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SUMMARY
Applications of the GO Methodology

The GO methodology has been available since 1967. It was originally
developed under U.S. Army contracts to analyze the safety and reliability of
nuclear weapons and missile systems. Using the GO methodology comprehensive
safety and reliability analyses of the SPRINT, SPARTAN, NIKE HERCULES, HONEST
JOHN, LANCE, PERSHING la, MADM, M454, M422, and M753 Army nuclear weapon
systems have been performed. Similar studies have been performed on the
POLARIS, POSEIDON and TRIDENT weapon systems for the Navy.

In the late 70's, GO capabilities were expanded under EPRI and utility
sponsorship to analyze the safety and availability of conventional and nuclear
power plants. The Kaman Sciences Corporation (KSC) team which developed the
GO methodology has applied it to analyze the Three-Mile Island Unit 2 SCRAM
System, the Fort St. Vrain SCRAM System, the Dresden 2 Emergency Diesel
Generator System, the Utah Power and Light Huntington 2 plant, the Sequoyah
and Bellefonte Auxiliary Feedwater Systems, etc.

KSC also demonstrated the GO capability to model and analyze an entire
nuclear plant - the TVA Sequoyah 1.1 MWe - integrating the combined effects of
approximately 60 systems and 10,000 components to assess plant availability
and probabilistic risks. The direct accommodation of system interactions in
one integrated model was one significant feature of this study. This
capability permits the identification of common mode faults from electrical,
cooling water and instrument air systems which may affect many systems
simultaneously.

Application of the GO methodology involves five steps: (1) gaining a
thorough understanding of the operation of the system to be modeled; (2)
defining system success and failure states; (3) representing physical
components and logical operations with GO symbols; (4) interrelating the GO
symbols representing physical components and logical operations into a GO
model representing the engineering functions of a component/subsystem/system;
and (5) executing the GO computer codes to quantify system performance using
the system GO model. The methodology is capable of (1) evaluating system
reliability/availability, (2) identifying system fault combinations, (3)
constructing confidence bounds on the numerical results, and (4) ranking
the impact of constituent elements on system performance.

Significant Features of GO
The GO methodology ©possesses some significant features which

differentiate it from other probabilistic system assessment techniques. Some
of these modeling characteristics are summarized below:
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GO models, which are composed of a collection of operator
symbols, are usually developed by following normal process
flow. The models are constructed from engineering
blueprints and flow diagrams by using representative GO
symbols for physical equipment (valves, motors, pumps,
etc.). The 1inputs to, and the outputs from, these
elements are then linked together to form a GO model. The
similarity between a GO model and its corresponding
engineering drawing makes it easy to validate and
interpret the model.

GO methodology models system functions and operational
logic. Thus, a GO model contains all possible system
operational states of the constituent elements. The
effects of system design enhancement, procedural
alterations, etc., on the various operational states can
be evaluated.

Alterations and updates to a GO model are readily
accomplished. Adding or deleting components or altering
the logical combinations of equipment can be accommodated
without extensive alterations to the Dbasic model
structure of the computer input information. Changes to
system boundary conditions can be easily accommodated by
changing the data input rather than by changing the model
itself. The block modeling feature using supertypes also
enhances the ease with which model alterations can be
effected.

The identification of fault sets is a powerful technique
to identify various equipment failure combinations which
preclude successful operation. In GO terminology the
term "fault set" is used as being more general than cut
set because GO models often incorporate more than just
two operational modes, e.g., success, failure, and
premature. Having developed a GO model, the fault sets
for any operational state of a system can be
automatically generated.

The GO computer codes utilize a system GO model and the
definitions of GO symbols to quantify system performance.
The calculating algorithms in the computer codes employ a

truncation procedure whereby events of least
significance, as measured by their probabilities of
occurrence, are discarded. The truncation procedure

enhances the computational efficiency of the methodology.
The error introduced by truncation is known and can be
controlled.
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Additional characteristics about the GO methodology which experience has
shown to be significant are that it:

(1) calculates results to any desired accuracy and precision,

(2) can include in its models and measure the significance of
all system elements and characteristics,

(3) relates component characteristics to system
characteristics using classical theory,

(4) provides diagnostic capabilities to analyze the cause of
any peculiar, unusual, or significant system event,

(5) models and rigorously documents system configuration
g y
providing traceability and repeatability,

(6) 1is easy to use by engineers not specialized in statistics
and reliability disciplines,

(7) 1is an accepted, standardized procedure having widespread
application,

(8) 1is not limited to nor restricted by a simplified "black
box" block-diagram approach which ignores many
dependencies,

(9) replaces error-prone procedures such as equation writing
and other manual techniques,

(10) suppresses unnecessary intermediate analysis details which
are difficult to interpret (e.g., lengthy -equations,
voluminous fault trees),

(11) standardizes baseline models providing the basis for
comparisons, tradeoffs, value studies and uniformity of
interpretation,

(12) requires less analyst time, and less skilled analysts,
than other available procedures and 1is, consequently,
more efficient and cost-effective than similar
procedures,

Validation of GO Methodology
The GO methodology has been repeatedly compared with fault tree

methodology and has demonstrated that it provides comparable, and more

comprehensive, results. Some of the studies involving such comparisons
are:
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(1) Comparison of Reliability Evaluation Methodologies,
K74-83U(R), 3 July 1974, Gale B. Curtis (Nick Zuck -
ARRADCOM)

(2) A Comparison of Results from the GO Methodology and Fault
Tree Analysis, NUREG-K77-38U(R), 31 August 1977, D. E.
Wood and Noel J. Becar (James W. Pitman - NRC)

(3) Demonstration of a Reliability Assessment Methodology as
Applied to Nuclear Power Plant Systems, K74-30U(R), 9
April 1974, R. L. Williams and Noel J. Becar (Donald
Eamon - DOE)

(4) GO Evaluation of a PWR Spray System, EPRI 350-1, August
1975, W. T. Long, R. L. Williams (Alexander - EPRI)

(5) Audit and Verfication of Existing RAM Assessments, (1979)
(U.S. ARRADCOM Contract - N. Zuck)

Acceptance of GO Methodology

The GO methodology is becoming a standard assessment procedure for
analyzing the safety and reliability of military and space weapon and
communication systems. It is similarly becoming a standard availability
and probabilistic risk assessment procedure for nuclear and conventional
power plants.

The Army recently completed a series of eight GO training seminars in
which 138 Army and contractor personnel were provided hands-on experience
applying the GO software to perform assessments. Similar training has been
conducted for utilities beginning with a training session in Dallas, Texas, in
July 1980.

A number of nuclear plant probabilistic risk assessments are presently
being conducted using the GO methodology, e.g., Sequoyah, Bellefonte.
Availability assessments using GO have also been performed on Midland,
Sequoyah, etc.

The recent (April 1982) draft Procedures Guide for Performing
Probabilistic Risk Assessments of Nuclear Power Plants, published by the
Nuclear Regulatory Commission, contains several pages addressing the
strengths of the GO procedure. The Electric Power Research Institute is
funding GO-related applications at the rate of approximately a million
dollars a year.

KSC has received inquiries from scientists in more than twenty foreign
countries for more information about the GO methodology.

Because of its simplicity, ease of wuse, generality, comprehensive
capabilities, efficiency, and lower cost of application, the GO methodology is
becoming a standard state-of-the-art method for performing system assessments.



Use of the CAS/GO methodology by trained analysis permits refined and
comprehensive system assessments accounting for all dependencies that were
intractable several years ago. Its use also highlights unfounded assertions
of prior studies and focuses on the specific data required to generate valid
performance measures. Assessment engineers and responsible managers should be
knowledgeable of this latest development in a computerized analysis
methodology.

Because the procedure is so powerful, managers and engineers involved in
planning for, designing, fabricating, fielding, and assessing the performance
of any major system, should be sufficiently knowledgeable of the GO
methodology to take advantage of its wunique capabilities to aid the
decision-making process. GO training for responsible personnel should be
provided and the GO software and its documentation should be acquired.
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FOREWORD

Background

An audit and verification performed on existing RAM assessments indicated
numerous differences in applying various mathematical assessment techniques
and developing special system models. Of primary importance, the audits
demonstrated the need for a baseline computer-aided assessment methodology to
standardize RAM assessments and to permit the development of more accurate
system models.

In this respect, the CAS procedures using KSC "GO" methodology were
employed to perform RAM audit assessments and, as a result, uniquely
demonstrated a qualified computer-aided assessment technique which is highly
cost effective and includes many advantages.

The differences between the CAS GO methodology and the failure or success
equation block diagram and fault tree approaches used previously in RAM
assessments are significant. Some of the more significant capabilities
provided by the computerized GO methodology are:

1. Calculates results with accuracy and precision

2% Includes and measures the significance of all elements and
characteristics

3. Relates component characteristics to system

characteristics using classical theory

4. Provides diagnostic capabilities
Dls Permits traceability and repeatability
6. Is not limited to nor restricted by the "black box",

simplified block-diagram approach

7. Replaces error-prone procedures such as equation writing
and other manual techniques

8. Suppresses unnecessary intermediate analysis details which
are difficult to interpret such as lengthy equations

9. Provides standardized or baseline models as a basis for
comparisons, tradeoffs, value studies, and uniformity of
interpretation.

