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ABSTRACT

The Multimode Guidance (MMG) Project, part of
the Army/Navy Area Defense SAM Technology Pro-
totyping Program, was established to conduct a
feasibility demonstration of multimode guidance
concepts. Prototype guidance units for advanced,
long-range missiles are being built and tested under
MMG Project sponsorship. The Johns Hopkins Uni-
versity Applied Physics Laboratory has been desig-
nated as Government Agent for countermeasures for
the project. In support of this effort, a family of
computer-controlled ECM simulators is being devel-
oped for validation of the contractor’s multimode
guidance prototype designs. The design of the low-
frequency ECM simulator is documented in two
volumes. This report, Volume B, describes the soft-
ware design; Volume A describes the hardware
design. The computer-controlled simulator can emu-
late up to six surveillance frequency jammers in B
through F bands and will be used to evaluate the per-
formance of home-on-jam guidance modes in
multiple jammer environments.
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1. INTRODUCTION

The Multimode Guidance (MMG) Project, part of
the Army/Navy Area Defense SAM Technology Pro-
totyping Program, was established to conduct a fea-
sibility demonstration of multimode guidance con-
cepts. Prototype guidance units for advanced, long-
range missiles are being built and tested under MMG
Project sponsorship.

The johns Hopkins University Applied Physics
Laboratory has been designated as Government
Agent for countermeasures for this project. In sup-
port of this effort, a family of computer-controlled
ECM simulators is being developed for validation of
the contractor’s muitimode guidance prototype
designs.

The design of the low-frequency ECM (electronic
countermeasures) simulator is documented in two
volumes. Volume A describes the hardware design of
the simulator; Volume B describes the software de-
sign. The computer-controlled simulator can emulate
up to six surveillance frequency jammers in B
through F bands and will be used to evaluate the per-
formance of home-on-jam guidance modes in multi-
ple jammer environments.

Computer control allows the simulator to flexibly
combine modulations into new patterns and to accu-
rately repeat test frequencies. In particular, complex
time-varying techniques may be created and repeated
when needed. In order to take full advantage of the
desktop computer that comprises the simulator con-
troller, proper software is necessary. The simulator
software may be considered in three parts: the user’s
program, subroutine blocks, and data.

The user’s program determines the output that re-
sults when a test program is run on the controller. A
user's program can be written for each new test
form, and each such program can give many differ-
ent outputs. User programs may be constructed to
allow a wide range of operator inputs.

The user’s program determines the simulator out-
put through some well-defined sequence of steps,
i.e., setting center frequencies, noise spots, pulse
periods, etc. While each test program would have a
unique collection and order of such steps, the steps
them-selves will be common to all programs. The
user’s program carries out the steps through a series
of program calls to a common group of subroutines.
These subroutines are called subroutine blocks to dis-
tinguish them from any subroutines written by the
user as part of a particular program.

Subroutine blocks handle common tasks, freeing
the user from having to rewrite the necessary instruc-
tions for such tasks every time a new test program is
written. The subroutine blocks can be used as
building blocks in creating a new test program. Data
formatting and addressing are handled by the sub-
routine blocks, using values stored as data.

Data used by the subroutine blocks allow the user
to specify the output in user-friendly terms such as
frequency and bandwidth. The subroutine blocks will
then use the stored data to convert a user-specified
parameter to the form needed by the hardware.
Other data may be defined as needed by the user.

e e ey — . | S g e
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2. SIMULATOR DESIGN PARAMETERS

The reader must have some understanding of the
MMG ECM simulator hardware in order to follow
the description of the simulator svitware. This sec-
tien will briefly summarize the simulator hardware
design and parameters. For a more detailed discus-
sion, the reader should consult the hardware docu-
mentation (Ref. 1). Appendix A of this reporst con-
tains a block diagram of the simulator (Fig. A-1).

The simulator essentially consists of three major
parts: the controller, the multiprogrammer, and the
RF channels. In addition, there are arbitrary wave-
form generators, auxiliary modulation switch matri-
ces, level set attenuator drivers, distribution boxes,
and power supplies. All of the present low-frequency
system (LFS) components except the controller are
mounted in a rack frame.

The controller is an HP9825S desktop computer,
with a number of ROM (read-only memory) options
and a total of 22,910 bytes of useable memory (the
controller may be upgraded to the 9825T standard or
even changed to a different model such as the
HP9826 without affecting the software’'s basic de-
sign logic). The controller communicates with the
other simulator devices over the IEEE-488 bus. There
are direct bus connections between controller and
multiprogrammer and between controller and arbi-
trary waveform generators; the controller is indi-
rectly connected to other parts of the simulator
through the multiprogrammer.

The multiprogrammer consists of an HP6942
multiprogrammer and an HP6943 extender. Any
general reference in this report to the HP6942 as the
multiprogrammer may be understood to include the
HP6943 as a subservient part. The multiprogrammer
contains a number of slots holding digital cards of
various types, such as digital output cards, digital to
analog cards, etc. The coniroller sends data through
the multiprogrammer to an addressed card in some
particular slot, causing those data to be passed to
whatever is connected to the card. The path could be
reversed, with the data on a card being sent back (o
the controller. This would particularly apply to use
of the digital input card. In the present LFS version
of the simulator, the data flow is essentially one way,

'"H. M. Kaye, Muliimode Guidance Project Low
Frequency ECM Simulator: Hardware Description,
JHU/APL TG 1335A (Oct 1982).

from the controller 1o the output devices, and no
input measurements are made by the controller.

Of particular interest are the tune cards and the RF
channel function control cards. Each tune card holds
two 8-bit words that specify the status of an Rr
channel’s tune frequency D/A converter and hence
specify the tune frequency. The tune D/A number
must be sent to the correct half of the appropriate
card without affecting the other half of the card.
Each channel function contro! card holds a 16-bit
word that determines the status of devices within an
RF channel, as follows:

Bit 15 : selected VCO,

Bits 12-14 : biphase circuit control,

Bits 9-11 : pulse circuit control,

Bits 6-8 : fill oscillator attenuation,

Bits 3-5 ! noise generator attenuation, and
Bits 0-2 : noise video bandwidth.

Other multiprogrammer cards control the level set
attenuators and the auxihary modulation switch
matrices, handle D/A conversion for auxiliary AM or
FM, provide a pulse signal source from the timer/
pacer card, and handle memory data (in the present
LFS version, the memory cards are not used). For
example, the digital output card in slot 11 determines
if the FM auxiliary modulation matrix is off (latched)
or on, and if on, what RF channel and what source
are connected during the on state. Table 1 lists the
multiprogrammer cards and their purposes.

The six RF channels generate the actual frequency
outputs. Each channel has the same functional lay-
out. There are two VCOs in each channel, one of
which will be active (connected (o the rest of the
channel circuitry) at any time. The tune center iy de-
termined by the voltage from the tune D/A. This
voltage into the VCO may be modulated by the fill
oscillator, noise generator, and auxiliary FM. The
VCO output may be successively modulated by linear
AM, biphase, and pulse circuits. Level set attennators
set the output power amplitude reference level. There
is a coupler to allow the RF channel output to be
monitored from the front panel of the rack.

There are two types of RF channels in the present
LFS version of the simulator, with a third planned.
Type I covers the B and C frequency bands. Type Il
covers the D, E, and F bands. Table 2 summarizes
the major simulator parameters. Type I1I, when
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Table 1 — Muitiprogrammer card slots.

Slot No. Card Type Card Purpose
0 Digital memory st part of memory pair

1 Digital memory 2nd part of memory pair

2 Digital output  Tune, RF channels 1, 2
3 Digital output  Tune, RF channels 1, 2
4 Digital output  Tune, RF channels 1, 2
5 Digital output  Function control, RF #1
6 Digital output  Function control, RF #2
7 Digital output  Function control, RF #3
8 Digital output  Function control, RF #4
9 Digital output  Function control, RF #5

10 Digital output  Function control, RF #6
11 Digital output  Level set control

12 Digital output  AM & FM auxiliary switch

matrices

13 Timer/pacer Pulse source (50% square
wave)

14 Counter Input pulse counting

15 Extender Connect 6942, 6943
100 D/A AM, RF #1

101 D/A AM, RF #2

102 D/A AM, RF #3

103 D/A AM, RF #4

104 D/A AM, RF #5

105 D/A AM, RF #6

106 D/A FM

107 Digital input Input measurements

Note: Slots 0-15 are in the HP6942 multiprogramer;
slots 100-107 are in the HP6943 extender.

available, will cover the G, H, and I bands and a
small part of the J band.

There are two W175 arbitrary wave form genera-
tors available as part of the simulator. These devices
may be used to generate almost any voltage wave-
form that can be defined as a function of time. One

Table 2 — Major simulator parameters.

Parameter Specification

Frequency coverage
Typel, VCOA 250-500 MHz
VCOB 500MHz; 1 GHz
Typell, VCOA 1-2GHz
VCOB 2-4GH:

Frequency accuracy 8 bit (256 steps) over VCO range
(accuracy within 8 MHz; cali-
bration dependent)

RF power
Type 1 + 20 dBm, maximum
Typell + 17 dBm, maximum

Dynamic range 81 dB (1 dB steps)

Modulation types
FM
Noise Gaussian or non-Gaussian, video
bandwidths of 1, 10,
100 kHz; 1, 5 MHz
Fill 100 kHz square wave
Auxiliary Sources: arbitrary waveform gen-
erator, D/ A card, or external.
AM =55 dB maximum range, DC to
50 kHz rates
Sources: arbitrary waveform gen-
erator, D/A card, or external
Biphase 5, 10, or 20 MHz comb;
10, 20, or 40 MHz psuedoran-
dom noise
Pulse PRF 500 kHz, maximum

Sources: 10, 100 Hz (50% square
wave), timer/pacer card (50%
square wave), either WI75,
external

may be used for FM or pulse, the other for AM or
pulse. The waveform generators are directly set by
the controlier; their outputs must be switched in
through the multiprogrammer to affect the RF
channel outputs.

The simulator output devices may be set indepen-
dently, and outputs are formed by combining the ef-
fects of several devices. Unique test patterns can be
generated by having the controller change device
settings according to some desired scheme. Any test
program would essentially be concerned with deter-
mining the hardware status of the simulator at any
time during that test.
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3. SOFTWARE FUNCTIONAL DESCRIPTION

Basic Organization

The controller is the key to the simulator’s ability
1o output complex test waveforms. For time-depen-
dent modulations, the controller can accurately con-
trol the sequence and timing of program steps.

Throughout this report, the user is understood to
be anyone who uses the information in the report to
write a test program. The operator is anyone who
runs a test program. The user and operator need not
be the same person.

A user’s test program is essentially concerned with
controlling the ECM simulator status during the test.
In doing so, the test program specifies the test format
(i.e., the simulator status at each step). Each test for-
mat requires its own unique test program, which
must be provided by the user.

The user’s program may directly specify the pa-
rameter values used in a test or it may allow an opera-
tor to select them. In the former case, the controller
can prompt an operator to enter the test’s parameter
values and then verify that they are legal. The con-
troller can also provide the operator with a list or
menu of parameters, the operator entering values for
only those that differ from a set of standard values.
When an illegal entry is made, the controller can in-
form the operator and reprompt for a new value.
Also, the user’s program can record the parameter
values for test documentation.

The controller’s software has been organized so
that the user may specify the simulator’s status using
output-oriented parameters such as frequency or
bandwidth, instead of specific hardware parameters
such as D/A number or attenuator setting. A test
program will use a number of subroutines common
1o all test programs. These subroutines are called
subroutine blocks in order to distinguish them from
other subroutines prepared by a user for a specific
test program. The subroutine blocks will handle the
details of a particular step in a test format, freeing
the user to concentrate on the test format itself. Sub-
routine blocks will accept output oriented parameters
and find and set the corresponding specific hardware
parameters. Data and device settings will be properly
addressed using the subroutine blocks, without
requiring the user to have a rigorous understanding
of the controller’s internal setup.

The subroutine blocks are used to build up a test
format by setting devices and running sequences

P
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through the controller. The test format is determined
by the user who is responsible for writing a program
that organizes and uses the subroutine blocks as
needed. If required, the user’s program may set oui-
put devices without using the subroutine blocks but
should not normally need to do so.

Subroutine blocks are independent in that the data
set by one subroutine will not affect data set by
others, unless several subroutines affect the same de-
vice or when one subroutine block calls upon others.
For example, the pulse circuit switch of a given RF
channel can be directly set without affecting any
other settings, while the pulse circuit switch will auto-
matically be reset properly when a subroutine block
is used to set up either of the arbitrary waveform gen-
erators or the timer/pacer card as a pulse source for
that RF channel. Independent subroutine blocks
make it easier for a user to prepare complex test mod-
ulations in a simple building-block fashion.

The subroutine blocks require conversion data in
order to get the hardware settings that correspond to
the output-oriented parameters specified by the user.
Such data are held in well-defined tables; examples
are VCO tuning curves, noise spot attenuation tables,
arbitrary waveform generator voltage curves, etc.
Other data may be defined by the user tor a specific
test; such data would typically consist of parameter
values to be passed on to the subroutine blocks.

The basic organization of any test program will be
a hierarchical allocation of the available controller
memory among the user’s program, the subroutine
blocks, and the data. The user’s program uses the
subroutine blocks to specify certain tasks, and the
subroutine blocks use the data in carrying out those
tasks. The organization of the user’s program de-
pends on the test involved, as indicated below.

Basic Programming Steps

Test Definition

As the first step in any test program, the user must
be able to define the purpose of the test. The purpose
of the test should in turn suggest the general sort of
modulation pattern to use. Test definition is closely
related to form definition (below), and, ir ractice,
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the two steps will often be carried out simultan-
eously. The distinction is that test definition treats
the entire simulator system as a black box out of
which the test designer wants some particular modu-
lation pattern, while form definition is used to set up
the user’s program in the controller. Test definition
may be carried out by a test designer who then directs
the user to program the controller for that test; the
test designer need not be directly concerned with the
actual program.

Form Definition

With a specific test definition as the goal, the user
must form a program to carry out the test. This will
involve determining at every part of a test the output
device changes to be set and the parameter values of
those changes. The user’s program handles tasks in
three areas: initialization, parameter determination,
and output setting. Initialization would be a fairly
standard procedure followed after power is turned on
and a test started. Most of the user’s work load in
preparing a test involves parameter determination,
with output setting being handled through the sub-
routine blocks.

In order to determine parameter values, one must
know what parameters are needed, which amounts to
knowing what devices should be set. The user should
find it helpful to consider the test as a sequence of in-
tervals, where each interval change is marked by
some notable change in the simulator status.

During each interval, the user’s program needs to
explicitly handle only those devices whose status
changes from their status in the previous interval.
Other devices would remain as they were previously
set. A number of changes closely timed can be con-
sidered as one interval. How close such timing must
be is up to the user; the point of an interval structure
is to make it easier to translate a test design to actual
programming.

In setting up intervals, the user should be aware of
the distinction between a set type and a run type out-
put. A set type subroutine (which should be a subrou-
tine block) will use the controller to set some other
simulator device, with the resulting state remaining in
force until the device involved is explicitly changed.
A run type subroutine (which may be a subroutine
block, or a modified one, or a new one written by the
user) will use the controller to run a modulation
pattern. The pattern may involve rapid, timed device
changes that would tie up the controller. To illustrate
this, consider an example of a hopping noise spot.

The noise spot, power level, carrier signals, and the
like can be handled by set type subroutines. The hop
can be handled by having the controller rapidly
change the center frequency of the VCO used
through a run type subroutine.

The distinction between set and run types is impor-
tant in setting up a sequence of intervals. A run type
output ties up the controller so that no other tasks
can be carried out while such an operation is running.
When the controller stops running such an operation
and moves on to its next task, the run type output
will end. The beginning and end of run type outputs
provide suitable interval divisions. No run type out-
put from one interval will continue into a following
interval. When several set type outputs and a run
type are used in an interval, the set type subroutines
are obviously called first.

Timing between intervals (and within the steps of a
run type output) is provided by the controller.
Timing control would typically use the wait instruc-
tion, making allowances for the time it takes the con-
troller to carry out its operations. Timing contro!
may also involve the multiprogrammer’s real-time
clock. The user may allow an operator to control in-
terval timing through the controller’s keyboard.

Appendix B contains more information on the
basic programming steps.

Parameter Determination

Parameter values may be found in a number of
ways. The ways can be distinguished according to
whether literal numbers or variables are used in the
actual subroutine calls and preliminary calculations;
in the case of the latter, there are three ways of
getting the value of the variable contents. Any com-
bination of ways may be used in a program. The
ways are:

1. Direct number
2. Variable
a. Program
b. Data file
c. Operator entry

A direct number is easy to use but tedious to
change. Variables (including expressions) make it
easier to run the same test form repeatedly with dif-
ferent values on each run. Variables may be assigned
direct numbers within a program. This is similar to
use of direct numbers since it requires program modi-

.
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fications in order to change the values, but by col-
lecting all assignments in one part of the program it
becomes easier to make such changes than it numbers
were scattered throughout the program. Variables
may also be assigned through the use of some prede-
fined and taped data array prepared by the user.
Such arrays allow a test’s parameter values to be cas-
ity changed by changing the file contents loaded from
lape.

More particularly, the user may set up a program
to allow an operator to specify parameter values at
the time of the test run. Operator inputs can be
checked by the program. Several subroutine blocks
also make it easier to handle operator inputs. Defauit
values should be provided in case the operator does
not wish to change a typical value; this will reduce the
operator’s workload and save testing time. The con-
troller can prompt the operator with type and range
information for each input.

Appendix C contains more information on param-
eter determination and passing.

User Subroutines

User Defined

The user will find it advantageous to make heavy
use of subroutines when preparing a new, compli-
cated program. Use of subroutines written by the
user can make it easier to follow the structure of a
prograin and to modify that program for later use in
a differcn’ test form. Also, by using subroutines
written according to a few general rules (chiefly in-
volving internal variables used within the sub-
routine), the user can build up a library of new sub-
routines to join with the subroutine blocks as a
source of prewritten program building blocks. This
should be particularly useful when the user prepares
any new run type output subroutines.

Label names can be used to positively identify a
subroutine, including its purpose. The only restric-
tions on the labels available to the user are that the
label must fit on one program line and must be
unique (see Table 3 for a list of labels already in use
by the subroutine blocks). Labels may also be used
elsewhere in a program to set off the structure and to
handle program branching.

The actual purpose and form of user-defined sub-
routines are up to the user and will depend on the test
definition. Appendix D contains more information
on user-defined subroutines.
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Table 3 — Subroutine block labels.

