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Abstract

A set of complete and unambiguous third order polarizations were
derived for multifrequency (broadband) Coherent Anti-Stokes Raman
Scattering (CARS) in molecular gases. The final equations were
expressed in a laboratory coordinate frame and were appropriately
macroscopic to facilitate the interpretation of experimental results.
These polarization equations were made applicable for a general
electric field vector polarization and any nonoverlapping distribution
of the electric field amplitude in frequency space. The derivation
started with the dipole moment approximation and two laser fields as
inputs. These two fields, the pump and Stokes fields, had their
central frequencies separated by a Raman rotational-vibrational reso-
nant frequency. The generated fields considered were also limited to
two; an anti-Stokes and a second Stokes. To more accurately determine
the CARS field amplitude, equations were also developed for five
related third order nonlinear processes; two parametric (Coherent
Stokes Raman Scattering and Coherent Mixed Raman Scattering) and three
nonparametric (Stimulated Raman Scattering at the Stokes, pump and
second Stokes frequencies). Coherence properties of the fields were
not included. The simplification of the general results obtained to
the accepted monochromatic equation was noted from the form of the
final results.

A semiclassical approach was used in the polarization derivation.
Both classical and fully quantized excursions were made where they
contributed to the understanding or clarity of the results.

Specifically, the induced third order molecular polarizability was

XV
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obtained from quantum mechanical perturbation theory. This polariza-
bility was then combined with the electric field present to define the
dipole moment of the molecule. By applying classical orientational
averaging to a random distribution of molecules, the gas polarization
was derived. This derivation was carried out in a laboratory coor-
dinate system and clearly established the role of each polarization
vector component. The polarization was defined by the set of
equations for each of the six nonlinear processes and the four

central frequencies.

From the equations for the polarization, macroscopic suscep-
tibilities were defined that depend on pseudo polarizability
invariants. These pseudo polarizability invariants were shown to have
the same form as the Raman polarizability invariants. By carefully
deriving the molecular Raman differential scattering cross section and
establishing the dependence of the average Raman cross section on the
same polarizability invariants, the conditions under which the suscep-
tibilities are related to correct Raman scattering cross section were

determined.

xvi




THIRD ORDER POLARIZATION FOR

MULTIFREQUENCY COHERENT
ANTI-STOKES RAMAN SCATTERING

I. Introduction

Coherent Anti-Stokes Raman Scattering+ (CARS) is one of the pro-
cess caused by the nonlinear coupling or mixing of four electromagne-
tic (EM) fields by a medium. CARS is used for the spectral analysis
of all media; gases, liquids and solids. When it is applied to a

(v molecular gas, macroscopic information (e.g., species concentration
and temperatures) and microscopic information (e.g., molecular fre-
quencies and structure) may be obtained. The most common form of

CARS developed for this application (Refs 1;2; and 3) uses three
intense and nearly monochromatic (narrow band in frequency) EM fields
from two separate laser sources at different circular frequencies,

wy; and wy. The field of greater signal intensity and higher frequen-
cy, wy, is called the pump field. It provides two of the photons for
the four-wave mixing. The field generated at the slightly lower inten-
s sity and lower frequency, w,, 1S called the idier or for CARS, the
Stokes field. It provides a single photon to the process. The Stokes

s field is produced by a tunable source which allows its frequency to be

{ varied (e.g., a tunable dye laser). When these two intense fields are

] TCARS is often defined as Coherent Anti-Stokes Raman Spectroscopy.
The terminology selected here is to denote the process as opposed to
the result.

e e P a . " P i PP S . P




I3 (wl)

Io (wz)
>
+'11(w1) + I7(wp)
Y
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(a) Collinear

Ih (wl)

Io (w2)

I1(wy)

I(wy) + Ip(wp)

I3(w3) T1(wy) + Ip(wp)

I1(wy)
(b) Crossed

Figure 1.

Depiction of Laser Beam Inputs to Generate
Third Order Processes
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incident on a sample (Figure 1), other fields are generated at dif-
ferent frequencies (e.g., second harmonic, third harmonic, sum and
difference fields) and at the same frequencies (e.g., stimulated
Stokes field). If the sample under investigation has a Raman active
vibration-rotation transition, one of the waves generated at the dif-
ference frequency, w; = w; + w; -~ wy, IS especially useful when

wp =Wy * oWy where ﬁwv is the energy corresponding to the Raman active
transition. This process and relationship is schematically depicted
in Figure 2. The field at the frequency w; is termed the anii-Stokes
field. The result of this equality is a resonant enhancement of the
amplitude of the anti-Stokes field. Further, the resultant intensity
of this wave will produce a Raman spectrum of the molecule as w; is
varied. Scattering under these specific conditions is monochromatic
CARS. This CARS approach, while highly accurate, does require each
experimental point describing the spectrum to be individually

generated.

Eg” (First Excited
Electronic State)

} Virtual States

y -~ (Vibrational Level)

Eg, v

] Egs v = v~ (Ground State)

Figure 2. Energy Level Schematic of
CARS Process




E. An alternative CARS technique to the monochromatic one has been
LC developed. This nonmonochromatic approach provides sufficient

g spectral data in tens of nanoseconds to perform the desired analysis
(Refs 4; 5; 6; and 7). This CARS technique has been referred to by
k!! several names; single pulse, broad-band, wide bandwidth, multifre-

{ quency and multiplex. In the research reported here, the term
multifrequency CARS will be used. In the multifrequency CARS

L‘ approach, a pulsed dye laser is used to produce an intense output over
a frequency range sufficient to span several levels of the vibrational

Q-branch (A J = 0, J denotes the rotational quantum state) of the

Raman spectra (of the order < 200 cm ~1). When this multifrequency
pulse is used as the Stokes input in CARS, the resultant anti-Stokes
output generates the Q-branch spectrum characteristic of the medium.
In this way, the real time measurement in a turbulent medium or of
other transient effects can be obtained in a medium by using a
spectrograph and optical multichannel analyzer.

To adequately describe and predict the spectral characteristics
obtained from multifrequency CARS in molecular gases, a complete set
of coupled equations for the third order polarization of the nonlinear
processes is required. Those nonlinear processes of the same magni-
tude as CARS are included to determine the effect of intensity and
population level saturation on CARS. Since field vector polarization
alignment can be used to suppress unwanted background signals and
better define the molecular properties, arbitrary alignment of this
polarization is also included in the equation for the medium polariza-
tion. The orientational averaging of the molecular dipole moments is

performed to obtain the polarization terms. This averaging approach,




when applied to the ORS differential cross section, gives a result

—rrv

t! that eliminates any ambiguity in specifying the correct cross section
to be used in CARS and gives the conditions under which the cross sec-
tions may be used. From the derived results, the more conventional

Fg monochromatic CARS with parallel field vector pclarizations is easily

obtained.




II. Background and Approach

CARS History

The CARS technique has been receiving ever-increasing attention
since it was first used as a diagnostic tool for solids, 1972
(Refs 8; and 9) gases, 1973 (Ref 10; and 11) and liquids, 1974
(Ref 12). However, these first applications of CARS came after many
years of studies in inelastic (Raman) and nonlinear scattering which
form the basis for CARS. Sir C.V. Raman (Refs 13; and 14) discovered
and explained inelastic scattering in 1928. This inelastic scattering
which bears Raman's name is that portion of scattered light undergoing
a change in frequency characteristic of and determined by the specific
scattering molecule. The frequency spectrum of Raman scattered light
is thus made up of several lines and the frequency shifts are both
positive and negative relative to the incident frequency. When the
incident photon loses energy to the scattering molecule by leaving it
in an excited state, the frequency shift is negative and the resultant
scattered photon is referred to as the Stokes component. When the
incident photon gains energy from an encounter with an excited mole-
cule, the frequency shift is positive and the scattered photon is the
anti-Stokes component. A theoretical treatment of both Raman and
Rayleigh (frequency unchanged or elastic) scattering was prepared by
G. Placzek in 1934 (Ref 15) using the quantum theory developed by
Dirac to describe the atom or molecule and classical wave theory to
describe the electromagnetic fields (this is termed the semiclassical
description). In Placzek's work, the "scattering tensor" was obtained

and forms the basis for describing Rayleigh and Raman scattering.




This early work is still applicable. From it equations describing
hyper, stimulated and electronic Raman scattering (Ref 16) can be
obtained. In addition to the work of C. V. Raman and G. Placzek on
inelastic scattering, M. Goppert-Mayer (Ref 17) presented an early
theoretical treatment of two photon absorption. The early experimen-
tal work based on these theories provided a technique that could
verify quantum mechanical predictions. However, due to the low effi-
ciency of this scattering phenomena, it was of limited practical
application until the development of the laser in the early 1960's.
The Raman cross section is several orders of magnitude less than the
Rayleigh cross sections (or equivalently absorbtion cross sections).
Typically, one Raman photon is scattered for every 106 - 108 incident
photons. With the use of the laser to provide very intense beams the
inefficiencies of the Raman process became less important (Refs 18;
19; and 20).

The nonlinear properties of electromagnetic fields are consistent
with Maxwell's equations. Several examples of nonlinear effects at
lower than optical frequencies have been known for some time (Ref 21).
However, it was, also not until the development of the laser that
nonlinear properties in the optical region were demonstrated by
P. Franken, et.al. (Ref 22) in 1961. Shortly thereafter, R. Terhune
and P. Maker (Refs 23; and 24) made the first observation of CARS in
liquids. There were several intervening years until the CARS tech-
niques were first developed by J-P Taran and coworkers (Refs 10; and
11) into a practical diagnostic tool. In those intervening years,
extensive theoretical work on nonlinear optics was done by several

authors; N. Bloembergen (Refs 25-30), P.S. Pershan (Refs 31; and 32),




Y.R. Shen (Refs 33-36), D.A. Kleinman (Ref 37), J. Ducuing (Ref 38),
& M.D. Levenson (Ref 39; and 40), P.A. Franken (Ref 41), P.D. Maker
(Ref 42), and P N. Butcher (Refs 43-48). While this list is by no

means complete, the number of articles does serve to point out the
interest placed on the phenomenon. Another reason for selecting these
references is that most of this work formed the basis for the CARS
theory.

As stated in Chapter I, the anti-Stokes frequency of CARS is a
result of just one of the many possible processes that can occur
through nonlinear and linear scattering. TABLE I lists several of the
scattering processes that are useful in gas diagnostics. These have
been described and compared in recent reviews (Refs 49-53). The CARS
process, like many of the coherent Raman effects, has some very clear
advantages over the noncoherent ones, especially ORS. CARS, due to
the resonance at Wy has a conversion efficiency of incident light to
scattered light that is up to five orders of magnitude greater than
that of ORS (Ref 54). This enables easy detection of the scattered
intensity both in terms of detector sensitivity as well as time of
detection. The intense CARS beam contains the same information as is
contained in the weaker ORS output beam so that no information is
lost. This has been established by determining that the selection
rules are the same for CARS and ORS (Ref 51). A second advantage of
CARS arises as a result of the coherent mixing of the two laser beams
by the nonlinear susceptibility of the medium and manifests itself as
a very low divergent output (the order of 1 mrad). It is this Tow
divergence that also makes detection a simple matter and allows an

excellent spatial discrimination. This low divergence combined with
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».‘j _ TABLE I

.
‘c Diagnostic Processes
r

Non-Coherent
Rayleigh Scattering (RS)
Mie Scattering (MS)
Fluorescence (F)
Two Photon Absorption (TPA)
Ordinary Raman Scattering (ORS)
Near Resonant Raman Scattering (NRRS)
Hyper-Raman Scattering (HRS)

Coherent
Stimulated Raman Scattering (SRS)
Inverse Raman Scattering (IRS)
Coherent anti-Stokes Raman Scattering (CARS)
Coherent Stokes Raman Scattering (CSRS)
Raman Induced Kerr Effect Scattering (RIKES)
Higher Order Raman Spectral Excitation Studies (HORSES)

.the frequency shift of w3z such that w3> w; > w, allows detection
against a luminous background. It is this characteristic that makes
CARS such a valuable diagnostic tool for combustion processes. The
major disadvantage of CARS is the limitation on concentration detec-
tion caused by interference effects dependent on nonresonant suscep-

tibilities. This interference may arise for either absolute




concentration in a pure gas or relative concentration in a mixture.
The nonresonant susceptibility may be due to either electronic states
or adjacent Raman resonant states depending on the energy state
characteristics of the specific molecule. The actual level of detec-
tion will be a function of pressure and background mixture, The limit
on species concentration is typically on the order of 10 ppm. These
are only the major advantages and disadvantages of CARS. Several
excellent review articles have been written on CARS where a complete
discussion of its advantages and disadvantages are discussed (Refs 51;
52; and 54-59),

Just as there are several coherent Raman effects, TABLE I, there
are several variations of CARS itself. In addition to the pulsed CARS
(multifrequency or narrow frequency), CW CARS has been demonstrated
(Ref 60). Also, there are various selections of lasers that can be
made to generate the input beams (Ref 56). Different CARS approaches,
TABLE II, have also evolved in an attempt to suppress or reduce the
nonresonant interference and improve the concentration detectability.
The merits of each of these approaches are discussed in several of the
reviews (Ref 49;50;59; and 66) and are not repeated here. While the
experimental set-up for CARS follows a basic layout (Ref 50), there
are as many different ones as there are CARS variations and applica-
tions (Refs 51;56; and 67). The specific application of CARS to com-
bustion and gas phase diagnostics is extensively reviewed in a recent
article by A. Eckbreth and P. Schrieber (Ref 66). The relatively strong
signal levels and coherent property of CARS make it a particularly well
suited technique for the measurement of temperature and major con-

centrations in gases. The use of a multifrequency w, further enhances

10




...........

the CARS technique in unsteady systems (e.g., turbulent combustion

processes) by a time resolved generation of the entire spectrum. It
is with this multifrequency application to molecular gases that this

research will be concerned.

TABLE II

CARS Background Suppression Techniques

(1) Resonance Enhancement (Ref 53)
(2) Double Resonant (Ref 61)

(3) Polarization (Ref 62)

(4) Asterisk (Ref 63)

(5) Background Subtraction (Ref 64)

(6) Pulse Sequencing (Ref 65)

Approach

In the propagation of electromagnetic fields through a gas,
there are two aspects that must be considered: (1) The response of
the gas to the electromag.etic field. (2) The evolution of the
electromagnetic field in the presence of the gas interaction. These
two aspects can be theoretically determined by several approaches.
Each aspect may be approached separately from a classical or quantum
theoretical point of view. Therefore, the combination of the two
effects may be treated strictly classically, quantum mechanically or
semi-classically where the material response is obtained using a quan-
tum approach but the fields are described classically. This last
approach is followed in this research. The semi-classical treatment

is justified where steady state processes are the principal interest

11
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as opposed to detailed information on the generation of photons and
where there are a sufficient number of photons making up the fields
present. Because of the high intensity of the lasers used, their high
degree of coherence and similar properties of the CARS output, this
should be a good approximation. This approach will result in the loss
of information the contribution of spontaneous emission and statisti-
cal fluctuations to the propogation. The fully quantized treatment of
several of the nonlinear processes has been performed (Refs 34; and
35). While this treatment is necessary for a full description of the
nonlinear phenomena, especially the onset, it adds a high degree of
complexity to computations. For diagnostic purposes, there is little
return for the added complexity. The quantum approach to the material

response presents a different situation. It will be shown that the

. . iree. =t
dielectric susceptibility, X ', is not only responsible for the magni-

tude of the resonances present in CARS but also for the specific line
shapes and shifts. The source of the resonances and the specific form
of the susceptibility are explicitiy demonstrated in the quantum
approach. The dependence of x on population difference of molecular
states is also clearly shown by this approach. Because of the impor-
tance of X and the need to determine concentrations, the added
complexity is felt to be justified for the material response.

For either the quantum or the semiclassical approach, Maxwell's
equations, are used to determine the evolution of the EM fields (Ref
68). These equations in Gaussian units are:

+ The symbol = is used above a parameter throughout to indicate a

tensor while the symbols - and ~ are used to indicate an ordinary
vector and the unit vector, respectively.

12
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(a)

(b) (2.1)
(c)
v + D= 41lp (d)
where

E = electric field vector

B = magnetic induction vector

D = electric displacement vector

H = magnetic field vector

J = electric current density

p = electric charge density
¢ = speed of light in a vacuum

t = time dimension

<
n

vector spatial operator (e.g., %;1 e+ %;1 e + %§5 e)

In addition to these equations, it is necessary to relate the response
of the material to the influence of electromagnetic fields. The
constitutive relations define the relationships. There are two alter-

native forms for these relations, additive or multiplicative.

Additive:

|
"
x|
+
H
3
4

(b) (2.2)

13




where

P = electric polarization
M = magnetic polarization
Multiplicative:
D= () E (a)
B= W)W (b) (2.3)
where
¢ = dielectric permittivity
u = magnetic permeability

For Eq (2.2)

— 3P
=5r+c VXM (2.4)
And for Eq (2.3)
J=0F (2.5)

where ¢ = specific conductivity

For a dielectric (electrical nonconductor), o = 0, there is no free

electric current density and u and ¢ will completely determine the

electric and magnetic properties. Also, for a nonmagnetic material

p = 1. In general, P and M (or 5, £, and u) are functions of the EM

fields consistent with the linearity or nonlinearity of the situation.
To solve these equations, certain boundary conditions must also

be met. These are summarized as:

14
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N, (B,-B)=0 (a)
612 ) (Ué - U}) = 4 o5 (b)
n, X (E,-F) =0 (c)
L X (- =8 3 (q) (2.6)

where

-~

n;, = unit vector normal to surface between materials 1 and 2 and

pointing toward material 2

pg = surface charge density
3; = surface current density

When the external excitation fields are sufficiently weak compared to
the molecular internal fields of interaction between charged par-
ticles, the external fields do not interact, change their frequency or
direction (in a uniform material). The constitutive relations can

then be linearized to describe this situation.

P=x(EBE > X E (in uniform medium) (2.7)

M="EB)H > n H (in uniform medium) (2.8)
where

; = dielectric susceptibility

o
]

magnetic susceptibility

with the result
=1+ bny (2.9)

on
|

1 + 4nn (2.10)

=n
L]
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However, in general, this linearization does not hold and the
electric polarization has higher order terms that must be taken into

account. P then may be expanded as
P=P(1) + 7(2) + B(3) 4 eoeenn + BN) (2.11)

One approximation to obtain the higher order components of P is to
expand it in a multipole series of the electric and magnetic fields.

For a nonpolar and nonmagnetic material, this gives (Ref 42:297)
5 _ = -— = = . = = Bf

PR EEE+ T BT (2.12)

where £ E is the generalized product of two vectors and ;1 are tensors

of rank (i + 1). In Eq (2.12) the linear part of P is

—

F(])=§(1€+ =X1a VE

with the nonlinear terms being the remainder:

= on e = = a‘f
Second order  P(2) = EE+ X EVE+ X B =

Third order  P(3) = X, EEE + X, BB+
For the optical effects discussed in the previous section, a reason-
able assumption is that the interaction of the macroscopic field with

the material is due to an electric dipole coupling. In the pure

electric dipole approximation, Eq (2.12) becomes

16
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Furthermore, 3(2) is identically zero (Ref 25:9) in an isotropic
medium such as a gas which exhibits inversion symmetry in its
macroscopic dielectric properties. Thus P(3) is the lowest order
nonlinearity in a gas and §(3) is the material response function
determining CARS as well as the other third order processes of TABLE
I. It is through the third order susceptibility term, 303), that the
Raman resonance must manifest itself. ;(3) must also provide the
description of the nonresonant effects, electronic and off-resonant

Raman. Thus x(3) may be written as a sum of these terms
3) , =(3
)+ x(3) (2.14)

The generalized product of fields provides the nonlinear nature of the
system, and when € consists of multiple fields at unique frequencies,
many different frequency fields are created. For the third order
case, E E E, fields having twenty-two distinct frequencies occur when
two initial fields are considered. Polarization is induced at each of

these frequencies and ;(3), through the induced electric dipole, is a

function of the frequencies of the fields it multiplies, e.qg.,

X(3) (=w 3 Wis Wos w3)-

The assumptions that the material is nonmagnetic (ﬁ =1, M=0)
and that there exists no free charge or current further simplifies the
equations. These are good assumptions for gases which are treated in
this dissertation. With these assumptions and the use of Eq (2.4),

Maxwell's equations become:

17




...................

vxs=-%%% (a)
vxF-18&, kP (b)
vVeB=0 (c)
veD=0 (d)
F =Pl 4Pl (e) (2.15)

In a dilute medium (such as a gas), the molecules may be treated inde-
pendently with the microscopic or local field set equal to the applied
macroscopic field in these equations. In condensed materials, this
latter approximation cannot be made due to the influence of dipoles
formed by nearby molecules (Ref 47).

It is clear that by specifying the initial fields the suscep-
tibilities can be obtained under the dipole approximation. This
susceptibility can in turn be used to determine the polarization.
Equations (2.15) and (2.6) can then accept the polarization to deter-
mine the generation and propagation of the electromagnetic fields.
This approach will be followed for molecular gas diagnostics by
multifrequency CARS. The equations and assumptions of this section
will form the basis for this development.

The work of this research is aimed at creating a complete descrip-
tion of the third order polarization for the nonlinear processes
(e.g., CARS) under the most general situation for molecular gas
diagnostics. The specific objective is to obtain a set of third order

polarization equations that will allow the CARS intensity to be

—
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obtained for use in a multifrequency mode to measure the macroscopic
parameters of a molecular gas. If the interest were in obtaining
information on the structure of molecules, interpretation of the sym-
metry considerations is necessary (Ref 16:29). Here emphasis will be
on using quantum theory to ensure the consistency of the terms in the
equations and to accurately express these terms as measurable quan-
tities (e.g., ORS cross sections). To achieve these objectives,
arbitrary polarization of the fields+ will be allowed along with

arbitrary dependence of the fields on frequency.

Outline of Contents

The research performed is described in the following six chapters
and ten appendices. The majority of these appendices are added for
completeness. The remaining appendices are used to consolidate the
lengthy and somewhat complex equations for the final results.

Because the third order susceptibility is important in defining the
polarization, its general properties, including intrinsic permutation
symmetry, are derived in Appendix A. With these properties of the
susceptibility, the role of the average dipole moment in determining
the polarization is established in Chapter IIl. This chapter also
contains the relation between the dipole moment and the nonlinear
polarizability. Perturbation theory is used (Appendices B and C) to
derive this polarizability for individual molecules. The approach of

P.N. Butcher (Ref 48) is followed. The classical derivation of the

+ N.B. The word polarization is used in two ways; (1) to denote the
macroscopic property of the material-electric polarization, and (2)
to denote the orientation of the field oscillation in a given frame
of reference. The context of use should prevent confusion.
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third order susceptibility is outlined for completeness and com-
parison.

In Chapter IV, the six simultaneous nonlinear processes of the
same order of magnitude as CARS are identified. The resonant dipole
moment equations for these processes are developed for molecules ini-
tially in thermal equilibrium and for a specified field function
(Appendix D). The resonant polarizabilities producing the dipole
moments are then derived as a set of distinct equations. The results
for the six processes are presented in Appendix G in different func-
tional forms. Since one of these forms depends on the ORS polarizabi-
lity tensor elements, the polarizability invariants are introduced in
this chapter. A fully quantized treatment is used to obtain an
equation for the molecular ORS differential scattering cross section
in Chapter V. The properties of this cross section are reviewed.

This derivation and review are performed to ensure the correct use of
applicable ORS data from previous experiments reported in the litera-
ture.

The effect of averaging over all possible molecular orientations
is established in Chapter VI. This orientational averaging allows
general field vector polarizations to be considered. The details of
this derivation are worked out in Appendix I. In Chapter VII, the
orientational averaging result is used to convert the individual mole-
cular dipole moments to a macroscopic polarization and susceptibility.
Appendix J contains the equations for the six nonlinear processes of
interest. Orientational averaging, similar to that for the polariza-
tion, is performed to derive the macroscopic ORS cross section. This

clearly shows where an identical substitution of this cross-section

20




into the third order susceptibility is allowed and where only approxi-
mate equality of terms applies. This also allows the importance of
the approximations to be determined. Chapter VII concludes with a
discussion of other equations and parameters (e.g., line widths) not
derived but necessary to solve for the CARS intensity. In the final
chapter, VIII, the research results obtained are summarized and recom-

mendations and conclusions presented.
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1I1I. Nonlinear Polarization

Tl
i

Quantum Theory

Upon examination of Maxwell's equations, Eq (2.15), the medium

i! polarization term, P(t,r), is identified as the parameter connecting
the medium response on a macroscopic scale to any applied fields (the
term field is understood to be the electromagnetic field). The nonli-
( near polarization is therefore the forcing function in the derived
wave equations for the applied and generated fields. It is also the

E nonlinear polarization that allows for higher order nonlinear field

effects to be incorporated, Eq (2.13). In this chapter, the func-

a ’ <

b A

S tional relationship between the polarization and the susceptibility is
g given. Based upon perturbation theory, the approach to determining

[

+‘ the third order susceptibility equations from the average polarizabil-

ity is established. A classical derivation of this susceptibility is

included for completeness and comparison.

Armstrong, et. al. (Ref 26) presents a direct perturbation theory
approach similar to that of Kramer (Ref 71:480) to derive certain
nonlinear polarization expressions. Recently, other authors (Refs
2:;48;72; and 73) have applied perturbation theory through the use of
density matrix formalism to derive expressions for the electric
susceptibility, X. More recently Druet and Taran (Ref 74:8) have
reduced the latter approach to a diagrammatic one. In addition to
these results, Hellwarth (Ref 75:8) uses the Born-Oppenheimer approxi-
mation to separate contributions of the electronic, nuclear and inter-

active components of the susceptibility. The derivation presented
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here will use the density matrix formalism, specifically that
of Butcher (Ref 48).

The objec:ive of this research is to obtain an explicit expression
for the third order polarization. This is the lowest order of the
nonlinear polarization existing for a molecular gas and is used to
introduce the CARS effect. The functional definition and general pro-
perties of the third order susceptibility are obtained in Appendix A.
From this definition, the general third order polarization can be

written as

P(3) (t)= I;wl J;wz Igwa X3 (w1,0p,03) E(wy)E(wy)E(ws)
o -i(witwrtws )t (A26)

or in the terms of the Fourier transform of P(3) (t), Eq (A22)

p(3) (w) 1 ET pl3) (t)e twr (3.1)

=7 Jd

after substituting for B(3) (1) from Eq (A26).

jd“’i _d“z _2“’3 )=((3)(“’1: W2y w3)sf(w])—E—(u\2)€(w3)

P(3) () = % IdT [:

X e'i(w1+“2+w3)3] elet (3.2)

or
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P(3) = fl J Igmz J:w3 X(3) (01, 02,03) E(w1)E(w2)E(ws)

X f:r el (w-uy-up=wg)T (3.3)

But, the delta functioné (x-xo) is defined by

§ (x-x )= El'jdy 91(x Xo)y (3.4)

so that the Tast integral of Eq (3.3) reduces to 6 (w-w;-wy-w3).

P(3) () is then

a0 - -] r@
5(3) (u)= L{wl dez Jaws 503 (wrsups03) Elw1)E(w)E(ws) (wmwymwymws)

e e (3.5)
The principal effort here is to obtain an expression for the polariza-
tion or, equivalently, the susceptibility in terms of measurable para-
meters and thus to link a microscopic derivation to the macroscopic
experiment. To perform this derivation, the assumptions of Chapter II
and Appendix A will be applied along with the usual relations between
the magnetic and electric fields. The electric field in Eq (3.5) is a
total field. The applied electric field can be a linear superposition
of any number of individual or separate fields. For the case of CARS
considered here and the associated third order processes, it is suf-

ficient to allow for two applied fields at (kl,ul) and (k ) where

= Ni%4
kj is the propagation vector. |kj|=

238y

with nj the index of

refraction of the medium at frequency wj. The pump electric field,

E,, and the Stokes electric field, E,, have a functional dependence

upon the location, r, and time, t.
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In deriving an explicit expression for x(3), the appropriate
starting point is with the definition for the macroscopic polarization

(Ref 25:40)

F(tr) =& @t,m» (3.6)

where d(t,r) = electric dipole moment of a molecule

v

volume of the gas

M = number of molecules present in the gas

That is, the macroscopic polarization is defined to be a product of
the number density and the expectation value of the molecular dipole
moment operator, a. The expectation value over the correct quantum
mechanical system is represented by the symbol < >. When the medium
under consideration consists of an ensemble of dipole moments that are

not uniformly aligned, an appropriate average over all molecular

orientations must be taken:

P(t,r) = © <d(t,F)> (3.7)

Where the bar over <d(t,r)> indicates orientational averaging.
Placzek and Teller (Ref 76:213) and Ueda and Shimoda (Ref 77:200) have
shown the equivalence between classical orientational averaging using
the Euler angles and summation over the complete set of orientational
quantum numbers. Because of this equivalence, the classical approach
will be followed for orientation averaging.

The expectation value of the dipole moment for a single molecule

may be obtained by using the density operator, p(t). For the dipole

moment, d(r), at t = C, the expectation value may be written as the
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’if QA7) = Tr (p(t) 4(F)) (3.8)
-4

where Tr is the trace: (;(t) &(F))aa =1 <a |5(t)a(r) |a>. In
a

order to find p(t), it may be expanded as
p(t) = o+ py(t) +p,(t) + py(t) + - (3.9)
so that the trace of the dipole moment is
Tr(p(t) d(¥)) = Tr (p_d) + Tr (p,d) + Tr(p,d)
' . +Tr (p,d) + -=- (3.10)

The spatial dependence of d and the time dependence of ; are
suppressed for convenience, but are implied. Equation (3.8) can then

be written as
cd(t)> = <d(®)y + <«d(1)(t)> + <«d(2)(t)> + <«d(3)> + --- (3.11)

where
<d(®)y = Tr (30 d)
(N (t)= Tr (5l(t) d)
d(2)(t)> = Tr (5,(t) @)
d(3)(t)>= Tr (p,(t) d) (3.12)

.

An expression for each order of 5 is derived in Appendix B. This
derivation is obtained using standard perturbation theory. The

interaction picture is used where the Hamiltonian, H, is written as
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H=H +H (t) (3.13)

where ﬁl(t) represents the perturbation energy introduced by the

applied field. In the electric dipole approximation, H 1is given by

1

H(t) = -d(t)-E(t) = -d (t) E_(t) (3.14)

(Ref 79:265, 80:445). In the last product of Eq (3.14), the Einstein
convention is used where repeated indices imply a sum over all values
of the index
da Ea =z da Ea (3.15)
a=1

Combining Eqs (3.6) and (3.11), the expectation value of the mole-
cular "third order" dipole moment provides the first step in the deri-
vation of the desired susceptibility. The various orders of p are
used with ﬁl(t) to derive an equation for the expectation value of d in
Appendix C. From this derivation a molecular polarizability, p, is

defined such that

<d£3) (t,r)> = del dez fdw3 Pﬁijazas (w1 sy sw3)
x E (w1)E (0)E (u3) e"TCortwatus)t (3.16)
oy 1T, 2 e 3 )
where the general form of pﬁi)a o s given by Eq (ca3).
1723

Alternatively, the Fourier transform of <d£3)(t,?)> is

0
)

o, e He,a,a,

@ (i o @®
(dia)(w)> - ot Jas [:del dez dus p ) (w1502 003)

x B, (w)E, (), (u3) € ‘”“’1*“2*“’3)7] elut (3.17)
1 2 3
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or by rearranging the integrals

————

EC <d£3)(w)> = [gm[ng [2(»3 pgzzazﬁ (w1 ,w2 ,ws)Eal (“’I)Eaz (wz)Eaa(wa)
X o de e H(w-w1-0zu;3) (3.18)

After using Eq (3.4), the dipole moment expection value is

i C

(3)
<du3 (w)>

]

Igwl [Swz [gwa p£23a2a3 (w1,wzywa)Eal(wl)EQQ(wz)Eae(w3)

e g e

X G(w-wl -(»2-(.03) (3.19)

—
’

Idwl [de [2“’3 6(3)(0)1’“’2:003)5 f(w1)€(w2)f(w3)

-co - -

(3)
<du3 (w)>

X 8 (ww)-wy~w3) (3.20)
when the fields are defined in a laboratory coordinate systems they
are independent of the orientational averaging, however, spatial

averaging must be performed over the polarizability.

(t) 77 T)

(
@y - J_gwl J e [2‘»3 507 (w102 ,03) 8 Flw1 )E(ws )E(w3)

X 6 (w-w)=wy=w3) (3.21)

Therefore, an expression for the average polarizability is sufficient
to determine the susceptibility and consequently the polarization.
Substitution of Eqs (3.5) and (3.21) into Eq (3.6) results in the

susceptibility, ;(3) being expressed in terms of the polarizability
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:(—)——(T) (3.22)

;(3)(w1.wz.w3) = %’ .E 3 (w1.w2,w3)

To perform the orientational averaging of the polarizability, an
explicit expressions for each 3(3)(w1,w2,w3) of importance to CARS has

to be determined.

Classical Theory

A classical development of the nonlinear .polarization is an
alternative to the quantum derijvation in many situations. The classi-
cal development starts by considering the interaction of a molecular
system with a harmonically oscillating field. A single molecule of
the system is assumed to be free to vibrate about the equiiibrium
position of its nuclei but not to rotate during the interaction. The

vibrating molecule can be modeled as a harmonic oscillator

.y * F
W+rQ ru "y (3.23)
where
Qk = a normal coordinate of vibration
I = damping constant (proportational to the Raman line width)
w, = vibrational resonant frequency
m = reduced mass

F = driving Force

The damping in this equation has been phenomenologically added. Since

a molecule placed in an electric field experiences a polarization, P,

due to the field, a reduction in the energy by
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W=-1/2 (P.E) (3.28)

results (Ref 84:125). The force, F, associated with this energy is

_ oM
F = - q (3.25)

The nonlinear polarization may be obtained using Eqs (3.23), (3.24),

and (3.25) in at least two different ways (Ref 2:8):

(1) Introduction of an anharmonic term, xQﬁ , into the oscilla-
tor equation of motion through the potential.

(2) Use of the driving force, F, to introduce the nonlinearity.