Develogment

The GO software was initially developed by KSC scientists Bill Gateley,
Larry Williams, and Dan Stoddard under Army funding in 1967. With the passage
of time the codes have undergone almost continual development and refinement
by the KSC originators. In the early 70's, a number of new features were
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added - data consistency checks, new operators 11-15, supertypes, sensitivity
studies, etc. In the fall of 1975, KSC conceived the fault-finder and
confidence interval algorithms. These were subsequently implemented with
internal IR&D funds, continuing Army, Navy, and NRC funding and EPRI funding.

Because of the unique formulation of the GO methodology and its modeling
approach, its use and acceptance are widespread. Users of various versions of
the codes include the Army Research and Development Command, Eglin Air Force
Base, Boeing-Wichita, University of Washington, Bechtel Power Company, Brown &
Root, Inc., Utah Power and Light Company, Tennessee Valley Authority,
Cincinnati Gas and Electric Company, San Diego Gas and Electric Company,
Houston Power and Light Company, Pickard, Lowe and Garrick, Inc., etc. The
latest version, KSC GO Version 1.0, is also on the Control Data Corporation
(CDC) CYBERNET timeshare system.

With many users and increased application there is a continuing need for
code updates and modifications. There is also need for continuing support and
standardized versions of the codes which KSC as the originators and most

experienced users continues to provide.

Since the original creation of the GO codes in 1967 there have been 24
documented KSC versions of the codes as shown below.

VERSIONS OF THE GO CODES

DATE NAME CHARACTERIZATION

APR 68  GOMAR68 Eleven Logical Operators, Hash Addressing

JUN 68  GOJUN68 e

APR 69  GOAP69 Type 9 & 11 Kind Data Changed, Sensitivity Rums,
Format-free Data, Modular Programs, Time Points

up to 9999 permitted

MAY 69  GOMAY69 Use of two computer words to store more active
signals and handle larger problems

AUG 70  GOAUG70 -
1971 RANGO Randomized GO, Component Beta Distributions

1972 GOCHK72 -

APR 74  GOAPR74 Data Checks, Signal Table
1974  XGO 100 Active Components, Automatic Signal
Deletion, Extensive Error Checking, Perfect
Component Case, Automatic Array Size

Optimization, PMIN Reset, Types 5 & 11 Combined

1975 Version B —_
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VERSIONS OF THE GO CODES (Continued)

DATE NAME CHARACTERIZATION

16 FEB 76 Version C New Operators 11-15, Multiple Type 8 Delays, GOl
Signal Table, Developed with Public Funds

26 APR 76 Version D Supertypes GOl, GO2, GO3, Printouts Modified,
GOl Signal Table, Developed with Public Funds

NOV 76 Version E —_

11 JAN 77 Preliminary Fault Finder
3 MAY 77 GO Fault Finder SYSFILE, FFl, FF2
30 NOV 77 GO Types 16 & 17
3 MAR 78 Version D as documented for EPRI, Master Program

GOFF, Data Decks Control Sequence, Alpha
Descriptors, New Type 4

1 DEC 78  GOFF Program FGO & GO4 Created
17 AUG 79 GO Efficiency Update, New Program Structure,
Procedures and CLISTS, LIBRARY GORUN
1 OCT 79 GO Effect Evaluation EEl, EE2, EE3
20 MAR 80 GO CDC Version Documented for EPRI
20 MAY 80 GO IBM Version Documented for B&R, UP&L, EPRI
30 DEC 80 GO IBM Version Enhanced at ucc, Dallas,

Descriptors, Facility To Alter Array Sizes,
Explanation Of Use

1 SEP 82 KSCGO Version 1.0 Proprietary to KSC, Both VAX and
CYBER Versions, Developed directly from GO
Version C, 1976

Like most well-used software the GO codes have been continually changed
and modified. In 1979-80 under the sponsorship of Utah Power and Light
Company and EPRI the GO codes were converted from the Control Data Corporation
Fortran, in which the most recent version had been written, to IBM Fortran.
KSC accomplished this task and documented both the CDC and IBM versions of the
codes as they existed in 1980. 1In 1982, KSC on its own initiative and funding
developed a new proprietary version of the GO programs. Using the 1976 public
domain Version C of GO, KSC scientists have created the latest version called
KSC GO, Version 1.0, September 1, 1982. This latest version of GO is
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available from KSC in both VAX-1l and CYBER versions. The VAX-1l version can
be readily converted to IBM systems and has the added capability of
word-packing to increase efficiency and reduce disk access requirements. This
feature was not a part of the former IBM version of the code. An additional
capability, which takes advantage of the large main memory of the VAX, is that
array sizes can be increased to 20,000 or more (vs. the 3000-5000 array sizes
on former versions) to effect orders of magnitude error reduction for large
problems.

There are a number of other additional new features to KSC GO, Version
1.0. In particular the fault finder algorithm is completely new and is no
longer tied to probabilities. These new features are fully documented in
complementary publications.
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CHAPTER 1
ASSESSMENT OBJECTIVES

INTRODUCTION

The objectives of a probabilistic system assessment must be defined
before commencing the work. A number of factors must be considered to clearly
define the objectives. 1In this chapter we discuss some of the factors which
must be considered.

System Events and Their Probabilities of Occurrence

A fundamental question to be asked about a system is, "What do we want to
know that we don't already know?" 1If the answer to that question is, "We want
to know the probabilities of occurrence of certain system events," then it may
be desirable to construct a system GO model to calculate these probabilities.
If the system has a well-defined configuration and if pertinent component data
can be obtained, then GO models can be developed to answer specific questions.

The KSC GO methodology is used to generate system events and their
probabilities of occurrence from the defined interrelationships of external
inputs and boundary conditions, constituent elements and components and the
probabilities associated with their possible operational states. The
methodology is used additionally to identify sets of component failures which
singly or in combination cause system failures. Another principal use is to
study the effects wupon system performance caused by changes 1in or
uncertainties about component probabilities of performance.

System Performance Measures
In the foregoing paragraphs the terms "system," "performance," and "data"
have been purposely left vague. We now proceed to define them more carefully.

A system is any collection of basic elements (including human actions)
which are arranged in a definite configuration and which interact to produce
at least one output event of interest. This definition is broad. Examples of
systems are household appliances, automobiles, industrial plants, power
plants, missile systems, airplanes, satellites, communication networks, etc.

System performance 1is often measured wusing standard terms 1like
reliability and availability. Definitions for these terms are:

Reliability is "the characteristic of an item expressed by
the probability that it will perform a required mission
under stated conditions for a stated mission time' (IEEE
Std. 577-1976).

Availability is '"the characteristic of an item expressed
by the probability that it will be operational at a
randomly selected future instant in time" (IEEE Std.
577-1976).



Safety and risk also are couched in terms of the probability of
occurrence of catastrophic, hazardous or destructive events.

The objective of a system assessment is almost always the determination
of the reliability, availability, safety, risk, or hazard associated with the
design, fabrication, and use of a system. Because each of these measures is a
probability, system performance is almost always expressed as the probability
of occurrence of specific system events. The GO methodology was developed to
calculate such probabilities.

Data

Different system performance measures require different types of
component data. To generate system availability estimates requires estimates
of component availabilities. To develop system reliability estimates requires
component reliability estimates, etc.

In all cases, however, system GO models require component probability
point estimates as contrasted with probability distributions. For example,
consider a component which exhibits three mutually exclusive modes of
operation, e.g., premature, normal or proper, and failure. Data for this
component may establish that the probabilities of the component taking these
operational states are 0.001, 0.997, and 0.002 respectively. These
reliability point estimates are provided to the computer, along with similar
data for other components to generate reliability point estimates for system
events.

For an availability study, components will have only two states, i.e.,
available or unavailable. A given component may have an availability point
estimate of 0.9999 and a corresponding unavailability point estimate of 0.0001
(1-0.9999). Using such data for all constituent model elements the GO
software will generate system availability point estimates.

Probabilities associated with human actions and decisions are often
included in GO models to account for such effects. These also are input in
the form of point estimates.

Data for a GO model is a collection c¢f pertinent probability point
estimates that aptly describe the probabilistic behavior of the basic model
elements. Often the level of resolution to which a GO model is developed
depends upon the component data available.

Standard reference sources exist documenting generic data for most types
of equipment, e.g., electrical components, pumps, valves, instrumentation.
MIL-HDBK-217B, GIDEP, National Power Reactor Data System (NPRDS), and IEEE
Std. 500-1977 Nuclear Reljability Data Manual are representative of available
data sources.




Assumptions and Boundaries

All studies are limited by time and dollar constraints. To clarify the
scope and intent of an analysis, the explicit and implicit assumptions made in
developing a model, even though "obvious" or "universal," should be clearly
stated. The fact that only a certain subsystem is being analyzed, that all
electrical and human inputs are considered perfect, that no out-of-tolerance
or beyond-limit stresses have been postulated, etc., should be clearly stated.
This focuses attention on what is being analyzed and aides in interpreting and
stating the study results.