? initial
fval# stepinod
fset *stepval
fnoise *stepwt
fnout OWLSWD
pulse swpl75
biph AM175
auxmod DC17s
AMaux T/P
ampset special
AMown *valspec
*AMval err stp
setVCO shutoff
enter inRFid
- loadY$
loadX$
loadW$

* User-provided nextval subroutine (see Appendix D).

Predefined

The user may be required to write subroutines 10
carry out a predefined task i order to use certain
subroutine blocks (see Table 4). The subroutine
blocks in the lefthand column of Table 4 are run type
subroutines that find a data value by calling on other
subroutines, format the data, and send it to the
proper address. The subroutines in the righthand col-
umn of Table 4 provide the next value to be sent out
in sequence by the subroutines that call them. For
convenience, the subroutines that return the data are
called nextval subroutines.

Nextval subroutines mu * be provided by the user
and must return the necessary data through a speci-
fied variable. The actual output of a calling subrou-
tine is largely determined by the nextval. By changing
the nextval, the user can easily change the output,
without having to rewrite all the necessary addressing
or formatting instructions handled by the calling sub-
routines. A nextval may take any number of forms,
from complicated calculations to simple lookup of a
table prepared in advance.

Appendix D contains more information on nextval
subroutines.

Data

The subroutine blocks primarily use local dynam-
ically allocated p-numbers as internal variables, with
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Table 4 — Nextval subroutines. As a rule of thumb, (h'e user shoqld not assign new

Subroutine Block Nextval Subroutine/ Returns* ::;geasllgnayné;ifr:lrg:;]aet:lg g;:‘l l\};lreigt');?g nrgag a::
o A aarsuenion 1D AMAbIE0 e g L e
stepmod  stepval/D/A code number reve after caling a subroutine block that affects he

stepwt/dwell at value (ms) flag or the blocks must be modified.

Appendix E contains more information on data

special valspec/double tune word and variables.

single tune word
3 chapnel function control words

* See Appendix D for return limits. .

a few global variables (those visible to the user’s pro- Error Handh“g

gram) for loop indices and nextval returns. Most

global variables used by the subroutine blocks hold The subroutine blocks will carry out a number of
data tables used when converting output-oriented pa- simple checks on the parameter values passed to
rameters to hardware-oriented ones (see Table §). them. The checks are chiefly to ensure that a particu-

The data tables must be dimensioned and loaded at lar subroutine block’s parameters are legal and with-
the start of a test. The noise, fill, and W175 (FM) in range. Checks in one subroutine block are inde-
tables may need to be updated from tape storage pendent of checks in other blocks. If an error is
when the active VCO in an RF channel changes or found, the subroutine blocks have no general provi-
when the noise video bandwidti changes. Subroutine sion for prompting an operator to correct an error,

blocks (*‘load-$’’) will handle such updating. and use of defaults could lead the user and operator
The subroutine blocks use the following global into misinterpreting the status of the simulator.
variables and flags: When an error is found, the subroutine blocks will
simple : UthroughZ therefore set a coded number in the variable Z to in-
array : X, Z dicate the cause of the error and then branch to a
string : UthroughZ routine that reports the error, shuts off the simulator
flag : 14 output, and stops the program. This requires a con-

Table 5 — Required dimensioned variables.

Label Purpose Where/How Loaded **

Z3$(12,54] Tune frequency data File 2
X$([6,120] Noise generator data File 6, *‘loadX$"’
Y$(6,120] Fill oscillator data File 5, “*loadY$"
W$[6,120) WI175-FM data File 4, “‘loadW$*"
V$(120] Tape-controller data transfers® -~
Usi(36] Calibration identification, W175 File 91

outputs, operator input sub-

routines*
X[14] Long-term constants File3
Z{22] Card words - -

* May be used by user’s program if care is taken to avoid overwrite
conflicts.

**Tape files are all on track 1.

13
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scious effort by an operator to restart the test, which
helps ensure that the operator will be aware of the
error that must be fixed.

The user can avoid such controlled crashes by
checking parameter values before calling the sub-
routine. It would then be possible for the user to de-
fine how to recover from a faulty parameter. Nota-
bly, the user’s program car check operator entries,
and if an error is found the program can reprompt
the operator.

Appendix F contains more information on error
handling.

Ancillary Devices

Tape

The HP9825 controller has a magnetic tape cart-
ridge that will store programs and data on two
tracks. About 20% of the track 1 is reserved in a defi-
nite format to hold data for the subroutine blocks
(see Table 6); track 0 and the rest of track 1 are avail-
able to the user. it is recommended that file 0 of track
0 on program tapes be used to store an index and
guide to the rest of the tape contents.

Appendix G contains more information on the use
of the tape.

Table 6 - Tape track 1 reservations.

Files 1 1o 91 on track 1 are reserved for the subroutine
block data, as follows:

File No. Use
1 Transfer program
2 Z3 (tune data)
3 X [* }{constants table)
4 W$ (initial load, W175 data)
s Y$ (initial load, fill oscillator data)
6 X$ (initial load, noise generator data)
7-18 Fill oscillator data
19-90 Noise generator data
91 Calibration identification

14

W175 Arbitrary Waveform Generator

The simulator has two W75 programmable arbi-
trary waveform generators. Th - may be pro-
grammed tor any voltage waveforu that can be de-
fined as a function of time. A number of standard
waveforms are available in ROM: arbitrary ones may
be stored in PROM (programmable read-only mem-
ory) or RAM (random access memory). Output rates
for a full W175 wavetorm block may range up to
19.5 kHz (higher if a partial block is used); the out-
put modulation rate may be ditferent from the W175
block rate, depending on the voltage amplitude.

It is the responsibility of the user to avoid alloca-
tion conflicts. One W175 may be used for FNM or pulse
and the other for AM or pulse; the user must avoid
using either W175 for both purposes simultaneously.
The waveforms and voltages for the two applications
are not compatible. Normally this is not a problem
and can be handled implicitly in the way a program
runs. Explicit status tracking may be necessary if an
operator controls the sequence of test intervals.

Appendix H contains more information on the use
of the W175 waveform generators.

User Documentation

The user should document any new test program
that is significantly different from existing programs,
is likely to be used by others, or is considered a major
test program. Programs can be partly self-docu-
menting through good use of labels. File 0 on track 0
of a program tape can contain a brief guide 1o the test
program. The controller’s internal printer may be
used to document test parameter va'ues.

Written documentation should identify ary new
subroutines that may be useful in other programs,
identify data files and requirements, and identify the
tape files that hold parts of the program. Also, if op-
erator inputs are accepted, the user’s documentation
should include an operator’s guide detailing the
avaiiable options at each input. A program listing
should always be taken and given for hard-copy
reference.

Appendix 1 contains more information on user
documentation.

Miscellanous Information

There are a number of small corrections and modi-
fications that could be made in the subroutine
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blocks. These are detailed in Appendix K. None
would significantly change the subroutine block
logic.

Appendix L contains a program checklist.

Appendix M contains short miscellaneous infor-
mation that the reader may find useful.

Appendix N contains one-line descriptions of the
subroutine blocks, with more detailed descriptions in
Appendixes O and P.

A number of programs have been prepared using
the subroutine blocks; these will be described separ-
ately. In particular, a demonstration program has
been prepared that will allow an operator to arbi-
trarily set up simple set type outputs in any order on
any RF channels. Other programs will handle data
calibration and hopping noise spots. It is planned to

develop a library of test programs and program ele-
ments (such as subroutines) so that the user would
find an existing program to handle a test.
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BLOCK DIAGRAM OF SIMULATOR
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Flnun A1 — Block diagram of MMG ECM simulator, SK-A-7701.

o
i_

P N




THE JOHNS HOPKINS UNIVERSITY

APPLIED PHYSICS LABORATORY

LAUREL MARYLAND

APPENDIX B

BASIC PROGRAMMING STEPS

The MMG ECM simulator allows a test designer to
create ECM outputs by flexibly combining the out-
puts of various devices in the RF channels and the ar-
bitrary waveform or external generators. The simu-
lator controller can run complex time-varying modu-
lation patterns by timed changes of device settings.
Within the limits set by the actual and available simu-
lator hardware and by the speed and memory size of
the controller, test designers can write programs for
any number of lests. This appe.:dix outlines some
basic steps common to any program. The section is
necessarily general since there can be many ways of
getting the same output.

A test program can be considered conceptually in
two parts: the subroutine blocks and the user’s pro-
gram. The subroutine blocks can be used on a black
box level to handle the details of a test, such as
finding the code numbers, switch settings, addresses,
etc. that will give the desired output. The user’s pro-
gram basically handles everything else besides the
subroutine blocks, such as specifying the desired out-
put in terms of frequencies, power levels, band-
widths, etc. The user’s program determines the form
and parameters of a test.

The user’s program in turn can be considered in
thice broad areas: initialization, parameter determin-
ation, and output setting. Initialization consists of
setting up controller data space, loading necessary
files and subroutine block data, and initializing the
hardware status. It is the most consistent in form
from one test program to another of the three areas.
Parameter determination can involve fixed literal
numbers, data loaded from tape, programmed algo-
rithms, or operator ntries at the time of the test, and
may involve a fixed output form or one determined
by an operator at the time the test is run. It may be
carried out as one stage of a test setup or it may be a
repeated part of a cycle. Most of the user pro-
grammer’s workload will involve parameter deter-
mination (especially for complex test forms). Output
setting involves the actual setting of simulator devices
and running of modulation patterns, primarily
carried out when the user’s program calls the sub-
routine blocks. Each area is briefly described below.
The reader should be aware that there is some over-
lap of these areas, such as in the case of a subroutine

block that determines each output value in a
sequence as that value is needed (e.g., ‘‘stepmod’).
Parameter determination and output setting
implicitly assume that the user has determined the
output form (see below).

Initialization sets up the simulator to run a test.
This requires that (a) data space be dimensioned in
the controller’s memory and data loaded from tape
storage; (b) any separately taped program segements
be added to memory as needed; (¢) the simulator
hardware be put in a known state; and (d) the state be
suitable for the subroutine block operation. The pre-
ferred sequence of initialization instructions, with
optional steps in parentheses, is:

Dimension data,

(ioad subroutine blocks),

Call ““initial’’ subroutine,
(enable *‘shut off* error branch),
Load subroutine data,

(load program data),

(load program segment).

The data that must be dimensioned include those
required by the subroutine blocks (see Appendix E),
plus 2ny arrays or strings required by the user’s pro-
gram. Simple variables need be dimensioned only if
the user intends to record all data. If the subroutine
blocks are not an integral part of the program file
(i.e., if they are not stored as part of the same tape
file as the program doing the initialization), they
should be loaded with the load instruction specifying
that the program continue at the call part of initiali-
zation (see Appendix G). The ‘‘initial’’ subroutine
will set the simulator hardware to a desired known
state and initialize the array used (0o hold multipro-
grammer card words (see Appendixes E and J). This
subroutine should always Ye called as soon as possi-
ble in any program. User programs should also en-
able the error branch to the ‘‘shutoff’’ subroutine,
which will control the program halt that results if the
controller (as opposed to the subroutine blocks) de-
tects an error (such as division by zero with flag 14
unset). This enable is not required but is recom-
mended.
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After the call to ‘*‘initial’’, the user’s program
loads the data needed by the subroutine blocks (see
Appendix E) and may load any prerecorded data
needed by the user’s program. If the user’s program
has been written in the form of several separately
taped parts, then the initialization part of the pro-
gram should load the first (noninitialization) part if it
was not taped as part of the initialization. A useful
instruction that the user can insert after the last tape
access instruction is to rewind the tape because this
will reduce tape stress and wear if the operator
should remove the tape without using the rewind key
(see Appendix G). Where the last tape-access instruc-
tion is depends on what tape uses there are in the
user's program.

Parameter determination and output setting will
depend strongly on the user’s program. From an
output point of view, the user’s program is tasked
with building up the form of the output modulation;
parameter determination and output settings are the
means to that end. Determining a test’s form can de-
termine fairly well the output setting instructions,
and the parameter determination method can be any-
thing that will get the necessary data without con-
flicting with the output form (this amounts (o re-
stricting operator entries during a timed sequence).

Building up 4 test form requires the user to concep-
tually break up the overall output patiern into a
number of time intervals. Each interval corresponds
1o a change in the simulator status. The outlput pat-
tern Jduring each interval becomes that interval's
modulation form, and the overall output modulation
is a sequence of modulation forms. Commonly, there
will be one interval in which the simulator is brought
up from initialization to some desired output state in
which all modaulations (including those run through
the controller) will continue until the operator takes
some action to change the status (such as turning off
the power). This sort of interval, which remains until
an outside event interferes, can be termed a stable
form and the resulting test a stable test. lts counter-
part ariscs when the simulator is brought up to one
output state for a time and then is moved by the
user’s program 'o a different state; each interval can
be termed a time-varying form and the resulting test a
time-varying test.

The concept of an interval may be extended to
cover other arrangements in which the program per-
forms a series of related operations, even when the
program itself does not control the order or tiniing of
the intervals. For example, if the program prompts
an operalor to make a number of entries, those ¢n-
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tries can be collected 1o form an operator input inter-
val. If a program is organized as a series of single in-
tervals, separated in such way that the operator con-
trols the sequence of or time between intervals, that
program could be considered a multiple interval
one.

Within each interval, the user must be able 1o ex-
press the desired output in terms of its parts, where
each part can be set up or carried out by a particular
subroutine block. The user may provide new subrou-
lines to carry out some output procedure if the ex-
isting subroutines are not sufficient. Only those parts
that are not continued from the previous interval
need be set or run.

The user must distinguish between output parts
that are set and those that are run. Both types must
be initiated by the controller. The distinction arises in
the output behavior when the controller moves to a
different task. Set type outputs are stable in the sense
that their maintenance does not require use of the
controller. Once set, such outputs remain unti! the
controller acis to change or remove that output or
until power is turned off. Run type outputs require
continuous use of the controller and hence will tie up
the controller. Such outputs will remain only as long
as the controller continues to run them and will end
when the controller moves to another task.

A brief example will help clarify this point. An ¥M
sweep derived from the arbitrary waveform genera-
tor is a set type output. Once the appropriate subrou-
tine block has been used to set up the sweep, the
waveform generator and auxiliary switch matrix will
remain set until the controller acts to change some-
thing. Until then, it does not matter what the control-
ler does; the controller is not needed to maintain that
FM sweep modulation. On the other hand, an ¥M
sweep derived from the controller through one of the
subroutine blocks is a run type output. The controller
would be tied up running such an output, and the
output would end when the controller moved on to
its next task.

Run type outputs can be seen as those that require
a dedicated controiler to run a rapidly timed series of
changes of simulator devices. The devices and
changes are the same as for set type outputs, but the
timing of individual changes is rapid compared 10 in-
terval times. In the controller run FM example, the
FM sweep is achieved by having the controller rapidly
change the tune frequency. If the controller were
stopped from the keyboard while running such a
sweep, the last tune frequency set would remain set
until the program was enabled to continue.

.
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The distinction between set and run (or set and tie-
up) is important when the user comes to specifying
the order of parts within an interval. Since the con-
troller is tied up by run type outputs, the user’s pro-
gram must carry out any needed set type instructions
before reaching a run type instruction in that interval
(e.g.. to run a synchronous hopping noise spot, the
user’s program sels the noise spots, carriers, and
power levels before running the hop).

The distinction between set and run is also useful
when conceptually breaking up an overall output into
intervals. Since an interval corresponds to a change
in the simulator’s status and a run type output mod-
ulation will end when the controller stops running it,
any run type outputs in a program serve as natural
interval markers. The distinction is also used when
deciding the parts with an interval. If in the previous
interval a modulation has been set, it remains present
and need be explicit in a following interval only if
some change in the modulation is due in that interval.
If a run type modulation output has been run, it will
have ended at the end of the interval in which it was
run and hence is no longer present in following
intervals.

Run type outputs (and any other tasks that will
similarly tie up the controller) require some running
time control if the controller is not to be completely
tied up. Such control for the subroutine blocks is
commonly achieved by specifying the number of out-
put steps at a specified rate, e.g., the number of
sweeps for the controller’s FM sweep, or the number
of AM changes for the controlier’s AM. The time
then spent with the controller tied up is the quotient
of the number of steps divided by the rate (the num-
ber of steps can be specified as the integer product of
the rate and tie-up time). In the case of one subrou-
tine block (‘‘stepmod’’), the rate may vary from
one step to the next so that the tie-up time is implicit
in the specified number of steps, while in another
(*‘special’’) the tie-up time is passed directly. The
subroutine blocks will use such information to deter-
mine the dwell time at each output step, allowing for
the time it takes the controller to execute the instruc-
tions that make up that step.

The user can accurately control the amount of time
the controller is tied up and so control interval
timing. In cases where a run type output should ap-
pear as if it were set to run forever, the user can speci-
fy some very large number of steps relative to the rate
(or a long time if time is passed).

The user may control the time spent on various in-
tervals in other, more general ways that do not in-
volve the number of output steps in a run type sub-

routine block. In some tests, the desired output may
be a sequence of sct modulations with no run type
outputs appearing. The most direct way of timing
control is to use the controller’s wait instruction,
Waits longer than the 32.767 s maximum ot the wait
instruction can be reached by repeating several waits
or by running a wait loop. The user may also aceess
the multiprogrammer’s real-time clock for either rel-
ative or absolute timing.

How the user outlines a test program can now be
summarized. The user must first describe the desired
test output form. This can be done by sketching out
the desired output for each RF channel, including
time changes (on the level of **a blinking noise spot
on one channel, a swept comb on another, the comb
being replaced by biphase noise after an interval’’).
The user may allow an operator to choose the actual
form by specifying what part of the user program to
run. However, to write a program the user may treat
each such operator-selected option as if it were run

- directly by the controller.
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The user must next determine a way of allocating
the simulator R¥ channels; i.c., given the desired out-
put from a channel, the user assigns an actual Rr
channel as the output source, either by direct (literal)
or indirect (variable) assignment. The R channels are
allocated on the basis of the frequency band of the
desired output. Indirect assignments allow an opera-
tor to specify each actual source at the time the pro-
gram is used. Only one VCO may be active in an RF
channel.

Next, the user analyzes the overall test form in
order to conceptually break it up into intervals. The
user may find it helpful 1o visualize or skeich a time
behavior chart to indicate RF channel output changes
and the relative timing between such changes (see
Fig. B-1). The origin of the time axis would corre-
spond to initialization. There will be a minimum of at
least one interval in any lest; there is no maximum.

