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Abstract

A set of complete and unambiguous third order polarizations were

derived for multifrequency (broadband) Coherent Anti-Stokes Raman

Scattering (CARS) in molecular gases. The final equations were

expressed in a laboratory coordinate frame and were appropriately

macroscopic to facilitate the interpretation of experimental results.

These polarization equations were made applicable for a general

electric field vector polarization and any nonoverlapping distribution

of the electric field amplitude in frequency space. The derivation

started with the dipole moment approximation and two laser fields as

inputs. These two fields, the pump and Stokes fields, had their

central frequencies separated by a Raman rotational-vibrational reso-

nant frequency. The generated fields considered were also limited to

two; an anti-Stokes and a second Stokes. To more accurately determine

the CARS field amplitude, equations were also developed for five

related third order nonlinear processes; two parametric (Coherent

Stokes Raman Scattering and Coherent Mixed Raman Scattering) and three

nonparametric (Stimulated Raman Scattering at the Stokes, pump and

second Stokes frequencies). Coherence properties of the fields were

not included. The simplification of the general results obtained to

the accepted monochromatic equation was noted from the form of the

final results.6

A semiclassical approach was used in the polarization derivation.

Both classical and fully quantized excursions were made where they

contributed to the understanding or clarity of the results.

Specifically, the induced third order molecular polarizability was

6 xv



obtained from quantum mechanical perturbation theory. This polariza-

bility was then combined with the electric field present to define the

dipole moment of the molecule. By applying classical orientational

averaging to a random distribution of molecules, the gas polarization

was derived. This derivation was carried out in a laboratory coor-

dinate system and clearly established the role of each polarization

vector component. The polarization was defined by the set of

equations for each of the six nonlinear processes and the four

central frequencies.

From the equations for the polarization, macroscopic suscep-

tibilities were defined that depend on pseudo polarizability

invariants. These pseudo polarizability invariants were shown to have

the same form as the Raman polarizability invariants. By carefully

deriving the molecular Raman differential scattering cross section and

establishing the dependence of the average Raman cross section on the

same polarizability invariants, the conditions under which the suscep-

tibilities are related to correct Raman scattering cross section were

determined.

4

~xvi



A
THIRD ORDER POLARIZATION FOR

MULTIFREQUENCY COHERENT

ANTI-STOKES RAMAN SCAITERING

I. Introduction

Coherent Anti-Stokes Raman Scattering (CARS) is one of the pro-

cess caused by the nonlinear coupling or mixing of four electromagne-

tic (EM) fields by a medium. CARS is used for the spectral analysis

of all media; gases, liquids and solids. When it is applied to a

(molecular gas, macroscopic information (e.g., species concentration

and temperatures) and microscopic information (e.g., molecular fre-

quencies and structure) may be obtained. The most common form of

CARS developed for this application (Refs 1;2; and 3) uses three

intense and nearly monochromatic (narrow band in frequency) EM fields

from two separate laser sources at different circular frequencies,

wl and w2. The field of greater signal intensity and higher frequen-

cy, w,, is called the pump field. It provides two of the photons for

the four-wave mixing. The field generated at the slightly lower inten-

sity and lower frequency, w 2 , is called the idler or for CARS, the

Stokes field. It provides a single photon to the process. The Stokes

field is produced by a tunable source which allows its frequency to be

varied (e.g., a tunable dye laser). When these two intense fields are

tCARS is often defined as Coherent Anti-Stokes Raman Spectroscopy.

The terminology selected here is to denote the process as opposed to
the result.



- Ii (Wi)

12 (w2)

Ii(wi) + 12(w2)

Il(wl) + 12(w2) 13(w3)

(a) Collinear

Ii (wl)

12 (W2)

Il(wl) + 12(w2)

13 (w3) 71 (Le1 ) + 12(w2)

(b) Crossed

Figure 1. Depiction of Laser Beam Inputs to Generate
Third Order Processes
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incident on a sample (Figure 1), other fields are generated at dif-

ferent frequencies (e.g., second harmonic, third harmonic, sum and

* difference fields) and at the same frequencies (e.g., stimulated

Stokes field). If the sample under investigation has a Raman active

vibration-rotation transition, one of the waves generated at the dif-

ference frequency, W3 = W1 + W1 - W2, is especially useful when

W1 - 2 Wv where 6wv is the energy corresponding to the Raman active

transition. This process and relationship is schematically depicted

in Figure 2. The field at the frequency W3 is termed the anti-Stokes

field. The result of this equality is a resonant enhancement of the

*. amplitude of the anti-Stokes field. Further, the resultant intensity

of this wave will produce a Raman spectrum of the molecule as W2 is

varied. Scattering under these specific conditions is monochromatic

CARS. This CARS approach, while highly accurate, does require each

experimental point describing the spectrum to be individually

generated.

Eg, (First Excited
Electronic State)

4J
Virtual States

1 2 W 1 3

, Eg, v = v'- (Vibrational Level)
v  

Eg, v = v' (Ground State)

Figure 2. Energy Level Schematic of
CARS Process

43



An alternative CARS technique to the monochromatic one has been

developed. This nonmonochromatic approach provides sufficient

spectral data in tens of nanoseconds to perform the desired analysis

(Refs 4; 5; 6; and 7). This CARS technique has been referred to by

several names; single pulse, broad-band, wide bandwidth, multifre-

quency and multiplex. In the research reported here, the term

multifrequency CARS will be used. In the multifrequency CARS

approach, a pulsed dye laser is used to produce an intense output over

a frequency range sufficient to span several levels of the vibrational

Q-branch (A J = 0, J denotes the rotational quantum state) of the

Raman spectra (of the order < 200 cm -1). When this multifrequency

pulse is used as the Stokes input in CARS, the resultant anti-Stokes

output generates the Q-branch spectrum characteristic of the medium.

In this way, the real time measurement in a turbulent medium or of

other transient effects can be obtained in a medium by using a

spectrograph and optical multichannel analyzer.

To adequately describe and predict the spectral characteristics

obtined from multifrequency CARS in molecular gases, a complete set

of coupled equations for the third order polarization of the nonlinear

processes is required. Those nonlinear processes of the same magni-

tude as CARS are included to determine the effect of intensity and

population level saturation on CARS. Since field vector polarization

alignment can be used to suppress unwanted background signals and

better define the molecular properties, arbitrary alignment of this

polarization is also included in the equation for the medium polariza-

tion. The orientational averaging of the molecular dipole moments is

performed to obtain the polarization terms. This averaging approach,

4 4



when applied to the ORS differential cross section, gives a result

that eliminates any ambiguity in specifying the correct cross section

to be used in CARS and gives the conditions under which the cross sec-

tions may be used. From the derived results, the more conventional

monochromatic CARS with parallel field vector polarizations is easily

obtained.

I5!S



II

II. Background and Approach

CARS History

The CARS technique has been receiving ever-increasing attention

since it was first used as a diagnostic tool for solids, 1972

(Refs 8; and 9) gases, 1973 (Ref 10; and 11) and liquids, 1974

(Ref 12). However, these first applications of CARS came after many

years of studies in inelastic (Raman) and nonlinear scattering which

form the basis for CARS. Sir C.V. Raman (Refs 13; and 14) discovered

and explained inelastic scattering in 1928. This inelastic scattering

* which bears Raman's name is that portion of scattered light undergoing

a change in frequency characteristic of and determined by the specific

scattering molecule. The frequency spectrum of Raman scattered light

is thus made up of several lines and the frequency shifts are both

positive and negative relative to the incident frequency. When the

incident photon loses energy to the scattering molecule by leaving it

in an excited state, the frequency shift is negative and the resultant

scattered photon is referred to as the Stokes component. When the

incident photon gains energy from an encounter with an excited mole-

cule, the frequency shift is positive and the scattered photon is the

anti-Stokes component. A theoretical treatment of both Raman and

Rayleigh (frequency unchanged or elastic) scattering was prepared by

G. Placzek in 1934 (Ref 15) using the quantum theory developed by

Dirac to describe the atom or molecule and classical wave theory to

describe the electromagnetic fields (this is termed the semiclassical

description). In Placzek's work, the "scattering tensor" was obtained

and forms the basis for describing Rayleigh and Raman scattering.

6



This early work is still applicable. From it equations describing

hyper, stimulated and electronic Raman scattering (Ref 16) can be

obtained. In addition to the work of C. V. Raman and G. Placzek on

inelastic scattering, M. Goppert-Mayer (Ref 17) presented an early

theoretical treatment of two photon absorption. The early experimen-

tal work based on these theories provided a technique that could

verify quantum mechanical predictions. However, due to the low effi-

ciency of this scattering phenomena, it was of limited practical

application until the development of the laser in the early 1960's.

The Raman cross section is several orders of magnitude less than the

Rayleigh cross sections (or equivalently absorbtion cross sections).

Typically, one Raman photon is scattered for every 106 - 108 incident

photons. With the use of the laser to provide very intense beams the

inefficiencies of the Raman process became less important (Refs 18;

19; and 20).

The nonlinear properties of electromagnetic fields are consistent

with Maxwell's equations. Several examples of nonlinear effects at

lower than optical frequencies have been known for some time (Ref 21).

However, it was, also not until the development of the laser that

nonlinear properties in the optical region were demonstrated by

P. Franken, et.al. (Ref 22) in 1961. Shortly thereafter, R. Terhune

and P. Maker (Refs 23; and 24) made the first observation of CARS in

liquids. There were several intervening years until the CARS tech-

niques were first developed by J-P Taran and coworkers (Refs 10; and

11) into a practical diagnostic tool. In those intervening years,

extensive theoretical work on nonlinear optics was done by several

authors; N. Bloembergen (Refs 25-30), P.S. Pershan (Refs 31; and 32),

7



Y.R. Shen (Refs 33-36), D.A. Kleinman (Ref 37), J. Ducuing (Ref 38),

M.D. Levenson (Ref 39; and 40), P.A. Franken (Ref 41), P.D. Maker

(Ref 42), and P N. Butcher (Refs 43-48). While this list is by no

means complete, the number of articles does serve to point out the

interest placed on the phenomenon. Another reason for selecting these

references is that most of this work formed the basis for the CARS

theory.

As stated in Chapter I, the anti-Stokes frequency of CARS is a

result of just one of the many possible processes that can occur

through nonlinear and linear scattering. TABLE I lists several of the

( * scattering processes that are useful in gas diagnostics. These have

been described and compared in recent reviews (Refs 49-53). The CARS

process, like many of the coherent Raman effects, has some very clear

advantages over the noncoherent ones, especially ORS. CARS, due to

the resonance at w., has a conversion efficiency of incident light to

scattered light that is up to five orders of magnitude greater than

that of ORS (Ref 54). This enables easy detection of the scattered

intensity both in terms of detector sensitivity as well as time of

detection. The intense CARS beam contains the same information as is

contained in the weaker ORS output beam so that no information is

lost. This has been established by determining that the selection

rules are the same for CARS and ORS (Ref 51). A second advantage of

CARS arises as a result of the coherent mixing of the two laser beams

by the nonlinear susceptibility of the medium and manifests itself as

a very low divergent output (the order of I mrad). It is this low

divergence that also makes detection a simple matter and allows an

excellent spatial discrimination. This low divergence combined with

8



TABLE I

( Diagnostic Processes

Non-Coherent

Rayleigh Scattering (RS)

Mie Scattering (MS)

Fluorescence (F)

Two Photon Absorption (TPA)

Ordinary Raman Scattering (ORS)

Near Resonant Raman Scattering (NRRS)

Hyper-Raman Scattering (HRS)

Coherent

Stimulated Raman Scattering (SRS)

Inverse Raman Scattering (IRS)

Coherent anti-Stokes Raman Scattering (CARS)

Coherent Stokes Raman Scattering (CSRS)

Raman Induced Kerr Effect Scattering (RIKES)

Higher Order Raman Spectral Excitation Studies (HORSES)

the frequency shift of W3 such that W3> W1 > W2 allows detection

against a luminous background. It is this characteristic that makes

CARS such a valuable diagnostic tool for combustion processes. The

major disadvantage of CARS is the limitation on concentration detec-

tion caused by interference effects dependent on nonresonant suscep-

tibilities. This interference may arise for either absolute

9



concentration in a pure gas or relative concentration in a mixture.

The nonresonant susceptibility may be due to either electronic states

or adjacent Raman resonant states depending on the energy state

characteristics of the specific molecule. The actual level of detec-

tion will be a function of pressure and background mixture. The limit

on species concentration is typically on the order of 10 ppm. These

are only the major advantages and disadvantages of CARS. Several

excellent review articles have been written on CARS where a complete

discussion of its advantages and disadvantages are discussed (Refs 51;

52; and 54-59).

Just as there are several coherent Raman effects, TABLE I, there

are several variations of CARS itself. In addition to the pulsed CARS

(multifrequency or narrow frequency), CW CARS has been demonstrated

(Ref 60). Also, there are various selections of lasers that can be

made to generate the input beams (Rel 56). Different CARS approaches,

TABLE II, have also evolved in an attempt to suppress or reduce the

nonresonant interference and improve the concentration detectability.

The merits of each of these approaches are discussed in several of the

reviews (Ref 49;50;59; and 66) and are not repeated here. While the

experimental set-up for CARS follows a basic layout (Ref 50), there

are as many different ones as there are CARS variations and applica-

tions (Refs 51;56; and 67). The specific application of CARS to com-

bustion arid gas phase diagnostics is extensively reviewed in a recent

article by A. Eckbreth and P. Schrieber (Ref 66). The relatively strong

signal levels and coherent property of CARS make it a particularly well

suited technique for the measurement of temperature and major con-

centrations in gases. The use of a multifrequency W 2 further enhances

10



I

the CARS technique in unsteady systems (e.g., turbulent combustion

processes) by a time resolved generation of the entire spectrum. It

is with this multifrequency application to molecular gases that this

research will be concerned.

TABLE II

CARS Background Suppression Techniques

q (1) Resonance Enhancement (Ref 53)

(2) Double Resonant (Ref 61)

(3) Polarization (Ref 62)

(4) Asterisk (Ref 63)

(5) Background Subtraction (Ref 64)

(6) Pulse Sequencing (Ref 65)

Approach

In the propagation of electromagnetic fields through a gas,

there are two aspects that must be considered: (1) The response of

the gas to the electromag,,etic field. (2) The evolution of the

electromagnetic field in the presence of the gas interaction. These

two aspects can be theoretically determined by several approaches.

Each aspect may be approached separately from a classical or quantum

theoretical point of view. Therefore, the combination of the two

effects may be treated strictly classically, quantum mechanically or

semi-classically where the material response is obtained using a quan-

tum approach but the fields are described classically. This last

approach is followed in this research. The semi-classical treatment

is justified where steady state processes are the principal interest

11



as opposed to detailed information on the generation of photons and

where there are a sufficient number of photons making up the fields

present. Because of the high intensity of the lasers used, their high

degree of coherence and similar properties of the CARS output, this

should be a good approximation. This approach will result in the loss

of information the contribution of spontaneous emission and statisti-

cal fluctuations to the propogation. The fully quantized treatment of

several of the nonlinear processes has been performed (Refs 34; and

35). While this treatment is necessary for a full description of the

nonlinear phenomena, especially the onset, it adds a high degree of

complexity to computations. For diagnostic purposes, there is little

return for the added complexity. The quantum approach to the material

response presents a different situation. It will be shown that the

dielectric susceptibility, X t, is not only responsible for the magni-

tude of the resonances present in CARS but also for the specific line

shapes and shifts. The source of the resonances and the specific form

of the susceptibility are explicitly demonstrated in the quantum

approach. The dependence of j on population difference of molecular

states is also clearly shown by this approach. Because of the impor-

tance of x and the need to determine concentrations, the added

complexity is felt to be justified for the material response.

For either the quantum or the semiclassical approach, Maxwell's

equations, are used to determine the evolution of the EM fields (Ref

68). These equations in Gaussian units are:

t The symbol = is used above a parameter throughout to indicate a
tensor while the symbols - and ^ are used to indicate an ordinary
vector and the unit vector, respectively.

12



la.

v x - t (a)

v E + 4 i (b) (2.1)
c at c

0 .(c)

V4p (d)

where

E = electric field vector

B = magnetic induction vector

D = electric displacement vector

H = magnetic field vector

J = electric current density

p = electric charge density

c = speed of light in a vacuum

t = time dimension

v = vector spatial operator (e.g., - x e + - e + "x e)
ax1  ax1  ax3

In addition to these equations, it is necessary to relate the response

of the material to the influence of electromagnetic fields. The

constitutive relations define the relationships. There are two alter-

native forms for these relations, additive or multiplicative.

Additive:

= E + 4wP (a)

= H + 4 (b) (2.2)

13
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where

-= electric polarization

= magnetic polarization

Multiplicative:

_= (r)r (a)

B = ;) ii (b) (2.3)

where

= dielectric permittivity

* = magnetic permeability

For Eq (2.2)

at-L-+ c V x M(2.4)

And for Eq (2.3)

= (2.5)

where a = specific conductivity

For a dielectric (electrical nonconductor), a 0, there is no free

electric current density and v and c will completely determine the

electric and magnetic properties. Also, for a nonmagnetic material

v = 1. In general, P and M (or o, =, and j) are functions of the EM

fields consistent with the linearity or nonlinearity of the situation.

To solve these equations, certain boundary conditions must also

be met. These are summarized as:

14



n12 " (. 2- W) =0 (a)

n Mcr - ) 41 s(b
12 2 " 4 (b)

n12 X (T2 - 1 ) =0 (c)

n12 X (Hf2 "J) - s (d) (2.6)

where

n1= unit vector normal to surface between materials 1 and 2 and

pointing toward material 2

Ps = surface charge density

j = surface current density
5

When the external excitation fields are sufficiently weak compared to

the molecular internal fields of interaction between charged par-

ticles, the external fields do not interact, change their frequency or

direction (in a uniform material). The constitutive relations can

then be linearized to describe this situation.

P = x(E,B) > x E (in uniform medium) (2.7)

= (EB) H -> n H (in uniform medium) (2.8)

where

x = dielectric susceptibility

= magnetic susceptibility

with the result

= 1 + 4w, (2.9)

P = 1 + 4_9 (2.10)

15



However, in general, this linearization does not hold and the

electric polarization has higher order terms that must be taken into

account. ly then may be expanded as

"F = T(I) + T(2) + T(3) + ...... + T(N) (2.11)

One approximation to obtain the higher order components of P is to

expand it in a multipole series of the electric and magnetic fields.

For a nonpolar and nonmagnetic material, this gives (Ref 42:297)

P= x +X :a V r + 2  + 2 a V r + =X2b 1T E +

+ X3 E EE + X3a (2.12)

where Y Y is the generalized product of two vectors and xi are tensors

of rank (i + 1). In Eq (2.12) the linear part of T is

= + iaV E

with the nonlinear terms being the remainder:

Second order iy(2) = x 2 TE+ I 2a 'V r + I 2b _E

Third order X(3) = x [  + 2 3at +

For the optical effects discussed in the previous section, a reason-

able assumption is that the interaction of the macroscopic field with

the material is due to an electric dipole coupling. In the pure

electric dipole approximation, Eq (2.12) becomes

16



0

Sp=() + (2) + (3) (2.13)

Furthermore, '(2) is identically zero (Ref 25:9) in an isotropic

medium such as a gas which exhibits inversion symmetry in its

macroscopic dielectric properties. Thus T(3) is the lowest order

nonlinearity in a gas and =(3) is the material response function

determining CARS as well as the other third order processes of TABLE

*1 I. It is through the third order susceptibility term, =(3), that the

Raman resonance must manifest itself. X(3) must also provide the

description of the nonresonant effects, electronic and off-resonant

Raman. Thus X(3) may be written as a sum of these terms

=(3) =(3) + "((.14

The generalized product of fields provides the nonlinear nature of the

system, and when T consists of multiple fields at unique frequencies,

many different frequency fields are created. For the third order

case, E T Y, fields having twenty-two distinct frequencies occur when

two initial fields are considered. Polarization is induced at each of

these frequencies and X(3), through the induced electric dipole, is a

function of the frequencies of the fields it multiplies, e.g.,

X ( _ ;W1W2WO

The assumptions that the material is nonmagnetic (0 = 1, M = 0)

and that there exists no free charge or current further simplifies the

equations. These are good assumptions for gases which are treated in

this dissertation. With these assumptions and the use of Eq (2.4),

Maxwell's equations become:

17



V X r= (a)c at
3C 4t (b)

v • = 0 (c)

v F U= 0 (d)

F pL + NL (e) (2.15)

In a dilute medium (such as a gas), the molecules may be treated inde-

pendently with the microscopic or local field set equal to the applied
macroscopic field in these equations. In condensed materials, this

latter approximation cannot be made due to the influence of dipoles

formed by nearby molecules (Ref 47).

It is clear that by specifying the initial fields the suscep-

tibilities can be obtained under the dipole approximation. This

susceptibility can in turn be used to determine the polarization.

Equations (2.15) and (2.6) can then accept the polarization to deter-

mine the generation and propagation of the electromagnetic fields.

This approach will be followed for molecular gas diagnostics by

multifrequency CARS. The equations and assumptions of this section

will form the basis for this development.

The work of this research is aimed at creating a complete descrip-

tion of the third order polarization for the nonlinear processes

(e.g., CARS) under the most general situation for molecular gas

diagnostics. The specific objective is to obtain a set of third order

polarization equations that will allow the CARS intensity to be



obtained for use in a multifrequency mode to measure the macroscopic

parameters of a molecular gas. If the interest were in obtaining

information on the structure of molecules, interpretation of the sym-

metry considerations is necessary (Ref 16:29). Here emphasis will be

on using quantum theory to ensure the consistency of the terms in the

equations and to accurately express these terms as measurable quan-

tities (e.g., ORS cross sections). To achieve these objectives,

q arbitrary polarization of the fields will be allowed along with

arbitrary dependence of the fields on frequency.

Outline of Contents

4The research performed is described in the following six chapters

and ten appendices. The majority of these appendices are added for

completeness. The remaining appendices are used to consolidate the

lengthy and somewhat complex equations for the final results.

Because the third order susceptibility is important in defining the

polarization, its general properties, including intrinsic permutation

symmetry, are derived in Appendix A. With these properties of the

susceptibility, the role of the average dipole moment in determining

the polarization is established in Chapter III. This chapter also

contains the relation between the dipole moment and the nonlinear

polarizability. Perturbation theory is used (Appendices B and C) to

derive this polarizability for individual molecules. The approach of

P.N. Butcher (Ref 48) is followed. The classical derivation of the

t N.B. The word polarization is used in two ways; (1) to denote the
macroscopic property of the material-electric polarization, and (2)
to denote the orientation of the field oscillation in a given frame
of reference. The context of use should prevent confusion.
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third order susceptibility is outlined for completeness and com-

parison.

In Chapter IV, the six simultaneous nonlinear processes of the

same order of magnitude as CARS are identified. The resonant dipole

moment equations for these processes are developed for molecules ini-

tially in thermal equilibrium and for a specified field function

(Appendix D). The resonant polarizabilities producing the dipole

moments are then derived as a set of distinct equations. The results

for the six processes are presented in Appendix G in different func-

tional forms. Since one of these forms depends on the ORS polarizabi-

lity tensor elements, the polarizability invariants are introduced in

this chapter. A fully quantized treatment is used to obtain an

equation for the molecular ORS differential scattering cross section

in Chapter V. The properties of this cross section are reviewed.

This derivation and review are performed to ensure the correct use of

applicable ORS data from previous experiments reported in the litera-

ture.

The effect of averaging over all possible molecular orientations

is established in Chapter VI. This orientational averaging allows

general field vector polarizations to be considered. The details of

this derivation are worked out in Appendix I. In Chapter VII, the

orientational averaging result is used to convert the individual mole-

cular dipole moments to a macroscopic polarization and susceptibility.

Appendix J contains the equations for the six nonlinear processes of

Interest. Orientational averaging, similar to that for the polariza-

tion, is performed to derive the macroscopic ORS cross section. This

clearly shows where an identical substitution of this cross-section

20



into the third order susceptibility is allowed and where only approxi-

mate equality of terms applies. This also allows the importance of

the approximations to be determined. Chapter VII concludes with a

discussion of other equations and parameters (e.g., line widths) not

derived but necessary to solve for the CARS intensity. In the final

chapter, VIII, the research results obtained are summarized and recom-

mendations and conclusions presented.

2
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III. Nonlinear Polarization

Quantum Theory

Upon examination of Maxwell's equations, Eq (2.15), the medium

polarization term, P(t,r), is identified as the parameter connecting

the medium response on a macroscopic scale to any applied fields (the

term field is understood to be the electromagnetic field). The nonli-

near polarization is therefore the forcing function in the derived

wave equations for the applied and generated fields. It is also the

nonlinear polarization that allows for higher order nonlinear field

effects to be incorporated, Eq (2.13). In this chapter, the func-

tional relationship between the polarization and the susceptibility is

given. Based upon perturbation theory, the approach to determining

the third order susceptibility equations from the average polarizabil-

ity is established. A classical derivation of this susceptibility is

included for completeness and comparison.

Armstrong, et. al. (Ref 26) presents a direct perturbation theory

approach similar to that of Kramer (Ref 71:480) to derive certain

nonlinear polarization expressions. Recently, other authors (Refs

2;48;72; and 73) have applied perturbation theory through the use of

density matrix formalism to derive expressions for the electric

susceptibility, x. More recently Druet and Taran (Ref 74:8) have

reduced the latter approach to a diagrammatic one. In addition to

these results, Hellwarth (Ref 75:8) uses the Born-Oppenheimer approxi-

mation to separate contributions of the electronic, nuclear and inter-

active components of the susceptibility. The derivation presented
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here will use the density matrix formalism, specifically that

of Butcher (Ref 48).

The objec'.ive of this research is to obtain an explicit expression

for the third order polarization. This is the lowest order of the

nonlinear polarization existing for a molecular gas and is used to

introduce the CARS effect. The functional definition and general pro-

perties of the third order susceptibility are obtained in Appendix A.

From this definition, the general third order polarization can be

written as

'4 1 0 (3) (t)= -(3-( -q E(W1 )E(Wi2)E(W3)

e -i(W1+W2+W3 )t (A26)

or in the terms of the Fourier transform of P(3) (t), Eq (A22)

F(3) (T) - 1 *dP(3) (T)e WT (3.1)
2,ff

after substituting for T(3) (T) from Eq (A26).

-1(3) (w) = 1 { Fj2 _ 3 (3)(1, W2, )E )

21r -Cc -W _

xe-i (W+W2+W3)] e i wT  (3.2)

or

I
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IC( 3  (W) 77r i d 2  W

x TT ei(w-wl-w2-wO)  (3.3)

But, the delta function6 (x-x ) is defined by
0

6 (x-x dy ei(x xo)y (3.4)

so that the last integral of Eq (3.3) reduces to 6 (w-w1-w2-w3).

TP3) (w) is then

It.o
F(3) (w)= fi f2 ]dw3 =()

-~ - -~(3.5)

. rThe principal effort here is to obtain an expression for the polariza-

tion or, equivalently, the susceptibility in terms of measurable para-

meters and thus to link a microscopic derivation to the macroscopic

experiment. To perform this derivation, the assumptions of Chapter II

and Appendix A will be applied along with the usual relations between

the magnetic and electric fields. The electric field in Eq (3.5) is a

total field. The applied electric field can be a linear superposition

of any number of individual or separate fields. For the case of CARS

considered here and the associated third order processes, it is suf-

ficient to allow for two applied fields at (k1,'L) and (k2,w2) where
n w

ki is the propagation vector. I~i 1= -- '-with nvi the index of
c

refraction of the medium at frequency Wi. The pump electric field,

E1, and the Stokes electric field, E2, have a functional dependence

upon the location, r, and time, t.
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In deriving an explicit expression for X(3), the appropriate

starting point is with the definition for the macroscopic polarization

(Ref 25:40)

P (t,'r) =Mr (3.6)

where d(t,r) = electric dipole moment of a molecule

V = volume of the gas

M = number of molecules present in the gas

That is, the macroscopic polarization is defined to be a product of

the number density and the expectation value of the molecular dipole

moment operator, d. The expectation value over the correct quantum

mechanical system is represented by the symbol < >. When the medium

under consideration consists of an ensemble of dipole moments that are

not uniformly aligned, an appropriate average over all molecular

orientations must be taken:
(T)

r) <d(t,F)> (3.7)F~, =d Vfl

Where the bar over <d(t,r)> indicates orientational averaging.

Placzek and Teller (Ref 76:213) and Ueda and Shimoda (Ref 77:200) have

shown the equivalence between classical orientational averaging using

the Euler angles and summation over the complete set of orientational

quantum numbers. Because of this equivalence, the classical approach

will be followed for orientation averaging.

The expectation value of the dipole moment for a single molecule

may be obtained by using the density operator, p(t). For the dipole

moment, d(F), at t = C, the expectation value may be written as the
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trace

_ <d(t,r)> = Tr (p(t) d(7)) (3.8)

where Tr is the trace: (^(t) d(r))aa <al (t)d(r) a>. Inaa a

order to find p(t), it may be expanded as

p(t) = p( + + p3(t) + (3.9)

*I so that the trace of the dipole moment is
Tr ^ ) ^T^(

Tr(p(t) d(P)) = Tr (a) + Tr (p) + Tr(P 2d)

+ Tr (p3d) + -. (3.10)

The spatial dependence of d and the time dependence of p are

suppressed for convenience, but are implied. Equation (3.8) can then

be written as

<d(t)> : <a(o)> + <a(l)(t)> + <d(2)(t)> + < (3)> + ... (3.11)

where

<d(o)> = Tr (p d)
0

<d(1)(t)>= Tr (p (t) a)

<d(2)(t)> : Tr (P2(t) a)

<d(3)(t)>= Tr (p 3(t) d) (3.12)

An expression for each order of p is derived in Appendix B. This

derivation is obtained using standard perturbation theory. The

interaction picture is used where the Hamiltonian, H, is written as
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i

H=H +H (t) (3.13)

C where AI(t) represents the perturbation energy introduced by the

applied field. In the electric dipole approximation, HI is given by

"H(t) = -d(t)"E(t) = -da(t) Ea(t) (3.14)

(Ref 79:265, 80:445). In the last product of Eq (3.14), the Einstein

convention is used where repeated indices imply a sum over all values

of the index

d E =z d E (3.15)

a= 1

Combining Eqs (3.6) and (3.11), the expectation value of the mole-

cular "third order" dipole moment provides the first step in the deri-

vation of the desired susceptibility. The various orders of p are

used with H,(t) to derive an equation for the expectation value of d in

Appendix C. From this derivation a molecular polarizability, p, is

defined such that

<d(3) (t,F)> = fdI1 fdw 2 fdW 3 p(3) (WIW21W3)
IP O a a 3

x E a (w)Ea2(W2)EC3 (WA e - i ( W1+W2+m3)t (3.16)

where the general form of p(3) is given by Eq (C43).
pia Ia2 aL

Alternatively, the Fourier transform of <d(3 )(t,r)> is

1< ( ) d d d. P( (WI 9W2 P13)
-I - - -D 1 .aa3

x Eal (w)Ea2 (W2 )Ea3 (W) e i(W1+W 2+W3)T] eiwT (3.17)
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or by rearranging the integrals

<d(') d fw d0 2(3) (WlW 2 ,W3 )E (w1)E (W2 )E (w3 )
-d3( >: I -C -C Val Q C3 a 2 a

x e 1 (3.18)

After using Eq (3.4), the dipole moment expection value is

<d ( (W> f Tdw 1 Jdw2 f dw3  P(3) (WI W2 IW3 )E (Wl)E (W2 )E (W
-W -W -CO ua 11120a3 2 M

X 6 ( -W I -2 -13) (3.19)

or

<j'(3 )((.)> fool f 2 fO3 P ((.o 1, 2,(,3) i ': o E(,o ''(o

X x WW -) W (3.20)

when the fields are defined in a laboratory coordinate systems they

are independent of the orientational averaging, however, spatial

averaging must be performed over the polarizability.

<dFT( ()> fd= - dW fdW - p T7( W2 ,W3) 'E(WI )W 2 )MW3)

X 6 (Wu1-I-2-(3) (3.21)

Therefore, an expression for the average polarizability is sufficient

to determine the susceptibility and consequently the polarization.

Substitution of Eqs (3.5) and (3.21) into Eq (3.6) results in the

susceptibility, x(3 ) being expressed in terms of the polarizability
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(t) (3.22)
M ! p(! 3)(W 1 , 2 ,W

To perform the orientational averaging of the polarizability, an

explicit expressions for each P(3)(W1 ,W2,W 3 ) of importance to CARS has

to be determined.

Classical Theory

A classical development of the nonlinear polarization is an

alternative to the quantum derivation in many situations. The classi-

cal development starts by considering the interaction of a molecular

' 0 system with a harmonically oscillating field. A single molecule of

the system is assumed to be free to vibrate about the equilibrium

position of its nuclei but not to rotate during the interaction. The

vibrating molecule can be modeled as a harmonic oscillator

+ 2Qk WV F (3.23)

- where

Qk = a normal coordinate of vibration

P = damping constant (proportational to the Raman line width)

Wv = vibrational resonant frequency

m = reduced mass

F = driving Force

The damping in this equation has been phenomenologically added. Since

a molecule placed in an electric field experiences a polarization, P,

due to the field, a reduction in the energy by
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W = - 12 ( T) (3.24)

results (Ref 84:125). The force, F, associated with this energy is

F 7Q(3.25)

The nonlinear polarization may be obtained using Eqs (3.23), (3.24),

and (3.25) in at least two different ways (Ref 2:8):

(1) Introduction of an anharmonic term, XQ2 , into the oscilla-

tor equation of motion through the potential.

(2) Use of the driving force, F, to introduce the nonlinearity.

This second approach is more commonly used to obtain a classical

result and is briefly outlined here. The first approach does produce

the following result stated without proof for the polarizability (Ref

2;10)

CARS x 2 q 4m

P(1) C(3) = (w 2 -w2i 2 2_ X

1
X 2 2 ) (3.26)(W v- W2+'W2F)

When the driving force is used to introduce the nonlinearity, the

relation between the polarization and the applied field is taken to be

p : (3.27)

where is the polarizability of the molecule induced by the field.

