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1. INTRODUCTION

This report provides insight into several problems in the design, implementation, and use of
computer networks. The focus of this work is the creation of communication services for a local

* network environment. Contemporary implementations of these services include standard protocols
for compatibility and separate efficient protocols for applications which need the high bandwidth
typical of local networks. This report contains an interface design that allows very efficient
implementations of standard protocols as well as some valuable extensions.

This chapter discusses the relationship between local networks and other forms of multiple
computer systems, and introduces the organization and methods of this report.

1.1 PROBLEM AREA DESCRIPTION

Multicomputer Systems

Many interrelated motivations exist for the work that has been done on computer networks,
multiprocessors, and other forms of multiple computer systems. One way to classify these
motivations is as follows:

1. (Performance) We may want to apply multiple computing elements to the same problem

in order to have more power available for solving the problem.

2. (Reliability) We may want to use multiple independent resources to avoid dependence on
a single resource.

3. (Conformance to problem structure) The structure of the problem may necessitate
multiple resources, or be more conveniently represented by multiple components. We
often need to apply processing power in a manner that parallels the distributed nature of
our institutions. (e.g., businesses, government, research communities.)

4. (General communication services) The system may be supporting services such as mail
and file transfer, in which the communication facilities are not really used to link parts of a
single computation, but rather as a "common carrier" to move data between users.

One reason for the large number of different multiple machine structures is that they are designed

on the basis of different combinations of these considerations. Other factors include interconnection
technologies and requirements such as bandwidth, delay, and the size of the area to be served. The
following are some representative systems:

Array processors, such as the ILLIAC 4, and vector processors, such as the CRAY.1 and CYBER
205, organize processors in a matrix and are successful in providing increased throughput for
problems that can be conveniently stated in the appropriate form [Levine 821. The interconnection in
these systems has the high bandwidth and parallelism typical of tightly coupled designs, but is often
restricted in connectivity. For example, an ILLIAC 4 processor may only communicate with its
immediate neighbors, or with processors in the same row or column of the processor array. The
motivation for these systems is primarily (1), that is, increased throughput.
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More general forms of multiprocessor systems allow for more flexible connectivity, and may also
add processing power in the basic communication path. The Cm* system [Fuller 78] is a
sophisticated member of this group. Such systems are still performance oriented, but also have

( 'elements of the other motivations.

, - Multiprocessors are built in redundant configurations to provide ultra-reliable services. The
interconnection is tightly coupled, and contains logic for error detection and component selection.
The Pluribus [Heart 73] and ESS telephone switching systems [BSTJ 81] are examples of the use of
multiprocessor systems to provide very reliable communication-related computer services. Other

-examples are Tandem financial systems [Katzman 78] and systems for spacecraft. The high cost of
these systems is justified by the higher cost of failure, and hence these systems are based mainly on
the reliability motivation.

Systems motivated by the desire to conform to a particular problem structure are found in process
control [Sherman 78, Smith 79] and other forms of distributed systems. One study [Holmgren 79]
calls for local networks to be used to link the various processors and devices in a military command
center. The resultant structure is similar to that found in bus-oriented minicomputers, except that the
network is used for data transfer between otherwise independent systems. The interconnection
schemes used in these systems are varied. A study [CSDL 70] evaluating experiences with the
APOLLO guidance computer used for the moon missions recommended that several decentralized
processors would be a better choice for the space shuttle than the single computer system used in
APOLLO, even ignoring the reliability enhancement of multiple processors, due to the lower overall
complexity and improved real-time response.

Digital communication systems have been built purely to implement general communication
services, such as computer mail. The economics of packet switching suggests that the future may
see these systems in areas traditionally implemented with circuit switching, such as voice [Roberts
78].

Packet-switched networks, such as the ARPANET (Roberts 70, McQuillan 77], are typically based
on lower speed leased lines, and use a great deal of processing power in the communication system
to use the limited bandwidth efficiently, to create the illusion of complete connectivity, and to
otherwise enhance the properties of the media. These systems are composed of loosely coupled
hosts which contain the majority of the protocol implementation. The user community of these
systems is large enough and diverse enough so that any of the previously mentioned motivations are
valid in some cases, though the primary use of these systems is for general communication services.

Networks

Networks are organized in terms of standards (protocols) which attempt to define precisely the
rules for interactions among parts of the network while leaving other network parameters as
unrestricted as possible. The intent is to guarantee that communication can take place as long as the
standards are observed, while allowing different hosts, operating systems, applications, and modes of
interaction.

Each protocol transforms the resources available to it into a new, more powerful set of resources.
Protocols for the lowest level deal with actual hardware and operating system resources; intermediate

4 level protocols build on the resources of underlying layers; the top level presents resources to the
user or a user program.

I
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In general, the base-level network is modelled as a graph. Called hosts, the nodes on the graph are
computer systems which perform functions for the user. The arcs of the graph are communication
lines. These communication paths may be physical links, shared buffers, or even a complex of
communication processors and links. The common factor is that these paths are all treated as if they
were simple serial links. This abstraction, often called "loose coupling" or "thin wire," guarantees
that any type of communication path could be used, regardless of its width or other properties.

The lowest level protocol, called the link level, defines procedures for transmitting an ordered
group of bits (a packet) over a particular communication link as a unit. A host may well have several
communication links, and hence several link. level protocols.

Local Networks

Local networks are systems that provide service within a limited geographical area; they usually
have a radius of a mile or so. A local network spans a building, campus, research park, or other
similarly sized facility, and is owned by the corresponding entity.

Because of the limited distances, local networks use privately owned transmission media such as
twisted pair, coaxial cable or fiber optic links. Although more exotic and expensive systems achieve

q rates in the 50.100 Mbps range, a typical local network has a transmission rate in the 1-10 Mbps
range, using one of these media, baseband modulation, and inexpensive components. This speed is
far above that used in long haul networks such as the ARPANET, where 50 Kbps links are typical, and
is within an order of magnitude of the raw memory bandwidth seen in minicomputers. For example,
the PDP.11 UNIBUS, operating in word mode with 330 ns memory cycles, has about 50 Mbps of
bandwidth.

The cost of interfacing a host to a local network is typically much lower than that of interfacing to a
long haul network. To illustrate the point, connection to the ARPANET requires the use of an
Interface Message Processor (IMP) or a Terminal Interface Processor (TIP) costing between $50K
and $1 00K. This high cost is due to the highly sophisticated minicomputer system included in the IMP
or TIP. Interfaces to local networks are at least an order of magnitude cheaper, and are comparable
in complexity to sophisticated peripheral interfaces (Mockapetris 77, Carpenter 78].

Local network technology retains this cost advantage even compared to a single message switch
shared by all of the hosts of a network. In a MITRE study [Holmgren 79], the total costs of a system
based on a central switch were compared to that of a "cable bus" system based on local network
technology. The comparison assumed a 10 year life cycle and included all recurring and non-
recurring costs due to the communication system and host interfaces. The cable bus was predicted
to be 27 percent less expensive. If a reliable configuration was constructed in which critical
components were duplicated, the cable bus savings increased to 51 percent.

4 Thus local networks have a unique set of strengths:

1. The high bandwidth of the communication medium places few restrictions on system
architecture. Local network media can support rates of interaction similar to those found
in tightly coupled multiprocessor systems. Systems which combine high bandwidth with
the loosely coupled organization typical of networks offer the best parts of both worlds.
Such a hybrid could exhibit the modularity, extensibility, defensiveness, and
organizational flexibility of a network and the intimate interface between communication
and computation of a multiprocessor.
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2. Because a local network is owned and controlled by its users, any part of the network
architecture can be tailored to fit the users' needs. The network need not adhere to
external standards unless there is some benefit for doing so.

U 3. The simplicity of access to the local network means that minicomputers and other less
capable hosts can be added to the network. This is important in light of the trend to
embed processors as smart controllers in terminals, instruments, and the like.
Connection to the network means that the data generated by these devices can be
captured at the source. Network access can also be used to enhance these devices'
capabilities through the use of resources delivered through the network.

Current local networks capitalize on these strengths, although the benefits of the local network
environment are offset somewhat by structures inherited from long haul networks. The inherited
structures, which were optimal for the long haul environment, do not allow full utilization of local
network capabilities. Two local networks which illustrate differing approaches are the Ethernet and

* the DCS.

The Ethernet [Metcalfe 76] is composed of a contention medium and minicomputer hosts. It uses a
layered protocol system [Boggs 79] very similar to that found in long haul networks. Multiple
Ethernets be be connected to form a composite network. The resultant system is no longer local in

* •the geographical sense, and typically includes low-bandwidth telephone links which transfer packets
between Ethernets.

The Distributed Computer System (DCS) [Farber 73, Mockapetris 79] is a local network which
integrates communication into the basic system design. Message arrivals drive process execution in
a manner similar to the way tokens drive Petri nets [Petri 62]. User processes se. a single level of

C communication protocol, which the processes access through simple send and receive primitives.
Because messages are the only form of interprocess communication, the distribution of processes
among DCS hosts is never limited by the pattern of process interaction.

These systems are successful, but their expansion and refinement are hampered by protocol
implementation structures inherited from long haul networks.

Protocol implementations consume resources such as memory space, CPU time, and operating
system services. The programs which implement the protocol must be brought up on every machine
type on the network. We would like to satisfy these needs in a low cost network interface. The ideal

, •interface implements all of the communication environment without consuming any host resources.

These systems fail to transform the high bandwidth of the medium into a high data rate for process-
to-process connections. This is especially true when using standard protocols which povide
compatibility with other hosts and networks. The problem becomes acute if we wish to add graphics,
speech, facsimile, voice or other high bandwidth applications to our systems. Part of the problem is

* the time it takes for communication to percolate through the multiple layers of protocol software. The
other part of the performance problem is inherent in the operating system of the host: most systems
take several milliseconds to switch contexts, and protocol implementations can often require more
than one context switch per processing action. The designer has two unpleasant choices: accept the
low bandwidth of available standard protocols, or use an efficient but incompatible protocol.
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Layered protocols also fail to transfer low-level capabilities to all higher levels. For example, most
media have arbitration conventions which aren't made available to higher layers. Low-level
acknowledgment systems are another example. In a sense, this is intentional. The layered approach
is the natural method for building ever more powerful and complicated levels of abstraction from very
simple base primitives provided by the network interface. While this means that we can build a very
powerful protocol on top of a "stupid" interface, it usually means that we can't use the added
capabilities of a "smart" interface. As a consequence, low-level facilities are often constructed in a
manner appropriate for the next level of protocol, rather than a higher or ultimate layer. For example,
low-level acknowledgments are usually designed with the link layer of software in mind, rather than
the transport layer.

This Report's Approach

We should not discard structured design, but we should augment the criteria we use to modularize
the communication environment. Current modulanzations are based on the use of absolutely minimal
interface capabilities, protocols residing in the network hosts, and the desire to reduce the intellectual
difficulty of implementing the protocol software.

A modularization appropriate to the local network environment should exhibit "horizontal" as well
as the usual "vertical" protocol layers. That is, the conventional layers should be further separated
according to function, so that a local network medium that implements a particular facility can pass
the benefits of the facility up to higher layers, bypassing the usual synthesis process for that facility
used in less capable interfaces.

For example, broadcast and arbitration functions are usually developed at a high level in the
protocol hierarchy, even though similar facilities are available at the lowest level of the network.
These low-level facilities can't be easily added to existing protocol implementations because the
applicable abstractions don't exist in the lower protocol layers.

Redundant implementations of some facilities are essential to improve performance (the "best
efforts" principle cited in (Metcalfe 73]) while preserving reliability ("end-to-end" error correction).
For example, low-level acknowledgments may be able sufficient for 99.99 percent of all
acknowledgments. If a low-level acknowledgment facility exists in parallel with a conventional
acknowledgment facility, the system can avoid the overhead of transmitting the software
acknowledgment in 99.99 percent of the cases, thus improving performance. The redundant system
does not depend on the low-level acknowledgment system for the last .01 percent of the cases, and
thus has the same reliability as a pure software "end-to-end" system.

The goal of this report is to explore the construction of these new environments. All of the

communication environment is divided into three parts, with questions to be examined in each part:

1. The media interface and signalling conventions. What can we assume about the
communication medium? How can we take advantage of the communication medium's
properties?

2. The protocol. How do we map between the user interface and the medium interface? Can
we build high-performance versions of protocols originally designed for compatibility?.

3. The user interface. How does the user process describe the services that it wants the
communication environment to perform? What objects and commands are required?
How should a standard interface operate with different host environments?
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In contemporary long-haul networks, the network interface is a simple I/0 interface, the user
interface is implemented totally in host software, and all, or at least the majority, of the protocols are
implemented in the host. The total communication environment is supported by a separate body of
software in the switching nodes.

This report is based on the premise that as much as possible of all three of these parts should be
moved from the host into the communication interface. This method should yield the following
advantages:

1. Offloading the host should improve host performance and possibly simplify the task of
interfacing to a new host or network.

2. If the communication interface is tailored to the job of protocol execution, protocol
processing can be done at a rate approximating the data rate of the medium. If the
network interface has a high-bandwidth path to the host, the raw bandwidth of the
medium will be delivered to the user in the form of usable bandwidth. We will reduce the
net end-to-end delay for communication between processes, and not just move the delay
out of the host into a front end.

3. New services, such as reliable broadcast, can be incorporated as primitives.

'* In order to achieve these goals, the three parts of the communication environment must be
designed to fit together.

The media interface should provide as much support as possible to protocol mechanisms.

The protocol mechanisms must provide an efficient translation between user and media interfaces.
The structure of the algorithms and the computing resources is critical; we may wish to separate
various protocol functions with horizontal, as well as the usual vertical, partitions. This enables a
smart interfaces to participate in tasks that should not be isolated in a single protocol layer. The
partitioning discipline should seek functional distinctions and avoid distinctions that are based on a
particular technology (e.g., rings, fiber optics, Ethernets).

The user interface must define services that carry the power of the media, while at the same time
providing a firm specification of a service that will fit in the interface.

* 1.2 SIGNIFICANCE OF PROBLEM

The significance of this area, and hence this report, is based on the following chain of reasoning:

1. (Traditional Networks) Traditional long-haul computer networking is valuable.

* 2. (Local Networks) Local networks are valuable for the same reasons as long-haul
networks, as well as others.

3. (New Methodologies) A search for new methodologies, tailored to local networks, is
justified.

0
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Traditional Networks
Today the most significar.2 form of computer networking is based on packet-switching technology.

[ Packet networks were first proposed by Paul Baran in a 1964 Rand report on new technologies for
U.S. Air Force communication [Baran 64]. Actual network designs were published in the late 1960s,
including the ARPANET [Roberts 67] and NPL networks [Davies 67]. A minimal ARPANET, including
4 hosts, became operational in 1969.

The 1970s saw the ARPANET increase in size to approximately 200 nodes of various types
[NIC47000 79]. In foreign nations, government postal and telecommunication monopolies have
moved into the field with common carrier systems in Canada [Clipsham 76, Datapac 76], the U.K.

* [Belton 74], France [Danet 76], and elsewhere. The U.S. has seen several commercial networks
[Telenet, Tymes 71] and awaits the completion of the Bell ACS system, and IBM's Satellite Business
Systems (SBS) network.

Packet-switched networks seem certain to enjoy an expanding volume in their present applications,
and seem likely to make inroads in areas traditionally dominated by circuit-switching technology.

* New modes of communication, such as computerized mail, are certain to grow in use and complexity
[Lederberg 78]. These new forms of use are based on packet switching.

Local Networks

As previously mentioned, local networks are not necessarily restricted to the same set of
applications as long-haul networks. They present a level of performance and capability that make
new services possible. Shared file systems [Swinehart 79] and subsystems constructed out of
multiple hosts are examples.

At the same time, the potential local network owner may wish to provide communication wtbin
Jif that long-haul networks provide to a larger community. Although traditional communication
methods (hand carry, memos, etc.) are more competitive in the local environment, we would expect to
see more possibilities for local use simply because the internal data flow is larger. Local networks
must make communication easier than before if they are to be used for this function. Being able to
easily interface to the local network is easily as important as high bandwidth.

Internal networks have been developed by many organizations [Metcalfe 73, Carpenter 78,
Gerhardstein 78]. Often these networks grow until they are no longer geographically local, and
include other communication media. In order to allow for subsets of uses to continue to have the
benefits of the local network environment, these large systems can be partitioned into clusters [Boggs
79, Clark 78].

New Methodologies

Given that local networks are desirable, why do we need new techniques? Why not continue to use
the same technology as large scale networks? The answer is that long-haul network technology can't
deliver the performance, functionality, or low cost typical of local networks.

Communication is a field that, by definition, interfaces different systems. As such, we expect a
multitude of tradeoffs. Different situations call for different choices. This view is justified by past

experiences in this area. Packet transmission became effective only after the cost of processing
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power dropped (Roberts 78]. The ARPANET protocols were unacceptable when used on high-
bandwidth, high-latency satellite links [Kleinrock 78]. The claim has even been made that virtual
circuits will eventually triumph over datagrams due to the dropping cost of memory [Roberts 78].

While history supports the view that the form of a communication environment's implementation
should be matched to the user's needs and the form of the transmission system, it also suggests that
any such efforts may themselves be made obsolete by new developments. Thus it is important to note
that local ownership, high performance, and the low relative cost of bandwidth are not tied to a
particular technology. Approaches for dealing with today's local networks will be applicable to other
systems which share these properties.

1.3 THEORETICAL FRAMEWORK

The scope of this report is limited by the following assumptions and restrictions:

1. The communication environment should be primarily supported in an autonomous
interface outside of the host. This choice allows specialized architecturen, offloads the
processing requirements, and eliminates the need to code network software for every
host type.

2. The target communication environment should be at least as rich as that provided by TCP
or the DCS system SEND and RECV primitives. TCP is a standard protocol; the DCS
system is representative of a simple message system.

3. Extensions should follow familiar abstractions where possible.

4. The choice of transmission media will be restricted to either a ring, a contention system
(such as Ethernet), or simple extensions to these systems. These are the most cost
effective choices available today.

5. Media bandwidth is available in abundance; hence it will be used up to provide more
functionality when possible.

6. The host hardware interface is assumed to be a high-bandwidth system, such as DMA or
a channel interface. This is necessary to match the arrival rate of data from the medium.

7. The host is assumed to have a byte-addressable memory. This choice is not essential,
but simplifies discussion.

1.4 GENERAL OUTLINE AND PLAN OF REPORT

This report is organized into three phases:

1. Survey of current state of the art (Chapters 2-3)

2. Model evaluation (Chapters 4-6)

3. Summary and conclusions (Chapter 7)

The first phase of the report surveys the current state of the art in local networks and
communication protocols. In keeping with the previously mentioned model of the communication
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environment as having three parts (media interface, protocol mechanism, user interface), this phase
looks at models for all three. One purpose of this phase is to enumerate the individual protocol
mechanisms used to build the communication environment, problem areas in local network design,

.C and opportunities for enhancement.

The second phase of the report begins in Chapter 4 by outlining the components of a model
interface. The next two chapters apply the model to tasks which are driven by the arrival rate of the
medium and tasks which are performed independently oy arriving data.

The last phase evaluates the rest of the report, and suggests directions for future study.

Chapter Outlines

Chapter 2- Current Local Network Systems

Chapter 2 examines the current state of the art in terms of local networking media and interfacing
techniques. Ring and bus systems are carefully examined, and large-scale network and
multiprocessor techniques are used for comparative purposes.

Chapter 3- Contemporary Communication Environments

This chapter defines some salient features of protocols, and studies the parts of two
communications environments in depth. The DCS system is studied as a representative of local
network protocols that stress ease of use and simplicity. TCP is studied as a representative of
protocols that allow compatible transfers across varied networks, hosts, and operating systems.

Chanter 4. A Model Architecture

This chapter introduces an interface architecture that is refined in later chapters. The architecture
is discussed in terms of the goals and available implementation structures.

Chapter 5- Messaae Bindino

Chapter 5 studies algorithms for processing packets as they arrive on the medium. This activity,
called binding, locates the connection record for an arriving packet, processes packet control fields,
calculates the parameters used to control data transfer, generates a prompt acknowledgment, and
updates connection state.

Chanter 6- Data Delivery

Chapter 6 considers problems related to the management of communicated data. The principal
issues are the design of data buffering to prevent the interface from becoming a bottleneck in the data
transfer path, and the design of control signals which allow the network interface and the host to
coordinate the progress and completion of user requests.

Chanter 7- Summary and Conclusions

This chapter presents the overall findings of this report, and suggests strategies to be used and
directions for future work.



II

2. CURRENT LOCAL NETWORK SYSTEMS

.C 2.1 INTRODUCTION

A communication system is the part of the total communication environment that is external to the
hosts of the network. This communication system has two major parts: the medium which carries
signals between host sites, and the network interfaces which connect hosts to the medium.

Designers of computer interconnection systems have developed a large number of architectures
for the communication system. The large number of architectures is in part due to the large number
of applicable technologies for media and interfaces, and in part due to design issues related to the
higher order parts of the communication environment. In most cases the architectures chosen for
local networks are those which combine simplicity, and hence low cost, with a structure tailored to
the local network environment.

*Anderson and Jensen proposed a taxonomy for all forms of computer interconnection structures
which helps to illustrate the types of systems used in local networks [Anderson 75]. The taxonomy

A uses the following characteristics to separate classes:

1. Transfer strategy (direct vs. indirect)

2. Transfer control method (centralized vs. decentralized)

3. Transfer path structure (shared vs. dedicated)

4. System architecture

The first test is transfer strategy. In indirect transfer, messages are routed through switching
entities that process the message. In direct transfer, messages pass only through the medium on
their way between hosts.

Repeaters and similar components are considered to be part of the medium. Routing, protocol
translation, and similar facilities denote indirect transfer; often the components that perform indirect
transfer are indistinguishable from normal hosts, or are processes in hosts.

Local networks aren't compelled to use indirect transfer to be compatible with external standards,
nor are they interested in using such methods to increase medium utilization. In the absence of other
factors, the simplicity of direct transfer is attractive. Thus most local networks use direct transfer.

The second level of the taxonomy is the transfer control method. This refers to the choice between
centralized and distributed control of the functions of indirect transfer. In direct transfer systems, the
choice is moot: no control is necessary.

The third level of the taxonomy distinguishes between systems that share the use of
communication paths and those that do not. A dedicated path carries data from one point to another;
such a path is often termed point-to-point. In general, a point-to-point full-duplex path is considered
to be two dedicated paths. A shared path has multiple sources or destinations; multidrop or bus
media are shared.
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Assuming that the connectivity is uniform and not redundant, these considerations lead to two
topologies: a circular system, or a bus system. These two geometries are the most popular for local
networks because they require the minimum number of connections, hence the minimum amount of
hardware.

The last level of the taxonomy is system architecture. This level separates implementation
structures which are identical with respect to the first three criteria.

Using these four levels, the taxonomy enumerates 10 categories that represent existing systems.
"The circular and bus systems used in local networks are covered by 3 of these categories: circular

systems with and without central control, and bus-like systems.

In a bus system, all of the hosts are connected to a single piece of medium. When one host
transmits a signal onto the bus, all of the hosts on the bus can hear the signal; thus there is no need
for routing. All but the intended hosts discard the message. The transmission spreads out from the
transmitting host to the ends of the medium where it is electrically discarded. In principle, the bus
may be any fully connected acyclic graph, rather than a linear connection topology.

The circular structure uses unidirectional communication paths; each interface must receive and
then forward signals around the system. Messages need no routing since any message will pass its
destination within one circuit of the system. Because the loop has no electrical terminus, some other
mechanism must guarantee removal of messages from the medium.

The two members of the circular family are loops and rings. Although the distinction is often
tenuous, a loop is a circular system with some form of central control; a ring is a system without any

Cdistinguished nodes. Part of the reason that distinguishing between the two is often difficult is that
different loops have different levels of control in the control node. In some systems, the loop
controller's function is supervisory or diagnostic; the controller only deals with anomalous conditions.
In other systems, the loop controller is essential to the proper operation of the electrical signalling
system used to transmit data around the loop.

Given these broad functional outlines, we can identify the following components in the

communication system:

1. The medium - its topology, properties, and connection rules

2. Access control -the protocol for reading and writing messages onto the medium

3. The interface to the host. host control of the interface, the transfer of data between the
interface and the host, presentation of status and events by the interface to the host

4. Buffering and formatting rules that form the part of the message structure used in the
communication system

Tables 2-1 and 2-2 present data relating to these four components. Discussion of the common
aspects of these components is contained in the next five subsections following these tables. This
discussion is followed by network-specific information. The common discussion and the table data
relate to the four interface components as follows:

* * The medium. Systems are divided by overall medium topology, with bus systems in Table
2-1 and circular systems in Table 2-2. Other properties of the medium are described by
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the "Medium Type & Speed" columns in the tables. Medium component selection is
discussed in the "Media Characteristics" subsection. Techniques relating to medium use
are discussed in "Signalling."

* Access control. The "Access Protocol" and "Control Method" columns furnish a brief
description of the algorithm used to control transmission and the nature of any control
elements. The abbreviation "dist" appears for any system in which control is totally
distributed into the interfaces around the network in an essentially equal manner.
General principles relating to access control are discussed in the "Access Control"
subsection. Discussion of specific algorithms is delayed until the discussion of specific
interfaces.

Host interface. The method used by each interface to communicate data to its host is
described in the "Host Interface" column. "RS-232" means a full-duplex serial
connection according to the standard [RS-232C 69]; "byte" means some sort of byte
wide parallel path; "DMA," "channel," and "microcode" indicate a parallel interface
using the specified control method. Issues related to this data path and the necessary
control paths are discussed in the "Host Interface" section.

Buffering and formatting. In addition to simply passing bits between the host and the
medium, the interface may buffer or process the data as it passes. The "Device
Architecture" column specifies the main control element of the interface. The term
"logic" means that the device is built of random logic, typically TTL, and hence is not
easily changed, and "prog logic" denotes a custom controller that is programmed using
PROMs or FPLAs. Several MOS microprocessors (e.g., 6800, 6502, Z80) and bit slice
bipolar designs (e.g., 2900, 8X300) are represented in the tables. The "Buffer" column
describes the amount of buffering found in the interface: "packet" means a single packet
buffer; "micro memory" means that the available buffer space is equal to the size of
microprocessor main memory less space used for programs, etc. The "Buffering and
Formatting" subsection covers these considerations.

The "Year of Ref" column gives the date in which the main reference for the system
appears. Most of these systems have been implemented, but there are a few paper
designs. In cases where conflicting information is available, the most optimistic set of
consistent facts is presented.

Media Characteristics

The most frequently used media for local networks are twisted pair and coaxial cable. Fiber optics
are generally regarded as promising, but are not yet widely used.

Twisted pair is the simplest medium, and is formed by twisting a pair of conductors. The twisting
imparts a reasonable level of noise immunity to the cable; in critical applications shielded twisted pair
is often used. Twisted pair is the easiest medium to work with, and can be easily spliced, bypassed,
and terminated. Many buildings have spare twisted pair already pulled in cable trays. The cost of the
line varies with the gauge of the conductor and whether shielding is required, but typically runs a few
cents per foot. Special connection hardware is not required.

Coaxial cable is the basis for the majority of bus systems and several circular systems. It offers
higher bandwidth and superior noise immunity than twisted pair. Because of its uniform impedance, it
is vastly superior to twisted pair for multidrop systems. Coax is not as convenient to work with as
twisted pair. Most coax systems are built using components developed for the Community Area TV
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Table 2-1: Bus system features

Medium Device Year
Network Type & Speed Access Control Archi. Host of
Name (Mbpe) Protocol Method tecture Interface Buffer Ref

Ethernet coax 3 contention dist logic+ micro- none 1975
micro- code
code

HYPER- coax 50 reservation+ dist custom channel 4-8KB 1975

channel contention micro

ENET coax 3-5 contention d1st 6800 byte, micro 1977
micro RS-232 memory

NRS coax 1 contention dtst 6800 byte. micro 1978
network micro RS-232 memory

BATNET coax 3 contention dist logic DMA none 1978

MITRE dual .3 contention dist 6502 RS-232 micro 1979
coax micro DMA memory

Chaosnet coax 8 prlority& dist logic packet 1979
contention

GMAD coax <.1 RS-232 1979
network

Consortium coax 10 contention dist custom 1980
Ethernet LSI

Salplex coax <.Z contention dist custom 19B0
LSI

(CATV) industry. CATV connectors, taps, and cable are readily available and inexpensive due to
mass production. One article [Anderson 79] estimates the cost of CATV cable at $.30/ft with a cost of
$1 to $5 per tap. A MITRE technical publication [Holmgren 791 reports a cable cost of $.28/ft and a
tap cost of $9.

Fiber optic media offer the ultimate in noise immunity and bandwidth. Systems have been built with
data rates in the 100 Mbps range [Rawson 79, Okuda 78]. Because the medium is nonelectrical, fiber
optics can be installed without reference to building codes, safely used in explosive environments,

6 and inherently provide maximal electrical isolation between stations. This isolation avoids signal
ground problems and concerns about lightning, static and other electrical hazards. It is only a
drawback in those cases where it's desirable to power network devices with the same cable used for
signalling, as is done in the systems used by the General Motors Corp. in its assembly plants [Smith
79].

Fiber optics technology is less mature than electrical technology. Standards are not well
developed for any of the necessary components. Low-cost fiber optic line driver and receiver
components have been developed, but these parts are aimed mostly at the terminal speed market,
and their limited switching speed and output power constrain line speed and length. Laser
transmitters have much greater capabilities, but at a correspondingly higher cost. Available
components support point-to-point connections rather than the common bus connections, although

I l
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Table 2-2: Circular system features

Medium Device Year
Network Type & Speed Access Control A rchi- Host of
Name (Mbps) Protocol Method tectu re Interface Buffer Ref

Newhall twisted 3.1 token monitor 1969
station

Pierce twisted 1.5 slotted control 1972
(Ti) station

Spider twisted 1.5 slotted+ control TEMPO special iface+ 1972

(Ti) message chop station mini control

DCS RI twisted 2.2 token dist logic DMA none 1972

DLCN 1 variable msg dist 2900 1 max 1975
insertion slice message

Cambridge twisted 10 slotted monitor 8X300 DMA, micro 1977
loop message chop station micro byte memory

PRIMENET coax 10 token dist logic DMA packet 1977

UCI&MIT twisted 1 token dist prog DMA 64 byte 1977
LNI logic FIFO

Toshiba fiber 100 slotted control logic 1978
RCB optics station

NS LNI twisted 2 token dist prog DMA 64 byte 1978
logic FIFO

TRW fiber 20 slot insertion+ dist logic DMA none 1979
optics message chop

IDA 40 slotted logic DMA 1979
RS-232

[Rawson 79] speculates that this is not a fundamental restriction, and that networks with 25 to 50
passive taps are possible today.

The cost of fiber optics has been estimated to be on the order of $1/ft and $750 for the transmitter
and receiver pair [Anderson 79]. A system capable of operation from DC to 10 Mbaud for up to 1000
meters is advertised by Hewlett Packard to cost $2/meter of cable, $385 per transmitter and receiver
pair, plus a moderate additional cost for connectors, finishing, etc. [HP 1980]. This price is for
quantities of 100, and hence shows only modest improvement since the Anderson estimate. As yet
fiber optics are justified only in special circumstances, but will inevitably improve greatly in terms of
ease of use, cost, and performance in the near term.

Signalling

The abstract function of the medium is to carry bit-serial data between the network interfaces of the
network's hosts. Achieving this functionality requires a set of low-level conventions for transmitting
and receiving the binary data. These conventions must deal with the nonideal properties of the
medium, such as noise and delay, and convert the signal levels and conventions appropriate for the
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L medium to the signal levels and conventions of the digital logic in the network interface. The main

issues are the following:

1. Line termination

2. Electrical signal levels and isolation

3. Bit timing and synchronization

4. Modulation technique

Line termination

Although the length of the medium is short in comparison to that used in long haul networks, it is
long in comparison to the rise time of the signals we wish to transmit over the line. Technically, such
a medium is called a transmission line, and requires more careful treatment than that required of

q signals sent within a circuit board, processor, etc.

Signals on a transmission line are reflected by any nonuniformities in the medium and by the ends
of the medium. The reflections are caused by the nonuniform impedance of the line at these points. If
these reflections are large enough, they will interfere with the transmitted signal and make it
incomprehensible. While transmission line reflections are always present to some extent, prudent

N design reduces them to an acceptable level.

Reflections from the ends of the medium can be controlled by terminating the medium with an
appropriate resistance. The terminating resistance makes the medium appear to be electrically
endless, and hence discards the arriving signal. In a point-to-point (unshared) transmission line, this
termination is naturally combined with the line receiver on the end of the medium. In a multidrop
transmission medium, completely passive terminators are attached to the ends of the medium if no
receiver and terminator combinations are needed at these points.

Nonuniformities in the transmission line are caused by cable defects, cable connectors, taps,
bypass relays, and switches, and anything else connected to the line. Careful component selection is
necessary to ensure proper operation.

Termination effects mean that a failure of a medium component, even a passive one, can result in
the complete failure of the medium. For example, if the central cable of a bus system is cut, the result

will be two inoperable subnetworks, rather than two separately operable fragments. This result is
inevitable unless more complicated communication medium transmission schemes are used.
Another way to escape this problem is to greatly reduce the transmission speed of the medium.
Because both of these "cures" are unpalatable, and the "disease" itself is rare, the usual course of
action is simply to attempt to protect the medium from damage. If reliability is essential, redundancy
of interfaces and links is the best approach

4 Electrical sional levels and isolation

If the network uses electrical links such as coax or twisted pair, the electrical properties of the
medium must be considered. The problems are caused by the fact that each station on the network
has its own local ground reference. Ground differences of up to 10 volts are common, and

differences in the 50 volt range are found in rare cases.
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In general, the difference is correlated to the length of the communication path. Systems on the
same power circuit will have virtually no differential, systems in the same building will have a smaller
differential than those in different buildings, etc. Large electrical machinery and other heavy loads on
the power distribution system can cause short-term variances in ground potentials.

These differentials are the source of two undesirable effects: The signal on the communication line
is more difficult to recover, and a current corresponding to the ground difference is induced on the
line.

The signal is more difficult to recover because the different voltage levels that correspond to ones
and zeros must be measured with respect to some signal ground. The uncertainty in regard to the
ground potential at the line receiver versus the ground potential at the line driver can get to be larger
than the difference between the zero and one voltage levels at the line driver. One solution is to
simply increase the size of the margin between a one and a zero so that the reference difference is
made insignificant. While this approach works, it has numerous drawbacks: It doesn't eliminate the
spurious current flow, it may require extra supply voltages, and it requires that different logic levels
than those in the main interface hardware are used.

A refinement of the first approach is to use differential signalling. In this method, the signal is
defined to be the difference in potential between the two conductors that make up the communication
link. This eliminates common mode noise, i.e., anything that changes the potential of both
conductors equally. Differential line drivers and receivers are readily available; hence this is a low.
cost scheme that will handle differences of 10 volts or so. The RS-232 signalling protocol is an
example of such a system. The drawbacks of this approach are that it will usually require another
supply voltage and that it delivers a worse combination of data rate, distance, and noise immunity
than other, more sophisticated systems.

Another approach is to couple to the medium with a component that eliminates the DC path
between the medium and the interface. One such component is the opto-isolator, which consists of a
coupled LED and photo-transistor. While this approach offers several thousand volts of isolation,
there are drawbacks. The LED draws significant power from the line and presents a nonlinear
impedance that makes impedance matching difficult without an active compensation network. If an
active compensation network is used, it must be powered and hence creates a new isolation problem.
Currently available opto-isolators are limited to a few Mhz of bandwidth. Transformers pose similar
problems.

One way to sidestep the ground reference problem is to build a section of the interface that is
referenced to the medium ground and not directly connected to the local ground of the host. This
section is powered using its own floating power supply. Although the signal must still be coupled
from this section to the rest of the interface, this is a simpler problem because the distance is small;
hence transmission line effects can be ignored.

This is the approach adopted in the majority of systems. The separate section, called the
transceiver, solves the isolation and signal levels problems. The transceiver is also a convenient
module in terms of the abstract, and often the physical, organization of the interface.

Bit timina and synchronization

In addition to correctly interpreting the incoming signal levels, the interface must be able to
determine the boundaries of the incoming bit cells.
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One possibility is for the receiver and transmitter to have synchronized clocks for determining the
bit cell boundaries. The synchronization can be preserved by distributing a centrally generated clock,
or by periodically correcting drift among individual clocks. Increasing the propagation delay or the
data rate increases the difficulty of maintaining synchronization.

The alternative is to send a clock signal along with the data.

The clock can be sent a completely separate signal on a separate cable. This approach doubles
the medium cost, and requires the consideration of possible skew problems.

A more elegant solution is to combine the clock with the data in such a way that the two can be
easily separated at the receiver. Several schemes exist for doing this. One of these systems, a
member of the Manchester code family, is illustrated in Figure 2-1. The transmitting interface
constructs the signal to be placed on the medium by EXclusive ORing the data and a clock at the

I transmitter.

Bit
Cells

Data 0 1 1 0 0

Data~Level

Transmit
Clock LLIF

Manchester
4 Composite

Figure 2-1: Manchester coding

The transmit clock has a transition in the middle of the bit cell; the transmitted data does not. Thus
4 the composite signal will always have a transition in the middle of a bit cell. Depending on the data

being transmitted, there may be a transition at the boundary between bit cells.

Once the receiver has found a mid-bit transition, it tries to find the next mid-bit transition. To do so
it must avoid the possible transition between bit cells. The usual way to do this is to ignore transitions
that take place too soon after a mid-bit transition. For example the receiver might wait 75 percent of a
bit time after a known mid-bit transition before looking for a new mid-bit transition. The arriva of the
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new transition is used to restart the 75 percent timer for the next search, etc. The timeout interval
insures that data transitions are not mistuken for mid-bit transitions. The timing of this interval is not
very critical and clock drift is not a problem since each mid-bit transmission resynchronizes the
system.

This leaves the problem of finding the first mid-bit transition. One way to do this is to require that all
transmissions be prefaced with a known pattern. For example, using the code of Figure 2-1, if all
transmissions start with a zero, then the first transition in each transmission will be a mid-bit
transition.

The only drawback of these self-clocked transmission systems is that the amount of bandwidth
required to carry the signal is doubled. This usually isn't a problem because of the high potential
bandwidths, so most local networks use self-clocked transmission systems. Systems that send a
separate clock usually do so because their data rate is very high (hence the doubled bandwidth
requirement is too large for a single medium) or because the distance being covered is short enough
that clock skew and the cost of the additional medium are negligible.

Modulation technioue

- The composite clock and data signal produced by the Manchester code represents all of the digital
information the interfaces on the network wish to exchange. If this signal is directly coupled to the
medium, the signal is said to be transmitted using baseband modulation.

The alternative is to use the Manchester composite to modulate a carrier frequency. Carriers are
usually chosen to be compatible with the TV frequencies used in CATV systems so as to take
advantage of the availability of CATV hardware.

The most common design uses a cable topology that resembles a tree; network interfaces transmit
their signals toward the root (or head-end, in CATV jargon) of the tree, which repeats the transmitted
signals back toward the leaves of the tree. Two sets of frequencies are used: one for transmission
toward the root and one for transmissions from the head-end to the nodes. The separate frequency
bands allow the use of simple analog splitters at the nodes of the tree. If channels use standard 6
MHz TV channels, about 15-20 channels can be created, each with a separate allocation for up and
down channels. Assuming typical signal-to-noise ratios, the 6 MHz channels can carry up to 10 Mbps,
although less efficient use is much cheaper. For this reason, typical systems use a 6 MHz channel for
100-300 Kbps data rates.

For example, the General Motors Corporation Assembly Division (GMAD) system described in
[Smith 79] uses frequencies in the 11.120 MHz and 160-300 MHz parts of the spectrum, while carrying
data rates in the 100 Kbps range.

The advantage of the baseband modulation is that it doesn't require any receiving and transmitting
RF modems, and hence may be the simplest and lowest cost system. The advantages of carrier
systems are derived from the well-defined frequency of the carrier:

* Carrier-based signals have a more uniform power spectrum with respect to frequency
and hence are propagated along the cable in a more uniform manner. This means that
longer distances for a given data rate are possible.
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Multiple carriers and signals can be carried on a single cable using frequency division
multiplexing (FDM). One advantage of FDM is that the multiple channels it creates need
not interface or even be aware of each other. The channels need not even use
compatible signals or equal bandwidth. For example, one channel can be carrying a
standard video signal whilst another channel is carrying low-speed terminal traffic. The
local network can use FDM to create independent channels if this is architecturally
desirable. A common use for this technique is to separate transmissions going to and
coming from a central controller.

The high frequency of the carrier-based signal eliminates the need for any DC signal
coupling to the medium and may help to solve the isolation problem.

* The builder of a local network may be able to share an existing cable system so as to
avoid the cost of laying cable.

In most cases these advantages either aren't of interest or aren't cost effective; hence baseband
systems predominate. Carrier systems are used where sharing of the medium through FDM is
required. In any case, the problems of building the local network are essentially identical whether one
is using a channel in a carrier system or the baseband on a dedicated cable.

Access Control

Because the medium's bandwidth is a shared resource, access control is necessary to insure that
the interfaces use the medium in an orderly and efficient manner. The realization of this mechanism
may be interface hardware, interface software, host software, a special device, or some combination
of these. From the microscopic view of the interface, the access control mechanism grants the right
to transmit some time after the interface requests that right. From the macroscopic view of the
network, the job of the access control mechanism is to allocate the medium's bandwidth in a manner
that delivers maximum utility to the system.

In long-haul networks, this maximization involves complicated tradeoffs between throughput, delay,
and fair allocation to all users on the network, and is complicated by the interactions between store-
and-forward nodes, multiple routes, buffering, etc. In a local network the problem is simpler; access
control must be able to arbitrate rapidly between multiple interfaces requesting service, and should
grant access fairly. The only part of the problem that is harder in a local environment is that the
higher medium speed creates the need for correspondingly fast access control.

* The implementation of access control is the single largest source of diversity between local
networks. Among the causes of this diversity are different choices as to the allocation units, the
allocation strategy, and the distribution of the access control function.

The allocation unit is usually either a fixed-size slot or a message or frame whose size corresponds
to the amount of data the sender needs to transmit. Fixed-size slots are usually found in systems with
a central allocator which is responsible for generating the slot boundaries. Small fixed-size slots can
implement a TDM analog of multiple FDM channels. The advantage of the fixed-size slot system is
that it requires few actions by the interface, and hence few components in each interface. The small
amount of control can be important in very high-speed systems where it is imperative to minimize the
number of very high-speed components because of their higher cost. Although other parts of the

*interface can be built using parallel logic, the medium interface and its access control are inherently
serial for a serial medium, and hence simplicity is the best way to reduce the cost of such a system.
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The allocation strategy can be characterized as static or demand based. In static allocation, some
*portion (e.g., FDM channel, every third slot, every fifth message) is allocated to a particular use. In

demand allocation, bandwidth is not allocated until it is needed or requested. These choices
represent points on a spectrum rather than a binary decision; many schemes offer elements of both
strategies or use different strategies in different situations. An example of the first combination is a
system which allocates fixed bandwidth for the duration of a conversation or file transfer. The latter
combination has been suggested for use in supporting real-time traffic such as speech or video on
the same communication medium used for conventional data transfer.