This second approach is more commonly used to obtain a classical
result and is briefly outlined here. The first approach does produce
the following result stated without proof for the polarizability (Ref
2;10)

CARS 2.4
P(l) (w3) - 279 /m

2 2 . 2 2 . -
(wv-w3-1m3F)(wv-w1-1w1F)z[wj-(ml-w2)2-1(w1-w2)F]

1
(wi-m§+iwzf) (3.26)
When the driving force is used to introduce the nonlinearity, the

relation between the polarization and the applied field is taken to be

P=p-F (3.27)
where 3 is the polarizability of the molecule induced by the field.
Then 3 is expected to be a function of the nuc ear coordinates and
each component pmB may be written as a Taylor series expansion of the

normal vibration coordinates
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where ( )o is the value at equilibrium. If only the first order terms
in Q are retained and only one normal mode component is assumed as

the first approximations, this polarizability becomes

P

p=p,*+ ($o Q (3.29)

where without loss of generality for this approach, E is taken as a

(. scalar. Substituting this into Eq (3.27)
- 3
P=(p* (50 OF (3.30)

and the energy of interaction, W, is

W=-1/2[p, + (3}8)0 QE-E (3.31)

The force F is then

F=1/2550p,+ (58)0 QWE-E (3.32)
F=1/2 (3B, E-F (3.33)

oQ

Upon substitution, Eq (3.23) is

Q+rQ+ o2 Q=g (30 - F (3.34)
For the applied field
E=I1 "’Fz (3.35)
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where E; and £, are harmonic fields oscillating at w; and w, respec-

tively,

B, =%, ef (ki T-unt) c.C. (1)

B=%e (kovr-uzt) c.C. (ii) (3.36)
And

E-E=|EPR + 25§ +|EP (3.37)

The case where the frequency of the driving force is near the reso-
nant frequency Wy, js important. As before, this resonant condition
occurs for

wi - w2 W (3.38)
and comes from the product of Eq (3.37) with the fields assumed to be

parallel

*

Er Ey = ey en elL(Kioke) o T = i(umup)t] (3.39)

Ignoring the off resonant terms, Eq (3.34) is then

' hd - +* - -. -
0+ 0+u2 Q=5 o 201(Pep (Meilurualt 4 e (3.40)
The particular solution to this equation is

1 EE e -~ E* - -i(wl-wz)t
wi-(ml-wz)z_ir(wl_wz) (ao)o 2 l(r) Z(r)e

Q:

¥l

+ C.C. (3.41)

Substituting this value of Q into Eq (3.30) and with the first order

correction defined as the nonlinear polarization:
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.r*v—,vr“v,'.
N -

s~ BYDEVEMEE L S o

the result is

NL 1 ,9p |2 1
P (w3) = = ) -
w3 m (38 0 we -(wl-W2)2-1r(w1-w2)
X e-i(Zwl-wz)t
and
2
P (as) = £ (2B :

BQ 0 ws -(wl-wz)z-il‘(ml-wz)

Similar expressions at other frequencies may also be obtained.

2(Me, (7)

(3.42)

(3.43)

(3.44)

The

relationship between the term (%%)0 and the Raman differential scat-

tering cross section, 92, from ordinary scattering theory is (Ref
de

85:598)

d wg | 3 ’

(@ == | (550 Q

e’y =~ U aQ’o VoY
where

wg = the circular frequency of the scattered radiation.

(3.45)

This differential scattering cross section at vibrational level v can

be related to the cross section for scattering from the ground vibra-

tional state, v=0 (Ref 86:11), by
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where the factor (v+1) arises from the dipole matrix element and is

introduced into the classical treatment for the transition v » v+l.

Then
‘32 2 ¢ mev do
el = wr— (@ o (3.48)
which upon substitution into equation (3.44) yields
NL 2c! do “v
= 3.49
P (w3) Tt.—-ws (aa) o w\z’ (@1-07)2=iT (w1 -02) ( )

The frequency of the scattered radiation, Wes should be taken as
characteristic of the process being described (e.g., for SRS-S
use wy).

The tracking of the frequency dependence is difficult in the
classical approach since a frequency dependence must be assigned to
(%8)0 (Ref 87:679). A result for CARS at the anti-Stokes frequency

(Ref 88) is

2

[p (wi)p”(ws) + p“(w2) p“(w3)] (3.50)

N

aQ

where the frequency dependence must be determined and p~ is defined as
. (2
P= (5)0 (3.51)

When the field frequencies are far from an electronic state resonance
of the molecule, the difference in frequency dependence may be
neglected. For the case of CARS, different authors have used both w;
and v, to define the frequency dependence and the w . of Eq (3.49)
(Refs 67:13, and 86:12). The removal of this anomaly is one of the
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benefits of the quantum mechanical approach. Schreiber (Ref 88) has
obtained the effect of orientational averaging in a molecular gas for
the classical derivation under the limiting condition of parallel

field polarization.

Selection of Theory

Several considerations must be taken into account in selecting
the theory used to derive the nonlinear polarization. Some factors to
be considered include the accuracy required, the experimental tech-
nique employed (e.g., monochromatic versus multifrequency, electronic
resonant enhancement, etc.) and, the purpose of the analysis (e.g.,
molecular or macroscopic properties). The classical theory result of
Eq (3.49) for the nonlinear polarizability and hence the required
nonlinear polarization is a good approximation for many of the
situations. It is especially useful for those involving only near
vibrational resonances. However, the simple classical description is
lacking not only for off resonance conditions but also in describing
several important features of third order processes.

One of the deficiencies of the simple classical theory is its
inability to predict the complete frequency dependence of the
polarizability. This frequency dependence is important when
describing and differentiating between the third order processes.
This is particularly important when electronic state resonances are
involved. This frequency dependence arises naturally in the quantum
theory. Another deficiency in the classical theory is the inclusion
of molecular state population differences and temperature dependence

which must be added to the results derived. The damping termm, I', 1like
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- the frequency is analytically included in the quantum approach and
4 . . . .
,! - occurs in all the frequency dependent terms including those important

in electronic resonance. The directional effects arising from field

polarization is also described only by the quantum theory through the

scattering tensor. The advantages of the quantum theory make it more
applicable and worth the slightly more complicated derivations.

For example, if the purpose of the analysis is to determine
detailed molecular properties such as symmetry, only the quantum
theory will suffice. Even when determining macroscopic properties,
such as temperature and pressure, the description by the quantum

e theory allows a wider range of applications. Also, the classical
theory is more difficult to apply to complex molecules.

The quantum theory is, therefore, used to obtain the desired
general equations for the molecular polarizability and Raman scat-
tering cross section. Classical orientational averaging is then used
to derive the macroscopic susceptibility and polarization with
arbitrary field polarization. These can then be used with Maxwell's
equations and the appropriate boundary conditions for the most general
conditions. This approach is a consistent one to connect the molecu-
lar microscopic properties to the experimental macroscopic properties.
Specific results such as monochromatic and/or single resonance can be

obtained from these general results.
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IV. Molecular Polarizability

Dipole Moment Equations

In this chapter, the nonlinear scattering processes of similar

magnitude to CARS are identified for the fields present. Third order

molecular dipole moment equations are then derived for these pro--
cesses. The individual resonant polarizabilities that define these
" dipole moments are then established. An equation for the third order
i polarizability, 5(3), js derived in Appendix E from the general form

(Appendix C). This derivation uses the unperturbed density operator

F1 for molecules in thermal equilibrium. The result is given by Eq (E28)
as

3 (3) w1 .w 1 o

[ ’ sW3 )= e L e

b( Puaiazas (1,02,03) (Ew) 6’ a,b,c,d aa

: H a] ay aj

E x _ dabdbcdcddda. .

(mab+w1+w2+w3+1£b)(“5c+u2+”3+1rac)(“ad+u3+1rad)

al .y a2 a3
dabdbcdcddda

* ( il ) (w, twtwatil_ _){ +uLtil.,)
Wap~ @171 Tap !l g T w2t w3t T/l wag ™3™  Hag

r v v

Gl 02 u 03
dabdbcdcddda
Cugpmw1=TTap) (ugemuwimwa1T,c ) uggtus#iT,g)

+

{ a; a; a3z y
‘ dabdbcdcddca

+ — - -
(@ab-w1-1Fagyi(ﬁac-ul-wg-lTagj(uad-ul-ug-w3-1fad) (4.1)

R The existance of the frequency resonance in p(3) strongly affects the

magnitude. Thus if a specific resonance can be established, the terms
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associated with that resonance will dominate. From Chapter I the

frequency resonan¢~ for CARS is
w - wp =0 (4.2)

where W, is identified with w5 in Eq (3.23). However this resonance
will also occur in the polarizabilities for other processes besides
that of CARS. The source of the specific linear combinations of fre-
quency in the polarizability is a result of the electric field com-
ponents present in the total field. This is most clearly seen from an
examination of Eq (3.19) where the functional form of the field will
restrict the allowed value of wj and therefore determine the resonan-
ces in p(3),

At this point it is necessary to determine the number of field
components to be considered. It has been assumed that there are only

two real applied fields E; (t,r) and E; (t,r) which may be written as

Ef (t) = Fi(t) + F*(t) (i)

(4.3)

E; (t)

T,(t) + F5(t) (1)

The Fourier transform of the field in this form is carried out in

Appendix D with the result

(o ) = 51(w) + 3(-w) (1)
(4.4)
E’.7_(w) =::_2(w) + ::('w) (ii)

These two fields, interacting through the third order nonlinear

polarization term, d:: create a finite number of electric field
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components at new and unequally spaced frequencies. Consider as an
example of the applied fields two that are monochromatic at w; and u,

so that Eq (4.3) is

Ei(t,r) = A (Fe-iuit 4+ A (F)einrt (i)
(4.5)
Es(t,r) = A, (r)e-iwzty R(r)eiuat (i1)
and the Fourier transform to frequency space is
Ei(w,r) = B (1) 6 (wmw,) + BI(T) 6 (who1) (1)
(4.6)
E3(0,7) = Fo(7) 6 (wmwy) + F5(T) 6 (wtw,) (1)

Of the sixty four products obtained in the third order using either

Eq (4.5) or (4.6) only six new electric field frequencies and their
conjugates will be generated; 3w;,2w) + wy, 2wy + wys 3wys 2wy = wyo
and 20 - wp. And, of these six only two, 2w)-w; and 2wy -w;, wWill
have the resonance of Eq (4.2) occuring in the polarizability.
Additional polarizability resonances will exist for field combinations
at frequencies of w; and w, such as in a stimulated Stokes process. If
the fields generated at the new frequencies, especially those with a
resonance, reach a sufficient amplitude, then they in turn can
interact with the original fields and each other. This interaction
will in turn generate another set of fields at different unequally
spaced frequencies. Thus the nonlinear polarization term can in prin-
ciple create an infinite number of fields at unequally spaced and
different frequencies.

In the example just presented, the delta function selects
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uniquely the frequencies that will appear in the generated fields and
in the polarizability. The polarizability has a single, sharp reso-
nance when Eq (4.2) is satisfied exactly and drops off as the dif-
ference increases. The multifrequency situation, in contrast to the
monochromatic case, can include a band of frequencies and E(w) in Eq
(4.4) takes on different functional forms. For well separated fields
(i.e., a field is only nonzero over a given frequency band) the func-
tional form of E(w;j) and the integration over the entire domain of its
argument allows only specific frequencies and thus limits the fre-
quency resonances of the polarizability. Only certain of the twenty
four terms in Eq (4.1) contain a resonance at w;-w, and the selection
of the resonance limits the number of separate terms that must be con-
sidered. The remainder of the terms (i.e., those not in resonance)
are included in the nonresonant background polarizability. To deter-
mine the resonant polarizability terms, the field terms will be
limited to the applied fields E; and E, and to the generated fields
s (at w3 =wijtwi=-w;y) and E, (at wy = w, +wy=w;). This is not only con-
sistent with experimental observation (Ref 81:145) where gas breakdown
limits the intensities precluding generation of detectable higher
order fields but is also sufficient to describe the processes impor-
tant to CARS. Then Eq (3.20) with Eq (4.3) becomes

«d(3)(w)> = ' ; J:w’de"J:w"’ p(3) (w0070 "")

19Jsk=1 s® =@ -

xP L) T =0T [ Elom) 0]y DRl 2 T er) X

X 8§ (ww’=w” =) (4.7)
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where the notation change
wy; > w’

wy > w*”

w3 > @’

has been made to avoid confusion with the specific frequencies such as
the pump frequency w;. The Bloembergen notation p(3)(-m;w’,w",w”’)
has been used for the polarizability term. The expansion of the field

terms on the right hand side (RHS) of this equation is

[e(w™)+ T(=0")I40E(w ")+ (-0 )Tl )+ (0" "") ]k =

-E-‘i (w’)gj(w“)-e-k(m”‘) + ?;(-w’)-s-j (w")E—k(w“')

—*

Ek('w'”)

— =

+Ejler) e(wr) o) +eila)ejlo)

—k —
+r-:1

(=w”) €

(7)) Tl )+ Eilor) E5(077) Ejelwr)

+ T e ylen) Tl + e () e Yokl er)  (4.8)
The last four terms in this equation are complex conjugates of the
first four terms. When used in the wave equation they will form a set

of conjugate equations and may be treated as providing redundant

information. Using these results, Eq (4.7) becomes
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P Y ™ @ [ -
L AN = b e e Jae B oo o )
(O 1,ike1 == -a -

saiajakei(w‘)Ej(w“)ek(w"’)

E + ) (g0 077 7)1 &Y ay ag €] (-07) € (077) gy (w7)
E(3) (cwew” w2 =)s 2s a* ar e (=) * . JU

+p ( Waw  Sw” T w ): a5 aj ag €4 (w ) Ej (-w ) €k (w )

+ P03 (cus0r 077077 ) 2y a5 Ak e (w7)ej (W™ )ep (-u°°7) + C.C.]

X é (w'w"w"'w"') (4-9)

Where the field term has been divided into a product of a unit vector,

51, denoting the field spatial polarization and the scalar function

ejlw). By allowing the unit vector to be complex, the field polariza-
tion may be other than linear.
For each of the four triple products in Eq (4.9), there are sixty
- four terms and for each 5(3) there are twenty four terms due to the
symmetrizing operator, S, in Eq (4.1). A reduction in this number of
terms to those of interest is possible by using the property of
intrinsic permutation symmetry from Appoendix C, keeping only the reso-
nant terms of 5(3), and using the localization property of the field
amplitude distribution function in frequency space. A brief descrip-
tion of how the three effects are used to derive the resonant terms is
given. In each of the sixty four product terms, the individual field
functions can occur with a permuted order. For example, in the first

term on the RHS of Eq (4.9) the terms with indices 1,1,2 are
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e (0 )ey(w)ex (w”) (1)
e1(w )er(w)ey(w ") (ii)
e2(w)ey (0 ey (w"”) (ii1) (4.10)

and may all occur. The number of individual products containing the
same set of indices may be predicted from the following expression:
Number of ways X  Number of ways X  Number of ways

first field chosen second field chosen third field chosen
(number of terms alike).

(4.11)
In the example above, since there is nothing to distinguish the indi-
vidual field functions (e.g., no conjugation on one of the terms), the
first field may be chosen in three different ways. The second field
may then be chosen in either of two ways and the third field in only
one way. There are two field indices alike. Equation (3.33) then

becomes

Lrx@xa., ,

In the remainder of terms on the RHS of Eq (4.9), one field is con-
jugated and since that field is identified by a subscript it can only
be chosen one way. The number of similar subscripted field products
will be either one or two depending on the number of terms alike, two
or one. Once the number of field product terms with like indices is
known, the combining of these is possible using the intrinsic per-
mutation symmetry. This is best demonstrated using the field products

of Eq (4.10). The polarizability expressions are
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a; &, &
[de [dw”Jd ”’Pszzu agw'.w"»w"')al161262361(w')El(w")ﬁz(w"‘zi)

de de"[dm"‘p‘(l(i)a ugw‘,w” w'”")a 1 a2 al el(w Yeo (w” )el(w“'()“

- o - 1M

® . . Q) ar a3 . .
de de”fdw"‘p‘(‘izazagw’,w‘ sw > ”)az a1 a1 ep(w)er(w )eq(w (331)

X6 (w=w’=w”"=w""") (4.12)

where a¢ and ¢ are scalars. Expression (iii) in Eq (4.12) may be
rewritten by first switching the dummy indices a; and a» and relo-

cating the scalar components

® ® Pt s . IR a) a2 a3 . .. s
I:w [gw [dw Pgilu agw » 0 Jai az a1 ez(w)er(w)ey(w )
X6 (w=w =w""=w”"") (4.13)

Since the variables w” and w”” are under the integral, they may also
be switched along with the order of integration and the scalar fields

relocated

@ @ « ) a ) » .
fdw'de"jdw'“pf,j{azagw’: w0 a1 a2 al’ ex(w)ez(w ) er(w ")

X 8 (wmw=w"=w""") (4.14)
Use the intrinsic permutation property of 5(3)

() (uryore) = ) (uruner
pu°2°103 (w s, ) U020203 (w W G W ) (4'15)
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to obtain

fa fdw"de“'pf,g}czagw'.w“ w**)atias%al? e1(u”)ez(w " )er (w777

X 6 (w=w’=w""~w""") (4.16)
¢ which is exactly Expression (4.12ii). Expression (4.12i) may be

rewritten in a similar manner by exchanging indices ay and a3

de'de"de"' (3) gw’,w“,w’“)allazza]a er{w)es(w )ej(w ")

e - uala3a

X 8 (wew’=w”"-w""") (4.17)

exchange the variables w~”~ and »~-“~ as before

fdm fdw"fd op(3) o w ”)al az ay e1(w”)en(w "Y1 (w” )

o = I u01030

X8 (wew’=w” =w”"") (4.18)
From intrinsic permutation symmetry of 5(3)
[ | (3 - ( ;o . = (3 d 0, P
t . puaza302 (“’ W W ) pu°30203 (w W W )
4
and Expression (4.18) becomes
3 (@
ol a} a2 a3 . .. .
Idw J-dw de p‘(“iza a(w Y] ', "’)a az al el(w )Ez(m )El(w )
. o -
a X § (ww=w""=w""") (4.19)
\. which is also Expression (4.12i1). Therefore, all three terms in
; Expression (4.12) are identical so that the number of like terms beco-
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mes a coefficient to one of the terms. In this case, a factor of
three. Following a similar procedure, this result can be obtained for
each of the terms in Eq (4.9).

Equation (4.1), after expanding to obtain explicitly the density
of states, can be used to determine the resonant terms in 5(3). Also,
because of the resonant requirement of Eq (4.2) and the inclusion of
the four fields with amplitude distribution functions (frequency
components of the field) localized about wi, wz, w3 = 2uw;-w, and

wy = 2wpy-wy in frequency space, only the denominator terms

wac + w;‘ + w“' + irac

wac -w‘-w“-irac (4020)

of Eq (4.1) can result in resonance. Thus, Eq (4.1) can be expanded
by performing the summations over a and c to the desired level. For
the case of interest here, only those adjacent vibrational states need

to be considered with the result:
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(aw)

u a)] a2 Qa3
dob 9b1 91d Ydo

(wobw’w“w"‘+irob)(u)ol"’w“m“’+il"°1)(w°d+w“‘+1.rod)

a} 4H 402 403
dob 9b1 Na 4de

(Wob=2"=iTgh) (wgy 0™ “4w”*“+iTg J{wpg+w” " “+iT oq)

ay 4% 4B 403
dob b7 91d 940

‘” -irol)(wod+w"'+irod)

(Wob=v =T gp) (wgy =™ -w

a1 402 403 4u
dob 9b1 414 Ydo
77 =iTg wog-w =" =w” " =iTyq)

(wop-w”-1lgb) (wgy-w” -u

U a] 402 L3
0 41b 9bo %od Y4i

(1)

(i)

(iii)

(iv)

o

11 (wyp*e +0” "+ " THiT ) (0 ghe” T4

o] 44U 402 443
d1p 9o dod Ydi

(wyp=w”=iT1p)(w)gtw” "+w” " "+iT o) (wyg+w” " "+iT 4)

a] 402 b a3
d1p 9po 9od Ydi

(wip=w”=iTyp)(wyg-w"-w™"=1]g) (wyq+w™ " "+iT14)

a} 442 a3 LU
d1p 9bo Yod a1

(wlb-m‘-irlb)(wlo-w’-w"-irlo)(wld-w'-w"-w"'-irld)

u a; 482 4Q3
d1p 92 924 Y4i

+iT10)(w1d+w"’+iF1d)

o~ -

(w1b+w'+w"+w +1T1b)(w12+w’ +w"'+iF12)(wld+w"'+irld)
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(vii)

(viii)
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al
. d1p b2

U d°2 d°3
2d “dl
(mlb-m'-iFlb)(w12+w“+w"‘+1le)(wld+w"‘+irld) (x)

dS1 d%2 ¢¥, d93

+ 1b "b2 "2d "di
(wyp=w =iT p ) {w; ,~w =" *=iT M w,q+w”“"+iT1q) (xi)
1b 1b/{@), 12/1¢:1d 1d
al a2 4&3 H
. d1b 92 Y24 a1

(wlb-w‘-irlb)(wlz-w’-w"-iPlz)(wld-w’-m”-w“‘-irld) (xii)

B 48] 492 493
¢ o0 dap dp1 414 942

22 (waptw *+u” "+w”” “+iTop ) (wp 1+ “+w” " “+iT 5 ) (woqtw” " "+iT oq) (xiii)

- a u a a
oo . dap by 413 943
(Wop=0" =47 o ) (wp 140”4 ™" “#iT 51 ) (wogtw” " “+iT 54) +eeee (xiv)

3 (4.21)

In Eq (4.21), the contribution from only a single rotational state is
shown for the sum. Also the nonadjacent states are to be lumped
together in a nonresonant term. Depending on the temperature of the

system, the state density, pga, will be either zero or nonzero. Since

the procedure to be carried out here in establishing the resonant
terms and calculating the specific form of 3(3) is identically similar
for any population distribution, only a single vibrational-rotational
state will be retained with all but o0, and o}, ignored. The results
obtained are easily generalized to include all possible vibrational-
rotational levels.

The transition frequencies, wac, thus take on the specific values

wio and wgy; where wgy; = - wy,, Resonant combinations that occur from

Expression (4.20) are
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wlo - wt+ wo

|+

o

1+

wo + wy- wy * 1Ty

}+

wip = w3t wy ¥ 1Tyo

|+

woy + w3~ wy * iTyo

wyg = wat wy * ATy,

y

L' wop + w2= wy * il‘lo (4.22)

where + indicate either + or - may occur. The field localization pro-

perty serves to determine the existence of any of these sums. For

example, consider the specific product from the first term on the RHS

of Eq (4.9)

o‘..“..“‘ - SO T
e e e

X sl(w )El(w")el(w’”)é (w=w” =0 =w”"") (4.23)

Since ¢,(w) is only nonzero in a region about w;, the polarizability

can only take on the form pgizazaa (-3w; jwy ,wy,wy) which is easily

seen for the monochromatic field of Eq (4.6i). But with this func-

tional dependence, none of the linear combinations of Expression

(4.22) will occur and this polarizability is nonresonant. A second

example is the specific product from the second RHS term of tEq (4.9)
X0l a2 a3

Ja [a Jo
= d - d_n; d P (3) e P P a a
LD w W W puujaza;(; W 4w T W )al 1 2

*
x e1{=w)ey(w )es(w”) 8 (wow’=w""=u""") (4.24)

P
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Here the polarizability becomes p£§z°203 (~wp3=wyswyswy)e From Eq

(4.21) terms (iii) and (iv), the linear combination wg,+w -w -il'g,

occurs as one of the six terms arising from the symmetrizing opera-
tion. Specifically, this occurs when {iii) has the index order

@], a3, M, ay and a3z, a;, u, ay and (iv) has the index order

a1, a3, a2, u and a;, a;, a,, u. Terms (v) and (vi) of Eq (4.21) have
the linear combination w,q=wj+w;+il; 4 Tor the order a,, a,, a; With
;!l index u in the proper location. Thus, this polarizability is resonant
1 and would be retained. This procedure has been used to create tables

which summarize the central frequencies, number of similar terms,

' o existence of resonances, and resonant term in the polarizability from
Eq (4.21). Tables III and IV, are for RHS terms 1 and 2, of Eq (4.9),
respectively. Tables for RHS terms 3 and 4 are not necessary since
with intrinsic permutation symmetry as demonstrated in this section
these terms are equivalent to RHS term 2. For example, products
el (w)et™ (07" Jesten ) and €5 (w7 )eq? (077)el® (w”"*) by changing

- changing dummy variables and intrinsic permutation symmetry are equiv-
alent to efcl(w’)g?z(w")egs(w"‘). Thus the number of similar terms
in Table IV is increased by a factor of three. If the resonant terms
for field components localized about w;,w;,w3 and w, are retained
explicitly and the remainder of the terms lumped together in a single
nonresonant polarizability, only sixteen resonant products remain to
be considered. This can be seen from Tables III and IV.

Before writing out the field component products of interest in
this work, a corment on the field component localization is necessary.

It is being assumed that four field components exist as above which
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TABLE III

Equation (4.9) First Term Field Products
e el e antra]’Frquggcy Similar EQ (4.21)
i ] ke, W', w W Terms Resonance Terms
1 11 |w W} 3w, 1 No
11 2w w wy  2wytws 3 No
1 2 2w w  wy 2uste 3 No
2 2 w2 w2 w2 3wy 1 No
11 wp  w) w3 4wy —wy 3 No
1 1 4 jwr w wy 2wyt w 3 No
1 2 3 |w1  w w3 3wy 6 No
1 2 4 Jw w wy 3wy 6 No
1 3 3 |w w3 w3y  Swj-2uwy 3 No
1 3 4 |w ;3 wy 2wt wy 6 No None
1 4 4 {w  w ow, Buy- w 3 No
2 2 3 juw w wy 2wt wo 3 No
2 2 4 |w w  ow, Bwy- 3 No
2 3 3 |w w3  wy dup- 3 No
2 3 4 jw w3 wy  2wa¥ w) 6 No
2 84 8 [w  w  ow, Swy-2u] 3 No
3 3 3 w3 w3 w3y  bwy=3w, 1 No
3 3 4 jwy w3 wy 3w 3 No
3 4 & fws wy wy 36y 3 No
4 4 4 |w, wy wy 6wy-3u 1 No
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TABLE 1V

Equation (4.9) Second Term Field Products

" Central Frejuency Similar €Q (4.21)

16 %k Wi W wltt >y Terms Resonance Terms

1 11 —wy wp o Wy wy 1 No

1 1 2 -y W) Wy wy 2 Yes (ii%) thru (vi)

1 2 2 W] w2 Wy 2wrew)Zwy 1 Yes (i) thru (vi)

2 11 wp W] W] 2wlewpsw3 1 Yes (iY(idi)(vii)(viii)
2 21 w2 W2 W wi 2 Yes (F)(ii)(vii)(viii)
2 2 2 -wp wp W wg 1 No

11 3 Wy w] w3 wg 2 Yes (Y(Fi)(vii)(viii)
11 4 Ly Wy Wy Wy 2 No

1 2 3 w] wp w3 wy 2 Yes (i) thru (viii)

1 2 4 ey owy o owy o 3wo-2wy 2 Yes (iii) thru (vi)

1 3 3 “wy w3  wy  Jwy-2wy 1 Yes (3)Y(Fi){vii)(viii)
1 4 3 Wy wy w3 ws 2 Yes (i)(i1)(vii)(viii)
1 4 4 ~w] Wy wy, 4uwy~3u, 1 No

2 1 3 “wy; w] w3 3wy-2w; 2 Yes (iY(ii)(vii)(viii)
2 2 3 ~wy Wy w3 w3 2 No

2 2 4 Wy Wy wy wy, 2 Yes (iii) thru (vi)

2 3 3 -wy w3 w3 4w1-3u;2 1 No

2 3 4 ~wp w3 wy wy 2 Yes (iii) thru (vi)

2 41 Wy wy W) wy 2 Yes (i) thru (viii)

2 4 & —ws wy wy Jwy~2u 1 Yes (iii) thru (vi)
31 2 w3y W} W wy 2 Yes (i11) thru (vi)
31 4 w3 Wy w, 3Jwp=2u; 2 Yes (iii) thru (vi)

3 2 2 cwy wy  wp  3wp-2uw) 1 No

3 23 w3y Wy w3 w) 2 No

3 2 4 ~wy wy owy &uy-3uwy 2 No

3 31 ~w3 w3 W] w] 2 Yes (ii1) thru (vi)

3 3 3 ~w3 w3 Wy w3 1 No

3 3 8 w3 w3 wy wy 2 No

3 4 4 w3 Wy, wy  Swp~du 1 No

311 w3 W) wy Wy 1 Yes (i11) thru (vi)

4 1 1 ~wy, wy wy 3wy~2w; 1 No

4 1 2 W, Wy} W w3 2 Yes (i)(ii){vii)(viii)
4 1 3 ~w, w; w3 4uy-3u; 2 No

4 1 4 W, W) wy w) 2 No

4 2 2 —wy Wy W wy 1 Yes (1Y(ii)(vii)(viii)
4 2 3 cwy wy w3 3wy~2u; 2 Yes (13039 ) (vid)(viif)
4 3 3 ~w, w3 w3 Swy=8u; 1 No

4 3 4 wy, w3 wy w3 2 No

4 4 2 ~w, W, wp wy 2 Yes (1)) (vit)(viii)
4 4 4 W, Wy Wy wy 1 No
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may or may not be monochromatic. These components, actually the
amplitude distribution function of the field in frequency space, are
;ssumed to be localized in a finite band of frequency domain roughly
centered about the frequencies w;, w2, w3 and wy. These bands are
assumed to be sufficiently separated such that there is no overlap
(i.e., at any given frequency, only one component of the field exists

and all other components are zero at that frequency). Figure 3

i‘ depicts the situation described. Since the input fields, E;(w) and
{ E,(w), are controliable, from Figure 3 the condition that they not
| overlap
& 63 +8i°Cu, (4.25)

can be assured. It should be noted, however, that although the fre-
quency bands of E;(w) and E>(w) do not overlap the effect of frequency
mixing to get w3 and w, can increase the frequency bandwidth and cause
an overlap between adjacent fields. For the case of low conversion
efficiency in generating E; and E, (and higher order fields) by the
nonlinear polarization, these fields in any overlap region would be
extremely weak (i.e., the off resonance effect of 5(3) in the fre-
quency wings decreases the polarization and hence E; and E,

there). Within the bandwidth of the input fields, the generated
fields may then be neglected with little or no impact on measurable
signals. However, for the case of high conversion efficiency, where
the input fields are significantly depleted the generated fields may
be of a comparable value (depending upon the off-resonance effect of
the polarizability, the frequency bandwidth involved, etc.). The

total field in a given frequency domain may then consist of more than
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one field (e.g., €1(w) and e{w) are nonzero at a frequency w;+6;).
The separation of the frequency dependent equations into independent
equations using the principle of superposition is not allowed.

A criterion on the finite bandwidth of the fields is then
necessary to allow the separation of the field equations. At reso-
nance, Eq (4.2) holds and defines the relationship between the central
frequencies w; and w,. Using the definitions of w3 and w, with the

resonance condition, Eq (4.2)

w3 2w] = wp = wit w,

wy

20y - W] =wy - W, (4.26)

or in general, the frequencies generated by the Raman resonances may

be written as

€
n

R [Lzl) o, n=1,3,5.....

w

=g - [153) w,  M=2,4,6..... (4.27)

so that the separation of central frequencies in Figure 3 is as
depicted. The effect of these linear combinations of frequency
results in the bandwidth limits of each central frequency being
defined in terms of the input frequency limits, 67,8{",8 and &7 as

defined in Figure 3. These are

§5 = 26{ + 63°
§5°= 261"+ &3 (4.28)
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85 = 265 + 6%

857 = 2657+ 63 (4.29)
In general

- [ ere 5] o
n= 1,3,5.00.0

- + I - d

oy o e ) w0

N
n= 2,4,6.....

i o e ) o

Two adjacent widths can then be expressed as

s - - n - . . . . .
"+ S, =3 Eél‘“sl') + (52+62]+ 65 - 6 n > 2 (n even)

6n 4 870 = D%l (67+4677°) + (55+55{E] +6{°-85'n > 1 (n od?)
4.32)

As an example, to see the restrictions on the E; and E, widths,
(67 +61°) and (65 +55°) respectively, take the central frequency to
be centered and the total widths to be approximately equal. With

these approximations, Eq (4.32) then yields
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n (8746°7) Cu, n > 2 (n even)
(n+l) (8°+438°°) < w, n >1 (n odd) (4.33)
and
w
(67°48°7) < ﬁ-l n > 2 (n even)
Yy
(6746°7) < o n >1 (n odd) (4.34)

Therefore, if higher order field terms become important and overlap

is to be eliminated, the restriction on the widths of E; and E,
becomes more severe., Note that §- and 6°° were defined as the fre-
quency at which the field amplitude became zero. Any other consistent
definition based on the field component amplitude would also work.

A Tower limit for the multifrequency bandwidth is determined by
the experiment in those experimental situations when dealing with the
Q-branch, the vibrational-rotational energy spacing of allowed tran-
sitions typically decreases as higher values of J are considered so

that if

wo(0) = —AEQR=0) (4.35)

then

w10(0) = wig(l) + a"w = w30(2) + A"w + A" w (4.36)

where A“u, A”°w, €tCc., are quite small. Typically the magnitude of the

rotational energy level spacing, Wys is

w, v (10'3wv) (4.37)

The decrease in Q-branch energy level spacing is approximately
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7. A" w v 0 (10-1- 10'2wd) v 0 (107%- 10'5wv) (4.38)
ﬁn . Then if the pump field is monochromatic, 67 + 67°~0. For a Stokes

field width such that

85 + 657~ 0 (107 wy) (4.39)

the entire Q-branch should be observable (Ref 82). Hydrogen with its

large energy spacing is an exception and only a few of the Q-branch

lines would be observed. For input bandwidths of this magnitude, very

high order fields (n~ 100) must be considered before overlap of the

field components would occur. Thus the approximation of no field

'4 . component overlap in frequency is good for a carefully defined
multifrequency CARS experiment.

Equation (4.9) can now be written using the results obtained in
this section to include sixteen resonant terms and a single nonreso-
nant term

_ [w [ feo - oA ~ A
- (d(a)(w)>= de' de“ de”' [6p(3)(-w;w‘,w",w‘“):a; a, a;
* Ed A A,
e2(-w")ex(w " )eqy(w””")
+6E(3)(-w;w’,w“,w"’)SaT a, aj eY(-w)ep (0 )eg(w ") (i1)
s +6p(3) (w0 w77 ) e a3 a4y ef(w)eglo ey lwrer)  (did)
F‘ +3;(3)(-w;w’,w“,w"‘)§a: a a 8:('(4)')82(&)“)62 (w”') (1\’)
4
+6p (3N (w0 w7 )i ag @ e (w egfu” ey (we7) (v)
' +66(3)(-w;w’,w",w'“)sal* ah & Er('w')cl(w”)cz (o 7) (vi)
*35(3)(‘w;w’-w"’w"‘)Ea‘; 51 a, e*é(-w‘)el(m“)cl(m"’) (vii)
[« 58
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+5E(3)(1u;w‘.w”,w"')saz

~

16503 (w707 7) 1o

+65(3) (~w3u”,07" " 7) St
+3503) (cugu”, 0" 07" ) Sy
+65(3)(-w;m'.w",w"')§5T
+6p(3) (cu30",07 70" ) tar
+3p03) (w300 707 7) fa)

+5B(3)('w;w'sw"sw"')252

+6§(3)(-w;w‘,w",w"’)55;

* d o ., p
a, a; ex(~w)ey(w)er(w ")
* . . PO
ay a3 e1{-w")ey(w” " )es(w™"")
* . .o s
ay a2 ey(-w)ey(w " )ex(w"")
* rd -, -,
a; ay ez(-w")eg(w)er(w”””)
* rd o~ -, o,
a; dj el(-w )sl(w )E3(w )
* - -, - pr
al az Eq(-w )E](w )62(w )
* b ,~ . >,
a, a,; sl(-w )Ez(w )Ez(w )
* P P PP
a; a, 63(-(.0 )el(w )Ez(w )

*
3y 2y ehl=u)erlo ) enlo ")

+N.R. + C.C.) 6 (wmw =w =w""")

-----------

(viii)

(ix)

(x)

(xi)

(xii)

(xiii)

(xiv)

(xv)

(xvi)

(4.40)

In Eq (4.40) the field component products have been ordered first with

respect to the central frequency of the dipole moment, w, and then in

decreasing magnitude of the product within the frequency grouping.