Then is expected to be a function of the nuc ear coordinates and

each component p80 may be written as a Taylor series expansion of the

normal vibration coordinates
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p P + (p0 Qk
cl$ c0 kc~h k

2

1/2 + ..... (3.28)

where ( )o is the value at equilibrium. If only the first order terms

in Q are retained and only one normal mode component is assumed as

the first approximations, this polarizability becomes

p = p + (-)o Q (3.29)

where without loss of generality for this approach, p is taken as a

I ' Sscalar. Substituting this into Eq (3.27)

"P=(Po +  (3Q~o Q  (3.30)

and the energy of interaction, W, is

W 1 - /2 [po + ( Q)o Q] T (3.31)

The force F is then

F = 1/2 [p + (2R)o Q] • (3.32)

F 12(.!Q)O0' (3.33)

Upon substitution, Eq (3.23) is

Q +r Q + W2 Q o r ' (3.34)

For the applied field

--E + E2  (3.35)
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where F1 and T 2 are harmonic fields oscillating at w, and W2 respec-

tively,

] = "Ti ei(VF - it) + C.C. (i)

"2= E2 ei(T2" - 2t) + C.C. (ii) (3.36)

And

. -I1 12 + 2r, . -C2 + IJ2 (3.37)

The case where the frequency of the driving force is near the reso-

nant frequency wv is important. As before, this resonant condition

I occurs for

-1 - W2 = W (3.38)V

and comes from the product of Eq (3.37) with the fields assumed to be

parallel

Er" E2 
=  * e i[(k1 -k2) r - (W 1 -W 2 )t) (3.39)

Ignoring the off resonant terms, Eq (3.34) is then

Q+ Q + W2 Q = () 2CFc (F)e-i(W1W2)t +CC(.0

v 2-_I ) : + c.c (3.40)

The particular solution to this equation is

= Im1 (WW)oWP 2Ej1(r) 2(r)e - i (W1 W2)tQ -2MW -( _2 )2_i r(lW. '2)

+ C.C. (3.41)

Substituting this value of Q into Eq (3.30) and with the first order

correction defined as the nonlinear polarization:
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-L 0p Q E (3.42)

* -i the result is

NL 2 1
P ~~ (w3 )o 2~ -( 1  ) 2 -ir(w 1 - 2  1BE (2

x e-i(2w1 - 2)t (3.43)

and

pNL(WO =- 1(' v2 1(3.44)

Similar expressions at other frequencies may also be obtained. The
relationship between the term (A0) and the Raman differential scat-

3Q o
dotering cross section, -, from ordinary scattering theory is (Ref

85:598)

( = )o (3.45)

where

s = the circular frequency of the scattered radiation.

This differential scattering cross section at vibrational level v can

be related to the cross section for scattering from the ground vibra-

tional state, v=O (Ref 86:11), by

&a) v =~ _ (v+1) (3.46)

with

do = (v+1) do (3.47)
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where the factor (v+l) arises from the dipole matrix element and is

introduced into the classical treatment for the transition v v+1.

Then

2  c4 2mW v  do (3.48)

which upon substitution into equation (3.44) yields

NL 2c 4 do) __ V_(3 .49)

p (w3) = -S ) 0 2 _(w1.- 2 ) 2 _ir(waw 2 )

V

The frequency of the scattered radiation, w , should be taken as

characteristic of the process being described (e.g., for SRS-S

use C2).

The tracking of the frequency dependence is difficult in the

classical approach since a frequency dependence must be assigned to

*-) (Ref 87:679). A result for CARS at the anti-Stokes frequency

(Ref 88) is

I12k 1 [p(W1)p(W3) + P'(W2) P'(W3)] (.0

where the frequency dependence must be determined and p' is defined as

P= (")o (3.51)P aQ)

4 When the field frequencies are far from an electronic state resonance

of the molecule, the difference in frequency dependence may be

neglected. For the case of CARS, different authors have used both w,

4 and w2 to define the frequency dependence and the ws of Eq (3.49)

(Refs 67:13, and 86:12). The removal of this anomaly is one of the
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benefits of the quantum mechanical approach. Schreiber (Ref 88) has

obtained the effect of orientational averaging in a molecular gas for

the classical derivation under the limiting condition of parallel

field polarization.

Selection of Theory

Several considerations must be taken into account in selecting

the theory used to derive the nonlinear polarization. Some factors toI
be considered include the accuracy required, the experimental tech-

nique employed (e.g., monochromatic versus multifrequency, electronic

resonant enhancement, etc.) and, the purpose of the analysis (e.g.,

molecular or macroscopic properties). The classical theory result of

Eq (3.49) for the nonlinear polarizability and hence the required

nonlinear polarization is a good approximation for many of the

situations. It is especially useful for those involving only near

vibrational resonances. However, the simple classical description is

lacking not only for off resonance conditions but also in describing

several important features of third order processes.

One of the deficiencies of the simple classical theory is its

inability to predict the complete frequency dependence of the

polarizability. This frequency dependence is important when

describing and differentiating between the third order processes.

This is particularly important when electronic state resonances are

involved. This frequency dependence arises naturally in the quantum

theory. Another deficiency in the classical theory is the inclusion

of molecular state population differences and temperature dependence

which must be added to the results derived. The damping term, r, like
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the frequency is analytically included in the quantum approach and

Coccurs in all the frequency dependent terms including those important

in electronic resonance. The directional effects arising from field

polarization is also described only by the quantum theory through the

scattering tensor. The advantages of the quantum theory make it more

applicable and worth the slightly more complicated derivations.

For example, if the purpose of the analysis is to determine

detailed molecular properties such as symmetry, only the quantum

theory will suffice. Even when determining macroscopic properties,

such as temperature and pressure, the description by the quantum

I theory allows a wider range of applications. Also, the classical

theory is more difficult to apply to complex molecules.

The quantum theory is, therefore, used to obtain the desired

general equations for the molecular polarizability and Raman scat-

tering cross section. Classical orientational averaging is then used

to derive the macroscopic susceptibility and polarization with

arbitrary field polarization. These can then be used with Maxwell's

equations and the appropriate boundary conditions for the most general

conditions. This approach is a consistent one to connect the molecu-

lar microscopic properties to the experimental macroscopic properties.

Specific results such as monochromatic and/or single resonance can be

obtained from these general results.
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IV. Molecular Polarizability

Dipole Moment Equations

In this chapter, the nonlinear scattering processes of similar

magnitude to CARS are identified for the fields present. Third order

molecular dipole moment equations are then derived for these pro-

cesses. The individual resonant polarizabilities that define these

dipole moments are then established. An equation for the third order

polarizability, p , is derived in Appendix E from the general form

(Appendix C). This derivation uses the unperturbed density operator

Afor molecules in thermal equilibrium. The result is given by Eq (E28)

as

p(3) (w1,w2 ,w3)
=- S 1 P0

lala2a3 (a) 6h3 a,b,c,d aa

d Pd l da a2 d 13

dabdcdcdda

(ab+w 1 ab) ( ac + 2+ 3+i rac) ad+3+ Fad)

d 0 2 d 03

+ dabdbcdcddda
( ab- -iabl(ac+ 2+w3+ir ac )(adw3+i rad

d CL 1 a 1jd 3+ ab bccd da
(W abwr_ fb(Wacw21' rac) ('ad+ '3+i rad)

dal da2 d 3 d P
ab bc cddca(wab- wiab) ('ac-w)-w2-iFac)(wad-l- --w3-iFad) (4.1)

The existance of the frequency resonance in p(3) strongly affects the

magnitude. Thus if a specific resonance can be established, the terms
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associated with that resonance will dominate. From Chapter I the

frequency resonane for CARS is

-) - W2 -" W (4.2)V

where w is identified with w in Eq (3.23). However this resonance

will also occur in the polarizabilities for other processes besides

that of CARS. The source of the specific linear combinations of fre-

quency in the polarizability is a result of the electric field com-

ponents present in the total field. This is most clearly seen from an

examination of Eq (3.19) where the functional form of the field will

restrict the allowed value of wi and therefore determine the resonan-

ces in .

At this point it is necessary to determine the number of field

components to be considered. It has been assumed that there are only

two real applied fields T1 (t,F) and (t,F) which may be written as

Ej (t) = fl(t) + T(t) (i)

(4.3)

T (t) =T2(t) + f*2(t) (i

The Fourier transform of the field in this form is carried out inE

Appendix D with the result

TI (W ) = E:I (W) + Cj(-W)()

(4.4)

p2( ) = 2 (W) + 7'(- ) (ii)

These two fields, interacting through the third order nonlinear

polarization term, d:. create a finite number of electric field

38



components at new and unequally spaced frequencies. Consider as an

example of the applied fields two that are monochromatic at w, and W2

so that Eq (4.3) is

Ef(t,T) = 'A(F)e- iwit + A 1()ei1t (i)

(4.5)

El(t,F) = A2 (-)e-iw2t+ A2()eiw2t (ii)

and the Fourier transform to frequency space is

Ti (WIT) = T, Fr) 6 (w-wl ) + Al(r) 6 (w+wi) i

(4.6)

T(WF) = X2(r) 6 (w-W2) + -2(r) 6 (W+W2) (ii)

Of the sixty four products obtained in the third order using either

Eq (4.5) or (4.6) only six new electric field frequencies and their

conjugates will be generated; 3w1, 2w, + W2 , 2W2 + wi, 3W2, 2w2 - wl'

and 2wi - W2. And, of these six only two, 2wi-W 2 and 2W2 -W1 , will

have the resonance of Eq (4.2) occuring in the polarizability.

Additional polarizability resonances will exist for field combinations

at frequencies of w, and w2such as in a stimulated Stokes process. If

the fields generated at the new frequencies, especially those with a

resonance, reach a sufficient amplitude, then they in turn can

interact with the original fields and each other. This interaction

will in turn generate another set of fields at different unequally

spaced frequencies. Thus the nonlinear polarization term can in prin-

ciple create an infinite number of fields at unequally spaced and

different frequencies.

In the example just presented, the delta function selects

39



I

uniquely the frequencies that will appear in the generated fields and

in the polarizability. The polarizability has a single, sharp reso-

nance when Eq (4.2) is satisfied exactly and drops off as the dif-

ference increases. The multifrequency situation, in contrast to the

monochromatic case, can include a band of frequencies and E(w) in Eq

(4.4) takes on different functional forms. For well separated fields

(i.e., a field is only nonzero over a given frequency band) the func-

q tional form of E(wi) and the integration over the entire domain of its

argument allows only specific frequencies and thus limits the fre-

quency resonances of the polarizability. Only certain of the twenty

four terms in Eq (4.1) contain a resonance at WI-W 2 and the selection

of the resonance limits the number of separate terms that must be con-

sidered. The remainder of the terms (i.e., those not in resonance)

are included in the nonresonant background polarizability. To deter-

mine the resonant polarizability terms, the field terms will be

limited to the applied fields Il and E2 and to the generated fields

E3 (at W3 =W1 +W1 -w2 ) and E-4 (at W4 = W 2+(W 2-W1 ). This is not only con-

sistent with experimental observation (Ref 81:145) where gas breakdown

limits the intensities precluding generation of detectable higher

order fields but is also sufficient to describe the processes impor-

tant to CARS. Then Eq (3.20) with Eq (4.3) becomes

= jddWfdWfw. =(3)(_W;W,'W-,e...

i,j,k=l -- -- --
x" L C( ) w.* ".)] . +( ) *(- .... )I

x:.~~-''] I ET(-) E)+ -- *(-i I (w)]k(-"I

x(W- '- _" - "1(4.7)
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where the notation change

W 2 -W"

W 3  W-

has been made to avoid confusion with the specific frequencies such as

the pump frequency wl. The Bloembergen notation p(3)(-W;,,W ,w')

has been used for the polarizability term. The expansion of the field

terms on the right hand side (RHS) of this equation is

F[k(&,V)+ FW( W "( )+ -*(-W ]Ij[-(w"+ c *(-w.. )] :

+ E(-W-) C(--) Ek(-w--)+ Ti(-)j(-w) (-w)

+ )(- ) + (-.)k() (4.8)

The last four terms in this equation are complex conjugates of the

first four terms. When used in the wave equation they will form a set

of conjugate equations and may be treated as providing redundant

information. Using these results, Eq (4.7) becomes
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Cd()(W Jdw' f7- fd(J< [=(3)(_w;W,w-'w"
i ,j ,k=i - - - , - -

:aiajaki(W,)j(w")Ek(w..)

a(3)(-!;ww ,w') a i  E (-w') 1j (w") ek (w .. )

+ r.a ja i (w-) E; (-W'-) ER (w ...

!+
())(:;a ,Ei) aj a Ei (w')Ej (W<)C* (-WA-) + C.C.]

' x ( ( - '-( _- '" (4.9)

Where the field term has been divided into a product of a unit vector,

ai , denoting the field spatial polarization and the scalar function

ci(w). By allowing the unit vector to be complex, the field polariza-

tion may be other than linear.

For each of the four triple products in Eq (4.9), there are sixty

four terms and for each p(3) there are twenty four terms due to the

symmetrizing operator, S, in Eq (4.1). A reduction in this number of

terms to those of interest is possible by using the property of

intrinsic permutation symmetry from ApDendix C, keeping only the reso-

nant terms of p(3), and using the localization property of the field

amplitude distribution function in frequency space. A brief descrip-

tion of how the three effects are used to derive the resonant terms is

given. In each of the sixty four product terms, the individual field

functions can occur with a permuted order. For example, in the first

term on the RHS of Eq (4.9) the terms with indices 1,1,2 are
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,.C 2(W')CJ(W-)E:J(W.. ) (iii) (4.10)

and may all occur. The number of individual products containing the

same set of indices may be predicted from the following expression:

Number of ways X Number of ways X Number of ways
first field chosen second field chosen third field chosen

(number of terms alike):

(4.11)

In the example above, since there is nothing to distinguish the indi-

vidual field functions (e.g., no conjugation on one of the terms), the

first field may be chosen in three different ways. The second field

may then be chosen in either of two ways and the third field in only

one way. There are two field indices alike. Equation (3.33) then

becomes

(3) X (2) X (1) = 3
2.

In the remainder of terms on the RHS of Eq (4.9), one field is con-

jugated and since that field is identified by a subscript it can only

be chosen one way. The number of similar subscripted field products

will be either one or two depending on the number of terms alike, two

or one. Once the number of field product terms with like indices is

known, the combining of these is possible using the intrinsic per-

mutation symmetry. This is best demonstrated using the field products

of Eq (4.10). The polarizability expressions are
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F-. " ' ' . i".1 , - , , .. " " - " ' " , -

[dd 4 d4 (w,w',-*w...)aallal a2 j(w)E1(W"W)2 (w..

+ - .-- l)p( (, w,...)a, a2 al E(W')E2 (W')(Wo 2 ..._= . .. ]o2o{3 (ii)

,1 0M2 13

+ Jdw 'dw Jdw-p(3 ) ~ vWI'W- 1a a Q2 C 2 wilw93~wif-= - '- 4 M-,'.-()'= ]A '=a2a ..," ")a2 al al C2(w )Cl (W"-)C1(W" ... iA

W- CO -Cc (iii)

x 6 (w-w-w --. ) (4.12)

where act and E are scalars. Expression (iii) in Eq (4.12) may be

I , rewritten by first switching the dummy indices a, and 012 and relo-

cating the scalar components

3) d d...p( ) ,)aa I a02 a0 3 -)Ej(W' )Cj(W--')

f-f-m -m; ... 02 P( ,'1 82 81 C2 (W)£( )l( )_D _CD _CD Pa I a 2O{

x 6 (W_-W -W"w ) (4.13)

Since the variables w' and w" are under the integral, they may also

be switched along with the order of integration and the scalar fields

relocated

fd,- (3 1 C12 C13 .fdw 'fdw -p(3)2C w'; w w ... )al a2 al Cj(W')C2(W')C1(W ...

x 6 (- -i"-W .) (4.14)

Use the intrinsic permutation property of =(3)

4
P( 5) (w-, ,W ) = p( 3) (W, , WAI ) (4.15)
g1 20 la 3 1.1 l102CI 3
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. . . • . .... . .

to obtain

f (3) a2 a3,.. dW~ W'W .2a1 {('C(W)1W.

x 6 (W- -w,,-w_- (4.16)

which is exactly Expression (4.12ii). Expression (4.12i) may be

rewritten in a similar manner by exchanging indices M2 and 03

d-d - p P1lU3)M2

x W-W - (4.17)

exchange the variables w'" and w.. as before

dw dw dw" .. p(3) , w- w--)am a 02 a3 E (')C2(W-)C1(W ...

x6 (W-W- W'-AW") (4.18)

From intrinsic permutation symmetry of p(3)

p( 3) (&WA 9 WAI9 -) = p( 3) W "O A
ijalj3P 2  I~a2a13

and Expression (4.18) becomes

dW d w' ... p(3) (-,w-------1)a a2 a3 AA) r(W )
JC jJC p-'' 3 a1 a2 a1

X 6(w- w' ') (4.19)

which is also Expression (4.12ii). Therefore, all three terms in

Expression (4.12) are identical so that the number of like terms beco-
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mes a coefficient to one of the terms. In this case, a factor of

C - three. Follow'ing a similar procedure, this result can be obtained for

each of the terms in Eq (4.9).

Equation (4.1), after expanding to obtain explicitly the density

of states, can be used to determine the resonant terms in p(3). Also,

because of the resonant requirement of Eq (4.2) and the inclusion of

the four fields with amplitude distribution functions (frequency

components of the field) localized about wi, W 2 , 3 = 2w1-W2 and

W= 2W2 -W1 in frequency space, only the denominator terms

i ac + W + Lu + irac

wac -w Iw -irac (4.20)

of Eq (4.1) can result in resonance. Thus, Eq (4.1) can be expanded

by performing the summations over a and c to the desired level. For

the case of interest here, only those adjacent vibrational states need

to be considered with the result:

4
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p(3)1 
0

00(ow) bold

V d1' e d0 d 3

x Iob bI id -do
jjwob+()w + +iob)(wo]+W+w +ir0 ) (wod+w"'+irod) ()

del dt' d*2 de3
+ ob bi Ad do

(wobw'irob)(woi-+w+iro)(wod4&w +1 rod) (i

del de2 dUj de3
+ ob bi id do

del da2 da3 du
+ ob bi id do

(wbw-ro)wiw -w"- -jro )(wod-w'-w--w- ird (iv)

d"i del de2 d0 3

+ 0 lb bo od dl()

del d"j d02 dQ3
+ lb bo ad dl

(wlb-w-irlb)(wlo+w +Wll+ir l0)(wld+w'-+irld) (vi)

Sdel da2 dod dC1

+ lb bo d dl

dub del d02 dM3
+ Ibb2 2d dl

wlw'w+w "+lrlb)(wlI2+w +W '+irl2)( wld+w"'+irld) (ix)
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. + d d 2 dd dd

+ lb b2 2d dl
(wlb_-.irlb)()12 _2 -+w-_ir 12 )(wd+w '-+irld) (xi)

al da2 du dd3
dlb b2 2d dl

(wlb-w'-irlb)((12" " W 'ir)12)(id-dw"1Fi (xii)d al 2 3

du db1 dld dd122 (wb+w-+w--+W-- +ir2b)(w21+w'-+W'-A+ir21)(W2d+w--+ir2d) ( i i

(w2b-w-ir 2b)(w 2 l+wA-+W--+ir 2 l)(w 2d+w--+ir 2d) +.... (xiv)

(4.21)

In Eq (4.21), the contribution from only a single rotational state is

shown for the sun. Also the nonadjacent states are to be lumped

together in a nonresonant term. Depending on the temperature of the
0

system, the state density, paa, will be either zero or nonzero. Since

the procedure to be carried out here in establishing the resonant

terms and calculating the specific form of p(3) is identically similar

for any population distribution, only a single vibrational-rotational

state will be retained with all but po, and p', ignored. The results

obtained are easily generalized to include all possible vibrational-

rotational levels.

The transition frequencies, wac, thus take on the specific values

w1o and wol where wO = - o. Resonant combinations that occur from

Expression (4.20) are
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•I

10- WI+ W2 + irlo

W- 1 + W1- W2 ± iFIo

1o- W3+ W1  irlo

W0 1 + W3- Wl + IF10

10- W 2 + W4 + 0

Wo0  + W 2 - W4 + irio (4.22)

where ± indicate either + or - may occur. The field localization pro-

perty serves to determine the existence of any of these sums. For

example, consider the specific product from the first term on the RHS

of Eq (4.9)

Sdw pa(3) (-w;w',w",w--)al a, a,
CDw fCDW -Cc p L C' 32C

X El(W IE1(W "-)El(w- - (W-,,-- --- --- (4.23)

Since cj(w) is only nonzero in a region about wl, the polarizability

can only take on the form p(3) (-3li;wl,wl,wl) which is easily
ICa 1Ca2 a3

seen for the monochromatic field of Eq (4.6i). But with this func-

tional dependence, none of the linear combinations of Expression

(4.22) will occur and this polarizability is nonresonant. A second

example is the specific product from the second RHS term of Eq (4.9)

= KK-..4 . p(3) *Oil OL2 aE3
12 uw udw w'p3 (_-)wIIw-,w)a, a, a2

-C m -.D _CJCE1CI2CE3

x l1(-W)1(W-)2 (W')6 (-w- -w ) (4.24)
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Here the polarizability becomes p(3) (-w 2 ;- 1 ,wi,w 2 ). From EqPala2 a3

(4.21) terms (iii) and (iv), the linear combination wOl+w -w -ir0l

occurs as one of the six terms arising from the symmetrizing opera-

tion. Specifically, this occurs when (iii) has the index order

al, 13, , P 2 and Q3, , p, C2 and (iv) has the index order

01, U3, U2, p and C3 , a 2, u. Terms (v) and (vi) of Eq (4.21) have

the linear combination w1 0 -w 1+w2 +irlO ir the order a2, al, U 3 with

index p in the proper location. Thus, this polarizability is resonant

and would be retained. This procedure has been used to create tables

which summarize the central frequencies, number of similar terms,

existence of resonances, and resonant term in the polarizability from

Eq (4.21). Tables III and IV, are for RHS terms 1 and 2, of Eq (4.9),

respectively. Tables for RHS terms 3 and 4 are not necessary since

with intrinsic permutation symmetry as demonstrated in this section

these terms are equivalent to RHS term 2. For example, products

C ,C*U2 W" )E CL Q 1  a 2  aI £1 (w) 1 ( 31 .) and E3 (u')E (W'-)s 3 (w--) by changing

-changing dummy variables and intrinsic permutation symmetry are equiv-

alent to ea (W)- 1 (W,)E3 (w). Thus the number of similar terms

in Table IV is increased by a factor of three. If the resonant terms

for field components localized about W1 ,W2 ,W3 and W4 are retained

explicitly and the remainder of the terms lumped together in a single

nonresonant polarizability, only sixteen resonant products remain to

be considered. This can be seen from Tables III and IV.

Before writing out the field component products of interest in

this work, a corment on the field component localization is necessary.

It is being assumed that four field components exist as above which
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TABLE III

Equation (4.9) First Term Field Products

Central Frequency Similar EQ (4.21)i E Ek w w- 9 -1 - W Terms Resonance Terms

1 1 1 w1 W1 W1 3w, I No

1 1 2 wl w1 W2 2 wl+w 2  3 No

1 2 2 wi W2 W2 2w2+wi 3 No

2 2 2 W2  W2 W2 312 1 No

A 1 3 w1  wi W3 4w 1-W2  3 No

1 1 4 wi wi W 4  2w2+W 1 3 No

1 2 3 wi W 2  W3 3wi 6 No

1 2 4 wi W2 W4 3W2 6 No

1 3 3 w1  W3 w 3  5w,-2w 2  3 No

1 3 4 wl W3 Wt4 2w1+ W2  6 No None

1 4 4 wl L4 W4 4W2 - ,1 3 No

2 2 3 W2 W 2  W 3 
2 w,+ W 2  3 No

2 2 4 W2  W2  w4 4 W2 - W1  3 No

2 3 3 W2 W3 W3 4wl- W 2  3 No

2 3 4 W2  LO3 Wt 2w2 + W1  6 No

2 4 4 W2 W4  W4. 5w2-2w, 3 No

3 3 3 W3 Wi3 W3 6w,-3w2 1 No

3 3 4 W3 W 3  W4 3wl 3 No

3 44 W 3  WL4  WL4  3,2 3 No

4 4 4 W4 W4 W,4 6w2 - 3 I 1 No



TABLE IV

Equation (4.9) Second Term Field Products

" Central Fre-4uency Similar EQ (4.21)
Ei * k Terms Resonance Terms

1 1 1 -W; '.j 1 No

1 1 2 -W w1 W2 W2 2 Yes (iii) thru (vi)

1 2 2 -w1 W2 W2 2w2-wiz- 1 Yes (iii) thru (vi)
2 1 1 -W2 W1 w 2w1-w2=w3 I Yes (i)(ii)(vii)(viii)

2 2 1 -w 2 W2 w1 wi 2 Yes (i)(ii)(vii)(viii)

2 2 2 "WZ W2  W2 2 1 No

1 1 3 -Wi W1 W3 W3 2 Yes (i)(ii)(vii)(viii)

1 1 4 -W! W1 W4 W 2 No

1 2 3 -WI w2 W3 WI 2 Yes (i) thru (viii)

1 2 4 -W! w2 W4 32-2wji 2 Yes (iii) thru (vi)

1 3 3 -! 1 3  W3 3W1-2w2 1 Yes (i)(ii)(vii)(viii)
1 4 3 - j W4 W3 W2 2 Yes (i)(ii)(vii)(viii)

1 4 4 -wI w4 W4 4-2-3w, I No

2 1 3 -W2 W1 W3 3.-2w2 2 Yes (i)(ii)(vii)(viii)

2 2 3 -W2 w2  w 3  w3 2 No

2 2 4 -W2 W2 W14 'W 2 Yes (iii) thru (vi)

2 3 3 "W2 W3 W3 4w]-3w2 1 No

2 3 4 -W2 w3 ., w1 2 Yes (iii) thru (vi)

2 4 1 -W2 w4 w I  W2 2 Yes (i) thru (viii)

2 4 4 -W2 W4 W 3w2-2 1 1 Yes (iii) thru (vi)

3 1 2 -'3 W1 W2 W4 2 Yes (iii) thru (vi)

3 1 4 -w3 W1 W4 3W2-2 : 2 Yes (iii) thru (vi)

3 2 2 "W3 w2 w? 3w2-2w, 1 No

3 2 3 -w3 W2 w3 W2 2 No

3 2 4 -L3 w2 W4 4 '2-3wj 2 No

3 3 1 -W3 W3 W1 W1 2 Yes (iii) thru (vi)

3 3 3 -w3 w3 W3 W3 1 No

3 3 4 -W3 w3 W4 W. 2 No
3 4 4 -w 3 W4 (.4 5w2-4 ,3 I No

3 1 1 -w3 .1 W1 W2 1 Yes (iii) thru (vi)

4 1 1 -W4 w1 w, 3w,"2w2 1 No

4 1 2 -W4 W3 W2 W3 2 Yes (i)(ii)(vii)(viii)

4 1 3 - W. 'W3 4w"3,2 2 No

4 1 4 -w wi W4 w 2 No

4 2 2 -W4 W2 '2 w1 I Yes (i)(ii)(vii)(viii)

4 2 3 -W'. w2 W3 
3 ,1-2W2 2 Yes (1)(ii)(vii)(viil)

4 3 3 -W4 w3 W3 5w'-4w2 1 No

4 3 4 -W4 w3 W4 W3 2 No
4 4 2 -w1. W4 w2 W2 2 Yes (i)(ii)(vii)(viii)

4 4 4 -W 4 W4 W4 W4 1 No
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I

may or may not be monochromatic. These components, actually the

!c amplitude distribution function of the field in frequency space, are

assumed to be localized in a finite band of frequency domain roughly

centered about the frequencies W1, W2, W3 and W4. These bands are

assumed to be sufficiently separated such that there is no overlap

(i.e., at any given frequency, only one component of the field exists

and all other components are zero at that frequency). Figure 3

depicts the situation described. Since the input fields, 11 (w) and

E2(w), are controllable, from Figure 3 the condition that they not

overlap

6 f + <v (4.25)

can be assured. It should be noted, however, that although the fre-

quency bands of Ei(w) and E2 (w) do not overlap the effect of frequency

mixing to get W3 and W4 can increase the frequency bandwidth and cause

an overlap between adjacent fields. For the case of low conversion

efficiency in generating E3 and 14 (and higher order fields) by the

nonlinear polarization, these fields in any overlap region would be

extremely weak (i.e., the off resonance effect of W(3) in the fre-

quency wings decreases the polarization and hence E3 and E4

there). Within the bandwidth of the input fields, the generated

fields may then be neglected with little or no impact on measurable

signals. However, for the case of high conversion efficiency, where

the input fields are significantly depleted the generated fields may

be of a comparable value (depending upon the off-resonance effect of

the polarizability, the frequency bandwidth involved, etc.). The

total field in a given frequency domain may then consist of more than
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one field (e.g., 1(w) and w) are nonzero at a frequency w1+ 6 1).

The separation of the frequency dependent equations into independent

equations using the principle of superposition is not allowed.

A criterion on the finite bandwidth of the fields is then

necessary to allow the separation of the field equations. At reso-

nance, Eq (4.2) holds and defines the relationship between the central

frequencies w, and W2. Using the definitions of W3 and W4 with the

resonance condition, Eq (4.2)

W3= 2w, - W2 = W1+ W

W44 = 2W2 -w = W 2 - W (4.26)

or in general, the frequencies generated by the Raman resonances may

be written as

n = 1 + ( -l vw n=1,3,5.....

~n v""

Wn=W2  w [f~? v n=2,4,6..... (4.27)

so that the separation of central frequencies in Figure 3 is as

depicted. The effect of these linear combinations of frequency

results in the bandwidth limits of each central frequency being

defined in terms of the input frequency limits, 6f,6j', 6  and 6 'as

defined in Figure 3. These are

=26f + '

65'= 26f'+ 6 (4.28)
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64 = 26i + 6

64- = 26 -+ 6i (4.29)

In general

= n.+1 (n-1[fI)--. n F2--)
nn

n= 1.3,5 .....

6 ~ r n + n 1. (430

()+ gn= 2,4,6 .....

(n) -246

=" 6 FJ~+ [-I J6f (4.31)

Two adjacent widths can then be expressed as

n + n +1 + (6+~]+ 6~-6f n > 2 (n even)n n+2

n + = T f+6f ) + (i+6 + 6f'- 6 'n > 1 (n odd)
n+2- (4.32)

As an example, to see the restrictions on the El and E2 widths,

(6f +6j') and (65 +6 ') respectively, take the central frequency to

be centered and the total widths to be approximately equal. With

these approximations, Eq (4.32) then yields
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n (< w n > 2 (n even)

(n+1) (6'+t5') < w n > 1 (n odd) (4.33)

and

v n > 2 (n even)

W
(6'+6"') < "' n > 1 (n odd) (4.34)

n+1

Therefore, if higher order field terms become important and overlap

is to be eliminated, the restriction on the widths of E, and E2

becomes more severe. Note that 6' and 6" were defined as the fre-

quency at which the field amplitude became zero. Any other consistent

definition based on the field component amplitude would also work.

A lower limit for the multifrequency bandwidth is determined by

the experiment in those experimental situations when dealing with the

Q-branch, the vibrational-rotational energy spacing of allowed tran-

sitions typically decreases as higher values of J are considered so

that if

(Io1(0) = 0LE ... = ) (4.35)

then

(IO(0) = wio(1) + a'w = wlo(2) + A'w + A-w (4.36)

where vw, a-w, etc., are quite small. Typically the magnitude of the

rotational energy level spacing, wj, is

j 0 (10- 3wv) (4.37)

The decrease in Q-branch energy level spacing is approximately
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W 0 (10-1- 10-2wj) 0 (10 - 4 - 10" 5wv) (4.38)

Then if the pump field is monochromatic, 6i + 6i',0. For a Stokes

field width such that

62 + 0 (10-2 WV) (4.39)

the entire Q-branch should be observable (Ref 82). Hydrogen with its

large energy spacing is an exception and only a few of the Q-branch

lines would be observed. For input bandwidths of this magnitude, very

high order fields (n,100) must be considered before overlap of the

field components would occur. Thus the approximation of no field

component overlap in frequency is good for a carefully defined

multifrequency CARS experiment.

Equation (4.9) can now be written using the results obtained in

this section to include sixteen resonant terms and a single nonreso-

nant term

<( 3)()>: Jd w d jdw [6 -, ):a* a2 al

E2'(-W' )E2 (UJ'")E I (W ..

• a2 a3 E('-w) 2 (w )e 3 (w * )) (ii)

__(;W-',- - , ):a *' a  a3 aE C3 (-W )C3 (()E( ) (iii)

+3 -W ;(A) ', ,W.1.a. a a (-a2) (E4 f2 )E2 ) (iv)

+ ( 3 ) ( -w ; w ' , c , " ) a * a 3 a 4 = ) c 3 ( W ) C 4 ( W ... ( v )

+6(3)(-;-,,w .-.- ):a* a, a, c*(-w-)cj(c")cj(w".) (vi)

58



+6 (3)(-_ ; , ,,W ",)i a ^a 4 a3 *s(-W')C4 (W-)E(W..) (viii)

+6P(3)(- ;,)a4 a4 a2 E*(-W_)E(W")E2(W-) (x)+6(3)(- ;WW,, , ).a a a

+3 3,a2 al al C2(-w')E(WA)E 3 (W.) (xi)

+ 6 ( ) ( ' W , " a l " " F-* ( -W ) F- 1 ( W ") C 3 ( W - ") ( x i i )

6( -, ).a4 a, a2 E4(-W')E(WA)E 2 (W') (xiii)

+3j(3)(- ; -,--,,---) : a , a2 a2 E* (-W_)E 2 (WAA)E 2 ( .). (xiv)

+6p , a 3 a, a2 E 3(-W'iEj(WA)E2(W) (xv)

+6 _ a 2 a 2 a 4 E2 (-W) 2 (W'")E(W"A) (xvi)

+N.R. + C.C.] 6 (w-,-A--w- ) (4.40)

In Eq (4.40) the field component products have been ordered first with

respect to the central frequency of the dipole moment, w, and then in

decreasing magnitude of the product within the frequency grouping.

