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GENERAL INTRODUGTTON

Because of the high acceleration of a projectile in a gun tube, and
because of the high precision that is sought, gun dynamics requires
counsideration of secondary effects that are negligible in ordinary
structural analysis. Slight deflections of the tube are aggravated by
centrifugal action of the projectile. Vertical oscillations of the tube
are coupled with sidewisc oscillations because of gyroscopic action of the
projectile. These cffects are studied in this report.

Section 1 is a development of the kinematics of a projeétile in a
concentric moving flexible tube. Aside from the assumptions that there is
no balloting, that the central axis of the bore is inextensional, and that
plane cross sections of the tube remain plane, unstrained, and normal to the
deflected axis of the bore, the basic theory in Sections 1 and 2 is exact.
Insofar as kinematics is concerned, dynamic unbalance of the projectile,
the Bourdon effect, axial inertia of the tube, and axial friction of the
projectile are irrelevant.

Although deflections and twist of the tube are smali, the engineering
approximacions in beam theory are precluded. The Kirchhofi-Clebsch theory
of large deflections of thin rods is a natural starting point for the
analysis. This theory is presented in A, E. H. Love's "Mathematical Theory
of Elasticity," but in a manner that Love acknowledges ''is not without
difficulty." Gibbs' vector analysis helps to clarify arguments of this kind.
It is used in this report. However, with a view to computer programming, the
results are expanded in scalar notation.

The Kirchhoff-Clebsch theory trcats statics of a deformed rod. Tor
problems of gun dynamics, it must be extended to admit time-dependent
deflections and twist of the tube. A part of Section 1 deals with this
problem. On the basis of kinematics of the tube, kinematic velations for
the projectile are derived. Section 2 treats the forces and moments that
act on a projectile in terms of kinematic variables of the tube,

Section 5 treats the motion of a tapered cantilever tube that is
actuated by the projectile and by prescribed wmotion at the breech. suending
of the tube caused by the Bourdon effect, axial inertia of the tube, and
axial friction of the projectile are neglected, but the theory can be

generalized to include these effects. The deflections and twist of the tube
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are represented as series of flexural and torsional modes of a uniform
cantilever beam. The coefficients in these series are generalized
coordinates of the tube. They are functions of time that are determined by
Lagrange's equations., The theory exhibits gyroscopic action of the
projectile that causes coupling between vertical and horizontal oscillations
of the tube. However, quantitative studles of this phenomenon must await
numerical computer analysis. A much simpler problem that displays the same
characteristics is treated in Section 4, namcly, a rigid curved tube that is
hinged at the breech so that it can swing sideways.
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SECTION 1
KINEMATICS OF A PROJECTILE TN A CONCENTRIC PLEXIBLE TUBE

1.1 INTRODUCTION

Expressions for the velocity, the acceleration, the angulaxr velocity,
the kinetic energy, and the virtual work of a rigid, spinning projectile in
a concentric flexible tube are derived in this section. Approximations arve
deferred to the last article (Art., 1.14). The general theory is exact,
aside from the assumptions that there is no balloting, that the axis of the
bore is inextensional, and that plane cross sections of the tube remain
plane, unstrained, and normal to the central axis of the bore when the tube
is bent and twisted. The axis of symmetry of the projectile is assumed to
be tangent to the deflected axis of the bore at the location of the
centroid of the projectile.

Gibbs' vector analysis is used. A brief developmont of vector analysis
that suffices for the present applications is presented in Appendix C of
Retf. 1. A scalar formulatvion of the theory is presented in Arts. 1.11,
1.12, and 1.13.

1.2 NOTATIONS

A bar over a letter denotes a vector.

A caret over a letter denotes a unit vector,

A dot over a letter denotes the derivative with respect to time t.

d/dt denotes the total (or substantial) derivative with respect to time
(Ea. (1.20)).

An asterisk * denotes the doformed state of the tube.

Subscripts s and t denote partial derivatives with respect to arc

length s and time t, vespectively.

For the next several notations, refer to Figures !, 2, and 3,
C is the undeformed axis of the bore.

C* is the deflected axis of the bore.

luDynamics of Rigid Guns with Straight Tubes,” BLM-AMC Final Report DAAK-1l-~
80=-C=0039=Task 2, Army Research and Development Conmmand, BRL, Aberdeen
Proving Ground, Maryland.
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it 3, kr are orthogonal unit vectors, In the divections of the

principal normal, the binormal, and the tangent to curve €, rospectively,
s is arve length on curves € and C*.
-~ A Al . Y . ’ . . ~
1*, i*, k* are unit vectors that coincide with lines in the deformed

tube which initlally have directions i, 5', k.

t is the unit tangent vector of curve C¥%; (? u ﬁ*), Figure 1.
fi 1s the principal unit normal of curve C%, Figuroe 3.
b is the unit binormal of curve C*, Figure 3.

1/R is the curvature of curve C*. _

1/ is the tortuoslty (usually called “torsion” in differential
goomatry) of curve C*.

Ty is the tortuosity of Curve C.

W is a vector, such that the vector triad (I*, j*, k%) issuing from a
point P¥ on C* is brought parallel to the orthogonal triad (I* + 8i¥,
3* + 63*, kr v 6k%) at a neighboring point Pl* on C* by the infinitesimal
rotation w ds, where ds is the distance P*P*l, Figure 2.

K, €', T are components of w, defined by woe v f*x' + kv,

o is the angle betwoen vectors f* and i at a point P* on curve C*,
Figure 3.

T(s,t) is the radius vector from a designated fixed origin to a point
P* on curve C*; (dT/9s = t), Figure 1.

w(s,t) is the angular velocity of a cross scction of the tubo.

- . it
Wys Wy, W BIE components of w, defined by

w = i*w, + 3*w v kv W, = W_ .
1 2 3’73 a

E(t) is the value of s locuting the centroid of the projectile at time

V = dr/dt is the velocity of the centroid of the projectile (kq. {1.19)).
é(t) is the speed of the projectile relative to the tube.

a is the acceleration of the centroid of the projectile,

w is the angular velocity (spin) of the projectile relative to the tube.

(It is not the magnitude of vector w.)

ll 3 . " . .

Fone subseript "a', denoting "axial" is used rather than the subseript "t",
denoting "tangential" to aqvoid corfusion with the subseript "t" denoting
the partial derivative w.th respect to time.
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Q is the absolute angular velocity of the projectile (Eq. (1.30)).
Qn, Qb, Qa are components of §, defined by Eq. (1.31).
m is the mass of the projectile.
il is the moment of inertia of the projectile about a transverse axis
through its center of mass.

13 is the moment of inertia of the projectile about its longitudinal

axis.

Tp is the kinetic energy of the projectile.

F is the axial frictional force on the projectile.

P1 is the pressure on the base of the projectile.

Pz is the resisting pressure ahead of the precjectile.

A is the cross-sectional area of the bore.

Mr is the rifling torque.

t
X = I wdt
0
W is the virtuel work of the forces associated with the projectile.

C** is a varied curve, lying infinitesimally close to curve C*,

W s Wy, W aTe components of w, defined by

w

"
+
2
£
o
+
>
£
£
{]
[
~

V> Vy» V, are the components of the velocity V on the principal
normal, the binormal, and the tangent¢ of curve C*.

a, a, a are the components of the acceleration a on the principal
normal, the binormal, and the tangent of curve C*.

U(s,t) is the angular displacement of a cross section of the tube in its
plane (see Eq. (1.44)).

X, ¥, Z are rectangular crordinates attached tc a Galilean reference

frame.

LI AR A Ak 4
P

i, j, k are unit vectors aiong the axes x, y, 2.

Tl
«a
gzt

¢ denotes the net force on the projectile.

, Fb, Fa denote the components of T in the n, b, t directions.

v
P

es]
ICJ

H denotes the angular momentum of the projectile with respect to its

senter of mass.

Hn’ Hb, Ha denote the components of H in the ﬁ, 5, t directions.

13
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M denotes the moment about the center of mass of the projectile of all
the forces that act on the projectile.

Mn’ Mb, Ma denote the components of M in the ﬁ, G, t directions.

J ‘denotes the mass moment of inertia about the hinge line of a rigid
tube and attached breech.

Mg is the gyrcscopic couple that the projectile exerts on a rigid

curved immovable tube (Figure 7).

u(t), v(t) are the x and y components of displacement of the tube at
the breech (Eq. (3.13)).

o(t), ¢(t), t(t) are the x, y, and z components of rotation of the tube
at the breech. Also, 6 is the angle of the tanyent to the center line of a
rigid curved tube (Figs. 6, 7, and 8).

¢ is the mass density of the tube.

1(s) is the moment of inertia of a cross section of the tube about a
diameter.

S(s) is the cross-sectional area of the tube, excludirg the bore,

g is the accelcration of gravity.

2 is the length of the tube.

E is Young's modulus.

G is the shear modulus,

a s Bn are constants defined by Eqs. (3.7) and (3.8), and by Table 1.

fn(s) is the n'th natural bending mode of a uniform elastic cantilever
beam (Eq. (3.6)).

wn(s) is the n'th natural torsional mode of a uniform straight tube
that is fixed at one end and free at the other (Eq. (3.11)).

Xn(t), Yn(t), Zn(t) are coefficients in the modal expansions of the
deflection and twist of the tube (Eq. (3.13}). They are generalized
coordinates of the tube.

L =T - Uis the Lagrangian function.

1.3 THE KIRCHHOFF-CLEBSCH THEORY OF THIN FLEXIBLE RODS

The Kirchliuoff-Clebsch theory of bending and twisting of thin rods is
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presented in References 2, 3, and 4. In the present work, the rod is taken
to be the tube of a gun. The undeformed axis C of the bore is an arbitrary
curve. The principal normal, the binormal, and the tangent to curve C are
orthogonal unit vectors, denoted respectively by (i', 3', ﬁ'). If the
undeformed tube is straight, dr, 3, & may be any constant orthogonal unit
vectors such that k' coincides with line C. When the tube is deformed,

e curve C passes into another curve C*., Nearby points, P and Pl’ on C pass
into points P* and P*1 on C*. The lengths PP1 and P*P*1 are both taken to
be ds; i.e., extensionality of the axis of the bore is neglected. Love and
Basset (Refs. 2 and 3) also assumed inextensionality. '

Lines in the tube, issuing from point P on C in the directions i, i,
ke pass into lines in the directions ﬁ*, 3*, k* (Figure 1). Vector k* is
the unit tanger. of C*. Since plane cross cections of the tube are assumed
to remain plane, unstr ..ned, and normal to the centroidal axis C*, the
vectors i*; 3*, k* are mutually perpendicular. Love called straight lines
coinciding with vectors i*, I*, k* the "principal torsion-flexure axes' of

# 2 o .
the rod. Although f* = t, where © 's the unit tangent of curve C*, the

. vectors i* and j* generally do . oincide with the principal normal % and
the binormal b of curve C*.

