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Abstract.

Samples of biological tissue are modelled as inhomogeneous fluids

with density p(x) and sound speed c(x) at point x. The samples are

contained in the sphere jx( < 6 and it is assumed that p(x) E p0 
= 1 and

c(x) E c o = 1 for IxI > 6, and Iyn(X)( << 1, lyp(x) << 1 and

IVYp(x) << 1 where Yp(x) = p(x) - I and yn(X) = c- 2(x) - 1. The samples

are inbonified by plane pulses s(x" e0 - t) where le01 = 1 and the

scattered pulse is shown to have the form 1xI-
1 es(jxj - t,e,e0 ) in the

far field, where x = jx(6. The response es(T,,e 0) is measurable. The

goal of the work is to construct the sample parameters yn and y from

es(t,e,e0 ) for suitable choices of s, e and e0.

In the limiting case of constant density: yP(x) E 0 it is shown

that

Ym(x) 4 7T e6 (2x" 9,6,-9) de

where 6 represents the Dirac 5 and S2 is the unit sphere (el = 1.

Analogous formulas, based on two sets of measurements, are derived for

the case of variable c(x) and P(x).

ii



1. Introduction.

Computer-based acoustic imaging techniques have been studied

intensively during the last decade [6,8,9] Typical techniques involve

irradiating a sample with prescribed sound fields, measuring the

resulting scattered fields and applying a computational algorithm to the

scattering data to produce maps of such sample parameters as density,

sound speeds and perhaps others. These techniques have important appli-

cations to medical ultrasonic imaging where the sample is a living

organism, to non-destructive evaluation where the sample is a manufactured

item such as a metal casting or ceramic object and to geophysical

prospecting where the sample is a portion of the earth's crust.

This paper treats a problem of medical ultrasonic imaging. The

sample is modelled as an inhomogeneous fluid which is characterized by a

variable density p(x) and sound speed c(x). The use of a fluid model is

motivated by the fact that in biological tissues, other than bone, acoustic

shear waves are not observec.

In acoustic imaging, the scale of the smallest structures that

can be resolved is of the order of the smallest wavelength employed. A

typical sound speed in biological tissue is c = 1500 m/sec. Thus for a

wavelength of X = 1 mm. = 10 - 3 m., a frequency of f = c/X 1.5 x 106 hertz

= 1.5 megahertz is needed. This is in the high ultrasonic range.

The acoustic field in an inhomogeneous fluid with density 0(x)

and sound speed c(x) may be characterized by a real valued function

*Numbers in square brackets denote references from the list at the end

of the paper. 1i
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u(t,x) that satisfies the scalar wave equation

( . ) _ (X) p(X) 7. 1 V u 0

where t is a time coordinate and x = (x1 ,x2 ,x 3) e R3 denotes a triple of

rectangular coordinates in space. u(t,x) may be interpreted as the

acoustic pressure; that is, the difference between the instantaneous

pressure and the equilibrium pressure in the fluid. It is directly

measurable. Derivations of (1.1) from the principles of fluid dynamics

may be found in a number of books and monographs; see, e.g. [1,2,3,7].

It will be assumed here that the sample to be imaged is

contained in the ball B(0,6) = {x jxj < 6}, and that

(1.2) E Po 1 and c(x) -c: = 1 outside B(0,6),

where p0 and c. are the constant parameters of the ambient fluid. The

conditions P0o 1, co - 1 are a convenient normalization that can always

be achieved by a suitable choice of units.

The deviations of the sample parameters from those of the ambient

fluid will be measured by the parameters

(1.3) Y (x) = p(x) - 1

and

(1.4) Yn(X) C-2 (x) - = n2 (x) - 1

where n(x) - c- (x) is the index of refraction. The acoLstic imaging

method developed below is based on the Birn approximation to solutions
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of (1.1). The conditions for the validity of the approximation are

(1.5) tYn(x)t << 1, ly P(x)j << 1 and IVy (x)I << 1.

The purpose of an ultrasonic imaging technique for (1.1) is to

construct accurate maps of the functions p(x) and c(x) by applying a

computational algorithm to the measured data of suitable scattering

experiments. An explicit method for solving this two parameter imaging

problem is derived below under the weak scattering hypothesis (1.5).

