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A missile is an unmanned sophisticated airframe design,
carrying a warhead and aimed to kill a target.

In order to kill the target when the warhead explodes, a

Lt e g

guidance system is needed to get the missile close enough to

the target. Therefore, an appropriate measure of guidance

nghutig
;|

performance is miss-distance, which is defined as the minimum
distance between the missile and the target. Miss-distance

is the measure of homing performance, and miss-distance is

T Ty

affected by the following three main guidance parameters:

(a) Used gquidance law

(b) Relative stability
(c) Response time.

Two other important causes of miss-distance due to tar-

get's characteristics are:

(a) Random target maneuver

(b) Glint noise.
q The required £light control system properties of the missile
are affected by:

; (a) The type of target-sea vessel, ground vehicle or air-
i frame (i.e. airplane, missile)

(]
F (b) The aerodynamic properties of the missile, whether it
{ is stable or unstable, winged or wingless
{ {c) The aerodynamic characteristics of the missile (aero-
¢ dynamic coefficients)
: -
12
¢

p—
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(d) The zone of performance required--short, medium or
long range, low or high speed, 'ow, medium or high
altitude and other operational characteristics of a
possible scenario

(e) The type and quality of used instrumentation

(£) Many other interdiscipline design factors that occur
during the missile design development work.

The type of target determines the maneuver capability re-
quired by the missile and in conjunction with the type of
sensor and background environment, determines the noise that
contaminates the target signal needed for homing. For in-
stance a ship gives a strong radar return, but its complex
shape generates much radar noise. The relatively low ma-
neuverability of the ship and its sea level location minimize
the maneuverability and the extent of the altitude versus
Mach envelope required by the missile. The tank target is
similar but with different noise and clutter properties than
those of the ship. The aircraft target is guite different.

ts high maneuverability and fast response in conjunction
with its daily improving survivability, and the large flight
envelope of modern aircraft, further burdens the missile
aerodynamic and flight control system design.

Today, the trade-off in missile design is towards the
reduction of missile size and consequently weight, by de-
veloping guidance systems leading to minimum possible miss
distances. This magnifies the importance of guidance com-

oonent imperfections and dictates relatively stringent control
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of the flight control system dynamics--acceleration gain,
time constant and relative stability.

This study deals with the antiairframe missile control
system. Specifically it deals with the terminal guidance as

it is developed in the following.

14




II. EQUATIOMS OF MOTION

A. GENERAL EQUATIONS OF MOTION

It is well known that on each material body there are
acting forces and moments.

Newton's law, concerning an inertial system states that:
’F = my (II.A-1)

It is also known that in the case of a kinematic system,

a ) d
= =320 ) + wx() -
(dt inertia Gt (II.A-2)
D"d Thus in case of a freely maneuvering body, the apolica-

tion of equation (II.A-2) into equation (II.A-1l) gives:
°F = m[i(\T' )+ wxV ] (II.A-3)
L dt ' 'm m )

€
o
1
{
[

?
V‘
ii the following is valid:
s
3
r

4

r
I
X

;
N

] where: JF: total force acting on a missile

V_: vector velocity of a missile

' m
Z o
L ©: angular rate of a missile
1 m: mass of a missile (it is considered as constant
g for simplification reasons)
(¥ ). 1 lerati
- : inear acceler n
) 3t Vi r eratio
b - .. \
| wxvm: centripical acceleration
{
i The total force acting on a missile is given by:
]
P

-

F=mg + F, +

734

(IT.A-4)

=~

A

............................................................
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where:

- <>
FT and FA

..................................

missile weight
vector thrust of missile motor

missile vector aerodynamic force.

are controllable applied to the missile forces

while m§ is uncontrollable existing force.

In this study, the missile jis considered as moving into

the perceivable three-~-dimensional (3-D) space.

Thus, utiliz-

ing an orthogonal 3-D Cartesian coordination system with the

X-axis along the missile longitudinal axis, and making use of

international notation, the following expressions are derived:

where:

-
Vv =

3

£V
]

Qi
]

. A a4 e m a a__a

ul + vy + wk (1II.A-5)
pi + 0 + Rk (II.A-6)
gxI + gy‘]’ + gzi (II.2-7)
> - >
Fpel + Fryd + Fpk (II.A-8)
- >
FAxl + Fij + FAZk (II.2-9)
drag force (IT.A-9a)
side (IT.A-9Db)
lift (IT.A-9c)
T =z 1, -
Fxl + ij + sz (IT.A-10)
Fpe = Fa, + Mg, = X + mg (IT.A-10a)
me + FAY + mgy =Y + mgy (IT.A-10b)
FTZ + FAZ + mg, = Z + ng, (IZ.a-10c¢)
16
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::'
b
s I
: -> >
;] - w X Vm = |P Q R (ITI.A-11)
- U v W
-
3 Expanding equation (II.A-3) in 3-D and utilizing equa-
!! tions (II.A-4) - (II.A-11), the following three force equa-
tions are derived:
= o= m[d'U + QW - R§- (II.A-12a)
>‘ x dt - i :
3
8 F=mn|iv + RU - PW| (II.A-12b)
. y dt - :
-
¢ - nf[4s - oul -
3 Fz m a?ﬂ + PV QU- (II.a-12c)
L It is also well known that the absolute rate of change

g‘ of the moment of momentum (with respect to flight path axis),

for a freely maneuvering body in 3-D, is given by:

dh >
abs _ dh -
T Ty + npxh (IT.A-13)

Making use of international notation, the following ex-

pressions are derived:

r df'Iabs T T+ >
! —— = L1 + Mj] + Nk (IT.A-14)
} dt

> b dd b d =
| = 1=
}‘ h hxl + hy] + hzk (II.A-13)
[ = - - -
t hx PIxx QIxy RIxz (I1.A-16a)
L
b h = -pPI  + QI - RI (II.A-16D)
3 Yy P Yy Y2
'l . -
: hz = —PIZX - QIzy + RIzz (IT.A-1lo6cC)
| 17
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Moments of inertia:

Products of inertia:

Iy = [(y® + z%)am
I = 2 + x7)dm
vy K )
Izz = [(x® + y®)dm
Tey = Tyx = [xydm
Iy = Izy = [yzdm
Ie =14 = [zxdm

SO N

h=|P Q@ R
hx hy hz

(II.A-17a)

(II.A-17b)

(IT.A-17c)

(ITI.A-174)

(IT.A-17e)

(II.A-17f)

(IT.A-18)

Expanding equation (II.A-13) in 3-D and utilizing equation

(II.A-14) up to (II.A-18), the following three moment equa-

tions are derived,

| 1
Py -
!L) IXX Ixy
I
‘Mi = |=1 I
1 i 2 S Yy
Lo
' - -
lvl sz Izy
o TIke
+ Iyz
|
E(Iyy° Ixx)
The three £force
equations (II.A-19)

which in matrix notation are:

o i
-Ixz P! E 0 -IyZ
N
-Iyz !Q * i Tyz 0
T S | =
T2z | R "Iy Ty
- |
(I, Tyy) Xy igPQ
i
“Ixy (Tex = Izz)!]QR
i
I
IXZ -Iyz ! !RP
equaticns (II.A-12) and the

are the six equations which

18

| p2

P

|
o2

xziiQ

o |Ig?
(II.A-19)

three moment

describe the
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motion of any body with six degrees of freedom in the 3-D

orthogonal Cartesian coordinate system. Actually, these
equations are not linear.
Up to this point of derivations, the only assumption that

has been made is that the missile mass remain constant.

B. NOTATION AND CONVENTIONMS

It is accepted internationally that the missile 3-D or-
thogonal Cartesian coordination system be centered on its
center of gravity and fixed in the body as follows:

x-axis, called the roll axis, forwards, along the axis of
symmetry if one exists, but in any case in the plane of

symmetry.

y—-axis, called the pitch axis, outwards and to the right if
viewing the missile from behind.

z-axis, called the yaw axis, downwards in the plane of sym-
metry to form a right handed orthogonal system with the
other two.

The forces and moments acting on the missile, the linear
and angular velocities, and the moments and products of iner-
tia are shown in Fig. (II.B-1) and their notation is summar-
ized in Table (II.B-1).

The yaw plane is the xoy plane and the pitch plane is the
X0z plane.

In the missile study, the following angles are defined:

4: incidence in the pitch plane. It is called angle of
attack and is equal to x = w/u

{2

3

incidence in the yaw plane. It is called side slip
angle and is equal to 3 = v/u

+: incidence plane angle
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Table II.B-1. Notation

Roll Pitch Yaw
Axis b4 Yy z
Angular rates P Q R
Component of missile velocity
. U v W
along each axis
Component of force acting on
: - . X Y YA
missile along each axis
Moments acting on missile
. L M N
about each axis
Moments of inertia about I I 1
each axis XX Yy zz
Products of inertia Iyz Ixz Ixy
3: Total incidence, such that: tana = tan$d cos i

tan 8 = tan$9 sin }
In any body and for any plane of symmetry, two out of
three products of inertia become zero. For instance, for a
projectile like missile (as in Fig. II.B-1l), if xz is a plane

of symmetry, then:

C. FURTHER DEVELOPMENT OF MOTION EQUATIONS
It is plainly obvious, that no one missile has vndis-
turbed flight, due to a lot of reasons; for instance, at-

mospheric variations, target motion, jittering, glint, etc.
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Thus, at any moment, the velocity and angular rate vector

components will be:

3 U=Uy+u ~ U=u (I1.C-1a)
Vv +v » V=¥ (II.C-1b)
F W=wW, +w > W=w (II.C-1c)
E. P=Py,+pP - P =p (II.C-2a)
i Q=0 +q » 0=4 (II.C-2b)
,’ R=Ry+r = R= r (II.C-2c)

where the component subscripted with zero represents the

steady state vector component and the unsubscripted component
represents the perturbation of the vector component along
each axis.

The steady state of the missile orientation will result

in the following gravitational force components:

4 9y = -9 sin 90 (IT.C-3a)
! gy =g cose0 sin 30 (II.C-3b)
{ g, = g cos 3, cos 3, (IT.C-3c)
[
[ -~ -+ =+ >
; where: g =9g,1+ gyj + gzk (II1.C=-3)
bo: angle of vehicle lateral axis with respect to local
horizontal
30: angle of vehicle longitudinal axis with respect to
r local horizontal
Vgt angle of vehicle vertical axis with respect to local

horizontal.
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Also, due to instant
P = ¢0 + ¢
Q= 60 + 8
Y=gy

The general Direction Cosin

cosb cosy

[Cosine Matrix]= ( - siny cosd

cosy sinf cos¢ (
( + siny sind )
Then:

[A'] = [Cosine Mat

where [A'] is the (3x1) matrix
that acts along the
instant.

{A] 1is the (3x1) matrix
that acts along the

Eurelian axes.

cosy sind sin¢) (
+

perturbations, there will be:

(II.C-4a)
(II.C-4b)

(II.C-4c)
e Matrix is:

cosf siny ~sind ‘

cosy cos¢ ~
siny sind sin¢a) cosf sin¢g| (II.C-5)
siny sind cos¢

I
- cosy sind ) cosB cosd)l

rix] (A] (II.C-6)

of the components of any force

axis of the air frame at any
force

of the components of any

steady state flight path

The relations between instantaneous Angular Velocities

and their rates due to instantaneous

orientation are:

changes in Eurelian axes

iPi B! 0 -sin3 |3

f b
I | . l!
Q=10 cos » sin b cos %!Eﬁi (II.C-7)
P ' | .
P | . e
'Ry .0 -sinp cos b cos I,

23
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& 1 tan 6 sin ¢ tan6 cos ¢||P

gl = |0 cos ¢ -sin ¢ Q (IT.C-8)
sing¢ COS ¢

v 0 cos § cos 9 R

Combining equations (II.C-1) up to (II.C-8) with the
equations (II.A-12) and (II.A-19) and after minor manipula-

tions, equations (II.A-13) and (II.A-19) turn into:

X _ . - _ _ -
o [u + on + qw0 + gqw VR0 rV0 rv g'x]

+ [QOW0 - ROV0 - gsin 99 cos 3] (II.C-9a)
Y _ .- _ _ _ -
o= [v + uR0 + on + ru wPO pwo pw g'y]

+ [ROUo - POWO - gcos 9, sin@o] (IT.C-9b)

Z_ - - - -
i [w + vPO + pV0 + pv uQ0 qU0 qu g'z]

+

[POVo - QOU0 - gcos 30 cosaol (II.C-9c)

L= Ixxp - Ixzr - Ixz(qPO * pQ0 * 2q)

+ (I - Iyy)(rQ0 + qRO + gr)

z2
+ [(Izz - Iyy)QORO - IXZPOQO] (II.C-10a)
M= T+ 2 2 2
M = Iyyq Ixz( pPO + p~ - ZrRO -r7)
- (IXX - Izz)(rPO + pRo + rp)
e [I..(P% ~R23) + (I - I )RaP.] (II.C-10b)
Xz'° 90 0 XX zz 7370 )
24




- I, (PQy + aPy + qp)

N = Izzr + (IY

Y

+ I, (aqRy + rQy + qr - p)

+ [(IYY - Ixx)PoQ0 + IszoRo] (IT.C-10c)

Applying Taylor's series expansion around the operating
point, the first parts of equations (II.C-9) and (II.C-~10)

turn into the general following form:

A= AO + dA + H.O.T. (IT.C-11)

where  A.: the steady state component

dA: the first order perturbation around the
operating point

H.O0.T.: High Order Terms of perturbation, which are
considered negligible and thus omitted for the
rest of this study. -

If there are not perturbations, which means

then equations (II.C-9) and (II.C-10) turn into:

X
0 .

o = QOWO - ROV0 - gsin socos 90 (ITI.C-12a)
Y5

_ = ROUo - POWO - gcos 9051n L (IT.C-12b)
Zy

- = PCVO - QOUO - gcos 30cos bg (II.C-12c)
LO = (Izz - Iyy)QOR0 - IszOQO (II.C-13a)
M. = I__(P,® - R.%) + (I._ - I._)R.P (II.C-13b)
0 Xz 0 0 ' XX zz' 7070 : ~




.vvv,T, v-rvsvv‘i
. 9 A

(L

NO = (Iyy - Ixx)POQO + IszORO (IT.C-13c)

Equations (II.C-12) and (II.C-13) are called "trim equa-
tions" and concern the absolute stability of the missile
around the operating point.

Subtracting the "trim equations" from equations (II.C-9)

and (II.C-10) correspondingly, the following equations

result:

ax _ a + wQ, + W, + qw - VR, - rV, - rv - g' (II.C-14a)
m 0 0 0 0 X ‘
ax . V + uR, + rU, + ru - wp_, - pW, - pw - g' (IT.C-14Db)
m 0 0 0 0 Yy ‘
dz _ w + VP, + pv pv - uQ, - qU, - qu - g' (II.C-14c)
m 0 0 - °0 o~ ¢ 92 -t
dL = Ixxp - Ixz - Ixz(qP0 + on + pq)

+ (Izz - Iyy)(rQO + gqR, + gr) (ITI.C-15a)
dM = 1 é + I__(2pP, + p2 - 2rR, - rz)

vy X2 0 0

+ (IXx - Izz)(rP0 + PRy + rp) (ITI.C-15b)
dN = Izzr + (Iyy - IZZ)(pQ0 + qPO + gp)

+ I (qRy + rQy + qr - D) (II.C-15c)

These equations (II.C-14) and (II.C-15) are called "per-
turbation equations" and will be the subject of concern for

the rest of this study.

At this peint, it can be written that:

Equations of motion = (trim equations)+(perturbation esquations)
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D. FURTHER DEVELOPMENT OF PERTURBATION EQUATIONS
It is possible for a missile to look like an aeroplane.
Thus, its hull may have all or some of the following control-
lable mechanisms:
Elevator
Ailerons
Rudders
Flaps
Dive brakes
Controllable directionally thrust vector
Controlling the above mechanisms a deflection angle is
created as follows:
E: Elevator deflection angle
A: Aileron deflection angle
R: Rudder deflection angle
F: Flap deflection angle
B: Dive brakes deflection angle
T: Thrust deflection angle
These deflections result in perturbation guantities, the
effects of which depend upon the design characteristics cf
each one part. These perturbating gquantities are usually
noted as:

Sj where j is E or A,R,F,B,T.

For the rest of this study, the effect of all these per-

turbation quantities due to deflections will be denoted as !.
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Furthermore the thrust vector will be considered steady and
- acting along the fuselage axis.
Any one of the components X,Y,2,L,M,N is a funcrtion of
u,v,w,p,q,r and their rates. 1In general, any one of the

above quantities can be denoted as follows:

A e o o & o e @
A = A(u,v,w,p,q9,%,8,4,v,w,p,q,r,9) (I1.D-1)
[ and
{' A s e @ e s e o
da = da(uw,v,w,p,9,r,8,4,v,w,p0,q,r,9%) (IX.D-1la)
The expansion of eguation (II.D-la) gives:
b
4 N
} _ 2A 3A 3A A JA A A
: da = Jydu + v+ v ¥ 5pdR + 5gde g+ 559
5 A, . 9Ase . 3Ase . 3A.e . JA.- . SAse . BAs:
3 + Tﬁdu + SVdV + Ede + =5dP + SEdq + gfdr + Egdo (II.D-1b)
T ¢
[ In perturbation theory, the perturbating quantities are as-
sumed very small, thus:

u,v,w,p,q,r,d << 1

and conseguently:

3 du,dv,dw,dp,dq,dr,ds << 1

<
4
- After all the above, with reasonable accuracy it can be
considered:
¢ u = du v = dv N = dw
D = 4p g = dg r = dr 5 =43
. . . . . . (I1.D-2)
u = du v = dv w = dw
¢ o = dp q = ig r = dr P o= dd
28
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For convenient notation it is introduced:

oF

1

@ 3¢ Fr (II.D-3a)
1 3H
= =— = H (IT.D0-3b)
Ihh ar r

where F: x/x X,Y,2
H: x/x L,M,N

r: x/x u,v,w,p,q,r,%,4,v,w,p,q9,2,9

h: x/x x,vy,2

Introducing equations (II.D-2) and (II.D-3) into equation

(I1.D-1b) the last equation turns into:

1 _ X . .
ﬁdF = Fuu + Fvv + Fww + Fpp + qu + F.r + FSO + Fuu + Fov
+ Fow + Fép + Féq + For + F2o (ITI.D-4a)
1 . . .
de-Huu+HVV+wa+pr+qu+Hrr+Hso + Hgu + Hev

+ HQW + H-.-p + qu + Hfr + Héc (I1.D-4Db)

p

The coefficients Fr or Hr are called aerodynamics derivatives
or coefficients. These are normalized quantities and their
magnitudes depend upon the aerodynamic characteristics of

the missile. Hopefully, in practical aspects, some of these
coefficients can be ignored as very small and thus negligible
quantities.

The aerodynamic derivatives are devices enabling the con-

trol engineers to obtain transfer functions defining the
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response of a missile to its aileron, elevator or rudder
deflections.

At this point, it must be recalled that "the missile
aerodynamic forces are relative to the atmosphere and NOT to
the inertial space." Thus, if there exists atmospheric tur-
bulence or motion, terms representing the gust loading (tur-

bulence) must be added to equation (I1.D-4) as follows:

l - - - -

=dF = Fu((u ug) + FV(V vg) + . . . (II.D-4a.1)
1 - - - -

f;;ﬂ Hu(u ug) + Hv(v vg) + . e . (II.D-4b.1)

The derivation of aerodynamic derivatives is beyond the scope
of this study. Thus, these are not derived but used in the
rest of this study.

After all the above, the perturbation equations in full
expansion are shown in table (II.D-1).

Often it is required toc express the equations in terms

the angle of attack » and side slip angle 3 rather than

0
th

in terms of w and v.

Since a = W/Uo and 23 = v/U0 it follows:

w=xU0 - 3w=UO)<x |

V=:’,UO - 3V=Uo}8
_ 1 :F _ 1 5Fr 1 -

F s %w Y n3a an Ug = F >

1 °F 1 5F 1
w = = = D e e 2 = B 2
vV m v v m 33 UO ‘UO T3 ‘

|
30




Table II.D-1. Perturbation equations in full expansion.
For o missile with one plane of symmetry.