The allocation strategy can be characterized as being centralized or distributed. Centralization has
inherent advantages: Decisions are made in one place and hence are always consistent and
coordinated. Although centralized access control represents a cost that isn't replicated in each
interface, it also represents a single point of failure. Other disadvantages include the need to
distribute decisions and to collect information for enlightened decision making. These needs imply
the existence of separate communication channels for these functions and may present a throughput
problem.

A decentralized access control system solves some of these problems by its very nature, but it also
creates some new concerns:

e The distributed algorithm won't have superior reliability unless it can compensate for
failures in individual interfaces. The design should be modular and self organizing, so
that removing any interface or adding an interface to the network doesn't stop operation
of the access control mechanism.

- The multiple decision locations will be making decisions on the basis of different
information. The access control mechanism must be robust enough to cope with the
inevitable conflicts that occur.

- It is more difficult to develop, debug, and measure the performance of distributed
algorithms. Thus it can be much more difficult to have the same level of confidence in a
distributed access control's ability to operate correctly in the face of error, varying load
conditions, and real-time constraints.

Host Interface

The host interface is the actual connection between the network interface and the host. The
design of the host interface involves consideration of the data to be passed and the available
interface choices.

The nature of the communication task constrains the nature of the connection between the host
and the interface. In general we can assume that there exists independent communication flow into
and out of the interface and that it may be necessary, to allow equivalent traffic into and out of the
host. The input and output communication paths are essentially symmetrical; whether they are
implemented as a full-duplex path or a shared simplex path is of little consequence. In any case, each
side of the path carries four types of information:

1. Control. Information from the host to the interface that controls the operation of the
interface. This information includes commands to start data transfer, reset the interface,
set the interface address, etc. The amount of information of this type will typically be a
few bytes per message transfer, hence its transfer rate is of little importance.

!
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2. Interrupt. If the host is to be able to process other work while the interface operates, the
interface needs to be able to interrupt the host when conditions specified by the host in
the control information are met. The methods for generating interrupts are host specific,

Da as are the data that needs to be transferred. The possible data elements include the
interface's I/0 address, interrupt vectors, rriority codes, and status information.

3. Status. This is information to the host, that tells the host the status of requests. A few
bytes of this information are transferred per message. Certain changes in status must be
coordinated with interrupts.

4. Data. This path carries the actual message data. Because it carries the largest amount of
data, its rate is the most important.

The methods available for transferring this information vary from host to host. The designer will
often use more than one of the available methods to complete the host interface. The available

*! methods include the following:

Shared memory. This method is applicable for hosts which include I/0 devices in the
address space of the memory. Hosts for which this is true include some minicomputers,
such as the PDP-11 [DEC 79] and Lockheed SUE [Lockheed 72], and almost all of the
MOS microprocessors. The type of path looks to the host to be one or more special
memory locations, and looks to the interface as a set of one or more registers or register
files. This method is often used for control and status information. When used for data,
the message can either appear as a large memory region or as a register which
automatically advances to the next message byte or word when accessed by the host. If
the latter method is used, the timing of transfers must be considered to avoid possible
loss of data due to slow response by the host or the interface. The implementation of this
approach is simple for those machines where it is appropriate, and implementations for
one host can be easily modified to fit another host if the host memory units are similar.

Direct Memory Access (DMA.) In this method, the interface is able to access the host's
memory directly without interrupting the execution of instructions by the host. The usual
method for doing this requires the interface to request access to a specified memory
location via the host's I/0 bus, wait for a go-ahead signal from the I/0 bus, and then
follow a bus protocol to read or write the specified memory location. Implementing DMA
usually requires adherence to a fairly complex and time.sensitive protocol, and hence a
fairly high level of intelligence. Hardware implementations of DMA require at least several
LSI chips (if the appropriate parts are available), or on the order of 50-100 MSI parts.

*e Failure to adhere to the appropriate I/O bus protocols can hang the host or cause
incorrect execution. In summary, DMA provides the highest data rate possible without
the use of dedicated memory locations, but at the highest cost in terms of parts count and
complexity. DMA designs are not transferable between different host types, and are
sometimes not transferable between different models of the same host.

0 RS-232. RS.232 is the standard protocol for interfacing terminals to hosts. As such, it has
the advantage that an RS-232 interface is almost always transferable to any host. In
addition, LSI components for implementing this protocol are readily available and low in
cost. The data rate of the RS-232 protocol is limited; for most hosts 19.2 Kbaud is the
highest possible rate to run RS-232. The protocol is suited to the transfer of sequential
characters; many host systems restrict the set of characters that can be passed to those

S having the correct parity, or to those characters that are printable. Interrupts can be
implemented through the use of the break function; this is supported by most, but not all,
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hosts. This choice is in general only appropriate for interfacing terminals or other very
low-speed "hosts."

Channels and special I/0 busses. Many large hosts and some minicomputers implement(I/O functions with a usually unique bus protocol. Although some de facto standards
exist, such as the IBM channel protocol and the S-100 bus, these systems usually are
similar in nature but different in terms of signal levels, timing, number of signal lines, etc.

" Throughput varies depending on design. This is the only method for generating
interrupts on most computers.

Buffering and Formatting

In addition to providing a path for data transfer between the host and the medium, the interface
may also be required to do some buffering or processing of the data.

.U A small amount of buffering is usually necessary just to convert between the bit serial medium
format and a byte or word parallel data format used by the host. Buffering is also necessary to
compensate for any differences in data rate between the medium and the host. Given that the
medium's data rate is essentially constant, the difference has two components: transient variations
and steady state variations.

Transient differences manifest themselves when the interface requests a byte or word transfer from
the host. Regardless of the host interface type, there will be some nonuniform response time from the
host, because the host may be asynchronously processing instructions and other I/O requests, and
at the minimum requires a variable amount of time to synchronize the request with the host's internal
data paths. For example, variations in interrupt response time can be several milliseconds, and even
DMA transfers can require several microseconds. These times can be reduced, but not eliminated, by
careful selection of DMA or interrupt priorities, special scheduling of network I/O, etc. Thus, at
megabit rates, there will be at least several bit times of delay between presentation of data at the host
and its consumption. The usual practice is to solve this problem with at least a host memory unit's
worth of buffering at the periphery of the serial.to.parallel converter.

Steady state variations in data rates stem from higher level design issues. The systems architect
has to balance three rates:

1. The medium data rate. This has an absolute upper bound based on the choice of medium
and medium components such as line drivers and receivers, and design constraints such
as distance.

2. The processing rate of the interface. This rate is dependent on the cycle time and width of
the interface's internal data paths, and the amount of processing performed on the data.
It varies from a few Kbps for a serial data path managed by a MOS microprocessor to
hundreds of Mbps for custom high-speed logic.

3. The host data rate. The rate is bounded above, and possibly below, by the transfer rate of
the host interface.

Any differences in these rates result in a need to buffer data in the interface. Even in the rare cases
where it is possible to select a single data rate for all three paths, there are often reasons for not doing
so:

II
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-Buffering may be cheaper than speeding up the bottleneck. For example, MOS
microprocessor implementations have essentially zero cost access to RAM memory.

* In order to satisfy the bandwidth requirements of all hosts on the network, the bandwidth
of the network may need to be higher than the highest possible host interface bandwidth.

Different hosts may require different levels of service. For example, a terminal might not
need the high throughput needed by a large server. This leads to the possibility that
interfaces might not be homogeneous throughout a network.

'If the interface filters out messages that aren't addressed to the attached host, it must at
least be able to buffer the address portion of the message.

. Interfaces may need to buffer some or all of the message in order to process it, provide
for automatic retransmission, etc.

Thus, consideration of the buffering problem leads to the question of how much processing the
interface is to do on the data being transferred. In some networks, the interface doesn't even
understand the concept of message boundaries. This leads to the least possible amount of work in
the interface section, and passes on problems to the host. In other systems, particularly
microprocessor-based systems, the interface deals with one or more protocol levels for the host.
Thus this issue is intertwined with the protocol hierarchy. The "average" level of interface

* intelligence is the message format or frame level. At these levels, the interface will see the following
message format items:

* The preamble. A known pattern to bit synchronize the transceiver, and possibly to
synchronize the receiving interface to the start of the message.

* The destination address. A field that specifies which interfaces are to receive the
message.

* The origin address. The "signature" on the message which denotes its source. This field
is usually sent in the same format as the destination address.

* The data length. An optional field that may be necessary if the data field can have a
variable length.

" The data field. The possibly variable amount of data.

" CRC or checksum. Included to allow the interface to recognize damaged transmissions.

" The postamble. As required by the transmission system.

O

2.2 BUS SYSTEMS

Introduction

* The source of many of the ideas found in today's bus networks is the ALOHA network at the
University of Hawaii [Abramson 70, Abramson 73b]. The ALOHA network started as an experiment to
test the use of packet radio as a means of connecting terminals scattered around the Hawaiian
islands to a front end computer, the Menehune, and hence to a central computer. The ALOHA system
influenced later local .network designs in its use of the radio medium.

In the ALOHA network two independent channels share the radio medium: a radio channel that the

Il
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Menehune uses to talk to all of the terminals, and a separate channel that the terminals share and use
to talk to the Menehune. The channel from the Menehune is easy to manage; messages are
transmitted one after the other with queueing in the Menehune when necessary. The shared channel

I' to the Menehune is more difficult to manage because of the multiple sources of transmission.

In selecting an access control system for the shared channel to the Menehune, the ALOHA
designers decided to avoid systems that explicitly allocate the channel, such as Time Division Multiple
Access (TDMA), which allocates time slots to each source, and polling, which has the control node
periodically "ask" each node for a transmission. Instead, terminals statistically contend for the
medium. In the "pure ALOHA" access control system, a terminal with a message to transmit simply
turns on its transmitter and transmits. The terminal then waits for some interval for an
acknowledgment. If an acknowledgment returns within the interval, the message has been
successfully transmitted. If not, the terminal retransmits the message and waits again. The
retransmission and wait cycle is repeated until an acknowledgment arrives.

The eventual success of this scheme is guaranteed by the relentless retransmissions so long as
each retransmission has some chance of success. Random errors, such as those caused by radio
noise, are corrected. Errors caused by multiple overlapping transmissions are also cured, so long as
the system avoids an infinite sequence of synchronized retransmission collisions. In pure ALOHA,
this is avoided by having the terminals use different timeouts; the macroscopic access control system
actually relies on there being differences between the microscopic access control mechanisms.

The main drawback of the pure ALOHA system is its low channel utilization; the collisions between
sources in a saturated system lead to a maximum utilization of 1/2e, or approximately 18 percent.
This utilization can be doubled to l/e, or 36 percent through the use of "slotted ALOHA." In slotted

-C ALOHA, sources cannot transmit at any time; instead, they can only begin transmitting at the start of
discrete time slots. Slotted ALOHA has a superior performance because a given transmission can
only collide with others during one slot, instead of overlapping and interfering with two transmissions.

Overview of the Ethernet

The ALOHA experience suggested a local network structure to several researchers at Xerox. Why
not use a piece of coaxial cable as a private radio universe?

The result of this idea is the Ethernet [Metcalfe 76]. The Ethernet is probably the best known, and
most copied, form of local network in use today. It is used at several sites within Xerox, as well as MIT,
Caltech, and several other universities. The Ethernet is used as a basic building block in an
internetworking system that spans "about 1000 computers, on 25 networks of 5 different types, using
20 internetwork gateways" [Boggs 79]. Another measure of the success of the Ethernet is the large
number of host types that have been interfaced to it, including Xerox's ALTO minicomputers [Thacker
79], PDP-10.size computers, printing servers, file servers [Swinehart 79], and other machines.

The most well-known version of the interface is that used to connect the ALTO minicomputer to the
Ether. This version is described in the following sections. A block diagram of a small Ethernet system
is shown in Figure 2-2.
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Figure 2-2: Ethernet components

Ethernet Medium

The communication medium of the Ethernet is a piece of coaxial cable. The design goals for the
system include the ability to connect 100 hosts at 3 Mbps along a kilometer of Ether [Metcalfe 76]. As
currently implemented, the Ether uses RG/1 1 75 ohm foam cable and Jerrold CATV tapping hardware
(Crane 80]. The interface is connected to the medium through a separate transceiver assembly. The
transceiver is powered by a floating power supply which is referenced to the cable ground. The
transceiver communicates to the interface over twisted pair lines that are decoupled using
transformers that eliminate the DC path.

The topology of the Ether is constrained to be an acyclic graph by the need to avoid multipath
interference. In practice, the Ether is further constrained to be linear, thus avoiding power loss and
reflection problems at the branch points.

Data on the Ether is transmitted using a Manchester code. In order to synchronize the receivers, a
one.bit synchronization preamble is sent before every message.
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Ethernet Access Control

Although derived from the ALOHA system, Ethernet operation is different in several important ways.
The first difference is the equality of hosts. There is no distinguished node similar to the Menehune;
all hosts contend for the single communication channel. Any host on the Ethernet can communicate
with any other. The second difference is that the Ether has different properties than the radio system
used by the ALOHA network:

The noise level of the Ether is much lower; there is less random noise and no crosstalk
from other users of the medium.

Any Ethernet interface can hear all of the transmissions on the Ether; the UHF radio used
by ALOHA needs a clear line of sight for transmissions. Islands cut the line of sight
between some ALOHA terminals.

* The propagation time of signals on the Ether is much lower.

These properties allow for new access control mechanisms that make more efficient use of the
medium than is possible in ALOHA. The efficiency of the Ethernet system is very dependent on
message size and medium length and asymptotically approaches the 37 percent ALOHA behavior for
very small messages. However, empirical measurements [Shoch 79] have shown that the Ethernet

A system delivers 56 percent efficiency for the smallest sized messages actually used in the Ethernet
environment (6 bytes), and 97 percent efficiency for the largest size messages (approximately 570
bytes).

The access control mechanisms of the Ethernet are as follows:

1. Carrier Sense. When an Ethernet interface has a packet to transmit, it listens to the Ether
to determine if the Ether is presently in use. If so, the interface defers to the transmission
in progress until the Ether is silent. This avoids collisions that would serve no useful
purpose. This access control strategy is called Carrier Sense Multiple Access (CSMA).

2. Collision Detect. As an Ethernet interface transmits its message, it listens, to the Ether to
determine if the signal on the Ether matches the transmission in progress. If not, the
probable reason is that two or more interfaces have chosen the same instant to transmit
and have thus caused a collision on the Ether. Because the transmission has already
been ruined, it is pointless to continue, and the Ethernet interface terminates the
transmission using the "Collision Consensus Enforcement" policy and reschedules the
transmission as described under "Binary Exponential Backoff." Access control
algorithms incorporating CSMA and Collision Detection are termed CSMA/CD.

3. Collision Consensus Enforcement. When a collisicn occurs on the Ether, the most likely
assumption is that all transmissions in progress are ruined. However, it may be that the
collision is only immediately apparent to one of the transmitting interfaces due to data
dependencies. In order to ensure that all transmitting interfaces recognize the collision,
interfaces that recognize collisions "jam" the Ether for a period of 35 microseconds
following collision detection. The jamming signal is a continuous low voltage that violates
the ordinary Manchester signalling protocol, but is likely to be seen by all transmitting
interfaces. Following the jamming signal, the interface terminates its transmission.

4. Binary Exponential Backoff. After a collision, the interfaces which caused the collision
wait for a variable amount of time before attempting a retransmission. The timeout

should have two properties: (1) it should be different in different interfaces to avoid an
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infinite series of lockstep collisions, and (2) it should increase as demand for the Ether
increases, so as to restrict offered load as the medium becomes saturated.

The Ethernet interfaces calculate the interval to wait using an unsynchronized counter
C that is incremented at a high rate. When the interface needs a new timeout, it masks the

value of this counter with a bit mask and stores the result in a timing register. The mask
l* has only its low bit on for the first collision; every consecutive collision turns on one more

bit in the mask, until the mask reaches a maximum value of eight ones. Once loaded, the
timing register is counted down to zero before retransmission is attempted. The interval
between counts is intended to approximate the round trip delay of the Ether. This
procedure has the effect of selecting a random interval whose mean is doubled every
time a collision occurs.

5. Truncated Packet Filtering. A side effect of the implementation of the previous strategies
is that short bursts of data are found on the Ether that are too short to be valid, given a
knowledge of the higher level protocols. Such "runt packets" are automatically filtered

U out by the interface.

6. Packet Error Detection. The transmitting Ethernet interface computes a hardware CRC
that is included at the end of every transmission. Receiving Ethernet interfaces
recompute the CRC and discard packets with a bad CRC.

0 Ethernet Host Interface

As previously mentioned, the Ethernet interface is a unique combination of hardware and
microcode. As such, the interface has different properties depending on the level from which it is
viewed. From the standpoint of the ALTO, the Ethernet interface is similar to a DMA interface. The
Ethernet interface for the PDP- 11 is a DMA interface for data and uses memory locations for status
and commands.

The ALTO interface shares logic for input and output, and hence is really a half-duplex device. The
ALTO microcode manages the sense of the interface; normally the interface is set to receive from the
medium. When the host wants to transmit, the device is switched to transmit mode for the duration of
the transmission. Packets addressed to an interface aren't received while the interface is in transmit
mode. Crane and Taft [Crane 80] mention this as being a problem that becomes noticeable for
servers and other hosts that run multiple concurrent communication paths. The Ethernet attempts to
reduce this problem by special programming of higher level protocols. The same authors also
mention that the interface is unable to receive a second packet immediately following a previous

* packet addressed to the interface; the problem here is that the microcode requires several
milliseconds to re-enable the receive interface.

The half-duplex part of the problem stems from the desire to reduce the component count for the
interface. New designs, built with newer (and denser) logic can avoid it at low cost. The problem of
consecutive packets addressed to the same interface is a problem that is common to almost all local

* network systems; it is a tradeoff between interface complexity and performance that is very sensitive
to the usage pattern of the network and the architecture of the interface.
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Ethernet Buffering and Formatting

The ALTO Ethernet controller includes a FIFO with 16 entries of one word (16 bits) each, and a
16-bit register for serialization and deserialization of the data stream. The FIFO compensates for
variances in the response time of the microcode.

The message format known by the interface and microcode is shown in Figure 2-3.

II

rSynch bit

Dest Source type data CRC

1 1 8 I 8 16 I variable I 161

Figure 2-3: Ethernet message format

The synch bit is used to synchronize the receiver and isn't seen by the host. The destination and
* source addresses (Dest and Source in Figure 2-3) are 8 bits each. Each interface has its own 8-bit

address that is unique throughout a particular Ethernet. In addition to receiving packets addressed to
this address, the interface copies packets addressed to a broadcast address (all zeros). Thus a g;ven
message is addressed either to a specific interface, or to all interfaces on the Ethernet.

The Ethernet interface has a special "promiscuous" mode, in which the address filtering
mechanism is disabled and the interface copies packets regardless of address. The promiscuous
mode is mainly used for measurements of Ethernet activity.

The type field is used by higher level protocols and is essentially ignored by the interface. Its
presence at this level is mainly for standardization purposes. The data field of the message is
composed of a variable number of bytes. The interface finds the end of the message by detecting the
end of the Manchester coding transitions. The CRC is appended to the message by the transmitting
interface and is removed by the receiving interface before the message is copied into the host.

Other Bus Systems

BATNET

The BATNET is a network similar to the Ethernet. The BATNET has been implemented, and is in
use, at the Battelle-Northwest Laboratories [Gerhardstein 78]. Using approximately 2500 feet of
RG1 1/U coaxial cable, the network connects PDP-1 1 systems and runs at 3 Mbps. The cost of the
interface components has been estimated to be approximately $1500, excluding labor costs
[Gerhardstein 78].

The main components of the BATNET interface are a transceiver, minimal control logic, and a DEC
PDP-11 DMA interface board. The interface is totally ignorant of message format and the access
control system; the three operations possible with the BATNET interface are (1) setting an interrupt
generating timer, (2) the output of a block of memory to the medium, and (3) the reception into
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PDP-11 memory of the next block of data to appear on the medium. Address recognition and
contention resolution are handled by interrupt routines in the PDP.1 1.

C This design results in an interface which is minimal in terms of hardware component count at the

expense of degraded performance and host overhead.

ENET and NBS network

Although developed independently, the ENET interface [West 77] and the NBS network interface
[Carpenter 78] are quite similar; both are microprocessor designs that use a contention bus and
access protocols similar to those used in the Ethernet.

The ENET (Expensive NET) interface is one of two network interfaces designed at the Queen Mary
College at the University of London, the other being the CNET (Cheap NET). The ENET is suitable for

U computer networking, whereas the CNET is really a terminal multiplexor built around a contention
bus. The ENET is only comparatively expensive; a cost estimate for the interface is 200 pounds, or
approximately $450 [West 77].

The NBS network interface, developed at the National Bureau of Standards in Gaithersburg, is
designed to connect hosts and terminals to a contention bus. It has two types of host interface: a
RS-232 port for terminals, and a byte parallel port for hosts.

Both of these interfaces use a MOS microprocessor as the central control element of the interface.
This strategy has several potential advantages:

* A dedicated microprocessor can replace much of the logic, and hence the cost, of the
interface.

- Since the programming of the microprocessor determines the characteristics of the
interface, the interface could be easily changed in the future by reprogramming.

* The microprocessor can implement higher order protocols in the interface than is
possible in other types of designs.

Given these goals and the constraints imposed by the microprocessor, the interface consists of
three parts:

1. The dedicated microprocessor controller, including program in EPROM, RAM for buffer
space and program variables, and the requisite microprocessor support circuitry.

2. Custom circuitry to allow the microprocessor to communicate with the host. This section
of the interface looks like a peripheral device to both the microprocessor and the host.

Simple byte parallel and RS-232 interfaces can be built using standard LSI
* microprocessor parts at the cost of one or two LSI parts and a few SSI parts for address

decode, bus drive, etc. This is the approach used in the ENET.

The NBS design allows the dedicated control microprocessor to serve up to eight
separate host interfaces. The individual interfaces are also microprocessor based, and
two types have been built: one for computers and one for terminals. The computer
interface is byte parallel and depends on the attached host for some protocol functions;
the terminal interface uses RS.232 and includes all protocol functions necessary to allow
the terminal user to access hosts on the network.
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3. Logic interfacing the microprocessor to the medium. Most design decisions relating to
this part of the interface are insensitive to the use of a microprocessor controller. For
example, facilities for line driving, bit synchronization, collision detection, and carrier
sense are needed and are implemented in a similar manner whether or not a
microprocessor is used.

The use of a microprocessor controller adds constraints on the design of the data path
between the medium and the controller. This path provides for the transfer of message
data bytes and for any residual translation between the serial data format on the medium
and whatever form is used by the controller.

The desire to reduce component count, and hence cost, suggests that microprocessor
memory be used as much as possible for message buffering, and that the microprocessor
should perform as much as possible of the formatting task. This aim often conflicts with
the throughput requirements of the network. Even if the microprocessor can handle all of
the local host's traffic, a medium data rate high enough to satisfy the transfer needs of all
network hosts will usually be higher than the instantaneous rate that can be provided by
the microprocessor.

The most convenient data transfer method would be for the microprocessor to provide
bytes to the medium interface under the control of interrupt driven I/O. This would allow
the interface to multiplex medium service with the other activities of the interface in a
natural way. However, this approach doesn't deliver an acceptable data rate. In the case
of the 6800 microprocessor used in the ENET and NBS systems, interrupt context
switches take approximately 20 microseconds, and the 4 or 5 instructions to prepare the
next data byte take on the order of 15 microseconds. Assuming byte transfers, and a
maximum latency of 2 interrupt context switches per transfer, the worst case time to
respond to an interrupt is 55 microseconds. This corresponds to a data rate of less than
200 Kbps.

This data rate can be improved by using the tightest possible program loop and ignoring
all other activities for the duration of the medium transfer. Even with this strategy, the
data rate remains under 1 Mbps.

The only choice seems to be to remove the nicroprocessor from the data path to the
medium, thus decoupling the data rate of the microprocessor from the data rate of the
medium. This implies some form of shared memory or buffering between the
microprocessor and the medium driver.

In both the ENET and NBS interfaces, this sharing is implemented in the form of special
sections of microprocessor memory and a multiplexed address bus. The special sections
of memory run at twice the rate required by the microprocessor; alternate cycles are
allocated to the medium driver. In essence, this is a special form of DMA which avoids
the arbitration overhead of more general DMA schemes, and can be implemented with
few components.

The NBS system uses a Signetics 2651 SDLC chip for the data path formatting functions.
Although the frame format isn't ideal, the one chip cost is attractive. The ENET uses
custom logic for serialization and deserialization.

Chaosnet

The Chaosnet is a network built at the MIT Artificial Intelligence Lab to connect the lab's PDP.10,
PDP-1 1, and LISP machines [Shoch 79]. The network spans a kilometer of coax and runs at 8 Mbps.
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The higher data rate and added length makes the medium less robust than the Ether; tuning is
required when a new host is added to the network.

The 8 Mbps data rate is also faster than the maximum possible DMA rate for some u" these
machines; hence full packet buffers are incorporated in every interface.

The access control system of the Chaosnet is a hybrid between the Ethernet contention system and
a TDMA approach. While the interfaces use carrier sense and collision detection, they also attempt to
sequence access to the medium in order to avoid collisions.

Each interface has a unique ID number and a counter that sequences through the range of
allocated ID numbers. The counter's value corresponds to the ID of the interface that "owns" the
medium. The counter advances at a high rate as long as the medium is free. When an interface
wishes to transmit, it waits for its counter to equal its ID and for the medium to be free. A successful

* transmission loads all counters with the ID of the source of the transmission.

Collisions, data errors, and differences in clock rate make this algorithm less than totally accurate,
but it has the pleasant property of working better as the load on the system increases becvuse slot
boundaries are synchronized more often. Retransmissions require host intervention, and hence an
infinite series of retransmission collisions is avoided due to the essentially random variation in the
hosts' response time.

MITRE

Several similar networks have been built by the MITRE Corp. The network described in [Hopkins
79, Holmgren 791 is microprocessor based and uses a CATV compatible medium. The low data rate
of this system is due to the use of the microprocessor for all interface control functions.

The MITRE system's medium is corn, ised of two coaxial cables joined by a "head end." The
cables are unidirectional; one carries data toward the head end (inbound), the other carries data
away from the head end (outbound). Signals on both cables are multiplexed using FDMA to create
several channels; each channel can support a digital network, or can be used for video, speech, etc.
The head end is basically a wideband amplifier that repeats all signals on the inbound cable onto the
outbound cable. Each network interface is connected to both of the cables; "he interface receives
from the appropriate channel on the outbound cable and transmits on the apV roptiate channel of the
inbound cable.

An interface with a message to transmit waits until the outbound channel is free and transmits on
the inbound channel. After some propagation delay, the transmission arrives at the head end and is
repeated onto the outbound cable system. Carrier sense, collision detection, collision consensus
enforcement, and the other Ethernet access control mechanisms are used; they are slightly less
effective due to the lengthier propagation delay.

Because of the unidirectional signal path, the MITRE system can replace the inbound and
outbound cables with a cable "tree." Each "node" is an active repeater. On the inbound side, the
repeater combines two or more input signals; on the output side the repeater splits and amplifies the
signal. Using this type of structure, the size of the network is limited only by increasing propagation

* time and the consequent loss of bandwidth allocation efficiency; the network can easily be as large as
existing CATV systems, which rarely are larger than 20 miles in radius.
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GMAD network

General Motors Assembly Division (GMAD) has adopted cable bus technology as a cost effective,
C centralized method for providing diverse communications services within 12 of its 20 assembly plants

[Smith 79]. The three generations of systems in use are built using CATV technology; separate FDMA
channels support different applications including digital data collection and control links, audio
communication, closed circuit TV, and camera control.

The main emphasis so far seems to be on replacing a variety of communication systems with a
single cable bus in order to reduce communication hardware and maintenance costs. The digital
channels are all low speed (less than 48 Kbps); cable channels have merely replaced dedicated
point-topoint and multidrop lines.

Future plans for these systems include the development of integrated data networks which would
couple all of the assembly plants to central computers in Detroit.

The major needs described in [Smith 79] are more reliable CATV cable hardware, maintenance,
and repair procedures that can be performed by unskilled personnel, and the development of
terminals and other cable stations tt at can be powered and controlled by the cable.

4
HYPERchannel

The HYPERchannel is a local network marketed by Network Systems Corp. of Minnesota [Thornton
75, Thornton 79]. It is designed to address a large computer center's need for high-speed data
transfer between multiple CPUs, secondary storage systems, and other high-speed peripherals. The

- HYPERchannel medium is up to 1500 feet of coax, and runs at 50 Mbps. The network interfaces,
ca..)d adapters, interface to the host at the host's channel level.

Adapters are controlled by a custom bipolar microprocessor, and include a channel interface
customized to the attached host or peripheral, a data buffer of 1-8 K bytes, and medium interfaces for
up to four coax links. Because of the high speeds involved, the microprocessor doesn't participate in
data transfers; the microprocessor initializes and monitors transmissions and executes the adapter
protocols.

The adapter implements two levels of protocol. The first (lowest) layer handles access control for
the medium. The second level protocol implements buffer reservation and flow control.

The intent of the low-level protocol is to allocate bandwidth according to adapter priority; a high.
priority adapter should be able to acquire as much bandwidth as it can use, regardless of the needs of
lower priority adapters. When a transmission takes place, regardless of its priority, bandwidth for an
acknowledgment is allocated. When the network is lightly loaded, allocation should be prompt; under
heavy load, the network throughput should asymptotically approach the bandwidth of the medium.

The low.level protocol uses a mixture of priority reservation and contention to meet these
objectives. Every data transmission synchronizes the adapters and is followed by three time periods:
an acknowledgment period, a priority period, and a contention period.

The acknowledgment period immediately follows the data transmission. The acknowledgment
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period is intended to guarantee bandwidth for immediately available acknowledgments. During this
period, the adapter that received the data transmission can send an acknowledgment transmission.
This period ends after the acknowledgment transmission or after a timeout if no acknowledgment is
generated.

The priority period follows the acknowledgment period. The priority period is divided into intervals;
each interval is associated with a particular adapter. Each interval is approximately equal to twice the
round trip time of the medium. During the priority period, an adapter can initiate a transmission only
during its interval, and only if all previous priority intervals were unused. Any data transmission
restarts the period mechanism. The ordering of the intervals thus imposes the desired priority of
access to the medium. Under conditions of heavy network load, the priority system avoids collisions
and improves throughput.

If roo adapter initiates a data transmission during the priority period, the contention period begins.
U During the contention period, any adapter can initiate a transmission; hence all adapters contend for

the r,4uium. The intent is to minimize delay in accessing the medium during periods of light network
load. Any transmission restarts the period mechanism, so series of collisions shouldn't be a problem.

The second level protocol handles buffer reservation in both transmitting and receiving ad~pters,
and includes a packeting protocol to allow the transfer of arbitrary length data blocks through the
adapters' limited buffers. Several varieties of adapter-to-adapter messages are defined to perform the
necessary control functions.

Several difficulties were encountered with the original adapter protocols [Donneley 78a]. Some of
these problems were simply design errors that were corrected by bug fixes, tuning, and new
algorithms; two of the problems were associated with interactions between protocol layers. These
two problems, retransmission failure and priority reversal, are described below.

The retransmission failure problem caused two-thirds of all data transmissions to suffer collisions
when the system was heavily loaded. The cause of this problem was that the second level protocol
couldn't request retransmission of unacknowledged data transmissions fast enough to use the
priority period. Instead, all retransmissions coincided with the start of the contention period. In
periods of heavy load, this almost guaranteed a series of lockstep retransmission collisions following
an initial collision.

This leads to several observations:

1. The problem can be solved by speeding up the setup of retransmission requests by the
second level of protocol, or by detuning the timeouts used in the bottom level protocol.
The "optimal" timeouts for the first level protocol (i.e., as short as possible) make it
impossible for the microprocessor to execute the second level protocol fast enough.

* 2. Any reduction in the retransmission setup time is counterproductive unless it allows
transmission during the priority period. Otherwise, faster retransmission simply
synchronizes transmissions at the start of the contention period.

3. The retransmission timing problem is worst for the highest priority adapters. Hence, it is
quite possible that high-priority adapters will get less throughput because of more

* frequent collisions.
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Two solutions were adopted for the retransmission problem. In new systems, retransmissions are

handled by new first level protocol hardware that can meet the timing requirements. In existing
adapters, the second level protocol was modified to create pseudo priority periods in the contention
period. Software timeouts prevent retransmissions for a time proportional to the transmitter's priority.
In essence, part of the priority protocol is transferred into the second level.

The second interaction problem, priority reversal, caused lower priority adapters to be able to
achieve greater throughput than higher priority adapters. This would occur in situations where
buffers were a scarce resource, and hence the allocation of matched transmit and receive buffers
could be difficult. If a high-priority and a low-priority adapter had symmetric requests, i.e., each
wanted to send a message to the other, they both allocate a transmit buffer, and then attempt to
allocate a receive buffer in the other unit. Because the higher priority adapter attempts the receive
buffer allocation first, due to its higher priority, it is first to notice the allocation conflict, and hence to
abort and deallocate its transmit buffer. The lower priority adapter is hence able to complete its
allocation.

The solution adopted was to associate priority with each resource, and to change the request
mechanism to allocate resources in priority order with preemption of lower priority allocations.

The HYPERchannel experience suggests the following caveats to the designers of new high-level
interfaces:

1. Some concepts, like that of priority in the HYPERchannel, transcend any single protocol
layer, and hence must be known in several layers to be effective.

2. Tuning the timeouts and operation of any protocol layer to the constraints of that layer
may adversely affect the performance of the total protocol system. This is especially true

,in systems with dedicated microprocessor or hardware control elements, because these
tend to operate in a highly periodic manner without the random delays characteristic of
large scale computer systems. Unfavorable timing combinations are thus either very rare
or very common.

3. Efficiency and performance tuning requires the consideration of real-time event
sequences; the abstractions used to model protocol layers often discard this information.

Consortium Ethernet

In December of 1979, Digital Equipment Corp., Intel, and Xerox announced a joint effort to develop
a networking system based on the Ethernet [DEC 80]. The immediate aims of this effort are the
production of a VLSI Ethernet controller, a corresponding standard, and a licensing policy that will
promote wide use of the standard. According to the companies, this new Ethernet design is to be
known as the production Ethernet, or simply the Ethernet; the original Ethernet is to be known as the
"research" Ethernet.

Given the large amount of experience with the original Ethernet, it is interesting to note which parts
of the original Ethernet design have been retained, and which parts have been changed. The major
points discussed in the standard [DEC 80] are:

1. The new Ethernet will use the same contention ideas for access control.

2. The new system runs at 10 Mbps as opposed to the 3 Mbps rate of the existing Ethernet.
The transceivers and analog signalling hardware are different.
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3. The new system uses 48-bit source and destination addresses in the basic message
format. The first bit designates whether the remaining 47 bits are a physical interface
address or a multicast group identifier. One of the multicast addresses is reserved for
use as a broadcast channel. This suggests some form of address recognition will be
included on the Ethernet chip.

4. A 32 bit CRC is used instead of a 16-bit checksum, although a checksum is retained in
new software protocols [Xerox 81a].

Salplex is a multiplexed bus system developed by General Electric Ltd. which provides digital and
analog data communication and power distribution over a coaxial cable [Smith 80a]. The system is
designed to replace conventional wiring harnesses in busses, trucks, military vehicles, and eventually
automobiles. A prototype system has been installed in a Ford Escort and is currently undergoing test.

3 The eventual goal of this system is cost reduction by eliminating the conventional wire harnesses
used in these vehicles.

The system uses the coax shield to distribute power with ground return through the vehicle's
chassis. The equipotential field in the shield is claimed to reduce noise for data transmissions on the
inner conductor.

Data transmission takes place between data units which also manage up to 8 power loads or
sensors each. The typical automobile is seen as having approximately 40 loads and sensors, hence
will require 5 or 6 data units. Data units are currently composed of 3 custom SSI CMOS circuits and 2
standard ICs, but will eventually be replaced by a single LSI CMOS IC.

Access control is a combination of contention and priority. When the bus is free, any data unit can
seize control of the bus and transmit a packet that contains eight data words. Each data word either
reports on an attached sensor or commands a remote load. Analog levels are communicated by
varying the height of specific data bits. Once a data unit has transmitted, an integral timer prevents it
from transmitting again for a period sufficient to allow all other data units to transmit. A priority
mechanism allows designated loads, such as the break system, to achieve priority access to the bus.

2.3 CIRCULAR SYSTEMS

Introduction

This section discusses circular systems. The first subsection, "Common Design Principles,"
discusses techniques and problems which all circular systems have in common. The next subsection,
"Background," contains a brief discussion of the historical evolution of circular systems. Following

* these sections, the LNI system is described in detail, and a brief overview of each of the other systems
is given.
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Common Design Principles

The common design elements uniting the circular systems listed in Table 2.2 are their use of a
unidirectional medium and a circular topology. These systems must address many of the same
problems as are addressed in bus systems (e.g., isolation, host interface), as well as some problems
unique to their topology.

The main source of problems unique to circular systems is that a pure circular medium is unusable.
At the signalling level, an unbroken medium wouldn't be unidirectional; the signal would propagate in
both directions, resulting in multipath interference and endless propagation of every transmission.
This implies the need to "break" the medium at each interface and to insert an interface.controlled
repeater at the break. When the repeater is enabled, it enforces the unidirectional abstraction and
makes the medium continuous. When disabled, the repeater provides artificial endpoints to the
medium that can be used to sink existing transmissions and source new transmissions. The repeater

* function is typically implemented in the transceiver section of the interface.

The existence of repeaters creates several new concerns.

1. The transceiver receives Manchester encoded data and clock from the inbound side of
the medium, and data, clock, and control information from the interface. It must use

I these signals to generate an outgoing signal. In order to do this, it must have some

method for synchronizing the clocks of these signals.

2. Active repeaters add in-line delay to the medium; typically each interface will add 1 bit's
worth of delay. This delay is significant with respect to the inherent propagation delay of
the medium. For example, at 1 Mbps, a delay of 1 bit is equivalent to approximately 500
feet of medium.

3. The repeaters are active devices and as such are susceptible to failure due to power loss
or hardware component failure. Because the failure of any repeater renders the medium
discontinuous, and hence unusable, automatic bypass, backup, and other strategies may
be necessary to insure adequate medium reliability.

Thus the circular medium is actually used as a set of linear media. In some systems the control of
the medium continuity function influences the design of signalling and access control mechanisms; in
others it is restricted to the signalling level.

4l The conceptual model of the medium is different in circular systems. Because of the inherent
storage in the circular medium, several different bits of data are in circulation during transmission.
The interface algorithms typically view the medium as two independent channels: a bit serial input
stream and a bit serial output stream. At any given time, the interface must worry about processing
the input bit (if any) and generating the output bit (if appropriate).

Another aspect of the conceptual model is the amount of buffering in the medium. In actual
systems, the major element is the cumulative delay in all of the interfaces; the propagation delay is

negligible. Some control algorithms require that additional synthetic delay be added to guarantee
some minimum medium length.

Many different systems have been constructed to answer these concerns. In general, circular
systems are much more varied in approaches to access control and medium management than bus

4
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systems. Four design choices are the main source of the differences; the choices are nearly
independent and hence almost any combination can be found in in use. The choices are the
following:

1. What is the unit of medium allocation?

Two choices are variable size and fixed size message allocations.

Slotted systems view the medium as a continuous "conveyor belt" of fixed size slots.
Messages are constrained to be no larger than the slot size. This approach implies some
bandwidth overhead. Medium bandwidth is wasted by the use of long slots to carry short
messages; conversely a small slot size will increase the relative amount of message
header per byte of data.

Variable size messages are the more general approach and are usually more efficient in
terms of bits of overhead per byte transferred. A variable length system requires either
that the length of the data portion be included in the message header or that the length of
the message is determined by some other means, such as carrier sense.

Message chopping is a hybrid approach found in several systems. The basic idea is that
the transmitting interface divides the host's message into fixed size transmissions; the
receiving interface reassembles the message for delivery. Circuit-switching systems can

* be constructed using message chopping, a small transmission size, and some policy to
avoid medium hogging by a single interface.

2. How are messages written on the medium?

Transmit control in a circular system can be implemented in a manner analogous to the
CSMA protocols used in bus systems. The only proviso is that the delay in the medium
significantly increases the medium acquisition time and hence degrades performance
somewhat. CSMA schemes are used in several circular systems, but only for the purpose
of initializing the systems.

The strategies in circular systems have been oriented in favor of schemes that allocate
bandwidth in a controlled rather than probabilistic manner. Control information is passed
in the medium's bit stream for this purpose.

Slotted systems include slot formatting information and a bit which indicates whether the
slot is full or not in each slot. To transmit a message, an interface waits for an empty slot.
The message to be transmitted overwrites the current contents of the slot. Constraints
are often necessary to prevent a hogging of the medium. These usually are implemented
in the form of restrictions on the number of slots that can be used simultaneously by one
interface or restrictions on the percentage of empty slots that can be filled by a given
interface.

Systems using variable length transmissions need a different form of control. A slotted
system doesn't need to restrict the number of interfaces that can simultaneously transmit;
this control is a byproduct of the limited number of available slots and the full bit
indicators. In a variable length system, it is reasonable to assume that only a fraction of a
message will fit on the medium unless the ring is artificially lengthened. Thus these
systems will usually want to insure that only one interface transmits at a time.

Token systems limit the right to transmit to the single interface that possesses the token.
The token can be passed around the network by means of a control transmission. If the

* interface that has the token doesn't have a message to transmit, it passes the token to the
next interface. If the interface possessing the token has a message to transmit, it

S
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transmits the message and then forwards the token. In an idle network the token
circulates continuously; under heavy load, the interfaces get to use the medium
sequentially. Token systems guarantee fair sharing of the right to transmit; in order to

C guarantee a fair share of bandwidth, restrictions on message length are necessary. In
addition, precautions are necessary to insure that the token is not lost.

Another approach to controlling transmission rights is the insertion method. An interface
using this idea formats the data to be transmitted into a shift register and waits for a
boundary between messages on the medium. When the boundary is detected, the shift
register is "spliced" into the medium. Depending on the removal protocol, the shift
register is removed from the medium either when the original transmission returns to fill
the shift register or when the shift register becomes empty.

The insertion method has been used in both fixed and variable size message systems.
The design of such a system is very simple when a slotted protocol and return removal
are used; otherwise a variable length FIFO buffer is required. The maximum length of the
FIFO must be as large as the maximum size transmission.

3. How are messages removed from the medium?

In a circular system, messages must be removed from the medium by the action of some
interface. There are two possibilities: the destination interface can remove the message
as it arrives, or the interface that originated the message can remove it as it returns
around the medium.

Removal at the destination has the advantage of removing the message as soon as
possible. Because the message only uses some fraction of the medium's circumference,
multiple simultaneous transmissions are possible when the transfer paths don't overlap.
Although selecting compatible transmissions may be difficult, the aggregate throughput
can exceed the medium's signalling rate.

