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~ SUMMARY

This paper describes a special hybrid finite element to represent a loaded hole in a
sheet. The shape functions of the element satisfy stress equilibrivm and strain compati-
hility throughout the element. and the applied loading bowundary conditions. The applicd
loading is represented by a finite Fourier series. and the covfficients of the element shape
Sunctions are marched with the Fourier coefficients. A computer program has heen written
to generate the element stiffness and stress recovery marrices. The progranmt also produces
cquivalent nodal forces and initial stresses related 1o the applied loading. Accurate results
have heen obtained from several example analyses.
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NOTATION

Arbitrary stress function parameters at frequency n

Element thickness

Matrix relating nodal displacements to generalised parameters
Elasticity matrix

Vector of displacements at any point in the element region

Arbitrary stress function parameters associated with special solutions of the
bi-harmonic equation

The proportion of a full circle for the element variant shape
Element stiffness matrix in terms of generalised parameters

Matrix relating strains to generalised parameters

Element stiffness matrix in global cartesian co-ordinates

Element stiffness matrix in local polar co-ordinates

Matrix relating displacements to generalised parameters

Number of nodes

Cutoff frequency for the Fourier representation of the applied loading
General frequency parameter

Vector of applied loads

Internal pressure

Vector of nodal loads in global carteisan co-ordinates

Vector of nodal loads in local polar co-ordinates

radius of hole

Circumscribing radius of the element

Equivalent radius of the element

Radial and angular co-ordinates of the local polar system

Stress recovery matrix

Stress function coefficients at frequency n related to the applied loading
A geometric transformation matrix

Radial and tangential displacements in the polar co-ordinate system
Vector of arbitrary generalised parameters

Vector of generalised parameters related to the applied loading

Rigid body motion parameters for x and » translation and rotation
respectively

Angular co-ordinate of node /
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n

Numerical

————— .

Vector of nodal point displacements in local polar co-ordinates
Vector of nodal point displacements in global cartesian co-ordinates
Vector of strain components

Vector of stress components

Radial. tangential and shear stress components

Distributions of normal and shear applied loading

Fourier coefficients of applied loading

General symbol for a stress function

Poisson’s ratio

Subscripts
Refers to quantities related to the applied loading
Refers to quantities related to an unloaded hole

Refers to the full stress reco ery matrix constructed from evaluations at
selected points

Refers to frequency n

Refers to frequency or node number

Superscripts
Transpose
Inverse

Dash superscript indicates quantitics related to the orthogonal trigonometric
functions to those of the undashed quantities

Arbitrary imposed state
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1. INTRODUCTION

In this paper, a special finite element enclosing a loaded hole in i plane sheet is described in
some detail. This work had its origins in an attempt to develop a special element to enclose a
fragment damage site in an aircraft structure: such an element would facilitate residual strength
analyses of damaged aircraft structures for use in vulnerability assessments. For example, when
an aircraft is attacked by certain types of warhead the damage incurred by the aircraft skin
consists of many closely spaced fragment perforations which can be idealised as holes with cracks
radiating from them. A natural first step was to consider the case where the damage consists of
uncracked circular holes in a plane sheet. Since problems involving sheets with circular holes,
both unloaded and loaded, are of common occurrence in aircraft structures. quite apart from the
particular application which gave rise to the present study. these were considered in derail: see
also Reference 1.

The basic concept of the finite element method of structural analysis is that a complex
structure is partitioned into a network of simple shaped. standard elements. The stiffness
characteristic of the whole structure is then formed by assembling the known stiffness charac-
teristics of the individual elements: see Reference 2. However. for regions of high stress
gradients, such as occur around holes, it has proved beneficial to develop special element types,
rather than to use fine meshes of standard elements. Rao eral.?:1 were among the carliest to apply
this concept. In Reference 3, a general method for formulating special elements around stress
concentrators, including stress singularities, is presented. For this method, the displacement
state within the element is defined by functions which satisty conditions of stress equilibrium,
strain compatibility, and any boundury conditions (BCs) of the stress concentrator. Such
elements are termed “hybrid elements™ in Reference 3. in that they combine concepts of con-
tinuum mechanics with finite elements. A consequetice 04 the use of rather complex displicement
functions for hybrid elements is that boundary displacements are incompatible with those of
adjoining standard elements. However, a comparison? of two sector elements. one with*natural
mode™ shape (i.e. displacement) functions and the other with simple conforming shape functions,
has clearly demonstrated the superior performance of the former. despite its violation of inter-
element displacement compatibility.

In Reference 3. Rao er af. demonstrate the use of a special hybrid element surrounding an
unloaded circular hole in plane stress problems. In the present paper that work is extended to
the case of loaded circular holes. The paper is set out as follows. A general outline of hybrid
clement theory is given in Section 2. Then, in Section 3, the detailed application of that theory
to derive an element for a loaded circular hole is given. and in Section 4. the associated computer
program is full described. Resutv. .. sample runs of the program are presented in Section S, and
a general discussion is given in Section 6.

2. HYBRID ELEMENT THEORY

For the stress analysis of two-dimensional elastic structures, the governing equaton of
equilibrium and compatibility is:?

