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GENURAL INTRODUCTION

Because of the high acceleration of a projectile in a gun tube., nnd

because of the high precision that is sought, gun dynamics requires
consideration of secondary effects that are negligible in ordinary

structural analysis. Slight deflections of the tube are aggravated by

centrifugal action of the projectile. Vertical oscillations of the tube

are coupled with sidewise oscillations because of gyroscopic action of the

projectile. These effects are studied in this report.

Section I is a development of the kinematics of a projectile in a

concentric moving flexible tube. Aside from the assumptions that there is

no balloting, that the central axis of the bore is inextensional, and that

plane cross sections of the tube remain plane, unstrained, and normal to the

deflected axis of the bore, the basic theory in Sections 1 and 2 is exact.

Insofar as kinematics is concerned, dynamic unbalance of the projectile,

the Bourdon effect, axial inertia of the tube, and axial friction of tile

projectile are irrelevant.

Although deflections and twist of the tube are small, the engineering

atpproxiiiiationls inl 9(1.l theory are preculLded. Thle Rirchlnotf-Ciebscn theory

of large deflections of thin rods is a natural starting point for thle
analysis. This theory is presented in A. E. 11. Love's "P:athematical Theory

of Elasticity," but in a manner that Love acknowledges "k.s not without

difficulty." Gibbs' vector analysis helps to clarify arguments of this kind.

It is used in this report. However, with a view to computer programming, the

results are expanded in scalar notation.

The Kirchhoff-Clebsch theory treats statics of a deformed rod. For

problems of gun dynamics, it must be extended to admi.t time-dependent

deflections and twist of the tube. A part of Section 1 deals with this

problem. On the basis of kinematics of the tube, kinematic relations for

the projectile are derived. Section 2 treats tile forces and moments that
1 aact on a projectile in terms of kinematic variables of the tube.

Section 5 treats the motion of a tapered cantilever tube that is

actuated by the projectile and by prescribed ,'.otion at the breech. ýh!nding

of the tube caused by the Bourdon effect, axial inertia of the tube, and

axial friction of the projectile are neglected, but tile theory can be

generalized to include these effects. The deflections and twist of the tube

9



are reprosented as series of flexural and torsional modes of' a uniform

canti levor beam. The coefficients in these series are generalized

coordinates of the tube. They are funot.ions of time that are determined by
Lagrange's equatioir. The theory exhibits gyroscopic action of the

proj•-ctil that causes coupling between vertical and horizontal oscillations
of the tube. However, quantitative studies of this phenomenon must awa it

numerical computer analysis. A much simpler problem that displays the same

characteristics is treated in Section 4, namely, a rigid curved tubo that is
hinged at tho breech so that it can siving sidewrays.

*1



SECTION I
KINEMATICS OP A PROJECTILE IN A CONCENTRIC :LEXIBLE rUIIP

1. 1 INTRODUCTION

Expressions for the velocitty, the acceleration, the angular velocity,

the kinetic energy, and the virtual work of a rigid, spinning projectile in

a concentric flexible tube are derived in this section. Approximotions arc

deferred to the last article (Art. 1.14). The general theory is exact,

aside from the assumptions that there is no balloting, that the axis of the

bore is inextensional, and that 1)lan1e cross sections of the tubo remain

plane, unstrained, and normal to the central axis of the bore when the tube

Is bent and twisted. The axis of symmetry of the projectile is assumed to

be tangent to the deflected axis of the bore at the location of the

centroid of the projectile.

Gibbs' vector analysis is used. A brief development of vector analysis

that suffices for the present applications is presented in Appendix C of

Ref. 1. A scalar formulation of the theory is presented in Arts. 1.11,

1.12, and 1.13.

1.2 NOTATIONS

A bar over a letter denotes a vector.

A caret over a letter denotes a unit vector.

A dot over a letter denotes the derivative with respect to time t.

d/dt denotes the total (or substantial) derivative with respect to time

(Eq. (1.20)).

An asterisk * denotes the doformed state of the tube.

Sulbscript:s s and t denote partial derivatives with respect Co arc

length s and time t, respectively.

For the next several n!ot.ations, refer to Figures 1, 2, and 3.

C is the undeformed axis of the bore.

C{• is the deflected axis of the bore.

"Dynamics of. Pi gid Gunm- wit Straight Tubes, " lPLAI-lMC Finni, Report P1AAK- I1-
80-C-0039-Task 2. Arnq Research and Deoelopnient Gomm,;nd, BIU,, Ahardecn
Pro zi~ng Growia, Mar,!to flu.
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M10 orthogonal 1111 irni -ct-ors. *In thle di reed on5 of thle

principal normal, thLie binormal, and thle tanguLn to curve C, rospect ively.

. is Prc I ongth on curves C and G*.
j* .j, j* are unit vectors that coincide with lines in the deformed

tube which initially have directions I', . • k'.

C is the unit tangont vector of curve C*; (t a •*), Figuro 1.

fi Is the principal unit normal of curve C*, Figure 3.

b is the unit binormal of curve C*, Figure 3.

1/R is the curvature of curve C*G

1/ is the tortuosity (usually called "torsion" in differential

goometry) of curve C*.

T Is the tortuosity of Curve C.

1v is a vector, such that the vector triad (T*, P*, k*) issuing from a

point P1 on C* is brought parallel to the orthogonal triad (j* + 4*,
.+ 3j*, 4'* + 6*) at a neig1hboring 1)Ojjlt P on C* by the infinitesimal

rotation w ds, where ds is the distance P*P* 1, Figure 2.
' <, i, are components of i, defined by I i*K . j*K' + k*T.

Sis the angle between vectors j* and fi at a point P* on curve CA,

Figure 3.

r(s,t) is the radius vector from a designated fixed origin to a point

Ik* oil Curve C*; (er/as = t), Figure 1.

o(st) is the angular velocity of a cross section of the tuba.

w 1 , 112 ) ,W are components of w, defined by1 ,

1 2 3

i. (t) is the va le of S locating the centroid of the projectile at t title

V =- dr/dt is the velocity of the centroid of the projectile (liq. (1.19)).

C(t) is the speed of the projectile relative to the tube.

a is the acceleration of the centroid of the projectile.

W is the angular vClocit)y (spin) of thie projectilc relative to the tube.

(It is not the magnitude of vector w-.)

/1he subsri'pt "a", denotitng "1axial", iC!s used rather thtt4, th- e ' -zrb pt
denoting "tangentiea!" to aooicd conI'iwiot with the sibjcpij't ": d(eno10tit
the pciit,%il derivative wtth respect to t'ime.

1 ?2



S is the absolute angular velocity of the projectile (Eq. (1.30)).

SI n' Pb' Qa are components of f, defined by Eq. (1.31).
m is the mass of the projectile.

i is the moment of inertia of the projectile about a transverse axis

through its center of mass.
i 3 is the moment of inertia of the projectile about its longitudinal

axis.
T p is the kinetic energy of the projectile.

F is the'axial frictional force on the projectile.

PI is zhe pressure on the base of the projectile.
P is the resisting pressure ahead of the projectile.

A is the cross-sectional area of the bore.

MPr is the rifling torque.It
X = wdt

6W is the virtual work of the forces associated with the projectile.

C** is a varied curve, lying infinitesimally close to curve C*.

Wn Wtb Wa are components of w, defined by

nP b aw--n + °Gtob + twa ; (1a

Vn, Vbb Va are the components of the velocity V on the principal

normal, the binormal, and the tangent of curve C*.

an, ab, aa are the components of the acceleration a on the principal

normal, the binormal, and the tangent of curve C*.

yl(s,t) is the angular displacement of a cross section of the tube in its

plane (see Eq. (1.44)).

x, y, z are rectangular coordinates attached to a Galilean reference

frame.

i, j, k are unit vectors along the axes x, y, z.

Sdenotes the net force on the projectile.

F, Fb, Fa denote the components of F in the n, b, t directions.

H denotes the angular momentum of the projectile with respect to its

ýenter of mass.

H nP H bp Ha denote the components of H9 in the n, b , t directions.

13



Sdenotes the moment about the center of mass of the projectile of all

the forces that act on the projectile.

Mn' .b' Ma denote the components of M in the n, b, t directions.

3 denotes the mass moment of inertia about the hinge line of a rigid

tube and attached breech.

M is the gyroscopic couple that the projectile exerts on a rigidg
curved immovable tube (Figure 7).

,X = W~ + .
a ~

u(t), v(t) are the x and y components of displacement of the tube at

the breech (Eq. (3.13)).

0(t), 0(t), C(t) are the x, y, and z components of rotation of the tube

at the breech. Also, e is the angle of the tangent to the center line of a

rigid curved tube (Figs. 6, 7, and 8).

p is the mass density of the tube.

I(s) is the moment of inertia of a cross section of the tube about a

diameter.

S(s) is the cross-sectional area of the tube, excludir:g the bore.

g is the accelcration of gravity.

X is the length of the tube.

E is Young's modulus.

G is the shear modulus.

ft 1 n %are constants defined by Eqs. (3.7) and (3.8), and by Table 1.

f (s) is the n'th natural bending mode of a uniform elastic cantilevera
beam (Eq. (3.6)).

,pn(s) is the n'th natural torsional mode of a uniform straight tube

that is fixed at one end and free at the other (Eq. (3.11)).

X (t), Yn(t), Zn (t) are coefficients in the modal expansions of the

deflection and twist of the tube (Eq. (3.13)). They are generalized

coordinates of the tube.

L = T - U is the Lagrangian function.

