to be the center, T marks

another cell. T continues this movement until it finds a

center satisfying the conditions CDC. This is possible, since

T is a DTBA. Next, T checks the conditions CDC. In particular,
I
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.. CDC (2)(b) is checked by making use of the square area B as

shown in Figure 4. That is, CDC (2)(b) is examined by mark-

ing consecutively all cells of B, since CP and C! are not

greater than kr , where k is a constant. T goes into the

accepting state iff the conditions CDC are satisfied. /

From Theorem 2 and Theorem 8.3.3 of [2], we also have

the following corollary:

i Corollary 3. The set of digital circles is generated by a

monotonic array grammar.

.o
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2.2 Circle with its center at a non-lattice point

Now, let us consider the case where the center of the circle

is not at any lattice point. The discussion for this case is

complicated. First, we treat the case where the center of cir-

cle is not at any lattice point but is on the x-axis. (The dis-

cussion for the y-axis is similar.) The case is shown in Figure

5. In this case, we have two points denoted by CO and C1 in

Figure 5. We call them centers. Without loss of generality, it

is possible to assume that the real center is between C0 and CI .

The case where the real center is on the left of C0 is similarly

treated. Then, it is obvious that by moving some border points

by distance 1 to the left we get the case mentioned in Subsection

2.1. Also, it is obvious in this case that the border is sym-

metric with respect to the x-axis.

Thus, we have the following theorem:

Theorem 4. Assume that a given set S of lattice points is symmetric

with respect to the x-axis. Then there is an algorithm to decide

whether or not the set S is a digital circle.

Proof: First, we mark with C0 and C1 two cells that are hori-

zontally adjacent. These cells correspond to the centers. If

these cells fail to be centers, we mark other cells (after erasing

the previous marks) until we find centers satisfying the following

condition (M):

(M): We move some border points systematically by distance 1

to the left. Border points on the y-axis may move up (and

down) by distance I. The resulting set S' of lattice points

0satisfies the CDC conditions.



We repeat this procedure by moving other border points until

the following condition is satisfied. Namely, if S' satisfies

the CDC condition, there are two real circles which-are the

largest one and the smallest one corresponding to S'. Let

the radii of these circles be rI and r2 , respectively. We

draw two circles of radii r1 and r2 with the center at the

midpoint C21 between C0 and CI. If for every C2 1 Pi we have

r2 < C2 1 P < r and max C P < min C P!, then there exists
2 i j 21

a circle corresponding to the original set S. At this stage,

our procedure finishes. If not, we have the following two cases:

(i) There is no circle with center C, which corresponds

to the original set S.

(ii) We can repeat this procedure, making use of another cen-

ter (i.e., the midpoint C31 between C and C21 and

the midpoint C3 2 between C2 1 and C1 ).

Conditions (i) and (ii) are tested by comparing the radii rl,r 2

and every C2 1 Pi and C2 1 P. When there is no possibility of (ii),

we consider another movement (M), if possible, and repeat the

procedure.

This procedure eventually finishes. The reason is as follows:

The set of border points is finite. Thus, the number of moving

actions (M) is finite. Also, if the given set S is a digital

circle, the condition is eventually satisfied. This is because,

since the difference of the largest radius r1 and the smallest

one r2 is positive, for a sufficiently large number N CN can be

0A



a real center. Further, if the given set S is not a digital

*. circle, it is shown as described below that condition (ii)

does not hold after any movement (M).

Let us consider the situation shown in Figure 6. Here, BD

is a perpendicular line passing through the midpoint D of P.P!.1J

Also, AP . is the smallest radius of a circle with center A which1

contains every border point, and A-B is the largest distance such

that P! is contained in this circle. Then, it is a ncecessary

and sufficient condition for the existence of a circle corres-

ponding to S that the center be in BCM. Similarly, in the case

shown in Figure 7, the center must be in AB. Next, we move the

center to A, and then repeat the process. This procedure fin-

ishes in a finite number of steps, because the nuitber of P.Pj

for all i3j is finite. Therefore, if the given set S is not

a digital circle, we eventually reach a contradiction. Thus the

procedure eventually finishes, and we have the theorem.

Now, let us consider the general case where the center is

not a lattice point. Without loss of generality, the case is

as shown in Figure 8.

Then we have the following theorem:

Theorem 5. There is an algorithm to decide whether or not a

given set S of lattice points is a digital circle.

Proof: This theorem is provable by a similar technique. First,

we take four cells C0 ,C1 IC2, and C3 as in Fiqure 8, and call them

centers. Then, we consider a moving process (M'),by which some

border points move downward by distance 1. This (M') corresponds

I
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to (M) of the previous theorem. Let S" be the new set obtained

from S by the moving (M'). By a similar technique to that used

in the proof of Theorem 4, but using the square COCIC2C3 in-

stead of C0c i , we get the desired algorithm.

As mentioned above, there is an array acceptor (DTBA) for

digital circles with their centers at lattice points. But

for the general case of this subsection it is difficult t le-

fine such an acceptor. The reason is that any acceptor ci *t

compare two distances whose values are real numbers. How-

this is possible by considering a nondeterministic automaton

with counters. For example, it is possible to define a Turing

array acceptor (TA) which accepts digital circles. Thus, it

seems to be an interesting question to find out a weaker

acceptor than TA which accepts the set of digital circles.
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