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NOTATION

a,, h,, c?, d, Arbitrary stress function parameters at frequency ,

b Element thickness

C Matrix relating nodal displacements to generalised parameters

D Elasticity matrix

d Vector of displacements at any point in the element region

co. ei. fi Arbitrary stress function parameters associated with special solutions of the
bi-harmonic equation

f The proportion of a full circle for the element variant shape

G Element stiffness matrix in terms of generalised parameters

H Matrix relating strains to generalised parameters

K Element stiffness matrix in global cartesian co-ordinates

k Element stiffness matrix in local polar co-ordinates

L Matrix relating displacements to generalised parameters

N Number of nodes

Ns Cutoff frequency for the Fourier representation of the applied loading

/I General frequency parameter

p Vector of applied loads

po Internal pressure

Q Vector of nodal loads in global carteisan co-ordinates

q Vector of nodal loads in local polar co-ordinates

r0 radius of hole

ri Circumscribing radius of the element

rEQ Equivalent radius of the element

r. 0 Radial and angular co-ordinates of the local polar system

S Stress recovery matrix

S ln, S21 Stress function coefficients at frequenc) n related to the applied loading

T A geometric transformation matrix

u. i Radial and tangential displacements in the polar co-ordinate system

E Vector of arbitrary generalised parameters

a Vector of generalised parameters related to the applied loading

,i. , ,a Rigid body motion parameters for . and y translation and rotation
respectively

yf Angular co-ordinate of node i



8 Vector of nodal point displacements in local polar co-ordinates

A Vector of nodal point displacements in global cartesian co-orditiates

Vector of strain components

a Vector of stress components

'rr. ,,. r,, Radial, tangential and shear stress components

a(O). r(iO) Distributions of normal and shear applied loading

u(Ji, Tag Fourier coefficients of applied loading

General symbol for a stress function

Poisson's ratio

Subscripts

0 Refers to quantities related to the applied loading

H Refers to quantities related to an unloaded hole

T Refers to the full stress reco erv matrix constructed from esaluations at
selected points

o / Refers to frequency n

Numerical Refers to frequency or node number

Superscript,

T Transpose
-I Inverse

Dash superscript indicates quantities related to the orthogonal trigonometric
functions to those of the undashed quantities

Arbitrary imposed state



I. INTRODUCTION

In this paper, a special finite element enclosing a loaded hole in a plane sheet is decribed in
some detail. This work had its origins in an attempt to develop a special element to enclose a
fragment damage site in an aircraft structure: such an element w ould fticilitnle rcsidual strength
analyses of damaged aircraft structures for use in Nulnerabilitv asses,ments. For example. s hen
an aircraft is attacked by certain types of warhead the damage incurred by the aircraft skin
consists of many closely spaced fragment perforations which can be ideafised as holes with cracks
radiating from them. A natural first step was to consider the case wshcre the damage consists of
uncracked circular holes in a plane sheet. Since problems inNh\ing sheets %sith circular hole,
both unloaded and loaded, are of common occurrence in aircraft structures. quite apart from the
particular application which gave rise to the present study. these were considered in detail: see
also Reference I.

The basic concept of the finite element method of structural anal.sis is that a complex
structure is partitioned into a network of simple shaped. standard elements. The stiffness
characteristic of the whole structure is then formed by assembling the kno% n stiffness charac-
teristics of the individual elements; see Reference 2. However. for regions of high stress
gradients. such as occur around holes, it has proved beneficial to de\elop special element t pes.
rather than to use fine meshes of standard elements. Rao etal..l were among the earliest to apply
this concept. In Reference 3. a general method for formulating special elements around stress
concentrators, including stress singularities, is presented. For this method, the displacement
state within the element is defined by functions Anich satisfy condi!ions of stress equilibrium.
strain compatibility, and any bound~:ry conditions (BCs) of the stress concentrator. Such~~elements are termed "h) brid elements" in Reference 3, in that the combine concept, of, Coll-

tinuum mechanics with finite elements. A consequeice oi- the use of tather complex displacement
functions for hybrid elements is that boundary displacements arc incompatible v th those of
adjoining standard elements. However, a comparison' of tiso sector elements. one v, ith"natural
mode' shape (i.e. displacement) functions and the other s ith simple conforming shapc functions.
has clearl% demonstrated the superior performance of the former despite its %iolation of inter-
element displacement compatibility.

In Reference 3, Rao el a/. demonstrate the use of a speciaI hybrid element surrounding an
unloaded circular hole in plane stress problems. In the present paper that work is extended to
the case of loaded circular holes. The paper is set out as follows. A general outline of hsbrid
element theory is given in Section 2. Then, in Section 3, the detailed application of that theory
to derive an element for a loaded ir'ular hole is given, and in Section 4. the associated computer
program is full described. Result. -,. sample runs of the program are presented in Section 5. and
a general discussion is given in Sectikit 6.

2. HYBRID ELEMENT THEORY

For the stress analysis of two-dimensional elastic structures, the governing etquaton of
equilibrium and compatibility is:-

g'l~b = 012.1)

where q is the stress function and V is a differential operator. defined in polar co-ordinates by:

'-a I I (2.2 )
,r- r r )-. hi-

--- -- --- -- --



A scparated variable solution is proposed for 0 in the form:

4'=F(r)G(H) (2.3)

where
G() tsin 019

G(O) - (2.4)

The upper and lower functions in the bracketed notation are each separately siid. On solving
(2.1). (2.3) becomes:

On= ." ,(1sin i60 (2.5)
,n = [a,,r":-br " t. c,1r"-'" ,d \cos W))

with the two degenerate cases:

i,0 = a0 rbonr -cor'-- dr"lnr '2.6)

0= [air ibir-' t-eir3_i~dilnrI tcsn ,(27

The general frequency parameter, n. is unrestricted at this stage. In Reference 5 are listed several
other solutions to (2.1), not in the form of (2.4), which together with (2.5), (2.6) and (2.7), make
up the full general solution to (2.1) in polar co-ordinates. These other solutions are grouped
below as:

, = o'0{o4er - os J

eor-O foO- e sin 01' (2.8)