Each interval represents a notable change in the
simulator status. An interval may involve setting or
running some modulation or it may involve no out-
put changes but be used to time an upcoming change,
run some lengthy internal calculation, or handle tape
access. Since an interval marks a change, only those
set devices that change status during an interval need
be explicitly present in that interval’s instructions.

Having determined the intervals, the user considers
each RF channel separately during that interval. If
there are no set changes or run patterns involving
that RF channei, it can be left as is. If there are
changes or patterns, the user must break the desired
result into its parts. Any part that was set (o its de-
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A | Sweptcomb 1 ! Swept comb
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l Blinking spot

Interval 1 ' Interval 2 I Interval 3
Time

Initialization
Exampie shows output form with three intervais
Figure B-1 — Interval forms.

sired form during a previous interval can be left as is.
All other parts must be set to their new form and run
patterns started (set type outputs are always handled
before a run type output in the same interval).
Determining the parts of each interval’'s form is
equivalent to determining the output setting instruc-
tions.

Having determined the overall form and having
broken that into intervals and parts, the user should
know from the parts just what parameters are
needed. The user must then decide how to determine
the actual parameters (o be used (e.g., having decided
that at some point the output should have a new
noise spot, the user determines what RFr spot band-
width and video filter to use). This may range from
use of direct literal numbers 10 operator entries just
before each output instruction. When using operator
entries, it is generally easier 10 have the controller
prompt for all inputs at one time. The user should
obviously avoid operator entries during time-crucial
periods such as the middle of a run type output. The
user may set up a prerecorded data array containing
the usual parameters for a test and allow an interval
just after initialization for the operator to pass on
any parameters to be changed from the usual or
default values.

With the output setting instructions and a param-
eter determination method decided, the user has the
basic outline of a test program intact. The necessary
initialization instructions should be quite straightfor-
ward and can simply be inserted at the start of the
user’s program. Table B-1 outlines the general struc-
ture of a program.

Table B-1 - New user's outline.

Dimension
Initialize
Load data
For each interval:
Determine interval
Determine status of general devices (W17Ss. timer/
pacer card, external generators; this is usually
implicit)
For each RF channel/group of RF channels:
If active: fix status of set/type devices (VCO select,
noise spots, biphase modulations, etc.)
(Only changes from previous interval need to be
explicit.)
Else skip
Next RF channel/group of RF channels
If other tasks (e.g., file loads, printing, checking):
perform task
If run type routines used: run
Timing control
Next interval

There are a number of additional minor areas that
a user should cover besides the major areas of inittali-
zation, parameter determination, and output setting,
Three of these are: status tracking, test self-docu-
mentation, and label use.

Status tracking is usually implicit in the sequence
of output settings, which is well-defined when a
known, fixed interval sequence is used. Some lest
programs, however, will allow an operator to deter-
mine the order of intervals, as is the case in a demon-
stration program that through use of the controller’s
user-defined function keys allows an operator to ran-
domly combine different modulations. In such cases
the user’s program will need explicit status tracking.
Such tracking would typically involve checking if
carriers are turned on, if the desired VCO in each RF
channel is in use, and (especially) if there is a conflict
between using an arbitrary waveform generator as a
pulse source or an FM or AM source. If one of the
waveform generators has been set up for FM or AM, it
should not be switched into an RF channel’s pulse
circuit, since the waveforms and voltages are not
compatible. Status tracking can be done by mon-
itoring the contents of Z [ * ](see Appendix E) and by
use of the controller’s flags or a dedicated array.

Test self-documentation can be a very useful part
of the overall documentation (see Appendixes D and
I). Typically it would consist of using the control-
ler’s internal printer to make a hard copy record of
the parameter values used. This is particularly useful
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when an operator enters parameter values from the
keyboard; the operator entries can be printed as en-
tered, which makes it easier for the operator to spot
any misentered values. Additional information, such
as a message indicating the test form in use, can also
be printed if the user wishes. The self-documentation
on the controller’s printer can be removed and kept
in an operator’s log or notebook as a direct record
of the simulator’s status during a test.

Label use can make a test program much easier to
understand, debug, modify, or use. Suitable labels
can be used 1o delineate the program tasks of each in-
terval and to indicate the purpose. The user ought to
include a good label on line 0 of any program to serve
as an identifier. Labels may also be used to tag loca-
tions from which an operator can continue a pro-
gram after a fault-caused crash (see Appendix F). On
the HP9825 controller, labels may be up to 70 char-
acters, not counting the colon or apostrophe marks,
s0 there is no trouble with forming easy to under-
stand mnemonics (though shorter labels are obvi-
ously more memory efficient than long ones). The
only really notable restriction on labels is that each
must be urique and the user must avoid using any of
the labels already in use by the subroutine blocks (see
Table 3).

Labels have an obvious usefulness in handling pro-
gram branches. Of the branching instructions avail-
able on the HP982S, the user should avoid the abso-
lute go to (gto line #) because it makes it awkward to
modify a program by adding or deleting lines or to
reorder the program sequence. The relative go to (gto
# of lines}) would generally be avoided because it is
easy to drop plus signs when typing that instruction,
converting it to an absolute go to and increasing any
debugging workload. The relative go to may be use-
ful in rare cases where its slight speed advantage over
the jump instruction is needed. Normally, the user
will use the jump and labeled go to (gto *‘label’’) in-
structions to handle branching. The jump instruction
is space-efficient and allows variables or expressions
as its argument. Any jump of more than about seven
program lines should be replaced by a labeled go to
because longer jumps are hard to follow when
reading or debugging a program and may be missed
if the program is modified by adding or deleting a
few lines. The label used in such a replacement can be
any arbitrary symbol (an example is in the *‘enter”’
subroutine block). Labeled go to’s (gto ‘‘label’’)
with gocd mnemonics should be used when branch-
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ing between intervals or other main program ele-
ments.

There is one other general suggestion that the user
may wish 10 follow when preparing programs, partic-
ularly long multi-interval ones A program may be
organized so that the main program consists basically
of subroutine calls (a somewhat similar arrangement
would be a series of labeled go 10’s with returns 1o
some instruction that determines the next label). Sub-
routines may be used even if the subroutine is only
used once. The advantages of this approach are
better readability, ease of modification, and portabil-
ity. It can be easier 10 read and understand the pro-
gram when the basic instructions (the subroutine
calls) can be collected in one group of program lines,
especially if good mnemonics are used for the sub-
routine name labels. Organizing the program as a
group of subroutine calls makes it easier 1o add or de-
lete lines from one procedure without atfecting the
program flow from one procedure to the next; fewer
jump branches need be moditied (a procedure is a
group of instructions to perform some particular
task). A subroutine-based structure also makes it
easier to use a particular procedure in other programs
by simply using the subroutine that performs that
procedure. Such transfers are made easier if the sub-
routines are written using local p-number variables
rather than global variables and if good mnemonic
name labels are used (see Appendix D for more
details).

It is hoped that the reader will have gathered the
general principles of preparing a test program, which
should remain valid through simulator upgrades and
software changes. Presently the simulator is set up so
that it is a one-way device, from controller to simula-
tor 1o test darkroom. If a look-through/self-
measurement or responsive capacity is added to the
simulator, the same sort of interval structure can be
used; one interval could carry out a look-through and
the controller could then responsively decide which
output interval should be next, based on what was
measured.

How easy or difficult it is to prepare 4 test program
wilf depend on the desired test and on the user’s ex-
perience with using the simulator. Before starting a
test program from the beginning, the user should
check previously prepared demonstration and test
programs to see if any can be used as they are, in
combination, or with slight modifications, to get the
desired output. A substantial library of test programs
will be developed for the user to consider.
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APPENDIX C

SUBROUTINE PARAMETER PASSING

To use a subroutine properly, several conditions
must be met: it must be the right subroutine for the
desired effect; it must be called at the appropriate
time and place in the user’s program; it must be
given the right parameter values for the desired ef-
fect; and the parameter values must be in the right
form.

The determination of desired effects, timing, and
paramelter values is up to the user and will depend on
the test (see Appendix B). This appendix describes
how the user passes parameters to a subroutine. It in-
cludes a number of rules and suggestions that partic-
ularly apply to those tests in which the user allows an
operator to specify the values of the parameters to be
passed. The principles of this appendix apply to any
subroutine the user writes, as well as to the subrou-
tine blocks.

The user (the one who writes new test programs)
must be familiar with the HP982S controller’s HPL
language, whereas the operator (the one who runs the
test program) need not be (the user and operator will
not necessarily be the same person). In passing par-
ameters, the user must follow some well-defined rules
concerning the form and order of the parameters; the
operator, however, can be more flexible in entering
parameter values if the user has provided the appro-
priate programming. Such programming will in-
crease the workload of the user but greatly decrease
that of the operator, when operator cntrics are
used.

Subroutine parameters must be passed in a rigor-
ously defined order. If a subroutine is supposed to be
called with duty cycle and period, the user must give
the paramicters in that order, not as period and duty
cycle. The parameter order for each subroutine block
can be found in the subroutine descriptions in Ap-
pendixes N and O. When the user wr'tes new subrou-
tines, it is up to the user to keep track of the param-
cters and their order, especially if the new subrou-
tines are to be used in other test programs. This is
easier to do if the subroutines use a consistent ap-
proach in definine the order of the parameters, such
as using the fi 1rameter to specify either the VCO
or the band a subroutine that affects only one
VCO or one band.

The user cannot pass characters, strings, or entire
artays to a subroutine. Passed parameters must be

e
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literal numbers, simple variables, r-numbers, or
array elements; p-numbers can be passed from one
subroutine to another. Passed parameters may also
be expressions, a particularly useful feature. Scaled
numbers cannot be passed as such but must be recast
as an unscaled number or an expression. For exam-
ple, the user cannot pass a parameter value ¢f $ MH/
by writing 5 MHz, but he may pass it as SM if the
simple variable M has been assigned the value of one
million. The figure of § MHz could also be passed as
5e6 or 5000000 or by passing any variable or expres-
sion that has that value.

The parameters used within a subroutine will have
a scale that the user must be aware of in passing par-
ameters; e.g., if a subroutine requires a parameter to
be in milliseconds, the user must pass milliseconds,
not seconds. The subroutine blocks generally treat
passed parameters as unit-scaled values. Frequencies
and bandwidths are given in hertz, rates in hertz or
steps/second, and attenuations in decibels. An excep-
tion is that periods arc specified in milliseconds while
running or tie-up times are in seconds. Frequencies
and frequency-related parameters such as band-
widths or rates are given in heriz rather than mega-
hertz or gigahertz to remain consistent regardless of
the particular VCO band involved. Tune frequencies
would normally be expressed in megahertz in a type |
R+ channel and in gigahertz in a type Hl channel.
However, by requiring both to be passed in hertz, the
subroutine blocks involved in setting tune frequen-
cies (“‘*fset’’, *‘fval#’’) can use the same instruc-
tions for both without requiring the user to remem-
ber to scale one group of frequencies and not the
other. Bandwidths (especially noise spot bandwidths)
would normally be expressed in megaheriz, but they
are passed in hertz to remain consistent with the fre-
quency scale. Rates are given in hertz for the same
reason. Since the subroutine blocks use a unit scale
for all parameters (excepl periods), the user can
assume the same scale for all related parameters. The
user should employ a similar scaling rationale when
writing new subroutines, especially those used in
more than one test program.

It should be noted that an operator’s entries do
not have to have the same scale as that required by
the passed parameters. The user's program may
allow ¢ntries in whatever units seem most appropri-
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ate for an operator to use and then scale those entries just remember the former. However, the user will
before passing them (o the subroutines. This is have to remember if a subroutine uses a VCO
covered in more detail below. number or band number; this can be done by remem-

The required forms for other subroutine block pa- bering if the subroutine affects one VCO or all of
rameters are fairly obvious, with attenuations in deci- those in a band. The user should also remember that
bels, step rates in steps/second, and so on. The arbi- while the VCO number (or band number) is normally

trary waveform generator block rates and function the first paSSCd parameler, the arrangement differsin
numbers can best be understood in the context of those subroutine blocks that may affect a variable
using the W175 generators (see Appendix H). Switch number of VCOs in different bands (such as “*DC
codes are used for the pulse and biphase circuits and ~ 175," “T/P”). In these cases, the VCOs are the

the FM and AM modulation switch matrices because last parameters passed. The user should use a similar
no alphanumeric can be directly passed; the codes are ~ @pproach in writing new subroutines (see Appendix
the actual codes sent to the necessary switches, D). It should be noted that an operator may specify a
though this is not an essential feature (see Table C-  VCO by RF channel number and VCO leter if the
1). subroutine *‘enter*’ is used.

One parameter form that may lead to questions is There are a number of methods by which the us-
that of the VCO number (see Tables C-2 and C-3).  er’s program may find values for the passed param-

Most subroutine blocks affect one VCO, with the  elers. Any of these methods may be combiced in a
VCO indicated by the first parameter passed (the  Program. The most direct way of specifying values is
band number serves a similar purpose in subroutines to use literal numbers. This method is suitable when
that affect all the VCOs in one band). The VCO the test parameter values do not change between test
number is a short way of specifying which VCO is runs. However, literal numbers are tedious 1o change
affected. This information is used in determining the  if the user wishes 1o vary the values because the user
proper multiprogrammer card addresses for the RF ~ Mmust then rewrite every line with a changed param-
channel involved. It is also used in frequency-depen-  €ter value.

dent subroutine blocks to find the right data tables, The more usual methods of passing parameter
check parameter limits, and otherwise distinguish be- values use variables in the actual subroutine calls,
tween the two VCOs in each RF channel. A single  with the methods differing in how they assign values
VCO number is easier to use than separate numbers to those variables. It may be noted that if the user
for the RF channel and the VCO in that RF channel. considers it easier to specify a parameter in a form
The VCO number of each VCO can be remembered different from that required by the subroutine (such
easily by noting each VCOs position in the standard  as specifying a blinking signal’s rate rather than
rack arrangement (see Table C-2). It may be noted period), the necessary conversion expression can it-
that several of the subroutines could as readily be self be passed as part of the subroutine call, or the ex-
specified by the RF channel number. The VCQO  pression may be carried out beferc the call with the
number is used throughout in order to remain consis- result assigned to the variable being passed. The
tent; the user does not need to remember if a subrou- user’s choice in such cases can be decided by consid-
tine block uses a VCO number or RF number but can ering which form would be easier 10 read, subject 10

Table C-1 — Switch codes.

Code No. pulse biph auxmod* AMaux
0 arrier on 20 MHz comb off Off
1 10 Hz, 50% sq. 10 MHz comb External External
2 100 Hz, 50% sq. S MHzcomb D/A FM D/A AM
3 WI175(A) Carrier on WIT5(B) WI175(A)
4 W175 (B) 40 MHz biphase - -
5 T/P card 20 MHz biphase - -
6 External 10 MHz biphase - -
7 Carrier off Carrier off - -

* auxmod is the FM auxiliary modulation switch control,
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Table C-2 - VCO number information.

VCO No. Band No. RF No.
1 0 ]
2 | 1
3 0 2
4 1 2
5 0 3
6 1 3
7 2 4
8 3 4
9 2 S

10 R) 5
11 2 6
12 3 6

the constraint that an expression passed in a subrou-
tine call must be brief enough so that the subrou-
tine’s parameter list will fit on one program line
(there are no continuation lines for parameter lists in
HPL).

Variable assignments may be carried oul as part of
the program or it may be done in advance. Assign-
ments done as part of the program are somewhat
similar to use of literal numbers; however, by col-
lecting all assignment instructions into one part of
the program (generally just after initialization), it be-
comes easier for the user to change values than if the
user had literal numbers scattered throughout the
program. This approach is suitable for cases in which
a test is usually run with the same parameter vaiues,
with only occasional changes.

A more general approach is to assign values to var-
iables in advance of a test. The variables are then
saved on tape, with the user’s program loading the
variable data as part of initialization (see Appendix
B). By preparing several such taped data files and
allowing an operator to select which one is used, the
user can provide a rapid and convenient way of

- e -
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Letter

Code Fon Foa
A 250 MHz 500 MH:z
B 500 MHz 1 GH:z
A 250 MHz 500 MHz
B 500 MHz 1 GHz
A 250 MHz 500 MHz
B 500 MHz 1 GHz
A IGHz 2GHz
B 2GHz 4GH:z
A 1GHz 2GH:z
B 2GHz 4GH:z
A 1GHz 2GHz
B 2GHz 4GHz

changing the test parameter values. This approach is
appropriate when a test is usually run with the same
values; multiple data files allow easy changes be-
tween sets of values. A separately assigned data file
can also save program memory space by carrying out
the assignments outside the program proper and be
conceptually easier to understand. When using this
approach, the user is urged (o use an array (or strings
or the r-numbers) for the taped variables and avoid
using the simple variables. If simple variables are
used for the taped variables, the variable assignments
will be thrown off if the test program dimensioned
the simple variables in a different order than was
used when the variables were assigned (see the
HP9825 reference manuals). If simple variables are
used to hold taped data, then the simple variables
should be explicitly dimensioned in the same order
for both the test program and the assignment of vari-
ables. The user must also beware that if ordinary var-
iables are taped and then loaded into r-numbers (or
vice versa), the order will be reversed (see the HP9825
reference manuals). The r-numbers are useful for
variable length data files since they do not need to be
dimensioned.

s e g
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Table C-3 - VCO number algorithm values.

VCO RF Band  Band Tune 1 ow/
No. No. No. Mult.  Slot No. High

I ! 0 1 2 1
2 1 l 2 2 1
3 2 0 1 2 2
4 2 I 2 2 0
s 3 0 1 3 1
6 3 1 2 3 i
7 4 2 4 3 2
8 4 3 8 3 0
9 5 2 4 4 1
10 5 3 8 4 1
i1 6 2 4 4 2
12 6 3 8 4 0
VCO No.: X

RF No.:int (X/2 +0.5)

Low/high: int (X mod 4/2 +0.5)

Band No.: 1 + 2((X - 1)/6) - X mod?2

Band mult.: 21(band No.)

Tune slot No.: 2 + int((X - 0.5)/4)

Note: RF function control word slot No. = RFNo. + 4

The user’s program may also allow an operator (o
specify data values. This approach is the most ap-
propriate whenever value changes are anticipated
more often than occasionally. For operator entries
there are a number of suggestions that fall in four
categories: prompting, default values, checking, and
tracking.