Each of the terms in Eq (4.40) represents a specific process at the

central frequency w. For example, term (xi) describes the CARS pro-

cess at the central frequency wj.

Each of the terms in Eq (4.40) and

the process related to it will be discussed later in this section.
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Because of the localization of the field components and the

integration over this field function, the dipole moment is a linear
superposition and may be divided into four separate moment equations

in distinct regions of frequency space. Equation (4.40) then becomes

For w;-67" Cwl w+é]

(3(3)(w)>= [dw' [dw" Fm“’[ﬁs(3)(-w;w’,w“.w"')25; ;2 51
e5(=u)ea(w” Ve (w s ) (i)
+6p(3) (w070 7077 7) at @y a3 eY(-u)ep (0 )eslws?) (i)
+6p(3) (mwsw 077507 ") as a3 2y e3(~w)es(u e (wo) (i)
+3;=)(3)(-w;w‘,w“,w“‘)faz a, a, en(=wYep(w ey (w”"") (iv)
'i'65(:'3)(--w;m‘,m”,m“‘)ea’;r ;3 5,, s;(-w‘)e;;(w")el,(w"’) (v)
+N.R.] X 6(w=w’=w"*=w""") (4.41)
For w2-62‘ _(_ w _<_ w2+6§
(3(3)(w)>= Jdm’ Idw" de”’ [65(3)(-(0;(»',&)“sw'“)zat 51 ;2
- -0 - *
e1(=w)egw)ey(w"”) (i)
+3p(3) (cu30 07" s0 7 7) a3 a) 3) 30w )eq (0™ )eg (07 7) (1)
+6p(3) (wsu” w0 ") Y 2y Ay X (-w ey (0™ e (w?e7)  (H14)
+6p(3) (~usu” " w0 7 )ia) 8y A3 €1 (0 ey (0 dealw””) (iv)
+60(3) (cus0 0 w0 7 )tar 3, 3, en(mu ey (0" Jep (0o "”) (v)
+ N-R-] X G(w'w“w"'w”') (4-42)
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For wy=- 65" £ w < w3+ 83

o - -] -]

dB) )= fdw [dw“fdww[spﬁ)(-m w7070 0 ) ay ay ay
o Se)er el (1)
+6p(3) (cwj0” 07,077 7) " at a1 a3 e¥(-w”)eq (0 )es(w”"") (i1)
+6p(3) (cwzu” 077,07 %) au a1 az en(-w)ey (v )ea(w” ") (i)
+ MR X6 (wew e mw” ") (4.43)
For wy-84~° < wy + 84

Lo
{3(3)(w)>- J fdw“fd “’[3p(3\(-w w7 sw ’.w"')E;T ;2 ;2

-— 0O

e¥(-v")ea (0 )ea (w ") (1)
+6p(3) (cuzo” 07" 07" ) 2] Ay 2y e3(-u")e; (W )ep (") (i1)
+6p(3) (cwso 07 0 7)1y 2, Ay ep(~w)eplw eyl ss)  (1id)
# NRT X 8w ") (4.44)

The terms in Eqs (4.41) through (4.44) represent the resonant
third order processes for the four fields being considered. For con-
sistency, the process starts with the molecule in a ground state.
When there is any possibility of confusion, the process name is
labeled by the resultant central frequency of the mixing (e.g., for
the resultant frequency w;; CARS (1)). The inverse process is not
presented since the density matrix elements of 3(3) automatically
includes the inverse. The six processes described by Eqs (4.41)

through (4.44) can be divided into two classes; parametric and
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non-parametric (Ref 81:4). In a parametric process, the molecule is
left, after scattering, in the initial state. In nonparametric pro-
cesses, the molecule, after scattering, is left in a final state dif-
ferent from the initial. Nonparametric processes do not require con-
sideration of phase matching of the wave vectors. Table V lists the
processes considered here in their respective classes. To aid in
identifying and understanding these processes, energy level diagrams
similar to the one in Figure 2 are given along with the Feynman

diagram for the resonant term only.

TABLE V

Third Order Processes - Four Fields

Nonparametric

Stimulated Raman Scattering - Stokes (SRS-S)

Stimulated Raman Scattering - Pump (SRS-P)
(IRS in Table I)

Stimulated Raman Scattering - Second Stokes (SRS-SS)

Parametric
Coherent Anti-Stokes Raman Scattering (CARS)
Coherent Stokes Raman Scattering (CSRS)

Coherent Mixed Raman Scattering (CMRS)

The diagrams for the nonparametric and parametric processes are given
in Figures 4 and 5, respectively. The appropriate field component

products for each process are included. These scattering processes
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Scattering Processes with Four Fields

-
4
r_.
3
g
[ (a) SRS-S
- First Electronic wy Coupled
( State Fields
: e v--© *
' W1 w2 yiptual €2 €2 €1 > e1(wy)
: 3 State rrﬂf *
f . 2 €1 ey £z » e2(wp)
_ i :
F v"
v’ v “1
(b) SRS-P
First Electronic
State w)
w3 W V-~
. TAT T T 7T TVirtual *
( 9 State ffr €3 €3 €] El(wl)
: 2 S
'i €1 €] £3 83(w3)
vl‘
w3
v v
(c) SRS-SS
First Etectronic wy,
State v’
*
Ey Ey Ep > 62(w2)
wo Wy . Wiy *
__]r_..__. __g;';t:a.l €2 Eo Ey > Eq(wq)
v
» v’
v
w2
Figure 4. Diagrams for Nonparametric Third Order




(a) CARS w
First Electronic 3 Coupled
e w. State v’ Fields
1 w3 .
N Virtual k €1 €2 €3 > e1(w;)
“1©2 States *
AT ,J,.F wo €3 €] €1 * 52(“’2)
wy *
J IJJ' ep €1 €1 * e3(w3)
| v“ -i RL\'
v v”® / wy
(b) CSRS
First Electronic w)
State v’ .
€y €5 €5 > £1(wy)
w w . *
2 M \S’;;Eu:] £y €4 €7 > €nlwsy)
(.\)2 Wy € *x*
» S 1— Wy ey €2 €2 » ey{wy)
’ v°’
b -
v V-
(c) CMRS
First Electronic w2
State v’
*
wy w3 \\\\fJ;r ez £3 &, > €1(wg)
A Virtual k *
States w1 €1 €y e3 » e2(w;)
* .
uu.- wz— A €y €} €3 > 53(w3)
*
T wy, J /_{’ €3 €7 €3 + eylwy)
v
. i
v v‘ /E_LL h)3
Figure 5. Diagrams for Parametric Third Order

Scattering Processes with Four Fields
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represent the complete set of third order resonant terms for two input
fields plus the largest two generated fields. Equations (4.41)
through (4.44) are rewritten with the polarizability term identified
by the scattering process

P)wy=61" Cw< w+sy
1 W W1Te]

@(3)(w)>= Jdm‘de“Jdm“’[GBSRS'S (ewso’ o™ su”"")iay 2, 2

T &% (w0 e (07 ey (0" *)

+65ARS (cusur,0 ) ey ap a5 ei(-w)en(w  es(u ")
#6570 (cugut w000 ey Ay ayp ed(-w)es(un er(w77)
#3555 (Cusuriem e ) e ap ap el(-u)ep(w e (070 )
T S £ TAE DO TS { (N0 PSR P OIS

+ NoR.Y 6 (wmwew” " =w” ") (4.45)

o« o o

dl3)(w)>= de’de"de"‘[655Rs’5(-w;w‘,w".w"’)35: a; a,
CT T S P I I
e R L L T TR G L O P Ry
65CRS (it 0 ) ey w8y encu)eslu ) er ()
65U (Lpuywm e ) ) ae s (- enlu ) es(wn )
65505755 (st )t an ay ce(ee ) eu(e ) ealon oY)

+ NR.JS (e’ =w”"=0”""7) (4.46)
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(iii) w3 -63"¢< wg w3 + 63

& P At 3)(w)>= fdw'fdw”fdw"'[35CARs(-w;w’,w“.w“‘)5;; ;1 aA]
, . . ’
e2(=w)er{w " )ey(w” ")
) coc. . . .
P 650 P (cwsu” 0 w7 )y Ay A5 eq(mw)ey(w eslw e)
.
, ) VR .
! +6pCMRS(-w;w‘,w",w"‘):a,,, a; a, Eu(-w‘)el(w")ez(w"‘)
E' + NQR.]G (U)-w"w""w"‘) (4.47)
(iV) Wy = 6:::(_(‘) $ wy + 84
L. @V >m oo e[ TS el o
%*
el('w')ez(w”)ez(w“')
= oKk -~ - *
e R EX M TR W D PR (I PO AR
= - o % -~ ~ *
+6pSRS SS(-w;w’.w“,w"'):az a, a4, Ez(‘m‘)Ez(w”)Eu(w“')
+ NoR.] 6 (weto” 0™ w0 7) (4.48)

The relative magnitude of the generated fields are dependent on the
inps®  “21ds and the susceptibility. To obtain the resonant suscep-

tibility, the resonant polizability, Eq (3.22), is required.

Polarizability

The individual resonant polarizabilities of Eqs (4.45) through
(4.48) can be derived from Eq (4.21) using the information in Table

SRS-S

IV. As an example, for p of Eq (4.45), the field component pro-

duct is e; (=w”)er (w”")e1(w”””) and Table IV gives terms (i), (ii),
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(vii) and (viii) of Eq (4.21) that are resonant. However, because of
the symmetrization operator in Eq (4.21), there are six possible per-
mutations for each of these terms. The specific order of indices with
their corresponding frequencies determines which of the six possible

-

permutations produce a resonance. In this example, axjw”, ayw””,

azw””; corresponds by localization to -wy, wz, w;, respectively.

Thus, the resonant terms are:

Term (i); wa,aja; and uajsasza;
Term (i1); ayuajas and aspagza;
Term (vii); ajaszua, and aszajpas

Term (viii); ajazaru and azajau

and Eq (4.21) after dropping the line widths for terms far from reso-

nance becomes

SRS-S (1) ( o L 1 . o
p““1°2°3 = Wiw W T sWw = - gﬁab’d POO
u az a3 Q)
) dob 9b1 914 Ydo
(wob+w +w +w )(wo]+w +w +1T°])(wod+w )

u ar a, a3
dob 9p1 914 Ydo
(wob+w"+w'+w"')(w°1+m'+w

s

+iT°])(wod+w"‘)

ary LU a3 La)
dob 9b1 914 Y40

) )(wo]+w +w +iTO1)(wod+m )

(wob

az 4u a] 4a3
Yob 91 %14 Yo + N.R.
(wob-w")(wo1+w’ +w"4iro1)(wod+w"1
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d9i d3 ¢¥  d52
[o]
sz PO 1b “bo “od %1

bd (“’]b'w‘)(w]o‘w"‘*’”"ir]o)(“’]d"'w“)

(!3 ay H + ]
dob 9p1 N4 Ydo

PR

+
(=077 () gm0 "=w”=1T) ) (wy g#o”" )

Q) 493 492 M
d1p 9bo Yod 941

+ : - L oo~
(w]b- w‘)(w]o-w'-w’”-lF]o)(w]d-w —w” T =w” ")

@3 @1 Q> LU
415 9bo 9od 41 + N.R.

(w]b"w"' )(w-lo-w"' - =1 I‘«lo)(w]d-w"-m’-w“')

(4.49)

Since the middle denominator term in each case does not depend on b or

d, it may be removed from the summation. It can also be noted that

P

ot +Hi FO] = - (m]o-w’-w’ -i r]o) (4'50)

Yol

Then the first RHS term in brackets factors equal to

u 02 02 H = a; a3 a3 Qa)
dob b1 . dob %1 Yd %0, _%1d %o
(wob+w'+w"+w"') (wob_m”) (w°d+w"') (wod+w') (4.51)

and the second bracketed term factors to

a; aj a3z a) u a2 a2 d
4b 9o . %4ib Yo dod a1, dod Y1
(p=e? (eqpme?) (0q#97) (g 07wy | (4:52)

Note that the first sums in Expressions (4.51) and (4.52) depend on

the index b while the second sums depend on d. Equation (4.49) for
SRS-S(1)

e a.a now becomes
18203
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SRS-S(1) e e weerye L 1 { 0

Puajazas e 6h3 (w]o-w’-w“'-iflo) P00
B uooa a u a) a3 a3 a; |
dob b1 dob b1 414 4o d14 440
x L w +w'+w"+w"‘) (w -0 w w7 w_ 4w’
a; a3 a3 aj v a; u ]
Lop | e, Yo || _faln |, od f }
b (w]b"w') (w*lb'w“‘) d (wldw“ ) (w.ld-w'-w"-w"’)

+ N.R. (4.53)

Two further simplifying changes are possible wij=' wji and the dummy

index d may be changed to a b so that Eq (4.53) becomes

SRS-S(1) o . 1 1
puu a (-w 3W LW, 0 = 53 w wiaw”"" o§T
1% %3 1o~ ~ o
8 u @ a, M
dob 9b1 d1p 9bo
X 080 b —— + —F
b (wbo_w -w Taw ) (Lubo+w )
a; a3 a3 a4
. b 9o, _d1b dbo
b | (upgme™") {upg=w”)
I~ a M u az
o dob b1 . _Job 91
11 (mb]«»‘m“m"‘) (wb]-w“)
- a3 &) a; a3
s % %o, _%b %bo 1 +NR. (4.54)
b (wb]+w“’) (wb]+w’)
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Equation (4.54) can be put in a more self consistent form by writing

the second sum in each product as a complex conjugate. The details

Ty
A e

for this change are given in Appendix E, Eq (E30).

SRS-S(1)
pualazag

1

P L P

( Wiw 4w W ) 653

H as
dob 9

az
dob 9

(wbo-w‘-w - ) (wbo+w )

x{p®
{ oo |

z [
a a3 a3 aj *
X 3 dob dbl ' dob db]
b | (4hg-e7) (4ho=2"")
@ TR
0 dob b ., Job %
g | (o w077 (agg-e)
a3 al a] a3 *
. b 91, b % } + N.R. (4.55)
b wb1+w') (wb]+w"')

Equation (4.55) can be simplified in form by defining a shorthand

notation:
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- fal "

L e oo s o0 o0 ae o o

vy a, u
o [ b %i . Job 9 = fHoz (1)
b wb cwawfew” " ubo+w" it
a)] a3 az a3 |* *
| dob %1, _%ob I - fols (i1)
- P W s =W

b | po~w Yho~¥

IR U
o | —fob %1 o b %1 [ = g (1i1)
b wb1+w’+w“+w“‘ wb]-w"‘ wsTw

B da3 da] dal da3 * *q.0
| Zob %1, “ob %1 = g ! (iv)
b | “p1*” “prte””” e (4-56)

where w=w’"+w”"+w””” has been used for simplicity as before. Then

SRS-S(1) . 1
p (= ws0" 07" 7)= ,
ua)az a3 6h3 w]o-w:w"ilrlo
Ha, *6103 qu *03(11
(e f f -, 9 9 °)+NR. (4.57)
00 -w,w W =W Wy=w Wy

This can be generalized to include the effect of all the populated

rotational levels

SRS-S(1)

e e ey 1 1
pu01%03 =W oW W sWw ) = a:‘z w _“)‘d‘.)!)l-]r
J o o0 100
pa2 *a] a3 o *aja
(p..f f -p g g ), + N.R. (4.58)
00 0w =w y=w’ " 11 Ty oty
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where pg  and p?l now represent the density matrix elements for indi-
vidual rotational levels. Further, from Eq (3.43) if higher vibra-
tional levels are populated due to higher temperatures, the

corresponding terms for p}, and py, are used and pSRS'S(l) becomes

SRS-S(1
p (1) - w0 T ,w ) = -13 z ,1 o
ua @203 oh v,J Ceevd™ T T
*a,a as | *aja)
(o, £ (1) f V] -o.90v) o 1)), (4.59)
“waw” " =077 W= wHw"
where v- = v + 1 (4.60)
as Y]
o dyab oy -y . Gvab ey
-leS)V) wva Wo=w” T=w’"” wbvd'.'m” (4.61)
JUIRS
qu va bv‘J + vdb bv:J (4.62)
(\;, gt o W Uy 5~
~SRS-S(1) _
In Appendix F, the form of p is obtained for the

monochromatic fields, as given in Eq (4.6). Also, the relation bet-
ween the f and g factors and the ordinary Raman polarizability is
derived. It is also shown that for monochromatic fields tuned to a
vibrational-rotational resonance the f and g factors become equal.
This approximation is only valid as long as no electronic resonances
occur. In the case of an electronic resonance, one of the denomina-
tors in Eq (4.56) would approach zero and the linewidths of the states
could no longer be ignored. With the presence of the linewidth, the

approximation of equal f and g factors (Appendix F) would not be
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applicable. The restriction also holds for the form of the equations
derived for ordinary Raman polarizabilities (Ref 83:120). For the
experinental conditions of interest as defined by Eq (4.39), the
equality of the f and g factors and their corresponding complex con-
jugates will apply. The results will be stated both with and without
this approximation. In this manner, the results obtained with the
addition of linewidth to the appropriate term may be used when
electronic resonances are created.

This procedure to derive expressions for the third order polari-
zabilities can be followed for each process in Eq (4.45). This proce-
dure is only repeated in detail for one more of the polarizabilities

, BCARS(I).

atu, The remainder of the polarizabilities of Eq (4.45)

are given without writing out all of the details. For BCARS

(1), the
field product is e:(-w‘)sz(w“)c3(m“‘) and from Table IV the reso-
nant terms of Eq (4.21) are (i) through (viii) for ground state popu-
lation. The effect of transition from other states can be incor-
porated as was done for Eq (4.59). There are now eight terms from Eq
(4.21" with resonances. Four are associated with (w;-w,) and four are
associated with (w3-w;). Because of these two associations, the deri-
vation will be broken into two parts; one for each of the differences.

First with a0, ayw”’, azw”"", by localization corresponding to

-wyy Wy, w3, the term by term permutations for (w;-w,) are:

Term (111); a1%oua 3 and ajajuas;
Term (iv); a,a,a,u and a.a,a,u
Term (v); waja,a, and paja,a,

Tarm (vi); azuajar, and aspara)
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When linewidths for terms far from resonance are dropped Eq (4.21)

provides
CARS(1) ot e geee)e o L 0
1P 00003 (- ws0uw™?077) 6h3 bfd Poo
a] @&z U a3
dob 9b1 91d Ydo

(wob‘w’)(wo]'w"w“‘iro1)(wod+w"‘)

) ay u 03
dob 9b1 914 Ydo
(wob-(ﬂ“ )(wo]-w"-w‘-iro] )(wod'i-w'” )

a (!2 G3 1}
dob 91 4d Y40
(wob-w')(wo1-w‘-w"-iro])(wod‘w"m"‘w"‘)

az Gl 0.3 u
b b1 %14 do . MR
(wob-m“)(wo]-w"-w‘-iPo1)(wod-w"-w’-w"')

W a3 a @

. 1b %bo Yod dan
+ z pll . bl -, - - - -
b.d CIE R e e [CRRE NS Mg LS (PR Mg

dy,. d

a3 a4 o
dyp 9o dod 9
(w1b+w"‘«u"+w‘) (w]0+w"+m’+ir]o)(w]d+w')

u aj ar
bo Yod a1
(u)]b-w“')(w]oﬂ»‘ﬁu”"ir]o)(w]d*'w”)

a3
d]b d

+

a3 W a 4
(w]b-w"')(w]0+w"+w'+irlo)(m]d+w') (4.63)

d
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Equation (4.50) can be used to factor the resonant denominator from
the terms of Eq (4.63). Then the bracketecd terms of Eq (4.63) can be

factored to yield, respectively

@)

a o u 03 az u
dob b , b %1 | | %40 d14 Y40
(“ob'w ) (wob'w“) (wod+w"‘) (wod'w"w"'w’,‘) (4.64)

dy d2 d d5 422 ¢
1b bO 1b bo Od d] od “dl
(wyp e’ ot 0) (wy,-0”"") w” ") (w]d+w’) (4.65)

After changing the index in expression (4.65) from d to b and using

1 CARS(1) T | 1
Pua, o a (-wsu”s0” 0" ") 6A3 (wy +w +w "+l )
17273 1o o

d“l d“z dag du *
{ o ob b] ob b] dob Yo7 ob 9p1
X¢p L T\

} 00 p | (uy o’ (wpote +o™ +™"")  (wpow™"")

@® u Gy
P 41 db 9] ob %1 , _Job i
) R e I R R A

+ N.R. (4.66)

If the f and g shorthand notation is used again,

a) an ay a ]
L B ST Y
w'w’” b (wb°+w‘) (wbo+w") (1)
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BAC
i

T

*
u a3 a3 U
*uaj d, d d d
£ =z ‘ob“bl"’ + ob ?1‘ .
Wy b (wbo+w +0 0w "7) (wbo-w ) (ii)
a> aj a] a2
a,a, - dob 9p1 dob db]
9o 7, ™= - —
W’y (wb]-w) (wb]_w ) (iii)
a3 M U a3 *
AP dob b1 , dob b1
-We W A, ma e P ‘iv
b (wb] W -w w ) (wb1+w ) (iv) (4.67)
. CARS
Thus, this part of p is
CARS(1) 1 1
Puajaza; (w3070, B3 Wy +w tw  HiT
w1o w +w 1 1o
(0. §*192 f*ua3 o _@2al *a3p + NR (4.68)
pOO w‘,w“ m',“w”' - pll g‘w‘,'w" g-w,w"‘) s ¢
or for arbitrary vibrational-rotational population distribution
CARS(1
lp ( ) -Ww ;m’,w”,w”')= _1 X . :
uajazas 6h3y J w +u 4w THIT
ovrwd v’vd
o 3192 *ua 3 _ 0 ara; . *Q 3 .
x (pg fw"w‘(v) f w’_w‘,‘(v) py- _w,’_w,,( ) g _w’w,,,(V ))
+ N.R. (4.69)

with the appropriate definitions of f and g as in Eqs (4.61) and
(4.62).
The term by term permutation for (w3-w;) is:

Term (i); wasajaz and pasasa)
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Term (ii); azuajasz and azpasa)
Term (vii); a,ajua, and ajaua,

Term (viii}; ajazap and aza;a,u

Again dropping the linewidths from those terms far from resonance,

Eq (4.21) gives the resonance form

s
g 2 CARS(1) (moi” sw” s~ )= 1
u010~203 “Wal W sl B - 6"3
B a* "2 %1 ¢%s

(x o2 ob bl 1d do
) bd O I S RS Uaat s XS I P g

voa, a; a
dob b1 91d Ydo

+ - -
(mob+w“+m“’+w‘)(wo]+m"‘+w'+1r]o)(wod+w )
Qa, u ay 03
s dob b1 41a 94-.
(wob-w")(w°1+w'+w"‘+i7IJ)(wod+w”')

xo u Q3 ay
dob 9b1 914 Ydo

- + N.R, +
(wob—w")(wo]+w"‘+w'+1f )(w0d+w’)

1o
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T

Gl G3 u 02
41p 9o Yod i

‘ bd H '_(“’]b'“")(')]o'“’“w‘“‘ir]o)(w]d"'w”)

a g ¢%2

Qa3
1b "bo “od “dl

(w]b-w"’)(w]o-w -w’-'il"-lo)(w]d+w“)

d

al 03 02 u
4 9o 9od a1
(w]b-w')(wlo-w‘-w“'-ir-io) (w]d-w’-w”’-w")

ag o1 @ ¥

1b "bo "od “dil
{ @ (w]b-w“’)(w.lo-w”’-w’-’iF]o)(w]d-w”'-w'-w”)

+ N.R]} (4.70)

The resonant denominator is factored by using Eq (4.50). The

d,.d d

bracketed terms in Eq (4.70) are factored, respectively, to

u ap ap u a) a3 a3 Q)
dob 9p1 , Job %1 did %0, %d Y0
(wobﬁu‘ﬁ»“'ﬁ»"‘) (wob-ﬂ)“) (wosﬁﬂ"’) (dem1 ) (4-71)

% 493 %3 4% o LU g%
b %o, _%1b %o dod da1 , Jod %1
(u)]b-w') (w.lb-w"') (w]d-w'-w"-m"') (w-ld+w“) (4.72)
The index change from d to b and T as before reduces Eq (4.70)
to
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CARS 1 1
2Ba aa (= w3u%u”50777) = 63 ‘ew””7=iT
14243 w1°-w -w RLEE P
u az a B — a1 a3 a3z aj
Jo s dob b1 %ob %1 |, ;| b %1 , ob
Loo b | (pgme =007} (upgru™ ) | 7 b | (upgmu”)  (upg-0"")

a; .M uooas | a3 a] a] aj
o g | —tob 91 2 S0b %1 | | %ob b1, _Yob b
D T w0 ) o) | C 8| Ty | g )

— —

} + N.R. (4.73)

With the f and g factors defined as

u a, a, ¥
po Yo % dob b1 _
Bt b (wbo -’ T (wbo+w") (1)
Ak g vl
* s 0
b3, e myp |22 DL, __ob D1 (i1)

b [T ) T o)

a ¥ LV
ae | __%b %1 . dob % (ii1)
Sws-w b (wb]+w'+w“+w"') (wb]-w")

a3 a) d°1 a3 *
*aza) dob 9p1 ob 9b1 (iv)

gw"_w“a= g

(wb]+w') (wb]-w"')

Eq (4.73) is

(4.74)




2p M) e w0y = L .
ajaz2a ) =’ -]
uajaza3 o6n Wy 1r]°
(oo, £°2 1% o, g g% ) 4 MR (4.75)
Poo ~w,w " —w ,ew” P11 gw,-w“ w” - o :
or, in general
s 2 CARS(1) 1 1
F Hajapag (osump00777) = 613 By 0 | wiew o il
. vsJ v°vd v'vd
o jpa et Q 0o a,M *a.a
? x (o £ 2 (M F 12 (v)-ep9f  (v)g P (v))
- V ~w,w W =W Wy =W W e=w
+ N.R. (4.76)
' < The results given by Eqs (4.68) and (4.75) can now be added together
to form the complete CARS polarizability for Eq (4.45).
CARS(1) U |
pualazaa (- wiw sw " Hw ) = 63
aya *UQ a,a *Qa Y
po i Zaaf 3 PR = ?1 g 241 o, 3 PR
00 w ,w W, =-w W =W -W 4
’ w]o+w’+w“+11‘]°
b
ua, *a)ag au *a3a
¢} f f o]
. P00 0w T ew e~ 1 gw,-w“ 9 Wy~
: w«lo-w’-w"'-'ll‘.lo
b
]
P + N.R. (4.77)
' . . CARS(1) - .
p The generalized expression for p may be similarly obtained by

the addition of Eqs (4.69) and (4.76). The monochromatic result, from

Eq (4.77) with the resonant approximation for equality of f and g is

| a0




a1 az

f f
CARS a2 W13

- ® - = — 0 apn® .
pualazaa( (.01, wl’“’Z ’w3) 6"3 (p pll) w.lo-w1+w2+'ll"

*yuas

1o

|11 3} *Q] 03
f f
W1 sWwo Wy y~w3

+ + N.R.
wpoti-uz=ly,

(4.78)

Equation (4.78) may also be written as a function of the Raman polari-
zabilities, pij’ in a manner similar to Appendix F. When the equiva-
lence of (w;-wp) and (w3-w;) near resonance are used, the monochroma-

tic CARS polarizability becomes

w3 *W)
P P
CARS - Pazay + a1a3 a2y
ualazua( ~W]3mw,wp,w3)= ‘(_'0_—1—1‘)' -w1+w2+1l"] w]o-wlmz_il"]o
+ N.R. (4.79)

Two factors are of interest in this expression. First, the Raman
polarizabilities are not only indexed differently as in the case of
pSRS-S(l) but also occur at different frequencies, w, and w;. Second,
when the component of the dipole moment, u, is aligned with the com-
ponent of the field e:(-w), a;, the products of the polarizabilities

are equal and Eq (4.79) may be written as

CARS (°80-P%1) [ 03w 2(byq01e2)
P (-w1;-w1,w2,w3)= P P (wy gmw14w2 )24 T2

uajasag 6N uaz @i

+ N.R. (4.80)
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Since the dipole matrix elements in pij are real in the dipole

approximation (see Appendix E), this polarizability is real.

The following observation is made on the effect of intrinsic per-
mutation symmetry not only for CARS and SRS-S polarizabilities derived
above, but for the other third order polarizabilities as well.
Although intrinsic permutation symmetry applies, p(3) = p(3) =

uajazas nazaj a3
etc., the form of the derived expression for p(3) (e.g., Eqs (4.57)

o,

and (4.77)) is fixed and will not change as ajuw”, ayw””, azw are
permuted. This occurs since the resonance effect will select from the
six possible permutations of the terms in the full polarizability
expression, Eq (4.21), the identical terms for each permutation set.

Therefore, pﬁﬁ?igil (~w3w”yw”~yw”"°) is given by Eq (4.77) but so are

CARS(1) created by permutation.

all other p
By repeating the procedure performed for the SRS-S and CARS
polarizabilities, expressions for SRS-P, CSRS, and CMRS polarizabili-
ties in Eq (4.45) may be derived. Since this is straight forward, it
will not be performed in detail. The other third order polarizabili-

ties in Eq (4.46), (4.47) and (4.48) can also be obtained by exactly
the same approach as for the SRS-S and CARS polarizabilities at w;.
Since there is no new information to be gained in repeating the
procedure, only the results are presented. Appendix G contains tables
of the required polarizability expressions. These polarizabilities
are presented for each of the central frequencies, wj,w;,w3 and wy,
in four tables;

(1) Multifrequency and multiresonent, f # g

(2) Multifrequency and multiresonant with Raman polarizability,
f=g

82




...........................

(3) Monochromatic and single resonance, f = g
hﬂ (4) Monochromatic and single resonance with Raman polarizability

Application Considerations

From the equations for the third order resonant polarizabilities
given in Appendix G, it is, in principle, possible to compute the
required set of third order polarizabilities. To perform this com-
putation does require the complete set of state functions that
describe the molecular system. These are necessary to obtain the
energy levels of interest, Wy ayd and the factors f and g. In these
latter two terms, the sum in Eqs (4.61) and (4.62) are over all states
of the molecule. In practice, this information is not available for
even the simpler molecules. It is therefore necessary to find a way
to express either the polarizabilities or the resultant suscep-
tibilities in terms of measurable parameters.

The use of the Raman polarizabilities in the third order polari-
zability equations of Appendix G is one approach to finding useful
experimental parameters. It was shown in Appendix F that for the
monochromatic case, the f and g factors can be related to the Raman

polarizabilities. In the multifrequency case, this same relationship

can be used as a reasonable approximation. The states of the sum-
mation can be considered for two situations. One, when the applied

r field frequencies are near the vibrational-rotational resonance in
which case the results of Appendix F are applicable. The second
situation is when the applied field frequencies are far from the reso-

[ nance. In this case, o MY be approximated as “p1 where wy, is
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neglected as small compared to (wi-wz2). Thus, the Raman polarizabili-

ties replace f and g with a general form of pw . These Raman polari-

op

zabilities can be combined to form invariants to the rotation of the

molecular axes. These polarizability invariants are:

(1) The average (or mean) polarizability, a

(2) The anisotropy, ¥y
(3) The antisymmetry, &

where

1

a= -5 (pll + p22 + p33) (4°81)

Yzz-]é Epll‘p22)2+(p22'p33)2 +(P33'P11)2
¢ 30,0 8,07 4 (y5t pyy)2 ¢ (Bt 0y )7} | (4.82)
2 1\P1ot Pyy)®  (Pyst Py, P31* Pis .
§2= i’- Eplz- Po)2 + (Py3m Pyl + (pgy- p13)2] (4.83)

(Ref 83:121).

In general, the Raman polarizability tensor may be a complex
quantity but this requires that the wave functions describing the
molecule must also be complex. Complex wave functions will exist only
with the presence of an external magnetic field or with internal
magnetic perturbations (e.g., spin-orbit interaction). With the

electric dipole interaction assumption of Chapter II, the wave
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functions in use here are real since the dipole operator is a linear
operator and its expectation value represents a real physical quantity
(i.e., the operator is Hermitian (Ref 89:89)). This places no
restrictions on the frequency denominators in pij’ W g T and Wpi= Ws
which near a resonance must include a complex quantity, il , for

damping. For real wavefunctions, the equality
d° = d;} (4.84)

has been shown to occur (Appendix E). However, even with real wave-

functions the equality

[¢]

= AP
ob d

P (4.85)

d
when o # p depends on the specific molecule. Therefore in general

Poo # Pop (4.86)

and the Raman polarizability tensors are not, in general, symmetric.

Ther ; can be written as

- pisotropic ¥ panisotropic * pantisymmetric (4.87)

on

For this nonsymmetric case, all three of the polarizability invariants
are required. This situation occurs when there is electronic resonant
enhancement of the Raman active resonant third order process.

A symmetric form for the Raman polarizability tensor and hence
the third order polarizabilities does exist under a special set of

conditions. Placzek (Ref 15) determined that p.. is symmetric when

iJ
all of the following conditions apply:

(1) The frequency of the incident field is much greater than the
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frequency representing any vibration or rotation transition of the

molecule.

(2) Tie frequency of the incident field is much less than the
frequency representing any electronic transition of the molecule.

(3) The ground electronic state is not degenerate.
These conditions are met for many of the CARS and other third order
experiments performed, especially those on diatomic molecules. Thus,
when the above conditions are included with those assumptions already

made, the Raman polarizability tensor is both real and symmetric,

= Pyx (4.88)

Pxy
And, only the polarizability invoriants a and v are required. The
third order polarizabilities in Appendix G can then make use of Eq
(4.88) under these conditions.
A further simplication is possible when there is no electronic
resonance. In this case, the frequency dependence of the Raman

polarizability can be neglected with the result that

wy wo w3 wy

Upon examination of the equations for the third order polarizabi-

lities in Appendix G certain relationships exist which are independent

of the symmetry or electronic resonant enhancement. One of these is
SRS-5(1) *SRS-S(2)
p p

SRS-P(1) *SRS-P(3)
p =p

SRS-SS(2) _ *SRS-SS(4)
P =P (4.90)




Another relationship that exists when two of the frequency arguments

:! of the polarizability are the same is
P (“w;w‘sw“nw“‘) =p ('w;w’sw”’w“‘) (4'91)
ual 0203 uula362
CSRS(1) CARS(2) CARS(3) CSRS(4)
This occurs for for p s P s P » and p . These

relationships and those for the Raman polarizability can be used to

simplify results of orientation averaging and to obtain dependence on

;‘ experimental parameters.

E The third order polarizability equations of Appendix G show that
? in general the isotropic conditions which must apply for a gas do not
%‘ {9 apply to the polarizabilities unless orientational averaging is per-

% formed to obtain the susceptibilities as in Eq (3.22). Or, unless the
*i f (or pij) terms contain the specific symmetry to allow this to occur.

The isotropic conditions (Ref 48:49) are:

; (1) There are 21 nonzero elements of the 81 possible §(3) tensor
; : elements. These have the form; x\3) {3 (8 8)  here
h - jidi 1133 1313 13,]1
i,j=1,2,3.