Vig =0 2.1)
where ¢ is the stress function and ¥ is a differential operator. defined in polar co-ordinates by:
v o e (2.2)
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A separated variable solution is proposed for ¢ in the form:
¢ = F(NG(6) (2.3
where

_ | sin n8)
o) = \cos nbf’ 24

The upper and lower functions in the bracketed notation are each separately voiid. On solving
(2.1). (2.3) becomes:

> Y. in nt
bn = lanrt-v-bpr " +ear> ® - dprt "]{:(I)S Z,)} (2.5)

with the two degenerate cases:

éo = ao r+bolnr :-cor®~ dor*lnr 2.6)
-
$r = [arr i byr-! +-rnr3-i-dllnr]{s;: 0;. @0

The general frequericy parameter, . is unrestricted at this stage. In Reference 5 are listed several
other solutions to (2.1), not in the form of (2.4), which together with (2.5), (2.6) and (2.7), make
up the full general solution to (2.1) in polar co-ordinates. These other solutions are grouped
below as:

—caos &)

= ¢ori0-+fob+ ¢ ﬁf . . 2.8
e = eor®0-+fot+ err | sinof (2.8)
Using standard formulae,5 the stresses, strains and displacements can be derived from the stress
function. Having derived these quantities, the boundary conditions of a stress concentrator can
be satisfied. For example, an unloaded hole has the boundary conditions:

arr =71,y =0 atr = ro all 6. (2.9)

These conditions allow two of the arbitrary coefficients an, bn. ¢y and dy to be determined in
terms of the other two. The allowable values for n are restricted to integers only, to satisfy a
requiremen’ for single-valuedness in a multiply-connected region. Conditions of symmetry can
further restrict the allowable vaiues for n. Once these boundary, single-valuedness and symmetrs
conditions have been applied to the general solution ¢ (2.1). a set of functions remains which
satisfies equilibrium, compatibility. and all conditions of the stress concentrator. For the general
case of this set of functions. the radial and tangential displacements take the respective forms:

_ .\ [ sin nf)
u = [funroriba fl'.zdn]lcos nof (2.10)
g - fond €08 nfl 5
r = {j:!lbn /:__(l’n]. sin "”’. (..“)
The cquations can be grouped in matrix form as:
[ sin nt)| { sin nth)
Sy o Sz
s nfl cos nél ;
() {cos nfl| fcos né| (bl 2.12)
I =g = \da
/. [ - cos nfl} f | -cos né)
osinnf 7 sin nd|
le.
d, = L,an (say). (2.13)
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When the functions for several values of # contribute to the displacement. it is given by:

AP

xj
d=23dy = [LiLiLp.. }{** (2.14)
= La (say). (2.15)

The displacement formulation (2.15) is in a suitable form for the finite element method. In
addition to the stress function parameters, the vector a can contain rigid body motion para-
meters, as appropriate. Such parameters do not appear in the stress function as they do not
induce any stress. The strains are found by differentiating the displacements.

€rr
€ = (€pp|] = Ha. (2'6)

Yry

Columns of H corresponding to rigid body motion parameters are zero. The stresses are found
from the strains using the generalised Hooke's Law.

Trr
6 = (ag) = De = DHa. .17

Try

Consider a general finite element with N nodes surrounding a stress concentrator (see Fig. 1).

Special
element

Stress
concentrator

FIG 1: GENERALISED SPECIAL ELEMENT




i ne displacement formulation (2.15) applies to all points within the element. including the nodal
points. Suppose (2.15) is applied to each of the .V nodes in turn by substituting the appropriate
co-ordinates into the matrix L. A vector of nodal point displacements can then be formed as:

d Ly
(I-_: L-_:

§ = = a = Ca (say). (2.18)
(I_\‘ L_\‘

If the number of arbitrary parameters chosen to form e is equal to the number of nodal point
displacement degrees of freedom. then the C matrix will be square. This enables the relation-
ship (2.18) to be inverted.

a=C 18 (2.19)

In order to assemble this special element with the other elements forming the structure. it is neces-
sary to derive a stiffness relationship between the nodal forces q and the nodal displacements §.
q = k§. (2.20)
The stiffness matrix A can be found by minimising the potential energy of the element. using the
principle of virtual work.
k=(C I)Tf HTDHANC !} (2.20
v
where the integration is over the volume of the clement.

The relationship (2.20) can be readily transformed from local polar co-ordinates to global carte-
sian co-ordinates by using a transfermation matrix, 7.

q=7Q:. &§ =T7A. (2.22)
Q =T7ThTA (2.23)
= KA (say). (2.24)

Once the stiffness matrix A has been gencrated for a special element. it can be assembled with the
other elements comprising the structure and a solution found for the displacements A using a
finite element program. The stresses can be caleulated at any point within the element as:

6 = Dlla = DHC 'TA = SA  (say). (2.25)

3. LOADED HOLE ELEMENT
3.1 General

A special element. to surround a circular hole with applied loading on its boundary. is described
here (see also Ref. 1). The clement is able to account accurately for applied loading by directly
matching applied load and boundary stress distributions. The applied load distribution is
represented as a finite Fourier series. Stress function coefficients of the element are related to the
Fourier coefficients of the applied loading. The stress function formed from this relationship
contains arbitrary parameters which lead to the formation of the element stiffness matrin. and
fixed constants which lead to the formation of initial stresses and equivalent nodal forees to the
applied loading. As would be expected, the stiffness matrix so formed is identical to that of an
equivalent unloaded hole element. The influence of the applicd loading is therefore expressed
through the equivalent nodal forces and the initial stresses. The equivalent nodal forces are input
loads for the finite element analysis. and the initial stresses are added to those caleulated by the
finite element analysis.

3.2 Element Shape

The basic shape of the element is an annulus with a polygonal outer boundary whose corners
{nodes) lie on a circle concentric with the hole. The number of nodes and their angular co-
ordinates can be varied. as can the aspect ratio of the circumscribing circle radius to the hole
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radius. Three variants of this general shape are considered. according to the symmetry of the
problem. For double symmetry only one quadrant is required, for single symmetry a semi-
annulus. and for the unsymmetric case the full annuius. The three element variants are sketched
in Figure 2. Also in Figure 2. the boundary conditions corresponding to the states of symmetry
are shown. These boundary conditions actually alter the number of degrees of freedom of the
element and that effect is also shown. The rigid body motions applicable to the three element
variants are shown in Figure 2.