Prompting the operator can identify what variable
is involved and the allowable form and range of the
variable value. Prompts are closely tied to the entry
scheme selected by the user. Entries almost always
would be made with a simple one entry per prompt
scheme, since this will be both the easiest to write and
the easiest to use, expecially for a new operator.
Other entry schemes (such as a coded string entry,
allowing multiple entries in any order at the same
time) may be found useful in certain cases, but gener-
ally the operator will make one entry at a time,
guided by prompt messages.

It shouid be noted that, for very long entry lists,
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the operator need not go through cach entry. The
user may insert option questions, allowing the opera-
tor to end the prompted inputs when the question i
reached; the user could also set up the prompts <o
that a certain reply will end the inputs whenever that
reply is made.

Prompted inputs typically would all be made at
one time during a test program, atter initialization
and before the actual output began. During such an
input interval, the program would collect all the data
needed for the output iniervals; the test would then
proceed without requiring further operator attention.
Inputs might also be made between in:ervals if the
time between intervals is not fixed. The only major
restriction on prompted inputs is that in order to
avoid timing problems, p.ompting should not be
done during a timed output run or during the middle
of an interval.

Prompts should involve at least an enter statement
message identifying what sort of value should be en-
tered. Bare prompts (those with no message) should
be used only when preparing taped data in advance
of a test, and then only when it can be assumed that
the user/operator knows the program well enough to
identify the purpose of each variable. It should be
noted that enter stalement messages cannot contain
variable display elements but must be a fixed mes-
sage. The user may use conditional enters, each with
a different message, if it seems appropriate.

More commonly, variable elements of a prompt
message would be given to the operator by using the
display statement just before the enter statement.
Any number of display messages can be used for a
single prompt, though it is generally best 10 use the
shortest message that will convey the desired mean-
ing; long messages will become tedious, especially
after the first time an operator runs the tesi. When
the display statement is used in this context, the time
spent on each display should be kept short (a message
that seems (00 fast on the first run of a test will seem
much slower on later runs). The stop instruction
could be used instead of a wait and the operator in-
structed to press the CONTINUE key to self-time the
messages; however, this may confuse the operator in-
to unintentionally pressing CONTINUE at the enter
statement as well as the displays. This procedure is
probably better suited to dedicated help programs
(covered below). Displays are normally preferred to
the printer for prompt messages because the printer is
slower, uses paper, breaks up the form of any contin-
uing self-documentation (see below and Appendix 1),
and soon becomes very tedious, especially for repeti-
tious prompt messages. As an example of a variable
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element in a prompt message, suppose the user’s
program prompts the operator to enter a frequency.
A display statement would show the frequency limits
(which would vary depending on which VCO is
used), while the enter statement message would
prompt for the frequency value.

Prompt messages should be kept as simple as pos-
sible to avoid slowing down the speed and increasing
the size of a program. ldeally a prompt message
would fit within the HP9825's 1-line 32 character
display. Some abbreviation is useful if it is not over-
done. Despite the display size limitations, it is possi-
ble to fit satisfactory operator information into the
enter message alone so that display messages are
often not needed.

1t was mentioned earlier in this appendix that the
operator is allowed to enter scaled numbers, with the
program converting that entered number to the un-
scaled form required by the subroutine blocks. Thus,
in entering a frequency, the operator can specify it in
units of megahertz if that is convenient. If a probable
scale is known in advance (for example, as it would
be for a data calibration program), the operator can
be prompted to enter a number directly in that scale
(e.g., S for 5 MHz). The user may wish 1o provide
corrections for obviously miskeyed entries in this sort
of input {e.g., if the operator were prompted to enter
a megahertz frequency measurement while cali-
brating the 500 MHz to 1 GHz band and a value of |
were entered, the program might conclude that the
operator meant to enter | GHz or 1000 MHz, and the
program could rescale the entered value accord-
ingly).

More generally, the user’s program would prompt
the operator to enter a value with the scale factor
attached (e.g., 3.2g for 3.2 GHz). The user’s pro-
gram would accept the operator’s value by entering
it to U$ and then using the ‘‘enter’’ subroutine
function block to convert that value to a unit scaled
form (sec Appendix O), the return from ‘‘enter”
being used to set up the variable actually passed to
the other subroutine blocks.

The “*enter’’ subroutine (not to be confused with
the enter statement) would be part of the normat
handling of operator inputs. It is therefore important
to advise the operator that the subroutine will not
support expressions sent through the CONTINUE
key, unlike entries sent directly to a variable rather
than to U$. If expressions are used, they must be
evaluated by using EXECUTE before CONTINUE,
with the expression either being unit-scaled or the
scale indicator added with the edit keys after EXE-
CUTE.
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Also, when using the ‘‘enter’” subtoutine, the
user should clear US before the enter statement 1o en-
sure that only the operator’s response is in U$ when
“‘enter’” is used (US is used by several other subrou-
tines; see Appendixes E and O). US inputs sheuld be
terminated to avoid string errors; for numerical in-
puts using ‘‘enter,”’ the full length of the display is
used. The basic form is:

cor = US: ent “‘message’, US [1.32)
‘enter’ —(variable)

U$ can also be used for non-numeric operator en-
tries. The operator could be asked to specity a branch
or {0 answer a yes/no question, and the reply evaliu-
ated as a string. In most such cases, only the first
reply character is significant and need be examined.
For example, to ask the operator a ves 'no lype
question, the basic form is:

sort — US:ent message’”, US (1.1
ifcap(US(1.1H = Y. glo*tyes”
‘‘notyes'":

Default values should be considered an essential
part of an operator prompt. The controller will auto-
matically set flag 13 if CONTINUE is pressed with
no data entered at an enter statement and will clear
flag 13 if data are entered. The user's program can
thus tell if the operator entered anything in reponse
to a prompt. By checking flag 13 and assigning a
default value to the appropriate variable if it is set,
the user’s program can allow an operator in effect to
skip over an entry, without requiring the operator to
enter anything.

This feature is particularly useful when the opera-
tor is offered a long list or menu and the operator
only wishes to make one or two changes. By pressing
CONTINUE at the unwanted prompts, the operator
can very rapidly go through a list, pausing only to
enter values at prompts for parameters to be changed
from some standard value (the operator does not nec-
essarily have to know the defaults). The same effect
would be obtained if the passed variables are first set
with the standard values (perhaps by using taped data
as mentioned above) and flag 13 checked at each
prompt to see if any manipulations (such as calling
“‘enter’’ to get the U$ contents into a variable) are
needed.

When the operator makes an entry, the user’s pro-
gram should generally check that the parameter is
legal and within range. Such checking often amounts
to duplicating some of the checks carried out by the
subroutine blocks. It is obviously easier to recover
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from a bad parameter if it is found before being
passed and causing the system to crash.

There are other checks not carried out by the pres-
ent subroutine block software that may be needed for
some tests. A noise spot may be legally set at one tune
frequency but result in a bad output if the tune center
is changed or swept. The pulse circuit switch of an RF
channel may be set to feed in the signal from one of
the arbitrary waveform generators without reference
to how that generator is set. There are three functions
(M, AM, pulse) for the two arbitrary generators, so
some way is needed to check what each generator is
used for (this sort of check is usually implicit in the
program but may need to be done explicitly if a
program allows the operator to control multiple
branching).

Checking can be done implicitly when fixed or de-
fault values are used; explicit checks should be
carried out on all operator inputs. The logical place
to carry out explicit data checks is where the inputs
are made; a detected bad parameter can then be re-
jected while the operator is still present and thinking
of that input. Checks would normally be fairly
simple and involve testing to see if the value is within
some set of fixed or calculated limits (calculated
limits allow greater flexibility than fixed ones and can
be changed to agree with earlier inputs). If the opera-
tor’s value is bad, a display message to that effect
can be shown, with the program then jumping back
to the input prompt. The general form is:

dsp ‘‘message’’; wait (time)
o~ US; ent *‘message’’, U$(1,32]
if flg 13; (default) — variable; jmp (next)

if (‘enter’ — variable) . . . (within limits); jmp
(next)

dsp ‘‘correction message’’, wait (time); jmp
(enter U$)

“‘next’’:

When checking operator entries, the user may wish
to carry out checks other than value limit ones. For
instance, if dealing with a very long list, the user’s
program may designate some symbol to serve as a
terminator; each input check would look for that
symbol and, if found, go to the next interval after the
operator inputs. The user may also include a help
file; when the appropriate symbol is found, the pro-
gram would carry out a dedicated sequence using
either the printer or the display to inform and other-
wise help the operator.

A help file will be most efficient if taped separately
from the program so that it would occupy memory
space only when it is needed. Use of a separate help
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file requires that the user keep esplicit track of the
line numbers at which the help file and the program
should continue, since the present controller has no
readily accessible capability 1o save a program line
number (this capability may be added in a tuture up-
grade). Explicit line numbers can make it awkward to
modify a program. The user might, in theory, manip-
ulate the error recovery routine in order 1o save a line
number by deliberately causing an error. The recov-
ery routine would have to check if the error were
deliberate; if so, the routine would handle the
loading of the help tile, with recovery being based on
the contents of the error line (erl) label. This would
still require explicit line numbers within the recovery
routine and would increase the size and complexity of
a test program and decrease the speed in return for a
marginal improvement in ease of debugging a test
program. In practice, manipulation of the error re-
covery routine is not worthwhile.

Help files should be needed only tor long. compli-
cated programs intended for use by more than one
operator and do not take the place of documenting a
test program (see Appendix [). Help files and the
number of data checks carried out by the user's pro-
gram will depend on the user's perception of the op-
erator’s skill and needs, the amount of available
memory space, and the preparation time available
for a test program.

The user’s program should keep track of an oper-
ator’s entries beyond the point where they are passed
to the subroutine blocks. Partially this is so that the
program can carry out later data checks; it is gener-
ally more appropriate in documenting a test run. The
user’s program should keep track of parameter
values at least long enough for the operator to get a
record of the values used in the test. The controller’s
internal printer can be used to record parameter
values. Values could be printed as they are entered,
which is particularly appropriate when the operator
has some control over the next step of the program,
since an incorrect entry can then be rapidly spotted
and changed. Values could also be saved and all
values printed at one part of the program, which is
appropriate when the operator makes a few entries in
a long list of parameters. The user’s program might
also save the operator's values on tape for reuse in
later runs of the test.

One major principle that the user should remember
when preparing for operator inputs is that it is more
efficient for the user to define a test than it is for the
operator. The user is more familiar with a test pro-
gram and basically works on it once; the operator
works on it each time it is run.
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APPENDIX D

USER SUBROUTINES

When preparing a new test program, the user will
often want to write a new subroutine for some user-
defined purpose. Also, when using certain of the sub-
routine blocks (see Table 4), the user is reguired to
provide subroutines with a predefined purpose of
providing the next value for an output sequence. This
appendix gives information for both types. For con-
venience, the appendix is in two parts: user-defined
and pre-defined.

User-Defined

A long or complicated program is easier to read if
it is well-structured (a structured program can be
loosely defined as one created by the combination of
a number of nearly independent building blocks, as
contrasted with a program in which every line is se-
quentially determined by the specific test to be
carried out). The MMG ECM simulator software has
some structura! elements in the subroutine blocks.
The user can improve a program’s structure through
intelligent use of additional subroutines, written by
the user. A little structuring effort will pay off in a
program that is easier to read and far easier to modi-
fy, and that can provide new subroutines for other
test programs, saving duplication of effort.

Structuring through subroutines enables the user
to organize a lest program as a main program and a
number of subroutines (which include the subroutine
blocks). The main program can then be basically an
arrangement of subroutine calls. An advantage of
this approach is that it will make it easier (o read a
program, by outlining in one place what the program
does. For example, consider a simple case in which
the program prompts the operator through a list of
possible inputs, makes a number of calculations
using those inputs, and then sets devices and runs
patterns. Without subroutines, anyone reading the
program would have to read through all the input
lines to find that the program does calculations and
then read through all the calculation lines to find
what the program sets and runs. [f more than a few
lines are involved, the reader can become confused or
lost. By using subroutines, the program lets the
reader grasp the program’s organization by reading
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a few adjacent lines, showing that the program calls
an input routine, a calculation routine, and, finally, a
set and run routine (or . outines).

Such structuring can be particularly usetul in a
multiple-interval test program (see Appendix B).
Aside from making it easier to follow the overall
form, a subroutine-based structure would make it
much easier to modify a test by changing interval
order or adding or deleting intervals; the user would
only need 1o manipulate single instructions (the sub-
routine calls) rather than entire procedures many
lines long.

When using subroutines to structure a program,
the user should try to use good explanatory label
names (see Appendix B). A nuinber of studies have
suggested that human short-term memory typically
holds six or seven items. Good label names can re-
duce the number of items a reader must remember in
order to understand a program.

The six- or seven-item figure for human short-term
memory suggests that, when dealing with a very com-
plex program, the user should try o structure the
program so that any one¢ interval (or other program
division) could be understood as a sum of six or
fewer parts. The user can stack subroutines to this
end, having one subroutine call a number of others.
The only limit to the depth to which subroutines may
be stacked on the HP982S is the available memory; if
memory size does become a problem, the user can
break the program into a number of separately taped
segments (see Appendix G).

Another advantage to using subroutines is that
they can be used more readily to carry out the same
task in other test programs. The user faced with a
task common to several test programs could write a
single subroutine shared by the tests, rather than
having to rewrite the task instructions for each test.
The user could build up a library of subroutines that
join the subroutine blocks in being readily available
to each new test program, the new subroutines being
saved on tape. To fully exploit this capacity, the user
should follow certain rules and suggestions below on
variable use.

In the HP9825 HPL language, all variables except
subroutine p-numbers are global. These global vari-
ables may be read or assigned values anywhere in a
program. Local p-numbers are dynamically allocated

y——a

ST R




T

————

. e————

THE JOHNS HOPKINS UNIVERSITY

APPLIED PHYSICS LABORATORY

LAUREL MARYLAND

when a subroutine is called and are lost when the sub-
routine returns. The p-numbers (p#s) of one subrou-
tine are independent of the p#s in another subroutine
(save when one subroutine calls another, passing p#
parameters; an assignment to the p# in the second
subroutine corresponding to the passed p# in the first
subroutine will affect the value of the p# in both sub-
routines. See the HP982S reference manuals).

If a subroutine is to be generally useful in different
test programs, it should use p#s, reserved subroutine
variables (simple variables U-Z), and general daia
(X1*]. Z[*], etc.; see Appendix E). This reqguires
that all necessary parameters be passed in the subrou-
tine call. While this involves more programming
effort than direct use of global variables, it frees the
subroutines from dependence on the particular vari-
able used. This in turn gives the program calling the
subroutine more flexibility in using the global vari-
ables and allows expressions to be used in the calls.
For example, rather than writing a subroutine that
uses the variable F to hold a frequency value, the user
would use a p# (such as p2) for the frequency. The
subroutine calling program (which may itself be a
subroutine) would have 1o pass the value, but it
would be free to use variables other than F to hold
the frequency value passed and could also pass ex-
pressions or functions, while F could be used for
some other purpose.

A rule of thumb for variable use in such subroutine
structured programs is 1o use the global variables in
setting up parameters passed with the subroutine
calls, and p#s and reserved data (see Appendix E) in
the subroutines. A subroutine should use a global
variable other than the reserved variables only in
well-defined special cases, such as the nextval sub-
routines (below). The reserved simple variables are
particularly used as for/next loop indices.

Another suggestion for writing subroutines is to
use a consistent order in passing parameters (see Ap-
pendix B). It will make it easter to use that subroutine
if the user can readily remember the parameter order
without having to look it up. A consistent order also
makes reading and modifying a subroutine easier. In
this sense, a consistent order can be considered a logi-
cal extension of using good mnemonic label names.
A rigorously consistent order is not required and ex-
ceptions can be made, but the following can be taken
as guidelines:

1. In subroutines affecting one VCO (or all VCOs
in a band), give the VCO number (or band num-
ber) first. This may be extended 1o a case using a
fixed number of VCOs not necessarily in the
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same band; give the VCO numbers first.

2. In subroutines affecting a variable number of

VCOs, give the VCO numbers last (use p0 to find
the number of VCOs afier allowing Yor other
passed parameters).

3. Give deviation centers (if applicable) betore devi-
ation magnitudes, magnitudes before rates, and
rates before miscelianeous parameters (e.g.,
*swpl75” passes VCO number, center fre-
quency, M bandwidth, W175 block rate. and
W175 function number, in that order).

4. Pass parameters as unit-scaled numbers (except
periods, which are in milliseconds), 10 remain
consistent  with the subroutine blocks (see
Appendix C).

The user will probably appreciate that a subroutine
structure should make it easier to prepare long pro-
grams and 1o debug and modity shorter ones as well.
When preparing a refatively short or simple program,
especially one prepared on short notice. the user may
find it easier to use a straight-ahead approach with
no subroutine structure. This can be perfectly accept-
able, and an operator generally would never se¢ any
difference. If a short program is wanted for a brief
run, it may make no difference to the user either. The
user preparing a test should ask the hypothetical
question of whether the user expects to modity that
program later, or use part of it in a diftferent test, or
if a different programmer will be using the program
in some way. If the answer is yes, it could be more ef-
ficient to use a good structure from the beginning,
rather than to try to impose one later.

When actually writing a user-defined subroutine,
there are fewer specific rules or suggestions to pass
on, since the subroutine form basically depends on
what the user wants done. It has already been noted
that the user is assumed to be familiar with the HP1
language and so should need no reminders about
multiple instructions on a line, use of p0, and de-
faulting passed p#s to zero by not passing them. A
number of general suggestions follow.

A user-defined subroutine may or may not involve
sending data over the bus. The user should be able to
handle most bus-involving data by using the subrou-
tine blocks. When the user does wish to send some-
thing over the bus from a new subroutine, one of the
existing subroutine blocks can serve as a model for
the data formatting, addressing, and tracking (see
Appendix K). It is expected that most cases in which
the user wants a new subroutine to send something
over the bus will involve setting the arbitrary wave-
form generators or running some complicated muiti-
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ple VCO output pattern. The former basically in-
volves sending a properly set up string to the right
W 175 address (see Appendix H) and the latter is basi-
cally a matter of finding data, formatting it, and
sending it to the right place at the right time. In this
latter case, a nextval type approach can be used (see
below). Thez user should base the required return
form on an estimate of the highest desired rate (e.g.,
if' a run-type output involves changing tune centers at
a low rate, the nextval could return single D/A num-
bers and could get those numbers from frequencies
using “‘fval#™’. If a high rate will be neceded. the
nextval should return tune words taken from a wable
prepared in advance; see below). Also, in running
timed output patterns, the user should allow for the
program instruction time in setting waits, as is done
in, for instance, ‘‘stepmod.’’ The necessary offset
times could be held in an expanded X [*] or in some
other user-selected variable, with the former pre-
ferred when the user subroutine is 10 be used in other
programs.