1.3 THE KIRCHHOFF-CLEBSCH THEORY OF THIN FLEXIBLE RODS

The Kircihhoff-Clebsch theory of! bending and twisting of thin rods is

14



presented in References 2, 3, and 4. In the present work, the rod is taken

to be the tube of a gun. The undeformed axis C of the bore is an arbitrary

curve. The principal normal, the binormal, and the tangent to curve C are

orthogonal unit vectors, denoted respectively by (1', j', kI'). If the

undeformed tube is straight, (1',3', k') may be any constant orthogonal unit

vectors such that k' coincides with line C. When the tube is deformed,

curve C passes into another curve C*. Nearby points, P and P,, on C pass

into points P* and P*1 on C*. The lengths PP1 and P*P*1 are both taken to

be ds; i.e., extensionality of the axis of the bore is neglected. Love and

Basset (Refs. 2 and 3) also assumed inextensionality.

Lines in the tube, issuing from point P on C in the directions i' j'
k' pass into lines in the directions 1*, j*, k* (Figure 1). Vector k* is

the unit tanger, of C*. Since plane cross sections of the tube are assumed

to remain plane, unstr ned, and normal to the centroidal axis C* the

vectors i*, j*, k* are mutually perpendicular. Love called straight lines

coinciding with vectors i*, it k* the "principal torsion-flexure axes" of

the rod. # Although £* = it, where "s the unit tangent of curve C*, the

vectors i1' and j* generally do :oincide with the principal normal n and

the binormal b of curve C*.

The vectors t, n, b are to be a right-handed system; i.e., the

thumb, the forefinger, ari, .e finger of the right hand can be

simultaneously pointed actions t, n, and b. Consequently, with

the right-hand con, •e vector product,

A A A

b tXn , n= b x t , t=nxb (1.1)

With the approximation ds = ds*, Frenet's formulas in the differential

2A. E. H. Love, The Mathematical Theory of Elasticity, 4th ., Cambridge
University Press, 1934, Chap. XViii, pp. 381-398.

3A. 8. Bas et, "On the Deformation of Thi" Elastic Wires," American Journal
of Mathematics, Vol. 17, 1895, pp. 28 17.

4 "The Kirchhoff-Clebsch Theory of Thi . 2stic Rods, " Interim Report BLM-
AMC-81-2, Contract No. DAAK-i1-80-C-uj,39, Army Research and Development
Command, BRL, Aberdeen Proving Ground, Maryland.
Love considered a rod of arbitrary cross section, and he took i' and j to

be along the principal axes of inertia of the cross tection.
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geometry of curves (Ref. 5) are

where 1/R is the curvature and 1/E is the tortuosity of curve C*. Partial

. derivatives are indicated in Eq. (1.2), because t, n^, and b generally

depend on time t as well as on the arc length s. However, in this article,

* t is a passive parameter, since a single configuration of the tube is

considered.

If the point P* on C* moves to a neighboring point P*1 on C* (Figure 2),

while the curve C* is unchanged, the vectors '"1*, 3*, k receive increments

S6•*, •j*, A*, such that + ÷ •*, 3* + 6j*, and k* + 5k* are mutually

orthogonal unit vectors. This transformation could be accomplished by a

translation and a rigid-body rotation of the sytem (P, 3*, k*). It is

shown in the kinematics of a rigid body that an infinitesimal angular

displacement is a vector quantity (Ref. 6). Consequently, there is an

infinitesimal vector w ds which represents the rotation that brings the

system (J*, *, k) into parallelism with the system (1A + *-, +* +6*,

k* + 6k*), where ds is the distance P*P*, (Figure 2). Love defined scalars

K, K', T by

W w 1*K + a*K + * (1.3)

The orthogonal projection of curve C* onto the j*k* plane (or the k*i* plane)

is a plane curve vith curvature K (or K') at point P*. The tortuosity of

the undeformed axis C is denoted by T O. It is the rate of rotation of the

osculating plane of curve C with respect to arc length s. The deformational

twist of the tube per unit length is accordingly T - TO.

If a rigid body undergoes an infinitesimal angular displacement w ds

about a fixed axis, and if p is a radius vector from a point on that axis to

a particle Q of the body, the displacement of Q is ý x p ds. Letting p

stand successively for i*, j*, and k*, and noting Eq. (1.3), we get

SD. Struik, Differential Geometry, Addison-Wesley Press, Cambridge, Mass.,
1950.

6 E. T. Whittaker, Analytical LDnamics, 4th ed., Dover Publications, New
York, 1944, Chap. 1, Art. 8.
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eod~s PIC

lAll A

AA

k. t

"ds

Figure 1. Notations

I

A i
'.•p• ~~ds P'• C

Figure 2. Illustration of Vectors
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as

= X J k K * - iT

Ak A(14k x k* =*K' j*K (1.4)

Figure>3 shows the vectors :*, j*, n, b in the normal plane of curve

C*. It follows from the geometry of the figure that

i= n si b cos a j, = n cos a + B sin t (1.5)

Conversely,

ft =* sin a + 3" cos s, a + j* sin a (1.6)

Differentiation of the second of Eqs. (1.6) yields, with the help of

Eq. (1.4),

--r- -in cos a + k*(K' cos a + K sin a) (1.7)

b- a , T -isin a + s

Also, Eqs. (1.2) and (1.6) yield

as --(i* sin +j* cos) (1.8)

Equations (1.7) and (1.8) yield

"s E+ (1.9)

and

tan a = - (1.10)
K

Also, since k* = t, Eqs. (1.2) and (1.4) yield

Aý A

at n-
-)t - 1*KI J*K (1.11)

Equations (1.6) and (1.11) yield

cos a KI' sir (1.12)
K R R

18
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At a point where a concentrated couple is introduced into the tube,

classical oeam theory indicates that the curvature I/R is discontinuous.

Discontinuities also may appear in I/E , it and S. The preceding theory is

limited to points at which the pertinent geometric quantities are continuous.

CA 1
AI

Pg

Figure 3. Vectors I, j* , , in a Normal Plane of Curve C*

1.4 KINEMATICS OF THE TUBE

The curve C* representing the deflected axis of the tube at time t is

defined by the vector equation r = r(s,t), in which s is arc length on the

axis of the tube and r is a radius vector from a fixed origin to the point

s on the curve. The vector ar/as is the unit tangent t of the axis of the

tube. The vector ar/at is the velocity of the center of the cross section

of the tube at point s.

The triad of unit vectors (•*, 3*, k*) may be conceived to be glued to

a cross section of the tube, with its origin at the center of the cross

section. As the tube deflects and twists, that cross section and the

attached triad (P k*) rotate with angular velocity u(s,t). The vector
w is resolved into components (w1, W2k W3) in the directions (1*, j*, k*);

i.e.,

4 t *W I + *w 2 + k*0) 3  (1.13)

Since (i*, j*, k*) are unit vectors attached to the tube, the following

kinematic relations exist:

IA
ai* A ~=J*)-k0

j3 2

19
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at k Xj kw1 - L 3

W = x w J*W1  (1.14)

Equation (1.14) is similar to Eq. (1.4), but the physical interpretation is

different. Since k* = t, Eq. (1.14) yields

3-3* "t - "- (1.15)
Iat' 2 at

The components of w in the directions fi and G are won W- •i and

oWb = b b. By Eqs. (1.6) and (1.13),

n=( l sin a + w(2 cos a (1.16)

By Eqs. (1.6), (1.14), and (1.16), w n -b- D t. Similarly w is derived.

Accordingly,

W W t (1.17)" '•~n =t -" -'(b = at •

Subsequently, w 3 is designated as w a in which the subscript "a"l

indicates the axial component. The subscript "t" is reserved to indicate

the partial derivative witt: respect to time.

1.5 VELOCITY OF THE PROJECTILE

Balloting is not considered. At any instant, the axis of the projectile

is assumed to be tangent to the axis of the deflected tube at the point

where the centroid of the projectile lies.

'rhe location of the centroid of the projectile at time t is specified

by s = •(t), where g(t) is regarded as a given function. The absolute

trajectory of the centroid of the projectile accordingly is represented by

r = r[[(t), t] (1.18)

The absolute velocity of the centroid of the projectile is V = dr/dt, where

d/dt denotes the total derivative. By the chain rule of partial

differentiation,

20



dt S dt +t

Since a-r/as - t, this yields

-- . •)" lS=E= d

a- t dt

Equation (1.19) signifies that the absolute velocity of the centroid of the

projectile is the vector sum of the velocity relative to the contiguous part

of the tube and the velocity of the center of the cross section of the tube

at which the centroid of the projectile lies. This conclusion could have

been anticipated from general kinematical theory.

The distinction between the total derivative and the partial derivative

applies to any function of s and t; i.e.,

d--tI = D--+- -( I (1.20)

where (-) denotes any function of s and t.

In view of Eq. (1.19), the square of the speed of the projectile is#

V= 2 + 2• r • a -2 (1.21)

By Eq. (1.19), the component of velocity of the projectile tangent to the

deflected axis of the tube is

•v -. t A A + ? • - Is-
Vat= V tt* (1.22)

The components of velocity of the projectile in the directions of the

principal normal and the binormal to the deflected axis of the tube are

K- a-r - A a? S=

a. t =n• - , V b = b * -- (1.23)

#By definition, A2 = A • A = A in which A is any vector.
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Equation (1.23) signifies that any component of velocity of the projectile

normal to the axis of the tube is the same as the corresponding normal

*- component of velocity of the contiguous tube.
*1

1.6 ACCELERATION OF THE PROJECTILE

The acceleration of the centroid of the projectile is

- dV 21V av

By Eqs. (1.2) and (I.19),

a +

t +~ 5t ++t
2-=s

Consequently,

*2 2-. S=
2 t 2 +(1.24)

R t~-.

or, since Dt•/3t = - x t(see Eq. (1.14)),

62 "A at2T I
a iL+2tw x + + I+ (1.25)

The terms on the right side of Eq. (1.25) can be identified as follows:

(a) The centripetal acceleration of the centroid of the projectile relative

to the momentary form of the axis of the tube. (b) The Coriolis acceleration

of the centroid of the projectile. (c) The tangential acceleration of the

centroid of the projectile relative to the adjacent part of the tube.