(2) Only three elements of the twenty one tensor elements are

independent because of the equalities; (3j_ are all equal, x(3)J

Mg s 0 St gme coam o

are all equal, x(3). are all equal, (3) are all equal, and

| 6 IR €9 RN €) IR €) (4.92)
11ii 1133 1313 1331

This latter equality is normally written as

(3) . (3) (3) 3
X111 T Xni22 Y X2 Xﬁzll (4.93)
i That these conditions do not hold in the absence of orientational
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averaging can be shown by examining any individual p(3) term which
would be proportional to x(3). Since the resonant term is the

largest, only it needs to be considered. As an exampie, use

SRS-S(1
p (1) (~w3=wp,0y,wy) from Table G IV.
ua)asag3

SRS-S(1) _ {pgo-e?y) P11P1y 4.9

Piin B 6H Wy =witwp=iT (4.94)

107011921,
and
SRS-S(1)  SRS-5(1)  SRS-S(1)  (p9g=f3,) ]
Pi122 * Pr212 * Pi221 = 6h w1 twn T
w]o w1 () ]0
X (P; Py * Pyy Pyy ¥ Pyy Pyy) (4.95)

where the real quality of pij has been used. If the symmetric rela-

tion for pij is used in Eq (4.93), then the equality

P11P1y = 2P1,Py; *+ PyyPy, (4.96)

must hold for the isotropic condition. This is only true if P, =0
and p,, = p,;. But, thenp,,,, = 0and p,,,, = 0 under all con-
ditions. This violates the first of the isotropic conditions.
Therefore, orientational averaging must be used to obtain the correct
form of the susceptibility in a gas. This averaging is performed in
Chapter VI for the susceptibilities required.

One last consideration must be given to the use of the Raman
scattering cross section as an experimental parameter. In Chapter
ITI, the classical derivation showed how this cross section could be
used to determine the third order polarizabilities. However, as was

discussed there and is represented in the equations of this chapter,
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the frequency dependence can play an important part in this. It is
therefore important to have a derivation of the Raman scattering cross
section that is consistent with that of the third order polarizabili-

ties. Such a derivation is performed in Chapter V using quantum-

mechanical theory.
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V. Raman Scattering Cross Section

Equations

The Raman scattering cross section, o , is a measure of the
amount of energy removed from an incident 1ight beam by the Raman pro-
cess. The differential Raman cross section, %%, is a measure of the
energy scattered into an element of the solid angle, d@. As such, it
is one of the parameters measured to describe the Raman process. In
Chapter III, it was shown that the differential cross section (since
only the Raman cross section is being considered, the description
Raman is dropped) can be related to the third order susceptibility in
the classical theory. But, information on the frequency dependence
was not directly available. This frequency dependence can be intro-
duced directly by deriving the differential cross section using a
quantum theory approach. Loudon (Ref 70:267) has presented a theore-
tical approach where both the molecular system and radiation field are
quantized. While this deviates from the semiclassical approach used
in previous chapters, the simplicity of the derivation dictates its
use here. The derivation presented here for the ordinary Raman -cat-
tering follows this second order perturbation approach. From the
general differential cross section derived, different forms of the
cross section are obtained and discussed. In addition, scaling of
the differential cross section with vibrational level is presented.

To determine the cross section for light scattered from an atom,

the photon scattering cross section is defined as
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where
V = volume
n = mean number of photons
%—= transition probability per unit time or transition rate

The probability of being in a final state of a system given an initial
state is determined by the matrix element of the system time develop-
ment operator betweeﬁ these two states. The transition rate from the
initial state to the final state is equal to the time derivative of
this matrix element. An equation for this transition rate obtained

using the second order perturbation theory is

n " ? 2
l=:2Lzz <F|HNL|I>+lz <F|Hy |B>B|H | I>
T F kg He =g
x 8 (wy=ur) (5.2)
where

F = state vector for the combined molecular and radiation system
final state.

I = state vector for the combined molecular and radiation system
initial state

B = state vector for eigenstates of the unperturbed system

forming a complete set

NL nonlinear contribution to the interaction Hamiltonian

Tr> x>

electric dipole term of the interaction Hamilton

E}ks = wavevector of incident and scattered light, respectively
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wyw_ = frequency of incident and scattered 1ight, respectively

s

K (wU-wF) = energy difference between initial and final state of
the system

n, ng = number of photons at frequencies w and we present

6(mU - wF) = a density of states

The contribution of the nonlinear Hamiltonian is shown to be negli-
gible with respect to that from H and can be neglected (Ref 70:282).

The state vectors can be written as
| 8> =|n, ngs b> (5.3)

Since the cross section is independent of the photon distribution, the
derivation may be simplified by specifying a definite number of pho-

tons. Thus

| 1> =|n, 0, D

|F> =|n-1,1, £ (5.4)

The diagrammatic representation of the two processes that contribute

in the dipole approximation are shown in Figure 6. From this figure,
Wy = W+ no (5.5)
W= w4+ ws + (n-1)w (5.6)

Fors

based on the mean number of photons in Eq (5.4). When Eq (5.6) is
subtracted from Eq (5.5), the result is

Wy = W T wmwe = we (5.7)

where Wey = We=Wye Similarly, w,-ug is obtained from Figure 6. as

92




diagram (a): wy-ug = wi+nw-wb-(n-1)w = wewyp (5.8)
(b): wymwg T Wy HRwew Nw-b = 04w (5.9)

From this information, Eq (5.2) can be written as

o2, ; |1, ol 1, | Hy | n-1, o, b><n-1, o, b|H |n, o, i>
T R fkg hb wmup g
- ~ 2
+% ¢n-1, 1, f|H|n, 1, b><n, 1, b|Hy|n, o, i |
b “ip ~Us '
X 8 (w-ws-mfi) (5.10)

b
(a) f\j!.ws (b) ]

W
s
b b w
i ///kzq W i ///
Figure 6 - Diagrams for the Two Dipole Interaction
Contributions to the Raman Scattering Process
For this situation, H, is given by (Ref 70:182)
2nhw
= S a A, - ay At ) BB 5.11
=1L Eo Ty dny  (agh¢ - ay Ay ) BBy (5.11)
m,J
where
K=Kk, k
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B;éj = creation and destruction operator pair for the molecular
states, | m><j | , such that
BB | 1> = |m> sy, (5.12)
AfK, AK = creation and destruction operators for a photon in the
mode K
+ - 12
Aglno =(n +1)7%|n + 1> (5.13)
- Y
AKI no = (ny) InK-1> (5.14)

a = Unit polarization vector

Upon substitution of Eq (5.11) into Eq (5.10) the terms become;

. _ ok Ag _ .
(i) For K = ks (aS AS), m=f, j=b

-1, 1, £ H | n-1, 0, b> = i<n=1, 1, f|n-1, 1, £

21rl1ws ~tk —
* a ¢ - dgy (5.15)
(ii) For K=k (aA), m=b, j =i
¢n-1, 0, b | Hi | n, 0, i> = i<n-1, 0, b|n-1, o, b>

2akiw\lp 1p ° =
(SP2yY¥e pn¥e a - g .
v bi (5.16)
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{}' (i1i1) For K =k, m

({

-1, 1, FH [n 1, b5 = i <n-1, 1, £[n-1, 1, £

x  (Zhele b2, . g
(5.17)
- (iv) For K = ks’ m=b>b, j=i
{ .
;! <n, 1, b|Hi|n, 0, i>=1i<n, 1, b|n, 1, b
-
5 Y
Znhws ~% vl
/- X v as bi (5.18)
A11 other values from the summation will be zero due to the orthogna-
lity of the system state vector. With these terms, Eq (5.10) simpli-
fies to
i22qh e S
1o2n |1, T (eegm) ey - dgp) (@0 dyy)
T K fkg b © = wpg
f 220K 1/2 - -
i2eh .
7 o g v Ceen) (8 - dgp) (ag- dpy)
{ b “ib T “s
3 x & (w-ws-wﬁ.) (5.19)
i
(a - d,)a-3d.) (a-Tu)(a -7 )'
3 a L ] L] . L] . .
: 1. ggn% nuug | £ S fb bi” , fb'' s bi
, T ofkg VR b “hiTe b “bi*¥s l
| 3
q X §(w-w_-w,, 5.20
3
b
!

95




.JT M V.1

To put this in the form of the Raman polarizability tensor, pij’

(Appendix F, Eq (F18)), Eq (5.20) can be rearranged to yield

3~ 0nats

. - ~% - ~d% - A - T
. (21} (2« dgp)(a dbi)+ (a, - dgp)la -dyy)
T .2 VZﬁzmwS L W, +w W, . - W
f.kg b bi s bi
X (S(w-ws-wfi) (5.21)

The summation over field modes may be expressed as an integral over
frequencies by considering the density of field modes, Py in a cavity

of volume V. Classically, Py can be derived for a set of modes with

( ‘. each mode given by (kx’ k kz). The result for the number of field

y’
modes between k and k + dk for a single polarization is

2
o, dk = ';',,‘z' dk (5.22)
; =W
or with k = C
Z
pkdk = pw dw = -2%2? dw (5.23)

The sum over the number of modes at wes i for a volume, V, may then
s

be replaced by an integration for a sufficiently large number of

modes. With the integration over all possible solid angles, R, the

summation becomes

2
. da v (2q | v f“_’a dug da
ks VJ"ks Us J4w ETSE Jksdks I ey el B I S( |
5.24

After substitution of %-from Eq (5.21) into Eq (5.1) an1 the use of
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Eq (5.24), the Raman cross section is expressed as

dol 42 d3l o) * 2
o 0 |da ldee wd (fbbi , _fb bi, a™a
0 =L == s s L T .+ 0 5w ) s
f i<c bi * s bi
X G(w-ws-mﬁ) (5.25)

In actuality, the delta function representing the density of
states should be a generalized 1ine shape which occurs when the energy
levels involved are not discrete levels but have a probability distri-

bution about a given level. Examples are:

(i) Lorentzian

= 1 r
9 (wsugugg) = 7 [(umog;) = w J2 + T2 (5.26)

(ii) Gaussian
1 Llemwgy)-w 22728 (5,27)

g (w,w_,wg.) = —_—
G s’ fi S s
= I hd
8 B 1n2)LQ (5.28)
where
fg(w,ws,wﬁ) dw =1 (5.29)

If the variation of the integrand in Eq (5.25) can be neglected across
the function g(w,ws,wfi) which is reasonable when no resonances occur,

then the general differential cross section is
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(0 <w) _ 3 a; a, a, a 2
do, . f S e, Y ety g gt
(@) = f_. ct I‘“b W+ W =0
(5.30)

where the condition, e < w, is necessary due to the conservation of
energy for the delta function or the function representing a density
of states. Wes defines the center of the scattered frequency line
shape for

wg T W = W (5.31)

Equation (5.30) represents the scattering of photons from the incident
light beam due to all processes (Rayleigh and Raman) and for all
possible states. The results obtained from this equation are slightly
low because of the assumption of constant integrand made when
integrating over the scattering frequency. But, the evaluation of the
cross section exactly at the scattering frequency line center is
acceptable. This approximation continues to hold even if a resonance
occurs between w and an electronic state of the molecule. In this
case, the damping term, ignored in the energy states of molecule, must

be considered. When this damping is taken into account (Ref 90:205)
do

a a a a ]
(b, €0) g Y d1d? d2d ' g ||’
d 1 fi'l1 ( _fb b fb_bi )
(@i = 1 =% . A
an f c b| “betetp Wpi=@=1
(5.32)

In this work as in many applications, it is not the total scat-

tering cross section that is needed but a differential cross section
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associated with a specific final state, f. Thus a differential scat-
tering cross section for each allowed final state, given the initial
state, is defined. The allowed final states are those determined by
the appropriate selection rules for the molecule {Ref 83:110).

The case f=i in the summation of Eq (5.30) represents the
Rayleigh differential scattering cross section. All of the other
allowed final states represent Raman scattering. Thus, removing f=i

from the sum and defining a cross section for a given final state,

do
(a)si @S

3 a;] az a, aj 9
wlw-w_ ) d, d. d_d. | 4 *
(9_0) = fi 1 z|_fb bi + fb bi a’l 3 2 (5.33)
de’fi ct h b wa+w Wy 5= y

the cross section for scattering from a single initial state to a
given final state is obtained. In this definition of the Raman dif-
ferential cross section Wey may be positive or negative corresponding
to Stokes or anti-Stokes scattering, respectively.

This expression for the differential cross section may be written

in a form using the Raman polarizability tensor when the definition
w 1oz fb bi fb bi
[:pazcz]] fi K b wafm + wb'i- " (5.34)

js used. In this case (%%)fi becomes

wlw-w )3
do, fi
()i = &

[+ ]
p* ala ¢
QY S

(5.35)

where
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w a,
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a p a %3 a% (5.36)
02(!1 S Gua3 S

It will be shown later that this form is particularly useful when

performing the orientational averaging.

General Comments

The cross section used in Eq (5.1) is the photon cross section.
It is defined as the rate at which photons are removed from an inci-
dent beam in the scattering process divided by the rate of photons per
unit area incident on a plane perpendicular to the direction of propa-

gation. The scattering cross section at a frequency W is

n (5.37)
where r is the distance from the scattering center to the unit solid

angle. The differential scattering cross section is

(5.38)

From this equation, the number of photons scattered into the solid

angle is

do

Eﬁ n r— (5.39)

ng=n (

But the intensity (W/cm?) is given by

—
it

nhuwc (5.40)
and

(5.41)

7T
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For Eq (5.41) substituted into Eq (5.39) and division of similar

terms, an equation for the scattered intensity is

I
s . L (4 -2
wg (@ T (5.42)
or
-1 s do -2
=1 (dn)n r (5.43)

A differential scattering cross section for intensity can then be

defined as
&) .
- b, _ s (do
&= = &, (5.44)
so that
=1 (99 p°2
IS ) (dﬂ) (5.45)

The intensity differential scattering cross section using (%%)fi as

given in Eq (5.35) with we = (w'wfi) is

ey
p a  a
0201 S

L a
do Wg 2
( = =

dn) fi c

(5.46)

It is this differential scattering cross section that will be used in
the remainder of this work. The cross section given by Eq (5.46) is
also called the power cross section.

Another consideration that must be given to the use of cross sec-
tions available in the literature is that many cross section measure-

ments are for an entire rotational band. In many experiments the
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resolution of the system may be sufficient to resolve well separated
branches (e.g., 0, P, Q, R, S) but not individual rotational lines.

In these situatiors, any cross section obtained is not for a single
transition but for a sum over all populated states in the branch.
Since the specification of the branch will determine the final state
given the initial state (e.g.,, vibrational-rotational Q branch: [v,J]
-+ [v+1, J]), the branch cross section is a sum of the individual cross
sections over all possible initial states. The individual states must
be weighted by a state density, p?i. The differential cross section
for a branch is then given by

(do 0 (ﬂ

@ Br - PP da)fi (5.47)

where i~ represents the initial states of the branch and (%%)fi is
from Eq (5.46). It is not possible in this situation to determine the
individual differential cross sections from branch cross sections.
However, a first approximation is to assume that all individual dif-

ferential cross sections are equal

do do
(@ei-= (@ (5.48)

and may be removed from the summation so that

N
do = i~ ,do
(Z=)gr ~ ¥ T (33) (5.49)
dﬂ 1 - NBr dQ
where Ni,is the number of initial states. Then the individual dif-

ferential cross section is approximated by
doy, = do
("—) (dﬂ Br (5‘50)
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This result weights the cross section to that of the most populated
initial state.

Because the differential scattering cross section derived here is
for an individual molecule, the elements of the polarizability tensor
are in a molecule fixed coordinate system. It will be desirable to
transform to a laboratory coordinate system in which measurements are
made by a rotation of the axes. When this is performed, the elements
may change value. However, for the general case of an unsymetric ten-
sor discussed in Chapter IV, the polarizability invariants a, y2 and
6% (Eq (4.81), (4.82) and (4.83)) are very useful. It will be shown
that under orientational averaging, the differential scattering cross
section can be expressed in terms of these invariants.

The dependence of the molecular differential scattering cross
section on the vibrational quantum number, v, can be specified without
regard to orientation. This dependence has been determined for the
polarizability tensor elements from the expectation values (Ref 17:105
and Ref 83:78) following the approach of Placzek (Ref 76). These
results will be used here to scale the polarizability and hence the
differential cross section between any two vibrational states. In
this approach, it is assumed that the Born-Oppenheimer approximation
holds to decouple the electronic, vibrational and rotational motion.
It is also assumed that the vibrational motion is in normal modes
which do not couple with each other. Thus the manifold of vibrational
quantum numbers, [v], may be held fixed with the exception of those
describing the particular transitions taking place. Under these
assumptions, the desired scaling is obtained in terms of the vibra-

tional quantum number of the initial state, the polarizability tensor
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elements for transition from ground vibrational state [puB]0 (e.g.,

for av=+1, [p ] = [pasjlo)’ and the ratio of the ground vibrational

a0
state energy to that of the vibrational state of interest, tv‘ For

example, when Av= +1

[Paglyer.y = (WG AN I 1, (5.51)

where 3v is the energy of the initial vibration state in wavenumbers.
This energy ratio is to a first order not dependent on the vibrational
quantum number. As an example, consider the vibrational energy level
of a diatomic molecule when anhromonicity has been included. This

vibrational energy may be written as (Ref 91:92)

E

5.52
FL = G(v) = (v1/2) - v, (V2P +u y (V1724 (5.52)
where v MVXg MV D> e (5.53)

n
Defining v, as

E

v ¥ o _6(v)
v (v+1/2)hc (v+1/2) (5.54)
similar to the harmonic osciliator. From Eq (5.52)
3V = vy - voXg (V1/2) + vy (v41/2)7 +... (5.55)

From this equation and the inequalities of Eq (5...), tv is to a first
1

order independent of v. [paB]fi for av = +1 then scales as (v+1)‘Q‘

Upon substitution of Eq (5.51) into Eq (5.46) the desired scaling for

the differential cross section is
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do _ Y% v w a; *a, |2

(@, = (WD) O/ Iy o g2 ag (5.56)
or

do _ NN d_o

(@ver,y = (VD) (/v (@) (5.57)

when Av= +1., Table VI, following Long (Ref 83), gives the polarizabi-
lity and differential cross sections for several different tran-
sitions. This result is consistent with that of Eq (3.47) when the

energy difference between vibrational states is negligible.
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TABLE VI Vibrational Scaling of the Raman

Polarizability Tensor Elements and Differential Cross Section

::::a;:n ;::::11 :::l f Pas'rt ! Pogle @i/ G
0 [v] [v] 1 1
41 Cvlov Dyl [Liv) (55,000 (v+1) (¥/%)
-1 [viov {Dviva [ov) G 8)1" v (5,8
+2 [viov [y lwz [Bene)* G B(ve1) (ve2) (V0 12
-2 [viov |Dvlvz [Dsv-1vIE A, B(v-1) v (SR, )2
+1, 41 Lv Lvpav, [Dv dvys —(Vl*l)(vm‘l)iiﬁﬂsﬂ 5 (v]n)(vmn)(?]%m)o
Wl || vivm'y vivmly
1ol Lv Iy [0y el Ty -Ei‘z“ﬁ)ﬂ]l’ 1 (3]3.'")°
L Vivm'y vivm'v

vm-l

t [ v ] represents the manifold of vibrational states not participating in the

transition.
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VI Orientational Averaging

Quantum Number and Coordinate Dependence

As pointed out in Chapter III, the interpretation of CARS data as
well as that for the other third order processes depends on having

macroscopic equations for the response of a medium. Since the

macroscopic response results from the contribution of many molecules
even in a dilute gas, it is necessary to take the correct average of
the molecular dipole moments, Eq {3.7). This average depends upon the
orientation of the molecules. For a molecular gas, being considered

¢ o here, this orientation is determined by specifying the coordinate
system (i.e., laboratory or molecular) and the quantum state of the
molecule. The coordinate system may be chosen arbitrarily but should
be one that simplifies computations. Once the coordinate system is
selected, the specification of a complete set of quantum numbers
determines the orientation of the molecule and the statistical distri-

- bution in the coordinate system. In this chapter the effect of orien-

tational averaging is determined with many of the details in
Appendices H and I. The results are applied to a generic dipole
moment expectation value characteristic of those in Chapter IV and to
the molecular differential scattering cross section of Chapter V.

The complete set of quantum numbers required for a molecular gas
are those for electronic, vibration, total angular momentum, nature of
momentum coupling (e.g., angular momentum about the internuclear
axis), and a component of the angular momentum (e.g., in the direction
of a perturbing magnetic field) denoted by (n, v, J, N (K), M). The

averages obtained are also a function of this set of quantum numbers
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and the labeling of spectral lines must be done by changes in each of
the numbers. Such quantities as the susceptibilities, scattering
cross sections and the invariants a, y and & would depend on the ini-
tial state. Their values could vary for each line in the spectrum.

To uniquely determine this set of quantum numbers, it is, however,
necessary to have a weak perturbing magnetic field present.

Otherwise, the energy levels associated with the values of M for a
given J are 2J+1-fold degenerate. For the conditions being treated
here, this perturbing field is not present and the set of quantum num-
bers are restricted to (n, v, J, N (K)). In this situation, it is not
possible to determine the contribution of M.

The molecules of a gas specified by this reduced set of quantum
numbers have a random orientation. This can be seen for a diatomic
molecule by summing the probability of finding the molecule in a given
orientation (Ref 91:69) and dividing by 2J+l. The result is 1/4x
which is isotropic and independent of J. The result from orien-
tational averaging for molecules specified by (n, v, J, N) are also
dependent on the same quantum numbers. To determine these averages
from experimental data, the spectral data must be identified by both
the initial quantum numbers and the change in those numbers. It is to
be expected that such quantities as the invariants a,y , and 6 will
vary from spectral line to line and scale with the given set of quan-
tum numbers. This scaling of the polarizability and the differential
scattering cross section with v, independent of the average, was given
in Chapter V. Placzek and Teller (Ref 76: Table 2) give the scaling

of the polarizability tensor elements with J in a similar manner and
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this result will be presented in this chapter without further proof.
Because of the dependence on specification of the quantum numbers,
care must be taken in using experimental results from the literature.
For example, values of the polarizability invariants a“, vy~ and & are
different when determined from a measurement using a branch where the
quantum number set has been reduced to (n,v) than those for either
individually resolved rotational spectra or vibrational-rotationa)l
spectra. Similarly, calculations made for a given set of quantum num-
bers must be so specified.

With this understanding of the role of the quantum number set, a
careful consideration of the coordinate system selection must be made
before obtaining the necessary averages. Since measurements are made
in a laboratory coordinate system, L, it is reasonable to want the
final macroscopic equations to be expressed in this system where the
electric fields are specified. But the polarizabilities which are
important in the calculation of the molecular dipole moments are a
response to the applied field and as such depend upon the field direc-
tion but not the magnitude. Because of the random orientation of the
molecules in an unperturbed gas, these polarizabilities would be dif-
ferent for each molecule. It is, therefore, easier to calculate the
molecular polarizabilities in a coordinate system attached to the
molecule itself. This molecular coordinate system, I, could be one
that diagonalizes the Rayleigh polarization tensor thus corresponding
to the principal axes of the Rayleigh polarizability ellipsoid, or a
momental system which diagonalizes the moment of inerta. The exact
character of the molecular coordinate system is not important here,

what is important is that it be the same for each molecule. Under
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this condition, the molecular equations derived in previous chapters
apply and the expressions are the same for each identical molecule.
Based on the aLove comments, it is desirable to obtain the third
order polarization, 3(3), for use in the Maxwell's equations, in a
laboratory coordinate system. However, the polarizabilities are best
obtained in a molecular coordinate system where they are constants
independent of the averaging process. This is possible by trans-
forming from one coordinate system to the other using rotation through
the Euler angles ¢, 6 and y. These rotation transformations are
Ri(¢), R2(6) and R3(v). Appendix H gives the definition and use of

the rotations.

Susceptibilities

The polarization of a gas was defined by Eq (3.7) in terms of the
average dipole moment. Equations (4.45), (4.46), (4.47), and (4.48)
give an expression for the dipole moments induced at different
electric field frequencies. These dipole moments are made up of com-
ponents that arise from the different third order processes and have

the general component form

(3) (-w;w’,w”,w”’x a; a, aj

(3)y - do de”“de"" " D
d;**h = €y |de"de”dw”"” Py

*
x ep(-w)ex(w )esz(w ") 6 (w-w’-w " =w""") (6.1)
which may be written in component form as

i
Ha)araq

*
s s ssa a) az &
(wiwrw” sw” ") @) lay“ays

iy g eeg e
(du> = Ci de du”’“dw p

x e1(-w7)ea(w e (0 70) 6 (wmwmmw mw ) (6.2)
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where Ci is the correct numerical factor. Since the average of a sum
is the sum of the averages, the required orientational averaging can
be performed on a general term as expressed in Eq (6.2). The results
of this averaging are then applied to the specific form of polarizabi-
lities given in Appendix G and the related electric field elements for
the sixteen <a*> of Chapter IV. The result will also be applied to
the Raman differential scattering cross section of Chapter V.

To perform the averaging for a gas, it is assumed that there is a
large enough ensemble of a particular molecule so that all orien-
tations are possible and they are randomly distributed. As was
discussed in the first section of this chapter, for an unperturbed
gas, this is a good assumption. It is also assumed that the ensemble

of the particular M molecules have the properties:

(1) The molecules are distinguishable to allow the use of
Maxwell-Boltzmann statistics.

(2) The molecules are independent. This requires the gas to
be dilute enough so that there is no interaction between
molecules.

(3) The molecules are identical. This precludes the need to
discriminate between overlapping spectral ines.

(4) Only the induced dipole moments contribute. The mole-
cule is assumed to be too massive to move under the
influence of a high frequency (visible frequencies)
field so that any permanent dipole moment is also random

and averages to zero.

For a system of discrete entities, the average is defined by

111

s e n A e




- M (6.3)

—(v) A
b w L Yen (6.4)
where -
<d;>m = (RT): <d:‘>m (6.5)

(RT)" is the transpose of Rﬁ given in Appendix H and (RT)S = R:.
u

Upon substitution of Eq (6.2) and ignoring the factor Ci

—_— M

(du> M o1 [Ru [gw dw”-dw Puulaz%( wiw sw” Tew )

*
X 8101(-w')£gz (w”)eg3 (w?°°) & (w-w’-w"-w“’)::] (6.6)
m .

where € = a% has been used for convenience. It is possible to

interchange the integral and summation with the result

u i
R -w.wd wl' wI‘I
[:u Py apay (9307507507 77)

x €18 (ww )R (w )P (w"’] § (wmw” =" =w” ") (6.7)
m

-i @
dp = Idw‘dw“dw"‘

M
z

1
Mm=1

In this form, the dipole moment for each molecule would need to be

computed and summed. This would be an impossible task for any gas of

112




B an s ot aSge 2 aa

T.NrTv,,‘,‘
Y

-

T
e

interest. By rotation through a set of Euler angles (Appendix H), a
transformation of € from the molecular coordinate system to the

laboratory coordinate system simplifies the averaging. From Eq (H14)

where the same symbols are used as in Appendix H for R elements.

Equation (6.7) can then be written as

M

LI J“ S B u i e
<du> = -:w dw”-dw M el [:%u pu616203(-w’w »w” " sw” ")

ar _*ay,_ .\pd2 82 ¢, -.\pd3 83 [ ... o sas

X Rul e (-w )Raze (w )Ra3€ (w E] . $(w-w =w""=w”"") (6.8)

But the fields s? are in laboratory coordinates and do not vary from

molecule to molecule. They may therefore be removed from the sum-

mation. Also [p ] is in an identical fixed molecular coor-
Hajazaz~m

dinate system for each molecule so that

i i . _ i
pualuzaajl - [puu]a2a3]2 e [pua1a2a3]m pualaza3 (6.9)

and may also be taken out of the sum. With these changes, Eq (6.8)

becomes
— J M
= “dw”“dy--- L a)p82p23 T L
(du> -:w dw” dw el M [RUR01R02 o ]m puala 03( wiw w7 W )
*
x €1 (-0 )et2 (W )ed (w7 7) B(wmew e t) (6.10)

It is now only necessary to perform the sum of the rotation matrices
to obtain the average dipole moment of the gas. But this is still an

impossible task for M molecules. However, because M is very large, an
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excellent approximation can be made to obtain the average. For a

large M the definition of average given by Eq (6.3) may be replaced by

_ e, (e
¢ = ) d (6.11)

where f (7) = distribution function

n

1 complete coordinate set.

For a random orientation f (1) becomes
f (6,0,0) = sineg (6.12)

After applying Eq (6.11) to [RYR?1R32R3] with this definition of
Ha a, a5

f(6,6,v), the following result is obtained (Appendix I)

Updjpdzpdzy . _1 4 §®103 _ s%03 _ 030, u a
[RuRcl RGQ R(!3 ] 30 [ ( Hap uay Hay ) 6 d § ds
S(6M193 .4 5%R% 4+ 5%3% ) sY 5%
uay Hay ! 8 %

-(a:};a + s:‘g;’s -4 6:(31;’2 )5‘53 52; 1 (6.13)

where
§9193 - %1 493 (6.14)
ua, LI )

The application of Eq (6.14) to the polarizabilities obtained in
i

Chapter IV, pu°10203 » produces
01 03 pi = 59 pl = pi (6.15)
vooay “uajapag ¥ Hajazaz;  @@3303
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From the definition of the Einstein convention

i i i i i i
= + +p + cce 4 + 6.16
palala3a3 Piin P22 Fli3s Pisaz 7 Pyaas ( )

The application of 621 to %1 is given by

6u Ca = Eu (6017)
a 1

The use of Eq (6.13) in Eq (6.10) then gives the following result for

the average dipole moment in the laboratory coordinate system

:::I) = [Ew‘dw“dm"‘ T(li{[apluau - plauu i p:aau] E’;U & Cg
SV W SRR
- [p:lu(!(l + p:l(!u(! - 4p:laau161*a Eza Eg }
X 8§ {w=w’~w”"-w""") (6.18)

where the frequency dependence of pi and ¢2 has been suppressed for
convenience. The indices have also been reduced to u, a, U and a
since they are now a dummy set indicating a sum. Equation (6.18) can
be written in a vector form which shows more clearly the vector nature
of the average dipole moment. Written in this form, the average
dipole moment when substituted into Eq (3.7) produces the nonlinear

polarization for each of the processes. In generalized form, this is
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i - — —*
ﬁﬁ(w) = §% I;w’dw"dw”’ {A(-w;w',w”,w"’)fez(w”)' Eg(w”')] el('w‘)
—% — —
- B(-w;w‘,w",w"’)[El(-w‘). Ea(w;A‘)] €2(w;a)

- C(mwsn”ye 07 e (-07)* To(07)] Talue)

X S{w-w'-w""=w”""") (6.19)
where
Al-wyn” 0’ yw’”")= (6.20)
1. rd -~ -, ‘i d Eedad o~ 1. el d Ed
4Puuaa(-w;w W T HWw )- puaua(-w;w 207w )- puuau(-w;w s w7 )
B('w;w‘sw“sw“‘)= (6.21)
pi (-U.).(A)‘ e w,;;)_ 4pi (_w.w, W w“‘)+ pi (_ . . . “‘)
nuaa ’ ? ] Hapa ] ’ ] yaay Wsw W sWw
Clwiw Hw” " s0”"")= (6.22)
pi (cwiw”sw” s )+ Pi (mw3w”sw” " sw*"")- 4pi (=030 50" 0™ ")
Huaa ] ] ] papa E] ] ] pnaay ws ] ’

The susceptibility tensor elements may be determined for a speci-
fic process i from Eq (6.19). The isotropic conditions given in
Chapter 1V, Eq (4.92), are shown to hold for the result of Eq (6.19).

The integrand in Eq (6.19), may be written as

11 2 2,3 3, *u xl 1 *2 2 *3 3, U
I,7A (e2 €3+ €7 e34¢; €e; - B(e] €3 + €] e3 + €] €3)ey

-C(ef]e% +efPed 4 ePed) €Y (6.23)

where the frequency dependence of A, B, C and €5 has been suppressed

for convenience. Upon expansion, Eq (6.23) becomes
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Iu = A elu €; €3~ B €] eg €3- C ef
2 2 2 2 2 2
* * *
+ A Elu €9 E€3- B €] Eg €3= C €1 €2 ég
3 3 3 3 3 3
* *
+ A elu €p €3~ B €3 sg g3- C ef €9 ég

Noting that

30 [ =
N ‘u ™

. i
the expressions for x

X1111
X2222

X3333

The isotropic condition x;,,; =

Continuing the determination of .

»

X1212 = -B =XI313

X221 = -C =

A = -
X1122 X1133

. xa b

Xyabc &1 €2

A-B-C

A-B-C

A-B-C

- X

X1331 T X2112

uabc

2211

=X2121

o

€3

X2222

X2233

=X2323 “X3131

= X332 T

1
€2 €u3

X3311

X3113 ©

from Eq (6.24)

X3322

=X3232

X3223

(6.24)

(6.25)

can be written from Eq (6.24) as

(1)

(i1)

(iii) (6.26)

= X3333 1S Seen to apply.

(6.27)

(6.28)

16.29)

A1l other susceptibility tensor elements must be zero since the fields

€1, €2 and €3 are arbitrary so there is no restriction on their com-

ponents.

the conditions for an isotropic medium.

of Eq (4.92)
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This result with those of Eqs (6.27), (6.28) and (6.29) meet

The final isotropic condition




X1111 = Xl122% X1212 + X221

can also be seen to hold. The result of Eq (6.19) is therefore appli-
cable to a gas which is isotropic and the orientational averaging per-
formed was correct.

Equations (6.20), (6.21) and (6.22) when substituted into Eqs
(6.26) (6.27), (6.28) and (6.29) give the form of the susceptibility

tensor elements.

P

;o i - -, ;o , i
W W )= %g [91 ('W;w sW W )+p ('w;w'sw",w"‘)

Xi s (-wew”
1111( ’ Hpaa naua

i ('w;w’sw",w“‘)] (6-30)

+
Puaap

Huaa
S N CERggN g h (6.31)
Y SRS . T A T TCNEs) VS Y AT
= Ppgqy (w0 0 )] (6.32)
ijz"“’“""“’”’“’”‘): gﬁ [“Pluaa('w;w'sw“sw'“)"Plaua(-w;w'.w’ w” ")
4p) (w3707 )] (6.33)

Haau

The polarization P'(w) is then written as
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P (u)= J;w'dw"’dw”'{x}122(-w;w’.w“,w”’)[?z(w”)' E3(w”1)] €1(-u")
+ X212(-0307,07 7,07 ") [E] (~07) T3(w”77)] Talw”?)
i - .o , - - - P - s o

+ Xlzgy(~u3070" 0" ) E (=07 Tp(e”?)] Ta(u ) |

X 6 (w-w'-w""-w""") (6034)

Either Eq (6.34) or (6.19) must then be applied to the sixteen terms
in Eqs (4.45) through (4.48).

Raman Cross Section

The Raman differential scattering cross section, (%%)fi, given by
Eq (5.46) was derived for an individual molecule. In order to use the
result, it too must be averaged over all possible molecular orien-
tations. This is carried out here in a method analagous to the pre-
ceeding section. The assumptions given there are also applied here.

