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ABSTPACT

The present thesis is an instructive methodology for de-

veloping and improving guidance control systems, in order to

minimize the missile misdistance. The complexity of the sys-

tem which is under development depends heavily upon the de-

fined assumptions, scenarios, specifications, current

technology and cost effectiveness. It depends on the de-

signer or the expert, to weigh up the advantages and dis-

advantages of all the above, according to their availability,

for obtaining best results.
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I. INTRODUCTION

A missile is an unmanned sophisticated airframe design,

carrying a warhead and aimed to kill a target.

In order to kill the target when the warhead explodes, a

guidance system is needed to get the missile close enough to

the target. Therefore, an appropriate measure of guidance

performance is miss-distance, which is defined as the minimum

distance between the missile and the target. Miss-distance

is the measure of homing performance, and miss-distance is

affected by the following three main guidance parameters:

(a) Used guidance law

(b) Relative stability

(c) Response time.

Two other important causes of miss-distance due to tar-

get's characteristics are:

(a) Random target maneuver

(b) Glint noise.

4 The required flight control system properties of the missile

are affected by:

(a) The type of target-sea vessel, ground vehicle or air-
frame (i.e. airplane, missile)

(b) The aerodynamic properties of the missile, whether it
is stable or unstable, winged or wingless

(C) The aerodynamic characteristics of the missile (aero-

4 dynamic coefficients)

12



(d) The zone of performance required--short, medium or
long range, low or high speed, low, medium or high
altitude and other operational characteristics of a
possible scenario

(e) The type and quality of used instrumentation

(f) Many other interdiscipline design factors that occur
during the missile design development work.

The type of target determines the maneuver capability re-

quired by the missile and in conjunction with the type of

q sensor and background environment, determines the noise that

contaminates the target signal needed for homing. For in-

stance a ship gives a strong radar return, but its complex

shape generates much radar noise. The relatively low ma-

neuverability of the ship and its sea level location minimize

the maneuverability and the extent of the altitude versus

Mach envelope required by the missile. The tank target is

similar but with different noise and clutter properties than

those of the ship. The aircraft target is quite different.

Its high maneuverability and fast response in conjunction

with its daily improving survivability, and the large flight

envelope of modern aircraft, further burdens the missile

aerodynamic and flight control system design.

Today, the trade-off in missile design is towards the

reduction of missile size and consequently weight, by de-

veloping guidance systems leading to minimum possible miss

distances. This magnifies the importance of guidance com-

ponent imperfections and dictates relatively stringent control

L1



of the flight control system dynamics--acceleration gain,

time constant and relative stability.

This study deals with the antiairframe missile control

system. Specifically it deals with the terminal guidance as

it is developed in the following.

14
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II. EQUATIONS OF MOTION

A. GENERAL EQUATIONS OF MOTION

It is well known that on each material body there are

acting forces and moments.

Newton's law, concerning an inertial system states that:

my (II.A-1)

It is also known that in the case of a kinematic system,

the following is valid:

( )inertia = ) + ×1 ) (II.A-2)

Thus in case of a freely maneuvering body, the applica-

tion of equation (II.A-2) into equation (II.A-1) gives:

'F = m[d lVm) + WXVmI (II.A-3)

where: F: total force acting on a missile

V: M vector velocity of a missile

u: angular rate of a missile

m: mass of a missile (it is considered as constant
for simplification reasons)

4 ut(Vm): linear acceleration

WXV : centripical acceleration
m

The total force acting on a missile is given by:

= mg + F + FA (II.A-4)

13



where: mg: missile weight

FT: vector thrust of missile motor

FA: missile vector aerodynamic force.

F and FA are controllable applied to the missile forces

while mg is uncontrollable existing force.

In this study, the missile is considered as moving into

the perceivable three-dimensional (3-D) space. Thus, utiliz-

ing an orthogonal 3-D Cartesian coordination system with the

X-axis along the missile longitudinal axis, and making use of

international notation, the following expressions are derived:

Vm = Ui + V] + W (II.A-5)

+ gy + Rk (II.A-6)

g 9 x+gI+g (II.A-7)

FT = FTx + FTyI + FTz

F A FAxi + FAy3 + FA zk

where: FAX: drag force (II .A-9a)

FAy: side (II.A-9b)

FAz: lift (II.A-9c)

F F X. + Fy3 + F z k

Fx FTx - FAx + mg. = X + mg x  (II.A-10a)

Fy =FTy + FAY + may = Y + mg (II.A-10b)

Fz = FTz + FAz + mg. = Z + mg z  (Ii.A-10c)

16



von

I

WxV = p Q R(II.A-II

U VW

Expanding equation (II.A-3) in 3-D and utilizing equa-

tions (II.A-4) - (II.A-11), the following three force equa-

tions are derived:

Fx = m[ tU + QW - RV] (II.A-12a)

Fy = m[dV + RU - PW] (II.A-12b)

Fz = m[AtW + PV - QU] (II.A-12c)

It is also well known that the absolute rate of change

of the moment of momentum (with respect to flight path axis),

for a freely maneuvering body in 3-D, is given by:

i" dh abs d ,
dt dt + x h (II.A-13)

Making use of international notation, the following ex-

pressions are derived:

dhb = L + M3 + Nk (II.A-14)

d~ t

h = h xI + h y3 + hz k (II .A-13)

h PI -QI -RI (II.A-16a)
x xx xy xz

h = -PIy X + QIyy -RIyz (II.A-!6b)

hz= -PI - QI +RI (II.A-16c)

17



Moments of inertia: I =x f(y2 + Z2 )d~m (II.A-17a)

Y = f(z 2 + x2 )dm (II.A-17b)

(2 2

Izz = f(x + y2 )dm (II.A-17c)

Products of inertia: Ix = I = fxydm (II.A-17d)

Iyz = Izy = fyzdm (II.A-17e)

Izx- Ixz fzxdm (II.A-17f)

,xh= P Q R (II.A-18)

hx  h y hz

Expanding equation (II.A-13) in 3-D and utilizing equation

@Pi (II.A-14) up to (II.A-18), the following three moment equa-

tions are derived, which in matrix notation are:

xx xy xz yz Iyz

-I
Mi '-I I -I !1 0 1 Q2

N -zx -zy Izz RXy Ixy 0 R

-I ) IPQJ-xz zz yy xy

+ I (II.A-19)

I'RP

yy xx xz yz RP

The three force equations (!!.A-12) and the three moment

equations (II.A-19) are the six equations which describe thbe

13



motion of any body with six degrees of freedom in the 3-D

orthogonal Cartesian coordinate system. Actually, these

equations are not linear.

Up to this poir~t of derivations, tale only assumption that

has been made is that the missile mass remain constant.

B. NOTATION AND CONVENTIONS

It is accepted internationally that the missile 3-D or-

thogonal Cartesian coordination system be centered on its

center of gravity and fixed in the body as follows:

x-axis, called the roll axis, forwards, along the axis of
N symmetry if one exists, but in any case in the plane of

symmetry.

y-axis, called the pitch axis, outwards and to the right if
viewing the missile from behind.

z-axis, called the yaw axis, downwards in the plane of sym-
metry to form a right handed orthogonal system with the
other two.

The forces and moments acting on the missile, the linear

and angular velocities, and the moments and products of iner-

tia are shown in Fig. (II.B-1) and their notation is summar-

ized in Table (II.B-1).

The yaw plane is the xoy plane and the pitch plane is the

xoz plane.

In the missile study, the following angles are defined:

at: incidence in the pitch plane. It is called angle of
attack and is equal to a = w/u

3: incidence in the yaw plane. It is called side slip
angle and is equal t,.-o 3 = v/u

incidence plane angle

i9
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Table II.B-l. Notation

Roll Pitch Yaw

Axis x y z

Angular rates P Q R

Component of missile velocity U V W
along each axis

Component of force acting on
missile along each axis

Moments acting on missile
about each axis

Moments of inertia about
each axis xx yy zz

Products of inertia yz  Ixz xy

9: Total incidence, such that: tan a = tan9 cos \

tan $ = tan8 sin \

In any body and for any plane of symmetry, two out of

three products of inertia become zero. For instance, for a

projectile like missile (as in Fig. II.B-l), if xz is a plane

of symmetry, then:

Ixy I yz 0

but I # 0

C. FURTHER DEVELOPMENT OF MOTION EQUATIONS

It is plainly obvious, that no one missile has .,ndis-

turbed flight, due to a lot of reasons; for instance, at-

mospheric variations, tarat motion, jittering, glint, etc.

21



Thus, at any moment, the velocity and angular rate vector

NOW- components will be:

U =U 0 + u U =u (Ii.C-la)

V =V 0 + v V V=v (II.C-lb)

W +w 0 + (II.C-lc)

P =P 0 
+ p (II.C-2a)

Q =Q 0 
+ q Q=q (II.C-2b)

R =R 0 +r R=r (II.C-2c)

where the component subscripted with zero represents the

steady state vector component and the unsubscripted component

represents the perturbation of the vector component along

each axis.

The steady state of the missile orientation will result

in the following gravitational force components:

gx = -g sin 90  (II.C-3a)

gy = g cos 90 sin 0 (II.C-3b)

gz=gcos 0 cos t (II.C-3c)

where: g= gx + gy3 + (II.C-3)

0: angle of vehicle lateral axis with respect to local
horizontal

: angle of vehicle longitudinal axis with respect to0
local horizontal

0: angle of vehicle vertical axis with respect to local
horizontal.

22



Also, due to instant perturbations, there will be:

P = 0 + 0 (II.C-4a)

E = e 0 + e (II.C-4b)

= + P (II.C-4c)

The general Direction Cosine Matrix is:

cose cosP cose sin -sine

(Cosine atrix] (cospse cos cos(II.C-5)sini cosO ) (sin* sine sin) c

1cos sine coso) (sinq sine co c) Co
(+ sin s - cosi sin cas cos

Then:

(A'] = (Cosine Matrix][A] (II.C-6)

where [A'] is the (3xl) matrix of the components of any force

that acts along the axis of the air frame at any

instant.

[A] is the (3xl) matrix of the components of any force

that acts along the steady state flight path

Eurelian axes.

The relations between instantaneous Angular Velocities

and their rates due to instantaneous changes in Eurelian axes

orientation are:

1l 0 -sin !

IQ!= 0 cos D sin D cos (II.C-7)

!R ,0 -sin D cos b cos : ,2

23
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1 tan e sin~ tan 6 cost P

(e=0 Cost -sing Q (II.C-8)

0sinc Cos R'p 0Cos9 Ro

Combining equations (II.C-1) up to (II.C-8) with the

equations (II.A-12) and (II.A-19) and after minor manipula-

tions, equations (II.A-13) and (II.A-19) turn into:

[U W q qw - yR - rV - rv -g'

m 0q q 0 0 0

+ [QQ0WQ - R 0 V0 - gsin a 0 Cos 6] (II.C-9a)

+- [ uR + rU + ru -wP -PWO - pw-g']m 0 0 0 *OY

+ [RO0  - PON 0 - gcos go sinto (II.C-9b)

zz

+[P Q U0 - g Cos S3 cos, 0 ] (II.C-9c)

L I II (q 0 +pQ + q)

+ ( z-I y) (rQ 0 + qR 0 + qr)

+ HI(ZI - y I)QoRQ 0 IXZP0 Q0  (II.C-10a)

M=I yq + I x( 2pP 0 -2rR 0- r")

+ ( - 1z& (rP 0 + pR0 + rp)

[IZP o 2  R02 )+ (IX - I zz)ROP0 ] (11.0-l0b)

24



N =Izzr + (Iyy I xx)(P Q0
+ qP0 + qp)

- + Ixz(qR 0 
+ rQ0 

+ qr p)

+ [(Iyy - I xx)PoQ0 + IxzQoR] (II.C-lOc)

Applying Taylor's series expansion around the operating

point, the first parts of equations (II.C-9) and (II.C-10)

turn into the general following form:

q A = A0 + dA + H.O.T. (II.C-11)

where A0: the steady state component

dA: the first order perturbation around the
operating point

H.O.T.: High Order Terms of perturbation, which are
considered negligible and thus omitted for the
rest of this study.

If there are not perturbations, which means

u=v=w= p =q = r = 0

then equations (II.C-9) and (II.C-10) turn into:

xo
0 = QoW0 - R0 V0 - g sin 9 0 cos 90 (II.C-12a)

yo
0 = R0U - PoW - gcos e sin p (II.C-12b)

m 0 0 0 0 0 0

0n= PV - QoU 0 - gcos 30 cos to (II.C-12c)

L0 = (Izz - I yy)QoR 0 - IxzPoQ0  (II.C-13a)

0= I (0 - R0 ) + (IX - zz )RoP 0  (II.C-13b)

25



N = (I - Ixx)PoQ + IxzQo R 0 (II.C-13c)

S -- Equations (II.C-12) and (II.C-13) are called "trim equa-

tions" and concern the absolute stability of the missile

around the operating point.

Subtracting the "trim equations" from equations (II.C-9)

and (II.C-10) correspondingly, the following equations

result:

dX u+ wQ0 + qW0 + qw - vR0 - rV0 - rv - gI (II.C-14a)

m =v+uR0 +rU 0 +ru-wP 0  pW0  pw g y

dZ- + + + - - - qu - g' (II.C-14b)

m W V 0  p 0 - v u 0  yUm- I + vp 0 + pV 0 _ pv - uQ0 - qU0 - qu - g'z (II.C-14c)

dL I I (qP0 + PQ0 + pq)

+ (I - I yy) (rQ0 + qR0 + qr) (II.C-15a)

dM= Iy + Ixz(2pP 0 + p2 _ 2rR0 _ r2

+ (I xx - Izz (rP0 + pR0 + rp) (II.C-15b)

dN = r + (I - I (pQ + qP + qp )

+ I xz(qR0 + rQ0 + qr - p) (II.C-15c)

These equations (II.C-14) and (II.C-15) are called "per-

turbation equations" and will be the subject of concern for

the rest of this study.

At this point, it can be written that:

Equations of motion= (trim equations)+(perturbation equations)
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D. FURTHER DEVELOPMENT OF PERTURBATION EQUATIONS

It is possible for a missile to look like an aeroplane.

Thus, its hull may have all or some of the following control-

lable mechanisms:

Elevator

Ailerons

Rudders

Flaps

Dive brakes

Controllable directionally thrust vector

Controlling the above mechanisms a deflection angle is

created as follows:

E: Elevator deflection angle

A: Aileron deflection angle

R: Rudder deflection angle

F: Flap deflection angle

B: Dive brakes deflection angle

T: Thrust deflection angle

These deflections result in perturbation quantities, the

effects of which depend upon the design characteristics of

each one part. These perturbating quantities are usually

noted as:

4 S. where j is E or A,R,F,B,T.

For the rest of this study, the effect of all these per-

turbation quantities due to deflections will be denoted as S
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Furthermore the thrust vector will be considered steady and

acting along the fuselage axis.

Any one of the components X,Y,Z,L,M,N is a function of

u,v,w,p,q,r and their rates. In general, any one of the

above quantities can be denoted as follows:

A = A(u,v,w,p,q,rc,6,u,v,w,p,q,r, 6 ) (II.D-I)

and

dA A(u,v,w,p,q,r,5,u,v,w,p,q,r,S) (II.D-la)

The expansion of equation (II.D-la) gives:

dA=-du +_dv + dw + dp + t-dq+-, ,-

+ -du + - v + ;dw + p + 3q + tr r + 4d (II.D-Ib)
;~ 3 q 6

In perturbation theory, the perturbating quantities are as-

sumed very small, thus:

u,v,w,p,q,r,5 < 1

and consequently:

du,dv,dw,dp,dq,dr,d6 << 1
I

After all the above, with reasonable accuracy it can be

considered:

u = du v = dv w = dw

= dp q = dq r = dr 5 =d'
(II.D-2)

S d8 q= d r2dr d
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For convenient notation it is introduced:

- 1 3F

1 H = r  
(II.D-3a)

1 MH
Ih r H Hr (II.D-3b)

Ihhr r

where F: x/x X,Y,Z

H: x/x L,M,N

r: x/x u,v,w,p,q,r,6,u,v,w,p,q,r,5

h: x/x x,y,z

Introducing equations (II.D-2) and (II.D-3) into equation

(II.D-lb) the last equation turns into:

1
m dF = u + Fqv + F+w + F p + FFv

+ FVw + Fp + Fiq + F~r + Ft6 (II.D-4a)

I---dH = H u + H v + H w + Hpp + Hq +Hr + H 6 + Hdu + H v

+ H *w + H p + Hiq + H r + HO (II.D-4b)

The coefficients F or i are called aerodynamics derivativesr r

or coefficients. These are normalized quantities and their

magnitudes depend upon the aerodynamic characteristics of

the missile. Hopefully, in practical aspects, some of these

coefficients can be ignored as very small and thus negligible

quantities.

The aerodynamic derivatives are devices enabling the con-

trol engineers to obtain transfer functions defining the
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response of a missile to its aileron, elevator or rudder

deflections.

At this point, it must be recalled that "the missile

aerodynamic forces are relative to the atmosphere and NOT to

the inertial space." Thus, if there exists atmospheric tur-

bulence or motion, terms representing the gust loading (tur-

bulence) must be added to equation (II.D-4) as follows:

=-dF F ((u - ug) + F (V - V ) + . . . (II.D-4a.1)m u g v g

S--H = Hu (u - u ) + Hv (V - v ) + . . . (II.D-4b.1)
1hh U gg

The derivation of aerodynamic derivatives is beyond the scope

of this study. Thus, these are not derived but used in the

rest of this study.

After all the above, the perturbation equations in full

expansion are shown in table (II.D-1).

Often it is required to express the equations in terms

of the angle of attack a and side slip angle 3 rather than

in terms of w and v.

Since a = W/U0 and 3 = v/U0 it follows:

000w au 'U0 ,w =U0j,-l

4 00v=U 0  v U U0 )

1 w F w 1 -F 1
w m w m U0  0

1 5F 1 F IF v V-- - - ;U0 = 3
v M v -n 3 U0  0 -
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Table II.D-1. Perturbation equations in full expansion.

For at missile with one plane of symmetry.

U+ W%+ qW + qw-vR rV rv-g' iX u+X v+X w+X p+X q+X r+X 6
0 00 0X u v W p q rS

XS X a

u v w p q r

v +uR 0+rU 0+ru -wP -pW -pw- g, Y u +Y v +Y W +Y p +Y q +Y r +Y 6

qYS Y t

+ Y-U +Yv + Y-W +Yp +Y~q +Y~r +
u v W p q

W + VP 0+ 0+ -Q0-q0-q-g'z=Z u+Z v+Z Ww+Z Pp +Zq q+Zr +Z5 6

0 +pV 0 pv-u-qU0 qu-g Z u w p

+Z-Z + Zc +
Zu+ Z+Zw+ Z p+ Zjjq+ Z r + ZcS

*XZ(r+q P+ q (QqRqr= L u+L v+L w0 ~ 0 (Q 0 +R 0 + qr)

Xx -Z X -v V)L
3 3 L

+L p+L q+L r+LS5+L*u+Lv+L-w+Lp+Liq+Lr+L-.6
P q r u v W p q r

(2Pz 2 -2R -r2 +( Z(rP+ pR + rp) = u+14vMw

II

+M p-i-S q+M +g M+vMN+pM+rM
p q r U 17 W p q r
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h 0

1 H 1 31H U1 =ii HV = -ihh3 'v= hh 2U0 8 0 HS

These terms F a, F 5, H a, H are shown underneath their

aHa

equivalent terms in table (II.D-1).

The equations shown in table (II.D-1) are the six equa-

tions of motion of a body with one plane of symmetry and six

degrees of freedom. The first three of these equations are

force equations while the remaining three are moment equa-

tions. All six equations are not linear. These are also

coupled to each other. For instance, the term "pw" says that

there is a force in the y direction due to incidence in pitch

(a = w/U) and roll motion. In other words, the pitching mo-

tion of the missile is coupled to the yawing motion on ac-

count of roll rate. The term "pv" also says that yawing

motion induces forces in the pitch plane if rolling motion

is present. This is most undesirable as it is required for

these two "channels" to be completely uncoupled. Ideally

speaking, rudder movements should produce forces and moments

in the yaw plane and result in yawing motion only; elevators

should result in a maneuver in the pitch plane. Cross-

coupling between the planes contribute to system inaccuracy.

To reduce these undesirable effects, the roll rates must be

kept as low as possible.
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At this point it is desirable to recall that "all three

products of inertia (Ixy, IyzI zx) are zero if there are two

axes of symmetry, while two will be zero and the third will

be small if there is one axis of symmetry and the missile is

reasonably symmetrical about another axis."

E. LINEARIZATION AND DECOUPLIZATION OF MISSILE MOTION

EQUATIONS

q To simplify the study, a projectile like missile is as-

sumed. Such a missile has two axes of symmetry and two

planes of symmetry (rotational symmetry). Thus, there will

be a correlation between some aerodynamic derivatives and

inertia terms as in table (II.E-1) is shown.

Table II.E-l. Some relations due to the rotational
symmetry of a projectile like missile.

I =1 = 0xy yz zx

Iyv zz

Y Z N= -M q=-r

. =Z- N =-M v wv w

Y = Z N! =
V W

Y -Z Nr  -M
r q r q

N.=

The two planes of symmetry that are used to study the

missile motion are the:
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a. XOZ plane or longitudinal or pitching motion plane with
variables to be examined; u,w,q,a = w/Uo, q =6

b. XOY plane or lateral or yawing motion plane with varia-

bles to be examined; v,p,r,B = v/Uo, p = $, r =

Decouplization of missile motion equations means to delete

all the terms (variables) which are not mainly concerned.

For further simplification and in order to facilitate the

linearization process, it is assumed that:

q a. There is no wind side effect, that is: W = V = 00 0

b. The order of products and squares of perturbating
quantities is negligible; thus:

qw = rv = ru = pw = pv = qu = qp = rq = p2 = r2 = rp =0

c. The order of the following aerodynamic derivatives is
negligible:

Xw = Xv = Xp = Xq = Xr = 0

Yu = Yw = Yp = Yq = Yr = 0

Zw = Zq = Zv = Zp = Zr = 0

Lu = Lw = Lq = 0

Mp = Mr = 0

After the above assumptions, which from a practical point

of view are acceptable, the six equations of missile motion

are decoupled, linearized and organized in two sets of equa-

tions which are given in a state variable form as follows:

a. Longitudinal Equations

Xu  Xw  0 -g, ui X,
u w

W, Z Z U0  01w ' Z.

M+ M.Z M +M-Z M + Mw U 0 'q M.+M.Zu w u w ww wq
. 0 0 0 0 0
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and auxiliary relationship:

(xz w OU -u0 -

b. Lateral Equations

Y 0 -1 g/t Y*a Y*Sr a

p L' L' L' 0 p L'6 L' 6r3 p r P6 r 6
= +

IN' N' N' 0 r N' N'r
3 p r a 3

cp 1 0 0 0 0

where: a: aileron

r: rudder

%: angle due to roll from vertical position.

Equation 3= Yrs - r + g /U + Y* a a + Y * r 6  can be re-
-0 

0a a 6.r

replaced by its equivalent v = v - U0r + go + Y6a a + Y  6r

with auxiliary relationships:

D = b banking rate

r = yawing rate

aYc.g. = U0O - gv + U0 r = v - go + ur (v = 3U0 )

Note: If the missile has only one plane of systems then:

+c /I IL'. = 1 X1 X
i 1 - x/Ix z

N. + IxzLi/Iz

1 XZ 1 ZZN 1 2 /
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Some control engineers prefer to work with transfer func-

tions. These transfer functions can be derived by applying

Laplace transform to the above sets of equations.

F. SUMMARY OF UTILIZED ASSUMPTIONS

The following assumptions were used during the derivation

o.-L the decoupled sets of longitudinal and lateral equations.

1. Rigid body with constant mass

2. Projectile-like missile with two planes of symmetry

3. Small perturbation theory

4. In a Taylor series expansion around the operating
point, the second and higher order terms are negligible

5. Lots of Aerodynamic coefficients are deleted as negli-
gible quantities

6. No wind side effect

7. The order of products and squares of perturbation quan-
tities are deleted as negligible quantities

8. The terms (variables) which are not mainly concerned in
the study of motion in each plane of symmetry are con-
sidered as zero.

4
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III. GUIDANCE LAWS

A. DEFINITION OF GUIDANCE LAW

Guidance law is the mathematical modeling of a physical

or logical relation between certain perceivable parameters,

which enables appropriate missile flight path dynamics to be

u determined so that some mission objectives might be achieved

in an efficient manner.

There have been developed many guidance laws, which have

* been categorized in two major subsets, the "classical" and

the "modern" guidance laws.

Each one of the guidance laws is characterized by vary-

ing degrees of performance, complexity and seeker/sensor re-

quirements. The increased accuracy requirements and more

dynamic tactics of modern warfare render contemporary guid-

ance laws unsatisfactory in many cases. This is especially

true at the last moments of air to air missile engagements.

Improving performance involves a trade-off between more so-

4 ohisticated hardware or more sophisticated software. In-

creased hardware sophistication almost always results in

increased costs. With the advent of new theoretical methods

and low cost/high speed microprocessing techniques, the po-

tential exists for tremendous increases in missile brain

power with little or no corresponding increase in- cost.
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B. FLIGHT STAGES OF A MISSILE

The total flight history of any missile can be divided

into the following three stages/phases:

1. From Launch Up to Full Activation of All Subsystems

Depending on the designer-manufacturer and safety

reasons there are missiles that take a few seconds until all

their subsystems become fully activated and capable of

functioning.

2. Mid-Course or Stand-off Guidance

This is the phase from the end of previous phase

4 until the missile seeker "locks-on" the target. It is re-

quired when the missile is launched at such long ranges from

the target that either the missile seeker cannot "see" the

target or, if it can, the available guidance information is

of sufficiently poor quality that it is unusable. In such a

case, the guidance law usually consists of some pre-programmed

strategy such as "maintain launch heading and a constant al-

titude" or "fly directly to where it is believed that the

target might be." (In some cases tactical missiles do not
'I

have seekers and the complete trajectory can be thought of

as a type of mid-course guidance.)