(d) The absolute acceleration of the center of the cross section of the

tube at which the centroid of the projectile lies. This decomposition of

the acceleration could have been anticipated by general kinematical theory.

By Eq. (1.25), the components aa, an, ab of the absolute acceleration

a in the directions of the tangent, the principal normal, and the binormal
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tit -of the deflected axis of the tube are

A - A 2-s
a 3t 2

ta 2-i7

_2- s-
•] ,an R t2

"a"= • - -2-w fi + 2 (1.26)
at

since

and

A _ A - A A

1.7 ANGULAR VELOCITY OF THE PROJECTILE

In the time interval dt, the cross section of the tube at which the

centroid of the projectile lies undergoes the angular displacement w dt.

In the same time interval, the projectile advances the distance t dt

relative to the tube. The angular displacement of the projectile due to the

latter displacement is W~dt. The spin of the projectile relative to the

tube is wt, where w is the magnitude of the spin. (w is not the magnitude of

the vector w.) Consequently, the relative angular displacement of the

projectile during dt because of the spin is wtdt. The absolute angular

displacement of the projectile during dt is the vector sum of these

components, namely,

wdt + ýw dt + wt dt

Therefore, the absolute angular velocity of the projecLile is

- * A

"W= + w+ wt (1.27)

Equations (1.3), (1.13), and (1.27) yield
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..- (W + KgI•)++ , k'W 3 * -r- + to) (1 28)

Now to and c can be eliminated from Eq. (1.28) by Eq. (1.15); K aid K' can

be eliminated by Eq. (1.12). Thus, Eq. (1.28) yields

at + * + cos a + j* sin ot)

k+ *(to + 4+ T) (+.29)
S3

"4-
By the vector-triple-product theorem (Ref. 1, Appendix C):

A 

x

or, since i* x j* =k*

L A A

at a t-t x XFE

Also, by Eq. (1.6), -P* cos at + j* sin t = S. Consequently, Eq. (1.29)

yields

t .b + CT) (1.30)

The components of " in the fi, 6, and t directions are

4A 62n : - 121) ab= 12 , =62. t (1.31)

Since the terms in the scalar triple product can be permuted cyclically,

A A at: Di A AA

t at I =t a-

at at x a. 6 X

• . x -tF = - '- (1.32)

Equations (1.30), (1.31), and (1.32) yield

Q =-b --- , 1tP +bfi.• . W = - + kT (1.33)n at b at Rt' a a

24

to



1Equations (1.17) and (1.13) yield

11 P ty b R a 1.4fla n 'fb a) I 8(

1.8 KINETIC ENERGY OF A BALANCED PROJECTILE

In the theory of kinematics, any reference frame is admissible. For

kinetics, however, a Galilean reference frame must be introduced.

Consequently, the vector ir is now considered to be specified with respect

to a Galilean reference frame; e.g., the earth.

The kinetic energy of translation of the projectile is

T4. = - inV.

where in is the mass of the projectile. Consequently, by Eq. (1.21),

Tt 1[2 D 2*t tr I = 1 Inr. (1.35)

The kinetic energy of rotation of the projectile is

T =1 i (Q 2 + 2 ) +.i S 2 (1.30)
Tr 2 - (n " +2 3 a

where iI is the moment of inertia of the projectile about a transvorse axis

through its center of mass and i 3 is the moment of inertia of the projectile

about its longitudinal axis. The total kinetic energy of the projectile is
T1p = Tt + Tr. Consequently, by Eqs. (1.33), (1.35), and (1,36)

t A

S" +ia +T) (1 .37)

Since fl • at/at, 6 * Bt/3t, and t • 3t/3t are three orthogonal

components of Z•t/Zt,
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A DA Dt 0Furthermoro, sinuo t t 1, t °t/ t 0. Consequently. Eq. (1.37)

roeduces to

IiI
~ ~ rn 2~ ~ ny)I ~ i~( 2 ~ (1 * E"g4 +3( ( Aa A +') (

Since @t/3s •Ran /R2 (Bt/•s)2 fq. (1 .38) may be expressed as "-

fol lows :

T . [ 2 t( 2 1 ft L .)2

+ i3 (w + -t) 2  (1.39)2

2 3q

Si ncoe aoA/Ds Ay

Tosoa 11/11atnd 1/1 (a lD)erel strigh (138 umybe expresse a sil

relationship between twist and angular velocity. During a time interval dt,

the cross section of the tube at 1point s undergoes the angular dislplacement

•a dt. Duying the same time interval, the cross section at point s ' ds

undergoes the angular displacement

S a

Consequently>, the increment of twist at point s during (It is (3wa/OS) lt.
SAlso, si.e the total twist at point s is r -(TO the increment of twist at

point s (luri~ng dt is (at/at)dt. Therefore, for a straig.ht tube that

execut .s torsional mlotion,•
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Equation (a) might be adopted as an approximation for a slightly curved

tube, but an inconsistency arises. It is illustrated by a perfectly rigid

curved tube. In this case, T = Top since there is no deformational twist of

a rigid tube. Accordingly, Eq. (a) yields 3aw /s = 0. Therefore, w does
a a

not depend on s. Furthermore, since all particles of a rigid body have the

same angular velocity at any instant, the vector angular velocity w of a

rigid tube is independent of s. The axial component of angular velocity of

a cross section is wa = w t. For a curved tube, t obviously depends on s.

Thus, we arrive at the contradictory conclusions that w depends or s and
a

wa does not depend on s. Consequently, in general, Eq. (a) must be rejected,

although it is correct in certain special cases.

Since a theory of flexible tubes must be consistent with the theory of

. rigid-body displacements, the nature of the function wa (s,t) for a rigid

curved tube is pertinent. In general, w = w • t, and, for a rigid tube,

w = (t), Therefore, for rigid tubes,

•'a - ati

Ts = as

In view of Eqs. (1.1) and (1.2), this yields

a1 1A b A

W -bR R R

Since the vectors in the scalar triple product may be permitted cyclically,

this yields

- = - * b - x t x3s R

Since tox t at/'t, this yields the following equation for rigid tubes:

a 1 * (b-
-'+ - a-L_= 0 (b)

Ts it

The general theory of flexible curved tubes is now considered. An

infinitesimal segment of such a tube, as viewed along the binormal of the

axis C*, is shown in Figure 4. Infinitesimal angular displacements are
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resolved along the horizontal line L. To first-degree quantities, the

comaponent on line L of the rotation of the right-hand cross section relative

to the left-hand cross section is

asasa ds dt + (o 1 dO dt

Accordingly, the increment of twist at section s during dt is

aw
+ w÷ 4:1--s)dt

1as-

Since this is equal to ar/at dt,

ax "wa Do

at as -1a

dt(it kw* ds)dtI as
S•~~~~adt' - •. .

/ • k"(Wa + -s ds) dt

d-

//

Figure 4. Resolution of Angular Velocities
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With the sense of w1 indicated in Figure 4, wl -w " i" Also, 30/as = 1/R.

Therefore,

DT a. w
Et a s R

* Since fi = F xt., this yields

3w 3w3t 1- A A a lA - A
w:. b' 1- a + b w x t

•w- r )s R bxt = -- +wb

"Since w x At 3t/at, this yields
Sincew 

AA 

, 
t 
i 

i 
l

at a s 1 t (1.41)

For torsional motion of a straight tube, Eq. (1.41) yields Eq. (a)

since 1/R = 0. For motion of a rigid tube, it yields Eq. (b), since

2 t/at = 0. If the axis of the tube bends in a plane F, vector b is

perpendicular to r, and vector-- at/ht lies in plane '. Consequently,

S - atat =0. Accordingly, if curves C and C* are constrained to lie in a

plane, Eq. (1.41) reduces to Eq. (a). Usually, in studies of plane motion
of gun tubes, Tr and (Ca are taken to be zero.

Equation (1.41) can be expressed more simply, since

At i x !~ - i S AJ I =A - at
R at It R It

Also,

aw 3a a~A
- y(w 'i w* ts s + s

Therefore, Eq. (1.41) reduces to

3at 3as (1.42)
•t as

For a rigid tube, ar/at C0 and w = w(t), so Eq. (1.42) is satisfied.

Equation (1.42) means that aT/at is equal to the tangential component of

Dio3s.
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In view of Eq. (1.17), Eq. (1.41) may be expressed as follows:

a n (1.43)
at 

(s 

R.4

The general solution of Eq. (1.43) is easily derived. There is a function

V(s,t) such that T = ap/Ds. The function 1 contains an arbitrary additive

function of t. Also, there is a function X(s,t) such that wa = a + lp/Dt.

Equation (1.43) accordingly yields

ax W n
as R

Consequently,

S W
X I-lid s +q(t)

Ro R

The arbitrary additive function of t in the function i may be chosen to

cancel q(t). Therefore, there is a function *(s,t) such that

LI P +a W n ds (1.44)as a =7 at 0o

The function '(s,t) represents the angular displacement of a cross section

of the tube in its plane.

Equations (1.34) and (1.44) yield

ff~a -tLa + = W+J0 ds + L (1.45)

Equation (1.45) may be substituted into the kinetic energy expression for

the projectile (Eq. (1.39) or (1.40)).

1.10 VIRTUAL WORK ASSOCIATED WITH THE PROJECTILE

In order to apply Hamilton's principle or Lagrange's equations to

problems of gun dynamics, we require the expression for the virtual work of

all the non-inertial forces that operate. It is a linear expression in the
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infinitesimal virtual displacements. Only the part of the virtual work that

txplicitly involves the projectile is considered in this section.