The vectors f, ﬁ, b are - to be a right-handed system; i.e., the
thumb, the forefinger, anu -~ :..0 _e finger of the right hand can be
simultaneously pointed - actions t, n, and b. Consequently, with
the right-hand cons ... - .¢ vector product,

, t=nxb , (1.1)

>

~ Al ~ ~ "~
b=txn, n=>HHx

With the approximation ds = ds*, Frenet's formulas in the differential

2A. E. H. Love; The Mathematical Theory of Elasticity, 4th ., Cambridge

University Fress, 1934, Chap. XVIII, pp. 381-398.

« %4, B. Bas.et, "On the Deformation of Thiv Elastic Wires," American Journal
of Mathematics, Vol. 17, 1895, pp. 28~ 7,

4 e Kirehhoff-Clebach Theory of Thi = astic Rods," Interim Report BLM-
AMC-81~2, Contract No. DAAK-11-80-C-vv39, Army Research and Development
Command, BRL, Aberdeen Proving Ground, Maryluand.

~ ~
#Love congidered a rod of arbiirary cross section, and he took i' and j' to
be along the principal axes of inertia of the eross Lection.
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geometry of curves (Ref. 5) are
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= R’ 3s
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(1.2)

o3>
|
i =>

E

v

where 1/R is the curvature and 1/ is the tortuosity of curve C*, Partial
derivatives are indicated in Eq. (1.2), because ?, ﬁ, and b generally

depend on time t as well as on the arc length s. However, in this article,

e B

D N
WY EE IV

t is a passive parameter, since a single configuration of the tube is
considered.

If the point P* on C* moves to a neighboring point P*1 on C* {Figure 2),
while the curve C* is unchanged, the vectors i*, 3* k* receive increments
8ix, 6j 8k*, such that i* + §i*, J* + 63*, and k* + 8k* are mutually

orthogonal unit vectors. This transformation could be accomplished by a

[T

translation and a rigid-body rotation of the sytem (i*, 3*, ﬁ*). It is
shown in the kinematics of a rigid body that an infinitesimal angular

displacement is a vector quantity (Ref, 6). Consequently, there is an
infinitesimal vector w ds which represents the rotation that brings the

ol A S b L

[ [ Folt) . PR . P A I S
system (i*, j*, k%) into paraiieiism with the system {1* + 8i%*, j* + §j*,

k* + Gﬁ*), where ds is the distance P*P*1 (Figure 2). Love defined scalars

s

K, K', T by
W= Irc 4 Jrcr o+ Kxr (1.3)

The orthogonal projection of curve C* onto the j*k* plane (or the k*i* plane)
is a plane curve vith curvature k (or k') at point P*. The tortuosity of y
the undeformed axis C is denoted by Ty It is the rate of rotation of the

osculating plane of curve C with respect to arc length s. The deformational

DAY D 4 I FGPAFROMTETRON - A o I

twist of the tube per unit length is accordingly T - Ty
If a rigid body undergoes an infinitesimal angular displacement w ds

o e,

about a fixed axis, and if p is a radius vector from a point on that axis to
a particle Q of the body, the displacement of Q is w x p ds. Letting p
- stand successively for 3*, 5*, and ﬁ*, and noting Eq. (1.3), we get

5D. Struik, Diffevential Gzometry, Addison-~Wesley Press, Cambridge, Mass.,
1950.

E. T. Whittaker, Analytical Dynamice, 4th ed., Dover Publications, New
York, 1944, Chap. 1, Art. 8. )

+ IR0
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Figure 1. Notations
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Figure 2. Illustration of Vectors
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~
di*

e T WX Ix = Jrr - ke

[¢

* _ = 2 a &

A =w X j*= k*® - i*1

A*- — A ~ A

%lgc__ =w x k¥ = i*' - j* , (1.4)

Figure 3 shows the vectors i*, j*, n, b in the normal plane of curve
C*. It follows from the geometry of the figure that

2 A, o~ 2 A .
i* =nsina-bcosa, j*¥=ncosa + b sina (1.5)
Conversely,
2 . o F ~ .
fi=1*sina+ j* cosa, b= -1* cos @ + j* sin o (1.6)

Differentiation of the second of Eqs. (1.6) yields, with the help of
Eq. (1.4),

N ~ LN A LYY A
3—2 = i*(g—: - T)sin o + j*(-g% - T)cos o + k*{(k' cos ¢ + k sin @) (1.7)

Also, Eqs. (1.2) and (1.6) yield

3b

o %(3* sin @ + 3* cos @) (1.8)

Equations (1.7) and (1.8) yield

T = 3% + % (1.9)
and
K'
tan o = - (1.10)

Also, since k* = ?i, Eqs. (1.2) and (1.4) yield
LI R P (1.11)
35 SR C MK - 0% .

Equations (1.6) and (1.11) yield

_ _ cos a ) - sin o 3
K= ~~5, K 5 (1.12)
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At a point where a concentrated couple is introduced into the tube,
classical veam theory indicates that the curvature 1/R is discontinuous.
Discontinuities also may appear in 1/I , fi, and 6. The preceding theory is

limited to points at which the pertinent geometric quantities are continuous.

S

2

. AR

: - |

: p*

2

% Figure 3. Vectors i*, 3%, n, b in a Normal Plane of Curve C*

1.4 KINEMATICS OF THE TUBE |

e The curve C* representing the deflected axis of the tube at time t is g
é defined by the vector equation r = x(s,t), in which s is arc length on the

'; axis of the tube and T is a radius vector from a fixed origin to the point ‘

- s on the curve. The vector 9r/ds is the unit tangent t of the axis of the ?

" tube. The vector 3r/dt is the velocity of the center of the cross section

g of the tube at point s. o
: The triad of unit vectors (i*, 3*, ﬁ*) may be conceived to be glued to

g a cross section of the tube, with its origin at the center of the cross

A section., As the tube deflects and twists, that cross section and the ’

Q attached triad (?*, ﬁ*, ﬁ*) rotate with angular velocity w(s,t). The vector

3 w is resolved into components (wl, Wy ws) in the directions ({*, 5*, E*); -
. i.e.,

? . w = §*w1 + f*wz + ﬁ*ws (1.13)

? Since (i*, 3*, E*) are unit vectors attached to the tube, the following

R kinematic relations exist:

‘ ~

: 2 e Gx B = Jru, - ke,
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8 3{'\* P o ﬁ* *
2 - =W x = k*w, - i*w
: 9t J 1 3
i
‘B A
- ok* _ — 2 2
e =0 x k* = T*, - jrw 1.14
3t by - Iy (1.14)

) Equation (1.14) is similar to Eq. (1.4), but the physical interpretation is

’ different. Since k* = £, Bq. (1.14) yields -
v . A : :
; . te L 3t L fa . Ot

Wy = =3 ear . Wy = AN (1.15)

The components of ® in the directions fi and b are W, = w + fi and

w, = w e+ 0. By Egs. (1.6) and (1.13),

. w =W, sino +w, cos a (1.16)

By Eqs. (1.6), (1.14), and (1.16), w_ = -b+ 9t/ot. Similarly, w, is derived.

Accordingly,

4>

- _h ot = A . s am

W, b Tl Wy n 3t (1.17)
Subsequently, Wy is designated as w,» in which the subscript '"a"

indicates the axial component. The subscript "t" is reserved to indicate

the partial derivative witlt respect to time.

: 1.5 VELOCITY OF THE PROJECTILE

' Balloting is not considered. At any instant, the axis of the projectile
is assumed to be tangent to the axis of the deflected tube at the point
where the centroid of the projectile lies.

f The location of the centroid of the projectile at time t is specified Tf.v
by s = £(t), where E(t) is regarded as a given function. The absolute

trajectory of the centroid of the projectile accordingly is represented by

T = T[E(t), t] (1.18)

The absolute velocity of the centroid of the projectile is V = dr/dt, where
d/dt denotes the total derivative. By the chain rule of partial

differentiation,
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Since 9r/9s = t, this yields

or |57 E dr

t+3e T dt

OIe

V=

(1.19)

Equation (1.19) signifies that the absolute velocity of the centroid of the
projectile is the vector sum of the velocity relative to the coﬁtiguous part
of the tube and the velocity of the center of the cross section of the tube
at which the centroid of the projectile lies. This conclusion could have
been anticipated from general kinematical theory.

The distinction between the total derivative and the partial derivative

applies to any function of s and t; i.e.,

d(-) _ 3 . & 3() |5°°
it e+ & (1.20)

where (-) denotes any function of s and ¢
In view of Eq. (1.19), the square of the speed of the projectile is#

Ve = E5 e 28t - 25 (5;5 (1.21)

By Eq. (1.19), the component of velocity of the projectile tangent to the

deflected axis of the tube is

(1.22)

The components of velocity of the projectile in the directions of the

principal normal and the binormal to the deflected axis of the tube are

, VQ'U:G--—— (1.23)

#By definition, 22 =T o T = 4% in vhich X is any vector.
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Equation (1.23) signifies that any component of veiocity of the projectile
normal to the axis of the tube is the same as the corresponding normal

component of velocity of the contiguous tube,

1.6 ACCELERATION OF THE PROJECTILE
The acceleration of the centroid of the projectile is

..._d-v_'_o
R TR S T

By Eqs. (1.2) and (1.19),

g h, ot |7
os R ot
T en . af a2z (S=E
at
Consequently,
Y 2= |s=E
a=fb.+ 288, pp, 2T (1.24)
R ot "
t
or, since 9t/dt = w x £ (see Eq. (1.14)),
_ 2 . R v 2— S=€ -
R R R Y (1.25)
ot

The terms on the right side of Eq. (1.25) can be identified as follows:
(a) The centripetal acceieration of the centroid of the projectile relative
to the momentary form of the axis of the tube. (b) The Coriolis acceleration -
of the centroid of the projectile. (c) The tangential acceleration of the
centroid of the projectile relative to the adjacent part of the tube.
(d) The absolute accelcration of the center of the cross section of the
tube at which the centroid of the projectile lies. This decomposition of
the acceleration could have been anticipated by general kinematical theory.
By Eq. (1.25), the components aa, an, ay of the absolute acceleration

a in the directions of the tangent, the principal normal, and the binormal
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of the deflected axis of the tube are.

v VO~ ko

;}f a, =t as= E+t - §;§

§ ot

:

2] 2 2es 5=f-_;

% : a, =fieas %f'+ 28w e B+ fe LT

.- - at

:"‘l ) N -— S 82; S=E

3 a, = b ea=-200-fi+6- (1.26)
3 5 2

X t

% since

s feuxt=w txf=w-b

.

