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1. Introduction

Digital geometry is the study of geometric properties of

sets of lattice points in the plane, or equivalently, subsets

K. of digital pictures. The discrete nature of the space gives

rise to substantial differences between digital geometry and

ordinary (continuous) plane geometry. A few areas of digital

geometry have been extensively studied. One of them is digi-

tal topology, which deals with such concepts as adjacency,

connectedness, and surroundedness, and with general properties

of digital arcs and curves; for introductions to this topic

see [1,2]. Another is digital convexity, which is concerned

with characterizing digital subsets that are digitizations of

convex objects, and digital arcs that are digitizations of

straight line segments; for a review of this area see [3].

One of the factors that gives rise to basic differences

between digital and Euclidean geometry is the nature of the

metrics used to measure distances. In digital geometry, it is

very natural to measure distance using integer-valued metrics,

known as city block distance and chessboard distance, since sim-

ple iterative algorithms exist for computing these metrics, e.g.,

for computing the distances from all points of a digital picture

4 to a given subset, whereas in the case of Euclidean distance this

can only be done approximately. The city block distance between

two digital points (x,y),(u,v) is defined as

* d 4 ((x,y),(u,v)) = jx-ul+ly-vj



while the chessboard distance is defined as

d8 ((x,y),(u,v)) = max(Ix-uI,Iy-v)

It is easily verified that the city block distance is the length

of a shortest path from (x,y) to (u,v) in which only horizontal

and vertical moves (from lattice point to neighboring lattice

point) are allowed, while in the chessboard distance diagonal

moves to neighbors are also allowed. (The notations "d4 " and

"d. are used because a point has four city-block neighbors

(at distance 1 from it) and eight chessboard neighbors.) An

early study of discrete metrics on digital pictures can be found

in [4]. A delightful treatment of city block (or "taxicab")

geometry, emphasizing loci defined in terms of distances (perpen-

dicular bisectors, conic sections, etc.) is presented in [5].

This note discusses some simple properties of digital tri-

angles, i.e., triangles whose vertices are lattice points and

whose side lengths are measured in terms of city block distance.

(Analogous results would be obtained if chessboard distance were

used; their investigation is left as an exercise to the reader.)

* The subject is complicated by the fact that city block distance

is direction-sensitive; it is equal to Euclidean distance in the

horizontal or vertical direction, but exceeds it by a factor of

* /2 in the diagonal directions. In addition, many of the familiar

theorems about triangles break down in the city block case.



2. Distance and angle measurement

We define the length of a side of a digital triangle as

the city block distance between the endpoints. Since city block

distance is a metric [4], the lengths of the three sides of a

triangle satisfy the triangle equality. The proof of this fact

is given here for the sake of completeness.

Proposition 1. The length of any side of a triangle does not

exceed the sum of the lengths of the other two sides.

Proof: Since the lengths do not change when the triangle is

shifted, we may assume without loss of generality that the ver-

tex opposite the side in question is (0,0). Let the other two

vertices be (a,b) and (c,d); then we must prove that Ic-al+Ib-dI

(IeI+Ibi)+(IcI+Idj), which is an immediate consequence of the

fact that Ix+yjjIxj+jyj fcr all x,y. II

Note that in Euclidean geometry, the inequality is strict unless

the triangle is degenerate (its vertices are collinear), but in

city block geometry it is non-strict whenever two of the vertices

lie in opposite quadrants relative to the third (in the proof:

whenever a and c, b and d both have opposite signs).

As regards angle measurement, one possibility would be to

simply use the Euclidean definition. (Note, incidentally, that

since the vertices are lattice points, the slopes of the sides

must be rational numbers, so that all angles are rational multi-

ples of 2n and have rational tangents.) Alternatively, we can



K

give a city-block definition based on the concept that the angle

- . between two radii of a circle is proportional to the area of

the circular sector defined by the radii. Now in city block

geometry, a "circle" ( i.e., the locus of points at a given dis-

tance from a fixed point) turns out to be a square with diagonal-

ly oriented sides; for example, the points at distance 3 from

p areU

* . p . .

S o • . .

If the "radius" is r, the square has (Euclidean) side length

rv'2. We shall define the angle between two rays emanating from

P as the fraction of the area of a diagonally oriented square

(centered at P) defined by these rays. Strictly speaking, we

should measure the area by counting lattice points; but e the

square becomes large, the result tends toward the fraction of

the Euclidean area of a Euclidean square defined by the rays0

regarded as Euclidean lines, so for simplicity we shall use

Euclidean area measurement.



When we use the city block definition of angle, a given

(Euclidean) angle can vary in value depending on its orienta-

tion. Nevertheless, we have

Proposition 2. All right angles are equal.

