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~ ~/J( ~ ABSTRACT

--- tr - a -_ geometric transform on the digital plane
as a function f that takes pairs (P,S), where S is a set and
P a point of S, into nonnegative integers, and where f(S,P)
depends only on the positions of the points of S relative
to P. Transforms of this type are useful for segmenting and
describing S. Two examples are -distance transforms,-" for
which f(S,P) is the distance franP to !,, and )Isovist transformsj-
where f(S,P) is (e.g.) the area of the part of S visible from
P. This ncte characterizes geometric transforms that have
certain sinple set-theoretic properties, e.g., such that f(SnT,
P)=f(s,r)Af(T,P) for all S,T,P.It_?t is shown that a geometric
transform has this intersection property if and only if it is
defined in a special way in terms of aYxneighborhood base"T' -

the class of such neighborhood transforms is a generalization
of the class of distance transforms.
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1. Introduction

Given a subset S of a digital picture, there are various

useful ways of defining functions on S that associate with each

point P of S some geometric property of S "relative to P". An

early example [1] is the distance transform, which associates

with each PES the distance (with respect to some given metric)

from P to S (the complement of S). This transform is a useful

tool for describing or segmenting S; for example, the well-known

"medial axis transformation" of S is just the set of local maxima

of its distance transform. A more recent example [2] is the class

of "isovist transforms", which associate with each P some property

of the part of S "visible" from P, e.g., its area; such trans-

forms can be used, e.g., to find minimal sets of points from

which all of S can be seen. (A point Q of S is said to be visible

from P if the straight line segment PQ lies entirely in S.)

In this note we give a general definition of such "geometric

transforms" (for brevity: G-transforms). We also characterize

G-transforms that have certain simple properties with respect

to set-theoretic operations. In particular, we consider G-trans-

forms having the "intersection property": for any two sets S

and T, the transform values for SnT are (pointwise) the infs

of the values for S and for T. We show that a G-transform has this

property iff it can be defined in a special way in terms of a

"neighborhood basis"; the class of such transforms includes the

class of distance transforms. Interestingly, the analogously de-

fined "union property" implies that the transform must be trivial.



2. G-transforms

Let E be a bounded set of lattice points in the plane

(e.g., a digital picture), let 2 be the set of subsets of Z,

and let f be a function defined on 2 XE. For simplicity, we shall

assume that f is integer-valued; that f(S,P)=O whenever PIS; and

that f(S,P)>O whenever PES. We call f a G-transform if f(S,P)

depends only on the positions of the (other) points of S relative

to P. This is a rather general definition; the following are

a few examples of G-transforms:

a) The characteristic function, i.e., f(S,P)=l iff PES

b) The distance transform, i.e., f(S,P)=the distance from P to

c) The "area transform": f(S,P)=the area of the connected

component of S that contains P

d) The isovist transform: f(S,P)=the area of the part of S

visible from P

Since a G-transform is defined in terms of positions relative

to P, it is evidently shift-invariant -- in other words, shifting

S cannot change the G-transform values of its points.* In parti-

cular, we have

Proposition 1. f({P},P) has the same value for any P. II

For simplicity, we assume that this value is 1.

*We assume that when S shifts, it remains inside Z. Alternatively,
we could allow cyclic shifts, and define f(S,P) in terms of the
positions of the points of S relative to P "modulo E".
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We say that f has the union property if f(SUT,P)=f(S,P)vf(T,P)

for all S,T,P, and the intersection property if f(SfT,P)=f(S,P)A

f(T,P) for all S,T,P. Evidently the characteristic function has

both the union and the intersection property. In fact, it is

the only G-transform that has the union property, as we see from

Proposition 2. A G-transform f has the union property iff it is

the characteristic function.

Proof: By Proposition 1, f({P},P)=1 for all P. It follows from

the union property that f({P,Q},p)=f({P},P)vf({Q},P)=1 for all

{P,Q}, i.e., for any two-element subset of Z. By induction, the

same is true for any finite subset of Z. II

The G-transforms that have the intersection property are less

trivial; we shall characterize them in the next section.
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3. N-transforms

Let n: {O}=N0 NIN 2f... be a nested set-of finite subsets

of Z that contain the origin 0. For any point P, let Npi be

the result of shifting Ni to bring 0 into the position of P;

thus np: {P}=NpPl1P2.. is a nested set of sets that con-

tain P. We call n a neighborhood basis for P.

Let l=n0snl:n 2 <... be any monotonic nondecreasing sequence

of positive integers. For any SE2 and any PES, there is a lar-

gest i, call it i(S,P), such that NpisS. (Note that Np{P}cS,

and that S is finite.) Let the G-transform f be defined by

f(S,P)=n i(sp) We call such a G-transform an N-transform.

It is easily verified that a distance transform is a N-

transform. In fact, let Ni be the "disk" of radius i centered at

0, i.e., the set of points whose distances from 0 are :i, and

let ni=i+l; then the distance transform f(S,P) is just nPi (i

greater t.aan the radius of the largest disk centered at P and con-

tained in S). Note also that the characteristic function is an N-

transform, if we simply take ni=1 for all i.

Theorem 3. A G-transform f has the intersection property iff it

is an N-transform.

Proof: For any S and T we have i(SnT,P)=i(S,P)Ai(T,P), since the

Np'S are nested. Thus if f is an N-transform we have f(SnT,P)=

ni(S,P)Ai(T,P)=ni(S,P)^ni(T,P) (since the n's are monotonic)=

f(S,P)Af(T,P), so that f has the intersection property.
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Conversely, let f be a G-transform and have the intersec-

tion property. For any k, if f(S,P)=f(T,P)=k, we have f(SnT,

P)=k; thus if there are any sets S such that f(S,P)=k, there is

a smallest such set, call it SPk. By shift invariance, f(S,P>

k implies f(S',P')=k, where S' is S shifted to make P coincide

with P'; thus Spik exists iff SPk does, and they are translates

of one another. Let l=k 0<kl<... be those k's for which Spk

exists; then np: {P}=Np0 NpI.... where Npi=Spki, is a neigh-

borhood basis for P. Moreover, for any S, let i(S,P) be the

largest i such that N piS, and let f(S,P)=m. If we had m=kj>ki,

S would ha.e to contain SPkj=NpjContradicting the definition of i.

On the other hand, if m=kh<k i, by the intersection property

kj=f(Npi, P)=f(SnfNpiP)=f(S,P)Af(Npi,P)=kh, contradiction. Hence

f(S,P)=k i, so that f is an N-transform. 11

Thus we see that the intersection property characterizes

a class of G-transforms that constitute a natural generalization

of the distance transforms.
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4. concluding remarks

The main result of this note has been a "set-theoretic"

characterization of the "distance-like" G-transforms. It

would be of interest to develop characterizations of other

useful classes of G-transforms.
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