A and

2 beaxtemetxb=-0-f

f 1.7 ANGULAR VELOCITY OF THE PROJECTILE

= In the time interval dt, the cross section of the tube at which the

’ centroid of the projectile lies undergoes the angular displacement w dt.

S In the same time interval, the projectile advances the distance é dt

‘ relative to the tube. The angular displacement of the projectile due to the
! latter displacement is wEdt. The spin of the projectile relative to the

:f tube is wt, where w is the magnitude of the spin. (w is not the magnitude of
: the vector w.) Consequently, the relative angular displacement of the

; projectile during dt because of the spin is wtdt. The absolute angular

E displacement of the projectile during dt¢ is the vector sum of these

- components, namely,

y wdt + Ew dt + of dt

’ -

Therefore, the absolute angular velocity of the projeciiie is

(1.27)

et

W W

Q=0+

Equations (1.3), (1.13), and (1.27) yield
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be eliminated by Eq. (1.12). Thus, Bq. (1.28) yields

= S0t ot . a,e at é D Ch s
= =i¥h 0 = b GRi* . N R(-1* cos a + j* sin o)

By the vector-triple-product theorem (Ref. 1, Appendix C):

auh 3t a4, 9t 9t a 4
“L*]F e ol o JR Y e o= L x (LY i
SR T A T T A
or, since i* x 3* = k= @,
3t ot ot
R L VR A T A
AN A A TR T

Also, by Eq. (1.06), -i* cos a + 3* sin a = b, Consequently, Eq. (1.29)

vields
= _ & 9T é 2 -
Q=1 X 5t + D T+ t(w + w, ET) (1

— A :
The components of { in the fi, 6, and t directions are

n b a ;

Since the terms in the scalar triple product can be permuted cyclically,

Equations (1.30), (1.31), and (1.32) yield

= b - -8—?- = . -8-: —é— = 5
Qn = -b ot 7 Qb - f 3 TR’ & wrw, £t a
24

Q =i, Q =06, 0 =8¢t (1.

Al 8£_a€./\ N .ae
n t x 3t - Dt i XxXts= N 5t
~ a3t _ et A ., 22
b+t xgr=g bxt=i = (1.

Q- i*(wl + kb)) 3*(w2 ¢ kVE) ﬁ*(w3 ol v w) (1.28)

Now Wy and w, can be eliminated from Eq. (1.28) by Eq. (1.15); k and ' can

+ K*(w + g * £1) (1.29)

.30)

31)
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Bquations (1.17) and (1.33) yield

T
(=3
-
b
u
=
E o
= herye
-
2D
]
=4
-
£
+
T
Py
&
]
g

(1.34)

1.8 KINETIC ENERGY OF A BALANCED PROJECTILE

In the theory of kincmatics, any reference frame is admissible., For
kinetics, however, a Galilean reference framo must bLe introduced.
Consequently, the vector T is now considered to be specified with respect
to a Galilean reference frame; e.g., the earth,

The kinetic energy of translation of the projectile is

where m is the mass of the projectile. Consequently, by Eq. (1.21),

1
Tt=71‘1[g+25t-%i-+( %) = 3wk (1.35)

The kinetic energy of rotation of the projectile is

N 2 2 1. 2
T 2 1lmn * Qb ) ¥ 73 Qa (1.30)
where iy is the moment of incrtia of the projectile about a transverse axis

through its center of mass and i, is the moment of incrtia of the projectile

3
about its longitudinal axis. The total kinetic cnergy of the projectile is

T.=T, +T_ . Consequently, by Eqs. (1.33), (1.35), and (1.36)

P t T
I U R A L ANNE 2% M 8t~. o, ot2
T, =yt e 28t - g ) l[(6 (h - 50
£ ot & , s 2 .
*2qghoe gp EEJ * 3 13(w g ¥ ET) (1.37)

since fi « 3t/at, 6 » 3t/3t, and t + 9t/9t are three orthogonal
components of t/dt,

A 3t 2 At 2 .~ ot.2 5.2
(b = wm) (n -—J * (e 37 (61)




_ A A A
Furthermore, since t * t = 1, t * a%/au = 0. Consequently, Lq. (1.37)
reduces to

-— - A 02
e 1 22 AN} ory 2 l_. ot 2 £ L&
Tpog MO+ 2e g G g LGP 2R g
vzl (v w v b (1.58)
273 a 1,:

Since 9t/2s = /R and l/R (at/as) Bq. (1.38) may be expressed as
follows:

22 PN a? 3. 2 1.8t 5t. 2
wr Gl GErE g

I FW RISk (1.39)

or more concisely,

T, = & m(gi) rr @0 s i v, i’ (1.40)

1.9 RELATION BETWEEN 'FWIST AND ANGULAR VELOCITY

Torsional vibrations of a perfectly straight tube exhibit a simple
rolationship between twist and angular velocity. During a time interval dt,
the cross section of the tube at point s undergoes the angular displacement
W, dt. During the same time interval, the cross scction at point s + ds

undergoes the angular displacement

Z)m.\,1
(w, 5§L ds)dt

Consequently, the incremont of twist at point s during dt is (Bwq/as)dt.
Also, siace the total twist at point s is T - TO’ the increment of twist at

peint s during dt is (9t¢/3t)dt. Therefore, for a straight tube that

execut.s torsional wotion,

5 BT (a)
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Equation (a) might be adopted as an approximation for a slightly curved
tube, but an inconsistency arises. It is illustrated by a perfectly rigid
curved tube. In this case, T = To? since there 15 no deformational twist of
a rigid tube. Accordingly, Eq. (a) yields Bwa/as = 0. Therefore, W, does
not depend on s. Furthermore, since all particles of a rigid body have the
same angular velocity at any instant, the vector angular velocity w of a
rigid tube is independent of s. The axial component of angular velocity of
a cross section is w, = w - t. For a curved tube, t obviously depends on s,
Thus, we arrive at the contradicrory conclusions that w, depends or s and
" w, does not depend on s. Consequently, in general, Eq. (a) must be rejected,
although it is correct in certain special cases.

Since a theory of flexible tubes must be consistent with the theory of
rigid-body displacements, the nature of the function ma(s,t) for a rigid
curved tube is pertinent. In general, w,o=we f, and, for a rigid tube,

w = w(t). Therefore, for rigid tubes,

o

——-—-:-w-.
In view of Eqs. (1.1) and (1.2), this yields

A a 1—'
0 bxt=- R w

>I
o>

=

1= s
R TRE

Since the vectors in the scalar triple product may be permnted cyclically,
this yields .

bma 1~ —
f 's—s—-= —’ﬁb cwXxt .
Since w x t = Bg/bt, this yields the following equation for rigid tubes: G
dw 2
. a 1+ Et_
5‘5‘—)- + Rb —"t'" 0 (b)

The general theory of flexible curved tubes is now considered. An
infinitesimal segment of such a tube, as viewed along the binormal of the

axis C*, is shown in Figure 4. Infinitesimal angular displacements are
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resolved along the horizontal line L. To first-degree quantities, the
component on line L of the rotation of the right-hand cross section relative
to the left-hand cross section is

ot

Bwa
'és_‘ds dt + Wy do dt

PRI

A

Accordingly, the increment of twist at section s during dt is

W
a " 90
(35—« v 3504t

Since this is equal to at/at dt,

ot _ Ma 29
3t 3s Y15
“’}d' (w, + 42 ds)dt
wgd
, - L
ds
dw
I // 0»0+Xj§ ds) dt
:_*. ‘.—-de /
\>/R
o
. /’

Figure 4. Resolution of Angular Velocities

28

IR ETANEIE ALY




[ o e T T ) YR e TR L7 RANTY
Ty W ST T U S S gy e S RO X i NIRRT NN "4.'0{-1: Rt e-'m-vrar'a WW““‘"J‘X.{’?*‘ S P

i [P i, 50y S o NEnlY, A2 tiema wf e P vl P S e » ';" '\-‘,~'~'4~. P,

With the sense of w. indicated in Figure 4, w, = -w + fi. Also, 30/3s = 1/R.

1 1

Therefore,

I SR

ot  3s R

. Since fi = § x £, this yields
w ow

31.'_ a l-.—-./\ I\—-‘i 1,\.__. ~

-é'g-—-a-s-_-Ru) bXt—as +-§-b wxt
Since w x t = 3t/dt, this yields

21:%4.}.8.—8—%\.

ot  9s R at (1.41)

For torsional motion of a straight tube, Eq. (1.41) yields Eq. (a)
since 1/R = 0. For motion of a rigid tube, it yields Eq. (b), since
91/3t = 0. If the axis of the tube bends in a plane I', vector b is
perpendicular to T, and vector 3t/3t lies in plane T. Consequently, =
b ~ 3t/dt = 0. Accordingly, if curves C and C* are constrained to lie in a
" plane, Eq. (1.41) reduces to Eq. (a). Usually, in studies of plane motion

of gun tubes, T and w_ are taken to be zero.
“

Py Equation 1.41) can be expressed more simply, since

g 1 it _ 1 ~ o _ 1= _Ll= s = 0t
B R b Y ﬁ-B wxt= W tx b= - gY o= -0 5
i Also,

[

< ) ~ —

'." ..._a—>a_~.,\-'.-o§.t. -g,‘i)-

il S CIRNO RN - S

Therefore, Eq. (1.41) reduces to

- AT _ o . W

o ETA Ty (1.42)
% For a rigid tube, 9T/9t = 0 and w = w(t), so Eq. (1.42) is satisfied.

- Equation (1.42) means that 9T/dt is equal to the tangentiai component of

K dw/ ds.
- 29
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In view of Eq. (1.17), Eq. (1.41) may be expressed as follows:

oT . _a_.m
3% 35 " R (1.43)

4

The general solution of Eg. (1.43) is easily derived. There is a function

Y(s,t) such that T = oy/ds. The function § contains an arbitrary additive

—aan

function of t. Also, there is a function A(s,t) such that w, = A+ 3Y/ot,

]
. Equation (1.43) accerdingly yields
] s R
: Consequently,
. s w 3
! A= - ds + q(t B
' _JO 2 q(t)
5 The arbitrary additive function of t in the function y may be chosen to
) cancel q(t). Therefore, there is a function Y(s,t) such that
s W

— =W ) {

T = 5s ma = ot * Jo R ds {1.44)
X The function Y(s,t) represents the angular displacement of a cross section

of the tube in its plane.
Equations (1.34) and (1.44) yield
s=§ Ew s=£

Qa = @ + w, + ET = w + JO R ds + It (1.45)
: Equation (1.45) may be substituted into the kinetic energy expression for y
T the projectile (Eq. (1.39) or (1.40)).
; 1.10 VIRTUAL WORK ASSOCIATED WITH THE PROJECTILE

In order to apply Hamilton's principle or Lagrange's equations to
: problems of gun dynamics, we require the expression for the virtual work of

all the non-inertial forces that operate. It is a linear expression in the
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infinitesimal virtual displacements. Only the part of the virtual work that
explicitly involves the projectile is considered in this section.
Conceptually, the system receives an infinitesimal virtual displacement
that generally does not coincide with the true course of the motion. The
real motion of the system is imagined to be stopped while the virtual
displacement is performed. The actual forces in the system are imagined to
persist while the virtual displacement is executed. In the present case,
the vector r(s t), def1n1ng the curve C*, receives a virtual increment 8T(s).
This transforms curve C* into another curve C**, Figure 5. Since the center
line of the tube is considered to be inextensional, the variation 8T must
conform with this constraint. Consequently, the mapping C* + C** must be
performable by inextensional bending and twisting of curve C*. In addition
to the virtual displacement §r, the coordinate £ of the projectile receives
a virtual increment 8£, and it also receives a virtual angular displacement

about its longitudinal axis.