Mid-course guidance is primarily an energy manage-

ment and inertial instrumentation problem. Although advanced

control and estimation techniques are applicable to this

problem as well, the objectives are sufficiently different

from the objectives of the terminal guidance and control
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problem. The study of mid-course is not within the scope of

this study.

3. Terminal Guidance

This is the phase where a terminal seeker is "locked-

on" to a target and provides reliable tracking data (short-

range combat). The dynamic requirements of terminal guidance

are usually more stringent because all the trajectory errors

q which have accumulated must be corrected in a vary short time.

All the above three phases are shown in Fig. III.B-1.

C. TERMINAL GUIDANCE LAW

The terminal guidance law as a part of a guidance loop

(Fig. III.C-l) represents an essential component in the de-

sign of guided missile systems. The information which is

needed to perform the guidance task of missile-target inter-

cept, determines basically the configuration of necessary

sensors and information processing.

TARGET _____INFORMATION

MOTION SNOSPROCESSING

ISSIL GUIDANCE LAW
MOTION

Fig. III.0-1. Structure of information flow
in missile guidance loops.
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ACQUISITION

LAUNCH--w MIDCOURSE
GUIDANCE TERMINAL GUIDANCE

Fig. III.B-1. Typical Tactical Missile Trajectory
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The objective of any terminal guidance law is to obtain

as small a miss distance as possible. The demands on the

missile accelerating capability as an important system para-

meter depend strongly on the kind of used terminal guidance

law.

D. DESIGN PRINCIPLES FOR CLASSICAL GUIDANCE AND CONTROL LAWS

The guidance and control laws used in current tactical

missiles are based largely on classical control design tech-

niques. These control laws came into being over 35 years ago

and have evolved into fairly standard design procedures.

Though the specific guidance and control law varies from one

missile to another (depending on its size, weight, cost and

manufacturer), the following basic characteristics are common

' to all of the missiles:

a) The overall control of the missile is divided into two
or more loops. The outer guidance loop controls trans-
lational degrees of freedom, while the inner, autopilot
loop controls missile attitude.

b) Proportional feedback is used to correct missile course
in the outer loop (commonly referred to as proportional
navigation or "pro-nav"). Pro-nav is quite successful
against nonmaneuvering targets.

c) In the inner loop, the roll, pitch and yaw channels are
uncoupled and are typically controlled independently of
each other.

d) Sensors typically measure aspect angles in pitch and
yaw planes and rates may also be available. Advanced
sensors may measure other variables.

e) No explicit state estimators are used and the signals
are filtered to reject high frequency noise.

f) All commands are amplitude or torque constrained to en-
sure autopilot and missile stability.
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Classical controllers have two major advantages, simpli-

city in design and simplicity in implementation; but they

also have several problems. Table III.D-1 indicates how

characteristics of classical short-range missile terminal

guidance and control laws lead to advantages and disadvan-

tages in design and implementation.

E. CLASSICAL TERMINAL GUIDANCE AND CONTROL LAWS

Quite a few guidance laws have been developed based upon

classical control methods and used widely in missile control

over the last 40 years.

There are many factors involved in the selection of a

guidance law; i.e. cost, complexity, reliability, type and

scenario of engagement, etc. The most popular classical ter-

minal guidance laws are:

1. Command to Line-of-Sight

Strictly speaking, it is not a terminal guidance law

because it requires no terminal missile seeker. According to

this law, the launcher merely tracks the target, tracks or

computes the missile position and sends steering commands to

the missile, which are proportional to the angle the missile

is off the line-of-sight, in order to guide it along the

launcher to target L.O.S. This law is implemented in _.s-

siles of generally short range, from several hundred yards to

a few miles. A speed advantage of the missile is needed

since there is no anticipation or lead in the tracking. The
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avionics of the missile are relatively simple. The missile

must be able to distinguish left-right from up-down commands

( (roll stabilization or resolver-). Commands are sent either

by a wire attached to the missile or by a rear antenna on the

missile. It is necessary to have the launcher reference sys-

tem or personnel in the loop continually from launch to im-

pact. So, "launch anid forget" is not possible.

2. Pursuit

According to this law, steering commands are generated

to drive the angle between the line-of-sight (LO.S.) and

missile velocity vector to zero. That is, the missile steers

to head straight for the target. Pursuit navigation can be

likened to "dog chasing a rabbit".

This law works well for non-moving or slowly moving

targets but it degrades seriously in case of fast targets,

such as those found in the air-to-air environment. In the

air-to-air mission, the trajectories are clearly suboptimal

and usually end in tail chases. However, this guidance law

does have the advantage of being relatively insensitive to

system noise.

This law can be implemented on medium range missiles.

The target is required to give back a good homing signature.

4 It can be used as a "launch and forget at lock-on" method.

Its implementation requires, as avionics, homing sensors,

simple processing scheme and maybe an observer.
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3. Provortional Navigation (P.N.)

( - The development of this law was a major break-through

in homing missile guidance. In P.N. law, steering commands

are given so as to drive the line-of-sight rate to zero.

Subsequent studies using optimal control theory have

found P.N. to be an "optimal" guidance law when the missile

and target have constant velocity, the missile is inertia-

q less, and the only optimal criterion is to minimize terminal

mis-distance. However, assuming constant missile velocity is

a serious assumption that neglects considerable thrust and

drag effect. Because thrust and drag are present, P.N. is

not optimal even against constant velocity targets. More-

over, the targets seldom have constant velocities.

Despite its short-comings, P.N. is easy to implement

and, for many years, provided satisfactory missile performance.

P.N. is implemented in "launch and forget upon lock-

on" methods of missile steering.

Therefore, it has seen considerable use, although it

is somewhat sensitive to unfiltered system noise.

Due to its popularity, P.N. is studied extensively in

the next part of this study.

4. Proportional Navigation and Pursuit

There have been several attempts to combine the good

features (while simultaneously eliminating the bad ones) of

?.N. and pursuit guidance into an overall composite guidance

law. The combination of P.N. with reduced navigation gain
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and a parallel channel of body pointing pursuit provides a

( ,- degree of compromise between the two guidance laws. In this

case, guidance signals are computed based on both laws, and

providing a time varying weighting factor for each one, the

resulting signals are summed. Such an application usually

weights pursuit guidance heavily at long ranges where the

noise problem is most severe and the accuracy requirements

q less severe. Of course, a knowledge of time-to-go or range

is required.

The above concept exhibits a greater tolerance to

seeker scale factor errors than P.N. and a greater tolerance

to boresight errors than pursuit. The most significant short-

coming of this technique is the relatively poor performance

J.n the presence of wind, target motion and gravity compensa-

tion errors. The only situations for which this combination

law performs better than P.N. is for large initial offsets

and for large scale factor errors. The ability of the pur-

suit body attitude loop to zero the inital offset results in

uniformly good performance for all offsets.

5. Dynamic Lead

This guidance law provides results similar to the

weighting technique but for different radsons. At small

L.O.S. rate frequencies (which typically occur at long

ranges), it behaves like P.N. The advantage is that no

estimate of range or time-to-go is necessary; the behavior

transitions "automatically" based upon the frequency of the
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input signal. It also has the advantage of better performance

_in a typical situation (e.g. large line-of-sight rates at long

ranges). However, stability problems can occur if significant

noise is still present when the guidance law transitions to a

P.N. type behavior.

Tn the following table III.E-l are summarized the ad-

vantages and disadvantages of each of the above guidance laws

when they are used in combination with classical low pass

noise filters.

F. SENSITIVITY COMPARISON OF CLASSICAL TERI4INAL GUIDANCE LAWS
'I

The primary purpose of the guidance law is to insure a

minimum as possible mis-distance. Several studies, prelimi-

nary in nature, havz been conducted to investigate the sensi-

tivity of existing classical terminal guidance laws implemented

in several scenarios of engagement. The parameters which were

studied as a function of the guidance law were:

a. Initial heading of target

b. Target speed

c. Magnitude of target acceleration4

d. Sensor bias in measurement of L.O.S. rate

e. Sensor noise caused by two different levels of target
generated noise

f. Effect of wind gust.

The results of such studies, although generally valid,

give the tendency of each law sensitivity and can be sum-

marized as in table III.F-l is shown.
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Table III.F-1. Sensitivity Comparison of
Classical Guidance Laws

01
TARGET PARAMETERS MISSILE PARAMETERS

LAW CLASSIFICATION-
HEADING SPEED ACCELER BIAS NOISE GUSTS

GOOD *

L.O.S. AVERAGE ________ **

________ POOR**
GOOD ____

PURSUIT AVERAGE________ *___

________ POOR *

GOOD** **

P.N. AVERAGE ___________

_________ POOR*

it is easily seen that P.N. rates well in all categories

except that of noise. Angle rate, measurement noise, homing

sensor noise and target noise all have their effect; thus

arises the need for very good filtering.

The selection of proportional navigation constant must

involve a trade-off between high gain necessary for high

maneuvering targets and lower gains needed for noisy

situations.
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IV. GUIDANCE LAW OF CLASSICAL PROPORTIONAL NAVIGATION

A. GENERAL

This section is intended to present the basic concepts

associated with the classical proportional navigation guid-

ance law, and through a number of simplified cases to provide

q homing missile as it engages a target. In order to intercept

a target a missile must be capable of maneuvers. These are

accomplished by producing an acceleration normal to the

velocity vector resulting in a turn maneuver. Acceleration,

therefore, is one of the most important system parameters,

and because of practical limitations is one of the major con-

straints in accomplishing an intercept. Acceleration is not

the only parameter of interest; therefore other quantities

such as turning rate, trajectory, and miss-distance are also

considered. The analysis is generalized by normalizing many

of these parameters to permit curves to be used that may be

applied to different problems. Thus, for the cases con-

4 sidered, a reader can apply all of the results derived to

any set of initial conditions and obtain information on the

resulting trajectory.

* To permit an analytical treatment of this type, several

simplifications must be made. It has been the general prac-

tice to introduce proportional navigation by discussing the

constant bearing course and then considering perturbations
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about this idealized case. Constant missile and target

speed are assumed to avoid having to contend with non-linear

differential equations. This assumption is fairly good in

many cases, where the intercept time is short, and the speeds

do not have time to change significantly. A two-dimensional

problem is also assumed, again to permit the effects of

various parameter variations to be shown without becoming

involved in unnecessarily complex mathematical manipulation.

The discussion will cover some of these, as well as other

assumptions made in various derivations. Full investigation

of the resulting general differential equation for P.N. is

not of primary interest. Thus representative cases will be

studied.

It is believed that the approach taken, although somewhat

idealized, will provide the reader with an understanding and

feel for proportional navigation. It also provides a means

for rapidly determining values of missile parameters required

to achieve an intercept under ideal conditions, and thus

shows the best performance that can be attained based upon

the classical techniques.

Although proportional navigation has proved to be of

value against aircraft targets of limited maneuverability,

advances in aircraft design have increased their capability

to the point where proportional navigation can no longer

generate the missile commands necessary to insure a hit.

This has led to the application of modern control theory for



the generation of optimal guidance laws, requiring more

complex sensors and signal processors. The development of

optimal control laws for guidance systems is receiving con-

siderable attention, especially with th.? advent. of high speed

digital logic in the form of microproces. -s, which can pro-

vide tremendous calculating power in a very small space.

This area is beyond the scope of this study and is mentioned

in passing to alert the reader to the facv. that such work is

being conducted.

For the following study, initially the missile will be

considered to be ideal, in that it has no mass (unlimited ac-

celeration) and there are no time lags (no time constants).

Missile acceleration requirements and missile lateral dis-

placement will be derived for cases of initial missile head-

ing errors and for a maneuvering target. Then, the analysis

can be extended to include a system having a single time

constant, an acceleration bias, acceleration limiting and

various combinations of these.

Missile acceleration curves are important because they

show the missile response to the initial conditions as well

as the maximum missile acceleration required to intercept a

target under the conditions imposed.

The analytical derivation of differential equations of

P.N. for the several cases will be based upon plain geometry

and small perturbation theory and geometry in order to de-

rive and deal with linear differential equations instead of
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non-linear which are harder to be handled, analyzed and im-

plemented into computer programs.

B. FUNDAMENTALS OF PROPORTIONAL NAVIGATION

1. Constant Bearing Course

The explanation of constant bearing course concept

is considered as a prerequisite understanding before develop-

ing the Proportional Navigation concept.

* A constant bearing course is a course in which the

line-of-sight from tie missile to the target maintains a

constant direction in space and thus remains parallel to it-

o self during a target/missile engagement. It is generally

associated with constant missile and target speeds, which

are assumptions made in this study to simplify the analysis.

0 The constant bearing course results in an intercept and is

the so-called collision course.

Figure IV.B-l shows the geometry for a constant bear-

ing course. The line-of-sight (LOS) between missile and tar-

get is at an angle p relative to an inertial space refe::ence

for all times of the flight. The missile velocity vector is

at an angle L relative to the LOS, and the target velocity

vector is at an angle A relative to the LOS. The relative

closing velocity between missile and target (r) is

r = Vt cosA - Vm cos L (IV.B-1)

tt m
where V t cos A and V m cos L are the velocity components along

0 the LOS.
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The rotation rate of the LOS is found from

rW = -Vt sinA + Vm sin L (IV.B-2)

where Vt sin A and V -in L are the velocity components nor-

mal to LOS. FoE a constant bearing course, p = constant and

$ = 0. The proper missile lead angle L is found from Eq.

(IV.B-2)

Vtsin L = - sin a (IV.B-3)
m

2. Classical Proportional Navigation Guidance Law

A classical proportional navigation course is defined

as a course in which the rate of change of missile heading is

directly proportional to the rate of rotation of the line-of-

sight from the missile to the target. The purpose of such a

course is to counter the tendency for the line-of-sight to

rotate and therefore approximate a constant bearing course.

To permit a tractable analytical treatment, the missile and

target speeds are assumed constant. Mathematically, the

classical proportional navigation equation can be expressed

as

= Ni (IV.B-4)

where

_m is the rate of change of the missile heading (velocity
vector)

is the rate of change of the line-of-sight, and

N is the navigation ratio.
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The direction of the missile velocity vector cannot

be controlled directly; therefore, proportional navigation is

implemented by controlling the missile acceleration, amn,

which equals Vmim, where Vm is the missile velocity. Imple-

mentation of proportional navigation results in the following

guidance law:

a =N V m (IV.B-5)mnn mn

or

Vl V
am cos L (IV.B-6)

where n is the effective navigation ratio, Vc equals -r, the

relative closing velocity along the line-of-sight, and L is

the angle between the line-of-sight and the missile velocity

vector. The above two equations are equivalent. The effec-

tive navigation ratio n is a critical parameter that charac-

terizes the missile system response, and typical values of r

between 3 and 6 are normally employed, as it will be shcwn by

the following-on study cases.

The above equations are somewhat idealized because

they do not account for any time constants in the system. A

space stabilized sensor is used onboard the missile to mea-

sure p. Implementation of this sensor usually results in a

single time constant transfer function. Implementation of a

means for commanding missile acceleration proportional to the
4

measured also results in at least one additional time
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constant. These time constants must be small relative to the

missile flight time in order to minimize the miss-distance.

Guidance law equations are classically written as

perturbations in missile and target position relative to a

constant bearing course. These equations are linear differ-

ential equations which are valid provided the commanded mis-

sile acceleration does not exceed the lateral acceleration

capability of the missile. If acceleration saturation does

not occur, the missile system is linear and superposition can

be used if several errors occur simultaneously.

Classical treatment of proportional navigation gen-

erally assumes that the missile and target are flying a con-

stant bearing course and that the missile and target velocities

are constant. Errors relative to a constant bearing course

are then introduced into the differential equation which give

the perturbation in position. Conditions that cause devia-

tions from a constant bearing course are:

Initial missile heading error

Target maneuver

Control system acceleration bias

Initial tracker error

Wind.

4 If the system remains linear and the flight time is

long, relative to the missile system time constant, the miss-

distance will be small. For a given effective navigation
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ratio n, factors that degrade missile system performance and

increase the miss-distance are:

Missile system acceleration saturation

(Acceleration limiting)

Missile system time constants

Instability at short range

Scintillation

q Angular glint, and

Seeker/sensor internal noise sources.

Acceleration saturation and missile time constant effects

are described in following sections.

C. GENERAL DIFFERENTIAL EQUATION OF P.N. FOR KINEMATIC
ANALYSIS

In the analysis of proportional navigation in this sec-

tion the constant-bearing course is employed as a basic co-

ordinate reference, and motions or perturbations of both

target and missile are examined relative to their respective

collision courses. Each interception problem may be broken

down into various component geometric considerations such as

a target maneuver and an initial heading error. Superposi-

tion can then be used to find the total solution, providing

the system remains linear, i.e., acceleration limiting does

S4 not occur.

Figure (IV.C-1) shows the geometry of a missile target

interception based upon a constant-bearing course. At a

.4 given time, t1 , the missile would be at position 1 if a

58



w4

L
Q)

a LA

q, 01

4

-'V-4

59-



constant-bearing course were flown, but the missile is actual-

( - ly at point 1'. The perturbation in position is Xm units

along the missile reference course and is +Zm units normal to

the missile reference course. The target at time t1 would be

at position 1 shown in figure (IV.C-1) if a constant-bearing

course were flown but is actually at position 1'. The target

perturbation is X units measured along the target reference

q course and is Z units measured normal to the target refer-

ence course.

The missile velocity vector is at an angle ym relative to

the arbitrary reference line. The angle between the line-of-

sight vector and the arbitrary reference line is defined as

i. The latter is shown in figure (IV.C-I).

U) Proportional navigation requires that the angular rate of

the missile flight path (missile turning rate) be proportional

to the angular rate of change of the line-of-sight or

dy m  11dt - d-- (IV. C-i)
dt dt

where:

Y = angle between missile velocity vector and a fixed
reference line;

t= rate of change of the line-of-sight; and

N = navigation ratio.

One form of mechanizing proportional navigation is to use

a target tracker to measure d/dt. Figure (IV.C-2) shows a
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missile system containing a tracker. The LOS is shown at the

angle IP, the missile axis is shown at an angle 8, and the

missile velocity vector is shown at an angle ym. The angle

of attack a is the angle between the missile axis and the

missile velocity vector. The tracking antenna boresight is

at an angle D and the tracking error which is the LOS angle

minus the boresight is shown as E.

A typical implementation for a homing angle tracker is

shown in figure (IV.C-3) as a type 1 servo. The input to the

tracker is target position jl and the output from the tracker

is E. The antenna motor is shown as part of the feedback

loop included in the K 2/s term. The antenna motor acts as

an integrator because the antenna turning rate is proportion-

al to the input voltage or current. The tracker transfer

function is

-is+ (IV. C-2)

The denominator acts as a low pass filter with a time con-

stant of 7, and the output c, is TlW in the steady state. The

4 tracker output, e, is a direct measure of the sight line

rate. The tracker must be space stabilized to prevent mis-

sile motion from influencing the p measurement.

* The direction of the missile velocity cannot be controlled

directly, but the tracker output is amplified by a factor K

and is used to command the missile acceleration. Thus,
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amn - Ke= KT in g's (IV.C-3)n m 23.2 Ts + 1

where nm is the missile lateral acceleration in g's and amn

is the missile lateral acceleration in ft/sec2 . The above

equation is a linear first order differential equation re-

lating the commanded acceleration, (nm), to the sight line

rate p.

The commanded missile acceleration from figure (IV.C-1)

is d 2Z/dt2 so that:

Z

m - gKtr

dt2 = -ng = r Ts + (IV.C-4)

The above equation reduces to

dd2Z dZ 2dZ

-m +M = -gKT + - - +(-m) +gKT(1 )t= 0  (IV.C-5)
dt2  dtt tt

where:

T - tracker time constant,

d2Z

= missile acceleration normal to the m.ssile constant
dt2  bearing course,

dZmt= missile velocity normal to the missile constant
bearing course,

= line-of-sight angle,

= initial missile lateral acceleration at tZ= 0,
t =0
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-dZ

(= initial missile lateral velocity at t =0, and

M = initial LOS error angle at t = 0.

Since the above equation is a perturbation type equation,

is the actual LOS angle minus the constant bearing LOS angle.

The perturbation in i is

Xr sin L + Zm cos L - Xtsin A - Z cos A
= tan P = m" (IV.C-6)

r

where r is the missile to target range which is

r = VC(T-t)

where:

Vc is the missile to target closing velocity along the LOS

T is the total homing flight time and

t is the elapsed homing time.

Substituting the equation for r and the equation for 7p

into the differential equation for missile position results

in a basic trajectory equation given below:

SdZm z n sin A cos A
+ n - - X tanL - X

dt 2  dt +nT-t T-t mta L tcos L Zt cos L

dt=
+T dm~\ M ~) + Kt (IV.C-7)

mt=0 Z =dt 2)/ O t t=0 t

where:

N VKCOSL cosL is the effective navigation ratio.
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In the above equation X m and Xtare zero if the missile and

( w- target velocities are constant.

The above general differential equation is applied to spe-

cific problems in the following subsections of this section

which provide general curves showing the required missile

acceleration for initial heading errors, target maneuvers,

control system acceleration bias and an initial tracking

error. Curves are given for a system with and without a

time constant.

Missile acceleration curves are important because they

show the missile response to the initial conditions as well

as the maximum missile acceleration required to intercept a

target under the conditions imposed.

Assumptions contained in the derivation of the General

Differential Equation for P.N. are:

(1) Equation is written as a perturbation about a constant
bearing course;

(2) Missile and target velocities are constant;

(3) Linear system operation (no acceleration saturation);

(4) A single system time constant exists due to the tracker.

The above equation is used to derive the differential

equation of motion for various imput conditions.

1. Proportional Navigation with Initial Heading Error
and No Time Constant

For this problem the missile has an initial heading

error of awhen compared to the heading required for a
I0
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constant bearing course. The initial missile velocity,

(dZm/dt)t=0 , is -Vma0 for relatively small heading errors.

For no time constant and constant target and missile

velocities, the general differential equation for the per-

turbation normal to the constant bearing course, reduces to

the following:

dZm z m-- + n - V a 0  (IV.C-8)
q dt T - t m 0

where:

Zm is normal to the constant bearing flight path;

4 n is the effective navigation ratio;

T is the total missile flight time;

Vm is the missile velocity; and

a0 is the initial missile heading error in radians.

This equation is directly integrable and results in a missile

acceleration of

Vm a 0 ( )

n T a n _ (IV.C-9)

and a missile displacement normal to the constant bearing
4

course given by:

V a T 1- cosm T ,for n #1
[qZm= n-i[t~-1

n(iV.C-10)

V a T 1- cos B in 1- for n = 1

I
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Equation (IV.C-9) is plotted in figure IV.C-4 for

values of n between 2 and 6. The horizontal scale is the

normalized missile flight time t/T. t = 0 corresponds to

initiation of proportional navigation, and t = T corresponds

to intercept. The vertical axis is the missile acceleration

* am, normalized (divided) by an equivalent acceleration dis-

turbance equal to the initial normal velocity divided by the

total flight time, Vma0 /T.

Examination of the curves of figure IV.C-4 shows that

for n = 2 a constant acceleration is required throughout the

flight. For higher values of n, a larger acceleration is

required early in flight and a lower acceleration is required

near the end of flight. It is desirable to correct the head-

* ing error early in flight so that the missile system has full

maneuvering capability near the end of flight. Values of n

between 3 and 6 are desirable for the case of an initial

heading error in order to reduce the acceleration require-

ments at intercept.

Equation (IV.C-10) is plotted in figure IV.C-5 for

values of 6 n 1 2 The horizontal scale is the normalized

missile flight time t/T. t = 0 corresponds to initiation of

proportional navigation and t = T corresponds to intercept.

The vertical axis is the missile's displacement normal to the

constant bearing course, normalized by (divided) Vma 0 cos B.

Examination of the curves of figure IV.C-5 shows that

as n increases the lateral missile displacement decreases.
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Also as n increases, the maximum displacement occurs earlier

in the total engagement flight. This was expected, becausew
as it is shown in figure IV.C-4, we get larger accelerations

early in flight and lower during the end.

It is noticeable that for n = 2, maximum displacement

occurs at T/2.

Finally, it is observed that no matter how much the n

is, the final miss-distance is zero.

Given the numerical values of Vm, a0 , T, B, the nor-

malizing factors for the acceleration nm and the displacement

Z can be derived. Then, multiplying these factors with the

values obtained through figures (IV.C-4) and (IV.C-5), the

real nm and Z are determined. If the acceleration limits of

the missile are known, then these curves can also be used to

determine if missile acceleration saturation occurs.

In summary an initial heading error requires a high

missile acceleration early in flight and a low missile ac-

celeration near the end of flight for n 3. The magnitude

of the missile acceleration and displacement are proportional

to the heading error a0. The final miss distance is zero.

The computer program which was used to implement

equations (IV.C-9) and (IV.C-10), in order to obtain figures

(IV.C-4) and (IV.C-5), is given in appendix A.
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2. Proportional Navigation with a Maneuvering Target
and No Time Constant, No Initial Aiming Error

In this case, it is assumed that the target and mis-

sile are flying a collision course and at t = 0 the target
2

initiates a lateral acceleration of at ft/sec , normal to

the target collision course flight path. Then, the general

differential equation for P.N. (IV.C-7) turns into:

dZ m Z n coA2
dt T-t T-t (cos a (IV.C-L2)

Equation (IV.C-11) is directly integrable and results in a

* missile acceleration of:

m= (_2Icos A 1 T_ t n-2

r = n (cos L -T jt (IV.C-12)

and a missile lateral displacement normal to constant bearing

course flight path given by:

_7 ( t (1 _.)2 1 )

2Zm = -V t T2 A5 cos .b____ ' + (IV.C-13)

where:
I

n is the missile acceleration in g's

t is the target acceleration in g's

Vt is target speed

1 is target turning rate

0 is the target velocity vector angle with respect to 
the

constant bearing course when it initiates the maneuver.
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Figure IV.C-6 is the plotting of equation (IV.C-12). The

horizontal axis is the normalized time of flight t/T, and the

vertical axis is the missile acceleration nm divided by

(nt cos A) /cos L. The vertical axis can also be interpreted

as the component of missile acceleration normal to the LOS

divided by the component of target acceleration normal to

the LOS. The initial requirement on nm is zero, but nm in-

q1 creases as the flight time increases. For values of n less

than 3, the required missile acceleration at intercept is

very high. For n between 3 and 6, the final missile accelera-

A tion is between 3 nt and 1.5 nt .