The user may also include some simple valuc
checks to ensure that passed parameter values are
legal (again, this is especially appropriate it the sub-
routine will be used in other test programs). The sort
of tests and the response to any error will depend on
the expected future use of the subroutine. If it is used
only in a specific test, the subroutine checks may in-
volve the values of known global variables in that test
and so allow one subroutine check to involve know-
ledge of other results. The error response may in-
volve getting the operator to fix the bad condition. A
general use subroutine should restrict its checks to
the passed parameters and the data contents, so that
cach subroutine’s checking is independent of others.
The error response could not assume any knowledge
of the calling program’s structure and so should halt
the simulator through “‘err stp’” (the user should
make up a unique Z code; see Appendix F).

To maintain good structure, cach user-written sub-
routine should carry out one primary task. A larger
task may be broken into subtasks performed by sep-
arate subroutines. Thus, if for example the user
wished to fill a number of r-numbers with values and
then to send those values 1o various RF channels, the
user would use one subroutine to get the r-numbers
and another to run the actual output. This would iin-
prove the structure’s clarity and make it easier to
change the nature of the output values, by using a
ditferent subroutine when getting the r number
values.

In all user-writien subroutines, the final choice of
what the subroutine does and how it does it is up to

the user. [Uis up to the user to decide 1f the additional
programming required by subroutine siructuring,
data checks, and the rest would be repaid by case of
later use and modification.

Pre-Defined

In contrast to the user-defined subroutines are
those in which the purpose has been pre-defined but
whose form is largely up to the user. These subrou-
tines are termed next value or nextval subroutines,
An explanation of their purpose will show how the
nextval label is self-defining.

It was mentioned i Appendin B that some run
Lype subroutines tic up the controller in order to run
an output pattern, and it was mentioned above that it
can improve a program's structure and make modi-
fications easier if cach subroutine performs once pri-
mary task. The run type subroutines adhere to this
concept. The basic run type subroutines (first column
of Table 4) are primarily concerned with the proper
addressing of a number of output values in a se-
quence. These subroutines in turn call on other sub-
routines to get the actual +alues output. This latter
group of subroutinegs is called on each output step of
the run type subroutines to provide the next value:
hence as a class they can be called nextval subrou-
Lines.

The main advantage of ihis approach is that it ¢n-
ables the user (o specify new run type output forms
without having to rewrite the controller-simulator
address manipulations each time (indeed, the casual
user does not even have to be aware of the internal
addressing). The user has only {0 specify the nextval
subroutine to specify the outpui and can do so in a
number of ways, giving the user great flexibility.

This flexible adaptation can be carried out as part
of a program. For ¢xample, the user might provide a
number of nextval forms and let the operaior specifv
which to use in a given test run. The user could also
change the nextval during a multi-interval test, so
tha: the same run type subroutine when calied in dif-
ferent intervals would result in different outputs.

Nextval subroutines are one exception to the gen-
cral rule against using general global variables in a
subroutine. Conceptually, any nextval subroutine
can be regarded as being specific to the test in which
it is used, so there is no portability from vne test pro-
gram to another to be lost if the general global vari-
abies (see Appendix E) are used. Through such vari-
ables the user can have the main program set up or
modify the run type output.

—y
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The calling subroutines must provide the ad-
dressing and basic timing control for the output, as
well as any necessary manipulation of the nextval re-
turn. The kind of data manipulation required de-
pends on the format of the nextval return, and this,
in turn, will be determined by the expected maximum
output rate. When a high rate is needed, data manip-
ulations during the output run should be kept 1o a
minimum. If necessary, fully manipulated data can
be calculated in advance of the output run; and
tabled in an array or as r-numbers; the nextval would
then be concerned with finding the right table
entry,

The user must pay certain attention to the output
timing when writing a nextval subroutine. Any run
type outpul implies that the controller sets the output
rate by controlling the time any one output value re-
mains set (the dwell time). Typically the dwell time is
implied by a passed rate, but it may itself be a nextval
return (e.g., *‘stepmod’’). In setting up a wait in-
struction to maitch the desired dwell, allowance
should be made for the time iequired by the actual
output instructions (the loop time). This is done by
off-setting the dwell time by the ioop time to get the
wait time. For example, if a desired dwell is 40 ms
(corresponding to a 25 Hz output rate) and the out-
put instructions take 35 ms to complete, the actual
wait time would be 40-35, or 5 ms,

The user will appreciate that the loop time repre-
sents the minimum actual dwell, corresponding to a
wait of zero, and hence that the loop time sels the
maximum output rate. Some of the instructions in an
output loop are essential: the output loop control,
the nextval call, the output write over the bus to the
multiprogrammer, and the check 1o allow the multi-
programmer to handle one output before sending the
next (see the description of *‘?*’, Appendix O; an
analog would apply if the output loop did not involve
the multiprogrammer but involved some other bus
device). The time required for these instructions sets
a minimum dwell time restriction on the controller.
On the HPY82S this time is about 35 ms, corve-
sponding to a maximum rate of about 28 Hz.

A run type subroutine could generally be written so
as to allow the maximum output rate; this can be
done by requiring that at least some of any needed
data manipulations be carried out outside the calling
subroutine. For example, a run type subroutine that
sels new tune center frequencies could require that its
nextval subroutine return the D/A number 10 be set.
The nextval subroutine could get the D/A number
fiom the next frequency value or it could look up a
table of D/ A numbers prepared in advance. How the

T A SRR A e A

nextval gets the D/A number would make no difter-
ence 10 the calling subroutine, with one exception.

Since the ¢ssential instructions in any run type out-
put loop include getting the next value, the loop time
must reflect the time needed to get the value. If there
are two alternate nextvals for a calling subroutine
one simple (say, a D/A number table lookup) and the
other complex (say, a calculated frequency converted
through **fval#’’ to a D/A number). then the loop
times can differ significantly and the dwell offset
must be adjusted !0 fit the nexival used.

In order to allow for this, the loop time should be
represented in the calling subroutine by a known data
variable. If the loop time is then changed by changing
the form of the nextval, the value of that variable can
be adjusted. The subroutine blocks use entries in X
{*] to hold loop times. The user writing new run
type/nextval subroutines can expand X [*] to hold
the new values, or could assign some other daia
variable for the same purpuse.

Loop times can be estimated atter a little practice
or measured as the difference between a known wait
time set in the program and the observed actual dwell
time. Such differences are easier to measure at low
rates than high ones. It can also be easier and more
accurate to measure actual dwells by observing voli-
age changes inside an RF channel using an oscillo-
scope (especially one with storage capability) than by
observing RF output changes on a spectrum analyzer,
though the latter is easier to hook up.

Additional instructions besides the essential ones
may be part of the calling subroutines (or the next-
vals), such as data checks and manipulations. While
data manipulations as part of a calling subroutine
will reduce the maximum output rate, they also make
it easier to write the nextval, an advantage if a casual
user prepares a nextval because it requires less
detailed knowledge and less effort.

The number of individual outputs during a run
type pattern is directly or indirectly controlled when
the main program cails the calling subroutine (see
Appendix B). Typically this is done by setting up a
for/next loop in the calling program, using a reserved
simpie variable (i.e., X) as the index. The nextval
may read the index value if the user so wishes (but
should not change that value). The tie-up time is the
sum over the number of individual outputs of the in-
dividual dwelis (the dwells may vary if the output rate
is not fixed). The run type subroutines set the number
of outputs in the for/next loop, with dwells set either
fixed by the rate (e.g., “*AMown"’} or by a nextval
return (e.g., *‘stepmod’’).
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The remainder of this appendix describes three
subroutine blocks that require the user 1o provide
nextval  subroutines:  “*AMown,”  ‘‘stepmod,”’
and **special.”” The user will find that a number of
details below can be readily adapted to new run type
subroutines.

The subroutine block “*AMown’ shows how (o
use the digital output cards in the HP6943 extender
to get an AM signal (a directly analogous subioutine
could be written to use the +M card). The subroutine
was originally wiitten before a second W17S wave-
form generator was added to the simulator as an am
source. The subroutine remains useful since it pro-
vides a way ol getting AM if the second W175 is pre-
empted for use as a pulse source. The subroutine also
has a larger valid range than does the W175 (see
Appendix H).

“AMown'" is called with a fixed rate and a speci-
fied number of output steps. The rate is given as the
number of steps per second (see Appendin O). The
required nextval subroutine i “*AMval.”’
“AMval’’ has the VCO number passed as pl and
may read the output loop index (the output step
number) in X. The nextval must return a value
tepresenting decibels of attenuation relative to the
current output power level. The decibel value is
returned by assigning it to the variable U; ts usual
range is 0-55 dB.

A simple example of an “*AMval’”’ form can be
used as a default that will result in a sine squared
oulput:

SAMval™: 30sin(X)12) = U; ret.

The main program should have set radian angular
units. In place of the fixed maximum of 30 dB, the
user could use any available simple variable, assigned
a value before ‘*AMown”’ is called, or perhaps an
array using the passed VCO number in pl as the array
index.

The *‘stepmod’™ subroutine is called with the
number of output points. The subroutine allows an
arbitrary frequency patiern 1o be run through the
controller. Each output point requires a tune card
D/A number from the nextval ‘“‘stepval’’ and a
dwell time at the resulting frequency from the nextval
“stepwt’’. The loop index is in X and both nextvals
are passed the VCO number.

The nextval ‘*‘stepval’’ returns a D/A number
through U. Any integral number 0-255 will be ac-
cepted by *‘stepmod;’’ it is up to the user to ensure
h.it L result is meaningful. The nextval *‘stepval”
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could calculate a frequency by some algorithm, check
that the frequency is legal, and use *‘fval #*" to get
the D/A number. It could also get the D/A number
directly, inctuding implicit checks in the way it gets
the next value. As an example, suppose the user
wanted to hop the tune center randomly between two
frequency limits. The main program could use “‘fval
#'* and the min and max functions to get the lower
D/ A number limit in L and the difference with the
higher D/A number limit in D (the low D/A number
does not necessarily correspend to the low fre-
quency). The nextval would be:

**stepval’: L + int(Drnd(1)) — U.

The nextval ‘*‘stepwt’ returns a dwell time
thiough U. Its range depends on the loop time value
in X [2] but should typically be about 40 to 32,807
ms. The user can use a fixed dwell or one that is fixed
for a number of output steps (or an amount of
overall time) and then changes, or one that varies on
every output step. A simple example for a fixed rate
might assume that the main program has put a rate
value in steps/s or Hz in the variable R:

“stepwt’: le3/R—=U; ret.

The **special’’subroutine is called using rate and
running time. It is used to synchronously hop all
three VCOs in a band. The subroutine was written to
allow for high ouput rates, with a measured maxi-
mum of about 26.3 Hz. To get the higher rates, the
output values must be calculated and tabled in
advance. The table length parameter is passed to
specify how long the table is and hence how many
entries to read before repeating the table.

The r-numbers are usually used to hold the data,
rather than an array, since the r-numbers do not need
to be dimensioned (this makes it easier to vary the
table length). The passed table length does not have
10 be the full table length; by using only part of the
table, the user can examine the effect of the nonran-
dom repeating of table values. The length of the 1able
should ideally be as long as possible; the user may use
this subroutine as a separately taped segment so as to
eliminate other parts of the program and so allow
more data space. A string array is not suitable for
holding “‘special” values; at high rates it would
take too long to convert the string (0 numeric
form.

The subroutine needs five values on each output
step. Two of these represent the three tune center
values and three represent the RF channel function
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control words. By sending the latter out on each out-
put step, the subroutine allows a number of special
moves: noise spots can be kept constant even as the
tune centers change; the noise spots can be varied
after a certain amount of time; and the carriers can
be turned off to simulate a look-through. The
channel control words could also be left alone for a
simple, easier 10 program version of the output
pattern,

The nextval subroutine ‘‘vaispec’’ must return
the required data in specified variables, as follows:

U - double tune word,

W - single tune word,

Y - channel control word, A,

Z - channel control word, B, and
V - channel control word, C.

The three VCOs in a band can here be given the labels
A, B, and C, in order of increasing VCO number
(these labels are not related to the VCO A or B indi-
cated on the front panel of the simulator). The data
returned from ‘‘valspec’’ is passed on to the multi-
programmer without any checks or manipulations.
As a result, the tune data must be already formatted,
making this the most difficult nextval for the user to
prepare (an easier way of getting hopping can be
written, but the maximum rate is only about 12.3
Hz).

The data for this nextval must be prepared in ad-
vance. For each output step, the user must have three
D/A numbers which may be found by calculating a
frequency and finding the D/A number or by directly
getting a D/A number (this part is strongly similar to
the ‘‘stepmod’’ nextval ‘‘stepval’’). The numbers
are then shifted as necessary, so that a D/A number
for the high end of a tune card is shifted eight
positions and one for the low end is unshifted
(shifted 0). Two of the numbers must then be put to-
gether as one word (using inclusive OR).

To remember which VCOs are put together, the
user need only note if the VCOs are in the lower
bands (a type I RF channel, bands B and C) or the
higher bands (a type I RF channel, bands D and
E/F). Using the VCO A, B, C notation mentioned
above, the necessary shifts and inclusive OR’s are in-
dicated, using (s) to indicate a high end shift and / to
indicate two numbers put together:

low band: A/B(s),C,

high band: A(s), B/C(s).

If the rRr channel function control words are to be
actively changed during a ‘‘special’’ run, data
values must be set up for them. This can be done by
using the appropriate Z[*]entries as a basis. The
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Z{*] locations can be found from the band number
in a manner analogous to that used in the second line
of *‘special.”” The VCO select, pulse and biphase
carriers, and initial noise spots can be set, giving
Z[*])a set of initial values (if necessary, the power
level can be kept at 81 dB down to keep any output
from appearing while the data are set up). Then, for
each noise spot (or other) change, the appropriate
subroutine ‘‘fnoise’’ (or ‘‘pulse’’ and ‘‘biph’’ to
turn carriers on/off for look-through) is called, after
which the Z [ * Jcontents are saved. The process could
be continued for each output change.

If a simpler approach is used and the RF channel
function control words remain fixed for the test run,
then the user can make a single direct assignment
from the appropriate Z [*] locations to the variables
Y,Z,and V.

The nextval subroutine itself would basically be
concerned with finding the right table entry for each
variable on each output step. The step number or
loop index can be read in X and the table size is
passed as pl. Typically the nextval would use the step
namber in X to find a basic table location and would
count a fixed number of entries past that basic loca-
tion to get all the variables for that step, while the
table length is used to fold around the end of the
table and so repeat. The table length should be some
integral multiple of the number of entries used at
each step (the for/next loop set up in “*special’” may
need to be modified 1o reflect the number of
variables used on each step).

As an example for ‘‘valspec,”” suppose we have
the simple case in which the channel control words
remain fixed. In this case the main program would
directly assign the appropriate contentsof Z[* ] to Y,
Z, and V (after setting the VCO select, carriers, and
noise). The r-numbers would contain the tune words,
prepared before the ‘‘special” call. The numbers
could be prepared as part of the program or in ad-
vance and saved on tape. The double word would be
held in the even-numbered entries and the single
words in the odd-numbered entries. The example for
‘“valspec'’ would then be:

’

“valspec’’: r(X mod pl)—-U
r{{X+ )mod pl] =W, ret.

There is an obvious extension of this to cover the
case when the channel control words do change, or
those words could be held in a separate array or by
rearranging the r-numbers to hold contiguous groups
of the same variables (i.e., all values for U followed
by all values for W, etc.). It is up to the user 1o decide
what nextval form is needed for a particular test.
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APPENDIX E

DATA AND VARIABLES

This appendix describes the data and variables
used by the subroutine blocks. As has been men-
tioned in Appendix D, the subroutine blocks chiefly
use local p-numbers as the internal variables. Global
variables are used as for/next loop indices, to hold
data, set up output strings, handle some value pas-
sing (between a run type subroutine and an associ-
ated nextval subroutine; see Appendix D), and han-
dle error messages.

The user may freely use all global variables not re-
served by the subroutine blocks and may use all of
the free-use flags (flags 0-12). The user may also read
the data values held in the reserved variables. Table
E-1 contains a guide to user assignments involving
the reserved variables; a rule of thumb might be for
the user to avoid reserved variable assignments ex-
cept for using U$ in handling operator inputs. For
reference, the reserved variables are:

strings: U$, V§, WS, XS, YS$, Z8$.

arrays: X[*],Z[*],

simple: U, V, W, X,Y,Z.

Data arc used by the subroutine blocks chiefly to
determine what values are sent over the bus in order
to get a desired output. The main bus messages are
directed to the tune and channel function control
cards in the multiprogrammer. Proper output word
manipulations using the subroutine blocks require

Table E-1 ~ User assignment of reserved variables.
Variable Assignment Rule
73 Never

X%.Y$. WS Never (update using *‘load-$"’ sub-

routines)
Z(*] Extreme caution
X(*] Caution

Simple variables Assigned values/contents will be

(U-Z), V$ overwritten by some subroutine
blocks
Us Use for inputs (“‘enter’’). Assigned

contents will be overwritten by
some subroutine blocks

changes to the normal (wake-up) state of the control-
ler and of the multiprogrammer. The changes arce
related to the data forms that enable the subroutine
blocks to work independently (see betow) and some-
what complicate use of the controller's flag 14.

The controller wakes up with its binary operations
(shift, inclusive OR, etc.} in 2’5 complement mode.
This complicates control of the operand word's
most significant bit (bit 15), which is needed in set-
ting tune and function control card values. The
shortest and easiest solution js to have the control-
ler’s binary operations carried out with flag 14 set,
which sets the format 1o unsigned binary.

On paper, the binary operation resuft could then
be sent to the multiprogrammer, 1n which the digital
output cards wake up in unsigned binary formai. In
practice, it was found that this would result in a mult-
iprogrammer error when the word sent has bit 15 <et
(regardless of whether flag 14 was still set or not at
the time the word was sent). The multiprogrammer in
its wake-up mode will accept a decimal value word
with bit 15 set (e.g., 65510) if that word is sent as a
literal but not if the word is formed through the con-
troller’s binary operations. [t seems as if, while the
controller will allow a word to be formed as an un-
signed binary number when flag 14 is set, that word
will be passed to the multiprogrammer as if it were a
negative number when bit 15 is set (i.e, it seems 10 go
back to 2’s complement regardless of flag 14) and
the multiprogrammer cards will refuse to accept that
word as an unsigned binary pattern, but will treat the
word as an illegal negative number.