Success and Fajilure Criteria

To develop a model which faithfully represents a system requires a clear
definition of what constitutes both system success and system failure.
Determining the criteria for success and failure usually simplifies the task
of model development and sharpens the focus on the study objective.

Limitations and Uncertainties

Studies are limited in many ways. Time does not permit the accumulation
of more data. The exact configuration is not known. The effect of certain
component failures is not defined. Excluding analyst error, uncertainties
result from lack of knowledge. Data uncertainties are often treated using
data ranges, and expressing the results in terms of confidence intervals
rather than precise point estimates. Configuration and component response
uncertainties are treated by developing several models to handle the most
likely situations and ©portray the differences caused by different
configurations and component responses. The recognition and treatment of
limitations and uncertainties will enhance the value of a study and will help
clarify the assessment objective.

Design Enhancement

Having quantified system performance and taken into account knowledge
deficiencies and uncertainties, an often fruitful approach expanding the study
is to identify major causes of degradation or failure. Once identified these
effects can often be mitigated with improved quality control or by design
changes. The beneficial effects of such improvements or design changes can be
objectively determined and reported by making the changes to the model and
rerunning it. Consequently, the study objective may be to determine how a
system can be improved to achieve a certain level of performance.

The scope of, and available resources for, the study, the schedule in
which it must be completed, and the end product to be produced are additional
considerations which help define the assessment objectives.

From a technical point of view the most important considerations in
defining the study objective are the performance measures wanted, the system
definition, the data required, and the assumptions and boundary conditions to
be used.



It is difficult, if not impossible, to develop models and perform
assessments when the study objectives are not clearly defined. As you read
the remaining chapters of this primer and become familiar with the KSC GO
methodology, focus on the objectives for which various example GO models are
developed. Doing so will help you catch the essence of the procedure and
illuminate the software capabilities. Defining the objectives to be achieved
by developing GO system models will aid you in applying the procedure to real
world problems of your own.



CHAPTER 2
EVENT TREES

Introduction

Every person who has engaged in problem solving exercises has employed

branching diagrams or event trees. The purpose of this chapter is to
illustrate how event trees are used to solve reliability problems. This
discussion is a preamble to using the GO methodology. The GO computer

programs automate the process of creating and manipulating event trees. Their
efficient use permits the creation and manipulation of event trees of almost
any size.

The Coin Flip Problem

Let us presume we flip a coin four times. Five possible outcomes result,
i.e., 0, 1, 2, 3, or 4 heads. We desire to determine the probabilities of
obtaining each of these elemental outcomes.

We can formalize the procedure by defining a random variable X to be
the number of heads obtained in the experiment. As noted above, the random
variable X «can take any of five different values. The problem then is to
determine the probability that X takes each specific value, i.e., Pr(X=i) =

7, i = 0,1,2,3,4. In summary we desire to complete the following figure
(Figure 1).
VALUE
X TAKES PROBABILITY
0 ?
1 ?
2 ?
3 ?
4 ?

FIGURE 1 PROBABILITY MASS FUNCTION
FOR RANDOM VARIABLE X

This problem can be readily conceptualized with an event tree (see Figure
2). Each flipping operation doubles the branches in the tree. Ultimately the
tree has 16 mutually exclusive terminal branches.

The event tree is converted to a probability tree by introducing the
probabilities associated with each of the two possible outcomes for each of
the four independent experiments. We assume there is an equally likely chance
that either a head or a tail outcome occurs on each flip. Consequently each
has a 0.5 probability of occurring. Because each outcome is equally likely
each of the fixteen terminal branches have an equal likelihood of occurring,
namely (.5) = 0.0625.

Note on Figure 2 that only one terminal branch produces four heads.
Consequently, the probability of obtaining four heads is 0.0625. The same is
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true for zero heads. There are four terminal branches resulting in three
heads, so the probability of this outcome 1is 4x0.0625=0.25. Similarly there
are four terminal branches producing one head. Finally there are six terminal
branches producing two heads with probability of occurrence 6x0.0625=0.3750.

The table for the probability mass function for X can now be completed
from the event tree solution* to this problem.

VALUE
X TAKES PROBABILITY

0 0.0625

1 0.2500

2 0.3750

. 3 0.2500

4 0.0625

TOTAL 1.0000

FIGURE 3 PROBABILITY MASS FUNCTION
FOR RANDOM VARIABLE X

Switch Operation Auaiysis By Event Tree

We move now to a less obvious analysis using the event tree approach.
Consider the operation of a simple switch as shown below:

X ® © 4

|
|
|
Y
'FIGURE 4 SWITCH

The main electrical input to the switch is shown as random variable X, which
takes possible values 0, 1, and ® representing the times of arrival of input
power to the switch. The mechanical actuation of the switch is shown as
random variable Y, which similarly takes values of 1 and « indicating the
times at which the switch is actuated. Given that the probability mass
functions for both X and Y are known, find the probability mass function
for dependent random variable Z, whose values represent the times at which
output power is available from the switch.

* For this trivial problem there are a number of solution methods. Perhaps
the most straightforward is the binomial expansion of
(H + T)* = H4 + 4HST + 6H2T2 + 4HT® + T% where H is the probability of
obtaining a head and the exponent on H is the number of heads in that term.
The same nomenclature is used for tails. Since H=T=1/2 in this problem the
result is immediate.



First we define the following events:

Xi = Event that power is applied to switch at relative time 1i.
Yi = Event that the switch is actuated at relative time 1i.
Zi = Event that power is received from the switch at relative

time 1i.

The probability mass functions for random variables X and Y are
defined in the figure below where the possible times (or values the random
variables take) are 0, 1, and . In this case infinity means ‘'never', i.e.,
power mnever arrives or the switch is never actuated, zero means before the
intended time of operation, and 1 means the time of intended operation
(power arrival and switch actuation).

i P(Xi) i P(Yi)
0 ll 1 .8
1 .5 ® .2
® L4
FIGURE 5 PROBABILITY MASS FUNCTIONS
FOR DISCRETE RANDOM VARIABLES X AND Y

If the switch itself is perfect, the event tree of Figure 6 shows the
solution to this problem. Six unique joint events result from the combination
of the two independent random variables X and Y taking their respective
values. The resultant values assumed by random variable Z are 1 and =,
meaning that the switch provides electrical power at time 1 with probability
0.48 and that it fails to provide an output (i.e., provides an output at
time « or never) with probability 0.52.

Now, instead of presuming that the switch is perfect, let us presume that

it has three operational states' -- good (g), failed (f), and premature (p) and
that it takes on these states with probabilities 0.7, 0.2, and 0.1,
respectively. When the probabilistic behavior of the switch itself is

additionally considered, the six joint events resulting from the times of
arrival of input power (random variable X) and the time of actuation (random
variable Y) expand to 18 joint events.

The event tree for the case of an imperfect switch is shown in Figure 7.
Note that now there are three possible outcomes for random variable Z. It
can take values 0, 1, and ®. In this case a value of 0 means a premature
electrical output from the switch which can only occur if input power is
premature (X.) and the switch is prematurely electrically continuous
(shorted). Now the output distribution for Z is:
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FIGURE 7 EVENT TREE FOR IMPERFECT SWITCH
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P(ZO) = 0.010,
P(Zl) = 0.386,
P(Z®) = 0.604.

For this relatively trivial problem, 18 possible unique joint events
involving the three random variables (X, Y and the switch) resulted. For a
system of many components the event trees become very large. Consequently, to
keep the trees manageable in size, terms with smallest probabilities of
occurrence are often discarded. This is done by specifying a probability
value (PMIN) and discarding {(pruning) all terms (branch) combinations whose
probabilities of occurrence are less than this preassigned value. Even if the
event trees are generated automatically using a computer it is generally
necessary to prune the trees if the number of system components is more than a
few dozen.

In the event tree for the imperfect switch (Figure 7), the branches with
dashed lgnes leading to the Z events would have been eliminated with a PMIN
of 5x10 . The probabilities of occurrence of final Z events are reduced
by the probabilities of the discarded terms agg some error is introduced. 1In
this_?roblem note that a total error of 6x10 is introduced with a PMIN of
5x10 ~.

Even though this is undesirable, when large systems with hundreds of
components are analyzed, the introduction of some relatively small error is a
proper tradeoff for having a tractable problem. Experience has shown that
with some skill in structuring the trees, the error can be made
insignificantly small in almost all cases, while permitting economical
computer manipulation of very large trees.

11



CHAPTER 3
THE GO METHODOLOGY

INTRODUCTION

The GO methodology is an automated way to develop system event tree
models. Such models are developed to analyze the probabilistic behavior of
systems defined by such terms as reliability, availability, safety and risk.
GO models are developed using standard logical operators to represent system
equipment and components, their operations and interactions. Appropriate
probability data for equipment performance, human actions, and external events
are gathered and tabulated. A GO model and its associated probability data
are then placed on computer data input files which are accessed and processed
by the GO computer programs to develop the event trees whose terminal branches
contain the desired system events and their probabilities of occurrence.