- - - -p!' = 5
u+ wQ0+ qwo+ qw vRo rVo v-g', qu+ va+ wa+ pr+ qu +er +X50
XSB Xaa
+Xeu+Xev +Xew+Xop+Xeq+Xer +X28
u v W P q r S

XéB X&a

- - - - ' =
v +uRO +rU0 +ru wPO pWO pw-g y Yuu +va +wa +Ypp +qu +Yrr +Y65

v

‘BB Yaa

+YoG+Y-G+Y-€z+Y-§+Yo&+Y-£-+YéS
u v w P q T

- - -qu=-g' =
w+vP0+pV0+pv qu qUo qu-g', Zuu+Zvv+wa+pr+qu+er+ZS<S

ZBS Zaa

X

o.+ o. o. -. -. -.
+Zuu Zvv+ wa+ pr+qu+er+Z6

1, -1
* XZ 2z vV
- + 4+ p0 el =
p-7— (r +qPy+pQy + pq) +|—3 (rQy +qRy+qr) = L u+L v+L w
=X XX
Ly3 L»
X

+ + H+ .. 'O .. .C .. ..
Lpp qu+er+L50 Luu+va+wa+Lpp+qu+er+L

1
o]

2
2

2 20 fax " laz
+p” =2rR, - 1) +{——— (rP0+pR

=Z
q. + (pr 0

+rp) = Mu+Mv+M w
u v W

0 0

2 .
Msu MC{.)L

+) N M +M 3 MU+ Moy Moy + Mop +Moq +MeT +Me 3
pr+\4qq+lrr +"IS \4uu+ v VIWJ+‘4pp +\4qq +“Irr+M:3

I
* Vv XX Xz .
o e +qP. + + —_— R. + +qr - = 3 N
r (on P, ap) Izz (q 9 rQ0 qr - p) Vuu-+VVv-+wa

N, N_u
3 )

FN D+FN q+N r+N. T +NoU+Nev +Now+Nep +Neq +Neor +Ne4
pp qq \Irr : qu 3V \Iww \Ipp \Iqq \Irr+\t“
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1 03H 1 3H 1
HWw=o"— =W == = =alU, = Ha
W Ihh ow Ihh aa U0 0
1 5H 1 3H 1
HV =— 2=v = == =2 =R U, = H,8
v Ihh v Ihh 38 Uo 0 8

These terms Faa, F_.R8, H a, H,B are shown underneath their

B a 3
equivalent terms in table (II.D-1).

The equations shown in table (II.D-1) are the six equa-
tions of motion of a body with one plane of symmetry and six
degrees of freedom. The first three of these equations are
force equations while the remaining three are moment equa-
tions. All six equations are not linear. These are also
coupled to each other. For instance, the term "pw" says that
there is a force in the y direction due to incidence in pitch
( = w/U) and roll motion. In other words, the pitching mo-
tion of the missile is coupled to the yawing motion on ac-
count of roll rate. The term "pv" also says that yawing
motion induces forces in the pitch plane if rolling motion
is present. This is most undesirable as it is required for
these two "channels" to be completely uncoupled. Ideally
speaking, rudder movements should produce forces and moments
in the vaw plane and result in yawing motion only; elevators
should result in a maneuver in the pitch plane. Cross-
coupling between the planes contribute tc system inaccuracy.
To reduce these undesirable efiects, the roll rates must be

kept as low as possible.
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At this point it is desirable to recall that "all three

products of inertia (Ix r I, sz) are zero if there are two

4 Yz
axes of symmetry, while two will be zero and the third will
be small if there is one axis of symmetry and the missile is
reasonably symmetrical about another axis."
E. LINEARIZATION AND DECOUPLIZATION OF MISSILE MOTION
EQUATIONS
To simplify the study, a projectile like missile is as-
sumed. Such a missile has two axes of symmetry and two
planes of symmetry (rotational symmetry). Thus, there will
be a correlation between some aerodynamic derivatives and
inertia terms as in table (II.E-1) is shown.

Table II.E-1. Some relations due to the rotational
symmetry of a projectile like missile.

Ixy = Iyz = sz =90
Tyy = tzz
Y3 = Za N3 = -Mi q = ~r
vy = Z; N, = oM, v =w
v, = 2, Ny = -M:
1, = -2, Ve o= Mg

N. = =M,

The two planes of symmetry that are used to studv the

missile motion are the:




a. X0Z plane or longitudinal or pitching motion plane with
variables to be examined; u,w,q,a = w/Uo, qg =§

b. XOY plane or lateral or yawing motion plane with varia-
bles to be examined; v,p,r,8 = v/Uo, p = ¢, r= y
Decouplization of missile motion equations means to delete
all the terms (variables) which are not mainly concerned.
» For further simplification and in order to facilitate the
E’ linearization process, it is assumed that:
;‘ a. There is nc wind side effect, that is: W, =V, =0
. b. The order of products and squares of perturbating
quantities is negligible; thus:
L‘ qw = IV = Xru = pw = pvV = qu = gp = rq = p2 =% = rp = 0
t c¢. The order of the following aerodynamic derivatives is
: negligible:
g Xw = Xv = Xp = Xq = Xr = 0
?(w‘ Yu = ¥Yw = Yp = Yg = Yr = 0
s Zw = 2q = Zv = Zp = 2r = 0
E Lu =1Lw =Lg =0
F! Mp = Mr =0

After the above assumptions, which from a practical point
of view are acceptable, the six equations of missile motion

are decoupled, linearized and organized in two sets of equa-

LA e e cane o 2 o an a0

tions which are given in a state variable form as follows:

a. Longitudinal Equations

r '3 I -y a1 i '
L ST o sslmpx
‘ w2 et |
i R u 2y s Y . | Z . A

et R ' 2
r | ! N M. M. : I o ! N Ve !
H q, t\'lu**-"lwz“1 Mw+Vlew M:-I *MWLO Oilq‘ sVIS +szff
t oi ! ! . !

R ' 0 0 1 OIE“‘ : ] f
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and auxiliary relationship:

a, =W - GUO = -~h

b. Lateral Equations

3 Y, 0 -1 g/uy||8 Yhs o Yrs | (6,
) L'y L', L'y 0 |lp L's, L's.||6,
r ) Ny N', N 0 |ir ' N's, N's,

? 0 1 0 0 ||e 0 0
where: a: aileron

r: rudder
¢: angle dve to roll from vertical position.

Equation 8 = Y8 - r + go/Uy + Y*; §_ + Y*, §_ can be re-
2 °r

Sa a
replaced by its equivalent v = Y,V - Uor + gé + Y5 g + ¥ 6
a °r T
with auxiliary relationships:
p = 5 banking rate
r = ¢ vyawing rate
QYc.g. = UOB - gd + Uor =v - g¢ + Uor (v = SUO)

Note: If the missile has only one plane of systems then:

L; + Iszi/Ix

1 X

L', =

2
1 -1 xz/Ixszz

) T
Ni * Ixz“i/Izz

2
1 -1 xz/Ixszz




Some control engineers prefer to work with transfer func-
c - tions. These transfer functions can be derived by applying

Laplace transform to the above sets of equations.

F. SUMMARY OF UTILIZED ASSUMPTIONS

——" -"ﬂ»r w

The following assumptions were used during the derivation
of the decoupled sets of longitudinal énd lateral equations.
1. Rigid body with constant mass
.‘ 2. Projectile-like missile with two planes of symmetry
3. Small perturbation theory

In a Taylor series expansion around the operating
point, the second and higher order terms are negligible

5. Lots of Aerodynamic coefficients are deleted as negli-
gible quantities

Aan i e s o
, -
&>
.

6. No wind side effect

The order of products and squares of perturbation gquan-
tities are deleted as negligible quantities

8. The terms (variables) which are not mainly concerned in

the study of motion in each plane of symmetry are con-
*! sidered as zero.
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III. GUIDANCE LAWS

A. DEFINITION OF GUIDANCE LAW

Guidance law is the mathematical modeling of a physical
or logical relation between certain perceivable parameters,
which enables appropriate missile flight path dynamics to be
determined so that some mission objectives might be achieved
in an efficient manner.

There have been developed many guidance laws, which have
been categorized in two major subsets, the "classical" and
the "modern" guidance laws.

Each one of the guidance laws is characterized by vary-
ing degrees of performance, complexity and seeker/sensor re-
quirements. The increased accuracy requirements and more
dynamic tactics of modern warfare render contemporary guid-
ance laws unsatisfactory in many cases. This is especially
true at the last moments of air to air missile engagements.
Improving performance involves a trade-off between more so-
phisticated hardware or more sophisticated software. In-
creased hardware sophistication almost always results in
increased costs. With the advent of new theoretical methods
and low cost/high speed microprocessing technigues, the po-
tential exists for tremendous increases in missile brain

power with little or no corresponding increase in cost.
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B. FLIGHT STAGES OF A MISSILE

The total flight history of any missile can be divided

into the following three stages/phases:

1. From Launch Up to Full Activation of All Subsystems

Depending on the designer-manufacturer and safety
reasons there are missiles that take a few seconds until all
their subsystems become fully activated and capable of
functioning.

2. Mid-Course or Stand-off Guidance

This is the phase from the end of previous phase
until the missile seeker "locks-on" the target. It is re-
guired when the missile is launched at such long ranges from
the target that either the missile seeker cannot "see" the
target or, if it can, the available guidance information is
of sufficiently poor gquality that it is unusable. In such a
case, the guidance law usualiy consists of some pre-programmed
strategy such as "maintain launch heading and a constant al-
titude" or "fly directly to where it is believed that the
target might be." (In some cases tactical missiles do not
have seekers and the complete trajectory can be thought of
as a type of mid-course guidance.)

Mid-course guidance is primarily an energy manage-
ment and inertial instrumentation problem. Although advanced
control and estimation techniques are applicable to this
problem as well, the objectives are sufficiently diZferent

£rom the objectives of the terminal guidance and control
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problem. The study of mid-course is not within the scope of
this study.

3. Terminal Guidance

This is the phase where a terminal seeker is "locked-
on" to a target and provides reliable tracking data (short-
range combat). The dynamic requirements of terminal guidance
are usually more stringent because all the trajectory errors
which have accumulated must be corrected in a vary short time.

All the above three phases are shown in Fig. III.B-1.

C. TERMINAL GUIDANCE LAW

The terminal guidance law as a part of a guidance loop
(Fig. III.C-1l) represents an essential component in the de-
sign of guided missile systems. The information which is
needed to perform the guidance task of missile-target inter-
cept, determines basically the configuration of necessary

senscors and information processing.

TARGET iy ] INFORMATION
>1 SENSORS >
MOTION PROCESSING |

|

MISSILEI: ‘
lGUIDANCE LAW

MOTICN |

-

Fig. III.C-1. Structure of information flow
in missile guidance loops.
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.

ACQUISITION

LAUNCH  — MIDCOURSE
GUIDANCE

TESMINAL GUIDANCE

Fig. III.B-1. Typical Tactical Missile Trajectory
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The objective of any terminal guidance law is to obtain
as small a miss distance as possible. The demands on the
missile accelerating capability as an important system para-
meter depend strongly on the kind of used terminal guidance

law.

D. DESIGN PRINCIPLES FOR CLASSICAL GUIDANCE AND CONTROL LAWS

The guidance and control laws used in current tactical
missiles are based largely on classical control design tech-
nigques. These control laws came into being over 35 years ago
and have evolved into fairly standard design procedures.
Though the specific guidance and control law varies from one
missile to another (depending on its size, weight, cost and
manufacturer), the following basic characteristics are common
to all of the missiles:

a) The overall control of the missile is divided into two
or more loops. The outer guidance loop controls trans-
lational degrees of freedom, while the inner, autopilot
loop controls missile attitude.

b) Proportional feedback is used to correct missile course
in the outer loop (commonly referred to as proportional
navigation or "pro-nav"). Pro-nav is gquite successful
against nonmaneuvering targets.

c) In the inner loop, the roll, pitch and yaw channels are
uncoupled and are typically cocntrolled independently of
each other.

d) Sensors typically measure aspect angles in pitch and
yaw planes and rates may also be available. Advanced

sensors may measure other variables.

e} No explicit state estimators are used and the signals
are filtered to reject high freguency noise.

£) All ccmmands are amplitude or torgue constrained <o en-
sure autopilot and missile stability.

12
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Classical controllers have two major advantages, simpli-
city in design and simplicity in implementation; but they
also have several problems. Table III.D-1 indicates how
characteristics of classical short-range missile terminal
guidance and control laws lead to advantages and disadvan-

tages in design and implementation.

E. CLASSICAL TERMINAL GUIDANCE AND CONTROL LAWS

Quite a few guidance laws have been developed based upon
classical control methods and used widely in missile control
over the last 40 years,

There are many factors involved in the selection of a
guidance law; i.e. cost, complexity, reliability, type and
scenario of engagement, etc. The most popular classical ter-
minal guidance laws are:

1. Command to Line-of-Sight

Strictly speaking, it is not a terminal guidance law
because it requires no terminal missile seeker. According to
this law, the launcher merely tracks the target, tracks or
computes the missile position and sends steering commands to
the missile, which are proportional to the angle the missile
is off the line-of-sight, in order to guide it along the
launcher to target L.0.S. This law is implemented in ..s-
siles of generally snort range, from several hundred yards to
a few miles. A speed advantage of the missile is needed

since there is no anticipation or lead in the tracking. The
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avionics of the missile are relatively simple. The missile

must be able to distinguish left-right from up-down commands
(roll stabilization or resolver). Commands are sent either
by a wire attached to the missile or by a rear antenna on the
missile. It is necessary to have the launcher reference sys-
tem or personnel in the loop continually from launch to im-
pact. So, "launch and forget" is not possible.

2. Pursuit

According to this law, steering commands are generated
to drive the angle between the line-of-sight (L.0.S.) and
missile velocity vector to zero. That is, the missile steers
to head straight for the target. Pursuit navigation can be
likened to "dog chasing a rabbit".

This law works well for non-moving or slowly moving
targets but it degrades seriously in case of fast targets,
such as those found in the air-to-air environment. In the
air-to-air mission, the trajectories are clearly suboptimal
and usually end in tail chases. However, this guidance law
does have the advantage of being relatively insensitive to
system noise.

This law can be implemented on medium range missiles.
The target 1s required to give back a good homing signature.
It can be used as a "launch and forget at lock-on" method.
Its implementation requires, as avionics, homing sensors,

simple processing scheme and maybe an observer,.
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3. Proportional Navigation (P.N.)

The development of this law was a major break-through
in homing missile guidance. 1In P.N. law, steering commands
are given so as to drive the line-of-sight rate to zero.

Subsequent studies using optimal control theory have
found P.N. to be an "optimal" guidance law when the missile
and target have constant velocity, the missile is inertia-
less, and the only optimal criterion is to minimize terminal
mis~-distance. However, assuming constant missile velocity is
a serious assumption that neglects considerable thrust and
drag effect. Because thrust and drag are present, P.N. is
not optimal even against constant velocity targets. More-
over, the targets seldom have constant velocities.

Despite its short-comings, P.N. is easy to implement
and, for many years, provided satisfactory missile performance.

P.N. 1s implemented in "launch and forget upon lock-
on" methods of missile steering.

Therefore, it has seen considerable use, although it
is somewhat sensitive to unfiltered system noise.

Due to its popularity, P.N. is studied extensively in
the next part of this study.

4. 2Proportional Navigation and Pursuit

There have been several attempts to combine the good
features (while simultaneously eliminating the bad ones) of
?.N. and pursuit guidance into an overall composite guidance

law. The ccmbination of P.N. with reduced navigation gain
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and a parallel channel of body pointing pursuit provides a
degree of compromise between the two guidance laws. In this
case, guidance signals are computed based on both laws, and
providing a time varying weighting factor for each one, the
resulting signals are summed. Such an application usually
weights pursuit guidance heavily at long ranges where the
noise problem is most severe and the accuracy requirements
less =evere. Of course, a knowledge of time-to-go or range
is required.

The above concept exhibits a greater tolerance to
seeker scale factor errors than P.N. and a greater tolerance
to boresight errors than pursuit. The most significaat short-
coming of this technique is the relatively poor performance
in the presence of wind, target motion and gravity compensa-
tion errors. The only situations for which this combination
law performs better than P.N. is for large initial offsets
and for large scale factor errors. The ability of the pur-
suit body attitude loop to zero the inital offset results in
uniformly good performance for all offsets.

5. Dynamic Lead

This guidance law provides results similar to the
weighting technique but for different raasons. At small
L.D.S. rate frequencies (which typically cccur at long
ranges), it behaves like P.N. The advantage is that no
estimate of range or time-to-go i1s necessary; the behavior

transitions "automatically" based upon the freguency oI the

46
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input signal. It also has the advantage of better performance
in a typical situation (e.g. large line-of-sight rates at long
ranges). However, stability problems can occur if significant
noise is still present when the guidance law transitions to a
P.N. type behavior.

Ta the following table III.E-1 are summarized the ad-~
vantages and disadvantages of each of the above guidance laws
when they are used in combination with classical low pass

noise filters.

F. SENSITIVITY COMPARISON OF CLASSICAL TERMINAL GUIDANCE LAWS
The primary purpose of the guidance law is to insure a

minimum as possible mis-distance. Several studies, prelimi-
nary in nature, hav: been conducted to investigate the sensi-
tivity of existing classical terminal guidance laws implemented
in several scenarios of engagement. The parameters which were
studied as a function of the guidance law were:

a. Initial heading of target

b. Target speed

c. Magnitude of target acceleration

d. Sensor bias in measurement of L.0.S. rate

e. Sensor noise caused by two different levels of target
generated noise

£. Effect of wind gust.
The results of such studies, although generally valid,
give the tendency of each law sensitivity and can be sum-

marized as in table III.F-1 is shown.
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Table III.F-1.

Classical Guidance Laws

Sensitivity Comparison of

LAW

CLASSIFICATION

TARGET PARAMETERS

MISSILE PARAMETERS

HEADING

SPEED

ACCELER

BIAS

NOISE

GUSTS

L.0.S.

GOOD

*

*

AVERAGE

POOR

PURSUIT

GOOD

AVERAGE

POOR

P.N,

GOOD

AVERAGE

POOR

It is easily seen that P.N. rates well in all categories

except that of noise.

Angle rate, measurement noise, homing

sensor noise and target noise all have their effect; thus

arises the need for very good filtering.

The selection of proportional navigation constant must

involve a trade-off between high gain necessary for high

maneuvering targets and lower gains needed for noisy

situations.
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IV. GUIDANCE LAW OF CLASSICAL PROPORTIONAL NAVIGATION

A. GENERAL

This section is intended to present the basic concepts
associated with the classical proportional navigation guid-
ance law, and through a number of simplified cases to provide
homing missile as it engages a target. 1In order to intercept
a target a missile must be capable of maneuvers. These are
accomplished by producing an acceleration normal to the
velocity vector resulting in a turn maneuver. Acceleration,
therefore, is one of the most important system parameters,
and because of practical limitations is one of the major con-
straints in accomplishing an intercept. Acceleration is not
the only parameter of interest; therefore other quantities
such as turning rate, trajectory, and miss-distance are also
considered. The analysis is generalized by normalizing many
of these parameters to permit curves to be used that may be
applied to different problems. Thus, for the cases con-
sidered, a reader can apply all of the results derived to
any set of initial conditions and obtain information on the
resulting trajectory.

To permit an analytical treatment of this type, several
simplifications must be made. It has been the general prac-
tice to introduce proportional navigation by discussing the 1

constant bearing ccurse and then considering perturbations
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about this idealized case. Constant missile and target
speed are assumed to avoid hawving to contend with non-linear
differential equations. This assumption is fairly good in
many cases, where the intercept time is short, and the speeds
do not have time to change significantly. A two-dimensional
problem is also assumed, again to permit the effects of
various parameter variations to be shown without becoming
involved in unnecessarily complex mathematical manipulation.
The discussion will cover some of these, as well as other
assumptions made in various derivations. Full investigation
of the resulting general differential equation for P.N. is
not of primary interest. Thus representative cases will be
studied.

It is believed that the approach taken, although somewhat
idealized, will provide the reader with an understanding and
feel for proportional navigation. It also provides a means
for rapidly determining values of missile parameters required
to achieve an intercept under ideal conditicns, and thus
shows the best performance that can be attained based upon
the classical techniques.

Although proportional navigation has proved to be of
value against aircraft targets of limited maneuverability,
advances in aircraft design have increased their capability
to the point where proportional navigation can no longer
generate the missile commands necessary to insure a hit.

This has led to the appiication of modern control theory for

(V)
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the generation of optimal guidance laws, requiring more
complex sensors and signal processors. The development of
optimal control laws for guidance systems is receiving con-
siderable attention, especially with th:s advent of high speed
digital logic in the form of microproces. ~s, which can pro-
vide tremendous calculating power in a very small space.

This area is beyond the scope of this study and is mentioned
in passing to alert the reader to the fact that such work is
being conducted.