The destination removal strategy also has its disadvantages. Each interface must buffer,
and hence delay, the message until the interface can decide whether it recognizes the
message address. This will add several bit times of delay per interface. If the address is
corrupted by transmission error, the message may be prematurely deleted or, worse yet,
may never be recognized and deleted. Similarly, the interfaces must be sure to never
send messages to nonexistent addresses. Broadcast messages require that the message
be forwarded by all but the last of the destinations.

Solutions to these problems usually involve a message field that is used to keep track of
the age of a message; when the message gets too old it is deleted regardless of address.
In order for this to work, there must be some way for this field to get regularly
incremented, or the interfaces can use absolute timestamps and comparisons. One
simple solution to all these problems is used by the TRW network: it periodically discards
All data on the medium and restarts [Blauman 79].

When messages are deleted at the originating interface, the same identification problem
exists. Because of this problem, source deletion is usually combined with a transmission
control strategy that makes recognition simple. The simplest way is to guarantee that
only one transmission can be in progress at a time. In this case, no ambiguity is possible;
hence it isn't necessary to do address recognition, and hence there is no need to add
buffering and delay.

4 Regardless of the exact algorithm used, source removal has one fundamental advantage:
the source can verity correct transmission by examining the returning transmission as it is

.. ... .III-I . . .
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being deleted. If the transmission is damaged when it returns, then it was probably in
error when it passed through one or more interfaces; retransmission is indicated. If the
message returns undamaged, then the sender can assume that every interface on the
network at least had the opportunity to process the correct message. The only way for
this assumption to be invalid is for the message to have been damaged and repaired by
compensating transmission errors. Further reliability can be added to this scheme by
having all interfaces send negative acknowledgments in response to transmissions with
bad CRCs.

4. Is medium control centralized or distributed?

This question distinguishes loops, which are circular systems with central control, from
rings, which have distributed control. Depending on the system, control includes the
functions of bit synchronization, message transmission, message deletion, and error
recovery. Centralized control can be expected to predominate in situations where it is
important to avoid duplicated function to reduce cost or in a system where only one host

U can or should exercise control (e.g., a host accessing a loop of peripherals). Distributed
designs avoid a single point of failure and are advantageous in situations where the
remaining parts of a system wish to continue to function in the presence of failed
components. Because recovery may entail automatic reconfiguration, these systems
should be insensitive to the number and configuration of interfaces. Any subset of the

* total system's components should be able to cooperate in system initialization, normal
operation, and error detection and recovery.

Slotted systems are often centralized. The central controller, which may also provide a
host interface, generates the bit timing and slot formatting for the loop; individual
interfaces extract their clock signal frm the medium and assume that slot formats will be
present and correct. Only the central controller need worry about problems such as

Vf transmission errors, error crcovery, and out-of-phase bit synchronization between its
input and output signal.

Centralized control can extend to the allocation of transmission rights. In polleJ systems,
a central controller explicitly allocates the right to transmit to the other interfaces on the
loop. The central controller can also delete messages.

Token systems rely on the existence of a unique token to guarantee that transmissions
don't collide. The token is central control in a sense, but tokens can be easily replaced;
hence these systems are suitable for distributed control. Distributed control in a token
system is only a problem during token initialization and error situations; in these cases
control can't be allocated by the token. For example, if all interfaces detect token loss

* simultaneously, they may all try to create a new token simultaneously and fail due to
interference. Randomized retries solve this problem.

Insertion systems have been built with both centralized and decentralized control.
Variable length insertion systems usually require complicated enough transmission
systems so that there would appear to be little gained by centralization.

Background

Pioneering work in circular systems was done by three groups at Bell Labs.

* The first of these is a token scheme described by Farmer and Newhall in [Farmer 69]. As a result,
token systems are often called Newhall loops. The system used distributed control for normal

-



6 CURRENT LOCAL NETWORK SYSTEMS 41

operations but included a "loop supervisor" node for timing control and error recovery. Out-of-band
signalling (i.e., special analog levels with no meaning in the digital bit stream) is used to mark
message boundaries and to pass the token.

The second effort was reported in [Pierce 72a] and [Pierce 72b]. This was a slotted system with
destination removal. As a result, slotted systems are often called Pierce loops.

The third system is Spider [Fraser 75]. This system has a very centralized design: the loop is
managed by a controller that includes a Tempo Corp. minicomputer. Messages between hosts on the
loop are transmitted to the Tempo and then forwarded to their ultimate destination. This system was
used in production as early as 1972, and grew to "11 computers of 5 types" by 1975.

These systems led to several other circular systems. The following sections discuss in detail the
family of interfaces that started with the RI at the University of California at Irvine [Farber 72b];
following this discussion, the other circular systems from Table 2-2 are summarized.

DCS RI, UCI and MIT LNI, and NS LNI

This section describes a family of interfaces. The three different interfaces are used in different
networks: the Ring Interface (RI) is used in the Distributed Computer System (DCS); the UCI and MIT
Local Network Interface is used in the MIT Laboratory for Computer Science and elsewhere; the NS
LNI is used in a network at UC Berkeley. The discussion first traces the evolution of features, and
then covers the operation of the most recent member of the family in detail.

DCSRI1

The Ring Interface (RI) was designed to support message communication for the Distributed
Computer System (DCS). The DCS uses messages for all forms of interprocess communication and
uses process names rather than location to specify destinations. Accordingly, the RI has full.duplex
DMA data paths and a prompt acknowledgment facility to support the expected heavy use of
messages and provides a mechanism for recognizing process names in the interface hardware.

The RI transfers messages around a ring composed of two twisted pairs at 2.2 Mbps. The message
format used by the RI is shown in Figure 2-4. The Origin Process Name (OPN) and Destination
Process Name (DPN) are each 16 bits in length, corresponding to the length of process names in
DCS. Destination addresses are recognized by the name table, an associative store in the RI. The

4 name table has space for 16 names. The acknowledgment feature is implemented using fields
appended to the basic message during transmission. The detailed operation of these features is
described in the LNI section.

16 16 16
4 DP-, OPN length data

Figure 2-4: RI message format

UCI aad MIT LNI

In 1976, an effort began at UCI to develop a new interface based on the RI. The new interface,
called the Local Network Interface (LNI), was designed to operate with the PDP-1 1 and to satisfy the
following goals:
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1. It was expected that the LNI would eventually be implemented as an LSI chip or chip set.
Thus although the actual implementation was done in TTL, the design was based on LSI

( constraints arnd capabilities, rather than those of TTL. The major impacts of this decision

were the use of bit serial data paths throughout the interface and a modular structure
composed of many small state machines controlled by PLAs.

2. The 16-bit size of names was felt to be too small. Names were lengthened to 32 bits.

3. Experience with DCS and planning for new types of hosts suggested that it was difficult to
predict the number of name table entries that a system would need. Whereas a large host
or gateway might need many names, a less capable host such as a terminal would only
need a name or two. Given the LSI goal, the name table was designed so that a minimal
name table could be implemented on the LNI main chip and extended indefinitely by the
addition of a chain of name table expansion chips external to the main chip. Eight names
were built in each of the TTL interfaces.

4. Construction of broadcast channels required the use of one name table entry per channel
per process using the RI scheme. The ability to mask off portions of the name
comparison was added. Masks were included in both the message text and in the name
table entries.

5. The host interface section of the LNI was designed to provide a clear partition between
the part specific to the PDP-1 1 and the part deemed necessary for any host. An attempt
was made to generate a small yet general interface between the two.

6. Because the LNI would eventually be used with a variety of hosts, it was not clear how
much buffering would be required in the DMA data paths, or whether DMA interfaces
would be possible in all situations. Hence, the LNI was designed to include an easily
expandable FIFO in both the receive and transmit data paths.

7. The line signalling protocol used by the RI included separate clock and data lines and
used out-of-band signalling. The LNI was designed to use a single Manchester encoded
signal.

8. The analog signalling system was redesigned to provide ground isolation between LNIs
and to improve the permissible distance between interfaces. A data rate of 1 Mbps was
adopted for the prototype.

9. Comparison between the functionality of the Ethernet interface and the RI revealed that a
great deal of commonality exists. An attempt was made to isolate and modularize the
differences so that the LNI might possibly be used to implement a contention protocol.

* 10. Use of the DCS system had revealed that the prompt acknowledgment protocol was
inadequately protected against transmission errors. Error detection facilities were added.

This version of the LNI was designed and initially debugged by UCI and was adopted by MIT's
Laboratory for Computer Science (LCS) for its local network. It is currently in use at LCS and at
UCLA. The LSI version was never built.

NS LNI

The third generation of this family is the product of Network Systems (a California company, not the
Network Systems Corp. which built the HYPERchannel). The design differed from that used in the

* UCI and MIT LNI in the following ways:
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1. The transmission speed was increased to 2 Mbps.

2. The PDP-11 interface, particularly the DMA, was redesigned to simplify host
programming. allow for the higher data rate, and eliminate several persistent problems in

, UNIBUS arbitration.

3. In the RI and first LNI, the name table binds message address specifications to hosts.
This operation is then essentially repeated by the host in order to bind the message to a
process's connection state information.

In order to unify these operations, each name in the associative memory was expanded to
allow storage of a pointer to the connection state information. Facilities were added to
allow the host to retrieve this information following message reception, and to allow the
host to query and maintain this information.

4. The default name table size was increased to 16 names.

q A block diagram of the LNI is shown in Figure 2-5. The dotted lines partition the LNI into its main
sections. The top section is the medium interface. The input and output sides of the LNI are the
middle sections on the left and right, respectively. At the bottom of the figure, the host interface is
partitioned into the DMA and the status and control sections. Only the main data paths are shown;
with the exception of the paths between the FIFOs and the DMA and the connections to the UNIBUS,
all paths are bit serial. The following sections describe these sections and the use of the LNI in
greater detail.

LNI Medium

The LNI medium and medium interface are shown as the top section of Figure 2-5. The medium is
twisted pair.

The line receiver is a high-speed opto-isolator. Opto-isolators are current mode devices that are
powered by the incoming signal, so the matching line driver is selected for high current drive.
Isolation of 3000 volts is guaranteed by the opto-isolator; each interface uses the local system ground
as its reference for transmissions. A Manchester code is used for signalling.

The central element of the medium interface is the clock extractor and bit selection logic. This
logic looks to the medium likes two bits of delay. The first bit of buffering is available to the input side
of the LNI for inspection or modification; the second bit is for use by the output side. In order to make
these bits useful, the medium interface generates clocks for the input and output sides which are
synchronized with the respective data bits when these bits are present and run free otherwise.

These clocks obey the following conventions:

1. When no data is present on the ring, the input and output clocks should still run so that
the LNI can respond to host commands.

2. When a transmission arrives, the input side clock should synchronize to the incoming
data.

3. When the transmission is to be repeated through the LNI, the output clock must
synchronize to the input clock.

4. When the LNI originates a transmission, the output clock must run at 2 Mbps with as
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Figure 2-5: LNI block diagram

constant as possible a rate, while the input clock must track the returning data stream.
* The returning data will probably be out of phase with respect to the transmit side, and will

also exhibit phase jitter.

Although it would seem to be simpler to use a single clock synchronized to a continuous data
stream, that approach has practical difficulties. If the data stream frequency is controlled by a single
reference, then all other units can phase lock to the reference, and everything will work. However,
this creates a unique node and a single point of failure. If no reference is used, then the frequency of
the signal will tend to drift due to noise and component differences. Any attempt to limit the amount
of drift will cause bit loss when the limits are reached. The adopted scheme resolves these difficulties
by letting each interface refer to the frequencies of its own transmissions; the practical difficulty with
this approach is insuring a smooth transition between references.

The data selection and clock control system of the LNI consists of a single PLA controlled state
machine driven by a 16 MHz crystal controlled clock.
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On the input side, the 16 MHz clock allows the PLA to sample the input data stream at 8 times the
data rate, or 4 times the signalling rate of the Manchester code. The state machine simulates a

. phase-locked loop to insure accurate data recovery in the presence of frequency and phase jitter.
When no input carrier is present, the input side is supplied with a clock generated by dividing down
the 16 MHz reference.

The output clock is generated by dividing down the 16 MHz reference. When the output side is
transmitting, or no input carrier is present, the 16 MHz clock is divided by 8 to provide a stable 2 MHz
clock. When the output side of the LNI is functioning as a repeater, the output clock must track the
frequency of the arriving signal. When sampling detects that the input side is starting to get ahead of
the output, then the output divisor is set to 7 to speed up output. A slow input side is compensated for
by using an occasional divisor of 9.

This scheme avoids the drift problem because clock is independently generated for every
U transmission; even if drift occurs, it does so for only one trip around the medium. The only exception

to this is a token that circulates continuously. This turns out not to be a problem because of the short
length of the token.

LNI Access Control
I

The LNI access control protocol is designed to send messages around the ring using the medium
as a simple bit serial channel. The LNI that originates a message also deletes it. A token passing
system insures that only one LNI transmits at a time, although the number of messages in transit is
limited only by the length of the ring. If the ring is very long, messages circulate as a connected train
that is terminated with the token. If the ring is short, the train can hold only a fraction of a message,
and the head of a message will be deleted before the tail is finished being transmitted.

Two 1O-bit synchronization patterns signal message boundaries. Both patterns start with a unique
bit pattern (8 ones) that is called the epoch. In order to insure that epochs don't occur in data, all
messages are encoded using a bit-stuffing protocol similar to IBM's SDLC [Donan 741. The bit after
the epoch distinguishes between the two synchronization patterns. The last bit of the
synchronization pattern is always zero so as to reset the bit-stuffing system.

The first of the synchronization patterns is called the connector. A connector is present before all
messages and signals the start of a message.

The other synchronization pattern is the token. The token denotes the end of a message train.
Figure 2-6 (A) shows an example of a message train consisting of two messages; if no messages are
present, the train is simply a token.

When an LNI wishes to transmit, it waits for the token to arrive. As the token passes the LNI that
wishes to transmit, the output side changes the bit that distinguishes the token from a connector.
Following the newly created connector, the LNI outputs the message and packaging information
described below in the "LNI Buffering and Formatting" section. After the packaged message, the
output side generates a new token.

No LNI can be indefinitely locked out of the medium by heavy traffic load. The maximum time that
an LNI has to wait for the token, and hence the right to transmit, is equal to the time required to
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complete one ring circuit plus the time required for all other LNIs to transmit one maximum length
message. Although the maximum size message the LNI will transmit is 64K bytes, a much smaller
maximum will usually be required by the host software to simplify buffer allocation. The DCS system

C has 3 hosts, a 1 kilobit maximum packet size, and negligible circuit time. At a 1 Mbps data rate, this
yields a worst case access time of 2 milliseconds.

When the output side begins to transmit, it disables the repeater between the input and output
sides of the LNI. The repeater stays off until the input has discarded one message, then it is
reenabled.

Connector IPackaged message 1 Connector Packaged message 2 Token

(A) Message train format

16 1 1 2

Logical message CRC N, A MAEC

(B) Packaged message format

32 32 I 32 1
DPNM DPN OPN Length data

(C) Logical message format

Figure 2-6: LNI message formats

Transmission error handlinq

Errors in the transmission system may destroy or create connectors and tokens, or alter message
data.

The simplest error is one in which the token is destroyed. This condition is identical to that
encountered when the ring is first started.

When a host queues a message for output, it also starts a watchdog timer. If the token is destroyed,
the message is never output, and the timer goes off. The host then issues a special output command

* to the LNI that forces transmission to begin without waiting for a token.

Note that several LNIs may attempt to force the token simultaneously. If this happens, the tokens
will either destroy each !Iher or start two separate message trains.

If the tokens destroy each other, the timeout sequence repeats. If the timeouts are different in each
host, the token will eventually be restarted. Essentially, the LNI operates in contention mode until the
token is restarted.

Il
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The situation in which multiple trains coexist is resolved by the same mechanism that deals with
damaged connectors. When a message is transmitted, the LNI that transmitted the message attempts
to verify that the message it deletes is the same as the message it transmitted. If not, it deletes two

_ messages.

Without comparing the entire message text, it is impossible for this comparison to be totally
accurate, and it is undesirable that token restart be invoked every time a transmission error occurs.
Instead, the comparison is restricted to comparing the CRC transmitted with the message against the
CRC in the returning message. (Actually, the check also depends on the accuracy of the message
length field in the returning message since it is used to identify the position of the CRC in the
returning message.)

If the CRCs don't match, or if the returning message contains an unexpected epoch, the double
deletion mechanism is invoked.

LNI Buffering and Formatting

As illustrated in Figure 2-6, the LNI can be thought of as having three levels of message format:

* 1. The message train format

2. The packaging format

3. The logical message format

The message train format was described in the LNI access control section. The other two formats

and the buffering system are described in this section.

The looical messaae format

The logical message format is composed of the message fields that are seen by the sending and
receiving hosts; it does not include the packaging or access control fields added to the message by
the LNI during transmission. These fields are shown in Figure 2-6 (C).

The data field is the message text. The LNI places no restriction on the number of bytes in the data
field other than the maximum byte count that can be represented in the message length field (65535
bytes).

The Origin Process Name (OPN) is the name of the process that sent the message. The Destination
Process Name Mask (DPNM) and Destination Process Name (DPN) fields specify the destination of
the message. The DPN and DPNM fields are compared against the name table of every LNI as the
message circulates around the ring. Those LNIs that recognize the destination attempt to copy the
message as it passes.

When a DPN and DPNM are compared against a name table, a match condition is recognized if
one or more of the name table entries match the DPN and DPNM combination. Each name table entry
is also composed of a 32-bit name and a 32-bit mask. Comparison is done one bit at a time, using the
corresponding bits from each of the four fields. For match to occur, all bit positions must match. For
a given bit position to match, either the mask bit must be on in either the DPNM or the name table
mask or the name bits must be equal.
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* - In the case where a message is addressed to a unique process name, both of the mask fields will be
zero. A message whose DPNM is all ones will match any name table entry. A name table entry with a
mask of all ones instructs the LNI to attempt to copy all messages on the ring.

The oackagina format

The packaged message format is shown in Figure 2-6 (B). A packaged message consists of the
'* logical message supplied by the host and fields added by the LNI to detect transmission errors and to

implement the prompt acknowledgment facility.

: CRC

The CRC is a conventional 16-bit CRC that will detect all single-bit errors and most multiple-bit
errors. The CRC field is generated by a 9401 chip in the output side of the LNI ("CRC generate" in
Figure 2-5) whenever a message is transmitted. The CRC covers the logical message fields. The
input side uses another 9401 to check the CRC of all arriving messages ("CRC check" in Figure 2-5).

The input side compares the CRC it calculated with the CRC imbedded in the message. The result
of this comparison is reflected in the input status presented to the host with the message. If the
comparison failed, the usual host action is to discard the message.

When the output side transmits a message, it uses the input side CRC comparison for the deleted
message to determine whether the transmission is successful. The result is presented in the output
side status that accompanies completion of the transmission. If an output side CRC error is detected,
the usual host response is to retransmit the message.

gLow-level acknowledaments

The match and accept bits in the packaged message format implement the prompt
acknowledgment facility of the LNI. They are shown as M and A in Figure 2-6 (B). Both of these bits
are set to zero when the message is transmitted.

As the message circulates around the ring, it is processed by all of the input sides of all of the LNIs
on the ring. Each of these input sides matches the DPNM and DPN against the entries in the attached
name table. This matching operation occurs for all messages on the ring, regardless of whether the
input side has been enabled or not. If the input side is enabled, and the DPNM and DPN match at
least one of the name table entries, then the LNI attempts to copy the message. The copy attempt
may fail for several reasons: bad CRC, DMA overrun, unexpected token, etc.

Input sides that recognize the message address use the match and accept bits to signal the
success or failure of the copy attempts to the transmitting LNI. Input sides set the match bit if they
recognize the DPNM and DPN, but can't copy the message. Input sides set the accept bit, if they

* recognize the DPNM and DPN and can successfully copy the message. Note that more than one LNI
may want to set either of these bits; the setting operation is a logical OR.

When the message cc:npletes its trip around the ring, the state of the returning match and accept
bits is recorded and reflected to the host with the output status.

The host interprets these bits to determine the results of the transmission. The four possible cases
are shown in Table 2-3.
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Ta" 's 2-3: Match/accept results

Match Accept Meaning

0 0 The message was addressed to a process that
does not exist; no LNI recognized this message.

o 1 The message was successfully transmitted to one or
more processes; at least one LNI recognized and
copied the message.

1 0 No process received the message; however, at least
one LNI recognized the address in the message.

1 1 This message was addressed to processes in at least
two hosts; at least one LNI was able to copy the
message, and at least one LNI was unable to
copy the message.

'6 Typically the host retransmits messages that return with the match set. Duplicates are eliminated

in the host by the sequencing protocol.

Match/acceot error orocessina

The match and accept bits provide a reliable method of driving the transmit sequencing protocols
when transmission errors are absent. The possibility of transmission errors demands that further
steps be taken to insure proper interpretation of the match and accept bits.

When a returning message is damaged, the match and accept bits must be ignored. For example,
a transmission error may have altered the message address. The damaged address could have
resulted in the message missing a desired destination and being copied by an undesired destination.
No harm is done because the improper destination will discard the message due to the CRC error,
and the source will retransmit.

A more difficult problem is raised by the possibility that the match and accept bits may themselves
be damaged by transmission error. In the original RI, this was a problem. Accordingly, the LNI design
goals included the protection of these bits.

One alternative was to move the match and accept bits in front of the CRC, so they could be
protected by the CRC. This would mean that the CRC would have to be recomputed every time the
match and accept bits were altered.

One problem with this approach is the posibility of a damaged message. In this case, the LNI
shouldn't change the CRC to a correct value; this would destroy the effectiveness of the CRC
mechanism. The only appropriate choice is to force the CRC to stay incorrect.

Unfortunately, the CRC error isn't detected until the last bit of the CRC is processed. Hence, either
we reduce the effectiveness of the CRC to one bit in certain cases, or we must increase the amount of
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buffering, and hence delay, in each LNI to allow modification of more CRC bits. These choices were
unacceptable.

The adopted strategy was to introduce an error check field specifically for the match and accept
i bits. (MAEC in Figure 2-6 (B)) The MAEC field is the match and accept bits in complemented form.

When an LNI changes the match or accept bit, it also changes the appropriate bit in the MAEC
field. If the MAEC field is inconsistent with the match and accept bits, the update algorithm creates
a new inconsistent state.

This system catches all single-bit errors, and all errors due to a burst of ones and zeroes. Other
burst errors will probably destroy the token or connector that must immediately follow the MAEC field
and result in a detectable framing error. While this system is less than perfect, it represents an
improvement of several orders of magnitude over the unprotected match and accept system.

LNI bufferino

Aside from the single byte of buffering necessary for serial-to-parallel conversion, message data is
internally buffered by the LNI in two symmetric FIFOs: one for input, and one for output.

These FIFOs partition the data handling functions of the LNI. On the host side of the FIFOs, data
* transfer is parallel and oriented towards the asynchronous behavior of the UNIBUS; on the medium
*side, data transfer is synchronized to the flow of data on the medium.

The FIFOs also separate two control domains. The medium side of the interface "the LNI side,"
and the host side of the interface "the DMA side," each have independent control and status
interfaces to the host and don't coordinate their internal activities. The separation is complete in
regard to the abstract operation of the LNI, and nearly so with respect to the actual implementation.

Messaae receotion

Message reception is controlled by the input LNI and the input DMA. When enabled by the host, the
input side waits for a message whose DPNM and DPN are recognized by the name table.
Unfortunately, the input side has to receive the first eight bytes of the message (the DPNM and DPN)
before it can know whether the message is to be received or ignored. When enabled, the input side
buffers the DPNM and DPN of all messages in the FIFO; if the name table fails to recognize the DPNM

* and DPN, this information is purged. Until this decision is made, the DMA is inhibited from accessing
the FIFO. If the DPNM and DPN aren't recognized, the FIFO is cleared and the input side waits for a
new message. If the DPNM and DPN are recognized, all following data bytes are copied into the FIFO
until either the message length is exhausted or an error is detected.

As the input side copies the message, it enters data bytes into the FIFO at 4 microsecond intervals.
If the message size exceeds 64 bytes, the FIFO can't hold the complete message, and hence the host
must empty the other end of the FIFO before an overrun occurs. The rate at which data must be
removed from the FIFO is constrained by message length and the latency of the removal process in
response to the arrival of a message. Basically, the FIFO allows the removal process to trail the arrival
of message data so long as the lead never exceeds 64 bytes.

On the host side, data can be removed using either of two methods: programmed I/0 and DMA.

6
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Programmed data transfer requires host intervention for each byte of data that is transferred; the
host acquires the next data byte by referencing the input data memory location. This approach is
usually unsatisfactory due to its low data rate and the large amount of host attention required.

V" DMA transfer requires host intervention only for the initial setup; the host specifies a starting
ii address and a maximum length before enabling the DMA. The DMA then attempts to empty the FIFO

into the specified buffer. If the DMA gets ahead of the message data, it simply waits until a new byte
becomes available through the FIFO.

Note that in each transfer method the completion of message reception is signalled by the LNI side
of the interface when the last byte of the message has been placed in the FIFO; the message may not
be completely transferred into the host's memory until some time later.

Messaae transmission

On the transmission side, the roles of the host and the medium are reversed; the host typically fills
the output FIFO before initiating transmission, and then attempts to keep the FIFO full until the
complete message is transmitted.

The ability to preload the FIFO before initiating transmission means that the host software can
obtain the message header from a separate source rather than requiring it to precede the data
section of the message. This ability can often be used to avoid needless copying of data into system
buffers.

LNI Host Interface

The LNI hardware that implements the host interface is divided into two sections: the memory
locations supported by programmed I/O, and the hardware used to generate interrupts and perform
DMA. The UNIBUS protocols follow a similar split in that all UNIBUS activity involves a master device
and a slave device. The master is responsible for gaining access to the UNIBUS and controlling the
transfer. The slave merely obeys the commands issued by the master. When the LNI performs
programmed I/O it is the slave; DMA and interrupts require the LNI to become the bus master. Hence
the programmed I/0 part of the LNI is minor in terms of complexity and part count; interrupts and
DMA are the major part of the interface cost.

From the viewpoint of the host program, the programmed I/0 locations are the only visible parts of
the interface; DMA and interrupts occur asynchronously and are seen only by their side effects. The
programmed I/0 registers are divided into five sets in a manner that parallels the logical organization
of the interface:

1. Input LNI

2. Output LNI

3. Input DMA

4. Output DMA

5. Name table

The input LNI section contains two registers: a command and status register (CSR), and a data
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register. The LNI input CSR contains command bits that allow the host to enable message input and
input interrupts, and status bits that report errors and the current state of the input side. The LNI
input data register allows the host program to access the input FIFO.

The input DMA contains a CSR to control DMA activity, as well as registers to set the input DMA
address, length, and the interrupt vector for the input side.

The LNI output and output DMA register sets contain the analogous CSRs, data register, and
address specifications.

The name table interface allows the host to specify the names stored in the name table, and to
associate connection state information with each name. Each entry contains the following
components:

*1. A 32.bit mask

2. A 32-bit name

3. A 64-bit user field that contains the information to be associated with this name

4. A full bit that denotes whether this entry is in use

* 5. A select bit

6. A mark bit that is set in all entries which matched the last message received by the LNI

The host software accesses name table entries in programmed I/0 mode through a 16-byte name
table window and the 1 -byte name table CSR. By means of commands issued to the name table CSR,
the host causes name table entries to be copied into the name table window and vice versa. While in
the window, the data can be manipulated using standard processor instructions.

The host selects the entry that is copied into the window by means of one of the following
commands:

1. Select by empty

2. Select by mark

3. Select by internal match (selects all entries that match the current contents of the
window)

* 4. Select next

The first three of these commands set the select bits of all name table entries based on the named
consideration. Following the selection process, a selected entry is copied into the window. The
select next operation resets the select bit of the entry currently associated with the window and
searches for another entry with a set select bit. Thus the select next command allows the host to scan
through all selected entries after one of the first three select commands has selected a subset of the
name table. Because any of these commands may fail to select an entry, a bit is provided in the name
table CSR to indicate whether any entry is currently selected.

One use of this mechanism is the processing of an input message. In this case, the host software
0 issues a select by mark to select all entries which matched the message. Using the attached

connection state, the software can determine where to route the message. If the message is a
broadcast, select next commands can be used to find all names that match.
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The actual update of name table entries Is handled by three other name table commands:

1. Set full
C 2. Set empty

3. Write back

The first two commands are used to control the setting of the full flag for the currently selected
entry. The write back command writes the contents of the name table window into the currently
selected name table entry. All of these commands are interleaved with the matching of names that
takes place whenever a message passes the LNI. In order to insure predictable operation, name table
commands are not processed while a message name is being matched against the name table.

Other Circular Systems

!O&N
The Distributed Loop Computer Network (DLCN) is a research effort at Ohio State University that

includes the design of network hardware, the Distributed Loop Operating System (DLOS), the
Distributed Loop Data Base System (DLDBS), and several other projects [Liu 78, Babic 77]. The
planned prototype network is to include a 370/168, a DecSystem 10, and several minicomputers.

The proposed network interface is based on a 2900 bit-slice microprocessor and a variable length
insertion protocol. The microprocessor controls transmissions and is designed to allow higher levels
of protocol to be imbedded in the controller. The interfaces include a special variable length shift
register that can be inserted into the medium.

The insertion protocol allows an interface to output a message between already circulating
messages so long as the interface has sufficient unused buffering in its shift register to "expand" the
ring to include the new message. Once transmitted, messages are normally removed by the
destination interface. The exception to this is for broadcast messages, which are copied by all
interfaces and which are removed by the transmitting interface after one circuit of the ring.

Message transmission uses up shift register space if another message arrives while the interface is
transmitting. This space is reclaimed when the interface receives a message, or during periods in
which there is no traffic from upstream. One of the advantages of this scheme is that the amount of
space available in each interface's shift register tends to enforce a low-level flow control. Assuming
that traffic among interfaces is fairly evenly distributed, an interface that is constantly transmitting will
use up its shift register space and be forced to a lower level of activity, whereas an interface that is
only lightly loading the ring will not be similarly restricted. Even the interface that wants to transmit
heavily will not be restricted until free space on the medium becomes scarce.

The claimed advantages of the variable length insertion scheme are that a message can begin
sooner, and hence complete sooner, and that this system delivers greater throughput than other ring
systems. Simulation studies [Liu 781 support these claims based on a Gaussian message size
distribution, although they do not distinguish between gains made possible by the insertion scheme
and gains made possible by destination removal.

In any case, these simulations verify the intuition that destination removal will approximately double
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the throughput of a saturated system and that quite possibly the shift register insertion scheme allows
for saturation to be maintained.

C (Under light load the situation isn't as clear. The simulation results assert that the DLCN system is
superior, in terms of delay, at any load. But in very lightly loaded situations, it would seem that the
additional delay introduced by the address recognition needed for destination removal would be
greater than the gains by simultaneous transmissions. Using the DLCN message format described in
[Liu 78], each interface will need to buffer 24 bits of data before it has the complete destination
address available. The simulation studies are based on a 10 interface network, so an average delay of

3120 bits seems inevitable. The delay in a token loop might be 3 bits per interface, hence a total
latency of 30 bits and an average token latency of 30/2 + token length or 25 bit times is to be
expected. Hence whenever only one message is in transit the DLCN approach must lose.

Other disadvantages of the DLCN scheme are related to its operation in the presence of errors.

Destination removal requires some mechanism fc r the removal of messages whose address
becomes unrecognizable due to transmission errors. The DLCN solution is to divide the ring into two
halves. Each interface belongs to one of the two halves (say west vs. east), and all interfaces of one
half are contiguous. A two-bit counter in the message format is initialized to zero when the message
is transmitted, and a one-bit field is set to signify the origin half of the message. Whenever the origin
bit is found to be different from the half identity of the interface that is currently forwarding the
message, the field is toggled and the count is incremented. This scheme increments the counter
whenever the message crosses an east-west or west.east boundary. When the counter reaches 3,
the message is automatically deleted.

,- The second difficulty with the scheme involves the fact that the right to transmit depends on an
interface's ability to empty its shift register and the fact that this ability is only indirectly related to the
amount that the particular interface is transmitting. Asymmetric traffic patterns may result in an
interface losing its ability to transmit, even if it is not sourcing much traffic. For example, consider a
segment of a DLCN loop containing three consecutive interfaces. If the most upstream interface is
sourcing heavy traffic directed at the most downstream interface, neither of these two interfaces nor
any of the interfaces outside of the subset has any difficulty in emptying their shift registers. Yet the
interface in the middle of the subset may have a great deal of difficulty. The DLCN solution to this
problem is to allow each interface to transmit special flow-control messages to other interfaces that
seem to be hogging bandwidth. These messages cause the addressed interface to cease transmitting
for some period of time and hence allow other interface's shift registers to drain.

The available evidence suggests that this is at best an academic problem since few hosts could
conceivably source enough traffic to make it an actual problem. However, the scheme to address it
seems adequate, if a bit complicated.

Cambridae loo

The Cambridge loop is a local network built at the Computer Laboratory at the University of
Cambridge in England. The network design began in 1974, and has progressed to a fully operational
system that includes about a dozen hosts of eight types [Wilkes 79].

* The network is based on a slotted loop protocol that includes two special interfaces: a monitor
station that generates the slots and recovers from errors and a logging station that logs error reports
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from all interfaces on the loop. Messages between hosts are conveyed using a sequence of slots;
once a message starts, the receiving interface ignores slots from all other interfaces. Each slot
carries a fixed length packet consisting of the following fields:

1. A full bit that signals whether the slot is occupied

2. A monitor bit used to detect infinitely circulating slots

3. An 8-bit source address

4. An 8-bit destination address

5. A 16-bit data field

6. A 2-bit response field

Message transfer thus involves a high overhead. Wilkes [Wilkes 79] estimated that a 10 Mbps
qmedium rate yields at best a 1 Mbps data rate.

When an interface wants to transmit, it waits for an empty slot. Upon finding an empty slot, the
interface sets the full bit, fills in the source, destination, and data fields, and sets the response field to
all ones. The slot circulates around the loop. Every interface sees the slot, and the interface that
recognizes the destination can take three actions:

1. It can accept the data.

2. It can refuse the data because it is already receiving a message from another interface.

3. It can refuse the data because it is "busy," a condition that includes exhaustion of
buffers, host not ready, etc.

The destination interface clears one or both of the response bits to distinguish among the three
cases. Eventually the slot returns to the transmitting interface. The transmitting interface resets the
full bit and passes on the returning value of the response code to the message layer. Interfaces
depend on there being a fixed number of slots in the loop to detect the returning slot; hence most
slots get deleted even if transmission errors occur. In order to fairly distribute the loop's bandwidth,
interfaces are prohibited from refilling returning slots.

In some of the Cambridge interfaces the message-chopping protocol is included in the interface. In
those interfaces an 8X300 microprocessor interfaces to the host and performs these tasks. In simpler
interfaces, the host is interrupted after every transmitted and received slot. All interfaces include an
address register that determines which slots are accepted and which are refused. If the address
register is all ones, then slots from any source are accepted; otherwise only slots from the specified
address are accepted, and all others are returned with a refusal response code.

Several mechanisms are included in the Cambridge system to enhance its reliability and
maintainability:

1. The loop medium consists of several wires. In addition to the data bits, power and bypass
signals are distributed. The separate power lines allow the loop to function even if the
host loses power. The bypass signals allow the monitor station and other control points
to reconfigure failed interfaces out of the loop.

2. As an added check to the full slot deletion mechanism, the monitor slot sets the monitor
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bit in every slot that passes through the monitor station. If the monitor station receives a
slot whose monitor bit is set, it resets the full bit of the slot and reports the error to the
logging station.

3. Whenever any interface detects a slot with bad parity, it corrects the parity and sends a
single slot error message to the logging station. The logging station can deduce the point
in the loop at which the error originated by examining the source address of the error
report.

4. Whenever an interface fails to receive slot formatting information, it transmits a
continuous stream of slots to the monitor and logging stations. Thus if the loop becomes
discontinuous or if an interface fails, the monitor station, or any interface downstream
from the break, can determine the location of the failure by noting the identity of the
interface that is sourcing this stream.

The interfaces without the onboard message buffer consist of a 16 IC transceiver and a 66 IC main
interface. The Cambridge loop interface is currently being reimplemented using the Ferranti
uncommitted logic master slice chips [Smith 80b]. When complete, these LSI parts will allow a
Cambridge interface to be constructed using 2 LSI chips and 2 external shift registers. A commercial
version of the interface will reportedly cost $2000 per interface for a 15 station system [Smith 80b].

* PRIMENET

PRIMENET is a token-based ring network built for use with Prime computers [Farr 77]. The basic
interface includes a full-duplex DMA, a full packet buffer in the interface, and relay logic that allows
the interface to be bypassed and looped back on itself.

The medium is either coax or fiber optics. The medium data rate is nominally 10 Mbps, but can be
reduced to increase the permissible distance between interfaces. A group encoding scheme is used
to encode every 4 bits of data into a 5-bit field for transmission; 5 of the other 16 codes are reserved
for use as synchronization patterns (e.g., the token).

The host presents a packet to the interface via the appropriate DMA registers. The packet format
includes 8-bit destination and source addresses and up to 256 16-bit words of data. Of the 256
addresses, 247 are reserved for use as physical interface addresses, one address is reserved as a
broadcast address received by all interfaces, and the remaining addresses are reserved for
unspecified diagnostic functions.

When the interface finishes transferring the packet to be transmitted into the interface's packet
buffer, it waits for a token. Upon seeing the token, the interface transmits the packet followed by an
acknowledgment field and a new token. Interfaces that recognize the packet address set bits in the
acknowledgment field that indicate whether the packet was correctly copied. The transmitting
interface deletes the packet as it returns. If the acknowledgment field indicates that an interface

* missed the packet, or if the packet returns corrupted, the interface will initiate an automatic
retransmission. Up to seven such retransmissions are attempted before the interface gives up and
signals failure to the host.

The Ring Century Bus (RCB) is a high-speed slotted loop designed by the Toshiba research and

Sz
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development center. An initial system based on 10 Mbps links was implemented in 1976, and a 100
Mbps system using fiber optic links was begun in 1978 [Okuda 78].

I The basic architecture of the RCB consists of a dual fiber optic loop that links interfaces and a
control station. One of the loops is used for data transfer, and the other loop is used by the control
station to control data interfaces.

The control station generates the framing pattern on the data loop and monitors the data stream to
detect failed interfaces. If the control station detects a failed interface, it issues commands on the
control loop that bypass the failed station.

The framing pattern on the data loop consists of 8 slots, each corresponding to a separate TDMA
channel. The slot format includes 8 bit source and destination addresses, a 20-byte data field, and
several flags. An interface with a message to transmit scans slots on the data loop until it finds a free

U slot. It then fills the slot with the first 20 bytes of the message. The remaining parts of the message
are transmitted 20 bytes at a time over the same channel. Once the entire message has been
transmitted, the interface marks the channel as free. First packet, last packet, and acknowledgment
bits synchronize the receiving and transmitting interface.

* Thus a given interface can never use more than one eighth of the bus bandwidth at a time. After
discounting the slot overhead and one-eighth bandwidth factors, the aggregate data rate per channel
meets the 8 Mbps design goal for a 100 Mbps loop.

TRW

Researchers at TRW have built a ring network specifically designed for use with a high-speed
(more than 100 Mbps) fiber optic medium [Blauman 791. The following design criteria were used:

1. The network must not have any distinguished nodes that constitute a single point of
failure; network growth should be possible simply by adding a new interface to the ring.

2. Address recognition in the interface should include functional addressing as well as
physical addressing.

3. Because of the high speed and very low error rate of the medium, error detection and
protocol overhead are of minimal importance.

4. The high speed of the medium relative to the computer elements necessitates steps to
partition the medium's bandwidth into multiple channels the computer elements can keep
up with.

5. The design should minimize and isolate the parts of the interface that must run at line
speed because of the higher cost of the required ECL components.

These criteria led to the development of "labeled slot multiplexing," a transmission protocol that
combines a fixed-size slot-insertion system, a message-chopping protocol, and prompt
acknowledgments into a system which allows for the transfer of arbitrary length messages between
hosts.

Each interface is composed of two parts: a high-speed line interface for the slot protocol and a
processor interface which handles DMA transfer of messages between the host and the interface.
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The heart of the line interface is a shift register which is large enough to hold a complete slot. Slots

have the following format:

(. 1. A flag bit. This bit is set in the first and last slots of a message.

2. An ack bit. This bit is cleared before transmission of the slot and set by any interface that
copies the slot.

3. An 8-bit field. If flag is set, this field is a destination address. Destination zero signifies
end of message. If flag is cleared, this is a data byte.

4. A 6-bit origin address. This is the physical address of the host that transmitted the slot.

The line interface transmits the slot by inserting the shift register in series with the ring. The slot
circulates around the ring until it returns into the shift register of the transmitting interface, where it is
deleted. The slot is recognized by its origin address. The TRW network periodically discards all data
on the ring to insure that damaged packets do not circulate forever.

Interfaces receive slots in one of two ways depending on whether the interface is waiting for the
start of a message addressed to it or waiting for the next slot of a partially received message. If the
receive side of the interface is waiting for the start of a message, it looks for any slot with a set flag bit

* (indicating a first slot), and a destination address that is recognized by the host. Except for certain
special broadcast addresses, the ack bit must also be off for the slot to be copied.

Addresses are recognized by using the 8-bit destination code as an address into a 256 x 1 bit RAM;
the host sets the contents of the RAM to correspond to the addresses it wishes to recognize. By
convention, 63 addresses are reserved for physical interface addresses, address zero is reserved for
last slot designation, and the remaining 192 addresses are reserved for function names. The function
name address space is further divided between those addresses that require that the ack bit be
cleared and those that do not. The function addresses that don't require a clear ack bit can be used
as broadcast channels; potentially several interfaces will copy the message. Those that require a
clear ack bit are used to automatically allocate a request message to one of several equivalent
servers.

Once the initial slot of a message is copied, the receiving interface remembers the origin address of
the initial slot and accepts slots from only that physical address. Thus each message transmission
ties up the transmit side of one interface and the corresponding receive side for the duration of the
message. Note that the initial slot carries no data; the data bytes arrive, one per slot, in the second

* and succeeding slots. The end of the message is signalled by a slot from the correct address with a
zero data byte and a set flag bit.

One interesting aspect of this design is the lack of any error detection in the message and slot
protocols. Software CRCs are used in higher level protocols, but [Blauman 79] suggests that the fiber

*I optic links are sufficiently error free to make this largely superfluous.

IDA

A network design proposed by the Institute for Defense Analysis (IDA) has a slotted system in which
slots are circulated in parallel along a 24-bit wide loop. The medium is actually a centralized set of 24
circular shift registers with a latency equal to the number of hosts on the loop. Each interface "owns"
one slot, which it periodically reads to receive messages. Interfaces transmit a slot by filling the slot
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belonging to the desired destination. As the system uses a central clock, no synchronization
problems exist, and hence this would have been a very simple and high-performance network.