Each of the terms in Eq (4.40) represents a specific process at the

central frequency w. For example, term (xi) describes the CARS pro-

cess at the central frequency W3. Each of the terms in Eq (4.40) and

the process related to it will be discussed later in this section.
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Because of the localization of the field components and the

integration over this field function, the dipole moment is a linear

superposition and may be divided into four separate moment equations

in distinct regions of frequency space. Equation (4.40) then becomes

For wl-6j' (w< wj+6j

*2 (-W-)E 2(w)E(w~ ()

)a4 a2 a2 C(-W'E(w")C2 (w..) (Iv)

~a 2  a E*(-W)E)C' E(w.) (v)

+ N.R.) x 6(ww-w -w.. (4.41)
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ForW 3 -6" <Ci< W 3+3

E*(-W')C (W")E ( ') i

- .i ^ w : a

+6()(,"):a* a1 a2 E*(-W')E1(W')2(W ) (iii)

+ N.R.] x 6 (w-w'-w-,w'") (4.43)

For W4-6 •' < < W4 + 643)()> f~OD 0f o

. ..dw. dw "dwA*[3w(3)(_W;W,,w a2 a2
E*(-W')E2(W")E2( ...")(i

+6= ;a a, a2 E 3 (_W)E(W')E 2 ( " • ' ) (ii)

+6(3)( -  , ,W, ":a
a2j aW~ E 2 (-W'jE2 (W-)E 4 (W~) ... i

+ N.R.] x 6(W-W'-W-- '") (4.44)

The terms in Eqs (4.41) through (4.44) represent the resonant

third order processes for the four fields being considered. For con-

sistency, the process starts with the molecule in a ground state.

When there is any possibility of confusion, the process name is

labeled by the resultant central frequency of the mixing (e.g., for

the resultant frequency w ; CARS (1)). The inverse process is not

presented since the density matrix elements of '(3) automatically

includes the inverse. The six processes described by Eqs (4.41)

through (4.44) can be divided into two classes; parametric and
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non-parametric (Ref 81:4). In a parametric process, the molecule is

left, after scattering, in the initial state. In nonparametric pro-

cesses, the molecule, after scattering, is left in a final state dif-

ferent from the initial. Nonparametric processes do not require con-

sideration of phase matching of the wave vectors. Table V lists the

processes considered here in their respective classes. To aid in

identifying and understanding these processes, energy level diagrams

similar to the one in Figure 2 are given along with the Feynman

diagram for the resonant term only.

TABLE V

Third Order Processes - Four Fields

Nonparametric

Stimulated Raman Scattering - Stokes (SRS-S)

Stimulated Raman Scattering - Pump (SRS-P)
(IRS in Table I)

Stimulated Raman Scattering - Second Stokes (SRS-SS)

Parametric

Coherent Anti-Stokes Raman Scattering (CARS)

Coherent Stokes Raman Scattering (CSRS)

Coherent Mixed Raman Scattering (CMRS)

The diagrams for the nonparametric and parametric processes are given

in Figures 4 and 5, respectively. The appropriate field component

products for each process are included. These scattering processes
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i.7

(a) SRS-S
First Electronic Coupled

C -State Fields

WJ W2  Virtual E2 C2 EI E2 (W)

-State /W~2 * £2-
E1 El E2 2(W2)

II -v

(b) SRS-P
First Electronic
State W1W3 W1 V"

-Virtual *

State E3 E3 C1 l £I(w 1 )

El CI E3 E £ 3 (W 3 )

w 3i , V,
*  V,

-V" 
V..

(c) SRS-SS
First Eitctronic W4
State vII

E4 E4 E2 E2(W2)

W2 W4  Virtual W4

-State C2 2 £ -4 -E4(

________ V" /

w 2

Figure 4. Diagrams for Nonparametric Third Order
Scattering Processes with Four Fields
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• (a) CARS___ CA ___ First Electronic Coupled
W1 W3 State v Fields

- - Virtual k El E2 C3 -E(W1)

W1  W2 States
" "- '-1 - W2 '3 CI C:1 "+ E2(W'2)

W1

j E2 E1 E1 "
£ 3 (W3)

-rV" V

I

(b) CSRS
First Electronic W1

State v*
C4 £2 £2 "1(wl)

W2 1 4 £1 r u2(lk2)

StatesE24C] EW2
WJ2  W 44 *

I U2 £1 £2 £2 E4W4

i j-*1 -v

(c) CMRS
_ _ First Electronic W2

State v

W1 W3  £2 E3 E4 -* Ej(W1)

- -Virtual k*
States Wl El E4 £3 C2 (WI2 )*

W4 W2 E4 £1 £2 'E £3(W3)

W V4(4)

. iv

V , .)3

Figure 5. Diagrams for Parametric Third Order
Scattering Processes with Four Fields
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I

represent the complete set of third order resonant terms for two input

fields plus the largest two generated fields. Equations (4.41)

* through (4.44) are rewritten with the polarizability term identified

by the scattering process

(i)Wi-6f << wj+6j

Cd(3)(W)>= d d r SRS-S (; ,)a 2
JdwfwfwL.. 615 (W'9-..):a2  a2 a,
-CD -m -CO

+6p (W;wWW ):a aa-)(-
F.^

+3 CSRS (-,. ): 22 E*(-W')2(w-)E2(w')

(° ', - ,w -- :4 a2  a2

=CMRS.

+6p (_,;w,w-, W -:a 2  a 3 a4 E 2 (-W')E3(W')E4(W"')

+ N.R.] 6 (w-w'-w--w .) (4.45)

(ii) W2 - 6< W W2 + 65

<d(3) (S> "d . . RS-.. .. )S
dw -d , ,w ...[=a, a, a

-O -OD -cc* Ej(-W'1 E:(W-") 2(W-)

4 -~CARS *-+3 (-;,w,w,):a 3 a, a, E 3 (-w')EI(W )C 1 ( '")

+CSRS .- a* *+6p :a ; al EL(W)('C(~

=CMRSa I a,+6p (-u;Wc, 9J) :ai a, a 3  (

+6NSRS-SS ( -- w' ) , (."

+ N.R]6 (w-w"-W'") (4.46)



3ii) W3 3 > CARS

<..(w>f= dw d * 3 CARS(-w;, ,&i)a 2  a1 a,
-p -www -",.

.^*

=SRS-P ** -

+6p (-w;w ,w- - ):aj a, a 3  El(.-W)EI(w.)E 3( ) ...

CMRS(. "*

+6P (_W;',,w,"- -'):a a1 a2  E4(-w')E(W ')E2 (w ..)

+ N.R.]6 (w-w--w-<- ) (4.47)

(iv) W4W - _ 4 +

I 1i <=()(.)>: d Jc" Jd&[ 3 CSRS (-w;w ,,,w ):a* a2

C i(-UW')C2 (w_)E 2 (w_' )

+6pCMRS _; ,w ' ):a3 al a2  3 (W_ )Ei(w)E 2 G(w)

=SRS-SS **+6p (-W;WA,w, -):a a2 a 2(- )2(W)( )

+ N.R.]6 (w-w'-w'--w-) (4.48)

The relative magnitude of the generated fields are dependent on the

inp,' 'lds and the susceptibility. To obtain the resonant suscep-

tibility, the resonant polizability, Eq (3.22), is required.

Polarizabil ity

The individual resonant polarizabilities of Eqs (4.45) through

(4.48) can be derived from Eq (4.21) using the information in Table

IV. As an example, for pSRS-S of Eq (4.45), the field component pro-

duct is c2 (-W')E 2 (w'A)cj(w') and Table IV gives terms (i), (ii),
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(vii) and (viii) of Eq (4.21) that are resonant. However, because of

the symmetrization operator in Eq (4.21), there are six possible per-

mutations for each of these terms. The specific order of indices with

their corresponding frequencies determines which of the six possible

permutations produce a resonance. In this example, alw', a2w",

L3W";, corresponds by localization to -W2 , W2, wl, respectively.

Thus, the resonant terms are:

Term (i); Ja2 ala 3 and IV02 a 3a

Term (ii); a21il3 and a2P,03a1

Term (vii); ala3Ua2 and a 3aiua 2

0I tTerm (viii); a a3a21J and 03 1la2V

and Eq (4.21) after dropping the line widths for terms far from reso-

nance becomes

SRS-S (1) - 0

c2 3 b , d

dij d(a2 da3 dal

ob bl ld do
( ob+ w""+ow"" + w'") ( ol + Z" "+ w"+irol ) ( od + w")

d" d a2 d a 3

+ ob bl Id do
( W o b + w ' ' + w ' + w ..) ( wo l + W +  ' ' + i r o l ) ( o d + w ...

da2 d"d3da

+ ob bi Id do
(Wob - w" )(W0 + , I +w+irol)(wod+w')

+ dbl d0 dd o + N.R.
(obw-)(ol+w' +d irol )(]od+url
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II
F d~l dbo dod ddi

+ P11lbb d l

bd (9 b--bw) )(ld+w")

d0 3 dal du da2
+ ob bi A do

I(wlb'w ...) (wlo-w'--w-i r o) (wld +w"'

dal da 3 da 2 du
+ lb bo od dl
4(wlb " w ) (w o w -"- " 'i rl o) (wlId-w -w-" '- ")

(W ( lb'='")(wlo '"- -w-'-ir lo)(wld-wo''""w-) (4.49)

Wol+W"+w- +irol = - o--w"" -irlo) (4.50)

Then the first RHS term in brackets factors equal to

dI d da2  dCL2 d U1 d 0l 3 d 3 d a
ob bl dob bl] dld ddo + do .

(wob+,+--w ... (ob_ w") j (W od+ + ) ( wd ) (4.51)

and the second bracketed term factors to

a 0 E3 a301 a 2 2d d3 d3 d d a do12d dd

dlb dbo + lb dbo dod dd + od dl (4.52)

('lib-ww') (uIb-,-) (wld+w") (wld-w'"-(.-5

Note that the first sums in Expressions (4.51) and (4.52) depend on

the index b while the second sums depend on d. Equation (4.49) for
SRS-S(1)

Pu SRnow becomes
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pSRS-S(1) W;W, W' W.. P 10
paaa 013 (lw1P10O - W ,-ir 0) 00O

F Iibd~ a2d2 d Ir 01 d03 d03 d01~xEL bl + ob dbl i dddo + did do
b obw+"+.. o- 2 Lwdw. dwd~

al a3 03 01 v 02 2 1
dlb dbo dld od d +d d od d dlLP + dib d+ F ~_____

+ N.R. (4.53)

Two further simplifying changes are possible w i=j -- and the dummny

index d may be changed to a b so that Eq (4.53) becomes

p SRS-S(1) (-W ;W"W ,W.) 1 -

IJ01C2 03 03 wf -W, - jPlo

d Ui d a2d02 dP 1
x OE dobdbl -+ d lbdbo I
00 b L(wbo ..-w .. (wb+w"

d 0L1 d0C3 d C3 d'L db dbo + lb bo
b (wbo0w... ) (wb-w)

0 L b bl + dob dbl2

r 1 d0 dll d a da3 1L lb bo + lb bo + N.R. (4.54)

69



Equation (4.54) can be put in a more self consistent form by writing

the second sum in each product as a complex conjugate. The details

for this change are given in Appendix E, Eq (E30).

SRS-S(1) 1

1 2 d 02 di 1
dob dbl + d ob bl

0 b (wbo" ' ""- ... (wbo+ w" )

x d bl  + b d
b ( Ibo"w')  (to5- W...")

F 2 dV 0 0 2

dob dbl + d ob dbl
b. (wbl +w"+w" +w" "" (wbl "w.""

d 3da al d 3 -

Ix o db dbl  + ( o bl') + N.R. (4.55)

b ( wbl+ w) w l . .

Equation (4.55) can be simplified in form by defining a shorthand

notation:

70
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2 2d' 1
d b d l+ d -db V1

[ob bl + ob bl f

b wbowA bo-wA W

d 2 d d Vd L221

o l+ ob bi 9= g -

b wb +W W,+ _W blWI . WW-

o l + 2 * Ql (iv)

where w=++w.. has been used for simplicity as before. Then

SRS-S(1)- = 11

VC9 a2 a3 6h3  U lo_,W -ir l

(PO f 1109 f a ~ 11 gP -- g2 _ -a ) + N.R. (4.57)
00 -iW1 A _A W -W,-W W;W..

This can be generalized to include the effect of all the populated

rotational levels

pSRS-S(1) 1 1WW ,w.

(a fC12 *G13 W2  *ciW t I.R.

f *Qa3 _ 0 U 9 OL3 .,i + .R.(4.58)
00 -W,W1 -- a W . W,- g Pg
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where po and po1 now represent the density matrix elements for indi-

vidual rotational levels. Further, from Eq (3.43) if higher vibra-

tional levels are populated due to higher temperatures, the

corresponding terms for PlM and P22 are used and pSRS-S(1) becomes

SRS-S(1) 1 Ip (- w;w', " ,w") = - E

1Q203 6h3  w -W - r- i1 I 3V, J v vJ v"vJ

U2 *a a a 21 V *0301
(P f ) - f " _ g (v') g (v') (4.59)

-W 9W -Ur' -W W,-W W9

where v = v + 1 (4.60)

d U da2 d 2 d11
= _"_v J b bv J

_ + dvJb bv'J

f2( (V -+W (4.61)

dV02 d d U d 7
djbv dbv __-___bJ+ _

vgb bv' vdb bv-J (4.62)
2 Iv = AIA+ + J

In Appendix F, the form of pSRS-S(1) is obtained for the

monochromatic fields, as given in Eq (4.6). Also, the relation bet-

ween the f and g factors and the ordinary Raman polarizability is
4

derived. It is also shown that for monochromatic fields tuned to a

vibrational-rotational resonance the f and g factors become equal.

This approximation is only valid as long as no electronic resonances

occur. In the case of an electronic resonance, one of the denomina-

tors in Eq (4.56) would approach zero and the linewidths of the states

could no longer be ignored. With the presence of the linewidth, the

approximation of equal f and g factors (Appendix F) would not be
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applicable. The restriction also holds for the form of the equations

derived for ordinary Raman polarizabilities (Ref 83:120). For the

* experim~ental conditions of interest as defined by Eq (4.39), the

equality of the f and g factors and their corresponding complex con-

jugates will apply. The results will be stated both with and without

this approximation. In this manner, the results obtained with the

addition of linewidth to the appropriate term may be Lsed when

electronic resonances are created.

This procedure to derive expressions for the third order polari-

zabilities can be followed for each process in Eq (4.45). This proce-

dure is only repeated in detail for one more of the polarizabilities

at, CARS(1 The remainder of the polarizabilities of Eq (4.45)

are given without writing out all of the details. For CARS(1) the

field product is E1 (-L))E2 (W'')E 3(w') and from Table IV the reso-

nant terms of Eq (4.21) are (i) through (viii) for ground state popu-

lation. The effect of transition from other states can be incor-

porated as was done for Eq (4.59). There are now eight terms from Eq

(4.21V with resonances. Four are associated with (Wi-w2) and four are

associated with (W3-W). Because of these two associations, the deri-

vation will be broken into two parts; one for each of the differences.

First with alw ', a2w", a3w 'L , by localization corresponding to

-W19 W2, W3, the term by term permutations for (wI-W 2 ) are:

Term (iii); aia 2 pa3 and a 2a]ia3

Term (iv); a a2a3u and a a a

Term (v); P 3ail 2  and Ia3a2 a

Thrm (vi); a3Qal 2 and a3UO2al
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When linewidths for terms far from resonance are dropped Eq (4.21)

provides

1CARS(1) w~lwAwA) - 1O
*101a2 a3 6ti3  b,d 0

a1 a2 MJ a3

dob d bl diAd do

d 2 d01 d1 03

+ dob dbl did do
(w ob-" (wo,-.w'w - ir ol) (wod.I.---

d al d C2 d CE dljob bi id do

d a2 d01l d 0 3 du
+ ob bi id do +NR

di P 0 3 d0l 102

+ 1 L0 4 lb bo dad dl

d1V d 3 d C d a
+ lb bo ad dl

(w 1b4w/ g4 +w-) (wl1owA+w<+H'lo)(wld+"-)

dlb 0b dod dl
(wlb-w ..)(wl(+'w+ro laIdw-

dt3d 11 d 02 d al

+lb bo ad dl + (4.63
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Equation (4.50) can be used to factor the resonant denominator from

the terms of Eq (4.63). Then the bracketed terms of Eq (4.63) can be

factored to yield, respectively

Va a Q V 03 11

d' d2l d 0 dal L d do d Id d doI
-°-ob b + ob x bi d1  + - -- (4.64)

ob- w) (ob-w7J (wodA") (wd.'- .w' )

d Vd 3  d3 V 0 2 d i 1

lb bo + lb bo odd dl + d odddl I, .AI ( w W, (.65
Lwb+w+w +w ) ( -'lb : xLod+wA) (Id+').j (4.65)

After changing the index in expression (4.65) from d to b and using

*ij = "Wji Eq (4.63) is

1, I

1CARS(l) 1-~~~,~ 1~~~~ilCAR (1 0_; ,. ,,..) _3 (Wlo+w-+W--+irlo)

al d' a a3 P *

0 do d ! d bl L ob db + dob dblm Oo (w~ (wob +w'A boj'0 o w+w A " )  (wbo- "

I obdbl + ob biob bl + ob bl

0b (wl'' (wblwA) b wbl w'-'-) wbl+wAAi

+ N.R. (4.66)

If the f and g shorthand notation is used again,

Q 1 2 
0 2 a]

f 1 2 dob dbl dob bl

f ',w b [(wbo( ' ) (wbo+wA) (i)
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*d 3  d d3 a 3 dP

f =w- -- Lob dbl + ob dbl
-9 _W, b (wbo + w'+ w "'+ w ... ("wbo -w ..

1 a2 d a al a2
a 2a dob bl dob dbl
g- ' b (wbl -w-)  -W-l-

*a31J a3 du d a3

*aI9 dob dbl dob dbl I
b [bl-w'w- (

-  ) + (wbl+w '  i2 (iv) (4.67)

CARS
Thus, this part of p is

CARS(1) 1__; ,___ ___= 1
Plo lot26*L 3 a+wa"+i 1aj2lJ 0 a l a

(PO . " f ,-W-1 - P11 gW-_W-- gW,W- + N.R. (4.68)
00 Ww 'W - 9 ~

or for arbitrary vibrational-rotational population distribution

1 CARS(l) ( 1 1
PuaIa 2 a 3  6113v'j W +vJ v vJ

x (PO fa (2 V) f*ua 3  -. .A(vA) g . v)) a

+ N.R. (4.69)

with the appropriate definitions of f and g as in Eqs (4.61) and

(4.62).

The term by term permutation for (W3-W1 ) is:

Term (i); U1a2 aja3 and lia2a3al
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Term (ii); Q213 and a2liQ3a1

Term (Vii); ala~PC2 and aliL

Term (Viii); oa~a3 2 p and ~~~I

Again dropping the linewidths from those terms far from resonance,

Eq (4.21) gives the resonance form

2 pCARS(1) 1-;''-w.
Pell CL2 a3 6h3

P OI ob bi id do
~bd (w b+w"+JJ .~ )( wol +w'+iF-'ro)(wod+w-)

d u da2 d 3 d a1
+ ob bi ld do

(w +"w"+)(W l+++ir)(W~dw

+ o bi~w. ld d _______

dCa2 dUj d a, dC'3

+ob bi id do + N.. +
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r PO I babd d dl
bd' Ljl b-w lo-w-cd-:irl0) (w d+w)

d a3 da d P da2
dlb bo od dl

'b(wlb-w.. )(wl-w'-w'-irlo)(wld+u )

dal dla3 da2 dU

+ lb bo od dl

@ (wlb -w'')(lo "'w ' -ir lo)( ld
+' '- )

da] 3 a2d

+dlb dbo dod ddl

(wlb -w.. )(w o-w'- -i r o)(l d- -- ---- A- )

+ dlb dbo dod ddl

+ N.R. (4.70)

The resonant denominator is factored by using Eq (4.50). The

bracketed terms in Eq (4.70) are factored, respectively, to

da aj d 2dC 2 d C a3 a3  a"ob "bI ob bl_ d °ld ddo d1 ldd o

Lwb da b ob bdl L do + lddo++w+&..) (wb- (W +W-) +(wod+W1) (4.71)
oob+ o C+' )d

dC1d 3 d a3 d a d C2 d~ d a,~
lb bo + lb bo ad dl + ad.. .. + od dld (4.7dd

jj1b.. d = -b.. as (wldefoeeu ces (4.7)

The index change from d to b and w j W - J as before reduces Eq (4.70)

to
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2CARS 1~'w-w-
P a a 3 6K3  l - ' - ' 1

11 C12 02 al 0] 3 03 al

dbd db dbl dE~ db da db
00 (b --- w-) (wb**LI bL(wo-w) +wow"

a2 vl ' 20  03 al011 a
0db dbi ob dbi dab dbl + _________

Ep~ --- 1.
+ N.R. (.3

With the f and g factors defined as

d0 v d a2 d a2 d p_
ba L b -WW---------+ ob bi-

(wW =w Z w (wbo+w")(i

--- =3 dab dbl + dKo dbi (i

f.- P-Lb wb w ) (wb -w. ) J

02 V2 d 02

40211 =b b + ob bi ii

b(wbl+w+w +wi .. (wblw)

Cc3 0M 1 ~ 0l1 3 *

*L03a1 d b bl b I(
9w I dab b + __ __ ( )

b Iiwbl+w') (wb-w . (4.74)

Eq (4.73) is
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*1

CARS(l) ( 1 1

112 3 (-W;ww~~ Wfl
P 11 102 M3 6M3 W l O ' - w - -ir lo

(2 Go03a
1

0( f- - P1O -g0, - ) + N.R. (4.75)o0 -WW -W ',-w- W,-W 9-(d

or, in general

2 CARS(l) .... 1 1

P CI 2 3 (-w;6',w" ,w ) - v v J- ' -irv 'vJ

X (po f'12 (v) f * a13 (V) - P0 . ...V -( OJ - ',-W" 11 W',_AI O ,-W

+ N.R. (4.76)

The results given by Eqs (4.68) and (4.75) can now be added together

to form the complete CARS polarizability for Eq (4.45).

CARS(1) 1
P (W;W-2W-W )-

3 61 3

0 II32al *031J

L-pO0 fl12  f*3 "-
] o+ O+ " +i 1"]

P0 f 2 f*ala 3  P ga2u -- * 1 ]
00 -,L'" -W, ' - 1 -W 11 W"-w-I

+

,Jlo w I -i lo

+ N.R. (4.77)

CARS(l)

The generalized expression for p may be similarly obtained by

the addition of Eqs (4.69) and (4.76). The monochromatic result, from

Eq (4.77) with the resonant approximation for equality of f and g is
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-G1 2 f *I3

CARS 1WI -W 2  WI s,%3

0_(-WI-W19W2 w3) (Pg0-pi 1  Wlo1 + +irlo

111 *01C13f f2 f

- " W , 2 W 1 ,- W'3 (4 . 7 8 )+ + N.R.
wl 0+wI-w 3-irl o

Equation (4.78) may also be written as a function of the Raman polari-

zabilities, Pij' in a manner similar to Appendix F. When the equiva-

lence of (Wl-W 2) and (W3-W1 ) near resonance are used, the monochroma-

tic CARS polarizability becomes
W3 P* (3

CARS (P0 P) /Pli3 P2a + a3 a2

Pucj23 (-W1 ;-WIW 2 9W3)
=  -6 1- - l+w2+ir 10 W1 -W +W2-irlo

+ N.R. (4.79)

Two factors are of interest in this expression. First, the Raman

polarizabilities are not only indexed differently as in the case of~SRS-S(1)

p but also occur at different frequencies, w, and W3" Second,

when the component of the dipole moment, ., is aligned with the com-

ponent of the field c1(-w), a,, the products of the polarizabilities

are equal and Eq (4.79) may be written as

CARS P PO W3 *w1 F2(wl 0-w.i+w2)7
p (.W.I;WI,W 2 , 3 )= (P o-P11)p 1j] (Wlo.wl+ 2)

2 + r2

+ N.R. (4.80)

81



Since the dipole matrix elements in pi are real in the dipole

approximation (see Appendix E), this polarizability is real.

' -The following observation is made on the effect of intrinsic per-
9:

mutation symmetry not only for CARS and SRS-S polarizabilities derived

above, but for the other third order polarizabilities as well.

Although intrinsic permutation symmetry applies, p(3) = p(3)
Pal a203 1=22al a3

etc., the form of the derived expression for p(3) (e.g., Eqs (4.57)

and (4.77)) is fixed and will not change as a1 w', r2W-, L3W.. are

permuted. This occurs since the resonance effect will select from the

six possible permutations of the terms in the full polarizability

expression, Eq (4.21), the identical terms for each permutation set.

Therefore, PCAR(I) (-w;w' ,w-- o is given by Eq (4.77) but so are
"a R&13

all other p CARSl) created by permutation.

By repeating the procedure performed for the SRS-S and CARS

polarizabilities, expressions for SRS-P, CSRS, and CMRS polarizabili-

ties in Eq (4.45) may be derived. Since this is straight forward, it

will not be performed in detail. The other third order polarizabili-

ties in Eq (4.46), (4.47) and (4.48) can also be obtained by exactly

the same approach as for the SRS-S and CARS polarizabilities at wl.

* Since there is no new information to be gained in repeating the

procedure, only the results are presented. Appendix G contains tables

of the required polarizability expressions. These polarizabilities

4 are presented for each of the central frequencies, W1 ,W2 ,W 3 and W4,

in four tables;

(1) Multifrequency and multiresonant, f I g

(2) Multifrequency and multiresonant with Raman polarizability,
f =g
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(3) Monochromatic and single resonance, f g

(4) Monochromatic and single resonance with Raman polarizability

f=g

Application Considerations

From the equations for the third order resonant polarizabilities

given in Appendix G, it is, in principle, possible to compute the

required set of third order polarizabilities. To perform this com-

putation does require the complete set of state functions that

describe the molecular system. These are necessary to obtain the

energy levels of interest, wVAVJ and the factors f and g. In these

latter two terms, the sum in Eqs (4.61) and (4.62) are over all states

of the molecule. In practice, this information is not available for

even the simpler molecules. It is therefore necessary to find a way

to express either the polarizabilities or the resultant suscep-

tibilities in terms of measurable parameters.

The use of the Raman polarizabilities in the third order polari-

zability equations of Appendix G is one approach to finding useful

experimental parameters. It was shown in Appendix F that for the

monochromatic case, the f and g factors can be related to the Raman

polarizabilities. In the multifrequency case, this same relationship

can be used as a reasonable approximation. The states of the sum-

mation can be considered for two situations. One, when the applied

field frequencies are near the vibrational-rotational resonance in

which case the results of Appendix F are applicable. The second

situation is when the applied field frequencies are far from the reso-

nance. In this case, wbo may be approximated as wbl where wv is
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neglected as small compared to (W1 -w 2 ). Thus, the Raman polarizabili-

ties replace f and g with a general form of p" These Raman polari-
up

zabilities can be combined to form invariants to the rotation of the

molecular axes. These polarizability invariants are:

(1) The average (or mean) polarizability, a

(2) The anisotropy, y

(3) The antisymmetry, 6

where

4 a = 3 (P11 + P22 + P33) (4.81)

12= 11P22)2+(P22-P33)2 +(P33 Pll

+ ( 12+ P2 )
2  (P23+ P32)

2 + (p31+ P13

62 3 1 )2 + )2)(.3
62:~~il . p) 2 + (P23- P 32) 2 + (P 3 1- P1 3) 2  (4.83)

(Ref 83:121).

In general, the Raman polarizability tensor may be a complex

quantity but this requires that the wave functions describing the

molecule must also be complex. Complex wave functions will exist only

with the presence of an external magnetic field or with internal

magnetic perturbations (e.g., spin-orbit interaction). With the

electric dipole interaction assumption of Chapter II, the wave
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functions in use here are real since the dipole operator is a linear

operator and its expectation value represents a real physical quantity

(i.e., the operator is Hermitian (Ref 89:89)). This places no

restrictions on the frequency denominators in pij, bf +w and wbi '

which near a resonance must include a complex quantity, ir , for

damping. For real wavefunctions, the equality

dob = dbo (4.84)

has been shown to occur (Appendix E). However, even with real wave-

functions the equality

d a = dP (4.85)dob = ob

when a p depends on the specific molecule. Therefore in general

pO # Op (4.86)

and the Raman polarizability tensors are not, in general, symmetric.

-Ther p can be written as

SPisotropic + Panisotropic + Pantisymmetric (4.87)

For this nonsymmetric case, all three of the polarizability invariants

are required. This situation occurs when there is electronic resonant

enhancement of the Raman active resonant third order process.

A symmetric form for the Raman polarizability tensor and hence

the third order polarizabilities does exist under a special set of

conditions. Placzek (Ref 15) determined that pij is symmetric when

all of the following conditions apply:

(1) The frequency of the incident field is much greater than the
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.frequency representing any vibration or rotation transition of the

molecule.

(2) Tie frequency of the incident field is much less than the

frequency representing any electronic transition of the molecule.

(3) The ground electronic state is not degenerate.

These conditions are met for many of the CARS and other third order

experiments performed, especially those on diatomic molecules. Thus,

when the above conditions are included with those assumptions already

made, the Raman polarizability tensor is both real and symmetric,

Pxy Pyx (4.88)

And, only the polarizability invzriants a and y are required. The

third order polarizabilities in Appendix G can then make use of Eq

(4.88) under these conditions.

A further simplication is possible when there is no electronic

resonance. In this case, the frequency dependence of the Raman

polarizability can be neglected with the result that

W1 W2 W3 104

Pij ' Pij Pij - Pij (4.89)

Upon examination of the equations for the third order polarizabi-

lities in Appendix G certain relationships exist which are independent

of the symmetry or electronic resonant enhancement. One of these is

SRS-S(1) *SRS-S(2)
p p

SRS-P(1) *SRS-P(3)
p p

SRS-SS(2) *SRS-SS(4) (4.90)
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Another relationship that exists when two of the frequency arguments

of the polarizability are the same is

p (-;W,W ) = p (-;W, ,_ S ) (4.91)
'l C[2 C13 11* 3 a 2

CSRS(1) CARS(2) CARS(3) CSRS(4)

This occurs for for p , p , p , and p . These

relationships and those for the Raman polarizability can be used to

simplify results of orientation averaging and to obtain dependence on

experimental parameters.

The third order polarizability equations of Appendix G show that

in general the isotropic conditions which must apply for a gas do not

, Iapply to the polarizabilities unless orientational averaging is per-

formed to obtain the susceptibilities as in Eq (3.22). Or, unless the
f (or pij) terms contain the specific symmetry to allow this to occur.

The isotropic conditions (Ref 48:49) are:

(1) There are 21 nonzero elements of the 81 possible X(3) tensor

elements. These have the form; ., X (3) where
iiii iijj i131

i,j=1,2,3.

(2) Only three elements of the twenty one tensor elements are

(3) (3)independent because of the equalities; x(3) are all equal, x.
(3 )I'j i ii

Sall equal, x a ) re all equal x 3  are all equal, and
133)1 1111

X(3) = X(3) (3) + X( 3)iii iijj ijij ijji(4.92)

This latter equality is normally written as

(3) X3) + (3) + X( 3) (4.93)
i = 1122 1212 1221

That these conditions do not hold in the absence of orientational
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averaging can be shown by examining any individual p(3) term which

would be proportional to x(3). Since the resonant term is the

largest, only it needs to be considered. As an example, use
SRS-S(1)
p (-W;-W 2 ,G}2 ,w 1 ) from Table G IV.ij Pala2a3

S R S -S ( 1 ) ( P o o 'P 1 ) _ _ _ _4 
.94_

p 00pi pipil(4.94)
6fM Wl-+W2-io

q and

o o

SRS-S(1) SRS-S(1) SRS-S(1) _ (Po 1
P1122 + P1212 + p1221 6 11

X (P12 P2 1 + P22 P11 + P21 P2 1) (4.95)

where the real quality of pij has been used. If the symmetric rela-

tion for pij is used in Eq (4.93), then the equality

p11Pi1 = 2p12 P 12 + p11P2 2  (4.96)

must hold for the isotropic condition. This is only true if P12 = 0

and P22 = P11. But, then P 1 12 2 = 0 and P12 2 1 = 0 under all con-

ditions. This violates the first of the isotropic conditions.

Therefore, orientational averaging must be used to obtain the correct

form of the susceptibility in a gas. This averaging is performed in

Chapter VI for the susceptibilities required.

One last consideration must be given to the use of the Raman

scattering cross section as an experimental parameter. In Chapter

III, the classical derivation showed how this cross section could be

used to determine the third order polarizabilities. However, as was

discussed there and is represented in the equations of this chapter,
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the frequency dependence can play an important part in this. It is

therefore important to have a derivation of the Raman scattering cross

section that is consistent with that of the third order polarizabili-

ties. Such a derivation is performed in Chapter V using quantum-

mechanical theory.
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V. Raman Scattering Cross Section

Equations

The Raman scattering cross section, a , is a measure of the

amount of energy removed from an incident light beam by the Raman pro-

do
cess. The differential Raman cross section, T., is a measure of the

energy scattered into an element of the solid angle, do. As such, it

is one of the parameters measured to describe the Raman process. In

Chapter III, it was shown that the differential cross section (since

only the Raman cross section is being considered, the description

Raman is dropped) can be related to the third order susceptibility in

the classical theory. But, information on the frequency dependence

was not directly available. This frequency dependence can be intro-

duced directly by deriving the differential cross section using a

quantum theory approach. Loudon (Ref 70:267) has presented a theore-

tical approach where both the molecular system and radiation field are

quantized. While this deviates from the semiclassical approach used

in previous chapters, the simplicity of the derivation dictates its

use here. The derivation presented here for the ordinary Raman -cat-

tering follows this second order perturbation approach. From the

general differential cross section derived, different forms of the

cross section are obtained and discussed. In addition, scaling of

the differential cross section with vibrational level is presented.

To determine the cross section for light scattered from an atom,

the photon scattering cross section is defined as
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r;V 1

nc T (5.1)

where

V = volume

n = mean number of photons

= transition probability per unit time or transition rate
T

The probability of being in a final state of a system given an initial

state is determined by the matrix element of the system time develop-

ment operator between these two states. The transition rate from the

initial state to the final state is equal to the time derivative of

this matrix element. An equation for this transition rate obtained

using the second order perturbation theory is

1. 2w i: <FIHL <FH iB><BI I> 2

T NL Ik 11B'F k s B -

x 6 (wU-wF) (5.2)

where

F = state vector for the combined molecular and radiation system

final state.

I = state vector for the combined molecular and radiation system

initial state

B = state vector for eigenstates of the unperturbed system

forming a complete set

H = nonlinear contribution to the interaction Hamiltonian
NL

H = electric dipole term of the interaction Hamilton

k'ks= wavevector of incident and scattered light, respectively
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• . - . ,. -. . ..