For the following study, initially the missile will be
considered to be ideal, in that it has no mass (unlimited ac-
celeration) and there are no time lags (no time constants).
Missile acceleration requirements and missile lateral dis-
placement will be derived for cases of initial missile head-
ing errors and for a maneuvering target. Then, the analysis
can be extended to include a system having a single time
constant, an acceleration bias, acceleration limiting and
various combinations of these.

Missile acceleration curves are important because they
show the missile response to the initial conditions as well
as the maximum missile acceleration required to intercept a
target under the conditions imposed.

The analytical derivation of differential equations of
P.N. for the several cases will be based upon plain geometry
and small perturbation theory and geometry in order to de-

rive and deal with linear differential equations instead of
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non-linear which are harder to be handled, analyzed and im-

plemented into computer programs.

B. FUNDAMENTALS OF PROPORTIONAL NAVIGATION

1. Constant Bearing Course

The explanation of constant bearing course concept
is considered as a prerequisite understanding before develop-
ing the Proportional Navigation concept.

A constant bearing course is a course in which the
line-of-sight from %iie missile to the target maintains a
constant direction in space and thus remains parallel to it-
self during a target/missile engagement. It is generally
associated with constant missile and target speeds, which
are assumptions made in this study to simplify the analysis.
The constant bearing course results in an intercept and is
the so-called collision course.

Figure IV.B-1 shows the geometry for a constant bear-
ing course. The line-of-sight (LOS) between missile and tar-
get is at an angle i relative to an inertial space reference
for all times of the flight. The missile velocity vector is
at an angle L relative to the LOS, and the target velocity
vector 1s at an angle A relative to the LOS. The relative

closing velocity between missile and target (r) is

r = Vt COSA - Vm cos L (IV.B~1)

where Vt cos A and Vm cos L are the velocity components along

the LOS.
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The rotation rate of the LOS is found from

r® = -Vt sina + Vm sin L (IV.B-2)

where Vt sin A and V :in L are the velocity components nor-

)

mal to LOS. For a constant bearing course, ¥ = constant and

Y = 0. The proper missile lead angle L is found from Eq.

(IV.B-2)

Vt
sin L = =— sin A (IV.B-3)

\Y
m

2. Classical Proportional Navigation Guidance Law

A classical proportional navigation course is defined
as a course in which the rate of change of missile heading is
directly proportional to the rate of rotation of the line-of-
sight from the missile to the target. The purpose of such a
course is to counter the tendency for the line-of-sight to
rotate and therefore approximate a constant bearing course.
To permit a tractable analytical treatment, the missile and
target speeds are assumed constant. Mathematically, the
classical proportional navigation equation can be expressed

as

v = Ny (IV.B-4)

where

v. 1s the rate of change of the missile heading (velocity
vector)

¥ 1s the rate of change of the line-of-sight, and

N is the navigation ratio.

wn
(9]}
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The direction of the missile velocity vector cannot
be controlled directly; therefore, proportional navigation is

’

implemented by controlling the missile acceleration, an
which equals Vm*m' where Vi is the missile velocity. Imple-
mentation of proportional navigation results in the following

guidance law:

a_ =NV_ 9} (IV.B-5)
or

nVv
a = <

on Sos T ¥ (IV.B-6)

where n is the effective navigation ratio, Vc equals -f, the
relative closing velocity along the line-of-sight, and L is
the angle between the line-of-sight and the missile velocity
vector. The above two equations are equivalent. The effec-
tive navigation ratio n is a critical parameter that charac-
terizes the missile system response, and typical values of n
between 3 and 6 are normally employed, as it will be shcwn by
the following-on study cases.

The above equations are somewhat idealized because
they do not account for any time constants in the system. A
space stabilized sensor is used onboard the missile to mea-
sure . Implementation of this sensor usually results in a
single time constant transfer function. Implementation of a
means for commanding missile acceleration proportional to the

measured y also results in at least one additiocnal time
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constant. These time constants must be small relative to the
missile flight time in order to minimize the miss-distance.

Guidance law equations are classically written as
perturbations in missile and target position relative to a
constant bearing course. These equations are linear differ-
ential equations which are valid provided the commanded mis-
sile acceleration does not exceed the lateral acceleration
capability of the missile. 1If acceleration saturation does
not occur, the missile system is linear and superposition can
be used if several errors occur simultaneously.

Classical treatment of proportional navigation gen-
erally assumes that the missile and target are flying a con-
stant bearing course and that the missile and target velocities
are constant. Errors relative to a constant bearing course
are then introduced into the differential equation which give
the perturbation in position. Conditions that cause devia-
tions from a constant bearing course are:

Initial missile heading error
Target maneuver

Control system acceleration bias
Initial tracker error

Wind.

If the system remains linear and the £flight time is
long, relative to the missile system time constant, the miss-

distance will be small. For a given effective navigation

o




ratio n, factors that degrade missile system performance and
increase the miss-distance are:
Missile system acceleration saturation
(Acceleration limiting)
Missile system time constants
Instability at short range
Scintillation
Angular glint, and
Seeker/sensor internal noise sources.
Acceleration saturation and missile time constant effects
are described in following sections.
C. GENERAL DIFFERENTIAL EQUATION OF P.N. FOR KINEMATIC
ANALYSIS
In the analysis of proportional navigation in this sec-
tion the constant-bearing course is employed as a basic co-
ordinate reference, and motions or perturbations of both
target and missile are examined relative to their respective
collision courses. Each interception problem may be broken
down into various component geometric considerations such as
a target maneuver and an initial heading error. Superposi-
tion can then be used to find the total solution, providing
the system remains linear, i.e., acceleration limiting does
not occur.
Figure (IV.C-1) shows the geometry of a missile target
interception based upon a constant-bearing course. At a

given time, tl, the missile would be at position 1 if a
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constant-bearing course were flown, but the missile is actual-
ly at point 1'. The perturbation in position is X units
along the missile reference course and is +zm units normal to

the missile reference course. The target at time t., would be

1
at position 1 shown in figure (IV.C-1) if a constant-bearing
course were flown but is actually at position 1'. The target

perturbation is X,_ units measured along the target reference

t
course and is Zt units measured normal to the target refer-
ence course.

The missile velocity vector is at an angle Ym relative to
the arbitrary reference line. The angle between the line-of-
sight vector and the arbitrary reference line is defined as
w. The latter is shown in figure (IV.C-1).

Proportional navigation requires that the angular rate of

the missile flight path (missile turning rate) be proportional

to the angular rate of change of the line-of-sight or

dy
= =N %‘1:’. (IV.C-1)
where:
T = angle between missile velocity vector and a fixed
: reference line;
%% = rate of change of the line-of-sight; and
N = navigation ratio.

One form of mechanizing proportional navigation is to use

a target tracker to measure dy/dt. Figure (IV.C-2) shocws a

690
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missile system containing a tracker. The LOS is shown at the
angle Yy, the missile axis is shown at an angle 6, and the
missile velocity vector is shown at an angle Ym* The angle
of attack a is the angle between the missile axis and the
missile velocity vector. The tracking antenna boresight is
at an angle D and the tracking error which is the LOS angle
minus the boresight is shown as €.

A typical implementation for a homing angle tracker is
shown in figure (IV.C-3) as a type 1 servo. The input to the
tracker is target position )y and the output from the tracker
is €. The antenna motor is shown as part of the feedback
loop included in the Kz/s term. The antenna motor acts as
an integrator because the antenna turning rate is proportion-
al to the input voltage or current. The tracker transfer

function is
£ = =+ 1 (IV.C=-2)

The denominator acts as a low pass filter with a time con-
stant of 7, and the output €, 1is r$ in the steady state. The
tracker output, £, is a direct measure of the sight line
rate. The tracker must be space stabilized to prevent mis-
sile motion from influencing the ) measurement.

The direction of the missile velocity cannot be controlled
directly, but the tracker output is amplified by a factor K

and is used to command the missile acceleration. Thus,




Reference X
Line

F. rig. IV.C-2. Missile and Tracking System
N
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Fig. IV.C-3. Typical Homing Angle Tracker
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. mn = K1 . . -
n, =335 = Ke = ——— U in g's (IV.C-3)

where no is the missile lateral acceleration in g's and an
is the missile lateral acceleration in ft/secz. The above
equation is a linear first order differential equation re-
lating the commanded acceleration, (nm), to the sight line
rate .

The commanded missile acceleration from figure (IV.C-1)

is dzzm/dt2 so that:

2

a7z
d ;1= A9 = T rsgfl.w (Iv.c-4)
t

The above equation reduces to

az_ az_ a’z_ dz_
T 3 +?t— = —-gKty}p + 7T 3 + 3% +gKT(1,'J)t=0 (IV.C=5)
dt dt _ t=0
t=0
where:
T = tracker time constant,
dzzm
——1? = missile acceleration normal to the m.ssile constant
dt bearing course,
dZm
—— = missile velocity normal to the missile constant
- bearing course,
v = line-of-sight angle,
ci‘z,n
——1? = initial missile lateral acceleration at t = 0,
dt




T W T W T

dz
(?ﬁ?) = initial missile lateral velocity at t = 0, and
t=0

(¥) o = initial LOS error angle at t = 0.

Since the above equation is a perturbation type equation, ¥
is the actual LOS angle minus the constant bearing LOS angle.

The perturbation in ¢ is

X sinL + 2 _cosL - X,sinA - Z cos A
Yy = tan y = —= o t L (IV.C-6)
r

where r is the missile to target range which is

r = VC(T-t)

where:
V. is the missile to target closing velocity along the LOS
T is the total homing £flight time and
t is the elapsed homing time.
Substituting the equation for r and the equation for ¥
into the differential equation for missile position results

in a basic trajectory equation given below:

2

a®z dz Z .
m m m n sin A cCOs A
T b —— e 7] e— D = c—— - —_—_— - T ==
" T3el T3 YT 7ot ‘mtL - X365 T T %tdost
a%z dz_
+ \——= + \—5— + gKt(w),__ (IV.C=7)
dtz dt =0 t=0
t=0
where:
. NV
n= gKeros 2 = 7 M cosL is the effective navigation ratio.
c c
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In the above equation xm and xt are zero if the missile and

target velocities are constant.

The above general differential equation is applied to spe-

cific problems in the following subsections of this section
which provide general curves showing the required missile
acceleration for initial heading errors, target maneuvers,
control system acceleration bias and an initial tracking
error. Curves are given for a system with and without a
time constant.

Missile acceleration curves are important because they
show the missile response to the initial conditions as well
as the maximum missile acceleration required to intercept a
target under the conditions imposed.

Assumptions contained in the derivation of the General

Differential Equation for P.N. are:

(1) Equation is written as a perturbation about a constant

bearing course;
(2) Missile and target velocities are constant;

(3) Linear system operation (no acceleration saturation);

(4) A single system time constant exists due to the tracker.

The above equation is used to derive the differential
equation of motion for various imput conditions.

1. Proportional Navigation with Initial Heading Error
and No Time Constant

For this problem the missile has an initial heading

errcr of a, when compared to the heading required for a
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constant bearing course. The initial missile velocity,

(dzm/dt)t=0’ is -Vma0 for relatively small heading errors.
For no time constant and constant target and missile

velocities, the general differential equation for the per-

turbation normal to the constant bearing course, reduces to

the following:

(IV.C-8)

where:
Zm is normal to the constant bearing flight path;
n 1is the effective navigation ratio;
T is the total missile flight time;
V_ is the missile velocity:; and
is the initial missile heading error in radians.

This equation is directly integrable and results in a missile

acceleration of

(IV.C-9)

and a missile displacement normal to the constant bearing

course given by:

é t
V“aOT 1‘5 cos B . tn—l
- - O.—T} , for n # 1

_ n-1
m-{ (IV.C-10)
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Equation (IV.C-9) is plotted in figure IV.C-4 for
values of n between 2 and 6. The horizontal scale is the
normalized missile flight time t/T. t = 0 corresponds to
initiation of proportional navigation, and t = T corresponds
to intercept. The vertical axis is the missile acceleration

a normalized (divided) by an equivalent acceleration dis-

an’
turbance equal to the initial normal velocity divided by the
total flight time, Vmao/T.

Examination of the curves of figure IV.C-4 shows that
for n = 2 a constant acceleration is required throughout the
flight. For higher values of n, a larger acceleration is
required early in flight and a lower acceleration is required
near the end of flight. It is desirable to correct the head-
ing error early in flight so that the missile system has full
maneuvering capability near the end of flight. Values of n
between 3 and 6 are desirable for the case of an initial
heading error in order to reduce the acceleration require-
ments at intercept.

Equaticon (IV.C-10) is plotted in figure IV.C-5 for
values of 6 2 n = 2. The horizontal scale is the normalized
missile flight time t/T. t = 0 corresponds to initiation of
oroportional navigation and t = T corresponds to intercept.
The vertical axis i1s the missile's displacement normal to the
constant bearing course, normalized by (divided) Vma0 cos B.

Examination of the curves of figure IV.C-5 shows that

as n increases the lateral missile displacement decreasecs.
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Also as n increases, the maximum displacement occurs earlier
in the total engagement flight. This was expected, because
as it is shown in figure IV.C-4, we get larger accelerations
early in flight and lower during the end.

It is noticeable that for n = 2, maximum displacement
occurs at T/2.

Finally, it is observed that no matter how much the n
is, the final miss-distance is zero.

Given the numerical values of Vm’ aq» T, B, the nor-
malizing factors for the acceleration no and the displacement
Zm can be derived. Then, multiplying these factors with the
values obtained through figures (IV.C-4) and (IV.C-5), the
real no and Zm are determined. If the acceleration limits of
the missile are known, then these curves can also be used to
determine if missile acceleration saturation occurs.

In summary an initial heading error requires a high
missile acceleration early in flight and a low missile ac-
celeration near the end of flight for n = 3. The magnitude
of the missile acceleration and displacement are proportional
to the heading error ay- The final miss distance is zero.

The computer program which was used to implement
equations (IV.C=-9) and (IV.C-10), in order to obtain figures

(IV.C-4) and (IV.C-5), is given in appendix A.

~J
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2. Proportional Navigation with a Maneuvering Target
and No Time Constant, No Initial Aiming Error

In this case, it is assumed that the target and mis-
sile are flying a collision course and at t = 0 the target
initiates a lateral acceleration of a, ft/secz, normal to
the target collision course flight path. Then, the general

differential equation for P.N. (IV.C-7) turns into:

+ = cos ./ 2 %t

dz Z
m m n cos A} 1 2
dt T-t T-t ( ) t (IvV.c~-11)

Equation (IV.C-11) is directly integrable and results in a

missile acceleration of:

I R GO i MR

and a missile lateral displacement normal to constant bearing

course flight path given by:

2 n
) 1-% 1-% 1 - £)
z_ = -V, 72 14 cos 5 (1 -rf) - (,,. -Tz) + (—ﬁ-_l)—(:-;—)- (IV.C-13)
where:

n_ is the missile acceleration in g's
. 1s the target acceleration in g's
V,_ is target speed

Lo is target turning rate

is the target velocity vector angle with respect to the
constant bearing course when it initiates the maneuver.
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Figure IV.C-6 is the plotting of equation (IV.C-12). The
horizontal axis is the normalized time of flight t/T, and the
vertical axis is the missile acceleration n, divided by
(nt cos A)/cos L. The vertical axis can also be interpreted
as the component of missile acceleration normal to the LOS
divided by the component of target acceleration normal to
the LOS. The initial requirement on n, is zero, but n, in-
creases as the flight time increases. For values of n less
than 3, the required missile acceleration at intercept is
very high. For n between 3 and 6, the final missile accelera-
tion is between 3 n and 1.5 n,.

Figure (IV.C-7) is the plotting of equation (IV.C-13).
The horizontal axis is the normalized time of flight t/T, and
the vertical axis is the missile lateral displacement off the
constant bearing course flight path, normalized (divided) by
Vth.licosbo. It is noticeable that in this subcase also,
the final miss-distance is also zero. Again, the more n the
less miss~distance occurs rather at the end of the later part
of the engagement.

The computer program which was used to implement equa-
tions (IV.C-12) and (IV.C-13), in order to obtain figures
(IV.C-6) and (IV.C-7), is given in appendix B.

3. Proportional Navigation with an Initial Heading Error
and a Single Time Constant

In this case, it is assumed that the missile is

launched with an initial heading error of a, when compared to
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the heading required for a constant bearing course. The

initial missile velocity (dzm/dt)t=o is Vi a, for relatively
small heading errors and the missile is provided with a
seeker of time constant 1. Then the general differential

equation (IV.C-7) turns into:

2
a4z dz 2
T 2Iﬂ + _m +n m = -Vm ao (IV.C-14)
dt dt T-t

where:
T 1is the time constant of the seeker
T is the time of engagement
is the initial heading error
n is the navigation constant
V_ is the missile velocity
Z_is the vertical displacement error.
Equation (IV.C-14) is not directly integrable in closed form
and must be solved by numerical integration.

Defining t' = t/T follows:

at’ dt/T and dt = T dt°

I

2 2 2

(@)% = (@t/m?%  dt? = 1% gt

Substituting into equation (IV.C-14) and after minor manipu-

lations it gives:

2 s
d“(z_/T)  d(Z_/T) - (3

5 + + —] = -Vm a5 (IV.C-15)
(T/7)dt" at’ (1-£\T :




and multiplying by T/1, equation

Dividing through by Vm a

0
(IV.C~-15) turns into:

2
d (Zm/TVmao) . {E}d(zm/‘erao) _.{_T_] n Zm
at'? T at’ Tl - ¢ TV a

1

(IV.C-16)
0

Defining Q = zm/TVmaO’ K = T/t and substituting, equation

(IV.C-16) turns into:

2 T
d°Q do = - -

dt’

Then, by numerical computational approximations, figure
(IV.C-8), figure (IV.C-9) and figure (IV.C-10) were obtained.

Figure (IV.C-8) is the plotting of missile accelera-
tion'for n = 3. The horizontal axis is the normalized time
of flight t/T, and the vertical axis is missile acceleration
an divided by VmaO/T. For T/t equal to 15 or greater, the
missile acceleration is close to the T/t = = case (case of
no time constant).

Figure (IV.C-9) is the plotting of missile accelera-
tion for n = 4. Again for T/t = 15 the deviation from T/t =»
case is not serious, and that at values less than 15, larger
differences occur.

Figure (IV.C-10) is the plotting of missile accelera-
tion for n = 5. Again, the same results as for the case of

n = 4 are noticed.
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The computer program which was used to implement
equation (IV.C-17), in >rder to obtain figures (IV.C-8),
(IV.C-9) and (IV.C-10), is given in appendix C.

4. Other Sub-cases of the P.N. Guidance Law

Continuing the study of the general Differential
Equation for P.N. (see equation IV.C-7), the following sub-
cases can be distinguished also:

a. P.N. with No Time Constant and Acceleration
Limiting

In previous section IV.C.2 about "P.N. with
maneuvering target and no initial heading error and no time
constant" it was shown that the required missile accelera-
tion increases with the time of flight (see figure (IV.C-6)).
If the required acceleration exceeds that which the missile
system can provide, acceleration saturation or limiting will

occur. The time t,. at which this occurs can be found using

L
figure (IV.C-6). The missile system will be acceleration

limiting from t = tL through intercept at t = T. Then, the

miss-distance Yo at intercept time T is given by:

gn cosA T-t n 5
Y = T (IV.C-18)

n 2 T

P Made S Rete-ea )

where Y is the target-missile separation normal to the L.C.S.

m
at ¢t = T.
Miss-distance due to an initial heading error

should be zero even if acceleraticn limiting occurs, provided
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the flight time is long. In figure (IV.C-4), the required
acceleration for an initial heading error is shown. The
highest acceleration is required early in flight, so that

the missile system will be into acceleration limiting between
0 and ts seconds, after which linear operation will occur.
The trajectory errors caused by the initial heading error

and saturation will result in a new heading error at t = ts-
The remaining portion of the flight is linear and the re-

sulting miss~distance is zero.

b. P.N. with Control System Acceleration Bias and No
Time Constant

If the control system contains an inadvertent
bias which dcemands a fixed acceleration, in addition to that
called for by the tracking signal, the missile acceleration
is

n = ng o+ K70 (IV.C-19)

where n, = acceleration bias in g's.

The differential equation for the missile per-

turbation becomes

az z_
gc "R F T T 9%

t (IV.C-20)

The differential equation is directly integrable

resulting in a solution of

3

]
)

[\8

B
1
o
o
I
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“em
|
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(IV.C-21)
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This equation is plotted in figure (IV.C-11). The horizontal
axis is the normalized time of flight and the vertical axis
is -nm/nb. To keep the missile acceleration low near tlLe end
of flight, values for n between 3 and 6 are required.