2.4 COMPARISON AND ASSESSMENT

The interfaces surveyed in this chapter exhibit a great deal of diversity in philosophy and design.
Some of the reasons for this are the following:

1. Differences of opinion between researchers.

2. Different system environments and goals.

3. Differences in the available components at different points in time.

4. Different levels of experience and knowledge of prior art.

Nonetheless, it is possible to draw some general conclusions and guidelines relating to the design
of local network interfaces; some areas of design even seem to be approaching consensus. This
section of the report examines the major interface design decisions and attempts to determine the
degree to which each area is an open or a solved problem, and state any applicable tradeoffs,
guidelines, or heuristics.

Medium Selection

The three candidates, in order of increasing bandwidth, noise immunity, and cost are twisted pair,
coax, and fiber optics. With present technology, coax is probably the only appropriate medium for a
bus system; all three can be used for point-to-point connections. Fiber optics is a relatively new
technology; many of its drawbacks will be eliminated, and its costs reduced, as fiber manufacturers
improve the present state of the art. The strengths of fiber optics are high bandwidth, high noise
immunity, and a nonelectrical medium's inherent isolation. It may well be the medium of choice for
future point-to-point systems.

Medium Signalling

The two design decisions for the medium are choosing a serial versus a parallel path, and choosing
between a baseband and carrier modulation system.

There seem to be very few cases in which a bit serial medium isn't the appropriate choice. Given
the existing implementations of coax systems running at 50 Mbps [Thornton 75] and fiber systems at
100 Mbps and beyond [Okuda 78, Rawson 78], speed doesn't seem to be a problem. The exceptions
are limited to those systems that have very short line lengths or those systems which must use
existing twisted pair.

The choice between baseband and carrier-based transmission is a tradeoff between the additional
capabilities of broadband systems versus their cost. Carrier systems can drive longer cable lengths,
can use FDMA to provide multiple channels, may be able to share existing CATV media, and can use
available CATV repeaters to build very large dual cable busses similar to the Mitre system.
Broadband systems can be very cost competitive when they employ standard TV components and
have multiple stations to share the cost of the ,headend repeater; they are less competitive for smaller
systems and systems which require custom design.
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Medium Topology

The choice here is between bus systems and circular systems. The relative merits of these two
systems have long been debated, with the argument centering around the issues of reliability and
ease of use.

Reliability

The virtue of a bus system is that the medium may be completely passive, i.e., consisting only of a
cable, while circular systems need active repeaters. (Note that the risks of cable failure are somewhat
better for a bus system due to less cabling; however, cable lengths are not vastly different because
existing bus systems can't support branching.) Either system fails if the cable is cut. Circular systems
can reduce the probability of repeater- induced failure by minimizing essential repeater logic and by

using automatic bypass relays, but some additional risk remains. Although experience suggests that
the additional risk isn't significant [Saltzer 79], it may still be of interest.

Circular systems do enjoy an advantage when reliability is pursued through active measures, i.e.,
where survivability rather than freedom from failure is important [Zafiropulo 74, Hafner 76, Hopper
79].

-. A cable break in a circular system can be isolated by the downstream flooding technique used by
the Cambridge loop. Locating breaks in cable busses usually involves the use of a time-domain
reflectometer (TDR). The TDR, sometimes called a "cable radar," can determir- the length of an
unterminated cable by measuring the time for a pulse to reflect back from the break. However, TDRs
are fairly expensive ($C1.0), and the technique can't be implemented in a standard interface using
standard data transmission as the Cambridge technique is.

Reconfiguration of a broken ring via alternate point-to-point paths is somewhat simpler than
generating a new bus.

Locating an interface that fails "on," i.e., fails by generating a continuous level or stream of data, is
somewhat simpler in circular systems.

Ease of use

The transmission system in a circular system is somewhat more complex because the interface
* must be able to repeat transmissions and delete transmissions. The repeater requirement means that

some form of phase locking is necessary to prevent bit errors due to clock differences between
interfaces. The requirement that interfaces explicitly delete transmissions complicates interface
design.

Circular systems using source removal support the design of prompt acknowledgments and other
0 forms of information transfer from the message destination back to the source better than bus

systems. Although such facilities can be designed into bus systems, error control is more difficult
because the source has less information regarding transmission errors.
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Access Control
One measure of the effectiveness of an access.control system is how efficiently it uses the medium.

C However, efficiency is of limited concern in most local networks because the attached hosts can
usually only use 5-10 percent of medium bandwidth.

The efficiency characteristics of a token controlled circular system and an an Ethernet style
collision system are actually quite similar [Agrawala 77, Agrawala 78]. Both utilize the medium
efficiently, even under heavy loads. In lightly loaded systems, the Ethernet approach has somewhat
lower latency, but the difference is usually only a few bit times.

Slotted systems and message-chopping techniques tend to be expensive in terms of medium
efficiency. They are primarily useful in situations where the medium data rate is greater than the
processing rate of the interface or the data channel to the host, or in situations where it is desirable to
be able to simulate FDMA distribution of bandwidth. Some evidence exists to suggest that slotted
systems with a central controller can result in simpler, and hence cheaper, interfaces.

Insertion techniques offer enhanced medium throughput through their abilities to overlap
transmissions and to queue multiple transmissions in the medium. However, it is less than clear that
the increased complexity of the system is a more cost-effective approach than simply using higher
bandwidth data links. Another point is that insertion techniques are superior only tinder heavy load
conditions, and few networks offer heavy load.

Host Interface

A persistent problem in the design of local networks is that the cost of implementing a high
throughput interface is often repeated for every host type that needs to be supported. Some design
time can be saved by using DMA interfaces, etc. produced by manufacturers, but the cost of these
components is often disconcertingly high in proportion to the cost of the rest of the interface. The
situation is better in the case of recent LSI microprocessors as they often have low-cost DMA chips or
chip sets available.

Even if cost is not a problem, the characteristics of the host interface can often be restrictive. For
example, the channel protocols in use on large machines often assume that the channel, and not the
device, should control the transfer. Thus the interface can't share data structures in host memory.

Interface Buffering

Given that the medium, the interface, and the host are unlikely to have totally compatible data rates,
some amount of buffering is essential in the interface. Fortunately, the cost of the necessary FIFOs or
RAM buffers has dropped to the point that buffering is easily affordable.

Interface Architecture

The advantages of a programmable architecture seem compelling. However, the speed of existing
MOS microprocessors is probably inadequate for high-performance applications. The primary
problem isn't the basic instruction rate, but rather the ability to switch rapidly between contexts
serving the medium, host status and command registers, and DMA operations. The obvious solution
seems to be parallel processing elements in the interface; design work is needed in this area.



62 COMMUNICATION ENVIRONMENTS FOR LOCAL NETWORKS

Custom LSI is another attractive alternative. However, the high design costs (more than $100K) for
a chip of reasonable complexity limit experimentation in this area. The consortium Ethernet is the
only real effort in this area and may well revolutionize the local network area. However, this device
isn't expected to be available until the fourth quarter of 1982 [DEC 80].

Formatting

The message formats for contemporary local networks are fairly similar in terms of the fields
provided. However, there seems to be a trend toward providing higher level services in the interface,
so as to move more of the high-level protocol mechanisms into the interface. This trend has two

- -natural consequences: more processing power is required in the interface; more fields in the message
*format are required to provide the necessary control information. Existing examples are the naming

facilities of the LNI and consortium Ethernet and the inclusion of prompt acknowledgments in the
message format.U

0

0



3. CONTEMPORARY COMMUNICATION ENVIRONMENTS

3.1 CRITERIA

This chapter studies two existing communication environments: DCS and TCP. The purpose of this
study is to estimate the functionality required in the environments' internals and the features required
at the user interfaces.

The first problem in trying to study communication environments is that it is often not apparent
where the line should be drawn between the application and the communication environment. Most

* ipeople would regard the ARPANET File Transfer Protocol (FTP) [NIC7104 76] to be a utility rather
than an integral part of the communication environment. Yet net mail, the most frequent use of the
network, uses FTP as its basic interface to the communication environment. In other systems, such
as Cm* [Fuller 78], there is no facility corresponding to FTP because data transfer between machines
is incorporated into the processors' instruction set.

Thus, the distinctions used herein are largely philosophical in nature. For the purposes of this
study, the benchmark level of communication is the process-to-process level which removes the
effects of transient errors (i.e., the data stream is delivered in the same order and has the same
content that it had when transmitted.) This level corresponds to the third level in the hierarchy used in
(Postel 81 a]:

1. Media or local network interface

2. Datagram or internet level

3. Interprocess communication level

4. Applications level

Of course, not all systems have all of these levels or even any layering at all. The DCS software has
two layers. Most X.25 systems [CCITT 77] appear to the user as a single layer and hence do not have
a datagram level visible by the user, although they may have one internally. The distinction between
layers is also blurred when networks are connected; network A may use network B's highest level
protocol as a low-level protocol of network A.

Two systems are used as representatives for this chapter: the message system of the Distributed

Computer System (DCS) and the Transmission Control Protocol (TCP).

The DCS communication system is chosen because it illustrates a simple, message-oriented
protocol designed specifically for a local network-based distributed system. It is also of interest
because it uses a fairly intelligent interface designed to support the communications environment
through special facilities such as the name table and prompt acknowledgments.

TCP [Postel 81a] is a stream-oriented protocol designed for use in packet-switched computer
networks and especially in interconnected systems of such networks. TCP is a DoD standard, and will
eventually replace the NCP in the ARPANET [Postel 81d]. The services provided by TCP are similar to
those provided by the NCP; the major differences between TCP and NCP are related to the protocol's
internals. TCP internals were designed to achieve an orderly and coherent structure and to minimize

4L . .. . .. . .. .. .....
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the assumptions regarding underlying layers. TCP's design assumes that it will usually be supported
by the Internet Protocol (IP) [Postel 81b]. IP provides a datagram service, ard hence TOP is
responsible for reliability measures to recover from lost packets, duplicated packets, etc.

In order to compare these systems we need a means of cataloging their salient features. To
describe the communication environment, we need at least the answers to the following questions:

-.* 1. Who are the parties to a connection? How are they specified?

2. How is the connection initialized?

3. What kinds of information can be transferred over the connection?

4. How is the connection terminated?

The implementation structures underneath these services also need to be examined:

1. How much "intelligence" is required at each stage of a connection's life to execute the
required algorithms?

2. How much state information is required at each level?

The study develops implementation outlines for both protocols. The outlines concentrate on the
parts of a protocol server that are fixed by the design of the protocol or are common to any user
interface. They exclude the parts of a server that are matched to a particular host interrupt system,
process structure, etc. This decision divides the implementation outlines into two sections: simple
sequential pseudoprograms that describe protocol processing, and separate discussions regarding
the control processing required to multiplex multiple processes and conversations. The discussion
develops an agenda of issues to be addressed in later chapters.

3.2 DCS

Overview

The DCS communications environment is a simple protocol for transferring messages between
processes. The protocol and ring hardware were designed together to form an efficient unit. The
most noteworthy examples of this coordination are the Rl's name table, which allows all transmissions
to be addressed to process names directly, and the RI's prompt acknowledgments, which are used in
lieu of separate acknowledgment transmissions.

Operations

From the user process's point of view, communication consists ofq

1. The transfer of messages to a name which is either a unique process name or a
broadcast name for some set of processes.

2. Reception of the next message on the process's input queue.

Messages consist of a fixed size header which contains source and destination process names,
and a variable length data section. Any process may send a message to any name at any time; no
initial connect or closing protocol is visible to the process.
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User calls on the communication environment are shown in Table 3-1.

Table 3-1: DCS communication environment user calls

Send(Name, Address ,Length)

Ctrl (Name,Address,Length)

Recv(Address,Flags.Timeout)

Send transmits a message to the process or broadcast name specified by the first argument. The
data to be transmitted and its length are specified by the second and third arguments. The message
is delivered to its destination(s) before control is returned to the process that called Send. Delivery
means that the message is placed on the destination's input queue, not necessarily read by the
destination process. Send returns a value that corresponds to a composite match and accept value
for all transmissions. The transmitting process uses this value to determine whether message
transmission was successful.

Ctrl, like Send, transmits a message. However, the message is delivered to the process which
controls the process named in the first argument, rather than the process itself. Control messages
are usually interpreted by the operating system and are used to control process execution.

Recv allows a process to wait for and receive a message. The Fl ags argument specifies the
conditions that cause completion of the Recv call; the process can wait for a message, a timeout, or
whichever of the two occurs first. The Add ress argument specifies a buffer in process space that is
to receive the message. The first word of the buffer contains the length of the buffer; if the arriving
message is too long, it is truncated. The message is copied following the length word. If the
Address argument is zero, the Recv call doesn't copy the message; it only sees if one is available.
Recv returns a value of true if the call terminates due to the message condition, false otherwise.
T imeout is the maximum amount of time the Recv call can block waiting for a message.

Message Format

The internal format for messages is shown in Figure 3.1. The fields are the same as those
recognized by the RI, with the exception of the added 16-bit word following the message-length field.
The RI regards this word as part of the message data; the software in the hosts treats it as part of the
header. This word is removed before the message is passed to the receiving process.

The Message Definition Field (MDF) defines the type of the message. There are four types: normal,
control, purge, and purge request. Normal and control messages are generated by processes; purge
and purge request messages are internal to the communications system and are not seen by the user.
The use of these messages is described in the next section.

The SOM and EOM bits are used to flag packets that are the first and last packets of a potentially
multipacket message. Purge and purge request messages are short enough to never require
packeting; hence only messages sent directly by the user (normal and control) need these fields. In a
single-packet message both bits are set.



* 66 COMMUNICATION ENVIRONMENTS FOR LOCAL NETWORKS

0 7 5
. . I DPNI

I OPN I
Length

I I IS lEI I I I I
I I 10101 I I ISI MDF II I IMIMI I I IBI I
I I

/ Data /
I I

Figu re 3-1: DCS internal message format

The SB bit is the sequence bit for this packet. The sequence bit is meaningful for data and control
messages and is used to drive an alternating-bit protocol [Lynch 68] for duplicate message detection.
Purge and purge request messages aren't sequenced so they can be used without relying on the
existence of synchronized sequence spaces. Their semantics are defined so that duplicates don't
cause problems.

Connection State Machine

Although connections aren't seen by the user, they are very much a part of the communications
system. A connection is a simplex path between a unique source name and a unique or broadcast
destination name. A connection exists if matched connection records exist at the source and
destination(s).

In the DCS implementation, each process has eight transmit-connection records and eight receive-
connection records in its process control block. The communication software uses the process's
eight receive- and eight transmit-connection records as working sets: Whenever a message is sent to
or received from a new name and no connection record is available, the least recently used
connection is closed and its connection record reclaimed. The communication protocol uses the

* purge and purge request messages to coordinate connection record use at both ends of the
connection.

Transmit-connection records include the following:

1. The destination name

2. The next 1-bit sequence value

3. A lock bit

4. An 8-bit LRU field

* Receive-connection records include the following:

0
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1. The destination name

2. The origin name

3. The next 1-bit sequence value

' 4. A lock bit

5. An 8-bit LRU field

The records are asymmetrical because messages always have unique names in the origin field
while the destination field may be either a broadcast name or a unique name. The transmit-side
connection record doesn't need an origin field because the connection record is associated with the
process and hence with its unique process name. The receive side needs a destination field because
messages may be addressed to a broadcast name of the process rather than to the unique process
name.U

The connection-management strategy used depends heavily on the fact that only one transmission
can be in progress at a time on a connection. The DCS connection-state machine for a sender is
shown in Figure 3-2; the receiver needs no state other than knowing whether a connection record
exists or not. This figure shows processing associated with normal connection processing;
transitions and states dealing with error conditions aren't shown.

In the following discussion of the state machine, notibroadcast messages are assumed, although
the operation for broadcast transmissions is often identical. The differences are discussed at the end
of this section.

Ooenino a connection

The Closed state isn't really a state at all, but rather a condition in which the source has no state
information regarding the specified destination. The same condition should be true at the
destination(s), although this need not be the case. The protocol is designed so that unilateral loss of
connection-state information doesn't interfere with proper operation. A source that loses its state can
transmit new messages successfully. A destination that loses its state will receive new messages
correctly. Note that the protocol doesn't deal with the protection of old messages or with detecting
host restarts.

When a process sends a message to a destination for which there is no local transmit-side
* connection state, the protocol first sends a purge message to the specified destination. The purge

message isn't sequenced and hence will always be processed if received. The purge message
instructs the receiving communications system to discard existing connection-state information.
Thus if the transmitting host crashes and restarts, old connection-state information in the receiving
host won't be reused. The purge transmission corresponds to the arc between Closed and
Initialize.Lock.

If the purge message is not recognized by any of the RIs, then the addressed process doesn't exist.
This condition is signalled by a no match, no accept transmit status in the returning prompt ack. In
this case the transmitting process is immediately informed that the destination doesn't exist; there is
no point in transmitting the actual message. The connection record is discarded and the connection

4 returns to Closed state.
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------------------------

Closed I
---------------------

J Send / Xmit purge
V

------------------------

/----------------- >1 InitializeLock I
I 4.-------------------------

-------------------- V I No match,/ Create entry,
Match / Rexmit V accept Xmit message

+-----------------------

----------------- >1 Message-Lock I
I --------------------- +

.II I I
J< ----------------- V No match,! Toggle sequence
J Match / Rexmit V accept
S+---------------------
< ........ Idle I ------------ >1

Send / Xmit +---------------------

* message J
I Purge request / Xmit
V purge

+---------------------

/----------------- >1 Purge-Lock 1< ------------ V
I Match / Rexmit +--------------------- LRU death /

purge I I Xmit purge
< ------------------- V I No match /

V Delete entry
----------------------

I Closed I
------------------------

Figure 3-2: DCS connection-state machine

Match causes retransmissions until no match, accept status is returned, or until a designated
number of retries are completed. Match conditions are usually caused by a host which does not
,eenable its RI input quickly enough after a prior message. Hence retransmission after an timeout is

* the appropriate response. The number of retransmissions should be limited because a long term
match condition can be caused by a host crash or a severe shortage of receive buffers.

Transmitting data

As soon as no match, accept status is returned for the purge, the actual message text is
transmitted. The first message transmission corresponds to the arc between Initialize.Lock and
Message.Lock. When this message arrives, no connection state will be present at the receiving host,
so a state record is created using the sequence value in the arriving message. The connection stays
in the Message.Lock state until the message gets through (no match, accept) or the retransmission
mechanism gives up (match). The connection stays in the Idle state between message transmission

0 requests and loops back to Message.Lock for each new message transmission.
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The sequence bit in the transmitting connection control record is toggled when any message is
successfully transmitted so that the next transmission will have a different sequence value. The
receiver toggles the value of the sequence field in its connection-state record whenever a new
message passes the sequence test. Because the receiving process discards transmissions that arrive
with sequences opposite to the value in the receiving-connection state, duplicates are suppressed.

A received message which passes the sequence test is used to satisfy a pending Recv call, or if no
Recv is pending, the message is placed on the input message queue. Control messages are
sequenced using the target process's connection record, but delivered to the target process's
superior.

Connection termination

The connection persists until one of the ends decides to terminate it. A connection can be directly
purged by the transmitting end; the receiving end uses an indirect method. Either end terminates the
connection if it needs to reclaim the connection record's memory, or if the associated process is to be
terminated. If the transmitting end decides to terminate the connection, it does so by sending a purge
message. If the receiving end wishes to terminate the connection, it does so by sending a purge
request to the transmitting end, which sends back a purge message. The request strategy is used
rather than having a purge transmitted directly by a receiver to avoid synchronization problems
should the transmitting end be transmitting a message at the same time a purge is issued by the
receiver.

Broadcast

When processes are created, the kernel loads the RI's name table with the unique name of the
process. If the process belongs to a broadcast group (such as all file handlers), the kernel also loads
the broadcast name(s) for the process into the RI's name table. The same broadcast name is also
loaded into other RIs by the other members of the broadcast group. Thus multiple RIs can have the
same name in their name tables and will attempt to receive messages addressed to the broadcast
name.

Broadcast transmissions can be managed by the same algorithms except in the case of a prompt
ack containing both match and accept. A match, accept response to a broadcast transmission
means that some receivers have updated sequence states and some do not. Retransmissions may
cure this problem, but the transmitter can't be sure unless it gets the unambiguous no match,
accept response; if the transmitter gets consecutive match, accept conditions, it cannot be sure if
the same destinations are missing the message every time or not.

The policy followed by the DCS system is to attempt to get a pure accept response for some
number (currently 16) of retries and to update the sequence space following the last retry. Thus
members of the destination set that miss all 16 retries of one message will necessarily miss another
message before the sequence spaces resynchronize. This allows for a broadcast set to continue
operation even though some of the destinations are in dead hosts.
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3.3 DCS IMPLEMENTATION OUTLINE

The implementation of the protocol is divided into separate code sections for the support of the
receiving and transmitting primitives and communication data structures associated with each

-. • process.

Transmit Side

Figures 3-3 and 3-4 are pseudocode for the DCS Send function.

The top-level code shown in Figure 3-3 corresponds very closely to the actual code which is linked
into the process context. The subprocedures in Figure 3-4 illustrate the processing that takes place
at a lower level, but these procedures don't model control flow accurately. In the real DCS, the lower
level procedures are initiated by an operating system call from the Send procedure, and loop
iterations in either of these procedures are driven by RI interrupts and timer interrupts. In the model
all of the interactions between the host and the interface for a single transmission are modelled by the
call to RIsend. These models also ignore the multiplexing that takes place between different
processes on the same host.

0 All three procedures return a three-bit value, with the three bits corresponding to the accept,
match, and error conditions. In the DCS system the error bit is always handled by the system and
never seen by the user. Functions are divided among these procedures as follows:

The Send procedure is responsible for reserving a connection record and associating it
with each call to Send, breaking long messages into packets, updating the sequence bit
in the connection record whenever a transmission succeeds, and composing the
appropriate return code based on the response to transmissions. If the message fits in a
single packet, the Send return code is simply the value of the response bits returned by
Send.._pkt for the packet; if multiple packets are required, the returned value is the
"worst" value for any single packet. If any packet of a multipacket message can't be
sent, or if the attempt to set up the connection fails, the remaining packets are omitted
and the appropriate return code is immediately returned.

" The Sendpkt procedure controls the transmission and retransmission of a packet to
compensate for temporary match conditions. Match conditions are usually caused by
the delay in enabling the network interface following a reception; hence the timeout
should approximate this delay. A crashed host at the destination will never enable its
input, so retransmissions should be limited.

*The Send_once procedure controls the transmission and retransmission of packets to

compensate for transmission errors. In general this type of error is not related to host
conditions at the message source or destination, so the retransmission timeout and retry
count should be selected to match the access-control protocol of the medium. For
example, using the LNI system, there is no reason for any delay, whereas a system using
a contention medium would use this timeout to compensate for congestion on the
medium.
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procedure Send(Name.Address.Length);

(Find or create a connection record)
lookupconnection(OriginName);
if not found
then begin (if no connection, create one)

- . status:sendpkt(Origin,Name,purgepurgemsgO);
if accept in status
then createConnrecord (purge successful, set up connection)
else return(status) (if purge fails, so would data)
end;

lockConnrecord; (prevent other use of this path)

(Send all the packets of the message)
status:=[]; (initialize status for whole message)
while Length>O (break data into packets if necessary)

begin
send-length:=min(Length,max_packetlength);
(copy sequence value from conn record into packet)
tstatus:=Sendpkt(Origin,Name,normal+SB,Addresssend_length);
if accept in tstatus
then begin

(merge status for this and previous packets)
status:=status+tstatus;
toggleSB; (toggle transmitting conn record SB)
Address:=Address+send_length; (setup next packet)
Length:=Length-send-length
end

else begin
unlockConnrecord;
return(tstatus) (return worst status)
end

end;

unlockConnrecord;

return(status):

end; {Send)

Figure 3-3: DCS Send top-level code

Transmit-Side Enhancements

The RI and LNI support a level of service similar to that modeled by the Rlsend procedure. If the
DCS transmission protocol is to be supported more fully by the interface, the outline suggests five
possible levels of support. These levels are described below:

1. Implement transmission error retry in the interface (Send_on ce)

2. Implement transmission error and match retries in the interface (Send pkt &
Send_once)
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procedure Sendpkt(From,To,Type,AddressLength);

{this procedure retransmits a packet trying to avoid match)

I"I status:=[];

for i:=1 to max-match_retry
begin
tstatus: =Sendonce( F rom, To, Type ,Add ress, Length)
if (tstatus-[accept]) I (tstatus-[])
then return(tstatus)
else begin

if accept in tstatus then status:-[accept];
wait(match-timeout)
end;

q end;
return(status+tstatus)

end; {Send-pkt)

procedure Send_once(From,ToType,Address,Length)

(This procedure transmits a packet until it is transmitted
without transmission error, or until maximum retries exceeded)

for i=1 to maxerrretry
do begin

status:=RIsend(From,To,Type,Address,Length);
if not(err in status)
then return(status)
else wait(error-timeout)
end;

return(status)

end; {Send-once)

Figure 3-4: DCS Send subprocedures

3. Implement packeting and both retry mechanisms in the interface (while loop from Send,
Sendpkt & Sendonce)

4. Implement connection locking, packeting, and both forms of retry (Send, Sendpkt &
Send_once)

5. Implement connection record management (creation and deletion), connection locking,
packeting, and both forms of retry (Send, Sendpkt & Sendonce)

The algorithms for any of these levels are simple if the interface processes one Send request at a
time. If multiple requests are queued in the interface, then a multiplexing policy must be designed.

The need for multiplexing and the complexity of the required control structure are a function of the
level of service provided by the interface and the expected performance characteristics of the
medium. For example,
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Transmission errors aren't related to a packet's contents, and level-one timeouts are
between interface accesses to the medium, rather than being related to a specific packet.
Hence, a level-one multiplexing interface could serve requests to completion before
considering the next queued request; there is no point in considering more complicated
schemes.

e The situation is different for match retries included in level two. Here the timeout is
related to the packet arrival service time at the destination, and hence the interface
should attempt to serve a Send request to a different destination whenever a match retry
is needed. Timeouts for different destinations can run concurrently. This strategy avoids
holding up all requests due to congestion at one destination.

If the host is incapable of generating multiple requests or if it generates requests much
more slowly than they can be serviced, no multiplexing policy can be justified.

These considerations, based on the existing system, combined with opportunities for improvement
in services, lead to a functional list of areas that need study:

1. More powerful addressing facilities, particularly for broadcast

2. Management policies and accessing primitives for the connection record database
3. Request queueing, selection and service- -perhaps using the connection record database

as a repository

4. Sequencing management

5. Methods for decreasing the overhead implied by the processing of a single Send request

Receive Side

Message reception involves three types of activities:

1. Creation and deletion of destinations

2. Processing of arriving packets

3. Satisfying user Recv calls

The creation and deletion of destinations, and hence the associated name table entries, are
infrequent activities that usually correspond to the creation and deletion of processes. These
services are simple to provide because they can be performed in a purely synchronous manner, i.e.,
the interface can change the name entry while the host waits.

The main task consists of establishing a correspondence between incoming packets, which arrive
unpredictably on the medium, and Recv requests, which arrive unpredictably from the user. In
general, it is impossible to depend on the ordering of the two events or the amount of time that will
elapse after the first event has happened until its corresponding partner event happens.

Figure 3-5 is pseudocode for the processing that takes place when a packet arrives.

Incoming packets (represented by argument "p") are processed using data in the appropriate
connection record (represented by the structure "cr"). Processing is divided into three routines: one
routine for each of the communication system messages (purge and purge request), and one
common routine for user generated message types (data and control).
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procedure Packet_arrives(p:packet);
(Separate processing by message MDF}
case packet.MDF of

purge:begin
lookupconnection(p.OPN,p.DPN);
if found
then deleteConnrecord
end;

purge-request:
begin
lookupconnection(p.DPNp.data);
if found

U then if not locked {see if connection record is locked)
then begin

lock-connection;
send-purge; (send the requested purge)
deleteConnrecord
end

* else queuepurge;
else send-purge (respond to a purge for a non-existent connection)
end;

data,
ctrl: begin

lookupconnection(p.OPNp. DPN)
if not found
then begin

createConnrecord;
cr.SB:=p.SB
end;

if p.SB=cr.SB {verify that sequence in packet is expected one)
then begin

toggleSB; (change cr.SB}
queuepacket
end

else discardpacket (packet is a duplicate so discard it)
end;

end; (case)

end; {packet arrives)

Figure 3-5: DCS packet arrival processing
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Puroe messaoe orocessino

Purge messages originate in the send side of connection management and are processed by the
receive side. The originating send side generates the purge message in response to the termination

* of the associated sending process, or if the send side needs to reclaim the connection-record
resource. Connection locking is under control of the transmit side; a receiver must always honor a
purge message. The receive side can expect to receive purge messages for nonexistent connections
due to the precautionary purge sent when the connection is created, or as the result of host crashes
or duplicates for broadcast purges.

Purae-reauest messaoe orocessino

Purge-request messages originate in the receive side of connection management. Like purge
messages, they are caused by a need to reclaim receive connection records, or as a result of process

q termination.

The connection is controlled by the send side. The purge-request message acts as a prompt for a
purge message and has no direct effect on connection management itself. The receive side
constructs the purge-request message and sends it to the host which manages the other end of the
connection. Normally a purge message will be sent in response, although the purge request can be
ignored if the connection is locked.

Purge-request messages are more complex to process then purge messages because they interact

with send-side connection management and because they require access to a possibly locked send-
connection record. Two policies are available to deal with the locked resource problem:

1. The purge request can be discarded if it cannot be immediately processed.

2. The purge request can be queued until it can be processed.

These choices generate different divisions of responsibility between the protocol mechanism that
generates purge-request messages and the protocol mechanism that consumes the purge-request
messages. The discarding policy places more responsibility on the originator; the queueing policy
places more responsibility on the consumer.

If the consumer discards purge requests that can't be immediately completed, then the originator
must retry the request. One advantage of this strategy is that the originator knows whether the purge
request is to free resources or to close a specific connection, and hence can use different strategies
for the two case's. If freeing resources is the goal, then the originator can attempt several purge
requests in series or parallel. If the goal is to clear a specific connection, then the same purge
request should be retried. A second advantage of this strategy is that the retry policy will compensate
for failures in the request.purge consumer.

Purge requests can be queued in the consumer while the transmit-connection record is locked.
Once the connection is unlocked, a purge message is sent back to the purge request's originator. In
the DCS system, this is accomplished using system process control primitives and an ancillary
sequence bit process. A simpler system could be constructed by incorporating a "purge needed" bit
in the transmit-connection record. When a locked-connection record was unlocked, a set "purge
needed" bit would cause the generation of a purge message. The purge might also be piggybacked
on the last packet before unlock.
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Data and control messaae orocessino

Data and control messages are sequenced to protect user data; hence they require a receive-
connection record for processing. The first part of processing looks up an existing connection
record or creates a new one.

If a new connection record is to be created, the system may need to purge an existing receive
connection record to free up a record slot. In addition to the possible problems already described
with the purge-request processing, the packet must be queued until it can be processed.

Once the connection record is available, the sequence bit in the packet is checked against the
sequence bit in the connection record. If the sequence test succeeds, the packet is delivered to the
user. The delivery is represented by the Queuepacket call. Queuepacket has two functions: it
adds the new packet to the process's input queue, and it checks for pending Recv requests.

A simple way to implement the input message queue is as a linked list of messages, where each
message is itself potentially a linked list of packets. This is the DCS strategy. If a new packet has its
start of message (SOM) bit set, it is chained onto the end of the message-linked list. Packets without
a SOM bit must be chained onto the appropriate message's packet list.

If the packet completes a message, nr is in itself a complete message, then the Queuepacket
procedure must check to see if tne new message satisfies a previously queued Recv user call. This
check can be triggered by the EOM bit in the packet and must interface with the operating system's
process-scheduling primitives.

Satisfyina user Re c v reauests

The processing steps described so far create an input queue of messages for each process. The
mechanisms associated with servicing Recv requests complete the communication process by
delivering the message data to the user.

Delivery is possible when a complete message is present on the input queue and a Recv request
from the process is pending. Because these t vo preconditions can occur in either order, it is
necessary to check for the rendezvous each time a message is completed or the user calls Recv.
Pending Recv requests may be withdrawn due to the expiration of the Recv timeout, or by the kernel,
when a process is deleted, etc.

In the DCS system, the kernel checks the input message queue when the user calls Recv. If a
complete message is on the queue, the Recv request is satisfied immediately. The Recv request may
also complete immediately if a zero timeout is specified. If the Recv can't be completed immediately,
the kernel creates an entry in its timer queue corresponding to the timeout and blocks the process as

* "waiting for message or time event." Whichever event occurs first causes the process to return to the
"runnable" state.

If a rendezvous of a complete message and a Recv request occurs, the packets of the message are
copied into the buffer specified in the Recv request. Once the copy is complete, the packet buffers
are returned to the kernel's free buffer pool. The copy procedure has the obvious disadvantage of
consurning CPU time. The advantages include hiding the packeting mechanism from the user

0I| - - I ' - -U..
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7- .process and not depending on reasonable packet-buffer management by the user process. Certain
trusted system processes bypass the copy procedure and work directly with packet buffers, although
most system processes do not.

Receive-Side Enhancements

The design of the receive side of the interlace must complement the transmit side and is
constrained by cost and performance criteria inherited from the application. Ignoring the cost
constraint, the DCS experience suggests the following ideas:

1. The receive side should minimize retransmissions and end-to-end communication delay
by accepting packets from the medium whenever possible. The receive side should be
full duplex, i.e., it should not be disabled by transmit-side activity. The receive side
should be disabled for as short a period as possible following a reception. Methods
include automatic receive-side restart following packet arrival and transmission errors.
Ideally, the interface should be able to deliver multiple packets to the host without
requiring host intervention and the corresponding delay.

2. Because message processing represents a drain on the host's resources (and possibly
the interface's), the interface should suppress packet processing that serves no useful
purpose, In present systems, this includes CRC error detection and address recognition
in the interface. The filtering concept can be extended to include filtering on the basis of
sequencing, flow control, security, and similar criteria.

3. The multicast facilities of the LNI system allow for low-cost multicast services. However,
they don't perform as efficiently or reliably as possible in the presence of errors or
receiver dead time. The expected number of transmissions required to achieve a pure
accept grows exponentially with the number of receivers. Improvements should be
sought.

4. Several packet-processing steps require access to the corresponding connection record.
If these activities are moved into the interface, the interface needs to be able to store and
access this data. If the data is used for filtering, the access must be rapid. The speed
requirement is related to the minimal packet time on the medium, the amount of buffering
in the interface, and the host-interface performance characteristics.

5. Connection rt.,- r ment (in the sense of the purge and purge-request protocol) and
Recv requesi -. igement represent services that might be moved into the interface. In
both cases, a definition of services is required. The interface should allow for flexibility in
the host's process control and buffer strategies.

6. When connection records are incorporated into the interface, they represent a resource
which must be managed. Resource allocation and control mechanisms must be created.

7. The DCS style of communication is based on an environment where resource control isn't
a critical issue. For example, connections can be created at the whim of the sender, and
the match/accept protocol implies that a destination isn't free to reject offered packets.
While this creates conceptual simplicity, it may not be realistic for all systems. The need
for flow control in the context of the match/accept protocol is one worthwhile goal.

aI
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*3.4 TCP

TCP Overview

The present structure of TCP [Postel 81a] is the result of an evolutionary process that had as its
basis the ARPANET experience. Using ideas from the ARPANET NCP [Carr 70], TCP evolved to fit a
new environment which consists of an interconnection of multiple networks including the ARPANET,
various local networks, and networks based on satellite [Abramson 73a,Yuill 76] and packet radio
[Burchfield 75, Fralick 75, Frank 75, Frank 76, Kahn 75]. At the same time the designers of TCP took
the opportunity to simplify and extend several protocol mechanisms.

The target environment of TCP is the Internet environment. The Internet system consists of many
networks, including the ARPANET and several local networks. The networks are connected by
gateways. Gateways are hosts that are physically connected to two or more networks. In some cases

[U gateways are normal hosts, and in other cases the gateways are small, presumably less intelligent,
hosts dedicated to the gateway task. All of the member networks have, and are expected to continue
to have, locally defined protocols of various types and different types of basic communication
systems.

The Internet environment must work with diverse resources. Two example members of the Internet
system illustrate this diversity: ARPANET and the SATNET. The ARPANET has a basic communication
service (the HOST-HOST protocol) that has low latency (less than 100 ms) that varies depending on
the number of hops between source and destination, very reliable delivery (error rate of approximately
10 0.12), a 50-Kbit bandwidth, and a very distributed, store-and-forward architecture. The SATNET
system uses a satellite channel shared by several hosts by means of special interface machines
(SIMPs or Satellite IMPs). SATNET communication services have a high minimum latency due to the
propagation time to and from the satellite (250 ms), high bandwidth (1-3 Mbps), medium-to-low
message reliability (10•-7 to 10*•-5), and a centralized node (the satellite). These two systems
illustrate the large disparity possible in the Internet system.

Another source of diversity in the Internet system is the different applications that will eventually
cross network boundaries. Internet file transfer, terminal sessions, voice, and interprocess
communication are examples of applications that place different demands on the communication
system. File transfer requires high bandwidth and reliability, but is insensitive to latency. Voice
transfers require low latency and high bandwidth, and can't afford the delay inherent in
retransmission-ba- -d schemes for enhancing reliability. Fortunately, voice systems will tolerate a
moderate error rate.

These facts suggested the following design approaches:

* Diverse systems with very different protocol conventions and communication facilities
* already exist; new networks are expected. Hence, we should adopt a lowest level

standard that presumes as little as possible about the member networks and will allow the
addition of still different new networks.

* Different applications will use the Internet system, and they need different services.
Hence, this lowest level standard should retain the performance characteristics of the
network on which it resides and not create virtual levels of service that are less powerful.

" We need standard protocols for certain services. In order to avoid duplication, these
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protocols should use the standard bottom layer. In order to allow for generic classes of
protocol, the lowest layer should understand this partitioning of the protocol space, but
not necessarily every generic type of protocol.

These ideas led to the current Internet system.

The lowest level standard protocol is the Internet Protocol (IP). TCP is the most common second
layer protocol. The IP server handles the unreliable delivery of packets (or "segments" as they are
known in Internet jargon) for its users. The IP server accepts packets from second-level servers,
transmits the packets through as many networks as required, and delivers the packets to the specified
destination servers. The TCP layer multiplexes all TCP connections for all processes on the attached
host and manages the retransmissions and acknowledgments necessary to do this reliably.

q The resulting protocol structure is shown in Figure 3-6.

+-------- -.---. - ----

ITelnetI I FTP I IVoicel ... I I Application Level
--------- +- +- - +-- .... +

I I I I
----- -- +--

TCPI IRTP HostLevel

+--------------------------------------

I Internet Protocol I Gateway Level
+--------------------------------------

4.---------------------------------

I Local Network Protocol I Network Level
+---------------------------------

I

Figure 3-6: Internet environment protocol layering

In addition to features required by the Internet architecture, TCP has some protocol simplitications

as compared to NCP.

In the NCP, connections are made between "sockets" and are simplex. The socket is very similar
to the familiar operating system convention of a logical I/0 stream (e.g., TENEX JFN, OS/360
DDNAME). The socket ID is a concatenation of host number, process ID, and a field to allow a
process to use multiple sockets. Processes using the network will usually create complementary
pairs of connections to achieve full-duplex capability. Odd and even socket numbers are used for
output and input connections, respectively.

TCP uses a single socket ID for each end of the connection and makes all connections full duplex.
That is, TCP defines a connection to be a full-duplex path between two unique sockets. A short ID,
called a handle, is used within a restricted context to shorten the field length necessary to identify a
connection.
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This change has no effect on the functionality derivable from the message system in that one can
always simply not use part of the capabilities of a connection. In practice, most connections between
processes need full duplex capability, so this change just serves to simplify things. It is somewhat
difficult to argue that a connection is ever really simplex, because a reverse flow of control
information is required to insure reliable delivery of information. While this convention has no
adverse effect on the complexity of software needed to implement the protocol on a large host, it may
affect the structure of an outboard communication environment in that information must be shared

* between the input and output functions.

TCP Operations

Although the details of the TCP-process interface vary widely from implementation to
implementation, some of the operations are defined by TCP itself. Most TCP-process interactions are
explicitly initiated by the user in the form of a subroutine or supervisor call to TCP. These calls
transfer data and specify control functions.

In addition to user-initiated interactions, TCP should have some way to asynchronously interrupt
the user. These asynchronous signals either can be abnormal events (e.g., the host at the other end
of the connection has crashed) or are events that the user has indicated should cause such a
pseudointerrupt (e.g., let me know when new data arrives).

Combinations of these two types of interaction are common. For example, most TCP
implementations allow the user to queue read requests. When a read request is issued and there is
no buffered data waiting to be read, the parameters of the read request are queued and control is
returned to the user. When the requested data arrives, it is placed in the specified buffer and the user

Cis informed by a pseudointerrupt.

Many variations are possible here, depending on the sophistication of the process environment and
the particular TCP environment. The basic user-initiated calls are listed below in Table 3-2. Optional
arguments are coded in "[l"s.

The detailed semantics of these calls are discussed in later sections. Briefly, the Open call
initializes one end of the connection and returns a handle (typically a small integer) that the user can
use to refer to the connection in subsequent calls. The Send and Receive calls are used to send and
receive data. Close is used to signal that this end of the connection has no more data to transmit
and wishes to end the connection. The Status call returns information which describes the state of

* the connection. Abort is used to signal a catastrophic error condition meant to result in the
unilateral close of the connection.

The TCP server should be able to signal the following events to the user in an asynchronous
manner, as shown in Table 3-3.

The Queuecomp 1 et i on pseudointerrupt signals the completion of a previously queued request.
For example, a call on Open might simply start the initial connection protocol while allowing the user
process to continue execution. The process would then be notified via a pseudointerrupt when the
connectinn actually was established. Because multiple calls could be queued, some form of
reques*ilD is necessary. The form of this ID and the mechanisms for process blocking, etc., are highly
operafing-systems dependent.

S
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Table 3-2: User calls to TCP

Open( local-.port
,foreign..socket
,active/passive
[,buffer..size]
[,timeout]
) returns connectionhandle:handle

Send(connection..handle,
,buffer_address
,byte..countq ,push..flag
,Urgent.f lag
[,timeout]

Receive( connectionhandl e,
* ,buffer_address

* byte..count
,pushjflag
['timeout]

Cl ose(connection..handl e)

Status( connect ionhandl e)

Abort(connectionhandl e)

Table 3-3: Events signalled by TCP to the user

QueueCompletion( requestID)

Urgent( handle ,off set)

Ii legal-SYN(handle)

Connection-failure(handle)

Connection-reset(handle)

An Urgent event occurs when the local TOP receives notification from the other end of the
4connection that urgent data exists in the receive byte stream beyond the data that has already been

read by the local process. This signal is used by one end of the connection to recommend to the
other end of the connection that data in the receive byte stream be speedily read to the specified
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point in the data stream. The exact semantics of this facility are up to the processes using the
connection, although its usual function is to signal a break condition similar to that generated by a
terminal user.