The basic scattering experiment is the scattering by the sample of a

plane wave

(1.6) u0 (t,x) = s(x" e0 - t)

where e0 is a fixed unit vector, or point on the unit sphere

S' - {x jxj = 1} C R3 , and s(T) is a prescribed wave profile.

The imaging method developed below is based on the author's

theory of asymptotic wave functions as developed in [14,15,16). In the

present context: the theory states that if u(t,x) is the total field due

to the interaction of the pulse (1.6) with the sample, and if

(1.7) usc(t,x) = u(t,x) - Uo(t,x)

$c
is the scattered field then u has the far field form

(1.8) usc(t,x) - 1x1 1 e5(IXI - t,6,80) + 0(l),

where x - IxJe, e E S2 and the error term 0(i) tends to zero when t -.

The imaging algorithm developed below is based on the echo

profile function e s(T,e,0). The results take their simplest form when5t
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s(T) 6 (), the Dirac 6-function. Of course, an ideal infinitely sharp

pulse cannot be realized in practice. However, good approximations can

be generated. Alternatively, one can obtain the response e (T,e,e 0 ) by

electronic filtering of the response e ,T,6,0O) to a more realistic pulse

profile S(T).

The imaging method takes a particularly simple form in the

constant density case (y (x) 0 0) when there is only one parameter to be

imaged. In this case it will be shown that, in the Born approximation,

( y ) e6 (2x" 6,6,-6) d6
(1.9) n(X Tr S2  6

where dO is the element of area (solid angle) on S2. Thus Yn is obtained

by integrating the back scattered echoes e6(T,@,-O) over all directions.

In the general case a second set of measurements is needed to determine

the parameters YP and yn .

A formula equivalent to (1.9) was derived by S. J. Norton and

M. Linzer (9] who obtained it as a limiting case of an imaging method

based on near field measurements (see [9, p. 215, (81)]). More recently,

J. H. Rose and J. M. Richardson (11] have given without proof an analogue

of (1.9) for the imaging of inhomogeneities in isotropic elastic solids.

In their work they also formulate analogues of (1.8) for elastic solids

and discuss their applications to multiparameter imaging.

The two goals of this paper can now be formulated. The first

goal is to show how the author's theory of asymptotic wave funetions,

cited above, and the Born approximation can be used to prcvide a simple

and rigorous derivation of a functional relation between the echo wave-

form e6(T,6,G0 ) and the Radon transforms of Yn and y . The second goal
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is to use this relation to derive an explicit imaging algorithm for the

two parameter case. It will be seen from the analysis that the same

method is applicable to electromagnetic imaging, and to acoustic

imaging of solids where more than two parameters are to be imaged.

The remainder of the paper is organized as follows. §2 presents

a brief discussion of the facts concerning the scattering of time-

harmonic plane waves that are needed to analyze pulse mode scattering.

This theory is similar to, and simpler than, the theory of scattering by

bounded obstacles developed in (14,161. §3 presents the Born approxima-

tion to the time-harmonic scattered fields and the scattering amplitude.

§4 develops the functional relation between the scattering amplitude and

the Radon transforms of yn and y , §5 reviews the theory of pulse mode

scattering as a boundary value problem and the associated theory of

asymptotic wave functions. The final §6 develops the acoustic imaging

method for the two parameter problem. For clarity the known one

parameter formula (1.9) is derived first. Then the method is extended

to the general two parameter case. The section ends with a brief

discussion of the numerical implementation of the method.



2. The Scattering of Time-Harmonic Plane Waves.

A time-harmonic plane wave propagating in the direction 0E S2

in the ambient fluid may be characterized by the complex wave function

(2.1) w0 (xwO0) - (27 0 3/2 e iweo0 x

-iwt
where w/27 is the wave frequency and the time factor e has been

suppressed. The amplitude factor (2n)- 3/2 is a normalization that is

included to facilitate the application below of the results of [16].