The overall effect of an acceleration bias is to
force a missile acceleration over the entire flight time.
This acceleration would use up some part of the available
acceleration dynamic range of the missile.

c. P.N. with a Control System Acceleration Bias and
Single Time Constant

For a single time constant the differential equa-

tion of motion is

dZZm dZm Zm d2Z
T 5> +—— +n = =g nbt + T 2m (IV.C-22)
dt dt T-t dt
t=0
. C e ( 2 2) .
Using the initial condition that (4 Zm/dt g=g 1s -9 ng, the

differential equation becomes

a%z  az Z
m m
dt at T-t

= -gny (= + 1) (IV.C=-23)

The above egia+tion is not directly integrable in closed form.
.1zing numerical integration, required nor-
malized missile acceleration for a system bias n,, versus nor-
malized time of £light t/T for several effective navigation
ratios n can be derived.
In figure (IV.C-12} curves of nm/nb versus t/T

are drawn for wvalues of n = 3 and T/t = 3, 10, 15 and ». 1I=
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is observed that for reasonable demands on the missile ac-
celeration, T/t should be 10 or greater, which means that the
missile flight time should be 10 tracking loop time constants
or longer.

In figure (IV.C-13), curves of -nm/nb versus t/T
are drawn for values of n = 4. From these plots it apnears
that the flight time should be 15 tracking loop time con-
stants or longer.

The effect of a bias error is to require a mis-
sile acceleration over the entire flight time. The effect of
a time constant and an acceleration bias in the navigation
equation is to place higher demands on the missile accelera-
tion and to require that the missile flight time be about 15
time constants long.

5. Augment Proportional Navigation

In section IV.B.2 it was derived that the required
missile acceleraticn, normal to the flight path of the mis-
sile in case of constant bearing £light, is given by equation

IV.B-5 or equation IV.B-6 which is:

an = nVc w/cos L (IV.B-6)

From figure IV.B-1 it is derived that:

n, = amncosl. (IV.C=-24)

where ng: missile acceleration perpendicular to the L.C.S.
Upon substituting equation (IV.C-24) into equation (IV.B-6)

it is derived
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n.=nv_y (IV.C=-25)

or

_ d y = _n v -
n, =n Vc a'E(V t ) = =3 {y + ytgol (IV.C-26)
c go t go

where tgo’ time to go

y: differential displacement

The expression in the brackets of equation (IV.C-26)

represents the miss-distance that would result (in the ab-

F sence of target maneuver) if the missile made no further cor-
#‘ rective accelerations, and is referred to as the zero effort
E miss-distance (Z.E.M). Therefore, P.N. can be thought of as
- a guidance law in which acceleration commands are issued in-
Ec 0‘.‘ versely proportional to the square of time-to-go and directly
proportional to Z.E.M. If target maneuver, of N accelera-
tion, is considered, the Z.E.M. changes and a new guidance

law known as augment proportional navigation, APN, results

as follows:

EARS - A0S
oo g P

_ . n . 1 2
n, = 2 [y + v tg0]+ 50, € go (IV.C=-27)
] g0

This law is compared later on with the P.N. and

modern guidance implemented in the same guidance system.

! 6. Conclusions

1 The classical definition of proportional navigation is:

=N\p

¢ 'm

where N 1s the navigation ratio.
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Since the angle of the velocity vector cannot be con-

trolled directly the missile commanded acceleration is made

proportional to &. This results in a guidance equation of

amn =N Vm 1S +1

or

nVc lI)

mn cos L tS+1

a

A differential equation is derived that gives the
missile response (perturbations) relative to a constant bear-
ing course with the assumption of constant target and missile
velocity, linear missile operation and a single system time
constant due to the tracker.

An initial missile velocity vector pointing error re-
sults in a high missile acceleration early in flight and a
low acceleration near the end of flight (3 < 2 6). The
effect of a time constant is to increase the missile accelera-
tion and values of T/t of 15 are needed to prevent excessive
missile acceleration.

A target maneuver results in a low missile accelera-
tion early in flight and a higher acceleration near the end
of flight. Values for the erffective navigaticon ratio between
3 and 6 keeps the missile acceleration demands relatively low.
A missile flight time of about 15 time constants or more is

needed to minimize the missile acceleraticn requirements.
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In almost all cases 3 S n £ 6 is required to minimize
the missile acceleration near the end of flight. 1In almost
all cases, the flight time should be equal to or greater
than 15 tracker time constants to minimize the missile

! acceleration.
i All the used computer programs of simulation are

enclosed in appendices A, B and C.

30




Ta o

—— ——"
¥ ‘~

-y

V. MODERN CONTROL MISSILE GUIDANCE LAWS

A. GENERAL

As was mentioned in part III, there have been developed
many guidance laws, which have been categorized in two major
subsets, the "classical" and the "modern" guidance laws.

In part III and IV, the "classical” missile guidance laws
were studied. This part intends to outline the basic princi-
ples and theory which deal with the "modern control" guidance
laws

All the guidance laws which are characterized as "modern"
have been categorized in two major subsystems, the "modern
control guidance laws based on optimal control theory” and
the "modern control guidance laws based on differential
games."

The basic difference in philosophy between missile guid-
ance laws based on optimal control theory and those based on
differential game theory is in the assumptions made by the
guidance laws on the target's future trajectory and maneuver-
ing capabilities.

"Optimal control"” theory assumes that the target's future
maneuver strategy is comvletely defined, either in open-~loop
or closed-loop form. The feedback nature of missile guidance
laws allows the missile to correct for inaccurate predictions

of target maneuvers.
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In contrast, the "Differential Game" approach makes no
assumption or “uture target maneuvers, but instead takes into
consideration the target's maneuver capabilities. The guid-
ance law then guides the missile sc¢ as to minimize the poten-
tial effects of the target's intelligent use of his maneuver
capmabilities.

Optimal control theory has been used to derive a variety
of deterministic guidance laws for intercept missiles. These
laws are all based on the application of linear-quadratic
optimal control theory to a linear constant coefficient mis-
sile model with various assumptions on availability of target
acceleration information, enforcement of zero final miss dis-
tance, and the model used for the airframe/autopilot response
of the missile. 1In all cases the resulting optimal guidance
law is a modified form of Proportional Navigation.

In contrast, the application of zero sum perfect informa-
tion differential game theory to the derivation of intercept
missile guidance laws has been less extensive. Due to the
complexity and difficulty that arises in the implementation
of differential game theory into actual missile guidance it
currently does not appear often in the scene.

From theoretical studies and computer simulations it
turns out that the major advantage of differential game guid-
ance laws compared with optimal control theory is that the
differential game laws are less sensitive to errors in esti-

mates of target acceleration. This results £rom the fact
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that the differential game guidance laws are based only on
the maneuver capabilities of the target and not a projected
future acceleration history as is required for the optimal
control laws. Therefore, the use of differential game meth-
ods in the design of guidance laws for intercept missiles
appears to result in better missile performance against
highly maneuverable targets than does the use of optimal
control theory.
B. MODERN CONTROL GUIDANCE LAWS BASED ON OPTIMAL CONTROL

THEORY

The optimal control theory was developed mainly during
the late 1950's and early 1960's. Up to this time the mis-
sile guidance designers used to base the missile guidance
control system on the principles of the "classical" control
theory. But during the late 1960's and early 1970's, a few
missile designers did take a cursory look at applying the
modern control theory to the tactical missiles. BRasically,
such an approach would replace the low pass filter with an
optimal estimator such as the Kalman filter. 1In theory, this
would allow one to "optimally" separate the signal from the
noise by using information about the missile dynamics and
noise covariances rather than filtering based only on fre-
quency content. In addition, missile/target states other
than line-of-sight rate could be estimated, even if not mea-
sured, provided they were mathematically observable. This,

in turn, would allow one to design more advanced guidance
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laws based upon optimal control theory, because such theory
usually requiras complete information concerning the missile
states.

Figure V~1 provides in a block diagram form a functional
comparison between "classical" and "modern" control ap-
proaches. It is seen that the two methods differ in fil-
tering theory, in guidance law and in feedback states
(channels).

The recent years' evolution of science in electronics
domain, numerical techniques for solving complex equations
and the birth of microcomputer and microprocessor, allow the
performance of more calculations, more often, more accurate,
at less cost, and in a smaller volume than anyone would have
imagined a few years ago. Thus, th~ resulting guidance laws,
due to the application of optimal control theory, can be
easily implemented in real life.

The study of the modern control theory has not been com-
pleted yet. Extensive research programs are conducted to
investigate and improve furthermore these modern control and
estimation techniques that have potential application, es-
pecially, for improving short range air-to-air missile
performance.

Subjects of further investigation for future applications
of optimal control theory are:

a. In guidance and control theory: Linear and Nonlinear
Quadratic Theory, Linear Quadratic Gaussian, Adaptive

Control, Reachable Set Theorv, Parameter Insensitive and
Differential Games.
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b. In Estimation Theory: Extended Kalman Filtering, Ob-
serve.'s, Adaptive Filters, Nonlinear Filters, Splines
and Polynomial Techniques.

The early studies on modern control theory applicability
into missile guidance and control design, pointed out that a
simplistic and straightforward application of "modern" con-

trol theory results in very little performance improvement

over "classical" design techniques.

C. GENERAL OPTIMAL CONTROL THEORY

This part intends to review some of the more salient
features of the "optimal control theory" and to highlight its
usefulness and its limitations.

In general, any dynamic system can be represented by a

set of nonlinear differential equations as follows:
X = £(x,u,t) (V.c-1)

where: X: State vector of the system
X: The time derivative of the state vector
u: The system control vector input
£(.): A vector function whose components are non-
linear functions of the state and control
vector components and of time.

Such a system may also be subject to terminal equality con-

straints of the form:

y(ti,tf,xi,xf) =0 (V.C=-2)

the initial time

where: ¢t

ot
"

rn

the final time
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X; = the initial state
Xe = the final state
p(.) = a vector function whose components are nonlinear

functions of the initial and final state vector
components and the initial and final times.

The theory can also handle inequality constraints on both
the control vector and state vector, but this generality will
be omitted here for the sake of brevity and space limitations,
even though it is an important consideration in practical
applications.

The optimal control problem can be stated as follows:
Select a control vector u(t), for ti St < tf such that to
minimize some performance index (P.I) (or sometimes referred

to as a cost function), of the form:

e
P.I = g(t, ,te,X;,Xe) #+ tf L{t,x,u)dt (Vv.Cc=3)
i
where: g(.): a scalar function of the initial and terminal

times and states.

L(.): a scalar time-varying function of the state

and control vectors form ti St = tf.

The so far formulated general optimal control problem, high-
lights the following properties:

{l1) It includes any system that can be represented by a
set of nonlinear time-varying differential equations.

(2) The system and controls can be subject to a large
class of equality or inequality constraints.

(3) The performance index includes both initial and £final
conditions, plus the time history of the control and
state vectors.
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Define the following quantities:

oy r

H(t,x,u,1) & L(t,x,u) + Af(t,x,u)

Y

y}Fﬁwv
k' .

variations;

where v is also a vector of Lagrangian multipliers.

stated in (V.C-1) through (V.C-3) is given by:

{ = - 28
E i = 2H
» Py
1
:j_H = 0
3 32
1
3G
P‘ 3K, l/ti
=i
1
: 6 _ .
)
3
( 3G _ .
: oo T H/ey
i
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Although the above stated formulation of the general
-~ optimal control problem has tremendous generality, the prac-
tical disadvantages become evident when the solution is
examined. There are many representations of the solution,
all of which of course give the same answer. Perhaps the

most popular representation is in terms of the Hamiltonian.

where H is called the Hamiltonian and ) is the vector of

Lagrangian multipliers so often used in the calculus of
- T
G(tirtfliirﬁflﬁ) = g(tiltffzi'?.{_f) + v E(ti'tflii'if)

It has been proved that the solution to the problem

(V.C-8)

(v.C-9)
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(V.C-10)

A typical solution procedure is based upon the following steps

Step 1: Solve equation (V.C-6) for u(t).

Step 2: Solve equation (V.C-5) for A(t). Note that, in
general, this involves the solution of nonlinear differential
equations, which may or may not have an analvtical closed-
form solution. Also note that this differential equation may
be coupled with equation (V.C-4).

Step 3: Substitute the solution for A(t) from step 2
into the solution for u(t) in step 1. Then substitute this
form of u(t) into (V.C-5).

Step 4: Solve equation (V.C-5) for x(t). This is also a
nonlinear differential equation which might be coupled to
equation (V.C-4).

Step 5: Note that the solution to x(t) and A(t) involves
2n unknown constants where n is the dimension of the state
vector. Use all given initial and final conditions for x(t)
along with the solutions to equation (V.C-7) through (v.C-10).
This should result in 2n equations in 2n unknown constants,
which in theory can be solved completely.

It should be obvious that there are very few conditions
under which closed form solutions for u(t) exist. In general,
complex numer.cal techniques must be employed, involving a
large amount of data and numerous calculations. There are

two other disadvantages to this formulation which should be
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noted. First, the solution is initial and/or final condi-
tion dependent. Hence, for each launch condition and target
maneuver in an air-to-air missile engagement, the solution
must be completely recalculated. Also note that, in general,
the solution for the optimal control depends only on time.
This is what is referred to as an open-loop solution since it
does not depend directly upon the missile state x(t). If it

did, then it is referred to as a closed-loop or a feedback

solution. This fact has severe consequences in practical
solutions, since the actual state trajectory will in general
diverge from the optimal one if there is any error in the
dynamic model (equation V.C-1}.

Although the solution of the general nonlinear time vary-
ing optimal control problem requires a tremendous amount of
effort, recent studies proved that, when advanced numerical
techniques are used in combination with the computational
power of modern microprocessors, reasonable solutions can be
obtained for somewhat simplified nonlinear formulations. 1In
addition, a feedback solution can be approximated by re-
solving the problem at appropriate time intervals in real-
time on-board the missile. Although such a solution would
not be the optimal one from launch to fuzing, it does offer
significant advantages over classical proportional navigation
and may be the only approach when the system involves signi-
ficant non-linearities. The disadvantages of the general

non-linear theory led researchers to search for less general

100




L om0t oe o
. ,

L e e s e o ey e
. o )

D RNANREZ |

ABLA 00 00 ch on o ahn s o oo e 0o s

but more tractable formulations of the optimal control prob-

lem. The result was Linear Quadratic Theory.

D. LINEAR QUADRATIC THEORY

Linear Quadratic Theory is a subset of the general non-
linear optimal control theory. The key elements in the formu-
lation are the same: a dynamical system model, a performance
index (or cost functional) and appropriate constraints. The
difference in formulation lies in the fact that the dynamical
system model must be linear, the cost functional must be
quadratic in nature, and only a limited set of constraints l
are allowed. The linearity assumption is the most severe for
air-to-air missiles. Nonlinear aerodynamics, nonlinear equa-
tions of motion and nonlinear kinematics are prevalent in
air-to-air missile engagements.

The limited nature of the allowable constraints are some-
what less of a problem. Twc ©of the more important constraints
(terminal state x. = 0 and u(t) S u ) are still allowable.
The problem of allowing only quadratic cost functionals is
usually workable. This is primarily because it is still al-
lowed to use a time varying weighting matrix and most intui-
tively reasonable costs are of a quadratic (or positive
definite) nature.

There are several techniques available for applying this
linear theory to nonlinear systems. Some of the most common

ones are:
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(a) Ignore the nonlinearities by postulating what seems
to be a reasonable linear model of the nonlinear system and
hope that this will not significantly decrease the overall
optimality of the solution.

(b) Compute some optimal hominal trajectory using non-
linear theory. Then linearize the nonlinear system equations
about this nominal trajectory, using small perturbation theo-
ry. Apply the optimal linear theory to the linear perturba-
tion equations. This will result in two control functions,
one for the nominal trajectory (EN(t)) and one for the per-
turbation trajectory (EL(t))' One disadvantage of this ap-
proach is that it forces the missile trajectory to follow the
optimal nonlinear trajectory of the "model" and this trajec-
tory may be far from the true optimal trajectory for the
actual missile. Another drawback is that the optimal nominal
trajectory is a function of initial conditions. Hence, one
either has to compute a new optimal nominal trajectory for
each launch condition (using the complex solution process
outlined in section V.C) or contend that the differences in
optimal nominal trajectories for various launch conditions
are unimportant in the overall optimality of the solution.

(c) Linearize the nonlinear equations about the current
value of the state vector and re-solve the linear problem on-
line at various points along the trajectory. This technique
will usually cause the solution to "forgive mistakes" made in

the past due to invalid linearity assumptions.
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There are two major deficiencies associated with all these

methods. First, there is no a priori analytical global method
of determining how much is sacrificed in optimal performance
(i.e., how much does the performance index increase) when
these approximations are used. The only real way to evaluate
this is through extensive computer simulations. Second and
more important, there are not even analytical methods availa-
ble to ascertain whether or not the solutions remain stable.
{(This is not exactly true. There are a few special types of
nonlinearities for which analytical methods have been de-
veloped to ascertain stability.) Although the Linear Quadrat-
ic theory has all these drawbacks, it is used extensively due
to its properties and relative ease of implementation.

Let the dynamical system be represented by the following

linear nonhomogeneous differential equation:

X(t) = F(£)X(t) + G(t)U(t) + C(t) (V.D-1)
where X(t): State vector
g(t): Control vector
C(t): Column vector of the same dimensions as x
X ¢ Given initial conditions.

The quadratic performance index (Q.P.I.) may have the

following general form:

te

2J = (sz‘x)t + J.(xTAx + uTBu)dt {(V.D~-2)
- £ X
'S \.O
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The necessary conditions for an optimal trajectory become:

AT = -3H/3x = -Ax - FA (V.D-3)
with Altg) = Sg x(tg)
3H/3u = 0 = Bu + GUA (V.D-4)
where H, the Hamiltonian equation, is defined as:
H = %(xTAx + UTBU) + AT(Fx + Gu + C) (V.D-5)

The explicit solution of equation (V.D-4) gives:
U(t) = -B"~ G~ A

Equations (V.D-1l) and (V.D-3) can be combined into a matrix

notation:

\x t'E' -G B~ G

(V.D=7)

where X(to) is given and A(tf) = Pf X(tf).
Assume a solution, for the linear inhomogeneous equations

(Vv.D-7) of the form:

A(t) = P(E)X(t) + K(t) (Vv.D-8)
The differentiation of equation (V.D-8) gives
X =PX + PX + K (V.D-9)

while the substitution of equation (V.D-8) into (V.D-7) gives

1 = -AX - FT(PX + X) (V.D-10)
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Equating equation (V.D-9) and (V.D-10), replacing X with its
equivalent from equation (V.D-1l) and upon collecting terms,

it turns out:

[ +pr+rTe-preB tcTo+a]x+ [k+ (¢T - peB~1eT)k + PC] = 0
(Vv.D-11)
The introduction of the arbitrary n component vector
K(t) introduces the freedom of specifying n arbitrary con-
ditions consistent with the boundary conditions given. Vec-
tor K(t) can be selected properly so that the second bracket
in equation (V.D-11l) can be vanished. This means that K(t)

must satisfy a differential equation

R + (PT - PGB-lGT)K + PC =0 (V.D=-12)

with the boundary condition K(tf) = 0.
The first bracket in equation (V.D-1ll) must vanish inde-
pendently and as X is an arbitrary vector, the necessary

condition for this implies the usual matrix RICCATI equation.

1

P+ PF + FIP - PGB™2GiP + A = 0 (V.D=13)

with the boundary condition P = P(tf)‘ The solution P(t) of

equation (V.D-13) is used in equation (V.D-12), which must
hold for all values of P(t). Knowing K(t), in turn, gives

the desired control law which from equation (V.C-6) and

(V.C=8) is seen to be:

u = -8~ %cTpx - 37167k (V.C-14)
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The solution for u(t) in equation (V.C-14) has several at-
tractive properties. The most important ones for the usual
applications are as follows:

(a) Note that the solution for u(t,x) and P(t) are in-
dependent of E; OF X This is extremely important because
it means that the problem need be solved only once (off-line)
and this solution will be valid for all initial and final
conditions. This was not the case for the nonlinear theory.

(b) u(t,x) is a function of the system state x(t). The
fact that u(t,x) is a feedback control law means that it is
less sensitive to noise, external disturbances, and modeling

errors. Such a property is called robustness in the literature.

(c) K(t) is called the control gain. All the information
needed to determine K(t) can be computed off-line and stored
in a missile computer. Furthermore, if F, G, A and B are
constant and tf-+w, K becomes a constant. However as the
true missile system is not linear, if the on-line lineariza-
tion technique is used, a new K must be computed for each new
value of F, G, A and B.