Using standard formulae, 5 the stresses, strains and displacements can be derived from the stress
function. Hav ing derived these quantities, the boundary conditions of a stress concentrator can
he satisfied. For example, an unloaded hole has the boundary conditions:

arr ' -r,, = 0 at r = r, all 0. (2.9)

These conditions allow two of the arbitrary coefficients an, b,, c, and d, to be determined in
terms of the other two. The allowahle values for n are restricted to integers only, to satisfy a
requiremen, for single-valuedness in a multiply-connected region. Conditions of symmetry can
further rest:ict the allovwable values for n. Once these boundary, single-valuedness and symmetr)
conditions have ben applied to the general solution -a (2.1). a set of functions remains which
satisfies equilibrium, compatibility, and all conditions of the stress concentrator. For the general
case of Ihis set of functions, In, radial and tangential displacements take the respective forms:

[ Id - sin nO)
u = [f'(n,ro,r)hn f,2d,,)lcos no) (2.10)

V , b " d I -CsI01
= t -1 n .'". sinnof (2.11)

The equations can he grouped in matrix form as:

[ Isin ol I sin ni u

fIcos "of -cos 01 f (2.12)
=~~ '" /lCos 101 1 I Cos"01Id"j

sin nOj f22 sin ii

i.e.

d.= L,,t (sa)). (2.13)
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iO
VWhen 'he functions for several values of t/contribute to the displacement. it is gisen by:

gj

d 14 , = [Le. Lj LA., .. (2.14)

=L (say). (2.15)

The displacement formulation (2.15) is in a suitable form for the finite element method. In
addition to the stress function parameters, the vector at can contain rigid body motion para-
meters, as appropriate. Such parameters do not appear in the stress function as they do not
induce any stress. The strains are found by differentiating the displacements.(

= = H . (2.16)

Columns of H corresponding to rigid body motion parameters are zero. The stresses are found
from the strains using the generalised Hooke's Law.C, .arr/

a = De= D/a. (2.17)
Tro

Consider a general finite element with N nodes surrounding a stress concentrator (see Fig. I).

FIG 1: GENERALISED SPECIAL ELEMENT

3



I oie displacement formulation (2.15) applies to all points within the element, including the nodal
points. Suppose (2.15) is applied to each of the N nodes in turn by substituting the appropriate
co-ordinates into the matrix L. A vector of nodal point displacements can then be formed as:

8 f} = [] = COE (sax). (2.18l

_L.,,"

If the number of arbitrary parameters chosen to form ,1 is equal to the number of nodal point
displacement degrees of freedom, then the C matrix will be square. This enables the relation-
ship (2.18) to be inserted.

CE = C IS. (2.19)

In order to assemble this special element % ith the other elements forming the structure, it is neces-
sary to dere a stiffness relationship between the nodal forces q and the nodal displacements S.

q = k8. (2.20)

The stiffness matrix k can be found by minimising the potential energy of the element. using the
principle of irtual xsork.

k = (C H)T D HDLdC I (2.21)

where the integration is oser the volume of the element.

The relationship (2.20) can be readily transformed from local polar co-ordinates to global carte-

sian co-ordinates by using a transformation matrix, T.

q = TQ: 8 = TA. (2.22)

Q I l"r, 7A (2.23)

KA (sa,). (2.24)

Once the stiffness matrix K has been generated for a special element, it can be assembled %%ith the
other elements comprising the structure and a solution found for the displacements A using a
finite clement program. The stresses cmn be Calculated at any point within the element as:

a = Dila = tIC I7A = SA (say). (2.25)

3. LOADED HOLE ELEMEN'T

3.1 General

A special element, to surround a circular hole with applied loading on its boundary. is iescrihed
here (see also Ref. I). The element is able to account accurately for applied loading bN directl\
matching applied load and boundary stress distributions. The applied load distribution is
represented as a finite Fourier series. Stress function coellicients of the element are related to the
Fourier coefficients of the applied loading. The stress function formed from this relationship
contains arbitrar\ parameters ws hich lead to the formation of the element stiflness matrix, and
fixed constants ss hich lead to the formation of initial stresses and equialent nodal forces to the

applied loading. As X\oull he expected, the stillness matrix so formed is identical to that of an
eqtiilCnl unloaded hole element. The influence of the applied loading is therefore expressed
through the equisalent nodal forces and the initial stresses. The equisalent nodal forces are input
loads for the finite element analsis,. and the initial stresses are added to those calculated b, the
finite element analysis.

3.2 Element Shape

The basic shape of the element is an annulus w ith a polygonal outer boundars sshose corners

(nodes) lie on a circle concentric with the hole. The number of nodes and their angular co-
ordinates can he %aried. as can the aspect ratio of the circumscribing circle radius to the hole

4



radius. Three variants of this general shape are considered. according to the s~mmctrN of the
problem. For double symmetry onlN one quadran! is required, for single s\mmetr\ a semi-
annulus, and for the unsymimetric case the full annulus. The three element \ariants are sketched
in Figure 2. Also in Figure 2, the boundary conditions corresponding to the states of s\ mmetr
are shown. These boundary conditions actually alter the number of degrees of' frecdomn of the
element and that effect is also showkn. The rigid body motions applicable to tile three clement
variants are shown in Figure 2.

3.3 Fourier Analysis

The applied loading takes the form of normal and shear stresses, aia(('l and r,,(I), applied
to the hole Surface, r = ra. The applied loads are represented b\ finite Fourier series as:

aH = ;oi Y_,, cos nO'-'h sin n0:.(31

Tat)= (u'2) Y_ sit n 7,, cos nti;. (3.2)

The form of (3.2) is slightly different from the usual form of a finite Fourier series. (3.1) to simplif\
the imposition of boundary conditions in Section 3.4 belosk. The series cutoffE N%5. is selected
large enough to obtain an adequate representation of Afl) and 7al'

t l.

3.4 Boundary Conditions

The radial and shear stresses. derived', from the general stress function 3,, of Equation
(2.5), are listed below.

arr [ a,,(112 j)S 2 hj)n2  
- )r "2 (.,,(112 ni 2)r,'

dll 11 o 2)r1 in nUJ (3.3)
Tr, - fall(i 2  - 1 1* 2 b,,),,2  

n 1)1 11 2 - .,,(fo
2

Co sit)UJ (3.4)

The single-v aluedness requirement for a multipis -connected region restricts n to integer values.