If the scatterer is irradiated by the field (2.1) the resulting

time-harmonic field

(2.2) w(x,we0) = w0(x,we0) + wsc(x,we0 )

is uniquely characterized by the properties

(2.3) c2 (x) P(x)V" t) Vw} + w
2 w 0

for all x E R 3 and

wsc

(2.4) aw - iW wsc =0( 1l-2), I

Equation (2.3) is just the wave equation (1.1) for w(x,w00 ) e- t  (2.4)

is the Sommerfeld outgoing radiation condition. (2.3) and (2.4) will be

shown to imply that wsc has the far field form

(2.5) w SC(xW 0) e 4xl T(we,we0) + O(IxJ
2 ), 1x

7

4I
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where x IxO. The coefficient T(p,p') is called the scattering

amplitude of the scatterer. It is known to satisfy the reciprocity law

(2.6) T(p,p') - T(-p',-p).

T(p,p') plays a key role in the theory of acoustic imaging presented

below.

The wave field w(xp) and its scattering amplitude can be

constructed by solving an integral equation. To derive it note that

(2.7) V. {Vw 1A w - V4 0 Vw

Thus (2.3) may be written

(2.8) Aw - (V n p(x)) Vw + -W w - 0.

This can be treated by perturbation theory by introducing the parameters

Yn and yP,

Note that by (1.3)

(2.9) V np = VZn(l + y = (l + Yp V YP

Hence (2.8) is equivalent to

(2.10) Aw + 2w _ __2 Yn(x)w + (I + Y P(x))- 1 VyCx) • Vw

by (1.4) and (2.9). Recall that by hypothesis

(2.11) r 2 supp n U supp YP c B(0,6)

where supp yn denotes the support of Y. (the smallest closed set outside
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of which y (X) = 0). Application of Green's theorem to w(x,p) and the

outgoing Green's function for the ambient fluid

eilpf Ix-x' I
(2.12) G(x-x',p) =

47rIx-x' I

gives, after a standard calculation,

w(x,p) = w0 (x,p)

(2.13)

+ jF G(x-x' ,p){Ip 2'y n(x') w(x',p) - (l+y0(x'))-1 V P(x') Vw(x',p)} dx'

where dx' = dx; dx; dx;. If x is restricted to F then (2.13) is an

integro-differential equation for w(x,p)IF, the restriction of w(x,p) to

r. It may be transformed into a pure integral equation by an integration

by parts in the last term. Solution of this integral equation by

standard techniques provides a construction of w(x,p)IF. The continua-

tion of w(x,p)IF to all of R 3 is then provided by (2.13).

A verification of (2.5) and a construction of T(p,p') are also

provided by (2.13). Indeed, if x - Ixje then

(2.14) Ix -x'I = Ixi - x, e + o(lxl') Ix i

uniformly for all x' E r. Thus

eilplIlxi -ilpje.x
(2.15) G(x - x',p) e4 e-ilp.x'= 4 x e + O(Ixl-,) , 1xI =

uniformly for x' e r. Substitution of (2.15) into (2.13) gives (2.5)

with
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T(w6 w6o) e -i W Bex {U2y n(X) w(x,Weo)- (1+"yo(x))- 7y (x)'?w(x,we0 )j dx

(2.16)

Thus T can be calculated from the parameters yn' YP and the field w(x,p)

inside the scatterer.



3. Weak Scatterers and the Born Approximation.

When the scatterers are weak in the sense of conditions (1.5) the

integro-differential equation (2.13) for w(x,p) can be solved by

iteration. On dropping terms of orders higher than the first in Yn' -(p

and Vy one obtains the Born approximation to w SC(x,p). It is given by

w s(xp) =  G(x-x',p) Ip 2 y n(x') w0 (x',p) - Vy (x') Vw 0 (x',p)) dx'

(3.1)

(2r) -
S
1 2 G(x-x',p) ei p 'x' {Ip 2 y(X') - ip. 7Y(x')} dx'.

The corresponding Born approximation to the scattering amplitude is

(3.2) T(we,we0 ) = (2T) - 3/2 { e- iW (e - o0 ) '
X {W2yn(x) - i e0  Vy Cx)} dx.

An integration by parts in the last term gives the alternative

representation

(3.3) T(w6,w60) = ( 2 e {y ( X) + e - 1) Y• dx.