GO Operators (Types)

The heart of the GO process is the definition of fifteen standard logical
operator "types" which are used to represent model elements and interactions.
For example, a type 1 operator represents the 1logical operation of an
equipment which either performs, or fails to perform, its function given a
proper input or stimulus. The type 2 operator performs the logical OR gate
operation where a successful response is generated if any of several inputs is
proper, etc.

The fifteen logical operators, for which algorithms are defined in the GO
codes, are depicted in Figure 8. Figure 8 also shows the symbol normally used
to define the operators. Operator inputs are called stimuli (S., S., ... 8.},
and outputs are called responses (R,, R,y ..., R ). Such inputs and outpﬂts
are random wvarilables. An operator, which repreé@nts equipment responses or
human actions, and which may itself have associated performance probabilities,
processes the input random variables in a prescribed and well-defined way to
generate the output random variables. Tn GO models these random variables are
called "signals", a carryover from electrical terminology.

GO Models

A GO model is develcped directly from electrical schematics, engineering
blueprints, and flow diagrams by substituting the standardized GO operators
for physical equipment, human actions and logical operations. The inputs and
outputs to these operators are combined and arranged to show the logical

12
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configuration or process flow necessary for successful operation of the
systems. The GO models thus appear similar to the original schematic,
blueprint or flow diagram and capitalize upon the analyst's familiarity with
the configuration and the proper intended operation of the system. This
similarity to such diagrams aids in validating, understanding and interpreting
the models.

The steps in creating a GO model are: (1) learn how the system is
configured and actually operates; (2) define system success and failure
criteria; (3) didentify the system events about which information is
sought; (4) represent system elements with standardized GO operators;
(5) combine the inputs and outputs of operators representing system
elements into a GO model portraying successful system operation; (6)
obtain the probabilistic data for component responses.

To illustrate how this is done, consider the example system of Figure
9. An electrical cord is plugged into a wall circuit. Subsequently Sam turns
on the switch to a motor. Question: What is the probability that the motor
begins operating when Sam turns on the switch? The answer to this question
is a function of the availability of power, the electrical continuity of the
plug and cord, the reliability of the switch, whether or not Sam actually
turns the switch on, and the reliability of the motor.

ELECTRIC
POWER PLUG SWITCH MOTOR

© 1) .

SAM

FIGURE 9 EXAMPLE SYSTEM

A GO diagram for this system is shown in Figure 10. The symbols for the
standard GO operator types are used to represent each system element. Inside
each symbol is a hyphenated number. 1In each case the first number specifies
the operator type. The second number, called the "kind" number, references
the probability data associated with this operator. It will be addressed in
the next section.

ELECTRIC
POYWER PLUG SWITCH MOTOR

FIGURE 10 EXAMPLE GO MODEL
14



Each operator input and output is given a "signal" (random variable)
number. For example the availability of power is represented in this model by
signal #1, the output from the type 5 operator representing the availability
of electric power. The output from the type 1 operator representing the plug
is signal #2, etc. Signal #5, the output from the type 1 operator
representing the motor, is the final signal generated by the model. 1In fact,
the model was developed to generate the probability mass function for signal
#5 to allow us to quantify the probability of motor operation in this system.

GOl Operator Data

Figure 11 shows the format for communicating the operator type, the
associated kind data reference, and the input and output signal numbers to
computer program GOl as shown in Figure 11. To record the operator data for a
specific component, the operator type is written first, next the kind number
(K) is generally written, then the input signal number or numbers (S,)
are written followed by the output signal number or numbers (R,). For exampfe
the information concerning the plug in the GO model of thelexample system
(Figure 10) is communicated to the computer in the form,

1 10 1 2 § PLUG

This tells the computer that we have a type 1 operator with kind 10
probabilities. It has signal #1 as an input and generates signal #2 as an
output. The dollar sign ($)* is a data terminator and the description to the
right of the terminator is optional. Obviously a signal cannot be used as an
input until it has been created as an output by some prior operator.

The entire set of GOl data for the example system is recorded in the
following eight lines:

GOl DATA FOR EXAMPLE SYSTEM
SPARAM INFIN=3 $

50 1 $ ELECTRIC POWER

10 1 2 $ PLUG & CORD

51 3 $§ SAM

60 2 3 4 § SWITCH

11 4 5 $ MOTOR

5 § FINAL OUTPUT SIGNAL

O~ Wk WU

The first line of data is a model name or header card. The second line
of data calls up a Fortran namelist parameter named PARAM which permits the
initialization of several parameters. In this model only the parameter INFIN,
meaning the largest value a random variable may take, is specified. Default
values are used for several other GOl parameters which can be defined, e.g.,
BIAS, OP, SIGNAL. (See the GO Reference Manual for full exposition of
parameters),

* Some versions of GO use a slash (/) as a terminator.

15



TKSR

20n S1"'Sn R
3KSR

4 K n R1...Rn
b KR

6 K S1 82 R

7 K S.| 82 R
S8KSR

9 K S1 82 R
100 n S1...Sn R
T"MTmn S1...Sn R
13K n S1...Sn m R1...Rn
14 K n S1"'Sn R
15K SR

K: KIND NUMBER
S: STIMULUS (INPUT) SIGNAL NUMBER

R: RESPONSE (OUTPUT) SIGNAL NUMBER

SEE THE GO REFERENCE MANUAL FOR
COMPLETE DESCRIPTION OF INPUT DATA

FIGURE 11 GO1 OPERATOR DATA
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After the header and parameter cards, the operator data is entered, one
operator per line. The GOl operator data completely defines the logical
nature of the model elements and their interactions. The GOl data thus
documents the system configuration.

In this model there are five operators. The first operator, which
represents the availability of electric power, is a type 5 operator. It
references kind 50 probabilities and generates signal #1. Then, in

succession, we have a type 1 kind 10 operator representing the plug and
cord, a type 5 kind 51 operator representing Sam, a type 6 kind 60
operator representing the switch, and a type 1 kind 11 operator
representing the motor.

The output from the motor is signal #5. This is the final signal whose

distribution we desire to see in the computer results. We tell the GOl
software that signal #5 is the signal to appear in the output with the last
line of entry. The use of a "0", instead of an operator type, flags the

computer that this entry terminates the GOl data and that the following
entries on that line are signals which are to appear in the final output
distribution. 1In this case only the single signal, #5, is requested.

GO Values and Event Definitions

An important consideration in developing GO models, not obvious in the
discussion to this point, is the specification and meaning of the possible
values that the random variables may take. Recall that in the coin flip
example of the random variable, number of heads obtained in four flips, could
take any of the five possible values - 0, 1, 2, 3, or 4.

Similarly in every GO model the possible values which the random
variables (signals) may take must be specified. The model is clarified by
attaching a meaning and definition to each value.

For example if one desires to know whether a system functions or fails to
function, two values would be sufficient. In such a GO model these would be
the values 0 and 1. The value 0 would mean success and the value 1, failure.

To pursue this concept further, let us define some values for the GO
model of the example system of Figures 9 and 10. For the purpose of
illustration let there be four possible values with definitions as shown in
Figure 12,

All prior time

- Time when electric power is available in wall socket
~ Time when Sam turns on switch

- Never

FIGURE 12 VALUES FOR EXAMPLE SYSTEM

wN-=O
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With these definitions we see that the random variables will take values
which reference a relative time sequence. Having defined these values for
this model, the meaning of random variable #5 taking value 2, 5. %, means the
event that the motor turns on when Sam turns on the switch. Similarly, event
53, means the motor never turns on, or fails to turn on, etc,

For the example system some additional events which may be defined
are listed in Figure 13.

" EVENT EVENT DEFINITION

L POWER IS AVAILABLE TO THE PLUG AT
TIME 1

2 POWER IS AVAILABLE FRCM THE PLUG AT
TIME 1

3 SAM OPERATES SWITCH AT TIME 2

4, POWER IS AVAILABLE FROM THE SWITCH AT
TIME 2

by POWER IS NEVER AVAILABLE FROM THE SWITCH

5, THE MOTOR OPERATES WHEN SAM TURNS ON
THE SWITCH

5 THE MOTOR FAILS TO OPERATE

FIGURE 13 SOME EVENTS DEFINED FOR EXAMPLE PROBLEM

GO2 Probability Data

The probability data required for a GO model is specific to that model.
It is entered by specifying an arbitrary kind number which permits reference
to the data. The form in which the data is entered is determined by the type
of operator which calls for the data. Figure 14 depicts the format in which
the probability data for each operator type will be entered.

The arbitrary kind numbers are represented by K 1in the figure. The
probabilities of good, bad, and premature component operation are represented
as Pg, Pb, and Pp respectively. Values are represented with V.,

The probability data associated with a type 1 operator is provided
to computer program GO2 in the form:

K 1 Pg Pb

* We adopt the nomenclature that events are defined by signal numbers
subscripted with specific values.