Besides the general disadvantages already noted at the
beginning of this section for linear theory, there are two
others which deserve mentioning. First the solution depends
on a good choice for tf. At first one might argue that tf is
a "free" parameter, subject to the designer's selection. 1In
theory this is true, but in practice te really determines how

good the solution is. A review of eguation (V.D=2) reveals
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that the choice of tf not only affects the minimum value of
PI but also drives the optimal trajectory solution and the
final state Xe. In the air-to-air missile problem, selecting
a given value of tf in effect determines the terminal miss
distance for a given launch condition. If the true objective
is to minimize terminal miss distance, then the problem now
becomes one of selecting the "optimal" te which results in
the minimum miss distance. 1In effect, there is a freedom in
selecting the missile time of flight from launch to inter-
cept. The problem now becomes one of selecting both the
u(t,x) and the tf which will result in the smallest value of
PI.

The other disadvantage of the linear theory is the re-
quirement for a real-time knowledge of x(t), the relative
target/missile state. Since the missile model is only a
crude linear approximation and since there is no definite
knowledge of future target maneuvers, x(t) must be determined
on-board the missile. Current sensors provide an estimate of
only a few missile states. To increase the gquantity and
quality of the missile sensor would also add significant cost.

An alternative approach is to use optimal estimation
theory to extract the mathematically observable states from

the limited measurement data.
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E. MISSILE AND TARGET STATE ESTIMATION

In the proceeding parts, two potential drawbacks asso-
ciated with the application of the optimal control theory
to the tactical missiles were discussed. One drawback was
the need to have an accurate and current knowledge of the
system models. This is true whether linear or nonlinear
theory is used. Secondly, the linear guadratic theory re-
sults in a feedback solution for U(t,x), requiring a complete
knowledge of all the states of the system model. Additional
assumptions and approximations could reduce this requireﬁént,
but the statement is true in general.

Completely accurate system models are never possible,
even if nonlinear theory is used. The aerodynamic properties
of a missile can only be approximated, even if extensive wind
tunnel and free flight testing results are provided.

Many of the missile subsystems include unknown nonlineari-
cies and noise characteristics, which at best can only be
modelled by stochastic processes. Even the six-degrees-of-
freedom equations of motion often include simplifications
made for practical considerations. If it is chosen to linear-
ize the system mocdel in order to apply the linear theory, the
model becomes even more inaccurate and could require periodic
updating throughout the missile trajectory.

In a small low cost tactical missile, few of the relative
target/missile states which are required for a feedback guid-

ance law are directly measurable. Typical sensors on-board

-
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such missiles consist of two rate gyros (pit 'h and yaw), two
normal accelerometers, and a roll gyro. Sometimes pitch and
yaw attitude gyros and a roll rate gyro are also included,
either as additions or replacements for the other sensors.
All of these sensors have been used in the past for autopilot
rather than guidance law implementation. They also require
their own models, including appropriate stochastic models for
noise.

Additional state information, of course, is provided by
the seeker. This sensor has been the principle source for
guidance law information in the past. The primary quantity
rieasured by the seeker is inertial line-~-of-sight rate; a
radar seeker could also provide range rate and range. The
seeker is also a dynamical system, and it must be determin-
istically and stochastically modelled in the same manner as
the other sensors. The seeker gimbal angles (angles between
the seeker axes and the missile axes) can also usually be
measured for little additional cost, but they have seldom
been used in the past for guidance law or autopilot imple-
mentation. The current research has shown that these angles
contain much wvaluable information, since they provide an
approximation of the missile/target boresight angle. Recent
studies have also indicated that including the target iner-
tial acceleration in the model can also significantly in-
crease perfcrmance, but currently there are no missile

sensors which can directly measure this suantity.
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Clearly the gap-between required state information and
measured state information creates a significant problem if
the modern control theory is applied to develop advanced
guidance laws. The additional requirement that the models
be accurate for both linear and nonlinear formulations and
in the presence of stochastic processes presents additional
challenges. The objective is to provide accurate estimates
of all states and model parameters required for the advanced
guidance law without significantly increasing the sensor re-
quirements (and therefore cost) for future tactical missiles.
The computational requirements for such algorithms are simi-
lar to those for the optimal control algorithms. However,
the one important difference is that the estimation algo-
rithms always require repeated solution on-board the missile
in real time. This is primarily due to the fact that they
are continually processing measurement data to update the
estimates for the constantly changing states and model

parameters.

F. INFORMATION 2ROCESSING BY OPTIMAL ESTIMATION THEORY
Information processing represents a substantial link be-

tween the information needs of the guidance law and the pos-

sible information offer of the feasible sensor equipment of

a guided missile system. Especially the considerations akout

extended guidance law design are influenced by two features:

on one hand information can be obtained frcom noisy measure-

ments only; on the other hand direct information sensing
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cannot be performed for each signal by physical and/or eco-

nomical reasons.

Filtering theory provides for tools of information pro-
cessing on noisy measurements. It is based on the reasonable
idea to separate the measurement signals in time-correlated
signals and time-uncorrelated disturbances. The latter do not
possess any information about the past which may be useful in
the future; they are purely random. Therefore filtering tech-
niques aim at estimation of the complete time-correlated
information.

The correlated portion of measurement signals includes the

information signals as well as time-correlated disturbances,
i.e. colored noise. To describe their dynamical behavior
mathematically, differential equations can be used. From the
physical point of view, uncorrelated disturbances represent
noise with negligible time correlation relative to the cor-
related signals. Mathematically they can be modelled by
"white" noise. Restricting the review to the linear, Gaus-
sian case, filtering theory is based on the following mathe-
matical (real world) model:

(1) Measurement model:

2 =Hx + V¥ (V.F-1)
where: 2(t): m-dimensional measurement vector,
X(t): n-dimensional state vector for correlated sig-

nal modellinc,

vit): m-dimensional measurement noise vector with
white Gaussian noise, v(t) - N{O,R(t)).
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(2) State space model:

XR=FEx+Gu+CWw ; X(tg) = N(xy,Py) (V.F-2)

where: U(t): r-dimensional deterministic input vector

w(t): s-dimensional input noise vector with white,
Gaussian noise.

The matrices F(t), C(t), G(t) and H(t) are of appropriate
dimensions. Since the state vector x(t) contains all useful
information, the design aim of filtering theory consists of
developing algorithms to produce a state estimate g(t) using
the available measurements Z(T), t0 £ 1t £ t. In the case of
high quality demands on the estimation performance, it is
advantageous to formulate the estimation problem as an optimal
filtering problem with regard to the estimation-error vari-
ances as performance measure:

Given measurements Z(T), t, = 7 S t based on a state vec-
tor model (see equations V.F-1,2), find a state estimate
x(t) of the actual state x(t) such that a quadratic perfor-
mance criterion J on the error-covariance matrix
= E{& (%) gT(t)} with the estimation error vector

Ple)
R(t)

X(t) - &(t) is minimized:
J = trace P(t) - min (V.F=3)

There are many different optimal estimation technigues
currently undergoing research. One of the most popular op-
timal estimation techniques is the well known KALMAN-BUCY

filter, which consists of:
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A linear vector differential equation for the state
estimate X(t):

X =EX +Rc(2-HX) +GU; Xl(ty) = X, (V.F-4)

A non-linear matrix differential equation (the well
known Riccati equation), for the error-covariance
matrix P(t) to be integrated forward in time:

P = FP+ PFT- PHTR-1HP+ CQCT ; P = (V.F-5)

A computational rule for the filter feedback matrix
Ko ()
f

K = pHIR™! (V.F=-6)

The solution of the filtering problem by the time domain

approach of the Kalman-Bucy filtering offers essential ad-

vantages as against the frequency domain approach of Wiener

filtering. These advantages are:

The cases of multi-noise inputs and multi-sensors con-
figuration can be treated within this framework.

The real world model (see equations V.F-1,2) is formu-
lated to include time-varying system coefficients and
statistic parameters.

There are numerically efficient algorithms to solve the
matrix Riccati equation by means of a digital computer.

If real world and real world model coincide, the estima-
tion accuracy of information processing can directly be
obtained from the diagonal elements of the error-
covariance matrix P(t). Otherwise it has to be deter-
mined by sensitivity analysis or simulation.

But despite the theoretical optimality and the above out-

lined advantages, there are difficulties to be overcome in

the application to practical problems. These include diver-

gence, degradation of control performance and large computa-

tional requirements.
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Divergence can occur due to:

® Inaccuracies in the system model (including unaccounted
for nonlinearities or simple error in the selection of
coefficients for the system matrices).

e Inaccuracies (including state dependence) in the statis-
: tical models of the system and observation noise
b processes.
e Simple computational truncation and round-off errors.
Computational inaccuracies may even result in calcu-
- lated covariances which are not positive semidefinite
{ with disastrous consequences.
" It has been shown that an optimal state-feedback control
law (based on LQ theory), with a Kalman Bucy filter estimate
1 of the state substituted for a direct measurement of the
3
r‘ state, will always have degraded performance, even if the

models are perfect. However, it has also been shown that

- this is the optimal solution to the combined linear control/
estimation problem if the optimization criteria is to mini-
mize J = E(PI). But in the non-linear case, the estimation

and control problems are not in general separable. This

means that a controller which would be optimal if perfect
state information were available may no longer be the best

controller if only estimates of the state can be used.

The computational requirements of a Kalman Bucy filter

can become very large, especially if the number of measure-

AL G et aaa . 4 g

ments or number of states is large. For real-time processing,

S

this may force a simplification
system model, and will at least
cient algorithms and programs.

of any filter selected for this
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require the use of very efii-
This will of course be true

problem.
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Techniques have been devised to permit consideration of

non-white and cross-correlated measurement and system noise.

These essentially amount to ways to restructure the system

model to permit direct appiication of the Kalman-Bucy filter,

which remains optimal and conceptionally unmodified.

Of more present concern are problems which force a modi-

fication of the filter. These problems include:

1)
2)
3)
4)

Nonlinear state and/or measurement equations;
State-dependent noise processes;
Uncertainty in the system model;

Uncertainty in the statistical properties of the noise
processes.

The missile problem suffers from all of these difficul-

ties, although it may be possible or advisable (if established

by more specific analysis) to gloss over or ignore some of

them without excessive penalty.
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VI. MAJOR MISSILE SUBSYSTEMS

A. GENERAL

Each missile has its own configuration and carries cer-
tain subsystems depending upon many factors, due to the par-
ticular design specifications and criteria. But it is possible
to generically describe the subsystems and their inter-
relationships with the aid of figure IV.A-1, which is a
A brief descrip-

functional diagram of the major subsystems.

tion of each subsystem follows.

............

cinaer SENSORS
Kinematics 4(////,/ N\\\\\\E‘
I
T seeKeR Fiten [ SUIDANCE AUTOPILOT
+
3 [~
mIssILe AIRFRAME
el Sl EEP s eE— r
KINENATICS pRQpULS ION ACTUATOR“

Fig. VI.A-1l. Major Missile Subsystems

1. Airframe
The airframe serves two purposes. First it is the

container for all the other subsystems (including the pay
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load). Secondly, by proper design and in partnership with
the propulsion, it can be used effectively to produce the re-
quired lift and drag forces for accomplishing the mission
objectives.

2. Missile-Target Kinematics

By virtue of Newton's second law and all its ramifi-
cations, these net forces determine the kinematic wvariables
of the missile, such as position, velocity and acceleration.
These variables, in combination with those produced by the
target, result in something new for the seeker to see.

3. Seeker

The seeker can be thought of as the "eyes" of the
missile. 1Its purpose is to detect, acquire and track a tar-
get by sensing some unique characteristic associated with it.
This unigque characteristic usually consists of the radiation
or reflecticn by the target of energy in a specified region
of the electromagnetic spectrum. Typical regions include
ultraviolet, infrared, laser, visible, millimeter wave and
radar frequencies. Some missiles may have seekers which can
operate in more than one region at the same time or at dif-
ferent times.

a. Detection

Detection is the process whereby the seeker senses
a certain amount of energy (in some region of the electromag-

netic spectrum) above that normally expected £rom background

or internal seeker noise.
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b. Acquisition

Acquisition is the process whereby the seeker,
after experiencing one or more incidents of detection, de-
cides (according to some pre-established criteria or algo-
rithm) that a valid target has been located.

c. Tracking

Tracking is the process whereby the seeker con-
tinually specifies the angular location of the target relative
to some fixed coordinate system.

4. Filter
The filter operates on the seeker data to produce a
clearer "image" of the target behavior by extracting the per-
tinent kinematic variables.

5. Guidance Law

The guidance law decides the best trajectory (physical
action) for the missile based upon its knowledge of the mis-
sile capability, target capability and desired objectives.
Thus, an appropriate acceleration command to intercept the
target is produced which is then sent to the autopilot.

6. Autopilot

An autopilot is a closed loop system and it is a
minor loop inside the main guidance loop. Broadly speaking,
autopilots either control the motion in the pitch and yaw
planes, in which case they are called lateral autopilots, or
they control the motion about the fore and aft axis in which

case they are called roll autopilots. The function of an
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autopilot is to determine what "muscle" control (actuator
position) is required to best execute the command issued via
guidance law.

7. Actuator

The purpcse of the actuator is to alter the external
geometry of the missile such that the net forces which re-
sult will approximate the guidance law command. This altera-
tion may take the form of a wing deflection, tail deflection,
canard deflection, thrust control, or some combination of
these. The first three alterations change the aerodynamic
properties in such a manner that the proper moments and
forces are achieved.

Filter, guidance law and autopilot are three major
subsystems of a missile which can be thought of as the "brain"
of the missile. The make-up of this "brain triad" depends
heavily on the nature of the other subsystems too. A brief
survey of the evolution of flight control design practices
over the past twenty years shows the following trends:

a. Flight control systems require more sensors that mea-
sure dynamic motions of the missile, resulting in an
increased number of feedback paths.

b, [rilter or compensation networks as command augmentation
are introduced to modify and improve command inputs to

the servos that drive the aerodynamic surfaces.

c. Filters, compensation networks and washout networks are
being added in abundance to the flight control system.

d. "Inner loops" in the form of feedback are being pro-
posed to improve the performance and stability.




These developments taken individually may be justi-
fied for individual airframes and flight tasks but the ten-
dency is to build in gradually upon previous designs by
cascading, resulting in increased complexity and a very high

order system. Such a development is demonstrated in a primi-

‘I.‘.{? g H*.V,f.f NN

tive mode later on.

B. SEEKER
Homing missiles use a seeker to detect, acquire and track

the target motion. The type of seeker to be used is crucial

e ———
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to the missile design as well as to flight control system

P
Y

design.

There are several methods available for tracking a tar-

LA A o

get, depending on whether the seeker has a wide or narrow
D“ field-of-view, or whether the seeker is gimballed or fixed

to the air frame. The instantaneous field-of-view is the

angular region (usually conical) about the seeker centerline

which is capable of receiving useful energy. The portion of

g g r-', "

the electromagnetic spectrum which will be sensed by the
seeker is also crucial to the design. For instance, the
high frequency of an infrared seeker allows a reasonable
angular field of view even with a small diameter seeker, but

1 requires a hemispherical Infra Red (IR) dome to avoid image

quality degradation. But the hemispherical dome causes ap-

p——

oreciable drag on the missile. On the other hand, radar-

guided anti-aircraft missiles, due to their longer wavelength,
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typically require a larger missile diameter, but the lower
frequency allows a tapered dome, which improves aerodynamic
efficiency at the expense of increased dome refraction slopes.

If the seeker has a large field-of-view, it is possible
to fix the angular orientation of its centerline relative to
the airframe centerline (strapdown seeker). The type of
tracking information available in such case is an indication
of the angle between the line-of-sight (straight line from
missile to target) and the missile centerline.

If the seeker has a narrow field-of-view, it is usually
mounted on a gimballed platform. The seeker maintains the
target within the narrow field-of-view by rotating the plat-
form. If the platform is inertially stabilized, the rotation
is accomplished by applying torques which are proportional to
the target displacement from the field-of-view center. The
tracking information provided by this type of seeker is an
indication of the inertial rotational rate of the line-cf-
sight (L.0.S.).

The primary quantity measured by the seeker is inertial
L.0.S. rate. Other information which the seeker might be
capable of providing to a guidance law is missile-to-target
range and/or rance rate. Radar seekers are the only ones
which currently provide such information. (Active radar
seekers can prcvide both, semi-active radar seekers can pro-
vide range rate, and passive radar seekers can provide

neither). Techniques involving modern estimation theory
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are being studied which might provide this same capability
for passive seekers and/or other frequency spectrums. The
seeker is also a dynamical system and it must be determin-
istically and stochastically modelled in the same manner as

the other sensors.

1. Seeker Modelling and Error Sources

The dynamics of a seeker depending upon the complexity
of its design, can be represented by a transfer function of
first, second, or even higher order.

The modelling of a seeker and used sensor hardware
allows one to evaluate the effect of these components on the
derived L.0O.S. rate. Seekers and inertial sensors do cause
errors in the computed L.0.S. rate, and these errors in turn
can produce system instability effective navigation gain er-
rors, and degradation of accuracy. The method of generating
the inertial L.0.S. rate also affects, to some degree, the
sensitivity to each error source. The component errors to be
considered fall in three broad classes:

a. Linearity or gain errors (radome, receiver/detector.
phase shifter, gyro and seeker/gyro dynamics)

b. Time-varying random errors (thermal noise, glint or
apparent target motion, gyro noise)

c. Offsets (seeker boresight errors, gyro offsets and
drift).

Other error sources such as cross-coupling, sampling,
rate, break-lock or blind range, winds, target motion, body-
bending, vibrations and launch offsets, have been proved, via

numerous studies, <o te 0f secondary importance.
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The mentioned component errors cause corresponding
errors in the derived inertial LOS rate. Gain errors cause
components of the missile body rate to appear in the derived
LOS rate, which can cause stability problems and errors.
Random errors in the seeker and rate gyro cause random errors
in the LOS rate with a corresponding loss of accuracy. Fi-
nally, offsets can cause anomalies in the derived LOS rate
depending on their location with respect to the derivative
network. Offsets in the LOS rate also result in degradation
of miss distance and some increase in required maneuverability.

Seeker noise can also be a problem at low signal-to-
noise ratios, particularly since the seeker output must be
differentiated. Reducing the derivative network vandwidth
minimizes these effects, but stability problems then come into
play as discussed previously. Seeker bonresight errors and
attitude gyro offsets have no effect on the LOS rate since
the d.c. gain of the derivative network is zero. However,
drifts in the gyro will apvear in the output of the deriva-
tive network as a LOS rate. 1In most cases these effects will
be insignificant.

For practical computer simulation study purposes, two
simplified transfer functions of seeker dynamics are outlined
as follows.

a. First Order Seeker

An inertially stabilized seeker may have a block

diagram as in figure (VI.3-1) is shown, where:
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Equation (VI.B-la) can be expressed in state form as follows:

Let Y = X5, ¥ = X5 = X6
D=1%=%X8, D=1 = X8

Then, equation (VI.B-la) turns into:

1 1 1

9 X8 = = ﬁ;;xs - X8 + TEE;;UN (VI.B-1b)
§
NOTE: States X5, X6, X8 are used to confirm with later on
= studies.
t( CDC? b. First Order Seeker with Observer

An improvement in the performance of a guidance

system can be achieved utilizing a seeker with an observer.

Hf"

Such a combination may have a block diagram as in figure

VI.B-2.

RTm Ter S

Y ——— M e el 2 e xa gm0 a0,

-
Q

Fig, VI.B-2. First Order Seeker with an Cbserver
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In this case, the application of Mason's rule gives:

¥ _1-8T¢ -
¥ T + STo ‘ (VI.B-2)
or
b= Ly - -9 -
SY = Z=(y ~ SYTo - ) (VI.B-2a)

Equation (VI.B-2a) can be expressed in state form as follows:

Let Y=X5, Y =2X5 = X6

y = x8 J = X8
and upon substituting and after minor manipulations, equation

(VI.B-2a) turns into:

U 0
X8 = —+— X5 - L x6 - txg + —N_ - __N (VI.B-2b)

RTMTG RTM To TcRTM TGRTM

In equation (VI.B-2b) the glint noise UN is ex-
ponentially correlated while in equation (VI.B-1lb) it is
white noise normally distributed. The probabilistic proper-
ties of the glint noise are one of the major parameters in-

fluencing the performance of the system.

2. Tracker Modelling

a. A Second Order Close Loop Tracker with Position
Servo

Consider an antenna centered along the fuselage
of a missile and pointing toward a target. For simplicity
reasons it is assumed that target and missile motion take

place on the same plane.
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Let em and et be the angular position of the mis-
sile antenna and target respectively with respect to some
reference direction. It is desired to have: em(t) 2 et(t),

for all t 2 to.