The notation

(3.4) y (x) - Yn(x) + (P- 1) y (x)

will be used in what follows. Equation (3.3) can then be written

concisely as

11
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(3.5) T(Vwe,o) ,w2  ( e 0- 00))

where y is the usual Fourier transform, defined by

(3.6) y(p) = (21T)3/2 e -i  y(x) dx.

In the remainder of this paper the approximation (3.5) will be used for

the scattering amplitude.



4. The Born Approximation and the Radon Transform.

The Radon transform of a function y(x) with compact support is

the function R x S2 -, R defined by [5,10]

(4.1) ((s,n) = { y(x) dS

where (s,n) E R x S2 . Equation (4.1) means that y(s,D) is the integral

of y(x) over the plane with equation x • f = s and surface element ds.

An alternative notation is

(4.2) (s,f) = JR2 y(sn + x -L ) dx
A-

where x isa point in the plane through the origin that has normal n and

surface element dx Note that y(s,n) also has compact support:

supp Y C B(0,8) - (s,i) = 0 for isi > 6.

In this section a known relation between the Fourier and Radon

transforms is derived and used to relate the Born approximation (3.5)

to the Radon transform of Ye'e. This relation and the known inverse

Radon transform provide the basis for the imaging method developed in §6.

To begin, consider the Fourier integral

3^ f - iw(e-eo).x  x)d
(4.3) (21)3/2 y(m(8- e0)) = fR3 e y(x) dx

where w, 8 and 60 are fixed, w # 0 and e # eo. Introduce new variables

13
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(4.4) -2 W

(4.5) t - (e - 0) X,

and

(4.6) s = x * I T-e0

Then

(4.7) x = (x" r)n + x = sn + x

where x is in the plane orthogonal to n, and a rotation of coordinates

in (4.3) gives

(21T) 3/2 y(W(S- e0)) =IR3 e- " y(sn + x -L ) ds dx-L

(4.8) =f ei'WT (f y(sn + ,CL) dx-Lj ds

=!-0 1 F-. [Teieoi 0 -e0 1dT.

The last integral is a one dimensional Fourier transform. Hence

multiplying it by w 2 is equivalent to the operation -;
2
/3T

2 )n the

integrand. Thus

(4.9) (27r) '/2 W2^~~~o)~eel f -3 iWT i~

where i"(s,n) denotes the second s derivative of (s,n). Now the function
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(4.10) 
hs,n) = - 1) 

1

occurs in the inverse Radon transform. In fact, the inverse is given

by (5]

(4.11) y(x) = S h (x" nn) dn.

Thus it is natural to rewrite (4.9) as

(4.12) w)2 y^(w(e- 60))= - 3Je i/2 hye- , 0 1J dT.

Applying (4.12) to the Born approximation (3.5) gives the relation

2 (2Tr)I/ _ eol-i T

(4.13) T(wG,w0 o ) = e h , dt

where, for brevity, the notation

(4.14) h e h =h =yn + (6" -l)yP

has been introduced.

The scattering amplitude can be obtained from far field

measurements; see (2.5). Hence, the relation (4.13) is a natural

starting point for an imaging method. The Fourier transform of (4.13) is

(4.15) 1  f eiT T(we,w6o) dw = 41T h6

Suitable choices of T, 8 and 60 in this relation, with e. 8- = fixed,

Ii
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give h (s,n). Then the inversion formula (4.11) gives y By doing

this for two values of P one can deduce yn and y from (3.4). This

program is carried out in §6 below. Moreover, it is shown that the

values of the Fourier integral on the left-hand side of (4.15) can be

obtained directly from pulse mode scattering measurements. This is

developed in the next section.



5. Pulse Mode Scattering. I
The problem of the scattering by the sample of plane wave pulses

(5.1) uo(t,x) - s(x. e0 - t)

is formulated and solved in this section. The pulse profile e(T) is

assumed to be a prescribed function with compact support:

(5.2) supp s C [a,b]

Thus for any fixed value of t one has

(5.3) supp uo(t,-) C {x : a + t < x 8< b + t}

and the pulse (5.1) does not interact with the sample, which is

contained r B(0,6), before the time to - -b - 6 : see Figure 1.