3.3 Fourier Analysis

The applied loading takes the form of normal and shear stresses. () and (). applied
to the hole surtace, r = ro. The applied loads are represented by finite Fourier series as:

A
aa(l) = aa0/2 E {oan COS - oy, sinnf. (3. 1)
nol
Ny
Talf) = (Tut)l,z) - Z tan Sin nf 14, Cos ntty, ()
n=1

The form of (3.2) is slightly different from the usual form of a finite Fourier series. (3.1), to simplify
the imposition of boundary conditions in Section 3.4 below. The series cutoff. As. i selected
large enough to obtain an adequate representation of () and a(#).

3.4 Boundary Conditions

The radial and shear stresses. derived® from the general stress function &, of Equation
(2.5), are listed below.

oo = [ ap(n® mn 2 byt -yt ocunton 2p

- »y | sin ath) 13
du(n® - n 2y ]lcos o)’ (3.3
ren = {an(n®- nyp® 2 by -y 2 (- et -
s ol cos aft)
du(nz iy "]l sinn]’ (3.4

The single-valuedness requirement for & multiply-connected region restricts # to integer values.
The boundary conditions for the loaded hole are:

arr = ag(t) and ¢, = Tu(0) at r = ro.all 0, (3.5)

These boundary conditions are enforced by equating Fourier coeflicients of the applied loading
to stress function cocfficients.

ay(n® - myra® 2 byn? - g 2 cant on 2yt
dyn> - n ry " = oun. t26)

ann® o™ 2 byt g 2 eyt - myrg"

du(n? g o= T 3.7
Solving for @y and ¢y,
(n 2ran - Houn
n = o no Drg 2ty nrg 23y, (3.8)
2 iyt 2
Oan * T w, - .
v 20 2hy - (0 Dy 2dy. (3.9)

"= 2(" . l)ro"




2N-2 degrees of freedom
v=0 at 0=0,172— allr
No rigid body motion allowed

Local cartesian axes

3
2N-2 degrees of freedom
N-1 2 v=0atd =0, allr
x translation rigid body
N 1 motion only

2N degrees of freedom
v unrestricted
All rigid body motions —

x and y translations and rotation

{c) Unsymmetric (US)

FIG2 LOADED HOLE ELEMENT VARIANTS
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Note that parameters ¢, and ¢, contain constant terms related to the applied loading but their
relationships to parameters b, and , are independent of the applied Joading. Let the constant
terms of parameters @, and ¢, be fabelled s1, and 52, respectively

(1 Dyrun - Noun (310
S = R e 310y
X mryt =
Tan * Tan
n =g (311

2n - Dirg”

In Equations (3.6) to (3.11). the boundary conditions (3.5) have been imposed for the lower
trigonometric functions of Equations (3.3) and (3.4). Let the parameters associated with the
upper trigonometric functions of (3.3) and (3.4) be distinguished by a dash superscript vz, a, .
by . ¢y dy . The boundary conditions (3.5) can be imposed in a simitar manner for these para-
meters. and identical equations to (3.6) to (3.11) result, except that all parameters have dash
superscnipts. e an . by O o dy s ot . St . S2, . The relationships €3.8) and (2.9) can be
substituted into Equation (2.5) for the general stress function. 4.

,f,” — :[51!4"" . _\-__,",-Q-U] . [ (- Pya 20en o g 2ot u]h” .

L sin oty

I T L T PTR B VT S R ) 17 . (3.12)
tcos nt|

‘!’n = ‘f’nli " (fmu- (‘]3)

Where @0 is a fixed stress function related to the applied loading. and ¢,,11 contains the arbitrary
parameters b, and dy. and is the same stress function as for an unloaded hole. Stresses. strains
and displacements can be derived from ¢,,.

Special cases for 1 = 0 and | can be derived in the same manner as above. using the stress
functions of (2.6). (2.7) and (2.8). Single-valuedness requires:

ey =do =0: ¢ = | : . dr. [REEY
Then
do = an - bolor - cwr - fut]. (3.15)
are = [hor 2 2c0]. (3.16)
e = [for 2. (317
S0
bory 2 2e0 = g0 2. (3.18)
and
Jore 2 = a0 2. (3.19)
Solving,
co = agp 4 0 Sry 2hy. (3.20)
Jo = 05r¢*ra0 . (3.2
stoo= 0-5r0 ran o so0 = aand (3.22)
doo = [s1of! - s207). (2.23)
dan = [Inr 0-5(r ro)]bo. (3.24)
b= [ayr - by Vet (/l"ln"]{:‘i: ;:} i ,2”:{ L;T,: i:} (3.2%)
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N it i s 2 0
. — e - "

o = 2bir P20 -F—&hr T e (3.26)
o= 20 - 2ar - dvr ‘): Lo ::: (227

o = “*A‘ ’"i'xi”_;,\_)ﬁ,' ro 1hy. (3.28)

o

) g ! '“’141 Sl (3.29)
1 o ’111-*'_—(:‘~ : ”rfl‘; s d (3.30)
PR \;;Ilm]-j:‘l‘!: :": ‘:Ilzr':{ ‘:‘l: Zj} (3.3
i Ao ""J/’x.‘::‘l"\] :j: (3.32

3.5 Arbitrary Parameters

[t remanns 1o choose values ot o e torm the vedtor @ of the arbitrary parameters by, and d.
The rule followed s to choose consecutive allowable values of o ranging from the lowest. until
all the avatdable degrees of treedom of the element have been filled. The allowable values of
and the appheabihiy of the upper and lower trigonemetric functions (dashed and undashed
parameters) are determuned by conditions of svmmetry. Ssmmetry conditions can be expressed

as additional boundary conditons. Fhese are histed below tor the three loaded hole element
variants (see bBig. 2.

unmsymmetnic. no restriction, (333
singly symmetewe ¢ - Oat - 0.7 all v (3.34)

doubly svmmetrne ¢ 0ate — 00 ba o all r,

(3.3%)
These boundary conditions atfect the nomber of degrees of freedom of the element. Normaihy.
if an e ement has NV podes it has 2V degrees of freedom. corresponding to « and ¢ displacements
at each node. However. (3.34) and (3.35) suppress the r displacement at the first and last nodes.
leaving the singly and doubly ssmmetric varants wath only 28V 2 degrees of freedom. Conse-
quenty. when the C matrix is evaluated according 1o (2.1%). the ¢ displacement is not included
indy and d~. Finally. the applicable ngid body motion components have to be included. All these
factors have to be accounted for in forming e and the result is shown in Table | for clements
with ¥ nodes. The notation for the rigid body motion companents is shown in Table 2.