Figure (IV.C-7) is the plotting of equation (IV.C-13).

The horizontal axis is the normalized time of flight t/T, and

04 the vertical axis is the missile lateral displacement off the

constant bearing course flight path, normalized (divided) by

V T2  cos p0" It is noticeable that in this subcase also,

the final miss-distance is also zero. Again, the more n the

less miss-distance occurs rather at the end of the later part

of the engagement.

The computer program which was used to implement equa-

tions (IV.C-12) and (IV.C-13), in order to obtain figures

(IV.C-6) and (IV.C-7), is given in appendix B.

3. Proportional Navigation with an Initial Heading Error
and a Single Time Constant

In this case, it is assumed that the missile is

launched with an initial heading error of a9 when compared to
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I

the heading required for a constant bearing course. The

Na- initial missile velocity (dZm/dt)t=0 is Vm a0 for relatively

small heading errors and the missile is provided with a

seeker of time constant T. Then the general differential

equation (IV.C-7) turns into:

d2Zm dZm Z
+- + n m- -V a

dt2  dt T - t m 0 (IV.C-14)

where:

-r is the time constant of the seeker

T is the time of engagement

a is the initial heading error

is the navigation constant

Vm is the missile velocity

Zm is the vertical displacement error.

Equation (IV.C-14) is not directly integrable in closed form

and must be solved by numerical integration.

Defining t' = t/T follows:

dt' = dt/T and dt = T dt'

(dt')2  (dt/T)2  dt2  T 2 dt' 2

Substituting into equation (IV.C-14) and after minor manipu-

lations it gives:

d 2(Zm/T) d(Zm/T) ()

(T/7)dt'2 + dt' + ( ) -V (IV.C-15)
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Dividing through by V a and multiplying by T/T, equation

(IV.C-15) turns into:

d 2  () d (Zm/T )a) Zm
S"=(IV.C-16)dt' d' i -t' TVma0

Defining Q = Zm/TVma0 , K = T/r and substituting, equation

(IV.C-16) turns into:

d 2Q dQn
+ K d-- + K - Q = -K (IV.C-17)

dt'

Then, by numerical computational approximations, figure
I

(IV.C-8), figure (IV.C-9) and figure (IV.C-10) were obtained.

Figure (IV.C-8) is the plotting of missile accelera-

tion~for i = 3. The horizontal axis is the normalized time

of flight t/T, and the vertical axis is missile acceleration

amn divided by Vma0/T. For T/T equal to 15 or greater, the

missile acceleration is close to the T/- = case (case of

no time constant).

Figure (IV.C-9) is the plotting of missile accelera-

tion for n = 4. Again for T/T = 15 the deviation from T/T =I

case is not serious, and that at values less than 15, larger

differences occur.

i 4 Figure (IV.C-10) is the plotting of missile accelera-

tion for n = 5. Again, the same results as for the case of

= 4 are noticed.

i
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The computer program which was used to implement

equation (IV.C-17), in 3rder to obtain figures (IV.C-8),

(IV.C-9) and (IV.C-10), is given in appendix C.

4. Other Sub-cases of the P.N. Guidance Law

Continuing the study of the general Differential

Equation for P.N. (see equation IV.C-7), the following sub-

cases can be distinguished also:
a. P.N. with No Time Constant and Acceleration

Limiting

In previous section IV.C.2 about "P.N. with

maneuvering target and no initial heading error and no time

constant" it was shown that the required missile accelera-

tion increases with the time of flight (see figure (IV.C-6)).

If the required acceleration exceeds that which the missile

system can provide, acceleration saturation or limiting will

occur. The time tL at which this occurs can be found using

figure (IV.C-6). The missile system will be acceleration

limiting from t = tL through intercept at t = T. Then, the

miss-distance Ym at intercept time T is given by:

g cos A TtL 2
Y - T (IV.C-18)

2 T

where Ym is the target-missile separation normal to the L.O.S.

at t = T.

Miss-distance due to an initial heading error

should be zero even if acceleration limiting occurs, provided
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the flight time is long. In figure (IV.C-4), the required

acceleration for an initial heading error is shown. The

highest acceleration is required early in flight, so that

the missile system will be into acceleration limiting between

0 and ts seconds, after which linear operation will occur.

The trajectory errors caused by the initial heading error

and saturation will result in a new heading error at t = ts -

The remaining portion of the flight is linear and the re-

sulting miss-distance is zero.

b. P.N. with Control System Acceleration Bias and No
Time Constant

If the control system contains an inadvertent

bias which demands a fixed acceleration, in addition to that

called for by the tracking signal, the missile acceleration

47 is

n m = nb +K (IV.C-19)

where nb = acceleration bias in g's.

The differential equation for the missile per-

turbation becomes
U

dZ Zm m_+ T-t - a n t (IV.C-20)

The differential equation is directly integrable

resulting in a solution of

nm = n (21 -1~-2  2( = 1 - L(IV.C-21)
n1b  n - 2 T) n -2
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This equation is plotted in figure (IV.C-1l). The horizontal

axis is the normalized time of flight and the vertical axis

is -nm/nb. To keep the missile acceleration low near the end

of flight, values for n between 3 and 6 are required.

The overall effect of an acceleration bias is to

force a missile acceleration over the entire flight time.

This acceleration would use up some part of the available

u acceleration dynamic range of the missile.

c. P.N. with a Control System Acceleration Bias and
Single Time Constant

For a single time constant the differential equa-

tion of motion is

22
dZ dZ Z d2Zd2(m +  m + n -gnnt + M (IV.C-22)+- -+n -~( p, dt dt T -t =0

Using the initial condition that (d 2 Zm/dt 2 )t= 0 is -g nb' the

differential equation becomes

d2Z dZ Zm + + n M -gn b (t +) (IV.C-23)

at 2  dt T - t

The above eqietion is not directly integrable in closed form.

.tzing numerical integration, required nor-

malized missile acceleration for a system bias nb versus nor-

malized time of flight t/T for several effective navigation

ratios n can be derived.

In figure (IV.C-12) curves of nm/nb versus t/T

are drawn for values of n = 3 and T/t = 3, 10, 15 and . It
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is observed that for reasonable demands on the missile ac-

celeration, T/t should be 10 or greater, which means that the

missile flight time should be 10 tracking loop time constants

or longer.

In figure (IV.C-13), curves of -n m/nb versus t/T

are drawn for values of n = 4. From these plots it appears

that the flight time should be 15 tracking loop time con-

stants or longer.

The effect of a bias error is to require a mis-

sile acceleration over the entire flight time. The effect of

a time constant and an acceleration bias in the navigation

equation is to place higher demands on the missile accelera-

tion and to require that the missile flight time be about 15

time constants long.

5. Augment Proportional Navigation

In section IV.B.2 it was derived that the required

missile acceleration, normal to the flight path of the mis-

sile in case of constant bearing flight, is given by equation

IV.B-5 or equation IV.B-6 which is:

amn = n Vc  /cos L (IV.B-6)

From figure IV.B-1 it is derived that:

n n = a cos L (IV.C-24)c mn

where nc: missile acceleration perpendlcular to the L.O.S.

Upon substituting equation (IV.C-24) into equation (IV.B-6)

it is derived
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nc = nV Vc  (IV.C-25)

or

nc VcF Vg t y + ytg O] (IV.C-26)
cgo

where t : time to gogo

y: differential displacement

The expression in the brackets of equation (IV.C-26)

represents the miss-distance that would result (in the ab-

sence of target maneuver) if the missile made no further cor-

rective accelerations, and is referred to as the zero effort

miss-distance (Z.E.M). Therefore, P.N. can be thought of as

a guidance law in which acceleration commands are issued in-

versely proportional to the square of time-to-go and directly

proportional to Z.E.M. If target maneuver, of nT accelera-

tion, is considered, the Z.E.M. changes and a new guidance

law known as augment proportional navigation, APN, results

as follows:

n +In 2

ntg go (IV.C-27)

go

This law is compared later on with the P.N. and

4modern guidance implemented in the same guidance system.

6. Conclusions

The classical definition of propo-tional navigation is:

- N P

where N is the navigation ratio.
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Since the angle of the velocity vector cannot be con-

trolled directly the missile commanded acceleration is made

proportional to ~.This results in a guidance equation of

a =NV
mn m TS+1

or

nV
c _amn Cos L TS +1

A differential equation is derived that gives the

missile response (perturbations) relative to a constant bear-

ing course with the assumption of constant target and missile

velocity, linear missile operation and a single system time

constant due to the tracker.

An initial missile velocity vector pointing error re-

sults in a high missile acceleration early in flight and a

low acceleration near the end of flight (3 : n : 6). The

effect of a time constant is to increase the missile accelera-

tion and values of TI: of 15 are needed to prevent excessive

missile acceleration.

A target maneuver results in a low missile accelera-

tion early in flight and a higher acceleration near the end

of flight. Values for the effective navigation ratio between

4 3 and 6 keeps the missile acceleration demands relatively low.

A missile flight time of about 15 time constants or more is

needed to minimize t-.he missile acceleration requirements.
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In almost all cases 3 S n 6 6 is required to minimize

the missile acceleration near the end of flight. In almost

all cases, the flight time should be equal to or greater

than 15 tracker time constants to minimize the missile

acceleration.

All the used computer programs of simulation are

enclosed in appendices A, B and C.

~1
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V. MODERN CONTROL MISSILE GUIDANCE LAWS

A. GENERAL

As was mentioned in part III, there have been developed

many guidance laws, which have been categorized in two major

subsets, the "classical" and the "modern" guidance laws.

q In part III and IV, the "classical" missile guidance laws

were studied. This part intends to outline the basic princi-

ples and theory which deal with the "modern control" guidance

laws

All the guidance laws which are characterized as "modern"

have been categorized in two major subsystems, the "modern

control guidance laws based on optimal control theory"' and

the "modern control guidance laws based on differential

games."

The basic difference in philosophy between missile guid-

ance laws based on optimal control theory and those based on

differential game theory is in the assumptions made by the

guidance laws on the target's future trajectory and maneuver-

ing capabilities.

"Optimal control" theory assumes that the target's future

maneuver strategy is completely defined, either in open-loop

or closed-loop form. The feedback nature of missile guidance

laws allows the missile to correct for inaccurate predictions

of target maneuvers.
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In contrast, the "Differential Game" approach makes no

( assumption or ' uture target maneuvers, but instead takes into

consideration the target's maneuver capabilities. The guid-

ance law then guides the missile se as to minimize the poten-

tial effects of the target's intelligent use of his maneuver

capabilities.

Optimal control theory has been used to derive a variety

q of deterministic guidance laws for intercept missiles. These

laws are all based on the application of linear-quadratic

optimal control theory to a linear constant coefficient mis-

sile model with various assumptions on availability of target

acceleration information, enforcement of zero final miss dis-

tance, and the model used for the airframe/autopilot response

of the missile. in all cases the resulting optimal guidance

law is a modified form of Proportional Navigation.

In contrast, the application of zero sum perfect informa-

tion differential game theory to the derivation of intercept

missile guidance laws has been less extensive. Due to the

complexity and difficulty that arises in the implementation

of differential game theory into actual missile guidance it

currently does not appear often in the scene.

From theoretical studies and computer simulations it

turns out that the major advantage of differential game guid-

ance laws compared with optimal control theory is that the

differential game laws are less sensi.tive to errors in esti-

mates of target acceleration. This results f'rom the fact
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that the differential game guidance laws are based only on

the maneuver capabilities of the target and not a projected

future acceleration history as is required for the optimal

control laws. Therefore, the use of differential game meth-

ods in the design of guidance laws for intercept missiles

appears to result in better missile performance against

highly maneuverable targets than does the use of optimal

u control theory.

B. MODERN CONTROL GUIDANCE LAWS BASED ON OPTIMAL CONTROL
THEORY

The optimal control theory was developed mainly during

the late 1950's and early 1960's. Up to this time the mis-

sile guidance designers used to base the missile guidance

control system on the principles of the "classical"' control

theory. But during the late 1960's and early 1970's, a few

missile designers did take a cursory look at applying the

modern control theory to the tactical missiles. Basically,

such an approach would replace the low pass filter with an

optimal estimator such as the Kalman filter. In theory, this

4 would allow one to "optimally" separate the signal from the

noise by using information about the missile dynamics and

noise covariances rather than filtering based only on fre-

quency content. In addition, missile/target states other

than line-of-sight rate could be estimated, even if not mea-

sured, provi ded they were mathematically observable. This,

in turn, would allow one to design more advanced guidance
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laws based upon optimal control theory, because such theory

usually requires complete information concerning the missile

states.

Figure V-i provides in a block diagram form a functional

comparison between "classical" and "modern" control ap-

proaches. It is seen that the two methods differ in f il-

tering theory, in guidance law and in feedback states

(channels).

The recent years' evolution of science in electronics

domain, numerical techniques for solving complex equations

and the birth of microcomputer and microprocessor, allow the

performance of more calculations, more often, more accurate,

at less cost, and in a smaller volume than anyone would have

imagined a few years ago. Thus, th- resulting guidance laws,

due to the application of optimal control theory, can be

easily implemented in real life.

The study of the modern control theory has not been com-

pleted yet. Extensive research programs are conducted to

investigate and improve furthermore these modern control and

estimation techniques that have potential application, es-

pecially, for improving short range air-to-air missile

performance.

Subjects of further investigation for future applications

of optimal control theory are:

a. in guidance and control th'eory: Linear and Nonlinear
Quadratic Theory, Linear Quadratic Gaussian, Adaptive
Control, Reachable Set Theory, Parameter InsensitiJve and
Differential Games.
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b. In Estimation Theory: Extended Kalman Filtering, Ob-
serve.-s, Adaptive Filters, Nonlinear Filters, Splines
and Polynomial Techniques.

The early studies on modern control theory applicability

into missile guidance and control design, pointed out that a

simplistic and straightforward application of "modern" con-

trol theory results in very little performance improvement

over "classical" design techniques.

C. GENERAL OPTIMAL CONTROL THEORY

This part intends to review some of the more salient

features of the "optimal control theory" and to highlight its

usefulness and its limitations.

In general, any dynamic system can be represented by a

set of nonlinear differential equations as follows:

X = f(x,u,t) (V.C-1)

where: X: State vector of the system

X: The time derivative of the state vector

U: The system control vector input

f(.): A vector function whose components are non-
linear functions of the state and control
vector components and of time.

Such a system may also be subject to terminal equality con-

straints of the form:

4
J(titf1Xi,xf) = 0 (V.C-2)

where: t. = the initial time

4 t; = the final time
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X the initial state

x Xf = the final state

41)= a vector function whose components are nonlinear
functions of the initial and final state vector
components and the initial and final times.

The theory can also handle inequality constraints on both

the control vector and state vector, but this generality will

be omitted here for the sake of brevity and space limitations,

even though it is an important consideration in practical

applications.

The optimal control problem can be stated as follows:

Select a control vector u(t), fort t t t f such that to

minimize some performance index (P.1) (or sometimes referred

to as a cost function), of the form:

P.I = g(t~itfxxf + L _ _ (V.t C-3)

where: g(.): a scalar function of the initial and terminal
times and states.

L(.): a scalar time-varying function of the state
and control vectors form t. t t f*

The so far formulated general optimal control problem, high-

lights the following properties:

(1) It includes any system that can be represented by a
set of nonlinear time-varying differential equations.

4(2) The system and controls can be subject to a large

class of equality or inequality constraints.

(3) The performance index includes both initial and final
conditions, plus the time history of the control and
state vectors.
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Although the above stated formulation of the general

optimal control problem has tremendous generality, the prac-

tical disadvantages become evident when the solution is

examined. There are many representations of the solution,

all of which of course give the same answer. Perhaps the

most popular representation is in terms of the Hamiltonian.

Define the following quantities:

H(t,x,u,A) L L(t,x,u) + Af(t,x,u)

where H is called the Hamiltonian and \ is the vector of

Lagrangian multipliers so often used in the calculus of

variations;

G(ti,tf,xi,xfv) = g(ti,tf,xi,x f ) + aT-(titf'i' f )

where v is also a vector of Lagrangian multipliers.

It has been proved that the solution to the problem

stated in (V.C-1) through (V.C-3) is given by:

_H (V.C-4)

)H (V.C-5)

H -0 (V.C-6)lu-

4 G (V.C-7)

3G /t; (V.C8)
Ixf

't /(V.C-9)
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3G - H/tf (V.C-10)atf f

v A typical solution procedure is based upon the following steps

Step 1: Solve equation (V.C-6) for u(t).

Step 2: Solve equation (V.C-5) for X(t). Note that, in

general, this involves the solution of nonlinear differential

equations, which may or may not have an analytical closed-

form solution. Also note that this differential equation may

be coupled with equation (V.C-4).

Step 3: Substitute the solution for X(t) from step 2

into the solution for u(t) in step 1. Then substitute this

form of u(t) into (V.C-5).

Step 4: Solve equation (V.C-5) for x(t). This is also a

nonlinear differential equation which might be coupled to

equation (V.C-4).

Step 5: Note that the solution to x(t) and X(t) involves

2n unknown constants where n is the dimension of the state

vector. Use all given initial and final conditions for x(t)

along with the solutions to equation (V.C-7) through (V.C-10).

This should result in 2n equations in 2n unknown constants,

which in theory can be solved completely.

It should be obvious that there are very few conditions

under which closed form solutions for u(t) exist. In general,

complex numeiJcal techniques must be employed, involving a

large amount of data and numerous calculations. There are

two other disadvantages to this formulation which should be
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noted. First, the solution is initial and/or final condi-

tion dependent. Hence, for each launch condition and target

maneuver in an air-to-air missile engagement, the solution

must be completely recalculated. Also note that, in general,

the solution for the optimal control depends only on time.

This is what is referred to as an open-loop solution since it

does not depend directly upon the missile state x(t). If it

did, then it is referred to as a closed-loop or a feedback

solution. This fact has severe consequences in practical

solutions, since the actual state trajectory will in general

diverge from the optimal one if there is any error in the

dynamic model (equation V.C-1).

Although the solution of the general nonlinear time vary-

ing optimal control problem requires a tremendous amount of

effort, recent studies proved that, when advanced numerical

techniques are used in combination with the computational

power of modern microprocessors, reasonable solutions can be

obtained for somewhat simplified nonlinear formulations. In

addition, a feedback solution can be approximated by re-

E solving the problem at appropriate time intervals in real-

time on-board the missile. Although such a solution would

not be the optimal one from launch to fuzing, it does offer

4 significant advantages over classical proportional navigation

and may be the only approach when the system involves signi-

ficant non-.Linearities. The disadvantages of the genera:

4 non-linear theory led researchers to search for- less general
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but more tractable formulations of the optimal control prob-

lem. The result was Linear Quadratic Theory.

D. LINEAR QUADRATIC THEORY

Linear Quadratic Theory is a subset of the general non-

linear optimal control theory. The key elements in the formu-

lation are the same: a dynamical system model, a performance

index (or cost functional) and appropriate constraints. The

difference in formulation lies in the fact that the dynamical

system model must be linear, the cost functional must be

quadratic in nature, and only a limited set of constraints

are allowed. The linearity assumption is the most severe for

air-to-air missiles. Nonlinear aerodynamics, nonlinear equa-

tions of motion and nonlinear kinematics are prevalent in

0' air-to-air missile engagements.

The limited nature of the allowable constraints are some-

what less of a problem. Twc of the more important constraints

(terminal state xf = 0 and u(t) : Imax ) are still allowable.

The problem of allowing only quadratic cost functionals is

usually workable. This is primarily because it is still al-
I

lowed to use a time varying weighting matrix and most intui-

tively reasonable costs are of a quadratic (or positive

definite) nature.

There are several techniques available for applying this

linear theory to nonlinear systems. Some of the most common

ones are:
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(a) Ignore the nonlinearities by postulating what seems

to be a reasonable linear model of the nonlinear system and

hope that this will not significantly decrease the overall

optimality of the solution.

(b) Compute some optimal nominal trajectory using non-

linear theory. Then linearize the nonlinear system equations

about this nominal trajectory, using small perturbation theo-

4 ry. Apply the optimal linear theory to the linear perturba-

tion equations. This will result in two control functions,

one for the nominal trajectory (uN(t)) and one for the per-

74turbation trajectory (R L(t)). one disadvantage of this ap-

proach is that it forces the missile trajectory to follow the

optimal nonlinear trajectory of the "model" and this trajec-

~ tory may be far from the true optimal trajectory for the

actual missile. Another drawback is that the optimal nominal

trajectory is a function of initial conditions. Hence, one

either has to compute a new optimal nominal trajectory for

each launch condition (using the complex solution process

outlined in section V.C) or contend that the differences in

optimal nominal trajectories for various launch conditions

are unimportant in the overall optimality of the solution.

(c) Linearize the nonlinear equations about the current

4 value of the state vector and re-solve the linear problem on-

line at various points along the trajectory. This technique

will usually cause the solution to "forgive mistakl-es" marnde in

the past due to invalid linearity assumptions.
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There are two major deficiencies associated with all these

methods. First, there is no a priori analytical global method

of determining how much is sacrificed in optimal performance

(i.e., how much does the performance index increase) when

these approximations are used. The only real way to evaluate

this is through extensive computer simulations. Second and

more important, there are not even analytical methods availa-

ble to ascertain whether or not the solutions remain stable.

(This is not exactly true. There are a few special types of

nonlinearities for which analytical methods have been de-

veloped to ascertain stability.) Although the Linear Quadrat-

ic theory has all these drawbacks, it is used extensively due

to its properties and relative ease of implementation.

Let the dynamical system be represented by the following

linear nonhomogeneous differential equation:

k(t) = F(t)X(t) + G(t)U(t) + C(t) (V.D-1)

where X(t): State vector

U(t): Control vector

C(t): Column vector of the same dimensions as x

X0 : Given initial conditions.

The quadratic performance index (Q.P.I.) may have the

following general form:

2J = (x TSx)t' +  (xTAx + uTBu)dt (V.D-2)
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The necessary conditions for an optimal trajectory become:

ST = -aH/ax -Ax - FX (V.D-3)

with X(tf) Sf x(tf)

|Hl/au = 0 = Bu + GTX (V.D-4)

where H, the Hamiltonian equation, is defined as:

H = (x TAx + U TBU) + X T(Fx + Gu + C) (V.D-5)

The explicit solution of equation (V.D-4) gives:

U(t) = -B G X

Equations (V.D-l) and (V.D-3) can be combined into a matrix

notation:

X ~F -G B-1 G T X C
T + (V.D-7)

-A -F X 0

where X(t0) is given and N(tf) = Pf X(tf).

Assume a solution, for the linear inhomogeneous equations

(V.D-7) of the form:

k(t) = P(t)X(t) + K(t) (V.D-8)

The differentiation of equation (V.D-8) gives

= PX + PX + K (V.D-9)

while the substitution of equation (V.D-8) into (V.D-7) gives

= -AX - FT (PX K) (V.D-10)
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Equating equation (V.D-9) and (V.D-10), replacing X with its

equivalent from equation (V.D-I) and upon collecting terms,

it turns out:

[ + PF+FTP - PGB-1GTP+A]X+ [k+ (FT_ PGB-lGT)K+PC] =0

(V.D-lI)

The introduction of the arbitrary n component vector

K(t) introduces the freedom of specifying n arbitrary con-

ditions consistent with the boundary conditions given. Vec-

tor K(t) can be selected properly so that the second bracket

in equation (V.D-II) can be vanished. This means that K(t)

must satisfy a differential equation

+ (FT - PGB G T)K + PC = 0 (V.D-12)

with the boundary condition K(tf) = 0.

The first bracket in equation (V.D-lI) must vanish inde-

pendently and as X is an arbitrary vector, the necessary

condition for this implies the usual matrix RICCATI equation.

+ PF + FTP - PGB-IGTP + A = 0 (V.D-13)

with the boundary condition Pf = P(tf)" The solution P(t) of

equation (V.D-13) is used in equation (V.D-12), which must

hold for all values of P(t). Knowing K(t), in turn, gives

the desired control law which from equation (V.C-6) and

(V.C-8) is seen to be:

U =-B G PX - 3-GK (V.C-14)
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The solution for u(t) in equation (V.C-14) has several at-

tractive properties. The most important ones for the usual

applications are as follows:

(a) Note that the solution for u(t,x) and P(t) are in-

dependent of i or xf. This is extremely important because

it means that the problem need be solved only once (off-line)

and this solution will be valid for all initial and final

conditions. This was not the case for the nonlinear theory.

(b) u(t,x) is a function of the system state x(t). The

fact that u(t,x) is a feedback control law means that it is

less sensitive to noise, external disturbances, and modeling

errors. Such a property is called robustness in the literature.

(c) K(t) is called the control gain. All the information

needed to determine K(t) can be computed off-line and stored

in a missile computer. Furthermore, if F, G, A and B are

constant and tf I K becomes a constant. However as the

true missile system is not linear, if the on-line lineariza-

tion technique is used, a new K must be computed for each new

value of F, G, A and B.

Besides the general disadvantages already noted at the

beginning of this section for linear theory, there are two

others which deserve mentioning. First the solution depends

on a good choice for tf* At first one might argue that tf is

a "free" parameter, subject to the designer's selection. In

theory this is true, but in practice tf really determines how

good the solution is. A review of equation (V.D-2) reveals
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that the choice of tf not only affects the minimum value of

PI but also drives the optimal trajectory solution and the

final state xf. In the air-to-air missile problem, selecting
Ef

a given value of tf in effect determines the terminal miss

distance for a given launch condition. If the true objective

is to minimize terminal miss distance, then the problem now

becomes one of selecting the "optimal" tf which results in

q the minimum miss distance. In effect, there is a freedom in

selecting the missile time of flight from launch to inter-

cept. The problem now becomes one of selecting both the

.4 u(t,x) and the tf which will result in the smallest value of

PI.