Samp I e

B(c.6)

. 6 -tma ,x-. -t -b

Figure 1. Incident pulse u0 before interaction with the sample.

Therefore, the total acoustic pressure field u(tx) due to the scattering

of the pulse (5.1) satisfies

17
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(5.4) u(t,x) H u0 (t,x) for all t < to and x E R3.

It follows that u(t,x) is a solution of an initial value problem for the

wave equation (1.1):

P 2 -ix) x .U Vu = 0 for all t > to and x E R 3,
(5.5) ~---cCx) (P(x) V.

(5.6) u(tox) = f(x) and au(t0,x) = g(x) for all x E R
3

at

where { f(x) - u0 (t0 ,x) = s(x. e0 - to), and
(5.7) u

g(x) =uo(tox) -s'(x • 80 - to)

The theory of the initial value problem (5.5), (5.6) is analogous

to, and simpler than, the theory of initial-boundary value problems for

the wave equation, as developed in [14,15,16]. The theory will be

outlined here without proofs. Details may be found in the references

cited.

The problem (5.5), (5.6) is most simply discussed in terms of

the scattered field

(5.8) usc (t,x) - u(t,x) -uo(,x).

It is a solution of the problem

(5.9) :- "
2 X) p(x) 7. Vusc F(t,x) for t > to, x r R 3 ,(5.9)p (x)5



19

(5.10) u (t0,x) = 0 and auS(tox) 0 for x E R

where F(t,x) is defined by

(5.11) F(t,x) = _2uo(tx) + c2 ( x) P(x) V" [ Vu u(t,x) 

for all t > to and x E R3 . Note that (5.3) and the assumption that

p(x) = 1, c(x) - 1 outside B(0,5) imply that F has compact support in

space-time. More precisely,

(5.12) supp F C [-b-5,-a+ ] x B(0,S)

A simple approach to the initial value problem (5.9), (5.10) may be

based on the theory of the operator

(5.13) Au -- c (x).p[x) 7 {) Vu]

in the Hilbert space

(5.14) Y= L2(R3,c-x) P(x) dx)

with scalar product

(5.15) (u,v) - uxv(x) c- 2 (x) W 1(x) dx

The theory may be based on Kato's theory of sesquilinear forms in Hilbert

spaces [4]; see 117]. It follows that if the domain of A is defined by
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(5.16) D (A) -~f {(nu :Vu and V* -1Vu are in }

then A is a selfadjoint non-negative operator in X. The problem (5.9),

(5.10) may then be reformulated as the Hilbert space problem

d2usc AS
(5.17) dtc + Au = F(t,.) for t > to,

(5.18) usc (t0) = 0 and duSC(to) . 0dt

The formal solution is given by the Duhamel integral

(5.19) uSc(t,") -- {A -I/2 si (t-T) A12} F(r,,) dr
to

A rigorous interpretation of (5.19) may be based on the spectral theorem

for A. In particular, usc is a "strict solution with finite energy" in

the sense of [121 provided that t - F(t,.) E JC is continuous. If p(x),

c(x) and s(r) are smooth functions then known regularity results (13]

imply that usc is a classical solution.

It will be convenient here to represent uSC(t,x) as

(5.20) uSC(t,x) = Re {vSC(t,x)}

where vsc is the complex valued wave function defined by

(5.21) vS (t,) i A - 1 2 e 2 F(- ,/ ) dT
fto

Note that, since F(t,.) - 0 for t > tj - -a + 6, one has

(5.22) vSC(t,.) - e-itA/ 2 h for t > tj
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where