The average differential cross section is

——

m
N o (do
= Nody (Ga)s (6.35)

Qo

do
()¢

dcm
where (Hﬁ)fi from Eq (5.47) is

L

do\™  _ Y| w La a
@ T |Paet S (6.36)

where the polarization vector is now written as ¢ to avoid confusion.
It is only the absolute quantity squared in this equation that must be

averaged. From Eq (5.36)
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w pay] g2 |2 = ay pk * *a = 2
Po %! g2z | Paa, 1 £8%2 pgl, E*s gl | Si¢ 1% (6.37)

but the polarization vectors, &, may be written in laboratory coor-

dinates by a rotational transformation Eq (H14)

£ = R: g2 (6.38)

w Ra1

* * a * a
| Si¢ 12= P, g7 R?Z g B2 p70 R 733 Rl o (6.39)

2Q] O] a, S a,a3 a3z a, S

Again, the Raman polarizability terms are constants determined in a
molecular coordinate system and are independent of orientational
averaging. Also, the polarization vectors are in a laboratory coor-
dinate system and do not depend on the average. Equation (6.39)

becomes

2 = RA1 RA2 RA3 RAL LW *w  pay*ay  faz Lay
Is'ifl Ral Rai_ Ra3 Ra: pazal pu3au 2 ES ¢ ts (6.40)

This average is the one obtained in Appendix I, Eq (I37) which upon

application to Eq (6.40) yields
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2= L 82 s, ay &y _ &3 @&, _ Oy, a3
I Sifl 30 [ 661 6a3 (46 aj 603 651 602 601 602)

a) as ar Oy a3 0y a, &3

+ - + -
Sa; %2’ ( 52> Sas 4 Sas Sa ! 5a2)

+ (Sal 5a2 (_ 6“2 6“'-5 - 6“3 6“‘4 + 4 5“‘4 6“3)]
ay djz a; a3 a; ap a; as

* a * *
xpe p O g gz 03 (6.41)

0201 030“

w *h

- 2 w * *0 w *, a *a b
lSif | - 30 L(4 Poq Pag = Pag Pag ~ Pas Paa) & &5 £ &g

* * * a *a b *b
+ (-Pyq Pg * 4 Pag Pag = Pag Pga) & & &g

*b

w _*y

+ (-Ply Pag = Pog Pon + 4 g pe) 62 62 £ 60 1 (6.42)
where the repeated indices imply a sum (e.g., Pag = P11 * Py * P33)e
When these sums are expanded and compared to the invariants

a%, v2 and 62 of Eqs (4.81), (4.82) and (4.83), the terms in parenthe-
sis are expressable as linear combinations of the polarizability
invariants. As pointed out in the first section of this chapter,

these rotational invariants are functions of the energy state (n, v,

J).

w *u = 2 = A
Paa Pgg 92 A (643
w Ry 2 2 = R~
Pag Pag = 38 * 3 v+ 3 %= 8 (6-44)
o p*w = 3a2 +§ y2- % 52= (- (6.45)
ag Ba
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The terms in Eq (6.42) are then

4A°-B--C” = 3022 - + ¥ (6.46)
4B--C--A” = 2¢2 + % 52 (6.47)
4C“-A°-B” = 242 - l—g 52 (6.48)

Equation (6.42) can be rewritten upon substitution of these results as
*
e 12 ., 45a% - 242 o o 3y2 + 562 - *
|S1f| = ( as )lg ¢ gS |2+ ( as" )Igl2 |ES|2
3y2 =562 \ 12 . 2 2
(=) ]t g | (6.49)

Upon substitution of Eq (6.49) into Eq (6.36), the Raman differential

cross section becomes

w} 2 2 ~ ~ 2 2 ~ ~
G = v, SE“& =E0) b e AR g2 |4

3y2 - 58 e
Tl - ‘%lj (6.50)

This equation clearly shows the dependence of the Raman differential
scattering cross section on the direction of observation and the
polarization of the incident and scattered radiation. These parame-
ters serve to define the vector description of é and %s and therefore
specific cross sections of interest.

Several differential cross sections are especially useful. Two
cases which are frequently measured for linearly polarized radiation
and often available from the literature are derived. For both of

these cross sections, the direction of observations is perpendicular
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to the direction of propagation of the incident beam and thus defines

the scattering plane. In the first case, the incident radiation is
polarized perpendicular to this scattering plane. The cross sections
of interest are those measured with a polarizer perpendicular and
parallel to the scattering plane. The notation used to distinguish
these cases is ( )f1 (E & ) where the dependence reflects the angle
the field polarization makes with the scattering plane. For

( )f1 (LD, g is parallel to ¢ and from Eq (6.38)

n
w
- o _s 4532 + 442
(J_’_l_) N p'i'i _CL* 45 (6'51)

For (%%)fi (L)) és is perpendicular to £ with the result

u
do - s 3y? + 552
(@lei (L1 = N2 0 T35 (6.52)

The depolarization ratio, ey (g), defined by

A

op(2) = (L) (21D 7 (e (5,1 (6.53)

becomes

(1) = %{%2—52%— (6.54)

When the incident radiation is polarized parallel to the scattering

plane

[“’s}b 3v? + 542 )
Res (1D =mf; |2 F‘A_‘s (6.55)
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op (1) =1 (6.57)

- The Raman differential scattering cross section of Eq (6.50) can
be written in terms of the two measured cross sections (%%)fi L,
and (%%)fi (],]]) of Eqs (6.51) and (6.52) for linearly polarized 1ight

*

(g = &)

€0y ee = (€2)ey (LD * [Ees (LD - @eq (L1DT]E -5 | 2(6.58)

This shows that from measurements made of the differential scattering

cross section using linearly polarized light, only two unique values

may be obtained. It is, therefore, not possible to determine the
three rotational invariants using only linearly polarized scattering.
A similar result by Monson and McClain (Ref 93:32) for the two photon

cross section led them to the use of circularly polarized light to

measure a third independent value. The use of circularly polarized
light for the Raman differential cross section also enables the
measurement of a third independent value. Circularly polarized light

is defined here as

f o 1 " . 7 . "

: Left: ¢ = —— (e; + i e;) propagating along ej (6.59)
V2

E!

s Right: & = L (e1 - 1 ez) propagating along ;3 (6.60)

; V2

4

A third measurement where both g and és have opposite circular
polarization but propagate in the same direction is necessary. Any
other combination of linear and circular polarizations provide a

dependent value. To show this, assume that E is left circularly

—

polarized along the z axis and és is right circularly polarized along

the z axis.
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£ = = (ex + i ey) (6.61)
- ) -
& -TE?Z (ex i ey) (6.62)
then
£ . e = l o o . o = l i2 =
£+ & 2(ex + i ey) (e, +i ey) = 2(1 +i2) =0 (6.63)
[
{ I VS T CHE 0 T (O g (6.64)
3 T A y X €/ =2 )
[
{ Substituting these results into Eq (6.50) to obtain (%%)fi (L,R)
b
L
; do w0 (Usy |32 + 562 3y? - 587
3 (Ga)ei (LR) = Nogy (25 [: 75 Ml | S— (6.65)
Y
do _no (s ) 6y2
or
2
; & = & w @n LR = @y LR (6.67)
and from Eqs (6.51) and (6.52)
1
3y2 + 582
r o = @ L) (6.68)
t 450 &7 L (doy’ (1,]) (6.69)
r — 5 " '@l W :
The solution of these three equations for a?, y2and &2 gives
‘ 2= (&) 1o LD - £ @) (LR (6.70)
{ we Np%i dn fi dn fi
F 125
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y2 = (5;)“ ﬁ;%f" [%é- (g%)fi (L,RE] (6.71)

a%%f@ E%mumw%%ﬁmﬂ (6.72)

Thus the rotational invariants can be uniquely determined.

The analysis of Monson and McClain (Ref 93:33) on the symmetry
properties of transitions from a totally symmetric ground state for
their matrix elements is extended here to the polarizability matrix
elements. The differential scattering cross section, (%%) is propor-

tional to | Siflz which can be rewritten from Eq (6.42) as

(]

—_— 1 * - Atk - -
|Si¢ 12= 35 [E;a Pag (4l e -1+ e - eg]2)

~

+ Py Pag (-5 Eg| +8 -] Eg|?)

+ * et -1+ |2 6.73
Pop Pea (18 * &l - |- & | (6.73)
where | ¢ |2 = | Es' 2 = 1 has been used and the frequency dependence is

*
aa Pgp’
* * . .
pas pmB and p08 pBa) are similar to the two photon absorption factors

suppressed. In this form, the ORS polarizability factors (p

of Monson and McClain. When their analysis of the two photon factors
is applied to the polarizability factors expressed in terms of the

polarizability invariants, several useful results are obtained.

*
(1) Poa 388: If the excited state transforms like xy, yz, or
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zx, a2 vanishes. The same result of Placzek that restricts

a2z to the Q branch.

*

* - .
(2) pGB pmB - pcB pBa: If the transition preserves the sym-
metry, & is zero. That is to say the polarizability tensor

has only symmetric properties as previously noted.

*

*
(3) p Pag and Pag Pga’ If near electronic state resonance

scattering occurs

aa

9a% = y2 - 82 (6.74)

Then measurements using only linearly polarized 1ight are

sufficient to determine a2, v2 and §2.

These results which can be used to obtain expzrimental parameters
to calculate the third order susceptiblities show the care that must
be taken in identifying all three of the experimental parameters.
Equation (6.50) is capable of handling every possible polarization
(1inear or circular) and every possible direction of observation. It
is only necessary to carefully define the incident and scattered
radiation polarizations. From this single equation, it is possible to
produce the four tables of Long (Ref 83:CRS 6).

The dependence of the rotational invariants on the set of quantum
numbers specifying the energy state of the molecule and the require-
ment to specify the line or branch used was discussed above. It is
possible, however, to provide scaling rules for the polarizability
invariant parameters referenced to the v = 0, J = 0 set of parameters.

Th2 v scaling is that presented in Chapter V and summarized in
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Table VI. The J dependence was derived for a symmetric polarizability
(a®and y2) by Placzek (Ref 76). These results for the case where com-
ponent of the total electronic angular momentum along the internuclear

axis is quantized by the number K are

JK
Y2(3,K) = by 12(0,1) (6.75)
JK”
a?(J,K) = a? GJK AM=0 (6.76)

The expressions for bjEK,J, taken from Placzek (Ref 76) are presented

in Table VII. The case for K=0, bj,, is obtained from Table VII using
the values for K-> K"= K and setting K=0. This case assumes that in
addition to zero electronic angular momentum about the internuclear
axis, there is zero net electron spin. For the transitions J-»J-1 and
J+J-2, the b values may be derived from

JK J°K”

(20 + 1) by = (20741) by, (6.77)

Equation (6.76) states the result that isotropic (or trace) scattering
can only occur when there is no change in the angular momentum quantum
numbers, i.e., (aJ=0, aM=0, aN=0). Therefore, isotropic scattering
lines only exist in the Q branch.

While Placzek derived the above scaling relations for a symmetric
polarizability tensor, no similar results were found for the antisym-
metric rotational invariant, §2. However, because of the similarity
of the form of 62 to y?(compare Eqs (4.82) and (4.83)), the scaling on
62 is taken to be the same as that for y2. &2 is not required in most

instances of CARS scattering without electronic resonince enhancement.
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Furthermore, since a2: y2: §2 = 1:10-2:10-“, the scaling should not be
a critical correction in using CARS as a diagnostic tool.

One other form of energy state dependence is necessary if calcu-
lations of cross sections are to be performed. This is the dependence
of the population of molecular states, p?i. These are available from
many references and are cited here for completeness. In general, for

the ground electronic state

ofy =c e Ei/KT (6.78)
where
Ey = Eyip * Epot (95K) (6.79)
Erot (J,K) = EJK = rotational energy of the molecule
¢ =g Gy /z g Gy e By T Eg/KT (6.80)

v,J

= statistical weight due to nuclear spin

[a]
—
\

GJK = statistical weight due to the degeneracy of the rotational

Tevel.

The values for Ev’ EJK’ 91s and GJK depend upon the class of the mole-
cule (diatomic, linear, symmetric top, etc.). For completeness, the
method of obtaining these quantities for the diatomic molecule is pre-
sented here. For the more complex molecules, reference should be made
to Herzberg (Ref 94). The vibrational energy, Ev’ is given by Eq
(5.52)

E,/hc = G(v) = ve(v+ 1/2)-veXe(v+1/2)2+veye(v+1/2)3+ ceee (5.52)
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and the rotational energy in a similar manner by

Ey/hc = F,(0) = B,J(9+1) - DVJZ(J+1)2 (6.81)
where
Bv = Be - ae(v+1/2) (6.82)
D, = D * ee(v+1/2) (6.83)

The constants Be’ ags De and Be are experimentally determined just as
those are in Eq (5.52). The total energy, for the ground electronic

state, is then determined by combining Eqs (5.52) and (6.81).
= = - 2 3
Ei/hc T(v,J) ve(v+1/2) vexe(v+1/2) +veye(v+1/2)

+ BVJ(J+1)-DVJ2(J+1)2 (6.84)

For a diatomic molecule (any linear molecule) the statical weight due

to the rotational level degeneracy in energy is

g; = 2J+1 (6.85)

The nuclear spin statistical weight is not a single value for all
nuclear combinations of even the diatomic molecules. 91 has the same

value for all J levels of the heteronuclear diatonic molecules.
g9; = (21, +1)(21,+1) (6.86)

However, for homonuclear diatomic molecules (I,= 1,=1I) 9 depends on
the statistics of the nucleus (Bose-Einstein or Fermi-Dirac) and the
symmetry of the J level for A = 0. To determine the symmetry, the

coordinate wave function, wc, is taken to be (a first order
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approximation)
Yo = we-% Yy ¥y (6.87)
where
we = electronic wavefunction
wv = vibrational wavefunction
wJ = rotational wavefunction

The symmetry of ¥ then depends on a reflection at the origin. Since
%-wv depends only on|q|, it is always unchanged by such a reflection
and we and wd determine the symmetry property of Ve For Ve positive
(symmetric), the symmetry of y depends directly on vy only: WJ is
positive when J even and negative when J odd. For we negative
(antisymmetric), the symmetry of wc depends on WJ as; symmetric for J

odd and antisymmetric for J even. When a nuclear wavefunction N is

defined, the total wavefunction, y, is
v =wc N (6.88)

and the total nuclear spin is given by T. Based upon experiment, it
is known that nuclei with half-integer spins obey Fermi-Dirac sta-
tistics and those with whole integer spins obey Bose-Einstein sta-
tistics. Table VIII taken from published data (Ref 91:138) provides a
ready reference to obtain gI(J) once the nuclear spin and the electro-
nic wavefunction parity is known. The nuclear spin values for many

nuclei are given by Melissinos (Ref 95:502).

122

b .




(8€1:16) wouq

1R 1z | () (1+12) (+) wis (+) whs | uan3 “
(+) wAs
cefe-12 ‘1-12 I (1+12) |(-) wAsijuy (-) wAsijuy PPO |
(+) wAs 3508
cefe-12 ‘1-12 I (1+412) |(-) wAsijuy (-) wAsijuy uaAj 1¥393INI
(-) wAsijuy
*0¢2-12 ‘12 | (1+1)(1+12) (+) wAs (+) wAs PPO
*efg-12 ‘1-12 I (1+12) |(-) wAsi3uy (+) wAg U3A3 .
o
(+) wAS -
*e2-12 ‘12 | (1+41)(1+12) (+) wAs (-) wAsijuy PPO IiWY34
1¥393INI
(=) wAsijuy -4TVH
sef2-1e ‘12| (1+1)(1+12) (+) wAs (-) wAsijuy UdA3
(=) wAsyjuy
*efg-12 ‘1-12 I (1+412) [(-) wAstjuy (+) wAs PPO
(uq) 5 )
I “NIdS I ALldvd (®n) ALI¥vd (Th) ALTYVd (a) 319y211ddV
YvIINN b “I1H9IIM NIdS NOILONNA 3AVM [ 3INTWA | NOILONNA 3AVM ALIYVd SOIISIIVis 1
Lol | WDILSILvLS | ¥v3TONN JLYNIQY00D \ JINOYLD373 v10L :1 NIdS ,

S3|N29 O 483 |INUOWOH 404 ‘16 <qyblap [ed13S13elS uLds Jea|ony

NP oUl YOO S

o i
WY Y PV G I T ¢ p Can—

*ITIA 378Vl




. am am an ba o
-

Y11. Macroscopic Equations

Mediuni Polarization

The orientational averaging results can now be applied to the
dipole moments/molecular polarizabilitiies of Chapter IV. This provi-
des the medium nonlinear polarization for each of the processes being
considered. These nonlinear medium polarizations are valid for any
field polarization (linear, circular or elliptical) and can therefore
be used to describe any of the variations of CARS depending on field
polarization (e.g., BOXCARS). To take advantage of the experimental
information contained in the macroscopic Raman polarizability elements
(or differential scattering cross section), the third order polariza-
bilities are expressed in terms of these Raman polarizability elements
(Appendix G). For the third order polarizabilities to be in this
form, the f and g factors must be equal (Appendix F). For the
multifrequency case, the assumption of importance is: The frequency
differences within the field bandwidth are either sufficiently less
than the transition frequency to be ignored, or, the term is off reso-
nance and becomes part of the nonresonant contribution. The results
obtained apply, to a good first approximation, for electronic reso-
nance enhancement when used with care. To keep the notation simple, a
single resonant term from the sum for the multiresonant situation is
used. The remainder of terms can be described by proper adjustment of
the notation and incorporation of the summation. The most general
form of the equations is der‘ved before any simplifying assumptions
are made. This provides a set of equations for the nonlinear

polarization having the widest range of application. The development
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of two of the nonlinear polarization vectors are treated in detail.

SRS-5(2) and PCARS(3), are the polarizations most often

These two, P
used and serve to illustrate and describe the derivation of all six-
teen polarization vectors obtained. The results for the sixteen
polarization vectors are presented in Appendix J. A discussion of the
additional equations needed to solve for the spectral intensity is
included.

The derivation of the third order polarization starts with Eq
(6.19). The expression for the polarizability is found from the
tables in Appendix G and the vector coefficients A, B, and C from Eqs
(6.20), (6.21) and (6.22). The single third order molecular polariza-

bility term for the SRS-S process centered at a frequency w; from

Appendix G, Table G VI is

S

puu1a2a3 pu02 paaal (7.1)

where
A
t

K, = 7.2

1 * BAD, (7.2)

D) = wt +w w7+ iTt (7.3)

- o] o]
At = pv - pvt (7‘4)
SRS-S .

The overall frequency dependence of p is suppressed for nota-

tional convenience and the subscript t is used to represent the
complete set. When the full frequency dependence is omitted, the

central frequency is represented by a positive quantity. The vector
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coefficient terms are obtained from Eq (7.1) as

SRS-S(2) 0" Fey
Punaa = KiPLg Poy (7.5)
SRS-S(2) 0" Foy
Puapa - Klpuu ac (7.6)
SRS-5(2) 0 *ey”
Praay = KiPLg Pla (7.7)
The vector coefficients are
* * *
Alwy) = K1(4pua Pav ™ Pus Pao ~ Pua Pua ) (7.8)
* * *
-Blwp) = Ki(4p, Py = P Pua ™ Pua Pay ) (7.9)
* * *
=Clwz) = Ky (4P, Pio = Pug Pay = Py Pag ) (7.10)

where the frequency superscripts are implied, -w”is associated with
the conjugate and w”” the other pij term. A set of pseudo-
polarizability invariants for this set of Raman polarizability tensor
element products can be defined similar to those for ORS, Eqs (4.81),

(4.82) and (4.83). For example

* +* m»» *_wa

*
2 =
9 aS - (pll + P22 + P33)(p11 + p22 + p33) - puu paa (7'11)

Equations (6.43), (6.44) and (6.45) then provide the result

* 2
Puy Paa = 9as (7.12)
¥ a0 .2 2,20
Puo P = 385 * 372 4562 (7.13)
* a2 .2 2 2.
va P 3ag + 37, " 3 Gs (7.14)
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Upon substitution of these values into A, B and C and use of Eqgs

(6.27), (6.28), and (6.29), the susceptibilities are

2 2
SRS-5(2) 3vg - 54 NR
X1122 =N —7g— ¢ Xy122 (7.15)
2 2
SRS-5(2) 45a - 2y N
X1212 = NK, "‘éﬁ;"‘"i + x1§12 (7.16)
SRS-5(2) 3yZ - 562 NR
X1221 =N ——— + Xy (7.17)

The nonresonant terms, left in Eq (4.21) after removal of the resonant
terms, cannot be written as products of the Raman polarizability ten-
sor elements. These terms do have dipole matrix element sums that
must be included in the averaged susceptibility. Because these
remaining terms are usually far from resonance, the imaginary term is
small and often ignored. The result of the averaging to obtain the

NR and

susceptibilities for the nonresonant terms is represented by x
it is assumed real. Since the resonant susceptibilities are dif-
ferent, it is expected that the nonresonant terms are also different.
The isotropic conditions do hold for the nonresonant susceptibilities.
The polarization integrand, PI, with the frequency dependence

shown is then determined from Eq (6.19) for the fields and vector com-

ponents of the SRS-S term of Eq (4.46).

137




B BARK

T

———
-

33 (u”"=07)-563 (w77y-u")
PI(wz)'-‘-{EKl(w‘,w"‘) 3 2 ls' 3

453; (“’Hs'w’)“ZYz (w’,,"w‘)
+ NKl(m’,w”‘) 13

3_Y2 (wa»’-w‘)+562 (U",-w’)
» s my S S
+ NKl(w o ) 3

*
x e1(=0")er(w " )ez(w”7)8 (v-0 -0 "-w""")

and

pRS-S(2) g de’dw"dm”’ PL(wy)

-0

P dw’dw” "dw” "

SRS-5(2) W]
{ X1122 (mo30750™7,07"7) + X)),
—

SRS-S(2) W]
X1212 (w300 ™7) + X505

———y

SRS-5(2) _ J”

+ X1129 (a1 = a2) &

o ~ - mr——— P
r. .

- )

g

‘e

o

YN

- -

{’ NR 2 *

-

NR Nl 2 "
+ Xy219 (33 * ay) a

——

NR * 0 "
+ XIZEJ (a; a) 32}

(7.18)

(7.19)

N N ~%
(a1 * a2) a

A* ~ -~
(a7 + ay) &

. ..
(a7 - a1) az}

SRS~S(2) T
[:}1221 (mw307,0" 7,07 ") 4 X5,

* 4 -,
x €1 (~w)ey(w  )ez{w™ ") S(w-w’~w”"-

where
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SRS-5(2) Na,  3vZ(w”-w7) - 562 (w**)-w)

X1122 (~wjw” 0”0 )= N 15 (o7, (7.21)

SRS-S(2) o Na, 45a§(w",-w') - 2y§(w",—w‘)

Xi012 (~wsw’yw” ,w " 9)= e 13 (wt+w’+u)’“+'il’t) (7.22)
2 - id 2 - -

SRS-S(2) o N 3y (w77meT) 580 (w77, -w)

x1221 (-w;w ’w ’(A) 1= 6“ 45 (wt+w‘+u)“’+irt) (7.23)

These results are entirely general in terms of frequency dependence,
field distribution in frequency space, type and direction of field
polarization, and type of molecular transition allowed. Some special
cases that have general applicability are treated in the next section.
Proceeding in a similar manner, the nonlinear polarization can be

obtained for FCARS(3). From Appendix G, Table G X

CARS(3) P _—

- w
p"“l“zug = Kz pala2 p°3u + K3 pula3 puzu (7.24)
where
¢
K2 = &%, (7.25)
D2 = wp-w’-w’7-iry (7.26)
A
K3 = ghD, (7.27)
D3 = wpmw™-w™"7-1Ty (7.28)

The vector coefficient terms are
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CARS(3) _ w ” *w w *y
wpaa - K2 Pug Poy * K3 Py Py (7.29)
CARS(3) _ W' *w Wt *w
yaua Ky Pau Pau * Ky Paa  Pun (7.30)
paay Kz Paa Puu * Ky Pay  Pay (7.31)

Because of the similarity in the forms of the frequency dependence of

the terms in these last equations and the integration over this fre-

P

quency dependence, w in the last term of each equation may be

»

replaced with w”“. After this change, the vector coefficients are

* * *

A(ws) = 2Kz (4p, Py = Py Poy = Pag Py ) (7.32)
* * *

-B(w3) = Kz (4P, Py = Poo Puy ™ Pua Pay ) (7.33)
* * *

* Kz (4paa puu - puu pau - pua pClu )

* * *

-Blws) = Ko (3p P, + 3P Py = 2P Py, ) (7.34)
* * *

-Cluwg) = Kz (3P P, + 3Py Py 2P Pay ) (7.35)

The equality of B (w3) and C (w3) as shown supports the equality of

the resonant susceptibilities

XCARS(3)('“’;“"9“’“""”‘)

CARS(3), . v oo au.
ARS X (-wsw’,u”",0""7)  (7.36)

1221 > >

Defining a set of pseudo-polarizability invariants for this CARS

expression as
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P p. =9 al
aa uy C
* 2,2 .2
pau p(!l.l ac + -5 YC
* 2,2 .2
Pua Pay Sa *t3ve

(7.37)

(7.38)

(7.39)

The susceptibility elements for this CARS(3) in terms of these

invariants are

CARS(3)
X1122

CARS(3)
1212

CARS(3)
X1221

= 2NK,

= NK2

= NK2

2 2
3Yc -5

C NR
45 + 2x1122

2 4 2 4 Bs2
4hc Ye %C

NR
15 * X1212
2 2 2
45a; +vg *+ 55¢ NR
45 X1221

(7.40)

(7.41)

(7.42)

After using the order of the vector fields for the CARS term from Eq

5CARS(3)

(4.47) in Eq (6
do’du” " du” "

=3

*
X €2 (-u),)e‘(w;a)el(w';‘) 6(&)-0)"'(0"-(0“’)

.34)

p—

XCARS(3)
1122

—

(5070

CARS(3)
X212

e

(w30’ W

CARS(3) ( -

1221 Wi 4w

——

—
NR

1122

’A’wlﬂd) +x

PR

NR
1212

A;’wafo) + x

NR_T

TeTTT) + X5

—
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The polarization vector products for the last two terms in Eq (7.43)
are equal and the terms can be combined. Equation (7.36) can be used
to write the polarization as

—CARS(3) = 3 Idw'dw"dw”’

CARS(3 NR N Ty Lk
{L_}lzz( ) (o Tt # XII;J (a1 * a)) &

CARS(3 . e sss NR NR ~

X €5 (=7 )er (0”7 )eq (0777) 6 (b ™ ") (7.44)

where
2 N e I 2 - P P

CARS(B)(_w W w"‘)- NAt 3Y (w s W ) 56 (w s W s W ),7 45)
X122 3L 3R L3 (R -1rt) e
CARS e e e ssa) =
X (' Wy W S ) =
1212

NAt 45aé(w',w",w"')+Yé(w',w",w"')+56é(w’,w",w”')

6h 45 (wt-w‘-w“-irg) (7.46)
xCARS(B) (~wjw’yw” w" ") = XCARS(3) (~ww’yw””yw”"") (7.47)

1221 1212

L , s

In these equations, the shorthand notation w = 0™ + w™” + w on the
polarizability tensor elements has been removed.

Appendix J contains the third order polarizations obtained using
this approach for the six processes at the four frequencies. For each

of the sixteen polarizations, the three resonant susceptibilities,
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X1122 » X321 @nd X;,,,, a@re defined and the vector direction of each
shown. Because the resonant susceptibilities can be written as func-
tions of Raman polarizability tensor elements upon orientational

averaging, the susceptibilities are expressable as functions of pseudo
polarizability invariants, a%, Y% and 6%. Also, due to the averaging,

these three invariants combine into three distinct sums:
2 _ g2 2 2 2 - 2.2
3Yi 56i . 3yi + 561 . 45ai Zyi
45 ’ 45 ’ 45

These are exactly the forms appearing in the ordinary Raman differen-

tial scattering cross section, Eq (6.50). Furthermore, the x1

1111
susceptibility element for every process takes the form
, 4532 + 442
i i i
= K 7.48
X1 45 ( )

This susceptibility element evolves for every process where the input
field polarization vectors are parallel and is clearly the largest
value a susceptiblity element can have. Therefore, to maximize the
output of an experiment, parallel inputs need to be used.

The rotational invariants for each of the processes are taken to
scale the same as those for the Raman scattering case. The vibra-
tional scaling is taken frem Table VI and the rotational scaling from
Eqs (6.75), (6.76) and (6.77). The antisymetric invariant, 62, is

again assumed to scale like the isotropic one. The results are

2 _ w2 2 JKM
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2
Yj (v, J, K)

JK-

2 2 JK 2
62 = b2 b2, 62 (v, 4, K)
JK

bJ,K_is from Table VII.

The polarizability tensor elements in the dipole approximation

{ are real, Eq (E31). This reality has been used to obtain the results
E tabulated in Appendix J. These results are in the form of the Raman
E‘ polarizability invariants from Eqs (4.81), (4.82) and (4.83). When

‘ the reality condition is not applicable (e.g., in electronic resonance
enhancement) greater care must be used to track the complex con-

t‘ (“‘ figuration on the polarizability elements. This is summarized in the

following equations.

;‘ 2 (05) = 3 Pgglo;) (7.52)

3

: # (o)) = 5 Poglo;)pgg (o) (7.53)
& (o) = Pggi)pgg ()) (7.54)

_ 3 * 3 * *
V30 )% 3 Pag(5)Pog(03)+ 3 PoglogIPgofug)= 2 Poglus)Pag (ug)  (7.55)

V2 (0007 3 Pog(0)Pg (0 1+ F Poglu )Py ()= 2 P (og)pgy () (7.56)

62 (0)= F Pyl IPg(03)= F Pyl )Py (o) (7.57)
6 (ww )= 3p ()P o) 2P ws)pn (o) (7.58)

WKk T Pag\? §/Pag\ k™ T Pogl® j/Pga\k
£ loygwg) = [ jw )] (7.59)
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(wk’wj) =

[s2

= v} (o) T

i (szwk)]

(7.60)

(7.61)

To place this effect in perspective, the isotropic invariant as a

function of the central frequency, is shown in Table IX for each of

the nonlinear processes.

done consistently.

The conjugation is arbitrary, but should be

Table IX

Central Frequency Dependence of Isotropic
Polarizability Invariant

SRS-S CARS SRS-P CSRS CMRS SRS-SS
wp | @loywy)| @lgw) [@lyw,) | @,w )] @l,w,)
w2 | a?(e1,0,)] @ (wy,u3) a2 (w) 5wy ) | @2 (wgswy) | 82wy wy)
w3 2% (0) 5w3) |2 (w3susy) a2 () swy )
wy & (wy 301 ) | @ wy w3 ) | @ (wy sy )

The equations obtained in this section provide a complete set of

equations to determine the medium polarization for the six processes

of Table V at the four frequencies w; w) , wzand w, .

These equations

are applicable over the broadest range of experimental conditions;

arbitrary field vector polarizations, electronic resonance enhance-

ment, multifrequency fields, or combinations thereof.
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in the equations are well defined and traceable through the assump-
tions explicitly made to their source. Given the electric field dis-
tribution in frequency space, its vector polarization and the molecule
of interest, the remaining parameters needed are accessible. That is
not to say that the damping ter@, Ft, the transition frequency,wt, and
the pseudo-polarizability invariant, a?, Y? and 6%, are all imme-
diately available in the experimental literature. They are, however,
readily available to a good approximation under many conditions of
interest. The equations presented here, further, allow a deter-
mination of the sensitivity to these approximations over many experi-
mental condition. Several of the situations that are encountered in
using CARS and that simplify the equations are presented in the next

section.

Medium Polarization: Special Cases

Symmetric Polarizability Tensor. A set of experimental con-

ditions for which the polarizability tensor is symmetric were given in
Chapter IV. These conditions apply to many of the experimental
situations in which CARS or the other nonlinear processes are used.
When these conditions do apply, the antisymmetric invariant is
identically zero (6§=0). This reduces the number of invariants to two
and certainly simplifies the determination of both the Raman scat-
tering cross section and the susceptibilities.

For the nonparametric third order processes, the results in
Appendix J show an additional relation for two of the susceptiblities

elements x???EI(j) and x§§§f1(3) when §=0.
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SRS-1(3)
X1122

(-“’;w"‘w“sw“‘) = XSIESZ-II(J) (-w;w',w",w"') (7'62)

The Raman cross section requires only the linear polarization vector

measurements to determine the general form, Eq (6.50). For Gf = 0,

a

49 (LR) =2 (9 (L1D (7.63)

In the next section, it is shown that zero antisymmetry simplifies the
calculation of the medium polarization. In principle, it should be
possible to use measurements from the nonparametric processes to
determine the symmetry of a state. The limitation in practice would
be in the accuracy provided by the experimental apparatus. Two excep-
tions to zero antisymmetry are a degenerate electronic ground state
where the wavefunction is also degenerate (Ref 94:104) and a resonance
of one of the fields with an electronic state.

Electronic Resonance. In the absence of electronic resonance

enhancement of the third order processes, the polarizability tensor
elements exhibit a very weak dependence on frequency. This is con-
firmed experimentally by the scaling of the Raman cross section with
the fourth power of the scattered beam frequency. This is exactly the
scaling predicted by Eq (6.50) when no frequency dependence of the
polarizability tensor is considered. The polarizability tensor ele-
ments are approximately constant in this situation and so are the
polarizability iavariants, a?, y% and 6%. The Tinear combination of
these invariants in the third order susceptibilities (see tables in
Appendix J) can then be set equal to the ordinary Raman polarizability

invariants of Eqs (4.81), (4.82) and (4.83) and taken outside of the

integral over frequency in Eq (J1). These Raman invariants are
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related to a specific set of cross sections by Eqs (6.70), (6.71) and
(6.72). The polarizability elements for use in the determination of
the susceptibilities are then completely determined by experimentally
available values.

Furthermore, when the polarizability tensor is symmetric, as in
the previous section, the determination of part of the suscep-

tibility is further simplified. For 61=0 and no electronic resonance

enhancement
2= v? =15 () (LID (7.64)
a2 =a2= (3 (LD -3 & LI (7.65)

Or, if Eq (6.53) for the depolarization ratio is used

N
n
N
f

=15 op(1) ()7 (LD (7-66)

[+7]
N
n

2=a2 = (82 (LD 0O -5 o] (7.67)

where (%%f is the cross section normalized with respect to frequency

and number density. A typical ratio of a2 to y2 is
a? 1y~ 102 &1 (7.68)

A significant amount of data is available for the depolarization ratio
and the (%%) (L,1) cross section (Ref 96).

As a resonance with an electronic state is approached by an
incident beam, the polarizability tensor element, pij’ shows a signi-

ficant frequency variation (Ref 90:204). In this situation, the
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polarizability invariants can no longer be assumed independent of the
frequency. The polarizability elements are still a good approximation
if the difference of the frequencies in the 1 and g factors of

Eq (4.74) is near both the Raman active resonance and the electronic
resonance simultaneously. If one of the frequencies is in resonance
with an electronic state but the frequency difference cannot be ade-
quately approximated as that between the Raman active states, f does
not equal g; the separate forms must then be retained. In this latter
situation, the direct difference in the state population does not
result but, rather the population density of each state must be
treated separately. Additionally, the dipole matrix element sums that
were lumped into the nonresonant susceptibility may also have terms
with resonant denominators and their contribution to the process must
be considered. These two effects significantly complicate any calcu-
lations. In general, when electronic resonance exists, the polariza-
bility approximation fails. Druet and Taran have treated the electro-
nic resonance enhancement for the monochromatic CARS process at w3 from
a molecular point of view (Ref 97). In Raman scattering, similar reso-
nance enhancement can occur and has been treated extensively in the
Titerature (Ref 90 has an extensive bibliography). In the Raman case,
the scattering cross section depends on the polarizability tensor ele-
ments to the second power through the polarizability invariants. This
cross section therefore depends quadratically on the resonance term.
In the parameteric process, however, only one of the polarizability
elements in the pseudo polarizability invariants contains the reso-

nance and thus the susceptibility for these processes is linear in its
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resonance dependence. It has been analytically shown under
simplifying conditions that the beam intensity generated at the
anti-Stokes frequency,ws;, depends on the square of the susceptibility
and hence quadratically on the polarizability tensor element with the
resonant denominator. An examination is needed for the electronic

NR to determine if resonance Raman

resonant terms in both xi and x
cross sections can be used to evaluate the electronic resonance
enhanced susceptibility similar to the off-resonance case. This could
greatly simplify the calculation and provide a new source of experi-
mental information for electronic enhanced CARS.