The "plant" will consist of the antenna and the
electric motor as in figure Vi.B-3. 1In this plant, it is

denoted:

8, =8 o(t) u(t)
t r A 8

n(t)

Fig. VI.B-3. Functional Block Diagram of a Tracker
et(t): Angular direction of the target (it is considered
as the reference variable)

Sm(t): Angular position of the missile antenna. This is
the variable to be controlled

v(t): Measured noise
n(t): The observed wvariable

e(t): Angular position error between target and missile
antenna

At Gain of the motor

T,: Disturbance torgue acting on the antenna and the
motor.
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The motion of the antenna can be described by a

differential equation as follows:

DR~ ha
1

Jem(t) + Bem(t) = Tm(t) + Td(t) (Vi.B-3)
where J: The moment of inertia of all rotating parts of the
E tracker including the antenna

B: The viscous friction coefficient
L Tm(t): The torque applied by the motor
»‘ Td(t): The disturbing torque.
4 Assume that the motor torque Tm(t) is proportion-

al to the applied input current; then

Tm(t) = KU(t) (VI.B-4)

and substituting Tm(t) into equation (VI.B-3) the latter

turns into:

A
|
..

. J§_(t) + BA_(t) = RU(t) + T4(t) (VI.B-5)
i! let: a = B/J K = k/J v = 1/3

r 5 = X1 § = X1 = x2 i = X2

'. m m "

and upon substitution into equation (VI.B-3) the following

: state variable system follows:

AT G T v
/X1 {0 1,iX1] 0 50!
| ! : ' i ! i |

K s i L E U+ ﬁTa(t’ (VI.B-6)
[ : : ; i !

» |X2| |0 -ajix2| K| B2

\ - - - - == -

S

From the functional block diagram of figure VI.B-3 it is ob-

tained that




u(t) = Afe () 5 8 (E) - v(v)] (VI.B=7)

)

and upon substitution into equation (VI.B-4) and after minor
manipulations it turns into:

. r
X1 0 1) X1 0 0 0
. et(t) - vit) + Ta(t)

X2 -Ak -al X2 kkj Ak Y

]
+

(VI.B-8)

To simplify the study at this stage, it is as-
sumed that:

v(t) = Td(t) =0

at all t. Then equation (VI.B-8) turns into:

%1 0 11&ﬂ o]
= || + l 3, (£) (VI.B-8a)
X2 -1k - J!XZJ {}k
|

The characteristic equation of this second-order system is

given by:

r - r 7
11 01 0 1!
C(s) = (sI - a) = s; ; - |
10 1] |-ak -a|
- - [ -
- .
s -1
o i
T i
g\k s+a|
[ -
=5+ asS + k=0 (VI.B-9)
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Recalling from classical Control theory that the
characteristic equation of a second order system is of the

form

2 + 2ans + w 2 =0

S n

and comparing it with equation (VI.B-9) it comes out that:

o = /TR (VI.B-10a)
J =2 (VI.B-10b)
2V 3k

From the characteristic equation (VI.B-9), the tracker can be
modeled as follows:
It is known that the characteristic equation of a closed loop

control system is given by:

C(s) 1 + G(s)H(s) =0

or -1 G(s)H(s) (VI.B-11)
From equation (VI.B-7) it is easily obtained that:

_ 1k }
-1 = 555 (VI.B-12)

In figure VI.B-3 it is shown that there is not any scalar

factor for the observed variable, which means that H(s) = 1;
thus:
=k - ._k .1 Y
Gls) = gmE3ay = '\ G+ (VI.B-14)

Equation (VI.B-14) can be represented in a block diagram form

as follows:

W T T T
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Fig. VI.B-4. Block Diagram of a 2nd Order Tracker

Figure (VI.B-5) shows the root locus of this second-order

f tracker, derived from equation (VI.B-12):

h o s
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Fig. VI.B-5. Rcot Locus Diagram of a 2nd Order Tracker

From this root lcci it is seen that this second-order control

e cn e on o a0n

-

system is an ideal tracker and it is always stable no matter

the gain parameters, while 7 = cos [ = cos~ (a/2v " K).

——y —v—

Fen
(9]
-




b. A Third-Order Close Loop Tracker with Position
Servo

The derivation of the so far described second
order tracker was based upon many assumptions and a lot of
important parameters were not included. Among these was the
electrical time constant of the motor. Taking into account
the electrical time constant of the motor, the block diagram

of figure (VI.B-4) becomes as in figure (VI.B-6):

8 K 1 [k |8 [T 8
T sTe + 1 s+a 5

Fig. VI.B-6. Block Diagram of a 3rd Order Tracker

Then the transfer function of this close loop system beccmes:

\K

T(s) = S(s+a)(sTe + 1) + \k (VI.B-15)
Then, the characteristic equation is given by:
- L) . Ak -
C(s) = S(s +a)<sze) + 2% =0 (VI.B-16)

It is obvious that the so derived characteristic equation bec-

longs to a third-order control system. The root locus of
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such a third-order system would look like that in figure

(VI.B-6a):

I-\‘t!

Fig. VI.B-6a. Root Locus Diagram of a 3rd Order Tracker

= 2 L -
where Ay = k(a + Te) (VI.B-17)

For values of X 2 Km the closed loop system is unstable.

The performance of the so far obt;%ned trackers
will depend upon the values of the several parameters which
are involved in the problem. Utilizing adapting control
methods, such as inner close loop sensing the angular velo-
city, etc., better performance characteristiecs can be ob-
tained. But the purpose of this part and study is to outline
some instructive methods for future work and not to examine
thoroughly every possible aspect of this particular problem.
Thus, abandoning the further development of the tracker, the

next part deals with a scmehow general way of studying the
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required input signal to a tracker and the resulting error,
from a stochastic process standpoint of view.

Cc. Stochastic Analysis of a Tracker with Position
Servo

In part VI.B.2.a, it was found that a second-
order tracker with position servo and having no disturbance

and noise influence, is given by equation (VI.B-8a) which is

rewritten:
,—. [—
X1 0 1 xf} 0
= + et(t) (VI.B-8a)
tiz -1k -a| X2 |k
- J

It is known also that the target position signal
is exponentially correlated to white noise and that it is

expressed by the following radar glint equation:

(VI.B-18)

. __L .
Je(e) =g A (e) + W)

where T_: Radar time constant depending upon the system

parameters
W(t): White noise with intensity v = 202/Tr
Defining 3 (t) = X3 ét(t) = X3

and combining equation (VI.B~8a) with equation (VI.B-18) :i:

comes out:

red - R s B
O | vl P
i e i ! ' | i
%2 = |-k -a k Plx2] o+ lolwee (VI.3-19)
I H L ! ‘
L : B b
3. .0 0 -1/T_iix3i 1
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Equation (VI.B-19) is of the form:
x(t) = Ax(t) + BW(t)

where A and B are constant matrices (matrix A is also asymp-
- ~ totically stable)

W(t) is white noise with intensity V.
It is known that in such a case, as the above, the variance
matrix of x(t) tends to a constant nonnegative matrix which

is defined by:
At T ATt
t = JePtpyvrT g tat (VI.B-20)
0

Furthermore, it is known that matrix L is the solution of the

~

Liapunov equation which states that:

S(t) = AZ(t) + C(£)AT + BVBT

=
~

(VI.B-21)
Each control designer is interested to obtain:

= (0]

¢ L e

Utilizing Liapunov's equation (VI.B-21) for the case of equa-

= [0], it comes out

¢ L-Je

tion (VI.B-19) and desiring to obtain

after direct substitutions and minor manipulations that:

0 0 O
252! |
i(“ij’k"'a’Tr) = - rJO 0 0{ (VI.B=-22)
0 0 1
where i,j = 1,2,3

3ut matrix I is a symmetric one, that is:

-~




11 12 13
$.. =3
12 21
T(t) = (T 5 ) ) = -
2 21 22 23 where: 213 Laq
L 5 La3 = I3z
L3 32 33

Equalizing terms in equation (VI.B-22) and solving for the

.'s, it comes out the STEADY-STATE VARIANCE MATRIX as

ue]

ij
follows:
$+T,)
(a+Tr 0 Tr
2
r ﬁ}” 0 \k/a 1 (VI.B-23)
- a+T—+kATr 1
r a+ =—+ AkT
T r
T 1 ]
r Ak

At this point, it is necessary to introduce two important
factors which characterize the quality and the expected per-
formance cf a control system (and for the present study, of

the tracker). These are:

a) Mean Square Error (m.s.e.), Ce(t): it is de-

fined as:

Ce(t) = Eje” (t) Wel(t) e(t) , t 2t (VI.B-24)

where e(t): Tracking Error given by

e(t) = %m(t) - 9r(t) , 0z to

a non-negative definite symmetric weighting
matrix.

We (t):

p—
[Q¥)
[e)}




When We(t) is diagonal, as it is usually, Ce(t) is the
weighted sum of the mean square errors of the components of
the controlled variable. When the error e(t) is a scalar
variable and We = 1, then /Ce(t) is the Root Mean Square
(r.m.s.) tracking error.

b) Mean Square Input (m.s.i.), Cu(t): it is

defined as:
cutt) = elvTet) wae) v} , ¢ 2t (VI.B-25)

where U(t): control signal, input to the motor given by

u(t) = K(Sm(t) - Gt(t))
Wu(t): non-negative definite symmetric weighting matrix
When the input U(t) is scalar and Wu(t) = 1, then vCu(t) is

the Root Mean Square (r.m.s.) input.

The aim of every control system designer is to
reduce the mean sguare tracking error Ce(t) as much as possi-
ble; but decreasing Ce(t) it usually implies incrementation
of the mean square input Cu(t). Since the maximally permis-
sible value of the mean square input is determined by the
capacity of the plant (electrical characteristics of motor
and antenna), a compromise must be found between the require-
ment of a small mean square tracking error and the need to
kxeep the mean square input down to a reasonable level.

Thus, a basic design objective can be stated as
follows: "In the design of a control syvstem, the lowest pos-

sible mean square tracking error should be achieved without
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letting the mean square input exceed its maximally permis-

sible value."

Assume that for the present study, it is given

We(t) = Wu(t) I.

Then, equation (VI.B-24) becomes:

it

ce(t) = E{eT(t) we(t) e(t)] = EleT(t) e(t)]

7

or

Ce(t) = Lim E{e?(t)} = Lim E{(x1 - x3)?}

£t t>o t>

2

= Lim{E x12 + x33 - 2x1x3) = £,, +

t>

- 2,2

233 153 (VI.B-26)

11

Note: the subscript of each steady state variable determines

the coefficient to be taken from the variance matrix.
Substituting into equation (VI.B-26) the equiva-

lents from equation (VI.B-23) it comes out that: the steady

state mean square tracking error is given by:

1 kK
—_ 4 -
a + Tr 2 5
Cel(t) = T o] (VI.B-26a)
£ a + =— + kT
T r
r
Equation (VI.B-25), due to Wu(t) = 1, becomes:
(T i ;T ;
Cu(t) = EfU*(t) Wu(t) U(t); = E{U-(t) U(t)}
or
.9 .
cu(t) = Lim E{U%(£)} = Lim B{[3 (3 (8) - ;o))
t - £+ t—-x ' - “ '
] . 2 p)
Lim E<3“[X1 - x3]2; = ““LimE (X1 - X3)°i = 2 2ce
t-» t~o Lo
138




o el

—— ot

—rrr—rr————
- M

D~ S

T

Ras g

vy
-

Y Y TNy T e € T v W YT Y T Y v v vy
’

r—

@

Thus, for the case of We(t) = Wu(t) =1

Cu(t) = A2Ce(t) (VI.B-27)

t> t-rce

Finally, from equations (VI.B-26a) and (VI.B-27) are easily

obtained the:

YCe(tY : r.m.s. tracking error steady-state

t>w

/YCu(t) : r.m.s. input signal steady-state

£+

Depending upon the numerical values of this system, plottings

similar to the following are easily derived.

{ce

(rad) .

——

| gain A (v/rad)

[
c

gain 4 (v/rad)

i
j
|
i
|
|
I
!
i
|

Fig. VI.B-7. rms Tracking Error and rms Input Vcitage
as functions of the Gain for a Tracker
with Position Servo
Figure VI.3-7 shows that, according to what one would intui-
tively £feel, the rms input keeps increasing with “he gain

Comparing the behavior of the rms tracking error and the rms
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input voltage confirms the opinion that there is very little
point in increasing the gain beyond a certain point, since
the increase in rms input voltage does not result in any ap-
preciable reduction in the rms tracking error. Depending
upon the desired control system specifications the derived
steady-state values will indicate whether the design was suf-
ficient or not. 1In case that the system is rejectable, other

adaptive schemes must be researched.

C. FILTER

The purpose of a filter is to estimate as accurately as
possible the real value of all the system states, given in-
accurate measurements of a few (perhaps only one) of them.
The tweo outmost popular theories for filter calculations and
construction are these established by Wiener and Kalman
respectively.

1. Wiener Optimal Filter

In the case of an optimal Wiener Filter, the dis-
turbances entering the guidance system are considered to be
white glint noise with spectral density :N and random target
maneuver. The Wiener filter formulation is based upon the

determination of a transfer function HO which will minimize

the integral of the mean square signal, that is,

0

minimize Jpez dt (VI.C-1)
0

140




EM SR S G it aer
'l

.

The optimal transfer function H, can be found from the expli-

cit solution of the Wiener-Hopf integral equation

+
1 ws

o + -
(Ws + WN) (Ws + WN)

where Ws and W, are the spectral densities of the signal and
noise, (ws + WN)+ represents that part which has all its
poles and zeros in the left half-plane, while (Ws + WN)-
represents that part which has all its poles and zeros in
the right half-plane. The expression [-]+ is the component
of [+] which has all its poles in the left half-plane. (To
obtain [-]+, expand [°+] in partial fractions and throw away
all the terms corresponding to poles in the right half-
plane). The output spectral densities of the signal and
noise, WS and WN’ can be expressed in terms of the spectral

densities, bs and ¢ and the used shaping network transfer

NI

function.

2. Kalman Optimal Filter

The Wiener ootimal filter theory is a design tech-
nigque of an optimal stochastic control system based on the
minimization of a Performance Index (PI) when the future
values of the variables are not well defined but are random
functions of time. In order to be possible that some prog-
ress could be made, the study was restricted to stationary
random signals and assumed that their pcwer spectra were

available. In the case of the Kalman optimal £il«er, the
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mathematical modeling of the following concept is attempted.
"If a physical model, equivalent to an actual system, could
be constructed on some form of simulator then, in principle at
least, it would be possible to use the values of the state
variables given by the simulator model without any further
reference to the original system. Provided the simulator
model is started with the correct initial conditions it will
continue to mimic¢ the behavior of the actual system, thus
eliminating the need for measurements on that system."
Unfortunately such an ideal situation cannot be ob-
tained. Even if the actual system model structure, parameter
values and initial conditions are known exactly, the input W
(where W represents zero mean white noise, contaminating the
target motion, of power per unit bandwidth q2 such that

2

:T = ——Jijfji), being a random function of time, cannot be
1 + Wt

reproduced in the simulator model.

Effectively W represents the uncertainty in our knowl-
edge of the actual system. Of course, in practice some mea-
surements will be made on the system. These measurements
will not be perfect since there are alwavs errors asscciated
with any measurement process. It is usually the case to ob-
tain as measurement not the actual target and missile states
separately but only the difference between them. This situa-
tion is depicted in figure VI.C-1 in 31 more general notation,
where Z represents the measurement and . the measurement

noise.

[
' EN
o




L R 2 e e e it R T B * - i

T

T

s X1 (8g) A z (monsuromongl
N~
a
X2 (am) 5 (SN)
k! Fig. VI.C-1. Measurement Z contaminated by noise v

The aim of any one designer is to obtain best esti-
mates, in some sense, of the states X, and X, given the mea-
surement 2, a knowledge of the structure of the system and
- its parameter values, and the statistical characteristics of
t1 the noise sources w and v. The assumed system model, which
! is equivalent to the previously proposed simulator model, is

;i identical to the actual system model except £for the zero mean
4 white noise source w. Since the best guess of w at any in-

stant is zero, it is omitted entirely and thus represents the

uncertainty in the assumed system model.
In the Kalman filter formulation, the measurement »ro-
cess and system model outputs are treated as two independent

estimates of the state of the actual system. It combines

these outputs together to form a best estimate (in the sense
' of having minimum variance). The mathematical formulation of
r
L
b a Kalman optimal filter has as £ollows:

Given an actual system

= 53 + Bu + w (VI.C-3)

¢y

and a measurement

',.-l
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2 = HX + v (Vi.c-4)

where w and v are white noise vectors with spectral density
matrices Q and R respectively then the best estimate X of X

is given by:

X = A% + Bu + K(Z2 - HR) (VI.C=5)
where
K = p HT R7! (VI.C-6)

and P is derived from the solution of Riccati equation

P =AP + PAT + Q - PHTR lup (VI.C-7)

For the Q and R matrices, the elements on the main diagonal
are the spectral densities of the individual system and mea-
surement noise sources. Elements off the main diagonal indi-
cate correlation between noise sources in terms of a cross
spectral density but in many problems the noise sources are
independent and hence these elements will be zero. However,
this is not the case for the P matrix. Here the off diagonal
terms are covariances which indicate how one best estimate
is related to another and these, in general, will not be
zero. For this reason it 1s usual to refer to P as the co-
variance matrix even though the terms on the main diagonal
still correspond to the variances of the individual best
estimates.

In this estimation case, the boundary conditions are

defined at the start of the engagement and reoresent initial
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guesses at the entries in the covariance matrix P. Provided
the system is time invariant and the noise sources stationary,
then the elements of P should tend to steady values as the
estimation process proceeds and these values can be found by
integrating the Riccati equations forward in time.

a. A Third-Order Kalman Filter Estimator

As the most important disturbances entering a

guidance control system are considered to be white glint noise
with spectral density bN and random target maneuver, the tar-
get maneuver can be considered as a step function whose ini-
tiation time is uniformly distributed over the flight time.
It can be shown [Ref. 12] that integrated white noise has the
same autocorrelation function as this maneuver process. Thus
the input process can be considered as having spectral den-
sity :S“ A Kalman filter formulation may be like that shown
in figure VI.C-2.

[

1
S

Figure VI.C-2. Kalman rilter Formulation

The state equations are:

. e {I ' .

%YT! 0 ! OHYT, io

1::‘}1'% =0 9 l::iTE + 9 (VI.C-8)
T 0 0 0 T U,
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which is of the form of equation (VI.C-3)

AX + W

I3
0

The measurement equation is

Z = AX + v
and for this case
-
YT|
* = o
YT (1 0 0] YT + UN
YT

(VI.C-3a)

(VI.C-4)

(VI.C-9)

The Kalman filter equation is given by equation (VI.C-5) via

equations (VI.C-6) and VI.C-7) where

0 -0 0
|

0 = Io 0 0!,
|

Recocgnizing that the covariance matrix P
scalar equations representing the steady

can be derived from equation (VI.C-7) as

PY) = 2Py 0y
P%z = 2Py3%
P§3 = 5’
P11P12 = "B * 213)
146

is symmetric, the
state solution (P =0)

follows:
(VI.C-10a)
(VI.C-10b)

(VI.C-10¢)

(VI.C-104)
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P11P13 =

P)oP13 =

.....

(VI.C-10e)

(VI.C-10f)

The solution of equation (VI.C-10) yields the following

steady state Kalman filter gains:

Ky 2(®s/¢N)
K= K| = 2(¢s/¢N)
Ky (®S/¢N)
Defining:
w, = (®s/®N
the gain matrix (equation VI.C-11)

2w

CR
£
g

W

|
;2
|
|

Now, substituting equation (VI.C-1lla) into equation

the filter equations are obtained:

1/6

1/3

1/2

)1/6

becomes:

S LA i

‘ : ! i

Ty 30 1 OI'YTl Vo

! | II 5 ! ]
=0 0 1lEl lawl2iiys - i
T T
i | : X :

‘:’ '0 0 0\1 | l 3

: ' ! [

T ‘ ‘ T‘ ; o t

(VI.C-11)

(VI.C-1la)

(VI.C-5)
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The transfer function between the position estimate output
and the position measurement input can easily be obtained via

equation (VI.C-12):

<, |2
% |

1 + Zs/wo + 282/w02
1+ ZS/wo + 28 /wo + S /wo

D. AUTOPILOTS

An autopilot is a closed loop system and it is a minor
loop inside the main guidance loop; not all missile systems
require an autopilot. A missile will maneuver up-down or
left-right in an apparently satisfactory manner if a control
surface is moved or the direction of thrust altered. If the
missile carries accelerometers and/or gyros to provide addi-
tional feedback into the missile servos to modify the missile
motion, then the missile control system is usually called an
autopilot, but this definition is not universally accepted.
Broadly speaking, autopilots either control the motion in the
pitch and yaw planes, in which case they are called lateral
autopilots, or they control the motion about the fore and aft
axXis in which case they are called roll autopilots. For a
symmetrical cruciform missile, as in this present study,
pitch and yaw autopilots are identical.