The other disadvantage of the linear theory is the re-

p,. quirement for a real-time knowledge of x(t), the relative

target/missile state. Since the missile model is only a

crude linear approximation and since there is no definite

knowledge of future target maneuvers, x(t) must be determined

on-board the missile. Current sensors provide an estimate of

only a few missile states. To increase the quantity and

quality of the missile sensor would also add significant cost.

An alternative approach is to use optimal estimation

theory to extract the mathematically observable states from

! the limited measurement data.
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E. MISSILE AND TARGET STATE ESTIMATION

In the proceeding parts, two potential drawbacks asso-

ciated with the application of the optimal control theory

to the tactical missiles were discussed. one drawback was

the need to have an accurate and current knowledge of the

system models. This is true whether linear or nonlinear

theory is used. Secondly, the linear quadratic theory re-

suits in a feedback solution for U(t,x), requiring a complete

knowledge of all the states of the system model. Additional

assumptions and approximations could reduce this requirement,

but the statement is true in general.

Completely accurate system models are never possible,

even if nonlinear theory is used. The aerodynamic properties

of a missile can only be approximated, even if extensive wind

tunnel and free flight testing results are provided.

Many of the missile subsystems include unknown nonlineari-

cies and noise characteristics, which at best can only be

modelled by stochastic processes. Even the six-degrees-of-

freedom equations of motion often include simplifications

made for practical considerations. If it is chosen to linear-

ize the system model in order to apply the linear theory, the

model becomes even more inaccurate and could require periodic

* updating throughout the missile trajectory.

In a small low cost tactical missile, few of the relative

target/missile states which are required for a feedback guid-

ance law are directly measurable. Typical sensors on-board
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such missiles consist of two rate gyros (pit "h and yaw), two
K
IC normal accelerometers, and a roll gyro. Sometimes pitch and

yaw attitude gyros and a roll rate gyro are also included,

Keither as additions or replacements for the other sensors.

All of these sensors have been used in the past for autopilot

rather than guidance law implementation. They also require

their own models, including appropriate stochastic models for

q noise.

Additional state information, of course, is provided by

the seeker. This sensor has been the principle source for

guidance law information in the past. The primary quantity

measured by the seeker is inertial line-of-sight rate; a

radar seeker could also provide range rate and range. The

seeker is also a dynamical system, and it must be determin-

istically and stochastically modelled in the same manner as

the other sensors. The seeker gimbal angles (angles between

the seeker axes and the missile axes) can also usually be

measured for little additional cost, but they have seldom

been used in the past for guidance law or autopilot imple-

mentation. The current research has shown that these angles

contain much valuable information, since they provide an

approximation of the missile/target boresight angle. Recent

r4t studies have also indicated that including the target iner-

tial acceleration in the model can also significantly in-

crease performance, but currently there are no missile

sensors which can directly measure this zuantity.
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Clearly the gap between required state information and

measured state information creates a significant problem if

the modern control theory is applied to develop advanced

guidance laws. The additional requirement that the models

be accurate for both linear and nonlinear formulations and

in the presence of stochastic processes presents additional

challenges. The objective is to provide accurate estimates

q of all states and model parameters required for the advanced

guidance law without significantly increasing the sensor re-

quirements (and therefore cost) for future tactical missiles.

The computational requirements for such algorithms are simi-

lar to those for the optimal control algorithms. However,

the one important difference is that the estimation algo-

rithms always require repeated solution on-board the missile

in real time. This is primarily due to the fact that they

are continually processing measurement data to update the

estimates for the constantly changing states and model

parameters.

F. INFORMATION PROCESSING BY OPTIMAL ESTIMATION THEORY

Information processing represents a substantial link be-

tween the information needs of the guidance law and the pos-

sible information offer of the feasible sensor equipment of

a guided missile system. Especially the considerations about

extended guidance law design are influenced by two features:

on one hand information can be obtained from noisy measure-

ments only; on the other hand direct information sensi&ng
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cannot be performed for each signal by physical and/or eco-

nomical reasons.

Filtering theory provides for tools of information pro-

cessing on noisy measurements. It is based on the reasonable

idea to separate the measurement signals in time-correlated

signals and time-uncorrelated disturbances. The latter do not

possess any information about the past which may be useful in

the future; they are purely random. Therefore filtering tech-

niques aim at estimation of the complete time-correlated

information.

The correlated portion of measurement signals includes the

information signals as well as time-correlated disturbances,

i.e. colored noise. To describe their dynamical behavior

mathematically, differential equations can be used. From the

physical point of view, uncorrelated disturbances represent

noise with negligible time correlation relative to the cor-

related signals. Mathematically they can be modelled by

"white" noise. Restricting the review to the linear, Gaus-

sian case, filtering theory is based on the following mathe-

matical (real world) model:

(1) Measurement model:

Z = Hx + v (V.F-1)

where: Z(t): m-dimensional measurement vector,

x(t): n-dimensional state vector for correlated sig-
nal modelling,

v(t): m-dimensional measurement noise vector with
white Gaussian noise, v(t) - N(O,R(t)).
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(2) State space model:

X = Fx + G u + Cw ; x(t 0 ) N(x01 P0 ) (V.F-2)

where: U(t): r-dimensional deterministic input vector

w(t): s-dimensional input noise vector with white,
Gaussian noise.

The matrices F(t), C(t), G(t) and H(t) are of appropriate

dimensions. Since the state vector x(t) contains all useful

information, the design aim of filtering theory consists of

developing algorithms to produce a state estimate i(t) using

the available measurements Z(T), t0 0 T : t. In the case of

high quality demands on the estimation performance, it is

advantageous to formulate the estimation problem as an optimal

filtering problem with regard to the estimation-error vari-

e ances as performance measure:

Given measurements Z(T), to  T t based on a state vec-

tor model (see equations V.F-1,2), find a state estimate

x(t) of the actual state x(t) such that a quadratic perfor-

mance criterion J on the error-covariance matrix

P = E{(t) RT (t)} with the estimation error vectorP(t)

M(t) = X(t) - X(t) is minimized:

J = trace P(t) - min (V.F-3)

There are many different optimal estimation techniques

currently undergoing research. One of the most popular op-

timal estimation techniques is the well known KALMAN-BUCY

filter, which consists of:
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(1) A linear vector differential equation for the state

estimate X(t):

X=FX + Kf(Z - HX) + GU ; (t0) = (V.F-4)

(2) A non-linear matrix differential equation (the well
known Riccati equation), for the error-covariance
matrix P(t) to be integrated forward in time:

=FP+ PF TPHTR-I HP+CQCT ; P(t 0 ) = - (V.F-5)

(3) A computational rule for the filter feedback matrix
SKf (t):

Kf = PHTR (V.F-6)

The solution of the filtering problem by the time domain

Iapproach of the Kalman-Bucy filtering offers essential ad-

vantages as against the frequency domain approach of Wiener

filtering. These advantages are:

* The cases of multi-noise inputs and multi-sensors con-
figuration can be treated within this framework.

* The real world model (see equations V.F-l,2) is formu-
lated to include time-varying system coefficients and
statistic parameters.

* There are numerically efficient algorithms to solve the
matrix Riccati equation by means of a diaital computer.

e If real world and real world model coincide, the estima-
4 tion accuracy of information processing can directly be

obtained from the diagonal elements of the error-
covariance matrix P(t). Otherwise it has to be deter-
mined by sensitivity analysis or simulation.

But despite the theoretical optimality and the above out-
4

lined advantages, there are difficulties to be overcome in

the application to practical problems. These include diver-

gence, degradation of control performance and large computa-

tional requirements.

113

F'



Divergence can occur due to:

e Inaccuracies in the system model (including unaccounted
for nonlinearities or simple error in the selection of

coefficients for the system matrices).

e Inaccuracies (including state dependence) in the statis-
tical models of the system and observation noise
processes.

e Simple computational truncation and round-off errors.
Computational inaccuracies may even result in calcu-
lated covariances which are not positive semidefinite
with disastrous consequences.

It has been shown that an optimal state-feedback control

law (based on LQ theory), with a Kalman Bucy filter estimate

of the state substituted for a direct measurement of the

state, will always have degraded performance, even if the

models are perfect. However, it has also been shown that

this is the optimal solution to the combined linear control!

00 estimation problem if the optimization criteria is to mini-

mize J = E(PI). But in the non-linear case, the estimation

and control problems are not in general separable. This

means that a controller which would be optimal if perfect

state information were available may no longer be the best

controller if only estimates of the state can be used.

The computational requirements of a Kalman Bucy filter

can become very large, especially if the number of measure-

ments or number of states is large. For real-time processing,

this may force a simplification of the filter algorithm or

system model, and will at least require the use of very effi-

cient algorithms and programs. This will of course be true

of any filter selected for this problem.
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Techniques have been devised to permit consideration of

non-white and cross-correlated measurement and system noise.

These essentially amount to ways to restructure the system

model to permit direct application of the Kalman-Bucy filter,

which remains optimal and conceptionally unmodified.

Of more present concern are problems which force a modi-

fication of the filter. These problems include:

1) Nonlinear state and/or measurement equations;

2) State-dependent noise processes;

3) Uncertainty in the system model;

4) Uncertainty in the statistical properties of the noise
processes.

The missile problem suffers from all of these difficul-

ties, although it may be possible or advisable (if established

by more specific analysis) to gloss over or ignore some of

them without excessive penalty.
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low- VI. MAJOR MISSILE SUBSYSTEMS

A. GENERAL

Each missile has its own configuration and carries cer-

tain subsystems depending upon many factors, due to the par-

ticular design specifications and criteria. But it is possible

to generically describe the subsystems and their inter-

relationships with the aid of figure IV.A-1, which is a

functional diagram of the major subsystems. A brief descrip-

tion of each subsystem follows.

Kinematics SENSORS

--'6!SEZKER FIL4TE)R UDNAUTOPILOT

LAW

MIS3ILE AIRFRAME

KINEMATICS PROPULSION ACTUATORS

Fig. VI.A-1. Major Missile Subsystems

1. Airframe

The airframe serves two purposes. First it is the

4 container for all the other subsystems (including the pay
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load). Secondly, by proper design and in partnership with

the propulsion, it can be used effectively to produce the re-

quired lift and drag forces for accomplishing the mission

objectives.

2. Missile-Target Kinematics

By virtue of Newton's second law and all its ramifi-

cations, these net forces determine the kinematic variables

of the missile, such as position, velocity and acceleration.

q These variables, in combination with those produced by the

target, result in something new for the seeker to see.

3. Seeker

The seeker can be thought of as the "eyes" of the

missile. Its purpose is to detect, acquire and track a tar-

get by sensing some unique characteristic associated with it.

This unique characteristic usually consists of the radiation

or ref lection. by the target of energy in a specified region

of the e.ectromagnetic spectrum. Typical regions include

ultraviolet, infrared, laser, visible, millimeter wave and

radar fArequencies. Some missiles may have seekers which can

4 4 operate in more than one region at the same 
time or at dif-

ferent times.

a. Detection

4 Detection is the process whereby the seeker senses

a certain amount of energy (in some region of the electromag-

netic spectrum) above that normally expected 4from background

4 or internal seeker noise.
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b. Acquisition

Acquisition is the process whereby the seeker,

after experiencing one or more incidents of detection, de-

cides (according to some pre-established criteria or algo-

rithm) that a valid target has been located.

c. Tracking

Tracking is the process whereby the seeker con-

tinually specifies the angular location of the target relative

to some fixed coordinate system.

4. Filter

The filter operates on the seeker data to produce a

clearer "image" of the target behavior by extracting the per-

tinent kinematic variables.

5. Guidance Law

The guidance law decides the best trajectory (physical

action) -for the missile based upon its knowledge of the mis-

sile capability, target capability and desired objectives.

Thus, an appropriate acceleration command to intercept the

target is produced which is then sent to the autopilot.

6. Autooilot

An autopilot is a closed loop system and it is a

minor loop inside the main guidance loop. Broadly speaking,

autopilots either control the motion in the pitch and yaw

planes, in which case they are called lateral autopilots, or

they control the motion about the fore and aft axis in which

case they are called roll autopilots. The function of an



autopilot is to determine what "muscle" control (actuator

position) is required to best execute the command issued via

guidance law.

7. Actuator

The purpose of the actuator is to alter the external

geometry of the missile such that the net forces which re-

sult will approximate the guidance law command. This altera-

tion may take the form of a wing deflection, tail deflection,q
canard deflection, thrust control, or some combination of

these. The first three alterations change the aerodynamic

properties in such a manner that the proper moments and

forces are achieved.

Filter, guidance law and autopilot are three major

subsystems of a missile which can be thought of as the "brain"

of the missile. The make-up of this "brain triad" depends

heavily on the nature of the other subsystems too. A brief

survey of the evolution of flight control design practices

over the past twenty years shows the following trends:

a. Flight control systems require more sensors that mea-
sure dynamic motions of the missile, resulting in an
increased number of feedback paths.

b. Filter or compensation networks as command augmentation
are introduced to modify and improve command inputs to
the servos that drive the aerodynamic surfaces.

c. Filters, compensation networks and washout networks are
being added in abundance to the flight control system.

d. "Inner loops" in the form of feedback are being pro-
posed to improve the performance and stability.
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These developments taken individually may be justi-

fied for individual airframes and flight tasks but the ten-

dency is to build in gradually upon previous designs by

cascading, resulting in increased complexity and a very high

order system. Such a development is demonstrated in a primi-

tive mode later on.

B. SEEKER

Homing missiles use a seeker to detect, acquire and track

the target motion. The type of seeker to be used is crucial

to the missile design as well as to flight control system

design.

There are several methods available for tracking a tar-

get, depending on whether the seeker has a wide or narrow

V e field-of-view, or whether the seeker is gimballed or fixed

to the air frame. The instantaneous field-of-view is the

angular region (usually conical) about the seeker centerline

which is capable of receiving useful energy. The portion of

the electromagnetic spectrum which will be sensed by the

seeker is also crucial to the design. For instance, the

high frequency of an infrared seeker allows a reasonable

angular field of view even with a small diameter seeker, but

requires a hemispherical Infra Red (IR) dome to avoid image

quality degradation. But the hemispherical dome causes ap-

preciable drag on the missile. On the other hand, radar-

guided anti-aircraft missiles, due to their longer wavelength,

4
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typically require a larger missile diameter, but the lower

frequency allows a tapered dome, which improves aerodynamic

efficiency at the expense of increased dome refraction slopes.

If the seeker has a large field-of-view, it is possible

to fix the angular orientation of its centerline relative to

the airframe centerline (strapdown seeker). The type of

tracking information available in such case is an indication

of the angle between the line-of-sight (straight line from

missile to target) and the missile centerline.

If the seeker has a narrow field-of-view, it is usually

mounted on a gimballed platform. The seeker maintains theI

target within the narrow field-of-view by rotating the plat-

form. If the platform is inertially stabilized, the rotation

is accomplished by applying torques which are proportional to

the target displacement from the field-of-view center. The

tracking information provided by this type of seeker is an

indication of the inertial rotational rate of the line-of-

sight (L.O.S.).

The primary quantity measured by the seeker is inertial

L.O.S. rate. Other information which the seeker might be

capable of providing to a guidance law is missile-to-target

range and/or rance rate. Radar seekers are the only ones

4 which currently provide such information. (Active radar

seekers can provide both, semi-active radar seekers can pro-

vide range rate, and passive radar seekers can provide

neither). Techniques involving modern estimation theory
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are being studied which might provide this same capability

for passive seekers and/or other frequency spectrums. The

seeker is also a dynamical system and it must be determin-

istically and stochastically modelled in the same manner as

the other sensors.

1. Seeker Modelling and Error Sources

The dynamics of a seeker depending upon the complexity

of its design, can be represented by a transfer function of

first, second, or even higher order.

The modelling of a seeker and used sensor hardware

allows one to evaluate the effect of these components on the

derived L.O.S. rate. Seekers and inertial sensors do cause

errors in the computed L.O.S. rate, and these errors in turn

can produce system instability effective navigation gain er-

rors, and degradation of accuracy. The method of generating

the inertial L.O.S. rate also affects, to some degree, the

sensitivity to each error source. The component errors to be

considered fall in three broad classes:

a. Linearity or gain errors (radome, receiver/detector:
phase shifter, gyro and seeker/gyro dynamics)

b. Time-varying random errors (thermal noise, glint or
apparent target motion, gyro noise)

c. Offsets (seeker boresight errors, gyro offsets and
[K_ drift).

Other error sources such as cross-coupling, sampling,

rate, break-lock or blind range, winds, target motion, body-

bending, vibrations and launch offsets, have been proved, via

numerous studies, to be of secondary importance.
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The mentioned component errors cause corresponding

errors in the derived inertial LOS rate. Gain errors cause

components of the missile body rate to appear in the derived

LOS rate, which can cause stability problems and errors.

Random errors in the seeker and rate gyro cause random errors

in the LOS rate with a corresponding loss of accuracy. Fi-

nally, offsets can cause anomalies in the derived LOS rate

q depending on their location with respect to the derivative

network. Offsets in the LOS rate also result in degradation

of miss distance and some increase in required maneuverability.

Seeker noise can also be a problem at low signal-to-

noise ratios, particularly since the seeker output must be

differentiated. Reducing the derivative network bandwidth

minimizes these effects, but stability problems then come into

play as discussed previously. Seeker bnresight errors and

attitude gyro offsets have no effect on the LOS rate since

the d.c. gain of the derivative network is zero. However,

drifts in the gyro will appear in the output of the deriva-

tive network as a LOS rate. In most cases these effects will

be insignificant.

For practical computer simulation study purposes, two

simplified transfer functions of seeker dynamics are outlined

as follows.

a. First Order Seeker

An inertially stabilized seeker may have a block

diagram as in -figure (VI.3-1) is shown, where:
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, : actual line of sight angle

D: boresight angle of tracking antenna

D: rate of boresight angle

e: angular error of p minus D

T: time constant of the seeker

y: present zero effort miss distance (Z,E,M)

R relative target to missile distance
TM*

y + 1 __ _ 0
TM Ter

Fig. VI.B-1. First Order Seeker Block Diagram

The close loop transfer function of this first

order seeker is:

_D .l/T

or
6 s (ZBI

1 + ST

or
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SD = -(SP - ) (VI.B-la)

where
i =  y  +  U N

Y+N
RTM

Equation (VI.B-la) can be expressed in state form as follows:

Let Y = X5, Y = X5 = X6

D~ 8 '4'=X, D =X8

Then, equation (VI.B-la) turns into:

X6 T-R TUN (VI.B-Ib)
Ta R TMTM

NOTE: States X5, X6, X8 are used to confirm with later on

studies.

b. First Order Seeker with Observer

An improvement in the performance of a guidance

system can be achieved utilizing a seeker with an observer.

Such a combination may have a block diagram as in figure

VI.B-2.

U

Fig. VI.B-2. First Order Seeker with an Observer
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In this case, the application of Mason's rule gives:

[( = 1- STa
ST (VI.B-2)

'P +STU

or

SP = -(i - SqTa - 4) (VI.B-2a)
Tcy

Equation (VI.B-2a) can be expressed in state form as follows:

Let Y = X5 , = k5= 6

'= X8 =i

and upon substituting and after minor manipulations, equation

(VI.B-2a) turns into:

k ____ x6 1 N-= 1 X RM --- X8 + (VI.B-2b)RTMU.5 T ( TaR TaRTMI.TM TM TM

In equation (VI.B-2b) the glint noise UN is ex-

ponentially correlated while in equation (VI.B-lb) it is

white noise normally distributed. The probabilistic proper-

ties of the glint noise are one of the major parameters in-

fluencing the performance of the system.

2. Tracker Modelling

a. A Second Order Close Loop Tracker with Position
Servo

Consider an antenna centered along the fuselage

of a missile and pointing toward a target. For simplicity

reasons it is assumed that target and missile motion take

place on the same plane.
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Let em and et be the angular position of the mis-

sile antenna and target respectively with respect to some

reference direction. It is desired to have: (t) (t)

for all t a t0 .

The "plant" will consist of the antenna and the

electric motor as in figure VI.B-3. In this plant, it is

denoted:

I
T
d

MOTORn ANTENNA

Fig. VI.B-3. Functional Block Diagram of a Tracker

(t): Angular direction of the target (it is considered
as the reference variable)

(t): Angular position of the missile antenna. This is
the variable to be controlled

v(t): Measured noise

n(t): The observed variable

e(t): Angular position error between target and missile
antenna

: Gain of the motor

Td: Disturbance torque acting on the antenna and the
motor.
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*The motion of the antenna can be described by a

- differential equation as follows:

jem(t) + B6m(t) = Tm(t) + Td(t) (VI.B-3)

where J: The moment of inertia of all rotating parts of the

tracker including the antenna

B: The viscous friction coefficient

T m(t): The torque applied by the motor

q Td(t): The disturbing torque.
Assume that the motor torque T m(t) is proportion-

al to the applied input current; then

Tm(t) = KU(t) (VI.B-4)

and substituting Tm(t) into equation (VI.B-3) the latter

turns into:

J (t) + B; (t) = KU(t) + Td(t) (VI.B-5)
m md

let: a = B/J K = k/J y = 1

e= x1 =m =X1X2 =2m m m

and upon substitution into equation (VI.B-3) the following

state variable system follows:

10  1 xl 00

i= + iU(t) + T (t) (VI.B-6)
aiX2l 0 -a X21 ¥

From the functional block diagram of figure VI.B-3 it is ob-

tained that
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U(t) = x[et(t) - em(t) - v(t)] (VI.B-7)

and upon substitution into equation (VI.B-4) and after minor

manipulations it turns into:

ki 0 1Xl 00

2 + [ t(t) - V(t) + Ta( t )
LX2] -k -a, X2 k (VI.B8

To simplify the study at this stage, it is as-

sumed that:

v(t) = Td(t) = 0

at all t. Then equation (VI.B-8) turns into:

F*i 0 +7x

Lk2J LXk -aj ;L X2] LXki-

The characteristic equation of this second-order system is

given by:

!I 01 0 .

i iiC(S) : (SI - A.) = S i

! 0 1 -k -al

-

S -1i

s+a

S/ + aS + ,k = 0 (VI.B-9)
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Recalling from classical Control theory that the

characteristic equation of a second order system is of the

form

s2 + 2Jw S + w 2 = 0

and comparing it with equation (VI.B-9) it comes out that:

= (VI.B-10a)
In

J = a (VI.B-10b)

2v7W

From the characteristic equation (VI.B-9), the tracker can be

modeled as follows:

It is known that the characteristic equation of a closed loop

control system is given by:

C(s) = 1 + G(s)H(s) = 0

or -1 = G(s)H(s) (VI.B-11)

From equation (VI.B-7) it is easily obtained that:

-i = (VI.B-12)
S (S+a)

In figure VI.B-3 it is shown that there is not any scalar

factor for the observed variable, which means that H(s) = 1;

thus:

\k k 1 (VI.B-14)~G (s) S S(S+a) k "( -S+a)"S V . -4

Equation (VI.3-14) can be represented in a block diagram form

-as follows:

r
r
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Fig. VI.B-4. Block Diagram of a 2nd Order Tracker

Figure (VI.B-5) shows the root locus of this second-order

tracker, derived from equation (VI.B-12):

-a

Fig. VI.B-5. Root Locus Diagram of a 2nd Order Tracker

From this root loci it is seen that this second-order control

system is an ideal tracker and it is always stable no matter

the gain parameters, while = cos = cos-(a/2vT).
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b. A Third-Order Close Loop Tracker with Position
Servo

The derivation of the so far described second

order tracker was based upon many assumptions and a lot of

important parameters were not included. Among these was the

electrical time constant of the motor. Taking into account

the electrical time constant of the motor, the block diagram

of figure (VI.B-4) becomes as in figure (VI.B-6):

T Td

1K g

*To + 1 9+a

Fig. VI.B-6. Block Diagram of a 3rd Order Tracker

Then the transfer function of this close loop system becomes:

T(s) =S(s+ a) (sTe + 1) + k (VI.B15)

Then, the characteristic equation is given by:

C(s) = S(s +a)(s +-) + Te = 0 (VI.B-16)
Te Te

It is obvious that the so derived characteristic equation b-

longs to a third-order control system. The root locus of
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such a third-order system would look like that in figure

(VI.B-6a):

po.

I,-

Fig. VI.B-6a. Root Locus Diagram of a 3rd Order Tracker

where Xm =(a + ) (VI.B-17)

For values of X N the closed loop system is unstable.

m

The performance of the so far obtained trackers

will depend upon the values of the several parameters which

are involved in the problem. Utilizing adapting control

methods, such as inner close loop sensing the angular velo-

city, etc., better performance characteristics can be ob-

tained. But the purpose of this part and study is to outline

4 some instructive methods for future work and not to examine

thoroughly every possible aspect of this particular problem.

Thus, abandoning the further development of the tracker, the

4 next part deals with a somehow general way of studying the
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required input signal to a tracker and the resulting error,

from a stochastic process standpoint of view.

c. Stochastic Analysis of a Tracker with Position
Servo

In part VI.B.2.a, it was found that a second-

order tracker with position servo and having no disturbance

and noise influence, is given by equation (VI.B-8a) which is

rewritten:'Al 0  1 rx1 0
+La t(t) (VI.B-8a)

It is known also that the target position signal

is exponentially correlated to white noise and that it is

expressed by the following radar glint equation:

(t) t(t) + W(t) (VI.B-18)
r

where Tr: Radar time constant depending upon the system
parameters

Wit) : White noise with intensity v = 2 2/Tr

Defining t(t) = X3 9t(t) = 13

and combining equation (VI.B-8a) with equation (VI.B-18)

comes out:

2. 0~~ -!-1

X2 = -,k -a k X21 + 0 W(t) (VI.3-19)

x3 0 -1/T X3 i1
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Equation (VI.B-19) is of the form:

x(t) = Ax(t) + BW(t)

where A and B are constant matrices (matrix A is also asymp-
totically stable)

W(t) is white noise with intensity V.