It was found that a proper and acceptable data
transfer between the controller and the multipro-
grammer can be made if the appropriate multipro-
grammer digital output cards are put in 2’s comple-
ment format. The cards in slots 2 through 12 (which
handle the tune and channel function control words,
and the auxiliary swiitches and level set attenuators)
are put in 2's complement by the *“‘inital’’ subrou-
tine block.

A straightforward way of setting flag 14 10 change
the controller’s binary operation format would be to
sei it just once, in “‘initial,”” so that flag 14 would
always be set in a program. However, when flag 14 is
set, the controller also sets a number of defaults for
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illegal math operations, such as division by zero, so
that illegal math operations will not halt the pro-
gram. This could give the user and operator a false
idea of what the simulator is doing.

In order to avoid this, flag 14 is not set by “‘ini-
tial’’ but by the subroutine blocks that require the
flag to be set. The flag is set only when it is needed
and will not lead to unintentional math defaults. The
subroutine blocks using flag 14 will clear the fiag be-
fore they reach their return statements. It is impor-
tant that the user remember this if the user does want
flag 14 set outside of the subroutine blocks. In such a
case, the user has two options: The user can simply
set flag 14 repeatedly, either whenever it is needed or
after calling any subroutine block that used the flag,
or the user can set flag 14 once and modify the sub-
routine blocks by removing the clear flag 14 instruc-
tions. The latter is more appropriate when the sub-
routine blocks are taped as part of the test program
and the user is cautioned not to later mistake the
modified subroutine blocks for the unmodified ones.
As for identifying which subroutine blocks use flag
14, a rule of thumb is that any subroutine block that
sends data over the bus will directly or indirectly use
the flag (the short descriptions in Appendix O will
mention if the subroutine does not use the flag;
otherwise the flag is used).

The controller data form all' -+ independent
setting of the simulator devices. Tuc Z[*] array is
used for this purpose. This array holds replicas of the
multiprogrammer card words; i.e., Z[10] contains
the word sent to the multiprogrammer card in slot 10
(see Table E-2). When a subroutine block is called on
to modify some simulator device controlled by part
of a card word, it will modify the appropriate part of
the right entry in Z[* ] and then send the new Z[*]
word to the card. The subroutine block does not have
to track or reset the other devices controlled by the
same card. [-or example, the biphase circuit of an RF
channel is controlled by bits 12-14 of the channel’s
function control card; these bits can be set by
“biph’" without any explicit reference to the VCO
select. pulse, or noise settings.

Z[*) is dimensioned and used in preference to
some other approach since it allows a good combina-
tion of speed, data tracking, and memory efficiency.
By keeping replicas of the card words in the control-
ler, the subroutine blocks do not need to read back
the card words every time they are to be changed. In
case of an error shutdown, the simulator outputs can
be removed by sending the appropriate data to the
cards while keeping the previous card values intact in
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Table E-2 — Z|*)contents.
No. Z[* ]| Contents (HP6942/3 Curd Words)

1 Memory card word

2 Tune word, RF | and 2

3 Tune word, RF 3and 4

4 Tune word, RF S and 6

5 Channel function control word, RF #1
6 Channel function control word, RF #2
7 Channel function control word, RF #3
8 Channel function control word, RF #4
9 Channel function control word, RF- #5
10 Channel function control word, RF #6
i1 Power amplitude level set

12 Aux. FM/aux. AM switch matrices
13 T/P card, overall pulse width

14 Counter card word

15 D/A AM, RF #1

16 D/A AM, RF #2

17 D/A AM. RF 43

18 D/A AM, RF ¥4

19 D/A AM, RF #5

20 D/A AM, RF #6

21 D/AFM

22 Digital input card word

Z[*]. The Z[*] contents could be used in debugging
the crash, and the output could be restored by simply
sending the Z[*] contents back to the cards. The
card word approach itself is more efficient (and
easier to follow) than direct setting of individual
bits.
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Z1*1 must be dimensioned before initialization
but does not need to be loaded with data as **ini-
tial’” and the subroutine blocks will handle the con-
tents set up. An exception is that the user mav on oc-
casion want 1o assign a stable nonzero decibel of at-
tenuation value 1o the AM D&A cards in slots 100-105
(normally the level set attenuators would be used 1o
get such a result, and it is doubtful if a power aticnu-
ation greater than the 81 dB to be had from the level
set attenuators has any real meaning).

Within a subroutine block, the binary AND opera-
tion (band) is used 1o mask out the unaffected part of
a card word while clearing the affected part, shifl
(shf) is used to line up the new value in the proper bit
positions, and inclusive OR (ior) combines the
shifted new value with the other card word contents.
The result is saved in Z [ *] as “he new card word.

The run type subroutine blocks differ slightly in
that the new card word formed on cach output step is
not saved in Z[* ], saving a little on loop time (band,
shf, and ior are otherwise used as in the previous par-
agraph). When a run type subroutine completes its
run, it will (except for *‘special’’) send out the pre-
run Z [ * ] contents, restoring the original output,

The reserved variables other than Z [ * ] are used to
handle calibration data, controller-tape and control-
ler-W 175 waveform generator transfers, inputs, for,
next loop indices, nextval returns, and error mes-
sages. These uses are discussed befow according to
the variable used.

Z%112,54] holds the complete tune frequency cali-
bration data for the simulator. Each numbered string
in the string array contains the data for the VCO with
the same number (i.c., Z$[8] for VCO number 8,
ete.). Each string is organized as six sets of nine char-
acters, cach set defining one point of the frequency-
D/A number calibration curve. The nine characters
of each set are organized as five frequency characters
iollowed by four D/ A number characters.

The .trings are arranged so that the tabled fre-
quency increases as the string index increases. The
D/A numbers may be increasing or decreasing. The
lowest and highest (first and last) tabied frequencies
are taken by *‘fval#’ as the limits for legal fre-
quencies from that VCO number. Unlike the
frequency checks based on a band number calculated

from the VCO number, this check is independent of

the actual arrangement of VCOs in the simulator
rack and depends only on the data put in Z$. The Z$
data limits could also be set to represent the real-
world limits of each VCO tuning curve rather than
th paper specifications.

R}

Frequencies are tabled in Z$ as fractional numbers
in gigahertz unity, (“tval#™ will scale the number
taken from the table to hertz units). Wath the leading
character space blank (a resuit of forming /8 with
the controller’s numeric-siring  conversion opera-
tions), there are four significant trequency char-
acters, including any decimal point. For example,
250 MHz is tabled as 0.25 with a teading blank ") A
numbers are tabled as integers in the range 0-285)
The D/A number used is found by hincar interpola-
tion from the tabled data.

Z$ is loaded after dimensioning, tiom tile 2 on
track 1 of a standard tape. Once loaded, it needs no
updates during a test run. The user may read values
from Z$ but should never assign to it because tha:
would overwrite the data contents,

X$06,120] and Y${6,120] hoid nuise generator
and fill oscillator calibration data, respectively. To
save memory space. only partial data sets are held in
the controller at any one time. kEach individual string

contains data tor the actuve VOO in the RE channel of

the same number (1.e.. Y$ 4] tor RE channel number
4, etc.). XS is further constrained in that the data
contained are also those tor the video boadwidth in
current use.

The noise calibration (noise generator and fill
oscillator) is organized on hold points on the band-
width-attenuator setting calibration curves. The at-
tenuator setting (from 0, no attenuation, to 7, full at-
tenuation) is implicit i the position in the siring o
the corresponding bandwidth value. The bandwidth
that results from a given attenuator setting will var
with the band position ot the tune center about which
the bandwidth is measured. The noise data are cali-
brated at three positions throughout each VCOs tre-
quency band to get data for low, mid, and high tre-
quencies. The tune center determines the part of the
band in use and hence which set of daia should be
used. This information can be indicated by a band
part number: 0 for low band, 1 for mid band, and 2
for high band. Each band part covers one-third of
the VCOs band. The band part is used as an index
offset in finding the right part of X$ or YS.

The individuai strings ot X$ and Y$ are organized
as three sets of 40 characters. Each set contains the
data for one band part, with increasing string index
corresponding 10 increasing band part (increasing
frequency). Each sel is organized as eight groups of
five characters. The characters contain the band-
width values in order of increasing atienuvation. The
attenuator setting used is found by finding the closest
tabled frequency to the desired frequency.
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Frequency values in X$ and Y$ are similar to those
in Z$ except that the noise bandwidths are tabled in
megahertz units (*‘fnoise’” will scale the numbers
taken from the stings to hertz units). All tabled band-
widths should be measured by the same standards,
1.¢., 10 dB down from peak (any other dB down level
could be used as long as its use is consistent).

X$ and Y$ can be loaded after dimensioning (rom
files 6 and S on track 1 of a standard tape. When
loaded from those files, the noise strings will contain
data for the B labeled VCOs in each RF channel (i.e.,
the higher frequency VCO in each head), with X$
containing the data for the 5 MHz video noise band-
width (video number §; see Table E-3). During a
program, the user may change the string contents to
reflect a change of the active VCO in an RF channel
or a change in the video filter by using ‘‘loadX$”’
and/or *‘loadYs$.”’

It should be noted that the current subroutine
block software does not track which set of data is act-
ually in X$ and Y$. 1t is up to the user to do this and
to make any necessary ‘‘load$’’ calls. If ‘*fnoise’’
is called with incorrect data in X$ or Y$, those
incorrect data will be used, giving erroneous results.
It should also be noted that calling **fnoise’” with a
video number of zero, which turns off the noise
generator and leaves the fil! osciliator on, does not
actually involve any use of X$. Thus, a video number
change involving a video number of zero does not
require the user 10 update X$ and can be effectively
ignored (i.e., going from a video number S to video
number 0 to video number § is effectively no change
as far as the contents of X$ are concerned; going
from video number 5 to video number 0 to video
number 4 is effectively going from number § to
number 4 and does require a change in the X$
contents).

The user may read values from X$ or Y$ but
should never assign to them.

W$1[6,120] holds W175 arbitrary waveform gener-
ator FM calibration data. Its organization and use are
similar to those of Y$, except that the string positions
of the bandwidth values correspond to W175 volt-
ages. The voltage that corresponds to a particular
bandwidth entry is found from the bandwidth’s
position and conversion factors found in X{*] (see
Table E-4). The voltage samples are equally spaced.
The voltage sent to the FM W175 is determined by
lincar interpolation from the tabled data.

The contents of W$ may be updated using
“loadW$’ when the active VCO in an RF channel
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Table E-3 — Video filter numbers and bandwidths.

Video No. Video Bandwidth
0 Off
1 1 kHz
2 10 kHz
3 100 kHz
4 1 MHz
5 S MHz

Table E-4 — X[*} contents.

Usual
No. X{*] Contenis Value*
1 ‘‘special’’ loop time (ms) 36
2 ‘‘stepmod’’ loop time (ms) 40
3 *‘ownswp’’ loop time (ms) 35
4 “*AMown’’ loop time (ms) 40
S Fraction of spot RF BW from fill 0.2

6 Max. output power, 250-500 MHz VCQOs (dBm) 16.5
7 Max. output power, 0.500-1 GHz VCOs (asm) 16.5
8 Max. output power, 1-2 GHz VCOs (dBm) 17

9 Max. output power, 2-4 GHz VCOs (dBm) 17

10 Max. volt., W175 into FM aux. (V) 2

11 dB/V slope, W175 into AM aux. 5s
12 W$ data, min. voltage (V) 0.1
13 W§ data, AV between entries (V) 0.2
14 Max. volt, W175 into AM aux. (V) 5.0

* Asof 10Sep 1981,

changes and the W175 is used for FM. The user may
read the contents of W$ but should never assign to
it.
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V$1120} is used by the ‘‘load$’’ subroutine
blocks when transferring data from tape to con-
troller. It may be assigned by the user if desired; how-
ever, the user-assigned contents would be lost when
“load$™ is called.

US${36] is used or read by several of the subroutine
blocks. It is used to pass data from subroutine blocks
to the W175 arbitrary waveform generators, to hold
an operator’s entry in “‘inRFid,”” and to hold the
calibration identification retrieved by ‘‘initial.”” U$
must also be used for any operator inputs that are to
use the *‘enter’’ subroutine block (see Appendix C).
The user may make other assignments to U$ as
desired; however, the user-assigned contents would
be lost if *'swpl75,”" “AMI75, “DCI175,”’
“inRFid,”" or *‘initial’” are called.

X [14] holds various long-term constants and sub-
routine block parameters, such as loop times, W175
voltage factors, and the fraction of a noise spot gen-
erated from the fill oscillator (see Table E-4). It may
be dimensioned larger than 14 elements, especially if
the user wants to save new long-term constants, such
as loop times for user-written run type subroutines
(see Appendix D). The user may change the X[*]
contents (either temporarily during a test or perman-
ently by retaping) to match changed simulator condi-
tions, such as a slower nextval subroutine (see
Appendix D).

Of special interest is X [5], which contains a frac-
tional number (0-1) indicating what proportion of a
noise spot should be generated from the fill oscilla-
tor, with the remainder coming from the noise gener-
ator. As part of a program, the user can assign new
fractions to X{S] and so vary the results when
“fnoise’’ is called with otherwise identical param-
eters.

The simple variables U to Z are used for a number
of purposes by the subroutine blocks. The simple
variables do not need to be dimensioned unless the
user plans to record the variables on tape. Simple_
variables within subroutine blocks arc chiefly used as
for/next loop indices and to pass values from one
subroutine back to another, which called the first
(e.g., from a nextval (0 its calling subroutine).

When only one value is returned by a subroutine, it
could be rewritten as a subroutine function and so
would not need to use a simple variable. The indirect
return through a global variable from one subroutine
to the other is more directly applicable when more
than one value is returned, though it would also be
nossible to pass extra p-numbers and have the values
returned through those. The one real advantage of

using simple variables to hold return values comes in
checking software, particularly after a crash. since
simple variables, unlike p-numbers, are not lost when
the controller is reset.

The simple variable Z is used to set up error codes
(‘‘err stp’’) in a manner independent of the p-
numbers; thus, assigning an error code 0 7 will not
lead to overwriting some p-number whose value
would prove useful in debugging that error.

The user may use the simple variables U through Z
if so desired, subject to the usual caution that the
user-assigned value will be overwritten and lost if a
called subroutine block uses that variable. The user
must avoid stacking for/next loops in such a way that
an inner loop and an outer loop have the same vari-
able as the index. This includes cases in which the
inner loop is part of a subroutine called by the outer
loop. For reference, the subroutine block uses of the
simple variables are listed:

U - internal return,

V - for/next index (**fval#'), internal return,
W - internal return (especially ““fval#’’y,

X - for/next index,

Y - for/next, internal return, and

Z - ‘‘errstp®’ code, internal return,

The data values held in Z$, X$, Y$, and W$, are
not constants but are subject to change, due in partic-
ular to each VCO’s voltage-frequency relation’s
drift with time. The data should be recalibrated peri-
odically. When to recalibrate is an empirical
decision, with once a week as an estimate. A calibra-
tion program has been written that will set up the
simulator for calibration and that will properly man-
ipulate and store output measurements, An operator
may choose to recalibrate the entire simulator or just
part of it (e.g., just recalibrate the tune data for one
VCO).

Recalibration introduces the need to keep track of
the calibration data in use, so that an operator can
confirm that the data are current. The calibration
program prompts the operator to provide a calibra-
tion identification line, which would usually be the
date of the calibration. This identifier is saved with
the data and will be printed on the HP9825's inter-
nal printer whenever *‘initial’" is called.

A transfer program has also been written to have
the controller transfer the data on one tape (e.g., the
calibration program tape) Lo other tapes. With a little
practice it is possible to completely recalibrate both
VCO’s in an RF channel in about 45 min.
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APPENDIX F

ERROR HANDLING

This appendix summarizes how the simulator sub-
routine blocks handle errors. The user’s program
may choose 10 handle errors differently, so in addi-
tion to summarizing the subroutine block behavior,
the appendix will give a number of suggestions on
different ways of handling errors. The reader should
also read Appendix C, which contains notes and
suggestions on subroutine parameter checking.

The subroutine blocks carry out a number of
checks on the parameter values passed, chiefly to
ensure that the values are legal and within range.
Each subroutine’s checks are independent, and it is
up to the user to check combinations of subroutine
blocks. For example, in setting a noise spot, the sub-
routine block (“‘fnoise’’) will check that the spot
parameters are legal. It would be the responsibility of
the user to ensure that the spot remains legal if the
spot's tune center is changed (e.g., a 300 MHz noise
spot could be legally set at 3.2 GHz but would be
clipped and hence illegal if the center were changed to
2 GHz2).

When an illegal value or other error condition is
found by a subroutine block, there is no efficient way
of having the subroutine fix that value. The subrou-
tine blocks, being independent, cannot identify how
the user got the value passed and so cannot return
there to prompt the operator for a new value. Default
values set by the subroutine blocks to replace bad
values are unacceptable because they would give the
user and operator a false idea of what the simulator is
doing; even when defaults are reported, there
remains the objection that the simulator would not
be doing what the test wants as indicated by the
passed values.

When a subroutine block detects an error, it will
set a coded error report number in Z and then branch
to the ‘“‘err stp” label. The “‘err stp,”” properly
speaking, is not a true subroutine but becomes part
of whatever subroutine entered it. When entered,
“‘err stp” will remove the simulator’s outputs by
setting the RF channel function control cards to the
same state they are in after ‘‘initial;"’ carriers, fill,
and noise are turned off. The 50 ohm outputs of the
W175’s are also turned off. This forces the operator
to correct the fault, preventing the fault from being
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overlooked and the simulator from being used in a
frozen state (output fixed as it was when the error
was found).

After removing the simulator’s output, ‘‘err
stp” will format and print the error code passed in
Z. This three-part code indicates the subroutine that
entered “‘err stp’’ and the reason; it may also indi-
cate the VCO number that was passed, as a clue to
where in a program the bad call was made. (The
controller presently has no capability to save the
current line number, aside from deliberately causing
a controller error so as to set the erl label. See the
remarks toward the end of Appendix C). Table F-1
lists the subroutine block error codes.

Table F-1 — Error codes.