The boundar) conditions for the loaded hole cr:

Ur = at') and 7r, 7;,T10) at r = Is(, all U.(3.5)

These boundary conditions are enforced by equating Fourier coefficients of the applied loading
to stress function coefficients.

a,12 nr, 2 1112 . 11)1,, n 2 cjn n 2)ro',

c,,,112 ,lr," 2 b,,(112  n?)r,, n '1 . ,,(112  li-)

Solving for all and c,

lin 2
)ra, * a_2,, 1.l2,21 38

2),1- ajrj,, 2

c,, irn,)a, 2n, 2h,, *(p, I ),,) 2 ",,,. (3.9)
2n I )roll

5



N N-i

v=0 2N-2 degrees of freedom

r 3 v = 0 at 0 = 0 , allr
'2

2 No rigid body motion allowed

e v=O 1

no

_ i Local cartesian axes

(a) Doubly symmetric (DS)
x

N2N-2 degrees of freedom
r

N 2 v=Oat 
= 0,7r allr

x translation rigid body
N _ _ 0 ,_ 0 motion only

(b) Singly symmetric (SS)

2N degrees of freedom
v unrestricted

1- All rigid body motions -

x and y translations and rotation

r - N

(c) Unsymmetric (US)

FIG 2: LOADED HOLE ELEMENT VARIANTS
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Note that parameters a,, and c,, contain constant terms related to the applied loading but their
relationships to parameters Ib,, anrid d,, are independent of tie applied loading. Let the constant
terms of parameters a,, and c,, be labelled .s,, and s_,,, respectis el.

' ___=2 - l1 
"

(3.11)

In Equations (3.6) to (3.11 ). the boundarv conditions (3.5) hase been imposed for the lo. er
trigonometric functions of Equations (3.31 and (3.4). Let the parameters associated s. ith the
upper trigonometric functions of (3.3) and (3.4) be distinguished h\ a dash superscript . z.,, .
b, . c, ,, . The boundars conditions (3.5) can be imposed in a similar manner for tiese para-
meters. and identical equations to (3.6) to (3.11) result, except that all parameters hase dash
superscripts. i.e. a, . h,, . C,, . rd,. 1.. . ,, . The relationships (3.8) and (3.9) can be
substituted into Equation (2.5) for the general stress tunction. ,I,,,.

= [sr" . ] [ I .V,, - ... 211,, 2'" 2 "]/,,

or ,, ' . 1i l1-,, 1.. 2 - r "],,2 sill 3l)'Icesneq" 3.121

(cos ntll'

6,W,,, 6 ,1. (3.13)

Where b,,,, is a fixed stress function related to the applied loading, and ,b,,1n contains the arbitrary
parameters b,, and d,,. and is the same stress function as for an unloaded hole. Stresses. strains
and displacements can be derised from ¢,,.

Special cases for n = 0 and I can be dens ed in the same manner as abo,,e, using the stress
functions of (2.6). (2.7) and (2.8). Single-s aluedness requires:

0: 2l Ill. (3.14)

Then

,o [(I,, bhlnr - cur-' - fl] (3.15)

= [A r 2 . 2cr], (3.16)

r, 2]. (3.17)

so
hbw ' 2t. ip :, 2. (3.18)

and

- = ra,, 2. (3.19)

Solsini.

c z o-,,, 4 05n,, 2h,). (3.20)

= 0- 5r , ,, . (3.21)

Sill 0"5-",
2

Tt,( s2 =,, 4, (3.22)

,,,, = [S 0. s2 ,,r2 ]. (3.23)

6,m, tint 0-5 r r l]i. (3.24,

(sin 9 2r3 .cos i25
[o, h,r ,ci,, ,rln,[ . 32 )

c7 l-I ij



arr t 2bir* 2cIr Cos--ir J. (3.2o)

T 2hir ;i2cir i it Cos (3.2)

I . 3 ),a

CI - -, I Ih I.

4/ .- (3.29)
4

S~f di.(3.30)

hir rm] In 2wi Cos' o 3.1

3.5 Arbitrar% Parametrs

It remafins to Lhooi's lduc, ,I t, !oil ie %c~t i a of the arbitrar% paranieters band tii,.

Trhe rule follo Ned i, to jihoose ~OrCtje c tie.l,.iil alijes of it. ratteitie from the lonkest. until
al thle as u able desotc ( reedo m 't the elemen hi iake been fil led. The a)) os.able %as ( )ifn

and the applicablit-N of tie upper anid lo%%cr fri eoiti c functionts (dashed and undashcd

parameters) are det~rm ned h% conrdiftions of ss imr . S~mflntr conditions can be espressed
ais additional boun11dar.% condit ions. I )te~c ire listedI beloi for the three loaded hole element
\.ffiaffs (,cc lI e. 21.

iitiss 1IfItfIt nio 1esfrictioit. (3.33)

sities 'snlmetric i - () at i 0. r. all r. (3.34)

d0Uhlk ss fintetrkt f) at 0 .( !.,7 all r~. (3.3s)

These bouridar-s conditions .dfct tile wintber o f decree' of freedom of the element. Nlirnall\
ifan e eme rit has A nodes it hit, 2 \ dc,- Iccs of, (reed) it. correspond ing to it and i- di splice menfts

at each node. Hoiseser. (3.34) and (3.35) suppires the I dt1lslacemettt at the first and last niodes.
leai ng the sinttel and do U l\ s \iict Vc s arianft, 5 i ih oil)]\ 2 degrees oif freedom. Co rise-
quentl\. %%hen the C matrix is esalUated ,iCCitrdtIII! to (2.18). tile r displaceitietit is to0t itiClUIed
in di and d .s. -i na Is . thle app)lica ble rigid hod mot ion coin ponen t s has e to he intclutded. Al) these
factors ha se to be accouniited for iii ortiiii i a rid thle res ult is slioss r in Ta ible I for elements
%% ith A' nodes. IThe notation for the iiiiid bod\ mtotioni components is shos. ni in T able 2.