3.6 Fixed Parameters
It is convenient to assemble the fixed parameters. s1, and sa,,, related to the applied loading,
1nto a vector ag (say). in the same manner as the arbitrary parameters are assembled into a. For

the general case. from (3.12) and (3.13) we have:

tn ontt
han = (\'Iul'” < Sagrt “]' X '

(3.36)
feos it
sin att R Sinont -
R R (3.37)
Jeos nf) {cos ntrf
= Stafrak ey - sy fra - Sanfon o Sew fon (3 3K)
[\IN '
. . RAS N
= [/I”J.’u«/an’.‘n] ) g (3.39)
‘»‘In ’
S
= Fuotys  (say). (3,401




TABLE 1

Loaded Hole Element Paramete: .

Additional boundary con-
ditions

Appropn.m functions for

s

Elumcnl degrees of frnedom

| |
[ Doubly Singly |
l symmetric symmetric
r =0 { r=0 ‘
att =004z | att =0, =
all » altr
( cos 2t ’ cos nf
4

,31 Onl)

by )

b

|
|
o
e
| ;g-;
| g
Vo :
. |
)
| |
| |

(Ig AN
Lpes )

X translation

1 translation

Rotation

Now. if the total stress function matching the apphied loading is written as:

then

Rigid body motion] Notation

TABLE 2

Rigid Body Motion Parameters

U

21 i ﬂ; cos

22 Zasin d!

33 0

g = X,

dn = XFpo0u0 = Footo.

9

Unsymmetric

e

Neven

dy 2
by e

hx o

r’l

22

LA

]

i

N

.

|

|
i
zw

(340

(3.42)




isplacements, strains nd stresses can be denved i 342y as:
ispi M. stral d str n bed d from (3.42)

dy = Lo, (243
€, = . (3.44)
cu - DHhay. (3.45)

The approoriate functions for & as given in Fable 1. are applicable 1o 2, also. sinee the
symmetry of e applied loading i~ an iategral factor of the overall ssmmetry, Howeser, it is not
necessiry for the number of parameters in ey to match those in a. The parameter series in oy
15 cut off at a point where an adequate representation of the applied loading 1~ obtained. For
spectal applied load distributions, oo may cantain only one of a few non-zero purameters. Rigid
body motion parameters are not applicable tfor a.

3.7 Stiffness Equation

[t has been shown that the total stress funcoion for the clement can be exprossed as:

b o= by - D (3.40)
From this. it follows that
d =dy-dy. (3.47)
= [y - Lpay. (3.4%)
and
5 = Chay - Cray, (3.49)
S0
an =  Cp 'ty - Cy 5. {3.50)
Alsa,
€ = Hooy - Huay. (3.5
SO0
6 = De = Dilwa, - DIyen. (3.52)
Ditwan - DI Cy YCorty - Cip 180, (3.53)
= DtHy HgCu 'Coeg - PHpCu Y8, (3.54)
Now impose a virtual displacement. 8*.
d* = [ yCu ‘8% (3.55)
€ = IHyCy 8%, {3.50)

Consider the energy changes due to 8% Let g be the vector of clement nodal forees and p the
vector of applied body forees.

1) Eaternal work done on the element:

by q. = (8%)7q. (3.57)
byp. W ‘ (d%)pdh. (3.5%)
(2) Internat work:

|1 . ’ (€*)Tad\. 13.39)

I

For equilibrium,

Wil Wy = B (.o

10
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(6*)7q + f,(d*)Tpdv = f'(e*)rod\, (3.61)
(d*)7q = f AHuCa 18*)T(DHotto — DHuCn ' Costo+ DHuCn '8)dv—

*f' (LuCy 18*)Tpdh. (3.62)
(5"‘)Tq = (st)T(Cﬂ—l)TJ‘ ‘ (HuTDHyay — HuTDHuCxn +Coan~ HyTDHnCy 18)dv—

-(8%)T(Cu 1)Tf LuTpdv. (3.63)

Since 8* is arbitrary,

q= (CH")TJ.I HyuT DHydvay—(Cy ')Tf HeTDHyudvCy 1Comto -
N v

f(CH’l)TJ‘ HuTDHudvCy 18- - (Cy ")Tf LuTpdv. (3.64)
v v

The first two terms on the right-hand side of (3.64) are vectors of nodal forces related to the initial
stresses of Equation (3.54). When these terms were numerically evaluated in Reference | they
proved to be self cancelling. That result was not able to be proved analytically in Reference 1.
However, those two terms are neglected in this paper as having no effect. The third term on the
right-hand side of (3.64) contains the stiffness matrix of the element (see (2.21)). The last term s
the standard formulation of the vector of nodal forces qu, equivalent to the applied loading
(see Ref. 2). Hence, (3.64) reduces to:

q= k8- qu. (3.65)

Equation (3.65) can be converted to global cartesian co-ordinates using a transformation, T
(see (2.22) to (2.24)).

Q = KA— Q. (3.66)
Stress recovery is achieved through Equation (3.54) which may be written as:

G = ay: 58, (3.67)

= ay + SA. (3.68)

Equation (3.68) can be evaluated at a number of prescribed points and assembled as shown
below.