Conceptually, the system receives an infinitesimal virtual displacement

that generally does not coincide with the true course of the motion., The

real motion of the system is imagined to be stopped while the virtual

displacement is performed. The actual forces in the system are imagined to

persist while the virtual displacement is executed. In the present case,

the vector r(s,t), defining the curve C*, receives a virtual increment 6r(s).

This transforms curve C* into another curve C**, Figure 5. Since the center

line of the tube is considered to be inextensional, the variation 6r must

conform with this constraint. Consequently, the mapping C* • C** must be

performable by inextensional bending and twisting of curve C*. In addition

to the virtual displacement 6r, the coordinate & of the projectile receives

a virtual increment 6ý, and it also receives a virtual angular displacement

about its longitudinal axis.

C

Figure 5. Virtual Displacements
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The work that a force V performs on a particle during a time interval

(to, t1) is defined by

t

w T V dt
Sto
0

where V is the velocity of the particle. Since V depends on the choice of

the reference frame, so does W; i.e., work is a relative quantity. This

conclusion is consistent with the fact that the work of all the forces that

act on a system equals the increase of kinetic energy of the system, since

kinetic energy also is a relative quantity, inasmuch as it depends on the

velocities of the particles. In this analysis, work is calculated with

respect to the Galilean reference frame to which the vector r is referred.

The contact forces that the projectile exerts on the bore are reacted

by equal and opposite contact forces that the bore exerts on the projectile.

Consequently, the normal components of all these forces perform no net work

on the system. Accordingly, the gyroscopic couple of the projectile and its

reaction perform no net work. An analogy is a person who lifts an object.

The person performs work on the object, but gravity performs an equal amount

of negative work. Together, the lifter and gravity perform no net work.

The projectile receives the virtual displacement 6C relative to the

tube, and the contiguous tube receives the axial virtual displacement

t * Sr. Consequently, the absolute axial component of the virtual

displacement of the projectile is 6ý + t 6 Sr. The driving force on the

base of the projectile is P A, where P is the pressure of the gas and A is
1 I

the cross sectional area of the bore. There is a resisting force F which

results from axial friction and engraving of the rifling. Also, there is a

resisting force P2 A resulting from pressure of the air ahead of the

* projectile. Consequently, the virtual work of forces that act on the

., projectile is

(P1 A - P2A - F)(6C + t 6Tr)

The virtual work of friction and engraving on the tube is Ft * 6r. The net

virtual work 6W1 , resulting from axial movement of the projectile, is the

sum of these expressions. Consequently,
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S 5,I = [ P 2 )A - F]- + -1 .(P I 2 )A • 6

in which 6r is evaluated at the point s .

Also, there is a contribution 6W2 to the virtual work from the rifling

torque. -The virtual angular displacement of the projectile relative to the

tube is 6X, where x w. The angular displacement of the cross section of

the tube at point s = 4 is denoted by i'. The absolute virtual angular

displacement of the projectile is 6 X + 6*. The rifling torque is denoted by

M . The virtual work performed on the projectile by the rifling torque is

Mr (6X + 61P). The virtual work performed on the tube by the rifling torque

is -M r 54. Consequently,

6W2 = Mr(SX + 6) - Mr 0 = Mr 6X

Aside from effects of gravity, the virtual work explicitly related to

the projectile is 6W = SW + 6W Hence,

6W = [(P1 - P2 )A - FJS6 + (P1  P2 )A Z * r 6+ M1 6X (1.46)

in which relevant functions are evaluated at the point s = 4. Additional

contributions to the total virtual work of the system, coming from the

action of gas pressure on the breech, effects of gravity, strain energy of

the tube, and effects of the supporting structure, are not considered here.

We adopt the viewpoint that 4(t) and w(t) are given functions. Then

64 = 6X = 0, and Eq. (1.46) is simplified accordingly. Also, 6r is

restricted by the condition of inextensionality of the tube. Since

A

t• t t , • t =0. Consequently, since Wa= •/s,

t6r = 0 (1.47)

Equation (1.47) expresses the constraint on Sr.

If the tube is initially straight, £ is approximately a constant

vector, since the deflections are small. With this approximation,

Eq. (1.47) yields

*(t• Sr-) = 0 or t 6r = constant
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If r is given at the breech (s = 0), Sr 0 at the breech. Then, since
A At * r = constant, t - 6r = 0 everywhere. Accordingly, for a gun with a

straight tube, Eq. (1.46) yields SW 0. The condition t • Sr = 0 means

that Sr must be perpendicular to the axis of the bore.

1.11 KINEMATIC AND GEOMETRIC RELATIONS IN SCALAR NOTATION

Adaptation of the foregoing theory to digital computer programming

requires that the equations be expressed in scalar form. Rectangular

coordinates (x, y, z) with corresponding unit vectors (1 ,, £) are

attached to a Galilean reference frame, but, insofar as kinematics is

concerned, the reference frame is arbitrary. The orientation of these axes

with respect to the gun is not of immediate concern. The deflected axis C*

of the tube at time t is defined by the equations, x = x(s,t), y = y(st),

z = z(s,t). Since s is defined to be arc length on curve C*,
9?

.•.2 2 2 :
x s + ys + zs -1 (1.48)

in which the subscript denotes the partial derivative; e.g., x = ax/as.

The radius vector from the origin of the (x, y, z) coordinates to a point

on curve C* is

- A A

r = x + j y + k z (1.49)

The unit tangent of curve C* is

t r -
t T 1 s + Ys(1.50)

By Eqs. (1.2) and (1.50),

-= I X +Y 5  ss (1.+1)SR ss Yss ss

Therefore,

1. Vx 2 2 21= 2 2 z (1.52)
R ss ss ss
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By Eqs. (1.1) and (1.51), ý/R may be expressed in determinant notation, as

follows:

y z z x
R Ik
b =: . S I + 1 s

YSS zss zS X5ss ss SS

By Eq. (1.50),

at st + j" + zs (1.54)

By Eqs. (1.17), (i.51), (1.53), and (1.54),

-= b x + y y + zz
R ss st ss st Zss st

and

Wn Xst Yst zstn _(1. 56)

R T s Ys z s
SsX ss zss

Accordingly, w and wb are determined, if the functions x(s,t), y(s,t)n •

z(s,t) are known. The component wa is not determined solely by these

functions, since it depends on the twist of the tube, as is indicated by

Eq. (1.43).

The tortuosity of curve C* is determined most readily by the second of

Eqs. (1.2). It yields

1 a fi
b= • as(17)

By the first of Eqs. (1.2),

2A
t a afi l AA

s + s(-1 )= x +y +z(.8
a)s 2 =S ( R R ns + xi ,, s ss + Y s s s + z3ss5
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Therefore,

t a ft -2 A a
b"as R2E

With Eqs.' (1.53) and (1.58), this yields

x y z
1 "5 5,-

R (1.59)s s
'C. y zXsss Ysss Zsss

It is possible to eliminate R from Eq. (1.59) by means of Eq. (1.52). Thus,

1/E is expressed as a rational function of first, second, and third

derivatives of x, y, and z with respect to s.

1.12 VELOCITY AND ACCELERATION OF THE PROJECTILE IN SCALAR NOTATION

The velocity of the centroid of the projectile is given by Eq. (1.19).

Consequently, by Eqs. (1.49) and (1.50),

V= (xt + Xs) + t(Y + t YS) + (zt + z s

or

dx-+ + d z- (1.60)

where d/dt denotes the substantial derivative. Hence,

-2 = dx 2 dy 2 dz 2 1(s1 
6

dt + Qj2 -,) + (1dt1)

The axial component of velocity of the projectile is

- A dx dy dz s=

V =V -t^ -x - + y -+Zdz I- = (1.62)a s dt • s dt s dt

The components of V on the principal normal and the binormal of the

deflected axis C* are given by Eq. (1.23). Consequently, by Eqs. (1.49),

(1.51), and (1.53),
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Rn xt + y t + Z z (1.63)
TR = ss t ss t ss

s=F,
V yt zVb t t zt

bR X y z (1.64)

x y zss ss ss

The acceleration of the centroid of the projectile is given by

Eq. (1.24). Consequently, by means of Eqs. (1.49), (1.50), (1.51), and
(1.54),

Sa (t2 Xss +2 txst + xS + xtt)

+ (2 Yss + 2 tt)

+k z ss +2tZSt + zS+ Z tt )I (1-65)

Therefore, by Eq. (1.26), the axial component of acceleration of the

centroid of the projectile is

a = •+x x~ + ySy + z [s•(1.66)a a= t * a +- s x tt + SYtt +Zs Z tt (.6

By Eq. (1.26), the component of a on the principal normal to curve C*

is determined by

- a 022j =
an f an _ 22.E l ••I=

S+ 2  W +-
R F R 2 Rb R 2R

Consequently, in view of Eq. (1.51),

a n * 2
+ 2 + + X +y +Z z s=ý (1.67)R- R2 R °b Xss xtt +Yss Ytt ss zttl

The factor wb/R in Eq. (1.67) can be eliminated by means of Eq. (1.55).
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Likewise, tle component of ai in the direction of the binormal 6 of curve

C* is determined by Eq. (1.26). In view of Eq, (1.53),

2tx y z
R R' - xs Ys (1S8

X Ys 3ss ss

The factor w n/R it, Eq. (1.68) can be eliminated by means of Eq. (1.56).

Also, R can be eliminated by means of Eq. (1.52).

1.13 KINETIC ENERGY OF THE PROJECTILE IN SCALAR NOTATION

The kinetic energy of the projectile is given by Eq. (1.40).