18



K 3 Pg Py P,
Ve = Vign Po
Vi Von Pm

K5nVyPp...V, P,

K 6 Pg Py Pp

K 7 Pg Py P,

K 8n D1 P1 Dn Pn

K 9 n X1 Y1 Xn Yn

---------------

VR1...VRy Py N

n : Number of inputs; 0<n<10
m : Number of outputs; T<m<10
N : Number of output sets;
(if n=0, N=1); 1<N<10
M; : Number of output terms for the
ith output set; 1< M;<10
K 14 naj...a, a4
K 15 V4 Vo V3 V4 Py Py

K: KIND NUMBER

P: PROBABILITY

V: VALUE

D: DELAY

SEE THE GO REFERENCE MANUAL
FOR COMPLETE DESCRIPTION OF
INPUT DATA

FIGURE 14 GO2 KIND DATA
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If we refer to the GO model of the example system (Figure 10) the
probability data for the plug, shown as a type 1 kind 10 operator in Figure
10, might be as follows:

10 1 0.9 0.1 $§ PLUG

This indicates that kind 10 is referenced by a type 1 operator. That
operator has a success probability of 0.9 and a failure probability of 0.1.
The dollar sign ($) is again a data terminator and optional descriptive
information about the data can be placed to the right of the terminator.

The probability data needed for a specific GO model must be developed by
the analyst. This will usually be done by referencing a data base or by
engineering judgement.

The analyst must insure that the data being used is appropriate. For
example there are three types of data which are often used for system
analyses. These are (1) per demand probability estimates, (2) reliability
with time estimates, and (3) availability estimates.

Per demand or startup estimates are derived from binomial trials. Given,
from experience, that there have been x successful starts in n trials the
reliability point estimate, R, for successful startup is given as the

; _th
= for the it component. An un-

expected value —5—, hence R, =

n i n,
biased estimate for the variance, V, of the reliability is also provided by
the expressions,

A= (%) (1 " %) _ _x(-x)

n 3

n

This variance estimate permits the treatment of uncertainty in system
estimates as a function of uncertainties in component estimates, but is, of
course, invalid if x=0 or x=n. If either of these cases occur arbitrary
variance estimates must be generated by some other means.

The reliability with time estimates are generated using available failure
rate data. Using as the failure rate for the i component, the
reliability, Ri’ of ghat component at time t 1is,

This is the probability that the component has not failed since being placed
in service up to time t. The formulation presumes, that the failure rates
are constant and therefore that the time~to-failure distributions are
exponential. (Other time-to-failure distributions could be used, e.g.,
uniform, lognormal, normal, gamma, Weibull, etc.)

20



Availability estimates for a system can be generated from component
availability point estimates wusing GO models. The system availability
estimate, A, is a function of, the component availability estimates.
These are denoted as Ai for the i component., Hence,

A= f(Al’ AZ’ cees Ah)'

The component availability point estimates can be derived using the well
established function,

MTTFi

i MTTF, + MTTR,
i i

where,

Ai = Availability point estimate oghthe ith component,
MTTFi = Mean-Time-To-Failure of the component ,
MTTRi = Mean-Time-To-Repair of the i component.
If the times—-to-failures are exponentially distributed, then
MTTFi = i where Ki is the failure rate of the ith component.
i

Since several sources exist containing published generic failure rate data for
most components, representative estimates for MITF, are available for most
types of components. Less data is available td establish representative
estimates for the MTTR. These estimates are functions of the general
maintenance philosophy - frequency of test, training, stock 1levels, etc.
Where component MTTF and MTTR data are not available for modeled components,
engineering estimates can be made of their availabilities.

The actual GO2 data entered for the example system is recorded in the
following seven lines.

GO2 DATA FOR EXAMPLE SYSTEM

$PARAM §
10 1 0.9 0.1 $ PLUG
11 1 0.7 0.3 $§ MOTOR
50 511 1. $§ ELECTRIC POWER
51512 1. § SAM
60 6 0.8 0.2 0.0 $§ SWITCH

As in program GOl, the data for program GO2 commences with a model name
or header line entry. The second entry is again a Fortran namelist parameter
called PARAM which permits the setting of the parameter PERFECT. In this case
the parameter PERFECT was left at its default value.

The next five lines of data record the kind numbers associated operator

types, and the probability data for each component. The first two entries on
each line are the kind and type. The remaining entries are the required
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probabilities and other data necessary to define the probabilistic operation
of a particular operator type. (Refer to Figure 14 which shows the format of
the data entries for each operator type.)

In this model kinds 10 and 11 are referenced by type 1 operators, kinds
50 and 51 by type 5 operators, and kind 60 by a type 6 operator. The GO2 data
for the type 1 operators records the success and failure probabilities of
operation. The GO2 data for the type 5 operators indicates that in each case
there is only one value which is taken with certainty. Electric power is
available at time 1 with certainty, and Sam throws the switch at time 2 with
certainty. The GO2 data for kind 60 type 6 contains the success, failure, and
premature probabilities of operation. 1In this case the premature probability
is specified to be 0.0.

GO Execution

To execute the GO sequence three computer programs in the set of GO codes
are called upon to process the model data. These are programs GOl, GO2 and
GO3. Program GOl processes the operator data which defines the system
structure. Program GOZ2 processes the probability data insuring its internal
consistency and proper reference from operators processed in GOl. Program GO3
executes the operators in the GOl data and introduces the probability data
from GO2 to generate the event tree for the specific model being processed.

To portray how this is done representative data for the example system of
Figures 9 and 10 have been recorded in Figure 15.

Note that the data is separated into three sets -- one for each of the
three GO programs to be executed, GOl, GO2, and GO3. We have previously
discussed the data for programs GOl and GO2. 1In each set there is a name or
header card, and a parameter card. The parameter card for GOl defines INFIN=3
which tells the computer that the largest value which the random variables may
take in this analysis is 3. Consequently the permissible values will be 0, 1,
2, and 3, with the associated meanings previously defined. The subsequent
data in GOl defines the operators and associates their inputs and outputs.
The final card commencing with a 0 entry flags the computer that this is the
end of the GOl data and that signal 5 is to be the output signal whose mass
density function is to be displayed.

The GO2 data reflects the probabilities which were assigned for this
analysis. Note that both the availability of electric power and Sam's action
are perfect but that they occur at time 1 and time 2 respectively. That is,
power is certain to be available at time 1 and Sam is certain to actuate the
switch at time 2.

In GO3 the parameter PMIN which could permit truncation of Ilow
probability events is set to 0.0. Consequently, no pruning will occur.
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GOl DATA FOR EXAMPLE SYSTEM
SPARAM INFIN=3 §

5 50 1 $ ELECTRIC POWER
1101 2 $ PLUG & CORD

551 3 § SAM

6 60 2 3 4 $ SWITCH

111 4 5 $ MOTOR

0 5 § FINAL OUTPUT SIGNAL

EOR*

GO2 DATA FOR EXAMPLE SYSTEM
SPARAM §

101 0.9 0.1 $ PLUG

111 0.7 0.3 $§ MOTOR

50511 1. $§ ELECTRIC POWER

51 512 1. $ SAM

60 6 0.8 0.2 0.0 $ SWITCH

EOR

GO3 DATA FOR EXAMPLE SYSTEM
SPARAM PMIN=0.0 $

EOR

EQOF

FIGURE 15 GO DATA FOR EXAMPLE SYSTEM

An event tree for this example system can be easily created. Such a tree
is shown in Figure 16. Moving from left to right the branches in the tree are
depicted in the order in which the operators were introduced in the GOl data.
The plug, switch, and motor states were represented by P, S, and M
respectively subscripted with g, for good, and f, for failed. Events are also
shown using the subscripted signal numbers.

Note that only one branch of the tree leads to a system success. This is
event 5, defined as successful motor operation when Sam turns on the switch.
All other branches lead to motor failure because of plug switch and motor
failure.

The event tree which is actually created by GO3 is slightly different

than that of Figure 16. The difference is that after each operator is
processed all identical events are combined. This reduces the number of
branches and results in more efficient processing. Figure 17 portrays how

this branch combination process is employed for the example system to generate
the two final output events, 52 and 53.

If more visibility about other combinations of the signals is desired we
could specify them as final output signals. If every signal were specified as
a final output signal the tree of Figure 18 would be generated. In this case
there are four final events, representing the four unique combinations of the
random variables. As before identical events generated are combined reducing
the number of branches in the tree.

* EOR and EOF mean End-of-Record and End-of-File respectively. Different
computers use different nomenclature for these expressions.
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GO Results

In most GO analyses the event trees are not depicted. Usually, only the
final branches of the tree are retained and recorded because they provide the
information about system performance which the model was created to generate.
Internal information, while optionally available, is almost always suppressed
to eliminate voluminous output.

The results of a GO analysis include the 1list of all possible system
event states and their probabilities of occurrence. The GO3 output for the
example system previously discussed is shown in Figure 19.

In Figure 19 the final event table records the resultant branches of the
event tree of Figure 17. Signal 5 was the only output signal specified. As
shown in Figure 19, signal 5 can take two

FINAL EVENT TABLE (INFINITY = 3)
SIGNALS AND THEIR VALUES

PROBABILITY 5

0.4960000000 3

0.5040000000 2

TOTAL PROBABILITY = 1.0000000000
TOTAL ERROR = .0000000000

FIGURE 19 GO3 RESULTS FOR EXAMPLE SYSTEM

values, 2 and 3. The probability that signal 5 takes value 2 (the system
success event) is 0.504. The probability that signal 5 takes value 3 (the
system failure event) is 0.496 for this system. Note also that because no
terms were discarded (no branches pruned) there is zero calculational error.