1. fset
0 — illegal VCO number
2. fval#
*0 — frequency less than minimum
*1 ~ frequency greater than maximum

*2 — D/A number out of bounds

3. pulse
0 - illegal VCO number
*1 - illegal source number
4. biph
0 - illegal VCO number
*1 ~ illegal VCO number
5. fnoise

0 - illegal VCO number

*l1 - spot BW about center frequency out of
range

*2 - illegal video number/BW

*3 - band part frequency out of band

*4 — spot BW too large

6. auxmod
0 — illegal VCO
*1 - illegal source number

7. ampset
0 - illegal VCO number
*l - dBoutofrange
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AMown
0 - illegal VCO number
*1 - rate out of range
*2 — **AMval’’ return out of range

owWnswp
0 - illegal VCO number
*1 - dwell per step too high
*2 - dwell per step too low

. setVCO

0 - illegal VCO number

. stepmod

0 - illegal VCO number
*1 - ‘“‘stepval’’ return out of bounds
*2 — “*stepwt’’ return out of bounds

. special

0 - illegal band number
**1 — illegal table length
2 - rate out of range

loadY$, - X$, - W$
0 - illegal VCO number, - Y$
2nd VCOinsame RF, — Y$

1

2 - iliegal VCO number, - X$
+ 3 — illegal video filter number, — X$
+ 4 - 2nd VCO insame RF, — X$

5 - illegal VCO number, - W$
+ 6 - 2nd VCOinsame RF, — W$§
swpl7s

0 — illegal VCO number
*1 - rate out of bounds
*2 - illegal function number

*3 - deviation about center frequency out of

range
*4 - required voltage out of range

DC17s

+ 0 - illegal VCO number
| —~ 2nd VCO in same
2 - illegal W17S ident. number
3 - % duty cycle out of range
4 — period out of bounds

T/P
0 - rate out of bounds

t 1 - illegal VCO number
2 - 2nd VCOin same RF

17. AMaux
0 — illegal VCO number
*1 - illegal source number
18. AM175

0 - illegal VCO number

*1 — rate out of bounds

*2 — illegal function number
*3 — max. dB out of bounds

Notes: * Third part of code will be VCO number.

1 Third part of code will be parameter list
position number.

**Third part of ¢code will be band number.

After printing the error code, “*err stp’’ goes into
an endless message loop, flashing an operator notice
and beeping. There is no explicit exit from this loop.
The operator must stop the controller to get out of
the message loop. This forces the operator to take an
active step to recover from such a crash.

Once the message loop has been stopped, further
actions for recovery are up to the operator. The local
p-numbers can be read by the operator as an aide in
debugging, if the controller has not yet been reset.
The controller should be reset before continuing on
to fix the test in order to clear the subroutine address
return pointers.

Similar to ‘“‘err stp” is “‘shutoff,”” which will
perform similar simulator shutoff, fault reporting,
and message loop functions when the controlier de-
tects an error. The user must enable ‘‘shutoft’’ as
an error recovery routine if it is to be used; otherwise,
contreller errors will result in the controller stopping
with the simulator output frozen at its state when the
controller fault was detected. To enable **shutoff,”’
the user should include this line in the program’s
initialization:

on err **‘shutoff™’

Recovery from ‘‘err stp’’ or ‘‘shutoff’’ depends
on the details of the user’s program. The operator
can always rerun the test from the beginning, making
the necessary corrections in the rerun (if there are
corrections to make; recovery from a controller fault
due 10 tape read errors is usually a matter of trying
again). If the operator knows of a program location
from which corrections can be made and the test con-
tinued rather than rerun, this would save time and
tape wear. The user may provide a convenient mne-
monic label (i.e., ‘‘start’’ or ‘‘recovery’’) that the
operator can use.
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It should be noted that neither ‘*‘err sip*’ nor
*‘shutoff’’ affects the Z[*] contents, so the simula-
tor could be restored to its precrash state by sending
the Z [ * ) contents out to the channel function control
cards and (if needed) tuning on the W175 50 ohm
outputs. The Z[*] contents can be sent to the func-
tion control cards by using any subroutine that
aftfects those cards, or the Z (2] through Z[12] con-
tents could be sent directly to the multipro-
grammer.

Error handling by the user’s program can be far
more extensive than simply providing a label for an
operator (0 use. It is, of course, easier to catch errors
before they result in a crash. The user can provide ex-
tensive checking of operator inputs to catch bad
values before they are passed to the subroutine
blocks (see Appendix C).

The user can also check combinations of parame-
ters and prompt the operator to correct any faults or
conflicts. Of particular interest is the allocation of
the two W175’s among the three uses of FM, AM, and
pulse. The user should track such W175 use to make

e A e e | o e @ asom e
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sure that no conflicts arise (e.g., if the AM W78 4y
used for aM, the user should make sure that an ri
channel’s pulse circuit is not actively connected to
that W175 because the waveforms and voltages may
not be compatible). Usually such device tracking is
implicit in a program.

The user can also provide more extensive error
recovery routines to replace ‘‘shutoft’. The user
might allow recovery from certain errors (e.g., can
repeat a tape load a fixed number of tries if a tape
read error is found), with unrecoverable errors
handled by branching to ‘‘shutoff’” much as the
subroutine blocks branch 1o “*err stp.”

The amount of error checking provided by the user
may range from none to very extensive. Users will
probably provide checks and recoveries for any faults
or errors considered likely and leave the rest to the
subroutine blocks and the controller. There is a
trade-off effort between recovering from an error
without user-provided help and in the user’s efforts
and time in providing that help. Trade-off choices
are up to each user in each test program.
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APPENDIX G

TAPE USE

Programs and data for the HP9825 controller are
saved on a magnetic tape cartridge. This appendix
describes several restrictions on and suggestions for
tape use. The user is assumed to be familiar with the
basic tape use instructions as given in the HP9825
reference manual.

Tape use is restricted in that files 1 through 91 on
track | are reserved to hold the subroutine block data
(see Table 6). The reservations require about 20% of
the available tape on track I. When a new tape
cartridge is prepared for use, the data files must first
be marked. A convenient, easy-to-lype instruction
that will mark each file is:

trk 1; rew; mrk 1, XXXX;
mrk 6, 800; mrk 84, 150;
mrk 1, 60.

This instruction can be typed and executed as one
line from the keyboard. The string files will be a few
bytes larger than is actually necessary; this is not sig-
nificant. The file that holds X [* ] should be marked
somewhat larger than needed to allow for future
growth such as the addition of user-written loop
times (see Appendix D). File 0 of track 1 is available
to the user; in the marking line above, XXXX stands
for the user-selected size of this file.

When the subroutine block data files have been
marked, the contents can be loaded using the transfer
program and any older tape (calibration or test pro-
gram) that has the data to be loaded. When the trans-
fer is complete, the user may record the transfer pro-
gram itself on the new tape for possible future use.

In addition to the data files on track 1, the user
must mark a file somewhere to hold the subroutine
blocks. The actual file locations and track are up to
the user. Typically a new tape will include one master
file containing all of the subroutine blocks, and it
may contain other files holding smaller subsets of the
subroutine blocks for use in programs where memory
efficiency is important. File 0 of track 1 would be a
logical place to put the master subroutine block file,
if the file is marked large enough.

There is a use for file 0 of track 0 that, while not
required, is suggested as a good way of identifying
rapes and providing at the same time against a power
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on/off cycle leading to an undesired test. If a tape
cartridge is in the controller when the power goes
from down to up, the controller will automaticaily
attempt to load and run the program contents of tile
0 of track 0. A tape (especially one containing several
tests) should generally avoid putting a test program
in that file in order to avoid unintentionally running
that program if the controller’s power is cvcled
on/off/on with the operator busy elsewhere.

The autoload and run are useful, however, in cases
where the user wants a certain program to run with-
out that program having to be separately loaded.
Demonstration tapes might use this feature to start
their demonstration as soon as power is turned on.
More generally, file O of track 0 can be used as an
index to the rest of the tape. Such an index could
identify the test programs available on that tape and
could include some general information on their use.
The index can be written to allow the operator to
select which test to run by naming a menu selection,
with the necessary load program (Idp) being carried
out by the index program.

An index program can mix use of the controller’s
display and printer. A typical arrangement would use
the printer to list the available test programs and
their file numbers, and the display to give informa-
tion about those tests. When using the display in an
index program, the user can allow the operator to
self-time the display by using the stop instruction
rather than wait after each display instruction. The
printer or first display can prompt the operator to
press CONTINUE to self-time the following
messages. This is similar to what the user cando in a
dedicated help type information program (see Ap-
pendix C).

If stop is used, two points should be kept in mind.
First, the operator should be given a definite indica-
tion when the end of the file 0 contents has been
reached and should be told to keep pressing
CONTINUE until done (so the operator does not
assume the index is done before it actually is and so
lose some information). Second, when mixing print
and display statements, the user should arrange them
so that the display is not wiped out when the printer
is used. This can be done by simply not using stop
after a print.
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The user can also indicate the contents of a tape by
using the HP9825's tlist instruction. The paper tape
list of the magnetic tape files can then be marked by
writing each file’s name or purpose next to the file
number. This paper would be kept with the magnetic
tape and could be used by an operator as a quick
guide to what file to load to get a desired test.

The basic idea behind using the tlist paper or file 0
of track 0 or both is to give the operator a ready indi-
cation as to the tape contents. The operator should
not have to load a file in order to find out what it
contains.

When the user marks a new file in order to record a
test program, data file, subroutine block subset, or
other program element, it is recommended that the
file be marked larger than is actually necessary. This
would allow for easy expansion if the program ele-
ment to be taped is later modified. The amount of ex-
cess marked space should increase as the required size
increases (e.g., a file for a 700 byte element might be
warked as 1000 bytes, while a 9800 byte element
could be marked for 12,500 bytes). The user should
avoid having to mark a new file (or remark ar entire
tape) if the contents of a file are later modified to be
larger than the marked size. It is quite easv to have a
9K byte program grow to 10.5K bytes, which would
be a problem if the file for that program had been
marked for 10K bytes. However, no file need be
marked larger than the total available memory size of
the controller (currently 22,910 bytes).

If the user writes a long program or needs a large
data table for a run type subroutine (e.g., ‘‘spe-
cial’’), the program can be written as a number of
separately taped segments, so that at any given time
only the needed segment would be in controller
memory. This differs from a program that may be
taped in several segments but runs as one {e.g., separ-
ately taped program and subroutine blocks). A pro-
gram written and taped so that only part of it is in
memory at any time can be termed a multisegment
program,

Multisegment programs would be ordered so that
each segment contains a complete interval or several
intervals. The user should be aware that loading a file
can take some time, the actual time depending on the
length of the file to be loaded and the time needed to
find that file, which depends on where the track head
happens to be when the load is called. Timing consid-
erations may be used in deciding the intervals in a
segment.

In using a multisegment program, the user would
link the segments with the load file (Idf) instruction,

e - o

which keeps data values intact by continuing after the
load. The load program (Idp) instruction runs after
the load and so would wipe out all data values and
dimensions. This effect of ldp mayv be useful in
passing from one independent program to another
since it lets each program use whatever variables it
needs, independent of the other program. An index
program as mentioned above would be a good place
to use ldp rather than ldf.

When using multisegment programs, the user must
avoid overwriting any instructions that should be left
in the controller. This can be done by using explicit
line numbers in 1df for the load line and the continue
line. This does require the user to keep explicit track
of the right line numbers since the H*9825 controller
presently has no readily accessible capability of
tracking line numbers.

The explicit line numbers can complicate program
modifications that add or delete (or otherwise
change) line numbers. The user in such cases mvust
avoid unintentional returns after a modification. One
way would be to use a number of null {ines. The load
and continue line numbers could be located in the
middle of eight or ten null lines, so that addition or
deletion of a few lines will not hurt if the user forgets
to change the line numbers.

Whenever the user has tape operations inside a
program (data loads, program files, or multisegment
changes). it would be a good idea (o0 specify explicitly
the track number rather than specifying it implicitly.
This amounts to including the track statement with
every tape operation, rather than only when it
changes from its previous value. This is especially
desirable whenever the operator can affect the tape
track (which can be done from the live keyboard).
Much of the time this would be an extraneous step,
but it can avoid ambiguity and incorrect track use.

The user may also include steps to ensure that the
tape track is known when the tape is removed from
the controller by putting the tape to track 0 after the
last tape use. Determining when and where the last
tape use occurs will, of course, depend on the details
of the user's program.

There are also a few suggestions the user can
follow to increase tape life and reduce read and
record errors. After the last tape use, the program
could execute the rewind instruction. There should be
no noticable time penalty to this, and it will cover
against the operator failing to press the rewind key
before removing a tape. Tapes should be rewound
when removed from the controller for any length of
time in order to protect the tape and its contents.
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The user should avoid putting all files on the first
few inches of tape or putting a heavily used file there
because doing >0 would lead to increased tape slack
and decreased life. The user may simply dimension
file 0 on track O very large (say, 10K bytes), with the
program files follcwing on the same track.

Tapes should be completely rewound occasionally
or whenever visual inspection of the tape cartridge
shows the tape is wound unevenly. The HP9825 users
guide has suggestions on how to do this. The user can
also erase the tape from the last numbered file on
either track and then rewind the tape. If this is done,
the user (or operator reminded by the user) should be
sure to specify the track number and null file
number, or, obviously, unpleasant results could
follow.
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The user is urged to prepare backup copies ot every
program tape and to keep those copies separate. This
provides protection against tape loss or destruction.
It also allows the user 10 modity a file and try it out
on a test run before copying it to the backup tapes, so
that if the modification does not work or is undesir-
able, a copy of the unmodified program will be
available.

If a tape does not have any files recorded by a nro-
gram during a test (i.e., if nothing is writter to the
tape after the user prepared it), the tape can be pro-
tecled from accidential use of record file (rcf) for
load file (1df) by using the slide tab on the tape cart-
ridge. Using the tab means that the tape cartridge
must be consciously prepared in order to write new
file contents onto it.
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APPENDIX H

W175 ARBITRARY WAVEFORM GENERATOR USE

This appendix describes some details on the use of
the W175 arbitrary waveform generator as part of
the simulator. 1t does not serve as a general guide to
the W175; for that, the user is referred to the W175
instruction manual (especially Sections 1 and 3). It
will be assumed in this appendix that the user is fam-
iliar with the W175 and knows how to set it up. The
user may be reminded that the letter character codes
for the various W175 data are printed in the lower
left corner of the corresponding key, which provides
a convenient reference for those codes with typing in-
structions to the simulator controller.

WI175 users may specify the state of the arbitrary
generator either by means of a coded string sent over
the bus or from the W175’s front panel. The front
panel is easy to use and lets an operator rapidly and
randomly change the W175 settings. This is useful
when the operator wants to observe the effects of dif-
ferent settings without having to go through the con-
troller and is appropriate when the user is mainly
concerned with checking the resulting waveform in
order to observe its characteristics.

However, the controller cannot check any W175
settings made through the front panel. Some W175
settings that are legal as far as the arbitrary generator
is concerned are illegal in certain simulator states.
Examples of this include feeding a bi-sign (+/-)
voltage waveform to a pulse circuit and setting too
high a voltage for an auxiliary FM input,

Whenever possible, all W175 parameters should be
checked and set through the controller. The addi-
tional programming workload that results will be
offset by increased confidence that the W175 setting
is legal and meaningful. Using the controller to set all
W175 parameters also ensures repeatability and lets
the controller track and document the settings.

On paper, the controller can prevent a bus device
(the W17S front panel) from being changed by an op-
erator by sending the local lockout statement (e.g.,
1107) to any device that will respond to that bus line.
It could later re-enable the device (front panel) by
sending the clear lock/out local statement (e.g., il
701). Peculiarities have been noticed in practice with
the W175 front panel. When a program is running,
the W175 front panel can be freely used up to the
time that some message (other than bus clear) is sent
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to it. After that, the addressed W175 is in a remote
mode and the front panel keys cannot be used 10
change any settings. L.ockout need not be sent. The
front panel can be re-enabled by the Icl statement.
This much is expected and follows the bus response
description in the W175 instruction manual. A pecu-
liarity is that, when lcl is used, it has been found that
the W175 will not respond to any following bus
messages, unless the controller is reset. This holds re-
gardless of whether or not llo is sent after Icl.

To restate this, the controller will lock out the
WI175 front panel as soon as it sends any message
specific to that W175 (clr 701 will not cause a lock-
out, but sending ““ZI" will). If the lockout is ended
by the device clear statement Ic! (which the operator
may send independently of a program by using the
live keyboard), the W175 will then ignore any further
bus messages.

In order to avoid lost W175 bus messages, the
user’s program should not send the clear lockout/
local (Icl) statement, at least not if there are or could
be later bus messages. If lcl is ever sent, then all
further changes of that W175 must be made by the
operator, until the controller is reset (which must
reset the test program as well). Nor should the opera-
tor send Icl through the live keyboard, unless the op-
erator is aware of the result. The user could disable
the live keyboard to prevent the operator from
sending Icl, but doing so would keep the operator
from using the live keyboard for anything else (in-
cluding test control, especially if the program uses
the controller’s function keys for anything), so dis-
abling the keyboard is a discouraged option.

Any trouble with the lockout and local characteris-
tics of the W175 can be avoided by having all W175
parameters sent through the controller; however,
there may be cases in which the user wishes to let an
operator vary some settings. The program could give
the operator time to use the front panel by stopping
between initialization and the first WI175 bus
messages, with the operator pressing CONTINUE
when done. This approach does have the advantage
of being easy to program and is quite short. It is basi-
cally a one-time item for each test run.

A better way of having an operator set up the
W175 would be for the operator to specify the con-
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tents of the message string sent over the bus. This can
be done with the live keyboard and a quoted char-
acter string if the operator knows the right bus
address (see Table H-1). It can also be done by
having the controller prompt the operator. If the op-
erator is knowledgeable and the user wants or needs a
short, easy-to-program inpui, the operator could
enter the message string directly, with addressing and
perhaps some simple checking and manipulation
done by the user’s program. If U$ or V$ are used to
pass the message (which would save the user from
having to dimension a new string), they should first
be cleared with null assignments (e.g., **** —=V$). The
user could make sure the string contains upper-case
characters by using the cap function and could check
that the last character is the W175 execute symbol
(**1’’), adding it if it were missing. The user’s pro-
gram might also prompt the operator through all the
W175 options but this would require far too much
programming effort and space to be practicable.