4 (a0)y S

a2 (on)2 A

. = . . A (3.69)
i.e.

ar = Gor 1 STA  (say). (3.70)

3.8 Stifiness Matrix Evaluation

The main step in evaluating the stiffness matrix of an element is to evaluate the volume
integral of Equation (2.21). That integral is given the notation:

G = f HTDHdv. (3.71)

1




I'or the loaded hole element. the volume of integration is an annulus of uniform thickness,
with a circular inner boundary and a possibly irregular, polygonal outer boundary. In view of
the complexity of the terms in the H matrix (see Ref. 1), it is not feasible 10 evaluate this integral
analytically. The method of integration chosen is to approximate the outer polygonal boundury
by a circular one. concentric with the hole, without changing the volume of the element, This
allows the integration to be performed between constant limits for r and ¢, The equivalent
outer radius is given by:

] N ;I . 12
reg = rn{z-"—f 2 sindyia yi)} . (172
t=1
where /= 0-25 and 0-5 for the doubly and singly sy mmetric cases respectively, and:
AR i 12
rpg = ”11—_’-/( }_I sin(yi 1 ) - sin(yy - )’_\))1' . (2.73)

where /= 1-0 for the unsymmetric case: 3, is the angular co-ordinate of node i. Now (3.71)
becomes:

L 2fe .
G = hJ. nlrf HT DY, . (3.74)
ro v

where b is the thickness of the element. 1t was shown in Reference 1 that the integial over ¢ is
readily performed analytically. resulting in a diagonal type matrix. The integration over r iy
more complex and is performed numerically.

4. COMPUTER PROGRAM DESCRIPTION

A computer program has been written to generate the matrices and vectors K. S, Qu and
out of Equations (3.66) and (3.70). for a specitied loaded hole element. The program was written
in Fortran for use on the PDP-10 computer of the Acronautical Research Laboratories, in con-
junction with the general purpose finite element analysis program. DISMAL.S The program,
entitled *"HOLE™. has been entered in the ARL Computer Program Register and a listing and
other details of the program are contained therein.

The program requires one input file and generates three output tiles. The input file. BIN,
contains a geometric description of the element, material properties. prescribed points for stress
evaluation. and applied loading definition. For precise details of the input file structure and a
listing of a typical input file. sce Appendix B. Two of the output files are for direct use by
DISMAL. DATA.EXT is an ASCI! file containing bookkeeping information. and SPIT is a
binary file containing the stiffness and stress matrices. A and Sy. These files are written in
APPEND mode so that, by re-running the program, the properties of several loaded hole ele-
ments can be strung together for access by DISMAL. The third output file, LOADS. contains
the equivalent nodal forces Qq. the initial stresses @y, C matrix inversion parameters. and the
global stiffness matrix K. all in ASCH form and self explanatory format. Operating instructions
for the loaded hole element program in conjunction with DISMAL are given in Appendix C.

The program caters for three modes of specifying the applied loading (sce Appendix A.)
Firstly. Fourier coefficients can be input directly. The program user must ¢ sure that the input
coeflicients conform to the allowable functions appropriate to the particular {vaded hole cfement
variant (see Table 1). Secondly, point loads at various angular co-ordinates can be specified.
The program automatically allows for symmetry in calculating the Fourier coefficients for
point loads. by excluding inappropriate coefficients. Finally, for gencral distributed loading, the
program reads ordinate values at an odd number of equally distributed points aiound the hole
boundary. Again, the program automatically enforces symmetry. For the double and singly
symmetric variants a reflected set of ordinates is generated from the input ordinates. The program
obtains the Discrete Fourier Transform of the ordinate values by calling a subroutine entitled
CO6AAF from the NAG library of subroutines available on the PDP-10 computer at ARL.
For the doubly symmetric variant the frequencies of the computed Fourier coefficients are
doubled. to allow for the fact that the input and reflected ordinate values cover a range = rather
than 2=. For representing the applied loads. it has proved necessary to use n = & as a haiting
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frequency. as inclusion of higher frequency coeflicients introduces laurge numerical errors into
the calculation of the initial stress @y. The program caters for the specification of no applied
loading. in which case it functions as an unloaded hole ¢lement. No equivalent nodal forces or
initial stresses are then output.

The integration over r of Equation (3.74) is performed numerically, using Simpson’s rule
with 100 points. The inversion of the matrix Cy of Equations (3.49) and (3.64) is performed by
a subroutine, GENINV.7

The points at which the vector 6o and the matrix § of (3.67) are evaluated. to construct the
vector gt and the matrix St of (3.70). consist of radial projections of the nodal points onto the
hole boundary. other prescribed points on the hole boundary. and general prescribed points.
For points on the hole boundary, only the tangential stress component is included in eor and St.
as the radial and shear stress components are known from the applied loading. Co-ordinates
of prescribed puints are defined in the input file to the program.

In principle. it is not necessary to have a uniform distribution of nodes around the circum-
scribing circle of the element. However. unexplained numerical difficulties have been
encountered when using the program with non-uniform distributions of nodes (see Ref. 1).
Therefore, the use of the current loaded hole element program is restricted to uniform distribu-
tions only. The aspect ratio of the element. riry. is unrestricted except to be greater than unity.
However. results of example analyses indicate that this ratio should be in the range 1-51to0 3-0
for best accuracy (see Ref. 1), Other restrictions on the input data, necessary for satisfactory
operation of the program. are listed in Appendix B.

5. EXAMPLE ANALYSES
5.1 Problems and Results

Many example analyses were described in Reference 1. Some of those are included in this
section in order to demonstrate the usc of the clement and the accuracy to be expected from it.
The first example is a rectangular plate with a central circular hole. subject to uniform longi-
tudinal tension (see Fig. 3). This is a doubly symmetric problem and the mesh used is shown in
Figure 3. A doubly symmetric hole element with cight uniformly spaced nodes was used. The
maximum stress concentration around the hole boundary is of interest. i.c. the tangential stress
auy at ¥ = rg. 0 = 0 divided by the uniform applied stress. Accurate values for this stress con-
centration factor. accounting for the fnite width of the plate but not the finite length, are
available in Reference 8. This problemy was analysed for a range of values of ry, Keeping the
element circumscribing radius, 1. constant, Zero applied loading was specified for the hale
clement. The results are shown in Table 3.