It is known that in such a case, as the above, the variance

matrix of x(t) tends to a constant nonnegative matrix which

I is defined by:

f feAt B V BT dATtdt (VI.B-20)

0

Furthermore, it is known that matrix Z is the solution of the

Liapunov equation which states that:

2(t) = A7(t) + 7 ( -)A T+BVB T V.-1

Each rontrol designer is interested to obtain:

= (0]

Utilizing Liapunov's equation (VI.B-21) for the case of equa-

tion (VI.B-19) and desiring to obtain 2 = [0], it comes out

after direct substitutions and minor manipulations that:

0 0 0

Z(.i-'k,,,aTr) - - --0 0 0 (VI.B-22)
Tr 

0 0 1'

where i,j = 1,2,3

3ut matrix is a symmetric one, that is:

1
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-11 Z12 Z13

-12 =21

21 22 23 where- E13 = Z31

Z31 Z32 E33 23 =32

Equalizing terms in equation (VI.B-22) and solving for the

. 's, it comes out the STEADY-STATE VARIANCE MATRIX as

q follows:

(i+ T) 0 Tr

S kXj 2 2
2

1 =0 k/a 1 (VI.B-23)
a + I + kTr1

Trr a + T- + XkT
T 1 r
r A

At this point, it is necessary to introduce two important

factors which characterize the quality and the expected per-

formance of a control system (and for the present study, of

the tracker). These are:

a) Mean Square Error (m.s.e.), Ce(t): it is de-

fined as:

Ce(t) = E e-(t) We(t) e(t) , t > t o  (VI.B-24)

where e(t): Tracking Error given by

e(t) = m(t) - 3r(t) , t _

We(t): a non-negative definite symetric weighting
matrix.
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When We(t) is diagonal, as it is usually, Ce(t) is the

weighted sum of the mean square errors of the components of

the controlled variable. When the error e(t) is a scalar

variable and We = 1, then /Ce t) is the Root Mean Square

(r.m.s.) tracking error.

b) Mean Square Input (m.s.i.), Cu(t): it is

defined as:

Cu(t) = E{UT (t) Wu(t) U(t) , t t 0  (VI .B-25)

where U(t): control signal, input to the motor given by

U(t) = X( m(t) - at(t))

Wu(t): non-negative definite symmetric weighting matrix

When the input U(t) is scalar and Wu(t) = 1, then vZ u(t) is

the Root Mean Square (r.m.s.) input.

The aim of every control system designer is to

reduce the mean square tracking error Ce(t) as much as possi-

ble; but decreasing Ce(t) it usually implies incrementation

of the mean square input Cu(t). Since the maximally permis-

sible value of the mean square input is determined by the

capacity of the plant (electrical characteristics of motor

and antenna), a compromise must be found between the require-

ment of a small mean square tracking error and the need to

keep the mean square input down to a reasonable level.

Thus, a basic design objective can be stated as

follows: "In the design of a control system, the lowest pos-

sible mean square tracking error should be achieved without
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letting the mean square input exceed its maximally permis-

Ala- sible value."

Assume that for the present study, it is given

We(t) = Wu(t) = I.

Then, equation (VI.B-24) becomes:

Ce(t) = E{eT(t) We(t) e(t)} = EIeT(t) e(t)

F' or

Ce(t) = Lirm Ele2(t)} = Lim E{(Xl - X3)2}

=Lim{E X1 2 + X3 -2XX3}= +33 -2 (VI.B-26)
t -

Note: the subscript of each steady state variable determines

the coefficient to be taken from the variance matrix.

Substituting into equation (VI.B-26) the equiva-

lents from equation (VI.B-23) it comes out that: the steady

state mean square tracking error is given by:

," a + 1 + \ k
T ar 2

Ce(t) = 1 a (VI.B-26a)
t 00 a + - + kT

T r r

Equation (VI.B-25), due to Wu(t) = 1, becomes:
' i uT

Cu(t) = EIUT(t) Wu((t (t) U(t) i

or

Cu(t) = Lim E UI(t)" = Lim E-
t-'M t t-no

2-C2
Lim E. 2 \lXi - X312" . Lm 'X

; = ,Lim E (XI X3) =
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Thus, for the case of We(t) = Wu(t) = I

Cu(t) = 2Ce(t) (VI.B-27)
t*C t-=

Finally, from equations (VI.B-26a) and (VI.B-27) are easily

obtained the:

v'etT : r.m.s. tracking error steady-state
t-+C

V /~tT : r.m.s. input signal steady-state

Depending upon the numerical values of this system, plottings

similar to the following are easily derived.

(rad)

gain (v/rad)

47U

(V)

gain (v/rad)

Fig. VI.B-7. rms Tracking Error and rms Input Voltage
as Functions of the Gain for a Tracker
with Position Servo

Figure VI.B-7 shows that, according to what one would intui-

tively feel, the rms input keeps increasing with the gain
r,

Comparing the behavior of the rms tracking error and the rms
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input voltage confirms the opinion that there is very little

point in increasing the gain beyond a certain point, since

the increase in rms input voltage does not result in any ap-

preciable reduction in the rms tracking error. Depending

upon the desired control system specifications the derived

steady-state values will indicate whether the design was suf-

ficient or not. In case that the system is rejectable, other

adaptive schemes must be researched.

C. FILTER

The purpose of a filter is to estimate as accurately as

possible the real value of all the system states, given in-

accurate measurements of a few (perhaps only one) of them.

It (9The two outmost popular theories for filter calculations and

construction are these established by Wiener and Kalman

respectively.

1. Wiener Optimal Filter

In the case of an optimal Wiener Filter, the dis-

turbances entering the guidance system are considered to be

white glint noise with spectral density t' and random target

maneuver. The Wiener filter formulation is based upon the

determination of a transfer f"unction H0which will minimize

4 the integral of the mean square signal, that is,

)0

minimize fje 2dt (Vi.C-1)
0
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The optimal transfer function H can be found from the expli-

- cit solution of the Wiener-Hopf integral equation

Ho - 1 ] (VI.C-2)
(Ws + WN) + (Ws + WN

where Ws and WN are the spectral densities of the signal and

noise, (Ws + WN) + represents that part which has all its

q poles and zeros in the left half-plane, while (Ws + WN)

represents that part which has all its poles and zeros in

the right half-plane. The expression [.] is the component

of [.] which has all its poles in the left half-plane. (To
+

obtain [.] , expand [-] in partial fractions and throw away

all the terms corresponding to poles in the right half-

plane). The output spectral densities of the signal and

noise, Ws and WN, can be expressed in terms of the spectral

densities, Ds and ' N' and the used shaping network transfer

function.

2. Kalman Optimal Filter

The Wiener optimal filter theory is a design tech-

nique of an optimal stochastic control system based on the

minimization of a Performance Index (PI) when the future

values of the variables are not well defined but are random

functions of time. In order to be possible that some prog-

ress could be made, the study was restricted to stationary

random signals and assumed that their power spectra were

available. In the case of the Kalman optimal filter, the
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mathematical modeling of the following concept is attempted.

LC "If a physical model, equivalent to an actual system, could

be constructed on some form of simulator then, in principle at

K least, it would be possible to use the values of the state

variables given by the simulator model without any further

reference to the original system. Provided the simulator

model is started with the correct initial conditions it will

continue to mimic the behavior of the actual system, thus

eliminating the need for measurements on that system."

Unfortunately such an ideal situation cannot be ob-

tained. Even if the actual system model structure, parameter

values and initial conditions are known exactly, the input W

(where W represents zero mean white noise, contaminating the

target motion, of power per unit bandwidth a 2such that

tT 1 2T2) being a random function of time, cannot be

reproduced in the simulator model.

Effectively W represents the uncertainty in our knowl-

ed~ge of the actual system. Of course, in practi.ce some mea-

surements will be made on the system. These measurements

will not be perfect since there are always errors associated

with any measurement process. It is usually the case to ob-

tain as measurement not the actual target and missile states

separately but only the difference between triem. This situa-

tion is depicted in figure VI.C-1 in a more general notation,

where Z represents the measurement and -.the measurement

noise.
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Fig. VI.C-1. Measurement Z contaminated by noise v

The aim of any one designer is to obtain best esti-

mates, in some sense, of the states X1and X 2 given the mea-

surement Z, a knowledge of the structure of the system and

its parameter values, and the statistical characteristics of

the noise sources w and v. The assumed system model, which

is equivalent to the previously proposed simulator model, is

identical to the actual system model except for the zero mean

white noise source w. Since the best guess of w at any in-

stant is zero, it is omitted entirely and thus represents the

uncertainty in the assumed system model.

In the Kalman filter formulation, the measurement pro-

cess and system model outputs are treated as two independent

estimates of the state of the actual system. It combines

these outputs together to form a best estimate (in the sense

of having minimum variance). The mathematical formulation of

a Kalman optimal filter has as follows:

Given an actual system

X=Ax + Bu + W (VI.C-3)

and a measurement
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Z = Hx + v (VI.C-4)

where w and v are white noise vectors with spectral density

matrices Q and R respectively then the best estimate X of X

is given by:

X = AR + Bu + K(Z - H2) (VI.C-5)

where

K = P HT R -  (VI.C-6)

and P is derived from the solution of Riccati equation

P = AP + PAT + Q - PHTR-1HP (VI.C-7)

For the Q and R matrices, the elements on the main diagonal

are the spectral densities of the individual system and mea-

surement noise sources. Elements off the main diagonal indi-

cate correlation between noise sources in terms of a cross

spectral density but in many problems the noise sources are

independent and hence these elements will be zero. However,

this is not the case for the P matri,.. Here the off diagonal

terms are covariances which indicate how one best estimate

is related to another and these, in general, will not be

zero. For this reason it is usual to refer to P as the co-

variance matrix even though the terms on the main diagonal

still correspond to the variances of the individual best

estimates.

In this estimation case, the boundary conditions are

defined at the start of the engagement and represent initial
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guesses at the entries in the covariance matrix P. Provided

- the system is time invariant and the noise sources stationary,

then the elements of P should tend to steady values as the

estimation process proceeds and these values can be found by

integrating the Riccati equations forward in time.

a. A Third-Order Kalman Filter Estimator

As the most important disturbances entering a

q guidance control system are considered to be white glint noise

with spectral density N and random target maneuver, the tar-

get maneuver can be considered as a step function whose ini-

4 tiation time is uniformly distributed over the flight time.

It can be shown (Ref. 121 that integrated white noise has the

same autocorrelation function as this maneuver process. Thus

the input process can be considered as having spectral den-

sity S A Kalman filter formulation may be like that shown

in figure VI.C-2.

u

Figure VI.C-2. Ka1man Filter Formulation

The state equations are:

!T0 1 0liv0
T. T .0

=0 0 1 +T  + 0 (VIL.C-8)145
Y 0 0 0 Y
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which is of the form of equation (VI.C-3)

- x = Ax + w (VI.C-3a)

The measurement equation is

Z = AX + v (VI.C-4)

and for this case

rTI
=* [1 0 0] K + U(VI.C-9)

T L N

The Kalman filter equation is given by equation (VI.C-5) via

equations (VI.C-6) and VI.C-7) where

10 -0

Q0 0 R N

0 0 S1

Recognizing that the covariance matrix P is symmetric, the

scalar equations representing the steady state solution (P =0)

can be derived from equation (VI.C-7) as follows:

P2 = 2PIN (VI.C-10a)
11 11

12  23" (

2P 2 (VI.C-10c)
13 S N

4 P1P2 N(P22 + Pl1) (VI.C-10d)
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pllI3 23 N (VI.C-10e)

P12P13 = P3 3 N (VI.C-10f)

The solution of equation (VI.C-10) yields the following

steady state Kalman filter gains:

K 1  2( (DN) 1/6

K K 2(SN 1/3 (VI.C-11)

- 2 S N

K (D /N) 1/2
3 S N

Defining:

W N) 1/6

the gain matrix (equation VI.C-11) becomes:

2w,

• ~ 2o
K = (VI.C-lla)

3w
0

Now, substituting equation (VI.C-lla) into equation (VI.C-5)

the filter equations are obtained:

00 1 2w

0 0 1!!y 2
T TI 0 I 'i( ! ,-- 2

T 0 0 Y 3
TTI
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h

The transfer function between the position estimate output

and the position measurement input can easily be obtained via

equation (VI.C-12):

' 2 2
Y 1 + 2S/w +2/W

T +5 2 2 30 (VI.C-13)-YT * 1 + 2S/Wo + 2S2 /Wo2 + S 3/Wo3 (V.-3

T 0 00

D. AUTOPILOTS

An autopilot is a closed loop system and it is a minor

loop inside the main guidance loop; not all missile systems

require an autopilot. A missile will maneuver up-down or

left-right in an apparently satisfactory manner if a control

surface is moved or the direction of thrust altered. If the

missile carries accelerometers and/or gyros to provide addi-

tional feedback into the missile servos to modify the missile

motion, then the missile control system is usually called an

autopilot, but this definition is not universally accepted.

Broadly speaking, autopilots either control the motion in the

pitch and yaw planes, in which case they are called lateral

autopilots, or they control the motion about the fore and aft

axis in which case they are called roll autopilots. For a

symmetrical cruciform missile, as in this present study,

pitch and yaw autopilots are identical.

The reliance on classical control techniques in autooilot

design usually results in an autopilot with three independent

channels for yaw, pitch and roll. These three motions are

assumed uncoupled because classical control techniques are in
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general limited to single input, single output linear systems

KC - (their extension to multi-input, multi-output systems is quite

complex). In flight, inherent aerodynamic interactions com-

prise coupling modes between steering and roll motions.

Therefore, the channels of the autopilot are not independent

and this leads to stability problems. The cross-coupling

stability problem gets worse with increasing angle-of-attack.

q To partially decouple the roll and steering control systems,

autopilot designers limit the steering response speed so that

the roll system bandwidth is two to four times the steering

4 system bandwidth. Also, the designers limit the missile

angle-of-attack as much as possible.

The autopilot gains in each of the channels are often

( variable. This variation is required to produce the optimum

performance for different Mach numbers, dynamic pressures and

control effectiveness as the missile response depends on the

semi non-dimensional form of the aerodynamic derivatives, and

thus it follows that all the aspects of the missile response

will vary as the mass and inertia vary with bandwidth. Thus

a satisfactory guidance loop cannot be engineered if very

large tolerances exist inside the loop. To simplify the fur-

ther discussion on this present study, it will be assumed

that the guidance law and autopilot are designed independent-

ly. Not only is the assumption not necessary, but better

guidance laws can be designed if the autopilot characteris-

tics are included in the guidance law derivation. To do so,
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however, makes the design too vehicle dependent which in

turn further dilutes generality. In addition, autopilot de-

sign and mechanization techniques are now available which

result in very good guidance law command execution, regard-

less of the airframe or guidance law characteristics.

There have been developed several special purpose auto-

pilots. These can be classified as in figure VI.D-1 is shown.

Autopilot design can be attempted either by classical or by

optimal control theories.

1. Autopilot Design by Classical Control Method

In part II.E the longitudinal and lateral decoupled

and linearized sets of missile motion equations were de-

rived. Also, it has been essentially identified the missile

motion in the xz plane as the "pitch motion," the motion in

the xy plane as the "yaw" motion, while the motion in the zy

plane as the "roll" motion.

The longitudinal equations set was found to be:

7T1 7 F - 7
U, X X 0 -gi lu XU W

4'IZZ U 0 W! Z.
1 (VI.D-2)

lqi (Mu+M-Z) (H+M.Z) (Mq +mU °) 0 qj (M +M.Z Z)

0 0 1 0 i' ! 0

4
In the case of a missile with 900 rotational symmetry, the

relations shown in table II.E-1 will hold where q = -r, v =w,

etc. Then, neglecting the gravity force and assuming
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negligible the forward velocity perturbation, it is easily

obtained the yaw motion set of equations:

. Y 0 0 vT 0

0 Z 0 w, 0
0 U U

0 (MTI-4k)Z (Mq+Mw-Uo) c MuL Z

I L (Nv+CY) 0 0 (N .%) Ir 0- - (VI .D-2)

Due to symmetry, the u component would be the same for each

equation.

This analysis shows that under conditions where p = 0

(no roll), both "pitch" and "yawing" reactions are the same

as long as gravity force is neglected.

Generically, an autopilot would have the structure of

s a closed loop control system with unity feedback as it is

shown in figure VI.D-2.

Equalization Transfer
Contoligain of Controlef Function

inout I

Fig. VI.D-2. General Block Diagram of an Autopilot

The missile transfer function can be easily obtained

from the set of the lateral or longitudinal equations
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accordingly, by applying Cramer's rule. The so derived

transfer function would look like

r(S) A(S + a) (S + a2 ) (VI.D-3)

6(S) S2 + (2CpwpS + wp2 )(s + 2 wSS+w 2  )

In the case of "pitch" or "yaw" autopilot study, the expres-

sion (S2 + 2Cpw S + wp2) in the denominator of equation

F" (VI.D-3) characterizes the "phugoid" motion of the missile

I while the expression (S2 + 2C spWS + w2 sp)characterizes the

"short period" motion. A very sufficient approximation of

the system behavior can be obtained by analyzing it, based

only on the characteristic equation of the "short period" mo-

tion. In this case, in order to derive the "short period"

transfer function, the first row and first column of equation

(VI.D-1) is deleted. Then:

'wI Z U 0 w1 Z
Iw 0

lq =(M +M.Z (M +MU + M +M.Z (VI.D-4)w+Mw w )  q+*

0W 1wo 0
11q

Equation (VI.D-4) is the "short period longitudinal set."

2. Stability Augmentation System (S.A.S.)

The implementation of a missile lateral or longitudi-

nal set of equations into an open loop autopilot, utilizing

the corresponding aerodynamic derivatives, is probably not

acceptable for highly maneuverable missiles which have very

small static margins, especially those which do not operate
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at a constant height and speed. In order to obtain a stable

control system, some kind of a feedback must be introduced.

A usual method is to select a feedback such as to artifi-

cially augment certain key aerodynamic derivatives. This

artificial augmentation usually improves the missile perfor-

mance. Such an augmented closed loop system is called "Sta-

bility Augmentation System" (S.A.S.) and actually it is an

interior loop of an autopilot which in turn is an interior

loop of a guidance system (see figure (VI.D-3)).

rc 1 AUTOPILOT

GUIDANCE SYSTEM

Figure VI.D-3. General Idea of a Guidance System

,I

A S.A.S. effects favorably not only the damping

characteristics of a missile but also its frequency behavior.

Thus, one can have a so called M or "stiffness" S.A.S.; thisI a

also applies to the N3 or "weather cock" stability.

By augmenting L a roll damper is derived; by augment-

ing Mq a pitch damper is derived, while by augmenting Nr a yaw
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damper is derived. In consequence the derivation of such

dampers is outlined.

a. Roll Damper

In part II.E the linearized decoupled lateral

equations were derived; in that set of equations the "roll"

was found to be given by:

= L' + L' pp + L' rr + L'c (VI.D-5)

But this equation is a three degree of freedom

equation, while an equation of one degree of freedom is re-

quired. This is achieved by neglecting the a and r motions,

considering that L' 3 << L' pp and L' rr << L' pp. Thus, equa-

tion (VI.D-5) reduces to:

p=L' Dp + L 1 33 (VI.D-6)

Utilizing Laplace transformation, equation (VI.D-6) turns

into:

(S - L'o0)p(S) = L'4(S)

or

L',Z)(S) S '(VI.D-7)

Sp

Equation (VI.D-7) is an open loop transfer function.

Introducing a feedback loop as in figure VI.D-4

is shown, -(S) becomes:

;(S) i (S) = ic(S) - k p (VI.D-8)
a c
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] Roll Damper

Autoqilot Loop__

Fig. VI.D-4. Block Diagram of a Roll Damper

where 6 (S) is the "commanded" deflection

6a (S) is the aeleron deflection

and upon substituting equation (VI.D-8) into equation (VI.D-7)

the last turns into:

O(S) L'

(S (S) - S - (L' L- Lk) (VI.D-9)c p

Equation (VI.D-9) is the transfer function of a roll damper,

where the term (L' - L' k p) represents the augment aerody-

namic derivative. From equation (VI.D-9) the augment "roll"

lateral equation can be easily derived and it is:

p= L'3 + (L' - L',k )p + L' rr + L'-' (VI.D-10)

P ~ p

The direct effect of the introduced feedback of

rolling angle rate (p = $) (see figure VI.D-4) is an increase

in the subsidence frequency of the roll. Equation (VI.D-9)

can be rewritten as:

'(S) = L 1/L, Paug Tr (VI .D-9a)
(S) S -' L' /L L i ': r -L'

c(S) S- Paugment Paug STr-!
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The achieved augmentation permits a tighter roll attitude of

the autopilot. The utilized feedback can be combined with a

lead compensator in order to fulfill given specifications.

b. Pitch Damper

In part II.E the linearized decoupled longitudinal

equations were derived; in that set of equations, the pitch

motion was found to be given by:

= Mu +MaZu) U + (M MZw) w + (Mq+ M* 0) q + (M +DL. Z 6) 6 (VI.D-11)

For a preliminary design, a very good approxima-

tion is obtained by assuming Mu, Mw, M, M6 as negligible

quantities and omitting them; equation (VI.D-11) turns into:

= Mqq

the solution of which is:

Mqt
q = e (VI.D-lla)

Note: M is a negative quantity.

After getting an idea from the above approxima-

tion, the next step is to obtain a better approximation.

Assuming M. as a negligible quantity, that is M. = 0, equa-

tion (VI.D-11) turns into:

q = M u + MwW + Mqq + M<' (VI.D-12)

Utilizing Laplace transformation and after minor manipula-

tions, equation (VI.D-12) turns into a transfer function of

the type:

157



Se(S) ( = AS + B (VI.D-12a)
S I6(S S + CS + D

where A =M + Z M.

B =ZM -MZ

C 2 sp W u sp  -(UoM. + Zw + M) -(Zw + Mq MA)

2 Usp = MqZw U 0Mw = Mq Zw -

2z
Note: Recall that Zw  - andZ L a due to a w/U

M ;w a 3a 0

which also implies that Za = UoZw, Ma = UoMw.

Equation (VI.D-12a) is the transfer function of

4a pitch autopilot open loop. The denominator is the charac-

teristic equation of the "short period" pitch motion approxi-

ration. Noticeable also is that wnsp = £-Ma where Ma is a

negative quantity.

Next step is to augment the most important aero-

dynamic derivative which is the 1q.

Introducing a negative feedback as it is shown in

figure (VI.D-5), it is obtained:

5(S) H e (S) = 5 (S) - k q
4c q

and upon substituting into equation (VI.D-12) the last turns

into:

M u + M w + (M - M.e k )q + M'z eu w q e q -e'e

where (M - Me k q ) ='augment"
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a + CS + 0

Pitch Oamper

I K I
K q

* I Pitch Autopilet

I Fig. VI.D-5. Block Diagram of a Pitch Damper

c. Yaw Damper

I In part II.E the linearized decoupled lateral

equations were derived; in that set of equations, the "yaw"

motion was found to be given by:

=N'3 3 + N' p + N' rr + N'Sr6 r  (VI.D-14)

Note: Recall that in case of a 900 rotational symmetry, as

it is in the present study, I = I = I = 0 and thusxz xy yz

equation (VI.D-14) is written as:

r= N + Npp + Nrr + IN r (VI.D-14a)

Making use of arguments similar to that used in the deriva-

tion of previous dampers, the utilization of a negative feed-

back, as it is shown in figure (VI.D-6), will augment the

main aerodynamic derivative Nr as follows:

i(S) r (S) = 5c (S) - k r(S)
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r r

ii IYaw Damper

I I
- - - Yaw Autopilot

Fig. VI.D-6. Block Diagram of a Yaw Damper

and upon substituting into equation (VI.D-14a) and after

minor rearrangements, the following "yaw" equation is

derived:

N, + Npp + r - krN r)r + N6 r (VI.D-15)

where N - krN r = Nr augment (augment aerodynamic (VI.D-15a)derivative)

It is known that for a missile with 900 rota-

tional symmetry, Nr = -Mq which means that there exist damp-

ing in yaw. For relatively small L which usually is the

case of missiles with small dihedral effect, the lateral mo-

tion can be approximated by "3: sideslipping" and "4: yaw-

ing". This is equivalent to eliminating the roll equation

from the set of the lateral equations. Considering that

Yr # 0, knowing that r = 7p, deleting 2nd and 4th row and

column from the set of the lateral equations and utilizing

Laplace transformation, it is easily obtained:
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(SU -Y) S(U -Y) 8(s) Y

S- 6(s) (VI.D-16)

-N S(S - Nr ) (s) N8 r

The characteristic equation for this case is:

S(SU ° - Y )(S - Nr) + SN (U -Y) = 0

or

sIS2 _ (Nr + Y /Uo ) S + (Y N Uo- N Yr)/Uo] 0

(VI.D-17)

For S = 0 a "neutral" heading stability results.

The overall performance in yawing motion is adequately de-

scribed by the second order equation into the brackets of

equation (VI.D-17), that is:

S 2- S(Nr +Y Uo) + (YS +N 3U0 -N3 Yr ) / U  = 0 (VI.D-17a)

Comparing to the well known second order equation

S2 + 2;w S + - 2 = 0n n

it comes out that:

[(YNr + N2Uo - NYr)/Uo]" (VI.D-17b)

and in case of very small Y3 and Yr it comes out that:

approximately, nn vN (VI.D-17b. 1)

while - (Nr + Y3/U )/2w n  (VI.D-17c)

Looking back to equation (VI.D-15a), it is obvious that the

augmentation of the aerodynamic derivative Nr increases

directly the damping.
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After the above treatment, a functioning block

diagram of a yaw damper would be like that in figure (VI.D-7).