Consequently, by Eq. (1.50),

m. :1 dx 2 + L)I+ (dz 2
p 2 dn[d -

Tp 21 [(x) + (dr) 2
Til[(Xst + xss) + (yst Yss) +czSt S z)

+ i + 1a - (1.69)

1.14 APPROXIMATE THEORY FOR INITIALLY STRAIGHT TUBES

If the tube is initially straight, the z-axis is conveniently chosen

to coincide with the undeflected axis of the bore. Then x(s,t) and y(s,t)

are deflection components of the tube. By Eq. (1.48),

z 2 + )(x2 + 1 2 + ... (1.70)

Since the deflections of the barrel of a gun are swail, it is reasonable to

approximate Eq. (1.70) by z = 1. Then,

z s + f(t) , z s sss 1 (1.71)

The function f(t) represents the value of z at the point s 0. This

point is conveniently chosen to lie at the breech. It may vary with time,

if the breech moves. It is to be noted that Eq. (1.71) signifies that
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2 2
X + y, . lhcviefore, the accurracy of quadratic expressions in
derivatives of x and y requires study. In view of Eq. (1.71), Eq. (1.49)

becomos

r = ;. x + 1 y + s 4. f(t) (1,72)

Accordingly, the unit tangent of curve C* ia

t i x 5  + y +k (1.73)

By Eq. (1.51),

"-1 3 + (1.74)P, ss Yss

By, Eq. (1.52),

= Vxs 2 +(1,75)it- s Yss

If curve C* is constrained to lie in the y- pAlanc, x = 0 and Eq. (1.7S)

reduces to 1/R - + y ss' which is a well-known linear approxiina~ion in the

engineering theory of beams. However, if xss and yss both differ from zero,

there is no linear approximation of Eq. (1.75) available by Taylor series

expansion.

The linear approximation of G/R, obtained from Eqs. (1.53) and (1.71),

S- ss + A Xss (1.76)

Htere, tile term k(xs yss Ys xs) has been discarded, since it presumably is

small compared to the li near terms in Eq. (1.76)

In view of Eqs. (1.59) and (1.75), the tortuosity of curve C* is

app)roximated by

I Ss Ysss )'ss Xsss (1.77)S~2 2
xss + Yss
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Equations (1.55) and (1.56) reduce to

R =S xs st +S ) St Y

to
w
R St (1.78)

Introduc)ion of the foregoing approximations into the equations for the

velocity and the acceleration of the projectile (Art. 1.12) is routine.

Equatioi (1.69), which gives the kinetic energy of the projectile, becoutes

1 dx 2 dy2 2( ,T' = m[(4t, 2 dt
2 t .- (Yst + Ys

I N 2 2
+ 1 [(x st + C xSS") , + -

+ 1 (w + + ýT) 21s=C (1.79)

By riqs. (1.45) and (1.78),

Wa ow + W + + (xt Ys " st xs)ds + (1.80)
fo

Consequintly, Eq. (1.79) yields

1 x2 2 + 2

S2 +t + 2(Xs xt +YYt) + (F. + f)

1 2 22 2 22 X. s 2U(Xss xst +YSYsd lxs + (X ss A-
+---:il ±y )s 4, st + +( (x )]

+ 7 w i3 It + [q's ÷ J (Xi- Yss " Yst x')ds]2 sC (1.81)-

2 2
Since the approximation z = s is used, Eq. (1.70) implies that x + Ys 0,

so this expression has been discarded from Eq. (1.81). Also, because of

the approximation z = s, terms of third and fourth degree in Eq. (1.81)

hive little credibility. Consequently, Eq. (1 .81) is simpi infied by
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elimination of these terms. Thus, Eq. (1.81) is reduced to the following
quadratic expression in x, y, ip and their derivatives:

T= m[xt + + 2Ux X s t) 2s

,P 2 t 2 t + *2]{ 2 2 s
+,-'y+ +2y v (x2 1 St yst + '( ss x t + y st ss ss-

1. 3 2s=r -y x)ds (1.82)
2 s + s- 3 (Xst Yss st ss

I'% S0
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SECTION 2

FORCES AND MOMENTS ACTING ON A BALANCED PROJECTILE IN A FLEXIBLE TUBE

2.1 INTRODUCTION

Section 1 deals primarily with kinematics of a flexible tube containing

an accelerating projectile. In this section, the theory is extended to

provide formulas for the forces and moments acting on the projectile. By

specialization, the forces and moments acting on a projectile in a moving
rigid tube are obtained.

As in Section 1, balloting is excluded. The weight of ihe projectile

is disregarded, but it would merely augment the forces on the projectile by

the term Mg, where g is the vector acceleration of gravity. It would have

no effect on the moment vector, except indirectly, through its dynamic

effect on the deflection of the tube. The dynamic response of the tube is

not treated in this section.

2.2 FORCý" ON THE PROJECTILE

The net force on the projectile is m = -ai a. Consequently, if the

center of mass of the projectile coincides with the centroid, Eq. (1.25)

yields

.2 2-
F i n -•l + 2•, x t + (t + t2- (2.1)

RI
at

By Eq. (1.26), the i,1ý, components of F are

2-(.ý. A_ .2 DI
F mn(• + -r)

at

-2 2-
F M22 I

2-
F i(-2ýw -~)(2.2)

whierein relevant func~tions are evaluated at point s L .
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The axial force on the projectile due to friction and engraving is
denoted by F. Its positive sense is toward the breech. The pressure on the

base of the projectile is denoted by PI. and the resisting pressure of air

ahead of the projectile is denoted by P Accordingly,= P2

F = -F + (P P)A )A
a 1 2

where A is the cross sectional area of the bore. Therefore,

F (P. - )A - m. + (2.3)-t2

*2-- 2The factor a r/at is the acceleration of the center of the cross section

of the tube at which the center of mass of the projectile lies.

2.3 MOMENT OF FORCES ACTING ON THE PROJECTILE

Because of axial symmetry of the projectile, two of its principal

moments of inertia are equal; i.e., iI = i2. Consequently, the components

of angular momentum of the projectile with respect to its center of mass

are

H n i , In b = i 1 Q, Ht = i3 2a (2.4)

Hence,

H = (fi Q + Q + i £ a (2.5)

The vector S2 is given by Eq. (1.34).

Since afi/at = w x fi, etc.,

at ,- x fi =b (w t W b
-a tb

t Wn a

at A A

at Wx t W b W 11(2.6)

Equations (2.6) are analogous to Eq. (1.14).
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The moment about the center of mass of the projectile of the forces

that act on the projectile is

M - =-- + (2 .7)

The pressure force (P1 - P2 )A and the weight exert no moment about the

center of mass of the projectile. Consequently, the moment M results
entirely from contact forces between the projectile and the bore. The

rifling torque is At = M . The gyroscopic couple is M = M .

Equations (2.5) and (2.7) yield

dt n n b) 3 -t 3 Q a) (2.8)

The derivatives Dfi/3s, 36/ýs, 9t/3s are given by Eq. (1.2). Since dfi/dt
"a-I/3t + t Dfi/Ds, etc., Eqs. (1.2) and (2.6) yield

dt a

dt A
S fi - fi

6~! w b W
dt b n +R (2.9)

It is convenient to introduce the notation,

a+-= " (2.10)
a

Equations (1.34), (2.9), and (2.10) yield

Ft bX - t Q b ddt I t dt _i Sb Q n (2.11)

Consequently,
d•

(ian ) 1 nid + Q -n(GX t Qb)
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d ~ ~~ ̂ bb+ (A

dTI b dt b ni

d•2
d (2.12)
dt Sla) d- +t a b O On)

Equations (2.8) and (2.12) yield

RI = if --- L + G x... -b On)] Y A i dt a n ^ d n

(2.13)

Hence,

d S

dt 3a )
d SI

M j dTa (2. 14)Ma = 3 t

Equations (2.14) resemble the Euler equations (with i 2), but they

are not identical to them unless, by chance, a X. The explanation for

the difference lies in the physical reference frames to which the equations

refer. Euler's axes (1, 2, 3) are the principal axes of inertia of the

projectile. They are imbedded in the projectile. For example, Euler's 0I

is the component of ? on a transverse axis that is imbedded in the

projectile. On the other hand, Qn is the component of ?i on the principal

normal of the trajectory of the center of mass of the projectile. At a

given instant, these two axes may coincide, so that QI= Q n, but the time

rate of change of Ql' denoted by d Q1 /dt, is generally not the same as the

time rate of change of n . The time rate of change of the orthogonal

projection of vector ? on a moving axis clearly depends on the motion of

that axis, and the vectors fi, b, do not have the same motions as the lateral

principal axes of inertia of the projectile.
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2.4 MOMENTS ACTING ON A PROJECTILE IN A MOVING RIGID TUBE OF ANY FORM

If the tube is rigid, its angular velocity is w(t); i.e., w is

independent of s. Also, the deformational twist T is zero. Furthermore,

R = R(s) and Z = E(s). Equations (1.2), (1.34), and (2.10) apply without

alteration (except that T - 0). Since W = w(t) and w W f•, etc.,

an -- fi 1 b W a w •b Wn 11 a n

- •-- T (2.15)

Therefore,

dw aw Wb W a d b a d a_ a
-( = + a b + (2 .16 )

Tt- t T':ý dt Tt- - f w W ' dt- -R n

By Eq. (1.34),

dQ dw dab_ dw dQ don n b . + d a + (2.17)
dtdt ' dt dt- dt R t -d--

Introducing Eqs. (1.34), (2.10), (2.16), and (2.17) into Eq. (2.14) we get

aw '2M ia+ + W + [; 3 - iI
i( - R a b R 3 (i i3)a]

b~~ d~) 'b RL 3

Mb 1 b-+ d_•_(P)] W n _i 3 l 1 3)W a]

-. a b

-a i3 ( -+ W +W) (2.18)

It is to be noted that the tortuosity 1/E enters these formulas only in the

final term of the equation for the gyroscopic couple Mn

If the axis of the tube is a plane curve, I/E = 0. The equations for a

straight tube are obtained by setting l/E = 0 and I/R = 0. If the tube is

immovable, wn = = Wb= W a = 0. Then Eq. (2.18) reduces to

Mn (i 3  - i 1 _ ' b I dt , a 3 (2.19)
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If the tube is straight and rigid, 1/R = 0 and T = 0. Also, w is

independent of s; i.e., w = w(t). The Frenet formulas (Eq. (1.2)) reduce to

i; ai;b fi a

The tortuosity of a straight line is indeterminate. Consequently, E should

cancel from the equations for Mn , Mb, Ma. This condition provides a partial

check on the theory.