3.6 Fixed Parametrs

It is eons en rt to a ssemble thle f iset) pafa filet ers si, and s, ] related to tilie app) iet) loadiC.L
tnto0 a sector a, I sa\ ). in tilie samrie iii rimici as tie a rhi tra r\ pa ra meters are a ssenu led int t . F-11
the general case, from (3.12) and (3.13) "~c hidle

hi~i'' ,~ sit i)')(3.316)

I " cos i.'j v (0; 1Cos 1111i')7

%I, /I \2i.2,. i 2f (3.38)

I,.ii,,ii sas).(3.4(19I

VI



TABLE I

Loaded Hole Element Parametet.,

Doubl3  Silngl\ U Lns m met r ic
mneic symmetric

Additionasl boundar\ eon- I O I. = 0 None
ditions at 10 .0. at 0 = 0.

:III/ all r

Appropriate functions for co, 2til' cos ,if' sin Pi - 003
6:? = 0. 1.2.. Cos 1I30

Applicable rigid hod\ motions \one t3, onlN All

Element deprees offreedom IN 2 2N 2 2X

b"1 F il

a2  A odd hl N even
b-. b

(/S 2/2

2 Ih2 2 1

-,. 1. (/2 A -,1 '

h~\ 2

I/ 2)s

TABLE 2

Rigid Hod) Motion Parameters

Rigid hodN motion Notation It I'

xs translation - ~ -Cos 03 /3 sin 3i

v translation '1 31 sill 0 CO

Rotation 30

No, if the totalI stress fuLnction ma tchling thle applied load inrg is %%ri tten as:

then

9



0i5placernent5. !train., god trc,,e, can be dens ~ed horn (3.42) a

d, a. (3.43)l

- /)ll~0.4) 35

'ile a ppronridte function, lor 6 , -,i en in lable 1. aire a ppl icale to I],(,. mcc tile
s rnrr\ of' iie applied Ioadin- I, an in tegral fact or of' the ow ral Is i ielU Cit i, not
nccessar', for the numiber of' iarameter, in a., to riiatcli those in a. I he parameter series in a,,
is cut off at a point iere Iln adeqjuate representation Of thle appied 10,1ini11 is obtained. I-or
special applied load d i nri hut 0 fl. M, tIlm C oniIii0 i oric or a (CV tioii -/Ceo para meters. R igid
bod\ miotion parameter, are riot applicable (or a,

3.7 Stiffness Equation

It hias beeni hosIn that thle total xitess f'unction for tire clemenit can he \ pre-Csd as:

1(3.46)

Front tisl,. it 1 0110%S~ that

d d,, .dii. (3.47)

and-l.a rnt.(.S

G ,al)(nn (3.49)

Cair ('o 
1

1 Cit Ib. (3.5o)

Also, ~E ll Ha llr (.(

so

/ )//,a,, /)/1 1.l 1aj ( l1l). 5r ( 3

M) /it, ICiI (Ii( 00aI PHIrn ,iit 18. (3.5-1)

No\% impose at irtiral displacement. 8*.

1* Lii 18*. (3.55)

C NUCII 6*- 13.56)

Conrsider thle enicrp' changeCS LIU icto ) Let q he tile \cctsir of elemerit riodal f orce, a rid] p tire
eCctor of applied bod\ f'orces.

I1 ) I ternal is ork done on thle element:

hi q. (i . )8 )'q.(357

h% P p. I:2 -- ldI*lipd . )3. 5M

(2) I nternal 55ork:

I or equilibrium.

I



i.e.

(8*)Tq + (d*)Tpds, (C*)TdN, (3.61)

(8*)Tq = fv (HHCH-1 l*)T(DH ou -D11 1 Cii 'Coao- DHnCu 18)d%-

(Ln Ci1 t6*)Tpd. (3.62)

(6*)Tq = (*)(CIl)T f (HHTDtOao- t C , - Hi TDIfiCit C5 O HjjTDHJIICH -8)d%-

_(S*)T(Ca )T f LitTpds. (3.63)

Since ,* is arbitrary,

q = (CH-)Tf HjDlisdvao-(C,1 I)f fiTDhidvCii 1COCEO
fV JV

H(CH I)T i HTDHHdvCi, '8 (C, ,)Tf LItTpi.. (3.64)

The first two terms on the right-hand side of (3.64) are vectors of nodal forces related to the initial
stresses of Equation (3.54). When these terms were numerically evaluated in Reference I they
proved to be self cancelling, That result was not able to be proved analytically in Reference I.
However, those two terms are neglected in this paper as having no effect. The third tern] on the
right-hand side of (3.64) contains the stiffness matrix of the element (see (2.21)). The last term is
the standard formulation of the vector of nodal forces q,, equivalent to the applied loading
(see Ref. 2). Hence, (3.64) reduces to:

q = k8-- qo. (3.65)

Equation (3.65) can be converted to global cartesian co-ordinates using a transformation, T
(see (2.22) to (2.24)).

Q = KA- Qo. (3.66)

Stress recovery is achieved through Equation (3.54) which may be written as:

a = a0  S8, (3.67)

= GO SA. (3.68)

Equation (3.68) can be evaluated at a number of prescribed points and assembled as shoran
below.

92 S..H []A (3.69)

i.e.

OT G OT I STA (say). (3.70)

3.8 Stiffness Matrix Evaluation

The main step in evaluating the stiffness matrix of an clement is to evaluate the volume
integral of Equation (2.21). That integral is given the notation:

G JIf ItIt/v. (3.71)

If



I ,r the loaded hole element, the %olume of integration is an annulus of uniform thickness,
w ith a circular inner boundary and a possibly irregular. polsgonal outer boundary. In %iew of
the complexity of the terms in the t1 matrix (see Ref. I ), it is not feasible to ealuate this integral
ana!ytically. The method of integration chosen is to approximate the outer pol',gonal boundalr
by a circular one, concentric %kith the hole, without changing the solume of the element. I his
allows the integration to be performed between constant limits for r and '. The equisalent
outer radius is given by:

1 I f ' -' I '

vvhere/= 0.25 and 0"5 for the doubl, and singly ,.mnictric cases respecti\el\, and:

r.Q = rIl, Y.(Y'sin(y,.1 I sinby t) . (3.73)

,. heref = I-0 for the uns.,mmetric case: ,, is the angular co-ordinate of node i. Now. (3.71
becomes:

G h j 11Dlld, . (3.74)

where b is the thickness of the element. It was sho~n in Rcference I that the integial oxer S is
readily performed analytically, resulting in a diagonal type matrix. The integration o\er r is
more complex and is performed numerically.