In this schematic representation, it is emphasized that the

yaw velocity is sensed by a rate gyro. The block "Missile

Dynamics" could be either the approximated transfer function

of the system that results in via equation (VI.D-16), or the

full transfer function from the rudder (6 r to r, which is

q given by

A3 +B 2

r(S) ArS + BrS + CrS + D r
6r(S) lat

where Ar = N'

B Y *N' + L'N' -N'(Y + L'
r 3 op r p

Cr =Y*(L 3N - N' L') - LYrN' p + N' YrL p

Dr = g(L'5 N' 3 - N'L'3)/U°

Alat =AS'' + BS3 + CS2 + DS + E

A = 1 - I2  /1 IXx x y

B = -Y (1-I2 /1 I1) - L - Nr - N I /I - L I /r xx x y p r p xz x r xz z

C = N + L (Y +N ) +N (Y I /I -L ) +Y (L I /I +N
p r r p rxz x r r rxz z r

+ LI /Ie xzz

D = -NL p + Yr(Np Lr-LpNr)+ NpL - (L3 +IxzN3/Ix)g/Uo

E = (L N - N.L )g/U3r r 0

The discussion so far pointed out the physical signi-

ficance of the aerodynamic derivatives and also methods for
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r ai Missile r =

SERV Dynamics

ee

, I i Yaw Damper

a I
| Yaw Rate

I Gyro

Yaw Autopilot
I I

Fig. VI.D-7. Functional Block Diagram of a Yaw Damper

preliminary design studies concerning the development of

dampers and further more autopilots.

3. Autopilot Design by Modern Control Method

There have been developed several modern theories

tending to achieve optimal control. Such a reasonably

straightforward method is the so called "linear quadratic."

This modern theory method can be summarize ! as follows:

Given a time-varying linear control system,

x(t) = A(t)x(t) + B(t) U(t) (VI.D-19)

where x(to) = x ' having a control variable Z(t) such that:

Z(t) H(t)X(t)

*try to determine the values of the input variable U(t) for

to -t tI for which the follcwing "Performance index" is

minimized.
t1

4 InF R~~d2J = z (ti) (tl)+ z(t)QZ(t) +U (t)RU(t) dt (VI.D-20)

0
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where: F: error covariance positive semidefinite matrix

Q: weighting positive semidefinite matrix

B: weighting positive definite matrix

The optimal input variable U*(t) which minimizes

equation (VI.D-20) is given by:

U*(t) = -F(t)X(t) (VI.D-21)

where: F(t) is the state variable feedback given by:

q -1 TF(t) = R (t)B (t)P(t) (VI.D-22)

and where P(t) is derived by solving the Riccati equation:

-P = Q - PBR-1BTP + PA + ATP (VI.D-23)

Note:

1. For steady state condition, it is desirable to have
(Pt) = 0

2. For notational simplicity, the time dependence of the
vectorial variables sometimes are suppressed.

Some illustrative examples of implementing the out-

lined method in the design of autopilots are following.

a. Roll Attitude Regulation Autopilot

Sometimes the demand arises for introducing a

control system in order to maintain the roll attitude of a

missile close to zero while remaining within the specified

aileron deflection (V) and aileron deflection rate ().

Note: To avoid nomenclature confusion, u will

be used to represent roll angular velocity instead of the

normally used "n", which is also used permanently in the

"Riccati" equation.
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The equations for such a system are:

6 U (VI .D-21a)

1 = + 2 (VI.D-21b)T T

= (VI.D-21c)

where: T: roll time constant

Q: aileron effectiveness

U: commanded aileron rate

W: roll angular velocity

-1/T: L

Q/T: L6

A selected Performance Index may be as follows:

2J = f(2 + 62 + U2 )dt (VI.D-22)
0

which implies with reference to equation (VI.D-20) that:

1 0 01

Q 0 0 0 , R= 1

0 0

Assuming complete controlability for the system of equation

(VI.D-21), it can be written in state form as follows:

0 i i

= 'Q/ -7 -/ T 0 (VI.D-23)
0 1 0 01

The steady state Riccati equation is then given by:

Q - PBR BP + PA + A'P = 0 (VI.D-24)
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because P = 0. The solution of equation (VI.D-24) after

€ - equalization of terms leads to the following set of equations:

2 2  - P2 + 1 =0 (VI.D-24a)
T 12 p11

Qp 1 p + - p = 0 (VI.D-24b)
T 22 - 12 13 11 12

Q - P p 0 (VI.D-24c)
P23 11 13

2 P2P22 + 2P -p =0 (VI.D-24d)
22 23 12

-P23 + rP33 - -P12P13 = 0 (VI.D-24e)

1 - P13 =0 (VI.D-24f)

From equation (VI.D-24f) it follows that P = 1 and while

from equation (VI.D-24c) it follows that P23 = PII" Then

the set of equation (VI.D-24) can be easily reduced to:

22 -P + 1 0 (VI.D-25a)
712 11

Q p 1 p + 1 P = 0 (VI.D-25b)
- 22 T 12 11 12

S2P + 2T -P22 - 0 (VI.D-25c)
T 22 Q 11 12

+3 -P = 0 (VI.D-25d)
Q 33 12

After some algebraic manipulations, it can be derived:

PI + - 27 P -(2Q+')P!I +1- -- Q 0  (VI.D-26
11 -11 k2 ~T2 -2

Depending on the settled specification values for - and Q,

equaticn (VI.D-26) is solved and the positive real roots are
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accepted. Then, proceeding backwards and accordingly, the

values of the rest P.. 's can be derived. Finally, the opti-1J

mal control input variable will be given by:

U* = -FX

= R-1 B TPX

= [Pl 1 p 12 p 1 3] F1(VI .D-27)qL1

b. g-Bias Autopilot

Suppose a missile in a horizontal cruise mode.

It is desired to design an autopilot which will maintain a

small vertical acceleration (g-bias). In this case, the

longitudinal short period equations are given by:

Za Z a a

+ (VI.D-28)

I Ma  MqHi iMsj

where a: angle of attack

q: pitching rate

3ut normally, Z, << Z and Mq<, Ma thus equation (VI.D-28)

can be reduced to:

bZ

a I 0

0 (V,.D-28a)
I -I +

q Ma :.i
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A selected Performance Index for this case may be:

2J - + - dt (VI.D-29)

0

where 6o , a and q are maximum permitted values for the

aileron deflection angle of attack and pitching rate and

which implies, with reference to equation (VI.D-20), that:

1/ao2

0q2 o

Then, by arguments similar to the previous example and by

utilizing the Ricatti equation, the optimum control input

variable can be determined. Noticeable is that in some cases

the aileron deflection can be defined as:

= C1a + C2q

The coefficients C1 and C2 can be determined by utilizing

similar procedures as above.

Note: The full expansion of such a derivation is

beyond the scope of this presentation and thus omitted.
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VII. MATHEMATICAL MODELLING OF A MISSILE

GUIDANCE CONTROL SYSTEM

A. THE MATHEMATICAL MODEL

There is a formidable difficulty in arriving at a general

solution of the equations describing the behavior of any

q homing system. The guided missile, while operating in the

real world, is subject to disturbing conditions, e.g. limited

and noisy information, missiles and sensor dynamics, con-

1 straints on missile acceleration, etc. Since real world

effects cannot be comprehended completely and described per-

fectly, the real world guidance problem is a fuzzy problem.

Eye It has to be solved by a progressive iterative step-by-step

procedure in order to find an "optimal" solution in the sense

of keeping t he missile motion "sufficiently close" to the

nominal course of kinematic guidance with regard to essential

real world effects such as dynamic delays and noisy measure-

ments. Hence real world affects the design of the feedback

4 portion of the guidance law and necessitates information

processing.

The step-by-step procedure is characterized by the analy-

4 sis of essential effects and their influence on the system

oerformance, by the synthesis of suitable information process-

ing and guidance law algorithms and by the simulation of the

I - guidance loop, in order to evaluate the system performance.
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One can start up with linear model for the homing head

and autopilot and linearity of the kinematics can be obtained

by assuming that the effect of target maneuver, noise, or a

heading error of the missile from the ideal direction which

would lead to a constant bearing collision course, as a small

perturbation from that collision course. Such assumptions

permit to make small angle approximations. If the study is

focused at the closing stages of the engagement, such assump-

tions could be argued that result in fair approximations as

the missile is usually on a near-constant bearing trajectory

just before impact. If the target makes large evasive ma-

neuvers during the last stages period (as it is expected to

be done with modern weapons), these assumptions lead to less

valid models.

Design considerations using frequency domain control

techniques usually involve parameter determination in the

kinematic guidance laws and in noise suppressing filters.

The Wiener filter approach is limited to single-input-

single-output systems with time independent system parameters

4 and noise statistics, assumptions which are in general vio-

lated in missile guidance.

To include real world properties more systematically in

4 the solution of the missile guidance problem modern, "tiny

domain," control techniques offer attractive advantages in

this case of a multi-input-multi-output system with time-

4 varying system and noise parameters. Optimal (non linear or
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linear) filtering techniques provide for noise suppression

C - and additional information processing about guidance loop

stages from the noisy measurements. Optimal control law

design techniques lead to extended feedback control struc-

Ltures and parameter determination algorithms to compensate

the disturbing influence of missile and sensor dynamics.

The following examples aim to demonstrate the design pro-

cess and the benefit of applying modern guidance control

theory versus classical proportional navigation and augment

proportional navigation.

B. INSTRUCTIVE DESIGN DEVELOPMENT OF A GUIDANCE CONTROL
SYSTEM

In part II, the motion equations were derived. After

some reasonable assumptions, these equations were linearized

and decoupled in order to simplify the study and in parallel

to try to stay close to the reality in an acceptable mode.

*The decouplization of the motion equations into two in-

dependent sets, permits the study of the missile either in a

longitudinal plane or in a lateral plane. The design tech-

niques are similar, thus no distinction concerning the used

plane is done.

Before going on, an interception geometry review is con-

sidered necessary. This is shown in figure (VII.B-1).

The target is flying at an angle o to the original line

of sight M0 T0 which is regarded as a reference direction,

while the missile is flying a small deviation angle '._ to the
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Fig. VII.B-1. Interception Geometry

correct flight path to obtain a collision at I. The correct

flight path angle 4fco is given by:

Urn sin ~fco = Utsin 6 (VII.B-1)

There is in fact an imaginary line which runs up the

considered engagement plane parallel to MoT at a velocity

of Ur sin vfco . Any perturbation of the missile and target

perpendicular to this line is denoted by Zm and Zt respec-

tively. The below relationship follows:

tan k = (Z t - Z )/r =(Z t - ZM)/U r (VII.B-2)

r and for small angles where 'k tan 

(Zt - Z )/U (VIITJ3-2a)t m r'

where: sight line angle

U r relative or closing velocity U M. cos If -U, Cos D
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T: time to go = T- t considered zero when r 0

T: total time of engagement

If C is small, it can be regarded that yf fco because

f = fco ± P (VII.B-3)

and cos f =cos( fo ±os) = sfco cos sin fco sin (VII.B-4)

cos Tfco

As miss distance in one plane is considered the dif-

ference Zt - Zm at r = 0. Of course this is not the true

vector miss distance but it can be shown that this is very

nearly so provided that the concept of small perturbations

still holds.

The miss distance can be determined utilizing a func-

T tional block diagram as follows:

Z' Seketomn Guidance Autopilot

Fg : Latral Acceleration Kinematics

Z ZM

Fig. VII.-2. Functional Representation of Homing System

Each block may be as complex as desired. The seeker or

tracker provides the sight line angle (for small perturbations,
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= 1/r = /UrT = /Ur (T- t). Homing head, autopilot and

missile dynamics can be represented with a transfer function

of any appreciable polynomial order. Therefore, their indi-

vidual gains can be considered as the product of all the

others and thus to be taken into manipulations as: K = K1K2K3.

Since the time to go T = T- t, where T is the time to go from

the initial positioning MoT0 to the interception point, is

common to all systems and engagements, all systems will, for

the same dynamic lags, be identical if:

K
U cos ifco = a constant (VII.B-5)

This constant has no dimensions and is usually known as

the kinematic stiffness (for more details refer to part IV).

Recall that if an optimum value for "a" exists, then it fol-

lows that one should adopt a navigation constant such that:

U a
K r (VII .B-6)cos kfco

The homing head can be modeled dynamically as a second order

lag, having a transfer function of the form:

S (VII.B-7)

2 2n

4 2 nh nh

where: nh: homing head natural frequency

h homing head damping
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The autopilot can be modelled adequately as a second

order lag system too; having a transfer function of the form:

1$2 +2 PaS +1(VII.B-8)

2 W n
na

where: w na: autopilot natural frequency

1a: autopilot damping

qFinally, the missile dynamics can be modelled in a sim-
2plified form as 1/S2 .

Based upon the above considerations the step-by-step

progressive design development can start now.

1. Lag Free System

Assuming that the natural frequencies of the homing

head and the autopilot are infinitely large, the system of

figure (VII.B-2) turns into that shown in figure (VII.B-3).

(The derivation is very simple, thus omitted.)

4M Co T-t'

Fig. VII.B-3. Lag-free System with Step Velocity Input

In this case, a small initial aiming error is as-

sumed. The initial missile velocity perpendicular to the
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collision course is U M E and the component perpendicular to

the initial sight line MoTo (see figure VII.B-1) is

Um 4 E cos fco" This component can be regarded as an input

to the system; in fact the system would detect no difference

in the situation if the initial heading was correct and at

t = 0 + F the target instantaneously changed its course to

produce a velocity perpendicular to the original sight line

MoT 0 equal in magnitude to Um E cos fco" For this reason a

heading error is often referred to as a step velocity input.

By inspection, the output Zm due to the input can be

written:

1 = Un cos -Z a
Zm = Cos 1'fco -m S(T-t) (VII.B-9)

or after term rearrangement and minor manipulations:

zm 1U 1 (VII.B-9a)UM Cos 4
fco S + T -t

or in differential form:

dZ a
dt = U- C os l (VII.B-9b)~~~~~dt + Z c

and in state variable form:

S=  T-t + U +m £ -fco (VII.B-9c)

which is of the general linear time-varying form of:

x(t) = A(t)x(t) + B(t)u(t)
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2. Single Quadratic Lag

Assuming that the natural frequency of the homing

head is infinitely large, while the autopilot has a reasona-

ble natural frequency, the central system has a block dia-

gram representation as in following figure (VII.B-4). Then,

by inspection, it will be:

Z~~~~~ =- qco' - -

Zm = m £ co fco - m ST-t S2 2'aS
s+ + 12 n

~n a n

K: or+ t W I=Zm (T-t) S2 24 1 T SU 2 o1 fco2 Wn2 W. nna na

na
4

After minor manipulations and rearrangements, it turns in the

following transfer function, which can be studied by any one

of the known methods.
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Zm S + 21awnaS + Wna-a (VII.B-10)
m E sfco S3 + 2anaS  + w 2S +  na

a na naT-t

Expanding equation (VII.B-10) it follows:
d2Z dZ a 2dU

d3Zm 2 2 m awna2  d 2_ t+ 2Ua-+ Z + -
3 + ana d 2 +na dt T-t m 2

+ 2 MW dUt + Wna2U (VII.B-10a)a +2ana dt na t

where U't = U M; cos fco

In case of constant velocity input (U't = constant), the

right hand side of equation (VII.B-10a) is simplified to:

2na U cos fco

Applying state variable format techniques, and denoting,

Zm = X1

dZm/dt Xl = X2

d2 Z/dt = X2 = X3

equation (VII.B-10a) is now written in matrix format as

follows:

Xl.0 1 0 X : U cos
na m CO 0fco

X2, 0 0 1 X2 +;0'

2 (VII.B-10b)3 a~na 2
-3 -" t X.3 1T-t na - a na
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3. Double Quadratic Lag

The previous systems were not realistic by any means.

A more realistic system occurs by assuming that both homing

head and autopilot are reasonably fast, that means both have

natural frequency wnh and wna respectively. Thus a double

quadratic lag system occurs which has a block diagram repre-

sentation as in following figure (VII.B-5).

.11

Fig. VII.B-5. Double Quadratic Lag System
with Step Velocity Input

By inspection it is,

Zm a __ __1_________

Zm =S Us # L csfco - S\--/ $2 2,1h S S u
2+ - i S + 1

nnh h / na n

or, after minor manipulations and rearrangements, it turn i4n:
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Z(S 2 + 2 ,1h Wnh S + Wfh)( + 2 UIwaS + wna2

UJ Cos4J 22 2
-oSS2+ 2 hnhS+nh2)s2+2 awnaS+wna

(VII.B-11)

Expanding equation (VII.B-11) it follows:

d5Z d4 Z dZ d2Z dZ aw nh2 2

m +A- + B-m+ C + D m+ n Z
dt5  dt 4  dt 3  dt 2  dt T -t M

d4 U d3 U't 2 dU't
+ A + B + C-+DU (VII.B-12)

d4 dt3 d2 dt tat4  dt 3  dt 2

where: U' =U m cos4 fco

A = 2 'h~nh + 2 ana
2 2

B ~h + 4 ahna nh + na

C2 2 + u~h 2

2 2
D = nh 'na

In case of constant velocity inDut (U' = constant), the-t

right hand side of equation (VII.B-12) is simplified to

)2 -2U1 , Applying state variable format techniques and

denoting:

zm = X

dZ m/dt = Xl = X2

d ./it = Z2 = X3

3J; .I 3 = ".3 = X4

44
/dt = '4 = X5
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Equation (VII.B-12) is now written in matrix format as

-follows:

Xl 1 0 0 0 Xl 0Whna 2 Ult

X2 0 0 1 0 0 X2 0

X3 = 0 0 1 0 X3 0 (VII.B-12a)

X4 0 0 0 0 1 X4 0

X5 -ana2 nh -D -C -B -A X5 1
i T-t

4. Computational Comparison

The three so far discussed systems can be easily im-

plemented into a computer program in order to investigate and

study the expected-response of each system under various con-

ditions and parameter values. It is assumed that the homing

head is the main lag in the system and that both homing head

and autopilot can be represented by second order lags. If

this is accepted, then all systems must lie between the two

extremes of:

(a) na = Wnh (autopilot and homing head lags equal)

(b) na = o (autopilot infinitely faster than homing head
and therefore effectively only one quadratic
lag in the system)

For comparison, the above three systems were implemented into

one program, as is shown in appendix D. The program was run

for a badly and a well damped homing head for practical values

of navigation constant "a" of 2.5 and 4.5 (these being on the

low and high sides respectively and for relatively "short" and
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. "long" engagements defined by wnhT = 10 and 30 respectively.

From the above runs, the required missile lateral accelera-

tion vs. normalized time was derived, as is shown in figures

(VII.B-6) through (VII.B-16). From these plottings it is

seen that for short engagements, inadequate damping and high

values of "a" result in oscillatory responses. (The auto-

pilot damping ratio has been set to 0.5 in all cases.) If

qthe open loop gain is high, the system is possible to become

unstable at a short range to go. In the absence of noise

(not any real system is ever entirely free from noise), a

long engagement results in the transient decaying before in-

stability sets in and the effect is not apparent. If the

engagement is very short, oscillations do not have enough

time to build up. Consider figures (VII.B-14) to (VII.B-16)

which have been computed for nhT = 20 and an underdamped

homing head; this engagement is neither "short" nor "long".

Any response of a real system which diverges, from the re-

sponse of the ideal lag-free system, can be regarded as un-

stable as the time passes. It is not possible to discern

E instability for a = 2.5, but for a = 3.5 a system represented

by a single quadratic lag could be argued to be unstable later

than t/T = 0.75 say. For a = 4.5 instability sets in at about

t/T = 0.6.

Nevertheless, the discussion so far is rather an in-

structive guidance method than a complete and detailed study.
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It pointed out how to proceed for the development of a more

sophisticated control system.

C. AN ADVANCED DEVELOPMENT OF A GUIDANCE CONTROL SYSTEM

In this part it is attempted to integrate into a control

system sensors, filter, kinematics and noise. Thus, a

linearized kinematic homing loop is assumed as is shown in

figure (VII.C-1). Here autopilot dynamics was decided to be

represented by a first order transfer function

nL 1(VII.C-)

n 1 + S/wap

where a is the autopilot bandwidth. Here also are con-

sidered the two most important stochastic error sources,

namely glint noise and random target maneuver. A relative

target to missile range measurement R is assumed. The com-
TM

plexity of the filter depends upon the used guidance law.

So, in case of PN usage, a simple law pass filter may be suf-

ficient. In case of modern guidance law, a more complex fil-

ter is required (as it will be outlined later on) because in

a modern guidance system the Zero Effort Mis-distance (ZEM)

is modified to take into account target maneuver and missile

guidance system dynamics. In the case that the guidance sys-

tem dynamics are represented by a first order transfer func-

tion, with bandwidth w, the usage of either modern control

theory [Ref. 6] or Schwartz Inequality [Ref. 161 results in

194



0

0

La4

cii

-4

4-)

-4 0

195IX



V... . .. .i : . L ;iT -kT

a guidance law which drives the misdistance to zero while

minimizing the integral of the square of the acceleration:
t f

f 2

Y(tf) = 0 subject to minimizing f nc dt (VII.C-2)
0

This modern guidance law can be written as:

nc= N 2y +  +tgo +  nTtgo2nL (e + T )  (VII.C-3)

go 2

where: T = tgo  (VII.C-3a)

N' 2T6T 2(e- T T (VII.C-3b)
2T3 + 3 + 6T -6T - 12Te -T - 3e-2T

The expression'within the brackets of equation (VII.C-3) is

the ZZM and equation (VII.C-3b) shows that the effective

naviqation ratio is a form of APN (recall part IV.C.5 equa-

tion IV.C-27), with an eLra term to account for guidance

system dynamics and a time-varying navigation ratio. This

guidance law, unlike PN, requires information concerning

time-to-go (t go), guidance system bandwidth (w), and achieved

missile acceleration (nL).

The states required for the implementation of this guid-

ance law (y,y,nT) must be estimated via a Kalman filter esti-

mator. In part (VI.C.2.a) such a simple third order Kalman

filter estimator was derived (see equation VI.C-12), which

will be used here. This Kalman filter is stationary and it
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is represented by a transfer function of equation (VI.C-13)

which is rewritten:

1 + 2S/w + 2S2 /W2S1 + 2S/w +2S/ (VI.C-13)

with characteristic frequency w0o given by

o= (¢S*N) I1 6  (VI.C-13a)

where (D- and cD are estimates of the spectral density levels

of the target maneuver process noise and glint measurement

noise respectively. It is obvious tLat the characteristic

frequency of the filter increases with increasing process

noise and decreases with increasing measurement noise.

Here also, a first order seeker with an observer will be

used, as this was developed in part VI.B-l.b. Due to this

seeker, the line of sight angle is reconstructed from a mea-

surement of the boresight error and by integrating the rate

gyro measurement of the seeker dish rate. This angle can be

then converted to relative target-missile position, y*, by

the multiolication of the range measurement. This signal is

then sent through the Kalman filter in order to obtain esti-

mates of the necessary states for the implementation of the
a

modern guidance law. These states are multiplied by control

gains, which are functions of the estimated time to go and

atuopilot bandwidth, in order to generate an acceleration
4

command. This command is applied to an acceleration autopilot
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in order to develop the commanded acceleration. All the

- above process is presented in a block diagram form in figure

(VII.C-2). Next, the mathematical model of this system is

derived.

1. Mathematical Model

In the previous work, it was seen that the guidance

navigation law for PN, APN and MGC was respectively:

a. For PN: N1
go

b. For APN: nc = (y + ytgo + nTtgo 2 )

go

- -T
-. 2 e - + T

c. For MGC: nc  tg2 + ytgo + nt nL
go w2TgoZ

This shows that equation (VII.C-3) (which is the guid-

ance law for MGC) includes PN and APN accordingly.

Thus, it is possible to derive the mathematical model

of the previously proposed control scheme, which will be pos-

sible to be simulated with the above three guidance laws, in

order to obtain performance comparison of their implementa-

tion. Of course, it is realized that the instrumentation re-

quirements for each of the above cases is different.

Considering that:

The plant equations are
10 IL YT

V 0 0 0 0I .i

T 0 0 1T + 0 (VII.C-14)
TTs
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I

the measurement equation is:

Y - [1 0 01 YT
T TI

Y + UN (VII.C-14)
YT N

and recalling:

the seeker equation (VI.B-2b), which is rewritten:

111U N UN

XB = 1 X5 -- X6 - - X8 + - (VI.B-2b)
TJrRTM RTM T aT aRTM T(JRTM

the Kalman filter equations (VI.C-12), which are rewritten:

" 0 0 T O2w0

is rewritten:

N'[ 2 eT -1 +
0 [ 1g + - 2 (VI.C-3)

where N' = 6T2 (e-T - 1+T V.-b
2T +3 6T-6T 2Te -3e T

T = 0
go

the acceleration autopilot transfer function equation (VII.C-

which is rewritten:
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nL (VII .C-l)_n c  1 +S/W ap

and denoting:

X1 YT X2 -YT' X3  YT nL

X5 Y X6 - ' X7 7YT' X8 -

C= N'/T go2 C2 = N'/tg

-T 2C3 = N'nT/2 C4 = N'(1-T-e - )tg °

After substitution and minor manipulations the mathematical

model of the proposed guidance control scheme is derived in

state variable form as is shown in figure VII.C-3. In figure

VII.C-4, the block diagram of this advanced guidance system

is shown. For simulation purposes, this system was imple-

mented, utilizing DSL, into a computer program as is seen in

appendix E. In this program, the characteristic frequency of

the Kalman filter "% 1 was derived utilizing a "random noise

generation function named NORMAL" with random "seeds",

"means" and standard deviations. From equation (VI.C-13a)

which is rewritten:

JO= ( S/N) (VI.C-13a)

it follows that:

1/6 /,j2 1/6 j U1/3 (IC1b
o =)(SSIJN, (N)I.C-i3b)
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P.-

The used standard deviation combinations were derived from

table (VI.C-1).

Table VII.C-1. Correlation of w and aS, aN

W C a - - - - a_

o S N S N S N S N

.8 .1 .195 .2 .390 .3 .586 .4 .781

1.0 .100 .200 .300 .400 .400

1.2 .058 .116 .174 .231 .231

1.4 .036 .073 .109 .146 .146

0

SS: corresponds to SP3 in computer program of appendix E

S: corresponds to NP3 in computer program of appendix E

2. Performance Comparison

The main parameters that influence the performance of

the proposed system are:

U N: Glint Noise

Us: Target Random Maneuver
t At ° + B. The estimated time to go is considered to

ggbe a simple linear function of t o
go WagoCa wy be a simplen function of t go-

S= .CW The estimated acceleration of autopilot band-
width may be a simple function of ap*

The influence of all the above parameters can be

investigated.
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Utilizing the computer program which is included in

appendix E, and assuming:

(a) go =At go+ B where B = zero

and A: several values between 0.4
and 1.8

(b) ap =C where C = 1ap ap

and making use of several combinations of wap' WO' Ta, A, T,

some data concerning the resulting misdistance due to utiliza-

tion of PN, APN and MCG laws, were obtained, These data have

been tabulated in tables VII.C-2 through VII.C-5. The study

of these tables leads to the following comments:
:I

On first sight, the advantage of APN over PN is seen,

as utilizing APN the resulting misdistances are almost always

less than those where PN law is used.