Figure 5. Virtual Displacements
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The work that a force F performs on a particle during a time interval
(to, tl) is defined by

where V is the velocity of the particle. Since V depends on the choice of
the reference frame, so does W; i.e., work is a relative quantity. This
conclusion is consistent with the fact that the work of all the forces that
act on a system equals the increase of kinetic energy of the system, since
kinetic energy also is a relative quantity, inasmuch as it depends on the
velocities of the particles. In this analysis, work is calculated with
Tespect to the Galilean reference frame to which the vector r is referred.

The contact forces that the projectile exerts on the bore are reacted
by equal and opposite contact forces that the bore exerts on the projectile.
Consequently, the normal components of all these forces perform no net work
on the system. Accordingly, the gyroscopic couple of the projectile and its
reaction perform no net work. An analogy is a person who lifts an object.
The person performs work on the object, but gravity performs an equal amount
of negative work. Together, the lifter and gravity perform no net work.

The projectile receives the virtual displacement §& relative to the
tube, and the contiguous tube receives the axial virtual displacement
t - 6T, Consequently, the absolute axial component of the virtual
displacement of the projectile is 6& + t » 6T. The driving force on the
base of the projectile is P

A, where P, is the pressure of the gas and A is

1 1
the cross sectional area of the bore. There is a resisting force F which
results from axial friction and engraving of the rifling. Also, there is a

resisting force P_A resulting from pressure of the air ahead of the

2
projectile. Consequently, the virtual work of forces that act on the

projectile 1is

(PA - PA - F)(6E + t - 61)

2

The virtual work of friction and engraving on the tube is Ft » 6T. The net
virtual work Gwl, resulting from axial movement of the projectile, is the

sum of these expressions. Consequently,
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W, = [(P) - P)A - F]8E + (P, -~ PA L - 8T

in which 6T is evaluated at the point s = &,

Also, there is a contribution awz to the virtual work from the rifling
torque. - The virtual angular displacement of the projectile relative to the
tube is §x, where i

"

w. The angular displacement of the cross section of
£ is denoted by Y. The absolute virtual angular
displacement of the projectile is 8x + &Y. The rifling torque is denoted by
M. The virtual work performed on the projectile by the rifling torque is

the tube at point s

Mr(ﬁx + §P). The virtual work performed on the tube by the rifling torque
is =M, §¢. Consequently,

6w2 = Mr(dx + &) - Mt Sy = Mr 8x

Aside from effects of gravity, the virtual work explicitly related to
the projectile is W = 6W1 + 6w2. Hence,

SW = [(P, - P)A - FI§E + (P, - PZ)A€ . 8T + M, 68X (1.46)

in which relevant functions are evaluated at the point s = . Additional
contributions to the total virtual work of the system, coming from the
action of gas pressure on the breech, effects of gravity, strain energy of
the tube, and effects of the supporting structure, are not considered here.
We adopt the viewpoint that £(t) and w(t) are given functions. Then
8 = 8y = 0, and Eq. (1.46) is simplified accordingly. Also, 8r is
restricted by the condition of inextensionality of the tube. Since

t+«t=1,1%t-86%t =0. Consequently, since t = 37/3s,

te8r =0 (1.47)
Equation (1.47) expresses the constraint on §r.
If the tube is initially straight, t is approximately a constant

vector, since the deflections are small. With this approximation,
Eq. (1.47) yields

g%{f + 8r) = 0 or t « 8T = constant
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If r is given at the breech (s = 0), 8T = 0 at the breech. Then, since
t e+ 87 = constant, t « 6T = 0 everywhere. Accordingly, for a gun with a
straight tube, Eq. (1.46) yields 8W = 0. The condition £ * §r = 0 means
that 8T must be perpendicular to the axis of the bore.

1.11 KINEMATIC AND GEOMETRIC RELATIONS IN SCALAR NOTATION

Adaptation of the foregoing theory to digital computer programming
requires that the equations be expressed in scalar form. Rectangular
coordinates (x, y, z) with corresponding unit vectors (1, 5,‘ﬁ) are
attached to a Galilean reference frame, but, insofar as kinematics is
concerned, the reference frame is arbitrary. The orientation of these axes
with respect to the gun is not of immediate concern. The deflected axis C*
of the tube at time t is defined by the equations, x = x(s,t), y = y(s,t),

z = z(s,t). Since s is defined to be arc length on curve C*,

2
X +y +2z =1 (1.48)
in which the subscript denotes the partial derivative; e.g., X, = ox/9s.

The radius vector from the origin of the (x, y, z) coordinates to a point

on curve C* is
rT=1x+ 3 y + k z (1.49)
The unit tangent of curve C* is
t = Ei =1 x_ + Ty +kz (1.50)
9s s

By Eqs. (1.2) and (1.50),

A s .
RoTx v Ty o+ K Zoo (1.51)
Therefore,
1 _ 2 2 2
R V;ss T Yss Y oZss (1.52)
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By Eqs. (1.1) and (1.51), 6/R may be expressed in determinant notation, as

follows:
2 A Ys Zs . Zs X R Xs Ys
R= i + ] + k (1.53)
" sg Zss Zss Xss Xss Yss
) By Eq. (1.50),
. s . o2
5t L Xse T Vst !t k Zst - (1.54)
By Eqs. (1.17), (i.51), ¢{1.53), and (1.54),
Dy
T T %ss %st * Vss Vst t Zss Zst (1.55)
and
" Xst Yst st
"X = xS ys zs (1.56)
Xss Yss Zss

Accordingly, w and w, are determined, if the functions x(s,t), y(s,t),

z(s,t) are known. Thz component w, is not determined solely by these
functions, since it depends on the twist of the tube, as is indicated by
Eq. (1.43).

The tortuosity of curve C* is determined most readily by the second of

Eqs. (1.2). It yields

, of

1 _» ofi
F=b o5

By the first of Eqs. (1.2),

2

9t _ 0 A, _19A . B 1, 2 o
‘527 - Bs(ﬁ) "kos T 0 3§(ﬁ) 1 Xoge Y Vs ! k Zsss (1.58)
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Therefore,

5 3. -20 ot 1
= ¢ +(3) = R “b e i== —-
R 3s‘R s R%y

With Eqs. (1.53) and (1.58), this yields

X y z
1 s s s
—— (
2 Xss Yss Zss (1.59)
R™Z x. ,
SSS ySSS S$SS

It is possible to eliminate R2 from Eq. (1.59) by means of Eq. (1.52). Thus,
1/I is expressed as a rational function of first, second, and third

derivatives of x, y, and z with respect to s.

1.12 VELOCITY AND ACCELERATION OF THE PROJECTILE IN SCALAR NOTATION
The velocity of the centroid of the projectile is given by Eq. (1.19).
Consequently, by Eqs. (1.49) and (1.50),

Vot(x sk S+ Ey) s Rz, ¢ £ 2)|5E

Vimilxg + 2 x )+ Jly, + &y) +k(z, + £ 2)
or

s=£

V=idx,9dy, pdz

Veigrigt kg (1.60)
where d/dt denotes the substantial derivative. Hence,

V2= (@52, (952, 42 - (1.61)

dt’ dt dt
The axial component of velocity of the projectile is
Tt S, oy 4|5
R N TRRS dt ¥ %s dt (1.62)

The componrents of V on the principal normal and the binormal of the
deflected axis C* are given by Eq. (1.23). Consequently, by Eqs. (1.49),
(1.51), and (1.53),
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Sl pr=g 9= -

n o_ s=£ .

T 7 %ss X¢ T Vss Vet Zss Pt (1.63)
X 2. %6

vy t e t

2= v,z (1.64)
Xss Yss %ss

The acceleration of the centroid of the projectile is given by
Eq. (1.24). Consequently, by means of Eqs. (1.49), (1.50), (1.51), and
(1.54), '

- _ & 2 . o0
a= i@ Xos ¥ 2 & Xs¢ ¥ xg xtt)
2,22 2 0
Y IET Y v ZEY Lt EY T YL)
02 . . s:E
+ ket Zgs ¥ 28 Zst * 2 Zg ¥ ztt) (1.65)
Therefore, by Eq. (1.26), the axial component of acceleration of the
centroid of the projectile is
a =tea=L+x X _+ty y,.,+z2 2 s=6 (1.66)
a s tt s “tt s “tt )

By Eq. (1.26), the component of a on the principal normal o curve C*

is determined by

;.ﬁ_-_‘iill-:.é_i-}z:g—w +ﬁ-032—_.—-;s=t;
R R RZ R R 3t2

Consequently, in view of Eq, (1.51),

w

+ X X + 2z z s=§ (1.67)

2
n—-—.._
®-2° 2 Wy ss Xttt ¥ Vss Vet ss “tt

The factor u%/R in Eq. (1.67) can be eliminated by means of Eq. (1.55).




Likewise, the component of a in the direction of the binormal b of curve
C* is determined by Eq. (1.26). In view of Kq. (1.53),

ay, o |fee Yee e
< - -2§ T + X Y zg (1.68)
xSS YSS ZSS

The factor wn/R in Eq. (1.68) can be eliminated by means of Eq. (1.56).
Also, R can be eliminated by means of Eq. (1.52).