The reliance on classical control technigues in autopilot
design usually results in an autopilot with three independent
channels for yaw, pitch and roll. These three motions are

assumed uncoupled because classical control technigues are in
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general limited to single input, single output linear systems
(their extension to multi-input, multi-output systems is quite
complex). In flight, inherent aerodynamic interactions com-
prise coupling modes between steering and roll motions.
Therefore, the channels of the autopilot are not independent
and this leads to stability problems. The cross-coupling
stability problem gets worse with increasing angle-cf-attack.
To pvartially decouple the roll and steering control systems,
autopilot designers limit the steering response speed so that
the roll system bandwidth is two to four times the steering
system bandwidth. Also, the designers limit the missile
angle-of-attack as much as possible.

The autopilot gains in each of the channels are often
variable. This variation is required to produce the optimum
performance for different Mach numbers, dynamic pressures and
control effectiveness as the missile response depends on the
semi non-dimensional form of the aerodynamic derivatives, and
thus it follows that all the aspects of the missile response
will vary as the mass and inertia vary with bandwidth. Thus
a satisfactory guidance loop cannot be engineered if very
large tolerances exist inside the loop. To simplify the fur-
ther discussion on this present study, it will be assumed
that the guidance law and autopilot are designed independent-
ly. ©Not only is the assumption not necessary, but better
guidance laws can be designed if the autopilot characteris-

tics are included in the guidance law cderivation. To do so,
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however, makes the design too vehicle dependent which in
turn further dilutes generality. In addition, autopilot de-
sign and mechanization techniques are now available which
result in very good guidance law command execution, regard-
less of the airframe or guidance law characteristics.

There have been developed several special purpose auto-
pilots. These can be classified as in figure VI.D-1 is shown.
Autopilot design can be attempted either by classical or by
optimal control theories.

1. Autopilot Design by Classical Control Method

In part II.E the longitudinal and lateral decoupled
and linearized sets of missile motion equations were de-
rived. Also, it has been essentially identified the missile
motion in the xz plane as the “pitch motion," the motion in
the xy plane as the "yaw" motion, while the motion in the zy

plane as the "roll" motion.

The longitudinal equations set was found to be:

ool ox X 0 Glel %
N “ s
o g, z, o, OjM oz |
’ T R ‘ '3 (VI.D-2)
' M.Z 3 . 2 . i M.2.)i
| !(Muﬂ.wz..u) G AGZ) (AT O alq | (M2 )
cel i i
I 0 0 1 0.5 0 i
b .——4 - .n"—-.J‘ - -
g o | .
s In the case of a missile with 90° rotational symmetry, the
; relations shown in table II.E-l1 will hold where g = -r, v = w,
E etc. Then, neglecting the gravity force and assuming
q
i
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negligible the forward velocity perturbation, it is easily

obtained the yaw motion set of equations:

LI ¢ 0 0 - I T o 7
v o
w 0 gﬂ Uo 0 w 0 5
9 0 M52 (dekpb) 0 a  |ME
r (N_+N.Y. ) 0 0 (N .U ) |r 0
_j vy Ny vo il L 1 (v1.p-2)

Due to symmetry, the u component would be the same for each
equation.

This analysis shows that under conditions where p = 0
(no roll), both "pitch" and "yawing" reactions are the same
as long as gravity force is neglected.

Generically, an autopilot would have the structure of
a closed loop control system with unity feedback as it is

shown in figure VI.D=-2.

Servo Motor Missile

Equalization ‘ Transfer E
Controlindds | gain of Controlef ! Function |

| .

input !

Fig. VI.D-2. General Block Diagram of an Autopilot

The missile transfer function can be easily obtained

from the set of the lateral or longitudinal equations
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accordingly, by applying Cramer's rule. The so derived
transfer function would look like

£(S) A(S + al)(s + a2)

=72 ( 2\ (o2 2
8 + + 2 S +
(S) ST + Zcpwps wp )(S Cspwsp w sp)

(VI.D-3)

In the case of "pitch" or "yaw" autopilot study, the expres-

sion (52 + 2z wDS + wpz) in the denominator of equation

P
(VI.D-3) characterizes the "phugoid" motion of the missile
while the expression (52 + chpwsps + wzsp) characterizes the
"short period" motion. A very sufficient approximation of
the system behavior can be obtained by analyzing it, based
only on the characteristic equation of the "short period" mo-
tion. 1In this case, in order to derive the "short period"

transfer function, the first row and first column of equation

(VI.D-1) is deleted. Then:

De ! |
W | | VA U 0 !w{ ! Z i
j ! | \""4 Q I ) < I
{qi = ;‘Mw+Mwa) (Mq+Mon) 0 !qE + |M +MW25! (VI.D-4)
3 % 0 1 0119 ' ‘
| ; Lo !

Equation (VI.D-4) is the "short period longitudinal set."

2. Stability Augmentation System (S.A.S.)

The implementation of a missile lateral or longitudi-
nal set of equations into an open loop autopilot, utilizing
the corresponding aerodynamic derivatives, is probably not
acceptable for highly maneuverable missiles which have very

small static margins, especially those which do not operate
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at a constant height and speed. 1In order to obtain a stable
control system, some kind of a feedback must be introduced.
A usual method is to select a feedback such as to artifi-
cially augment certain key aerodynamic derivatives. This
artificial augmentation usually improves the missile perfor-
mance. Such an augmented closed loop system is called "Sta-
bility Augmentation System” (S.A.S.) and actually it is an
interior loop of an autopilot which in turn is an interior

loop of a guidance system (see figure (VI.D-3)).

SAS

AUTOPRPILOT

l

GUIDANCE SYSTEM

o

Figure VI.D-3. General Idea of a Guidance System

A S.A.S. effects favorably not only the damping
characteristics of a missile but alsoc its frequency behavior.
Thus, one can have a so called Ma or "stiffness" S.A.S.; this
also applies to the N3 or "weather cock" stability.

By augmenting Lp a roll damper is derived; by augment-

ing Mq a pitch damper is derived, while by augmenting N, 2 yaw
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damper is derived. In consequence the derivation of such
dampers is outlined.
a. Roll Damper
In part II.E the linearized decoupled lateral
equations were derived; in that set of equations the "roll"”

was found to be given by:
N o= T.1 + 1" ' ' -
P L BB L pp + L =l + L 55 (VI.D-5)
But this equation is a three degree of freedom
equation, while an equation of one degree of freedom is re-
quired. This is achieved by neglecting the 3 and r motions,

considering that L'BB << L'pp and L'rr << L'pp. Thus, equa-

tion (VI.D-5) reduces to:
p = L'?p + L',3 (VI.D-6)

Utilizing Laplace transformation, equation (VI.D-6) turns

into:
(S = L' )p(S) = L' 3(S)
or
L',
p(S) _ :
Y T FEI (VE.p=7)

Equation (VI.D-7) 1is an open loop transfer function.
Introducing a feedback loop as in figure VI.D-4

is shown, :(S) becomes:

1{S)

n
()]
[
w0
|
-
(6]

(VI.D-3)
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Fig. VI.D-4. Block Diagram of a Roll Damper

where GC(S) is the "commanded" deflection

Ga(S) is the aeleron deflection
and upon substituting equation (VI.D-8) into equation (VI.D-7)
the last turns into:

Ll
(S) 5

= = = — (VI.D-9)

OCTS) S (L b L 5kp)

Equation (VI.D-9) is the transfer function of a roll damper,
where the term (L'p - L' kp) represents the augment aerody-
namic derivative. From equation (VI.D-9) the augment "roll"

lateral eguation can be easily derived and it is:

P =1L";3+ (L', - L'k )p + L' xr + L'.° (VI.D-10)

4

The direct effect of the introduced feedback of
rolling angle rate (p = §) (see figure VI.D-4) is an increase
in the subsidence fregquency of the roll. Equation (VI.D-9)

can be rewritten as:

T !
2(S) _ ... 1 —ro. /L Paug _ ., Tr (VI.D-9a)
"L (8) T ¥ s-1% “3F7LT, . -1 3Tr-1
c Yaugment Jaug
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The achieved augmentation permits a tighter roll attitude of
the autopilot. The utilized feedback can be combined with a
lead compensator in order to fulfill given specifications.

b. Pitch Damper

In part II.E the linearized decoupled longitudinal
equations were derived; in that set of equations, the pitch

motion was found to be given by:

q= (M, + M2 VU + (M +MZ 0w+ M+ MU )G+ (M +MZ4) 8 (VI.D-11)

For a preliminary design, a very good approxima-
tion is obtained by assuming Mu, Mw' MW’ M6 as negligible

quantities and omitting them; equation (VI.D=-11) turns into:

1 =M
q o

the solution of which is:
= d -
a e (VI.D=-11a)

Note: Mq is a negative quantity.

After getting an idea from the above approxima-
tion, the next step is to obtain a better approximation.
Assuming M. as a negligible quantity, that is M. = 0, equa-

tion (VI.D-11) turns into:

q = Muu + Mww + qu + MS: (VI.D-12)

Utilizing Laplace transiormation and after minor manipula-

ticns, equation (VI.D-12) turns into a transfer function of

the type:
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S8 (S) (s) . AS + B
= 3——7 (VI.D-12a)
S(S) 8 (S SZ.+ cS + D
where A = MG + ZGM&
B = ZSMW - Mézw
C = chpwusp = -(UOMW + zw + Mq) = -(zw + Mq.+ Mé)
D = w2
- u = - = -
sp quw UM, quw M,
. =122 = 9% -
Note: Recall that zw = = Su and Za = = due to a = w/Uo
which also implies that Za = Uozw’ Ma = Uon'

Equation (VI.D-12a) is the transfer function of
a pitch autopilot open loop. The denominator is the charac-
teristic equation of the "short period" pitch motion approxi-
ration. Noticeable also is that wnsp x /:E; where M, is a
negative quantity.

Next step is to augment the most important aero-
dynamic derivative which is the Mq‘

Introducing a negative feedback as it is shown in

figure (VI.D=5), it is obtained:

3(8) = &_(8s) = SC(S) -k

e q

q

and upon substituting into equation (VI.D-12) the last turns

into:
q = Muu + Mww + (Mq - Miekq)q + Mgeie (VI.D-13)
where (Mq - M5ekq) = AQaugment'
138
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?‘ Fig. VI.D=-5. Block Diagram of a Pitch Damper
c. Yaw Damper
t‘ In part II.E the linearized decoupled lateral
equations were derived; in that set of equations, the "yaw"
motion was found to be given by:
X OF¢
S 0 - = ' + ' + ' + ' -
’ r =N 3+N P N' r +N 6r5r (VI.D-14)
d
Note: Recall that in case of a 90° rotational symmetry, as
it is in the present study, Ixz = Ixy = Iyz = 0 and thus
equation (VI.D-14) is written as:
r = NSS + Npp + N_r + NSrSr (VI.D-14a)
q
Making use of argquments similar to that used in the deriva-
1 tion of previous dampers, the utilization of a negative feed-
b
P back, as it is shown in figure (VI.D-6), will augment the
t
! main aerodynamic derivative N. as follows:
: (3) = :r(S) = 3C(S) - krr(S)
e
: 159
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Fig. VI.D-6. Block Diagram of a Yaw Damper

and upon substituting into equation (VI.D-14a) and after
minor rearrangements, the following "yaw" equation is

derived:

~

r = NSB + Npp + (Nr - krNGr)r + Nﬁror (VI.D-15)

augment aerodynamic (VI.D-15a)

where N_ - k Ngs_ =N
r rr derivative)

r augment (

It is known that for a missile with 90° rota-
tional symmetry, Nr = -Mq which means that there exist damp-
ing in yaw. For relatively small L3 which usually is the
case of missiles with small dihedral effect, the lateral mo-
tion can be approximated by "3: sideslipping" and "y: yaw-
ing". This is equivalent to eliminating the roll equatiocn
from the set of the lateral equations. Considering that
Yr # 0, knowing that r = @, deleting 2nd and 4th row and

column from the set of the lateral equations and utilizing

Lavlace transformation, it is easily obtained:
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= 5(s) (VI.D-16)

S(s - Nr) y(s) NG

The characteristic equation for this case is:
S(SUo - YS)(S - Nr) + SNB(Uo - Yr) =0
or
2 - =
S[S - (Nr + YB/UO)S + (YB NBUo NBYr)/Uo] =0
(VI.D-17)
For S = 0 a "neutral"” heading stability results.
The overall performance in yawing motion is adequately de-
scribed by the second order equation into the brackets of

equation (VI.D-17), that is:

2

s¢ - S(Nr-+YBUO) + (Ye-i—N.Uo--NsYr)/Uo =0 (VI.D-17a)

3

Comparing to the well known second order equation

S + 2758 + 0.2 =0
n n

it comes out that:

- Y
wy = [(Y3Nr + NUJ - Nng)/UO] (VI.D-17b)

-

and in case of very small Y, and Y. it comes out that:

approximately, sy % N, (VI.D-17b.1)
while 3= =N+ YS/UO)/Zwn (VI.D-17¢)

Looking back to equation (VI.D-15a), it is obvious that the
augmentation of the aerodynamic derivative Nr increases

directly the damping.
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After the above treatment, a functioning block
diagram of a yaw damper would be like that in figure (VI.D-7)
In this schematic representation, it is emphasized that the
yaw velocity is sensed by a rate gyro. The block "Missile
Dynamics" could be either the approximated transfer function
of the system that results in via equation (VI.D-16), or the

full transfer function from the rudder (Gr) to r, which is

given by
3 2
r(s) ._ Ars + BrS + CrS + Dr
°r(s) Alat
where A, = N';
- y* ' ' ' - ' '
Br Y5N3+L6Np NS(Yr+Lp)
= * ' ' - ' [ - ' ' ' '
Cr =Y G(L 3N P N BL p) L SYrN D + N 5YrL D
- ' ' - v '
Do = g(L' N', = N',L'3) /U,
- |} 3 2
A = AS + BS™ + CS™ + DS + E

N = _ 12
A=1 I xx/IxIY

= - -12 - =N -3 -
B = Yr(l I Xx/Iny) Lp Nr NpIxz/Ix LrIxz/Iz

C = N3+Lp(Yr+Nr) +Np(YrIxz/Ix-Lr) +Yr(LrIxz/Iz+Nr)
+ LSIxz/Iz
D = -NSLp+Yr(Ner-Ler) -é-'-.\IpL3 - (L3+Ixz.\13/Ix)g/Uo

E (LN, - NELr)g/UO

The discussion so far pointed out the physical signi-

ficance of the aerodynamic derivatives and also methods for
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Fig. VI.D-7. Functional Block Diagram of a Yaw Damper

preliminary design studies concerning the development of
dampers and further more autopilots.

3. Autopilot Design by Modern Control Method

There have been developed several modern theories
tending to achieve optimal control. Such a reasonably
straightforward method is the so called "linear quadratic.”
This modern theory method can be summarized as follows:

Given a time-varying linear control system,

x(t) = A(£)x(t) + B(t) U(t) (VI.D-19)
where x(to) = §o , having a control wvariable Z(t) such that:
g(t) = g(t)g(t)

try to determine the values of the input variabkle U(t) for

ty - ¢ = = for which the follcwing "Performance Index” is
minimized.
31
. _ o7 T T -
27 = X7 () PX(E)) + f [2%(e)0z (t) +U (t)RU(t)]dt (VI.D-20)
"o
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where: F: error covariance positive semidefinite matrix
Q: weighting positive semidefinite matrix
B: weighting positive definite matrix

The optimal input variable U*(t) which minimizes
equation (VI.D-20) is given by:
U*(t) = -F(t)X(t) (Vi.D=-21)
where: F(t) is the state variable feedback given by:
-1 T
F(t) = R "(t)B (£)P(t) (VI.D=-22)
and where P(t) is derived by solving the Riccati equation:

-p=Q - pBR-IBTP + pa + ATp (VI.D-23)

Note:

l. For steady state condition, it is desirable to have
P(t) =0

2. For notational simplicity, the time dependence of the
vectorial variables sometimes are suppressed.

Some illustrative examples of implementing the out-
lined method in the design of autopilots are following.
a. Roll Attitude Regulation Autopilot
Sometimes the demand arises £for introducing a
cortrol system in order to maintain the roll attitude of a
nissile close to zero while remaining within the specified
aileron deflection (2) and aileron deflection rate (3).
Note: To avoid nomenclature confusion, u will
be used to represent roll angular velocity instead of the
normally used "p", which is also used permanently in the

"Riccati" equation.
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The equations for such a system are:

where: T:

-1/71:

Q/T:

§

]
c
=
alle
O

E s
[
|
|
€
+

roll time constant
aileron effectiveness
commanded aileron rate
roll angular velocity
L

p

Ls

(VI.D-21a)
(VI.D-21Db)

(VI.D-21c)

A selected Performance Index may be as follows:

25 = J (62 + 52 + u?)at
0

(VI.D-22)

which implies with reference to equation (VI.D-20) that:

El 0 0
Q=10 0 0
0 0 1

!
!
1
R
|
|

Assuming complete controlability for the system of equation

(VI.D=21), it can be written in state form as follows:

By

3!

a
Lo
| A

12
' |

(U

to i

I o 0 0

:|;i

| N
=0/ -lt 0]l
’ Py
io 1 O‘i”i

(VI.D=-23)

The steady state Riccati equaticn is then given by:

Q - PBR

1,7 T
B*?2 + PA + A°P
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because P = 0. The solution of equation (VI.D-24) after

equalization of terms leads to the following set of equations:

Q - 2 = -
2 - P12 P11 + 1 0 (VI.D-24a)
Qp -l +p . -p..P,,=0 (VI.D-24b)
T ~22 T "12 13 11712 ¢
@p -p..P..=0 (VI.D-24c)
T 23 11713 *
-2p _+2p..-p..%=0 (VI.D-24d)
T " 22 23 12 ¢
-P23 + TP33 - TP12P13 =0 (VI.D=-24e)
1-p,.,2=0 (VI.D-24f)
13 *
From equation (VI.D-24f) it follows that P13 = 1 and while

from equation (VI.D-24c) it follows that P Then

23 T gf11-
the set of equation (VI.D-24) can be easily reduced to:

2 & P, - Pllz +1=0 (VI.D-25a)

% P, - % Py + 1 =P P, =0 (VI.D-25b)

-2 I %T_ P,y - p122 =0 (VI.D-25c)

B S (VI.D-25d)
3 33 12

After some algebraic manipulations, it can be derived:

4 4_ 3./4 2 4 . . t g
P,y '*7911+(:7"2>911 -220+1)p,; +1-5 - =0 (VI.D-25)

Cepending on the settled specification values for - and Q,

aguaticn (VI.D=-26) is solved and the positive real roots are
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accepted. Then, proceeding backwards and accordingly, the

(

values of the rest Pij's can be derived. Finally, the opti-
mal control input variable will be given by:
U* = -FX

-r"15Tpx

e BP e o e EXan g a0 e 0 nee 0o
lﬂ.;. L g T :

(VI.D=-27)

I
)
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g
H
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o
[
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b. g-Bias Autopilot

P

77,7771,7

Suppose a missile in a horizontal cruise mode.
It is desired to design an autopilot which will maintain a

small vertical acceleration (g-bias). In this case, the

[ame ¥

longitudinal short period equations are given by:

o g
\ |
»

o 123 | ‘ 12,
la T 1;'6. ==
i i iUO 1 [ ’Uoi
: = R ; LS (VI.D-28)
; ! - i i
Ma o Mgiiay Mgl

where a: angle of attack
g: pitching rate
But normally, 2. << 24 and Mq <My thus equation (VI.D-28)

can pbe reduced to:

[

L P |
' 'a, ;GE 1 al o

1=, 0 AN (VI.D-28a)

e [ Lo

a M, olral M.
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A selected Performance Index for this case may be:

£ 2 g2 2
27 = — + 25+ 3—2 dt (VI.D-29)
& 8 a q
pd (@] o) (o]

where 60, a, and q, are maximum permitted values for the
aileron deflection angle of attack and pitching rate and

which implies, with reference to equation (VI.D-20), that:

Then, by arguments similar to the previous example and by
utilizing the Ricatti equation, the optimum control input
variable can be determined. Noticeable is that in some cases

the aileron deflection can be defined as:
0 = Cla + C2q

The coefficients C1 and C, can be determined by utilizing
similar procedures as above.
Note: The full expansion of such a derivation is

beyond the scope of this presentation and thus omitted.
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ViI. MATHEMATICAL MODELLING OF A MISSILE
GUIDANCE CONTROL SYSTEM

Chd 4 iT.—v-v.