-u s = frequency of incident and scattered light, respectively

ii (wU-wF) = energy difference between initial and final state of

the system

n, n. = number of photons at frequencies w and ws present

6(wU - wF) = a density of states

The contribution of the nonlinear Hamiltonian is shown to be negli-

gible with respect to that from H and can be neglected (Ref 70:282).

The state vectors can be written as

B> = n, ns, b> (5.3)

Since the cross section is independent of the photon distribution, the

derivation may be simplified by specifying a definite number of pho-

tons. Thus

D n, o, i>

DF : n-l , I, f> (5.4)

The diagrammatic representation of the two processes that contribute

in the dipole approximation are shown in Figure 6. From this figure,

4 wU = w. + nw (5.5)

WF = Wf + s + (n'l)w (5.6)

4 based on the mean number of photons in Eq (5.4). When Eq (5.6) is

subtracted from Eq (5.5), the result is

U - UF = W'Ws - Wfi (5.7)

where w fi = f- Wi" Similarly, wU-B is obtained from Figure 6. as
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diagram (a): wU-WB = i+n-wb-(n-1)w = W-Wbi (5.8)

(b): U = Wi+n-wb-n-ws = bWs (5.9)

From this information, Eq (5.2) can be written as

1 = 2v , 1 <n-1, 1, J H n-1, o, b><n-1, o, b H1 In, o, i>
T K2 fk s  hb bi

+ E <n-1, 1, fll n. 1, b><n, 1, b n. o, i>
b 'i b - s

x 6 (-Ws- fi) (5.10)

(a) (b)
f Ws  f

W s
5urci

b b W

Figure 6 - Diagrams for the Two Dipole Interaction
Contributions to the Raman Scattering Process

For this situation, HI is given by (Ref 70:182)

2,w112

Hi=i £ d. (aKAK - aK ABK ) m (5.11)K m,j %KK

where

S
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BtB. = creation and destruction operator pair for the molecular

states, j m><j 1, such that

SBmB i> = m> 6ji (5.12)

AK AK = creation and destruction operators for a photon in the

mode K

q AtK I nK> = (nK + 1)I12 I n K + 1> (5.13)

AK I nK> =(nK)I2 I nK-l> (5.14)

a = Unit polarization vector

Upon substitution of Eq (5.11) into Eq (5.10) the terms become;

(i) ForK=k (a A), m = f, j =b
{ i) or = s  as  s

<n-i, 1, f H1 ln-i, o, b> = i<n-l, 1, f In-l, 1, f>

2 112 -

2x s d
V----) s"dfb (5.15)

(ii) For K = k (a A), m = b, j = i

n-i, o, b H1 In, o, i> i<n-l, o, b n-i, o, b>

I

x (2wniw__)i/2 nl/2 a • d-b
X bi (5.16)
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(iii) For K = k, m = f, j - b

<n-1, 1, f lH,1n, 1l, b> = i <n-1, 1, f In-l, I, f>

(-2w )I/2 n1/2 a" d-fb
_ (a(5.17)

(iv) For K = k s, m = b, j = i

<n, 1, b H1 n, o, > = i<n, 1, b n, 1, b>

x a dbi (5.18)

All other values from the summation will be zero due to the orthogna-

lity of the system state vector. With these terms, Eq (5.10) simpli-

fies to

12 i22~wM -1/2 *
1 2_ V (Wsn) s•s afb) (a dbi)
T h 2 f s 11-

i221 1/2 -

+ E-V (WWn) (a *dfb) (a s  dbi)

b Wib - s

x (W-W s- Wfi) (5.19)

(27r) s dfb)(a dbi) (a . dfb)(as *
Ti V2n 2 nwws  £ - -

"Wb + W ---b+Wo b

f,ks b b bi+S

x 6(w-W..fi.) (5.20)
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To put this in the form of the Raman polarizability tensor, Pip

(Appendix F, Eq (F18)), Eq (5.20) can be rearranged to yield:2
d " dfb)(a _dbi)TV2fi2 nlwws -W +b W + "W -

Sf,k s  b L bi s bi

x 6(-sw f) (5.21)

The summation over field modes may be expressed as an integral over

frequencies by considering the density of field modes, Pk' in a cavity

of volume V. Classically, Pk can be derived for a set of modes with

, 1each mode given by (k , k k ). The result for the number of field
x y' z

modes between k and k + dk for a single polarization is

k2
P dk = T dk (5.22)

or with k = wc

Pkdk = P w = dw (5.23)

The sum over the number of modes at ws , ksfor a volume, V, may then

be replaced by an integration for a sufficiently large number of

modes. With the integration over all possible solid angles, a2, the

summation becomes

k V dks f d V ) k dk s ld - T sPk k 42 ((5.24)

After substitution of from Eq (5.21) into Eq (5.1) anl the use of
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a

Eq (5.24), the Raman cross section is expressed as

bo biS +w + Wbsw)
fM 2C4~ f bL df dbi df d Wbi 

x 6(W -SW fi) (5.25)

In actuality, the delta function representing the density of

states should be a generalized line shape which occurs when the energy

levels involved are not discrete levels but have a probability distri-

bution about a given level. Examples are:

(i) Lorentzian
1r

9L (wlws'wfi) = r [(w _f) _ ]2 + 2 (5.26)

(ii) Gaussian
9G (w,' s fi) = 1 e[(-Wfi-)Ws]2/ 26 2 (5.27)

vf /2w 6

1)V2 (5.28)

(2 In2)

where

fg(wWs,Wfi) dw = 1 (5.29)

If the variation of the integrand in Eq (5.25) can be neglected across

the function g(w,ws,Wfi) which is reasonable when no resonances occur,

then the general differential cross section is
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(W f <W ) w ~ ~ f ) 2 d ~ d ~ * 2 2d ofi •( - f 1 )3 d i

f bL bf+w bi-

(5.30)

where the condition, wfi < W9 is necessary due to the conservation of

energy for the delta function or the function representing a density

of states. wfi defines the center of the scattered frequency line

shape for

WS = W - Wfi (5.31)

Equation (5.30) represents the scattering of photons from the incident
f.

light beam due to all processes (Rayleigh and Raman) and for all

possible states. The results obtained from this equation are slightly

low because of the assumption of constant integrand made when

integrating over the scattering frequency. But, the evaluation of the

cross section exactly at the scattering frequency line center is

acceptable. This approximation continues to hold even if a resonance

occurs between w and an electronic state of the molecule. In this

case, the damping term, ignored in the energy states of molecule, must

be considered. When this damping is taken into account (Ref 90:205)

(W <W) [(- 3d 1 d02 d 3 d a1 1  * 2

( di= fi' 1 f b  bi + fb b i )a a
Ida f c4 K Libf +W+irb Wbi- W-irbJ

(5.32)

In this work as in many applications, it is not the total scat-

tering cross section that is needed but a differential cross section
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associated with a specific final state, f. Thus a differential scat-

tering cross section for each allowed final state, given the initial

state, is defined. The allowed final states are those determined by

the appropriate selection rules for the molecule (Ref 83:110).

The case f=i in the summation of Eq (5.30) represents the

Rayleigh differential scattering cross section. All of the other

allowed final states represent Raman scattering. Thus, removing f=i

from the sum and defining a cross section for a given final state,

do
(d-)fi as

02 2 011l

W(w-W ) 3 d d a2  df2 dC Ia * 2
(1 do = f i_ 1 . fb L bi fb bi_ a~a

Wf -z b f +  + as 2 (5.33)T c 4  h b- w f+Wbi -W

the cross section for scattering from a single initial state to a

given final state is obtained. In this definition of the Raman dif-

ferential cross section wfi may be positive or negative corresponding

to Stokes or anti-Stokes scattering, respectively.

This expression for the differential cross section may be written

in a form using the Raman polarizability tensor when the definition

d 1 d L
1 dfb bi + fb bi (5.34)

bfi wbf+W Wbi W

do

is used. In this case d-)fi becomes

d(W Wfi )3 pW aa 02 2 *a(3
(d-)ffi C4 0 00l s (5.35)

where
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aW1a'2 =p 012 p (1 aC (.36

It will be shown later that this form is particularly useful when

performing the orientational averaging.

General Comments

The cross section used in Eq (5.1) is the photon cross section.

It is defined as the rate at which photons are removed from an inci-

dent beam in the scattering process divided by the rate of photons per

unit area incident on a plane perpendicular to the direction of propa-

gation. The scattering cross section at a frequency ws is

nsd

n (5.37)

where r is the distance from the scattering center to the unit solid

angle. The differential scattering cross section is

n n 2  
(5.38)

From this equation, the number of photons scattered into the solid

angle is

ns = n (L-) r2  (5.39)

But the intensity (W/cm2 ) is given by

I = nMwc (5.40)

and
In = (5.41)
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For Eq (5.41) substituted into Eq (5.39) and division of similar

terms, an equation for the scattered intensity is

I
_s = I do

s  - don r-2(5.42)

or

s do2
is =I (-) r-2

W diln r(5.43)

A differential scattering cross section for intensity can then be

defined as

fIG

s do (5.44)

so that

I= I (-) 2  (5.45)

do
The intensity differential scattering cross section using (-)fi as

given in Eq (5.35) with ws = (W-wfi) is

W al *a2 2
-s p a a

fi = C4 (5.46)

It is this differential scattering cross section that will be used in

the remainder of this work. The cross section given by Eq (5.46) is

also called the power cross section.

Another consideration that must be given to the use of cross sec-

tions available in the literature is that many cross section measure-

ments are for an entire rotational band. In many experiments the
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resolution of the system may be sufficient to resolve well separated

branches (e.g., 0, P, Q, R, S) but not individual rotational lines.

In these situatio.s, any cross section obtained is not for a single

transition but for a sum over all populated states in the branch.

Since the specification of the branch will determine the final state

given the initial state (e.g.,, vibrational-rotational Q branch: [v,J]

[v+1, J]), the branch cross section is a sum of the individual cross

sections over all possible initial states. The individual states must

be weighted by a state density, p" The differential cross section

for a branch is then given by

i(d) po ( ) (5.47)

do

where i' represents the initial states of the branch and ( 'G)fi is

from Eq (5.46). It is not possible in this situation to determine the

individual differential cross sections from branch cross sections.

However, a first approximation is to assume that all individual dif-

ferential cross sections are equal

do do
(c-) f i , =  (d-) (.8
d~~f a d= (5.48)

and may be removed from the summation so that

N
(-) B = i d (5.49)
d r i" NBr d

where N. is the number of initial states. Then the individual dif-

ferential cross section is approximated by

do = do (5.50)
(d2) Br
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This result weights the cross section to that of the most populated

initial state.

Because the differential scattering cross section derived here is

for an individual molecule, the elements of the polarizability tensor

are in a molecule fixed coordinate system. It will be desirable to

transform to a laboratory coordinate system in which measurements are

made by a rotation of the axes. When this is performed, the elements

may change value. However, for the general case of an unsymetric ten-

sor discussed in Chapter IV, the polarizability invariants a, y2 and

62 (Eq (4.81), (4.82) and (4.83)) are very useful. It will be shown

0 ' that under orientational averaging, the differential scattering cross

section can be expressed in terms of these invariants.

The dependence of the molecular differential scatttring cross

section on the vibrational quantum number, v, can be specified without

regard to orientation. This dependence has been determined for the

polarizability tensor elements from the expectation values (Ref 17:105

and Ref 83:78) following the approach of Placzek (Ref 76). These

results will be used here to scale the polarizability and hence the

differential cross section between any two vibrational states. In

* this approach, it is assumed that the Born-Oppenheimer approximation

holds to decouple the electronic, vibrational and rotational motion.

It is also assumed that the vibrational motion is in normal modes

* which do not couple with each other. Thus the manifold of vibrational

quantum numbers, [v], may be held fixed with the exception of those

describing the particular transitions taking place. Under these

assumptions, the desired scaling is obtained in terms of the vibra-

tional quantum number of the initial state, the polarizability tensor
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elements for transition from ground vibrational state [p C]0 (e.g.,

for Av= +1, [p )] = [p alO), and the ratio of the ground vibrational

state energy to that of the vibrational state of interest, v For

example, when Av= +1

[p BOv+l,v = (v+l V 1/2 [po (5.51)

where v is the energy of the initial vibration state in wavenumbers.

q This energy ratio is to a first order not dependent on the vibrational

quantum number. As an example, consider the vibrational energy level

of a diatomic molecule when anhromonicity has been included. This

vibrational energy may be written as (Ref 91:92)

Eh = G(v) (v+1/2) - v x (v+1/2)2 + veYe(v+1/2)3 +... (5.52)
F- ee e +veye

where v e >>VeXe >>Veye  . (5.53)

Defining vv as

E v G(v)

v (v+1/2)hc (v+1/2) (5.54)

similar to the harmonic oscillator. From Eq (5.52)

V = V e - V x (v+1/2) + v eye (v+1/2)2 +... (5.55)

From this equation and the ineqalities of Eq (5.-), vv is to a first

order independent of v. [pas fi for Av = +1 then scales as (v+1)12.

Upon substitution of Eq (5.51) into Eq (5.46) the desired scaling for

the differential cross section is
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0 0

(?gvlv =  (v+1) (V°/ V)I[ a 3  =-
da v+1 0 ~a 2  aa s (5.56)

or

(U-)v+dv= (v+l) (VO/uV) (-ao (5.57)

when Av= +1. Table VI, following Long (Ref 83), gives the polarizabi-

lity and differential cross sections for several different tran-

sitions. This result is consistent with that of Eq (3.47) when the

I energy difference between vibrational states is negligible.

105



TABLE VI Vibrational Scaling of the Raman

Polarizability Tensor Elements and Differential Cross Section

selection Initial Final [p )fj / [p p do d
Rule, av State, i State, f (g ) ~fj /

+1 Lv)3, v E v ),v+1 [(V+1) ("0/~ 01% (v+1) ("0 V)

3v [ '- ()(0 0V 0 V

% )2
-2 ~ ~~ V .V EV)Y2 M -~)NV 0) V1 V \' /v

+2 +I Iv 1,V)v v [ vi ,+1 (v+1)(v+) 1v m~ 0(vl+1)(v+I) I5 )0

-1, -1 Lv ).v1,vm Iv 3,v1-1 Fvm (Vl'm)oj vim(,vl~ o

t v Jrepresents the manifold of vibrational states not participating in the

transition.
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VI Orientational Averaging

Quantum Number and Coordinate Dependence

As pointed out in Chapter III, the interpretation of CARS data as

well as that for the other third order processes depends on having

macroscopic equations for the response of a medium. Since the

macroscopic response results from the contribution of many molecules

even in a dilute gas, it is necessary to take the correct average of

the molecular dipole moments, Eq (3.7). This average depends upon the

orientation of the molecules. For a molecular gas, being considered

* here, this orientation is determined by specifying the coordinate

system (i.e., laboratory or molecular) and the quantum state of the

molecule. The coordinate system may be chosen arbitrarily but should

be one that simplifies computations. Once the coordinate system is

selected, the specification of a complete set of quantum numbers

determines the orientation of the molecule and the statistical distri-

bution in the coordinate system. In this chapter the effect of orien-

tational averaging is determined with many of the details in

Appendices H and I. The results are applied to a generic dipole

moment expectation value characteristic of those in Chapter IV and to

the molecular differential scattering cross section of Chapter V.

The complete set of quantum numbers required for a molecular gas

are those for electronic, vibration, total angular momentum, nature of

momentum coupling (e.g., angular momentum about the internuclear

axis), and a component of the angular momentum (e.g., in the direction

of a perturbing magnetic field) denoted by (n, v, J, N (K), M). The

averages obtained are also a function of this set of quantum numbers
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and the labeling of spectral lines must be done by changes in each of

(the numbers. Such quantities as the susceptibilities, scattering

cross sections and the invariants a, y and 6 would depend on the ini-

tial state. Their values could vary for each line in the spectrum.

To uniquely determine this set of quantum numbers, it is, however,

necessary to have a weak perturbing magnetic field present.

Otherwise, the energy levels associated with the values of M for a

given J are 2J+1-fold degenerate. For the conditions being treated

here, this perturbing field is not present and the set of quantum num-

bers are restricted to (n, v, J, N (K)). In this situation, it is not

possible to determine the contribution of M.

The molecules of a gas specified by this reduced set of quantum

numbers have a random orientation. This can be seen for a diatomic

molecule by summing the probability of finding the molecule in a given

orientation (Ref 91:69) and dividing by 2J+1. The result is 1/4w

which is isotropic and independent of J. The result from orien-

tational averaging for molecules specified by (n, v, J, N) are also

dependent on the same quantum numbers. To determine these averages

from experimental data, the spectral data must be identified by both

the initial quantum numbers and the change in those numbers. It is to

be expected that such quantities as the invariants a,y , and 6 will

vary from spectral line to line and scale with the given set of quan-

tum numbers. This scaling of the polarizability and the differential

scattering cross section with v, independent of the average, was given

in Chapter V. Placzek and Teller (Ref 76: Table 2) give the scaling

of the polarizability tensor elements with J in a similar manner and
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this result will be presented in this chapter without further proof.

Because of the dependence on specification of the quantum numbers,

care must be taken in using experimental results from the literature.

For example, values of the polarizability invariants a', y' and 6 are

different when determined from a measurement using a branch where the

quantum number set has been reduced to (n,v) than those for either

individually resolved rotational spectra or vibrational-rotational

spectra. Similarly, calculations made for a given set of quantum num-

bers must be so specified.

With this understanding of the role of the quantum number set, a

careful consideration of the coordinate system selection must be made

before obtaining the necessary averages. Since measurements are made

in a laboratory coordinate system, L, it is reasonable to want the

final macroscopic equations to be expressed in this system where the

electric fields are specified. But the polarizabilities which are

important in the calculation of the molecular dipole moments are a

response to the applied field and as such depend upon the field direc-

tion but not the magnitude. Because of the random orientation of the

molecules in an unperturbed gas, these polarizabilities would be dif-

ferent for each molecule. It is, therefore, easier to calculate the

molecular polarizabilities in a coordinate system attached to the

molecule itself. This molecular coordinate system, I, could be one

that diagonalizes the Rayleigh polarization tensor thus corresponding

to the principal axes of the Rayleigh polarizability ellipsoid, or a

momental system which diagonalizes the moment of inerta. The exact

character of the molecular coordinate system is not important here,

what is important is that it be the same for each molecule. Under

109



0

this condition, the molecular equations derived in previous chapters

apply and the expressions are the same for each identical molecule.

Based on the aLove comments, it is desirable to obtain the third

order polarization, -(3), for use in the Maxwell's equations, in a

laboratory coordinate system. However, the polarizabilities are best

obtained in a molecular coordinate system where they are constants

independent of the averaging process. This is possible by trans-

forming from one coordinate system to the other using rotation through

the Euler angles €, e and p. These rotation transformations are

R1(f), R2 (6) and R3(f). Appendix H gives the definition and use of

q the rotations.

Susceptibilities

The polarization of a gas was defined by Eq (3.7) in terms of the

average dipole moment. Equations (4.45), (4.46), (4.47), and (4.48)

give an expression for the dipole moments induced at different

electric field frequencies. These dipole moments are made up of com-

ponents that arise from the different third order processes and have

the general component form

()=Cf- ()_;,-W- . *

<i)>: Ci~ { dw'dw-d pi(3) (-;ww",wi a, a2 a3

x C1(-W_)E2(W')C3(W" ... (W-W'-W---') (6.1)

4 which may be written in component form as

<di> =Ci f;W'd w-'dw.. iu ."Pa 23 (' ;wj'w' ...) aTl 2 a3"a2

U U11 02 Q3 1 23

x C 1 (-w)E 2 (W-)C 3 (W . (W-W'- ') (6.2)
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where Ci is the correct numerical factor. Since the average of a sum

1

C is the sum of the averages, the required orientational averaging can

be performed on a general term as expressed in Eq (6.2). The results

of this averaging are then applied to the specific form of polarizabi-

lities given in Appendix G and the related electric field elements for

the sixteen (di> of Chapter IV. The result will also be applied to

the Raman differential scattering cross section of Chapter V.

q To perform the averaging for a gas, it is assumed that there is a

large enough ensemble of a particular molecule so that all orien-

tations are possible and they are randomly distributed. As was

discussed in the first section of this chapter, for an unperturbed

gas, this is a good assumption. It is also assumed that the ensemble

of the particular M molecules have the properties:

(1) The molecules are distinguishable to allow the use of

Maxwell-Boltzmann statistics.

(2) The molecules are independent. This requires the gas to

be dilute enough so that there is no interaction between

molecules.

(3) The molecules are identical. This precludes the need to

discriminate between overlapping spectral ines.

(4) Only the induced dipole moments contribute. The mole-

cule is assumed to be too massive to move under the

influence of a high frequency (visible frequencies)

field so that any permanent dipole moment is also random

and averages to zero.

For a system of discrete entities, the average is defined by

4 111



M
E C

m,1 M (6.3)

The average dipole moment is then

_ ___(t) M

<di> <du> m  (6.4)

where

i (RT )u <d > (6.5)urm  u jim

(RT) u is the transpose of RU given in Appendix H and (R Ruu u u U

Upon substitution of Eq (6.2) and ignoring the factor Ci

M

u M m=1 [RU" Imd dw z1" P'20 3(W;W -' ,W .

X F al(-W1EC2 C a (w ...~ 6 (ww-w-w-)I m (6.6)

where 0 = a'3e has been used for convenience. It is possible to

interchange the integral and summation with the result

M

<d >= rdw 'd-d w-- g m =I [RU p lla02a3 (-W;W',W'w '')

El E0(-'2 (w"))c'3 (W'" 6(W-W'-W"--W") (6.7)

In this form, the dipole moment for each molecule would need to be

computed and summed. This would be an impossible task for any gas of

112



w-

interest. By rotation through a set of Euler angles (Appendix H), a

transformation of e from the molecular coordinate system to the

laboratory coordinate system simplifies the averaging. From Eq (H14)

E:. = R a a

where the same symbols are used as in Appendix H for R elements.

Equation (6.7) can then be written as

M

<du> = dw-dwd I E [R p
u CcM m=1 11ua1a2a3

f I x Ral C *a1(-w)Ra2Ea2 (w-')Ra3,a3 (w,'- 6(w-w--w-w.' ) (6.8)a l(1 a 2 3. m

But the fields a are in laboratory coordinates and do not vary from

molecule to molecule. They may therefore be removed from the sum-

mation. Also [pi ]m is in an identical fixed molecular coor-
1L1a 2 a3 M

dinate system for each molecule so that

[pi aa I[p i ]=i(69
= (u1 a 2 3 2 : = [PJ 2x m P 1 la2 (a3 (69

and may also be taken out of the sum. With these changes, Eq (6.8)

becomes

i " M
<du> = -dw-d d.ml M 1 [RuRaIRa2Ra3 mi (a3;] p,, )
u _ m=1 M 0z 01 CL a 01O2 a3

It is now only necessary to perform the sum of the rotation matrices

to obtain the average dipole moment of the gas. But this is still an

impossible task for M molecules. However, because M is very large, an
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excellent approximation can be made to obtain the average. For a

large M the definition of average given by Eq (6.3) may be replaced bj

_ f (T) Cm  (-t) d
C - *f(T) d (6.11)

where f (T) = distribution function

= complete coordinate set.

For a random orientation f (T) becomes

f (e,€,w) = sin e (6.12)

After applying Eq (6.11) to [RURaIRa2Ra3 ] with this definition of
I' O1 a2 C3

f(epp), the following result is obtained (Appendix I)

1 a23] 3 [u a2

[RuRaIRa2Ra3] [(4 (4 1 3 - - 6 (%3 012  a 6

U C11 C12 C13 31102 ]uaI P(a1 a, a3

-(6ala3 -4 6 02 0'3 + 6a 3 a2 
) 

6 u a,
-Ja l J al isa1  a2  a3

(6 ala3 + 6&020 3 -4 6 '3 a2  ) 6 u 6 a 1  (6.13)

P a2 Pal Pal a a3  a2

where

60 10 3 = 6C11 6 a3  (6.14)
P M2  P a2

The application of Eq (6.14) to the polarizabilities obtained in

Chapter IV, , produces
Pa 11 2a3

6 (4 6 a3  i = 6 01a i = 1 (6.15)

Us G2 VC11a20L3  Ps Palal 3a 3  P 1 1(13C%3
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From the definition of the Einstein convention

p = p + pi + p + .. +i + i (6.16)
"a la'P3 P1111 1122 1133 3322 (3333

The application of 6u  to Ca, is given bya,

6u Ca = u (6.17)
al 1 1

The use of Eq (6.13) in Eq (6.10) then gives the following result for

the average dipole moment in the laboratory coordinate system

i i i i *u a a<du> = dw-dw--dw--- -1[4 p E2 C3
30 [4aL -Paua -Pal

i i I *a u a
- P - 4p +p Ei C2 E3

i paci i i* a aa u }

- p +p 4p ]E1  E 2 E3
[iPaa 4PauL IOLI

x 6 (--W"-W.. (6.18)

iawhere the frequency dependence of p and a has been suppressed for

convenience. The indices have also been reduced to v, a, u and a

since they are now a dummy set indicating a sum. Equation (6.18) can
I

be written in a vector form which shows more clearly the vector nature

of the average dipole moment. Written in this form, the average

dipole moment when substituted into Eq (3.7) produces the nonlinear

polarization for each of the processes. In generalized form, this is
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P (~) =~jd dw'-dw.. ~A(-w; w, w", w... w'1 6Cw 1
(W) =w E- od " o" (,, , " -) ( - )  3(W--)] - (-,,-)

- B(-w;w,w -- ,w ')[E7(-,')" C3(W.) E2 (W)

- C(-W;W,"W",.. )[T(-W')- T2(w")] 63(W)

x c(W-'-w "-) (6.19)

where

A(-w;,',w",-)= (6.20)

4p (-w;w ' ,w- ,w -- p' (-W;w,w ,w )- p' (-w;W',W ,.. )

* B(-w;w,wW )= (6.21)

p1  (-w;W ,W-w ) 4p' (-W;W"W,'W..)+ p (-w;W",u ' W---)ii i cx

C(-W;wo' ,W-' )= (6.22)

p( (-W;",--,W)+ p o (-w;ww ,w ) 4pi (-W;W ,W WAoA

The susceptibility tensor elements may be determined for a speci-

fic process i from Eq (6.19). The isotropic conditions given in

Chapter IV, Eq (4.92), are shown to hold for the result of Eq (6.19).

The integrand in Eq (6.19), may be written as

1 1 22 33*U 1 *2 2 ,3 U
Iu=A (6E E+ 62 3+6 63)61 - B(3 23 + 11 63 1 3 2)2

1 1 2 2 *3 3) U-C(-*I6 + u1 6 + 61 2 63 (6.23)

where the frequency dependence of A, B, C and ci has been suppressed

for convenience. Upon expansion, Eq (6.23) becomes
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1 U 1 2 1 2.EII= A £ 2 £3- B £7 £2 £3- C £1 £2 £3

• 2 2 2 U 2 2 2 U+ A £ £2 E3- B e£2 3- C £ £2 £3

•3 3 .3 u3 .3 3 u(.4
u 3 u u+ A £1 £2 £3 B El E2 £3 C £j £2 £3 (6.24)

Noting that

30 *a b c
-I- u =  Xuabc£" £2 £3 (6.25)

the expressions for x uabc can be written from Eq (6.24) as

- A-B-C (i)' 11

X222 - A-B-C (ii)

3 A-B-C (iii) (6.26)

The isotropic condition x1111 = X2222 = X3333 is seen to apply.

Continuing the determination of from Eq (6.24)

122= A = 1133 2 2 1 1  2 2 3 3 =3311 2 (6.27)

X212: -B =Xi 313  =X;12 1  X;32 3 =X; 31  =X3 2 32  (6.28)

X =221 -C = Xi331= X;112 = X2 3 3 2 = X3 1 1 3 = X3 2 2 3  (6.29)

All other susceptibility tensor elements must be zero since the fields

£, £2 and E3 are arbitrary so there is no restriction on their com-

ponents. This result with those of Eqs (6.27), (6.28) and (6.29) meet

the conditions for an isotropic medium. The final isotropic condition

of Eq (4.92)
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Xlll= X!122+ Xi212 + XiM221

can also be seen to hold. The result of Eq (6.19) is therefore appli-

cable to a gas which is isotropic and the orientational averaging per-

formed was correct.

Equations (6.20), (6.21) and (6.22) when substituted into Eqs

(6.26) (6.27), (6.28) and (6.29) give the form of the susceptibility

tensor elements.

X1'II(-W;W""'W-, )= 5 [Pia(WW-W,-- )+i~ov(WWS-W

+ pip (-W;W-.W"wW')] (6.30)

1 (-w;N',w w To [4p ,.Iaa(- W , )-p ii-w;W ,iW ,OW )

ipm (-w ;w'.w ',...) (6.31)

Ni

i 12 W;W ., '11 , 1W--- [-P I ( aa (-w ;w-,'"' '" - )+4p jP&.(v( -  ;W . .., W...)

..p . (-;W, W W... (6.32)

X122i- ; . .- )- -p uaa(-w;w.,ww"")-p (-w;w'.",-')

+ 4p i (-;W" ,W,..)] (6.33)

-ii

The polarization Pi(w) is then written as
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i"" ] :L -  v i T d .'dw]:"' w .... "
I

II
+ X12 12(-W;W'9W- .,w )Ecl(-W')- T 3 (w .. C2 (

+ X 12 21(-W;WW W.. , w)IFT(-W'1 E2 (Wi)1 E3(W) .

x 6 (W-W'-W"- .) (6.34)

Either Eq (6.34) or (6.19) must then be applied to the sixteen terms

in Eqs (4.45) through (4.48).

Raman Cross Section
, dci

The Raman differential scattering cross section, (d- fi, given by

Eq (5.46) was derived for an individual molecule. In order to use the

result, it too must be averaged over all possible molecular orien-

tations. This is carried out here in a method analagous to the pre-

ceeding section. The assumptions given there are also applied here.

The average differential cross section is

do = N o (da)m
d Pii 'di fi (6.35)

CIOm

where (1) fi from Eq (5.47) is

4d o m  _ S l p W1 O I2 2

d fi C14 1 e 2l a1C CS (6.36)

where the polarization vector is now written as to avoid confusion.

It is only the absolute quantity squared in this equation that must be

averaged. From Eq (5.36)
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(V p l~ EC92 12 pw &a I *a 2  p*WI E*C13 ECL4 I i12(.7
P2I s P2Cl S a4 '3  s

but the polarization vectors, , may be written in laboratory coor-

dinates by a rotational transformation Eq (H14)

R =R a Ca (6.38)

* Substitution of this into Eq (6.37) yields

Si 12 = p' Ral R *a2 * Ra3 *a3 Ra4 E (6.39)
2L 1 al a2 S (X4a3 a3 CL4 S

Again, the Raman polarizability terms are constants determined in a

molecular coordinate system and are independent of orientational

averaging. Also, the polarization vectors are in a laboratory coor-

dinate system and do not depend on the average. Equation (6.39)

becomes

!*
Si f 12 = Ral Ra2 Ra3 Ra 4 P2W p *w Ea, a2  E*a3 a4  (6.40)

al a2 0' C4  a'2al a3aL4 s

This average is the one obtained in Appendix I, Eq (137) which upon

application to Eq (6.40) yields

1
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- T h r - .- C . ..- -.

f 2. a2 a4 (46 a2 64 -6 3 64 - C4 6G3)I ~ 30 a, a3  a 1  a3  CL 1 2  aI CL2

+ 1, a2 ( 6a2 6 a 4  + 4 6 a 3 61 C46L
a3  a4  al a 3  aI a2  a 1  a 2

+ 6a, 6a2  6a2 6aX4  - 6aL3 604 + 4 6aL4 6 a3 )a4  3 aI a 3  a 1  a 2  a 1 a 2

x p Wa *W a, *a2  *a3  a4 (6.41)

sif = [4 aa PL30 - Ps : a P: s

[*4fpI W -(4pL1 *W) a *a *b b
(-Paa P8 Be Pa - PaB PBa C C S C s

w *W + W * p * a Ca b *b

aa a P PaB aB Ba s s

+ (-pLA p * -p p" *3 + 4 p P* ) a C a C*b E*b (6.42)
aa 88 a8 a8 CIO Ba s s

where the repeated indices imply a sum (e.g., pa =Pl + P22 + P33)"

When these sums are expanded and compared to the invariants

a2  y2 and 62 of Eqs (4.81), (4.82) and (4.83), the ters in parenthe-

sis are expressable as linear combinations of the polarizability

invariants. As pointed out in the first section of this chapter,

these rotational invariants are functions of the energy state (n, v,

J).

Paa P 9 a2 = A' (6.43)

W * = 2 2
Pao PaO 3a2 + y2+ 62 = B' (6.44)

p p =3a2+ 2. 2 62= C (6.45)
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The terms in Eq (6.42) are then

4A'-B'-C' 30a2 - Y 2 (6.46):3

4B-C-A = 2y2 + L_. 62 (6.47)
3

10 2y2  - LO 62 (6.48)3

Equation (6.42) can be rewritten upon substitution of these results as

I ~12=~ 45a2 -2 2 (3y2 52 1^ 12 1 is 12
_ *

" ~I gif 12 Y C 45i;2 ) s 12 +  (3 = + 56 1 1 sI

3y2- 562) 1 . S J2 (6.49)

Upon substitution of Eq (6.49) into Eq (6.36), the Raman differential

cross section becomes
do N0  4a 2  - 2y*1 (3 + 562

= p. [ 45 ) y2 12 + ) y2 I12
i 45 45

+ 3y 45 562 (6.50)

This equation clearly shows the dependence of the Raman differential

scattering cross section on the direction of observation and the

polarization of the incident and scattered radiation. These parame-

ters serve to define the vector description of & and s and therefore

specific cross sections of interest.