1.13 KINETIC ENERGY OF THE PROJECTILE IN SCALAR NOTATION
P The kinetic energy of the projectile is given by Eq. (1.40).
7 Consequently, by Eq. (1.50),

o o1 ocdx2 o dy.2 o dzi2
lp = 2 m[(dt) + (dt) + (dt) ]
1. s 2 : 2 . 2
Fa il B X DT (g P YT Mg t &2 )]
L (w+ tny2s=t 1.69
+ 5 i, wa+,T)| (1.69)

1.14 APPROXIMATE THEORY FOR INITIALLY STRAIGHT TUBES

If the tube is initially straight, the z-axis is conveniently chosen
to coincide with the undeflected axis of the bore. Then x(s,t) and y(s,t)
are deflection components of the tube. By Eq. (1.48),

< ry & 2. _ 2 2
zs-\/l-\xs +ys)—1 2(xs +ys)+... (1.70)

AR

Since the deflections of the barrel of a gun are small, it is reasonable to
[+, approximate Eq. (1.70) by z, = 1. Then,

“ ’T- -

T

z =s + f(t) , Log ™ Bgp T Zggg T 0, zS =] (1.71)

T T

The function f(t) represents the value of z at the point s = 0. This
y point is conveniently chosen to lie at the breech. It may vary with time,
‘ if the breech moves. It is to be noted that Eq. (1.71) signifies that

7 F 0
PRI
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X, o+ y"‘ = 0. Therefore, the accuracy of quadratic expressions in
o> >
derivatives of x and y requires study. In view of Eq. (1.71), Eq. (1.49)

becomes
r=ix+iy+fks R £(1) (1.72)

Accordingly, the unit tangent of curve C* is

om

t=1 xs.+ )y, + K (1.73)

By Eq. (1.51),

i_ 2 o .

RS 1 x55 + ) yss (1.74)
By Eq. (1.52),

1 . 2 2

RVXs ¥ Vs (1.75)

If curve C* is constrained to lie in the yz planc, x = 0 and Eq. (1.75)
reduces to 1/R = + Ys? which is a well-known linear approximafion in the
engineoring theory of beams. However, if Xgo and Y both differ from zevo,
there is no linear approximation of Eq. (1.75) available by Taylor series
expansion.

The linear approximation of b/R, obtained from Eqs. (1.53) and (1.71),

is
=Ty +§x (1.76)

Here, the term ﬁ(xg Yoo = Vs xqq) has been discarded, since it presumably is
small compared to the linear terms in Lq. (1.76).
In view of Eqs. (1.59) and (1.75), the tortuosity of curve C* is

approximated by




Equations (1.55) and (1.50) reduce to

(.:)h = X X -+ 4

R 58 "5t yss )st

wn

T % *st Vss " Vst Nss (1.78)

Introducrtion of the foregoing approximations into the equations for the
velocity and the acceleration of the projectile (Art. 1.12) is routine.

Equation (1.69), which gives the kinetic energy of the projectile, becomes

1l ocdx 2, dya2 e 52
Tp - 2 m[((lt) + (dt) + (!‘, + t) ]

2 2 2

st

+ = lll(xst + [ x

[\

SS

ig(w+w + éT)Z s=5 (1.79)

[T

By GBqs. (1.45) and (1.78),

g s=§
B . |s=f _ v dy
Qa =w v ¥ b =@+ IO (xst Yos = Vst xss)ds Y 3 (1.80)

. 1 2 ) . ¢ 2
Ip T2 m[\t Y 2E’(\s Xe ¥ s yt) M CI R O
l" \ 2 . r 2 . . ’ r . S '2 r 2 2
* f>1l[kst AR 25(xgg Xyt Y Vgs yst) Vg (Xgg * Vg )]
1. . (& 2] s=g
3 13|w + wt + Qws + JO (xst Yoo = Yot xss)ds] 5 (1.81)
. . . . . . . . o 2 2
Since the approximation z = s is used, Eq. (1.70) implics that X L S 0,

so this cxpression has been discarded from Eq. (1.81). Also, because of
the approximation z = s, terms of third and fourth degree in Eq. (1.81)

have little credibility. Consequently, Eq. (1.8)) is simplified by
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elimination of these terms. Thus, Eq. (1.81) is reduced to the following

quadratic expression in x, y, ¥ and their derivatives:

12 2 . e 32, [s=E
Tp =5 mx. Yo ¥ 2(x x o+ Yo Y + (B + £)7]

3
+
tOf =

: 2 2 2 220 2 2,15=€
1l[xst * yst + 28(x x vy Yee) * & (kss * yss )]

+
0o -
H-

()
—~
€

+
<

123

+
STYe
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SECTION 2
FORCES AND MOMENTS ACTING ON A BALANCED PROJECTILE IN A FLEXIBLE TUBE

2.1 INTRODUCTION

. Section 1 deals primarily with kinematics of a flexible tube containing

P

an accelerating projectile. In this section, the theory is extended to
provide formulas for the forces and moments acting on the projectile. By

specialization, the forces and moments acting on a projectile in a moving

LN BEE BERTENS . N
4 .

rigid tube are obtained.

As in Section 1, balloting is excluded. The weight of the projectile

is disregarded, but it would merely augment the forces on the projectile by
the term mg, where g is the vector acceleration of gravity. It would have

no effect on the moment vector, except indirectly, through its dynamic

—r—TT

effect on the deflection of the tube. The dynamic response of the tube is

not treated in this section.

2.2 FORC” ON THE PROJECTILE
The net force on the projectile is F = m a. Consequently, if the
center of mass of the projectile coincides with the centroid, Eq. (1.25)
yields
$2 -
F = m(h §R—+ 28 x £ + Lt +z—t§-) (2.1)

By Eq. (1.26), the n, b, t components of F are

. 3T,
F =m(§+1t » —
a at..

22 2.
Fn-'m(%-+ 285 - b +n . 2T

ot
— 82“‘

Fy = m(-28w -+ fi + 6 - ——;_1) (2.2)

ot
wherein relevant functions are evaluated at point s = &,
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The axial force on the projectile due to friction and engraving is
denoted by F. 1Its positive sense is toward the breech. The pressure on the
base of the projectile is denoted by Pl, and the resisting pressure of air
ahead of the projectile is denoted by P2. Accordingly,

F = -F + (P, - P

a )A

2
where A is the cross sectional area of the bore. Therefore,

.. ~ 2_ .
F= (P, - PJA-mE+%- Ezga (2.3)

The factor 32§73t2 is the acceleration of the center of the cross section

of the tube at which the center of mass of the projectile lies.

2.3 MOMENT OF FORCES ACTING ON THE PROJECTILE

Because of axial symmetry of the projectile, two of its principal
moments of inertia are equal; i.e., i1 = i2. Consequently, the components
of angular momentum of the projectile with respect to its center of mass

are

2.4)

H = il(ﬁ Q + 6 Qb) +i ¢ Qa

The vector  is given by Eq. (1.34).
Since 96/9t = w x fi, etc.,

x fi

Equations . analogous to Eq. (1.14).
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The mnoment about the center of mass cf the projectile of the forces

that act on the projectile is

- di _ OH , s OH

M= i "5t + £ TS (2.7)
The pressure force (P1 - PZ)A and the weight exert no moment about the
center of mass of the projectile. Consequently, the moment M results
entirely from contact forces between the projectile and the bore. The
rifling torque is M » £ = M . The gyroscopic couple is M-+f= M.

Equations (2.5) and (2.7) yield

= .o d . . d o :

M=i g Q + 6 Q) * iy gt @) (2.8)

The derivatives dfi/9s, 3B/3s, 9t/ds are given by Eq. (1.2). Since dii/dt =
on/ot + é ofi/9s, etc., Eqs. (1.2) and (2.6) yield

dfi _ ¢ A + b £

e LR

db _ fi

it tw - fi w, - £ o

dt _ L fi

T - b w o+ &g (2.9)
It is convenient to introduce the notation,

w_ o+ é = A (2.10)

a I ’ g
Equations (1.34), (2.9), and (2.10) yield

i o A b dt _

-t FFote -k, =g - b Q (2.11)
Consequently,

d d Qn R

@ 8) = i+ Qn(ﬁk -ta)
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d Q

d _A b A -

a-t-(s 2) =b g+ o e fid)

d .o Py d Qa

FEe) =t g - 6 Q) (2.12)

Equations (2.8) and (2.12) yield

_ e 4@ L d e .
M= 11[6 T T 6 dt ~ AR 9, - b a1+ Lt 2, (8 2 - b Q)]
(2.13)
Hence,
d Qn
My = 3 Uz 9 - 1N
d &
My =1 & - Q“(13 8 - llk)
d Qa
Ma = 13 It (2.14)

Equations (2.14) resemble the Euler equations (with i, = iz), but they

are not identical to them unless, by chance, Qa = X. The ixplanation for
the difference lies in the physical reference frames to which the equations
refer. Euler's axes (1, 2, 3) are the princival axes of inertia of the
projectile. They are imbedded in the projectile. For example, Euler's Ql
is the component of  on a transverse axis that is imbedded in the
projectile. On the other hand, Qn is the component of & on the principal
normal of the trajectory of the center of mass of the projectile. At a
given instant, these two axes may coincide, so that Ql = Qn, but the time
rate of change of Ql, denoted by d Ql/dt, is generally not the same as the
time rate of change of Qn. The time rate of change of the orthogonal
projection of vector  on a moving axis clearly depends on the motion of

that axis, and the vectors fi, b, do not have the same motions as the lateral

principal axes of imertia of the projectile.




2.4 MOMENTS ACTING ON A PROJECTILE IN A MOVING RIGID TUBE OF ANY FORM

If the tube is rigid, its angular velocity is w(t); i.e., w is
independent of s. Also, the deformational twist T is zero. Furthermore,
R = R(s) and £ = Z(s). Equations (1.2), (1.34), and (2.10) apply without

alteration (except that T = 0). Since w = w(t) and w = w * fi, etc.,

) EEE =W e oft | Th - 82. EEE = . Tﬂ. Efé.: 22 (2.15)
s os L R * 3 L * 3s R )
Therefore,
d_Ll.:._a;Lt)ﬂ-{- é(_.tl-f_a_) %:3_(”‘2_:&_(» _dw_a.z.ia.(i).e}.-}-.é_u) (? 16)
dt at bX R dt ot I n’ dt ot R n o
By Eq. (1.34),
i W Y Y "N SO W S (2.17)
dt 4t > dt dt  dt'R* * dt dt '

Introducing Eqs. (1.34), (2.10), (2.16), and (2.17) into Eq. (2.14) we get

. 22
- %“’a) MO %)[is‘“ - () - ide,]) - i g_z

n
[ Y
~

Mn 1

1]
[ N

a .t . . .
150w @1 - wn[13w - Gy - 5]

"y

w2 R v W (2.18)
It is to be noted that the tortuosity 1/I enters these formulas only in the
final term of the equation for the gyroscopic couple Mn.