Ll Be

A. THE MATHEMATICAL MODEL

There is a formidable difficulty in arriving at a general

T ﬁ- '.‘

solution of the equations describing the behavior of any

i. homing system. The guided missile, while operating in the
real world, is subject to disturbing conditions, e.g. limited
and noisy information, missiles and sensor dynamics, con-

F‘ straints on missile acceleration, etc. Since real world
effects cannot be comprehended completely and described per-

fectly, the real world guidance problem is a fuzzy problem.

It has to be solved by a progressive iterative step-by-step
procedure in order to find an "optimal" solution in the sense
of keeping the missile motion "sufficiently close" to the
nominal course of kinematic guidance with regard to essential
real world effects such as dynamic delays and noisy measure-

ments. Hence real world affects the design of the feedback

portion of the guidance law and necessitates information
processing.

The step-by-step procedure is characterized by the analy-
"¢ sis of essential effects and their influence on the system
nerformance, by the synthesis of suitable information process-
ing and guidance law algorithms and by the simulation of the

¢ B guidance loop, in order to evaluate the system periormance.
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One can start up with linear model for the homing head
and autopilot and linearity of the kinematics can be obtained
by assuming that the effect of target maneuver, noise, or a
heading error of the missile from the ideal direction which
would lead to a constant bearing collision course, as a small
perturbation from that collision course. Such assumptions
permit to make small angle approximations. If the study is
focused at the closing stages of the engagement, such assump-
tions could be argued that result in fair approximations as
the missile is usually on a near-constant bearing trajectory
just before impact. If the target makes large evasive ma-
neuvers during the last stages period (as it is expected to
be done with modern weapons), these assumptions lead to less
valid models.

Design considerations using frequency domain control
techniques usually involve parameter determination in the
kinematic guidance laws and in noise suppressing filters.

The Wiener filter approach is limited to single-input-
single-output systems with time independent system parameters
and noise statistics, assumptions which are in general vio-
lated in missile guidance.

To include real world properties more systematically in
the solution of the missile guidance problem modern, "tinw
domain," control techniques offer attractive advantages in
this case of a multi-input-multi-output system with time-

varying system and noise parameters. Optimal (non linear or
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linear) filtering techniques provide for noise suppression
and additional information processing about guidance loop
stages from the noisy measurements. Optimal control law
design techniques lead to extended feedback control struc-
tures and parameter determination algorithms to compensate
the disturbing influence of missile and sensor dynamics.

The following examples aim to demonstrate the design pro-
cess and the benefit of applying modern guidance control
theory versus classical proportional navigation and augment
proportional navigation.

B. INSTRUCTIVE DESIGN DEVELOPMENT OF A GUIDANCE CONTROL
SYSTEM

In part 1I, the motion equations were derived. After
some reasonable assumptions, these equations were linearized
and decoupled in order to simplify the study and in parallel
to try to stay close to the reality in an acceptable mode.

The decouplization of the motion equations into two in-
dependent sets, permits the study of the missile either in a
longitudinal plane or in a lateral plane. The design tech-
nigques are similar, thus no distinction concerning the used
plane is done.

Before going on, an interception geometry review is con-
sidered necessary. This is shown in figure (VII.B-1).

The target is £lying at an angle bo to the criginal line
of sight MOTo which is regarded as a reference directiocn,

while the missile is £flying a small deviation angle v _ to the
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Fig. VII.B-1l. Interception Geometry

correct flight path to obtain a collision at I. The correct

flight path angle Veco is given by:

Um Sln¢fco = Ut sin ¢o (VII.B-1)

There is in fact an imaginary line which runs up the
considered engagement plane parallel to MOTO at a velocity
of Um sin Veco* Any perturbation of the missile and target

perpendicular to this line is denoted by Zm and Zt respec-

tively. The below relationship follows:

}l

;

b tan A = (Zt - Zm)/r = (Zt - Zm)/Urr (VII.B-2)

4

L and for small angles where i = tan A

f."

3 >~ - T -

f_ No= (2, =2 ) /0" (VIT.3-2a)
where: *: sight line angle

; H i i 1 = L -

> ¢ Ur' relative or closing velocity Umcos e Utcos 25
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T: time to go = T -t considered zero when r = 0

T: total time of engagement

n

If we is small, it can be regarded that wf wfco because

: Ve = Vgeo ¥ Ve (VII.B-3)
F and coswf=cos(wfcoi‘4)€) =C0S Yg, COS ‘#Eism‘*"fcosm% (VII.B-4)
t ¥ CoS Yoo

E. As miss distance in one plane is considered the dif-

ference zt - Zm at r = 0, Of course this is not the true

vector miss distance but it can be shown that this is very

T

nearly so provided that the concept of small perturbations

LU R i oot

still holds.

The miss distance can be determined utilizing a func-

tional block diagram as follows:

ey "—g"ﬁ p—y
’I

Z, Seeker 'Homing Guidance Autopilot
b Tracker Head j———af Law |

Missile
n ¢ Lataral Acceleration Kinematics
‘A : Line Of Sight
Z
m
? : ot
q
Fig. VII.B-2. Functional Representation of Homing System
Each block may be as complex as desired. The seeker or
e

tracker provides the sight line angle (for small perturbations,
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A =1/r = 1/Urr = 1/Ur(T-t). Homing head, autopilot and
missile dynamics can be represented with a transfer function
of any appreciable polynomial order. Therefore, their indi-
vidual gains can be considered as the product of all the
others and thus to be taken into manipulations as: K = K1K2K3.
Since the time to go 1 = T-t, where T is the time to go from
the initial positioning MoTo to the interception point, is
common to all systems and engagements, all systems will, for

the same dynamic lags, be identical if:

L]

K - -
3; cos wfco = a constant (VII.B-5)

This constant has no dimensions and is usually known as
the kinematic stiffness (for more details refer to part IV).
Recall that if an optimum value for "a" exists, then it fol-
lows that one should adopt a navigation constant such that:
Ura

K= — (VII.B-6)
COS Vo

The homing head can be modeled dynamically as a second order

lag, having a transfer function of the form:

S

52 Zuhs (VII.B-7)
3 + + 1
.u"nh “nh
where: Ynpt homing head natural frequency
Uy homing head damping
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The autopilot can be modelled adequately as a second
i( S~ order lag system too; having a transfer function of the form:
L (VII.B-8)
2 2u_S *

O “H? n,?_v_v R
€
o}
W
3
]

where: Whgt autopilot natural frequency

Mgt autopilot damping

Finally, the missile dynamics can be modelled in a sim-

plified form as 1/52.

YTV Y TP rm—

Based upon the above considerations the step-by-step
progressive design development can start now.

1. Lag Free System

AR A e o 200 a0
-

Assuming that the natural frequencies of the homing

oy
R\
..

head and the autopilot are infinitely large, the system of
d figure (VII.B-2) turns into that shown in figure (VII.B-3).

(The derivation is very simple, thus omitted.)

l Um YCo8 . |

! ;-——-mz
sa b !1 m
f + v
. T-t 3 ,:‘ |

Fig. VII.B-2. Lag-£free System with Step Velocitv Input

In this case, a small initial aiming error is as-

sumed. The initial missile velocity pervendicular “o the

175

e e




T

collision course is Umws and the component perpendicular to
the initial sight line MoTo(see figure VII.B~-1) is

Un we COS Venge This component can be regarded as an input
to the system; in fact the system would detect no difference
in the situation if the initial heading was correct and at

t = 0+ ¢ the target instantaneously changed its course to
produce a velocity perpendicular to the original sight line
MoTo equal in magnitude to Umlyecos wfco' For this reason a
heading error is often referred to as a step velocity input.

By inspection, the output zm due to the input can be

written:

= l ) 1 - .—;a— -
Z 5 Um Y. cos ¢fco Zm STT=0) (VII.B-9)

or after term rearrangement and minor manipulations:

m - 1 -
T 7. oS Tps ~ 51 Tft (VII.B-9%a)
or in differential form:
dzm a
T + Tt Zm = Um 'U€ CcoSs wfco (VII.B-9D)
and in state variable form:
Ky = = 7o X1 + U y_ cos o (VII.B-9c)

which is of the general linear time-varving form of:

X(t) = A(t)x(t) + B(t)u(t)
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2. Single Quadratic Lag

Assuming that the natural frequency of the homing
head is infinitely large, while the autopilot has a reasona-
ble natural frequency, the central system has a block dia-
gram representation as in following figure (VII.B-4). Then,

by inspection, it will be:

z sa 1 I 1 Zm
—
T-t 52,28 ) 5 s
1

Fig. VII.B-4. Single Quadratic Lag System with
Step Velocity Input

=1 . - 1 _a 1
Zm =3 Unm bs CoS Veng Zn 3 T-¢ 2 2u_S
S a
+ + 1
2 “na
“na
or
a 1 _ 1 . .
“m 1+ S(T-t) g2 2u = g Up Y: COS Ve
a
—_ S + 1
w2 “na
na

After minor manipulations and rearrangements, it turns in the
following transfer function, which can be studied by any one

of the known methods.




2 2
Zm S° + Zpawnas + wna
U ¢_ cos y =73 2 2 w2 (VII.B-10)
m ‘€ fco S + 2pn_w__8" + w S + 3na
a na na
T-t
Expanding equation (VII.B-10) it follows:
d3Z dZZ dz aw 2 dzU'
T 2u 0, — +w a Tt T I < T
dt ana 43¢ n dt
dU't 2
—— ' -
+ 2uawna It + Wha u £ (VII.B-10a)

' =
where U £ Umw8 cos wfco

In case of constant velocity input (U't = constant), the

right hand side of equation (VII.B-10a) is simplified to:

"
&

‘A N co .

“na Um Ps S Yfco

Applying state variable format technigues, and denoting,

4%z/at% = x2 = x3

equation (VII.B-10a) is now written irn matrix format as

follows:
] [ ! 7
1 0l L Cu o .
(11 0 1 0 ' KL. iO1 na U :cosufco
i 1 P :
, oo
X2 = 0 1 CiX2 + 0
: [
' 1 * {(VII.B-10Db)
. 3+ na 2 " i
X - - -2 i t :




3. Double Quadratic Lag

The previous systems were not realistic by any means.
A more realistic system occurs by assuming that both homing
head and autopilot are reasonably fast, that means both have

natural frequency Woh and w respectively. Thus a double

na
gquadratic lag system occurs which has a block diagram repre-

sentation as in following figure (VII.B-5).

——t sa i i
£
SR 2N T-& $hat it | |8
Z¢ Um Ygcos ¥y,
L
S
[ zu,
Fig. VII.B-5. Double Quadratic Lag System
with Step Velocity Input
By inspection it is-
YA
1 ’ , _mf{ a 1 1
Zn T gUnb.c08 Vo T 3 (T-t> 2 2., S g2 2.3
+—+1 +—2 41
w_. %  “nh w % “na
nh \na

or, after minor manipulations and rearrangements, it turn in:

b
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Mo BN o Sr ot ndy Al o am of

UL

m

2 - 2)( 2 2
z (S * 2r1h”nhS * “nh S5+ 2uawnaS * “na )

Umwecoswfco

2

s(sz+zuhwnhs+wnh2)( 2+2“awnas+wna2)'+ 32%2:2%2~
(VII.B-11)
Expanding equation (VII.B-11) it follows:
5 4 3 2 2 2
d Zsm+Ad Z4m+Bd Z§n+cd Z2m+D<ZZtm . awgh-w:a zm
dt dt dt dt
atvr, v, dfur,  aur
= 7t A 5 + B =+ C —3¢ +DU' (VII.B-12)
dt dt dt
where: U‘t = Um we cos wfco
A= 2Zuponn * 23404
B = “nhz * 40t navnn t ”naz
N 2"’h*)nh‘*’naz
D = ”nhzunaz
In case of constant velocity input (U't = constant), the

right hand side of equation (VII.B-12) 1is simplified to

2 2

t
“nh “na O

e

denoting:

(o
3
~
yL
(a3

i
5
—

]

~
fi.
(t

1]

e
-
L9
=
~
[o%
t
¥ 59
il
e
e
[}
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Applying state variable format technigques and
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Equation (VII.B-12) is now written in matrix format as

follows:
x1 0 1 0 o ollx1] {0]w 2w u't
na nh
X2 0 o 1 o0 offx2] |o
X3|= 0 0 0 1 0fx3] |0 (VII.B-12a)
X4 0 0 0 0 1|[x4] |0
X5 -awga_ztnhz D -C -B -A||X5| |1

4. Computational Comparison

The three so far discussed systems can be easily im-
plemented into a computer program in order to investigate and
study the expected -response of each system under various con-
ditions and parameter values, t is assumed that the homing
head is the main lag in the system and that both homing head
and autopilot can be represented by second order lags. If
this is accepted, then all systems must lie between the two
extremes of:

(autopilot and homing head lags equal)

(a) “na “nh

» (autopilot infinitely faster than homing head
and therefore effectively only one guadratic
lag in the system)

(b)  wp,
For comparison, the above three systems were implemented into
one program, as is shown in apoendix D. The program was run
for a badly and a well damped homing head Zor practical values
of navigation constant "a" of 2.5 and 4.5 (these being on the

low and high sides respectively and for relatively "short" and
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"long" engagements defined by wapT = 10 and 30 respectively.
From the above runs, the required missile lateral accelera-
tion vs. normalized time was derived, as is shown in figures
(VII.B-6) through (VII.B-16). From these plottings it is
seen that for short engagements, inadequate damping and high
values of "a" result in oscillatory responses. (The auto-
pilot damping ratio has been set to 0.5 in all cases.) If
the open loop gain is high, the system is possible to become
unstable at a short range to go. In the absence of noise
(not any real system is ever entirely free from noise), a
long engagement results in the transient decaying before in-
stability sets in and the effect is not apparent. If the
engagement is very short, oscillations do not have enough
time to build up. Consider figures (VII.B-14)} to (VII.B-16)
which have been computed for ”nhT = 20 and an underdamped
homing head; this engagement is neither "short" nor "long".
Any response of a real system which diverges, from the re-
sponse of the ideal lag-free system, can be regarded as un-
stable as the time passes. It is not possible to discern
instability for a = 2.5, but for a = 3.5 a system represented
by a single quadratic lag could be argued to be unstable later
than t/T = 0.75 say. For a = 4.5 instability sets in at about
t/T = 0.6.

Nevertheless, the discussion so far is rather an in-

structive guidance method than a complete and detailed study.
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Fig. VII.B-6. Required missile lateral aqceleration
in case of an initial heading error.
Utilized parameters: Nav. Constant = 2.5
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; Fig. VII.3-7. Required missile lateral acceleration
¢ in case of an initizl heading errcr.
[ Utilized parameters: Nav. Constant = 4.5
| Wseeker = 10-0 = Wy,
: “seeker 0.25
q ~Jautop. = 0.5
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It pointed out how to proceed for the development of a more

sophisticated control system.

C. AN ADVANCED DEVELOPMENT OF A GUIDANCE CONTROL SYSTEM

In this part it is attempted to integrate into a control
systen sensors, filter, kinematics and noise. Thus, a
linearized kinematic homing loop is assumed as is shown in
figure (VII.C-1). Here autopilot dynamics was decided to be

represented by a first order transfer function

.’.J|t_.:$

= T‘I‘éﬁ?“ (VII.C-1)

c ap

where Yap is the autopilot bandwidth. Here also are con-
sidered the two most important stochastic error sources,
namely glint noise and random target maneuver. A relative
target to missile range measurement RTM is assumed. The com-
plexity of the filter depends upon the used guidance law.

So, in case of PN usage, a simple law pass filter may be suf-
ficient. 1In case of modern guidance law, a more complex fil-
ter is required (as it will be outlined later on) because in
a modern guidance system the Zero Effort Mis-distance (ZEM)
is modified to take into account target maneuver and missile
guidance system dynamics. In the case that the guidance sys-
tem dynamics are represented by a first order transfer func-

tion, with bandwidth 4, the usage of either modern control

theory [Ref. 6] or Schwartz Inequality [Ref. 16] results in
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a guidance law which drives the misdistance to zero while

minimizing the integral of the square of the acceleration:
t

£
y(t.) = 0 subject to minimizing n_2dt (VII.C-2)
£ c

0

This modern guidance law can be written as:

2 (e -1+ T)] (VII.C~3)

= 5 L -
n [y + ytgo + ‘nTtgo n; wz

where: T = wt (VII.C-3a)

2, -T
N = — L le -1+D (VII.C-3b)
2T +3 +6T - 6T ~12Te =~ - 3e

The expression- within the brackets of equation (VII.C-3) is
the ZEM and equation (VII.C-3b) shows that the effective
navigation ratio is a form of APN (recall part IV.C.5 equa-
tion IV.C-27), with an extra term to account for guidance
system dynamics and a time-varying navigation ratio. This
guidance law, unlike PN, requires information concerning

time-to-go (t guidance system bandwidth (w), and achieved

g0’
missile acceleration (nL).

The states required for the implementation of this guid-
ance law (y,y,nT) must be estimated via a Kalman filter esti-
mator. In part (VI.C.2.a) such a simple third order Kalman

filter estimator was derived (see equation VI.C-12), which

will be used here. This Kalman filter is stationary and it
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is represented by a transfer function of equation (VI.C-13)

which is rewritten:

2 2
~ 1+ 2S/wo + 28 /wo

— (VI.C=-13)
Y 2 2 3 3
1+ ZS/wo + 28 /mo + S /wo

with characteristic frequency Wy given by
= 1/6 -
wy = (@SMN) (VI.Cc-13a)

where ®S and @N are estimates of the spectral density levels
of the target maneuver process noise and glint measurement
noise respectively. It is obvious tl'at the characteristic
frequency of the filter increases with increasing process
noise and decreases with increasing measurement noise.

Here also, a first order seeker with an observer will be
used, as this was developed in part VI.B-1l.b. Due to this
seeker, the line of sight angle is reconstructed from a mea-
surement of the boresight error and by integrating the rate
gyro measurement of the seeker dish rate. This angle can be
then converted to relative target-missile position, y*, by
the multiplication of the range measurement. This signal is
then sent through the Kalman filter in order to obtain esti-
mates of the necessary states for the implementation of the
modern guidance law. These states are multiplied by control
gains, which are functions of the estimated time to go and
atuopilot bandwidth, in order to generate an acceleration

command. This command is applied to an acceleration autopilot
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in order to develop the commanded acceleration. All the
above process is presented in a block diagram form in figure
(VII.C-2). Next, the mathematical model of this system is
derived.

1. Mathematical Model

In the previous work, it was seen that the guidance

navigation law for PN, APN and MGC was respectively:

N' .
C £ Z(Y + ytgo)
go

a. For PN: n

N 2
c ;——f(y + ytgo + anTtgo )

b. For APN: n

go

c. For MGC: n_ = - +yt__ +%n t 2 -n E:E:LL::E
. ek Ye e 2 ¥ ¥ ¥ T-go L 2
go ©

This shows that equation (VII.C-3) (which is the guid-
ance law for MGC) includes PN and APN accordingly.

Thus, 1t is possible to derive the mathematical model
of the previously proposed control scheme, which will be pos-
sible to be simulated with the above three guidance laws, in
order to obtain performance comparison of their implementa-
tion. Of course, it is realized that the instrumentation re-
guirements for each of the above cases is different.

Considering that:

The plant equations are

N ' ‘ + { } ,

ilT! 10 0;:YT[ !0

w | | S i | ;

£y — ] ' L ’ .

g =0 0 1Y+ 10 (VII.C-14)
R 1 Pl b
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the measurement equation is:

= K3

¥A = (1 0 01y,
Yo| + Uy (VII.C-14)

G

..T.J

and recalling:

the seeker equation (VI.B-2b), which is rewritten:

U 0,
L w5 -1 x6 -1 xs

+ N _ N
TGRTM RTM TG ToR‘I'M TGRTM

XB =

(VI.B=-2b)

the Kalman filter equations (VI.C-12), which are rewritten:

YT 0 1 0 YT Zwo
° _ 0 2 * - D _
YT = 10 0 1 YT + Zmo Y YT (VI.C-12)
X s 3
T 0 0 0 YT Wy

the modern Guidance Control Law of equation (VII.C-3), which

is rewritten:

~T
_ N " 2 _ e -1+ -
n, = N 2[Y + ytgo + %nTtgo n. 02 ] (VI.C=3)
go ’
2, =T .
where N' = 3 oT (e 2_ L 3% =37 (VI.C-3b)
2T + 3+ 6T ~6T = 12Te - 3e
T = wt
go

the