Several differential cross sections are especially useful. Two

cases which are frequently measured for linearly polarized radiation

and often available from the literature are derived. For both of

these cross sections, the direction of observations is perpendicular
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to the direction of propagation of the incident beam and thus defines

the scattering plane. In the first case, the incident radiation is

polarized perpendicular to this scattering plane. The cross sections

of interest are those measured with a polarizer perpendicular and

parallel to the scattering plane. The notation used to distinguish

these cases is ( ) ( s) where the dependence reflects the angle

the field polarization makes with the scattering plane. For

(,)fi (C) s is parallel to and from Eq (6.38)

W
4

1 N o s 45a 2 + 4y 2  (6.51)
dfi 11 c 45

For (LO)fi (II), s is perpendicular to C with the result

(do)f = N o°  Ws 3y2 + 562

dafii C4 45 (6.52)

The depolarization ratio, PD ( defined by

do do . .,|

PD(O)  = ( fi (&III) / ( l)fi ( l )( .3

becomes

() = 2 + 5 6 2  
(6.54)PD 45a- + 4Y2

When the incident radiation is polarized parallel to the scattering

plane

( )f (11,4 3 y2 + 5 ' 2
44

(d) I~)= NPii 45)3.2+ (6.55)

d)fi (IIII) = Npi W +5 (6.56)
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-.4

PD (11) = 1 (6.57)

- The Raman differential scattering cross section of Eq (6.50) can
*-, do

be written in terms of the two measured cross sections (j)fi (I , I)

and (-)fi (I,1l) of Eqs (6.51) and (6.52) for linearly polarized light.=
~(C s C s

(do dof do~fid~)fi i(fi (II )+ (III)- (a)fi (I, + U R 10 1 2(6.58)

This shows that from measurements made of the differential scattering

cross section using linearly polarized light, only two unique values

may be obtained. It is, therefore, not possible to determine the

three rotational invariants using only linearly polarized scattering.

A similar result by Monson and McClain (Ref 93:32) for the two photon

cross section led them to the use of circularly polarized light to

measure a third independent value. The use of circularly polarized

light for the Raman differential cross section also enables the

measurement of a third independent value. Circularly polarized light

is defined here as
Left: = 1 (e1 + i e2) propagating along e3  (6.59)

Right: = (el - i e2) propagating along e3 (6.60)

A third measurement where both & and Cs have opposite circular

polarization but propagate in the same direction is necessary. Any

other combination of linear and circular polarizations provide a

dependent value. To show this, assume that { is left circularly

polarized along the z axis and &S is right circularly polarized along

the z axis.
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(e x + i ey) (6.61)

is ,, (ex -iey) (6.62)

then

"* e + e ex + 1(1+ 2 0(.3
s-(ex + ey) (e x + i =(l + 1i2)= 0 (6.63)

Substituting these results into Eq (6.50) to obtain (&0 )fi (LR)
'd1

do =No (s +562 3y2 - 562(6.65)
fi (L,R) i c 4 5  45

(do)fi ws 621
i(LR) N0  (_-) -" (6.66)

or

6Y 2- (C )4 1 (L,R) =(2Y (L ,R) (6.67)
2S -Ws dp~ a do fi

and from Eqs (6.51) and (6.52)

45 = (LOif (l, I ) (6.68)

45a2 + 42 f ) (iI,) (6.69)

The solution of these three equations for a2 , y2and 62 gives

W NPi 3idf (,)
a2 (C_) 4 1 Ed)fi (I) - 2 (do )2(6.70)
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p2

WS Npi df

62= (-i(L,R (6.72)
WS Np9. diTZ 2f (Jdra(j (.2

Thus the rotational invariants can be uniquely determined.

The analysis of Monson and McClain (Ref 93:33) on the symmetry

properties of transitions from a totally symmetric ground state for

their matrix elements is extended here to the polarizability matrix
do

elements. The differential scattering cross section, (LO) is propor-
I 'Q

tional to ISif J2 which can be rewritten from Eq (6.42) as

10if[Pi. P* (4 1 s -" s

+P0 Poa C Es -1 + 4 1 12)  (6.73)

where I 12 =1 Js 12 = 1 has been used and the frequency dependence is

suppressed. In this form, the ORS polarizability factors (paa Pool

Pao Pao and p aO Pla ) are similar to the two photon absorption factors

4 of Monson and McClain. When their analysis of the two photon factors

is applied to the polarizability factors expressed in terms of the

polarizability invariants, several useful results are obtained.

(1) p , :"If the excited state transforms like xy, yz, or
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zx, a2 vanishes. The same result of Placzek that restricts

a2 to the Q branch.

(2) pa Pa - p0 p8 : If the transition preserves the sym-

metry, 6 is zero. That is to say the polarizability tensor

has only symmetric properties as previously noted.

(3) paa p88 and pGO PBa: If near electronic state resonance

qscattering occurs

9a2 = y2 _ 62 (6.74)

, # Then measurements using only linearly polarized light are

sufficient to determine a2, y2 and 62.

These results which can be used to obtain experimental parameters

to calculate the third order susceptiblities show the care that must

be taken in identifying all three of the experimental parameters.

Equation (6.50) is capable of handling every possible polarization

(linear or circular) and every possible direction of observation. It

is only necessary to carefully define the incident and scattered

radiation polarizations. From this single equation, it is possible to

produce the four tables of Long (Ref 83:CRS 6).

The dependence of the rotational invariants on the set of quantum

numbers specifying the energy state of the molecule and the require-

ment to specify the line or branch used was discussed above. It is

possible, however, to provide scaling rules for the polarizability

invariant parameters referenced to the v = O, J = 0 set of parameters.

Th3 v scaling is that presented in Chapter V and summarized in
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Table VI. The J dependence was derived for a symmetric polarizability

(a2 and y2 ) by Placzek (Ref 76). These results for the case where com-

ponent of the total electronic angular momentum along the internuclear

axis is quantized by the number K are

JK
Y2(JK) = bJK Y2 (Ol) (6.75)

J'K-
a2 (j,K) = a2 6JK a M = 0 (6.76)I

The expressions for b JK taken from Placzek (Ref 76) are presentedTheJ
J'K'JJ

in Table VII. The case for K=O, bj., is obtained from Table VII using

* the values for K- K'= K and setting K=O. This case assumes that in

addition to zero electronic angular momentum about the internuclear

axis, there is zero net electron spin. For the transitions J-J-1 and

J- J-2, the b values may be derived from

JK J'K'
(2J + 1) bJ'K' = (2J-+l) bJK (6.77)

Equation (6.76) states the result that isotropic (or trace) scattering

can only occur when there is no change in the angular momentum quantum

numbers, i.e., (AJ=O, AM=O, AN=O). Therefore, isotropic scattering

lines only exist in the Q branch.

While Placzek derived the above scaling relations for a symmetric

polarizability tensor, no similar results were found for the antisym-

metric rotational invariant, 62. However, because of the similarity

of the form of 62 to y2 (compare Eqs (4.82) and (4.83)), the scaling on

62 is taken to be the same as that for y2 . 62 is not required in most

instances of CARS scattering without electronic resonince enhancement.
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Furthermore, since a2 : y2 : 62 = 1:10-2:10-, the scaling should not be

a critical correction in using CARS as a diagnostic tool.

One other form of energy state dependence is necessary if calcu-

lations of cross sections are to be performed. This is the dependence

of the population of molecular states, p? These are available from

many references and are cited here for completeness. In general, for

the ground electronic state

0 = e-E i / 
(6.78)

where

Ei=Evib + Erot (JK) (6.79)

Erot (J,K) = EJK = rotational energy of the molecule

e(Ev + E K/kT
= g, GJK /  g1 GJK e-Ev JK) (6.80)

vJ

g= statistical weight due to nuclear spin

GJK = statistical weight due to the degeneracy of the rotational

level.

The values for Ev, EJK' gI' and GJK depend upon the class of the mole-

cule (diatomic, linear, symmetric top, etc.). For completeness, the

method of obtaining these quantities for the diatomic molecule is pre-

sented here. For the more complex molecules, reference should be made

to Herzberg (Ref 94). The vibrational energy, Ev, is given by Eq

(5.52)

Ev/hc = G(v) = v e(v+ 1/2)-v eX e(v+1/2) 2+v eye (v+1/2)3+ .... (5.52)
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and the rotational energy in a similar manner by

E /hc = F (J) = B J(J+1) - D J2 (J+1)2  (6.81)

where

Bv = Be - ae (v+1/2) (6.82)

Dv = De + Be (v+1/2) (6.83)

U The constants Be e, De and Be are experimentally determined just as

those are in Eq (5.52). The total energy, for the ground electronic

state, is then determined by combining Eqs (5.52) and (6.81).

Ei /hc=T(v,J)=v e (v+1/2)-v x (v+1/2)2 +v Y (v+1/2)3

1 e e veye
+ BvJ(J+l)-DvJ 2 (J+1) 2  (6.84)

For a diatomic molecule (any linear molecule) the statical weight due

to the rotational level degeneracy in energy is

gj = 2J+1 (6.85)

The nuclear spin statistical weight is not a single value for all

* nuclear combinations of even the diatomic molecules. g, has the same

value for all J levels of the heteronuclear diatonic molecules.

g, = (211+1)(212+1) (6.86)

However, for homonuclear diatomic molecules (11= 12= I) g, depends on

the statistics of the nucleus (Bose-Einstein or Fermi-Dirac) and the

* symmetry of the J level for A = 0. To determine the symmetry, the

coordinate wave function, 'c' is taken to be (a first order
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approximation)

'c = e q v t J (6.87)

where

e= electronic wavefunction

v = vibrational wavefunction

j= rotational wavefunction

The symmetry of P then depends on a reflection at the origin. Since

1 iv depends only on q ,it is always unchanged by such a reflection
qv

and *e and determine the symmetry property of lc" For e positive

(symetric), the symmetry of p depends directly on j only: '% is

positive when J even and negative when J odd. For Ie negative

(antisymmetric), the symmetry of ' c depends on j as; symmetric for J

odd and antisymmetric for J even. When a nuclear wavefunction PN is

defined, the total wavefunction, p, is

4c c N (6.88)

and the total nuclear spin is given by T. Based upon experiment, it

is known that nuclei with half-integer spins obey Fermi-Dirac sta-

tistics and those with whole integer spins obey Bose-Einstein sta-

tistics. Table VIII taken from published data (Ref 91:138) provides a

ready reference to obtain gi(J) once the nuclear spin and the electro-

nic wavefunction parity is known. The nuclear spin values for many

nuclei are given by Melissinos (Ref 95:502).
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VII. Macroscopic Equations

Medium Polarization

The orientational averaging results can now be applied to the

dipole moments/molecular polarizabilitiies of Chapter IV. This provi-

des the medium nonlinear polarization for each of the processes being

considered. These nonlinear medium polarizations are valid for any

qfield polarization (linear, circular or elliptical) and can therefore

be used to describe any of the variations of CARS depending on field

polarization (e.g., BOXCARS). To take advantage of the experimental

L information contained in the macroscopic Raman polarizability elements

(or differential scattering cross section), the third order polariza-

bilities are expressed in terms of these Raman polarizability elements

(Appendix G). For the third order polarizabilities to be in this

form, the f and g factors must be equal (Appendix F). For the

multifrequency case, the assumption of importance is: The frequency

differences within the field bandwidth are either sufficiently less

than the transition frequency to be ignored, or, the term is off reso-

nance and becomes part of the nonresonant contribution. The results

obtained apply, to a good first approximation, for electronic reso-

nance enhancement when used with care. To keep the notation simple, a

single resonant term from the sum for the multiresonant situation is

used. The remainder of terms can be described by proper adjustment of

the notation and incorporation of the summation. The most general

form of the equations is derived before any simplifying assumptions

are made. This provides a set of equations for the nonlinear

polarization having the widest range of application. The development
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of two of the nonlinear polarization vectors are treated in detail.

These two, PSRS-S(2) and PCARS(3, are the polarizations most often

used and serve to illustrate and describe the derivation of all six-

teen polarization vectors obtained. The results for the sixteen

polarization vectors are presented in Appendix J. A discussion of the

additional equations needed to solve for the spectral intensity is

included.

q The derivation of the third order polarization starts with Eq

(6.19). The expression for the polarizability is found from the

tables in Appendix G and the vector coefficients A, B, and C from Eqs

(6.20), (6.21) and (6.22). The single third order molecular polariza-

bility term for the SRS-S process centered at a frequency W 2 from

Appendix G, Table G VI is
SRS-S(2) W-- ,_-l

p p2P p3 (7.1)

where

K, t (7.2)

Di = wt + W, + W'- + irt (7.3)

A = o (7.4)
t v V

SRS-S
The overall frequency dependence of p is suppressed for nota-

tional convenience and the subscript t is used to represent the

complete set. When the full frequency dependence is omitted, the

central frequency is represented by a positive quantity. The vector
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coefficient terms are obtained from Eq (7.1) as

C ~~~~SRS-S(2) =~W- 75

SRS-S(2) K W - W'-(76
p =K p *(76

SRS-S(2) (A -W-

p= K Ipw P (7.7)

The vector coefficients are

A(Wj= K(4p p* - p* - p* )78
JQ aui -PIJ aa Il (7.8

-BW)= K1(4p pa - p p* - p p (7.9)

-C(W2) = K1(4p p * - p - pu p, (7.10)

where the frequency superscripts are implied, -w&is associated with

the conjugate and w- the other pij term. A set of pseudo-

polarizability invariants for this set of Raman polarizability tensor

element products can be defined similar to those for ORS, Eqs (4.81),

(4.82) and (4.83). For example

a2 = *pJ *w * *W (7.11)
p1  + P22 + p33)(p11 + P22 + P33) =lp a

EEquations (6.43), (6.44) and (6.45) then provide the result

p p =9a 2 (7.12)

p = 3a2 +4 Y 2 + 4 62 (7.13)

,, p* =3a2 + Y2 2  (7.14)
liaap 5 3 s 3 5
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Upon substitution of these values into A, B and C and use of Eqs

(6.27), (6.28), and (6.29), the susceptibilities are

SRS-S(2) 3y - 562 NR
X1122 =NK1  45 + x1122 (7.15)

SRS-S(2) 45a2 - 2y2

X1212 NK1  45 1212

*1 SRS-S(2) 3y2K - 562 7.7XN + NR (7.17)
1221 1 512145

The nonresonant terms, left in Eq (4.21) after removal of the resonant

terms, cannot be written as products of the Raman polarizability ten-

sor elements. These terms do have dipole matrix element sums that

must be included in the averaged susceptibility. Because these

remaining terms are usually far from resonance, the imaginary term is

small and often ignored. The result of the averaging to obtain the

susceptibilities for the nonresonant terms is represented by xNR and

it is assumed real. Since the resonant susceptibilities are dif-

ferent, it is expected that the nonresonant terms are also different.

The isotropic conditions do hold for the nonresonant susceptibilities.

The polarization integrand, PI, with the frequency dependence

shown is then determined from Eq (6.19) for the fields and vector com-

ponents of the SRS-S term of Eq (4.46).
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P1 w2 ~i~ 3wS (W - )56 ("s~ NRl

p ( E)j[N1W, )4 + Xuz 1 (2 a a2) a

45a 2 (w-,-w')-2y~ w,& 98

3y2  (w-,-w')+56
2  (w",-w) N

S NR
+ NIWW)S 45 + X 1221 (81* al) a2

and

-SRS-S(2) d'bd~P(2

- w d - w .. p ( 2 (7.19)

SRSS(2) 6JdddY

~ SRS-S(2) NR}
X 221128)8

+ V R -( ) _,N 212  ( w w~w + x 22 (a, a 2) a,

+ LSRS-S(2 (_w;w,w,,w) . NR8

where



SRS-S(2) NA 3y(w,-W) - 562 (W',,-,)
X1122 (-w;w'611 45 (t+6 t+"+irt) (7.21)

SRS-S(2) NAt 45a 2_ ,-__ ,) 2 2_ (,_,-_ )

X52ww - 2ysw -w (7.22)
1212 (-w;w wuj'l= 6W 45 (wt+W'+W'"+irt)

SRS-S(2) NAt 3y2(",- ') + 562 (W-- ,-)X 1 2 ( -t'W ' O 6 s (7 .23 )
1221 -6h - 45 ( t+w '+ w -" +ir t )

These results are entirely general in terms of frequency dependence,

field distribution in frequency space, type and direction of field

polarization, and type of molecular transition allowed. Some special

cases that have general applicability are treated in the next section.

Proceeding in a similar manner, the nonlinear polarization can be

obtained for l5CARS(3) .  From Appendix G, Table G X

CARS(3) K2 *W* *W

p K2 P 2 p + K3 P 3 P (7.24)
Ia01020C3 a 1 C2 a31j C'103 C121 (724

where

At
K2 = 6MD2 (7.25)

D2 = Wt-W'-W--irt  (7.26)

At

K3 = - (7.27)

D3 = wt-w'-w'--irt (7.28)

The vector coefficient terms are
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PCARS(3) = K p' Pa + K 3 P A- P- (7.29)

CARS(3) * Ww(. *
*P =K2 Pp Pa + K 3 P P (7.30)

CARS(3) K2  + K3 P P (7.31)
uaa = aa P j a U

Because of the similarity in the forms of the frequency dependence of

the terms in these last equations and the integration over this fre-

quency dependence, w"' in the last term of each equation may be

replaced with w". After this change, the vector coefficients are

A(W 3) = 2K2 (4Pp P P P Paa P ) (7.32)

-B(W3 ) = K2 (4p ap Pap - Paa PUp P Pau ) (7.33)

+ K2 (4p Pu - P P - P P

-B(W3) = K2 (3p ap + 3paa Pul - 2p a Pali (7.34)

-C(W3 ) = K2 (3p p + 3p P* -2p p ) (7.35)

The equality of B (W3) and C (w3) as shown supports the equality of

the resonant susceptibilities

CARS(3)(..; , AAA) = CARS(3) A

X1212 9 X1221 (-w;W (JJAA) (7.36)

Defining a set of pseudo-polarizability invariants for this CARS

expression as
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Pa 1=9 a2 (7.37)

-P Pu 3 a2 + Y2 + 62 (7.38)

p p 3a 2 + 2  2 2 62 (7.39)
Pa Pl 3 a Yc -3 c

The susceptibility elements for this CARS(3) in terms of these

invariants are

3y2 - 562

CARS(3) = 2NK2  C C + 1122 (7.40)

AR 3 N 45a2 + yc + 562

NK + (7.41)
1212 2 45 1212

45a2 + y2+ 562
CARS(3) = NK2  C C C + NR (7.42)
1221 -- 45 1221

After using the order of the vector fields for the CARS term from Eq

(4.47) in Eq 16.34)
pCARS(3) O D ' "o"

mW

FCARS(3) (-;w',, ) + l (al • al) 82
3 X ....-d NR.a..a )a

ARS(3) ( W"; ,c ,w .) + NR

21122 ( 8)

+ ECARS(3) (.;w, w- ,w... ) + XNR * ^ 8]

21 1221 a2 "a,) a,

x £2 C (-1')c ( 6 ... ) (W- W-W"-w ... (7.43)



• p- r, r - ,- . I , . °

The polarization vector products for the last two terms in Eq (7.43)

are equal and the terms can be combined. Equation (7.36) can be used

to write the polarization as

p-CARS(3) fd

ECARS(3) R+ aa

X 11122 
+ X1 1 ]22 ( 1  1

+ [CARS(3) (_. NR NR
1212 ) j1212 (a2  a) a,

(i *X F:2 (-' )E (w" )E 1 (w"") 61 ( )EI.-.... (7.44)

where

NA 3y ";w,w , )-5 62(w, ., )

iARS( ;ww-,w . t c I 4 (7.45)

X CARS WW'W" ,W).
1212

NAt 45a(w ,W ,w )+y 2 w',w-,w )+56 2 ( ,',- )

t cc c6MB 45 (w- -A" "-i rt ) (7. 46 )

X CARS(3) (=;-,w--, ...) CARS(3) (_w;,w ,w ... ) (7.47)
1221 1212

In these equations, the shorthand notation w = w' + w" + w... on the

polarizability tensor elements has been removed.

Appendix J contains the third order polarizations obtained using

this approach for the six processes at the four frequencies. For each

of the sixteen polarizations, the three resonant susceptibilities,
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,X1122 X 12 1 2 and X 12 2 1 , are defined and the vector direction of each

shown. Because the resonant susceptibilities can be written as func-

tions of Raman polarizability tensor elements upon orientational

averaging, the susceptibilities are expressable as functions of pseudo

polarizability invariants, ai, yi and 62. Also, due to the averaging,
1I 1 1

these three invariants combine into three distinct sums:

3y2i- 56i 3yi +56 2 45a - 2yq

45 45 45

These are exactly the forms appearing in the ordinary Raman differen-
i

tial scattering cross section, Eq (6.50). Furthermore, the x

susceptibility element for every process takes the form

45a? + 4y4
Xl K 1 1 (7.48)45

This susceptibility element evolves for every process where the input

field polarization vectors are parallel and is clearly the largest

value a susceptiblity element can have. Therefore, to maximize the

output of an experiment, parallel inputs need to be used.

The rotational invariants for each of the processes are taken to

scale the same as those for the Raman scattering case. The vibra-

tional scaling is taken from Table VI and the rotational scaling from

Eqs (6.75), (6.76) and (6.77). The antisymetric invariant, 62, is

again assumed to scale like the isotropic one. The results are

2 = b2  a(v) 6 JKM (7.49)i v I J'K'M7
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2 b2 bJK 2 (v, J, K) (7.50)
i V bv bJ 7.5i

= b b JK 62 (v, J, K) (7.51)

bK' is from Table VII.

The polarizability tensor elements in the dipole approximation

are real, Eq (E31). This reality has been used to obtain the results

tabulated in Appendix J. These results are in the form of the Raman

polarizability invariants from Eqs (4.81), (4.82) and (4.83). When

the reality condition is not applicable (e.g., in electronic resonance

enhancement) greater care must be used to track the complex con-

figuration on the polarizability elements. This is summarized in the

following equations.

a(j) 1 (Wj (7.52)

1 *a
a2() P(j)P (uj) (7.53)

1 *a

a(w j~wk) = 9 p.(wj)pBo (wk) (7.54)

33
Y b)1J j Pao p( j)p()+ T p,(j)p,(wj)- 2 P,(.j)Poo ( kj) (7.55)

(j 3 3 (4j)p ( j) (7.5)

i PkB()j)P(Tas) Pk) (wj)P0 (w) (7.57)

62l(w~w) 3 3 (W~p( P )p * k( (7.58)

(,k"~j a = . (Jk)* (7.59)
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i2i (wkwj) = [yj (wjwk)] (7.60)

62 (Wk [ ((jk)] (7.61)

To place this effect in perspective, the isotropic invariant as a

function of the central frequency, is shown in Table IX for each of

the nonlinear processes. The conjugation is arbitrary, but should be

done consistently.

Table IX

Central Frequency Dependence of Isotropic
Polarizability Invariant

SRS-S CARS SRS-P CSRS CMRS SRS-SS

W1  a2 ( 1 ,I) a2 (W3 W1 ) a2 (W3 W3) a2 (W2 'W) a2 (W3 )

w2  a2 (wiW w) a2 (w1,W3 ) a2 (ww 2 ) a2 ( 3 ,WE) a2(W 2 ,W2 )

W3 a2 (w1,W3 ) a2 (W3 ,W3 ) a2 (W2 IW3 )

W4 a2 (W2 ,W ) a2 G2 W3 ) a2 (2 1W2 )

The equations obtained in this section provide a complete set of

equations to determine the medium polarization for the six processes

of Table V at the four frequencies w1 02 , 3 and W4 . These equations

are applicable over the broadest range of experimental conditions;

arbitrary field vector polarizations, electronic resonance enhance-

ment, multifrequency fields, or combinations thereof. The parameters
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in the equations are well defined and traceable through the assump-

tions explicitly made to their source. Given the electric field dis-

tribution in frequency space, its vector polarization and the molecule

of interest, the remaining parameters needed are accessible. That is

not to say that the damping term, rt, the transition frequency~wt, and

the pseudo-polarizability invariant, ai , y and 62 are all imme-

diately available in the experimental literature. They are, however,

qreadily available to a good approximation under many conditions of

interest. The equations presented here, further, allow a deter-

mination of the sensitivity to these approximations over many experi-

mental condition. Several of the situations that are encountered in

using CARS and that simplify the equations are presented in the next

section.

Medium Polarization: Special Cases

Symmetric Polarizability Tensor. A set of experimental con-

ditions for which the polarizability tensor is symmetric were given in

Chapter IV. These conditions apply to many of the experimental

situations in which CARS or the other nonlinear processes are used.

When these conditions do apply, the antisymmetric invariant is

identically zero (62=0). This reduces the number of invariants to two

and certainly simplifies the determination of both the Raman scat-

tering cross section and the susceptibilities.

For the nonparametric third order processes, the results in

Appendix J show an additional relation for two of the susceptiblities
SRS-i(j) SRS-i(j)whn=0

elements x1122 and x1221 when 6=0.
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SRS-i(j) (_w;w , .w_)= XSRS-i(j) (_w;w,w w ... (7.62)XI2 1221 (.2

The Raman cross section requires only the linear polarization vector

measurements to determine the general form, Eq (6.50). For 6? = 0,

(dO)fi (L,R) : 2 (Lc)fi (LII) (7.63)

In the next section, it is shown that zero antisymmetry simplifies the

calculation of the medium polarization. In principle, it should be

possible to use measurements from the nonparametric processes to

determine the symmetry of a state. The limitation in practice would

be in the accuracy provided by the experimental apparatus. Two excep-

tions to zero antisymmetry are a degenerate electronic ground state

where the wavefunction is also degenerate (Ref 94:104) and a resonance

of one of the fields with an electronic state.

Electronic Resonance. In the absence of electronic resonance

enhancement of the third order processes, the polarizability tensor

elements exhibit a very weak dependence on frequency. This is con-

firmed -xperimentally by the scaling of the Raman cross section with

the fourth power of the scattered beam frequency. This is exactly the

scaling predicted by Eq (6.50) when no frequency dependence of the

polarizability tensor is considered. The polarizability tensor ele-

ments are approximately constant in this situation and so are the

polarizability iivariants, ai, yi and 6 . The linear combination of

these invariants in the third order susceptibilities (see tables in

Appendix J) can then be set equal to the ordinary Raman polarizability

invariants of Eqs (4.81), (4.82) and (4.83) and taken outside of the

integral over frequency in Eq (J1). These Raman invariants are
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related to a specific set of cross sections by Eqs (6.70), (6.71) and

(6.72). The polarizability elements for use in the determination of

the susceptibilities are then completely determined by experimentally

available values.

Furthermore, when the polarizability tensor is symmetric, as in

the previous section, the determination of part of the suscep-

tibility is further simplified. For 6i=0 and no electronic resonance

enhancement

yi y' 1 5 ddf (_L I( ) (7.64)

a2 =d (11±) _ (a) (I, II) (7.65)

Or, if Eq (6.53) for the depolarization ratio is used

2 = y2 = 15 D (7.66)

? = a2 =d (_II) [1 - pD(_)] (7.67)

where ( -) is the cross section normalized with respect to frequency

and number density. A typical ratio of a2 to y2 is

a2 : y 2 _. 102 : 1 (7.68)

A significant amount of data is available for the depolarization ratio

and the (-) (_,1) cross section (Ref 96).

As a resonance with an electronic state is approached by an

incident beam, the polarizability tensor element, pij, shows a signi-

ficant frequency variation (Ref 90:204). In this situation, the
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polarizability invariants can no longer be assumed independent of the

frequency. The polarizability elements are still a good approximation

if the difference of the frequencies in the f and g factors of

*Eq (4.74) is near both the Raman active resonance and the electronic

resonance simultaneously. If one of the frequencies is in resonance

with an electronic state but the frequency difference cannot be ade-

quately approximated as that between the Raman active states, f does

qnot equal g; the separate forms must then be retained. In this latter

situation, the direct difference in the state population does not

result but, rather the population density of each state must be

, treated separately. Additionally, the dipole matrix element sums that

were lumped into the nonresonant susceptibility may also have terms

with resonant denominators and their contribution to the process must

be considered. These two effects significantly complicate any calcu-

lations. In general, when electronic resonance exists, the polariza-

bility approximation fails. Druet and Taran have treated the electro-

nic resonance enhancement for the monochromatic CARS process at W3 from

a molecular point of view (Ref 97). In Raman scattering, similar reso-

nance enhancement can occur and has been treated extensively in the

4 literature (Ref 90 has an extensive bibliography). In the Raman case,

the scattering cross section depends on the polarizability tensor ele-

ments to the second power through the polarizability invariants. This

4 cross section therefore depends quadratically on the resonance term.

In the parameteric process, however, only one of the polarizability

elements in the pseudo polarizability invariants contains the reso-

nance and thus the susceptibility for these processes is linear in its
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resonance dependence. It has been analytically shown under

simplifying conditions that the beam intensity generated at the

anti-Stokes frequency,W 3, depends on the square of the susceptibility

and hence quadratically on the polarizability tensor element with the

resonant denominator. An examination is needed for the electronic

resonant terms in both xi and xNR to determine if resonance Raman

cross sections can be used to evaluate the electronic resonance

genhanced susceptibility similar to the off-resonance case. This could

greatly simplify the calculation and provide a new source of experi-

mental information for electronic enhanced CARS.

* qField Vector Polarization. The results obtained in this research

for the medium polarization are completely general in the selection of

the field vector polarizations. This general applicability makes

these equations useful in analyzing all vector polarization schemes

for the six processes described. These vector polarization techniques

range from the simplest condition of parallel linear polarization to

the more complex ones such as multipolarized BOXCARS (Ref 98) and

coherent Raman ellipsometry (Ref 99). The effect of the direction and

form (linear versus circular) on the magnitude of the medium polariza-

*I tion and hence the beam intensity is also available from the set of

equations derived. This is demonstrated by considering the field vec-

tor polarization to be both linear and parallel to each other.

4 Because of its experimental simplicity, this is often the arrangement

used in CARS measurements. The form of the susceptibility for each

process becomes

n t 1 [ 42a + 4

K- 15 (7.69)

4 150



which is exactly that of x of Eq (7.48) and is thus the maximum

possible value. Although this creates the maximum resonant suscep-

tibility, it also produces the maximum nonresonant (or background)

susceptibility. This is a limitation to the determination of molecu-

lar density in gas analysis.

Several polarization schemes have been proposed to reduce the

background susceptibility (Ref 63, 98-101). The approach analyzed by

Oudar (Ref 100; Ref 101 is the same technique) where only the CARS

process is considered relies on the linear polarization vector dif-

ferences to determine a null angle for the background susceptibility.

, The failure, experimentally, to observe complete cancellation of the

background susceptibility effect was attributed to failure of Kleinman

symmetry (Ref 102:1978) of the nonresonant susceptibility. But the

results obtained here, Table Jill, show that there are contributions

to the medium polarization at W3 due to the SRS-P and CMRS processes.

Although these processes produce weaker effects than CARS in most

experiments due to the relative field intensity dependence of the pro-

cess, they may be of a magnitude off resonance comparable to or

greater than the nonresonant susceptibility. These two extra pro-

cesses certainly contain nonresonant susceptibilities themselves which

must be accounted for in any cancellation analysis. A straight for-

ward, although numerical, calculation of the effects of these addi-

tional processes would be worthwhile. The linear polarization

approach of Eckbreth, BOXCARS, where different propagation vectors are

used for the pump beams to provide spatial resolution (Ref 103) is

more complex. The analysis of these cases follows naturally from the

form of the equations derived. It is also possible to include not
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only the effect of field vector polarization for each process but to

also analyze the effects of nearby resonances as required in the

ellipsometry approach of Akhmanov (Ref 99:672) using the equations

herein. The form of these equations are also very useful in analyzing

depolarization ratio measurements as suggested by Yuratich (Ref

104:679).

Field Frequency Distribution. The equations obtained in this

research for the medium polarization apply to any nonoverlapping

distribution of the field amplitude in frequency space. This was one

of the goals of the work so that the multifrequency CARS approdch

could be analyzed. The monochromatic or near monochromatic case is

easily obtained from this set of equations by the following equalities

C i' T 6(-W.) (7.70)

E i(-w') = i (W'+Wi) (7.71)

When these delta functions are used, the form of the medium polariza-

tion required to describe most CARS experiments is obtained and the

differences between multifrequency and monochromatic cases are clearly

delineated. For the monochromatic, nonparametric (Stimulated Raman

Scattering) processes, the polarizability invariants are precisely

those for Raman scattering with the incident beam frequency

corresponding to that of the annihilated photon. In such a case, an

exact substitution of the normalized Raman differential scattering

cross section is possible. The parametric processes when the fields

are monochromatic do have a mixed frequency dependence for the polari-
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zability invariants but there is only one set associated with each

process (e.g., a (wlp for CARS). The susceptibility element x1 lll

for the parametric processes where frequency degeneracy exists (e.g.,

CARS and CSRS) is approximately twice that of nonparametric process.

Since the multiplicative coefficient, K, in equation (J), is three

and six, respectively, this is a compensating effect. The field inde-

pendent part of the medium polarization is approximately equal for all

uprocesses with collinear field polarization.
The CARS process at wl, Table JI, and the CSRS process at W 2

Table JII, both have two resonant denominator forms in general field

0 equations. Because of the occurance of slightly different frequency

differences in the multifrequency case, these two denominators will

not have the same frequency dependence and a resultant "mixing" of

each susceptibility occurs. When the fields are monochromatic, the

frequency dependence of the two denominators is identical although

they are complex conjugates of each other. The susceptibility tensori i i
element X1122 is then real and x1 2 12 and X221 are complex conjugates

of each other so that x1 11 is real.

General Equations

Wave Equation. The research of this dissertation has con-

centrated on deriving nonlinear medium polarizations for use in

interpreting laboratory experiments. To use these polarization

equations in Appendix J, the wave equation and appropriate boundary

conditions are necessary. A brief review of these is presented here

along with some comments on the solution to obtain generated beam

intensities. Two equations are required to predict accurately the
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macroscopic behavior of the propagating fields and the media; the wave

equation and the rate equation for the state population of the

molecules. The wave equation is obtained in the standard manner from

Maxwell's equations by eliminating B from Eq (2.15a) using Eq (2.15b)

with the result

V X a2f -41r a (7.72)v X X + -- =c- a t2

Equation (2.15e) may be used to show explicitly the dependence on the

nonlinear pol ari zati on

vxx+- 1 a2  4w a2NL (7.73)
V X V X E + c2 rt2  c2 at 2

c c7~ t

where Eq (2.9) has been used with

=x (7.74)

A wave equation can be written for each of the frequency components.