If the axis of the tube is a plane curve, 1/¥ = 0. The equations for a
straight tube are obtained by setting 1/ = 0 and 1/R = 0. If the tube is
immovable, W =W W = 0. Then Eq. (2.18) reduces to

13w (2.19)

tjerre
L
.
=
n
-
Ia
~~
|J"’Y
S
.
=
H

_E
Mn = R(lzw i

1




If the tube is straight and rigid, 1/R = 0 and T = 0. Also,  is
independent of s; i.e., w = w(t). The Frenet formulas (Eq. (1.2)) reduce to

™|

’

(o34 [o34
2% =X

fi 3t _
""'z-:') 'é's_‘o (a)

The tortuosity of a straight line is indeterminate. Consequently, I should
cancel from the equations for Mn, Mb, Ma. This condition provides a partial
check on the theory.

Equation .(1.34) yields

Qn =Wy Qb Oy » Qa W, tw (b)
Since w_=w ¢ fi, etc., and w = w(t), Eq. (a) yields
R G I N =0 ()
9s L * 3s r * 9s

Consequently,
%:Eﬁﬂ*.—é-w ii:ﬂ).-.é.w &:?&. (d)
dt ot b’ dt ot r n’ dt at

With Eqs. (b) and (d), Eqs. (2.10) and (2.14) yield

W
_ s ~_._n- - R _ 3 N
Mys i - () - igwy e v iy
duy,
My = 1y 50 - U - i e - i e
Ma z 13((»a + W (2.20)

Equations (2.20) reduce to the Euler equations if w = 0.
It appears that Bwn/at and Bwb/at depend on time rates of change of fi
and 6. However, since d/dt = o x fi, w * di/3t = 0. Consequently, since

V = w * A
(.Ln w ,
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Likewise,
My 5. 0
at at

Consequently, Bwn/at and awb/at do not depend on time derivatives of fi and b.
Therefore, in Eq. (2.20), (ﬁ, ﬁ, E) may be any right-handed orthogonal triad
of unit vectors, such that t coincides with the axis of the tube. Since all

cross sections of the tube have the same angular velocity, w is simply the

angular velocity of the tube relative to a Galilean reference frame.
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SECTION 3

RESPONSE OF A TAPERED ELASTIC CANTILEVER GUN TUBE TO EXCITATION BY THE
PROJECTILE AND PRESCRIBED MOTION AT THE BREECH

3.1 INTRODUCTION

In this section the theory in Section 1 is used to determine the motion
of a tapered cantilever tube that is actuated by the projectile and
prescribed motion at the base of the tube. The section properties of the
tube are arbitrary functions of the axial coordinate s. Initial droop due
to gravity is admitted. The deflections and twist of the tube are
represented as series of flexural and torsional eigenfunctions of a uniform
cantilever beam. The coefficients in these series are functions of time.
Such series have the capacity to converge, in the least-square sense, to
the exact solution of the problem, since the eigenfunctions are complete
sets of functions. The coefficients in the series are generalized
coordinates of the tube. By mtans of Lagrange's equations, they are
represented as the solution of certain coupled non-homogeneous ordinary
linear differential equations of second order with time-dependent coeffi-
cients,

3.2 THE LAGRANGIAN FUNCTION
The tube is considered to be horizcntal, and the y-axis is directed
downward. The z-axis coincides with the undeflected axis of the tube.

Accordingly, the potential energy of the projectile is

Up = -m g y(E,t) (3.1)

A cross section of the tube is required to have the same moment of
inertia I about all diametral axes. Consequently, the polar moment of
inertia of a cross section of the tube is 2I. Accordingly, the kinetic

energy of the tube is

. '3 '3
L (e 2y 2y 2
=3 pJ s(xt Y. Jds + pJ Iwa ds (3.2)

T
tube 0 0

Equation (3.2) includes the torsional kinetic energy, but the rotary kinetic
energy due to the deflections (x,y) has been nsglected.
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With Eqs. (1.44) and (1.78), Eq. (3.2) yields

L ') s

L M sx 2y 2yds » »
Teube ™ 2 pJO S(xy™ ¥y, )ds DIO Iy, + Io(xst Yss = ¥sp Xgg)ds]7ds

Discarding cubic and quartic terms in (x, y, y), we get

L 2
1 [ 2 2 2 ,
=3P S(xt Yy )ds + pI Iy~ ds (3.3)

T
tube J0 0

Since the twist of the tube is 1 = ws, the potential energy of the tube
is

U =1 ' EI(x 2 + 2)ds + : GI ¢ 2 ds : Sy ds (3.4)
tube - 3 0 ss Yss o s - P8 o y .

The three expressions in Eq. (3.4) respectively represent the strain energy
of bending, the strain energy of torsion, and the potential energy due to
gravity.

Equations (1.82), (3.1), (3.3), and (3.4) yield the Lagrangian function:

2 2

- - o= l_ LY e yE S=E
L=T-U=3mlx" +y " +28(x, x +vy, y)]

1. 2 2 . 22 2 2 s=f
Y ldxge H Y v 2(xgg Xgp Vg Vo) * BT (X * v )]
1. 2 2|s=E g
+ i (w P+ EY) . _
273 t s +iu O(xst Yos = Vet xss)ds
2 2
+ %—pf S(x 2 +y 2)ds + OJ Iy 2 ds + m g y(&,t)
t t t
0 0
') L L
-1 J EI(x % +y %)ds - J cry 2 ds + ¢g I Sy ds (3.5)
2 0 SS ss 0 s 0

* L) 7 0 .
The term (£ + £)” has been omitted, since it contributes nothing to the

Lagrange equations.
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3.3 NATURAL MODES OF A CANTILEVER BEAM
The n'th natural bending mode of a uniform cantilever beam (Ref. 7) is

rn(s) = cosh an - cos ﬁns - an(51nh an - sin an) (3.6)

in which'Bnl is the n'th positive root of the equation,

cos B cosh BL = -1 (3.7)

The dimensionless constant a is defined by

cos Bnﬁ + cosh Bnl

0 = — _ (3.8)
n sin Bnﬂ + sinh Bnl

Values of Bnl and o, are given in Table 1. If n > §, o~ 1 and

Bnk ¥ (2n - 1)7m/2, with accuracy at least to seven significant figures.

TABLE 1

Eigenvalues for a Cantilever Beam

n Bn'Q' %n

1 1.8751041 0.7340955
2 4.6940911 1.0184664
3 7.8547574 0.9992245
4 10.9955407 1.0600336
5 14.1371684 0.9999986

A few pertinent integrals of the functions f“(s) are given below
(Ref. 8):

’D. Young and R. Felgar, Tables of Characteristiec Furctions Representing
Normal Modes of Vibration of a Beam, Engineering Reszarch Series No. 44,
Bureau of ingineering Research, The University of Tewxas, Austin, Texas,
1949.

4

R. P. Felgar, Formulas for Imtegrals Contatining Characteristic Funetions
of a Vibrating Beam, Bureau of Engineering Rescarch, Civeular No. 14, The
University of Texas, Austin, Texas, 1950.
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(2 (0, m#n

£ (s) £ (s)ds =
J0 m n t% » m=n

% 0 , ME N
e NnegH -
J fm (s) fn (s ds {

4
0 Bn £, m=n

& n § 1 2
= e ' RN - " -
[o £ (s)ds = 2 B Io £1(s) £"(s)ds = 3 £ '° (&) (3.9)

Also, derivatives of the functions fw(s) arise. They are
3

fn'(s) = Bn[sinh an + sin B“s . an(cosh B“s - COS B“s)]
, a2 . .
fn'(s) = Bn [cosh an + ¢cOS Gns - an(s;nh an + sin an)]
te PR TR e -
fn (s) Bn [sinh an sin an an(cosh an + COS an)] (3.10)

The n'th torsional mode of a uniform siraighi tube that is Tixed at one

end and free at the other is
¥ (s) = sin(2n - 1) 2= (3.11)

n 29

The foilowing integrals of these functions arise:

r.Q, 0 , m#n
b, (5), (5)ds ‘{2/2 -

Jo m=n
R 0 , m#n
' TS = ‘L - k-
Jo qu (s)wn (s)ds {7\-2 ) (3.12) -
§f(2" -1, m=n

The function YP(s,t) represents the angular displacement of a cross section
of the tube in its plane. Consequently, the boundary conditions are Y (0,t) =
0, ws(l,t) = 0. These boundary conditions arc¢ satisfied automatically by
expansion of Y(s,t) in a truncated series of the functions wn(s). Also, the

boundary conditions,
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x(0,8) = X (0,8) = 0, y(0,8) =y (0,t) = 0
X (858) = x o (,8) = 04y ((8,8) =y  (,t) =0

are satisfied automatically by cxpansions of x(s,t) and y(s,t) in truncated

series of the functions f"(s).

3.4 EXPANSION OF THE LAGRANGIAN FUNCTION

Preseribed motion of the breech imposes time-dependent constraints on
the tube. The Lagrange equations remain valicd for such systéms, provided
that the kinetic and potential energies are computed with respect to a
Galilean reference frame (Ref. 9).

As in Art., 1.14, rectangular coordinates (x, y, 2z) are set up so that
the z-axis coincides with the undeflected and undisplaced axis of the tube.
The y-axis is directed downward. Axes (X, y, z) are attached to a Galilean
reference frame. The Lagrangian function is given by Eq. (3.5).

The rectilinear and angular displacements of the axis of the tubo aro

represented as follows:

x = u(t) + s ¢(t) + an(t) Fn(s)
y = v(t) - s 0(t) + XYn(t) fn(s)
¢o= () + XZ“(t) wn(s) (3.13)

The functions u(t) and v(t) are the x and y components of displacement at
the base of the tube where s = 0. In accordance with Eq. (1.71), the
z-component of displacement at the base of the tube is f(t), but this term
is irrelevant. ‘The x and y components of rotation at the base of the tube
are 8(t) and ¢(t), respectively. The z-component of rotation at the base of
the tube is z{t). The functions fn(s) and wn(s) are defined by Eqs. (3.0),
(3.7), (3.8), and (3.11). The functions u(t}, v(t), ¢(t), 0(t), and L(t)
are considered to be given. The functions An(t), Y“(t), Zn(t) are

gencralized coordinates of the tube. The range of the subscript n in

9 3 nl A A Y g r ) v 3
n. L. Langhaar, Bnerqy Methods in Applied Mechanies, John Wi tey & Sons,

New Yovk, 1962, Art. 7-4.




Gq. (3.13) is 1, 2, 3, ... , N, but the number N is unspecitied, and, for
ginplicity, the range of n is not indicated on the suamation signs.