TABLE 3

Stress Concentration for Hole in a Rectangular Plate

ru ryry (EE290 PR 2 T CON U P v, error
1-0 40 3-56 3-02 17-8
1-25 32 3-02 304 07
1-5 267 305 3-05 0-0
2-0 2:0 312 310 07
2-5 16 320 3-16 1-2
30 1-33 330 324 1-9
35 1-14 344 334 30
{

* Accurate value of stress concentration factor, (a..)may . obtained
from Reference K.

The performance of the singly sy mmetric variant of the foaded hole element is demonstrated
by the problem of an offset circutur hole ina circulur dise. subject to uniform internal pressure.,
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The mesh used is shown in Figure 4. Uniform internal pressure of 10 100 8 peaitied by
inputting the frequency coeflicient oy, = 2:0x 10> with 2 — 0 (~ee Appenain By A arate
values for the stress concentration factor at poirts A and B of Figure 4 huve been obtaed from
Reference 8. Values derived from the analysis of the mesh of Figure 4 have been compared 1o
them in Table 4.

TABLE 4

Stress Concentration for an Offset Hole

Point Tn Po (5.¢. 0 e ’ "L error
e e e — e - "
A 2-11 , 2417 | 2w ‘
B 168 165 | PR
! |

An example problem with a broad spectrum of frequency components in the foading
applied to the hole. is a riveted joint with load transfer through the rivets. The load distribution
is of cosine form over the area of contact between the rivet and the hole. This probleny is detaled
in Figure 5. For the riveted joint problem the applied Toading was input as ordinate values and
the frequency components established by taking the DFT. The tangential stress was caleulated
at many points around the hole boundary and the maximum stress concentration factor.

Cpnf U

Kow = o h) wias found to be 2-15at 0 = 58 . This 1s 5-77,, in crror with an accurate value ot
2-28 at 0 = 60" given in Reference 8.

The versatility of the Toaded hole element is demonsteated by the analysis of twa holes, of
generally unequal diameter. in a large plate (effectively infinite). The mesh used 18 shown in
Figure 6. For cach run of the problem two load cases were analysed. viz, cach hole o turn subject
to uniform internal pressure py with the other hole unloaded. From run to ran. the vadn of the
holes were varied without altering the mesh and keeping i rg in the ranee -3 1o 3 00 b or eaher
load case of any run. the maximum tangential stress oceurs at a point C on the loadad hole
surface, displaced by an angle ¢ from the line joining the hole centres. The stress concentrations
at point A on the loaded hole boundary and point B on the unloaded hale boundary are alsa of
interest. Points A, B and C are illustrated in Figure 7. The resalts from all runs are given
Table 5 where the subscript | refers to the Joaded hole and the subseript 2 1o the unloaded hole.
I'he stress concentrations at point Cin Table 3 have been plotted in Figure 7.4 or the combined
loading case of both holes under equal pressure when ror - rie. the stress concentration at points
A and B can be found by adding the values in columns A and B of Table 5. These combined
values are compared with accurate values from Reference 8 in Table 6.

§.2 Discussion of Results

The example analyses outlined in the preceding section demonstrate the accuracy and
utility of the loaded hole element. The first example. @ central hole in i rectangular plate. indic ates
that, for best accuracy. the aspect ratio of the clement. iy ro. should be kept i the range 105
to 3-0. For that problem, errors were then less than 2°, The analysis of the riveted jomt shows
that the element can produced accurate stress conceatration values, even for comples apphied
load distributions. The mesh for that problem. shown in Figure 5. uses several siv-noded tri-
angular clements. two of which adjoin the loaded hole clement. The two mid-side nodes along
the junction are not nodes of the hole element. U nconnected nodes are nermally undesirable
ax introducing inter-clement displacement incompatibilits. However. with standard clement
connections to the loaded hole element, displacement incompatbility s inevitable anyway.,
and using unconnected nodes will not necessarily worsen it. The analysis of two adjacent holes
in an infinite plate shows the flexibility of the loaded hole element. Using only one mesh. broad
ranges of the basic parameters of the problem were spenned. with errors less than 37, An
alternate solution of this problem s unknown. and the stress concentration values in Table 8
are then useful basic data,
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TABLE §

Stress Concentration for Two Holes in an Infinite Plate

;
| o o | |
ol oz roiiroz 2rot b " te- {
A B C (deg)
Cho | 1o | 1o | 0w | 1007 | o163 | ro4 | 70 ‘
v | o1s | oest| 0333 | 1000 | 0199 | 1027 | 60
s | 10 | ors L os oo | o | rom | s ’
S0 | 20 | os [0 | oo | o | roso | s
20 | 10 | 2o | 067 | o3 | owed | 102 | k0 |
sl oes | o | o | oo | 0w | 10e |60
s b 20 | 075 | 05 | o9 | os9 | 1us | e
!y‘ 3 04) - 717¥5— s 1-333 0 667“ #0'906‘ T;{.;i q—lﬂ_l;):g‘ — 747()‘ )
20 | 20 | 10 | oes7 | oses _7&;,;‘;_1/.55,4_ w0
l |
TABLE 6

Stress Concentration for Two Equal Holes
in an Infinite Plate

- ‘ ) |
(Tue PWDpaing A
ro1 = o2 h 2rm ., error
Holeelement| Reference 8 1
1-0 3 1-170 1-153 15 !
- e e e e
1-5 2 1-451 1-410 29
20 -5 1-959 1-900 3-1

The errors Disted in Table 6 can be considered as upper limits on the possibie errors in
Table 5.