Field Vector Polarization. The results obtained in this research

for the medium polarization are completely general in the selection of
the field vector polarizations. This general applicability makes
these equations useful in analyzing all vector polarization schemes
for the six processes described. These vector polarization techniques
range from the simplest condition of parallel linear polarization to
the more complex ones such as multipolarized BOXCARS (Ref 98) and
coherent Raman ellipsometry (Ref 99). The effect of the direction and
form (1inear versus circular) on the magnitude of the medium polariza-
tion and hence the beam intensity is also available from the set of
equations derived. This is demonstrated by considering the field vec-
tor polarization to be both linear and parallel to each other.

Because of its experimental simplicity, this is often the arrangement
used in CARS measurements. The form of the susceptibility for each

process becomes

nAt 1 ) )
Fo- 5 [45] + 4§ ] (7.69)
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which is exactly that of Xilll of Eq (7.48) and is thus the maximum
possible value. Although this creates the maximum resonant suscep-
tibility, it also produces the maximum nonresonant (or background)
susceptibility. This is a limitation to the determination of molecu-
lar density in gas analysis.

Several polarization schemes have been proposed to reduce the
background susceptibility (Ref 63, 98-101). The approach analyzed by
Oudar (Ref 100; Ref 101 is the same technique) where only the CARS
process is considered relies on the linear polarization vector dif-
ferences to determine a null angle for the background susceptibility.
The failure, experimentally, to observe complete cancellation of the
background susceptibility effect was attributed to failure of Kleinman
symmetry (Ref 102:1978) of the nonresonant susceptibility. But the
results obtained here, Table JIII, show that there are contributions
to the medium polarization at w; due to the SRS-P and CMRS processes.
Although these processes produce weaker effects than CARS in most
experiments due to the relative field intensity dependence of the pro-
cess, they may be of a magnitude off resonance comparable to or
greater than the nonresonant susceptibility. These two extra pro-
cesses certainly contain nonresonant susceptibilities themselves which
must be accounted for in any cancellation analysis. A straight for-
ward, although numerical, calculation of the effects of these addi-
tional processes would be worthwhile. The linear polarization
approach of Eckbreth, BOXCARS, where different propagation vectors are
used for the pump beams to provide spatial resolution (Ref 103) is
more complex. The analysis of these cases follows naturally from the

form of the equations derived. It is also possible to include not
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only the effect of field vector polarization for each process but to
also analyze the effects of nearby resonances as required in the
ellipsometry approach of Akhmanov (Ref 99:672) using the equations
herein. The form of these equations are also very useful in analyzing
depolarization ratio measurements as suggested by Yuratich (Ref
104:679).

Field Frequency Distribution. The equations obtained in this

research for the medium polarization apply to any nonoverlapping
distribution of the field amplitude in frequency space. This was one
of the goals of the work so that the multifrequency CARS approach
could be analyzed. The monochromatic or near monochromatic case is

easily obtained from this set of equations by the following equalities

ei(w’) = Aid(w’-wi) (7.70)

E*i(-w') = K? (w’+wi) (7.71)
When these delta functions are used, the form of the medium polariza-
tion required to describe most CARS experiments is obtained and the
differences between multifrequency and monochromatic cases are clearly
delineated. For the monochromatic, nonparametric (Stimulated Raman
Scattering) processes, the polarizability invariants are precisely
those for Raman scattering with the incident beam frequency
corresponding to that of the annihilated photon. In such a case, an
exact substitution of the normalized Raman differential scattering
cross section is possible. The parametric processes when the fields

are monochroma“ic do have a mixed frequency dependence for the polari-
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zability invariants but there is only one set associated with each
process (e.g., a% (wy o3 for CARS). The susceptibility element xflll
for the parametric processes where frequency degeneracy exists (e.g.,
CARS and CSRS) is approximately twice that of nonparametric process.
Since the multiplicative coefficient, K, in equation (J1), is three
and six, respectively, this is a compensating effect. The field inde-
pendent part of the medium polarization is approximately equal for all
processes with collinear field polarization.

The CARS process at w3, Table JI, and the CSRS process at w, ,
Table JII, both have two resonant denominator forms in general field
equations. Because of the occurance of slightly different frequency
differences in the multifrequency case, these two denominators will
not have the same frequency dependence and a resultant "mixing" of
each susceptibility occurs. When the fields are monochromatic, the
frequency dependence of the two denominators is identical although
they are complex conjugates of each other. The susceptibility tensor
element Xllzz is then real and x1212 and X1221 are complex conjugates

of each other so that x};ll is real.

General Equations

Wave Equation. The research of this dissertation has con-

centrated on deriving nonlinear medium polarizations for use in
interpreting laboratory experiments. To use these polarization
equations in Appendix J, the wave equation and appropriate boundary
conditions are necessary. A brief review of these is presented here
along with some comments on the solution to obtain generated beam

intensities. Two equations are required to predict accurately the
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macroscopic behavior of the propagating fields and the media; the wave
equation and the rate equation for the state population of the
molecules. The wave equation is obtained in the standard manner from
Maxwell's equations by eliminating B from Eq (2.15a) using Eq (2.15b)

with the result

- 2F -
vxvxs+g-zg;c-§=-§13§2 (7.72)

[g)

Equation (2.15e) may be used to show explicitly the dependence on the

nonlinear polarization

=NL
1 32 =, F 4w 32P
VXVXE += —— s+ B) = - — — 7.73
2 a2 (e ) c? at2 ( )
where Eq (2.9) has been used with
pr-xt.F (7.74)

A wave equation can be written for each of the frequency components.

Equation (7.73) then becomes

- - 1 92 -
VX [V Xt (r’wi’ t)] + E—a_t' [E i (I“,w
(7.75)

where the spatial and temporal dependence is explicitly shown. This
can be Fourier transformed using Eq (3.1) to give the wave equation
w

2 w2
VX[V X E(Fe] - c—} e E (Tawg) = n c—;FNL(?,wi) (7.76)

where i=1 (pump), 2 (Stokes), 3 (anti-Stokes) or 4 (second order

Stokes). To account for the small dispersion effects in gases, the

154

o4




index of refraction at w,, n; may be introduced so that n} = | e |. A
second useful equation is that obtained from Eq (2.2a) and (2.15d)

such that

Ve (B E)(Fw) = - dn v PN (7.77)

In many approaches to solving the wave equation the variation of

sNL

P in Eq (7.77) is assumed to be negligible and € is assumed to

be isotropic so that

v . E(F,wi) =0 (7.78)
Using this with the vector identity

VXVXE=VE-v (v-E) (7.79)

simplifies the wave equation.

Any solution to the set of Eqs (7.76) and (7.77) must satisfy
certain conditions. Two conditions that must be satisfied are the
conservation of energy and conservation of momentum. For well defined

frequencies and propagation vectors, these may be written as

L

‘zl w, =0 (7.80)
i=

4

.zl E} =0 (7.81)
1=

respectively, and where
n., w,

- i i
[k | = — (7.82)

The boundary conditions of Eq (2.6) must also be satisfied at any
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boundary. Where there is a second beam incident on the boundary as is
being considered here, the components of k satisfying the boundary

o conditions are determined at the boundary (Ref 25:117). Any propaga-

- _v_‘E r YT
- N o T : v‘ t
|

tion phase mismatch, ak, is also determined. In principle then, it is

possible to solve the wave equation for the fields using these

equations and nonlinear polarizations. This is an extremely difficult

task even with the use of numerical techniques since the results are a

A\ ZMBLANE Aul gl ik nis 8
T

set of twelve coupled, second order, nonlinear partial differential
equations.
Several simplifying assumptions have been developed to reduce the

task of solving the set of equations for the electric fields. One

.

assumption most commonly accepted is that of slowly varying amplitude.

This assumption is valid when the change in amplitude of a wave per
wavelength is small. This occurs because the nonlinear susceptibility
is a very small quantity compared to the linear one

(x(l) : x(3) v 1 : 1071%(Ref 72:119)). The result is that the second

derivitive of amplitude is negligible (Ref 26:1958) i.e.,

32A 3A
—_— ( — 7.83
812 <k oz ( )

and the set of coupled equations become first order partial differen-

tial equations. A second assumption commonly used is that the solu-

E‘ tion has the form of a plane wave
E(Ft) = A(F) e K 7T o) (7.84)
or a Gaussian spherical wave
‘
[ Er.t) = K(r) o (otiBle® (il r-ot) (7.85)
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where the amplitude term, A(r), may be complex. Equation (7.85) is
that characteristic of tre wave generated by a laser source.
Bjorklund (Ref 105:288) has proposed a specific and therefore more
useful form for the field propagating along the z axis.

If additional assumptions are made on the strength of interaction
of the fields, analytic solutions can be obtained. Bloembergen (Ref
25:110) by assuming the pump field, E,;» to remain unchanged and the
fields to be in the form of monochromatic plane waves solves the
coupled equations of the Stokes and anti-Stokes fields for SRS-S and
CARS processes included. This case is the least restrictive one that
can be solved analytically. To further simplify the problem, the pump
field and Stokes field can be assumed to remain unchanged during the
interaction; the weak interaction condition. When this assumption is
made along with those of slowly varying amplitudes, plane waves, and
parallel field polarizations, the anti-Stokes intensity in the CARS

process may be obtained directly for the multifrequency case as (Ref

86:9)
2 2
aestd) = (B2 1 L(up=6) | 3570 (mwa-s3-uz-8,0n0) | 2
x L2 [sin (x)/x]? (7.86)
where

L = interaction length
x = Ak L/2

sk = |k, +k -k, -k, |= phase mismatch
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Equation (7.86) shows the effect of phase mismatch on the anti-Stokes
intensity. Weil and Schreiber (Ref 106) have numerically solved the
coupled set of equations for the four fields being considered here and
have included most of the six nonlinear processes. The following
assumptions are made in the solutions of Weil and Schreiber; vibra-
tional transitions only, slowly varying amplitudes, monochromatic
plane waves, parallel polarization and a variable state population.
The assumption of slowly varying amplitudes was checked and found to
hold for the input conditions used. The inclusion of the rate of
change in population of the various states was a valuable improvement.

State Population. The solution of the wave equation with the

correct boundary conditions provides the description of fields. The
key to the correct formulation of these equations is the nonlinear
third order polarization. It serves as the forcing function of the
particular solution. From the results obtained for this polarization,
the corresponding set of susceptibilities are directly dependent on
the population in the various molecular states involved in a given
process. When no electronic resonance enhancement is present, the
dependence is on the difference between the population of the two
involved states. If this difference becomes zero, the susceptibility
will also be zero. The density difference is in turn dependent on
the fields or intensity generated by the processes. Thus, the
equation describing the rate of change of the density or density dif-
ference is coupled to the set of field equations.

Maier, et.al. (Ref 85:582) derive an expression for the equation
of motion of the population difference density for a two-level system

involved in the SRS process. This derivation, based upon a harmonic

158




amas

oscillator model, relates the rate of change of the difference in
probability of finding the molecule in each state to the first deriva-
tive of the polarizability and the molecular vibrational displacement.
In this form, the result is only a guide to one for this work. Druet,
et.al. (Refs 97:1546 and 107:20) have used the equation of motion of
the density operator and perturbation theory to obtain a rate equation
for the probability of population difference for both electronic reso-
nance enhancement (with ;§1 = 0) and no electronic resonance enhan-
cement. The equation obtained accounts for the SRS-S, SRS-P and CARS
process. It is necessary, however, as pointed out, to explicitly
write out the all fields. This was done assuming monochromatic plane
waves. The equation for off resonance is fairly compact while the one
for electronic resonance is very complex. Weil and Schreiber (Ref
106:944) have used a more straightfc-ward approach of equating the
rate of change of the population difference to the increase in the
photon density due to an SRS process over a differential path length.
This is in turn related to the rate of increase in the field over the
same path length. These equations are given for both a two level and
a three level system with damping phenomonologically added.

The results of Druet, if extended to all of the processes con-
sidered here, is a more complete description of the change in the
population difference. However, the approach by Weil lends itself
very readily to numerical calculations as demonstrated and is easily
adapted to multilevel systems. Further efforts in determining the
best population difference rate equation are needed for the general

case under consideration in this research.
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Linewidth. The linewidth is a parameter that occurs in every

fc Raman resonance susceptibility and becomes dominant in the denominator
when resonance is reached. An understanding of the linewidth and

3 hence the line shape is important whether CARS is being used to

i! measure macroscopic parameters or study molecular properties. The

b linewidth is a superposition of the natural width with the physical

: phenomena of molecular motion and intermolecular collisions. The

t' effect of the processes vary with the density of the gas. At low den-
sities where collisions are infrequent, the Doppler effect of the
molecular motion is superimposed on the natural line width. As the
#1 ‘o pressure increases and the collision frequency also increases Dicke
narrowing (Ref 108) of the Doppler linewidth can occur. The
appearance of Dicke narrowing depends on the magnitude of the Doppler
:( broadening and the onset of pressure broadening. As the density is
further increased, the collisional effects dominate and collisional
broadening of the line is observed. With still further increase in
il - the density, a region of fairly constant linewidth is reached and then
the linewidth decreases with density (e.g., collisional narrowing
occurs at about 30 amagats in nitrogen (Ref 109)). Not only does the
F 4§ ' linewidth change with density, but the shape is also changed and the
rotational-vibrational energy is shifted.

1 At iow density where the Doppler effects dominate, linewidth is

( approximately constant. Roh, et.al (Ref 110) derived an expression

for the Doppler effect on linewidth in the forward scattering direc-

tion of

K CARS . (&%) In2 (/2 dr (-4(1n2)z2/a0°3 )
(w) = K i—U———M,Z ) e

X ﬁ_r--.
1111 N wo e w-il (7.87)
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Doppler width (fwhm) for forward Raman scattering

'a ]
"

(nv/c) w& = Doppler shift in the resonant frequency

Based upon Eq (7.87), it was concluded that the anti-Stokes intensity
would have a Gaussian profile with a linewidth (fwhm) of 1.22 b’ S0
that the CARS linewidth is broader than that for forward scattered
Raman by a factor 1.22. However, when collisional broadening occurs
I = Tn + rp>>'Aw6, the shape is given by a Lorentzian with linewidth
of 2r . In the intermediate density case, when Dicke narrowing
occurs, the effect on the susceptibility has been obtained using the
autocorrelation function of the scattered field (Ref 111:178).

A theory for high pressure CARS spectra where coliisional
narrowing occurs, has been developed by Hall (Ref 112 and 113). This
theory treats the prediction of r for the regions where collisional

broadening occurs and the linewidth is found to be proportional to the

pressure and temperature as

-1
Py =TypT 2 (7.82)

-
1]

t linewidth at any pressure and temperature

—
il

T known linewidth at a given pressure and temperature

In the region where collisional narrowing occurs, the dependence on
density is a complex function and no longer linear. However, when the
density gets sufficiently high that the narrowing ceases and the

linewidth again becomes approximately constant, it again becomes a
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weak linear function of the density.

The linewidth is also a function of the initial rotational level
associated with the Raman transition. Data for this variation for
Raman scattering (N> and CO2) (Ref 114:187-188) and CARS (N,) (Ref
115) are available. CARS data were compared to the Bonamy theory by
Hall (Ref 112) and found to give excellent agreement with respect to
both J value and temperature. This theory is predictive in the sense
that no adjustable parameters are needed for the calculation and can
be extended for use with several diatomic molecules.

There are additional effects that can change the linewidth or
line shape. Three sources of these effects are the measurement being
made, the method of measurement and the laser source being used. In
terms of the laser measurement, if the integrated intensity is
measured by using a multifrequency (broad band) Stokes beam with a
near monochromatic pump (Ref 86:16) there is an effective line width
due to the interaction of the Raman resonance susceptibility, off reso-
nance susceptibility and the electronic non-resonant susceptibility.
This reff rest1* in a reduction of the linewidth parameter used with
the integratea i..ensity. The effect of laser source is treated by
Yuratich (Ref 116) by considering the effect of incoherence in the
source to reduce the equation of the anti-Stokes spectral intensity to
a convolution over laser lineshapes. The results are presented in
tabular form summarizing the requirement on the laser linewidth and
resonant frequency difference necessary for the spectra obtained to

follow the Raman anti-Stokes spectrum.
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VIII. Summary, Recommendations and Conclusions

Summar

The results of this research are a set of third order polariza-
tion equations that completely describe the noniinear CARS and related
processes in gases. The form of the equations is appropriately
macroscopic for interpretation of experimental results. The molecular
gas polarizations derived are correct for all electric field vector
polarizations and any nonoverlapping frequency distribution of the
electric field amplitude. The derivation does assume two laser input
beams whose central frequencies are separated by a Raman rotational-
vibrational resonance frequency and two generated beams whose central
frequency is shifted from the two input beams positively and negati-
vely by the same resonance frequency. In order to describe the CARS
completely, five other nonlinear processes, two parametric (CSRS and
CMRS) and three nonparametric (SRS-S, P, and SS), that depend on these
four fields are included.

A semiclassical approach with the electromagnetic field described
classically is used in the polarization derivation. Both classical
and fully quantized excursions are made where they contribute to the
understanding or clarity of the resulting equations. Specifically,
the induced third order molecular polarizability is obtained from
wuwuiitum mechanical perturbation theory using a density operator. This
potarizability along with the electric fields defines the dipole
moment of the molecule. The dipole moment is divided into two parts;
one possessing a resonant denominator for a Raman transition and one

that represents nonresonant terms. Since the medium polarization is
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an orientational average of the molecular dipole moments, the resonant
part is averaged for a gas having a random orientation. The result of
this averaging when combined with the nonresonant term is the medium

polarization. The medium polarization is defined by the set of

equations for each of the six processes and the four central frequen-

cies.

Lars Sra e &

From the equations for the medium polarization, macroscopic
susceptibilities are defined (Appendix J) that depend on pseudo
polarizability invariants. These pseudo invariants are shown to have
(- the same form as the Raman polarizability invariants. In the absence
of electronic resonances, dispersion in the polarizability is small so
: that the third order polarizability invariants can be set equal to
products of the Raman polarizability invariants. By carefully
deriving the molecular Raman differential scattering cross section and
: establishing the dependence of the average Raman cross section on the
_ same Raman polarizability invariants, the conditions under which the
l! various susceptibilities are related to the correct Raman scattering
cross section are presented. A discussion of important parameters,

- ‘ scaling and the field solutions is given for completeness. The objec-
tive of obtaining the medium polarization and the defining suscept-
bilities that desciribe CARS in terms of measurable parameters was

accomplished.

Recommendations

The equations for linewidth and the rate of change in population
( density should be determined. This would include the effect of laser

lineshape (Ref 116). These equations should account for all of the
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processes considered in this research and should have as paramters
factors that can be obtained from other experiments. This would pro-
vide a complete and consistent set of equations to predict and
interpret the CARS process. The available set of equations can then
be solved to determine the effect of secondary nonlinear processes,
phase matching and field polarization on the generation of a CARS
field. An extension of the set of equations to include nondegenerate
four wave mixing is straight-forward and should be carried out for
completeness. A more difficult but more significant extension of the
research would be to determine the role of the polarizability and
pseudo polarizability invariants for electronic resonance enhancement.
The scaling of the antisymmetric invariant must also be established.
Any effect of the antisymmetric invariant and its magnitude should be
experimentally determined. This is especially true for electronic
resonance enhancement. The magnitude of the pseudo polarizability
invariants variation with frequency also needs to be established by
experiment. This would determine the degree of accurary in equating
the Raman polarizability invariants to the pseudo invariants. The
scaling of the pseudo invariants with vibrational and rotational

levels should also be experimentally verified.

Conclusions

The third order polarization equations obtained in this research
for the description of CARS are complete and unambiguous. Further,
they furm a set of equations that can be used to solve for the CARS
electric fields as well as those of the other processes with any form

of the laser source; monochromatic or multifrequency. The general
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results obtained here do reduce to the accepted simpler monochromatic
equations. Coherence properties of the laser sources have not,
however, been included in this analysis. By retaining the arbitrari-
ness of the input fields, the susceptibilities determining the medium
polarization are seen to depend on terms that combine and therefore
disappear when the monochromatic assumption is made. For example, the
two different denominator terms in the CARS(1) susceptibilty is not
generally recognized. Also, several authors have proposed rela-
tionships between the various susceptibilities that in reality only
apply under certain restrictive assumptions. Others have taken the
susceptibility for a gas to be the form of the molecular polarizabi-
lity. This is at best confusing to someone new to this field and may
result in application errors. This error is corrected by the approach
presented here. By using the set of susceptibility equations derived,
within the assumptions made, each constant and coefficient is care-
fully defined and the differences in the susceptibility expressions
appearing in the literature are eliminated. The equations derived
here, where appropriate, or the approach for other situations speci-
fies clearly the conditions under which the susceptibility terms can
be replaced by Raman cross sections. The correct cross section to be
used is also clearly specified.

The results obtained here for arbitrary electric field polariza-
tion is also presented for the first time. VYuratich (Ref 104) has
derived a scalar susceptibility that for certain conditions accurately
describes the relation between susceptibility components. But, in

general, because his result is in scalar form, the vector information
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of each polarization component cannot be uniquely stated. The form of

the polarization equations derived herein being expressed in the
laboratory coordinate system makes it very easy to visualize and
understand the role played by each polarization vector component.

This can be important in such applications as background suppression.
The results stated by Oudar (Ref 100) and Eckbreth (Ref 98) are easily
derived from the equations of this research and the impact of other
terms is easily seen. Although the derivation performed here was for
degenerate four wave mixing (two of the three input frequencies are
identical), the approach is applicable to the case of a third input
beam frequency with different polarization. The results are therefore
easily extended to such applications as the Asterisk method of
background suppression. This approach is also applicable to examining
the case of electronic resonance enhancement. In the use of this set
of polarization equations, existing experimental data may be used for
the simpler cases. For these more complicated applications, the
required data must first be experimentally obtained.

In conclusion, the set of equations derived here are not only
unique in their completeness in describing the macroscopic third order
medium polarization and susceptibilities, but, the approach is broad
in its applicability as well as being straight forward. This approach
is quite clear in distinguishing between the susceptibilty which is
macroscopic and the polarizability which is molecular in nature. This
can be significant in the correct interpretation of experimental

results.
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Appendix A: Medium Susceptibility

The form of the various orders of the susceptibility, Eq (2.13),
rg]ating the higher order polarization terms of Eq (2.11) to the
applied fields is essential to the development of CARS as a diagnostic
tool. Following the approach of Butcher (Ref 48), the general form of
the third order susceptibility is derived with minimum assumptions.
One very useful property, the intrinsic permutation symmetry, is shown
to be a result of the general functional relationst ).

A general expression that can be written between the time depen-

dent vectors P(t) and E(t) is

o

F(l)(t) = J dr 6(1)(t,'r ) * E(r) (A1)
P(2)(t) = Idrl dez 8(2)(t, t1,12)% Ele1)E(xy) (A2)
PG)(t) = jdrl Jde Jde Q03 (t,r1,12,73) JE(ry )E(r, )E(ry)  (A3)

These may be written in component form as

-]

p{1(t) = Er Qfl;)(t,T)E“(T) (Ala)
$RIOR Iglx Iélz Q2),, (6 11am2) By (1) E () (A2a)
o e o

x QSizazaa(t-TloT2,T3)Ea1(Tl)EGZ(TZ)Eaa(Ta) (A3a)

From this form it is clear that 5(1) is a tensor of rank i + 1. Here,
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as throughout this work, the subindices represent spatial coordinates
and the Einstein convention that repeated indices represent sums is
used, as defined by Eq (3.15).

By using the properties of time displacement and time invariance,
it can be shown that 5 depends only upon the difference of two times.
This can be shown for all orders of Q by demonstrating it on 6(3)
which is of prime interest in this study. First applying time
displacement let t -+ t + T in Eq (A3a).

P£3) (t+T) = J:rl Jdrz Jdra

X Q‘(Jizazas(tﬂ', T1,T2 ,‘f3)Ea'1 (t1 )EGZ(TZ )E°3 (t3) (A4)

Also, with the assumption of time invariance, P£3)(t+T) must depend on

E(t+T). Equation (A3a) becomes

PSS)(t+T) = Eﬂ ETz ETa

X Q‘Sz:azas(t,.rl, T2s T3)E°1(T1+T)Ea2(T2+T)Ea (13+T) (AS)
3

Upon making the change of variables t,+T +t; , 14T 1, and 13+T g

P$3)(t+T)= IETI [;Tz I:T3

x 03230203(t,n-r,12-m3-T)Eal(n)Eaz(rz)sqs(r3) (A6)

Comparing Eqs (A4) and (A6) it can be seen that
Q(q) (t+T,T1)T2’T3)=Q(3) (t,Tl-T,TZ'T’T3-T)
ualazaa ualazua

must hold. Since this is true for any t, Tor Tsett=o0and T = t.
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0(3) (t’T1!12313) = Q(a) (O,Tl-t,TZ-t,T3-t)
ualazaa UGIGZQS

Thus 5(3) depends on the time difference and not on absolute values of

time. For definiteness let
83 (t,71,72,73) = R(3) (t-11, t-12, t-13) (A7)
Thus Eq (A3a) becomes

P0(e) - Fn FTz Jars RO (em, tta, tera)t BB ECR) (ABa)

or
?‘3)(t) = I;Tl J:Tz IZTa g(3) (t1,72,73)+ E(t-T1)E(t-12)E(t-T3) (A8D)

In Eq (A8b), a change of variable under the integral has been used.
5(3) (t1s72 s73 ) is the cubic (third order) polarization response
function of the medium.

Two additional assumptions are appropriate for the conditions
encountered; causality and reality. The causality condition requires
that 3‘3)(t) not depend on the value of fields later than t (i.e.,

T <t). To incorporate this assumption, R(3) is defined as
RC) (1120 13) =@ (B (1) B (23) RO) (2g05013)
where

0 -<0

@ - |

1 -0

The reality conditions requires that ?‘3)(t) be real when E(t) is

real. This requires that R(3) (11,72,13) be real also.
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There is a permutation symmetry of R(3) associated with the form
of the relation between P(3) and E in Eq (A8). This property is very

useful in the manipulation of variables and is called the intrinsic
(3)
Hajasas

to be invariant under the 3. permutations of the pairs a;r;, a,1, and

permutation symmetry. This property provides for R (T1572,573)

azr3e That this property follows from the form of the equation for
any order r of the polarization will be shown for the case of r=3.

Starting with Eq (A8b) written in component form

P‘(13)(t) = {dr; fdr, 1213 Rn(waziazas(”’”’”) By, (12)E, (r2)Eg (r3) (A9)

where the t dependence of E has been suppressed for convenience. Upon
examination of specific combinations of the 27 terms and 6 per-
mutations, it is possible to show that the intrinsic permutation sym-
metry holds. The term R3321 (t1,72,73) is used as an example of the

three terms where a; = as = aj
o \
[[fdvidrodrg RS?{] (t1,72,73)E3(11)Ea(T2)E1(T3) (A10)

For this, consider an 3(3) term whose first two pairs, 1t; and 11, are

interchanged:

f?deldTZde Rﬁfz1(72’T19T3)E1(T1)E1(T2)E1(73) (A11)

However, 11 and 1, are dummy variables of integration so that without

loss of generality the change of variables can be made

1] -+ To3 d1y > d1>

T2 * 115 d'l'2 > dTl

180




iy PACAN g s [rs v
DT TR YA S I T A

_,'j’r" v-v’}v1_r7‘-‘ ‘

Y

(’\'0

and Eq (All) becomes

11 deegdes R(3) (1,02, 0)E1 (2 )E0()E () (M2)

-
Since Ej is a scalar, it may be rearranged

fodTldede Rﬁzzl(Tl,TZ,TS)EI(TI)El(TZ)EI(TB) (A13)

After setting Eq (All) equal to Eq (Al3) collect terms to the right

hand side. This procedure yields

ffdeldfszszifZI(Tz.T1.T3)

i Réfz1(Tl’Tz’T3)]E1(T1)E1(T2)51(13) =0 (A14)

The electric field product in Eq (Al4) is arbitrary so that the only
way equality can hold in general is for the coefficient of the field

product to be zero.

RE) (rurima) - RED) (rimpa) = 0
or
Rl(‘le (729713'[3) = Rﬁle (T19T2’T3) (A15)

By straightforward examination, this must be true independent of the
permutation and thus is also true for the other five permutations and

for R(3) and R(3) .
U222 u333

Now consider the case where the indices on R£3) are all dif-

ferent, for example
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+ R(a) (t1,72,73)E2(T1)E3(T2)E1(73)
+ R(3)2 (t1,72,73)E1(T1)E3(T2)E2(T3)

+ g3 (t1,72,73)E3(T1)E1(T2)E2(T3)

+ R(a)1 (Tl,TZ,T3)E3(T1)EZ(TZ)EI(T3] (A16)

Interchange the first two pairs in R$3) as before with 71 replaced by

1, etc., for convenience

(Tia1 42 a3 {Eﬁj}a(z.1,3)e1(1)52(2)53(3) . R5333(2,1,3)E2(1)E1(2)E3(3)

+ Rﬁjzl(2,1,3)52(1)53(2)51(3) + Rﬁj?z(2,1,3)51(1)53(2)52(3)

ul32 H231

+ RE3) (2,1,3)E5(1)E1(2)E2(3) + R{D) (2,1.3)53(1)52(2)51(%5} (A17)

When the variable of integration property is used to interchange T,

and t2 in Eq (Al7), it becomes

!
3
b
]
b
L‘
4
Y
S

[Ha ¢z d¢3 [55533(1’2’3)E1(2)E2(1)E3(3) + Rﬁfgs(1,2.3)E2(2)E1(1)E3(3)

¢ RE3) (1,2,3)E(2)€5(1EN(3) + R (1,2,3)E1(2)E5(1)E(3)

0 +RE3) (1,2,3)85(2)E,(1)E,(3) + Rﬁjgl(1.2.3)53(2)E2(1)El(%i] (A18)
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The scaler property of the electric field component product provides

that Eq (A18) becomes

[flda1 a2 a3 E‘(’fgsu,z,s)sl(1)52(2)53(3) + R$233(1,2,3)E2(1)E1(2)E3(3)

* R, (12,308 (1E; (20, (3) + R§§3](1.2.3)53(1)Ez(z)51(%E] (AL9)

This is exactly Eq (Al6). Collect terms to the right hand side after
equating Eqs (Al7) and (A19).

- H213

K (3) - r(3)
[I] d1 d2 ds'{[E{ 37 (2,1,3) Ru§23(1,2.35:|El(l)Ez(Z)Ea(3>

—_( ) (3)
R, (21,3) - Ru§13<1,2,ég] E, (2)E, (1)E, (3)

SN

—

N (2,1,3) - R (1,2,3) | E; (3)E, (1)E, (2)
U321 W31

S ——

(5) () (1.2.9)|
+ Ru112(2,1,3) - R (1,2,3) | B (1)E, (3)E; (2)

e —

T ——

+R"&AJ)-QJJLL?JhuﬁAw&u)

uli32
+|RG) 2,1,3) - Rf,gz)l(l.z.s;T E()E (281} =0 (A2)

—_— e}

But, again the electric fields are arbitrary so that the only way for
equality to hold without loss of generality is for the individual

coefficients of the fields to be zero.




4

E: RES) (2,1,3) - R (1,2,3) =0+ R0 (1,2,3) = k() (2,1,3)
El B R5333(2,1,3) - R5223(1,2,3) =0 ~ R£233(1,2,3) - R£§33(2,1,3)
- RE3) (2,1,3) - R (1,2,3) = 0+ RE) (1,2,3) = /() (2,1,3)
e R(Y) (2,1,3) - RB) (1,2,3) =0+ R0 (1,2,3) = /(D) (2,1,9)

(3)
Ru332(2’1’3)

(3) (3) »> p(3)
Ruf32(2,1,3) - Ru§12(1,2,3) =0 Ru§12(1,2,3)

——
R

Rﬁggl(l’2’3) R5231(2’1’3) (A21)

=
——
w
~—
——
—
-
~nN
-
w
S
n
o
¥

3) (2’1)3) =

r(
231 w321

By repeating this process, it can be shown that the invariance holds

I SN
o

under the other five pair permutations possible. Further, by treating
the case where two of the indices are the same (e.g., 112) in the same

manner the invariance property can be shown to hold for all of the

components (e.g.,

(2) - g(s) (3) - g(s)
Ry (1,2,3) = R.3) (1,3,2), B2 (1,2,3) = B3 (1,3,2),

(3) - r(3)
Ra(1,2,3) = R 3 (1,3,2), etc.)

This proves that the intrinsic permutation symmetry holds for all 27

components of R(3) associated with the index pairs a 1, a T
uajaza3 11 22

and T, and is a property of the form of the relation between P and

——r—y 1,v,v~_~I~ry-v v

E. This symmetry is also independent of the order.

4 With the properties stated, the relationship between the polari-
zation response tensor and the susceptibility tensor can be obtained.
The susceptibility tensor is that function that relates the medium

(] polarization, P, to the electric field, E, when the field vector is

e expressed as a function of the frequency, w rather than time. This
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transformation to frequency dependence is obtained using Fourier

transforms:
E'(t) = Jdo E(w)e-ivt (a)
- E(w) = o= [dv E'(x)efor (b)  (A22)
" In keeping with Butcher (Ref 48:15) w may lie in the upper-half
p
[ complex plane such that w= w'+ jw" with w' and »" real and w" >0. The

integral for E(w) in Eq (A22) will converge under these conditions
{1 (o provided that lim E(t) > 0. Equation (A22a) substituted into Eq

¢ t >
(A8b) yields

P03 (t) = [Tfdry drp drs RO (n),000m3) E (tory B (tor, )E' (trq) (A23)

where

E'(t-'ri) = f;w_i E(wi)e-iwi(t-ri)
Or

F(3)(1’-) = f?fdwl dwy duj ffdel drp dr, ﬁ(3)(11:T2 sT3)

‘e i(w1T1WzT2+w3T3)E E(wl)'E'(mz)f(w3)e'i(“’1+“’2+“‘3)j (A24)

For )=<(3) set equal to the Fourier transform of the response function

):((3)(“)1 ,u)z,w3) = Id‘l’l jd‘l‘zfd‘r:; ﬁ('tl,Tz,T3)ei(w1Tlm2T2+w3T3) (AZS)

where )'(-'(3) is defined as the third order susceptibility. Then
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Eq (A24) becomes
B3)(t) = fdur fdup fdws X830 (01,up,03)F E(wy)E(ws)E(ws)

x e-i(witwrtus)t (A26)
The spatial dependence is present but has been suppressed for con-
venience.

The conditions imposed by causality, reality and symmetry on the
third order susceptibility are (Ref 48:17)

(1) Causality. §(3)(w1,w2,w3) is analytic for w;, wy, and w3 in

the upper-half plane.