Equation (7.73) then becomes

VX [V XE (rFwi, t)] + a2  t 4(T W9 -NL i t)
c at 1 C at2  1

4 (7.75)

where the spatial and temporal dependence is explicitly shown. This

can be Fourier transformed using Eq (3.1) to give the wave equation
I

V X V XE 42.'i p-L F ,i)

1 2 [-i 
=  4,- ( 7 .7 6 )

where i=1 (pump), 2 (Stokes), 3 (anti-Stokes) or 4 (second order4
Stokes). To account for the small dispersi'n effects in gases, the
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index of refraction at wi, ni may be introduced so that n = I A
second useful equation is that obtained from Eq (2.2a) and (2.15d)

such that

V )(Fwi) = _ 4w V • -NL (,wi) (7.77)

In many approaches to solving the wave equation the variation of

pNL in Eq (7.77) is assumed to be negligible and 7 is assumed to

be isotropic so that

V • E(r,wi) = 0 (7.78)

Using this with the vector identity

V X V X = v2 E- v (v - E) (7.79)

simplifies the wave equation.

Any solution to the set of Eqs (7.76) and (7.77) must satisfy

certain conditions. Two conditions that must be satisfied are the

conservation of energy and conservation of momentum. For well defined

frequencies and propagation vectors, these may be written as

4
W . 0 (7.80)i 1l

4

i1 Ii = 0 (7.81)

I respectively, and where

"ic 1 
(7.82)

The boundary conditions of Eq (2.6) must also be satisfied at any
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boundary. Where there is a second beam incident on the boundary as is

being considered here, the components of k satisfying the boundary

conditions are determined at the boundary (Ref 25:117). Any propaga-

tion phase mismatch, ak, is also determined. In principle then, it is

possible to solve the wave equation for the fields using these

equations and nonlinear polarizations. This is an extremely difficult

task even with the use of numerical techniques since the results are a

q set of twelve coupled, second order, nonlinear partial differential

equations.

Several simplifying assumptions have been developed to reduce the

* task of solving the set of equations for the electric fields. One

assumption most commonly accepted is that of slowly varying amplitude.

This assumption is valid when the change in amplitude of a wave per

wavelength is small. This occurs because the nonlinear susceptibility

is a very small quantity compared to the linear one

(1) (3 :)01(x : x 1 10"1(Ref 72:119)). The result is that the second

derivitive of amplitude is negligible (Ref 26:1958) i.e.,

a2A ( < k aA (7.83)
az 2  az

and the set of coupled equations become first order partial differen-

tial equations. A second assumption commonly used is that the solu-

tion has the form of a plane wave

i(r • F - wt)
[(F,t) = T(T) e (7.84)

or a Gaussian spherical wave

(a+io)p 2  i(i w t)
E(r,t) = "(F) e e (7.85)
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where the amplitude term, A(r), may be complex. Equation (7.85) is

that characteristic of t~e wave generated by a laser source.

Bjorklund (Ref 105:288) has proposed a specific and therefore more

useful form for the field propagating along the z axis.

If additional assumptions are made on the strength of interaction

of the fields, analytic solutions can be obtained. Bloembergen (Ref

25:110) by assuming the pump field, El, to remain unchanged and the

fields to be in the form of monochromatic plane waves solves the

coupled equations of the Stokes and anti-Stokes fields for SRS-S and

CARS processes included. This case is the least restrictive one that

can be solved analytically. To further simplify the problem, the pump

field and Stokes field can be assumed to remain unchanged during the

interaction; the weak interaction condition. When this assumption is

made along with those of slowly varying amplitudes, plane waves, and

parallel field polarizations, the anti-Stokes intensity in the CARS

process may be obtained directly for the multifrequency case as (Ref

86:9)

13(w3+6) W2'2) 11 12(2-6) 3X1 (-W3 -6;-W 2 -,W 1 , 1 )
S3

x L2 [sin (x)/x] 2  (7.86)

where

L = interaction length

x = Ak L/2

Ak =IT +k " T2 "D T = phase mismatch
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Equation (7.86) shows the effect of phase mismatch on the anti-Stokes

intensity. Weil and Schreiber (Ref 106) have numerically solved the

coupled set of equations for the four fields being considered here and

have included most of the six nonlinear processes. The following

assumptions are made in the solutions of Weil and Schreiber; vibra-

tional transitions only, slowly varying amplitudes, monochromatic

plane waves, parallel polarization and a variable state population.

The assumption of slowly varying amplitudes was checked and found to

hold for the input conditions used. The inclusion of the rate of

change in population of the various states was a valuable improvement.

State Population. The solution of the wave equation with the

correct boundary conditions provides the description of fields. The

key to the correct formulation of these equations is the nonlinear

third order polarization. It serves as the forcing function of the

particular solution. From the results obtained for this polarization,

the corresponding set of susceptibilities are directly dependent on

the population in the various molecular states involved in a given

process. When no electronic resonance enhancement is present, the

dependence is on the difference between the population of the two

involved states. If this difference becomes zero, the susceptibility

will also be zero. The density difference is in turn dependent on

the fields or intensity generated by the processes. Thus, the

4 equation describing the rate of change of the density or density dif-

ference is coupled to the set of field equations.

Maier, et.al. (Ref 85:582) derive an expression for the equation

of motion of the population difference density for a two-level system

involved in the SRS process. This derivation, based upon a harmonic
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oscillator model, relates the rate of change of the difference in

C probability of finding the molecule in each state to the first deriva-

tive of the polarizability and the molecular vibrational displacement.

In this form, the result is only a guide to one for this work. Druet,

et.al. (Refs 97:1546 and 107:20) have used the equation of motion of

the density operator dnd perturbation theory to obtain a rate equation

for the probability of population difference for both electronic reso-

nance enhancement (with p = 0) and no electronic resonance enhan-

cement. The equation obtained accounts for the SRS-S, SRS-P and CARS

process. It is necessary, however, as pointed out, to explicitly

write out the all fields. This was done assuming monochromatic plane

waves. The equation for off resonance is fairly compact while the one

for electronic resonance is very complex. Weil and Schreiber (Ref

106:944) have used a more straightfo-ward approach of equating the

rate of change of the population difference to the increase in the

photon density due to an SRS process over a differential path length.

This is in turn related to the rate of increase in the field over the

same path length. These equations are given for both a two level and

a three level system with damping phenomonologically added.

The results of Druet, if extended to all of the processes con-

sidered here, is a more complete description of the change in the

population difference. However, the approach by Weil lends itself

very readily to numerical calculations as demonstrated and is easily

adapted to multilevel systems. Further efforts in determining the

best population difference rate equation are needed for the general

case under consideration in this research.
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Linewidth. The linewidth is a parameter that occurs in every

c Raman resonance susceptibility and becomes dominant in the denominator

when resonance is reached. An understanding of the linewidth and

hence the line shape is important whether CARS is being used to

measure macroscopic parameters or study molecular properties. The

linewidth is a superposition of the natural width with the physical

phenomena of molecular motion and intermolecular collisions. The

u effect of the processes vary with the density of the gas. At low den-

sities where collisions are infrequent, the Doppler effect of the

molecular motion is superimposed on the natural line width. As the

pressure increases and the collision frequency also increases Dicke

narrowing (Ref 108) of the Doppler linewidth can occur. The

appearance of Dicke narrowing depends on the magnitude of the Doppler

broadening and the onset of pressure broadening. As the density is

further increased, the collisional effects dominate and collisional

broadening of the line is observed. With still further increase in

the density, a region of fairly constant linewidth is reached and then

the linewidth decreases with density (e.g., collisional narrowing

occurs at about 30 amagats in nitrogen (Ref 109)). Not only does the

linewidth change with density, but the shape is also changed and the

rotational-vibrational energy is shifted.

At low density where the Doppler effects dominate, linewidth is

approximately constant. Roh, et.al (Ref 110) derived an expression

for the Doppler effect on linewidth in the forward scattering direc-

tion of
112 I d (-4(1n2)C2/Aw' )

CARS U = K (4/) In 2 1/ _+_-i e

(W 2 D )(7.87)
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where

AW"D = Doppler width (fwhm) for forward Raman scattering

= (nv/c) wj = Doppler shift in the resonant frequency

Based upon Eq (7.87), it was concluded that the anti-Stokes intensity

would have a Gaussian profile with a linewidth (fwhm) of 1.22 w' D so

that the CARS linewidth is broader than that for forward scattered

q Raman by a factor 1.22. However, when collisional broadening occurs

r = r + r >> , the shape is given by a Lorentzian with linewidth•n P D'

of 2r . In the intermediate density case, when Dicke narrowing

occurs, the effect on the susceptibility has been obtained using the

autocorrelation function of the scattered field (Ref 111:178).

A theory for high pressure CARS spectra where collisional

narrowing occurs, has been developed by Hall (Ref 112 and 113). This

theory treats the prediction of r for the regions where collisional

broadening occurs and the linewidth is found to be proportional to the

pressure and temperature as

Ft = FT p T-  (7.80)

where

rt = linewidth at any pressure and temperature

FT = known linewidth at a given pressure and temperature

In the region where collisional narrowing occurs, the dependence on

density is a complex function and no longer linear. However, when the

density gets sufficiently high that the narrowing ceases and the

linewidth again becomes approximately constant, it again becomes a
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weak linear function of the density.

The linewidth is also a function of the initial rotational level

associated with the Raman transition. Data for this variation for

Raman scattering (N2 and C02 ) (Ref 114:187-188) and CARS (N2 ) (Ref

115) are available. CARS data were compared to the Bonamy theory by

Hall (Ref 112) and found to give excellent agreement with respect to

both J value and temperature. This theory is predictive in the sense

that no adjustable parameters are needed for the calculation and can

be extended for use with several diatomic molecules.

There are additional effects that can change the linewidth or

( line shape. Three sources of these effects are the measurement being

made, the method of measurement and the laser source being used. In

terms of the laser measurement, if the integrated intensity is

measured by using a multifrequency (broad band) Stokes beam with a

near monochromatic pump (Ref 86:16) there is an effective line width

due to the interaction of the Raman resonance susceptibility, off reso-

nance susceptibility and the electronic non-resonant susceptibility.

This reff resLP in a reduction of the linewidth parameter used with

the integratea i,'ensity. The effect of laser source is treated by

Yuratich (Ref 116) by considering the effect of incoherence in the

source to reduce the equation of the anti-Stokes spectral intensity to

a convolution over laser lineshapes. The results are presented in

tabular form summarizing the requirement on the laser linewidth and

resonant frequency difference necessary for the spectra obtained to

follow the Raman anti-Stokes spectrum.
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VIII. Summary, Recommendations and Conclusions

Summary

The results of this research are a set of third order polariza-

tion equations that completely describe the nonlinear CARS and related

processes in gases. The form of the equations is appropriately

macroscopic for interpretation of experimental results. The molecular

gas polarizations derived are correct for all electric field vector

polarizations and any nonoverlapping frequency distribution of the

electric field amplitude. The derivation does assume two laser input

' beams whose central frequencies are separated by a Raman rotational-

vibrational resonance frequency and two generated beams whose central

frequency is shifted from the two input beams positively and negati-

vely by the same resonance frequency. In order to describe the CARS

completely, five other nonlinear processes, two parametric (CSRS and

CMRS) and three nonparametric (SRS-S, P, and SS), that depend on these

four fields are included.

A semiclassical approach with the electromagnetic field described

classically is used in the polarization derivation. Both classical

and fully quantized excursions are made where they contribute to the

understanding or clarity of the resulting equations. Specifically,

the induced third order molecular polarizability is obtained from

,.tum mechanical perturbation theory using a density operator. This

pciarizability along with the electric fields defines the dipole

moment of the molecule. The dipole moment is divided into two parts;

one possessing a resonant denominator for a Raman transition and one

that represents nonresonant terms. Since the medium polarization is
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an orientational average of the molecular dipole moments, the resonant

part is averaged for a gas having a random orientation. The result of

this averaging when combined with the nonresonant term is the medium

polarization. The medium polarization is defined by the set of

equations for each of the six processes and the four central frequen-

cies.

From the equations for the medium polarization, macroscopic

susceptibilities are defined (Appendix J) that depend on pseudo

polarizability invariants. These pseudo invariants are shown to have

the same form as the Raman polarizability invariants. In the absence

of electronic resonances, dispersion in the polarizability is small so

that the third order polarizability invariants can be set equal to

products of the Raman polarizability invariants. By carefully

deriving the molecular Raman differential scattering cross section and

establishing the dependence of the average Raman cross section on the

same Raman polarizability invariants, the conditions under which the

various susceptibilities are related to the correct Raman scattering

cross section are presented. A discussion of important parameters,

scaling and the field solutions is given for completeness. The objec-

tive of obtaining the medium polarization and the defining suscept-

bilities that describe CARS in terms of measurable parameters was

accomplished.

Recommendations

The equations for linewidth and the rate of change in population

density should be determined. This would include the effect of laser

lineshape (Ref 116). These equations should account for all of the
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processes considered in this research and should have as paramters

factors that can be obtained from other experiments. This would pro-

vide a complete and consistent set of equations to predict and

interpret the CARS process. The available set of equations can then

be solved to determine the effect of secondary nonlinear processes,

phase matching and field polarization on the generation of a CARS

field. An extension of the set of equations to include nondegenerate

four wave mixing is straight-forward and should be carried out for

completeness. A more difficult but more significant extension of the

research would be to determine the role of the polarizability and

pseudo polarizability invariants for electronic resonance enhancement.

The scaling of the antisymmetric invariant must also be established.

Any effect of the antisymmetric invariant and its magnitude should be

experimentally determined. This is especially true for electronic

resonance enhancement. The magnitude of the pseudo polarizability

invariants variation with frequency also needs to be established by

experiment. This would determine the degree of accurary in equating

the Raman polarizability invariants to the pseudo invariants. The

scaling of the pseudo invariants with vibrational and rotational

levels should also be experimentally verified.

Conclusions

The third order polarization equations obtained in this research

for the description of CARS are complete and unambiguous. Further,

they form a set of equations that can be used to solve for the CARS

electric fields as well as those of the other processes with any form

of the laser source; monochromatic or multifrequency. The general
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results obtained here do reduce to the accepted simpler monochromatic

equations. Coherence properties of the laser sources have not,

however, been included in this analysis. By retaining the arbitrari-

ness of the input fields, the susceptibilities determining the medium

polarization are seen to depend on terms that combine and therefore

disappear when the monochromatic assumption is made. For example, the

two different denominator terms in the CARS(l) susceptibilty is not

generally recognized. Also, several authors have proposed rela-

tionships between the various susceptibilities that in reality only

apply under certain restrictive assumptions. Others have taken the

1 susceptibility for a gas to be the form of the molecular polarizabi-

lity. This is at best confusing to someone new to this field and may

result in application errors. This error is corrected by the approach

presented here. By using the set of susceptibility equations derived,

within the assumptions made, each constant and coefficient is care-

fully defined and the differences in the susceptibility expressions

appearing in the literature are eliminated. The equations derived

here, where appropriate, or the approach for other situations speci-

fies clearly the conditions under which the susceptibility terms can

be replaced by Raman cross sections. The correct cross section to be

used is also clearly specified.

The results obtained here for arbitrary electric field polariza-

tion is also presented for the first time. Yuratich (Ref 104) has

derived a scalar susceptibility that for certain conditions accurately

describes the relation between susceptibility components. But, in

general, because his result is in scalar form, the vector information
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of each polarization component cannot be uniquely stated. The form of

the polarization equations derived herein being expressed in the

laboratory coordinate system makes it very easy to visualize and

understand the role played by each polarization vector component.

*This can be important in such applications as background suppression.

The results stated by Oudar (Ref 100) and Eckbreth (Ref 98) are easily

derived from the equations of this research and the impact of other

terms is easily seen. Although the derivation performed here was for

degenerate four wave mixing (two of the three input frequencies are

identical), the approach is applicable to the case of a third input

beam frequency with different polarization. The results are therefore

easily extended to such applications as the Asterisk method of

background suppression. This approach is also applicable to examining

the case of electronic resonance enhancement. In the use of this set

of polarization equations, existing experimental data may be used for

the simpler cases. For these more complicated applications, the

required data must first be experimentally obtained.

In conclusion, the set of equations derived here are not only

unique in their completeness in describing the macroscopic third order

medium polarization and susceptibilities, but, the approach is broad

in its applicability as well as being straight forward. This approach

is quite clear in distinguishing between the susceptibilty which is

macroscopic and the polarizability which is molecular in nature. This

can be significant in the correct interpretation of experimental

results.
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Appendix A: Medium Susceptibility

The form of the various orders of the susceptibility, Eq (2.13),

relating the higher order polarization terms of Eq (2.11) to the

applied fields is essential to the development of CARS as a diagnostic

tool. Following the approach of Butcher (Ref 48), the general form of

the third order susceptibility is derived with minimum assumptions.

One very useful property, the intrinsic permutation symmetry, is shown

to be a result of the general functional relationsV .

A general expression that can be written between the time depen-

dent vectors T(t) and f(t) is
' 0

TI)t) f dT &(')(t,T ) * IT() (Al)

= JdTI dT2  Q(2)(t, TI,T2): Et)(,) (A2)

-m -m N

x ( ((t) =)dTE fdT2 2 ) () ) (A3)

-00l &(3 13 2( 23T3 U

These may be written in component form as

P,(t) = JdT Q(1)(tT)E(T) (Ala)

p()t d, fd1 2  Q(C2 (t, Tl,T2) E al(TI) E 02(TO) (A2a)

p(3)(t) = {Ti jT 2  {dT3

X () (t,Tl,2i ) (TI)E (T2)E (T3 ) (A3a)
Ut1a2a3a1 a2 013

From this form it is clear that V~) is a tensor of rank i + 1. Here,
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as throughout this work, the subindices represent spatial coordinates

and the Einstein convention that repeated indices represent sums is

used, as defined by Eq (3.15).

By using the properties of time displacement and time Invariance,

it can be shown that Q depends only upon the difference of two times.
This can be shown for all orders of Q by demonstrating it on &(3)

which is of prime interest in this study. First applying time

displacement let t - t + T in Eq (A3a).

p(3) (t+T) = 1T d 2 JdT 3

-CD -O -CO

x Q(3 ) (t+T, Ti, 2 ,T 3 )E a (Tj)E a (T 2 )E a (T 3 ) (A)
1 2 3

Also, with the assumption of time invariance, P(3)(t+T) must depend on

E(t+T). Equation (A3a) becomes

P(3)(t+T) = 2 fT3

x Q(3) (t,T1, T2, T3)E (T,+T)Ea (T2+T)Ea (T3+T)  (A5)

12 3 1 2 3

Upon making the change of variables T1+T -+TI , T2+T -*T2 and T 3+T - 7 3

Sp "(t+T)z {dr IdT 2 T! 3

pCD

{,ix Q(3)a (tTj-T,T2-T,T3-T)Ea (TI)E a (T2)E a (T3) (A6)

12 3 1 2 3

Comparing Eqs (A4) and (A6) it can be seen that

Q(P) (t+T,)I,T 2 ,t 3)=Q( 3 ) (t,Ti-T,T2-T,T3-T)
Ic 1 ci2  3  1 2 3

must hold. Since this is true for any t, T or T set t = o and T = t.
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Q() (tT1T 2,9T3 ) - Q(3) (o,Tl-t,T2-t,T3-t)
I 1 Ct 2 a 3 t 1 2 3

Thus Q(3) depends on the time difference and not on absolute values of

time. For definiteness let

(3) (t,Tj,T2,T3)= A(3) (t-T, t.T2, tT3) (A7)

Thus Eq (A3a) becomes

T)= {dTl T2 JdT3 (3)(tTi, t- t2-T) (T1)(t2)E(T3) (A8a)

or

( P(3(t) = Jt1 JdT2 fdT3 p(3) (T1jT2,T3): E(tT1)(t.T2)E(t.T3) (A~b)

In Eq (A8b), a change of variable under the integral has been used.

k(3) (TI,T 2 T3 ) is the cubic (third order) polarization response

function of the medium.

Two additional -issumptions are appropriate for the conditions

encountered; causality and reality. The causality condition requires

that P(3)(t) not depend on the value of fields later than t (i.e.,

T <t). To incorporate this assumption, A(3) is defined as

I

where

1 T'>O

The reality conditions requires that 'P(3)(t) be real when E(t) is

real. This requires that §(3) (T1,T 2 ,T 3 ) be real also.
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There is a permutation symmetry of R(3) associated with the form

of the relation between T(3) and E in Eq (A8). This property is very

useful in the manipulation of variables and is called the intrinsic

permutation symmetry. This property provides for R( )  (Tl,T2,T3)
iaa2a3

to be invariant under the 3' permutations of the pairs aT 1 , a 2T2 and

a 3 T3 * That this property follows from the form of the equation for

any order r of the polarization will be shown for the case of r=3.

Starting with Eq (A8b) written in component form

P(3)(t) = -dT 1 fdT 2 fdT 3 
R ( 3) 2 ( T I , T

2 ,T3) E (T1 )E (T 2 )E (T3) (A9)

where the t dependence of E has been suppressed for convenience. Upon

examination of specific combinations of the 27 terms and 6 per-

mutations, it is possible to show that the intrinsic permutation sym-

metry holds. The term R() (TI,T 2 ,T3 ) is used as an example of theliiI

three terms where al = 2 a3

fffdTldT2dT3 R(3) (Tl,T 2 ,T 3 )El(Tl)E 1 (t 2 )El(T 3 ) (AlO)
-~~ 111

For this, consider an P() term whose first two pairs, 1T, and 1T2 are

interchanged:

fffdT1dT 2dT 3 R
( A (T 2 ,TI,T 3 )EI(T 1 )E 1 (T 2 )El(T 3 ) (All)

However, T, and T2 are dummy variables of integration so that without

loss of generality the change of variables can be made

T1 + T2; dT I dT2

T2 T 1 ; dT 2 - dTr
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and Eq (All) becomes

ff drldT2d, RW3) (Tj,T 2 ,T3 )Ej(T 2 )E1(T1 )E1 (T3) (A12)

Since Ei is a scalar, it may be rearranged

f7fdrzdT2 dT3 R(3) (T1,T2,T3)EI(Tj)Ej(T 2 )El(T 3 ) (A13)

After setting Eq (All) equal to Eq (A13) collect terms to the right

hand side. This procedure yields

rf fd- 1dT 2dT 3[R( 3) (T2,TlT 3 )

- (TjT 2 ,T 3 )]E 1 (TI)E 1 (T 2 )E1 (T 3 ) = 0 (A14)

The electric field product in Eq (A14) is arbitrary so that the only

way equality can hold in general is for the coefficient of the field

product to be zero.

R ( 3 ) (T2,TT 3 ) - R ( 3 ) (Tl,T 2 ,T3) = 0ijll) ijlll

or

R ( 3 ) (T2 ,Tj,T 3 ) = R
( 3 )  (T,,T 2 ,T 3 ) (A15)

By straightforward examination, this must be true independent of the

permutation and thus is also true for the other five permutations and

for R( ) and R(  .
.222 U333

Now consider the case where the indices on R(3) are all dif-

ferent, for example
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fffd Tjd2dTE[R(3) (TjT 2 ,tC3 )E1 (Tj)E 2 (T2 )E3 (T3)

+1 (T1,T2 ,T3)E2 (Tl)El(T 2 )E3 (T3 )11213

+ R()(Tl,T2 ,T3)E2 (T1)E 3 (T2 )El(T 3 )11231

+R(3 (Tl,T2 ,T3 )El(Tl)E 3 (T2)E 2 (T 3 )
11132

+ R()(T1,T2,T3)E3(T1)E1(T2)E 2 (T3)
11312

U1321 (lT2i 3 )E3(Tl)E2(T 2 )El(T3] (A16)

Interchange the first two pairs in R(3  as before with Ti replaced by

1, etc., for convenience

fffdl d2 d3 f()(2,l,3)Ej(1)E2(2)E3(3) + R(2,,)2()12)3

-* ~ 1213 11123

+R(3) (2,1,3)E2(1)E3(2)El(3) + R()(2,l,3)E1(1)E3(2)E2(3)
11321 11312

+ R (2,l,3)E3(l)El(2)E2(3) + R (2,l.3)E3(l)E2(2)El(3j] (A17)
11132 11231

When the variable of integration property is used to interchange T1

and T2 in Eq (A17), it becomes

f Thi d2 d3 [R (l,,)12E()33 (1,2,3)E2(2)Ej(1)E3(3)

+ R(3) (l,2.3)E2 (2)E 3 (l)E1 (3) + R(3) (l,2,3)E1 (2)E 3 (l)E 2 (3)
11321 11312

-g+ R(3 (l,2,3)E3(2)Ej(1)E 2(3) + R(3 (1,2,3)E3(2)E2(l)E(3] A8
1J1132 P1231(A)
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The scaler property of the electric field component product provides

that Eq (A18) becomes

fffdl d2 d3 [I(3) (1,2,3)Ej(1)E2 (2)E3 (3) + R(u2 (1,2,3)E2 (1)E 1 (2)E 3 (3)

+ R(3) (1,2,3)E2 (1)E3 (2)E1 (3) + R(3 ) (1,2,3)El(1)E 3 (2)E (3)
11231 11 32 2

+ R( 3 ) (1,2,3)E3 (1)EI(2)E2 (3) + R( 3 ) (1,2,3)E3 (1)E2 (2)E,(3]) (A19)
1312 1321

This is exactly Eq (A16). Collect terms to the right hand side after

equating Eqs (A17) and (A19).

ff dl d2 d3 [ 13) - 13 (1,2,31 El(1)E 2(2)E3(3)

+ [R(3 ) (2,1,3) - R( (1,23,3] E () 2 1E(3)

+ [3(2,1,3) - R(3) (1,2,3 El(3)E2 (1)E3 (2)

32 IJ2312+ [U3) (2,1,3) - R(3 (1,2,3) 1 E
[312 11132 -1E() 2(3)E 3(2)

2,193) - R(31 (1.2.3]J El(2)E2(3)E3(l)

+ I(2,1,3) - R (1,2, El(3)E2 (2)E 3 (1) : 0 (A20)

i23 (1 , IJ321

But, again the electric fields are arbitrary so that the only way for

equality to hold without loss of generality is for the individual

coefficients of the fields to be zero.
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R(3) (2,1,3) -R (1,2,3) = 0 RM() (1,2,3) = (3 ) (2,1,3)
1213 11123 1.123 1P213

S2( 3 ) (2,1,3) - (3 ) (1,2,3) = 0 3(1,2,3) (2,1,3)-j 123 11213 11P213 11123

R( 3 )  (2,1,3) - ( 3 )  (1,2,3) = 0 R ( 3 )  (1,2,3) R (3 )  (2,1,3)
1321 1231 U231 P321

R(3) (2,1,3) - (3) (1,2,3) 0 R(3) (2,1,3)
1312 31132 111322 U312

R( 3 )  (2,1,3) - ( 3 )  (1,2,3) = 0 R ( 3 )  (1,2,3) = (3 )  (2,1,3)Ij132 11312 U312 11132

R (3) (2,1,3) R( 3 ) (1,2,3)= 0 R ( 3 ) (1,2,3)= R( 3 ) (2,1,3) (A21)
1.231 p321 p 321 t1231

By repeating this process, it can be shown that the invariance holds

under the other five pair permutations possible. Further, by treating

the case where two of the indices are the same (e.g., 112) in the same

manner the invariance property can be shown to hold for all of the

components (e.g.,

R( 3)  (1,2,3) = R( 3  (1,3,2), R( 3  (1,2,3) R( 3  (1,3,2)9
P112 U121 P121 U112

R( ) (1,2,3) = R(3) (1,3,2), etc.)
U211 P211

This proves that the intrinsic permutation symmetry holds for all 27
components of R(3 ) associated with the index pairs at , a T

Pala2a3 1 1 2 2

and a 3 and is a property of the form of the relation between P and

E. This symmetry is also independent of the order.

With the properties stated, the relationship between the polari-

zation response tensor and the susceptibility tensor can be obtained.

The susceptibility tensor is that function that relates the medium

polarization, P, to the electric field, E, when the field vector is

expressed as a function of the frequency, w rather than time. This
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transformation to frequency dependence is obtained using Fourier

transforms:

E'(t) = fdw E(w)e-i't (a)

E(w) -- f fT E'(T)eiWT (b) (A22)

In keeping with Butcher (Ref 48:15) w may lie in the upper-half

complex plane such that w= w'+ iw" with w' and w" real and w" >0. The

integral for E(w) in Eq (A22) will converge under these conditions

I * provided that lim E(t)- 0. Equation (A22a) substituted into Eq
t

(A8b) yields

(3) (t) = fffdT1 dT2 d 3  tt (A23)

where

E'(t-Ti) = fdwi r(wi)e-ii(tti)

Or

)( fffdw1 dW2 dW3  fffdTl dT2 dT3 (T , 2

I X e ~i(W1T1+W2T2+W3T3): g(l_( ) ( W3e- 1+W2+W3)  (A4

For x set equal to the Fourier transform of the response function

fdr1 (3) fdT2fd- 3 P(Ti,T2 ,T)ei(w1T1t2 2 3t3) (A25)~-. -. -.

where x(3 ) is defined as the third order susceptibility. Then
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Eq (A24) becomes

- P3)(t) = fdw1 dW2 fdW3 x ,w2,3) ( ( 2)(w 3)

x e-i(w1+w2+w3)t (A26)

The spatial dependence is present but has been suppressed for con-

venience.

The conditions imposed by causality, reality and symmetry on the

third order susceptibility are (Ref 48:17)

(1) Causality. x (3) w,w 2 ,w3) is analytic for wl, W2 , and W 3 in

the upper-half plane.

(2) Reality. (3)= x -w2" -(3*)

(3) Symmetry. X (3) ("u,w2,w3) is invariant under the 3' per-

mutations of the pairs (a ,wi), (0,W2 ) and (Y,w3 )

(i.e., 3 (3) w2,9) X ' 3 ) = x( 3 W 2 WO)

, X~,{(y1,w3,w2) = X ( 2,wl) = X(') 3

The first order and second order susceptibilities in terms of the

respective response functions are obtained by Butcher (Ref 48:12-16).

The form of the general order n is also presented in this reference.
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Appendix B: Density Operator

The density operator, p (rt), or equivalently a density matrix

representation is the quantum equivalent to the classical density

function. It is used to define a set of probabilities describing a

statistical state of a system where all that is known is the probabi-

lity of being in a given quantum state. The density operator must

satisfy the equation of motion (Ref 78:380)

i d = [H ] (BI)

* * where

H = system Hamiltonian in the presence of an electromagnetic

field

h = planck's constant, h, divided by 2w

i = complex imaginary; vCF

Ho = system Hamiltonian in the absence of the field.

p = n In >< n
* n

The difference between Ho and H is due to the coupling of the system

to the applied field. Following the standard quantum mechanical

approach

Ho jn> = En In> (B2)

* where <Ho> = En, the allowed energy of the unperturbed system whose

states are specified by the complete quantum descriptor n. The set
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of eigenstates In$ form a basis for a representation. Under the

-Fassumption that the system of molecules is in an initial equilibrium

and is then perturbed by the presence of the applied field.

p (t=o) = Po (B3)

Equation (B3) provides an initial condition to solve the equation of

motion, Eq (B1). For a system initially in thermal equilibrium (Ref

48:40) the density operator may be written as

eHo/kT
<n Po = (B4)

n£ e-En/kT

nn

and its matrix element is given by

<n 01M e-En/kT

Pon e-En/kT 6nm (5

n

where

T = temperature

k = Boltzmann constant

=O,n m;
nm = Kronecker delta such that

= ,n=m

The density operator formalism can be used to determine the expec-

tation value of any dynamic variable and therefore the physical

character of a system at any time t.

The first step in this procedure is to determine the specific

expression of the density operator for a system of particles in
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d

Ft [O+ k 2t -- •-1 --0- PO + .1 +-.i -+ --

II E Po + p (t) + p2 (t) +...] = [HoI, ir0 + lt)+ 2t)+ -...

". ''+0H1(t), PO + Plt) + P2(t) + "'] (B1O)

After equating terms involving the same powers of H1 (t) (e.g.,

[Ho, Po] zero power, [Ho,p 1 (t)] and [HI(t), po]c[A t)]l, etc.), a

set of equations is obtained

d o

P0  6H0 9P0̂

dAT_ P1 &[, 1 (t)] + [Hi(t), Po]

d A

Tt- P2 = [H0, p2(t)] + [H1 I(t), p1(t)]

d A [Ho, pn(t)] + 61(t), Pn-1 (t)] (Bll)

Since Po, Ho and HI(t) are known, the second equation in Eq (B11) can

be solved for pl(t) subject to the initial condition. This procedure

can be repeated until the desired number of terms have been obtained

in the series. The solution can be obtained using a method analagous

to an integration factor (Ref 48:53) applied in general operator

fashion as

ot pn(t) -[H, nt) Uo(t) = i h d Vo(t) pn(t) Uo(t)(

(B12)

where it is necessary to find the operators Vo(t) and Uo(t) that makes
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this true. By expanding Eq (B12) it can be shown that the equality is

true if the following two equations are satisfied

i n d VO(t) =-Vo(t)

d t Uo(t) = HoUo(t) (B13)

The solutions to Eq (B13) are

Vo(t) = eiHot/h

Uo(t) = e-iHot/h (B14)

so that Vo(t) = Uo(-t) and the exponentials are defined by the power

series. Since the various powers of Ho are commutable then Uo(t),

Uo(t-), Vo(t) and o commute with each other. This property and those

that follow will prove useful in the derivation of Pn(t).

Properties: (i) Uo(t)Uo(t ) = Uo(t+ti )

(ii) Uo(O) = 1

(iii) uo(t)Uo(-t) = 1

(iv) Uo(t)Vo(t) = 1 (B15)

4. properties (iii) and (iv) imply that Uo(-t) and Vo(t) are the inverse

of Uo(t). Uo(t) is called the unperturbed time development operator.

These operators transform from the Schrodinger picture into the

interaction picture. The solution of the unperturbed time dependent

Schrodinger equation

Ho (t) = h L ,(t) (B16)
dt 1pt0
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can be obtained by

*p(t) = Uo(t)q,(o) = eiHot/h (o) (B17)

Uo(t) and Vo(t) can be used to obtain n(t) by multiplying the n

terms in Eq (All) by Uo(t) on the right and Vo(t) = Uo(-t) on the

left. These factors are unique, except for a trivial multiplicative

constant. This yields

gd
i M Uo(-t) n Uo(t) = Uo(-t)[Ho, n(t)]Uo(t)

+ Uo(-t)[H1 (t), Pni(t)]Uo(t) (B18)

(: Equation (B12) reduces this to

1 I{ Uo(t) 4(t)Uo(t)} = o(-t[ 1(t), _n. 1(t)1Uo(t)(B19)

Integration from -- to t yields

t
i h Uo(-t)pn(t)Uo(t) = fdtUo(-tl)[Hl(t),pni(ti)]Uo(tl) (B20)

where the lower limit is determined by the initial condition

= . Equation (B20) may be written more simply by defining

Ha(t) b Uo(-t) H1(t)Uo(t) = eiHot/K Hi(t)e1
iHot/f' (B21)

which is in the interaction picture where time dependence is carried

partly by both the operator and the state wave functions. This pic-

ture is intermediate to the Schroedinger picture where the operators

don't depend on time but the wave functions do and the Heisenberg pic-

ture where the operators depend on time but the wave functions don't.