Equation (1.34) yields

0 n = wA 1 Q b w b ' Sa = w a + w (b)

Since w = • fl, etc., and w = w(t), Eq. (a) yields

an _ b awb wn a•(

as E ' a0 (c)

Consequently,

dw aw dw (W -dWa"d _ =•o 11 + -b _ob & da aa (d)
dt 'R f -b 'dt ýt- T wn ' d-t at(d

With Eqs. (b) and (d), Eqs. (2.10) and (2.14) yield

Mn il ft (ili 37)tAb 3 b

Mb il.i~ (i 3 -i)w W + i w wA

Mb I at (3 1n a 3 n

Ma a i 3(a + w) (2.20)

Equations (2.20) reduce to the Euler equations if w = 0.

It appears that aw n/at and Dwb /at depend on time rates of change of fn

and H. However, since afi/at w- x fi, - * anf/at = 0. Consequently, since

aw 11 a

t _at
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Likewise,

aw b"

Consequently, 9n /t and Dwb/at do not depend on time derivatives of fi and 1.
Therefore, in Eq. (2.20), (n, b, t) may be any right-handed orthogonal triad

of unit vectors, such that t coincides with the axis of the tube. Since all

cross sections of the tube have the same angular velocity, w is simply the

angular velocity of the tube relative to a Galilean reference frame.
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SECTION 3

RESPONSE OF A TAPERED ELASTIC CANTILEVER GUN TUBE TO EXCITATION BY THE
PROJECTILE AND PRESCRIBED MOTION AT THE BREECH

3.1 INTRODUCTION

In this section the theory in Section 1 is used to determine the motion

of a tapered cantilever tube that is actuated by the projectile and

prescribed motion at the base of the tube. The section properties of the

tube are arbitrary functions of the axial coordinate s. Initial droop due

to gravity is admitted. The deflections and twist of the tube are

represented as series of flexural and torsional eigenfunctions of a uniform

cantilever beam. The coefficients in these series are functions of time.

Such series have the capacity to converge, in the least-square sense, to

the exact solution of the problem, since the eigenfurictions are complete

sets of functions. The coefficients in the series are generalized

coordinates of the tube. By means of Lagrange's equations, they are

represented as the solution of certain coupled non-homogeneous ordinary

linear differential equations of second order with time-dependent coeffi-

cients.

3.2 THE LAGRANGIAN FUNCTION

The tube is considered to be horizontal, and the y-axis is directed

downward. The z-axis coincides with the undeflected axis of the tube.

Accordingly, the potential energy of the projectile is

U = -m g y(M,t) (3.1)p

A cross section of the tube is required to have the same moment of

inertia I about all diametral axes. Consequently, the polar moment of

inertia of a cross section of the tube is 21. Accordingly, the kinetic

energy of the tube is

"T I- J S(xt 2 + yt2)ds + J I.) 2 ds (3.2)
0 0 a

Equation (3.2) includes the torsional kinetic energy, but the rotary kinetic

energy due to the deflections (x,y) has been neglected.
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With Eqs. (1.44) and (1.78), Eq. (3.2) yields

s=

T } ~~P: S(xt2 + Yt2)s +fx y -y xd] s
tue 2 0 0S4 fIN f xs Yss -Yst X~s )ds]2ds"

T0

Discarding cubic and quartic terms in (x, y, i), we get

Ttube = P- S(x )ds + P I2 ds (3.3)
tub, 2 o t Jof:..0 0

Since the twist of the tube is T = •s, the potential energy of the tube

is

Utube = EI(x )ds ' J0 2 ds pg f S y ds (3.4)

0i

The three expressions in Eq. (3.4) respectively represent the strain energy

of bending, the strain energy of torsion, and the potential energy due to

gravity.

Equations (1.82), (3.1), (3.3), and (3.4) yield the Lagrangian function:

1 2 2 *L T U m~x Y +t + 2ý(xs xt + ys Yt) ]Os=

+ 1 +y2 2 21(x x +y ys) + 12(xs2 +sy
s st + st ss st ]5 5-

1 i(W0 + 41+ ýis)k s=I+ 3 t i3( i3w (Xst Yss - yst xss)ds

1 Pz (x2 y2)d IIt2
+ - S(x + y)ds + 4 ip ds + m g y(C,t)

2 0 t --o

f-- EI(x 2 + y 2 )ds - f ds + gg S y ds (3.5)20 0 0 .

The term (• + ff has been omitted, since it contributes nothing to the

Lagrange equations.
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3.3 NATURAL MODES OF A CANTILEVER BEAM

]The n'th natural bending mode of a uniform cantilever beam (Ref. 7) is

f (s) = cosh 0 1s - cos (n s - t n(sinh (n s - sin 1ns) (3.6)

in which k3n t is the n'th positive root of the equation,

cos $Z cosh $k = -1 (3.7)

The dimensionless constant a is defined byn

cos Bnk + cosh k3£

n sin kZ + sinh (3.8)

Values of 3n t and en are given in Table 1. If n > 5, an 1 and

On k z (2n - l)7r/2, with accuracy at least to seven significant figures.

TABLE I
Eigenvalues for a Cantilever Beam

n13£ a~ -t

1 1.8751041 0.7340955
2 4.6940911 1.01.84664

3 7.8547574 0.9992245

4 10.9955407 1.0000336

5 14.1371684 0.9999986
A

A few pertinent integrals of the functions f (s) are given below

(Ref. 8):

7 1D. Young and R. Felgar, Tables of Characteristic Functions Representing
Normal Modes of Vibration of a Beam, E~ngineering Resoarch Series No. 44,
Bureau of Lzgineering Research, The Unioersity of Texas, Austin, Texas,
1949.

9 R. P. Felgar, Formulas for Integrals Containing Characteristic Functions
of a Vibrating Beam, Bureau of Engineering Resoarch, Circular No. 14, The
University of Texas, Austin, Texas, 1950.
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( , ( 0 , n $ 1'i

mo 0 ",'' f1 (S)dcs =

4 M = n

0 4 9,

f(s) ds =2 - ' £ '(s) f "(s)ds (3.9)
fo n On -fo 1 1i

Also, derivatives of the functions f (s) arise. They are

fn'(s) = 1n[Sinh ns + sin (3s -ca (cosh s - Cos 0 nS)]

2f"(s) n [cosh 1ns + cos. nS - cn(sinh 6nS + sinl s)]

3I

f (S) =11 C[sinh BnS - sin a1 S - cc (cosh 1n s + cos NSA)] (3.10)

The n'th torsional mode of a unif'Orlm StLrigh•ItIlL tu that 1i fi1Xe(I at 0o11e

end and free at the other is

IP (s) = sin(2n - 1) ITs (3.11)

The follwing integrals of these functions arise:

f k 0 m 9n
SP(s) P(s)ds ={t/2 : n

J ( ' (s)ds 2 (3.12)
0 I(2n - 1)) , n = n

The function ,(s,t) represents the angular displacement of a cross section

of the tube in its plane. Consequently, the boundary conditions are ij(O,t) =

0, 4 (L,t) = 0. These boundary conditions are satisfied automatically by

expansion of i(s,t) in a truncated series of the functions i(s) . Also, the

boundary conditions,
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x(0,t) x (O,t) 0 , y(0,t) y s(0,t) 0

Xss(t,t) -- ss(Zt) -- y S, Ys (Pt) = sss (At) -

ss sss

are satisfied automatically by expansions of x(s.t) and y(s,t) in truncated

series of the functions ft (s)

3.4 EXPANSION 01' THE LAGRANGIAN FUNCTION

Prescribed motion of the breech imposes time-dependent constraints on

the tube. The Lagrange equations remain valic. for such systems, provided

that the kinetic and potential energies are computed with respect to a

Galilean reference frame (Ref. 9).

As in Art. 1.14, rectangular coordinates (x, y, z) are set up so that

the z-axis coincides with the undeofected and undisplaced axis of the tube.

The y-axis is directed downward. Axes (x, y, z) are attached to a Galilean

reference frame. The Lagrangian function is given by Eq. (3.5).

The rectilinear and angular displacements of the axis of the tube aro

represented as follows:

x = u(t) + s 4(t) + ZX (t) f1'(s)

y = v(t) - s 0(t) + y(t) M f (S)

= r(t) + EZ (t) 'I (s) (3.13)

The functions u(t) and v(t) are the x and y components of displacement at

the base of the tube where s = 0. In accordance with Eq. (1.71), the

z-component of displacement at the base of the tube is f(t), but this term

is irrelevant. The x and y components of rotation at tile base of the tube

are 0(t) and p(t), respectively. The z-component of rotation at the base of

the tube is ?(t). The functions f (s) and ý i(s) are defined by Eqs. (3.6),

(3.7), (3.8), and (3.11). The functions u(t), v(t), (1(t), 0(t), and ý(t)

are considered to be given. The functions dE(t), Y (t) , Zl (t) are

generalized coordinates of the tube. The range of the subscript n inl

91!. L. Lcuqhaar, Enevqiy. Mo/:)1okh; in _pp/•4(/ Aleclumic., John lvtil.y .! Soms,

Net, Yovk, 1962, Art. 7-4.
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E~q. (3.13) its 1,2 ,...,N, but the mnuber N is unspecified, an for
* smpiciythe ranige of ii is niot indalcatcd onl the suwunation signis.