The Lagrangian function is obtained by substituting LBq. (3.13) into
Bq. (3.5). Terms that do not contain the dependent variables Xn, Yn’ Zn or
their derivatives are omitted from the Lagrangian function, since they

cancel from the Lagrange equations. The result is

L =

e —

* 3 ¢ [ ) [3 3 e ‘l -
mZz(xm xn ¥ \m Yll) fl\l(&’) f“(E) v mEEZ(Xm Xl\ * Ym \n) fm(g) fn(“’)

1.‘A0 s 8 ) *
* §'ilzz(xm xn * \m Yn)fm'(g) Fn'(g) * 11522(Xm Xn

-

Y " ' " l 3 .2 1" NI
Yo T " (B) £,1(8) + 3 1, 8780 (x ) X+ Yo YW E"E £" ©

1. “ » - 1.02 . . .
* 2 SXZZm zn lpm(t’) Wn(ﬁ) +‘§ 13£ 22 ﬂn Zn lpm'(g) lJn'(e’)

* istin lpn(‘{;) * iSEmzzn lJ'n'(g) * isézzzm in Wm'(E) lpn(g)

/£ -
. . . - 2 . . L . . .
v B[R Y - Y xn)J £0 £, ds] + 3 oBB[(X X

.o

0

') A
V] \) M 5 s . ‘r. > 1S Y
¥ \ll\ \“)JO S 1)\\ fn d&] ? pzzlzl“ ZHJO I lpm lp“ db] tmogl Y]l fn(g)

[} L
1 3 " S| T
Sy RO X Y Yn)IO £, £, ds] - 22lz) ZnIO GL " ¥, 'ds]
QI L) 4 L * * &
+ ng[Y“IO S t“ ds] + m(u + E¢)Ek" t“(&) + m(v - EO)E\n fn(g) i

+ mé(ﬁ + C&)XX“ fn'(g) + mé¢£in fn(E) - méOE?n fn(g)

s ey - CG)ZYn f“'(E) + il ¢an fn|(g) - 11 OEYn tn'(C)

¢EXn fn“(E) - il_OZ Y £" (&) + iSCZZn wn(E)

*
+ 1. &
IL nn

56




Crgi-oxg - v 3 IR T T R LA oo R Bl b
SN N N T T T R R T

RSl Sd
- .
RSOV, B M oL & e

+ 1EEEZ W E) + L0B(8 X+ § Y IE (E) + pI( K

2

2 L
+ v Yn)J S fn ds + pI(¢ Xn -8 Yn)[ Ss fn ds + ZQCZZHJ I wn ds

N 0 0 0
;;. . : (3.14)
7
VI
N If the tube is uniform, the integrals over the range (0,8) in Eq. (3.14) can
'Eﬁ be evaluated by means of Eqs. (3.9) and (3.12).
\‘,. . .
::; In the present case, £ and w are regarded as given functions.
»Eﬁ Consequently 8¢ and 8§y are zero. Hence, by the argument in Art. 1.10,
i 8W = 0. Therefore, the Lagrange equations are

d 3L oL d oL oL d JL oL

= e =0, =0, oS- (3.15)

dt axr er dt aYr avr dt azr BZr

3.5 LAGRANGE'S EQUATIONS
Since f (£) is a function of t, Eqs. (3.14) and (3.15) yield

B R’ .0
y. Lm£.(6) £(E) +1i £(6) £ () + ofo S £, £ ds]X_
. + 28L [m £.(8) £'(®) + i) £ '(E) £ "(B)IK
8 + 3 InE £(6) £ 0(8) + nEl £ 0(E) £ (E) + mE” £_(E) £ ()

. ) 23 -
3 + 4B £ ) £ + 1ES £ @) £E) - JO EI £ £ " ds]X_ | -
) : i
+iw £ 1(E)E £ V(MY + 1.2 [wé £.0(6) £1(E) + (:)[o £.' £" ds]Y_ :
B = [-mi - mgh - mEg - 2 mEGIE_(£) + [-mEPg - 1,6 + 1g0BE ' ()

(% (%

- pﬁJ S f ds - p¢J Ss f_ s (3.16)
0 T 0 7
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(0 £, £, + iy £, (D) £, © + of
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0

+

28L [m £.(8) £ '(5) + i)

+ .

L

+

3 .2 ' "e
1B @ £ e [0

. . (&
1,2 we £.1(E) £"(5) + wJ

£1 £ " ds]X
0 T n n

S f
T

£, £"O1

EI £" f " ds]Y
T n n

£ ds]¥
n n

+ L [nk £ () £ '(8)

mE? £ 0 (E) £ 1(E) + mEl £ (B) £ (D) + 1,E £ (D) £ ()

- i £ BT £ ()R

[-ni + 2nE8 + mES + nEO + m g]£_(£) + €76 + 1,6 + ijwdlf '(E)

% (2 L
- DVIO ) fr ds + peIO Ss fr ds + ngo S fr
2’ .. .
. c .
I [y v, (0 v () + ZoJO Ly, ¥ ds]Z + 2€i,

22 LW ) v ©) + 1E u ) v e 2[

2
Ilpr ds

= —i3(w + c)wr(a) - ZOCJO

ds (3.17)

0 (OF v (B

2
t
. 6Ly ' ¥ ' ds]Z_

(3.18)

Equations (3.16), (3.17), and (3.18) are ordinary linear non-

homogeneous differential equations of second order.

They have the following

form:
X F ) +T X P () + I X 3ty + Yo 4
n n rn n n rn n n rn n n rrm
v 3 ) =k 1)
1 n rn
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{‘1 Yn rrn (t) * ;:l Yn FI‘n (t) * ]z';l Yn Frn (t) b g xn Frn (t)
5.2
-z P 5 k)
P OIH Ye)+% L H )+ Z H 31 =K 3 (3.19)
n n n n rn n n rn T )

Sin?e g gﬁd w are reéarded as known functions of t, the coefficients Frnj,
HrnJ’ KrJ arevpresumably known, at least, in tabular form. Although they
are rather complicated, they can be programmed for a computer. It is
noteworthy that the root excitation functions u(t), v(t), 6(t), ¢(t), z(t)
do not enter.into the functions Frnj or Hrnj; they affect only the
functions KrJ. The case of a cantilever tube that is fixed at the root is
obtained by settingu =v =0and 6 =¢ =7 = 0,

If the gun is initially at rest, the initial conditions are

xn(O) = Yn(O) = Zn(O) = 0 and Xn(O) = Yn(O) = Z“(O) = 0 (3.20)
Enuations (3.19) and (3.20) present an initial-value problem of a type for
which numerical methods are available. The fact that the Zr equations are
separated from the others is helpful. However, there is coupling between
the Xr and Yr equations. Accordingly, a vertical oscillation of the tube

excites a horizontal oscillation. This coupling vanishes if the spin w is

zero. The coupling manifests gyroscopic action of the projectile,
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SECTION 4

GYROSCOPIC ACTION OF A BALANCED SPINNING PROJECTILE
IN A MOVABLE RIGID CURVED TUBE

4.1 INTRODUCTION
R4 The barrel of a gun is unavoidably slightly curved because of effects
.. of gravity, temperature gradients, manufacturing imperfections, etc. The

spinning projectile consequently exerts a gyroscopic couple that tends to

s bend the tube sideways. As Section 3 shows, the analysis of this action for

- )
VT L 1 J

an actual gun is complicated, although it appears to lie within the scope of

-4 &3
- (RN

numerical methods for differential equations. However, insight is gained

by studying much simpler problems that are not without practical significance.

e

Consequently, in this section, the motion of a rigid tube whose axis is a

plane curve is analyzed for a gun that is hinged at the breech so that the

K

' el
RPN IO BeT WY T

tube can swing sideways. A resisting moment M that depends arbitrarily on

the side sway ¢ and its time derivative & is introduced. The moment M that

RO S

yields ¢ = 0 is that which is experienced by a rigid immovable gun.

DORY]
neL

The motion of the projectile in the tube is considered tc be prescribed.

. .x&

RN

Balloting is disregarded. The projectile is considered to be perfectly
balanced. The geometric axis of the projectile is accordingly tangent to
the axis of the tube,

For comparative purposes, two different methods of solution are

RECISAMCRE

employed. The first treatment is based on the principle of angular momentum.

PR -
o .

The second treatment is based on Lagrange's equation.

4.2 LATERAL MOTION OF A HINGED, RIGID, CURVED TUBE

The vertical axis a-a (Figure 6) is taken to be a hinge line. The

K ETRERY I RY

»

hinge contains a spring and a damper, which may be nonlinear. The hinge
allows the tube to swing horizontally. The angular displacement of the tube
about the hinge is denoted by ¢. The angular velocity of the tube is &,

BV DOV PUR B )

where the dot denotes the time derivative. The axis of the tube is

considered to be a plane curve with curvature 1/R. The spin of the

DS

projectile relative to the tube is w(t).

The angular velocity of the projectile has components $ and w in the

Y4V IR IR N )

plane of the axis of the *ube. The axial and normal components of vector

& are -&sirx@ and & cos 8, as shown by Figure 6. The axial component of @

+
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Figure 6. Components of Angular Velocity of a Projectile in a Hinged Rigid '
Curved Tube ]
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detracts from the spin vector, so the net absolute axial component of E .
angular velocity of the projectile is w - $ sin 0. The transverse component

of angular velocity of the projectile is é/R, where é is the speed of the

projectile relative to the tube. Accordingly, the absolute angular velocity .
; components of the projectile are 2
:_ _ _o -.é_ _ .
Qn = ¢ cos 0 , Qb R’ Qa =w - ¢ sin 6 _ (4.1)
. Consequently, the principal components of angular momentum of the projectile

about axes through the center of mass of the projectile are

ié H1 = il $ cos & , H, = il %-, H3 = i3(w - ¢ sin 9) (4.2)
2
'% vhere i1 is the moment of inertia of the projectile about the transverse
é axis through its center of mass, and 13 is the moment of inertia of the
f projectile about its longitudinal axis. The angular momentum of the
3 projectile about the axis of the hinge is
-
ﬁ H1 cos 6 - HS sin 6 + m x” ¢ (4.3) L - -
% where m is the mass of the projectile and x is the distance from the center .
% of mass of the projectile to the axis of the hinge. Equation (4.3) must be
. augmented by the angular momentum J$ of the tube and the breech, where J is -
é the moment of inertia of the tube and the attachad rotating part of the
5 breech about the axis of the hinge, Consequently, if the angular momentum
; of the charge is disregarded,* the angular momentum of the system about the
* hinge line is
E - H = Jé + H1 cos O - H3 sin 9 + m x2 @ (4.4) =5 3
; . Consequently, by Eq. (4.2),
He (J+ 1, cos? b + i, sin® 6 + m x2)$ - i sin 6 4.5)

L ‘The angular momentum of the charge may be introduced in an empirical way
5 by augmenting the mass of the projectile by a part of the mass of the
b charge.
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The angular-rniomentum principle is expressed by the equation

_dH
- 5 (4.6)

-M
where M(¢,$) is the resisting moment of the spring and damper in the hinge.
The quantity dH/dt is the substantial derivative; i.e., it is the time rate
of change of H with due regard for the time dependence of 8, x, and w. It
can be seen that dé/dt = é/R, dw/dt = 6, and dx/dt = é cos 0. Consequently,
Eqs. (4.5) and (4.6) yield

J+ i1 cos2 0 + i3 sin2 0+ m x2)$ + 2[(i3 - il) % sin 6 cos 0
+m £ x cos 6]$ - is& sin 6 - 13 %-w cos 8 + M($,4) =0 (4.7)

Equation (4.7) is a second-order ordirary differential equation that
determines $(t), if the initial values ¢(0) and $(0) are given. The

function M(¢,$) may be nonlinear. Otherwise, Eq. (4.7) is linear. »
IfM = 0, the gun swings freely. Then, Ea. (4.6) yields H = constant. j 7'
o Therefore, if M = 0,

:E (3 + i) cos 29 4 iy sin 6 + m x2)$ - i0 sin ©

4 = (J+ 1 cos2 6. +1i sin2 O, +mx 2)$ - i w,. sin 6 (4.8)
Z? 1 0 3 0 0’70 370 0 )
&i where 80, $0, Xy» W, are initial values. Equation (4.8) determines é
N

Lol

e

explicitly.