Also, from the definition
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~ t)=Uo(t)n(t)UMt (B22)

-Then upon substitution into Eq (B20) after it is expanded

P-(W) (i) fdtl [hi(tl), Uo(-t) &n-i(ti) Uo(t1)J (823)

From this it is obvious that for n=I, oj(t) can be expressed in terms

Of 00(t).

t

~()=(it)- fdt1[hi (t1), U0(-t)60V0(t)1 (B24)

Since 00 and U0(-t) are both functions of H0, they commnute with each

other so that

Uo(-i)Po= 40 0(-ti)

and

U0(-t1)p0U0(t) = P

after the use of property (iii) in Eq (B15), 66 00.o Then

t
6f(t) onif)-' fdt1[Hf (tj), 60 (B25)

or

I t

61(t) = (on)- U0(t) fdt1[Hj(tj), 60] UO(-t) (B26)

to find 02let n=1 in Eq (823)

'()= (i6)- fdt1EH;(tl), U0(-t1)61(t1)u0(t)] (827)

which upon substituting for ,(tj) from Eq (B26) becomes

61(t) = (ll) -2 Jdt, ft2 EHi (t1 . [6i (t2), 013 (828)
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similarly

-- (t) = (if)3 fdt1 fd2ft3A1l) B9

or in general

~(t =(ihlff fdt fdt ... fdtn[Hi(tj), [Hf (t2), [... [Hf(tn), Po)...)I

(B30)

Then upon substitution of these expansion terms into Eq (B8), (t) is

known and may be used to determine the response of the system to

external forces, both linear and nonlinear.
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Appendix C: Molecular Polarizability

- Just as on a macroscopic level the polarization P is related to

the electric field by the susceptibility tensor Eq (2.13), the induced

dipole moment, d, may be related to the electric field through the

polarizability tensor, *. The derivation of the molecular dipole

moment is made here using the density operator results of Appendix B.

From the definitions of <id(n)> given in Eq (3.8) and Eq (B30), each

order of <cd (t, r)> for n=1 to 3 is obtained. From Eqs (B22) and

(B25)
t -

<d()>= Tr{(ifi)- Uo(t) fdt 1[H(t ), o]Uo(-t) d(t,r)} (CI)
-CO

For

HI(t) = - d(F,t) •E(,t) (C2)

substituted into Eq (B21)

Hj(t) = elH °t/fl [-d(t,F) • E(t)] e-i °t/f  (C3)

Note that E, being a nonoperator, commutes with all operators, so that

one gets

Hf(t) = -eiHot/K d(tr) e- i ot/K * E(t) (C4)

or

r H (t) = -eiHo t /h d (tF) e-iHot/h E (t) (C5)

m

Recalling that d(r) = qi ri is the dipole moment in thei =l
Schrodinger picture, the time dependent dipole moment in the
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interaction picture is defined as

d(t,r) = eiHot/hl d() etiH t/h = Uo(-t)d(F) Uo(t) (C6)

then

H (t) = - da(t)EQ(t) (C7)

where the spatial dependence of d has been suppressed for convenience.

When Eq (C7), the commutation term is used, Eq (Cl) may be written as

[Hi(t), o] = - [d(t)Ea(t)po - o da(t)E(t) (C8)

t o Since Ea(t) is a scalar function, it commutes with all operators and

may be factored to yield

[Hi(t), o] = - [da(t) o - Po da(t)]Ea(t) (C9)

[H'(t), o] = - [da(t) Po]Ea(t) (C1)

Equation (Cl) after using Eq (ClO) becomes

<d()>= - Tr (ifi) -1 Uo(t) fdtd (t) Po)E (ti) uo(-t) (Cll)

From the linearity of the trace, the integration may be performed

after taking the trace. Since Uo(t) and Uo(-t) are not functions of

the variable t1 Eq (Cl) becomes

t
<d(')>=- (ih)-' JdtIE (tl)TrIUo(t)[da (ti), &o]Uo(-t) j (C12)
P a a

From the Fourier transform of Ea(t) given by Eq (A22) and by noting

that
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e-iwtl eliwtl eiwt e-iwt eliwt e-lw(tr-t)

Eq (C12) is

(f)1fdt,fdw E (w)e'w em ~ltTr lU0(t)[d (t,).p0J

This can be rewritten as

t
-CD -CO

The polarizability tensor of the first order, PO') P is defined as

It will be made clear that PP') is a function of w by eliminating the

t from this expression in a straightforward manner.

U0(t)Ld (t1 ),00lu0(-t)

4 U0(t)[d a t, )U0(t)U0 (t)po-paUo(-t)U0 (t)d a(t, )]Uo(-t) (C16)

-U0(t)d a(t )U0(-t)U 0(t)p0U0(-t)-U0(t)p0Uo(-t)U0 (t)d a(t, )Uo(-t)

(C17)

where U0(-t)U0(t) = 1 has been used. From the definition of d Mt inaK

Eq (U6), U in Eq (B15) and the commutation property of PoU0(-t) and

1J0 (t)p 0 , Eq (C17) becomes
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=U 0 (tl-t)d cU0(t-t1 ) o- 0U0(t1-t)daU0(t-ti) (C18)

or

= (t-t1) O0-O Cd t-t1 ) [d E(t-ti).,0] (C19)

Then

p~l =-(if)lfdtTr I~'t-);~ ,e'~It (C20)

With the change of variables

T = tl-t ; dT= dt,

and limits

ti t T~. 0

first, then the change tj

=lad0e (C21)

E The trace is

Tr [d. (tj), po~d~ Tr d a(tl)pod - po d Q(tj)d P (C22)

A property of the trace is its invariance under cyclic permutation of

the arguments. Equation (C22) is therefore
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= Tr{Po d.(t) - Po d(t,) d (C23)

= Tr Po [d d (ti)]

The first order polarizability tensor is then

p ()= -(ifi)-i dtTr{pO[d , d(t1 )]} eimtl (C24)

which is the desired result for the first order term.

For completeness, expressions for p and p are obtained

before writing down the generalized nth order term. From Eq (3.7) and

Eq (B28) the expectation value is

<d(2)> = Tr{(i l)2Uo(t) t f t2[Hi(ti), [Hj(t 2), po] Uo(-t)dp (C25)

where with the dipole approximation to the perturbation energy is

given by Eq (C7)

[I ~2) ,Po]= -E 2)[d 3(2),Po] (C26)

In a similar procedure to that used for Eq (ClO)

--(tl), [H(tA)P0 = [-d a (t1)E (tj), -E (t2)[d (t2), Po]

= E (t1 )E8 (t2)[da (t), [j O(t2), 0]] (C27)

Upon use of the Fourier transform definition of E (tj) and E (t2),
<d( 2)> becomes
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< (2)> =(i1M) -2  t ]dt 2J a( l
<d (f) 2 fti fdtjdwi, E.(wl)e1'wlt e1'l1(tl-t) {dW2E,(w2 )e-1W2t

p(2) is defined as

p(2) = (id)2 t t2 Tr Uo(t)[d (t1),[d(t 2 ),Po Uo(-t)d u

x e- i'" (tl -t )e- iw2(t2-t) (C29)

To eliminate t from this expression, use the results of Eqs (C18) and

(C19) for tj and a similar set for t 2 with the result

Uo(t)[d (tl),[d a(t2), po]]Uo(-t) = [d (tl-t),[d a(t2-t),po]] (C30)

Let t2 -t- t2  dt2 - dt2

•tl-t -tj dtj - dtj

With the proper change of limits on both integrals of Eq (C29), it

becomes

0 tj, ' p(2) (WI'W2)=(ilh)'2Idt dtTld ( ] ' [Bt P° du e ' l t l e - i w2 t 2

(C31)

By using the trace cyclic permutation property after expansion, the

trace in Eq (C31) becomes
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Tr Ida(t o)d(t2)pod-d(t 2)pod^(t l)d'd^ ( t l)podl)t2d+oB(t)otI)p

i Trpodpd:(t)d,(t 2 )-P~da(tl)d,,d8 (t 2 )

-pod tj+ (t2)d di tl+od(t2)d (tj)

= Tr{po[[du' d(t 1 )], d0(t2 )]}

The second order polarizability tensor is then

P(2) (WlI,2):(ih)-2 t ( At2Tr ro0 d (ti)], d(t2)]

x e-iWltle i w 2 t2  (C32)

While this expression for p(3 is valid, it does not have the intrin-

sic permutation symmetry specified for X(21 (wl1w2 ). Therefore, if

p( 2 ) (Wi,W 2 ) is to form the basis for x(21 then this symmetry must

be accounted for in the equation. Since there was no particular

requirement to select a, a and wl, W2 in the order used, the result is

perfectly valid if written

p(2)~ ( w'l)=(ilh) - 2 dtl dt2Trlo[[dpdl,(tl)],.(t2)]j

x e'iw2t1e iw1t2 (C33)

Upon adding this result to that of p(2 in Eq (C32), a quantity

having the desired symmetry results

p( 2 ) (W1,W2) + p( 2 ) (W2, 1) (C34)
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In order to retain the same magnitude for the case where a = B and

1= W 2 , a factor of 1/2 can be used. With these changes

0 ti

P(2) (1,w2 )= 1/2 (if) - 2  S ridt Idt2 Tr po[[d,d (tj)], d (t2 )]}

e'iitl eiw2t2 (C35)

Where S is the symmetrizing operator defined such that the term(s)
(a,W)

q operated upon is to be summed over all of the possible permutations of

the pairs (a,wl) and (O,w2 ).

For the third order polarizability tensor, p(3) Eq (B29) is

used for <d(3)> with the result

= Tr (-ih)-3Uo(t) fdtN dt2 fdt 3

x [H;(tj),[Hi[(t2),[H;(t3),Po]]] Uo(-t)d j (C36)

Again Eq (C7) is used for the electric dipole approximation to the

perturbation energy yielding the result

[H'(t3),Po= = -E a3(t 3) [d a3(t 3),po] (i)

[H(t 2), [Hi(t 3 ),po]]E a2(t 2 )E 3(t3)[d 2(t2 ), [d a3(t 3),P0 ] (ii)

[Hi(t1),[Hi(t2),[Hi(t3), poll]: -E a,(t,)E 02 (t2)E 03 (t3)(i)

Ed atl), [d2(t2 ), Ed a(t3), Po]] (C37)

where the commutation property of a scalar has again been used. Upon

substitution of this result into Eq (C36) for <d(3)>, removal of the

scalar terms E.(ti) from the trace and use of the Fourier transform

of E.i(ti), the dipole moment value is
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)>t_ fi)-l ;-lt2 '0 tl 2[

<d~3(-iiffd dw2fdw3(Jdti jdt2 Jdt3Tr{Ot[ (t)[ (t)( - _m _-m - -m -

"x [ada3 t3),Po]]]Uo(-t ) ad11)e
- i [ l (t l - t ) +W2 ( t 2 "t ) + w3( t 3- t ) ] )

x E al(wl)EC2 (W.2 ) E a3(w3)e- i(W1+w2+w3)t (C38)

t can be eliminated from the terms in brackets on the right hand side

by an extension of the expression in Eq (C19)

Uo(t)[dal (ti),[d d2 (t2),[d a3 (t3),po]]]Uo(-t)=[dal (tl-t),Id (t2-t)

a3 ,d(t3-t), Pol] (C39)

With the simultaneous change of variables

t 3 - t - t3

t2 - t - t 2

ti - t . ti

and the proper change to the limits of integration, the definition of

p(3) is

(0 rti (t2  ^^

P( 3) (wi,w 2 ,w3)=(-iK)
3 jdt I Jdt2 -t 3Trj[d (t 1 ),[d (t 2 ),[d (t 3),

po]]jpe- i [ Iwt1+w2 t2+w3 t 3] (C40)

The use of the cyclic permutation property of the trace gives the

change
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() (,,,2,t3)=(-i) tdt2 t2 tdt3

JACL a~a 2.- x Tr{o[(d (ti)], a(t2)], da(t3)] e- i [ Wj1 + W' 2t 2+ W t 3]  C1
1 0 P ala23

To insure that intrinsic permutation symmetry holds

p(3) 1p( 3) 1 9W21uJ+p(3) (w2, 1,3)+p( 3) 2 1,w3,
pa a2 31'

6  JAL1020 PO U201 3a l 20 3a

+ p ( 3) (a lw 3,w2)+p( 3) ( 3'2' )+p( 3) IaL)3 ,W1' 2)
Q ica 3Q 2  UM 302 a Pa 3a ja

p(3) W 3) (C42)
"3 ( L, ) Il a 2 a0 3C 2 2

The factor 1/6 insures that the magnitude will remain the same. This

sum relies on the fact that the subscript and frequency indices were

arbitrarily chosen. Thus

p(3) (,,,2,W3) =.I, S (-ih)- 3 fdtl fdt 2  fdt 3
owa2a3) -3 -. -

x Tr;oEddd(t 1 )], 3 ) e-i[WIt1+W2t2+w3t3] (C43)

I P 011a a3

A generalization of this can then be made to the polarizability order

n (Ref 48:65)

) (w ,,wn)i S (-i) -n fdtl fdt 2......an (n . (a,W)

dtnTr o "...[d 
*n(t l) , (t 2) , .. ],d (tn) e i mZ Wmtm

-0 P al a2  an

(C44)
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The assumptions made in obtaining these results are:

(1) The contribution of the magnetic field of the light beams is

neglected as small compared to that of the electric dipole

moment.

(2) The intrinsic permutation symmetry for the susceptibility

arising from the form of the polarization expression is

required to carry over to the various orders of the polari-

zability.

(3) The energy added to the system by the interaction of the

field with the dipole moment is of a small enough magnitude

that the perturbation approach applies.

(4) Causality and reality conditions apply.

(5) The expression for Po results from the molecular system

being in equilibrium.

(6) The perturbing force is zero at some time in the past so

that n(-) =o

In addition to these assumptions it should be noted that
d (T) = UO(--c)d Uo(T) and that d is not a function of time but repre-

sents the time independent dipole moment operator of the molecular

system in the Schrodinger picture.

The results obtained in this appendix are valid within the

assumptions made whether the dipole moments are similarly or randomly

oriented. For a similar orientation, orientational averaging results
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only in multiplying by the number of moments in the volume of

interest. In this case, Npun) would represent the susceptibility

X(n) directly.

2
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Appendix D: Electric Field Functions

The thi-d order polarizability has been derived in Appendix C as

a function of frequency. The electric field, however, is normally

specified as a function of time. For use with the polarizability, the

electric field as a function of frequency, is obtained in this appen-

dix.

A real electric field E(t) may be expressed as
I

E(t) = f(t) + f*(t) (D1)

The Fourier transform to frequency space is

E(w) = F[E'(t)] = F[f(t)] + F[f*(t)] (D2)

where F[ ] represents the Fourier transform so that

F[f(t)] = f(T)e'WT  = E(W) (0)

1 iTF[f*(t)] = dT f*(T)e (04)

From Eq (D3) and with w allowed to be complex, the transform of f(t)

can be written as

it
=.ftftei))T(05)

Thus, Eq (D6) equals Eq (04)

= F[f*(t)] (07)
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then

E(w) =c(w) + [E(w)*(D8)

or

E~W e= w + c*-)(D9)

It is easily shown that E(w) meets the reality condition

I E(-w*) = EE(w)]*. From Eq (D9)

[E(w))* = e* )+ c((D1O)

- and

E-,)= E(-W*) + C*W)(D11)

thus Eqs (D1G) and (D11) are equal and

E(-w*) = [E(w)]* (D12)

It is also obvious that [E:(w)]* OE( -w*) unless f(t) is a real func-

tion.
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Appendix E: Molecular Polarizability Equation

S --. The specific form of the third order polarizability Eq can be

obtained using the general results of Appendix C, Eq (C43)

p(3) 0 t1  rt2
p(a 1 S (-ih)-3 Jdt 1 dt2 dt3
p) : w -. -D -C

Tr{Po[[d dl(tI)].d (t 2 )],d (t 3 ) e'i[Wt+W2t2+W3t3] (El)

For the individual molecule in thermal equilibrium, Eq (B4) gives the

density operator as

\ e-Ho/kT

Po =  EAT (E2)

n

with

= (z e-En/kT)-I  (E3)
n

Eq (E2) can be written as

PO= ceHo/kT (E4)

This is used in Eq (El) to obtain the third order polarizability, but

first, expand the term inside of the trace in Eq (El)

[d, da (t1)] = (d P d1(tj) - d a(ti)d )

[[d ,d01 (tj)], d a (t2 )] = dda (tj)da, (t2 ) - d a(t 2 )d da
(t1 )d 2

-d (t)dd C(t 2 ) + d (t2 )d (t)d (E5)
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a

[[[d d (t 1)],d 2(t2)],d (t)] "
U . ..... a3 2(t

d d (tl)d (t2)d (t3) - d (t3)d d (t1)d (t2 )
, - Ia 02  a 3  a 3  IA 1  a2

- d 4 2)d d (tl)d (t3) + d (t3)d (t2 )d d (ti)
a2  IJCI1  a'3  a3  a2  Ual

- dal (t)d d (t2)d 3 3) + d a3(t 3)d al(tl)d d a2(t 2)

+ d 2(t2 )da (tl)d U td (t3)-d (td a2(t 2 )da(t)d (E6)

Note that the trace of an operator is defined by

TriAl = E Aaa = E <a IA ja> (E7)
a a

where the states "a" are a complete basis for a representation. Thus

in the energy representation,

[Polab = <a jo I b> = <a jeHo/kT I b>

[ oab = ceEa/kt<a jb> = Ce'Ea/kTlab (E8)

and

[Poaa Ea/kT = (E9)

Also, the definition of d (t), Eq (C6), is

d a(t) = Uo(-t)dLUo(t) (ElO)

With the definition of U(t) from Eq (B14)

U(t) = e-i ot/hi (Eli)

The basis to evaluate the trace is available. Then, the dipole matrix

element is
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[d(t)]ab = <a Id(t) b> = <a lot/h C9 e' I b>

[da(t)]ab = eiEat/h <a d. Ib> e-iEbt/$

[d(t)]ab = eiWabt dcb (E12)

where

Wab = (Ea-Eb)/li (E13)

dab = <aId I b> (E14)

With the linear property of the trace these relations can be applied

( 0 to the first term in Eq (E6). This serves to show how each of the

terms can be developed.

Tr{o d (ti) d (t2 )d (t3)

a1  a2  aL3

<alPOd d (tj) (t2)d (t3) I a>

Tr( } ce-Ea/kT <a I d d al (t) da2 (t2 ) d (t3 V

Tr{ = < Iaa j < b>b I (t,)C>
a b,c,d a1

where the closure property, E i><i 1, has been used. Upon use
i

of Eq (E12)

210



- -- - - -.- -

4

Tr = ,b Paa dab e bctldbc e 2dcd eiwdat 3d 
3

Tr Paa dab dbc dcd dda e bctl+wcdt2+wdat3) (E16)

" a,b,
~c,d

When this term is placed in the integral of Eq (El), the result is

o0t It2 t Tr{ } e-i(WItj+W2t
2+W3t3)

- - ft -e
0t i t 2 U a l a 2 3

ab dt f dt2  fdt3 pa dab dbc dcd dda
a ,b , -D - -

c,d

x ei(wbc 'wl)t lei(wcd -w2)t2 ei(wda-w3)t3 (E17)

The integration over t3, t2 , and tj can be performed to yield the

following terms, respectively

wrt t3

du dal dc' da3
1 dab bc cd ca e i(wbc-1 )tl ei (wcd-w2+wda-3)t 2

T E aa (Wd 3)
a,b,c,d (wda

wrt t2
c~i dl a2 d013dj dal d 3 ei(wbcw'+Wcaw2.w3 )ti

1 ab bc cd da eT2 POa (d-)(c-2-J
a,b,c,d aa (wdaW3)(wca-2W3)

wrt ti
d" dc"dc2 d33

dab dbc dcd da
aa,b,c,d aa (wda-W3)(wca-W2 A3)(wbaw] -W2-W 3 )

where the definition of wij from Eq (E13) has been used. After these

steps have been carried out for each of the terms in Eq (E6), the

result is
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p ( 3) (-i 2 ) 3  0a

S'2C'3. (aw) a,b,c,d aa

SI a1  a2 a3  a3 IA a1  a2
dab dbc d cd dda dab dbc dcd dda

Kwba' wiw2-w 3 )(wca-w 2 -w3 )(wda-w 3 ) (wcb-w-w2-w3)(wdb-w2-w3)(wab-w3)

aO2 1 al a3 O3 a2 Vi al

dab dbc dcd dda + dab dbc dcd dda

(,cb-w-w2-w3)(wdb-w2-3)(wda-w3) (wdc- wlw2-w3)(wac-w2 -3)(wab-w3)

Sa 1  d a2 aL3 aL3 d(1 P a2
dab dbc dcd dda dab bc cd da
- +

(wcb-w1lw2 -3)(wca-w2-w3)(wda-w3) (wdc-w1 w2-w3)(wdbw2 3)(wab-,3)

d2 12 i a3  daC3 da2 da1 d.

+ dab dbc dcd dda dab dbc dcd dda
(wdc w1lw2- 3)(wdb-w2-w3)(wda-w3) (wad-w1lw2-w3)(wac-w 2 -w3)(wab-w3)

(E18

A simpler form of this equation may be obtained by using the sym-

metrizing operator which takes the sum over all permuted pairs

(ai,wi) to combine the eight terms. The placement of the dxj term and

the form of the denominator is used to establish the combinations.

The steps are

(1) Leave the first term alone.

(2) Combine second, third and fifth term by permuting (ai,wi) to

obindb d da2 da3
obtain dab bc dcd dda product.

This is accomplished for these terms by respectively permuting:

(C91 ,] )+-(3,W3) followed by (a2 W2 )*-(a3 ,W3); ( lO W )-(C2 ,W2 ) ; No

change. The wi in the denominators must also be changed. These terms

become
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01 0 0 2 CL3 01 I 02 a03

dab dbc dcd d da . db d bc d cd d daw3
(wcd.wl.w2.w3) (wca- W2W3) (wda-W3) (wcb-wlw2-w3) (wdb-wl'w3)(wdaw3

0L1 11 02 0'3
dab dbc dcd dda 

E9
(wcd-wlw2-w3) (wdb-w)1w3) (wab-wi)(E9

This can be factored to obtain

0L1 U1 a2 03
dbbc dcd da

I, 2W3)(wda-w 3)

[1wca w2w(wa3 (wdb-wlw3) wda-W3 w~ab-W1 (E20)

The last product reduces to

1waw)wb-i E1

after using Eq (E13). Equation (E20) factors to

CL1 U C12 0t3

dab dbc dcd dda 1 (E22)

(wcbwiw2-w3)(wda-w3 waw2-w3 + (a-i

The last term in Eq (E22) is

wcb-wl -w 2 -w 3

(wca-w2-w3)(wab-WI) (E23)
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Thus Eq (E19) reduces to

a l  13 C2  a 3

dab dbc dcd dda

(wca-W2-W3)(wab-w1)(wda-W3) (E24)

(3) Combine the fourth, sixth and seventh terms of Eq (E18) by

permuting (aiwi) to obtain daI da2 do da3 product. This permutatonab bc cd da

for each term is respectively: (al,wl) - (a3,W 3); (aj,w 1 )-+ (a3,W3)

followed by (M3 ,W3) --(a2 ,W2); (Q1,WI) .-- (a2 ,W2 ). After factoring and

combining the denominators as above, this procedure yields

Cal a2 0 a3
dab dbc dcd dda

(wac-wi-W2)(wab-1)(wda-W3) (E25)

(4) Permute the eighth term of Eq (E18) by (aj,w1)(- (a3,3) to

obtain

a l a2  a 3  V

dab dbc dcd dda

(Wad-W1-W2-W3)(wac-w-W2)(wab-l) (E26)

Equation (E18) upon substitution of Eqs (E24), (E25) and (E26) then

becomes
p(3) 1 S 0
Puale2a3 (W1,W 2 ,W3) = 31 63  P Paa

l (aw) a,b,c,d

a I a2 03 Q1 U a2 a3
dab dbc dcd dda dab dbc dcd dda

L (wba-wl-w2-w3)(wca-w2-w3)(wda-'3) (wca-W2-W3)(wab-wJ(wda-W3)

(E27)

'1  0 2  U '3  a1 a 2  C3  U
__+dab dbc dcd dda dab dbc dcd dda

(wac-wI"W2)(wab-w1)(wda-W3) (wad-w-w2-w3)(wac-wl" 2)(wab "w')
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Equation (E27) may be rewritten by noting wij = wlj and rearranging

denominators as

( 3 ) ( =1 , 2 , = ) = - S 10
5Wai23  (c= ) 6h 3  a,bc,d Paa

U CL a2 a3 al 1 a2  a3
dab d bc dccd dda + dab dbc dcd dda

Lwab+w1+W2+W3)(wac+W2+w3 )(Wad+2) (wab-w1)(wac+W2+W3)(Wad+w3)

CL 1 C2 V a 3 CE a2 a 3 V -

d d d d d d d+ ab dbc dcd dda + ab bc cd da
(ab-w)(wac-w1-w2)(wad+W3) "b-l)(wac=- 2)(ad-w 2- 3 )

1 I(E28)

Because of the symmetrizing operator S this equation will have six

terms for each of the terms shown for a total of twenty-four terms

with potential resonant denominators.

Butcher (Ref 48:95) extends the above results derived which did

not allow for molecular interactions to the case where weak interac-

tions are allowed. If the interaction is strong it must be accounted

for in the equation of motion for the density operator and then the

derivation of the polarizabilities performed. The effect of the weak

interaction is to introduce an uncertainty,ra , into the energy of a

state. The transition between two states a and b then has a width

rab =ra +rb = rba. In the presence of weak interactions Eq (E28)

becomes
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p(3) ___0

-JWw) S M3 Paa
- iiCxx 2 ax (cxw) 6fl ab,c,d

Ii al~ C2 C1 3
d ab d bc d cd d d

TWab+w+w2+L3+irab)(waC+J2+w3+ir ac)(wad+w13+irad)

Cc Ii aJC2 0a3

+ ~d ab d bc d cd d d
*1+ (wab-wvirab)(waC+W2+W3+irac )(wad+w 3+i adT

al ax2 i ax3

+ d ab d bc d cd d da
* (wabwirab)(wac-W1-W2irac)(wad+w3+i adT

ali a2 ax3 U

+ d ab d bc d cd d d (2

where the sign on r is determined from the causality condition. This

third order polarizability and the first order one (Ref 48:95),

p(3) (W) 1 1 O dab dba + dab dba

UK baa wab+w+irab wab-w-irab (E30)

provide the complete set of polarizabilities necessary to describe

third order processes. It is worth noting that r is the linewidth and

that only for those cases where a frequency wi (or linear combination

of frequencies E wi) is close to a transition frequency wab does rab

become a critical term. For the case where no resonance occurs

rab may be ignored with little effect. When all rs can be ignored
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the properties of overall permutation symmetry and time reversal sym-

metry (Ref 48:77-94) then apply. When r must be retained, these two

properties do not apply. However, since the hamiltonian operator, H,

used in the derivation of p and subsequently B represents a dynamical

variable invarient under time reversal, t- -t, it is a real operator

in the Schrodinger picture. When H is real, the eigenfunctions of

are also real. For the case of no d.c. magnetic field, H is real and

therefore invariant under time reversal (Ref 48:92). A consequence of

this condition for H is that with real eigenfunctions the dipole

matrix element,

dab = <aid Ib> (E14)

has a useful property. This property is derived as follows

(dab)* = (<a I d I b>)* = < Id*aIa> = <bId I a> = dba (E31)

Since the eigenfunction for states a and b are real and d is real, Eq

(C6),

= (E32)

(dab)* = dab

Equations (E31) and (E32) yield

dab = dba (E33)

Consequently

P a P a a IU(E4dab dba = dba dab = dab dba

when there is no dc magnetic field present (the dipole approximation).
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Appendix F: SRS-S(1) in the Monochromatic Case
IJj a 2 a3

In the monochromatic case with no electronic resonances, the
depndace f SRS-S

dependance of p on (w',w-,w... ) will take on a very specific
Pal C2 a3

form after the integration over frequency Eq (4.45) is performed.

When the fields are monochromatic; Eq (4.6), this form is

I pOfIa2 f*a1a3 o a2P *03EI
- p1 1 g g

p SRS-S 0 O0 -W,W2 W2,-Wl Wl,-w2 -W2,WI

iala 2a3  6fi3 (wlo - wI + W2 irlO) (Fl)

where the f and g factors of Eq (4.56) are given by

r a2 a2 U'

ia2 dob dbl + dob dbl (F2)
f-Ll, 2 wbo-W1 wbo+w2

al 013  a3  C11*
f.ala3 d ob d bl +d ob d bl (F3)
W2,_l= b wbo+w2 + WboW ](
a2L dob dbl dob dbl (F4)
grl--2 b 2 wuwb l + 2

.a9 al dob dbl + dob dbl (F)

g 2 wbl"w2  wbl+wl

These equations can be rearranged when the resonance condition of Eq

(4.2) is met.
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0

" -U)2 wv W10 (4.2)

With the definition of wbo and wbl, the resonant condition provides

wbo = 6b - wvo  (F6)

Ib = Wb - &v = Wb - vo - (Cv - 6Vo) (F7)

wbl = wbo Wlo = Wbo - (wI-w2) (F8)

These last results applied to Eq (F2) after a change in the order of

the terms, yields

*I 2 dob dbl dob dbl
-b [ 9jblw2+w2 wb-Wl (F9)

a j2 P I a2

fa2  LOb dbl + d ob d bl
f'l1w2 b wbl+wl Wbo-Wl (FIO)

This last result, Eq (FIG), is proportional to the ordinary Raman

scattering (ORS) complex polarizability (Ref 83:114), p*wl
aL2 Ip

6 la 2  = p*w1  (FII)
f-W , 2  -a2 P

Similarly, Eq (F3) becomes

a3  a1 aI1  a3
f *1C3 dlb dbo + dlb dbo

*3 L wbl+Wl-w2+w2 Wbo-w1 (F12)
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Q3 01 CLI ~3
0110 fd~i l db d bo + dilb d bo I

b~2-l LwbI+wl wbo-Wl J(F13)
This is proportional to the ORS polarizability p"w'

ala 3

f*atla3w = Ms pWl (F14)
W231 'Mla3

For the g factor terms Eq (F3) reduces to

a2  P' I a 2
Q21d d d obd

Lw,-2ob bi + ob~ww bF15
b wbl+wl wboW+22(F)

a2  P' j a12
aL2 1 d ob dbi d ob dbi

bw9w Lwbl+w1 +~ o~ J (F16)

gw*w2= M 21 ua 'I2  (F17)

And, from Eq (H5),

03 aI1  a 1  a3

a aIdlb dbo d lb dboF1
b _wb1+u"wo-lw2w (F1)

C CL dib3 dbao d a] d C

gli -w 2 ,wl lb + ib bo (F9
b wbl4~Jl whbo-wl 2(F

*0301 M = w f*ola (F20)
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Thus, for monochromatic fields (or nearly monochromatic fields) with

frequency differences very near a Raman active resonance such that Eqs

(F6) through (F8) hold, the f and g factors are equal to each other.

They are also equal to elements of the ordinary Raman scattering

polarizability at the frequency wl. Long (Ref 83) relates these

polarizability terms to the Raman scattering cross section in a

classical derivation. A similar relation is obtained in this work

using a quantum derivation which was presented in Chapter V.

For the multifrequency field case presented here, the equality

between the ordinary Raman polarizability and the f and g factors

apply only near Raman-type resonances and should therefore be applied

with caution. When the relation can be used, however, Eq (4.57) for

the third order polarizability simplifies to

(P0°-P 0 P W1  P *(1
SRS-S (_1;_2 2) 1 00 11 (F21)
p la2-3 6h -lO-)l+w2 -irlo

It is important to note that the intensity for ORS and hence the dif-

ferential scattering cross section depends upon products like

[P Ix [p* ].  In this product the indices are identical. Thus

only when the product in Eq (F21) has the form of E [p ] [p ] will

it contain the exact Raman scattering cross section. Under the

multifrequency conditions of

6f + 6f-= 0

6V + 6 0 (lO2Wv) (4.39)

the third order polat.-abilities derived are near the Raman-type reso-

nance. Therefore, the results obtained here concerning the equality
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of the f and g factors may be applied. When this condition fails to

hold, the equations for the ORS polarizability are not readily

identifiable.

I2

f .