6. DISCUSSION

The loaded hole element has many advantages over an equivalent mesh of standard elements.
Firstly, stresses can be obtained accurately at any point within the element. Specitically, the
process of matching boundary stresses with applied loads ensures accurate stresses. at or near
the boundary. Standard elements cannot produce boundiry stresses. no matter how much the
mesh is refined. In order to obtain boundary stresses from them, it is necessary to extrapolate
to the boundary. and in the case of a hole boundary, the extrapolation iy into a region of high
stress gradients. When using the toaded hole element, both preparation and computing time are
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cut significanthy from an cquirvalent analysis with a standard element mesh. This is due to a reduc-
tion in the number of clements and nodes. The displacement incompatibilits of the loaded hole
element with adjoining standard clements did not prove to be a stgnificant fuctor. Bounds on the
accuracy of the solutions to example problems were not established. due to the oscillatory
nature of the convergence. However. for most engineering applications. all that is required 1y
4 knowledge of the ~xpected accuracy of the analysis. and experience in that regard can be gained
from comparisons of analyses using the loaded hole element with theoretical solutions (see
Section 5).

As mentioned in the introduction to this report, the hole element was developed as a stage
in the development of an clement capable of representing a warhead fragment damage site in an
aireraft structure. Such a damage site can be idealised as a hole with cracks radiating from it.
As vel. erdearours to extend the hybrid element method to model a hole with one or two long

cracks radiatin Jrem ithave met with numerical difficulties, and this goal has had to be {eft for
later study.

7. CONCLUSION

The satsfactory operition of the three vartants of the loaded hole element has been con-

ed tfor uniform distributions of 4 to 10 nodes. Adequate operating instructions for the loaded

hoie element program are contained in Appendices B and C to this report. A listing of the pro-
gram is contamed in the ARL Computer Program Register.
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APPENDIX A

Determination of Fourier Coefficients

The applied loads are represented as:

N¢
calt)) = 0402 ~ 3 loan COS nl : agn sin nf, (A.1)
n=1
s
Talt) = -7a6/2 ¢ Y iran sinnt —74n cos nl! (A.2)
n =1
Where
[ {27
Tan = aa(f) cos nddo (A.3)
TJo
1 (2n .
Gan = f oa(0) sin ndo (A.4)
7)o
| i .
Tay = f To{ ) sin ntdd (A.5)
740
-] 2n
Tan = ra(t)) cos ntdt (A.6)
7 Jo

The Fourier coefficients ogu. gan’s 7an. 7an can be determined in three ways depending on the
method of specifying the applied loading. ou(th). 7a(0).

(1) If the applied stress distributions, ou(#) and 7,(¢) are trigonometric as sin nf or cos nt,
then the coefficients are known directly. Also if the distributions ox(?) and r,(¥) are
known functions. such that the integrals of equations (A.3) to (A.6) can be casily

evaluated analytically. then the coefficients can be evaluated external to the program
and input to it.

{2y As a special case of known functions, if point loads are applied then ou(#) and 7a(f)
are delta functions of the form:

Pui
au(t) = 3(0 - ) (A7)
l'()b

S“i I
) = 050 0y) (A.8)
roh

Where Py and Sai are radial and shear foads applied at 0. ro is the hole radius, and b the element
thickness. Then Equations (A.3) to (A.6) become:

P .

Oan = ¥ cos ntl; (A.9)
ﬂl'()b
Pai .

Oan = & sin nth; (A.10)
nrob
Sai .

Tan = m sin nf; (A1)
7r/'0h

tan = Mcosnl’i (A.12)
wroh
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(3) If ou(® and ra(?) are complex or unknown functions. they can be input as ordinate

values at N, discrete values of 6. The points are equally spaced and labelled 0 - N, - |
where .V, is an even number. The distributions o3(f) and 7a(#) are then represented as
Fourier series by taking the Discrete Fourier Transform of these points. The DFT is
given by:

PN - P . EAY .‘,V
aa(t)) = Ua: Y {oan cosnf ~ag, sinnd} - Tat Xy cos{ ”U} (A1)
Z n=1 “
4N - | o . Y
() = Ta:' + Y ran cosnf--74," sinnfl} -+ 7“2'\" coa{ ,”H} (A.14)
pa n=1 R
Where
Ne -1
oan = .- 3 sa(@m) cos2mnm/N ) (A.15)
Np m=1 v
2 N 1 .
Can = 3 aa(fy) sm(Znum/NP) (A.16)
A’ﬂm =1
Np -1
Tan w2 Ta(fm) cos2mnm(N ) (A.17)
Ap m=0
2 Np =1 5
T = 2 ra(fn) sinQ2mnm/N ) (A.18)
Npm=1

Equations (A.15) to (A.18) are numerical evaluations of equations (A.3) to (A.6). The
coefficients oan . gan . Tun', Tan  are evaluated using a DFT package program. The
DFT can be put in the form of Equations (A.1) and (A.2) by using the following
relationships.

Oan = Oan” (A.19)
Oyn = Gan (A.20)
Tan = Tan (A.21)
Tan = - Tan (A.22)
Ns =N (A.23)
oang = 0S50y y, (A.24)
ma'vg = -0 5raN, (A.25)
[ U




APPENDIX B

Input Data File

The input data file is entitled HIN and contains all parameters necessary to define the
clement geometry and material propertics. the stress evaluation points. and the apphed loading.
The tayout of the parameters in file HIN is given below.