The Lagraiigia function is obtainecd by substitutinijg Eq. (3.13) inlto
L q. (3.5). T1erms that do niot containi the dependent variabl)es X 1, Y 11, Z or

* their derivatives are omitted from the ILagraiigiani functionl, sinice they
canicel from the Lagrange equations. The result is

L niZmSZ(kX" + ' ) ()£(4) + in4W(X X + '( f f4 42 In 11 Inn in1 Inl l11 in iiin 1

2 i 1E In n In 1) fn '(4) fn '( Ft In uX

FY )f "(4) f t (0 1 1'2 ( +YY) IM f1in ~ 1 2 mn n1 bt '1 i in U r"~

EE z ()()1 42 ZEzzIPIM (2 3 inn + Yi i3 EZIn

"+ i w ijZ (4)PI + i3 4wz q1 '(Q + i 3 ZCZ n dz '(4) il P (4)n

" EN(kU( y - 4 fni4  I ils pEE[(i ,13 In in 11 11 0~( X

+i Y)fSCf f dIs] +pz4z Z 1q 4)P ds ] +in glEY f (4In 11J fl) 11 Lill nfl 0  I in 11 U1

1 q(x Xn x1 + Y ½ YQJo E Ifl f 11' £" ds] - E[ In Zn1f GI 'Pm Ill 1 '1 1 dsi

+-Pg p [Y~lf S fl ds] + m(u' + 4$) f 17(4 + ml~v - C60) 1 f (4)M

+i(u+ C+)),X r11 '(w + lnt'PS F, (4) - m$E 1 1~ (Q)

+ 1n4(v y CC f I t (C) + i.tX Fý '1(0) it f IIIe

+j 4I WX 1f"(4) - iJ1 OE Y f" (4 + L3 tZ7 1
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+ 3  nEZ in'(4) + i 3YE( Xn + Y fn '( E

n f n1 n nn nLo

(3.14)

If the tube is uniform, the integrals over the range (0,k) in Eq. (3.14) can

be evaluated by means of Eqs. (3.9) and (3.12).

In the present case, E and w are regarded as given functions.

Consequently 64 and 6X are zero. Hence, by the argument in Art. 1.10,

•W = 0. Therefore, the Lagrange equations are

d 3L DL d 3L dL d 3L 3Ldt3 3r=0 , d Y 3r=0 ,d • r--0 (3.15)
dti aX It dr t 3zr r r

3.5 LAGRANGE'S EQUATIONS
Since f£(4) is a function of t, Eqs. (3.14) and (3.15) yield

E [m f f nM + i f M'() fn'( 4 ) + P S f fn ds]Xn r n1r1( fn rn n

S2tz [M fr(4) f'(4) + i1 frm £n"()]Xn
nn rn=

+ Z [mK fr(_ f') + mt2 fr (4) fn'(4) + mt)2 f(4) fn (0
.. r- n n 11 1

+ p'()2 + El fr" fn" ds]X

+ i3 w r(4)E f '()Yn•) i+ E f ' fn" ds]Y

[-mt - mn - mý$ -2 mknq]f (E) + i-m2 - + i+wOf
'4~~ (2...

- S f ds -p S s f is (3.16)
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F,( f+p ds]Vn
n [m r(ý) fCn() + ilf '(c) fn'(ý) + O Srf fn
n r 11 1 r n j 0  r n

. 2F I [m f fn'(Q + i fr') fn(•)]n ÷ n [I fr(i) n '(k)

nn r nn

~ ~ ~r'(El) ~"'(~ • + le"f sY 3'I''t

- 13 • W f '(i) £n"(a) + £1 f ' " ds]X
n n n

[-mV + 2m46 + + mC O + m g]fr() + [m•20 + 1 0 + i t$Ifr'(a)

r+ mi g](• fn• 20[ [
Of0S f ds+ f Ssfrd+ pgloSfrds(.7

~ [3 ~(~ W~~)+ 2p I ds]Z + 241 ~

*2 1p()~"()+) C

= -i 3 (• + • - 2p I r ds (3.18)

Equations (3.16), (3.17), and (3.18) are ordinary linear non-

homogeneous differential equations of second order, They have the following
form:

E K F 1(t) + E F 2 (t) + E X F 3(t) + E Y F 4 (t)
n n rn n1 n rn n n rn nI 11 rn

5 1
+T Y F (t) =K (t)
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12 3 * 4n n rn n nrn n n rn n rn

•Z X F (t)K 2(t)
n n rn r

H (t) + E Z H 2(t)+ Z Z H = K (t) (3.19)n n rnl n n rn n n in r

Since ( and w are regarded as known functions of t, the coefficients F* rn
K l K are presumably known, at least, in tabular form. Although they" H.irn r

are rather complicated, they can be programmed for a computer. It is

noteworthy that the root excitation functions u(t), v(t), O(t), ý(t), ý(t)

do not enter into the functions F J or H J; they affect only thern in
functions K . The case of a cantilever tube that is fixed at the root isr
obtained by setting u = v = 0 and 0 = = 0.

If the gun is initially at rest, the initial conditions are

Xn(0) = Yn (0) = Zn (0) - 0 and X n(O) Y (0) = Z (0) = 0 (3.20)

Equations (3.19) and (3.20) present an initial-value problem of a type for

which numerical methods are available. The fact that the Z equations arer

separated from the others is helpful. However, there is coupling between

the X and Y equations. Accordingly, a vertical oscillation of the tuber in

excites a horizontal oscillation. This coupling vanishes if the spin w is

zero. The coupling manifests gyroscopic action of the projectile.
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SECTION 4

GYROSCOPIC ACTION OF A BALANCED SPINNING PROJECTILE
IN A MOVABLE RIGID CURVED TUBE

4.1 INTRODUCTION

The barrel of a gun is unavoidably slightly curved because of effects

"of gravity, temperature gradients, manufacturing imperfections, etc. The

spinning projectile consequently exerts a gyroscopic couple that tends to

' bend the tube sideways. As Section 3 shows, the analysis of this action for

an actual gun is complicated, although it appears to lie within the scope of

-' numerical methods for differential equations. However, insight is gained

by studying much simpler problems that are not without practical significance.
Consequently, in this section, the motion of a rigid tube whose axis is a

plane curve is analyzed for a gun that is hinged at the breech so that the

tube can swing sideways. A resisting moment M that depends arbitrarily on

the side sway 4 and its time derivative 4 is introduced. The moment M that

yields 4 = 0 is that which is experienced by a rigid immovable gun.

The motion of the projectile in the tube is considered to be prescribed.

Balloting is disregarded. The projectile is considered to be perfectly

balanced. The geometric axis of the projectile is accordingly tangent to

the axis of the tube.

For comparative purposes, two different methods of solution are

employed. The first treatment is based on the principle of angular momentum.

The second treatment is based on Lagrange's equation.

4.2 LATERAL MOTION OF A HINGED, RIGID, CURVED TUBE

The vertical axis a-a (Figure 6) is taken to be a hinge line. The

hinge contains a spring and a damper, which may be nonlinear. The hinge

allows the tube to swing horizontally. The angular displacement of the tube

about the hinge is denoted by 4. The angular velocity of the tube is 4)
where the dot denotes the time derivative. The axis of the tube is

considered to be a plane curve with curvature 1/R. The spin of the

projectile relative to the tube is w(t).

The angular velocity of the projectile has components $ and w in the

plane of the axis of the tube. The axial and normal components of vector

Sare -4 sin 0 and $ cos e, as shown by Figure 6. The axial component of 4
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I • sin E)

Figure 6. Components of Angular Velocity of a Projectile in a Hinged Rigid
Curved Tube
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detracts from the spin vector, so the net absolute axial component of

angular velocity of the projectile is c -o sin 0. The transverse component

of angular velocity of the projectile is U/R, where E is the speed of the

projectile relative to the tube. Accordingly, the absolute angular velocity

components of the projectile are

n =b ' a = W- ( sill 0 (4.1)

Consequently, .the principal components of angular momentum of the projectile

about axes through the center of mass of the projectile are

H cos 0 , = , H = i(co -$ sin ) (4.2)
1 ' 2 '1 R 3 3 (w 4

where i is the moment of inertia of the projectile about the transverse

axis through its center of mass, and i is the moment of inertia of the
3projectile about its longitudinal axis. The angular momentum of the

projectile about the axis of the hinge is

2.

H1 cos 0 - H3 sin 0 + m X 2 (4.3)

where m is the mass of the projectile and x is the distance from the center

of ma-s of the projectile to the axis of the hinge. Equation (4.3) must be

augmented by the angular momentum J$ of the tube and the breech, where J is

the moment of inertia of the tube and the attached rotating part of the

breech about the axis of the hinge. Consequently, if the angular momentum

of the charge is disregarded,* the angular momentum of the system about the

hinge line is

2•Jý + H cos 0 - H- sin 9 + m x (4.4)

Consequently, by Eq. (4.2),

2 2 2H = (d + i cos U + i sin2 0 + m x2)4 - i3w sin 0 (4.S)31 3

The angu lar momentum of the charge may be introduced in an empirical way
by augmenting the mass of thLq projectile by a part of the mass. of the
charge.

63

,•:'...........•.-.: ....- .......



The angular-rmomentum principle is expressed by the equation

-M = dH (4.6)

where M(C,$) is the resisting moment of the spring and damper in the hinge.