A second execution of this model was made specifying all of the random
variables as final output signals. This was done by altering the last GOl
data entry to read:

012345 $ FINAL OUTPUT SIGNALS

The results from this run are shown in Figure 20. We have now generated the
complete joint distribution of the five random variables generating four

?n;qge4 ;events. These are: 1123324353, 1121324353, 1121324253, and

171727272°

In addition to the complete joint distribution generated by the computer
program, the code also produces the marginal distribution for each individual
signal. (A marginal distribution is outlined by adding the probabilities of
occurrence of a single signal taking a specific value without regard to the
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values taken by other signals in the joint events.) Consequently, as in the
prior case, we see that signal 5 can take only the values 2 and 3 with the
probabilities previously noted. Also note that signals 1 and 3 only take a
specific value with certainty because this is the way we specified the input
data.

FINAL EVENT TABLE (INFINITY = 3)
SIGNALS AND THEIR VALUES

PROBABILITY 1 2 3 4 5
.1000000000 1 3 2 3 3
.1800000000 1 1 2 3 3
. 2160000000 1 1 2 2 3
.5040000000 1 1 2 2 2
TOTAL PROBABILITY = 1.0000000000

TOTAL ERROR = .0000000000

INDIVIDUAL SIGNAL PROBABILITY DISTRIBUTIONS
VAL. 1 2 3 4 5

1 1.0000000000 .9000000000 0.0000000000 0.0000000000 0.0000000000
2 0.0000000000 0.0000000000 1.0000000000 .7200000000 .5040000000
3 0.0000000000 .1000000000 0.0000000000 .2800000000 .4960000000

EXECUTION TIME = .14 SECONDS.

FIGURE 20 FINAL EVENT TABLE FOR EXAMPLE SYSTEM
WITH ALL SIGNALS AS FINAL OUTPUTS

GO Symbols

In the prior sections of this chapter most of the symbols employed in the
GO methodology have been introduced. In this section we summarize the
conventions which have evolved.

The logical operator types without inputs (types 4 and 5) are represented
in a GO model using triangles. All other operator types are represented with
circles. Inside either the triangle or the circle representing a system
element is written a hyphenated type-kind number identifying the logical type
of the operator and the associated probabilities referenced by the kind
number.

Model elements are connected by arrows showing the direction of flow.
These arrows or lines are all numbered to identify the input and output
signals to the operators. Half arrows are used to identify the second input
for operators requiring two inputs where signal order is important.

Numbers are used as identifiers for each of the 15 logical operator
types, as arbitrary kinds to reference probabilities, as signal numbers
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specifying the random variables, and as the small set of defined values which
the random numbers may take. In addition, not previously discussed, the
operators are numbered by the sequence in which they are executed as listed in
the GOl data to generate an operator number for each.

Events are specified by signal numbers subscripted with specific values.
Joint events involving two or more random variables are identified by a string
of such subscripted signal numbers. For example, the representation 81123
means the event that signal 8 takes value 1 and signal 12 takes value 3,

GO Terminology

To express ideas and concepts precisely a vocabulary of GO terminology
has developed. A number of words have been given specific meanings.
Experience has shown that these definitions permit consistent, unambiguous
exposition of the procedure.

Thirty-three of the terms defined to enhance understanding about and use
of the GO methodology are listed in Figure 21. A brief definition of each
term is provided. A number of the terms have not been used in our exposition
to this point. They await a full development in companion manuals for the
more serious student and user of the GO methodology.

GO Supertypes

To conclude this brief exposition of the GO methodology we mention one
additional feature, that of GO supertypes. A supertype is simply a defined
collection of elemental GO operators which is treated as an entity and which
may be called up one or more times in a GO model. Supertypes are used to
reduce the complexity of a model (like a block diagram approach) or to
eliminate the need to remodel identical configurations.

A supertype is defined using an identification number greater than or
equal to 100. A flag of -1 or 0 is used to inform the computer whether this
is a definition or a use of the supertype. The dummy input signal numbers in
the supertype definition are allocated to the range 100-199. Dummy output
signal numbers are allocated the range 200-299. Dummy kind numbers which can
be wused to permit different probabilities of operation for logically
equivalent configurations must exceed 999,

To illustrate the concept consider the schematic of Figure 22.

B _— L2
_T s2 aQ

JOE

FIGURE 22 EXAMPLE SCHEMATIC
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The system consists of a battery, two switches, and two lights. Assume that
the battery is connected to the circuit at a certain time, a little later Sl
is actuated, and even later S2 is actuated (we will designate these times by
the numbers 1, 2, and 3 respectively). Assume that our interest is in the
time at which at least one light comes on.

In creating a GO model for this system we observe that there are two
redundant switch-light trains. Consequently a supertype modeling one train
can be defined once and called up twice, once for each train. Let us call
this supertype 100.

The GOl data for our GO model of this schematic could be written as
follows:

GOl DATA FOR EXAMPLE SCHEMATIC
$PARAM INFIN=4 $
100 -1 101 102 201 $ SUPERTYPE 100 DEFINITION
6 4 101 102 1 $ SWITCH
1 51 201 $§ LIGHT
END*
51 1 $ BATTERY INSTALLATION
1 21 2 $ BATTERY
533 $ SAM
100 0 2 3 5 $§ TOP SWITCH-LIGHT CHANNEL
54 4 $ JOE
100 0 2 4 6 $ BOTTOM SWITCH-LIGHT CHANNEL
202567 $ OR GATE
0 7 $ FINAL SIGNAL
EOR

FIGURE 23 EXAMPLE SUPERTYPE DEFINITION AND USE

Note that the first instructions in GOl define the switch-light supertype
as supertype 100 with dummy inputs 101 and 102 and dummy output 20l. Signal
101 represents the electrical input from the battery and signal 102 represents
the mechanical switch action by either Sam or Joe. Signal 201 represents the
light output. No dummy kind numbers permitting variable kinds were defined
for this example.

After the supertype is defined the GOl model data is entered. Note the
two calls of supertype 100 and the final OR combination of the supertype
outputs defining system operation.

In drawing GO models using supertypes we have adopted the convention of
using rectangles to represent them. An important consideration is to insure
that the proper signals replace the dummy parameters in the uses of the
supertypes. That is, to insure accurate model representation, the supertype
must be "hooked up" properly.

* A supertype definition is terminated by any word string beginning with E,
e.g., END, EUREKA.
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The GO model for this example schematic is shown as follows:

3

102 SYSTEM
5

BATTERY
INSTALLED BATTERY

101 201
ST 100

ST 100
mm 20

102

FIGURE 24 GO MODEL OF EXAMPLE SCHEMATIC =
USING SUPERTYPES

We will not pursue the supertype example further except to say that it is

a very useful device when redundant or replicated models are created. The
computer actually generates multiple unique sets of random variables for each
supertype use. Consequently, the use of supertypes saves analyst labor but

not computer processing time.
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CHAPTER 4
EXAMPLES

This chapter portrays in detail the development of GO models of seven
systems ranging from simple to relatively complex. The first example of a
series system of two components is trivial and the system can be analyzed by
hand in a few seconds. Nevertheless, the development of a GO model and the
explanation and interpretation of the input data files and output printout for
such an obvious system helps the reader grasp the mechanics of using the GO
software. This example also addresses the objective of an assessment and the
different types of data which can be utilized to generate system reliability,
reliability with time, and availability estimates.

Example 2 treats a similar simple system composed of two components in
parallel.

Example 3 explores the treatment of statistical dependencies in a GO
model and conclusively demonstrates that the GO method properly accounts for
such dependencies.

In each of these first three examples the probability trees which are
generated by the GO software are explicitly shown. Most of the time the
trees, while optionally available in table form, are not visible.

Example 4 is a somewhat more complex alarm system. It introduces the use
of three values (time points) to represent system and component premature,
success, and failure operational states. It also exemplifies the use of
supertypes. (The alarm system example is addressed again in Chapter 5 when
fault sets are treated.)

Example 5 portrays a comparison of the performance of a two-out-of-two
pump train system with that of a two-out-of-three pump train system. The
system is designed to continuously pump a specified amount of fluid at a given
pressure. The advantage of introducing a third pump train is addressed.

The most complex example is that of a weapon fuzing system, example 6.
The development of the GO model for this system takes only a couple hours. To
analyze the system by hand or by other methods would require several man weeks
or months of effort. Sixteen time points are used to characterize the safety
and reliability of the weapon fuzing system. A supertype for a parallel pair
of normally open switch contacts is used repeatedly to model the dual-channel
cross—-connected system.

The last example system analyzed, example 7, is that of a simple
communication network. The probability of information flow from one node to
another 1is calculated using a representative GO model. Possible two-way
information flows on some links are modeled.