4. COMPUTER PROGRAM DESCRIPTION

A computer program has been A ritten to generate the matrices and %ectors A. S-i. Q, and
wr of Equations (3.66) and (3.70). for a specified loaded hole element. The program %\as w5 ritten

in Fortran for use on the PDP-l0 computer of the Aeronautical Research Laboratories. in con-
junction with the general purpose finite element anal.sis program. DISMAL.6 The program,
entitled "HOLE", has been entered in the ARL Computer Program Register and a listing and
other details of the program are contained therein.

The program requires one input file and generates three output tiles. The input tile. [IN,
contains a geometric description of the element, material properties. prescribed points for stress
evaluation, and applied loading definition. For precise details of the input tile structure and a
listing of a typical input file. see Appendix B. To of the output files are for direct use by
DISMAL. DATA.EXT is an ASCII tile containing bookkeeping information, and SPIT is a
binary tile containing the stiffness and stress matrices. K and S'r. These files are written in
APPEND mode so that, by re-running the program, the properties of seseral loaded hole ele-
ments can be strung together for access by DISMAL. The third output tile, LOADS. contains
the equisalent nodal forces Qt). the initial stresses itr. C matrix in\ersion parameters, and the
global stiffness matrix A. all in ASCII form and self explanatory format. Operating instructions
for the loaded hole element program in conjunction sith DISMAL are gisen in Appendix C.

The program caters for three modes of specifying the applied loadinr (see Appendix A.)
Firstly. Fourier coefficients can be input directly. The program user must L sure that the input
coefficients conform to the allowable functions appropriate to the particular loaded hole element
%ariant (see Table I). Secondly, point loads at various angular co-ordinates can be specified.
The program automatically allows for symmetry in calculating the Fourier coefficients for
point loads, by excluding inappropriate coefficients. Finally, for general distributed loading, the
program reads ordinate salues at an odd number of equally distributed points aound the hole
boundary. Again, the program automatically enforces symmetry. For the double and singly
symmetric variants a reflected set of ordinates is generated from the input ordinates. The program
obtains the Discrete Fourier Transform of the ordinate salues by calling a subroutine entitled
C06AAF from the NAG library of subroutines asailable on the PDP-10 computer at ARL.
For the doubly symmetric %ariant the frequencies of the computed Fourier coefficients are
doubled, to allow for the fact that the input and reflected ordinate salue, coser a range , rather
than 2r. For representing the applied loads, it has prosed necessar. to use n N as a limiting
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frequency, as inclusion of higher frequency coefficients introduces large numerical error, into
the calculation of the initial stress ao. The program caters for the specification of no applied
loading, in which case it functions as an unloaded hole element. No equisalent nodal forces or
initial stresses are then output.

The integration over r of Equation (3.74) is performed numerically, using Simpson's rule
with 100 points. The inversion of the matrix Cit of Equations (3.49) and (3.64) is performed b%
a subroutine, GENINV.7

The points at which the vector Go and the matrix S of (3.67) are evaluated, to construct the
vector GroT and the matrix ST of (3.70). consist of radial projections of the nodal points onto the
hole boundary, other prescribed points on the hole boundary. and general prescribed points.
For points on the hole boundary, only the tangential stress component is included in OT and ST.
as the radial and shear stress components are known from the applied loading. Co-ordinates
of prescribed points are defined in the input file to the program.

In principle, it is not necessary to hase a uniform distribution of nodes around the circum-
scribing circle of the element. Hosseser, unexplained numerical difficulties hase been
encountered sien using the program %\ith non-uniform distributions of nodes (see Ref. I).
Therefore, the use of the current loaded hole element program is restricted to uniform distribu-
tions only. The aspect ratio of the clement. ri tO. is unrestricted except to be greater than unity.
Howeser. results of example anal ses indicate that this ratio should be in the range I -5 to 3-0
for best accuracy (see Ref. 1). Other restrictions on the input data. necessary for satisfactory
operation of the program are listed in Appendix B.

5. EXAMPLE ANALYSES

5.1 Problems and Results

Many example aria.ses were described in ReCference 1. Some of those are included in this
section in order to demonstrate the use of the element and the accuracy to be expected from it.
The first example is a rectangular plate \,ith a central circular hole. subject to uniform longi-
tudinal tension (see Fig. 3). This is a doubly symmetric problem and the mesh used is shown in
Figure 3. A doubly symmetric hole clement "\ith eight uniformly spaced nodes w1kas used. The
masimun stress concentration around the hole boundary is of interest. i.e. the tangential stress
a,,, at r = ro. 0 = 0 diided by the uniform applied stress. Accurate \alues for this stress con-

centration factor. accounting for the finite \%idth of the plate hut not the finite length, are
ax ailable in Reference 8. This problem was analy sed for a range of \amLes of r., keeping the
element circumscribing radius, rj. constant. Zero applied loading \,as slpecified for the bole
clement. The results are shossn in [able 3.

TABLE 3

Stress Concentration for Hole in a Rectangular Plate

r r ,,, , , (s.cf .* ,error

1.0 40 3.50 3.02 17.8
1.25 3.2 3.02 3.04 0"7

I-5 2.67 3-05 3"05 0.0
2-0 2.0 3-12 3-10 0'7
2-5 1-6 3-20 3"16 1"2

3-0 1-33 3-30 3.24 1.9

3,5 1-14 3-44 334 3-0

Accurate salue of stress concentration factor. (a,,,),,a. obtained
from Reference 8.

The performance of the singly symmctric \ariant of the loaded hole element is demonstrated
by the problem of an ollfset circular hole in a cir-.ular disc. sublect to uniform internal presure.
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The mesh used is shok n in Figure 4. t. niforni internaMl prc-uirc of I 11 11) 1, c bd6

inputting the frequenc% coefircient a,,, -- 2 0 1W' \itoh ii (,c 510 \ XLi Ita~c

values for the stress concent ra ton factor at p0ir Is A and 13 of, fi gui 4 11CIi cii I ,i i, Iv

Reference 8. Valutes der i ed from thle a na Ixs of tile iiicsl of' I iurc 4 hii~ en ee i mi r I,)
them Ii Table 4.