The quantity dH/dt is the substantial derivative; i.e., it is the time rate

of change of H with due regard for the time dependence of 0, x, and W. It

can be seen that d0/dt = t/R, di/dt = w, and dx/dt = cos 0. Consequently,

Eqs. (4.5) and (4.6) yield

(J + i cos 2 6+ i 3 sin2 e + m x2)ý + 2[(i 3 - i 1 ) •- sin 0 cos 0

+mixcos01$ -1iw sin E -. i c , os 0 + M(€,4) - 0 (4.7)
33R

Equation (4.7) is a second-order ordinary differential equation that

determines $(t), if the initial values *(O) and $(0) are given. The

function M(4,$) may be nonlinear. Otherwise, Eq. (4.7) is linear.

If M = 0. the gun swings freely. Then, Eq. (4.6) yields H = constant.

Therefore, if M = 0,

(J + i Cos 0 + i 3 sin e + m x2) - iw sin 2.

S3 0 )- 3 wsn
J+ i 1cos2 e0 + i3 sin2 0 + m x02)40 3 i 0 sin 0 (4.8)

where O, 0 �,0 Xo0 W0 are initial values. Equation (4.8) determines 4

explicitly.

Since 0 ordinarily is a very small angle, it is reasonable to make the

approximations sin 0 z e and cos O 1 in Eqs. (4,7) and (4.8). If these

approximations are made, and if 0= 0 = 0, Eq. (4.8) yields

()t e dt (4.9)
Cvt 31 2

0 J+i÷ + mex
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4.3 LATERAL MOTION DERIVED FROM LAGRANGE'S EQUATION

The velocity components of the center of mass of the projectile

(Figure 6) are

V1 = 0 , V2 = x , 3

where ý is the distance that the projectile has moved along the axis of the

tube. Consequently, the kinetic energy of translation of the projectile is

1 2 *2 *22mx +

The principal rotation components of the projectile are given by Eq. (4.1).

Consequently, the kinetic energy of rotation of the projectile is

12
ii($2 cos2 + + Ei 3 ( -4, sin 0)2

2R

Accordingly, the kinetic energy of the system is

1 j 2+1 2 +t2i 21 2 •2

T = J4, + m(x 42 + 62) + ii(42 cos R + SR

+ .1 i3 (w - $ sin 0)2 (4.10)

The virtual work of the external forces is

6W = -M6, = Q64

Accordingly, the generalized external force is Q = -M. Lagrange's

equation for 4 is

d DT 3T
dt - = Q (411)

In the present case, aT/34 = 0. By Eq. (4.10),

T (J + C + i sill 0 a + m X 2 i sin 0 (4.12)
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Consequently, in view of Eq. (4.5), aT/a; is identified as the angular

momentum H of the system about the hinge. Therefore, Eq. (4.11) is

identical to Eq. (4.6), and Lagrange's equation leads to Eq. (4.7).

4.4 MOMENTS IN A RIGID IMMOVABLE CURVED TUBE

If 0 = 0, Eq. (4.7) gives

M= i 3 (w sin 0 + T cos 0) (4.13)

Equation (4.13) gives the sidewise moment on the tube at the breech, if the

tube is immovable. It acts to oppose •.

The rifling torque is (Figure 7)

i• W= M = M
3 3 r

This is the torque exerted on the projectile by the tube. The torque

exerted on the tube by the projectile is -M The component of this torque
3.

on the axis of the hinge is

I W sin 0
a .3

The driving force of the gases exerts no moment about the hinge. There is

no force on the projectile transverse to the plane of the axis of the tube.

Consequently, the reaction of the forces on the projectile exerts no

moment about the hinge line. The gyroscopic couple that the projectile

exerts on the tube (Figure 7) is denoted by M . Equilibrium of momentsg
about the hinge line yields

-M + M cos 0 + M3 sin 0 = 0

Therefore, by Eq. (4.13),

(U sin 0 + - cos 0) + M cos 0 + i 3w sin 0 = 0

This reduces to

M i (4.14)
g 36R
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33 rft*..M3= i•ý=M Mr

Figure 7. Components of Moments on a Projectile in a Fixed Rigid Curved
Tube

The positive sense of M is indicated by Figure 7, if the spin of theg
projectile is that of a right-hand screw advancing along the tube. Although

I/R is very small, w and v are very large. Consequently, Eq. (4.14)

indicates that the gyroscopic action of the projectile might bend the tube

appreciably.

The moment component about the binormal is M2 = iI 0. Hence,

"M i d d = i + t 2 d (I i
2= di rJR" IR -'s1 • k 1

where s is arc length on the axis of the tube.

If the axis of the rigid tube is a space curve, it can be shown that

Eq. (4.14) is generalized as follows:

W2
1g I - iRe (4.16)g 3 1R R
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4.5 MOVING RIGID TUBE AS A SPECIAL CASE OF A FLEXIBLE TUBE

As an example, Eq. (1.41) is applied to the problem treated in this

section. The axis of the tube is a plane curve. rhe tube is rigid, and

the vertical axis (Figure 8) is a hinge line. As before, the angular

displacement of the tube about the hinge is •.

t..: S

I R CA A

Figure 8. Rotating Rigid Tube

Since the tube is rigid, the rate of twist is zero; i.e., DT/Dt 0.

The binormal 6 is perpendicular to the plane of 'igure 8. It is directed

away from the reader. The vector 3t/ýt has the direction of 1. Its

maginitude is ' cos 0. Accordingly, D •t/t = • cos 0, and 1'q. (1.41)

yields
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+ 4 cos 0 0

Also, 1/R -0•)es. Consequently,

.- Is 4 ý,Cos0

Integration yields

=a 4 sin 0 + f(t) (4.17)

It has been shown in Art, 4.2 that f(t) 0, but there seems to be nothing

in the tIteory of the flexible tube that determines f(t). With f(t) = 0,

Eq. (1.33) and Eq. (4.17) yield the angular velocity components of the

proj ectile

n 4cos S bW sill e

These results agree with Eq. (4.1).
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SIFC'I' ON S

CONCLUS IONS

Vector and scalar formulas for the velocity, the acceleration, the

angular velocity, and the kinetic energy of a geometricall, perfect

projectilo in a concentric flexible tube are derived rigorously in Section I.

Approximations of these formulas for an initially straight tube also are

developed. The relation between twist of the tube and angular velocities

of cross iections of the tube is complicated by curvature of the axis of

"the tube, This matter is examined in Art., 1.9, Also, evaluation of the

virtual work of the forces associated with the projectile is primarily a

kinematic problem. It is investigated in Art. 1.10. Aside from thL complex

phenomenon of balloting, Section I lays a rigorous kiniematic foundation for

gun dynamics. Section 2 deals with the forces and moments acting on a

dynamically balanced projectile in a flexible tube. It provides formulas

for the rifling torque and the gyroscopic couple.

Section 3 treats the action of a spinning projectile on a tapered

elastic. cantilever titbe that has prescribed motion at the breech. 'rho

deflections and twist of the tube are expanded in series of natural bonding

modes and torional modes of a uniform cantilever beam. Since these modes

constitute complete sots of fun,,tions, truncated series of them can

represent the deflections and twist of the tube to any desired degree of

accuracy (in the least-square sense) , irrespective of varilble taper of the

tube. The coefficients (X 1 , Y Z) in the modal series are time-dependent

generalized coordinates for the tube. Lagrange's equations provide linear,

second-order, non-homogeneous, ordinary, differential equations for (X Y

Z ). Although the coefficients in these. differential equations are

complicated functions of time, the differential equations may be expected

to be amenable to numerical methods that can be prograiwnod for a digital

computer. Although the theory in Section 3 is not immediately applicable to

a gun for which the motion of the breech is unknown, it may be assumed

tentatively that the motion of the breech complies approximately with that

of a completely rigid gun with the type of suppoL't and recoil mechanismil

that is under consideration (Ref. 1)

Although gyroscopic action of the projectile is inherent in the

behavior of a flexible tube, the phenomenon is combined with centrifugal
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offects of the projectile in the deflocted tube and other complications.

Section 4 isolates the phenomenon in a setting that has practicai elements.

A rigid curved tube whose axis lies in a vertical plane is hinged at the

breech, so that the tube can swing sideways. A resisting moment M, that

depends arbltrarily on the angle ý of side sway and its time derivative *,
is introduced. The moment M that yields • 0 is that which is experienced

bLy a rigid immovable gun. A single second-order ordinary differential

equation that determines 0(t) is derived. The function M(G,$) may be

nonlinear. Otherwise, the differential equation is linear. A numerical

study of the differential equation should be instructive.

Gyroscopic couples acting on the projectile are reacted on the tube.

According to elementary beam theory, the curvature of the tube is

proportional to the bending moment. Consequently, a gyroscopic couple

(ideally conceived to act at the cross section of the tube where the center

of mass of the projectile lies) introduces a stepwise discontinuity in the

curvature. This anomaly portends a puzzling mathematical question, since

the gyroscopic couple depends on the local curvature of the tube, but the

curvature is indetermi.nate at the point where the couple is conceived to

act. However, numerical methods tend to smooth over discontinuities. For

example, any linear combination of natural modes of the tube is continuous.

Likewise, a piecewise polynomial is continuous with all its derivatives,

except at the junctions of the polynomial segments.
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improving future reports.

1. BRL Report Nimnber
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3. How, specifically, is the report beirg used? (Infolmation
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4. Has the information in thi_: r c rL led to any quantitative
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5. General Comments (Indi.cato what you think should be changed to
make this report and future reports of this type more responsive
to your Tieeds, more usable, improve readability, etc.)

6. If you would like to be contacted by the personnel who prepared
this report to raise ;poci fic questions or discuss the topic,
please fill in the following information.
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