(2) Reality. [§k3)(w1,w2,w35} T §(3)(-w1*, ~wp ¥, ~w3*)

(3) Symmetry. xéigy (] swyswy) is invariant under the 3! per-

mutations of the pairs (a ,w1), (8,02 ) and (v,w3)

) Xﬁizs(wl’”3’w2) = Xﬁaga(wz,wa.wl) = xﬁsls(wa,wl,wz))

The first order and second order susceptibilities in terms of the
respective response functions are obtained by Butcher (Ref 48:12-16).

The form of the general order n is also presented in this reference.
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Appendix B: Density Operator

The density operator, 8 (r,t), or equivalently a density matrix
representation is the quantum equivalent to the classical density
function. It is used to define a set of probabilities describing a
statistical state of a system where all that is known is the probabi-
lity of being in a given quantum state. The density operator must

satisfy the equation of motion (Ref 78:380)

i K $pb=[H, 5] (B1)
where
ﬁ = system Hamiltonian in the presence of an electromagnetic
field
K = planck's constant, h, divided by 2=

complex imaginary; v-1

pors
n

~

Ho = system Hamiltonian in the absence of the field.
; =P [n>n
n "l

The difference between ﬁo and H is due to the coupling of the system
to the applied field. Following the standard quantum mechanical

approach
Ho | m> = Eq | m> (B2)

where <ﬁ0> = Ep, the allowed energy of the unperturbed system whose

states are specified by the complete quantum descriptor n. The set
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of eigenstates {n} form a basis for a representation. Under the
assumption that the system of molecules is in an initial equilibrium

and is then perturbed by the presence of the applied field.
p (t=0) = p_ (83)

Equation (B3) provides an initial condition to solve the equation of
motion, Eq (Bl). For a system initially in thermal equilibrium (Ref

48:40) the density operator may be written as

e'Ho/kT
Po = (B4)
r e-En/kT
n
and its matrix element is given by
e-En/kT
{n m = Z e—— :
. ‘
where
T = temperature
k = Boltzmann constant
=0, n#m
¢ pm = Kronecker delta such that
=1, n=m

The density operator formalism can be used to determine the expec-
tation value of any dynamic variable and therefore the physical
character of a system at any time t.

The first step in this procedure is to determine the specific

expression of the density operator for a system of particles in
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% i 6 G5 Do + pi(t) + pa(t) +...] = [Hg, 8g + p1(t) + 52(t) + ...]

+[H1(t), po + p1(t) + p,(t) + ...]  (B10)

After equating terms involving the same powers of ﬁl(t) (e.g.,
[Ho» pol = zero power, [Hg,p, (t)] and [H (t), pol =LA (t)1}, etc.), a

set of equations is obtained

i h S 6o = [Houpol

iR 9 01 = [Hos p1(t)] + [H (), po]

i S5 oo = [Hos 0,(8)] + [H,(t), 0, (t)]
] i h G5 on = [Hos on(t)] + [y (t), ppoy (£)] (B11)
i! Since ;0, ﬁo and ﬁl(t) are known, the second equation in Eq (B11l) can

be solved for ;1(t) subject to the initial condition. This procedure
can be repeated until the desired number of terms have been obtained
| in the series. The solution can be obtained using a method analagous
to an integration factor (Ref 48:53) applied in general operator

fashion as

{Vo(t) ent) Uo(t)!
(B12)

aje

| Vo(t){i h e en(t) ~[Hos on(t)} Uo(t) = i
s where it is necessary to find the operators Vo(t) and Uy(t) that makes
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this true. By expanding Eq (B12) it can be shown that the equality is

true if the following two equations are satisfied

i h 4o Volt) = ~Vo(t)Hg
1h G5 Ug(t) = figlp(t) (813)

The solutions to Eq (B13) are

Vg(t) = elMot/h

Ug(t) = o~ Hot/h (B14)

so that Vo(t) = Uy(-t) and the exponentials are defined by the power
series. Since the various powers of ﬁo are commutable then Ug(t),
Up(t”), Vo(t) and py commute with each other. This property and those

that follow will prove useful in the derivation of pp(t).

Properties: (i) Up(t)Ug(t”) = Up(t+t~)
(i1) Ue(0) = 1
(111)  Up(t)Ug(-t) = 1
(iv) Ug(t)Vo(t) =1 (B15)

properties (iii) and (iv) imply that Uy(-t) and V,(t) are the inverse

of Ug(t). Ug(t) is called the unperturbed time development operator.

These operators transform from the Schrsdinger picture into the
interaction picture. The solution of the unperturbed time dependent

Schradinger equation

lCL

Hob(t) = 1 8 S w(t) (B16)

ol
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can be obtained by

¥(t) = Ug(t)u(o) = e v(o) (B17)

Up(t) and Vy(t) can be used to obtain pp(t) by multiplying the n
terms in Eq (A11) by Uy(t) on the right and Vo(t) = Ug(-t) on the
left. These factors are unique, except for a trivial multiplicative

constant. This yields

i B Ug(-t) S Bn Uo(t) = Ug(-t)THos An(t)Ig(t)
+ Ug(-t)[A1(t)s Pp-yq(t)g(t) (B18)

Equation (B12) reduces this to
i1 G5 { Uol-t) sn(t)o(t) } = Ug(-t)TH, (£), Bn-y (£)Ug(t) (B19)

Integration from -= to t yields

. t - .
i K Ug(-t)on(t)Ug(t) = Jdt1Ug(-t,)[H1(t) sppas(t)Wolt1) (820)

where the lower limit is determined by the initial condition

pn(-=) = 0. Equation (B20) may be written more simply by defining

~

Ri(t) = Ug(-t) A(t)Ug(t) = e'Mot/M (¢)eTHot/H (B21)

which is in the interaction picture where time dependence is carried
partly by both the operator and the state wave functions. This pic-
ture is intermediate to the Schraedinger picture where the operators
don't depend on time but the wave functions do and the Heisenberg pic-
ture where the operators depend on time but the wave functions don't.

Also, from the definition
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on (t) = Ug(-t)pp(t)u(t) (B22)
Then upon substitution into Eq (B20) after it is expanded

.t .
pn(t) = (1R)™" fdty [H{(t1), Ug(-t) bp-1(t1) Up(t1)] (B23)
From this it is obvious that for n=1, 5i(t) can be expressed in terms
of pp(t).

t
pi(t) = (im™1 fdt,[A: (t,), Ug(~t)BoVo(t)] (B24)

Since py and Ug(-t) are both functions of ﬁo, they commute with each

other so that
Uo(-t1)po = poUo(-t1)

and

Uo(-t;)poUo(t) = oo

after the use of property (iii) in Eq (B15), pg = Hp- Then

t
pi(t) = (M) [dt [H{ (t1), o] (B25)
or
-1 t
5,(6) = (i0)7" Ug(t){ [dt,[H{(t,), 6o} Uo(-t) (826)

to find 5, let n=1 in Eq (B23)

-1

t
53(t) = (IR)™ Jde THI(t,), Ug(-t,)6, (1, )Ug(t)] (827)

which upon substituting for Bl(tl) from Eq (B26) becomes

t t1
B5(t) = (1n)™* [dtl [dtz [HI (1), THT (t2), 6od] (B28)

-_— 0 oo
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similarly

t ottty ) )
55 (8) = (im™ Jary Jara [atalii(e,), Dhg(e,), Df(t,), 5010 (829)

or in general

t t tn-lﬁ X .
s2(0) = (™ Jat ot oo Jatabis(61)s TF(E2)s CovsDiEn), pol..]
) (830)

Then upon substitution of these expansion terms into Eq (B8), o(t) is
known and may be used to determine the response of the system to

external forces, both linear and nonlinear.
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Appendix C: Molecular Polarizability

Just as on a macroscopic level the polarization P is related to
the electric field by the susceptibility tensor Eq (2.13), the induced
dipole moment, d, may be related to the electric field through the
polarizability tensor, 5. The derivation of the molecular dipole
moment is made here using the density operator results of Appendix B.
From the definitions of <H(n)> given in Eq (3.8) and Eq (B30), each
order of <d (t, r)> for n=1 to 3 is obtained. From Eqs (B22) and

(B25)
@)y = Tr{(iﬁ)‘1 Uo(t) {Etl[ﬁ;(t )s polUo(-t) E(t,?)} (c1)
For

H(t) = - A(F,t) - E(F.t) (c2)

substituted into Eq (B21)
Hi(t) = oMot/ [g(e,F) - E()] e THot/A (c3)

Note that E, being a nonoperator, commutes with all operators, so that

one gets
() = ™Mot/ e 7y mTHot/F . F(e) (ca)
or
Hi(t) = Mot/ d (t,T) o~ Hot /1 E,(t) (C5)
m
Recalling that d(r) =i§1 qi ri is the dipole moment in the

Schradinger picture, the time dependent dipole moment in the
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interaction picture is defined as

d(t,r) = etMot/h gy o-tHot/R .y ()d(F) ug(t) (c6)
then
Hi(t) = - 4 (t)E_(t) (c7)

where the spatial dependence of d has been suppressed for convenience.

When Eq (C7), the commutation term is used, Eq (Cl) may be written as
[A7(t), Bol = - [d (t)E_(t)3g = Bo d_(t)E (t)] (c8)

Since Ea(t) is a scalar function, it commutes with all operators and

may be factored to yield
[HI(t), 8o) = - [d_(t) po - Bo d (t)IE (L) (c9)
[H3(t), 8ol = - [d_(t), polE (t) (C10)

Equation (Cl) after using Eq (C10) becomes

t . ) X
@My = - Tr{ (i) Ug(t) Jat,[d,(61), PoJEy(t2) Uo(-t) i}

From the linearity of the trace, the integration may be performed

after taking the trace. Since Uy(t) and Uy(-t) are not functions of

the variable t; Eq (C11) becomes

t “ -
(1> = - (i) JatiE_(£)Tr {Uo(t)d (t1), Boluo(-t) &}  (c12)

From the Fourier transform of Ea(t) given by Eq (A22) and by noting
that

195




....................
............

. e-lut) = g-fut; glut g-fut o g-fut g-fu(t,-t)

Eq (C12) is

t © . . -
<d£1)>= - (iR)=! [dt,fdw Ea(w)e1wt e"“(tl't)Tr{Uo(t)[da(tl).Bo]

b e

x Up(-t)d, } (C13)
E' This can be rewritten as
" y t ; 2 omlelt)-t)
- <d{1)>= -fdw{(in)-lfdt1 Tr{uo(t)[d (t1) 2801 (-t)d } e~ Tulty
7] o o a 1}
X Ec(w)e"mt} (C14)

The polarizability tensor of the first order, psi) , is defined as

t - - swlty -
: p(a) (@)= ~(1)~1 i, Tr { Ug(£)d, (£1),5oTo(-0)d, | e (178 (c1s)

It will be made clear that pS;) is a function of w by eliminating the

t from this expression in a straightforward manner.

g Uo(t)[d_(t1),00]p(-t)

=Uo (£)d, (£, U -t )Ug(t)pg-polio (-t o (t)d_(t1)1g(-t) (c16)

-

=Uo (£)d_(t Wo(-t)Ug(t)polo(~t)-Uo(t)eglo(-t Ug(t)d_(t1)Ug(-t)
(C17)

Al d I I 4te Sin e e . nranre
- 2t

—Y

where Ug(-t)Ug(t) = 1 has been used. From the definition of au(t) in
Eq (C6), U in Eq (B15) and the commutation property of SoUo(-t) and

. Wo(t)po, EQ (C17) becomes
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= Ug(ty-t)d Ug(t-t1)ao-poUo(t1-t)d Uo(t-t1) (c18)
or

= aa(t‘t1 );o';oaa(t‘tl) = [aa(t't]):;’o] (C19)
Then
(1) -1ft g ~qa L =Tw(ty-t)
(1) = -(im)Jat,Tr {[dg(tl-t),po]du}e (C20)

With the change of variab]es
T=t;-t ; dr=dt,
and limits
ti=t->1=0
t,=-» + 1= -»

first, then the change t; = <

pld) = -(ih)'lfgtlTr{[aa(tl), pold fetots (c21)

The trace is
Tr [d(t1), 5oJd, = Tr{d (t1)oed - po dy(t1)d, } (c22)

A property of the trace is its invariance under cyclic permutation of

the arguments. Equation (C22) is therefore
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Tr{po d,d,(t1) - po dy(t1) d } (c23)

Tr 6o [d,, d (t1)]
The first order polarizabiiity tensor is then
0
(1) (u)= -(iR)-1 { 14 fwty
pla) ()= -(i)72fat,Tr {pld,, dg(t1)1} e (c24)

which is the desired result for the first order term.
. (2 (3 .
For completeness, expressions for puag and pua%Y are obtained
before writing down the generalized nth order term. From Eq (3.7) and

Eq (B28) the expectation value is

«d(2)> = Tr{(im)-2uq(t) j§t1 jﬁtztﬁ;(tl), [Hi(t2), pol Up(-t)d } (c25)

u

where with the dipole approximation to the perturbation energy is

given by Eq (C7)
[A7(t ) ,803= -Eg(t,)[dg(t,),00] (c26)

In a similar procedure to that used for Eq (C10)

[Ai(t1)s [HI(£2),00] = [-d (t1E (t1), ~E(t2)[dg(ta), po]

= Ea(tl)EB(tZ)[aa(tl)s [&B(tz).BOJ] (C27)

Upon use of the Fourier transform definition of Eu(tl) and EB(tz),

<d£2)> becomes

198




p—

.TfT'fr—rv,., o
. ]

—_—— ;V"(i"

(o

t t]. o . -3 - «® -4
<d£2)> = (iK)-2 [dtl [dtzfdwl E (w)e 1t e Twy (ty-t) [dszB(wz)e lugt

x e 2t Il ()04, (1), [, (t)s00] Uol-t)d, ) (c28)
pgi% is defined as
ot t - - - -
psig = (iR)™2 [Stl [StzTr{Uo(t)[da(tl),[dB(tz),oo] Uo(-t)du}
X e-iwl(tl-t)e-iwz(tg‘t) (ng)

To eliminate t from this expression, use the results of Eqs (C18) and

(C19) for t, and a similar set for t, with the result
Uo(£)0d,(t1),[dg(t2), poWo(-t) = [d_(t1-t),[d,(to-t) 03]  (C30)
Let to-t>t,  dtp - dt,

ti-t>t dt; » dt,

With the proper change of limits on both integrals of Eq (C29), it

becomes
0 " 4 ‘ ~ » t jwot
p$§% (wl!w2)=(ih)-2[dt1 [dtzTr{[da(t]), [dB(tz), po] du}e w3y le wao 2

(C31)

By using the trace cyclic permutation property after expansion, the

trace in Eq (C31) becomes
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Tr<da(t1)dB(tz)podu‘dB(tz)Doda(t1)du-da(tl)Dods(tz)du+pod8(t2)da(tl)du}

A A A

Tr{poduda(tl)dB(tz)-poda(tl)dudB(tz)

ool (t2)d (11450l (t2)d, (81)d, |

"

Tr{oolld,, d (t1)], dglt,)]]

The second order polarizability tensor is then
t

0 ~ ~ N
pl(lig (ml,w2)=(ih)'2Et1 EtzTr{ﬁo[[du, d (t1)], dB(tz)J}

X e-iwltle‘i w2t2 (C32)

While this expression for psgg is valid, it does not have the intrin-
sic permutation symmetry specified for x&ig (wyswy). Therefore, if
pgi% (w1,w2) is to form the basis for xéig then this symmetry must
be accounted for in the equation. Since there was no particular
requirement to select a, 8 and wy, wp in the order used, the result is
perfectly valid if written

0 t

p(2) (wz,w1)=(ih)'2[2t1 [2t2Tr{50[[3u,88(t1)],&a(tz)]}

Upon adding this result to that of pSig in Eq (C32), a quantity

having the desired symmetry results

pgig (wy,wp) + psgl (w2,w1) (C34)
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In order to retain the same magnitude for the case where a = g and

w) = wp, a factor of 1/2 can be used. With these changes

0 t)

p2) (w102 )= 1/2 (iR)" a§») [2t1 Igtz Tr{oolld 44, (1)1, 4g(t;)1}

e-iwltle'iUZtZ (c35)

' Where . S . is the symmetrizing operator defined such that the term(s)

L‘ operatc(egstpon is to be summed over all of the possible permutations of
E the pairs (a,w;) and (B,ws).

j For the third order polarizability tensor, p&izaza3Eq (B29) is
}-‘ i @ used for «d‘3)>  with the result

3 Y U

<d£3)> = Tr{(-in)'3uo(t) f;tl JEEZ J§i3

- - -

X TR(8)), 085 (650,047 (£5) 100111 Ug(-2)d, | (C36)

Again Eq (C7) is used for the electric dipole approximation to the

perturbation energy yielding the result
[#°(ts),po] = -E, (ta) [d, (t3).p0] (1)
TH7(t2), [Ri(ts)apod]=E, (t2)E, (t3)[d, (t2), [dy (t3)wod] (i)

[R5 (1), 85 (), [R5 (£5), 5311 -E, (£1)E, (£2)E, (ts) (i11)

ar

[dg{t1)s [, (ts), [d  (t5), 0od]  (C37)

where the commutation property of a scalar has again been used. Upon
L substitution of this result into Eq (C36) for <d£3)>, removal of the
e scalar terms Eu,i(t'i) from the trace and use of the Fourier transform

of E4 (ti), the dipole moment value is
i
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e o o ot t, t2 . .
<dl(J3)>=(-iﬁ)'3fdw1fdw2f:w3(Igm Jdtz fgtaTr{uo(t)[dul(tl),[daz(tz),

x [d (t3),p0]1000(-t) au}e-i[m1(t1-t)+w2(tz-t)+w3(t3_t)])

X By (01)Eg (02)E (w3)e™ (1492420t (c3g)

t can be eliminated from the terms in brackets on the right hand side

;‘ by an extension of the expression in Eq (C19)

b

; Uo(t)ld, (t1),0d_, (t2),[d  (t3),p0]]Wo(-t)=[d  (t,-t),[d (to-t),

be ' o [, (ts=t)s pod1]  (C39)

! With the simultan=ous change of variables

t; -t >ty
t2 -t - t2
tl't+t1

and the proper change to the limits of integration, the definition of

:h p( 3)
: HQ Qo0
; 0 Jtl Itz . . .
3 , _{ _ik\=3
:. pﬁaiazagwl’szMS)'('1ﬁ) !gtl -Stz -:t3Tr{[dal(t1)’[da2(t2)s[d°3(t3)s
} - -~ .
] po]]]du}e'T[‘*’1t1+w2t2"‘“’3t3] (C40)
P The use of the cyclic permutation property of the trace gives the

vy —y vy

change
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0 1 t2
p(3) ; (wl.wz,w3)=(-i“)'3jdt1 Iztz Jdta

uaasa e e -~

~i[wit 14wt r4wst 3]

x Trip L0084, (211, &, (£2)1, 4, (t)1} e (ca1)

To insure that intrinsic permutation symmetry holds

1 ‘
3 > 2 3 . 3 3
pl(m)10203 6(pl(m)1tlzugwl’mz’w‘)+p1(1a)2q lang,w1,w3)+p‘(‘mla3aSw2,w3,w1)

3 3 3
¥ pSGZG3agw1’w3’w2)+p$aguzugw3’w2’w1)+p£01010£m3’w1’w2)

_1
= §:(°§w) PS:iazagwl,wz,wa) (ca2)

The factor 1/6 insures that the magnitude will remain the same. This
sum relies on the fact that the subscript and frequency indices were

arbitrarily chosen. Thus

0 t) ts

. ) in)-

el = s e foty [
. - ; : -i[w1 ti+wy torwsts]

x Tr{oollld, d, (£1)], 4, (£2)1,d, (1)1} e (ca3)

A generalization of this can then be made to the polarizability order

n (Ref 48:65)

0 tl
D, g ety 8 e oo Je.
o 5 i d - i T gt
J dtnTr{po[...[d ,d (tl)],& (t;)],...1,d (tn)]}e m=1wm m
—® L a, an
(cad)
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The assumptions made in obtaining these results are:

(1) The contribution of the magnetic field of the light beams is
neglected as small compared to that of the electric dipole

moment.

(2) The intrinsic permutation symmetry for the susceptibility
arising from the form of the polarization expression is
required to carry over to the various orders of the polari-

zability.

{3) The energy added to the system by the interaction of the
field with the dipole moment is of a small enough magnitude

that the perturbation approach applies.

(4) Causality and reality conditions apply.

P

(5) The expression for p, results from the molecular system

being in equilibrium.

(6) The perturbing force is zero at some time in the past so

In addition to these assumptions it should be noted that
au(f) = Uo(-T)&qu(r) and that au is not a function of time but repre-
sents the time independent dipole moment operator of the molecular
system in the Schradinger picture.

The results obtained in this appendix are valid within the
assumptions made whether the dipole moments are similarly or randomly

oriented. For a similar orientation, orientational averaging results
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only in multiplying by the number of moments in the volume of
interest. In this case, Np&") would represent the susceptibility

XS") directly.

205



——

——

——

LD Ao aan . o o0 e )
.

TR

Appendix D: Electric Field Functions

The thi~d order polarizability has been derived in Appendix C as
a function of frequency. The electric field, however, is normally
specified as a function of time. For use with the polarizability, the
electric field as a function of frequency, is obtained in this appen-
dix.

A real electric field E“(t) may be expressed as

E“(t) = f(t) + f*(t) (D1)
The Fourier transform to frequency space is

E(w) = FLEZ(t)] = FLf(t)] + FLf*(t)] (D2)

where F[ ] represents the Fourier transform so that

FIFE)T = & fde #(0e™T = e(w) (03)
FIF(8)] = & Jar po(n)e™ (04)

From Eq (D3) and with w allowed to be complex, the transform of f(t)

can be written as

e(-w*) = %—; fZT f('f)e.i(-m*)T (D5)
) = 1 fo * for
[e(-u)3 = & Jar fo(n)e (0é)

Thus, Eq (D6) equals Eq (D4)

[e(-w*)T" = F[f*(t)] (07)
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then
o E(w) = e(w) + [e(-w*)]" (D8)
or
E(u) = e(w) + e*(-) (D9)

It is easily shown that E{w) meets the reality condition

E(-w*) = [E(w)]*. From Eq (D9)

[E(w)]* = e*(w*) + e(-uw*) (D10)
!~‘. and
E(-w*) = e(-u*) + e*(uw¥) (D11)
thus Eqs (D10) and (D11) are equal and
. E(-w*) = [E(w)]* (D12)
' |
It is also obvious that [e(w)]* #c( -w*) unless f(t) is a real func- 1
;_ tion. i
I |
'« |
¥
'
r
;c 207



mrwﬁmﬁ,ﬁ‘,
' 4B

T
-

Pt

Appendix E: Molecular Polarizability Equation

The specific form of the third order polarizability Eq can be

obtained using the general results of Appendix C, Eq (C43)

0 t) to
p(3) (w; ,wz,u3) = %‘: ( S )(-ih)'aJdtl ‘[dtz Jdtg

ua a a a,w

Teloollld, o8, (8)1,0, (5,014, (t;)Tfer lrtimatatsts] ey

For the individual molecule in thermal equilibrium, Eq (B4) gives the

density operator as

. Ho/KT
0= TEAT (€2)
e- n
n
with
¢ = (z e En/kTy- (E3)
n
Eq (E2) can be written as
;o = e Ho/kT (E4)

This is used in Eq (E1) to obtain the third order polarizability, but

first, expand the term inside of the trace in Eq (El)
[, ,dy (801 = (d, .4, (t1) - d (t)d)

A . Y - o
[[d,1d, (£)3 d, (£5)] = d.d, {8)dg (1) - 4 (t,)d 8,

- dal (t] )dudu2 (t2 ) + daz (tz )dal (tl )du (Es)
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[10d,d, (£1)1d, (t2)1d, (t5)] =
¢,0q (104, (£2)d, (t3) - 4, (£3)d,d, (£1)d, (t,)

- dy,(t2)d, 0, (£)d, (£5) + d_ (t5)d, (£)d,d, (t))

- &al(tl)&u&az(tz)&as(ta) + aas(t3)aal(t1)auac2(t2)

+ &az(tz)aal(tl)auaaa(t3)-aa3(t3)aa2(t2)aal(tl)&u (E6)
Note that the trace of an operator is defined by

Tripb =z A = zalA|a (E7)

a a

where the states "a" are a complete basis for a representation. Thus

in the energy representation,

[oolab = <a | po | b> = <a | ce™o/KT | by

[oolab = cefalktq | b> = Ce-Ea/kTﬁab (E8)
and

[polaa = ce /KT . Paa (E9)

Also, the definition of da(t), Eq (C6), is

du(t) = Uo(-t)daUO(t) (E10)
With the definition of U(t) from Eq (B14)

u(t) = e~ Hot/h (E11)

The basis to evaluate the trace is available. Then, the dipole matrix

element is
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[aa(t)]ab = <a |&°(t) |b> = <a |eiH0t/ﬁ &a e-iHot/ﬁ |b>
4 . JiEat/h - ~iEpt/N

[d,(t)]ap = e <ald |b>e

fd (t)]ap = elvabt 43,

where

wap = (Ea=Ep)/Hh

dgp = <a|d_|b>

(E12)

(E13)

(E14)

With the linear property of the trace these relations can be applied

to the first term in Eq (E6). This serves to show how each of the

terms can be developed.
Trfoo 4, 4 (t1) 4, (t2) das(ts)} -

(AAA d ¢ >
P oo d, 4y, () dy () 4 (ta) |2

m{ }

° d |b><v|d (¢ >
Tr{ } § Paa b,z,d <a | . | b><b | 01( e

“Ea/KT
gce <a |du dal(tl) daz(tZ) da3(t3) | &>

¢
\ x <c|d (t,)]d><d|d (t;)]|a> (E15)
[ % %
F‘ where the closure property, I |i><i | = 1, has been used. Upon use

i

{ of Eq (E12)
4

r
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b a1 i
Tr{ } = I pga dap e‘wbctldbé e‘detngé e'iwdat3ddg3
a,b
c,d
o u a o a i +
Tef } = I paa dab do dog dgg e (“betiUedtaedats) (E16)
a,b,
c,d

When this term is placed in the integral of Eq (El), the result is

" t1 t2 i (w +W +w3t
dt, Jat, Jdt, Tr{ } o1 (1402t Hust,)

- °T° jtl Jtz v e @ e
a’b, - - -
c,d
« o (®bc=v1)t1 i (weg-w2 )t o (vda=ws)ts (E17)

The integration over t3, t;, and t; can be performed to yield the

following terms, respectively

wrt t;

L 5 d:b dgé dg% dgg el (4bce1)ta ei(MCd'w2+wda’w3)t2
' a,b,c,d 2@ (wga -w3)
wrt t,

U ay; 4@y 403
L s dab 9pc dcd Yda
Va,b,c,d 2@ {wdaw3)(wcawz-w3)

e'i (wbc.wlmca-w?_-(% )tl

wrt t;
u Q) [+ 7) a3z
0 dab dbc dcd dda

1
Taa,b},:C,d paa (“’da‘“’3)(wca-w2 ’w3)(wba-w] -(*)2-‘*’37

where the definition of wjj from Eq (E13) has been used. After these
steps have been carried out for each of the terms in Eq (E6), the

result is
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(3) o swa )= ln -i2n)3 I 0
pualazagwl Wy w3) 3. (ii) ( ) ab.c.d p

1 Q) a; a3 a3 U a ar

dab 9bc 9cd Yda 9ab e Yed da

(wba'wl'wz'wa)(wca'wz'wa)(wda'ws) i (wcb'wx'wz‘wa)(wdb‘wz‘ws)(wab'wa)'

ay u a) a3 a3 Q> M a,

dab b Ycd Yda . Yab %c Ycd Yaa

(mcb-wl'w2‘w3)(wdb'“2‘w3)(wda'w3) (wdc'wl'w2‘w3)(wac'NZ'w3)(wab'w3)

a) ¥ ay a3 az a; W o

dab dbc dcd dda + dab dbc dcd dda

i (wep=w1=w2 w3 ) (weg-w2 w3 ) (wga-w3)  (wge-w1-wz2=-w3)(wgp-wz2-w3)(wahw3)

dap dyc ded Yda _ dab 9bc Yed Yda
(wdc'wl‘wz‘wa)(wdb‘wz'wa)(wda‘W3) (wad'wl'wz'w3)(waC'wz'w3)(wab'w3)

(E18

+

A simpler form of this equation may be obtained by using the sym-
metrizing operator which takes the sum over all permuted pairs

(Gi’wi) to combine the eight terms. The placement of the d?j term and
the form of the denominator is used to establish the combinations.

The steps are

(1) Leave the first term alone.
(2) Combine second, third and fifth term by permuting (ai,wi) to
u a»

btain d_b d"_ d°2 d3° prod
obtain ab 9bc 9cq 94z PO uct.

This is accomplished for these terms by respectively permuting:
(a1 5w; J—(a3,w3) followed by (a,w; > (az,w3); (a1,01 }=>(ax w2 ); No
change. The wj in the denominators must also be changed. These terms

become

212

e e e e e




al] U4 az a3
dab dbc dcd dda

a; ¥ ap

as
dab dbc dcd dda

(9eg-w1-w2-03) (eq-w2-w3) ( uga-w3)

a; ¥
ab dbc

a3

aj
d , d

d cd “da

(wep-wi-w2-w3) (wgh-wi-w3) (wda-w3)

" (ueg-wimwz=w3) (ugh-wi-w3) (wab=w;) (E19) -

This can be factored to obtain
,‘ al U a2 a3
1 - dab dbc dcd dda
‘ (webwi-wo-w3)
¢« Lo e ey Il ey B Grrrerraliirere
A weg ~w2=w3){wda-w3 wdp-w1=w3 wdg=w3 wah-wi
: (E20)
A

The last product reduces to

1
{oda-w3){wab-o1) (E21)
after using Eq (E13). Equation (E20) factors to
ay 1] a, a3
_ __Yap ¢ 9cd daa 1,1 (E22)
? (webmwi=wy=w3){wda-w3) | wea=w;-w3 “Toabmw1)
N
' The last term in Eq (E22) is
wep~W1TW2mw3

N (wea-w2=-w3){wap=wy) (E23)
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Thus Eq (E19) reduces to

a; M a, 03

dab 9pc 9cd Y4a

(wca'NZ'QE)(wab'wl)(wda'w3) (£24)

(3) Combine the fourth, sixth and seventh terms of Eq (E18) by
permuting (aj,wj) to obtain dgé dzé dzd dda product. This permutaton
for each term is respectively: (a;,w;) <> (az,w3); (a;,w; ) (az,ws)
followed by (a3,ws3) “*(ap,ws); (aj,w;) +>(as,w;). After factoring and

combining the denominators as above, this procedure yields

a) a2 M a3

dab dbc dcd dda

(wac-wl-wz ) (wab-_ol) (wda-w3 )

(E25)

(4) Permute the eighth term of Eq (E18) by (aj,w;)<> (a3,w3) to

obtain
Gl 02 03 V]
dap 9be 9cd Yda
{wad=w1=wy=w3) (wac=wy=wy ) (wap=w) (E26)

Equation (E18) upon substitution of Eqs (E24), (E25) and (E26) then

becomes
() 1 S 0
W1w ,w3) = L p
ua a,aj (w102 3! R3 (aw) a,b,c,d aa
uoap az a3 ay a2z a3
dab b Ycd Yda ~ Yap e 9cq Yaa
(upg-wi-wz-w3)(wea-w2-w3)(uda-ws) (wea-wz-w3) (wap=w1) (wga-v3)
(E27)
@) a ¥ a3 @ @ @3 ¥
dab dpe dcd dda dab Ape dcd 94a

(wac-wl-wz)(@ab'wff(wda-ws) " Twag-wi-wz-w3) {wac-wi-wz) (wap~w1)
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Equation (E27) may be rewritten by noting wjj = -wjj and rearranging

denominators as

3 - . . °
Pﬁazazug“’l’“’”‘*’ﬁ S 6% a,boc,d °2@
(aw)
U a} ay as a; M ap aj
dab dbc dcd dda + dab dbc dcd dda

(waptwitwotws) (wactwrtws J(uwaqtwz)  (wap-wi)(wactwatws)(wad+ws)

a;] G2 W a3 @) az a3 U

+ dab dbc dcd dda + dab dbc dcd dda

(0ab-w1)(Wac-w1-w2) (Wad¥®w3) ( gb-w1)(Wac-w1-w2)(wad=w1-wo-w3)

(E28)

Because of the symmetrizing operator § this equation will have six
terms for each of the terms shown for(:wgotal of twenty-four terms
with potential resonant denominators.