(5.23) h i A- 1/2 t elTA F(r, o) dT
ito

The asymptotic behavior for t - of wave functions of the form

(5.22) was calculated in [14,16] for solutions of the d'Alembert equation

in exterior domains. By the same methods it can be shown that if

X = ixie then

(5.24) vSC(t,x) = jx 1-F( l x- t,8) + o(1)

where

(5.25) I F(T,) 12 dOdt <

and 0(l) - 0 in XC when t - =. The function

(5.26) v (t,x) = jxj F(Ix]- t,e)

scis called the asymptotic wave function for v

The results (5.24), (5.25) are based on the fact that if

w+(x,p) = w(x,p)
(5.27) for x E R3 , p E R3 ,

w_(x,p) = w+(x,-p) = w(x,-p)

where w(x,p) is the time-harmonic field of §2, then each of the families

{w+(x,p) : p E R3} and fw_(x,p) : p 6 R 3} is a complete family of

generalized eigenfunctions for the operator A. In fact, if

-. .. - "4
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(5.28)(p) - R w(x,p) h(x) C-2 (x) p-1 (x) dx

then the wave profile F(T,8) is given by

1 T
(5.29) F(T,9) - f2rpz- e i w

In the special case in which F is given by (5.11) with u0 (t,x)

= s(x @-t), one has

(5.30) V( ,r ) eJo wPwd9()d

where T(we,w6eo) is the scattering amplitude of §2 and

(5.31) 9(w) - 1 r e-WsT(T) dT

These results may be verified by the method of [141 and [16].

By taking the real part of (5.24) one gets the asymptotic form

of usc(t,x) for large t:

(5.32) usc (t,x) - jxj-1 es(Ixl-t,e,e o ) + 0(i)

where e s(T,e,0) - Re {F(T,9)} and o(i) - 0 in )( when t - o. By (5.30)

the wave profile es is given by

es(T,8,90) Re { e i T  T(w6,Ue) 9(w) dw}

(5.33)

i ef e T(Awe0 ) 9(w) dU
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The last equation follows from the assumption that s(T) is real, whence

9(-T) = -(T), and the analogous property of the scattering amplitude:

(5.34) T(-we,-we0) = T(we,eo).

Relation (5.32) implies that the pulse echo profile es (te,eo)

may be obtained from far field measurements:

(5.35) es ( ,e,e0 ) :Z: xJ uSC(lXI-,x16),

with an error that tends to zero when t - -, or equivalently when

IxI - -. This result and the relation (5.33) are used in §6 to construct

an imaging method.



6. Pulse Mode Imaging.

In this section the Born approximation (4.13) and the representa-

tion (5.33) for the pulse echo profile are combined to obtain an explicit

relation between e and the function y

First, note that (4.13) guarantees that, in the Born approxima-

tion, T(we,eo0) is the Fourier transform of the well-behaved function of

T given by (4.15). It follows from (4.15), (5.33) and the convolution

theorem

(6.1) f(T') g(T- T') dT' = f ei f(w) j(w) dw

that

(6.2) es (T,6,e0 ) 1-901 3  s (T') h.0 , dT'

Note that on taking s(T) = 6(T), the Dirac delta, one gets

(6.3) e6(T,6,e o ) = _7To1 3  h___ _ ,

e-80 ~ heO 17-O7 I76'

Relation (6.3) provides the basis for the imaging method of

this paper. The pulse echo profile e, will be regarded as obtainable

from scattering measurements. Equation (6.2) shows that good approxi-

mations to e5 can be obtained with incident pulses S(T) that are smooth

approximations to 6(T). Moreover, as mentioned in the introduction, e

can be obtained by suitable filtering of the echoes from other

profiles s(T).

25
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The imaging of the parameters yn and y will be based on (6.3)

and the inverse Radon transform (4.11). To see how (6.3) can be used

let Q C S2 and suppose that mappings

e : S2, n- (n),

(6.4)

00 Q S2, n e o0(n),

can be found such that

(6.5) e(n) eo(n) = -a const. for n E Q,

and

(6.6) e(n) - e0 (n) = c U for n E Q

where

(6.7) cu = 16(r)) - 0o(n)j /2(1-u) for n E

Making the substitutions 0 -* e(n), 00 e- 00(n) and T -
" CuT in (6.3) gives

3

(6.8) h (t,n) - I e (c t,0O(n) ,00 (n)) for n C Q
2Tr

and hence

3

(6.9) h(x n,n) dn - f e,(cu1x" n,9(n),80(n)) d.

