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ABSTRACT

This paper characterizes sets of lattice points which
are digitizations of circles.
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1. Introduction

Image processing and pattern recognition are mainly con-
cerned with classifying shapes or patterns which appear in
pictures, and the classification is based on geometric proper-
ties of the patterns. To do such tasks by digital computers,
the pictures must be digitized, i.e., converted into arrays of
lattice points. Due to this conversion, it is not always obvi-
ous how to recognize that a set of lattice points must have ari-
sen from a real pattern that has a given geometric property. For
example, how do we characterize sets of lattice points which
are the digitizations of real straight line segments? This and
some related questions have been discussed in [1].

In this paper, we will consider the same problem for circles (i.e.,
disks). First, we discuss the case where the center of the circle
is at a lattice point. For this case, we give conditions for a
set of lattice points to be a digital circle. By making use of
this result, it is also proved that the set of digitized circles
is accepted by a deterministic tape-bounded array acceptor.
Next, we consider the case where the center of the circle is not
at any lattice point. The discussion for this case is not so
easy, but is interesting. For this case, we give an algorithm
to decide whether or not a given set of lattice points is a
digital circle.

It is assumed that the readers are familiar with the basic

definitions and notations of digital pictures. \\\




2. Digitization of circles

Let S be a bounded subset of the plane. For purposes of

computer analysis, it is usual to represent S by a finite set ‘
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i! of lattice points, i.e., points with integer coordinates. |

This set, §, is called the digital image of S, and the mapping

that takes S into S is called digitization.

3
;‘ S can be defined in various ways; we list here several
1 of them:

! (a) S is the set of lattice points contained in S; this

%’ is called the subset digitization of S.

(b) S is the set of lattice points such that S comes closer
than the city block distance % to them, i.e.,
{(i,3){3(x,y)€8: max(|x-il,|y-3]) < %}

This is called the open cell digitization of S. (If

. . . c
we imagine an open unit square P~ centered at each

L

lattice point P, we have PES iff SNe®#3. )
(b') Analogous to (b), using half-open cells P*, i.e.,

i-k<x<it+k, j-ksy<ij+k.

LS AR ol gl o 2 o o o o

(b") Analogous to (b), using closed cells P.
. In this paper, we will use the subset digitizaion of S.
'. The finite set of lattice points B is called a digital circle
f iff there exists a circle A such that B=A under the subset digi-
4
tization.
e
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2.1 Circle with its center at a lattice point

In this subsection we assume that the center of the circle is
at a lattice point. In this case, we can give a necessary
and sufficient condition for a given set S of lattice points
to be a digital circle. Let PQ represent the distance between
points P and Q. Further, referring to Figure 1, the octants
of the plane defined by a center are eight 45° wedges. They
are labelled in counterclockwise order with Roman numerals,
starting immediately above the positive x-axis. We will con-
sider the following conditions on a finite set S of lattice
points:
(1) S is connected and has no holes.
(2) There exists a center C satisfying the following condi-
tions:
(a) Let C's coordinates be (0,0). Then the border of
S is symmetric with respect to the four lines x=0,
y=0, y=x, y= -X. Also, in octant I the border of
§ does not decrease along the x-axis by more than
one step at a time; and for the other octants, sym-
metric conditions hold.
(b) Referring to Figure 2, for every two border corner
points Pi/Pys we have max EFIZ < min Eﬁfz, where
1 J J
P! is defined as follows: 1If Pj is in octant I,
then P3 is the lattice point immediately above Pj.
If Pj is in octant II, then Pﬁ is the lattice point
immediately to the right of Pj. For the other oc-

tants, P! is similarly defined.
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We will denote the above conditions on S by CDC. Then
we have the following theorem:
Theorem 1 A given finite set § of lattice points is a digital

circle iff it satisfies the conditions CDC.

Proof: Condition (2)(a) is explained in Figure 3. It is obvi-
ous that CPi > Cpi+l'
Therefore, it is sufficient for the proof that we consider

a circle with radius r such that max CPi <= r < min CP%. //
i 3

FPor the case where the center is at a lattice point, we
can show by making use of Theorem 1 that the set of digital cir-
cles is accepted by a deterministic tape-bounded array acceptor
(DTBA). The definition of a DTBA is given in [2]. Roughly
speaking, a DTBA is a deterministic acceptor T over the cell
space whose behavior is restricted as follows:

(i) The movement of T is bounded to the area of the input

array.

(ii) T can rewrite any symbol in the cell that it reads.

Theorem 2 There exists a deterministic tape-bounded array

acceptor T which accepts the set of digital circles.