Butcher (Ref 48:95) extends the above results derived which did
not allow for molecular interactions to the case where weak interac-
tions are allowed. If the interaction is strong it must be accounted
for in the equation of motion for the density operator and then the
derivation of the polarizabilities performed. The effect of the weak
interaction is to introduce an uncertainty,Ty, into the energy of a
state. The transition between two states a and b then has a width

Tab =T3 #Tp = Tpa- In the presence of weak interactions Eq (E28)

becomes
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(3) = _ 1 0
pualuzqgwl’wz’”3) S 5 a bzc d Paa
(cw) Vs
u a] a2 a3
dab dbc dcd dda

(wap+w w0 +03+iTap ) (WactWo+w3+iTac ) (wadtw3+iTaq)

ay 7] a, a3
dab dbc dcd dda

(wab-wl-iFab)(wac+w2+w3+iPac)(wad+w3+ifad)

a] a2 WU a3
dab dbc dcd dda

a]}] a2 a3 U

dab dbc dcd dda

(wab-w1-1Tap ) (wac-wi-wo-1Tac ) (wad-wi-wz-w3-1Ta4) (E29)

where the sign on T is determined from the causality condition. This

third order polarizability and the first order one (Ref 48:95),

H a a H
d, d d., d
3 -1 o ab "ba ab "ba
p( ) (w) H L paa wab+w+i rab * wab-w-'i I‘ab (E30)

ua ab

provide the complete set of polarizabilities necessary to describe
third order processes. It is worth noting that r is the linewidth and
that only for those cases where a frequency wj (or linear combination
of frequencies I wj) is close to a transition frequency wap does Tap
become a critic;1 term. For the case where no resonance occurs

rab may be ignored with 1ittle effect. When all Ts can be ignored
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the properties of overall permutation symmetry and time reversal sym-
metry (Ref 48:77-94) then apply. When I must be retained, these two
properties do not apply. However, since the hamiltonian operator, ﬁ,
used in the derivation of 5 and subsequently 5 represents a dynamical
variable invarient under time reversal, t- -t, it is a real operator
in the Schradinger picture. When H is real, the eigenfunctions of ﬁ
are also real. For the case of no d.c. magnetic field, ﬁ is real and
therefore invariant under time reversal (Ref 48:92). A consequence of

this condition for H is that with real eigenfunctions the dipole

matrix element,
= <ald |bd (E14)
ab © a| a|
has a useful property. This property is derived as follows
a _ . * _ "k - " -4
(dap)* = (<a}d_|b>)* = <b|d" |a>=<b|d |a> = dp (E31)

Since the eigenfunction for states a and b are real and d is real, Eq

(ce),
(dap)* = dgp (E32)

Equations (E31) and (E32) yield

dab = dba (E33)
Consequently
TR ¥ a a u
dab dpa = dpa dap = dab dba (E34)

when there is no dc magnetic field present (the dipole approximation).
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Appendix F: pSRS'S(l)

in the Monochromatic Case
Hajara3 —

In the monochromatic case with no electronic resonances, the
SRS-S

uajaz a3
form after the integration over frequency Eq (4.45) is performed.

dependance of p on (w”,w"",w""") will take on a very specific

When the fields are monochromatic; Eq (4.6), this form is

uas aja a>y a30]
00 f f* 193 9?1 g g* 3
SRS-S ( ) 00 -w),w2 w2,=w] W] ,=w2 W2 ,w]
TW)3TW2,W2,Ww ) = .
uaja,a; ? e 6537(w10 -w; +w - 1F10) (F1)

where the f and g factors of Eq (4.56) are given by

— 1 a2 a2 U ]

waz dob 9p1 dob 9b1 (F2)
f-wl,wz =1 Wha=W * Whatw
b bo=¥1 boTw2 _J
— dal d“a d°3 d°1 =1 %
f*°1°3 - ob bl + ob “bl (F3)
LR b Whotw2 Who=w1
— a, ¥ u as .
R dob 9p3 . dop 9b1 (F4)
W] ,=w2 b whHHw1 Wh1=w2
%3 @ @ @3 *
I L) . Yob b1 (F5)
TwosWwj b wbl-wz wb1+w1

These equations can be rearranged when the resonance condition of Eq

(4.2) is met.
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wy=wy = wv

s wyg

(4.2)

With the definition of wpy and wp), the resonant condition provides

Who = Bp - wy,

wp] = Bp = Dy = Gp ~ Gy, - (By - @y,)

wpl = Who = wlp = who - (wy-wy)

(F6)

(F7)

(F8)

These last results applied to Eq (F2) after a change in the order of

the terms, yields

— @2 W
P T dob b1
Tw) sy b WhH+w1=w2+w2
— a2 M
Foe | o 9
Twy Wy b wb1+ml

o Y1
Yho-¥1

u ar

dob 9b1

“ho-¥1

(F9)

(F10)

This last result, Eq (F10), is proportional to the ordinary Raman

scattering (ORS) complex polarizability (Ref 83:114), p:“

uay = p*ul
“Wyp axu

Similarly, Eq (F3) becomes

a3 @
#9103 dlb dbo
f W2 s=w) g whtw)-wy +wy

1
2 H

a, a3
1b “bo
“bo-¥1

(F11)

(F12)




.""v'.(T. 7’

P
[
E:A a3 a) a) a3
(\ 219 | Y %o 91 %o
‘ f» W2 ,-w) b Wh+w] Whgo=w1 (F13)

v
P

This is proportional to the ORS polarizability piiaa

*aya3 - w1
[ f WysTwy d palu3 (F14)
o For the g factor terms Eq (F3) reduces to
L
. .
[ — a, wu Boa, =
3 au | 9ob 91 TS
: uyy=wy = g wh1+w1 Who=w1+wz=w) (F15)
rq { o | _
— a, u TR —

o | b 9 . b %1

9%, s=wy b wp1+w) Who-®1 (F16)

axy W1 HOD

wysmwy =0 Payu ° fou s (F17)

And, from Eq (F5),
— a3 @) a; a3 ]
0% 915 9bo R 915 9bo
w2 sw] b wh1twl Who=witwy-wy (F18)
b
' — &3 a) 4 Q3 ]
(]
» AT s U, . b %o
-Wo Wi b wbl.Hul wbo-wl (Flg)
*0301 - w1 *0103
}‘ 9 “wosw) - pqlca - W2 s=Ww) (FZO)
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Thus, for monochromatic fields (or nearly monochromatic fields) with

frequency differences very near a Raman active resonance such that Eqs
(F6) through (F8) hold, the f and g factors are equal to each other.
They are also equal to elements of the ordinary Raman scattering
polarizability at the frequency w;. Long (Ref 83) relates these
polarizability terms to the Raman scattering cross section in a
classical derivation. A similar relation is obtained in this work
using a quantum derivation which was presented in Chapter V.

For the multifrequency field case presented here, the equality
between the ordinary Raman polarizability and the f and g factors
apply only near Raman-type resonances and should therefore be applied
with caution. When the relation can be used, however, Eq (4.57) for

the third order polarizability simplifies to

(o) =p. ) Pt p*l
SRS-S (=61 3207 a1 205 ) = 1 oo 11" g3 "oy (F21)
Hajasas 127%2>%12%2 6h wyp-wytwy =il

It is important to note that the intensity for ORS and hence the dif-
ferential scattering cross section depends upon products like

[pxy]x [p:y]. In this product the indices are identical. Thus

only when the product in Eq (F21) has the form ofa):B [paB] [p:8] will

it contain the exact Raman scattering cross section. Under the

multifrequency conditions of

61 + 6{°=0
85 + 85770 (10-%w,) (4.39)
the third order polar:-abilities derived are near the Raman-type reso-

nance. Therefore, the results obtained here concerning the equality
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of the f and g factors may be applied. When this condition fails to

il hold, the equations for the ORS polarizability are not readily

identifiable.
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Appendix G: Resonant Polarizability Equations

The expressions for the resonant polarizabilities derived using
the approach of Chapter IV are presented for each of the central fre-

quencies w),wz,w3 and wy. These are given in four tables that follow:

(1) Multifrequency and multiresonant, f # g

(2) Multifrequency and multiresonant with Raman Polarizability,
f=9

(3) Monochromatic and single resonance, f = g

(4) Monochromatic and single resonance with Raman polarizability,

f=g
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Table G I

Polarizabilities for Multifrequency and Multiresonance
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Table G I (Continued)
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! pua1a2a3( wiw”sw” 7w’ 6hR3v,J w ,  =w =-w” -ir
v'vd v'wd
*
x Doy 33 (v) £1212 .(v) - pp. g33%,...(v)) 9,20 (v)]

*a 0 a,u *a, a
o £ RO R B - g2 (v g 3 (vl
+ vV =w,w -w”,~w Vo we=w w w7 J
n N R I\
L N v
MRS
pC (~wjw” 0" 0" " )= 1z . 1 =
3 uojop0g 6R3v,d w4 w” 4w + T
*‘ vivd v'vd
§ ai a3 *uoap o} a,a
Fﬁ X [pv L w,u(v) fw poev) - Py 96 3 1_ aea(v7) 9 ,,(V )]

225




. .
t“!
TABLE G II
:ﬂ 7 Polarizabilities for Multifrequency
P and Multiresonance (Raman Polarizability)
w1 - 817 ¢ w g w4 6f (f = g)
7T xw
(o] o}
SRS-S ] Lloy = oy) Py Payu 10
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Vs vovg T © Tvew
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- CARS o (o2 = p’.)
}"' ( A\ 2 (-0’0 0" )= I v v'dJ
Haasag v,J 6l
pw"’ *ow” w T
u03 0.2(!1 + 0.10.3 0211
+ - + P + . - - - P -
w v w w 'lI‘v,v wv v w w 'II‘V,V J
- *_
[(pO - pO’ w (\]
P“ SRS-P » ., o, o 1 2 v v ) pua2 “30'1 J
{ paja,a, oYY e )=—5i J w + w4+ w7+ 4T
{ 17273 Vs vV v'vd
4
o
CSRS (p. =0 .)
P ('wsw‘nw“: ‘,’)= L y L
. ua, &, a, v,J 6h
¢
w“ *w w’l' *w
[_ pulaz (!31,! 0103 qu
+
) I_f_v’v -w w - 'II‘V,V Wyoy W T - 1I‘v,v J
‘ 226




iR a2 Btie o

—y

.....

TABLE G II (Continued)

wp = €17 L w Cwp + 87 (f = q)
~ * -
[(p0-00) Po. P o]
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Table G III

"’c Potarizabilities for Monochromatic and

Single Resonance (f = g)

b w = w
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Table G IV

Poiarizabilities for Monochromatic and

B Single Resonance (Raman Polarizability)
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Table G V

Polarizabilities for Multifrequency and Multiresonance
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3 Table G V (Continued)
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TABLE G VI

Polarizabilities for Multifrequency and

—-——-,
Multiresonance (Raman Polarizability)
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Table G VII

Polarizabilities for Monochromatic and

Single Resonance (f = g)
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Table G VIII
Polarizabilities for Monochromatic and

Single Resonance (Raman Polarizability)
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Table G IX

Polarizabilities for Multifrequency and Multiresonance
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TABLE G X
Polarizabilities for Multifrequency and
Multiresonance (Raman Polarizability)
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Table G XI

Polarizabilities for Monochromatic and

Single Resonance (f = g)
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Table G XII
n Polarizabilities for Monochromatic and

Single Resonance (Raman Polarizability)
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Table G XIII

Polarizabilities for Multifrequency and Multiresonance
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TABLE G XIV
_ Polarizabilities for Multifrequency and
; Multiresonance (Raman Polarizability)
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{ Table G XV
:! Polarizabilities for Monochromatic and
E_I;-_ Single Resonance (f = g)
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Table G XVI
Polarizabilities for Monochromatic and

Single Resonance (Raman Polarizability)
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Appendix H: Coordinate Rotations

The transformation of a rotating molecular coordinate system, !,
to a fixed laboratory system, L, can be carried out by a series of
rotations starting out about the laboratory coordinates. Similarly,
those quantities that transform as coordinates may be expressed in
either coordinate system by use of a rotation transformation matrix.
The Euler angles selected are 6, ¢ and ¢ (Ref 92:285). The transfor-
mation from the I coordinates to L coordinates is obtained by:

(1) A rotation of angle ¢ about the laboratory axis Z to produce
X", Y7, and Z°=Z where 0 < ¢ < 2n. The matrix representing this rota-

tion, R,(¢), is

cos ¢ sin ¢ 0
Ry(¢) =|-sin ¢  cos ¢ 0 (H1)
0 0 1

(2) Next, a rotation about the Y” axis by an angle ¢ to produce

X°?, Y =YY" and Z1°° where 0 < 6 < n. This rotation matrix, R2(6),

is
cos o 0 -sin 6
Ro(8) =] 0O 1 0 (H2)
sin © 0 cos ©

(3) Finally, a rotation by an angle,v , about the Z““axis to
give x, y, and z = Z°" where 0 <y < 2n. The rotation matrix, R3(v),

is
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cos y sin y 0
R3(¥) = ]|-sin ¢ cos v 0 (H3)
0 0 1

The combined rotations through the angles ¢, 6 and ¥ to obtain
the desired coordinate transformation from the laboratory to the mole-

cular coordinates is obtained by the product

R = R3(¥) R2(8) R1(9) (H4)

The matrix multiplication is performed using Eqs (H1), (H2) and (H3)

to yield
(e ( . . )
cos & cos ¢ cos ¥ cos 6 sin ¢ cos ¥ -sin 6 cos ¥
-sin ¢ sin Y +cos ¢ sin ¥
R ={-cos @ cos ¢ sin ¥ -cos © sin ¢ sin ¥ -sin 6 sin ¢ | (H5)
-sin ¢ cos Vv +cos ¢ cos v
sin © cos ¢ sin6 sin ¢ cos 6
{ J
p The coordinate transformation is then
E x=RX (H6)
t' where
Fe
1 X X
“ x= |y and X = |Y (H?7)
| 2z Z
q
]
A quantity that transforms as X would be obtained in x by
a=RA (H8)
q

Since the inverse of R (denoted by R™') exists
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RT!R=E=RR"! (H9)
where E is the unity matrix. Then from Eq (H8)

R12=RIRA=EAR=R (H10)
or

A=R73 (H11)
But the matrix R is unitary and

R™1 = RT (H12)

so that
A=R'2 (H13)

An alternative expression to Eq (H8) is to write

a =RY A = : RY A (H14)
u uou usl ® U

In this notation, the greek index represents the molecular coordinates
while the english index represents the laboratory coordinates.

The lower index on Rﬁ indicates the row in R and the upper index the

column, R ig;umn. Equation (H13) can be written as

A, = RN)Ea (H15)
But

(R = R (H16)
so that

A, = R: a (H17)
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Appendix I: Orientational Averaging

The average of the dipole moment can be reduced to a con-

A
4

sideration of the average polarizability. Equation (6.10) shows that

the polarizability in a laboratory coordinate frame can be defined as

= RN (R RHE RN p (11)

Puabe naBy

where Eq (H16) has been used to obtain the rotation matrix elements.

B7- SNBSS ~ MO

The orientational averaging of this polariability may be written as

B _ i (RT)E (RT): (RT)g (RT)'YC P (12)

puabc By

where puaBY is independent of average orientation when it is evaluated
#1 in a coordinate system fixed to the molecule. Thus, the average
polarizability which depends on the average of the rotation matrix
elements, Eq (H5), determines the average dipole moment. The average
of the rotation elements can be evaluated by considering the form of

the polarizability and using the matrix elements of RT. The average

T

for both the first and third order polarizability is obtained here

under the assumption of random orientation

L 2o o o ol

: . J" szjzn

_ T==1-)do[do [dv f(8,8,0) C (8,0,¥) (13)
: 8“ o] (o] Q

}

{ with

.

; f(e,0,0) = sine (14)
i

i The first order polarizability is a second order tersor, Pra’
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which is assumed to be evaluated in a molecule fixed coordinate system

(greek indices). The polarizability may be transformed to a labora-

tory coordinate system by

Pua = (R1Y (RS b (15) -

which is similar to the third order relation of Eq (Il1). The average

is then

Pua = RDY RN b, (16)

Since pua is a constant, it can be formed from two constant vectors, A

and B, of arbitrary orientation in the molecular system.
p =A B (17)

But, the average of Pra is invariant and linear in both Au and

B,- The only invariant of A and B is A + B. Thus

Puo = Ki(R+ B) =k (A BT (18)
where k; is a constant to be determined. It is assumed that there is
no symmetry axis for rotation so that no components (e.g., A, and B,)
are invariants. This is appropriate for a gas of random orientation.
If crystals were being considered, then axial symmetry would have to
be taken into account when determining the invariant quantities.
Similarly, the average in the laboratory coordinate system may be

written as
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=k, (R + B) = k,(A B 82) (19)

—_ pua Uuau

where k, is a constant. The two values of Eqs (I8) and (I9) must be

equal under proper averaging. Thus

a
ke (AB8 1) = ki (A, BGG:) (110)
or with Eq (H15)
K, (RD)* A (R)®B62 ) =kABGS® (111)
2 u wu a au 1''wau
e
! After dividing by k, and multiplying by 63 this becomes
K
Tyvu /pTha _ a.d
i;c (R1)§ (R)g AB, =C816, AB (112)
4 But A and B were chosen to be constants independent of the average, so
p they can be eliminated from both sides of the equation with the result
T pTra _ a .a

(R )u (R )a-(:csu S, (I113)
.
( The constant C can now be evaluated from specific elements of R using
L
{ Eq (H5).
P —_— 2% f2m  [w
r (RT)g (RT)3 =1 Idw [d¢ Jde cos?g sin e=-13- (114)
[ 3 8m2 % % o
4 —T———:r— 1 2% [21‘ J‘l‘l’ 1

3 3 =2 =& 3 in24 =
:1 (R )2 (R )2 ™= odp od¢ c)de sin3g sin2y 3 (115)
¢ 248
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Thus C = 1/3. The correctness of Eq (I13) may be checked further by
considering
T\s (ol 1 JZ" J” j"
3 R 3 = 4 . : =
(R )2 ( )3 = d Jdo ge cos 6 sin2e sing¢ =0 (116)
’ The final result of the averaged rotation matrix for the first order
E’ polariability is
-
[ | Tw pThe _1.a.a
r (R), (RY); =3 8. 8, (117)
b -
;{: The third order polarizability Puagy which is a constant in the
}‘ (' molecular system may be constructed from four arbitrary constant vec-
[ tors A, B, T and D. This polarizability may then be written as
s
L,
The invariants of these vectors are (A - B), (A C), (A -+ D),
(B-TC), (B+D)and (C- D) again assuming no symmetry axes are pre-
hl sent for rotation. The invariant nature of the average of PLagy
: taking into account the quadralinear dependence of Puagy ON the vec-
tors can be expressed as
Fe
| puaBY = k(A - B)(C D) +k,(A-C) (B-D)+ ky(A - D) (B - C) (I19)
X
- or
' = = a Y B Y Y B
;. puaBY kl(AuB°§u)(CBD 68) + k2(AuCBav)(BaD 50) + k3(AuD au) (Buceda)
r (120)
:
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- S = (k6% 8 68 64 k.6) 5B
e - Puagy = (K18, g * ka8 oot kb 8.0 AB CgDy (121)

Similarly, the average in a laboratory coordinate system may be writ-

ten as

b .¢

- c.b
(k, 6 ubat kg 8, aa) AuBacch (122)

puabc B

c

65 + ks 8

where the k{s are constants to be determined. Equation (122) may be

rewritten as

¢

5 - _ a .c b .c c.b
;i . Puabec = (ks Su Sp ¥ ks 8, 85 Y ke 5y Sa)

bt ( '

s Ton oTha pTh8 (o]

: x RHERHTRDE R AB,CgD,  (123)
1 In both Eqs (I21) and (I123), AuBaCBDY are constants independent of the
r

orientational averaging process. Since these two equations represent

f the same quantity after averaging, they may be set equal
F a .c b .c ¢ by yuaBy _ a .Y B Y Yy (B
g (k 8, S * k 8,65 t Kk 8, 6a) vuabc = (k su 58+ k su st k au aa)

3 (I24)
S

&. where

1

- uaBY _ (ply4 (rTVe (pTyB (pTyY

g VBT = (RN (R (R)g (RU)Y (125)
r,.
F and AuBaCBDY have been eliminated from both sides of the equation.
i Equation (I24) may be rewritten as
b

)

]

¢ uagy_ u b u . u .a o Y B .Y y 8
t Vuabc (a, aa ac +a 8 6. +a sc Gb)(kléu 58 +k25u 8, +k3<su 50) (126)
F ¢ 250
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where a, is the new constant resulting from the k%s. Expanding Eq

(126) one gets

uaBy _ ayub gyub yBub
Vuabc Ciy éuBaC +Cy, du ac t C,,6

+ Cyp 69743 4 ¢y 5ﬁ;ua + Cyp6YBUa

ugbc

+ Cyg 62792 4 ., Gglua +C 672“3 (127)

where

g MNOP M SN 50 4P (128)
ijkl i J k1

The cij are new constants to be determined using the matrix elements
of the rotation matrix, Eq (H5). In performing the calculation of the
average V::gz for a specified set of indices, Eq (I3) and (14) are
used. Also, many of the averages with different indices are the same

permitting the selection of the one most easily integrated. For

same and all of the lower indices are the same (e.g.,

- example
&) 3333
i Vigsg = T Cij = C1 (129)
A 1,
-
[ and
i
F ¢
b 3333 ) Jzn Jzu Ju 1
E V3333 = 81(_2 ng éj‘t’ Ode COS“e sin 6 = '5' (130)
S
1
F but C1 is also equal to any V where all of the upper indices are the
]
3

P
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3333 3333
¢, = Vo020 = Vy111). A check of C1 can then be performed by

2w (2
- NS jdn Jd“ ﬁ;e ine cos“o = (131)
R 1111 ~ g2 ow o¢ d sin cos™® = ¢

This value of C1 will be used to check the values of the other Cij's

later. Now
g 1122 3311 2233
- Ci1 = Viizz = Virss = Vasao (132)
P‘ The last two averages in Eq (I132) are used to obtain C;; and to check
E, the value
3311 1 2m f2m [m . )
Viisz = —5 Jdy jd¢ Jdo sinde cos?¢ cos?y = 15 (133)
8n 0 o] o)
2233 1 jZﬂ Jz'n J‘n 2
= 2 . .5 s 2 ) = £
V3322 Ba? gw §¢ ge sin°6 sin®e sin®y = 1 (134)
Thus, the value of C;; is
¢y = T (135)

Repeating this procedure for the remainder of the Cij's yields the

following results

yHoBY - _2 ayub _1 gyub 1 YBub

- -

uabc 19 Sygac 30 S qac 30 Sqac
_ .1 avua + 2 Byua - 1 ygua
p 6uBb(‘.’ 15 éuabc 30 ‘Sucbc
‘ 1 .ayua 1 _.gyua 2 yBua
- $ -== + == 6 136
uscb 30 pacb 15 pach ( )
"¢ From the definition of Eq (128) and after factoring, Eq (136) becomes
( 252




--- M - w

RDE (RN ®RNE (RN)! = oL 64 s

b
c

(462 63 - sB sY - sY &8

u
a 8 TR ] (TR

|
--5% 5p 62 (8% 6y 458 Y+e) 5:) |
|
.1l su s a <Y B <Y _ asY &8
= o0 62 (8% ey + 6B sl - asY 6f)
T |
= RYR RB RS (137) |

This result can be checked by using Eq (129)

C T C,

1,3

=1

From the sum of the coefficients in Eq (136)

1
z c,. = -
i,y W00

The result is in agreement with that of Monson and McClain (Ref

93:31).
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Appendix J: Third Order Polarizations

The third order vector polarizations for the processes SRS-S,
CARS, SRS-P CSRS, CMRS and SRS-SS determined by the method of Chapter
VII, are presented in these tables. The format is to supply in tabu-
lar form for each frequency, w;, w;,w3, and w, the third order suscep-
tibilities (lezz. X;212 and x3221), the vector elements, VI (in the
form (;II . ;III) ;;), the field magnitude s; €11 €170 @nd the

multiplicative coefficient (K) for the equation

. = . . o NR
P1(w)= T K jdw dw” “dw %E;lzz(‘w;w W, ) + Xllzg VI
t -t t

+ x1 (mog0” 07" 0" ") + XNR VII
1212 1212
| it
i 4 », . -, s, NR
* X1221( 7wt wt) X221 VIII
| —dt

X e’I’ bwe (e (077) Slums’w ) £ (91)

where t is the set of transitions under consideration and is deter-
mined by the quantum number set (v,J>v’,J"). w is defined to be the

sum (w 4w’ 40”7 7),
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Table J I

P

wi w1+61

3
§

Third Order Polarization at w; - 677 £

SO
i: *
- 1. SRS-S (&) : €5 (-w)ez(w " )er(w™”?) : K=6
SRS-S YRS lahe L - nAt 1 3 2 Ed 2 P
X1122 (" W3W W W ) = '6_'_5 E [ YS (w sw)"55 s (w ’w)]t
g
{] SRS-S nay g )
- - rd ,~p, -, - —— -, - 2 », o,
Y X1p1p (mw30’s0”"0”"") 5D 35 [45a2 (0”"",w)-2v% (077" 50)];
SRS-S nAt 1
, -C) * - L “‘\. = — —_— 2 g 2 P
" (' X121 ( Wi, ,W i 6hD 45 [3YS (w »w)+58 s (w ’w)]t
3 v
~ ~ -

~ ~ A* A* ~ ~
vp = (a° a1) a : V= (a; « ay) @ : Vyqy = (a, * a,) a;

D= (wt-w'-w”’-irt)
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Table J I (Continued)

Third Order Polarization at w;- 67" € w S w; + 6f

2. CARS (w;) : €1 (~w”)ez(w  )es(w ") ¢ K =6

2 ) <G
R CtY
+4L502[4532 (0" w)-2v2 (0™ "0 )]y
CARS ndy 1
X1221 (~wswyw” pu”"7) = 6h 713'51[45a<2: (w770 )—ZYé SRR

L [342 (00 0) 4582 (07
* ga, BVE (07 TS (770,

~ - » ~ ~

~ A
Vi = (az * az)a; : Vyg = (a1 = azlay * Vyqp = (a; * az)a,

D, = (wt+w +w +1Tt) : D, = (wt-w - -1Tt)
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Table J I (Continued)

[
;-' - Third Order Polarization at w;- 67" £ w < w; *+ 87

3. SRS-P (w1) : €3 (-0”)es(w”")ey(w”"7) : K =6

i SRS-P o, '
s - " ;;’ P = P .- - - 62 , o .- pl
E gy (37T = g g D (7T )80 (0Tt )
“ SRS-P Ay 1
LV I 2 P I VPR
3 X1212 wiw w0 "7) D 45 [45ap( W= w”) 2Yp (w” 5= w )]t
! SRS-P na,
e - Py = — 2 Py - - 62 nn - -
XIZZI ( Ww W SWw ) 6KD 45 [3Yp (w - W )+5 p (w = w )]t

'Vt, v
~
4

A A mk kA n ~k A A
V. = (a3 = ar)az @ Vyp = (as - apdas 2 Vppp = (a3 ¢ a3l

D = (wt+w'+w"'+irt)

|5~ g

*
: 4. CSRS (w1) @ e (=0 )ea(0”")er(w™"") ¢ K = 3
i
h CSRS "At 1
et ey = 8 L 2 (- _Es2 .-
E X1122 ( W 4w 4w ) 3[D 45 [3Yr (w ’w) 56P ( w 9“)]t
CSRS n& 1
! e e saey ot 1 2 (- 2(. - 2(, -
. )(1212 (~wiw” 0" yw ) ofD 25 [45ar (w ,w)+yr(w ,w)+56r(w ,w)]t
CSRS wiw” Wt WY = CSRS e e ess
X1221 (’ s s s - X1212 ('wow oW oW )
} R . A R - . ~e A -
{ Vp = (a, * ay)a, : VII = (a, * az)a, VIII = (a, * ay)a; = VII
D= (wt-w’-w’ -1rt)
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: Table J I (Continued)
%u - Third Order Polarization at w; - 87" < w < w; + &7
4 *
* 5. OMRS (1) @ &5 (~w)ea(u™)eu(w”") : K =6
s
! CMRS nay 4
- S I T § 2 (17 * i tVE &2 e s
: )(1122 (~wz0 0" 0" "") T [3Ym (w” ,=w7) 56m (w*” ,=w )]‘t
CMRS nd,
] T L S 3 2 (p°" ew?)-2y2 ce e
}! X1212 ( Wyl , W 4w ) 6hD 45 [45am (w s T W ) Ym (w s =W )]t
‘ CMRS nd,
it ) = —L L 2 (p*" —u*)4552 oy
X1221 (rugu’ ™) 6hD 45 [3yp (077 -0f)¥58r (w77 ,-w)]y
- ] R R I S 2
: Vi = (a3 az)a, @ V= (a, - a)a; ¢ VIII = (a, * ajz)a,
D= (wt+w +w +1'rt)
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Table J 11

Third Order Polarization at wy - 837 £ w £ wy + 67

*
1. SRS-S (w ) : e (~w")ej{w  )ex(w ") ¢ K =6
SRS-S "At 1 '
. » P Pl - _ 2 PN U U 2 P J—
X1122 (~wiw” 0" w ) _GFID 25 [3YS (w s w”) 565 (w s =W )]t
SRS-S nAt 1
ey e - s = > = 2 .. A 2 - -
x1212 ( Wl JW W ) 6hD 45 [4555 (w "W ) ZYS (w W )]t
SRS-S nAt 1
~w3w’, "y ) E == = 32 T smw” +5¢§2 “amw”
X1221 (~w3w”w” W ) 6FD 45 [YS (w w”) 65 (w w )]t
A N A% ~dk - N ~k - -
VI=(81 ca) a4 VII'(al ca,) a :VIII=(al ©a,) a,

o
n

(wt«u‘-l-w"’ +1'rt)

*

2. CARS (wz) T €3 (-w')El(w”)El(w"’) : K=3

CARS nd,
Wwiaw T ) = e —— 3y2 T osmw” -562 e w”
L (w3 w0 ") T [3ve (w w”" ) : (w w )]y
CARS U L |
X -w;w ,w ,w Z m—— ——
( ) 6RD 45

2 - - 2 PN -
X[45&~'C (w"a’w')"’Yzc (I )+56C (™7 )]t

CARS i e wemey o xRS e o e
XlZZl( . ] -X1212( » ’ ’ )

A ~ ~ ~ ~ ~ % ~ ~

Vo= (& c ap)ay ¢ Vo= (ay e aday : Vg = (a3 + a))a;= Vg

D = (wt«u Hw +1I‘t)
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Third Order Polarization at wy - 65" ¢ w £

3. CSRS (wp) :

CSRS na, )
)(1122 ( WWw W ,W ) 6 450][3Y (w Ty-w ) 5 (w w )]t
oL 392 (077,0)-562 (0770,
45D, r
CSRS na,
- . rd -, A = -, » - ’ 62 ;- p, - ”~
1212 ( Wiw ,w ,Ww ) —6" 4501[3Y ( )+5 r (U s —w )]t
2 ,n 2 P
+ 45D2[45a (w 9“’) ZY (w 9“’)]t
CSRS - - b, nAt Pl - 2 Pl -
1221 ('“’;w sW 4w ) = 6ﬁ '4—531[456 (w s )'er (w s —w )]t
+ IS_DZDY (w“'.w)+552 (w”',w)]

v = (ay * a1)a

D = (wt+w’+w”+if

Table J II (Continued)

w2+6§

n
N

e (~u)eglw ey (wes) ¢ K

-~ A* -~ ~
2 ¢ Vyp = (a2 - aj)ay : V= (a; » ay)a

t) : D = (wt-w’-w”’-lft)
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Table J II (Continued)

Third Order Polarization at w, - 6837

|
€
/N
€

()
+
[

N

*
4, CMRS (w2) : €} (~w”)ey(w " )ez(w ") ¢ K=6

CMRS L n, 9 2 (s ) .
X, 129 (~wsw” 0" 0w "") = 5D 25 [3v4 (w ,w)'56m (w7 "w)]t
CMRS na t 1
X1212 ('w;w'.w"’w"') = 6KD Zg' [453% (w"’,w)‘zYé (w"'.w)]t
CMRS e e mean n: 9 ¢ mea 2 .
X1221 ('w;w W yW ) = 61D zg [3Ym ("u :w)+56m (“ ’w)]t
~ A A% ~% ~ A - ~% ~ ~
Vi = (ay- azlay @ Vo = (a; = azla, : VIII = (a; * ay)az
D = (wt-w’-w“’-irt)
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Table J II (Continued)

Third Order Polarization at wp - 85° ¢ w £ wy *+ 83

*
5. SRS-SS (wy) : ¢y (-w’)e“(w")ez(w“‘) : K=6
SRS-SS L s ol
1122 ('w;w W W ) = aﬁ [3Yq (w ,;u)-56q (w ’w)]t
SRS-SS na,
x1212 (-w;w ’(D ’w ) = -6_ﬁa [4563 (w "Qw)-quz (w”"w)]t
SRESS (oo ) =t [32 (077 s #8207 ou)]
X1221 Wew W sW 6KD Yq w ' W Gq W LY t

~ A ~% ~

e SE R
Vi = (ay* @) ay = Vpp = (ay * ap) a, = Vyqp = (a, * a,) a
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Table J 1II

- Third Order Polarization at w3 - 63" < w w3 + &3

*
1. CARS (w3) : e (-w‘)el(w")el(w"') : K=3

CARS na,
I T S R T S 2 .- - .-
X1122 ( W s " W ) 3D 45 [3YC (w s W ) 55(2: (w s W )]t
RS ) = b L
1212 o 6KD 45

X [456% (w”” yw )ﬂ% (w””Hw )+56% (W sw )]t

(o CARS CARS

X1221 (=030 50" 50" ") = Xop, (mwi0 5w w” " ”)
. N e A
Vi=(a - &), : Vyp=(a - a)a : Vg = (a, * a))a = Vg

D = (wt-w’-w“-'i]"t)

*
2. SRS-P (w ) : e) (~w")ej(w " )ez(w*"?) : K=6

SRS-P na,

e ® o soo = - 2 P - 2 P
X1122 (cw3w’ 0" ,uw ) _GHD a5 [3Yp (w sw )=58 P (w w )]t
SRS-P e e sy L nde g 4522 (0"~ 2 vos
X1212 ('waw W W ) = —G‘EB E { 5ap (w ¥ )'ZYp (u) W )]t
SRS-P w.w, w;‘ w;a‘) - nAt 1 3 ? Pl +562 P
1221 (" " ’ = gil')‘ 4_5' [ Yp (w »w ) p (w W )]t

- ; ; el . i 3 A = o K 3
Vp= (e s agday 2 Vpp = (s oag)a Wyt (a) c ey
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*
3. CMRS (w3) : ey (~w”)ey(w " )ex(w””") : K=6
CMRS ( W (D’ w’a w;a)) nAt 1 [3 2 (mfﬂﬁ ) 562 ( P )]
-l [ J—. AL s w s W
X122 e 61D 45 "m m t
CMRS - o P nAt 1 2 P 2 o
X1212 ('w;w W LW ) = % E [4sam (w ,“’)-ZYm (w »w)]t
CMRS - PN P nAt 1 2 rra 2 P
X,y (Fwse7,w”7,0777) = D 35 [3vy, (w77 aw)#860 (™" ,u) ]
- S 0 S 0 A
Vi = (a0 3)a, Vip = (ay - a,la, : VIII = (a, * a)a,

D = (wt-w’-w”’-ﬂ‘t)

Table J III (Continued)

Third Order Polarization at w3- 63° £ w L w3y + 63

264




Table J 1V

Third Order Polarization at w, - 65 £ w £ wy + &5

1. CSRS (ws) : €1 (-0 )ep(w  )es(w ™) ¢ K =3
- CSRS e w,, w,;,) - nAt 1 [3 2 ) » 562 » o, - ]
- : X1122 (“ s ’ ’ = /D 45 YY‘ ( w =W )' r ( w g ~w ) t
p
L
f CSRS SUURUU LT |
& 1212 (-w;w S T, ) Z —
! 6KD 45
3
$ x [45a2 ( w'*ym w hhv2 (077sm0 1562 (07" ou” )]y

) (o
t CSRS, . .. oy . CSRS )
; 7 X1221(-w’w . - X1212(-w’w e
B - St 5 S ko~
#( VI = (a, * az)a; VII = (a; * ap)az : VIII = (a; * az)az= VII
}
D = (wt+w’+w"4il"t)
*

b 2. CMRS (wy) : €3 (-0 )er(w  )ea(w"7) ¢ K =6
» CMRS na,
L PR S T 1 2 (rer o 2YoEg2 o o
: X s (~wiw”sw”"yw”"") D 45 [3Ym (0" s=w") 135 (0" s=w )]t
fc

CMRS L na, 1 5 . 2 L

X515 (~wjw”,w” w”"") = 0 35 [3Ym (w7 =w )+56m (w7 y=w )]t
e CMRS na

- o PP t 1 2 ’ o » 2 Pl -

1 -l)® [CY. .Y - - -
: X1221 ( ww ZWw W ) 6RD 45 [453"‘ (“’ s =W ) ZYm (w Yl >]t
) V. = (3:+ 2 \a¥ VIR X
1 1 = (a L Vi ® (a3 - a,)a; = v, =(a;-a))a,
. I11
4
'
\ D = (wt+w +w” +"|l't)
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Table J IV (Continued)

Third Order Polarization at wy - 65° < w < wy + 64

3. SRS-SS (wy) : €5 (-0 )en(w  Yew(w ") : K =6
SRS-SS "At 1 2
cwiw W T w ) — 2 r_w”)-562 e’
X“22 Wiw 4w W ) 6hD 45 [3Yq (w W ) 5 q ( Wy -w )]t
SRS-SS L nAt 1 2 .. . 2 . R
1212 ('w’w s, W ) = %Ig [45aq (w =W )'qu (w =W )]t
SRS-SS nAt 1 2
PR T | Y YY: e
X1221 ( Wyw 4w, ) 61D 45 [3Yq (w s — )+5 q (w s =u )]t
A - ~k ~k - A ~dk B -
Vi = (a0 a,) a; ¢ Vg = (a, » a,) ap = Vyqy = (a, » a,) a,
D= (wt+w’+w"'+i I"t)
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