In particular, if S1 _ S2 then (4.11) implies that (6.9) provides an

explicit construction of y (x) from the scattering data. However,

mappings e(n), 60(n) may only exist on proper subdomains n C S
2 . In
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any case, if a decomposition

(6.10) S2 = U Q2 U ... U QN

and corresponding mappings

I C2. *. S
2

J

(6.11)

Q. .. S
2

satisfying (6.5) - (6.7) can be found, then one has

yx) fS 2 h (xf- ,) dn

(6.12) 1 h (x- nn) dn

3N

3

'P I e 6(c 1x " n o Oi(n) , J (n)) dn •
2 r J = l f P4

If this can be done for two distinct values of v, say U and u 2, then

yIl and y 2 can be computed and y n Y0 can be found from the

equations

f.y = Yn + (Pi - 1)y ,

Y( 1 = Yn + (N2 - 1)y 0

The section is concluded with a description of a particular method for

carrying out this program.

Back Scattering. Back scattering is characterized by the

condition e - -eO. This may be realized in the context of equations
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(6.4) - (6.7) by defining Q = S2, and

e(n) = n
(6.14) for all n E S

eo N) -n

Then (6.5) - (6.7) hold with i = -1 and c,,= c-1 = 2. Hence (6.9) with

Q S 2 and (4.11) give the relation

(6.15) y(x) = n JS 2 e5 (2x * i,n,-r) dn

In the special case of negligible density variations, yx(x) E 0, one has

Y-1 = yn and (6.15) is the one parameter imaging formula (1.9) of the

introduction.

Orthogonal Scattering. Orthogonal scattering is characterized

by the condition e* e0 = 0; i.e., i - 0. To obtain fields 8(n), 90 (ri)

that satisfy (6.4) - (6.7) with P = 0, fix a geographical coordinate

system in S2 with colatitude a and longitude a and define

(6.16) 0 = (cos 8 sin a, sin 8 sin a, cos a)

and

30

60 = (cos 8 cos a, sin 8 cos a, -sin a)

(6.17)

- (cos 8 sin (a + )r sin sin (at +l), cos (a+-))

It is clear from the identity e. e = 1 that.- 0 0 0. Moreover, a

short calculation gives, see Figure 2:
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(6.18) ri- (8 -,) - (Cos s sin (C- si B gin (a-s. cos (c- )

Figure 2. Graphical definition of e, e0 and T1.

For the remainder of the discussion it will be convenient to make the

change of parameter a - a + w/4 and define

11 , (cos B sin cc, sin B sin a, cos o),

(6.19) e(n) - (cos B sin (c+f). sin sin (a+ j, os

60(n) -(coo 8 sin (OL+ 3w sin Bsin (aL+31, cos 03

where

(6.20) 0 < w and 0 < 8 ! 2w.

With these choices ni ranges over the entire unit sphere; i.e., A - S2 In
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(6.4). The coordinates a, $ are regular on S2 except at the north and

south poles: a - 0 and a - T. It follows that e(n) and e0 (n) are also

regular except at these points where they have discontinuities. In

principle, these discontinuities cause no problem in evaluating the

inverse Radon transform. Hence, (4.11) and (6.9) with 0 - S2 give

(6.21) YO (x) _ Y12 e6(/ x * n,e(n) e0(n)) dn(6.21) ~ ~ 7 T0x -S 2 ,

where 6(n) and e0(n) are defined by (6.19). Of course, if one wishes to

avoid discontinuous fields then the decomposition (6.10) - (6.12) may be

used with different geographical coordinate systems for each component 0 .

Equations (6.15) and (6.21) define an imaging method for the two

parameter problem because

yo = Yo - Y-1, and

(6.22)

yn = 2y0 - y_1

Of course, in practice the integrals in (6.15) and (6.21) will be

approximated by means of a numerical quadrature method. If the

quadrature formula is

M
(6.23) F(n) dn - k F(nk) AnkS 2 k-l

where n,, n2,'", nM E S2 and Ank are suitable weights then the algorithm

for computing y_ and y0 is

(6.24) y 1(x) e6(2x, nknk,-nk ) Ank
ki
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and

(6.25) Y0 (x W e= e(,r2 x - kle(n) e o(nk)) 6nk
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