TABLE 4

Stress Concentration for an Offset Ifl

Point ii,, ( .I-, ,error

B 1 -68 1 1-65 -

An example problem xx ith a hroad spectrum Of freqt.iene>: coMpOnents III tile loal ile
applied to thle hole, is a riketed joint xx itli load transfer through tile rixcs. I lic loid drsiiihiiioii

is of cosine form over lie area of con tact hetix cen the ri ci anid t(lie hiole. -1 Ili, pro blemn I, dciii bed
in Figure 5. For the riseted joint prolbleii tile appliedl loading \k is inpu~tt Js 111diiiiC \x dues ,tiid
tile frequency conmponent,, established lh\ taki ng the I)FT. i1lie tantcntiail tic ess, aselctilmcd

at man\ points around the hole hon ida r and thle im inimi n t res' 'ic11C1 1,1 tri ii ILact .
nas found to he 2-I15 at 1) = 58 - [his is 57,Ili error x iil in ijckwlttc \iliic I

2-28 at 0 = 60 given in Reference 8.
The \ersat ilit v of the loaded hiole e lenient is demonlit catcd b6 tie a i o f MO o les. of

generally unequal dianieter. in a large plate lel'eclixel\ ifiite). Ih mies useIIHd is slioi in III
Fi.,ure 6. For each run of tile probleni t\\o load easeS \k ere .1iihilksd Ii, 1. el It1,'C!. bil Ii Iiii tiilliC,
to uniform internal pressure /, \% tili the Other hole Unloaded. Fro i11 Lill to Irun1. I,1,1(11h! ofI lie
holes "iere saried %%ithout altering tile mesh indl kcepiiig' /I i*, In thle i,iiiu I ; to Ii I ciel
load case of an,, run, the maximuni tangeiitial stress occurs at a poilot C oil lit- loodcd hide
Surface, displaced h\ an angle 0i,- friim thle lineJoilliniz tile hole ceilres. I ieC 'fies conI1Ceili jiM o1s

at point A on the loaded hole hOu~ndar\ and Point 11 oil the u~iiloaded holte boiiiidar\11 11i 1,,0
interest. Points A. B and C aire illustrated Ill FI 111r1 7. 1 le resutlts f-om.ll 11 ills ale e iiii
Table 5 \% here the subscript I refers t, tile loaded hole Miiidlie stlhnIll)t 2 0 lieC iiiilo.1id hiole,

Ilime si'ess concentrations at point C i -Table 5 basc een plited Ili 1 7or 1- Il ite co1ijitiiid
loading case of both hiiles tinder eq ual prcsNsu re xx ieii ri--inil tilie 1si icss I' IXCC liiiiinii. itP pli
A alitl B can he found hv adding thle xalues in coluiins A and] B oh' [able 5. 1 hiee oiined
\alues are compared \k ith accurate x alues from Refereiice 8 Ii Iable 6.

5.2 D~iscussion of Results

The example analyses outlined Ii the precedige sec-tion tlcnion.me~i the acnracs and
utiltx of the loiaded litle element. Thle first evaiiple. a ctitral holeic etniii-pae iiidi. ites
that, for best accuracy . the Lispect ratio oif' tle eletment. Iil 1'., s1lds be ke pt In tile ia ne I S
to 3 -0. For that problem, errors \%ere then less than 2--, . I lie am,l ki, ofldic ricted joint sii
tha t the elenment can produced accu rate stress coincrAt rat ion \alu, tis.ecii f'or ~o iii plc\ applied
load disitri butions. The mesh ftir iim proIlemi. sho%%n in Ii Ii gu e 5. ii Nsse Ccial I tn thd tIl-

angular elermients. i mm of xxhit-h adljoin tilie loaded hile cleiiieiii- 1 lie xx o mid-ide notdes alongu
the Juinet ion are not notdes mif thle Iiomle eleiien t. I nctiiinec tetl nodes amre ii'r ni alk ii IldesI ra 1b1,
as introducing iter-c leme it displacemnt intnipa~t i hi I t. - Iox Cx r - k\1it1I si ,i -xltl elemnt
connections tii the loaded hole clement, displacement HincnAIIbib~il\III is iik tild 1iii\ xxa\

and using unconnectetd nodles stll not nccesariv %iorsei it. I lie ,ia\.sofl\ 1(1iib.ieeft holde,
in an infinite plate shnumis ihe llexmhiliv tof' the loatded hole element. ( siliI- onIN one iiiesli. lirxiai
ranges of filie ha sic pa rarmciF Os itli le pro blem ni erc 'p..iined, \kiit Ii erors less tihani 3 _ .-\ ii

alternate solution of' this pronblem is, unknloxn. a-ntl the stress coiiiciiraiini so ie in I able 5
Lire then useful basic tda ta.

I>
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FIG 6: TWO HOLES IN AN INFINITE PLATE
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FIG 7: STRESS CONCENTRATION FOR TWO HOLES IN AN INFINITE PLATE
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TABLE 5

Stress Concentration for Twso Holes in an Infinite Plate

01'10 2rii h ~

A B3 C (deil)

1-0 1-5 0-667 0-333 1000 0l199 1027 60

1V5 10 15 0.5 0 979 0-374 1031 80

1 2.0 0-5 0 333 0.989 0 249 1-050 60

2.0 1 0 2.0 0-667 0-963 0 664 1-042 80

V.S I. 1.0 0-5 0.991 0-460 1-062 6

1 5 2 0 0-75 0-5 0-953 0-589 1-118 60

1015333 0-667 0.906 0-835 1-103 40)

20 - 2.0 1.0 -0667 -0.866 1093 1-254 40

TABLE 6

Stress Concentration for Tvvo Equal Holes
in an Infinite Plate

r1,.. A2( error
Hole element Reference 8

1.0 3 1.170 1-153 1-5 p

1I5 2 1l451 1-410 2.9

2 -0 1-5 1959 1.900 3.1

The errors listed in Table 6 can be considered as upper limits on the possihie errors in
Table 5.