These examples provide a significant introduction to the range and

application of the GO methodology and the specifics of generating data and
interpreting the computer results.
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Example 1 - Two Components In Series

The purpose of this example is to introduce the reader to the manner of
developing a GO model, writing the GO input data, and interpreting the output
data using a trivial example. Having introduced the reader to the GO process,
the model is executed with three different types of data -- binomial attribute
data, reliability with time data, and availability data to generate different
system performance measures. The event tree for the model as developed by the
GO software is shown. To conclude the example, alternate, but equivalent,
ways of developing the system GO model are portrayed.

Consider the configuration of a system comprised of two components in
series as depicted in Figure 25. Obviously both components must function for
the system to function.

FIGURE 25
SERIES SYSTEM OF TWO COMPONENTS

Consequently, we can write the equation for the reliability of this system by

inspection. It is a function of the reliability of each component. If r
represents the reliability of component A, ry that of component B, ané
rg that of the system, then
= . 1
o r, eI, (1)

Similarly, we can write the equation for the availability of this system. If
a represents the availability of component A, ag that of component B,
and a, that of the system, then

a =a, e ay . (2)

We will use these "obvious" equations later to compare the system
reliability and availability with the results obtained from several GO models.
We now develop a GO model of this system which we will subsequently execute
with three different types of data. Our objective in each case will be to
quantitatively determine the reliability or the availability of the system.

In Figure 26 we have a representation of this system using standardized
GO operators and symbols.
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COMPONENT A COMPONENT B

5-11 1-12

FIGURE 26 GO MODEL OF SERIES
SYSTEM OF TWO COMPONENTS

In this model we have used a type 5 operator which requires no inputs and
produces one output to represent component A. The output signal generated is
called signal #3. It becomes the input to component B which is modeled as a
type 1 operator which has one input signal, signal #3, and one output signal,
signal #8. Signal #8 is the output signal of interest for this system model.
(The numbering of the signals is completely arbitrary in the range 1-1500, but
signal numbers must be unique.)

Initially we will permit the signals (random variables) to take values of

0 or 1. A value of 0 will mean successful -- reliable or available -- and a
value of 1 will mean failure -- unreliable or unavailable. Consequently,
the event 8 signal 8 takes value 0, represents system success. The event

81, signal é)takes value 1, represents system failure.

The probabilities associated with the operational state of the two
components, A and B, are referenced by the kind numbers 11 and 12
respectively., (The kind numbers selected are again completely arbitrary in
the range 1-200.)

As a first case the reliabilities of the two components have been
obtained by testing samples of components from the populations of components
from which A and B have been randomly selected to fabricate the system.
For component A, 33 1like components were tested, 31 were reliable. For
component B, 74 have been tested and all but one were found to be
successful.

Consequently, the reliabilities for components A and B are the

proportions: 31 73

T = —— = 0.9394, r =
A 33 B 74

= 0.9865.

To use the KSC GO software to calculate the reliability of this system,
three data records, one for each of the three GO programs, GOl, GO2, and GO3,
are prepared. The data record for GOl communicates the logical structure of
the system —- its configuration defining components and their interactions —-
to the computer. The data record for GO2 communicates the point estimate
probabilities associated with each model element. The data record for GO3
communicates information influencing the manner in which the probability tree
for the system will be created.

Figure 27 records the three data files for this system. The records are
separated with "EOR" which means End of Record.
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GOl DATA FOR SERIES SYSTEM OF TWO COMPONENTS
$PARAM INFIN=1$

5 11 3 $ COMPONENT A

1 12 3 8 $ COMPONENT B

0 8 $ FINAL SIGNAL

EOR

GO2 DATA FOR SERIES SYSTEM OF TWO COMPONENTS
SPARAM $

11 52 0 0.9394 1 0.0606 $ COMPONENT A

12 1 0.9865 0.0135 $ COMPONENT B

EOR

GO3 DATA FOR SERIES SYSTEM OF TWO COMPONENTS
SPARAM PMIN=0.0 $

EOR

FIGURE 27 GO DATA FOR SERIES SYSTEM OF TWO COMPONENTS

In each record the first line entry records the name or title given the
record and the second line entry calls up a Fortran namelist parameter called
PARAM which allows the user to set selected parameter values. In GOl the
parameter INFIN was set to l, permitting the signals to take the values 0 and
1. Consequently, in this model, 1 is the largest permissible value. 1In GO2
no parameters were changed so default values were used. In GO3 parameter PMIN
was set to 0. Consequently, no terms will be discarded or pruned.

In the GOl data record we next introduced the data line "5 11 3 §
COMPONENT A". This tells the computer that the first operator is a type 5
operator with kind 11, probabilities generating signal #3. The § (dollar
sign) terminates the entry and we can further identify the model element with
descriptive information to the right of the terminator. Next, the information
for component B is entered. Component B has been modeled as a type 1, kind
12, operator with input signal #3 and output signal #8. The last entry "0 8 §
FINAL SIGNAL" terminates the GOl data input. The 0 is a flag indicating no
additional operators are to be specified. The subsequent entries on the data
line injitialized with a 0 tell the computer the final signals to be included
in the output data and the order in which they will occur in the output joint
distribution. In this case only the single signal, #8, is specified.

The GOl software recognizes the nature of the data which must be entered
for each logical operator type. (See Figure 11, GOl Operator Data, in Section
3.) Diagnostics are provided if the user fails to provide the requisite
amount of data or if the data supplied is inconsistent.

The GO2 data record consists of a name line and a parameter line followed
by two line entries recording the probability data for kinds 11 and 12. The
line entry "11 5 2 0 0.9394 1 0.0606 $ COMPONENT A" records that kind 11 is
used by a type 5 operator which generates a signal taking 2 values. These
values are 0 which is taken with probability 0.9394 and 1 which is taken with
probability 0.0606. These probabilities, specifying the probabilities with
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which the possible values are taken, must sum to 1.0. The dollar signal ($)
is again a terminator to the right of which descriptive information may be
written.

The line entry for kind 12 reads "12 1 0.9865 0.0135 $ COMPONENT B". It
specifies that kind 12 data is used by a type 1 operator. A type 1 operator
requires two probabilities -- the first for the success mode and the second
for the failure mode. These again must sum to 1.0.

The GO2 software recognizes the nature of the probability data which must
be entered for each logical operator type. (See Figure 14, GO2 Kind Data, in
Section 3.) Diagnostics are provided if the user fails to provide the
requisite amount data or if the data supplied is inconsistent,

The GO3 data record for this model consists of only two data lines, the
name, and the parameter, entries.

The output files from executing the GOl, GO2, and GO3 software using the
input data of Figure 27 are shown in Figures 28, 29, and 30.

Figure 28 portrays the output file for GOl for the Series System of Two
Components defined by the data described above. The output records the date
on, and time at, which this run was executed and notes the software version

being used. It then records the name of the model as noted in the GOl name
line entry. Next the values of the various parameters are recorded. We set
INFIN equal to 1. Default values were used for other parameters. (These are

defined and explained in the KSC GO Reference Manual.)

The operator data furnished is recorded and each operator is numbered.
The software then provides a cross-reference index documenting where signals
are created and where they are used. For example, in this model signal #3 was
generated by operator number 1 which is a type 5, kind 11 operator. Signal #3
is used in operator number 2 and, since it is not specified as a final output
signal and is no longer needed as an input to any other operator, it is
deleted from further consideration.

The next set of information on the GOl printout, Figure 28, registers the
number of active signals in the distribution after each operator has been
executed. The entry 1(1) means that after operator 1 has executed, there is
only one signal in the distribution. Reference to the GO model of Figure
26 or to the data for operator number 1 shows that this is signal #3. After
the second operator has executed, there is again only one signal in the
distribution. This time it is signal #8,

Some additional information about the model is then recorded, e.g.,
numbers of operators, signals, etc. Then the final signals which will appear
in the output distribution are noted (in this case only signal #8 will
appear).
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601 (KSCGO» VAX VERSION 1.0} RUN ON 20-0CT-82 AT 10:43:54
COFYRIGHT (C) 1982 bu KaMAM SCIENCES CORFORATION

GO1 DATA FOR SERIES SYSTEM OF TWO COMPONENTS

INFIN - 1, VALUES = 2, RIAS = 750y OPS = 1, SIGNALS = 1,
ERRORS = 23

I ¢ COMFOMENT A
2 8 ¢ COMFONENT E
INAL SIGNAL

SIGNAL DATA

SOURCE OFER.
HSIGNAL UM TYFE KIND USING OFERATORS (- IF DELETED AT)
3 1 S 11 -2
8

2 1 12

NUMBRER OF OFERATORS...
NUMBER OF SIGNALS: ¢+
MAXIMUM NUMBRER ACTIVE.,
MAX SIGNAL LIST BIZE..
NUMRER OF SIGNALS/WORD
MAXIMUM WORDS/TERM. ...