The last three events are used to signal fatal errors. Connectionreset signals that the other
end of the connection has aborted the connection. I1 legal-SYN signals that the local TCP has
aborted the connection due to the arrival of an illegal segment. Connection_fail ure signals that
the connection aborted because of a timeout.

TCP State Diagram

The TCP state diagram in Figure 3-7 is taken from [Postel 81a]. It illustrates the major states and
transitions, but addresses neither error conditions nor actions which are not connected with state
changes. In particular, retransmissions resulting from segment loss, abort conditions, and timeouts
that cause connection aborts are not shown. Note that both ends of the connection have their own,
and potentially different, state variables.

The state diagram may be partitioned into four major sections which correspond to the four stages
in the connection's life: nonexistence, "birth," "life," and "death."

0

The first and last states in Figure 3-7 are labelled "CLOSED." These "states" are not really states
at all, but are a notational device to signify that the connection doesn't exist. In certain TCP
implementations, this state might be meaningful, but it usually corresponds to a total lack of
information about this connection.

[ The LISTEN, SYN Sent, and SYN RCVD states are used during the birth, or initial connect, portions
of the protocol. The LISTEN state is entered by a passive Open command and means that the
connection is waiting for another process to request a connection. The SYN Sent and SYN RCVD
states are entered when the two parties to the connection are in the process of trying to set it up.
Data transfer operations cannot be completed during this phase because the connection is not yet
established. Some implementations of TCP will allow data transfers to begin during these states, but
the data can only be buffered, not delivered.

The ESTABLISHED state of the connection is the main state. Once this state is reached, initial
connect is complete and data transfer can begin.

The FIN WAIT, FIN WAIT-i, FIN WAIT-2, TIME WAIT, CLOSE WAIT, and CLOSING states are used
while the connection is in the process of being closed. Because both ends of the connection must
issue a Close call before the connertion will be deleted, it is possible for the connection to persist in
some of these states indefinitely.

* TCP Segment Format

The format used by TCP segments is shown in Figure 3-8. The source and destination host
addresses are carried in the IP header, which precedes and encloses the TCP segment. The Internet
header is shown in Figure 3-9.
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0 1 2 3
'" 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

iC- J Source Port I Destination Port J

Sequence Number J

I"( Acknowledgment Number J

I Data I lUIAIPIRISIFI I
I Offsetl Reserved IRICISISIYIII Window I
I I IGIKIHITININI I

I Checksum I Urgent Pointer I

I Options I Padding I

I data I

0 Figure 3-8: TCP header format

0 i 2 3
0123456789012 3456789 012345678901

IVersionl IHL IType of Servicel Total Length I

I Idantification jFlagsj Fragment Offset
+-+-+-+-+-+ -+.-+- -+-+ -+-+-+.-+-+-+-+-+-.- +-+-+-+-+- -+-+-+-+-+-+-+

Time to Live I Protocol I Header Checksum

Source Address

Destination Address

Options I Padding

Figure 3-9: Internet header format

The Internet Protocol Interface

The IP header contains several items which the TCP server finds essential. The total length field in
the IP header, less the IP header length (IHL), is the length of the TCP segment. The source and
destination host addresses are also in the IP header. Rather than restrict the TCP server to run under
IP, the TCP and IP servers pass pseudoheaders with TCP segments when packets are passed

* between the two servers. The pseudoheader format is shown in Figure 3-10.

0
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0 1 2 3
012345678901234567890123456789012

I Source Address I

I Destination Address I

zero I PTCL I TCP Length I

Figure 3-10: IP pseudoheader format

q TCP Units of Data Transfer

The unit of data transfer in TCP is the octet or byte of eight bits. (The terms byte and octet are used
interchangeably here.) Over the life of a connection, the full duplex data flow consists of two (one for
each direction) ordered byte streams. The communicating processes can supply or consume data
from this stream in any quantity of bytes, but efficiency and buffering considerations dictate that the
TCP server remain free to either break up or cor 'line data transfers into segments.

The need to reliably deliver the offered data stream at the other end of the connection, while at the
same time allowing maximum freedom in the decision of where to segment the offered stream, is the
main motivation for the TCP sequence space system. The sequence system is applied independently
to each side of a connection as follows.

Consecutive bytes in the stream are assigned consecutive sequence numbers from a large ring of
sequence numbers. The ring of sequence numbers is large enough (32 bits), so that the recycling of
old numbers shouldn't pose a problem for a long-lived connection, because segments with a given
sequence will have had a relatively long time to die out before their section of the sequence space is
reused.

Hence, the reuse of sequence space only causes problems in reference to a new connection.
When a new connection is created, an initial sequence number must be chosen. Use of a constant
initial value is discouraged, because of potential problems if two processes open and close a
connection in rapid succession. In this case, its possible that a segment from the first incarnation of
the connection will live across the closing and reopening of the connection. If the same initial
sequence number were to be used, this error is more likely.

To deal with this problem, TCP chooses initial sequence numbers based on a 32-bit timer. If the
timer increments faster than data bytes can be placed on the medium, segments from previous
connection incarnations will always have old sequence numbers, so long as the sequence space
doesn't wrap around. If the timer period is longer than the segment lifetime, vulnerability is limited to
times when the timer "laps" the sequence space, and then only if a connection is closed and
reopened at that instant. The TCP specification uses a 32-bit sequence space and recommends that
the (possibly fictitious) timer used to generate initial sequence numbers is incremented every 4
microseconds. This choice means that the system will work so long as the sustained data octets are
generated less often than 4 microseconds (250 K octets/sec or 4 Mbps), and segment lifetime is less
than approximately 2 hours (assuming half the sequence space is "new" and half is viewed as "old").

I
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In addition to dat ',ytes, sequence numbers are assigned to two control items. In this way the
control items, like dai.. jytes, are protected from duplication or loss.

CThe two control items so protected are the SYN and FIN control signals. The SYN control signal is
always the first sequenced item transmitted on a connection; the FIN is always the last.

The user supplies a push flag (PSH) with the other parameters of the Send call. The PSH flag
controls the TCP server's options in buffering the data. If PSH is not set, the TCP server is free to
buffer the offered data in the hope of combining it with data in subsequent send calls. Larger and less
frequent transmissions will result, improving the efficiency of the connection. If PSH is set, the data
specified by Send, along with any previously buffered data, must be formatted into segments and
transmitted. When the TCP server at the other end of the connection sees the PSH flag in the
segment, it must complete an outstanding receive without waiting for the receive buffer to fill.
Logically, PSH is used to signal the end of a transaction and to insure that processing will begin. A

U later PSH may hide an earlier one.

Establishing a TCP Connection

Processes request a connection with a matched set of Open calls; the two TCPs involved establish
the connection through a protocol known as the "three-way handshake."

There are two types of Open calls: an active Open that instructs TCP to try to establish the
connection immediately, or a passive Open that instructs TCP that the process is willing to accept a
connection if one is requested by another process. An active Open results in segments being sent
and hence must specify the address of the other end of the connection; a passive Open can accept
calls from any process, or may restrict the call to come from a specific process.

The basic purpose of the initial connect protocol is to guarantee that both ends of the connection
want the connection and that both ends of the connection know the initial transmit sequence
numbers so that reliable data transfer can take place.

TCP specifies the initial sequence value it will use for transmitting by sending a segment with the
synchronize (SYN) bit set. The SYN is conceptually the first sequenced item sent over the
connection, and it is never sent again, so the sequence field of the SYN segment corresponds to the
sequence of the SYN and hence the first sequence value on that side of the connection. A TCP
acknowledges that it wants the connection by acknowledging the opposite TCP's SYN and by

* transmitting a SYN segment of its own.

Each end of the connection believes that the connection has advanced to the established state, in
which data transfer can begin, when the following thre. conditions have been met:

1. It has transmitted a SYN to its opposite.

2. It has received an acknowledgment for its SYN.

3. Its opposite has also supplied a SYN segment.

The initial connect protocol is known as the "three-way handshake" because the above conditions
* usually require a three-message sequence:
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1. A segment from the actively opened TCP (TCP A) to the passively opened TCP (TCP P),
carrying a SYN and initial sequence for the TCP A to TCP P side of the connection.

2. A segment from TCP P to TCP A carrying an acknowledgment for the first message'sC SYN, and a SYN and corresponding sequence number for the TCP P to TCP A side of the

connection.

i- 3. A segment from TCP A to TCP P acknowledging the SYN for the TCP P to TCP A side of
the connection.

Although this mechanism is oriented toward a pair of calls, one active and one passive, it also
works for a pair of active Open calls. One more message is necessary in this case because there are
two SYN bearing segments and two acknowledging segments.

TCPs that wish to refuse a connection attempt do so using the reset mechanism described in the
next section.

Abnormal Connection Termination

A TCP server can unilaterally close a connection by sending a segment bearing a reset (RST) flag.
In general a RST is caused by an Abort call by the user or the arrival of a segment that couldn't
possibly be correct. Some examples of conditions that result in a RST are the following:

1. Segments sent to nonexistent ports. This condition is often caused by hosts that crash
and come back up. As soon as the other end of the connection sends a message to the
now nonexistent connection, a RST is sent in reply, clearing the connection.

2. Segments which acknowledge data that was never sent.

3. Attempts to establish a connection with a passively opened port that isn't willing to
accept the particular sender.

The decision whether or not a RST is warranted involves a tradeoff between the desire to catch all
errors and the desire to preserve connections that can possibly be saved. For example, a TCP will
usually not send a RST if its opposite sends data outside the window, as this could easily be the result
of a badly delayed segment or an attempt by the opposite TCP to anticipate a window allocation. On
the other hand, the RST criteria must be designed to prohibit an endless sequence of erroneous
transmissions. Many of these choices are left to the individual TCP implementer. The only absolute
restriction is that a RST should never be sent in response to another RST.

The receiver of a RST validates it by verifying that its sequence field corresponds to a reasonable
value. In the case of a RST received during initial connection, the RST is valid if the RST segment
acknowledges the appropriate SYN.

A valid RST is signalled to the user of an open connection, or a user attempting to actively open a
connection, via a Connection_reset event. The TCP regards the connection as closed. If the
connection was being passively opened, the RST returns the connection to the Listen state to await a
new initial-connect attempt.
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Normal Connection Termination

Connections exist for as long as they are useful to either end of the connection, or until the
connection is unilaterally terminated due to error or some other abnormal condition. Thus the
processes using a connection need a mechanism whereby they can signal that they have no further
use for a connection. The rendezvous of two such signals implies that both ends of the connection
are in agreement that the connection is useless, and hence that the TCP servers in question are free
to "forget" about the connection and to release all resources allocated to the connection. TCP
implements this service by having the two parties to a connection exchange sequenced control items,
called FINs. The exchange is analogous to the exchange of SYNs that opens a connection.

A process signals its TCP that no more data will be transmitted on a connection (from its end) with
a Close call to TCP. In response to the Close call, the TCP sends a FIN control down the
connection. The FIN is sequence protected, so it will be acknowledged. Thus a TCP knows that both
ends want to close a connection when the following have taken place; the fourth condition is implicit:

1. The TCP has sent a FIN.

2. The TCP has received a FIN from the other end of the connection.

3. The TCP has received an acknowledgment of its own FIN.

4. All data has been delivered.

The only ordering imposed on these events by TCP is t i- all data for a given side of the connection
be sent before a FIN can be sent on that side and that a FIN must be sent before it can possibly be
acknowledged.

The first constraint means that the last sequenced item sent over a given side of a connection must
be a FIN. However, the two sides of the connection are independent. Thus one side of a connection
may be closed, with a FIN sent and acknowledged, while the other side of the connection continues
indefinitely.

The connection states associated with connection closing are those below the Established state in
Figure 3-7. The complexity of these states is in part due to the use of state encoding to record the
transmission of FINs and their acknowledgments and in part due to an attempt to improve the speed
of connection closing in the presence of the "last message problem."

The "last message problem" refers to the fact that any message dialog between two parties must
have a last message. By definition, this message isn't acknowledged, because the acknowledgment
would then be the last message. Because this last message isn't acknowledged, the sender of the last
message doesn't know if it reached its destination, and a process expecting such a message doesn't
know if the message was sent unless the message arrives. Because of these constraints, the last
message can only be protected by means other than a positive acknowledgment, i.e., a passive
ac& nowledgment such as is used in timer-based systems [Watson 77, Watson 79] or through the use
of probabilistic arguments and multiple retransmissions.

In TCP, this problem manifests itself in regard to the acknowledgment of FINs. The TCP state
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machine in Figure 3-7 attempts to solve the problem by specifying two different control algorithms for
the TCP that sends the last FIN and the TCP that acknowledges the last FIN. The sender of the last
FIN arrives at the Closed state through the Closing state, while the acknowledger of the last FIN
passes through the chain leading through Time Wait. The intent is that the sender of the last FIN
knows when the connection is complete (because it gets an ack for the last FIN), whereas the
acknowledging TCP can't be absolutely sure that its ack got through. Therefore the acknowledging
TCP waits for a period equal to twice the maximum segment lifetime (MSL) before it deletes the
connection (knowing that the sender will persist in retransmitting for a period equal to MSL). This
logic works for cases in which segments aren't lost, or if the two ends close the connection at
significantly different times.

Suppose that the two ends of the connection decide to close the connection at approximately the
same time. Both send FINs, and when the FINs arrive, both send acks for the other's FIN. At this
point in the closing protocol, both TCPs have advanced to the Closing state, and two

U acknowledgments are in the network, travelling in opposite directions. If either of these
acknowledgments is lost, the result is a connection that has been deleted at one of its ends, and
which has a TCP awaiting an acknowledgment at the other end of the connection.

The end that has closed has closed normally, in the knowledge that all was well. At the other end of
* the connection, the FIN will eventually be retransmitted. This retransmitted FIN will arrive at a TCP

that no longer recognizes the existence of the connection, so it will result in a RST segment being
sent in reply. The RST will finally close the other end of the connection, but in an unsatisfactory
manner; the two processes that were communicating have different opinions whether the connection
terminated normally. Note that if the FIN was piggybacked on a data segment, there is also no way of
telling whether the data was delivered or not.

When the RST arrives, the TCP doesn't know what has happened. One possible interpretation is
that the segment arrived at a host that responded with a RST btscause of a restart. Another possible
interpretation is that the RST was sent in response to the arrival of a duplicate segment after the
segment had normally closed at the foreign end.

Two modifications of the protocol are thus suggested for any implementation:

1. FINs should probably not be piggybacked on data segments.

2. Both ends of a closed connection should probably wait for some timeout approximating a
MSL before deleting connection data after the connection has satisfied the criteria for
closing.

3.5 TCP IMPLEMENTATION OUTLINE

Design Considerations

The main computational cost for TCP on a timeshared host is operating system service for
functions such as context switching, scheduling, and resource management. In the study of a TCP
server under UNIX [Bunch 80], 72 percent of CPU time was consumed by OS kernel code, exclusive

* of TCP server per se. Thus when TCP servers are implemented for these hosts, they are not
structured like the clean multiple process models used for conceptual discussions. Instead, TCP

L
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code is combined with code for IP and other layers, and the overall implementation is structure, o fit
the I/O service model for the host's operating system.

(C When the TCP server is moved into a front-end processor, the server's efficiency can be improved
simply by supporting the server with a spartan operating system which is tailored to the protocol task.

* In Punch's study, such a change led to a kernel which was 7 times as fast, yielding a 3-fold
improvement in throughput. Kernel time was reduced to 32 percent of the total CPU cost. A less
tangible advantage is that the server can be designed to fit the protocol definition rather than the host
operating system.

The key design issue for front-end systems is the path between the host and the network interface.
This path should ideally be general enough so that dissimilar hosts can use the same network
interface, fast enough not to form a bottleneck, and reliable enough so that network communications
are not made significantly less reliable.

One approach to the problem is to use a loosely coupled path and a new host-to-front-end
protocol. This is the approach used in [Bunch 80]. The new protocol duplicates some TCP functions
such as flow control, sequencing, and retransmission. While this approach adds some reliability and
architectural freedom, it also recreates part of the host load that was used to justify the front end in
the first place.

The alternative is a tightly coupled interface which transfers processed data directly with the host
and relies on bus parity or similar facilities for reliability. While this design is almost universal for
low-level interfaces, using it for high-level interfaces is criticized on the grounds that the path
between the host and front end is insufficiently reliable and hence destroys the end-to-end nature of
error control. Superior reliability is claimed for schemes which pass packets all the way from their
source to their final destination without recomputing error control fields. (Incremental alterations for
hop counts, etc., are excepted.)

This objection has been cited regarding the 1822 interface for the ARPANET IMPs in that the
high-speed serial link between the IMP and the host is not protected as throughly as the IMP-to-IMP
links. The new Xerox Ethernet standard explicitly recommends that packet checksums be verified by
hosts and not by interfaces, although it also mentions that additional link-level error control is
acceptable as long as it stays confined to the link layer.

The end-to-end argument is persuasive for gateways and other forwarding nodes, but is weaker
when applied to a network interface at the final destination. Here the increased possibility of error

due to additional components in the critical path must be balanced against the lower chance of failure
due to less complicated and better protected environment in the front end. The net loss in reliability
must be compared against the gains in architectural freedom; because protocol actions must be
delayed until error control is complete, little distribution of function is possible if the end.to-end

4 approach is followed. The end-to-end approach also has a lower performance limit than a distributed
approach.
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Proposed Server Structure

The proposed server structure violates the end-to-end principle and relies on a tightly coupled
_ interface between the host and the network interface. The structure justifies a theoretically lower
*reliability by offering higher performance, lower host load, and a distributed structure which might

,- eventually benefit from advances in LSI.

The server is organized in sections which correspond to the three external events that trigger
server actions:

1. User interface logic which handles requests for TCP services from processes. Most of
this logic resides in the host; a small amount in the network interface is intended to be the
only host-dependent code in the network interface.

2. Segment arrival logic residing in the network interface which is activated by packets
lU arriving on the network and timeouts when expected packets fail to arrive.

3. Segment transmission management logic in the network interface which formats packets
and schedules their transmission and retransmission.

This discussion omits the underlying protocol layers; they are assumed to add logic similar to that
[4 discussed for the DCS message-level implementation.

These sections communicate through a shared data structure which contains the state, pending
user requests, and buffers for all connections. Although the data could be located in the host,
placing it in the network interface is a better choice because of the more frequent access by the
interface and because it leads to simpler hardware in the interface. The state data and buffers are
derived from the TCP standard and hence can be made insensitive to host features; the request
queues are clearly host dependent.

Connection State

A TCB containing the state data required by the TCP standard is shown in Figure 3-11. Several
values are represented differently from the conceptual model of the TCP standard. In particular,
SYNs and FINs are explicitly recorded rather than being encoded in the connection state.

Connection-Request Queues
I

When a user issues a TCP request which can't be completed immediately, the request is recorded
in a request element attached to the corresponding TCB. The request element contains the following:

1. The arguments of the call as supplied by the user.

2. Host dependent structures which describe an action corresponding to every possible
request outcome. For example, a Send request could have two possible outcomes:
success and failure due to any cause. A Send request would then specify two different
actions corresponding to these conditions. For example, a Send request element might
specify a pseudointerrupt if the request fails or is timed out and no operation if it
completes normally. The number of actions is host independent; the exact fields required

4 are host dependent. The typical contents of the host dependent values would include a
process handle and an interrupt channel.

I
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TCB=record

( Common data )

localconnection_ID:half word {handle for connection)
localsocket:socket (socket for this end of connection)
foreign-socket:socket, (socket for other end )
backup-foreign-socket:socket, (foreign socket for listen restart)

state:connectionstate, {one of OpeningEstablished, Closing)

activeopen:boolean {was connection OPENed actively ? )
FIN_in,FIN-out,FIN-acked, (switches for state transition control)
SYN.in,SYN-out,SYN-acked:boolean

*(Send side data I

snd-left, {Oldest sequence not acked)
snd-user, (sequence of next octet from user)
sndlimit, (sequence of first octet beyond window)
sndurgent:sequence; (sequence of urgent octet)

* snd_max_size:integer, (maximum segment size to transmit)
snd_urgentpresent:boolean, {is there a pending urgent)
sndqueue:pointer; (request queue for transmission)

,* ( { Receive side data )

rcv_SYN_sequence, (sequence of received SYN)
rcvuser, (sequence of oldest buffered octet)
rcv-left, (sequence of first unreceived octet)
rcv-limit, (sequence of first octet beyond window)
rcv urgent:sequence; (sequence of urgent octet)
rcvurgentpresent:boolean, {is there a pending urgent)
rcvqueue:pointer; (request queue for reception)

Figure 3-11: TCP Transmission Control Block (TCB)

* 3. Scheduling data for use within the network interface to control timeouts, etc.

Connection Buffers

The traditional purpose of buffering is to mask transient mismatches between rates of production
and consumotion. In communications, buffering procedures must be designed to accept great
variations in rates and to cope with arriving packets which contain data which is out of order, overlaps
previous data, and may be erroneous. In this proposal, data buffers are used as an intermediate data
structure which also helps to decouple segment-processing routines from the host-oriented user
interface.

* The proposed scheme dedicates two circular buffers to each connection. The buffer size is fixed at
initial connect time. The data in the buffer is designated by a start pointer, a length, and a pointer
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which identifies the newest data octet to be associated with a PSH. Arriving data is inserted into the

buffer if it is new, contiguous to the previously buffered data, and does not "wrap" the circular buffer.
If no data octet in the buffer is associated with a PSH, the PSH pointer takes a special value. Only the
most recent PSH can be remembered; this follows the spirit of the TCP definition.

This scheme is by no means the only possible alternative; several others were discarded. Linear
buffers similar to those seen in the TOPS-20 TCP implementation were discarded because they
complicate window management. To see this consider the choices with a linear buffer that is not
filled but terminated with a PSH. If the window allocation was based on the length of the available
buffers, then the window will shrink by the size of the buffer and not by the amount of data raceived;
shrinking windows are explicitly discouraged in the TCP standard because of the induced flow
control oscillations. Data consumption from the buffer poses a similar problem unless recompaction
is used, in which case the linear buffer is simply simulating a circular one.

Buffers in the host's memory have several potential advantages. Resource allocation can be the
responsibility of the host or even of host processes; this allows the amount of buffering to be better
matched to the process. If data is placed directly into host buffers as it arrives from the network, an
extra copy operation is eliminated. However, the segment-processing routines must now be
configured to match the host's addressing conventions; different address sizes, real-to-virtual
address mapping, and page boundaries are all potential problems. The cost of the additional copy is
probably insignificant. The cost of all primitive data operations on the segment was measured to be
less than 10 percent [Bunch 801; the same experiments were unable to detect a measurable
difference in CPU time for segments with different amounts of data. For these reasons an
intermediate buffer in the network interface is selected; a possible compromise is to map interface
buffer memory into the address space of the host when interface design and host hardware make this
possible.

Buffering data which is newer than already received data but not contiguous to it is desirable but
difficult to do in practice. A bit map for octets in the buffer, or a set of ranges would be required and
would complicate processing without offering any benefits in the local network environment where

there is usually no advantage in allowing multiple transmissions to be in progress. For connections to
distant networks that might benefit, out of order segments could be queued from the TCB for later
reprocessing.

User Interface

The user interface handles the requests for TCP services made by processes. These requests are
functionally equivalent to those listed in Table 3.2, but may be restated to conform to the OS
conventions of the host.

The first step in processing any user call is to associate it with a connection and its TCB. This step
includes TCB creation for new connections and also includes validation of access to port IN, and

connections according to host policies. The user process identifies the connection either by
specifying both sockets or by handle.

Once the TCB is located, control passes to a routine for the specific request type (e.g., Rece i ve,
Send, Status). The routine performs that portion of the request which can be completed using
TCB data. In some cases, the user call can be immediately completed. For example, a Status
request can always be completed using TCB data; a Receive request will complete immediately if
sufficient data is in the receive buffer.
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In other cases, the request needs data which is not in the TCB. For example, an active Open can
never complete until a segment is sent to the other end of the connection and a reply returned;

.opassive Open calls often wait for hours or days for a caller; Receive requests may have to wait for an
indefinite period for data from the other end of the connection. In these cases, the processing routine

-. constructs a request element and chains it to the TCE.

The processing routine is reactivated whenever an arriving segment changes the TCB state in a
way that might influence the pending request or when the timeout of the request expires. The request
will eventually complete due to timeout or segment arrival; transmissions never cause reactivation

because they either simply reflect the existence of buffered data, in which case the request would
have completed when the data was copied, or the actual transmission must be confirmed with a
returning acknowledgment.

Segment Transmission

Transmission scheduling is a resource allocation problem. Every node in the network allocates
bandwidth, in the form of segment transmissions, to its own connections. Because nodes act without
complete information, the segment transmission code is always a combination of heuristics intended
to balance throughput, reliability, delay, and other metrics, both for individual connections and the
network as a whole. Servers typically have two sorts of heuristics: those for resolving conflicting
requests from separate connections, and those which limit the rate at which a connection makes
requests.

Arbitration between multiple connections is generally designed to achieve equal access. Equal
access at the host level is guaranteed by the medium's access-control system. Within a host, equal
access is usually provided by a first-come, first-served algorithm covering connections which need to
transmit, or by a round.robin polling of all connections.

The reliability, throughput, and dela-. characteristics of an individual connection are almost always
enhanced if the connection can transriit segments more often; however, the degree of benefit varies
greatly for different connection states and histories. Individual connection management heuristics
limit transmission requests to those which have the greatest chance of being useful, i.e., of delivering
new, rather than already received data and control values.

The major heuristics for individual connections are those which select retransmission timeouts.
Retransmissions are required because segments, or the acknowledgment segments they cause, can

* be lost. The timeout should approximate the amount of time that must elapse before the sender can
be fairly certain that the acknowledgment will never arrive. This estimate must include the transit time
of the segment, the transit time of the acknowledgment, and the time required to process the segment
at the other end of the connection. Different connection states require different timeouts, if a
connection is transmitting into a zero window in hopes of a window update, its retransmission interval
should include time to run the consumer process.

Other heuristics attempt to batch control value changes and new data, rather than requesting a
transmission each time a control value changes or new data is made available. This idea is explicitly
represented in the PSH mechanism, but can also be extended to control by inserting a timeout-
between the time a control value changes and the time that a transmit request is made. Using this

0 scheme, when a process receives a segment containing a query, and hence changes the
connection's acknowledgment sequence, the process has time to calculate a reply which the server
can combine with the acknowledgment. This scheme trades increased delay for lower bandwidth.
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An important batching heuristic is to delay formatting of actual segments until the last possible
moment before they are actually transmitted on the medium. This guarantees that each segment

* carries the most up-to-date control values and data octets. The drawbacks of this scheme are that a
segment (or at least its header) must be recreated every time it is to be transmitted and that the TCP
server can't create a large queue of segments for IP or another lower level to transmit, but should
instead fo-mat a segment each time a transmission completes.

By varying the selection of heuristics and the complexity of the algorithms which estimate delays
and arrival rates, the designer can create transmission control systems with almost any level of
complexity. The best system for a given server depends on the server's need for more complicated
control (and presumably greater efficiency), versus the cost of the system in terms of CPU time, delay,
etc. Simpler facilities are justified in cases when usage is easily predictable or completely
unpredictable, when transmission times and service times are insignificant or regular, or when the
server simply can't afford the calculations. More complex systems are beneficial when delays are
highly dependent on the identity of the destination host, when bandwidth is expensive compared to
computation, or when efficiency must be maximized.

Using the buffering discipline already discussed, a suitable connection retransmission schedule
can be implemented using a transmission scheduler which continuously scans all TCBs, and a single
decrementing timer per TCB. A zero timer value means the connection is requesting a transmission,
and will get it the next time the scanner services this connection. (In an actual implementation, the
timers will probably contain values from a ring of numbers and the scanner will avoid the continuous
overhead of scanning by maintaining some sort of data structure which keeps the TCBs ordered by
time.)

Timer management is embodied in the set ot rules for setting the timer value. Different timeouts are
associated with different transmission states, where the state can be deduced from TCB values and
flags which are set when control values are updated. The proposed scheme uses four different
timeout values. In order of decreasing length, the values are as follows:

1. A long-term timeout which is set whr- the connection is idle, i.e., there is no data to
transmit, no control values have changed, and no data.bearing segments have arrived
from the other end of the connection. The purpose of this timeout is to detect inactive
connectio'is to restarted hosts.

2. A timeout value for cases in which there are no control updates or segments from the
other end to acknowledge, but there is data to transmit and a zero window for
transmission. This timeout is necessary because window updates are not themselves
protected by retransmissions, and hence the server has no way of knowing for su, s
whether the other end of the connection has a closed window. TCP servers deal with this
problem by periodically sending a segment, even without an allocation, so that lost
window allocations don't hang a path.

3. A timeout corresponding to the case in which the server is waiting for an
acknowledgment of data transmitted with a window allocation, but no control value
changes or data.bearing segments have been received since the last transmission.

4. A timeout which is set whenever a control value is changed, new data is available for
transmission into an open window, or a data bearing segment has arrived from the other
end of the connection. This timeout is not intended to delay the action per se, but rather
to allow multiple events to be handled by a single transmission.
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Although these timeouts could be constants within the local network environment, suitable
generality for an internetwork environment could be created by associating each TCB with one of
several timeout sets. This feature adds another TCB field.

Segment Arrival

The code which processes arriving segments is unique among the parts of the TCP server in that it
must process segments constructed according to any interpretation of the TCP standard, as opposed
to the other sections which can implement a single legal policy. For example, the transmission side is
free to never combine SYNs, data octets, and FINs in a single segment; the code that processes
arriving segments can not make a similar assumption. This generality is part of the "robustness
principle" advocated in the TCP standard: "... be conservative in what you do, be liberal in what you
expect from others" [Postel 81a].

The effect of this policy is that a small fraction of the segment-arrival code processes "normal"
cases, and a large fraction of the code is used infrequently for processing special cases and
unexpected conditions.

The segment.arrival code has several aspects which are not completely defined by the TCP
standard. For example, various servers are tolerant to a different degree in deciding what is a fatal
error and what is forgivable. In one server, data octets outside of the window might provoke a RSi
whereas they might be ignored in another. Different servers have different policies for deciding when
a sequence value is old, new, or possibly in error.

The behavior of the segment arrival code is well defined for reasonable cases. Figure
3-12 illustrates a possible implementation of the top-level logic. The Segment a rr ives procedure is
internally divided into three sections, represented by the three top-level IF statements. CheckWi ndow
tests to see if its arguments are ordered by a greater or equal relationship in the sequence space.
The details of computing CheckWi ndow are discussed in [Plummer 78].

The first step in Segment_arrives is to call special code to process the segment if the connection
has not yet reached the established state. This code is shown in Figure 3-13 as procedure
Conninit. This code treats several segment fields differently from the similar code in
Segmentarrives; in particular, the acknowledgment-sequence value must match that of the
transmitted SYN, and RSTs are treated differently.

* The Conn_i n i t procedure can leave the connection in the Opening state, reset the connection, or
advance the connection to EstabUshed state. Before advancing the connection to Established state,
Conn_i n i t sets up both sequence spaces.

The second IF statement in Segment_arri ves processes RST bearing segments that arrive at an
*1 established connection. The segment is ignored if its sequence number suggests that the segment is

from a previous incarnation of the connection. This test is represented by the function
reasonablesequence (not described herein). There is no standard way to perform this test;
detecting unreasonable sequence numbers requAres assumptions about the bandwidth and maximum
packet lifetime of the network. Some TCP implementations assume that sequence ordering can only
be new or old, and never unreasonable. Note that sending a RST in reply to a RST is never allowed;

4 this rule prevents an infinite sequence of RSTs.
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procedure Segmentarrivest

if state=Opening (if not yet established do initial processing)
then Conn-init;

if state>Opening & (RST in seg.flags)
then processreset:

if state>Opening (if open process segment, otherwise ignore)
then if (SYN in seg.flags) & not(seg.seqno=rcvSYNsequence)

then generatereset
else begin (process a normal segment)

U if OPT in seg.flags
then process-options:
if (ACK in seg.flags) &

CheckWindow(snd-left,seg.ackno,snduser)
then process_ack;
if (URG in seg.flags)
then processurgent;

if Newdata()
then begin

process_data;
if FIN in seg.flags
then process-fin;
end;

if (SYN in seg.flags) ! (FIN in seg.flags)
seg.data-length<>O

then scheduleacktrans

end

end; (Segmentarrives)

* Figure 3-12: TCP segment arrival code

The last part of Segment_arrives processes "normal" segments after filtering out segments from
previous connections. The tasks for normal statements are represented by the statements in the
begin block.

6
Options

The present TCP standard defines a single option other than padding and end of option list codes.
This option is valid only in initial-connect segments, i.e., when accompanied by a SYN. Hence, no
option processing is as yet required.

6
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procedure Conninit;

if RST in seg.flags (if reset present validate it }
then if SYN-out & (ACK in seg.flags) & (seg.ackno=snduser)

then process_reset
else begin

(test for ack for our SYN)
if ACK in seg.flags
then if SYN-out

then if seg.acknozsnd-user {ack matches our SYN)
then begin

snd-left: =seg. ackno
SYNacked:=true
end

else generatereset (fraudulent ackno)

(test for arriving SYN)
if (SYN in seg.flags) & (not SYNin)
then begin

setupwithSYN
if not SYNout then sendsyn
SYN in:=true
end

(if all conditions met set state to established)
if SYN-in & SYN-acked
then state=Established

end

end; (Conninit)

Figure 3-13: TCP initial connect code

Acknowledgments

Procedure processack is called if ACK is set and the acknowledgment sequence value in the
segment covers previously unacknowledged data. This procedure should update the TCB value and
complete the corresponding Send requests.

Window

If ACK is set, the window sequence value is computed and compared to that in the TCB in
process_window. A new window value may allow previously queued data to be transmitted.

Uraent

If URG is set, the urgent sequence of the segment is computed. This value generates an urgent
*l condition if there was no previous urgent condition pending and replaces a previously pending urgent

if its sequence is newer.
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Data octets and PSHs

If any sequenced items in the segment (including both data octets and FIN) are in the receiver's
window they can be copied, although many servers refuse sequenced items which ark not contiguous
to previously received items. The test for this condition is complex since the receiver must be able to
extract desirable data octets (if any) from segments which may precede, follow, or in, any manner
overlap the receive window, and must adjust all data octet sequences depending on whether or not
the SYN flag is set. The test is represented here by Newdata.

FIN processino

If an arriving segment carries a FIN, and all sequenced items up to the FIN have been received and
buffered, then the process_FIN is called to begin the process of closing the connection. This code
is very similar to Conn_ in it.

Acknowledament transmissions

* If any sequenced items were contained in the segment, the TCP server queues an acknowledgment
via schedule_ack-trans. The server may delay this acknowledgment so that it can be combined
with new data or control value changes, or even ignore some portion of such requests, but the
transmitter must be guaranteed an ack if it retransmits enough.

Distributions

The servers studied in [Bunch 80], the pseudocode descriptions, and TCP servers for Multics and
TOPS-20 all have several consistent properties:

Operating system costs dominate unless extremely large buffers are used. In most
existing networks, TCP segments are restricted to 512 data octets by convention to avoid
IP fragmentation, and hence operating system costs do dominate.

* Within the TCP code per se, most processing is concerned with deciding what to do,
rather than in costs for data movement, checksumming, etc. Most of these decisions are
sequence decisions.

9 Optimal, or in some cases even acceptable, performance requires a tuning of timeouts,
buffer policies, and acknowledgment strategies. The best policy is not always that which
transmits control value updates the most often; for example, when a transmitter
generates data faster that the receiver can accept it, a frequent acknowledgment and
retransmission policy results in many small data transmissions and acknowledgments.
Similar conditions can be triggered by buffering policies, inappropriate PSH segments,
and other conditions. In practice, the so-called "silly window syndrome" can produce
throughput an order of magnitude lower than that achieved by a less eager algorithm and
always increases host CPU time requirements by a similar amount.



4. A MODEL ARCHITECTURE

4.1 INTRODUCTION

The previous chapters of this report surveyed the state of the art in communication protocols and
local network technology and mentioned problems and opportunities for specific examples. This

chapter defines areas for research in interface design and develops an interface model. The areas
define an agenda for the rest of the report; the model is a framework for evaluation in terms of cost,
effectiveness, and practicality.

The areas are intended to select aspects of communication processing where protocol
implementation tools tailored to communications would be of value. The areas are functional in

Sq nature, so that they will be as independent as possible from specific interface technologies,
communication protocols, and communication loads. This mandates a "top down" approach to area
definition that addresses problems present in a wide variety of communication environments. The
areas are defined in the "goals" section of this chapter.

The model is a top-level design of a new interface, together with the set of assumptions and

alternatives regarding the model; the primary purpose of the model is to associate costs with the
alternatives. The model interface can be implemented in a variety of technologies. The model's
development distinguishes between issues related to the architecture, implementation, and
realization of the interface, where these terms are used in a manner similar to that proposed for CPU
design in [Blauuw 70]:

e Architecture refers to the functionality and interface organization that is visible to the
host.

9 Implementation refers to the internal structure, i.e., the actual interface components and
their interactions.

e Realization refers to the actual technology used to build the interface.

4.2 GOALS

Communications systems are designed to meet varied constraints. In the case of local networks,
the usual goal is to minimize interface hardware while preserving as much as possible of the
inherently high bandwidth of local media. Software in the host, and possibly the interface, creates the
perceived character of the communication environment and overcomes any shortcomings of the
interface. The protocol software is the limiting factor which governs the end-to-end performance of
the communication system.

The approach of this report is to acknowledge the superiority of the software approach in terms of
cost, but to claim that higher performance and new types of service can be achieved by specialized
protocol processing facilities in the interface. The crucial issues in designing these facilities are
insuring adequate protocol flexibility and acceptable cost.
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Protocol Flexibility

The typical local network host of the future will be connected directly to the local network and
indirectly to one or more internetwork systems. The host will need to use a combination of protocols:
one or more "standard" protocols for compatibility with internet systems (e.g., X.25, IP, TCP), and
local protocols oriented toward simplicity and performance. The protocol flexibility needed by such a
host has many aspects, including protocol changes and maintenance, addition of new protocols, and
supporting the simultaneous use of multiple protocols. Even if this view is incorrect, and it becomes
possible to use a single standard protocol at some level of the protocol hierarchy, flexibility in
assigning policies for flow control, buffering, block size, etc., will be needed.

The key to designing protocol tools that give this flexibility is to create a set of simple protocol tools
that address individual protocol algorithms and a control structure that allows tool composition. A
protocol implementation is a "program" of directives to the individual tools. The top level of theu control structure branches to allow several parallel protocols.

This approach relies on the similarities between protocols, but allows for differences. For example,
all protocols detect duplicates using sequence spaces generated with modulus arithmetic, although
the unit of sequence and modulus varies greatly. Similarly, the relationship between protocol
algorithms varies. For example, most protocols have acknowledgments, duplicate control, and

* unilateral resets, but their order of evaluation and sharing of packet data varies.

Cost

The new protocol tools require additional hardware and, hence, cost. This cost penalty mandates
careful selection of new tools to reduce the cost of individual interfaces and the local network as a

V whole. The following heuristics are proposed:

Tools that provide higher performance implementations of existing protocols (e.g., TCP,
IP) should recognize that the entire protocols are too complex to be implemented in a
reasonable amount of hardware. A solution is to include a microprocessor in the
interface to handle special cases (e.g., connection initiation and termination, urgent),
errors, diagnostics, etc., and restrict the hardware tools to those necessary to implement
simple primitives. The proportion of the protocol implemented in the microprocessor
should be large in a static sense and small in a dynamic sense. Each transaction in the
"automatic" subset should require the absolute minimum of host and microprocessor
intervention, so as to minimize latency and maximize throughput. Microprocessor

* intervention should not be required for time.critical functions and simple data transfers.

" New services, and hence their tools, should take advantage of the local netwc>,' medium
and create a better environment for distributed computation. The envisioned
environment sits between the current local network and multiprocessor systems and has
the performance and simple interactions of the multiprocessor while preserving the

4 loosely coupled organization of the local network. What is needed are more powerful
methods for specifying interprocess communication connectivity and simple primitives
for object transfer. These requirements can be met by better naming systems, hardware
to simplify data transfer, and more sophisticated prompt acknowledgment facilities.
Broadcast delivery with reliable prompt acknowledgments would be particularly desirable
for implementing reliable distributed systems that need to keep synchronized databases.

* Any design will be more effective if it can transfer technology, in the form of hardware or
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software, from existing systems. The interface should be designed to allow the use of
existing LSI parts for the microprocessor, host DMA interfaces, etc.

The overall cost of the local network can be minimized if it allows a variety of interfaces in
the network. For example, large hosts on the network might require more facilities than
terminals. Experience to date suggests that the cheapest interface is microprocessor
based. Hence the difference between interfaces will be one of speed rather than
intelligence. Schemes for prompt acknowledgments, addressing modes, etc., should
anticipate the use of less capable interfaces. In particular, interfaces are not required to
generate or receive prompt acknowledgments, although interfaces that do not generate
prompt acknowledgments may be required to signify this lack in a special prompt ack
value.

Area Definition

q This report divides protocol processing, and hence the protocol tools, into two major areas: binding
and data delivery.

In terms of a state model of protocol execution, binding refers to state representation, transition
selection, state update, and multiplexing of multiple protocol state machines. Data delivery refers to
the actions that are associated with transitions.

In an actual interface, binding tools relate stimuli such as arriving packets, user requests, and
timeouts to a description of the connection state and generate control signals for state update and
the data-delivery tools. For example, in processing a DCS style packet, the binding tools might

recognize a well-formed packet (good CRC, all fields present, etc.), look up the relevant connection
record or records, filter the packet by sequence, and output connection-record information to control
the transfer of packet data into host memory and possible host interruption.

Data delivery tools are driven by control information output by binding tools. The problems in this
area are the definition of the data objects carried by the medium and methods for transferring these
objects between the interface and the host. Most host-specific considerations, such as byte sizes,
memory addresses, buffering policies, and reassembly, are isolated in this area.

4.3 ARCHITECTURE

The proposed interface model is shown in Figure 4-1. The figure is the host's model of the
interface and does not necessarily represent the actual interface structure.

Binding functions reside in the filter and the microprocessor. The status and control registers are a
register file used to pass commands and status between the microprocessor and the host.

" The filter has two major components: storage for the binding specifications and
connection-record data, and an interpreter that uses the specifications to perform the
binding functions. The binding functions performed by the filter include name
recognition, connection-record search and storage, state update, and prompt
acknowledgment control.

* The microprocessor is a conventional computer, whose program is dedicated to
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I Transceiver

Medium/buffer
interface

Microprocessor
control

Host/buffer Status/control
DMA registers

Host

Figure 4-1: Architecture for the model interface

maintaining the database stored in the filter and executing the parts of protocols that are
not performed directly as the result of filter operations.

The boxes on the left side of the figure represent the main data paths:

• The transceiver includes the transmission line interface, isolation, and logic for
transmitting prompt acknowledgments generated by the filter. If possible, the transceiver
should be the only part of the interface that depends on a particular medium.

* The medium-to-buffer interface converts between the serial format used on the medium
and the parallel format used by the buffer. Its operation is controlled by signals
originating in the filter.

- The buffer is a multipacket buffer used for retransmission and incoming packets.