6. DISCUSSION

The loaded hole element has many adxantagesomet an equixadent mesh of'standard elements.
Yirstls . stresses can be obtained accuratel\ at anN point kkithin the element. Specificall\, the
process of matching boundar3 stresses Asith applied loads ensures accurate stresses. at or near
the boundary. Standard elements cannot produce boundary stresses, no matter boss much the
mesh is refined. In order to obtain boundary, stresses from them, it is necessary to extrapolate
to the bounidar\, and in the case of at hole boundary, the extrapolation is into a region of' high
stress gradients. When using the loaded hole element, both preparation and computing time are
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cut siizmificant I froin an CqulisalIent analksis \%it l a standard clIenicnt mnesh. IThiis iN due to a reduc-
ton it) the nturnher of elentient, and node . Thec displacemnent incontpa iihii t\ of' lie loaded htole

element \kith adjoining standaird clentents dlid not prose ito he at sig'nificant factor. Bounds on the
aICeLT.I i ra\ of the solutions to evi nt ple probhlems wecre not esta hlilied. dI (re toite ,illat or\v
M18t tire of the eonsergenee. F-Ioss ci r. to r miiost enin ee ring appliea tion, sall tamt e q i ed
ai knowledge of the -\Peeled aICetrac\ of' the anal\s. and esperienee in that regard can he gained
front cornpa risons of a na uss U ig thle loaded hole element ill tiheioret ical soluitins (see
Section 5).

As mentioned in the inttroductiorn to tltis report. the role elentrit %\IS de\elojied aIS aI stagIe
it the des elopmerit of an elemten t capa hle of' representing a is a rlrad fragritertt damnagce site in ani
aircraft ItrUCture. SuIch aI dariaeie site can he idealised as a hole \s th cracks radiatinrg from it.

Aset. e ndea ohr, to ex tenrd lie lr~hrid elemtentt method to nmodel a thole is t oine or I io long
cracks radiatiri r. rr it has e met i itli numerical difficulties, and this goal has had to he left for
lter stud\.

. ON(ISION

fle stiatopoe raition of' t he thIiree s aria lis of thre loaded Iil elementt has been eon-
c:d for tin ifo rmi d st ri hut i on of4 to 1(0 niode,. AdeilILL C o perilt ing instruct ions fotr thre loaded

1,ice clerment prog-rarrr areC01contained in Appendices B arid C to this report. A listing of the pro-
grami is conitainted in the A RL Comtputer Programt Register.
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APPENDIX A

Determination of Fourier Coefficients

The applied loads are represented as:

GaO uao, 2 1: aa, cos nit a sin Of; (A. 1)

7:1-i,,12 :7a, sin nitf --- ~ Tan co tt) (A~.2)

Where

Ua O a(fl) Cos 110(10f (A. 3)

aan ,f2 O ,tf) sin d))di0 (A.4)

Ta J IT Taf) Sin 110(h) (A. 5)

7'a'1 = I f aO os11/A.6)

The Fourier coefficients uan Oa, Tan. an can be determined in three ways depending on the
method of specifying the applied loading, GA(?). r.4ff).

(1) If the applied stress distributions, o.(O) and TJ(f) arc trigonometric as sin no( or cos t,.
then the coefficients are known directly. Also if the distributions ua.() and TAO) are
known functions. such that the integrals of equations (A.3) to (A.6) can be easilv
evaluated analytically. then the coefficients can he esaluated external to the program
and input to it.

(2) As a special case of known functions, if point loads are applied then U (f;) and rf'
are delta functions of the form:

rJ)= r~ bit -- (?j) (A.78)

Where Pai and Sr,, arc radial and shear loads applied at 0j. r0 is the hole radius, and b the element
thickness. Then Equations (A.3) to (A.6) become:

ern= PiCos 110i (A.9)

Pai
ga,, = sin nfi (A. 10)

rrah

Sal
,an, = sn nti (A. I)

Tat, -S" Cos n;~f (A. 12)
7T(1h



(3) If a(0) and a(0) are complex or unknown functions, they can be input as ordinate

values at Np discrete values of ). The points are equally spaced and labelled 0 - N, I
shere N,, is an even number. The distributions oaf

O) and TaUH) are then reprcsented as
Fourier series by taking the Discrete Fourier Transform of these points. The DFT is
given by:

Ua() 'A si !,V,, IA O') = 2 C a n Si n cl 2 C O S { 2 f
M= Ta T )T CO fl-.- ran sin it cos 0 (A.14)

2 , 2

Where

2 N 1 -

= " '(O,,) cos(2mnn'N) (A. 15)

Na , Np m1
2 s'P I

Ca,, N aL a(l,) sin(2mnn'N,) (A. 16)

p2 . =IY ,, r,((),, cos(2n/N,) (A. 17)

an I Tr) sin(2mr/,A,) (A.I1)

Equations (A.15) to (A. 18) are numerical evaluations of equations (A.3) to (A.6). The
coefficients a,,, , a, . 7,, a, are evaluated using a DFT package program. The
DFT can be put in the form of Equations (A.l) and (A.2) by using the following

relationships.

Cran = an (A. 191

Gan= a, nA.20)

Tan= Ta (A.21)

Ta ,, - Ta , (A .2 2 )

Ns N,'2 (A.23)

avs = 0" 5ai.\, (A.24)

TaN.Vs = 0 5rai.\, (A.25)
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APPENDIX B

Input Data File

The input data file is entitled HIN and contains all parameters ne.esar\ to define the
element geometry and material properties. the stress e\aluation points. and the applied loading.
The layout of the parameters in file H IN is given belo%%.