H I B

O

it R (R I N

i

FINAL SIGMALS = 8

CFU TIME = 0100:00.39
DIRECT I/0 COUNT = 3
ELAFSEDI TIME = 00:00:01,37

FIGURE 28
GO1 DATA FOR SERIES SYSTEM OF TWO COMPONENTS
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G02  (KSCGO, VAX VERSION 1,0) RUN ON 20-0CT-82 AT 10143154
COFPYRIGHT (C) 1982 by KAMAM SCIENCES CORFORATION

GO2 DATA FOR SERIES SYSTEM OF TWO COMFONENTS
FERF = 0; MXSIZE = 2048

OFERATOR FILE --- GO1 DATA FOR SERIES SYSTEM OF TWO COMFONENTS
RECORD KIND DATA

1 11 3 2 0 0.9394 1 0,0608 ¢ COMFONENT A
2 12 1 00,9845 0,01335 4 COMFONENT B
3 END

USE SUMMARY TARLE., ENTRY = KIMND/TYFE(FREQUENCY)
(FREQUENCY IS NEGATIVE FOR FERFECT KINDS.)

11/ 5S¢ 1) 12/ 1¢ 1)
NUMBER OF KINDS INPUT-----

NUMEER USED - MOMPERFECT--
NUMBER USED - FERFECT-----

(o8 X 3 (8

1 FILE RECORDIS WRITTEM FOR 2 OFERATORS.

CFU TIME = 0:100:00.,40
DIRECT I/ COUNT = 13
ELAFSED TIME = 00:100:01.35

FIGURE 29
GO2 DATA FOR SERIES SYSTEM OF TWO COMPONENTS
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GOZ (KSCB0s VAX VERSION 1.,0) RUN ON 20-0CT-82 AT 103143158
COPYRIGHT (C) 1982 by KAMAM SCIENCES CORFORATION

G072 DATA FOR SERIES SYSTEM OF TWO COMFONENTS

DFERATOR FILE --- GO1 DATA FOR SERIES SYSTEM OF TWO COMFONENTS
KIND FILE ------- G02 DATA FOR SERIES SYSTEM OF TWO COMFOMNENTS

FUN MUMRER 1
FMIN =0.0000E+00
NEW = Oy INTER = 0» SAVE = 0y MXDIST = 3000
FIRST = 10000, LAST = 10000, TRACE - 2.00000

FINAL EVEMT TARLE (TMFINITY = 1)

SIGNALS AND THEIR VALUES

FROBABILITY 2

0,0732319000 1

D.92467181000 0

TRTAL PROBABRILITY =  1,0000000000
TOTAL ERRDR = 0.0000000000

IHDIVIDUAL SIGNAL FROBABILITY DISTRIBUTIONS

Vil . 8
0 0.%267181000
1 0.0732819000

CFU TIME = 0300:100.3
DIRECY I/0 COUNT = 7
ELAPSED TIHE = 00:00:00.69

FIGURE 30
GO3 DATA FOR SERIES SYSTEM OF TWO COMPONENTS
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Finally the CPU time {(central processor units), direct I/0 count (number
of input/output data records of size 512 bytes manipulated), and the elapsed
clock time required to execute program GOl for this model are recorded.

The GO2 output data (Figure 29) is similar to that of GOl. The date and
time of execution, the software version being used, the name of the model, and
the parameter values are all recorded. The kind data is then listed and each
entry numbered. A use summary table for each kind/type is provided recording
how many operators referenced each set of kind probabilities. Some additional
details about the data are provided, then the CPU time, I/0 count, and elapsed
time for program GO2 execution are recorded.

The €03 output data (Figure 30) contains the results from executing this
series system of two components. After the copyright notice indicating the
software version being used, the title of this system as entered on the first
line of GO3 data is printed. This is followed by an identification of the
operator (GOl) and kind (G02) files used as input to GO03. Next the values of
the parameters used in GO3 are given. With the exception of PMIN which was
set equal to 0.0, all other parameters have their default values. (The
meaning and purpose of these additional parameters are explained in the GO
Reference Manual.)

In Figure 30, the Final Event Table lists the two possible events: 8.,
the system success event, and 8., the system failure event. The probabiligy
of success (system reliability) i1s 0.9269181 and that of failure, 0.0732819.

In this execution no terms were discarded so there is no computational
error. The 1line entry '"Total Probability = 1.0" is the sum of the
probabilities of occurrence of all events. Subtracting that sum from unity
gives zero computational error due to pruning for this execution.

For many system models more than one final output signal will be

requested. Consequently, the Final Event Table will contain the joint
probability distribution of all such final signals. Subsequently the
computer generates the Individual Signal Probability Distributions for
each of these signals, In this case the probability distribution for

signal #8 is repeated in slightly different format.

The GO3 output also 1lists the CPU time for execution, the direct 1/0
count, and the elapsed clock time.

As noted above the reliability for this series system of two components
was calculated by GO3 to be 0.926718l. This value can be obtained directly
from equation 1, page 34 where

r r er_,

s A B

r
S

0.9394 00,9865 = 0.9267181.

This substantiates the result generated from the GO software. Of course, for
such a trivial problem the GO methodology is not required, and it is only used
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here for illustrative purposes, The benefits from employing GO become
significant when one cannot write the system success equation by inspection.

The event tree which is developed by the GO model for this system is
shown in Figure 31. After the operator representing component A is executed
in GO3 two branches exist, the upper branch with event 3 and the lower branch
with event Then, the second operator representing component B is
introduced. F%ur branches are generated. One represents the success event,
8 . The other three branches lead to system failure, event 8.,. They are
combined and their probabilities summed to generate the probability of system
failure. (This can be done because the different branches of the tree are
mutually exclusive.)

Without changing the 1logical configuration of this system, we will
calculate another reliability performance measure based on different data. In
the execution of this model as treated above, we calculated system reliability
from component reliabilities which were based upon the proportion of successes
obtained in n trials.. Time was not a factor in these estimates, and
consequently, the system reliability estimate is, without further information,
time invariant.

In contrast, we ncw postulate that the components are degrading with
time, the degradation being specified by failure rates of 6. 27x10°
failures/hour and 3.42x10  failures/hour for components A and B respectively.
By specifying the failure rate we mean that the components exhibit an
exponential time-to-failure distribution. In this instance time is very much
a parameter. Now the proper question is, '"what is the system reliability
after so many hours of service assuming no repair?"

To calculate the system reliability at, say, 5000 hours, we first
calculate the component reliabilities at that time. Since,

_pit

where r, 1is the reliability, and p. the failure rate of the ith

componen%. The reliability is calculated it time t. Hence,

~6.27x10"° o 5x103
rA = e

0.9691

-6 3
£y = e—3.42x10 ®5x10™ _ 0.9830

When this data is entered in GO2 and the system model executed, the
system reliability at 5000 hours is calculated to be 0.9526253. Obviously the
system reliability can be obtained for any point in time. A number of such
estimates were calculated to generate the curve of Figure 32. (This was done
using the repetitive option in GO3 - see GO Reference Manual for details.)
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'COIVIPONENT COMPONENT SYSTEM

80 0.9267181

|
I
I
1
|
|
l
J
|

84 0.0732819

FIGURE 31
EVENT TREE FOR SERIES SYSTEM OF TWO COMPONENTS
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As a final variation of the data which might be used to calculate a
performance measure for the series system of two components, let us now
postulate that when a component fails it is detected immediately and
repaired. We now seek the proportion of the time the components and the
system are functional, e.g., their availability.

To generate the availability point estimates for the components we need
some information about the length of time repairs take. Knowing that the
average repair times, or, more commonly, the mean-times-to-repair (MTTR), for
component A and B are four and 16 hours respectively, for example, permits us
to calculate the availability of each component. This is done using the
standard formula

MTTF
MTTF + MTTR
The MTTF can be obtained as the reciprocal of the failure rate. Using the
failure rates specified above, the MTTF for components A and B are 159489.6
and 292397.7 hours respectively. The availabilities of components A and B are
then:

A =

159489. 6
159489. 6+4

a, = 292397.7  _ 1.999945
292397.7+16

Using these probabilities as the component data for GO2, the system

= (0.999975

availability, a_., can be calculated. It dis, 0.999920. (One can use
equation 4.2 to” calculate this result for comparison.) The effect of
repairs upon system performance 1is seen to be pronounced. The

probability that the system is functional at any random point in time
(its availability) is 0.999920, whereas, without repair, the reliability
degrades quite rapidly with time as previously noted in Figure 32.

We now observe that the GO model of Figure 26 for this series system of
two components is not unique. Shown in Figure 33 are four additional ways the
model could have been constructed to generate identical results.

The preparation of the data for these GO models is left as an exercise
for the reader. Refer to Figures 1l and 14 for the GOl and GO2 data formats
for different operator types.

In this example we have demonstrated how a GO model for this simple
two-component system is developed. We executed the model with three different

types of data - bionomial attribute data, reliability with time data, and
availability data. The model input and output data were shown and explained
in detail. Finally we demonstrated other ways the system could have been

modeled.
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COMPONENT A COMPONENT B

DUMMY
COMPONENT  ¢OMPONENT A COMPONENT B

DUMMY
COMPONENT
1 DUMMY
COMPONENT
COMPONENT A COMPONENT B COMPONENT A COMPONENT B
| ‘EI” :2 ‘lii’ 3
FIGURE 33

| EQUIPMENT GO MODELS FOR SERIES SYSTEM
OF TWO COMPONENTS
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Example 2 - Parallel System of Two Components

This example 1is an extension of Example 1. Its purpose 1is to
portray another simple exam<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>