Proof: When we divide a diagonally oriented square into four

g quadrants by drawing two perpendicular lines through its cen-

ter, no matter how the lines are oriented, the quadrants are

all congruent; hence each of them has of the total area. Thus

a (Euclidean) right angle in any orientation has (city-block)

angular measure .2n= 1. II

On the other hand, angles that are not multiples of 90° have

values that vary with their orientation. To see this, consider

a 450 angle emanating from the center of a diagonally oriented

square. When one side of the angle is vertical or horizontal

a1and the other is diagonal, it evidently cuts off of the

area of the square, so that its city block angular measure is

L. On the other hand, when the bisector of the angle is ver-
3 3

tical, it cuts off a larger area (fraction -tan), and when the
1 8

bisector is diagonal, the area is smaller (fraction -tani);

since tan?-/v2-l, the angular measures in the two cases are thus
3T

4-(/2-1) and (V2-1), respectively. In spite of this, we

have



Proposition 3. The sum of the angles of a triangle is 7.

Proof: No matter how the triangle is oriented, if we put one

vertex of the triangle at the center of a diagonally oriented

square and draw a line through it parallel to the opposite side

of the triangle, we have three angles at the vertex whose sides

are the same as or parallel to those of the angles in the tri-

ul angle, and whose sum cuts off half the area of the square. Ii

I
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3. Some theorems that fail to hold

The results obtained in Section 2 are not typical; most

of the familiar properties of Euclidean triangles break down

for city block triangles (even when angles that differ in measure

because they differ in orientation are not involved). In this

section we present examples that illustrate the extent of this

breakdown.

3.1 Congruence

Example 1 [5]. Two triangles that have two pairs of-correspond-

ing sides equal, and all corresponding angles equal, are not

necessarily congruent.

Illustration: Consider the triangles

(a) (b)

In (a), the angles are -,- and 1-, and the sides all have length

2; in (b), the angles are the same, and the sides adjacent to the

right angle have length 2, but the third side has length 4. Note

that this counterexample is not a result of differences in angle

measure due to orientation.

4 Example 2. Two triangles that have all three pairs of corresponding

sides equal are not necessarily congruent.

Illustration: Consider the triangles



(a)(b

In both (a) an(b)te ielnth r ,4,ad2 u

the angles all differ.

3.2 Eguilaterality

Example 3. The base angles of an isoscles triangle are not

necessarily equal; in fact, an equilateral triangle is not

necessarily equiangular.

Illustration: The triangle of Example la is equilateral,

but its angles are ~,~,and

3.3 Altitudes and area

The altitude of a triangle, as measured from a given ver-

tex, is just the city block distance from that vertex to the

opposite side. (On the city block distance from a point to a

line see [5], p. 34 ff.) In Euclidean geometry, the altitude

times the length of the opposite side is twice the area, and

is the same for all three vertices. In the city block case,

on the other hand, we have

4 Example 4. The altitudes to the equal sides of an isoscles

triangle are not necessarily equal; in fact, the altitudes of

an equilateral triangle are not necessarily equal.

4



Illustration: In Example la, the altitudes are 1, 2, and 2.

Corollary. The "areas" measured by multiplying each alti-

tude by the length of its, opposite side are not necessarily

equal.

Example 5. If two altitudes of a triangle are equal, the op-

posite sides are not necessarily equal; in fact, if all three

altitudes are equal, the triangle is not necessarily equilateral.

Illustration: In Example 2a, all three altitudes are 2.

3.4 Right triangles

The Pythagorean theorem does not hold for city block

right triangles. In fact, if the legs of a right triangle

are horizontal and vertical, the hypotenuse is equal to the sum

of the legs; if the legs are diagonal, the hypotenuse is equal

to the larger leg. This also makes it difficult to define the

trigonometric functions; for example, in Examples la-b the acute

angles are all , but (a) gives sinT cos , while (b) gives

sinT=cos4 = 2. If does not seem possible to develop a "digital

trigonometry" based on city block distance.



4. Concluding remarks

IMany of the standard concepts of Euclidean geometry are

not even defined in the digital case; for example, a line seg-

ment may have no midpoint (e.g., if it has an even number of

points), and two line segments may cross each other without

intersecting. For this reason we have not discussed concepts

such as medians or perpendicular bisectors, or lengths of angle

bisectors; for more on these concepts see [5]. As we have

seen, even concepts that are well defined do not have their ex-

pected properties. Digital triangles are simple objects, but

if we use city block distance to measure their sides (and angles),

most of the Euclidean properties no longer hold.

I
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