HAIN

rI. h. f

I). 2 ).. .\ I

A. I
VM 1. 01,12) ..... 1 01 ,O mit ifA it 0,

rt;(I). I ( I). r,(2). fo;(2) ..... (N ). O.,;) Omit if .\,; = 0
P I=TRIG

II. rTa uj. a, - Ta1 , . a n

n, 0 a,. .. fetc. for NT lines:
P :,= POINT '
Ni , Ns

Ili, Pal. Sal

! I. Pa. .... :etc. for Np lines:
P NUMER

.11.
oa(lI,, ,a(21, oa3) .. oatNpo)

r.(1. T(2). ra(3) .... ra(Nto)

P := END:

The statements enclosed in curls brackets are comments and not part of the file. The file segments
delineated by square brackets can be placed in any order and any segment type can be repeated
or omitted. For no applied loading all three segments should be omitted. All quantities in the
tile are in list directed format. Where practicable, the parameter s. mbols it the abose file laout
correspond ssith symbols used in the main body of this report. rather than \, ith the \ariable
names used in the program. For clarity, all s\mbols are defined in Table BI and their limitations
prescribed. All parameters referred to in Table BI as "numbers" are integers. Other unspecified
parameters are real numbers. All angles are input in degrees. Other quantities are input in any
self-consistent set of units. The program was de\eloped for anticlock\\ise node numbering and
its successful operation for clockise numbering has not been confirmed. For applied loading.
the sign convention is positive for inskard radial loads and anticlock%%ise shear loads. Naturally.
all limits specified in Table BI -,re in addition to inherent sensibility, limits. e.g. it ,\ould be non-
sense to specify a negative element thickness, h.



As an example, the data file H IN for a doubly symmetric loaded hole element %k ith 10 nodes
k is ited below%. The hole radius is 2-0 m. the element circumscribing radius is 4-0 in and thle
element thickness 0-002 mn. Stresses are to be esaluated at three hole boundary point,; onlyN.
Applied loading consists of a point load superimposed on a distributed load.

HIN

2-0, 4-0, 0-002, 0-25
t0
0-0, 10-0, 20-0, 30-0. 40-0. 50-0, 60-0. 70-0, 80-0, 90-0
7 10E07. 0-3
0-0. 0-0. 1.0. 0.0
3
5 -0, 15 -0, 25 -0
0
POINT
1. 8
45-0, 1000-0. 0-0
NU1MIER

4
I -OLOS. -2E05. I -4E05. I -3E05, I - IL[05
0-0. 1-5EO5, l-6E05. l-SE05, 0-0
END



TABLE BI

Input Parameter Definitions

Symbol Definition Limits

Ns Hole radius 0
I') Element circumnscribing radius ri ra and 1-5 < , n, < 3 0 o

best accuracy
/, Element thickness ValiditN of plane stress assumption

f Element fraction of' a full circle = 0 -25 for doubl \ symmetric
=0-5 for singl\ symmetric
= 1 0 for unssmmetric

N Number of nodes 3 < A' <_ 10
$il Angular co-ordinate of node i -Ai I > all y(j). forj < <

-/N)- I = 369f. forf 5- 1 -0
< 36Qf, fort f 1 0

E Young's Modulus None
v Poisson's ratio None

.1,4. Yo Global carlesian co- srdinate of the hole None
centre

X1. Y't Global cartesian co-ordinate of node I None
A1  Number of hole boundary points for N -Nit 3N*(; <_ 30

stress esaluation
011(i) Angular co-ordinate of boundary stress None

esaluation point
A", Number of general points for stress N - N 0 -. 3N,; < 30

evaluation
r;(il. 0,;(i) Local polar co-ordinates of general None

stress evaluation point i
P A flag to specify the type of loading TRIG., POINT., NUMER.

Vr 
END

Ar Number of frequencies for which N'one
Fourier coefliciew~s are input

11 Frequency parameter Integer. 0 -< it _ 16
a.",. ga Coetlicients of cos Pi)and sin n0~ for These functions are referenced to node

applied normal stress I as it = 0
rn, . T., Coeflicients of cos Pit' and sin W) for These functions are referenced to node

applied shear stress I as 0 = 0
Np Number of positions at wkhich point None

loads are applicd
N5V Cut-off frequency for Fourier represen- Integer. 0 Ns (16

tation of point loads
f Angular co-ordinate of point load None

position
Pp. S,. Radial and shear point load compon- None

ents at position
Alt parameter defining the niumber of input Even integer < 8. 10. 12 fort 0-25.

NFo Number of input ordinate salues NF 2-11 or1nt 2aus 1E 15 0

q0 (i). i*0 (i The ith normal and shear stress ordinate Ordinate values are for equally spaced
salues points around hole boundary. For

f 0 -25. 0 5. points I and NFO lie
at nodes I and N respectively, and
Ta) If) rJNFO = 0. For f 1 -0,
points I and NF~s lie at node I and

_______________________________________ I) = ualNyos and ,,(1I) rsT( NiO)



APPENDIX C

Operating Instructions

The step-by-step operations for using the loaded hole element program. HOLE. in con-
junction %ith the general finite element analysis suite of programs. DISMAL, are listed belok.

(I) Draws up the mesh for the structure, including any loaded hole elements, and define the
applied loads.

(2) Prepare the data file, DATA, for DISMAL (see Ref. 6), excluding the applied loading
data at this stage. Loaded hole elements are specified in DATA as special elements
(see Ref. 6).

(3) For each loaded hole element (in the order of specification in DATA) prepare a data
file, HIN (see Appendix B). run the program HOLE, and obtain a listing of CHECK.LST.

(4) Complete the applied loading section in DATA including the equivalent nodal forces
obtained from the listings of CHECK.LST.

(5) Run the DISMAL programs (see Ref. 6).

(6) Obtain the stresses for the loaded hole elements from the DISMAL output filc
PRINT3.LST. These stresses will be output in the order of: tangential stress for nodal
point projections tolloxsed by specified boundary stress ealuation points: then f'ollo%%cid
by sets of radial. tangential and shear stress for gener-l stress esaluation points. Add
these stresses to the corresponding initial stresses obtained from the listings of
CHECK.LST.

The above instructions apply to the case where only one load case is specified in DATA. If more
than one load case is to be specified, invoking different loading on the holes, it "ill be necessary

to establish equivalent nodal forces and initial stresses by preliminary runs of HOLE. and then
establish the correctl) structured files DATA.EXT and SPIT by an appropriate sequence of
runs of HOLE. The loaded hole element can be used in conjunction %kith other special elements,
pro.iding the correct appending of files DATA.EXT and SPIT is monitored.
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