Sl
st

Since 8 ordinarily is a very small angle, it is reasonable to make the

_;f approximations sin 6 * 6 and cos 61 in Eqs, (4.7) and (4.8). If these g
ﬁi approximations are made, and if 60 = 60 = O, Eq. (4.8) yields -
$‘; t i
% $it) = 13[ w o dt > (4.9) -
L'::: 0J+ il +m X C
\

X

b2

J ":l !
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4.3 LATERAL MOTION DERIVED FROM LAGRANGE'S EQUATION

The velocity components of the center of mass of the projectile
(Figure 6) are

where & is the distance that the projectile has moved along the axis of the

tube. Consequently, the kinetic energy of translation of the projectile is

The principal rotation components of the projectile are given by Eq. (4.1).

Consequently, the kinetic energy of rotation of the projectile is

e2
2 4,08% cos® 0+ 2 T iglw - & sin 0)2
2 R

Accordingly, the kinetic energy of the system is

22
1 22 1 2 92 22 1 . 22 2
T=338 «3me® 24 8 ¢ 24,0 wse+§y

1.

+ 3 i - § sin 0)? (4.10)

The virtual work of the external forces is
W = -M8¢ = Q6¢

Accordingly, the generalized external force is Q = -M. Lagrange's

equation for ¢ is

d 9T oT .
. (4.11)
dt .0 " %

In the present case, 9T/9¢ = 0. By Eq. (4.10),

2;—= J + i1 cos2 0 + i, sin2 B +mn x2)$ - i w sin 8 (4.12)

2% 3
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Consequently, in view of Eq. (4.5), 3T/3$ is identified as the arngular
momentum H of the system about the hinge. Therefore, Eq. (4.11) is
identical to Eq. (4.6), and lLagrange's equation leads to Eq. (4.7).

4.4 MOMENTS IN A RIGID IMMOVABLE CURVED TUBE
If ¢ = 0, Eq. (4.7) gives

M= i (b sin 6 + 2 cos 6) (4.13)
Equation (4.13) gives the sidewise moment on the tube at the.breech, if the
tube is immovable. It acts to oppose ¢.

The rifling torque is (Figure 7)

iw = M3 = Mr
This is the torque exerted on the projectile by the tube. The torque

exerted on the tube by the proiectile is -M The compcnent of this torque

3
on the axis of the hinge is

isé sin §

The driving force of the gases exerts no moment about the hinge. There is
no force on the projectile transverse to the plane of the axis of the tube.
Consequently, the reaction of the forces on the projectile exerts no
moment about the hinge line. The gyroscopic couple that the projectile
exerts on the tube (Figure 7) is denoted by Mg. Equilibrium of moments
about the hinge line yields

-M + Mg cos 9 + M3 sin 8 = 0

Therefore, by Eq. (4.13),

NP wg .o _
-13(m sin 6 + R cos 6) + Mg cos O + 13w sin 6 = 0

This reduces to
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Figure 7. Components of Moments on a Projectile in a Fixed Rigid Cuived
Tube

The positive sense of Mg is indicated by Figure 7, if the spin of the
projectile is that of a right-hand screw advancing along the tube. Although
1/R is very small, w and v are very large. Consequently, Eq. (4.14)
indicates that the gyroscopic acticn of the projectile might bend the tube

appreciably.
The moment component about the binormal is M2 = i1 B. Hence,
P I N AN Y I IS g
My= i @ LR &R (4.15)

vhere s is axrc length on the axis of the tube.
If the axis of the rigid tube is a space curve, it can be shown that
Eq. (4.14) is generalized as follows:

Sl & (4.16)
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4.5 MOVING RIGID 'TUBE AS A SPECIAL CASE OF A FLEXIBLE TUBE

As an example, Eq. (1.41) is applied to the problem treated in this
section. The axis of the tube is a plane curve. The tube is rigid, and
the vertical axis (Figure 8) is a hinge line. As before, the angular
displacement of the tube about the hinge is ¢.

A
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MONTATM
-t

o FAE!

TR L L
HEME AR LR R TR

Figure 8. Rotating Rigid Tube

Since the tube is rigid, the rate of twist is zero; i.e., 3t/ot = 0.
The binormal b is perpendicular to the planc of Figure 8. It is directed
away from the reader. The vector 3t/dt has the direction of b. TIts

magnitude is ¢) cos 6. Accordingly, £ - at/ot = ¢> cos 6, and Lq. (1.41)

E yields




Bw,‘ 1
';T;"*H"’c°59'“'°

Also, 1/R = 98/3s. Consequently,

ow
R ;00
55 - Pgs cos ®

Integration yields

Wy = -y sin 0 + f(t) . (4.17)
It has been shown in Art, 4.2 that f(t) = 0, but there seems to be nothing
in the theory of the flexible tube that determines f(t). With f(t) = 0,

BEq. (1.33) and Eq. (4.17) yield the angular velocity components of the
projectile:

, Qa=w-$sine

Blsme

Qn= -¢ cos 0 , Qb=

These resultc agree with Eq. (4.1).
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SECT{ON 5
CONCLUSIONS

Vector and scalar formulas for the velocity, the acceleration, tho
angular velocity, and the kinetic energy of a geometrically perfect
projectile in a concentric flexible tube are derived rigorously in Section 1.
Approximations of these formulas for an initially straight tube also are
developed. The relation between twist of tho tube and angular velocities
of cross sections of the tube is complicated Ly curvature of the axis of
the tube, This matter is examined in Art., 1.9, Also, evaluation of the
virtual work of the forces associated with the projectile is primarily a
kinematic problem, It is investigated in Art. 1.10. Aside from thc complex
phenomenon of balloting, Section 1 lays a rigorous kinematic foundation for
gun dynamics. Section 2 deals with the forces and moments acting on a
dynamically balanced projectile in a flexible tube. It provides formulas
for the rifling torque and the gyroscopic couple.

Section 3 treats the action of a spinning projectile on a tapered
elastic cantilever tube that has prescribed motion at the breech. The
deflections and twist of the tube are cxvanded in series of natural bonding
modes and torcional modes of a uniform cantilever beam, Since these modes
constitute completo sets of funstions, truncated series of them can
represent the deflections and twist of the tube to any desired degree of
accuracy (in tho least-square sense), irrespective of varizble taper of the

tube. The coefficients (X“, Y , Zn) in the modal series are time-dependent

n
generalized coordinates for the tube. Lagrange's cquations provide linear,

3

second-order, non-homogencous, ordinary, differential equations for (Xn, Yn
Zn)' Although the cocfficients in these differential equations are
complicated functions of time, the differential equations may be expected
to be amenable to numerical methods that can be programned for a digital
computer., Although the theory in Section 3 is not immediately applicable to
a gun for which the motion of the breech is unknown, it wmay be assumed
tentatively that the motion of the breech complies approximately with that
of a completely rigid gun with the type of support and rcecoil mechanism
that is under consideration (Ref. 1).

Although gyroscopic action of the projectile is inherent in the

behavior of a flexible tube, the phenomenon is combined with centrifugal
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of fects of the projectile in the deflocted tube and other complications. .
Section 4 isolatos the phenomenon in a setting that has practical elements. 'f{
A rigid curved tube whoze axis lies in a vertical plane is hinged at the :
breech, so that the tube can swing sideways. A resisting moment M, that
deponds arbitrarily on the angle ¢ of side sway and its time derivative &,
is introduced. The moment M that yields ¢ = 0 is that which is experienced
vy a rigid immovable gun. A single second-oxder ordinary differential
equation that determines ¢(t) is derived. The function M(¢,$) may be
nonlinear. Otherwise, the differential equation is linear. A numerical
study of the differential equation should be instructive. '
Gyroscopic couples acting on the projectile are reacted on the tube.
According to elementary beam theory, the curvature of the tube 1s
proportional to the bending moment. Consequently, a gyroscopic couple
(ideally cohceived to act at the cross section of the tube where the center
of mass of the projectile lies) introduces a stepwise discontinuity in the
curvature. This anomaly portends a puzzling mathematical question, since
the gyroscopic couple depends on the local curvature of the tube, but the
curvature is indeterminate at the point where the couple is conceived to
act, However, numerical methods tend to smooth over discontinuities. For
cxanple, any linear combination of natural modes of the tube is continuous.
Likewise, a piecewise polynomial is continuous with all its derivatives,
except at the junctions of the polynomial segments. -
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USER EVALUATION OF REPORY

Plecase take a few minutes to answer the questions bolow; tear out
this sheeot. fold as indicated, staple or tape closed, and place
in the mail. Your comments will provide us with information for
improving future reports.

‘ 1. BRL Report Number

2. Does this report satisfy a need? (Comment on purpose, related
‘ project, or other area of interest for which report will be used.)

3., How, specifically, is the report beirg used? (Information
source, design data or procedure, management provedure, source of
ideas, etc.)
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4. Has the informatiun in thic royoari led to any quantitative
savings as far as man-hours/eontrucr dollars saved, operating cosis
avoided, efficiencies uchioved, ctc.? 1f so, pleas¢ elaborate.

5. Geaeral Comments (Indicate what you think should be changed to
make this report and future reports of this type move responsive
to your nceds, more usable, improve readability, etc,)

6. If you would like to be contacted by the personnel who prepared
this report to raise spocific questions or discuss the topic,
please fill in the following information,

Name :

Telephone Number:
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