* * The host-to-buffer interface transmits packets between the host memory and the
interface buffer and probably includes logic for generating host interrupts. Its operation
is controlled by the filter.

There are three types of interface activity: host commands that direct interface operations,
message reception, and message transmission. The following sections roughly outline the operation
of each of these activities.
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Host Command Processing

The host presents commands and associated parameters to the interface via the shared memory in
the status and control registers. The microprocessor looks for complete commands in the registers
as part of its idle loop.

Commands are instructions for updating the filter database. The microprocessor synchronizes the
actual filter database update with respect to message arrival and transmission, so that a partially
updated database is never used to make reception or transmission decisions. Once the update is
complete, the host is informed by a status update and an optional interrupt.

The same data path may be used for downloading of the microprocessor program.

qMessage Reception

The start of a new packet is detected by thq transceiver, which recognizes the preamble or epoch
at the start of the transmission. The transceiver signals the filter and data path elements to start
processing the incoming data. The arriving data are bit unstuffed, if required, and passed to the filter
and the medium-to-buffer interface. The packet is stored in the buffer as it arrives.

The filter first decides if the incoming packet is destined for the attached host. If not, the transfer to
the buffer is aborted, and the transceiver is signalled to begin searching for a new packet. If the
packet is recognized, the filter searches its database for the corresponding connection record.

If the connection record can't be located, a microprocessor interrupt is generated, and no
automatic processing takes place.

If the connection record can be located, the filter processes control information in the header
against data in the connection record. The exact processing to be performed is specified as part of
the filter data structure. The evaluation results in control signals which control the data-delivery tools,
may update the connection-record data, and may cause a microprocessor interrupt.

The exact combination of actions depends on the packet contents, and probably should not cause
permanent change until the end of the packet arrives and the packet CRC is checked.

*t Once the packet is complete, the interface generates a prompt acknowledgment based on the filter
control signals. The prompt ack is composed of fields which correspond to separate filtering
decisions and ultimately to events of interest to the interface and protocol transmitting the packet.
For example, one field might signify that the CID was recognized, another the fact that the packet was
received with good CRCs and checksums. The meaning or validity of ack fields may depend on other
ack fields; in the example, the CID recognition is probably meaningful only if the CRC and checksums
were correct. The meaning of ack fields will also be dependent on the layering of packet data. For
example, TCP ack fields would probably be in different positions if both IP and some local protocol
were used to encapsulate TCP segments.

. . ..a- .



* 106 COMMUNICATION ENVIRONMENTS FOR LOCAL NETWORKS

Message Transmission

Requests for transmission ultimately originate in the host, although retransmissions and packeting
U" of long messages can originate in the microprocessor. Packet transmission requests are queued in

connection records in the filter database.

As part of its idle loop, the microprocessor searches the filter database for transmissions that
should now be scheduled. The search looks for the highest priority transmission which is not waiting
for a timeout to expire. (Timeout management is remarkably similar to sequence-based searching as
it is also based on modulo arithmetic.) Once an eligible transmission is located, the appropriate
connection-record data is transferred to the host-to-buffer DMA, and the packet is transferred from
the host to the buffer.

The packet is transmitted as soon as the medium can be acquired.I
The result of transmission is returned status that includes transmission-error flags and any prompt

acknowledgments that were returned. The status is used to update the connection record and may
possibly cause a host interrupt or update of host memory.

4.4 IMPLEMENTATION

Design of the implementation level structure for the model is driven by the worst-case processing
requirements of the architectural level. The processing requirements are of two general types: data
transfer between the buffer and either the host or the medium, and control functions such as filtering,
prompt ack processing, and data path setup. The worst case processing requirements, taken with the
processing capabilities of various computing elements, define the maximum sustainable data rate for
the interface.

The candidates for worst case are host interaction, packet transmission, and packet reception.

Host interactions which require host memory speed response (e.g., interface device
status) should be directly performed by the status and control registers; other host
interactions (e.g., update of filter database) are not timing sensitive and can be performed
whenever the interface is otherwise idle (i.e., when no packet is arriving or departing).
Hence, host interactions do not cause worst-case behavior.

*Because packets to be transmitted can be preformatted in the interface buffer, and
because the returned prompt acknowledgment need only be processed before the next
transmission, the worst-case demands associated with transmission occurs as the packet
is being output. This data-transfer demand is directly related to the data rate of the
medium.

Message reception has the same requirement for data transfer between the buffer and
medium; in addition, filtering must take place. Thus the worst-case activity should be
observed during message reception. (If the interface can transmit to itself, the worst case
oicurs during the overlap of transmission and reception. The peak load is the reception
peak load plus the constant load generated by transmission host-to-medium transfer.)
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The exact timing of data transfer and control requirements during packet reception will vary
depending on the exact filtering discipline, prompt acknowledgment system, and data-transfer
schemes used. Figure 4.2 gives the receive timing relationships based on the assumption that the
interface constructs prompt acknowledgments based on packet contents.

The timings are divided into three types: fixed timings that are invariant, optimal timings based on

an interface design with unlimited performance, and maximum filter times which are the lowest
* performance timings consistent with the assumptions. The horizontal axis is given in terms of the

fields of a packet; the sizes of the fields vary widely. The sizes are given in terms of bits of packet
data; the ranges correspond to the differences between a RI packet and a TCP segment encapsulated
in an IP header (without options).
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The fixed timings and associated activities are strictly related to the signalling rate of the medium.

Low-level functions, such as bit unstuffing, CRC calculation, and conversion between serial and
parallel data formats are best performed by dedicated bit serial hardware. Converting the data flow to
parallel format reduces the rate of operations; this parallelism is essential if programmable elements
of the interface are to achieve an acceptable effective data rate. Given the available components, a
parallel width of 8 or 16 bits is desirable. Because most protocols are based on the use of octets or
8-bit bytes, 8-bit data paths are preferred. The prompt acknowledgment output will probably require
special hardware, given that the acknowledgment must be based on the correctness of the
immediately preceding CRC.

The optimal timings assume that processing is performed as soon as the required data is available.
Filter activities begin with a search of the filter database for the connection record which corresponds
to the arriving packet. This search is based on the addresses in the packet, and may include
identification of the protocol in use for interfaces supporting multiple simultaneous protocols. Once

Uthe connection record is located, the filter calculates the control signals and parameters for data-
delivery tools. Figure 4-2 illustrates the activation of buffer-to-host data transfer. State update is
performed only after the CRC and prompt acknowledgment have been seen to be correct. (Figure
4-2 assumes that the data-buffering discipline in the host allows the interface to put data in the host's
buffers which the interface may later find to be invalid due to CRC failure or prompt acknowledgment
problems.)

The optimal timings severely constrain the types of implementation structure that can be used to
perform filtering. For example, assuming the 16-bit source and destination addresses used in the
original RI, and the RI's 2 Mbps medium rate, optimal filtering must be accomplished in (16+16
bits)/2 Mbps = 16 usec. This amount of time is insufficient for any type of MOS microprocessor assist
to the filtering function, even if the microprocessor can begin the filtering task 4 usec after the synch
pattern alerts the interface to the arriving packet. The 16 usec interval may even be a problem for a
bit-slice microprocessor, given that it corresponds to 80.160 microinstructions at best. Clearly,
measures to relax the timing would result in more implementation flexibility or a larger connection
space capability. The only cost to such a scheme is additional latency between data arrival and
transfer to the host.

The maximal filter times assume that the results of filtering need only be available by the time the
prompt acknowledgment is sent. Data transfer to the host is delayed until the interface has completed
filtering; for short packets, the transfer is delayed until the prompt acknowledgment is output. State
update can continue until the start of the next packet's header data. In the case of the RI example,

* filter times are doubled to 32 usec.

Filter times may be further extended by inserting delay between the header data passed lo the filter
and the prompt acknowledgment. One method is to mandate a larger minimum data length; this
technique has the advantage of adding no overhead to packets which are already larger than the
minimum. A second technique is to insert a fixed delay between the CRC and the prompt ack. Some
minimal delay is already necessary in bus systems, such as the Hyperchannel, to change between bus
transmitters.

Another constraint on filter design is the storage capacity for connection records, both in terms of
the number of connection specifications (names) and the amount of specification data required per

* name.



A MODEL ARCHITECTURE 109

The number of names required is highly variable, depending on host characteristics. A terminal on
a local network needs only one or two names. A conventional timesharing host may need 100
simultaneous connections. Envisioned distributed processing systems will use an order of magnitude
more connections. For a host that could use the performance of the model interface to advantage,
somewhere between a dozen and several hundred connections seem reasonable. Therefore, an
expandable filter with a minimum of 16-32 and a maximum of several hundred names seems tc be a
reasonable choice.

Bounds on the amount of data per connection are less speculative. As a lower limit, the filter must
recognize the addresses in the packet. Table 4-1 illustrates the address size, address components,
and broadcast-address modes for several interface (hardware) and protocol (software) systems. The
entries in this table are arranged in roughly chronological order.

The "size" columns give the total number of bits in an address; the "components" columns
describe the size and function of the components of an address. The "broadcast" columns describe
the components that can be universally quantified. For example, " host" means that an address can
have a host component which will match any host value. With the exception of the LNI, a broadcast
component is encoded as a special value of the corresponding field.

This data supports the conclusion that address sizes are growing and vary considerably in length.
For the model interface, a lower bound on the size of a connection ID is equal to 2 addresses of 64
bits, or 16 bytes. An upper bound on connection ID size can be derived from the header length of a
packet; for an IP encapsulated TCP packet, this value is 40 bytes.

Filter desian alternatives

In order to meet the timing constraints, the filter needs to be fairly fast, and must have deterministic
worst-case performance to guarantee filtering is complete before the prompt ack time. Thus the
design should be as simple as possible, and should use deterministic search algorithms.

The two parts of filtering, connection recognition and control filtering, seem to be different in
nature, and hence may require different computational support. Connection recognition is a search
problem: The filter searches the filter database for connection record(s) that match the packet's
connection ID (usually the source and destina+:,n addresses). The control-filtering phase is more
computational: The filter performs sequence space and other calculations that determine what
actions, if any, should result.

Three filter organizations are possible:

1. A parallel search using associative memory similar to that in the LNI.
2. A path-following approach in which the filter database is conceptually similar to a finite

state machine (FSM) description, and the packet header is used as the inputs to the FSM.
3. A hybrid approach, which uses a parallel search for locating the connection record, and a

nonparallel element, such as a microprocessor, for control filtering.

Associative search

Associative memories similar to that used in the LNI are internally based on rapid sequential

4
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Table 4-1: Addressing parameters

Hardware Address Software Address
System Size Components Broadcast Size Components Broadcast

Ethernet(old) 8

Ethernet(new) 48 0?

PUP 48 8 network * host
8 host
32 socket

DCS/RI 16 4 class * host 16 same
4 host

i.: 8 unique

LNI 32 by bit

Batnet none 16 8 network * network
8 host

NBS 16 0 host

TRW 8 256 addresses divided into:
63 point to point, I broadcast
192 "functional" multicast/allocation channels

IP 40 8 network
24 host address

8 protocol

TCP 16 16 port number

LLL network Address:
64 unspecified hierarchical

components

Capability:
<248 <152 password+UID

32 properties

64 address

comparison of key data against possible matches stored in RAM. Parallelism in search is obtained by
additional comparison units, by increasing the number of bits compared in a single comparison, or by
a combination of both techniques. The typical organization of such an associative memory includes a
central controller, a RAM for names, a result RAM for recording comparison status for the
corresponding name RAM entry, and the actual comparison logic. If parallel compare units are
desired the two RAMs and the comparison logic is replicated.
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The name capacity of a RAM unit is limited either by the comparison rate (to the number that can be
compared in the allowable time), or by RAM capacity. The comparison limit is proportional to the
product of available comparison time and width of a single comparison and inversely proportional to
the time required for a single compare. A typical scheme might use a byte-wide compare, a 100 ns
compare time, and a time limit equal to two bit times on the medium. At 1 Mbps, such a system could
hold 160 names; at 10 Mbps, 16 names.

Path-followino search

The path-following approach views the incoming header as input to a FSM described in the filter
database. The terminal states of FSM eiecution map to connection IDs. Assuming a deterministic
FSM model, the difference between this approach and the associative-memory approach is that only
one search is made per packet.

* In the simplest form, the FSM has no intermediate states, the packet address is used as an address
for a RAM, and the contents of the addressed RAM cell are the connection state. This was the
approach used in the TRW interface [Blauman 79]. Using modern memories, the original RI name
table could be implemented using a single 64K RAM. However, the longer addresses that are
common in protocols require unreasonable amounts of memory.

A larger address space requires the addition of intermediate states to the FSM and a mechanism for
representing the transition rules appropriate to a given state. In an octet-oriented system, the
transitions related to address filtering can be represented as 256 way branches to successor states
selected by an arriving address byte. Control filtering could be implemented as branches based on
arithmetic calculations. Outputs from FSM transitions control-data delivery functions.

The implementation structure for such a system would consist of RAM for the transition tables and
connection records and a controller to interpret the transition tables. The controller could be fairly
simply implemented using ALU slices for comparison and calculation (in a high-performance version)
or perhaps a microprocessor for media with low data rates. Because the filter has a relatively long
time for processing each byte of header (compared to bit serial rates), multiple control outputs at a
given point in the header could be handled as multiple transitions, each with a single control output.

The optimal design adjusts the width of the selector to compromise between memory requirements,
speed, and compatibility with the rest of the interface:

• The width of the selector is the primary influence on filter memory size. In worst-case
CID spaces, the filter FSM graph structure is the tree which maximizes the number of
states per CID (leaf) by branching CID paths early in the FSM tree. In such a situation, the
amount of filter memory (M) required to store C CIDs, each of N bits, using a selector of
width S, can be approximated by

w M = blockcount 0 block-width * block height
where

block-count=CN/S

block-width = log, (block-count) = log, (CN/S)

block-height = 2S
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- The 20*S cost factor predominates ond approximates the amount of unused memory in
paths during worst-case situations. Unfortunately, all addressing schemes in use today
are close to worst case; hence the selector size should be minimized wherever possible.

• The speed required of the filtering system is inversely proportional to S. Larger values of
S allow slower filter control and filter memory, and hence lower cost and higher memory
density.

Two choices seem feasible: an 8-bit wide selector (which is in keeping with a byte-oriented design)
and a 4-bit wide selector (which can be easily interfaced to the remaining byte-wide sections of the
interface). A smaller selector is undesirable because it requires faster, and hence more expensive,
RAMs for filter storage. At 10 Mbps, a 4-bit wide selector must generate filter decisions every 400 ns,
whereas a 2-bit selector must operate in 200 ns. A 4-bit selector strategy could meet this time and
allow for one arithmetic and one N.way branch filter instruction; it would be difficult to build a 2-bit
system with the same flexibility at a comparable cost.

A worst-case example reveals the superiority of the 4-bit selector size. For example, a 64K x 8
memory and 8-bit selectors allows for 256 branch tables of 256 entries each. Ignoring the need for
special addresses to signal comparison failure and space for the connection data, and assuming a
32-bit address size, the worst-case capacity for this system is 85 addresses. A 4-bit selector system
with a similar capacity (82 addresses) could be implemented using a 8K x 9-bit memory. The storage
for the 4-bit system is only (8K * 9)/(64K * 8), which equals 14 percent of the 8-bit selector system.
Equivalent results apply for larger CIDs: For 64-bit CIDs, the 64K x 8 system with 8-bit selectors holds
36 CIDs, while the 8K system with 4-bit selectors holds 35 CIDs.

A 16-bit wide filter memory and a 4-bit selector seems the appropriate choice. The 16-bit width can
allow either an 8- or 16-bit micro to conveniently address the filter memory, perhaps using byte
addressing for microprocessor references. The 16-bit width will also allow for byte-oriented storage
of control-filtering data as well as a large number of special codes for addressing-connection data
blocks, etc. An acceptable number of CIDs can be stored using 16K x 1 or 2K x 8 RAMs, depending
on need.

Hybrid aoorolqfh

Neither the path-following FSM scheme nor the existing associative schemes are suitable for use in
their pure forms. The associative memory scheme can't deal with multiple protocol layers or variable
length comparisons, while the path following approach suffers from state explosion for real protocols.

The major changes required for an associative model interface are a facility for multipie,
programmable comparison rules to the main controller and the ability to use different rules in each
comparison cell. For example, assuming support for both IP and a local network-packet format, it is
unlikely that the same address comparison rule could be used. The controller must examine the
incoming packet, determine the appropriate comparison rule, and only then begin the associative
search. The need for different rules for different associative cells is seen by considering the case
where one cell holds an IP-only connection record and another holds a local format-only connection
record.

Changes to make the path-following approach more usable are to include a facility for performing
4 arithmetic (length calculations, sequence arithmetic, etc.) independent of the path-following

mechanism and to support the construction of path subroutines.

a
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Comparative analysis

The advantages of the associative scheme are the following:

1. The associative approach offers a natural method of supporting broadcast facilities,
because all addresses are processed in parallel.

2. The cost of adding a binding function is the memory needed to describe it in the
comparison-rule memory; no per connection cost is incurred.

The disadvantages of the associative scheme are the following:

1. The associative memory is fairly expensive in terms of hardware component count.

2. The associative memory structure is unlike that found elsewhere in the interface; there is
little prospect of economies on the basis of shared hardware.

3. Maintaining the associative memory requires special addressing for the associative cells'
contents.

The advantages of the path-following scheme are as follows:

1. Because the path-following approach follows a single path at a time, it minimizes the
amount of computation which takes place per bit of arriving message. The advantage
can be used to reduce the required logic speed or increase the amount of computation
that can take place per bit of arriving message.

2. This scheme allows for a great deal of flexibility in resource (filter memory) allocation; the
amount of resources consumed by a filtering specification is commensurate with the
specification's complexity. Variable-length addresses, multiple protocols, variable
encapsulations of a higher level protocol, etc., could all be handled.

3. The transition tables can be stored in a dual-ported RAM accessible by both the filter
controller and the interface microprocessor. Updates to the filter database could be
performed without additional hardware support.

4. Additional capacity can be added cheaply and simply by increasing the size of the RAM.

The drawbacks of the path-following scheme are as follows:

* 1. Broadcast names similar to those in the LNI require large amounts of table space. Any
sort of control filtering with multiple recipients requires power equivalent to that of the
associative scheme.

2. The number of transitions necessary to encode a set of addresses is not proportional to
the number of addresses. For example, assume the FSM accepts 2 4-byte addresses,

* and the addresses differ in a single bit position. If the difference is in the first byte of the
addresses, then 2 separate sets of 3 branch tables will be necessary to realize the FSM
for a total of 7 branch tables of 256 entries each. If the difference is in the last byte, then
the first 3 branch tables can be shared and only 5 branch tables are required.

3. Whenever a name is added or deleted, the interface microprocessor will have to spend a
fair amount of time in updating the tables.
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Given these arguments, the path-following approach is superior in all cases, if it can be
demonstrated that:

1. The filter memory requirement can be made acceptable.

2. Broadcast addressing can be supported.

3. State update and computationally oriented control filtering can be integrated with the

pure path-following approach.

The next section presents an outline of a filter machine designed to meet these objectives and
motivates the initial choices for speed, operation width, etc. The next chapter uses the design to
implement filter specifications for a particular set of protocols and defines the exact speeds and
capabilities required.

tq Filter machine implementation outline

Figure 4-3 presents a block diagram of the filter machine. Its operation is explained below.

Incoming

11D 
ata 0 R

CSR Filter memory

? X 16
Register file

PC

CR

FR

SI

~ALU

• I ACV IController

Figure 4-3: Filter machine block diagram

The filter memory is a 16-bit wide memory bank which is also part of the interface microprocessor's

address space. Sharing and memory refresh (if required) could be implemented in a variety of ways,
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but the simplest method would seem to be to arbitrate access using a separate memory address
resister (MAR). If the filter machine is to process packets reliably, it must have priority to use the
MAR. Refresh could be implemented in filter machine code or in interface microprocessor code if

* filter code sequences do not prove to lock out the interface microprocessor for extended periods.
The interface microprocessor may regard this memory as being byte addressed, but word addresses
are used by the filter.

The filter machine's instruction execution unit is of conventional design and includes a controller to
govern filter instruction execution, an ALU section for arithmetic operations, and registers accessed
through a common bus. Incoming data from the medium is buffered in the SR and CSR registers as
described below; the results of filter machine execution take the form of changes to the filter memory
(which are noticed by the interface microprocessor) and prompt acknowledgments which are serially
output through the acknowledgment register (ACK).

The filter machine executes instructions that specify arithmetic operations, N-way branches, and
memory operalions. One instruction is executed for every 4 bits of incoming data. Thus for a 10
Mbps medium data rate, the filter machine has 400 ns per instruction. At most, a single instruction
can generate 2 memory operations: one to perform a memory read or write specified by the
instruction, and one to fetch the next instruction. At 10 Mbps, the memory cycle time needs to be 200

• ns, well within the capabilities of current technology. The memory address is either directly
represented in the instruction or is contained in the register set of the filter machine.

In addition to the optional memory operation, an instruction can perform 2 arithmetic operations.
The operations are 16 bits wide. This size is adequate for counting down lengths and is found in
many protocol formats.

Instruction execution has two phases. During phase 1, the memory operation specified by the
instruction is performed, and one of the two possible ALU operations is performed. During phase 2,
the instruction pointed to by the program counter register (PC) is fetched, and the other ALU
operation is performed. Branch instructions modify the PC during phase 1. Memory accesses may
implicitly require incrementing the memory address. For example, consecutive instruction execution
increments the program counter (PC). Thus the maximum number of ALU operations per instruction
is three, which can most easily be clocked by using the arriving bit clock and allowing 4 ALU
operations per instruction. At 10 Mbps, this would require a 100 ns ALU cycle time. The first ALU
cycle of each phase generates a memory address; the second ALU cycle in a phase performs a
computation.

In order to encode all of the instruction parameters, an instruction width of 16 bits is required. Even
this width may be inadequate for a straightforward encoding. This problem will be examined in the
next chapter following derivation of actual code sequences. A two-level instruction cracking scheme
may be required.

Data from the medium is made available to the filter machine in 4-bit chunks which arrive
synchronously with respect to instruction execution. The arriving 4-bit chunks are shifted through a
16-bit register (SR), 4 bits at a time. The filter machine can access the 16-bit register to transfer 16
bits of consecutive data into the ALU as a single quantity. A separate 16-bit shift register (CSR) is
provided and is shifted only under filter program control. The filter uses this register to extract and
assemble fields from the incoming packet data.

I 
- - - - -
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The N-way branch instructions are executed using a table address stored in the filter machine's
register set. At least two registers will be dedicated to this function: one register for connection
recognition (CR), and one for format filtering (FR). The N-way branch instructions are executed using

I_ the following sequence of operations:

1. The base address of an N-way table stored in the CR or FR is combined with the selected
predicate to form the address of ar entry within an N.way branch table. The predicate is
either the most recent 4 bits of incoming data from SR or 4 ALU status bits from the
previous second ALU operation.

2. The contents of the addressed entry is fetched.

3. The addressed location contains two parts: a register designator and a value. The
register designator selects the register which will receive the returning value. The
designated register may be the PC, the CR, the FR, or a register yet to be designated.

The rationale for this design is that a set of N-way branch tables represents a FSM. The selected
base register corresponds to the current state of the FSM. If a branch table entry contains a PC-
directed value, it corresponds to a transition to a terminal state of the FSM. If the branch specifies a
table base register, it corresponds to a transition to another state in the FSM.

4.5 REALIZATION

Alternatives for Interface Realization

C, The overall interface design contains several sections in which the choice of realization technology
is obvious:

The interface microprocessor and supporting memory should be built using conventional
MOS microprocessor components. The reasons for this choice include cost factors, the
availability of programming tools, and the need for a general-purpose computer to deal
with the vast number of special case situations which occur in protocol processing.
Some of the newer bipolar microprocessors and controllers could be used for increased
speed, but their lack of instruction set generality and software support would greatly
increase design cost.

" The transceiver and related hardware dealing with serial medium data rates must be
* implemented in digital logic of some form, rather than a microprocessor. The extent to

which this logic is required is a function of medium speed and requirements for isolation
and other electrical considerations. A slower rate can use digital phase locks and almost
completely avoid the need for special line interface circuitry. However, analog phase
locking and logic for serialization and deserialization will always be faster than a

* programmable implementation of any sort.

" The host interface will depend on individual host bus characteristics, etc.

The remaining question is the appropriate realization technolor-, for the filter machine's instruction
execution logic. The choices considerea are bit slices, custom MOS, and a MOS microprocessor.
The first two alternatives are preferred approaches for high-performance implementations.
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Bit slices

This approach is especially natural for the processor described in the implementation section. For
example, a few chips from the 2901 family could provide the majority of the filter machine logic.
2901s provide a 16-high register file, a shifter, and an ALU capable of addition, subtraction, shifting,
and generation of zero, carry and borrow condition codes. Thus 4 2901 chips would implement the
complete ALU, most of the required registers, and possibly the SR or CSR logic. External logic would
be required for the PC (4 loadable 4-bit counters, such as the 74LS163), and miscellaneous registers
for the MAR, MDR, condition code, etc.

The controller section of the filter engine would consist of PLAs or PROMs dedicated to generating
the 2901 control signals from the instruction word, plus discrete logic or PLAs for filter memory
arbitration, system initialization, etc.

2901s are available in several speed ranges, including a version that has the 100 ns ALU cycle time
required for a 10 Mbps medium speed. Instruction execution has 4 phases:

1. The address of the memory operation is output to the MAR latches and a memory cycle is
started.

2. The PC is incremented, memory data replaces the specified register, and the PC is sent to
the MAR to begin instruction-fetch memory cycle.

3. ALU op 1 is performed.

4. ALU op 2 is performed, and memory data is latched into the instruction register.

The filter machine (excluding memory) is estimated to require a total of 15-30 ICs.

Custom MOS

Given the simple structure of the filter ALU controller and registers, and assuming outboard filter
memory, the considerations for a custom MOS filter machine design are speed and connectivity.

The 100 ns time required for 10 Mbps processing is within the range of faster MOS processing
abilities, particularly when all of the registers are on chip rather than offchip. The design allows for
such a structure.

The connectivity problem is whether a custom chip could be built using an acceptable number of
inputs and outputs. Exclusive of the filter memory interface, these signals are estimated as requiring
8 lines for incoming data, incoming clock, data present, reset, ACK register output, and power and
ground. The address interface will require approximately 4 lines for control: read or write, ready, bus
request, and a strobe. Assuming a 16-bit data path for the MDR, this totals 28 lines. A 40-pin IC could
thus allow for a 12.bit or 4K filter memory address space. If additional addressing is required,
encoding the control lines or multiplexing the address and data lines would still allow for a 40.pin
package. Assuming a 64.pin package, no restrictions apply.

Thus a custom MOS implementati'bn of the filter machine seems realistic for the 10 Mbps target. A
higher rate might be possible if parallel ALU operations were incorporated in the design, and if the
ALU rate, rather than the memory access rate, iS the factor limiting performance.
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MOS microorocessor

A microprocessor implementation of the filter machine would be possible, but would severely
restrict the data rate. The extent of the speed penalty is related to the execution rate of the
microprocessor and the fact that filter ALU operations can require several microprocessor
instructions. For example, the 16-bit ones complement arithmetic required by IP/TCP checksums
requires at least 2 and probably 3 instructions on a MOS twos complement machine. Assuming that
all filter instructions, consisting of 2 ALU operations and a memory operation could be simulated as 3
microprocessor instructions per ALU operation and that 1 microprocessor instruction is required for
the memory operation, a total of 6 microprocessor instructions are required per filter machine
instruction simulated.

Assuming a 1 MIP microprocessor the filter data rate would be reduced to not more than 4 bits
every 6 microseconds, or 666 Kbps. The actual throughput would probably be less, perhaps only 100

I ' Kbps.

*



5. MESSAGE BINDING

5.1 OVERVIEW

The Scenario

This chapter covers the design of a filtering specification for an interface supporting both an
IP/TCP protocol system and a local message orotocol. Following this design, this chapter proposes
extensions to filtering to allow broadcast service.

The protocol hierarchy for the filter is shown in Figure 5-1. This family of protocols follows the
assumption that a local host will need to communicate via standard protocols (in this case IP and
TCP) and a local protocol with simpler properties (LOCAL). LOCAL is a protocol similar to that used
in the DCS RI and LNI systems; the changes are to enlarge the addresses and omit the mask fields of
the LNI.

FTCP
LOCAL F IP

FRAME

Figure 5-1: Protocol hierarchy

The format for the FRAME and LOCAL packets is shown in Figure 5-2.

Synch Type Encapsulated packet Synch CRC/checksum

Frame level packet format

48_____ 48 j 16 1
Dest Source Length Data

LOCAL level packet format

6 Figure 5-2: FRAME and LOCAL packet formats

The FRAME protocol is similar to the message formats recognized by contemporary interfaces in
that it contains a synch pattern to indicate the start of every message and a CRC or checksum field to
detect transmission errors. All data except the synch pattern is bit stuffed; the choice of a particular

* CRC or checksum algorithm is deferred until the need for CRC or checksum support for other
protocols is defined. The CRC or checksum is preceded by a synch marker to synchronize the CRC
position and the subsequent prompt ack time period.

Unlike contemporary interfaces, the FRAME protocol contains no address or length fields; these
functions are assumed to reside in the encapsulated protocol level(s). Omitting these fields from the
FRAME-level avoids the need to duplicate length verification and addressing support; the
encapsulated protocol may even suppress the FRAME CRC or checksum verification. For example,
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an IP packet carrying voice or facsimile data may only need to have its IP header checksum verified.
The Type field in the FRAME protocol specifies the protocol layer immediately within the FRAME
layer. In the scenario, the choices for Type are IP or LOCAL.

The LOCAL protocol is always encapsulated in a FRAME-level packet. LOCAL packets can be
used as a top-level protocol for transfers within the local environment, or as an encapsulating layer
for TCP segments within a local environment. The address size for LOCAL source and destination
addresses must be at least 32 bits for compatibility with the TCP pseudoheader; a 48-bit length allows
a set of distinct addresses for TCP encapsulation, a set of addresses for pure LOCAL use, and a large
set of unused addresses for future expansion.

The LOCAL-level addresses in packets which encapsulate a TCP segment include 4 bits which
signify an encapsulation, 8 bits which identify the encapsulated protocol (in this case, TCP), 4 bits of
unused space, and 32 bits of internet address. Pure LOCAL packets can allocate the 44 bits after the

q first 4-bit field for any purpose; the allocation assumed herein is that 32-bit addresses are used for
compatibility with the internet, and that the remaining 12 bits are used to carry sequence bits, MDF
types similar to those described in chapter 3, etc.

The IP and TCP packets are identical to those defined in the relevant standards [Postel 81 a, Postel
81b].

Figure 5-3 illustrates the various encapsulations possible with this system of protocols.

The filter designs for individual protocol layers must include connection recognition, control
filtering, and prompt ack generation. Before considering the filter designs for each of these levels, we

-( consider strategies for composing the individual filter specifications into a complete filter.

From a filter-specification designer's point of view, the best system is one in which filter
specifications can be transparently nested for multiple protocol layers. One difficulty with this
approach is that nested protocols require consideration of all levels of nesting rather than simply that
of the deepest layer. In the case of IP and TCP, this problem manifests itself in the form of shared
data in the pseudoheader and packet lengths from IP that must be used by TCP in computing the
amount of data in a TCP segment.

A more realistic point of view is that nesting is handled by a combination of filtering code specific to
each enclosing protocol and interfacing code which is specific to the interface between the two
layers. A practical advantage to this approach is that the trailing data of one level can be processed
concurrent to the arrival of the leading data of the next level. This is an advantage because
processing of the first level's trailing data is often impossible until it all arrives, and hence the second
level's incoming data has begun. However the next level has the same problem, and often cannot
begin processing until a "critical mass" of second level protocol control has arrived. Overlapping
processing makes use of the "wasted" filter cycles at the start of the second level to finish processing
the first level.

Figure 5-4 is an outline of the complete filter FSM constructed according to this principle. Note that

the states in this filter are actually sets of states rather than primitive states.

The starting state of the filter branches according to the FRAME-level TYPE field. One path out of
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Figure 5-3: Possible packet encapsulations

this state corresponds to an unknown type field labeled "FRAME epilogue." The epilogue state waits
for the synch preceding the CRC and then verifies the CRC. Depending on the filter design and the
network medium, a prompt acknowledgment may be required. In the normal case, the start state
branches to the "TCP encapsulation?" state of either IP or LOCAL after performing initialization for
the next level. Given the small amount of time available, and the lack of information to direct
initialization, the initialization is confined to setting up the N.way branch table pointers (CR & FR).

T
The "TCP encapsulation?" states test to see whether a TCP segment is encapsulated in this
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Figure 5-4: Filter FSM outline

packet. Two separate states are required to implement the different tests for IP and LOCAL. If the
* packet does not carry a TCP segment, the filter for pure IP or pure LOCAL is given control. If a TOP

segment is present, the appropriate TOP filtering is begun.

The "TOP CR?" state is reached by a LOCAL packet which carries a TOP segment. This code
contains elements pertaining to both the LOCAL and TCP layers. This state uses the LOCAL-level

• source and destination addresses to begin the search for a TOP connection record. If this lookup
fails, a FRAME epilogue state is given control. While performing the lookup, the TOP segment length

6R1fle Ifle
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is set up, and the TCP checksum is set to the value appropriate for the TCP pseudoheader.
Processing overlaps the boundary between LOCAL and TCP to complete the CID search and execute

c a conditional branch based on the IP checksum accuracy.

The "TCP CR & IP verify?" parallel the "TCP CR?" state code, except that the code is tailored to IP
encapsulated TCP packets, rather than LOCAL encapsulation.

Following the initial states, three filtering programs handle pure IP, TCP, and pure LOCAL
processing. These programs all attempt to perform sequences of filtering steps with the aim of
performing as much filtering as possible. The filter program flows are likely to be more complicated
than those used in Figure 5-4.

Format for Individual Protocol Descriptions

The filter definitions for the following individual protocols have four standard components:

1. Ack development, which defines the information the receiver would like to return to the
sender of the packet. Note that the ack development sections are aimed at maximizing
the amount of ack information, and that these acks may be suppressed for certain media

0 or preempted by FRAME CRC errors etc.

For example, an Ethernet implementation would be designed so that at most one ack
could be generated, regardless of the number of filters on the system which generated
ack conditions.

2. Triage, which defines the filter structure as it relates to separate cases of packet
processing. For example, a filter might divide incoming packets into four classes based
on whether the packets have a good checksum and whether they carry a recognizable
source address.

Triage also includes the normal action to be taken with the incoming packet's medium
buffer. One choice is to discard the buffer because it has no further use. Another choice
is to attempt to save the buffer for later processing by the interface microprocessor. This
action is contingent on the availability of another buffer to accept the next packet (and an
interface policy to do so). The interface should always be able to at least accept new
packets which can be completely processed by the filter. Buffering strategies are
discussed in the next chapter.

* 3. Activities and code, which describes the individual computational activities that must
occur during packet processing, and uses pseudocode descriptions and execution
traces to demonstrate practical filtering code sequences.

4. Alternatives and extensions, which describes alternatives and extensions that might also
be implemented.

There are many tradeoffs between memory and processing, completeness and complexity, etc.
The design presented is a system which has the ability to handle all packets, but which limits filtering
to those packets which make up the majority of traffic. The filtering algorithms are designed to
illustrate the minimum amount of concurrent processing which can perform the required tasks. This
implies that their memory usage is often greater than that which could be achieved by a more

* complicated filter processor.
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5.2 IP

Ack Development

Because IP is a datagram protocol, it has no acknowledgment structure inherited from the user
interface; hence, the IP filter creates prompt acks for the purpose of increasing efficiency.
Accordingly, only three fairly weak conditions are acknowledged:

1. IP header checksum error. This ack bit is only meaningful in the presence of a successful
FRAME.level checksum or CRC check.

2. Destination address recognized. This ack bit signifies that the destination address is
recognized. Although in some situations, notably gateways, the filter should recognize
the addresses of several hosts or even a whole network, a single host is assumed for this
discussion. The filter needs to recognize at least one fully qualified internet address as

U well as the corresponding addresses with a net field of zero. (Net = 0 signifies "this"
network.) Additional pairs are required if multiple homing is supported.

3. Protocol recognized. This bit denotes that the protocol field of the IP packet corresponds
to a server at this host.

Triage

IP filtering separates packets into several classes; unlike the ack bits these cases are mutually
exclusive:

1. Packets with a bad IP header checksum are not processed further and are returned with
the IP header checksum error ack bit set. These packets are discarded.

2. Packets with an unknown version field value are returned without ack bits. These
packets are discarded.

3. Packets with IP options are not directly processed by this IP filter. Because IP options
deal with security, routing, and satellite data, local packets typically won't carry options.
The "Alternatives and Extensions" section discusses the processing of IP options. In this
implementation, these packets are deferred.

4. Packets which are fragments are not processed beyond destination and protocol checks.
If possible, these packets are deferred.

* 5. Packets which don't have a recognized destination address are ignored. These packets
are discarded.

6. Whole packets with an unknown protocol are not processed beyond destination address
verification. If possible, these packets are deferred.

7. Whole TCP segments whose source address is not found in the IP section of CID lookup.
* If possible, these packets are deferred.

8. Whole TCP segments with a recognized source address are passed on to the TCP filter
which determines their disposition.

. .... ... S
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Activities and Code

The IP filter computes several values used to sort packets:

1. The IP header checksum. This value is verified by a ones complement addition of all
16-bit values in the IP header. The filter ignores the special case of a nonchecksummed
IP packet signified by a negative zero checksum field, although this "feature" could be
trivially added using N-way branches to detect this special case and duplicating filter
code sections that demand a correct checksum.

2. The TCP pseudoheader checksum. This value is calculated for use by the TCP filter
code.

3. The length of the IP data block. This value is passed to the TCP filter for use in sequence
space calculation, etc.

A filter code execution sequence for IP is shown in Figure 5-5. This sequence corresponds to the
execution for an IP-encapsulated TCP segment which is successfully passed to the TCP filter. Each
line describes a single filter instruction for the corresponding four-bit input.

The first two columns relate the instruction being executed to the byte offset and contents of the

41 arriving IP header data. The next eight columns describe specific ALU operations. "X's indicate ALU

operations which are fixed in position with respect to the incoming data stream; " "s are ALU
operations which need not be performed at a particular point. The "" operations have been
distributed to demonstrate that no more than two ALU operations need be performed per instruction.
The last two columns describe the memory operation for the instruction and the N-way branch base
register for those instructions which need these operations.

The IP filter uses three of the filter machine's GPRs to calculate the three required quantities.

* Register C1 is used to verify the IP header checksum. C1 is loaded from SR as soon as
the first 16 bits of the incoming data stream are available; SR is added to C1 at 16-bit
intervals thereafter. At the end of the sequence, C1 is zero if the IP header checksum was
correct.

* Register C2 is used to accumulate the TCP pseudoheader checksum. C2 is initially
loaded from CSR with a two-byte value which has zero in its high byte and the protocol
field in its right byte. (The CSR value is computed using a trick which depends upon a

* zero fragment offset field. If this source of zeros for the CSR is not available, some other
ALU operation is required, for example, CSR = 0.) Additional pseudoheader fields are
added from SR for the source and destination addresses and the L register for the TCP
length.

* The L register is used to calculate the length of the IP data segment which in this case is
4 the length of the encapsulated TCP segment. The total length of the IP packet is loaded

into L via CSR and decremented to subtract off the IP header length.

The N-way branches through the protocol check assume a set of N-way branch tables shown in
Figure 5-6. During FRAME-level initialization, FR was set to point to Ti. (Labels in this diagram are
used for reference purposes only and are not used by the filter.) The arrows trace the sequence of
N-way entries which are selected by a valid IP-encapsulated TCP packet.
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L = [P data section length

Figure 5-5: IP worst-case filter-code sequence

The first N-way branch uses the IP version field as an index. If this value is four, the FIR is loaded
S with the address of T2. Otherwise, the filter machine PC is loaded with the address of filter code to

handle this exception (VFAIL), and the filter machine leaves tne execution sequence described in
Figure 5-5.

Similar filtering operations ensure that the IP header length is five (no options), that the IP packet is
* not a fragment, and that the protocol field is six (TCP)[Postet 81c].
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T1 (version=4) T5 (Frag off2 =0)

0-3 PC VFAIL 0 FR T6

- 4 FR T2

1-15 PC FRAGFAIL2
5-15 PC VFAIL

T2(IHL=5) T6 (Frag off3 = 0)

0-4 PC IHLFAIL 0 FR T7

5 FR T3U
1-15 PC FRAGFAIL3

6-15 PC IHLFAIL

T3 (FLAGS = 0000) T7 (Protocol = TCP)

0 FR T4 0 FR T8

1-3 PC FRAGFAIL

4 FR T4

1-15 PC UPROTOCOL

5-15 PC FRAGFAIL

T4 (Frag off =0) T8 (Protocol =TCP) <-
0 FR T5

0 0-5 PC LPROTOCOL1

6 FR T19

1-15 PC FRAGFAIL1

* 7-15 PC L-PROTOCOL1

Figure 5-6: IP filter N-way branch tables

* During the last nibble of the IP header checksum, the CR register is loaded with the address of the
first N-way table that describes the CID space for TCP connections. The TCP CID space is a tree with
much more branching than the FR-based search described in the example: the tree is 16 high and has
as many leaves as there are active TCP connections. The 8 CR-based N-way branches partially
search the CID space; a successful search is completed in the TCP filter code when port numbers are
used to complete the path -following operation.

Following the source address search, the code reverts to FR-based branch tables to ensure that

6
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the destination address is for this host. (This assumes that the interface is receiving TCP segments
for a single TCP server.) Using FR rather than a CR search for destination greatly reduces the
number of tables necessary for TCP CID space recognition. However, if the destination can be

Creferenced by more than one address, the different addresses don't enter into CID identification. In
most cases this is a benefit rather than a penalty, but might not be the right choice in all situations.

Storaoe reauirements

The IP filter needs storage for program and Noway tables. The storage requirements are
summarized below:

1. Forty lines of mainline IP filter code plus an estimated total of 80 lines for other branches.

2. Eight N.way tables of 16 entries each for the filtering tables described in Figure 5-6.

3. Nine N.way tables of 16 entries each, and 1 32.entry N.way table for destination address
recognition. Separate sets of tables are required for the mainline and other branches;
hence this quantity must be doubled in the total.

4. Eight N-way tables per foreign host with TP connections to this machine. (Worst case)

This yields a total of 400 locations for the IP filter and code plus an incremental cost of 128
locations per foreign host using TCP connections.

Alternatives and Extensions

The IP filter code discussed in this section is tailored to a network environment in which IP packets
are most often used for TCP encapsulation, and hence does not support separate priorities, routing,
fragmentation, IP options, or the efficient use of IP packets for datagrams. Support for these services
requires a more powerful filter than that so far described for IP; however, the TCP filter described in
the next section would be adequate.

Routino suooort

A number of filter code functions could be added to support routing and forwarding of packets, and
hence build a high-performance gateway or store-and-forward switching node.

