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“We define a ’Eeometric transform” on the digital plane
as a function f that takes pairs (P,S), where S is a set and
P a point of S, into nonnegative integers, and where £f(S,P)
depends only on the positions of the points of S relative
to P. Transforms of this type are useful for segmenting and
describing S. Two examples are dlstance transforms,™ for
which £(S,F) is the distance fromP to 8§, and ksov:.st transforms,™ -
where £(S,P) is (e.g.) the area of the part of S visible from
P. This ncte characterizes geometric transforms that have
certain sirple set-theoretic properties, e.g., such that f(SNT,
P)=£f(s,r)A£f(T,P) for all s,T,P.<5It is Shown that a geometrlc
transform has this 1ntersect10n property if and only if 1t is
' defined in a special way in terms of a Pneighborhood base®
1 - the class of such?neighborhood transformé‘?is a generalization
of the class of distance transforms.
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1. Introduction

Given a subset S of a digital picture, there are various
useful ways of defining functions on S that associate with each
point P of S some geometric property of S "relative to P". An

early example [l] is the distance transform, which associates

with each P¢S the distance (with respect to some given metric)

. from P to S (the complement of S). This transform is a useful
tool for describing or segmenting S; for example, the well-known
"medial axis transformation" of S is just the set of local maxima
of its distance transform. A more recent example [2] is the class
of "isovist transforms", which associate with each P some property
of the part of S "visible" from P, e.g., its area; such trans-
forms can be used, e.g., to find minimal sets of points from
which all of S can be seen. (A point Q of S is said to be visible

from P if the straight line segment PQ lies entirely in S.)

{ In this note we give a general definition of such "geometric
transforms" (for brevity: G-transforms). We also characterize

G-transforms that have certain simple properties with respect

to set-theoretic operations. In particular, we consider G-trans-
forms having the "intersection property": for any two sets S
and T, the transform values for SNT are (pointwise) the infs

. of the values for S and for T. We show that a G-transform has this

property iff it can be defined in a special way in terms of a

"neighborhood basis"; the class of such transforms includes the h
class of distance transforms. Interestingly, the analogously de-

fined "union property" implies that the transform must be trivial.
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2. G-transforms

Let I be a bounded set of lattice poinﬁs in the plane
(e.g., a digital picture), let 22 be the set of subsets of I,
and let f be a function defined on szz. For simplicity, we shall
assume that f is integer-valued; that £f(S,P)=0 whenever P£S; and

that £(S,P)>0 whenever P€S. We call f a G-transform if f(S,P)

depends only on the positions of the (other) points of S relative
to P. This is a rather general definition; the following are
a few examples of G-transforms:

a) The characteristic function, i.e., f(S,P)=1 iff P¢S

b) The distance transform, i.e., £(S,P)=the distance from P to S

c) The "area transform": £(S,P)=the area of the connected
component of S that contains P
d4) The isovist transform: £(S,P)=the area of the part of S
visible from P
Since a G-transform is defined in terms of positions relative
to P, it is evidently shift-invariant -- in other words, shifting
S cannot change the G~transform values of its points.* 1In parti-

cular, we have

Proposition 1. £({P},P) has the same value for any P. |

For simplicity, we assume that this value is 1.

*We assume that when S shifts, it remains inside I. Alternatively,
we could allow cyclic shifts, and define f£(S,P) in terms of the
positions of the points of S relative to P "modulo I".




We say that f has the union property if f(sUT,P)=f(s,P)VvE(T,P)

for all S,T,P, and the intersection property if f(SNT,P)=£(S,P)A

f(T,P) for all S,T,P. Evidently the characteristic function has

both the union and the intersection property. In fact, it is

the only G-transform that has the union property, as we see from

Proposition 2. A G-transform f has the union property iff it is

the characteristic function.

Proof: By Proposition 1, £({P},P)=1 for all P. It follows from
the union property that f£({P,Q},p)=£({P},P)VvE({Q},P)=1 for ail
{P,Q}, i.e., for ary two-element subset of . By induction, the

same is true for any finite subset of z. |

The G-transforms that have the intersection property are less

trivial; we shall characterize them in the next section.
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3. N-transforms

Let n: {0}=N°;NI;N2§... be a nested set of finite subsets

of 7 that contain the origin O. For any point P, let N i be

P
the result of shifting N, to bring O into the position of P;

thus n.: {P}=NP0;NP1;NP2;... is a nested set of sets that con-

P
tain P. We call n, a neighborhood basis for P.
Let 1=n05n15n25... be any monotonic nondecreasing segquence

of positive integers. For any S€2Z and any P¢S, there is a lar-

gest i, call it i(S,P), such that N S. (Note that Np0={P}SS'

, C
Pi—
and that S is finite.) Let the G-transform f be defined by

f{S,P)=n. We call such a G-transform an N-transform.

i(s,p)”
It is easily verified that a distance transform is a N-

transform. In fact, let Ni be the "disk" of radius i centered at
O, i.e., the set of points whose distances from O are =i, and

let ni=i+1; then the distance transform f£(S,P) is just ng, (1
greater tian the radius of the largest disk centered at P and con-

tained in S). Note also that the characteristic function is an N-

transform, if we simply take ni=1 for all i.

Theorem 3. A G-transform f has the intersection property iff it

is an N-transform.

Proof: For any S and T we have i(SNT,P)=i(S,P)Ai(T,P), since the

Np's are nested. Thus if f is an N-transform we have f(SNT,P)=

n (since the n's are monotonic)=

ni(s,p)ri(T,P) Pi(s,p) Pi(T,P)
f(s,P)rf(T,P), so that £ has the intersection property.




—

Conversely, let f be a G-transform and have the intersec-
tion property. For any k, if £(S,P)=f(T,P)=k, we have f(SNT,
P)=k; thus if there are any sets S such that f£(S,P)=k, there is

a smallest such set, call it SPk' By shift invariance, f(S,P)~

k implies f(S' P')=k, where S' is S shifted to make P coincide

with P'; thus S exists iff SPk does, and they are translates

P'k

of one another. Let l=k0<kl<... be those k's for which SPk

«ss, Where N_.=S is a neigh-

cN...C ’
PO# Ply Pi “Pk;
borhood basis for P. Moreover, for any S, let i(S,P) be the

exists; then np:{P}=N

largest i such that N,.cS, and let f(S,P)=m. If we had m=kj>ki,
S would have to contain SPk'=NPj,contradicting the definition of i.
On the other hand, if m=kh<ii' by the intersection property
ki=f(Npi,P)=f(SﬂNPi,P)=f(S,P)Af(NPi,P)=kh, contradiction. Hence
f(S,P)=ki, so that £ is an N-transform. |

Thus we see that the intersection property characterizes

a class of G-transforms that constitute a natural generalization

of the distance transforms.
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4. Concluding remarks

The main result of this note has been a "set~-theoretic"
characterization of the "distance-like" G-transforms. It
would be of interest to develop characterizations of other

useful classes of G-transforms.
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