It is seen that in the case of PN law, the misdistance

variation with respect to t keeps a positive slope andgo

varies between 40 ft and 80 ft with slight influence of the

_0 or Lp values variation. It is noticeable that as theap ap

filter characteristic frequency wo increases, which means

that as the system noise decreases, better performance is

obtained.

In case of APN law utilization, figure VII.C-5 shows

the plotted domain of misdistance variation with respect to

tto, (tgo = Atto + B), for several values of the filter char-

acteristic frequency -o (Wo = 0.8, 1.0, 1.2). From this

plotting it is seen that in case of ,o = 0.8 and = 1.0,
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the misdistance variation generally follows a negative slope.

In case of wo = 1.2, the misdistance variation follows a

parabolic shape degradation with the curvature pointing

downwards. From figure VII.C-5 also and from tables VII.C-2

to VII.C-5, it can be seen that the misdistance variation is

slightly influenced by the w ap or wap variation for the same

values of w and A. It is also noticeable that as the filter

characteristic frequency w0 increases, for wo = 0.8 to wo = 1.0

for all values of A and for wo = 1.2 in the range of 0.4 - A

1.3, the misdistance is reduced, which means that as the sys-

tem noise decreases, better performance is obtained.

In figure VII.C-6, the resulting misdistance vs. wap

is plotted due to the utilization of PN and APN respectively

in case of no time to go inaccuracy (that means for A = 1),

T = 1, T3 = 0.01 and for various values of w (W = 0.8, 1.0,0 0

1.2). From this figure it is seen that:

* APN gives much better performance than PN.

* For the same value of autopilot characteristic frequency
ap as the filter characteristic frequency wo increases
(which means that as the system noise decreases), the
resulting misdistance is drastically reduced in case of
APN law, while it is sufficiently reduced in case of PN.

e In case of PN law utilization, for constant filter charac-
teristic frequency wo, the misdistance variation with re-
spect to autopilot bandwidth -oap has a very slight negative
slope. (For instance, in the range 14 - ap - 30, the
misdistance variation is about 2 ft.)

9 In case of APN law utilization, the resulting misdistance
vs. the acceleration autopilot bandwidth wap, has an al-
most always positive slope. As the filter characteristic
frequency .o increases the slope increases, so that the
misdistance variation becomes bigger.
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In case of MCG law usage, almost the same arguments

as for the case of APN hold.

Comparing the resulting misdistances due to the usage

of APN and MCG, it is seen that both laws are competitive.

In appendix E, there are givpn some typical plots of mis-

distance and achieved lateral acceleration vs. elapsed time

for several combinations of the involved parameters as is

shown on each of them.

D. FURTHER DEVELOPMENT OF AN ADVANCED GUIDANCE CONTROL SYSTEM

In previous part VII.C, a kinematic homing loop was sug-

gested. The block diagram of this loop is seen in figure

VII.C-I. Also, it was mentioned that each block represents

an interdiscipline mechanism, which can be as complex as the

designer wishes or as much as the cost-effectiveness criteria

permit.

In part VII.C.1, a mathematical model of the suggested

system was derived, based on components of relative simpli-

city. Then this model was simulated via a computer DSL pro-

gram and the obtained results (see tables VII.C-2 to VII.C-5)

were studied sufficiently (see part VII.C.2, "Performance

Comparison"). In general, the resulting misdistances by

utilizing APN law were much less than those where PN law was

used (see figure VII.C-6).

On the contrary, APN and MCG laws were competitive as

both resulted in similar misdistances.
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Although the suggested system was not thoroughly investi-

gated (due to lack of time only wap ' wo and A variation were

studied, while keeping constant T, T0 , B), in this part it is

attempted to replace the previous 1st order autopilot with a

second order autopilot and then run the system under the same

conditions in order to investigate any improvement which may

arise in the performance.

1. Mathematical Model

In the previous mathematical model (part VII.C.1,

figure VII.C-3), the equation of the first order autopilot

was replaced by an equation representing a second order ac-

celeration autopilot, as this was derived in part VII.B-2.

Such an autopilot may have an equation like:

2nL = ap (VII.D-1)

nc S2 + 2ap apS + W
apap ap

After minor manipulations, the derived mathematical model in

state variable matrix form is as is shown in figure VII.D-1.

The derived mathematical model, as is seen in figure

VII.D-1, can be easily implemented into a computer program

for simulation purposes. Utilizing DSL, the written program

is shown in appendix F. Assuming:

(a) £ = At + B where .4 A 1.8go go

B = 0

(b) ap = CWap where C =1.
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and making use of several combinations of wap' w0o T, A, T,

some data, concerning the resulting misdistance due to

utilization of PN, APN and MCG laws were obtained. These

data have been tabulated in tables VII.D-I through VII.D-3.

In appendix F are also given some typical plots of misdistance

and achieved lateral acceleration vs. elapsed time for several

combinations of the involved parameters as is shown on each

of them.

2. Performance Comparison

The study of resulting misdistances (tables VII.D-1

through VII.D-3) leads to the following comments, via several

graphs and plots. On first sight at the tables the advantage

of APN over PN is seen, as utilizing APN the resulting mis-

distances are almost always less than those where PN law is

used. It is also seen that in case of PN law utilization,

the resulting misdistance variation with respect to £i go

(tgo = At + B), keeps a positive slope and varies between

65 ft to 90 ft, with slight influence of the ,ap or wap values

variation. It is noticeable also that, as the filter charac-

teristic frequency ,o increases, which means that as the sys-

tem noise decreases, better performance is obtained.

Also, on first sight at the tables VII.D-l through

VII.D-3, the advantage of MCG over APN law in general is seen.

Next, the misdistances that occur by utilizing APN law

and for several combinations of the involved parameters (as

these are shown in tanles VIl.D-i through VII.D-3) were
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plotted. In figure VII.D-2, these misdistances are given vs.

the tgo error variation (A = £ go/t g). In this figure are

given the domains of misdistance variation for each value of

the filter characteristic frequency wo (Wo = 0.8, 1.0, 1.2)

for all the various values of wap (8 < Wap 30). Here it is

noticeable that as the filter characteristic frequency wo in-

creases, the misdistance variation due to the wap variation

and for the same value of A (A = tgo /t go), is increased,

which means that as the system noise decreases, the system

becomes more sensitive to the autopilot bandwidth estimate.

It is also noticeable that as the filter characteristic fre-

quency wo increases, the misdistance is reduced, which means

that as the system noise decreases, better performance is

obtained.

The misdistances that occur by utilizing MCG law and

for several combinations of the involved parameters (as

these are shown in tables VII.D-I through VII.D-3) were

plotted in figures VII.D-3 through VII.D-6. In these fig-

ures is plotted the misdistance vs. t error variationgo
(A g It ) for all the values of 8 ap 30.

In figure VII.D-3 is plotted the domain of occurring

rnisdistances in case of MCG law utilization and for filter

, characteristic frequency ;o = 0.8. It is observed that the

misdistance variation follows in general a negative slope of

degradation. Similar comments are derived by studying fig-

ure VII.D-4 which contains the domain of occurring rnisdistances
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in case of MCG law utilization and o 1. In figure

VII.D-5 is plotted the domain of occurring misdistances in

case of MCG law utilization and with value of filter charac-

teristic frequency wo = 1.2. In general it is seen that the

misdistance variation follows a parabolic shape of degrada-

tion, with minimum values occurring around A = 1.

In figure VII.D-6 are given all the above three do-

qmains of misdistances that occur in case of MCG law utiliza-
tion and for wo = 0.8, 1.0, 1.2. It is noticeable that the

minimum values of misdistances occur at the following com-

binations of w and A: at wo = 0.8 and A = 1.6; at wo = 1.0

and A = 1.4; and at wo = 1.2 and A = 1. These combinations

lead to the conclusion that as the filter characteristic fre-

Do quency w0 increases, which means that as the system noise

decreases, the system becomes more sensitive to the tgo'

which in turn means it takes less to provide more accurate

guidance.

In figures (VII.D-7) through (VII.D-9) are plotted,

for comparison purposes, the resulting misdistances variation

domains in case of APN or MCG law utilization and for

_0 = 0.8, 1.0, 1.2 respectively. In general the advantage

of MCG law over the APN is shown.

In figure VII.D-10 is given a comparison view of

resulting misdistances vs. autopilot bandwidth wap' in case

of utilizing PN, APN or MCG law and with no time to go esti-

mate error (A = tgo/tgo = 0). For the case of PN law
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utilization, it is seen that there is a slight negative

slope. In the range 12 & wap - 30 the misdistance variation

is about 2 ft. Also it is seen that the misdistance for this

case is almost independent of the w variation.

From the figure VII.D-10 and for the case of APN law

utilization it is seen that the misdistance vs. wap follows

a sufficient negative slope; also, it is seen that as the

qfilter characteristic frequency w0 increases, which means as

the system noise decreases, the misdistance vs. wap curve

moves drastically and parallelly downwards, which means bet-

ter performance occurs. Finally, from figure VII.D-10 the

advantage of MCG law over APN law is easily seen which in

turn is advantageou.; over PN law.

( In figure VII.D-l1 are plotted the minimum misdis-

tances that occur vs. w utilizing MCG law. These minimum

misdistances occur at the following combinations:

(a) wo = 0.8 A = 1.6

(b) o 1.0 A = 1.4

(c) = 1.2 A = 1.20

From this figure, it is seen that best combination is w = 1.0

and A = 1.4. Also it is seen that the resulting misdis-

tances by the utilization of combinations of cases (a) and

(b) differ by almost 3 ft. Figure VII.D-11 also gives han-

dle to the thought that the optimum combination must lie

somewhere in the ranges 0.8 & 1.2 and 1 & A & 1.6 (lack

of time did not permit this investigation).
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E. COMMENTS--CONCLUSIONS--SUGGESTIONS

1. Over-all Performance Comparison--Conclusions

In this part, a performance comparison of the two

investigated systems (in parts VII.C and VII.D) is attempted,

based on the data which are tabulated in tables VII.C-2

through VII.C-5 and in tables VII.D-1 through VII.D-3. From

these tables, table (VII.E-1) was formed. In table VII.E-1

q are given the resulting minimum misdistances, utilizing MCG

law with an autopilot of 1st order or 2nd order respectively

and in case of no time to go estimate error (A = t go/t = 1).

The data of this table have been plotted in figure VII.E-l

and the advantage of the system with a 2nd order autopilot

over that with a 1st order autopilot are obvious for all the

( 7 cases of w and wap variations.

Next table VII.E-2 was constructed. In this table

are shown the absolute minimum misdistances that occur under

the shown combinations of w0, Wap' A and autopilot. These

data have been plotted in figure VII.E-2. From this figure

it is shown that generally for a second order autopilot with

bandwidth wap less than 17 rad/sec, better performance occurs.

As a concluding remark it can be stated that the com-

plexity of the used components may improve the overall per-

formance of the suggested terminal guidance control system.
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Table VII.E-1. Minimum Obtained Misdistances in Case of No

t error (A = 1, B =0) Utilizing MCG Law
go

Or of 
-f

Autapilot lst 2nd 1st 2nd 1st 2nd

0.8 1.0 1.2

wp A
-"- - -

8. 47.93 46.85 28.11 24.36 7.06 18*98

10. 48.78 48.50 29.12 27.45 10.13 3.12

12. 50.01 49.46 30.71 28.99 11.97 5.85

14. 51.08 49.59 31.78 29.45 13.56 6.23

16. 49.98 50.40 34.13 29.78 13.69 8.26

18. 51.65 49.60 34.09 29.92 15.69 10.70

20. 51.83 49.70 36.15 30.53 16.53 10.98

22. 51.86 50.17 35.08 30.69 17.50 11.96

24. 50.48 49.80 33.97 31.59 17.27 12.12

26. 51.50 49.74 33.97 31.43 17.45 12.09

28, 52.08 50.02 34.00 31.55 17.75 12.07

30. 50.98 50.29 35.34 31.41 19.26 12.06
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Table VII.E-2. Absolute Minimum Achieved Misdistances
Utilizing MCG Law

Order of
autopilot lit 2nd 1t 2nd 1st 2nd

w 0.8 1.0 1.2

A 1,6 1.6 1.6 1.4 1.2 1.0

8. 27.01 28.83 12.76 1.05 7.06* 18.98

10. 27.37 28.64 9.83 .90 10.13* 3.12

12. 28.20 29.98 10.05 2.60 11.97* 5.85

14. 28.37 30,44 9.45 3.04 6.82 6.23

16. 29.14 30.78 9.21 6.78 13.00 8.26

18. 29.11 31.09 8.37 7.68 9.21 10.70

20. 29.51 29.81 8.18 6.94 8.10 10.98

22. 30.13 30.64 6.15 7.80 7.49 11.96

24. 31.32 30.58 5.60 9.30 7.44 11.90*

26. 36.82 31.15 5.24 8.24 5.17 11.26,

28. 37.04,31.34 4.54 7.49 577 12.07

30. 31.81 132.26 4.51 6.38* 3.43 10.69,

Note: Asterisk (*) means that the shown value was obtained
by utilizing another combination of A.
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2. Suggestions

In this part some suggestions are given for future

investigation and improvement of the suggested Terminal Gui-

* dance Control System.

a. Both computer programs, which are given in ap-

pendices E and F respectively and which are the implementa-

tion of mathematical models of parts VII.C.1 and VII.D.1

respectively, must be simulated varying:

(1) The total time of engagement, T (i.e. T = 2, 3, 4, 5
sec);

(2) The seeker time constant, Ta(;

(3) Time to go estimate by utilizing a bias error B
(t go=At go+B).

These suggested simulations, if (happened to be) done, will

S give a more thorough view of the overall performance.

b. The whole work was an instructive methodology for

developing and improvement of Terminal Guidance Control

System. Thus, several components can be replaced by more

complex schemes, i.e. better seeker of filter, etc.

C. Limiters, analogous to the expected missile air-

frame strength, can be introduced.

d. Airframe and radome dynamics can be included if

a specific missile is required to be studied.

e. The required acceleration in each case must also

be studied in order to get a feeling of the extremes.
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APPENDIX A

COMPUTER PROGRAM TO SIMULATE EQUATIONS (IV.C-9) AND

(IV.C-10) WHICH GIVE THE REQUIRED MISSILE ACCELERATION AND

DISPLACEMENT, UTILIZING THE CLASSICAL P.N. LAW,

IN CASE OF INITIAL HEADING ERROR AND NO TIME CONSTANT

INPUT FOR DSL/360 TRANSLATOR (VERSICN I)

TITLE * INITIAL HEADING ERROR. NO TIME CONSTANT *
* * NORMALIZED DISPLACEMENT OFF-L.O.S *
* * NOR14ALIZED MISSILE ACCELERATION **

INTGER NPLOT#K

CCNST NPLCT"1. K

STORAG N(5)*
TA1BLE N(i-5)z2,3t4,5,6
PREPAR ZHTAM#NCRACC

ZHTAM NORMAS IZED MISSILE*S DISPLACEMENT OFF-L.O.S
* NCAACC NORMALIZED MISSILE'S ACCELERATION

&YAN TAM "(I/(I-N(K) ))*(I-TIMEI*flL-TIMEJ**(N(KI-)--I

NORACCN(K)*( .- TIME)**(N(K )-2)

SAPPLE
EALL RWGjj1KtTIMEtZHTAM)

ALL- DRWG( vK,TINE#NORACC)
TERMINAL

K"K+L

[F (K .GT. 5) CALL ENORW(NPLOT)
IF (K .LE. 5) CALL RERUN*

PRINT 0.IZHTAMNCRACC*

CCNTRL FINTIM-L.0OELTO.OO1OELS=O.005*
ENO

$ MMON VARIA8LE LIST
ME OELT OELMIN FINTIM CLKTTM DELMAX NALARM OELS NPLOT K

ZZooo2 ZPTAM NORACC ZZ0003 ZZO0004 ZZOOO5 ZZO006 ZZOOO7 ,

OSL SYSTEM TABLES UTILIZATION - MAX IN ()

OUT VARS IN VARS PARAMS INTEGS MEM BLKS FCRTRAN
I 9(5C0) STOP(1500) 5(400) 0(300) 89(3390);. STOP

SUMMARY CF ERRORS FOR THIS JOB ERROR NUMBER NUMBER OF ERRORS

217
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APPENDIX B

COMPUTER PROGRAM TO SIMULATE EQUATIONS (IV.C-12) AND (IV.C-13),

*"WHICH GIVE THE REQUIRED MISSILE ACCELERATION AND DISPLACEMENT,

UTILIZING THE CLASSICAL P.N. LAW, IN CASE OF A MANEUVERING

TARGET, NO TIME CONSTANT AND NO INITIAL AIMING ERROR

INPUT FOR OSL/360 TRANSLATOR (VERSION 11

TITLE * INITIAL HEADING ERROR. NO TIME CONSTANT *
* * BUT MANEUVERING TARGET*
* * NORMALIZED DISPLACEMENT OFF-L.O.S *
* * NORMALIZED MISSILE ACCELERATION *

IhTGER NPLOTPK

CCNST NPLGT-I*Kzl

STORAG N(61*
TABLE N(l-61=2.101s2.25t-53,#46
PIOEPAR iHTAMNORACC

HTAM NORMALIZED MISSILE'S DISPLACEMENT CFF-L.O.S

, NCRACC NORMALIZED MISSILE'S ACCELERATION

ZYAMIHTAM: I.;-TIME)* 21 ( NIK)-2 )-I .-TIME )fin ( K -11-1 .-TIME )*N( K)/- --

tN I-I)/{N(KI-2)

NORACCN(KJ/(N(K)-2)*( I.-(l.-TIME**iN(K)-2) 3

SAMPLECALL" DRWG( I ,K,TIME,ZHTAMI
CALL DRWG 1,K,TIMENORACC)

TERMINAL

IF K .GT. 61 CALL ENORWINPLOT)
IF (K .LE. 6) CALL RERUN

PRINT 0.lZHTAMNORACC

CCNTRL FINTIM L.0,OELTO.00,O1ELS = 0 . 0 05

Et D

CCMMON VARIABLE LIST
TIME CELT GELMIN FINTIM CLKTI4 DELMAX NALARA4 DELS NPLOT K
ZZO002 ZMTAM NORACC ZZ0003 Z0004 ZZO005 ZZOOC6 Z O007 N

DSL SYSTEM TABLES UTILIZATION - MAX IN (I

OUT VARS Ih tARS PARAMS INTEGS+MEM BLKS FORTRAN
9(5C01 1(15001 544001 0(300) 96(33901

STOP

SUMMARY OF ERRORS FOR THIS JOB ERROR NUMBER NUMBER OF ERRORS

217 L
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APPENDIX C

COMPUTER PROGRAM TO SIMULATE EQUATION (IV.C-17)

WHICH GIVES THE REQUIRED MISSILE ACCELERATION, UTILIZING

THE CLASSICAL P.N. LAW, IN CASE OF AN INITIAL

HEADING ERROR AND A SINGLE TIME CONSTANT

INPUT FOR DSL/360 TRANSLATOR (VERSION 11

TITLE * INITIAL HEADING ERRR + TIME CONSTANT• s NORMALIZED DISPLACEMENT OFF-L.O.S
* s NORMALIZED MISSILE ACCELERATION •

INTGER NPLOTtK
CCNST NPLaT=I*K=1

IlNCON ICl•O.OtIC2=0.0

STCRAG N(5)

TABLE N(1-51"5LO,15,20,30

PARAM ETA"3

PP EP AR 8,9200T
* 0 NGPMALIZED MISSILE'S DISPLACEMENT OFF-L.O.S

* Q200T NORMALIZED MISSILE'S ACCELERATION*

DERI ATIVE
QZOOT -tN(K)I(1.4DOT ETA*Q/(I.-TIME1I
OCT INTGRL( ICLIQ200T
QOOT a INTGRL(ICZQOCTI

SAPPLE
CALL ORWG(I1K*TI4E,Q I
CALL DRWG(ltKTIMEQZOOTI

TERNIAAL

IF I K .GT. 51 CALL ENDRW(NPLOT)
IF Kc .LE. 5) CAL.L RERUN

PRINT O.IoQtQGCTQ2DOT

CCNTRL FINTIMZO.949DELTSO.001,DELS=O.005

OUTPUT VARIABLE SEQUENCE
Q2COT CCOT Q ZZO0004 ZZ0005 ZZOO06 ZZ0007 ZZOOO8 K
CMMON VARIAaLE LIST
TIME CELT DELMIN FINTIM CLKTIM DELMAX NALARM DELS QCOT

2COT ZZOOII ZZO0009 ZZOO1O NPLOT K ICI IC2 ETA
z005 ZZCOO6 ZZooo7 ZZooo8 N

DSL SYSTE' TABLES UTILIZATION - MAX IN 1
OUT VARS I VARS PARAMS INTEGS+4EM BLKS FORTRAN
9(5001 1041!00) 8(400) 2(300) 89(33901

STCP

SUI4MARV CF ERRCRS FOR THIS JOB ERRCR NUMBER NUMBER OF ERRORS

217 1
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* INITIAL hEADING ERROR t TIME CONSTANT *

TIME c QOOT 0200T0.0 .1 -5.OOOCE0.0000E:01 :2.1034E-02 -3:-2.7347E
2.00COE-¢1 -6.5T62E-02 -5.6085E-01 -8.8770E-01

:i3oOOOOE-(01 -1.2717E-01 -5.724,9E-01 5.9816E-01
4.OOOCE-CI -1.79861-01 -4.5210E-O1 .7570E O0
5.O000CE-01 -2.141-5 01 -2.3159E-01 2.6003E 00
6.0000 E-01 -2 390 01 5 .6945g-02 3111 6E 00
7.OOOOE-01 -2.0227E-01 3,776LE-01 3.22 5E 00
8.OOOOE-01 -I. 4886E-01 6.8283E-01 2.7504E 00
9.OOOOE-01 -6-6963E-02 8.8555E-01 9.1665E-01

DSL/360 SIPULAIION TIME= 0.23 SECONDS.

*** RKS INTEGRATION USED ***
0.0 0.0 0.0 -1.0OOOE 01
S.OOCOE-01 -3.5887E-02 -5.9893E-0L -2.8144E 00
2.OOOE-01 -1.0291E-0 -6.835'E-01 6.9415E-0
3.OOOCE-Cl -1.6455E-01 -5.2314E--Ot 2.2837E 00
4.OOOOE-0, -2.0422E-01 -2.6L29E-L 2.8238E 00
5.OOOOE-01 -2.1615E-01. 2.1305E-02 2.7536E 00
6.OOOCE-C1 -2.0C85E-01 2.7668E-OL 2.2972E 00
7oOOOOE-01 -1.6282E-01 4.7178E-01 1.5638E 00
8.OOOCE-1 -. 0934E-01 5,8142E-1 5.8710g-01
9.0000E-01 -5.0251E-C2 5.7885E-01 -7.0 3 3 -01,

DSL/360 SIFULATION TIMEs 0.51 SECONOS.

*5* RKS INTEGRATICN USED **
0.0 0.0 0.0 -1.5000E 01
1.OOOOE-01 -4.6517E-02 -7.1728E-01 -I.9150E 00
2.000CE-0I -1.1940E-01 -6.7844E-01 1.8978E 00
3.OOOOE-01 -I.7564E-01 -4.3217E-OL 2.7737E 00
4.OOOCE-01 -2.04S0E-01 -1.5468E-01 Z.6877E 00
5.OOOCE-01 -2.0755E-01 9.4468E-02 2o2628E 00

a 6.OOOOE-O1 -L*81o8E-01 2.9370E-01 1.7087E 00
7.OOCOE-01 -1.5077E-01 4*.3440E-0L i.0991E 00
8°0000E-0 -1..328SE-01 5.1257E-01 4.6061E-01
9.ooooE-01 -5.0416E-o2 5.2580E-01 -1.9997E-01

DSL/360 SIPULATION TIME= 0.19 SECONDS.

*** RKS INTEGRATION USED ***
0.0 0.0 0 0000E 01
1.000CE-01 -5.4233E-02 -7:908E-01 :0286E 0
2.OOOOE-Cl -1.2805E-OL -6.4492E-OL 2.5O2,7. 00
3.OOOOE-Cl -1.T97E-01 -3.7;35E-01 2.77 8E 10
4.OOOOE-01 -2,0277E-OL -lo0836E-01 2.4442E O0
5.00O0E-O -2.0213E-01 1.1353E-OL l.9846E 00
6OOOOE-01 -I.8L 6E-0L 2.87661-01 1.4957E 00
7,OOOOE-01 -1.4624E-01 4.1243E-01 9.9926E-01
8.OOOE-01 -1.0083E-01 4.8743E-01 5.0043E-01
9.OOOOE-01 -5.0418E-02 5.124aE-01 6.6757E-04

DSL/360 SIPULATION TIME- 0.54 SECONDS.

*** RKS INTEGRATION USED *'*
0.0 0.0 0.0 -3.OOOOE 01

.OOOOE-01 -6.4174E-02 -8.2011E-01 1.0207E 00
2.000CE-CI -1.3573E-O1 -5.8483E-0 2.8146E 00
3.OOOOE-C1 -I.dO3EE-O. -3.1255E-01 2.5682E 00
4.O0CE-01 -1.9944E-01 -7.5242E-02 2. 73JE 00
5.O000E-0I -1.9677E-01 1*2L75E-0L 1: O66E 00
6.OOOE-01 -1.7644E-OL 2.7803E-01 1.358E 00
7.OOOOE-O1 -1.4252E-OL 3.9353E-01 9*5126E-0
8.0000E-01 -9.93S;E-02 4,6328E-01 5.4362E-01
9oO000E-01 -5.0227E-02 5.0225E-Oi 1.3607E-01

DSL/360 SIPULATIOa TMEx 0.51 SECONDS.