HIN
ro.r. b f
N
P A2 LN
E v
Xo.o Yoo Voo 1y
AYH
() U 2). oo i Np) 1Omitif N = 0)
Ng
ot O ra(2), 002 .. . ra(NGL GatNG) 10Omitif N = 0)
P = TRIG !
Ny

. Gap. Gan » - Tan « Tan

. oapn, ... et for Nplines!
P = POINT ;

Nl’. Ns

fhi. Pui- Sai

| 0. Pay. ... lete. for Np lines)
P {= 'NUMER"}

M

oa(1), oa(2). 04(3). . . .. oa(Nra)
ra(l). 73(2). Ta(3) ... Ta(Nrg)
P = END}

The statements enclosed in curly brackets are comments and not part of the file. The file segments
dehineated by square brackets can be placed in any order and any segment type can be repeated
or omitted. For no applied loading. all three segments should be omitted. All quantities in the
file are in list directed format. Where practicable. the parameter symbols in the above file layout
correspond with symbols used in the main body of this report, rather than with the variable
names used in the program. For clarity, all symbols are defined in Table Bl and their limitations
prescribed. All purameters referred to in Table Bl ay “numbers’™ are integers. Other unspecified
parameters are real numbers. All angles are input in degrees. Other quantitics are input in any
self-consistent set of units. The program was developed for anticlockwise node numbering and
its successful operation for clochwise numbering has not been confirmed. For applied loading.
the sign convention is positive for inward radial loads and anticlockwise shear loads. Naturally,
all limits specified in Tuble Bl 2re in addition to inherent sensibitity limits. e.g. it would be non-
sense to specify a negative element thickness, h.




As an cxample, the data file HIN for a doubly symmetric loaded hole element with 10 nodes
i> listed below. The hole radius is 2-0 m. the clement circumscribing radius is 4:0 m and the
element thickness 0-002 m. Stresses are to be evaluated at three hole boundary points only.
Applied loading consists of a point load superimposed on a distributed load.

" ——

HIN

2:0.4-0.0-002,0-25

10
0-0, 10-0, 20-0, 30-0. 40-0. 50-0, 60-0, 70-0, 80-0, 90-0
7-10E07.0-3
0-0,0-0.1-0,.0-0
3

5-0,15-0,25-0
0

POINT

1.8

45-0. 1000-0.0-0

NUMER

4

1-0EO0S, 1-2E0S, [-4E05. [-3E05, |- 1EOS
0-0. 1-5E05, 1-6E05, 1-5E05,0-0

END




T

TABLE Bl

Input Parameter Definitions

Symibol

ro
F)
b
S

N
(i)

Xo. Yo

YT 1
Np

Ot
Na
rali). Bti)
P
N

24

Gun. Tan

Tan « Tan

Ap

auli), Tali)

Detinition

e *’,

Hole radius
Element circamscribing radius

Element thickness
Element fraction of a full circle

Number of nodes
Angular co-ordinate of node 7

Young's modulus

Poisson’s ratio

Global cartesian co-ordinate of the hole
centre

Global cartesian co-ordinate of node |

Number of hole boundary points for
stress evaluation

Angular co-ordinate of boundary stress
evaluation point i

Number of general points for stress
evaluation

Local polar co-ordinates of general
stress evaluation point i

A flag to specify the type of loading

Number of frequencies for which
Fourier coeflicients are input

Frequency parameter

Coeflicients of cosufl and sin n for
applied normal stress

Coeflicients of cos nf and sin nl for
applied shear stress

Number of positions at which point
loads are applicd

Cut-off frequency for Fourier represen-
tation of point loads

Angular co-ordinate of point load
position {

Radial and shear point foad compon-
ents at position /

Parameter defining the number of input
ordinate values, Ny

Number of input ordinate values

The ith normal and shear stress ordinate
values

Limits

[y !
Ptk and 15 < e < 30 for

best accuracy

Validity of plane stress assumption !
= 0-25 for doubly symmetric ‘.
= 0-5 for singly symmetric !
= 1-0 for unsymmetric i
|

ISCNLI0
y(i) > all y(j). forj < i

N ) - p(1) = 360f. for f # 1-0
< 360f forf =10

None

None

None

None

N - Ny = 3N <30

None

N = Ny~ 3Ne € 30

None

TRIG. POINT, NUMER,

END
None

Integer. 0 s n € 16

These functions are referenced to node
last/ =0

These functions are referenced to node
last =0

None

Integer, 0 € Ns < 16
None
None

Even integer < 8, 10, 12 for f = 0-25,
0510

Npg = 2M 2410

Ordinate values are for equally spaced
points around hole boundary. For
f=0:25 0-5 points | and Ny lie
at nodes | and N respectively, and
ral1) = 73{Np#o) = 0. For =10,
points 1 and Nyo lic at node 1 and
gal1) = oa(Nrp) and 7a(1) = 7a(N¥o)




APPENDIX C
Operating Instructions

The step-by-step operations for using the loaded hole element program, HOLE. in con-
junction with the general finite element analysis suite of programs. DISMAL., are listed below.

(1) Draw up the mesh for the structure, including any loaded hole elements. and define the
applied loads.

Prepare the data file, DATA, for DISMAL (see Ref. 6), excluding the applied loading

data at this stage. Loaded hole elements are specified in DATA as special elements

(sce Ref. 6).

For each loaded hole element (in the order of specification in DATA) prepare a data

file, HIN (scc Appendix B). run the program HOLE. and obtain a listing of CHECK.LST.

Complete the applied loading section in DATA including the equivalent nodal forces

obtained from the listings of CHECK.LST.

(5) Run the DISMAL programs (see Ref. 6).

(6) Obtain the stresses for the loaded hole elements from the DISMAL output fik
PRINT3.LST. These stresses will be output in the order of: tangential stress for nodal
point projections followed by specificd boundary stress evaluation points: then followed
by sets of radial. tangential and shear stress for gener~l stress evaluation points. Add

(2

-

Q2

4

these stresses to the corresponding initial stresses obtained from the listings of

CHECK.LST.
The above instructions apply to the case where only one load case is specified in DATA. If more
than one load case is to be specified. involving different loading on the holes. it will be necessary
to establish equivalent nodal forces and initial stresses by preliminary runs of HOLE. and then
establish the correctly structured files DATA.EXT and SPIT by an appropriate sequence of
runs of HOLE. The loaded hole element can be used in conjunction with other special elements,
providing the correct appending of files DATA.EXT and SPIT is monitored.
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