A very simple extension would be to use the IP address-recognition search to identify a queue for
an outgoing link. Beyond this simple extension, the IP filter code could also decrement the time-to-
live field and sort arriving packets according to the precedence, delay, throughput, and reliability
values stored in the type of service (TOS) field.

When a gateway needs to send an IP packet to another gateway, it encapsulates the IP packet
inside whatever format is applicable for the link which will carry the packet to the next gateway. For
example, one gateway on the ARPANET sends IP packets to another gateway on the ARPANET by
encapsulating the IP packet in an ARPANET format message. This outer layer carries the address of
the destination gateway, rather than that specified in the IP packet. This strategy is used to limit the
number of addresses that must be known on the link that carries the encapsulated IP packet.

Two strategies can be used in the filter to support traffic between gateways.

. . . . . .. ......
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The first strategy is to program the filter to understand all possible network addresses and
hence avoid the need for the encapsulating layer. Each gateway's filter code would copy
all IP packets addressed to networks that the gateway knows how to reach. One

( drawback of this scheme is that it is limited to situations in which the participating
gateways all have filter interfaces. The second difficulty is that the sending gateway
cannot select among alternate outgoing gateways; destination gateways control
acceptance through their filter code. If two outgoing gateways both recognize and
forward the packet, the packet will be duplicated, potentially resulting in an avalanche of
further duplications. Solutions to this problem require coordination of gateways to avoid
duplicate reception; this coordination must deal with failed gateways and links, and
hence would have to dynamically reconfigure filter tables,

The second strategy is to use IP as an encapsulating layer for IP packets between
gateways. The outer IP layer addresses a destination gateway, and the inner IP packet
addresses the desired destination. In this case, the filter could be programmed to remove
the outer layer and queue only the inner IP packet.

Fraomentation suooort

Fragmentation of an IP packet is necessary when an IP packet must be transmitted on a network
which has a maximum packet size which is less than the size of the IP packet to be transmitted (plus
envelope, if applicable).

Within or across a single network, fragmentation can be performed by the local protocol used to
carry IP packets; this process is invisible to the IP level and is called intranet fragmentation. Because
the envelope protocol typically changes at network boundaries, intranet fragmentation is limited to a
single network. Intranet fragmentation is found in several existing networks (e.g., the ARPANET).
Local networks usually avoid the need for intranet fragmentation by limiting IP packet size.

A more general form of fragmentation is defined within IP which allows for internet fragmentation.
In internet fragmentation, any node can fragment an IP packet or fragment into two or more
fragments. Because fragments may take different paths toward the eventual destination, it may not be
possible to reassemble the fragments until the final destination.

The internet fragmentation procedure uses the IP Identification field to identify fragments from a
particular original packet. The source of IP packets uses the identification field much like a sequence
number to identify separate packets. The fragment-offset field identifies the position of a fragment
within the original packet; the last fragment is identified by the Last Fragment bit in the IP header. The
typical reassembly procedure allocates a reassembly buffer when the first fragment arrives, updates
the reassembly buffer as new fragments arrive, and output the packet when it is c. mplete. Because
IP fragmentation uses eight octet units, the reassembly buffer can be ised to mark missing fragments
in place. Unfortunately, the size of the original IP packet, and hence the size of the reawmbly buffer,

4 isn't known until the last fragment arr;ves; most reassembly algorithms deal with this by always
allocating a maximum size reassembly b1uffer.

In practice, the complexity of the required reasseribly and buffer allocation policies results in little
use of this feature; most hosts don't implement riassembly, set the Don't Fragment bit in the IP
header, and use packets of less than the IP mirimum size (576 octets). However, the need for
fragmentation support may grow as new networks are added to the Internet.
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The filter could support fragmentation by performing the reassembly process, given a reassembly
buffer and the arriving packet. Because of the memory cost of a maximum size buffer, the interface
microprocessor should probably make the decisions to attempt reassembly or to abandon a

.( reassembly effort.

IP options

As defined at present, there are several general categories of IP options. Depending on the
environment, the IP filter code could be made to process one or more of these types to enhance
performance. Parsing the options string to extract individual options is a fairly simple task; all options
start with a single octet option identifier, and the most common types are fixed in length.

The simplest options are one octet long and signify the end of the option string or a no-operation.
These options can be processed trivially.q

Security and stream identifiers are two fixed.length option strings that specify packet security and
the stream ID of the packet. Both of these options can be used to sort packets into queues, or to
restrict the flow of packets, or otherwise control packet processing. The filter code for these options
would resemble that used for address filtering.

The "timestamp" and "record route" options are more complicated for the filter to process,
because they entail storing data into the packet and checksum modification. In both cases, these
options specify a variable length data area in the option string which is used as an audit trail for the
packet as it passes through nodes.

The record route option defines an area in which nodes that process the packet add their network
address. The area includes a length field and a pointer which indicates how much of the area has
already been used by previous nodes. Each node first examines the length and pointer fields to see if
the area is full; if full, no further action is taken. If the area is not full, the node adds its internet
address to the area, increments the pointer, and modifies the checksum. This processesing could be

*fairly simply added to the filter.

The timestamp option stores internet address and timestamp pairs instead of simple addresses, and
uses an overflow counter to keep track of the count of entries that could not be recorded. In addition,
the originator can fill in the internet address components, while leaving the timestamp components
set to zero. In this case, the forwarding nodes must search for their address before storing a pair in
the unused space at the end of the list. This more complicated procedure probably means that any
filter support will delay processing beyond the at rival time of the timestamp area.

The source-routing IP options are the last class of IP options. The "loose source and record"
option and the "strict source and record" option both specify a list of gateways which the packet
traverses on its way from its source to its ultimate destination; the difference between the two is that
the strict route specifies the exact sequence of gateways to be traversed, whereas intermediate
gateways are allowed to process the packet between the gateways in a loose source list. In either
case, the option consists of a type code, a length, a pointer, and a list of IP addresses. When a packet
with either type of route reaches the destination address specified in the IP header, and the pointer is
not greater than the length, the next address in the source route and the packet's destination address
are swapped, and the pointer is increased by four.
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Adding filter support for source routes requires that the header be rewritten, but does not tax the
filter's processing power because the packet is either at its final destination, in which case little
processing is required, or the packet is to be forwarded, in which case much of the normal IP
processing and any processing for the data (e.g., TCP filtering) can be omitted. The only difficulty is
that destination address filtering should be restarted after the destination and source rote entry are
swapped.

5.3 TCP

Connection State Representation

In order to define filter processing for TCP packets which refer to an existing connection, the filter
q requires a state representation and a method for upd,..ung state in response to packet arrival.

Designing a state-control block is fairly simple; a contiguous block of memory locations is used to
hold the values required by the filter in the order in which they are used.

The major problem in designing a state-update procedure is that all state updates (and associated
side effects) are contingent on a correct TCP checksum, but the accuracy of the checksum cannot be
known until the last octet of the TCP segment arrives. In order to allow processing in parallel ,,ith
data arrival, the filter constructs a new state-control block as it processes the incoming data. Data
delivery which overlaps previously acknowledged data is suppressed. State update is accomplished
using a single pointer update which replaces the old state-control block with the new one. (The
pointer to update is the last level of the CID recognition tree.)

The state representation and control block linking are illustrated in Figure 5-7.

,rwo state blocks are allocated to every existing connection. One holds the current state values;
the other is used to accumulate a possible new state until the packet checksum can be validated.

The RCVnb field holds the address of the next state block. RCVIeft holds the sequence number of
the first octet which has not yet been accepted. RCVwindow is the size of the accepting windovi.
RCVbufad is the buffer address for the octet referred to by RCVleft. RCVrack is the highest
acknowledged sequence number for the reverse data channel. RCVrwindow is the sequence number
of the right edge of the reverse channel window. RCVurgent is the sequence of most recent urgent.

RCVstate is a bit vector which describes the update history of the state values. The filter sets these
bits; they are cleared by the interface microprocessor as part of the data-delivery function. The
following bits are defined:

4
1. NEWDATA set whenever a new data octet is accepted.

2. NEWCHOKE set whenever a zero window is signalled in a prompt ack.

3. NEWPSH set whenever an octet marked with PSH is accepted.

4. NEWACK set whenever the ack value for the reverse channel is superceded.

5. NEWWIND set whenever the window value for the reverse channel is superceded.
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last N-way block on CID search chain

Uq

Current state block New state

RCVnb

RCVleft

RCVwindow

RCVbufad

RCVrack

RCVrwindow

RCVurgent

- RCVstate

RCVcid

Figure 5-7: TCP state representation and control block linkage

6. UPEND set if an urgent value is present in RCVurg.

7. NEWURG set whenever the urgent value is superceded.

These values are an exhaustive set of events which require interface microprocessor intervention
* or activate data-delivery tools; strategies for the interface microprocessor are discussed in the next

chapter.

Ack Development

The TCP prompt ack bits are as follows:

1. TCP checksum error. This bit signals a TCP checksum error and implies that all other
TCP prompt acknowledgment bits are to be disregarded.
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2. Connection not found. No connection exists for the specified port pair. This is the
normal response to all SYN-bearing segments.

3. TCP processing deferred. This bit signifies that the TCP segment could not be directly
processed by the filter. If this bit is not set, the assumption is that the acknowledgment,
window, and checksum data were processed.

This condition is caused by the presence of SYN, FIN, or RST flags, a sequence value
which must be validated by interface microprocessor software, or the presence of TCP
options. All of these conditions are either rare or too complicated to be processed by the
filter.

4. Control value ACK (CACK). This bit specifies that the control fields in the segment which
do not relate to data octets have been processed. These fields are the ack, window, and
urgent fields.

5. Acknowledge all data (ACKALL). This bit specifies that all octets in the range between
the sequence number in the arriving packet and the last octet carried by the segment
have been accepted by the interface. If the packet carries no data, this bit acknowledges
the single octet specified by sequence. Note that this bit guarantees only a lower bound
and not a precise value.

6. Receive window now closed (CHOKE). This bit is set if the receiver can accept no octets.

Triage

The filter code for TCP separates processing into the following classes of arriving segments:

1. Packets with a bad TCP checksum result in a checksum error prompt ack and no state
update. The packet buffer is discarded.

2. Segments addressed to an unknown connection generate a prompt ack which always
includes the connection-not-found bit. If the buffer can be held for later processing by
the interface microprocessor, processing deferred is also set.

3. Segments addressed to existing connections which contain options, SYN, RST, FIN, or
strange sequence numbers (described in next section) are returned with a processing-
deferred-prompt ack if the segment can be buffered, and a null.prompt ack otherwise.

4. The remaining class consists of segments which the filter can process itself; hence the
*l segment buffer need only be retained until state update and data transfer is complete.

Depending on contents and connection state, these segments return a combination of
CACK, ACKALL, and CHOKE as prompt acknowledgments.

Activities and Code

4 TCP processing includes activities similar to those in the IP filter for locating the connection block,
filtering out packets with unprocessable control fields, and checksum computation. The major new
elements of TCP processing are new state construction, computation of values to direct data transfer,
and a much greater amount of conditional processing. The major tasks are

1. Data octet processing, which decides which data octets from the segment are transferred
from the arriving segment buffer into the host or interface buffers, as well as the
associated state update and prompt ack calculations.

I
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2. Reverse channel acknowledgment and window processing, which is conditional on the
presence of an acknowledgment field in the arriving segment.

3. Urgent processing, which is conditional on the presence of an urgent offset in the arriving
segment.

A major question in all of these functions is the design of sequence-space calculation policies. The
TCP specification defines a ring of 32-bit sequence numbers for all sequence values, but doesn't
describe a policy for comparing these numbers in all cases. During normal processing, all
comparisons are between numbers which differ by a small number of octets (say 10.1000); hence the
ordering relationship is clear. However, any implementation has to formulate a policy for dealing with
sequence values which appear too "old" or "young" to be reasonable, even ignoring the issue of
deciding between too old and too young. (Erroneous implementations, grossly delayed packets, and
packets from previous connections are the usually quoted sources of these packets.)

This filter implementation sidesteps these issues by only processing segments whose sequence-
space values (data sequence, reverse ack, urgent, etc.) are within 64K of "expected" values. This
restriction is implemented by deferring the processing of segments when sequence-space-difference
calculations result in a difference which cannot be expressed in the 16.bit result from a single ALU
operation. To speed this check, sequence-space-differencing operations are always performed so

* that the most work is entailed by a positive value, which can be easily checked as a zero result for the
high.order bits. Sequence space calculations are also simplified by the restriction that SYN. and
FIN-bearing segments are deferred; this means that adjustments to sequence values are never
required.

C Pseudocode for the sequence space and data filtering is shown in Figure 5-8, acknowledgment and
window code is shown in Figure 5-9, and urgent code is shown in Figure 5-10. This ordering is
implied by the order in which operands become available; however, in the actual filter code, these
operations are often reordered to balance the ALU and memory.operation load. Several notational
devices are used in the pseudocode to illustrate actions which are difficult to express. Transfers to
and from the state records are indicated by input and output statements. Conditional control is
shown using if and case statements which are replaced by N-way branches in the actual filter code.

The sequence and data logic begins by calculating the difference between the left edge of the
connection's data window and the sequence number of the packet in the variable skip. If sk ip is
negative, the data octets in the segment are ahead of octets which have not yet been received; in this

4 implementation, the data octets are ignored in the knowledge that they will be retransmitted. If sk ip
is positive but greater than 64K, the segment's sequence value is deemed strange, and the segment is
deferred for processing by the interface microprocessor.

In the normal case, sk ip is zero or a small positive number. Skip then represents the number of
data octets in the segment which have previously been received. The filter goes on to calculate
toxfer, which is the number of new octets in the packet. Toxfer is calculated using tcpdlen,

which is the number of data octets in the segment, and window, which is the width of the
connection's data window. (Tcpdl en is passed down from the IP filter.)

Toxfer and skip are used to control data transfer. Data transfer is suppressed for skip octets
and then enabled for toxfe r octets. Suppression insures that data octets from a segment with a bad
checksum don't overwrite previously received and acknowledged good values. Writing the toxfer"

I
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input soutuRCVnb (pointer to next state block)
skip=RCVleft {sequence of first desirable octet)
window=RCVwindow {maximum octets to accept)
bufad*RCVbufad {buffer address for next octet )
rackzRCVrack {reverse channel ack sequence )
rwindow=RCVrwindow (reverse channel window sequence
urgp=RCVurgent (urgent pointer
state=RCVstate {connection state)
cid=RCVcid; {pointer to CID master pointer

left: =skip;
skip:=skip-seq;

*if high(skip)z0 (test to see if overlap possible)
then begin (packet sequence may overlap RCVleft}

toxfer:=tcpdlen-skip; calculate octets within window
if toxfer <= 0 (no data to transfer)
then begin

toxfer:=0; (insure zero transfer count)
ack:=ack+ACKALL;
if window=0
then ack:=ack+CHOKE

* end
else begin (new octets available, check window)

case (toxfer = window)
Z: begin

ack: =ack+ACKALL+CHOKE;
if PSH in SEGMENT.flags
then state:=state+NEWDATA+NEWCHOKE+NEWPSH
else state: =state+NEWDATA+NEWCHOKE
end;

>: begin (too many octets, truncate transfer)
ack: =ack+CHOKE;
if window=0
then state:=state+NEWCHOKE
else state:=state+NEWDATA+NEWCHOKE;
toxfer: =window
end;,

<: begin
ack: =ack+ACKALL;
if PSH in SEGMENT.flags then state:xstate+NEWPSH;
end

end; (case)
end

output left+toxfer,wind-toxfer~bufad+toxfer
end

else if high(skip)z-1
* then output left,wind,bufad

else strange..sequence()

Figure 5-8: TCP sequence and data pseudocode
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octets into the connection buffer isn't a problem because these octets won't be acknowledged, or the
window advanced, unless the checksum is correct. The only penalty for this activity is wasted
memory cycles.

While calculating the data-transfer parameters, the filter updates the state and ack variables in
accordance with data-transfer decisions.

{ if ack present, test ack & reverse window update )
if ACKPRESENT in SEGMENT_flags
then case (ackseq:rack)

>: begin (new ack value to store)
state: =state+NEWACK+NEWWINO;
output ackseq,wdelta

- end;
=: if wdelta>rwind (test for larger window)

then begin
state:=state+NEWWIND;
output rack,wdelta
end

-. else output rack,wind
<: output rack,wind
end (case)

Figure 5-9: TCP acknowledgment and window pseudocode

The ack and window calculations are contingent on the presence of an ack flag bit in the flags field
of the segment. If the ack bit is set, the acknowledgment in the segment is compared against the
acknowledgment in the state record. If the new acknowledgment value is later, it replaces the old
value. A new acknowledgment implicitly signals a new window allocation; the window value in the
segment is otherwise ignored unless it is greater than that in the state record and the
acknowledgments are equal.

The urgent logic is similar to that for ack in that a newer urgent sequence replaces an older one.
Urgent processing is complicated by the necessity to verify that an older value is available; if no older
value is available, the value in the segment is set in the state record.

TCP segments require more processing than IP packets and, unlike LOCAL, TCP cannot be
redefined to fit the capabilities of the filter machine. Hence translating TCP pseudocode into actual
filter code is a much more difficult problem than the analogous translation for IP or LOCAL. The close
match between the capabilities of the filter machine and the demands of TCP processing requires

* careful compromises between performance, resource usage, and program complexity.

TCP segments cannot be entirely processed as they arrive. Urgent processing, final checksum
verification, and state output must wait for the end of the arriving segment before required
calculations can be performed; when no data is present in the segment, these calculations take place
after the arrival period is complete. This extra time is maximized in a segment without data because

* of the small amount of processing performed on actual data octets. The amount of extra time must
allow for at least 5 memory operations (2 urgent sequence output, 1 state output, and one pointer

S
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if URG and ACK in SEGMENT-flags { URGENT value in inroming segment ? }
then begin

seq:=seq+udelta; ( calculate sequence }
if UPEND in state ( if old urgent, test for greater value }
then if seq > urgp

then begin
state: =state+NEWURGENT;
output seq
end

else output urgp
else begin { no old urgent, believe new one )

output seq;
state:=state+NEWURGENT+UPEND
end

U else output urgp;

Figure 5-10: TCP urgent pseudocode

* update), or approximately 3 bytes of time. A constant overhead of 4 bytes is assumed in the following
discussion.

Using this assumption, TCP execution sequences will always have at least 48 filter instructions for
processing the TCP segment header and up to 4 octets of data. The filter code design must allocate
several "resources" associated with these 48 instructions including memory operations (loads,

( stores. N.way branches), ALU operations and registers, as well as the memory space for the filter
program, N-way tables for filtering and connection recognition, and connection-state data.

Memory operations

The 48 instructions for any TCP filter code sequence must include the following:

* 8 N-way branches for port connection recognition

* 12 loads for state output

* 3 N-way branches for segment flags and data-offset filtering

* * 9 N-way branches (maximum) for other filtering conditionals

* 11 stores for state output

* 43 Total

Thus approximately 90 percent of the available 48 memory operations are used for predetermined
purposes, and only 6 memory operations are available for loading constants and filter program
branches (which often require 2 memory operations: one for FR, Lind one for the PC). In addition, the
placement of these operations is very constrained with respect to position in the filter code sequence
and the ordering of the required operations.

* Filter Grooram structure

The scarcity of free memory operations influences program structure because of the difficulty in
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merging separate sequences generated by conditionals. We wish to avoid the case in which the filter
code resembles a tree and no code beyond the "root" is shared because of the huge memory

irequirement this would entail.

Merging of alternate sequences is most effective in the position just before the segment flags are
processed. This location merges all of the code sequences generated by the sequence and data-
octet conditionals prior to separation due to segment flags. This ideal is unrealizable because some
data-octet calculations cannot complete before the PSH flag is available. The best compromise is to
merge into two sequences: one which is PSH sensitive (i.e., PSH implies NEWPSH) and one which is
PSH insensitive. The PSH sensitive and insensitive code sequences can also be merged following the
first four bits of the segment window field.

The major states of the two parts of TCP filter code are shown in Figures 5-11 and 5-12. The former
figure shows the main states up to the merge point preceding segment flags. The latter figure shows
the program structure following the conditionals for segment flags. The paths shown in bold face are
the worst-case paths in which memory operations are densest, and hence the most difficulty is
encountered in coding. In the latter diagram, the code above the doffed line is duplicated for PSH
sensitive and PSH insensitive sequences.

Compare segment sequence LdV
to left edge

sequence< = edge

ence Calculate
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Figure 5-1 1: TCP filter code major states (part 1)

The 96 ALU operations contained in the 48 filter instructions are the only resource which is not



MESSAGE BINDING 139

~ ~ Segment flags

tesstNuIN

"_o pr ocesrgn

prorocessing

Figure 5-12: TCP filter code major states (part 2)

utilized near capacity. Overall, the filter program for the worst case segment requires slightly less
than 50 percent of the available 96 ALU operations; however, the demand is highly variable. For
example, there is little use for ALU operations during the first 8 bytes of the segment because the
operands for computation are not available until the segment sequence is accumulated; once the
sequence value is available, the ALU is heavily used. Hence, it would be impossible to even out the
ALU load so that only one ALU operation per instruction would suffice.

Reoister usao

The PC and shift registers will probably have to be separate from the main register file because of
their special properties. The register file must hold the connection record (11 words), the prompt
acknowledgment, two checksum registers, the TCP segment length register, FR, CR, and temporaries
for values such as toxfer and skip. Without inserting delays in the filter code to allow registers to
be reused, 16 registers is not enough and hence a 32-register file and 5-bit register numbers are used.

S



iae140 COMMUNICATION ENVIRONMENTS FOR LOCAL NETWORKS

• Instruction formats

The light ALU load and the repetitive nature of certain filtering computations can be used to reduce
the complexity of filter machine instruction decoding. One of the two ALU operations for a single
instruction (termed ALU operation 1) can be restricted to a small number of choices. In the TCP filter
code developed later, ALU operation 1 is restricted to be either null, the high-order continuation of a
double precision operation specified by ALU operation 2, or a checksum addition.

Using this rule, an instruction required approximately 18 bits:

- Two bits for ALU operation 1.

* Thirteen bits for ALU operation 2, consisting of a 3-bit opcode, and 5 bits each for the 2
operands, where the destination is the same as the first operand.

- Three bits to specify the memory operation (This necessitates load and store operations
U into a subset of the filter machine register file and subsequent copying to the desired

register via an ALU operation 2).

Optimization of instruction encoding is beyond the scope of this report; denser encodings are
clearly possible through the use of two-level microstore, etc. This encoding does demonstrate that

" •instruction information doesn't require a horizontal format.

Worst-case filter code seouence

Figure 5-13 shows the filter code sequence for the worst-case TCP segment. The worst case
segment includes new acknowledgment, window, and urgent values which replace old values after

I[! the maximum number of tests. The worst case segment also contains two bytes of data so that
truncation due to receive window size is possible. The results of conditional branches are shown in
parentheses in the memory-operation column.

This code-execution history is also the mainline of the TCP filter program. It frees memory
operations which would otherwise be used for branch instructions and FR reloads. Other code
sequences will have fewer computations to perform and hence more free memory cycles for branches
to merge code sequences. In particular, the memory operations following the data-offset field will be
consumed in reloading the FR.

The first eight instructions locate the connection record for the arriving segment. The last
0 instruction loads CR (SIN) with the address of the connection record. No other processing is possible

because the connection record is not located until the end of the first eight instructions.

During the eight instructions corresponding to the segment's sequence value, the connection
record values are read into the filter machine register file. The filter machine accumulates the

* incoming sequence field in registers seqh and seql.

The majority of sequence-value processing is performed during the arrival of the segment's
acknowledgment-sequence value. Computation equivalent to the sequence and data pseudocode is
performed during these eight instructions and the instruction corresponding to the data offset field.

After these instructions, code sequences are merged during the reserved field. A memory
operation is available here for this purpose. The value in toxfer is used to update l eft, buf ad, and
wi ndow. Note that a value of zero preserves the old values.

0_
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ALU OP 1 ALU OP 2 Memory operation N

0 Source CID - way CR
____ ___ ___ ___ _ __ ___ ______ CR

1 Port __ _ _ _ _ _ _ _ _____ CR

________ C2 =C2 +SR ____________CR

2 Destination ____CR

___ ___ ___ ___ ___ ___ __ _____ CR

3 Port __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _CR

________ C2=C2+SR C1=0 _______CR

4__________ ___________ input sout

Sequence ____________ ________ ____ input left!

C2=C2+SR seclh SR input wndow
6skip 

left input bu fadq Number Iinput rackl

C2=C2+SR seql=SR input rwindow
8skip = ______________ input urgpi

Acknowledge ____________ toxfer=tcpdl-skipl :>) packet overlap? FR

9 ___________ toxfie.: window y) data left? FR
C2=C2+SR seqackh =SR )) clip test? FR

10 __________ window__________

Number ack=ack+CHOKE Y)vwindow closed? FR
11 toxfer= window input urgph

__________ C:-=C2+SR segackl=SR input state
12 Data Offset t= state +NEWCHOKE =) =5? FR

Reserved left = left+ toxfer
13 = window = window-toxfer flag test 1? FR

Flaos C2=C2+SR bufad=bufad~-toxfer flag test 2? FR
14 jstate =stateq+ NEWPUSH

Window acksec rack output leftl
15 ___________ ) newer ack?

__________ C2 =C2 -4 SR wdelta =SR output lefth
16 wdelta:rwindow input ClDptr __

Checksum (_______________________Y) bigger window? FP
17 ___________state= state - NEWWl ND output window __

____________ C2=C2±SR ____________ output bufad
18 Urgent _____________output rackl

___________________ ___________________ output rackh

19 Pointer ____________ state AND UPEND output wdelta

20C2=C2-SR udelta =SR Y) old uraent" FR
21seg seg - udelta ________

sec :Urep 'Y) new urgent? FR
21 s ate= state+ NEWURGEN"T outputseql

Data C2 =C2- SR tcpdl =tcpdl-2 output segh
22 ___________1CI-C2 _ _ Y) data end?

_______________ j ______________ YthecksumsO0 K.' FR

4 23 _________ sou t =temp out state
___________ C2=C-SR j__________ output newptr

Figure 5.13: TCP worst-case filter code sequence

As the segment's flags arrive, code execution has been consolidated into two main code
4sequences Corresponding to the PSH sensitive and PSH insensitive cases. (Of course, many

degenerate cases exist. For example, an unknown connection, strange sequence number, bit-timing
error, or premature transmission completion uses other filter code sequences.)
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The N-way branches associated with the segment's flags break each of the two PSH cases into 9
subcases each, for a total of 18 possible code sequences. One of the 9 subcases corresponds to flag
fields which contain SYN, FIN, or RST bits. The other 8 cases correspond to the 8 combinations of
PSH, ACK, and URGENT when SYN, FIN, and RST are all zero. ALU cycles during this period update
the values of 1 eft, bufad, and wi ndow.

The PSH sensitive and insensitive execution sequences are merged by branch memory operations
during the first four bits of the segment's window field.

Based on the arriving values, the instructions from the 14th through the 21 st byte calculate the new
values for the urgent, acknowledgment, and reverse window values and output them to the
connection record.

The pointer swap that accomplishes the state update is performed after the checksum for IP ana
TCP is verified. The worst case for the data length is two bytes, the minimum length that can cause an
overflow of the receive window. Assuming the checksum is correct, the pointer swap finishes the
state update.

Storaae reouirements

The aggregate storage requirement for TCP filtering is the sum of

1. N-way branch tables for connection recognition. In the worst case, 8 tables of 16 words
each are required per connection.

2. Connection state blocks. Using the same 16-word blocks as N-way branch tables, 2
blocks per connection.

3. Code and filter tables for sequence and data octet, acknowledgment, window, urgent,
checksum and state-update processing. Approximately 2K words are required for this
storage.

4. Miscellaneous code and filter tables for segments not processable by the filter, including
segments with bad checksum, unknown connections, etc. Depending on error-recovery
procedures, this cost is estimated to be 1-1.5K words.

The TCP static requirement is less than 4K words, and connections cost 160 words each in the
worst case, including IP incremental costs. Thus 8K of memory is a reasonable minimum and will
support at least 20 open TCP connections.

Alternatives and Extensions

The two main opportunities for enhancing the TCP filter code are enlarging the set of segments
* which the filter can process and improving the buffering system for data octets. The practicality and

benefits of these enhancements will depend on the host's needs, since both changes depend on the
usage patterns of the host's processes.

Enlaraino the set of sements orocessed by the filter

The TCP filter code described in the previous sections handles all segments except for those which

contain RST, SYN, FIN, or options, and those segments which cannot be bound to a connection state

0



MESSAGE BINDING 143

block. Since the only defined TCP option, other than a NOP and an "end of list" option, is restricted
to SYN-bearing (i.e., initial connect) packets, and since packets which cannot be bound to a state

( block typically occur during initial connect, enhancements will only improve performance during the
opening and closing of a connection. The filter can't conveniently maintair the filter tables used for
connection recognition because of the real-time constraints on the filter's operation and the limited
instruction repertoire of the filter; hence any improvement is further restricted to those packets which
don't need to construct filter tables for connection recognition.

The sequence of packets involved in the three-way handshake for initial connect is typically
composed of a SYN packet, a packet containing an ack for the first SYN and a reverse SYN, and an
ack packet for the second SYN. Since both of the SYN packets involve connection setup, they
probably will need interface microprocessor attention in any case; hence there is little reason to even
attempt to process them competely in the filter. The third packet of the three-way handshake doesn't
need to carry a SYN, and hence can already be processed by the filter. Thus there is no justification
for additional filter support during connection opening unless the TCP implementations retransmit
already acknowledged SYNs with later data octets.

Accepted RST-bearing segments cause user notification and connection closing and hence need
interface microprocessor attention. The remaining RST segments are sufficiently rare that filter
support is also not justified.

FIN-bearing segments are a more practical expansion, since the connection deletion is caused by a
timeout and not by the FINs themselves, and since a half-closed connection may well receive an
indefinite number of FIN-bearing segments which need no special processing. A reasonable
extension would be to defer processing of a FIN packet only if it is the first FIN on that side of the
connection, and otherwise to ignore the presence of the FIN. A bit in the connection record state
variable could be used to signal that FINs are to be ignored; alternatively FINs could be ignored if they
don't update the receive left edge.

Improvinq the buffering system for data octets

A more fruitful area for improvements is the buffering mechanisms used for received data.

At a minimum, the the TCP filter code should be changed to use a circular buffer for its internal
buffering of data octets. This is a small change to the filter code since it only requires a test to divide
toxfer' into two sections when the buffer address wraps around its high limit. (This procedure
avoids the need for wrap around tests after each data octet transferred into the buffer area.)

For filter interfaces with direct access to user buffers, the filter code could be modified to transfer
data directly into the user buffers, bypassing the circular buffer in the interface as long as a user
buffer was available. This change is more computationally complex, and would probably add to the
filte.r's processing time, although the additional time could be easily masked by the interpacket gap of
a bus system.
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5.4 LOCAL

U The Design Goals for LOCAL

The LOCAL protocol discussion is not intended to be an argument for some new protocol; instead
LOCAL is a vehicle for showing that the filter can support message protocols which are less
connection oriented than IP/TCP ("message LOCAL") and also for showing that the filter can
support different encapsulations of high-level protocols (TCP is used as an example, hence "TCP
LOCAL"). Although LOCAL uses the same packet format for both of these functions, the two
functions are almost completely independent; hence the filter code to support the two functions is
also almost completely independent.

This section emphasizes applicable techniques rather than specific implementations, as LOCAL
would presumably be tailored to fit a particular environment. In the following discussion, low-level
issues dealing with the design of filter code, acknowledgments, etc., are omitted where they follow the
principles previously discussed for IP or TCP.

Message LOCAL is patterned after the DOS message-transfer facility described in chapter 3.
Message LOCAL maintains a fixed-size state block for each process it serves. Within the process-

* state block, two groups of connection-state records (sending and receiving) hold the connection
state for individual process-to-process connections. In the normal case, the LOCAL filter code
allocates and deallocates connection records using a "working set" approach similar to that used in
the DCS system; LOCAL is less connection oriented in that the host and interface microprocessor are
less responsible for maintaining connection state. The key filter code issues are the algorithms which
locate a connection record for arriving packets, the algorithms which manage the working set, the
algorithms for processing user-initiated messages, and the algorithms for processing for purge and
purge-request messages.

The multiple encapsulation goal is illustrated by showing that TCP packets can be encapsulated in
LOCAL as well as IP. The key issue is the extent to which the TCP filter code discussed in the
previous section must be aware of the encapsulating protocol.

Ack Development

Ack development in LOCAL has two parts, corresponding to message LOCAL and TCP LOCAL.
Rather than define new prompt acknowledgments, both types of LOCAL use the prompt
acknowledgment format defined for the IP and TCP. Message LOCAL generates a prompt
acknowledgment which looks like a combination IP/TCP prompt acknowledgment; TCP LOCAL sets
the IP prompt acknowledgment bits and lets TCP processing fill in the TCP prompt acknowledgment
bits. In a sense, message LOCAL is both a datagram and a transport-level protocol, whereas TCP
LOCAL is simply a datagram protocol. This policy simplifies TCP LOCAL, but is merely a matter of

* taste in the case of message LOCAL.

The LOCAL prompt acknowledgment bits corresponding to IP prompt acknowledgment bits are
translated as follows:

1. IP header checksum error = > LOCAL header checksum error. For LOCAL, this bit is
always unset because the LOCAL header contains no checksum for header data.
Although a header checksum could be added to LOCAL, there is little benefit in doing so
since LOCAL will never be used outside of a single-hop environment. All message
LOCAL packets are protected by the FRAME level checksum; the LOCAL addresses of
TCP LOCAL packets are used to calculate the checksum of the TCP pseudoheader.
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2. Destination address recognized. No change is required. For message LOCAL, this bit
means that the filter could associate a process-state block with the arriving packet. For
TCP LOCAL, this bit means that the connection search was able to successfully chain
through N-way tables corresponding to the LOCAL address fields. The encoding of
LOCAL addresses is discussed under the "triage" section for LOCAL.

3. Protocol recognized = > LOCAL filter running. Message LOCAL always sets this bit; TCP
LOCAL sets this bit when it recognizes a TCP encapsulation.

The LOCAL prompt acknowledgment bits corresponding to TCP prompt acknowledgment bits are
translated as follows:

1. TCP checksum error. For TCP LOCAL, this bit signals a TCP checksum error and implies
that all other TCP prompt acknowledgment bits are to be disregarded. For message
LOCAL, this bit follows the FRAME-level checksum error.

2. Connection not found. For TCP LOCAL, no change is required. For message LOCAL,
this bit means that a connection-state entry could not be found or created.

3. TCP processing deferred. No change is required. For message LOCAL, this bit now
means "LOCAL processing deferred."

4. Control value ACK (CACK). For TCP LOCAL, no change is required. For message
LOCAL purge and purge-request messages, it means that the specified action will be
taken. For message LOCAL data messages, this bit follows the ACKALL bit.

5. Acknowledge all data (ACKALL). For TCP LOCAL, no change is required. For message
LOCAL, this bit signifies that the message has been copied, i.e., it has the same

(semantics as the DCS accept bit.

6. Receive window now closed (CHOKE). For TCP LOCAL, no change is required. For
message LOCAL, this bit signifies that the network interface will not accept additional
data messages.

Triage

The top level of triage in LOCAL separates message LOCAL packets from TCP LOCAL packets; the
separation is controlled by the 48-bit LOCAL destination address field. Every 48-bit LOCAL address
starts with a 4-bit code which separates encapsulated packets (code = 0) from message LOCAL
packets (code = 1). This leaves 14 choices available for future expansion. In addition to this code,
TCP LOCAL destination addresses carry an 8-bit protocol field and a 32-bit IP address; message
LOCAL addresses carry a process name and control bits. In order to keep addresses the same size, a
32-bit process name is assumed. The two formats are shown in Figure 5-14.

The 48-bit TCP LOCAL address contains

1. A 4-bit code which identifies the packet as a high-level encapsulation.

2. An 8-bit code which identifies the encapsulated protocol (e.g., TCP), using the same
encoding as IP uses for the corresponding field,

3. Four bits of unused space.

4. A 32-bit IP address.

4
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48 432J
rjC TCP IP address

LOCAL address for TCP encapsulaion

4 32

1 MB MDF Process name

Message LOCAL address

Figure 5-14: LOCAL address formats

The 48-bit message LOCAL address contains

U 1. A 4-bit code which identifies the packet as a LOCAL message.

2. A 4-bit field (labeled MB in Figure 5-14) which holds the start of message (SOM), end of
message (EOM), and sequence bits.

3. An 8-bit field which holds the message definition field (MDF) field. This field is a code
,* which identifies the message as being either a data message, a control message, a purge

message, or a purge-request message.

4. A 32-bit process name.

Lower level triage for TCP LOCAL packets follows the conventions established for TCP; for
message LOCAL, the following low-level triage is performed:

1. Packets with a bad checksum cause a prompt ack to be sent with the IP checksum error
bit set. The packet is discarded.

2. Packets which are addressed to an unknown process are ignored; no prompt
acknowledgment is generated.

3. Data and control messages which have a new sequence value and which can be copied
are fully acknowledged and queued for the host process. The filter selects a new packet
buffer for the next packet on the medium.

4. Data and control messages which have old sequence values or are received when no
buffers are available are acknowledged. The packet is discarded.

5. Purge and purge-request messages cause modification of the process state block.
Because they can be processed immediately, they are always acknowledged and
discarded.

Activities and Code

Figure 5-15 shows the data structures which are added to the filter data base to support message
LOCAL.

The process-state block contains all cf the communication-state information for a particular
process. This data includes information common to all connections, as well as separate connection-
state blocks for every active connection. The common data includes pointers to the queues for data

I=' l -
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Process state block Data Q anchor

Data Q pointer
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data
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one
record Sequence etc.

I Firstl LP
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* Figure 5-15: Message LOCAL data structures

and control messages, rather than the queue pointers themselves, so that messages for different
processes can be combined. This is typically useful only for connection messages, where a single
system process may supervise several inferiors. Messages on these queues are chained in a FIFO
manner; multipacket messages have internal pointers to link all of their packets. Multipacket
messages which are not yet complete are queued on the appropriate connection record.

LOCAL connection search

Local processing begins by branching to 1 of 16 connection-search routines based on the first 4-bit
field in the destination address. This implementation defines two routines: encapsulation LOCAL
(TCP is not identified until the protocol field is input) and message LOCAL. The other 14 values defer
processing to the interface microprocessor which handles the erroneous packets.
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The encapsulation search checks for a known protocol field (i.e., TCP) and then uses the normal
IP/TCP connection-search tables to locate the TCP level connection block. If the destination-
address search fails, the packet is ignored; if the origin-address search fails, the packet is deferred.
As this search takes place, the TCP pseudoheader checksum is computed based on the appropriate
sections of the LOCAL address fields.

The search routine for message LOCAL begins by locating the process state block corresponding
to the LOCAL destination address. This search uses the same N-way table approach used for IP/TCP
connection recognition. If the destination-address search fails, the packet is ignored.

Once the process-state block is located, the message LOCAL search routine must locate the
connection record corresponding to the origin address. Although almost any search technique could
be used, a linear search is adequate if the process-state block holds only a few connections. For a
32-bit wide search, each comparison requires two filter memory cycles to load the candidate entry's
name, two filter ALU cycles to perform the comparison, and one filter memory operation for the
conditional branch; since each filter instruction specifies two ALU operations for every memory
operation, the three filter memory cycles per comparison are the limiting factor.

During the accumulation of the origin-process name, the filter needs no memory cycles; it can use
* these 12 cycles to preload comparison values. Thus each of the 4 memory cycles during the LOCAL

length field can be used for conditional branches. Thus the first 4 process names don't add any
delay; by left adjusting the 32-bit origin process name in the local origin address field, 5 comparisons
can be done without inducing any delay. In the DCS, the average process uses 4 connections: 1
connection each for the controlling process, input, the terminal, and output connection. Hence, 5
active connections per process should not be a problem. Expanding the size of the table beyond this

-C limit induces 12 bits of delay per name.

Messaae LOCAL workino set manaaement

A small fraction of processes will require more connections than can be recorded in the process-
state block. These processes cause the interface to open and close active connections, although
these activities are not visible to the process. To make this scheme efficient, the interface needs a
replacement strategy which purges the least active connection from the process-state block when a
new connection record is needed.

The first replacement criterion is that the connection record is not locked and does not have
incomplete messages queued. This criterion avoids buffering and deadlock problems associated with
incomplete message packets and also avoids ambiguities which can be caused by a restart of the
distant process.

The second criterion is that the filter should select the least recently used (LRU) connection of the
* set that pass the first test. This implies that the interface must keep track of connection usage; ideally

the connection records should be totally ordered with respect to their most recent usage. Although
this policy could be implemented, a simpler strategy is to include a usage variable in each connection
record and increment the variable each time the connection is used. In order to avoid preserving
connections with high, but not recent, usage all of a process state block's usage variables are shifted
right by a constant factor each time any connection record for the connection is purged. Thus
unused connections will have their usage go to zero as other connections are purged. A new
connection can be setup with a high usage value to avoid immediate purge. By comparing the usage

6
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values, the least used connection record can be selected; filter processing time to maintain usage
statistics is limited to the two filter instructions needed to increment the usage variable.

Messaoe LOCAL ourae and ouroe-reauest messaaes

" Purge messages are bound to connection records by the search discipline already discussed. A
purge addressed to a nonexistent connection record for an existing process is acknowledged to
accommodate process restarts. Purge messages addressed to a connection that is locked or has an
incomplete message queued are deferred. Normally, the interface microprocessor will resolve this
condition by closing the connection with an error to the process. Purge messages to other existing
connections cause the connection record to be discarded.

Purge-request messages to locked connection records set a bit in the connection record which is
q noticed by the interface microprocessor when the multipacket transmission in progress completes.

All other purge requests are deferred.

Data and control messaoe orocessina

After binding data and control packets to a process-state block, the filter performs several other
tests which set prompt ack bits and determine whether the packet is discarded, deferred, or queued
for host processing. Although the actual filter code for this processing intermixes the tests to
optimize processing time, the actions of the filter are best explained in terms of sequential steps.

The first step tests the sequence in the packet's MB field against the sequence value in the
connection record. If the packet's sequence is old, the packet is discarded and a prompt ack is
returned with ACKALL set. If the packet's sequence is new, the packet is passed on to the next step;
note that the connection record's sequence value is not updated until later (if at all).

The second step is to verify that a buffer allocation exists for this packet. (The lack of such a
mechanism was one of the DCS's worst problems.) In this implementation, buffer allocations are on a
per process basis; the filter code need only check the allocation field of the process-state block.
Other implementations might choose to maintain separate data and control allocations, allocate
buffers on a per connection basis, or some other scheme. If an allocation is available, the prompt
acknowledgment is set to include ACKALL and the sequence bit in the connection record is
incremented; otherwise the packet is discarded.

The next step performs any required reassembly of packets into messages. Normally the packet
will be a complete message in itself (SOM and EOM set) and will require no further action other than
to verify that a partial message is not already queued. If the packet is a fragment that completes a
message, it is united with its predecessors and the chain is passed on. If the packet is a fragment
which doesn't complete a message, it is queued off of the connection record. Errors, such as a
packet with SOM arriving on a connection which already has fragments queued, cause the packet to
be deferred.