\

4
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Appendix G: Resonant Polarizability Equations

The expressions for the resonant polarizabilities derived using

the approach of Chapter IV are presented for each of the central fre-

quencies wi,W 2 ,W3 and W4. These are given in four tables that follow:

(1) Multifrequency and multiresonant, f 0 g

(2) Multifrequency and multiresonant with Raman Polarizability,

(3) Monochromatic and single resonance, f = g

(4) Monochromatic and single resonance with Raman polarizability,

i U2 fg

I
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Table G I

Polarizabilities for Multifrequency and Multiresonance

-1 6' < w (wl+ 6

SRS-S11
tic I (a2 03 6h 3  V ,j w~ V - W --w ~

v ~V vJ-

CARS1 1

VI ~1 O2a'3 3 v,j w Vvj + WA- + W- + i j

0P f11c2 AAV *'1 Q 3  0, OL2I U - ~

+ V -LA)LA -W, -w p v (A), A) gJ1w, (I

w j - w - A - ir V

SRS-P_1
(-p Pal 02 a3 w 6V,j w + w' + w- + ir

Otl a P a 0 CLal O2 Ij
x [PO f " V f 1 J ..A(V) - pg'....iv, g AA (v')]
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Table G I (Continued)

-1 6i t5 w < i+

CSRS - --- 1 E
p1J1 12 C13  s 9w6Vi 3V~ w ,,J - W,- W - ir Vv

[po f~3 _ V f*Clla2w~v - *"Ii ~ g 2" (V)]

V w w- Wv W -w , wJ

[p f" (V) f~ l I (v) - Pv g -(V) g 3a 11(v)]
+ V~ - W wW,-W ~ W ,W

-~j W, - '- ir v

CMRS11

Pal~a36tf V,j w -v + w + Aw + i jr

x" W, _W p~v - -WI _2 -W' _WW"
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TABLE G HI

Polarizabilities for Multifrequency

and Multiresonance (Raman Polarizability)

- 6j < w < W, + 6f (f =g)

Li *W

EUp 0 - ,O-) P p
SRS-S 1V V a1093 0211

llal120L3 6K1 vJ wA V wj w - , rAV

p (%l2C (-W;WA,WAA,W, VJ 6

... A *-W 
p A ,p*

L V AV + w + A + rV AV + - A -1 ~ W - i r V j

[(0o - 0o) pw *-W j

SRS-P iV V IM2i a3c 1 C'l

v a 366 v,J w V j+W, + wA + i1V'v

ICSR S (P p

ppaa (-W;W"AA,WAAA) 
V

1 3V,J 6Ml

WA, *Wi W", *

Po~~~~l ~ a2pC 'Pl 3pa2

wI V V - , - W A - i r v V V V WW A i V A V 1 J
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TABLE G II (Continued)

-, W5 W , + 1 4 (f 9 )

pCMRS 1-;'W , . v v VO2 a3al

Paaa hvJ Wv j+W,+ +i v vJ

where p~j =p (v,vi)
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70.7,_

Table G III

C Polarizabilities for Monochromatic and

Single Resonance (f =g)

(0 O f" f

pSRS-S (W W22W1 00 -- 1 -W1 9W2  W 2 ,9J 1

CARS 00- 11)

p al 0 a3 (a 2 ;-W1 9W21 9W3 03 3

Wl1 .wl+w 2+r 10 w1o+wl-w3..1 r1

(0O 0 f a1 0 3 f *u 2

SRS-P 00 p1 wL3,wl WisW3
p I a ' a3 ( -W i ; -w 3 , w 3 , w l) = 6 3w o w ' + l

(P0 
0

CSRS 00-011
ptjaL3 (-Wl ;-W4,W2 ,W 2 )-= 6r 3

fp3 f *a11C 2  f li 2  f*~

-WIW2W41W2 + -wl,w2 +W4+,W2j

(p, f 1 a3  f hj2

pCMRS -l"2w3W) 00 11 -w2 ,w4  W1,-W 3
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Table G IV

1oiarizabilities for Monochromatic and

Single Resonance (Raman Polarizability)

W W1 (f =g)

(0 -P ) p w1  p *Wi

pSRS-S (-l-2w9l= 00 11 ala3 a2

1al a2 a3  6h1 w o 1 +1 W2 j 1 0

pCARS (-,;W W ,3= 00 11

Ua C2 a3 (w;w, 2 w) 6h1

p 3 p*W 1  
W3  W

ua3  '32 O ala3  a2 'w L10 - 1+w2+ir10  + lo'+ 1W 3-r 10]
0PO0 W3  *W 3

SRS-P 00- p 11 pJQ2 Paa
P (-Wl;-w 3 ,w 3 ,wl)= ii ___________

vaa36K1 w L-w3+w 1+i r

pCSRS (-l-4",2= 00 11
JLIa 1a2 a 3 (-I-L.J, 2 = 6h

p 2 p *l W2  p *W1
a12  a3U a1a3  L2j.U

lo~4-2ir1 W1+w4-w2-irlo

* W2

CMRS p3o-11 Pa2p3 1
ual C2 a3 (1 -2W3946h1 wl0 +0JL+- 2 +i1f1 0
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Table G V

Polarizabilities for Multifrequency and Multiresonance

W2 6 < w < W2 +

pSRS-S +-; O o +.1
(Wl.2 (1 ,w')o w + W,+ Aw A + ir

[po fw, WA(V)() -pt. - I ..- (V,) g- ('

CARS 1
Pal C2 a3 6M' ,J wVAw + w' + w- + ir VV

aa, W -W WllVA)]x [p f jicx(V fwV) - A 9- WA(V) J

0 la2 () 3O2 l*
IpC)fA A()f .. (V) _ p Q 19- (v g 3 IAVI

+ V w ' ,- v w W w J
w + w' + w- + jp
VAvJ wvj

CSRS 1 1WA" AA)

jj l a a 6 3 vv V v J + w - + i v j

[p rQ2(vf' ~Av - - "M g- ... (v-)
v w w W, W V U) ,ww~w

ap f"1 a O3 0a2 1
[p fW wI(v) f-W- .. AA(V) Pvlg ..A(v)g. WI.(V)]
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Table G V (Continued)

-2 W <W +

p CMS (-w;w'gW" tw
vaa2036h 3V,j W vv - , -_ ir Vvj

"in f aIa *31 (V)[p0 f"'* ,(V) f-: 3  (V) - p0 - ga2' A(V-) g (-)
V WS -W .- Wk V W,03 (WW I

SRS-SS 1_______________
p (-;w",w..-

Ila 1 a 2 a 3  6h13 V,j W vJ -j W W - r IF v

x [p 0f Pa (V) f*'' al3 (V) -pO- g'2 - (v-)g* -' (viI
V WW - W V, w,-W
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TABLE G VI

Polarizabilities for Multifrequency and

Multiresonanca (Raman Polarizabil ity)

W2 6i'W <W 2 + 65 (f g)

SRS-S 1 v Vl003a

llXlO2 L 6 ,J WV~v +AJ + + iF VAVJ

CARS S

Paa~3V,j 6hl

p a2  Pa3al pIJia3 pa2 a,L VAv+ W, + W-+ ir A' -' + wA+ w- + ir 2- j

(00)

CSR S (v pv
p -W;W ,WA ,uY- )= E

ualM2'3V,~J 6M

W - *-w'W" - WK IJ03 p 02011 '1013 aO2 P

W Vv+ W, + WA, + irAV' WAV' - WA - - ir VA

W- *

CMR (-w;W AA W- AAA)= 1 E ~ ~ p -~3 ~ I

UL1203 6h v,J W A -j W - -rv w - j

rWo W*

where p1j =i p1  V,VA
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Table G VII

Polarizabilities for Monochromatic and

Single Resonance (f = g)

SRS-S (0 0 11f1W2W9W

p10-W 1

CARS (PO -p )
p CR (-w2 ;-w3 ,w,WW)= 00 i

f lO3f P2f C1'2f 3
-iW 9 W 1  + -W3,,w 1 ~2 9 W

w 1-W +wliF 0 w1o-3'1wI i 10I

p CSS (-w2;-w2,w4,wl) 0011

Ii ~ ~~ *,(2c36

f t12 f *tt3f P02 f *
-W2,W4) w 2 ,wl + w2,wL. w2,-w

CMRS 0 0 11-2 W wl.-3

1l a2 c3(w;ww43) 6M3~ w 10w 3 +wl-ir 1 0

SRS-SS 0 f Ua2  f*,a

p SR-S(-w 2 ;-w4,w,U±,wh2 )= 0011 w2 ,wL WL 1 -W

MC11 2 CL36 h3wl 1 -w 2+w4+ir 10
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Table G VIII

Polarizabilities for Monochromatic and

Single Resonance (Raman Polarizability)

w W2 (f=g9)

Wi *WI

SSS(p0 -po ) P p

pIC a2 I ( w2 ; w ,wj,~ 2) = hwI - Il2ro

CARS 00 01

p V &IC203(-w2 ;-w33 wlw1)= 00h

V W1  p*W3  
pW1 *W3

w 3+wl+ir1  + wlo-w3+wI +i F

(p 
0 -p 

0

CSRS 00

p 1 p*W2  p W1 p *W2

SR-S(p -p
0  p 3 p*W

CMRS00 11C IC 3 OL2 1

p (..w2 ;-wl..w4.,w3) = f W1-3+Lir
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Table G IX

Polarizabilities for Multifrequency and Multiresonance

W 3-
6 i < w < W3 + 6i3

CARS 1f3 vJ- -- i

X [p fLACl3 (v) fala2 ,(V _ a 3 1 V)ga2 AV)

1 9 gv, g ( i,

+ V 2 -W, *W -WV w-

SRS-P1
p o (-w ; i, w 3 63 V~ ~ j - W - - rV

1a3 0 12J* J0

x [P f~ ~(v) f , -(v) - p g1I "(V,)g ("I V)jV -w,W -W~,w V W,-w

paR 1012a, ~ ) 3 6K v,J w j - W -W ir v v

X P f - (v)-faC3 ,() P go'1 (v goa (V)] j
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TABLE G X

Polarizabilities for Multifrequency and

Multiresonance (Raman Polarizability)

W3 -6 <(h<W3 3+ (f g)

0 0

pCAR S (-;s - - = _____

liaata3V,J 611

p W" p *WA p W~lp

P U1a2 a31l '11 a1
I- I - irv W, W",~ ir L

0 0 W
up V ctA)PX3

~SRS-P (-;vw---~ 1 aEa a2U

Vala/a- 66i v,J wvv - W, - W" - Vv

pCMRS (-W;ww 9W- w v 1. Cll a 2 id

61 v, 'Wvv - (i (i l)

where pij = 1i(v
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Table G XI

Polarizabilities for Monochromatic and

Single Resonance (f =g)

w W3

CAR (0 0

p PC~~3(-w3;-w2 ,wl~w1 )= 00 3

x +
w t . + 2 - F1 w 1 -W +w2-ir 1

SRS-P (0 0 11 f3W W,
p P a o 2 3 (-w 3 ;-w ,w ,w 3 )= W61i3

W 3 wl i r1

p CMS (-w3 ;-w4,wlpw 2 ) 0 11 _W1W W4-2
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Table G XII

Polarizabilities for Monochromatic and

Single Resonance (Raman Polarizability)

W W3 (f g)

0  0
p(

W1  *W 3  W1 Wp p p p

x + a2 1 3  a 2u

0 W3 p*W3

SRS-P 00 Ca p p
p(-wj 3 ;-Wl wl,w 3 )= 0 i23Qj

Ij ~ 2O36 K W i 0-W 3+ChI -ir l o

0 0 2  *W3

p CMS (-W3 ;-Wt,wi W2 ) 00- 11 MI3 CL
UIiU 2 Q3  66i lW2W4rl
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Table G XIII

Polarizabilities for Multifrequency and Multiresonance

W4 - 6  < w < W4 +4

pCSR S 13(ww ,w -w .

Pa 1 L2 6fi V,J w V-i+ W + W + iFVV

X [, U13 ()f. J2 _(V) _ P ga (V,) * (v)]1

V w Ow Wqi V -ww" W,W J~,)

[0o fla2_- (V) f*I k13 _(V) _ p0 ga2 a, (VA) g* a3Ii p ~
+ V W1w ,-U) V -WI -9 -wA, IV

(A. +WA + W-+jPr

CMR S1
p ia a2a (-W ; WA, V~ wV 1Vj + w A+ W - + ir v ,Vj

x2" (V) f "I 0I) p~ ' ' (VA) *0

V w w -w V - - g0 l*W ) w

SRS-SS1 1
p (-w;w,ww v~ +~+i

Pa 1 L2 a 3  6h3VJ wV+ A+-+irVVj

x[p fl l 3 ..(v) f pa g3,1 (*a v)
V w w IW V V -W ,-W W A
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TABLE G XIV

Polarizabilities for Multifrequency and

Multiresonance (Raman Polarizability)

W4~ < WL <.W4 + 6i (f g)

p CSS (-w ;W,w" ,w.)= (P Z

t1CLI OLC3wJ 6

3 2 1
1w vv+ W, + w'-+ jr -' w - + W, + W- + i '

P (-w;w,w,) vJw ... +w I +w --

1jal~ ~ ~ (V a3~ 6hvJ 3Q +w+ -+ir1 v

piSSS (-w;w,w-,w~)- v Ea2a
Va 12 3 6hi v ,J wvv + W, + W- + irN(v

where p =pwi (v~v')

II
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Table G XV

Polarizabilities for Monochromatic and

Single Resonance (f =g)

W = W

o o

CSRS (Poo-P i)
p ( C33 W4 ; W 1 W2 9 W2)x 6f3

f 1a3 f ~2 E102 fIICI3

-W 1 OW2 WJ4,-W2  -W19W 2 W49-W2

(J)o-wl+w2+1r 1 0 wl1 0 w 2+2 1 1 0

(p0 P0) fala2 f *1Q3

CMRS (w;3W1W) 00 11 -w3,wlW1  4'W2
p66

op0- 0 fal1 3  fUL
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Table G XVI

Polarizabilities for Monochromatic and

Single Resonance (Raman Polarizability)

WW4 (f~g

op0- 0
CSRS 0

F W2  *wi *Wl

X Lo1W 1+W2+r 10 w 1 -W I+w2+ir10I

pCMRS -W"wswq2= 00 11' 1=3 a
Ual~a36h w lo-W3w~r1

o 0 PW2  p*W~2

pSRS-SS (-4-2w94' pp p0- 1jj2 a
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Appendix H: Coordinate Rotations

The transformation of a rotating molecular coordinate system, I,

to a fixed laboratory system, L, can be carried out by a series of

rotations starting out about the laboratory coordinates. Similarly,

those quantities that transform as coordinates may be expressed in

either coordinate system by use of a rotation transformation matrix.

The Euler angles selected are e, p and W (Ref 92:285). The transfor-

mation from the I coordinates to L coordinates is obtained by:

(1) A rotation of angle ¢ about the laboratory axis Z to produce

X', Y, and Z=Z where 0 < p < 27. The matrix representing this rota-

tion, R(p), is

cos 4 sin 4 01

Ri(f) =[-sin cos 01 (H1)

0 01

(2) Next, a rotation about the Y' axis by an angle e to produce

X", Y" = Y' and Z- where 0 < 6< r. This rotation matrix, R2(P),

is

[Cos e 0 -sin e]

R2(6) 0 1 0 (H2)

Lsin e 0 cos e

(3) Finally, a rotation by an angle, , about the Z"axis to

give x, y, and z = Z" where 0 (' < 2,r. The rotation matrix, R3 ( ),

is
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I

[costp sinip 0

I!R3(M) -sin' Cos' 01 (H3)

L 0 0 i

The combined rotations through the angles 0, 0 and P to obtain

the desired coordinate transformation from the laboratory to the mole-

cular coordinates is obtained by the product

R = R3(f) R2(0) Ri(€) (H4)

The matrix multiplication is performed using Eqs (H), (H2) and (H3)

to yield

cos cos 4 cos ' cos 0 sin 4 cos P -sin 0 cos
-sin sin ' +cos 4 sin

R = -cos 0 cos 4 sin ' -cos e sin 4 sin ' -sin 6 sin 'P (H5)
-sin 4 cos ' +cos 4 cos

sin cos 4 sin 6 sin 4 cos 0

The coordinate transformation is then

x= RX (H6)

where

x= and X= (H7)

A quantity that transforms as X would be obtained in x by

a= RA (H8)

Since the inverse of R (denoted by R"1) exists
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R-  R= E =R R-  (H9)

where E is the unity matrix. Then from Eq (H8)

R-a =R RA= EA=A (H1O)

or

T= R - a (HII)

But the matrix R is unitary and

R- 1 = RT (H12)

so that

A=RT a (H13)

An alternative expression to Eq (H8) is to write

3 
Aa= Ru Au  = E Ru A (H14)

P 1U u=1 14 u

In this notation, the greek index represents the molecular coordinates

while the english index represents the laboratory coordinates.

The lower index on Ru indicates the row in R and the upper index the
P

column
column, R row Equation (H13) can be written as

SRT) u a (H15)

But

(RT)u = Ru (H16)

so that

A =Ru a (H17)
u U U
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Appendix I: Orientational Averaging

The average of the dipole moment can be reduced to a con-

sideration of the average polarizability. Equation (6.10) shows that

the polarizability in a laboratory coordinate frame can be defined as

Puabc = (RT)" (RT)c (RT)I (RT)' P (II)

where Eq (H16) has been used to obtain the rotation matrix elements.

The orientational averaging of this polariability may be written as

(RT) (R RT) (RT) c Pp Y (12)Puabc u a

where p Y is independent of average orientation when it is evaluated

in a coordinate system fixed to the molecule. Thus, the average

polarizability which depends on the average of the rotation matrix

elements, Eq (H5), determines the average dipole moment. The average

of the rotation elements can be evaluated by considering the form of

the polarizability and using the matrix elements of RT. The average

for both the first and third order polarizability is obtained here

under the assumption of random orientation

f 1 JO f(8,i,) C (e (13)

with

fle,o,) = sin e (14)

The first order polarizability is a second order tersor, p
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which is assumed to be evaluated in a molecule fixed coordinate system

(greek indices). The polarizability may be transformed to a labora-

tory coordinate system by

Pua = (RT)u (RT)a p (15)

which is similar to the third order relation of Eq (11). The average

is then

Pua = (RT)u (RT)a PuL (16)

Since p l is a constant, it can be formed from two constant vectors,

and B, of arbitrary orientation in the molecular system.

pa = A B (17)

But, the average of p is invariant and linear in both A and

B . The only invariant of A and B isA B. Thus

!a

=k,( ~ k, (A B 6 a) (08)

where ki is a constant to be determined. It is assumed that there is

no symmetry axis for rotation so that no components (e.g., Al and B1 )

are invariants. This is appropriate for a gas of random orientation.

If crystals were being considered, then axial symmetry would have to

be taken into account when determining the invariant quantities.

Similarly, the average in the laboratory coordinate system may be

written as
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Pua k 2 F) ) k2 (AuBa5 ) (19)

where k2 is a constant. The two values of Eqs (18) and (19) must be

equal under proper averaging. Thus

k2(AuBau) = k,(A B 6CZ) (I10)

or with Eq (H15)

k2 (R)u A (RT)aB6a ) = A B 6 (Ill)

After dividing by k2 and multiplying by ua this becomesu

(RT)1 (RT)O AB = C 6 6 a A B (112)u a u u

But T and T were chosen to be constants independent of the average, so

they can be eliminated from both sides of the equation with the result

(RT)P (RT): = C a (113)

The constant C can now be evaluated from specific elements of R using

Eq (H5).

T3 RT
3 = 12 12W fW 1I1

R)3 R ) f--d odi J de COS2e sin = (114)

(RT) (RT)2  -- - d de sln 3e sin 2  1 (115)

2 2 8W 0 0 0
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Thus C = 1/3. The correctness of Eq (113) may be checked further by

considering

(RT)3 (RT)3 1 i2 s2n 0i2 3 8----- o Jo Jd e cos e sin2e sin * = (116)

The final result of the averaged rotation matrix for the first order

polariability is

(R T ) (R T) a (117)

The third order polarizability p mJy which is a constant in the

molecular system may be constructed from four arbitrary constant vec-

tors A, B, C and D. This polarizability may then be written as

S=A B C8 D (118)

The invariants of these vectors are ( •), (T • ), ( )

(f • C), (T • ) and (C • U) again assuming no symmetry axes are pre-

sent for rotation. The invariant nature of the average of PaoY

taking into account the quadralinear dependence of P,BY on the vec-

tors can be expressed as
I

P-100= k1( • F)( • D) + k2( • ) (F • U) + k3(A • U) (3 • ) (119)

or

P : k1 (A B 61)(C D 6+) + k2 (A C 6 )(BD 6Y) + k3 (A D 6 Y) (B C 6B)
IiaOy Ii aU B Ii B )1 a a Ii 11 a

(120)
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W1

p (k163 6'Y + k2 6  6y+ k36 60) A B C D(
- ~ posay 0 0 ia Y(2)

Similarly, the average in a laboratory coordinate system may be writ-

ten as

p (k4~ 6 6 + k5 6b 6 c k6C6 B D (122)
uabc u b u 6a 6 u 6a) AuBaCbDc

where the k's are constants to be determined. Equation (122) may be

rewritten as

p(46a 6c + 6b 6c +k c b
Puabc k4 u b + k5 6u 8a + k6  u 6a)

x (RT)u (RT) (RT) (RT)y  A B C D (123)
u ~ ~ i a c Ij 0Y

In both Eqs (121) and (123), A B C D are constants independent of the

orientational averaging process. Since these two equations represent

the same quantity after averaging, they may be set equal

(k 6a 6c + k 6b 6c + k 6c 6 b) V'UUY = (k 6 c 6y+ k 68 6y+ k 6
Y 60)

u b u a u a uabc ij B 1 0 1

(124)

4 4where

Ruabc ( a b ) (125)

and A B C DY have been eliminated from both sides of the equation.

Equation (124) may be rewritten as

VIBy=- (a1 66+a a +a 6 u 6 a)(k 6 a 6 Y +k 60 6 'Y +k 6*Y 60) (126)
uabcc b c cb 1V0 2U 31
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where ai is the new constant resulting from the ks. Expanding Eq

(126) one gets

Vpaoy= C 6ayub + C2 syub + C yub
uabc jBac 2 Jaac C31 ljac

c y ua + o226Yua + C 6youa

+ C12  Bbc + C22 
6 b 3 pacbc

+ C13 6
ayua + C23 6 yua + C 6Youa (127)
i+ cb 3Pacb 33 pcb

where

6 mnop 5m 6n 60 6p (128)

ijkl i j k 1

The Cij are new constants to be determined using the matrix elements

of the rotation matrix, Eq (H5). In performing the calculation of the

average VP01Y for a specified set of indices, Eq (13) and (14) areuabc

used. Also, many of the averages with different indices are the same

permitting the selection of the one most easily integrated. For

example

4 3333
3333 C C1  (129)
3333 ij

and

3333 1 f2W l 0.o Cin 4
V3333  d- d8 d sin (130)

ff 2  0 0 5

but C1 is also equal to any V where all of the upper indices are the

same and all of the lower indices are the same (e.g.,
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3333 3333
C1 = V2 2 22  V 1 1 11). A check of C1  can then be performed by

33332w I2w I
. - 1 d O d jde sin 5e cos4e (131)

8111 82 0 0 0 5

This value of C1 will be used to check the values of the other C. 's

later. Now

1122 3311 2233

C11 = V1 12 2 = V 1 1 3 3 = V 3 32 2  (132)

The last two averages in Eq (132) are used to obtain C11 and to check

the value

3311 2 2 5 S2 S2 2
V1133 =d Jdo sin 5e C0S2 € C0S2 p = 15 (133)

2233 1 f2W '2ir fW
V3322= 0 JO JdO sinSe sin 2p sin 2 p = 2 (134)8W23322o8o2 15

Thus, the value of C11 is

2 2 (135)

Repeating this procedure for the remainder of the Cij's yields the

following results

Vvaay =. 2 ayub 1 8yub 1 youb
uahc 15 6poac 30 6paac 30 6 1jaac

1 ayua 2 syua 1 youa
'M 61jobc T5 6pabc - 6pctbc

1 ctyua -1 6 oyua +2 6 youa (136)
- pocb 3 TO Vcb 15 pacb

From the definition of Eq (128) and after factoring, Eq (136) becomes
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(R (R (RT R (RT) - 146'u6yb 61 0by 6y 60)

__~ aR) c 30aTi ia~

16u 6a (66 - 46 O6 + 6y
~U b c i a 11 a

16u 6a 466a 65y + 60 y' - 40 0)
To c b pi 0 p' a U1 a

= RU Ra Rb Rc (137)
p BY

This result can be checked by using Eq (129)

C1 = Cij

1
where C1 =

From the sum of the coefficients in Eq (136)

. Cij 5

The result is in agreement with that of Monson and McClain (Ref

93:31).

I
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Appendix J: Third Order Polarizations

The third order vector polarizations for the processes SRS-S,

CARS, SRS-P CSRS, CMRS and SRS-SS determined by the method of Chapter

VII, are presented in these tables. The format is to supply in tabu-

lar form for each frequency, W1, W2,W3, and W 4 the third order suscep-

i i itibilities (x1122, X1212 and x12 2 1), the vector elements, VI (in the

form (a,, • a,,,) a,), the field magnitude c, Eli cIII, and the

multiplicative coefficient (K) for the equation

pi(w)= z K .fdwdwdwi, + NR V
St -- ®- t

+x i  (- ;W"',"'") + xN VII
212 1212 t

i + X 7
2221 VIII

t

X E W)£: (WI C (W.. 6 (W-W'-W-w-) JEI " ) II( " ) III( " )<w "' ") J1

where t is the set of transitions under consideration and is deter-

mined by the quantum number set (v,J v',J'). w is defined to be the

sum (W' i&).
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Table J I

Third Order Polarization at w, 6 w w, +

1.SRS-S (w1) C2 (-W')E2(w")E(w .. K =6

SRS-S = flt -1 [3.y2 (w--,w)-562  (fW )]'

x1l (- W'9- .. 6hD 45 12 s t

SR22S---- - -----) 1 [...± . 45a s (w-,w)-W s ( WIw )It

x12  6hD 45 SSt

xSRS-S nA t 1 [3y2 (w"',w)+562 (-,W)JtW

X1 ~2  (~~w~ ,w6hD 45

VI (a2 - al) a2 :VII (a2 *a1) a2 Vill (a2 *a 2) al

D (W (t -W,-W-ir t)
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Table J I (Continued)

Third Order Polarization at wjj- 6f' < w < wi + 6

2. CARS (wl) : c (-w')E 2 (w-)E 3(w'-) :K = 6

C A R S2  ( -w ; w , w -) - t3 2 ( " , w ) 5 " -
X12 6fi 45DI c C

+ 1 [3 y2 (uw-w)-56
2

45D2  c (w w)t

C A R S =-~ w w - w - t 1L [ 3 2 ( A - , )+ 56 2 ( W A, , W , )) t

+4--L[45a 2 (w'-,w)-2y2 (W,,,w )I

45D2  c

V1=(a 2 *a3)a, vII (a, a3)a2  Viii = (a a2)a3

D,= (wt+c.+w"+irt) D2 (wt-w'-AA't
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Table J I (Continued)

Third Order Polarization at wl- 8V< w <_w + 6f

3. SRS-P (wl) E3 (-W')e 3 (w-)E:1(w) .. K =6

xSRS-P (--J;w'w,w---- = t -([3 ' -w' )-562 (W,, _-LW,

1122 6fiIJ 45 P P

x R- (-w;w'.w----- nA -i. [45a 2( w",'- w')-2y 2 (W-< - W

1212 6flD 45 p t

XR- (-w;w' ,w'-----.. [3y 2 (w" *- w')+562  
(-

12' 6M 452  p p wit

VV, = (a3 aj 1  3*a)a3  VIII, (a3 * a3)a,

D = (wt+w+w"'+it)

4. CSRS (wi) :E4 (-W')c 2 (w )Fc2 (cA... K = 3

xCSRS (-~'w , . ~ 1[3y2 (w-w)-.562 (,,)

11l2 2  
MD~w,~ 45 r ru- r

C212 6fiD 45 r r r)5(~,)4

xCSRS (-~lO"w..)=xCSRS (..w;w',w",w..)
1221 1212

I (a2 'a2)a4 VII = (a4 * a2)a2  VII 1  (a ~ 2)a = 11

D = (wt-W'-w" -if t)
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Table J I (Continued)

-- Third Order Polarization at w, - w5ji < i + 6j

5. CMRS (wi) :E2 (-w')E3(t)E 4 (w .) K = 6

CMRS (A t 1 [)562 ( '-
x (-w; W, w. , - [y 2

1122 6hD 45 m '

CMRS (-w;w',w-w---= n. [45am (w ,-w')-2y2  (wt
1212 6hD 45m

I

CMRS (-w ,l-" , 1 3Y ( ,lw - )+562 (W ,-_W )] t

1221 6hD 45 m

VI = (a3. a4)a 2 : V = (a 2  a)a 3 V = (a 2  )a4
III

D = (wt+wA+w'+i rt )

2K
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Table J I I

- - Third Order Polarization at W2 - ~<~ < w2 + 6

1. SRS-S (m ) El (-W')El(w-')E2(w.) K =6

SRS-S-------- =A ft -i [3y 2 (wj56 (C)'--)

122 (ww 6fiD 45 s St

*SRS-S fl~'w"w.. At - 4a w --- y W,9w)

1212S- (-w;w.w-,w .. ) = - t - [3ya2 (w- -w)+5 2 ( "-')

1216flD 45 s S w)t

V, = (a, * a2) a,1  VII = (a,1  a2) a, V III =(a, a,) a2

D = (wt41 +w"+it

2. CARS (W2) F (-WjC-1 (W-)c(l/' K =3

CARS =A 2±t I..L[y ,.~

(1122 ~ 6fiD 45 c Ct

xCARS -- = t I

4GfOD 45

xCARS (;&w-"------ CARS(;ww w)

^. ~ * ^ 
*

V1  (a1  a1)a3  V 1 = a3 * a,)al V1 1 =a 3  a1) a,= V 1
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Table J II (Continued)

Third Order Polarization at w2 - w _ w < W2 + 6i

3. CSRS (W2) £2 (-W')E4(W")E£(W.) K = 6

CSRS (-W;w , , ) - -- L [3y 2 ( _w )_56 2  (w',-w )t
1122 6' 45D, r t

45D 2  r r

x (___ )-2
45D3 2  (/,)5 2 (-

,XI1221CR _; ,m .m .) 6K 45D 45 r (r ,_ ).y ( - )t

+ I__ [3y ( ''w 56 A,, ]

45D2  r r

^J. ^4. ^ ^^

VI = (a, al)a2 VII = (a2 al)a4 : VII I = (a2 * a4)a,

D = (wt+w'+wA'+irt) D ( t-w-w A-ir t )
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Table J II (Continued)

Third Order Polarization at W2  - S W2< +2 6i

4. CMRS (w2) El (-W')C 4 (w ')C3(L/). K =6

x CMS(-W;Li< w ... ) = -a [3y2 w-,)52 (-,W]

X CR (-w;w,w',w ... ) = ....A [45a2 (~'W,, )-2y2  (W,,)
1226ID 45 m m

CMR (-w;u
7
,w 3w ) .. 1 [3y 2 (w"',w)+562  (W"w)]

1221 6hD 45 m m

V, = (a - a3)a, V,1 =( 1 a3)a4  V =(a, 1  4a

D (wtww"'-irt)
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Table J 11 (Continued)

- Third Order Polarization at W2 - W2"( +

5. SRS-SS (W2) :C4 (-W')C 4 (w")C 2 (w'"') : K = 6

SRS-SS (-W;0" -w. = -i [3y2 (w"',)-562  (w-,/ I

SRS-SS (-w;wqw-,w-) =~ [45a2 (w'',.w)-2 
2  (W,,,)

x R-S(-w;w,ww ') .. n&. [3y2 (w---,)+562  (w--wl(221 6h q q wJ

v1  (a4* a2) a4 VII (a4 a2) a4  VIII (a4  a4) a2

D =(wt-ww"'-irt)
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Table J III

- Third Order Polarization at W3 - ~(w <W 3 + 6

1. CARS (WO E:2 (-w')El(w, )F-(w. K =3

xCARS (-fl,,,w. At [3y (w--. w~ )-6 (C-- w
1122 31 D 45 C C

qCARS nAt 1
x (WW ",w ...

1212 6tiD 45

*CARS CARS
X 1 2 2 1 (-W ;w ',&~ w . X1 2 1 2 (-W;W',W",w.

v (a =a V1 = (a * VIII =V (a~ a, )a, =V 1

D =(w-w-w'-irt)

2. SRS-P (w ) El (-W')E 1 (w")e 3 (w.) K =6

xSRS-P (ww,"w..)= nst -1 [32(w--.. )-562 (W---,w )
1122 Mh 45 p t

SRS-P =A t 2 (w"',w )-2-y2  (w, ,w 3
x (-~w'w",w...) =[45a2x1212  Mfl 45 p P

xSRS-P =-;, w w.. nt 1 3y (w-,w )+562 (W"'",w
1221 6t'D 45 p P

v I (a1 *8)a, VII (a,. a )a, v11  )a(1

D=
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Table J III (Continued)

Third Order Polarization at W3~ < w <W3 +

3. CMRS (W3) : C4 (-W')E1 (w-)E 2 (w) K = 6

xCMRS (-~'w , .. nt- [3y2 (w"'w,-5 (W,,,W)Jt
1122 6hD 45 m m

SXMR (-;~ w~,AA) "t -1.~ . [45a 2 (w'-,w)-22 (W~,W)]t
1212 6flD 45 mt

XMR (-w;wA,wAAA) "t -.. [3y2 (wA".w)+562  (W,,W]

V1=(a,. a2)a4  V1  = a4 * a2)a1  V =(a a )a2

D =(wt-w-irt)
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Table J IV

Third Order Polarization at W4 6Q < w _4 +

1. CSRS (WO.. I (-W')£2(w")E3(w.". K=

xCSRS = flAt 1 [3y5~2 ( w'A-')52 W,_,

1122 (w 3t D 45 r r

xCSRS (.W ;W" , Aw ...-- --- -- t 1

1212 6fD4

CSRS CSRS
x (-w;w,w,WA) = x -w'-"..

1221 1212

V, ,= (a2  a2)a1  VII = (a, * a2)a2  VIII = (a, * a2 )a2'= V II

D =(wt+w+d'1irt)

2. CMRS (WO. £3 (-w')E1(w-)C2(w.) K = 6

CMRS nf& t 1
x (-w;w w ,w ) - [3y2W 'W -6 ",

1122 6fiD 45 m (m-)-6 (,V)It

CMRS (ww~----)=tJ
x -~w -"'"A [3y2 (w . 1w')+5 62 (W,,W,)]t

1212 6hD 45 m m 1

XC122 (-w;w w"--,w"') = fl- 1 45

12166D 45 m m

V1=(a,. a 2)a 3:V 1  03 (a' a2)al (a a

D ~ ~ ~ ~ I = =~'+"it
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Table J IV (Continued)

Third Order Polarization at 'W4 - 6iV < w < W4 + 64
*D

3. SRS-SS (W4) E2 (-w')C 2 (w')E4(w .) K 6

SRS-SS _= f (n"t 1 ( 'w ')-(62
x 12 (-w;ww ') - [3y2 q.u)..6 q .w1122 611D 45

SRS-SS nA .... .
x (-W;W,., ) = -i [45a (W ,-w')-2y2  ( i-' )Jt
1212 6M1D 45 q q

SRS-SS nAt
x (-w;ww',w-) - [3y 2 (w- -w')+562  (,- )]q (w1221 6D 45 q q

VI = (a2- a4) a2 VII = (a2 a4) a2  VIII = (a2 a2) a4

D = (wt'++A-w+irt )

I
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