Proof: First, T marks a cell with C. This cell corresponds
to the center. If this cell fails to be the center, T marks
another cell. T continues this movement until it finds a
center satisfying the conditions CDC. This is possible, since

T is a DTBA. Next, T checks the conditions CDC. 1In particular,

.
»
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CDC (2) (b) is checked by making use of the square area B as
shown in Figure 4. That is, CDC (2) (b) is examined by mark-
ing consecutively all cells of B, since EF% and Eﬁgz are not
greater than krz, where k is a constant. T goes into the

accepting state iff the conditions CDC are satisfied. /

From Theorem 2 and Theorem 8.3.3 of [2], we also have

the following corollary:

f‘ Corollary 3. The set of digital circles is generated by a

monotonic array grammar.
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2.2 Circle with its center at a non-lattice point

Now, let us consider the case where the center of the circle
is not at any lattice point. The discussion for this case is
complicated. First, we treat the case where the center of cir-
cle is not at any lattice point but is on the x-axis. (The dis-
cussion for the y-axis is similar.) The case is shown in Figure
5. In this case, we have two points denoted by Co and Cl in

Figure 5. We call them centers. Without loss of generality, it

is possible to assume that the real center is between C0 and Cl.
The case where the real center is on the left of C0 is similarly
treated. Then, it is obvious that by moving some border points
by distance 1 to the left we get the case mentioned in Subsection
2.1. Also, it is obvious in this case that the border is sym-
metric with respect to the x-axis.

Thus, we have the following theorem:

~

Theorem 4. Assume that a given set S of lattice points is symmetric

with respect to the x-axis. Then there is an algorithm to decide

whether or not the set S is a digital circle.

[ Proof: First, we mark with Co and Cy two cells that are hori-
zontally adjacent. These cells correspond to the centers. If

these cells fail to be centers, we mark other cells (after erasing

. the previous marks) until we find centers satisfying the following
condition (M):

:i (M): We move some border points systematically by distance 1

to the left. Border points on the y-axis may move up (and
down) by distance l. The resulting set %' of lattice points

satisfies the CDC conditions.

[ I




We repeat this procedure by moving other border points until
the following condition is satisfied. Namely, if S' satisfies

the CDC condition, there are two real circles which -are the

largest one and the smallest one corresponding to S'. Let

the radii of these circles be ry and r respectively. We

2’
draw two circles of radii r, and r2 with the center at the
midpoint C between Co and Cq- If for every C21Pi

e P < . =5V .
21Pi min C21Pj' then there exists

we have

r, < C,;P, < r, and max C

2 2171 1 i

a circle corresponding to the original set S. At this stage,
our procedure finishes. If not, we have the following two cases:

(i) There is no circle with center C, which corresponds

to the original set S.
(ii) We can repeat this procedure, making use of another cen-

and C and

ter (i.e., the midpoint C31 between C 21

0

the midpoint C32 between C and Cl)'

21
Conditions (i) and (ii) are tested by comparing the radii rysI,

and every C21Pi and C21P5. When there is no possibility of (ii),
we consider another movement (M), if possible, and repeat the
procedure.

This procedure eventually finishes. The reason is as follows:
The set of border points is finite. Thus, the number of moving
actions (M) is finite. Also, if the given set S is a digital
circle, the condition is eventually satisfied. This is because,

since the difference of the largest radius ry and the smallest

one r, is positive, for a sufficiently large number N CN can be
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a real center. Further, if the given set S is not a digital
circle, it is shown as described below that condition (ii)

does not hold after any movement (M).

Let us consider the situation shown in Figure 6. Here, BD

P.PT.

is a perpendicular line passing through the midpoint D of
Also, Kﬁ; is the smallest radius of a circle with center A which
contains every border point, and AB is the largest distance such
that P3 is contained in this circle. Then, it is a ncecessary
and sufficient condition for the existence of a circle corres-
ponding to ; that the center be in BCM. Similarly, in the case
shown in Figure 7, the center must be in AB. Next, we move the
center to A, and then repeat the process. This procedure fin-

ishes in a finite number of steps, because the nuitber of PiP5
for all i#j is finite. Therefore, if the given set S is not
a digital circle, we eventually reach a contradiction. Thus the

procedure eventually finishes, and we have the theorem. //

Now, let us consider the general case where the center is
not a lattice point. Without loss of generality, the case is

¢ as shown in Figure 8.
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! Then we have the following theorem:

Theorem 5. There is an algorithm to decide whether or not a {

"....--f
[ ]

given set ; of lattice points is a digital circle.
r Proof: This theorem is provable by a similar technique . First, 1
E we take four cells CO,Cl,Cz,and C3 as in Figure 8, and call them
P. centers. Then, we consider a moving process (M'), by which some

border points move downward by distance 1. This (M') corresponds

L e T S ' ——— A . e e M. .om s m . a - _m _a . - - - - . 1
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to (M) of the previous theorem. Let S" be the new set obtained
from S by the moving (M'). By a similar technique to that used

in the proof of Theorem 4, but using the square C0C1C2C3 in-

stead of COCl, we get the desired algorithm. //

As mentioned above, there is an array acceptor (DTBA) for
digital circles with their centers at lattice points. But

1
}‘ ¢ for the general case of this subsection it is difficult t« le-

v

fine such an acceptor. The reason is that any acceptor ci »t
compare two distances whose values are real numbers. How

this is possible by considering a nondeterministic automaton
with counters. For example, it is possible to define a Turing
array acceptor (TA) which accepts digital circles. Thus, it

seems to be an interesting question to find out a weaker

rv-ﬂqﬂwwv,-vvv'
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acceptor than TA which accepts the set of digital circles.
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