The last step of processing takes the complete message and queues it on either the data or control
message queue. The queue pointers are available in the process-state block. After the message is
queued, implementation-dependent processing uses the process-state dispatching parameters to
decide whether to cause an interface microprocessor or host intervention request.

I
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TCP LOCAL encaosulation

Given that the message LOCAL filter code locates the TCP connection block and calculates the
TCP pseudoheader checksum, the TCP filter code need only be given the value corresponding to the
TCP segment length (tcpdl en), to complete a transparent use of LOCAL encapsulation. This value
can be easily calculated using the LOCAL length field.

Alternatives and Extensions

The main shortcomings of the LOCAL protocol as described are its inability to handle broadcast
process names and its reliance on the interface microprocessor for purge and purge-request service.

The source of the broadcast-addressing problem is that broadcast messages need a separate
connection record for each address; if process A receives both uniquely addressed and broadcast
messages from process B, A must maintain separate connection records for the two types of
transactions. The difficulty is not allocating the separate records, but the doubling of the width of the
comparisons which search for the connection record in the process state block. Doubling the length
of this comparison either doubles the search time or requires that only half as many connection
records are used in each process-state block.

One approach to the broadcast problem is to use shorter process names. A second approach is to
improve the purge and purge-request filter code to lower the cost of opening and closing
connections; however this approach can be ineffective since closing a broadcast connection can
require many retransmissions to guarantee that all destinations receive the purge. The only
satisfactory solution seems to be to create a separate process-state block for broadcast names and
remove the ambiguity as to the destination address of the packet; this approach solves the timing
problem but is potentially expensive in terms of interface memory.

Increasing the scope of filter processing for purge and purge-request messages is quite
reasonable, given that the format of these messages can be redefined to suit the implementor. In
order to increase the amount of filter processing available for these messages, the purge and purge-
request messages can be padded to artificially increase the processing time available.

5.5 BROADCAST AND MULTICAST BINDING

Historical Problems with Broadcast and Multidestination

Interprocess communication need not be restricted to a single destination; information from a
particular source often needs to be distributed to several destinations. Two forms of this type of
communication are broadcast, in which a given transmission goes to all destinations, and multicast or
multiple destination, in which information is sent to a specified subset of all destinations. In practice,
pure broadcast has few applications; broadcast algorithms are used in situations where addressing,
the communications channel, or some other mechanism acts to restrict the distribution of data. The
most common implementation of multicast consists of a broadcast transmission to all hosts in the
network followed by individual selection mechanisms in each host.

Whether implemented implicitly or explicitly, multicast transmissions are inherent in any application
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which includes a distributed database [Gifford 79a, Gifford 79b, Rothnie 77, Stonebreaker 79,
Thomas 79]. Intuitively, multicast transmissions search for an object among a set of possible

(7 locations or inform all concerned parties of an event. Multicast queries enable multiple database
servers to process queries in parallel; some multicast addressing systems permit the requester to be
ignorant of the distribution of data among a set of database servers. Multicast transmissions are
useful in the update process; multicast allows for rapid update of redundant copies as well as rapid
distribution of "ballots" in voting systems.

- In almost all contemporary networks, neither multicast or broadcast services are available to the
user as part of standard communications protocols. Processes must simulate multicast via sequential
transmissions to all members of a broadcast set or by various algorithms that pass messages around
a software ring of processes.

Those local networks which do support multicast use specially encoded addresses for packets
destined for a multicast set. The encoding defines special values for particular address field
components (usually the host field, rarely the network number as well); the remaining address field
components (socket, etc.) must be well-known values. One special value means "all" and can be
used to send a packet to the same socket number on all hosts, creating a broadcast capability. Other
special values, frequently called "logical" host addresses are defined for each multicast set. Packets

i addressed to a logical host are recognized by all physical hosts which have processes in the multicast
set. Each host accepts packets addressed to its physical host address, the broadcast or "all" value,
and all logical addresses with resident multicast set members.

Multicast features are not supported as standard parts of contemporary communication protocols
for several reasons:

1. The architecture of long-haul packet-switched systems makes multicast very expensive to
implement; restricted bandwidth, complex topologies, and limited processing power in
switching nodes all contribute to this problem. These constraints also make it difficult to
design an algorithm for distribution which works reasonably for both large and small
multicast sets. Algorithms for both cases have been developed and analyzed [McQuillan
78, Dalai 77, Dalai 78] and tend to impose sizable computational and bandwidth costs,
especially when reliable transmission is required. Hence, there is no existing base of
experience with multicast that can supply any sort of intuition regarding the uses and
design of such a facility.

* 2. Although there are several systems that could profit from a multicast facility (e.g.,
RSEXEC, network mail, network speech), each individual application doesn't justify the
cost of integrating multicast into the existing protocol structure. Applications which use
this type of communication, such as routing updates [McQuillan 80], mail, and name
servers, use custom programming support.

* 3. Multicast systems require new code to allocate multicast addresses, distribute the
multicast addresses to members of multicast sets, and reclaim addresses when the set is
no longer in use. This overhead limits multicast to situations in which the multicast
channel will be in use for a long period and the group's population is static. In practice
today, multicast sets are assigned well-known addresses though administrative, rather
than dynamic allocation.

4. The potential performance benefits of multicast derive from the use of a single
transmission to deliver a packet to multiple hosts. In practice, these benefits are limited

0t
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by the necessity to return a separate acknowledgment for each multicast recipient.
Although most of the distributed database systems in existence [Gifford 79, Stonebreaker
79, Thomas 79] incorporate high-level error control to deal with failed hosts and
communications paths, these recovery procedures are not sufficiently efficient to use for
transient transmission failures.

The benefit of multicast approaches a 50 percent reduction in transmissions when
compared to the cost of using multiple single-recipient transmissions. This benefit must
Le compared to the additional cost for the multicast channel state information, as the
processes in the group will require simple single-raipient connections to return the
results of multicast queries.

5. The protocol mechanisms in standard protocols used for sequencing, flow control, etc.,
are oriented toward one-on-one communication and will not work in a multicast
environment without modification.

U 6. A fundamental problem with the simple encoded address scheme is that what is really
wanted is a communication channel to a set of processes defined by some semantic
constraint (e.g., "all file handlers," "all processes using the accounting database") rather
than a list of process addresses. In the terminology of networks, we want to use
"names," which identify what we seek, rather than "addresses," which identify where it

* is.

Current efforts at providing name servers to solve this problem for single name-to-
address mapping suggest that creating a universally consistent and useful name space is
unrealistic. A somewhat less ambitious goal, which can be realized, is to allow a set of
processes to construct their own name space as a subset of network addresses. Such a
system can use encoding techniques to reduce the length of names to reasonable size
for a particular domain. In addition to the component systems used in existing systems,
several systems have expressed the need for boolean predicates encoded in the address
[Pardo 79, Rowe 79].

The filter machine can provide substantial efficiency improvements which will promote the
construction of reliable multicast addressing and transmission primitives.

Multicast Addressing and the Filter Machine

The filter machine can easily be programmed to recognize conventional multicast set addresses;
0 these addresses can be entered into the filter data base in the same way as normal addresses. With

the filter, the only limit on multicast sets is the amount of filter memory needed to store the filter data
base, rather than the size of an associative memory, worries about reducing throughput due to
broadcast messages that will be discarded, etc. Because the address.recognition mechanism in the
filter is totally programmable, any of the existing schemes can be used.

• The filter can also support more powerful multicast addressing schemes, such as those proposed
in [Pardo 79], [Rowe 79], and others. The essential difference between these schemes and the
conventional multicast set addresses is that the new schemes require a more complex address
comparison rule than simple equality.

0 Rowe [Rowe 79] describes an addressing scheme for distributing queries to multiple database
servers. The intent of this scheme is that query addresses should carry sufficient information to
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select only those database servers which contain relevant data. Queries use a custom address that
has one component which identifies a particular database and a second component which describes

c the categories of information in the query.

The database ID has a standard format and could be a pseudohost or channel identifier compatible
with other packet formats. In general, the category component can only be interpreted in the context
of a particular database ID; because databases have different numbers of indices, the category
component should have a large fixed size or a variable size defined by the application database.

For example, the database ID component might specify "the personnel database" or "the accounts
receivable database." The second component of the address could be a bit vector in which each bit
is associated with an index of the database identified by the first component. For example, if the first
component specified the "personnel database" the second section might have bits for "name,"q"sex," "address," "phone number," etc.

The first component limits distribution to those database servers which handle a specific database;
the second component limits distribution to those databases which have information for the specific
query. Using the previous example, if the database ID component specified the "personnel
database," and the second components had ones in the "name" and "sex" fields, the query should

*l only be distributed to personnel databases which contain name and sex information, and not to other
database servers, or to personnel database servers which do not have name or sex data.

When a network interface sees such a multicast packet, it checks the database ID against the list of
databases in the attached host. If the ID is found, the interface uses the category component in the
packet and a category descriptor associated with the host database to decide whether to accept the
packet. Rowe's paper [Rowe 79] was based on the NS LNI, and partitioned the 32.bit LNI address
into the two components. The component test ANDed the category bits in the packet with the
category bits in the name table entry of the LNI.

With the increased capabilities of the filter, a much more powerful multicast query distribution
system could be built.

The address size of the category component can be variable. This could allow different
category sizes for a particular database or even different category sizes for the same
database.

* - The filter can be programmed to increment the sequence space associated with a
multicast packet which has a new sequence, but fails the category test. Using this policy,
separate sequence spaces or host sequencing can be avoided. A similar scheme could
allow multiple query sources to share a channel without requiring separate sequence
spaces for each source.

* *The category comparison rule can be extended to include any finite state language, as
well as some arithmetic, and still be performed as the packet arrives. The packet could
even carry the rule as a subfield of the category component. In the previous example,
messages r-ould be addressed to all databases which have name and sex information,
name or sex information, salaries greater than $50K, etc.
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Reliable Multicast Transmissions and the Filter Machine

Many different algorithms can implement reliable multicast in a local network environment. The
best choice depends on many factors, including the type and reliability of the medium, the capabilities
of the network interfaces, the number of hosts on the network and in the multicast set, and the relative
costs of medium bandwidth, host processing, and time to complete the multicast transmission. Some
algorithms are usable only in a restricted set of circumstances; for example, a ring medium might be
required.

VThis section compares the performance of several multicast algorithms. The two metrics for
comparison are the total number of transmissions to complete the multicast, and the total number of
packets which must be processed by all hosts. (Packets discarded by the filter don't count.) The
comparison counts a transmission and its prompt acknowledgment as a single transmission.

q Four types of multicast algorithms are considered:

- 1. Simulation algorithms, which achieve the effect of multicast using separate one-to-one

transmissions.

2. Multiple acknowledgment algorithms, which distribute the multicast text using some sort
of one-to-many transmission, but collect acknowledgments via one-to-one transmissions.

3. Saturation algorithms, which rely on statistical arguments to avoid the need for
acknowledgments following one-to-many distribution transmissions.

4. Negative acknowledgment (NACK) algorithms, which use filtering and negative
acknowledgments.

Three levels of interface capability are used for comparison:

1. Broadcast. Transmissions can be addressed to a single destination or to all destinations.

2. Multicast. Transmissions can be addressed to a single destination or to a multicast
Iaddress which is recognized by all interfaces in the multicast set.

3. Filter. All interfaces include a filter machine which can discard packets without host
intervention. Except for the NACK protocol, filters generate prompt acks only for one-to-
one transmissions.

Multicast by simulation

The most straightforward way for a network which lacks any sort of one-to-many transmission
capability to simulate multicast is for the sender to transmit separate messages to each destination
and receive separate acknowledgment transmissions in return. Each destination requires two
transmissions, so that a multicast set of N destinations requires 2N transmissions. Each transmission
is created and received by a host, so a grand total of 4N packets are processed by all hosts. This
method is usually the most expensive, but can be used with any medium or system of protocols. It
requires all senders to maintain lists of multicast set members.

Adding a filter machine to all hosts replaces host-generated acknowledgments with prompt
acknowledgments, and hence saves 50 percent of both metrics.
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An alternate method is to use a software ring of destinations: the source transmits the message to
the first destination, which forwards the message to the next destination, etc. The last destination
returns the message or an acknowledgment to the sender. If intermediate acknowledgments are not

( returned, a total of N + 1 transmissions are required. The advantages of this scheme are the reduction
in traffic, and the fact that all of the destinations in the ring can transmit to the group without
maintaining a list of all members; each member need only remember the next member. The
drawbacks of this scheme are its slowness, since all transmissions are made in series, and its
unfavorable performance in the presense of transient errors or host failures. No performance
advantage is added by using a filter in interfaces using this scheme.

Multicast by seoarate acknowledament

The archetypes of multicast algorithms for a local network rely on various types of one.to-many
distribution followed by one-to-one acknowledgments. The message is distributed in one

Utransmission; N acknowledgments are subsequently returned. The host packet cost includes one
packet to originate the message plus 2N packets for the acknowledgments, unless the filter processes
the acknowledgments, in which case only N acknowledgment packets are processed by the host. In
general, the cost of acknowledgments is greater than the cost of the message distribution.

* The main variability in cost is due to the different number of hosts which may receive the one-to-
many message. In a network with C hosts, a message addressed to the broadcast address is seen by
all C hosts; if a multicast address is available, only the N destinations see the message.

These algorithms can be used with either a bus or a ring. However, the controlled access provided
by a token system avoids the likely collisions between acknowledgments for a bus system. The

( collisions are inevitable unless special pains are taken to spread out the acknowledgments; in the
simplest CSMA system, these acknowledgments will always be precisely synchronized by the
distribution transmission. The only remedy is to trade delay for collision avoidance.

Multicast by saturation

Saturation algorithms do not use acknowledgments; instead they make a statistical argument about
the probability of transmitting at least one copy of the message to every member of the broadcast set.
The basic principle is to transmit enough copies of the message to insure that at least one copy gets
through to the destination.

* If E is the probability of failure for one or more destinations (i.e., the desired overall error rate of
multicast transmissions), and F is the probability that a transmission by one interface can be received
correctly by some other interface, then we wish to solve for M, the number of transmissions which are
required to send to a set of N hosts with probability E of failure. The probability of success for each
host is

0
1-Fm

hence for all N hosts

I-E = (l-FM)N

solving for M

0
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Figure 5-16 graphs M rounded to the next higher integer for several combinations of E and F.
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Figure 5-16: Multicast saturation transmission counts

Contemporary network designs typically strive for an error rate E of 1004-10 to 10*-12, although
few empirical measurements have been made. Hence choosing a value for E is not a problem. The
problem is determining the correct value for F, the interface-to-interface probability of packet loss. F
is affected by several components:

0 1. Errors due to line noise, clock-recovery errors, transmitter-receiver errors, and other
noise-related problems in the hardware.

2. Transmissions which are discarded due to half-duplex interfaces.

3. Transmissions which are discarded due to interfaces which have a "recovery" time
follnwing receipt of a message before another message can be received.

4. Transmissions which are discarded due to lack of buffer space in the interface or host.

The noise component is fairly well understood. Shoch reports that measurements on the Ethernet
showed that a poorly designed interface has an error rate of 10° -3, whereas a well-defined interface
had an error rate of less than 1000-6 [Shoch 79]. The point-to-point communication links used in a

0 ring do even better.
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The remaining components are difficult to quantify because they are dependent on host and
network load, and the retransmission policy followed by the sender. The preceding analysis depends
on the fact that the transmissions are independent trials with a constant probability of success; even if

-( this is a good assumption most of the time in real systems, it is almost impossible to know F exactly.
Filter interfaces have a real advantage since they can eliminate these causes of packet loss.
Ccnventional networks can still use saturation alqorithms, but only at an artificially high value of F.

For N = 1, M is equal to log(F)/Iog(E), that is, the ratio of the exponents of the error rates. M grows
very slowly as N increases. Intuitively, this is because each additional destination benefits from the
transmissions required by the other destinations.

The cost in terms of host packets processed is very sensitive to the interface capabilities. A
saturation algorithm used with a broadcast interface results in every host on the network having to
process M packets; similarly a multicast address has every member of the multicast set processing M
packets. In both cases, M.1 of these packets are of no value and are discarded. A network of filtering
interfaces is dramatically better because the duplicates are discarded by the interface.

These algorithms should work well for larger multicast sets when used with filtering interfaces. In
other cases, the saturation technique is less valuable, although these algorithms are still attractive in
situations where the multicast set is large; in situations where collection of acknowledgments can be
difficult, such as an Ethernet; in situations where quick delivery is more important than host
processing costs; and in situations where F can be estimated or where its precise value is not
important.

Multicast by neaative acknowledament (NACK)

The strength of the saturation algorithm is that it avoids the need for N acknowledgments; its
primary weakness is its inability to deal with interfaces which are unable to receive due to buffering
problems and other load- ,.duced conditions which may persist for indeterminate time. The
independent trails assumption at the heart of the theoretical model is impossible to realize in practice.

This problem is avoided by negative acknowledgment (NACK) algorithms. Members of the
multicast set which receive the message correctly don't transmit a prompt acknowledgment; member
of the multicast set which would like to be able to copy the message, but cannot, send a NACK
prompt acknowledgment. The NACK demands a retransmission by the sender of the distribution
message. Because NACK generation requires no resources, interfaces can always generate NACKs.
Thus load-induced conditions are removed from estimates of F, and F is driven by the noise.related
causes which presumably are random.

NACK algorithms relate to separate acknowledgment algorithms in that the termination conditions
are equivalent under DeMorgan's law. A separate acknowledgment system terminates on the basis of

4 an AND condition over the individual acks; the NACK algorithm relies on the NOR of NACK
transmissions. The functional difference is that the NOR predicate can be deduced from any single
destination which sends a NACK; the AND requires all results. In use this means that the NACK
protocol doesn't need to know how many destinations are in the multicast set; this is somewhat of a
disadvantage in that it cannot detect destination failures.

In a bus system, multiple destinations may wish to send a NACK, and these transmissions will
collide. However, the presence or absence of a transmission is all the information which is required.
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In order to guarantee an acceptable level of reliability, the sender should retransmit until log(E)/log(F)
transmissions have not resulted in NACKs.

In a ring network, the NACK system can be particularly reliable and effective. The sender transmits
the distribution message followed by a "blank" message. If both return unchanged to the sender,
then the multicast is complete. If any destination is unable to copy the distribution message, it
overlays the blank message with a NACK. This scheme is superior to the match/accept bit scheme
used in the RI and LNI in that it does not require the interface to examine bits of media data before it
changes them. Instead, the destinations simply emit a constant message and its associated CRC.

The logical extension to this ring scheme is to encode whether the message is a multicast or not as
a bit in the message; the interface hardware could invert the sense of prompt acknowledgments
automatically.

Table 5-1 summarizes the performance of these algorithms. Although the filter interface improves
the performance of simulation and separate acknowledgment algorithms by a substantial amount,
even more sizable savings are realized when saturation and negative acknowledgments are used.
The ring NACK algorithm is optimal in that no fewer transmissions or host packet count is possible.
The optimal transmit count is preserved in the Ethernet scheme, and only a small constant penalty is
added to the Ethernet NACK scheme (on the order of 3 or 4 transmissions for existing Ethernet
systems).

Figures 5-17 and 5-18 graph the transmit counts and host packets for various values of N. These
figures show that the filter interface can provide substantial benefits for fairly small N. In situations
where multicast speed and performance are important, the filter can be very valuable.

Table 5-1: Multicast algorithm comparison
. Algorithm Transmit count Host packet count

Simulate 2N 4N
Simulate+filter N 2N

Simulate(software ring) N+1 2(N+1)

Broadcast+ACK N+1 C+2N+1
1 Multicast+ACK N+1 3N+1

Filter+ACK N+1 2N+1

Broadcast Saturate M M(C+I)

Multicast Saturate M M(N+l)
* Filter Saturate M M+N

NACK (ring) I N+1
NACK (Ethernet) log E/log F N+1

Legend:

C=hosts on network M=saturation count
E=overall error rate F=medium error rate
N=destinations in multicast set

E
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Figure 5-17: Transmission counts for multicast algorithms
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6. DATA DELIVERY

6.1 INTRODUCTION

Data delivery, as defined in Chapter 4, includes all functions of the network interface which are not
performed by the filter. The main distinction is that filter activities are synchronous with respect to
data transfers on the medium, whereas data delivery activities need not be. The data delivery parts of
the network interface coordinate the transfer of data and control between the filter, the host, and the
various buffers involved.

This chapter discusses the design of the data paths and control facilities which implement data
delivery.

The data path section discusses a range of designs that are appropriate for different host
architectures and different performance goals. The discussion begins with a design that
requires a great deal of host support and evolves toward a design that minimizes host
support of the network interface. Different designs might be found on the same network
for machines with different capabilities; because all incorporate the filter, all of the filter

4 protocols would still work.

The control section discusses the programming support, other than filter code, required
in the interface.

6.2 DATA PATHS

Common Features

All of the designs have certain features in common; these features are some form of transceiver, a
two-part host interface, and the filter machine.

The transceiver connects the network interface to the medium. It is shown as a box labeled
"Transceiver" and contains all of the analog circuits, isolation, and appropriate serialization,
deserialization, and repeater logic. The transceiver can use either a circular or bus medium; the
differences between the two systems do not affect the rest of the design.

The interface to the host has two separate paths: one for data transfers, and one for status, control,
and interrupt signals. The data transfer section is either a shared memory interface, shown as a box
labeled "Bus Window," or a channel or DMA type interface, shown as a box labeled "DMA." The best
choice depends on the host architecture. The status, control, and interrupt signals are shown as a

* box labeled "SCI". In general, the logic for both paths is highly host dependent.

The filter machine is shown as a box labeled "Filter" for the machine itself, and a box labeled
"Filter Memory" for the filter specifications. The actual filter program, exclusive of the filter
specifications, may be implemented either as part of the filter memory or as a separate memory. The

* following designs assume a single memory which is initialized by some agency other than the filter
machine itself.
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Notation

Control paths are omitted in the interests of clarity. Busses are shown as bolder lines. Where
multiport memory is shown, the access paths are numbered by priority, with 1 being highest.

Designs

Figure 6-1 shows a minimal interface.

Transceiver F ilter  - - Filter

L Windowm

HostI

Figure 6-1: Data paths for minimal interface

This structure is similar to existing microprocessor-based designs. This design assumes that the
filter machine code is modified to perform additional tasks. These tasks are copying arriving packets
into a section of filter memory, rudimentary buffer management, and generation of signals to drive the
SCI logic. This extra duty would require either slightly faster processor logic or a medium slower than
the target 10 Mbps. In any case, the filter program is complicated by the necessity to multiplex
filtering with host requests.

The minimal design assumes that the host is responsible for maintaining the filter data base and
performing all protocol tasks not performed by the filter. Even so, this design would allow the host to
benefit from the triage performed by the filter, prompt acks, and automatic rejection of duplicate
packets, packets with transmission errors, etc. This design might be appropriate for less capable
hosts in a heterogeneous network.

Figure 6-2 shows a modified version of the minimal interface. In this design the arriving packets are
0 stored in packet buffers by separate DMA logic. This DMA controller is very simple: basically it is a

loadable counter. The host accesses packet data as before, but must access filter memory either
through the SCI logic or by having the filter machine copy memory through packet buffers. This
design allows full speed operation without modification. The host must still process all packets with
"interesting" data.

Figure 6-3 shows a fully functional design which is functionally equivalent to the model interface
proposed in chapter 4. This interface differs from the previous designs in that it incorporates a
microprocessor and uses a buffer memory to store both raw packets and connection rings. Because
of the microprocessor and its EPROM and RAM, the network interface is capable of all protocol
processing, as well as interface initialization.

S
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Figure 6-2: Data paths for full speed interface

SFigure 63: Data paths for microprocessor interface

The microprocessor interface can also maintain the connection-data rings in the host by replacing

the bus window with a channel or DMA logic and adding additional control lines from the filter.
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6.3 CONTROL

UMagnitude of Task

Before discussing the programming support in the network interface, it is worthwhile to estimate
the magnitude of the programming task based on existing protocol implementations. These estimates
help to resolve the question of whether the interface microprocessor is necessary or whether it is
practical to attempt to execute all filter code in the filter machine.

Table 6-1 lists the sizes of Network Control Programs (NCPs) as reported in [Postel 74]. Table
IP/TCPIMPLSIZES shows the reported sizes of various IP/TCP implementations. The IP/TCP
implementations are probably much less comparable due to subsetting. In particular, the ALTO and
Stanford TCP project entries are designed for use in very small and restricted environments.

U
Table 6-1: NCP implementation sizes

System Code Table Buffer Total
* (Kbits) (Kbits) (Kbits) (Kbits)

TENEX 144 54 144 342
MULTICS 792 110 902
360/75 416 424 - 840
360/91 120 40 40 200
370/158 280 96 - 376
370/145 - - 800
Burroughs 6700 720 288 - 1008
TIP 96 32 64 196
ANTS 64 8 4 76
DEC10 216 216 432
BKY 96 120 16 232

Based on these sizes, it seems likely that protocol software could be added to the filter machine on
the basis of memory size. However, it also seems likely that the limited instruction set would make

0 writing this software a formidable task. Given the low cost of microprocessors, and the availability of
software development tools, it seems that moving these functions into the filter could only be justified
for a very high production run of network interfaces. Even in that case, the diagnostic ability of the
microprocessor or the availability of microprocessor peripheral chips, EPROMS, etc., might justify its
inclusion.

Software Tasks in the Microprocessor

Since the microprocessor software can receive deferred packets at a very low level, it must include
all of the conventional layers of protocol processing with added input points to accommodate
deferred packets from different parts of the filter code. Thus the interface microprocessor software

0 must start with a fairly standard set of front-end protocol processing routines. To be sure, our goal is
to eliminate most of the usage of these routines; however, they must be present.
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Table 6-2: IP/TCP implementation sizes

Implementor Program Language Size CPU
(Kbits)

BBN TOPS-20 Multinet assembly 263 PDP 10,20
* [Lynn 82] IP " 134 "

TCP " 207
Configuration data 32
(Buffers and table space are extra)

Stanford TCP TCP BCPL 192 PDP 11
Project TCP assembly 19 PDP 11
[Cerf 80]

MIT (Clark) Minimal BCPL 48 ALTO
[Postel 81e] IP/TCP/TELNET

MIT MULTICS IP 191 code
L [Postel 81e] TCP 324 code

BBN IP/TCP/1822 SPL 64 code HP 3000
[Postel 81 e] 160 data

EDN-UNIX IP/TCP 221 code VAX
[Cain 82] 194 data

The retransmission parameters used in these routines must be carefully set. The rapid response
possible with prompt acknowledgments makes severe cases of the so called "silly window syndrome"
possible. The root cause of this potential problem is the speed of acknowledgment feedback to a
sending process. If this feedback is used indiscriminately, the average transmission size can become
quite small as the source of octets gets acknowledgments almost as fast as it can generate data. This
type of behavior is desirable where reducing latency is of primary importance; however, it is wasteful
in many environments, e.g., FTP.

O The remaining software tasks of the microprocessor are concerned with maintaining the filter data
base and user interfacing. These tasks should be much less memory consuming than the protocol
processing software.

0



7. SUMMARY AND CONCLUSIONS

C7.1 RESULTS

The main conclusion of this report is that it is possible to add a fairly simple processing element, the
filter, to a microprocessor-based network interface and create an interface that can, in most cases,
perform all levels of protocol processing as the packet arrives. The filter and microprocessor form a
processing hierarchy: the filter processes a small number of distinct packet formats which make up
the majority of the packet population; what the filter cannot process, it passes on to the
microprocessor. The delay and throughput limitations due to the time consumed in executing
protocol software are nearly eliminated.

- The filtering idea proved to be reasonable for IP and TCP, in addition to special protocols
designed to make filtering easy. There is no reason to suspect that other protocols, such
as X.25 or the new Xerox family, could not be supported as easily.

e The real-time constraints in this report were admittedly set to match existing component
speeds and the popularity of 10 Mbps media. However, the demonstration also sets an
upper bound on the number of computations per unit of arriving data which are required
to achieve real-time processing. For the proposed filter design, the ratio is 1 memory
operation for every 4 bits of arriving data, and 1 18-bit arithmetic operation for every 2
bits. For a 10 Mbps medium, this results in a 400 ns memory and a 5 Mip, 16-bit machine.
In the case of IP this bound is quite loose; for TCP, the bound appears to be quite close.

The filter has several practical advantages. It is a memory-oriented design and as such
will be able to enjoy the benefits of faster, denser, and cheaper memories. The signal
interfaces to the filter per se are such that it could easily be built as a single custom VLSI
chip without pinout problems. A VLSI filter does not have to drive any media rate signals
off chip.

A secondary set of results concerns the use of new features designed to exploit the real-time
capability of the filter. The most promising new feature is the prompt acknowledgment, which is an
acknowledgment which is piggybacked on the media allocation of the transmission it acknowledges.
The prompt acknowledgments of the filter interface differ from previous systems in that they interface
with all protocol levels, rather than simply the link level.

Prompt acknowledgments preserve the corventional protocol-layering model if they are treated as
"shorthand" versions of packets which could just as well be sent as conventional transmissions (if not
as efficiently). The semantics of prompt acknowledgments are tied to the semantics of the equivalent
expanded acknowledgment packets.

* Prompt acknowledgments do not replace the need for regular acknowledgment transmissions;
instead they create a very efficient parallel mechanism which usually, but not always, avoids the need
for the more costly acknowledgment. Thus an interface which uses prompt acknowledgments can
talk to an interface which does not.

* This preservation of compatibility with nonfiltering interfaces, end-to-end acknowledgments, and
conventional layering carries a price: Filtering interfaces can never reduce the amount of protocol
code, instead the amount of protocol code is increased by the duplicate functionality that must be
supported, and by new sensitivities to timeout, packeting, bufferir g, and other policies.

"6, AGE
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7.2 SUGGESTIONS FOR FUTURE WORK

(The least attractive features of the filter discussed in Chapter 5 are associated with its
programming. In particular, the filter code is inconveniently wide, difficult to write, and lacking in the
machine features of more general machines. In a sense, this is desirable in that it suggests that the
filter machine is in some sense minimal. However, a VLSI implementation would destroy this
minimality argument. A better programming environment would enable a more flexible and usable
interface.

The most important architectural issue remaining is the design of better methods for incorporating
communications, or for that matter any intelligent front or back end, to the process structure of the

host. Efficient data paths, whether shared memory, DMA, or channels are slowed by inefficient
control as embodied in interrupt, context swap, and scheduling facilities of the host OS. A special
computing element which can handle all of these control functions for the most common situations
might be the answer. A DCS style of multiple process computation, in which the user process
scheduling decisions are based on message arrival, message transmission, and timeouts might be a
good starting point.

0 7.3 IMPLICATIONS OF THE FILTER ARCHITECTURE

The advantages of local networks derive from the exploitation of cheap bandwidth and cheap
processing power. These resources are so cheap that it makes no sense to worry about their efficient
use per se. The potential of the filter interface is not that it can use these resources more efficiently,
but rather that it can make high-level communications service, for example TCP connections, into
another very cheap resource.

The qualitative advantage of this cost reduction is that it expands the range of applications which
can be implemented using the higher level protocol, and hence reduces the need for spartan
performance oriented protocols. If a protocol with full features costs the same as a simpler protocol,
there is no need to divert resources to the construction, maintenance, and training costs associated
with multiple protocols. The least tangible, and yet probably the most important effect, is that
processes have one less way to be incompatible.

Of course, some applications require services that cannot be made to fit into the TCP mold. For
* example, reliability through retransmission is anathema to some real-time applications, notably voice.

A promising new approach made possible by the filter is to create a "new" protocol by adding
features to a TCP base, rather than creating a new protocol from scratch. For voice, one could
imagine a new protocol which added a timer driven update to the receive sequence space which in

* effect acknowledges data after a certain period whether it arrived or not. For such an approach to
succeed, the state of the connection must be explicit and available to the additional features, and
perhaps more importantly users of the standard service should be protected from the experimentation
of others.

UI
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GLOSSARY

Note: Terms labeled "" are specific to this report.

1822 1822 refers to BBN technical report 1822, which defines the protocol used
between the host and IMP in the ARPANET. The term is used to mean the
protocol.

2900 A family of bit-slice components available from AMD, National Semiconductor,
and others.

6800 An 8-bit NMOS microprocessor manufactured by Motorola.

8080 An 8-bit NMOS microprocessor manufactured by Intel.

8X300 A bipolar microprocessor manufactured by Signetics.

ACK An acknowledgment. Also a TCP control flag which indicates that the TCP
*4 segment carries a valid acknowledgment sequence value.

ALU Arithmetic and Logic Unit. refers to the part of a computer that contains the
circuits that perform arithmetic operations.

ARPANET The ARPANET is an operational, resource sharing, host-to-host network linking a
wide variety of computers at DoD facilities and non-DoD research centers in the
continental United States, Hawaii, Norway, and England [Roberts 70, McQuillan
77].

BATNET A local network with a bus structure built at Battelle- Northwest Labs [Gerhardstein
78]. See page 29.

broadcast Distribution to all addresses in a network.

Cambridge loop A local network with a loop architecture built at the Computer Lab at the
University of Cambridge in England [Wilkes 79, Wilkes 80]. See page 54.

CATV Community Area TeleVision - cable TV.

Chaosnet A bus network built at the MIT Al lab [Shoch 791. See page 31.

CID * Connection ID - a term used to describe the parts of a packet that uniquely specify
a particular connection. A CID is usually a combination of a source and a
destination address.

..
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CMOS Complementary MOS. CMOS circuits include both NMOS and CMOS devices on
a single chip. CMOS offers slightly higher performance, extremely low power
consumption, and high noise immunity. However it requires a more complicated
manufacturing process and has inherently lower density. CMOS components
have typical gate delays in the 10 ns range [Myers 80].

Consortium Ethernet
The new Ethernet standard for a 10 Mbps bus proposed by Xerox, DEC, and Intel
Corps. [DEC 80, CD 1980]. See Ethernet and page 35.

CRC Cyclic Redundancy Check . CRC values are the remainder when a string of bits is
divided by a specific polynomial. Several standard polynomials are defined. The
CRC is usually formed using special hardware and synthetic division. CRCs are
used in a manner similar to checksums.

CSMA Carrier Sense Multiple Access . an access control algorithm in which a station
wishing to transmit listens for transmissions in progress and waits for an idle
medium before transmitting.

* CSR Conditional Shift Register. a register in the filter machine proposed in Chapter 4.

DCS Distributed Computer System - a network built at UC Irvine [Farber 73,
Mockapetris 80] consisting of minicomputer hosts and a ring network built using
ring interfaces (RIs) [Loomis 73]. See Section 3.2.

DLCN The Distributed Loop Computer Network is a loop network built at the Ohio State
University [Liu 78]. See page 53.

DMA Direct Memory Access - used to refer to peripherals that access memory directly,
i.e., without CPU intervention.

ECL Emitter Coupled Logic -ECL is the fastest technology available in the marketplace
today; ECL achieves gate delays in the .2-2 ns range [Myers 80].

ENET [West 77] discusses design decisions behind ENET. ENET is one of the two
networking plans discussed. The two designs are ENET (Expensive network) and
CNET (Cheap network). See page 30.

EPROM Erasable Programmable Read Only Memory - a ROM that can be electrically
programmed. EPROMS are high density, but slower than PROMS. The most
common EPROMS can be erased with UV light and reprogrammed.

Ethernet The Ethernet is the best known bus network, and was originally developed at the

Xerox Palo Alto Research Center. Metcalfe 76] contains basic information about
the theory of operation and motivations for the Ethernet. The Ethernet patent
[Metcalfe 77], and [Crane 80] contain detailed information regarding interface

4 implementation and other practical considerations. See page 25.
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The original Ethernet, sometimes called the research Ethernet, is to be
superseded by the new 10 Mbps Ethernet designed by Xerox, DEC, and Intel
Corps. See consortium Ethernet.

FDMA Frequency Division Multiple Access - multiplexing by combining signals with
different carrier frequencies.

FIFO First In First Out- often used as a name for a memory that exhibits first in, first out
behavior.

FIN A TCP control bit occupying one sequence number, which indicates that the
sender will send no more data or control occupying sequence space.

FPLA Field Programmable Logic Array a PLA with fusible links that can be
programmed much like a PROM. A typical FPLA (Signetics 8S100) has 16 inputs,
48 terms, and 8 outputs.

FR * Filter Register- the FR is a register in the filter machine which holds the address

of the next N-way table for control filtering, as opposed to CID recognition.

FSM Finite State Machine.

FTP File Transfer Protocol - originally a protocol used to transfer files between
machines on the ARPANET. Now used generically for such a protocol.

GMAD A CATV based bus network built at the General Motors Assembly Division and
described in [Smith 79]. See page 33.

HDLC High-level Data Link Control - a link level standard.

HYPERchannel The HYPERchannel is a 50 Mbps bus network available commercially from
Network Systems Corp. [Thornton 75, Donnelley 79, Thornton 79]. See page 33.

IC Integrated Circuit - a combination of interconnected circuit elements inseparably
associated on or within a continuous substrate; a "chip".

IDA The IDA network is a proposed 24-bit parallel loop [Bliss 78]. See page 58.

IMP Interface Message Processor- a minicomputer based host interface and message
switch used in the ARPANET.

IP Internet Protocol - the lower level protocol in the DoD Standard IP/TCP pair
[Postel 81b]. "Internet" is also the name used by Xerox for its transport level
protocols for the new Ethernet system [Xerox 81b], although the new protocols
are completely different from the DoD IP.
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LED Light Emitting Diode - a semiconductor junction which emits light and hence is
used to build indicators, opto-isolators, etc.

_? LNI Local Network Interface - LNI refers to members of a family of local netNork
interfaces, all of which use a ring medium and token passing. The first LNI was
designed at UC Irvine and is in use at MIT [Mockapetris 77]. Subsequent versions
were created by MIT and Network Systems. For the UCI and MIT LNI see page 41;
for the Network Systems version see page 42.

LSI Large Scale Integration.

MAR Memory Address Register - the register which holds the address of the next main
memory operation.

U MDR Memory Data Register - the register which holds the data which is being
transfered to or from memory.

Mitre network A CATV based bus network described in [Hopkins 79, Holmgren 79]. See page
32.

MOS Metal-Oxide Semiconductor- MOS is the basic silicon technology used to build all
VLSI and much of the LSI available today. Most microprocessors and the denser
memories are built using MOS. MOS gate delays in commercially available
products range from 100 ns (or greater) to about 1 ns [Myers 80]. See CMOS,
NMOS, and PMOS for additional information.

MSl Medium Scale Integration.

multicast Distribution to a selected subset of all addresses. See page 150.

NACK Negative acknowledgment - a signal or acknowledgment which signifies that a
particular transmission has failed.

NBS network A bus network built at the National Bureau of Standards, and described in
[Carpenter 78]. See page 30.

S

NCP Network Control Protocol - the process to process protocol of the ARPANET.

Newhall The first token loop network [Farmer 69]. See page 40.

* NMOS N-channszl MOS - NMOS was the second major MOS technology and has replaced
PMOS largely because of its better speed. The majority of second generation
microprocessors (e.g., 8080, 6800) and newer microprocessors (68000, 8086) are
built with NMOS, as are almost all high-density memories. NMOS gate delays are
in the 1-20 ns range [Myers 80].

* octet An 8-bit byte.

S
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PC Program Counter- a register which holds the address of the next instruction to be
executed.

Pierce loop Pierce loops were one of the pioneering efforts in building slotted loop networks

[Kropf I72, Coker 72, Pierce 72a, Pierce 72b]. See page 41.

PLA Programmed Logic Array.

PMOS P-channel MOS -the original form of MOS which has largely been superseded by
NMOS and CMOS. PMOS was used for the first calculator and microprocessor
chips, but is rarely used in new designs. PMOS gate delays are 100 ns and up
[Myers 80].

port A portion of a socket which specifies which logical input or output channel of a
process is associated with the data.

PRIMENET A ring network built by Prime Computer Corp described in [Farr 77]. See page 56.

PROM Programmable Read Only Memory- a ROM that can be programmed by blowing
* fusible links.

prompt acknowledgment
Used in this report to refer to an acknowledgment transmitted within the same
medium allocation as the packet it acknowledges. See page 105.

PSH A TCP control bit occupying no sequence space, indicating that the data in the
segments should be pushed through to the receiving user.

OBUS The OBUS is the processor bus used in the LSI versions of DEC's PDP-11 series.
See UNIBUS and [DEC 79].

RAM Random Access Memory- a memory in which all contents are equally accessible.

RI Ring Interface . the network interface used in the DCS system to implement a
token controlled ring [Loomis 73]. See page 41.

RS-232 A bit serial interface standard used primarily for interfacing terminals to
computers.

RST A TCP control bit (reset) occupying no sequence space, indicating that the
• receiver should delete the connection without further interaction. The receiver

can decide, based on the acknowledgment and sequence values in the segment,
whether or not to honor the RST. In no case should the receipt of a RST
segment result in the transmission of a RST segment in response.

S-1O0 A widespread bus standard for microprocessors.

0i
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Salplex A bus network for use in trucks and other large vehicles. Described in [Smith
80a]. See page 36.

C SDLC Synchronous Data Link Control an IBM link level protocol [IBM 74].

segment IP/TCP terminology for a packet.

Spider A loop network built at Bell Labs and described in [Fraser 75]. See page 41.

SR * Shift Register - a register in the filter machine which holds arriving data.

SSI Small Scale Integration.

u SYN A TCP control bit (synchronize), occupying one sequence number, used during
connection initiation to indicate where sequence numbering will start.

TAC Terminal Access Controller. TACs are second generation TIPs, and include
support for IP/TCP.

0 TCP Transmission Control Protocol - a DOD standard protocol for communications
between processes [Postel 81a]. See page 78.

TDMA Time Division Multiple Access - multiplexing by periodic sharing of the medium.

TDR Time Domain Reflectometer an instrument that determines the length of a piece
of coax by measuring the time a pulse takes to be reflected back to the TDR.

TIP Terminal Interface Processor - an IMP that can also support terminal interface to
the ARPANET.

Toshiba loop A loop network described in [Okuda 78). See page 56.

TRW ring A ring network described in [Blauman 79]. See page 57.

TTL Transistor Transistor Logic - TTL refers to several forms of bipolar logic used to
fabricate MSI and some LSI devices. The fastest form of TTL, advanced Schottky
or ASTTL has a gate delay of approximately 1.5 ns; a more common form of TTL,
low-power Schottky or LS, has a gate delay of approximately 10 ns, but uses only
1/10th as much power [Myers 80].

* UNIBUS The UNIBUS is the processor bus used in most of the DEC PDP-11 medium to
large size minicomputers. See QBUS and [DEC 79].

URG A TCP control bit (urgent), occupying no sequence space, used to indicate to the
receiving user that urgent processing should be performed on data octets up to
the octet designated by the urgent pointer.

0
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VLSI Very Large Scale Integration.

X.25 A CCITT standard transport level service specification [CCITT 77].

z8o An 8-bit MOS microprocessor, similar to the 8080, manufactured by ZILOG.

I
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