NPLOTm I
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APPENDIX D

COMPUTER PROGRAM SIMULATING A LAG-FREE, A SINGLE QUADRATIC

LAG AND A BIQUADRATIC LAG SYSTEM FOR COMPARISON PURPOSES

IhPUT FOR DSL/360 TRANSLATOR (VERSICN L)

TITLE 0 CLASSICAL P.N IMPLEMENTATION *
* * CCPARISON OF A) LAG FREE CCNTROL SYSTEM
* * B) BIQUADRATIC LAG S:nWA
0 * C) SINGLE QUADRATIC LAG WSzOO
INTGER NPLCTL
CCNST NPLCT=3,VCLCS-15)O.0,Sa30.,WA=Z0.,MA-0.5L-i
SICRAG N13)
TABLE N 1-3)ul.3, C.50. 25
PIRAP TEN:L.OAV .5.Um-I.
PPEPAR TPERsX5
IATEG MILNE

* 8X5 MISDISTANCE IN FEET FCR BIQUADRATIC LAG SYSTEM *
* WS SEEKERSS NATURAL FREQUENCY *
* MS SEEKER'S CAMPING•
* hA AJJTCPILOT'S NATURAL FREQUENCY *

M NA AUTCPILGT'S CAMPING •
• VCLCS CLOSING VELOCITY

CYNAMIC

• NAVC EFFECTIVE NAVIGATION CONSTANT *
* TWO VALUES ARE USED TO COVER THE EXTREME CASES OF IIGH •
* AND LOW SIDES. THESE VALUES ARE 2.5 AND 4.5 •
* TENG TCTAL TIME OF ENGAGEMENT. •
* TWG VALLES ARE USED TO COVER THE CASES OF RELATEVLYSCRT *
• A/~ LONG ENGAGEMENTS. THESE VALUES ARE WS*TENG=LO, 3C •
• RESPECTIVELY.
* TPER PERCENTAGE OF ELLAPSED TIME (NORMALIZED TIME GCNEI $

TPEA=TI ME*WS

TII4EGOm (TENG-TIME I

RTP=VCLCS*T IMEGO

K=VCLOS*NAVC

FX3=NAVC*( 1.-TIME I**(NAVC-2. 1

* RTM RELATIVE INSTANTANEOUS DISTANCE BETWEEN MISSILE * TARGET *
• X3 MISSILE'S ACTUAL ACCELERATION 8 •
* 8 STANTS FOR SIQUAORATIC LAG SYSTEM •
• 5S STANTS FOR SINGLE 9UADRATIC LAG SYSTEP* *
• F STANTS FOR LAG FREE SYSTE•
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BX ICCOT BX2

BXZDCTuhS***BXI-Z.*IS*WS*XZ-S*2/RTM*8XS

* 8X2IlNTGRL(C.OBXZDOT)

BX3CCTaB)4

.8X3= INTGRL(O.O, BX300T)

* X4DUTasiA**2*K*BX2-WA**2*BX
3 -Z4 *MA*WA*BX4

BX4-INTGAL( O.OBX4DOT)
OX5CGT-8X6 - UM

*X5 ACTLAL 14ISDISTANCE

aX5=lNTGAL(O.O,5X5D0T I

*X6 PAIE CF IISDISTANCE
v dX6zfINTGi4L(0.0vSX6O0T

1

SAPPLE
CALL ORwG(19LPTPER~ax5)

7ERZ4INAL
L=LIL 3) CALL RERUN
IF Lf :f 31 CALL ENDRW(NPLOT)

PPINT 0 109TPER !x5
CCNTflL FZNTIM=0! vOEL1sO.0059DELSO0.Ol
END
PAIRAM NAVC*3.5
ENOC
PARAMI NAVC-4.5
ENOC
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APPENDIX E

COMPUTER PROGRAM SIMULATING THE SUGGESTED IN PART VII.C

KINEMATIC HOMING LOOP, UTILIZING A FIRST ORDER AUTOPILOT

Utilized parameters: w± 0 1.0

W ap =30.0 rad/sec

A = 1.6

q T = 1 sec

4L

0

IC

XSRE 00 NT/NHMNNY
TSA L- .0 NT/NHPO NO 1

Fi.E1 idsac snomlzdtm.Cmaio

bewe N PadMGlw
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00 APN

a
[ICI

, g PN

ho.. .0 020.00 140.00 hi.o lb0.00

XSCRLE- 20.00 UNITS/INCH RUN NO. 1
TSCRLE, 10.o0 UNITS/INCH PLOT NO. 3

Fig. E-2. Required lateral acceleration in g's vs.
time gone. Comparison between APN and PN
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Of

S

XSCAILE,- 20.a0 UNITS!INCH' RUN No. I
Y SCALE,, 8.00 UNITS/INCH PLOT NO. 4&

Fig. E-3. Required lateral acceleration in g's vs.
time gone, in case of MCG law utilization.
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CINPUT FOR DSL/360 TRANSLATOR (VERSION 11

TITLE * GUIDANCE LAWS COMPARISON *
INTGER NPLOT K.SPI NP1
CCNST NPLOTuiVCLO Sal OO.ONTl92.,TS=O.OStKI
STCRAG N(71
TABLE N( 1-71,=0.4 ,C.6,O. tl.Ol.211.4,1.6
PARAM TENG=1.0 iO.0 ICXSO.OOME GAP:1:2 ..SP 1=3 S P2Oa OvlSP3".3 ,NP105qNP2 O.OiNP3;.586

PREPAR TPERtPXSAX5MX5,NAVCtNAVCNLPNNLAPNNLMCGRTM
INTEG MILNE

* SPINPI ARE THE SEEDS FOR THE RADOM NOISE GENERATION FUNCTIONINORMAL)*
* SP2,NP2 ARE THE MEANS OF S-SOURCE + N-GLINT NCISE RESPECTIVELY *
* SP3,NP3 ARE THE STANDARD DEVIATIONS OF S-SOURCE + N-GLINT NOISE. *

* X5 MISDISTANCE IN FEET. P STANDS FOR PROPORTIONAL NAVIGATION
A STANDS FOR AUG4ENT P.N *

* M STANDS FOR MODERN CONTROL GUIDANCE *
* CMEGAP AUTOPILOT'S BANDWIDTH *
* CMEGAZ *
* TENG TOTAL TI4E OF ENGAGMENT *
* A FRACTION OF ESTIMATED TIME TO GO OVER TRUE TIME TO GO *
* B BIAS FACTOR IN ESTIMATED TIME TO GO *
* VCLCS CLOSING VELOCITY *
* NT TARGET'S ACCELERATION IN GIS
* TS SEEKER'S INVERCE OF TIME CONSTANT******** **** ***,*********** ***************************** ****************

OYNAMIC

* NAVC EFFECTIVE NAVIGATION CONSTANT (TIME INVARIED FOR PN + APN) *
NAVCM EFFECTIVE NAVIGATION CONSTANT UTILIZED BY 40DERN CCNTROL *

-I ' * GUIDANCE.IT IS A TIME VARYING CONSTANT. *
* TPER PERCENTAGE OF ELLAPSED TIM'E (NORMALIZED TIME GONE) *

TPER=TIME*100./TENG
A=N(K)

* US SYSTEM'S NOISE *
* UN GLIhT NOISE *
* FOR RANDOM NOISE WE USE GAUSSIAN DISTRIBUTION.FCR THIS IMPLEMENTATION*
* WE USED THE O.S.L FUNCTION Y=NORMAL(PL,PZ,P3) (SEE O.S.L MANUAL *
• PAGE 6-12 I *
* IF USE MULTIPLE RUNS THEN RE-ASSIGNTHE PI VALUE
* OMEGAZ IS A FUNCTION OF SIGNAL AND NOISE SPECTRAL)ENSITIES.THERFORE, $
* tC4EGAZ,+P3 FOR US AND UN MUST BE INTERELATED AND THEIR COR- i
t; * RESPONDING VALUES MUST BE ENTERED APPROPRIATELLY. *
• IN CASE OF TESTING FOR NOISE EFFECTS IN THE SfSTE., MULTIPLE RUNS *
* ,4UST BE CONDUCTED HAVING EXACTLY THE SAME SYSTEM'S PARAMETERS *

BUT DIFFERENT VALUES OF Pl ,IN ORDER TO PRODUCE DEFFERENT *
RANDOM SEQUENCE IN THE NOISE GENERATOR,

U5=1O.0*(NOPAAL( SPI ,SP2,SP3))
UN=1).0*(NORMAL(NP ZNPS)
OMEGAZ= (SP3/NP3)*( .13.)
TIMEGO=A*(TENG-TIMEJ + B
IF ( TIMEGO .LT. 0.1 TIMEGO=O.1
T T I ,EGO*OMEGAP
IF ( T .LT. (.1 ) TuO.1

* THE 3EST FOLNO VALUE FOR T FOR AV01DING OVERFLIW IS T=0.1 *
* JC NOT ERASE THE FOLLOWING IF STATEMENJT FOR AA ,OTHERWISE* *
* JVERFLOW OLCJRES AS IT 13 BEYOND THE COMPUTER'S -APABILITIES *
* THE CALCULATION OF EXPONENT BIGGER THAN 170. * *****:*** ************** ************** ***t***************************

AA"2 .*T
IF C AA .GT. 170. I AA=170.0

- - - -. . . . . . .. .. . .



*NAVC EFFECTIVE NAV4GATION CONSTANT UTILIZED B3Y CLASSICAL P.N*
* AU"MNTPIN.I ISTI49 INVARI ED

*NAVCM ~tF CT V~ NAVIIGATION LO-NSTANI UTILIZED BY MO0DERN CONTROL
NNAVCM9DNAVCP NUMEAAT + DENRYINATO OF NAVCM.THESE ARE CALCULATED
* SEPERATELLY TOUAVOID UNDETEP41NED) FJNCTION OF THE FORM (0.O/O.OI *
* CASE WHICH RESULTS AS T GOES TO ZERO

NAVC=3.
NNAVCM-6.*T**J*(EXP(-T)-l.+T)
DNAVCM-2.*T** .,3.,6.*T*(l.-T-12.*T*EXP(-TI-3.*EXPI-AAI
NAVCM-NNAVCM/ONAVCM
RTP=VC f*IEGO
IF R A LTIT. 1. 1 RTMmI.

* RTM RELATIVE INSTANTANEOUSCDISTANCE BETWEEN ,MISSfLE TARGET
* MX400T RATE OF MISSILEIS ACTUAL ACCEERATI TO N CASE OF M.C.G LAW*
* RISRLTOSIPEMNIGTE PN A
* I ,C2 I 3RELATIONS IMPLEMENTING THE AP.N. LAW*
* Clp',C2MvC3t4M RELAT IONS IMPLIMENTING THE H.C.G. LAW*

I a NAVC/( TIM*EGOO*Z)
2: NAVC/TIMEGO

E IN: NAVC*O .5INT
L=NAVC74/(TIMEGO**21

CZM= NAVC IT IMEGO
C3Pm NAVC'i*O.5*NT
C4Mz NAVC/(T**215( j.-T-EXP(-Tfl

DERIVATIVE

PXIDOT=PX2+2.*OMEGAZa (RT!*PX8-PXI)
AXIOOTzAXZ.2.*O4EGAZ* (RTMbA XS-A X1J
MXIOOTaMX2+2 .*OMEGAZ* (RTM*MXS-M4Xl)

*XI ESTIMATED MISDISTANCE
PXI:INTGRL( (0 PX lOOT)
AXI1 INTGRL (0&.0,AXIDOT)
MXlzINTGRL(O.OMX lOOT)

PX2OOT=PX3+2.*(RTM*PX8-PXLJ *QMEGAZ**2-PX4
AXZDOTUAX3*2.*(RTM*AX8-AXI) *O?4EGAL4*2-.AX4
MXZDOT=MX3+2.*(RTi*MX3-MXI) *OMEGAZ**2-MX4

*X2 ESTIMATED RATE OF MISDISTA'NCE
PX2-INTGRL (0.0,PX2DOT)
AX2=INTGRL( -..19AX2OOT)
MX2=INTGRL(0o0,MAXDO0T3

PX300T= (OMEGAZ*x33*(RTM*PX8-OXI)
AX300T=(C4EGAZ**3 )*(RTM*AX8-AXII
NX300T (Q;4EGAZ**3 )*(RTM*MX8 -MX L)

*X3 ESTIMATED RELATIVE ACCELERATION
PX3:INTGRL (OPX3DOT)
AX3=INTGRL I 01.,,AX3OOT)
MX3a INTG RL (0.0, MX 30T)

PX400T=OMEGAP*(C l*PX1+C2*OX2-0)X4)
AX4OOT=C4EGAP1'(C1*AX1 ,C2tAX24C3*AX3-AX4)
MX4DOT=O,'dEGAP*(Cl1M*MX1+C2M4*MX24C3M*MX3+(C4M-.*4X4I

4 *X4 COMMANDED ACCELERATION (NL)
PX4=INTGRL (0.0,PX400T 3
AX4mINTGRL (0.OAX400T)
MX4=INTGRL(.,bIX400T)

*NLPhoNLAPNNL4CG ACHIEVED ACCELERATION IN 3S FOR CORRESPONDING CASES
NLFN =PX4132.17
NLAPNinAX4u/32. 17
NLICGMX4/32.17
PX500T-P X6
AX 50T =A X6
MX 5D0TsA4X6
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*X5 ACTUAL I4ISOISTANCE
PX5=INTGRL(O 'OPX SOOT)
AXSSINTGRL (O.QAX500T)
1X5-INTGRL (0.0 MX500T)

PX6D0T-NT-PX4.PX I
AX6D0TaNT- AX4+AX7
MX600mN T-M4X44.r4X7

*X6 RATE OF I4ISDISTANCS
PX6-INTGRL (l~).OPX6DOT3
AX6mINTGPL (O.0rAX6D0T)
1X6mINTGRL(O.0 ,MX6D0T)
PX7D0T-U S
AX700T=cUS
M4X700T=US

- *X7 R LATIVE ACCELERATION
P XTINTGRL 10.j',PX7DOTj
AX?:lNTGRL e)*09AX7DOT I
MX? NTGRLIO.,4K1OOT)

PXSOOT=PX5/ (TS*RTM)-PX8/TS.UN/TS/RTM
AX800T=AX5/ (TS*RT MI-AX8/T S+UN/ TS/RTM
MX80OT=MX5/ (TS*RTMI -MXC8/TSe UN/ rS/RTM

*X8 ESTIM4ATED L.O,S ANGLE IN RAO
PXS= INTGRL (l 3r, PX800T I
AXS=INTGRL (0.3,AXSOOT)

S MPE1XSwINTGRL40O.0,MX8DOT)
TERe4IFAL

IF (K T. T) CALL ENDRW(NPLOTI
F ( -E.7) CALL PERU14

PRINT 02AAEtPiA5X5NL4EANsN9APNM..G

PARAI4 K.1,SPl=3vNPl=5,NP3=.3

AR*AM K-ISPl=7,NPl=3,NP3=.174
END
PARAM KmISPI-LLNPin13*NP3=. LOq

~ARAM K219SPl-3,NPl=LlpNP3=.1J7
EYhO
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APPENDIX F

C COMPUTER PROGRAM SIMULATING THE SUGGESTED IN PART VII.C

KINEMATIC HOMING LOOP, UTILIZING A 2ND ORDER AUTOPILOT

Utilized Parameters: 1.0

W ap = 3.0 rad/sec

A = 1.6

T = 1.0 sec

0

e

a

a

4 
MCM

Coprio bewe ! NadMGlw
(254

La

a
8.

PN

0

0 MC

0
0

(a

0 o 2.0 LbO bO 00 .4100 .0 tOO O

a RE=2.0 UI3EC U O
a 5IIF 00 N TSIC LTN .'

4254

bbO 2.0 '00 00 00 0.0 20C0 24.0 !~0

XSPb 00 NTStC U O
. SCRL- 0. 00 uNIT- /INC - PL "T - ' . I -



IhPt#T FCIA CiLi/oii TRANSLATOR (VERSION 1)

TIU ES 0GUI LNCE LMvS %i4CPARIS;N
[N .E PL Ir KSF 1,hil

CCKST NL~I~L~Il4.N=~.1:.IMm.,z

JTCFAG N(71
PARI ia %z1j!jk -.

PREPAR TiE.t~t~oA~iv~ ,A~iLhhANNMCIT
INTEG M'ILNE

*SfltNPl AR~E TIE St[L~i i-CR TH: k..CCt' NIJISE %uENERATICN FLNC1IC~,4jAMALI*
S F2,I%2 ARE Ti-i P EA.;S CF iS3L ;CE 4 N-GL INT NU ISi RESPELI V~LLV

* F2tNP3 Ar E TtIE TA,i;.Aetj CE41IATICNS CF S-SLURCE + N-LIjNT fNCIS':.
II X5 IISUISTANCZ IN fEEI. P TAN,;S FCRa PiCOP'-RCNAL -NA',IGA1ICN
41 A SrANOS FCR AUGAE.AT P.Na~4 * I STAND)! FCR MCDEKN CCNTPACL CLIC4K~E

* (EGAP AJTOPILC7'S LINLA ICT1
C CIEGA

* ENG TOT.AL TIAE CF ENCA.:4EINT
*A FRACTIC-A Ci E5TI"AJli 'THI- T C CC CVEI( TRUE TIME TC CC

8 8IA , FACTURI~ [. E' Iieo:HC r[ ME IC GC
Y CLCS CL)ISINC VELLUIIT

It hl 7hRGE-!'S Ak.CELEPAI[LN IN J'S *
* I SEEKER'S Ihlo -4CE CFi UP=~ ;CNSTIAN7

30 it 44*
*NAVC EFF=CrTs NJA\ i LLS C:-iSTANT (TIM-E IN VAR EC (AR PN 4 .1P)

II N\ACI EFI-ECTIVE N4A1iATICN -,NSTtNT UTILIZEE iY PCOEFN CLN\TAIJL
41 GUICANCE.171- A~ Tll- 'IARNING CXJNSTANT.*V - * TFEIR PERCEN4AE CFE CLLASEW- TI-E (%CIR$ALILEJ TIME ZCNE)

TPER=TI ?E*IC. /Tei~u
* A-N(I(K

A=1.6

L. SYSTI 9S KC SE*
*K 1 1~~..,r :4l z.;
*FCI4 FAADOMF NCISai -= i.S- G~L~iIAN 0 ISIRIBLTIGN.FOP TI-IS I fLE4E.TATIC%*

A E LSEJ THE .*S*L F I.CLCN Y=CRfL(PIPZPP) (S;;: t..S.L .AiUAL *
41 PidE 6-U1
II IF USE M4LLTI;LE FuNS 1I-0N RE-kSS CNTI-E P 1 VALJE
*CPEG4Z IS A FUjNCTi(, Li- S IG,i-%L I Nr NC [SE SP&CTQAL:E NS ITIES.hF.!
* QgEGA~1pJ +02 kr La AN) .f% PI.ST t3E !TEAELAZ- -'NC T E i' *4
*RESPCNG14(. vAz 4Lt T dE ENTEkED APPGPIATELL .

41 IA CASE O'F IESTINu Fik- %ClSic .EFECIS i;,s T~tif- E 't.LLT [FL'- kU;.S *
* **MUST 3E CLNCLt;1c.I- V. EXACILY THE 3AME SYSTE PF'-T4'jS

*BUT CWiFW LT v-LLES F P1 ,IN CROE& TO PkC.;L(.E C7EiF-EFk' a4
* RA:4OC1 iLCLE%,L IN TWE NO ISE GENERATOR.

4IF I rlEtL *LT. 0.1 1 TI.4EGO0fl.L
7zT! MEGC*CPEiGAF
IF CT .LT. j.1 IT=J.l

1 1E ES TF I- N" \,ALL= FwR r -CR 4 CIC NG G'YEP LCo :c T x:;.j
*CC NOT ERA-E .H.E CLLI.fING~ I F S 7TEMEN 7 Fu'j A A L A
* ERFL 3W L.LCURS3 -1 I 5 , -iYCN TI - LC.-PUT :RS CLLL 11 1E i
* I-E CALC-JLATC K 4 (F cA rCFj T 11CCE1 THAN i 7!.. *

A2 .*T
IF I AA . T 17C. -1aP)1
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- * ~NAVC EFFECTIVE INAYLGAIICN C.STAK1 LTILILE) SY CLASSICAL F.N +
*Au6.4ENT F.N. IT 1 a T 1,4&E INV SI .EC

* AVCI' EFFECTIVE hAICiAUICI CZ.iSTWN UTILIZED 3Y OCCEFN CCNIFUL
* GUI!OANCEs Q1 IS 1IIAE V~~.YINL

* tAV C Pt.IrAVC' NUPLOA1Cis f CliN00jINATCR, OF NAVC-4.Tl.ESE APE CALLULATEO4
* SEPERATELLY IC A%..,I3 UiJETEPFIINED FUKCTICN CF TIE FCFIv (W.J/'u.010
* CASE oi#dC RE!1LI AS T GCES TO LERO *

KAVCs3.
hNAVCA=6.*T**2*(iAPl-T)-l.,T)6 CNAVC,4=2.*T*O^,*.i.*.*T4C1.-1)-12.*T*EXP(-T)-3.*E)F(-tAI
k.AVCM=NNAVC4/CN~AvCM

IF R 7 R 4 7. 1. J lTlwz I.

* FIM RELATIVE iNSTANT~i\zCLS JISTAKCE dETwEEN MIISSILE I ARCET*
* P)4C[T KATE LF MIISS1Li*S ACT AL ACLELERATh. N IN LASE CF MoCet; LAW

: C CI tC2 RELAILNS llPLP1dEKTING THE P.N. LAW
* CIvCZC3 gkLAILNS IvPLEaEI1IN, THEi A.P.N. LAW
* CIT4,C21VC3MC44 I;ELA1li.NS lyIEEIN 7HE M.C.G. LAW

Cl = NAY C/(T IEP. E CLt42)
C2 = N4VC/TITPEGC
C3 = NA VC* C . 0N I

4 C20=a NAvC.M/T Ir"EJC
C3M= 11A V 0 l4.X5 * \l
C4M= NAVCM/11442i4 iI.-T-;-XP(-T ))

DERIVATIVE

PX 1DOT= Pt2 +2 .*C E P. *(P14*PX -FX 1 )

0'~ *XI ESTIMATEO POICLIbI&N.

FI= INTsGL (0 .,; FAIL

PX2D3T=V)3+2.4 (R ilo*F)-Pxl )*C,%ECAZ**2-PX4

*)2 EST IMArEC RATE CF 11 iSl IST NCE

AX2= Ii4T ,PL (. i A T
PXZZI,4TGFL (4) .() t A jLLT)

AX30!]Tz (CMEuJ 44. * I ) xI
* * TlIX300T= (CMiE1.42 -" 4)* R 1 '- 1)

* 2 ESTIM4ATEC 1RELAT I' E ,CELiAAT ICN
PX3=IA'4rL(C.Ct AX-6C I
AX3=INTRL(1) .0AA- ~CT 7
IPX3!1 TGFL~i' U 9.I,jL;T

X 4 CCMMAN1JEC ALCELEiiAli -% N (L)
FX4L)OT=PA5

* * I#X',3OT=M)5
P.<4=I '4TGRL (C.CtF)-qt;CT)

PX4=IrIIUI'L C.,''..

* 1 a EO L tA ; ,: A.E E A I N (L
PX- v iL0
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NLPNLPiINCMG C1I-EC 4CCELERATICN IN G S FCR CCF$ESFCNOING CASES

KLAPN=AXI32 .11

NLMCG-MX4/22 .11
PX600T=P)7
AX61)QT=A) 1
PX6CGT I' 17

X4~ ACTUAL MISiJISTAN(.E
FX6= I PvLW G" .FA6iL.T)
AX6=IaTGRL(. a A) .C .I)
PX6- INTGAL W j pI'I.6uCLT

PX7D )T=N 1-Fx4, F) 6
AX 7UUT=NI-hAl,, A? :
IX74jT=N-X4+ftA;

)1?7 RATE OF 'AISCISTAN-6E
FX7=I;JTuRL(tJ F),AiLt12

1X7= ITG9L ('U di ,MA 1iT 2

PX8OUT=Ij E
AX80fJT=US
A'A8DUT=L S

)e? RELATIVE ACCELERAILN
P~d=I.4TGAL (Q C :FA JL T2
AX8tNTiLW:.. ,A? t. iAl

1vx=INuFLEj.,tAj,.LT

PX90(]T=116.( IS 4R Yi -P ) ;/I 3+LN, 1 /RTI4

*)S ESTIM.ATEC L.t...S 4AiLLE IN 4AC
PA~ IAT'PTL (1.C ,P JLT)
AXq= INTCF(1- H t~ ,A A.CT2
MwX9=IiTkFL (J.%; PAS&.C T

SAMPLE
CALL 09"GI 1t1,1 EAFX*
CALL jtdhc ( 1 9 i I ci t,3)
CALL wclv;( I2t 3qilI P )1
CALL OR;% (i 1t I .i PN.i..2
CALL ORofG~12ti I4, NAV. I
CALL UR~wG( - ,I. T E,4 iKL.ON )
CALL ORhG(.ttIf ,tNLP 41
CALL J~hG(-i,2,' Ctt: tN1LA';G)

TERP'IN AL
*** i=K+l
** IF (K .GT. o) C.ALL E:NCPhINFLGT)
*4 IF I< .LE. i ) C ALL !' L N

CALL E.%XFvv(NfLCT I
PR I AT C. 11 TPE AtP A5 A Ativ A 5 C-Xjt, A Z I.LF N,NL APNt NLYIC G t.\AVC P
*hc
*tA 9AM K=I P19N .2

*Nc

*NC

*Af4 M K- It P 1= No I=11 ,M~ 2= .C 7
4ENOC Copy aivailable to DTIC does not

- - permit fully legible xepoducIw-U7
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