There are three uses for the arbitrary waveform
generators (FM, AM, pulse) but only two W175’s, so
the user’'s program must allocate each W175 be-
tween FM and pulse or AM and pulse. If a test would
require all three uses, the program must find a differ-
ent source for one of the three. If an external source
is not available, the simulator’s multiprogrammer
cards can be used. For example, FM and pulse signals
could be taken from the W175’s, with AM being run
through the controller (‘**AMown’’) using the D/A
cards in the HP6943 extender. If a pulse signal is a
50% duty cycle square wave, it can be generated
through the timer/pacer card, and, if it is at a 10 or
100 Hz rate, it could be taken from the RF channel
pulse sources, leaving the W175’s free for M and
AM.

What the user wants to avoid is having a W175 set
up for one use with the resulting signal being fed to
the wrong circuit on some RF channel. This would

Table H-1 — Bus addresses.

Address Device
723 HP6942/3 multiprogrammer and extender
701 M W175(B)
702 AM W175(A)
703 492P spectrum analyzer (optional)

Note: HP6943 extender is at frame number 100.

give a confusing and incorrect simulator setup. The
waveforms, rates, voltages. and offsets suitable for
one modulation type use are unlikely 10 be suitable
for the other type use.

If a W175 is set as a pulse source, its 50 ohm out-
put would be turned off. If the pulse source W175
were used as an FAM or AM source in connecting an ri
channel through the auxiliary switch matrix
(“*auxmod” or ‘““‘AMaux’ with a source number
of 3), there would be no actual FM or AM (aside from
any leakage). If a W175 is set up for FM or aM, the 50
ohm output will be on, but there is no way of turning
off the 0 ohm output. Thus, if the FM or AM source
W17S were used as a pulse source in setting an Ri
channel’s pulse circuit (‘“‘pulse’” with a source
number of 3 or 4), the FM or AM signal would be ted
to the pulse circuit. This would not damage the hard-
ware, but it would give an incorrect idea ol the simu-
lator status, especially to anyone monitoring the sim-
ulator status LED’s but not the RF output.

It is important that the user keep track of the use
of each W175 in order to avoid conflicts, especially
when a W175's use may be changed during a test.
Tracking is usually implicit in what the program does
but may need to be done explicitly, especially when
an operator controls the sequence of test intervals.
Tracking can be done by setting or clearing the con-
troller’s flags (or any other user-assigned variables)
to indicate the use.

When setting a W175’s tunction block trequency
or rate, the user should keep two things in mind.
First, what is actually being set is the sample time per
block point. If the block size were changed afier
setting a block rate, then the block rate would
change, since the output would involve the same
sample time per point over a different number of
points. If the block rate and block size are changed in
the same message string, the order is important. That
the block rate will change when the block size does
can be exploited as a quick way of changing the rate,
since it takes about 25 ms to change block size as
opposed to 50 ms to change block rate (see Section !
of the W175 instruction manual).

Second, the user should keep in mind that the
block rate or block frequency is not the same as the
modulation frequency. The block rate actually
describes the rate at which the W175 function block
contents are sent out. A modulation frequency de-
scribes the rate at which the output modulation is
changing.

The modulation rate of a W175 output is a func-
tion of the block rate, the output amplitude, and the
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function block contents (the output waveform). This
last dependence makes it difficult to specify modula-
tion rates directly. The function block contents are
not generally known if a RAM block is used. The
RAM contents may not be continuous or substan-
tially monotonic, may not be full valued (may not
cover the full amplitude range set on the W175, with
maximum Y value under +127 or minimum over
—127), and could result in a nonuniform output
modulation rate.

In some cases the modulation rate can be easily
related to the block rate. Pulse rates (inverse periods)
can be directly set, as can rates given in hertz. Modu-
lation rates given in units per second (e.g., MHz/s,
dB/s) can be readily handled if the function block
contents are well behaved (would give a uniform out-
put rate) and are full valued, and if the modulation
deviation is known. The user would then find the
block rate necessary for a desired modulation rate as
a relation of the number of times the output covers
the modulation deviation range when the function
block is sampled and of the amplitude of the devia-
tion range. The relation is

_ modulation rate (unit/s)
block rate (Hz) = [k] fmodulation deviation (unit)]

where k represents the number of deviation swings in
one block sample (this can be determined by noting
the number of times the Y value of the block contents
changes by an absolute value of 255 points). This
factor will change if a partial block is used.

The user may find other relations to use if the
block contents are not full valued (e.g., the user can
scale the deviation range in the relation expression
above). If the block contents are such that the re-
sulting modulation rate would be nonuniform, it be-
comes more difficult to define and find a relation be-
tween block rate and modulation rate. It may be
worth repeating that, if a modulation rate can be ex-
pressed in hertz, that rate can be used in setting the
block rate (with perhaps a & number factor included,
especially if a RAM block with several cycles of a
waveform is used).

The minimum and maximum block rates will
depend on the block size, since the real minimum and
maximum of interest are those of the sample time per
point. These limits are 200 ns (500 ns for RAM) and
999.9 5 per point. Minimum block rates are unlikely
to be any problem because it is difficult to think of
any ECM simulator modulation requiring more than
71 hours for one cycle. Maximum block rate for a
full block is 19.5 kHz (7.8 kHz for RAM). If a higher
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block rate is needed, a partial block can be used. The
user should remember, however, that a partial block
has less resolution than a full one. Also, maximum
block rates should be considered in terms of the
response of the modulated device (such as the 500
kHz pulse circuit maximum).

The subroutine blocks that directly or indirectly
pass block rate to a W17S check the maximum rate
under the assumption that a full non-RAM block is
used, so that the maximum accepted rate is 19.5 kHz.
If the user wants to pass a higher rate for use with a
partial block, the subroutine blocks must be either
modified or not used, or the user may use the subrou-
tine blocks to pass a scaled rate, up to the maximum
19.5 kHz rate, as if for a full block, then change to a
partial block when the subroutine returns. The scaled
rate would reflect the size of the partial block.

At present, the subroutine blocks will accept a
RAM block rate between 7.8 and 19.5 kHz even
though such rates are actually illegal and would cause
a W175 error (such an error would give an error dis-
play on the W175 but would not crash the simulator).
It is up to the user to ensure that RAM block rates are
below 7.8 kHz. Such RAM checking can easily be
added to the subroutine block software at a slight
increase in memory size (see Appendix K).

The subroutine blocks will accept any legal func-
tion number to designate the waveform function
block (see Table H-2). It is up to the user to ensure
that RAM blocks are programmed and up to the op-
erator to ensure that PROM blocks actually have
PROMs. If a RAM waveform is used very often or
must be used at a rate greater than 7.8 kHz, the RAM
contents could be programmed into a PROM
(assuming the user has a PROM programmer avail-
able) and the PROM then used in place of the
RAM.

The user will find the RAM blocks very useful
whenever a nonstandard waveform is needed, When
high time resolution is needed, the user can stack the
RAM’s to get up to 1024 time points for use in de-
scribing the waveform. The RAM’s must be pro-
grammed separately and the same block rate (sample
time per point) used throughout.

Two examples can help illustrate the usefulness of
the W175 RAM blocks. First, suppose a test design
called for a signal to blink with some particular pulse
pattern, in which the pulse duration may vary from
pulse to pulse, to be followed by a look-through or
off period, the pattern then continuing with some
overall period. A WI175 can be used as pulse source
with a single RAM waveform to handle the complete
pulse behavior. The RAM Y values would be 0 or
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Table H-2 — W175 functions.

Function No. Function
0 Sine
i Triangle
2 Square
3 Ramp
4 -7 Single PROMs
8 - 11 Single RAMs
14 - 17 Stacked PROMs
(1, 2, 3, or 4 stacked)
18 - 21 Stacked RAMs

(1, 2, 3, or 4 stacked)
Note: Stacked RAMs must be individually programmed.

+ 127 and the X positions would specify the actual
overall pulse form; the block rate would be the in-
verse of the overall period. Amplitude and offset
would be 2 and 1 volts, respectively, and the 50 ohm
output would be off. The setup would be somewhat
similar to getting a stable pulse waveform using
“DC175 but more flexible. The user could thereby
get the complete blinking and look-through/off be-
havior without involving the controller other than to
set the W175. Of course, if a real look-through with
measurements were carried out, the controller should
handle the off timing in order to know when to make
the measurements; the W175 example, though,
would be an easy way to simulate such behavior.

Second, suppose a test design requires a very small
noise spot (one smaller than the residual modulation
when the noise generator attenuator is set as 7 or full
attenuation). The fill oscillator output alone could be
used, but not if good noise characteristics are needed.
The user could get a small spot with noise character-
istics by using the FM W 175 as a noise source.

—vay
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The user would first program the RAM blocks to
contain random Y values in the range ~ 127 to + 127.
This can be done easily with a simple for/next outpui
loop. For best results, all four RAM’s would be pro
grammed, though fewer could be used. An example
of setting up the four +tM W175 RAM’s for noise
is:

forl = 8toll:wrt701,“C", I, I
forJ = 0to0255

wrt 700, X 3, Y, — 127 + 254 rnd (1)
next J; next I,

The W17S noise spot can then be used by calling
“swpl75"" with the desired spot bandwidth as the
frequency deviation and with the maximum block
rate (7.8 kHz for RAM), specifying the RAM
block(s) in which the noise data were stored.

Noise data could also be specified to meet desired
characteristics conditions, such as Gaussian noise,
filtered noise. and so on. The user mayv wish 1o pro-
gram PROM’s to hold noise data; this would allow
the noise to be set up with a 19.5 kHz block rate
rather than a 7.8 kHz rate. The highest possible block
rate is desirable in order to most closely simulate a
noise source.

This brings up a closing point applicable when the
WI175 is used for FM. The voltage-frequency data in
the W3 calibration tables (see Appendix E) are taken
from operator measurements during a run of the cali-
bration program. That program uses the W175 sine
block at a 19.5 kHz rate. This gives an output shape
that is easy to measure on a spectrum analyzer dis-
play.

It has been noticed that when the rM W17S daia
are used to set up an FM sweep at much lower block
rates (such as 1 Hz), the sweep bandwidth will differ
somewhat from what it would be at higher rates even
though the voltage is the same. An empirical rule to
quantize this effect has not yet been worked out.
When a rule is found, it will be included in a modi-
fied version of ‘‘swpl175.”" At present, it is up to the
user to check on and allow for the bandwidth rate
effect.
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APPENDIX 1

USER DOCUMENTATION

The user should document any newly written test
program. Documentation will allow others besides
the original user to read, understand, and modify a
program. It will also make it easier for the original
user to modify the program, especially if some time
elapses between writing and modifying. Good docu-
mentation makes it easier to use subroutines and pro-
cedures from one test program in other programs and
5o can save time in the long run. In addition, docu-
mentation provides a means of recovering a test pro-
gram in the event that all taped copies of that pro-
gram are lost, destroyed, or found unreadable.

Documentation might range from little more than
a program listing with notes to a full formal report.
How much effort the user puts into documenting any
test report will depend on the user’s perception of
the test’s importance, its usefulness as a source of
material for other tests, and the identity of the test’s
potential users (additionally, in practice the amount
of time the user has for documenting tests would be a
major factor).

At the least, documentation should always include
an outline of what the program does, identification
of what the variables used stand for, and a program
listing. This much could all fit on the same paper. A
listing can be taken on the HP9825’s internal printer
and the printer’s paper tape saved by fastening it to
sheets of notepaper, with the program outline indi-
cated through program mnemonic label names (see
Appendix D) and variable use notes pencilled next to
the listing.

This much documentation, which can be done in
very little time, is suitable for the personal use of the
original user who wrote the program. It is not really
suitable for use by others but would be quite accep-
table for a simple program operated by the original
user. Its advantage is that it can be quickly prepared
from material the user would prepare anyway and so
does not require any noticable additional effort or
time from the user.

It may be apr-opriate to point out here that the
HP9825’s internal printer is a thermal dot matrix
printer, using treated paper. The printing will fade
with time, especially if left exposed to strong light
and heat (if the printer paper is attached to notepaper
with cellophane tape, any printing under the tape will
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fade much more rapidly). With any program listing
kept more than a few weeks, it would be a prudent
measure to copy the listing to a less perishable
medium. Photocopying works well.

A listing with a note-type of documentation is
what the user would prepare for personal reference.
A more detailed documentation effort is needed
when a test program will be read and modified by
others than the original uszr. Better documentation is
also desirable when a program is very long or very
complex, or when it might serve as a source of sub-
routines and procedures for use in other programs.
More extensive documentation than the basic listing
with notes would be valuable if a program is modi-
fied after it was written, even if that program is oper-
ated and modified by the original user.

Such documentation can range from what would
be a listing with expanded notes to a formal report
with an operator’s guide. As a rule, informal docu-
mentation should be quite acceptable if the program
will be run by the original user, or by a few operators
who can be shown through the program by the
original user and who can directly ask that user any
questions that arise while running the test program,

A formal report would be called for if a test pro-
gram will be run by several operators, or when the
program will be used outside the facility where it was
prepared, or when a test would be used for some time
(this last is a key point since the original user may not
always be readily available to explain a program).

In such cases, it would be more efficient for the
original user to prepare formal documentation once,
rather than explaining a program to each new opera-
tor or to each new user wanting to modify the pro-
gram. Formal documentation implies a more detailed
account of what a progam does, such as giving a de-
scription of any algorithms or calculations in the
user’s program. Formal documentation would also
include an operator’s guide detailing the responses
and options available to an operator.

The form of user documentation may vary
according to what each user feels best meets the needs
for a program. It is possible, however, 10 suggest a
standard form for formal documentation. A stan-
dard form would have advantages in that it would
give the documentation reader an idea of what the
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reader can expect to find in the documentation. It
would also save the user a little time and effort since
the user would not have 1o devise a new form for
each documentation report.

Informal documentation can use elements of the
same standard form, dropping some sections,
abridging and combining others. By doing so. the
user makes it easier to upgrade from informal to
formal documentation if the need arises.

The suggested standard form for documentation is
made up of 11 sections, which are described in the re-
mainder of this appendix. The standard form outline
15!

Statement of test purpose,
Interval form/time behavior,
Operator inputs,

Fault recovery,

Tape use,

User subroutines,
Operator’s guide,

Variable use,
Miscellaneous information,
Detailed description, and
Listings.

— OO XN S b —
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The statement of test purpose can be a single
paragraph identifying the program’s name and its
purpose. The program name shouid be given as a
label on line O to help identify the program when it is
loaded in the controller or listed.

The interval form/time behavior identifies the test
output as a function of time (see Appendix B). This
will inform the reader what the test program does
and identify output changes and what controls the
timing and nature of the changes (such as a program-
fixed change or one selected by the operator).

Operator inputs would be a list of what the
operator can affect in the program. It is not an
operator's guide (see below) but more of an
information source, letting the reader know what an
operator can enter and something of when and how
entries are made, but leaving details to the user’s
guide. This would be on the level of ‘‘the operator
may specify frequency centers and noise spots before
the output begins by replying to controller
prompits.”’

Fault recovery would explicitly tell an operator
how to recover from a simulator crash, whether due
to the subroutine blocks (‘“‘err stp’’) or the control-
ler (*‘shutoff’’). The user might provide a suitable
label at some part of the program and inform the
operator that the program could be continued at that

; F
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label if a fault stops the program (e.g . the operator
might type and execute something like  “cont
“restart’’ 7y see Appendix F). This part of formal
documentation may also summarize how to fix any
faults that might be expected in the test imvolved,
such as specifying too large a deviation range at some
point.

Tape use should identify the tape tiles needed by
the program being documented. There will be at least
the program file itself; there may also be data files.
function key files, seperately taped interval segments,
and help files. All such user files should be identified.
giving track and file numbers. If the subroutine
blocks (or a subset of the subroutine blocks) are
loaded into the controller during the program, the
track and file numbers for the blocks should also be
identified. This part of a formal documentation
report lets users and operators know what tape tiles
are needed and where those files should be on tape. A
list of tape files and purposes would usually be ac-
ceptable, making this a formal version of the infor-
mation that the user might note on the paper
returned by the tlist instruction and kept with the
tape cartridge (see Appendix G). The operator can
also be told when to remove a tape cartridge and
reminded to rewind tapes before removing them,

User subroutines can be listed by giving their label
names and parameter lists, with a brief account of
their purpose (as is done for the subroutine blocks in
Appendix N). This would provide a handy reference
if a latter user wanted to see if any ot the program’s
subroutines could be lifted for use in a different pro-
gram. If good mnemonic label names were given (o
the user’s subroutines, this part of a formal docu-
mentation could also indirectly give a short outline of
the program structure.

An operator’s guide would take an unfamiliar op-
erator through all the steps required to get the test
program running. lt treats all parts of a program visi-
ble to and requiring responses from the operator. It
can give more detailed information than will fit into
operator prompts as part of a program (sece Appendix
D). This part of a formal documentation would begin
by specifying what tape file to load in order to start
the test program; it would then identity each opera-
tor input, giving the input’s purpose, range, and
default value, if any (see Appendix (). The reader
would be told what conditional next steps would
follow each branch control question. A reader should
be able to go through the operator’s guide of a
formal documentation report and find out before
running the test what the response would be to any
input entry. A good account of the default values (set
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by pressing CONTINUE after a prompt without
entering anything) would be particularly useful. The
user may find the operator response format used in
the HP9825 Utilities Program reference book to be a
usetful model.

Variable use would identify the purpose the user
assigns to the global variables (p-numbers within a
user-written subroutine can be described as part of a
detailed description; see below). The user should
identify what each variable is used for, how the vari-
ables are set up, and what changes take place and
when. If arrays or strings are used to hold data, the
user should identify the overall purpose of the array
or string and its internal structure (e.g., if A[*] is
used to hold parameter values, the user states so and
also lists the purpose of each element in A[*]). If
any data are prepared and taped in advance of a test,
the user should state how to prepare those data and
where to tape them.

Miscellaneous information is a catch-all for any
points the user thinks could be useful for the opera-
tor to know. Examples would be the use of the func-
tion keys in a test, notes on timing or accuracy con-
straints, possible program modifications, suggested
test values, and output monitoring suggestions.

A detailed description of the user’s program
would be used chiefly by anyone who wants to modi-
fy the program. The detailed description would go

' G, 2t .

———
et — e e e

N
(FS )

through the user’s program and account for each in-
struction and statement. It would describe the pro-
gram’s structure, its algorithms, and branching
decisions; detail the timing control; and give the pur-
pose of user provided subroutine p-numbers. This
detailed description can be organized to match a pro-
gram’s structure. If a program is structured as a
number of subroutine calls, the detailed description
can first describe how the calls are made and how the
passed parameters are found, and then separately
describe the user provided subroutines. A detailed
description would be the most time-consuming part
of preparing a formal documentation report.

A copy of the user program listing would be
included in a formal documentation, possibly as an
appendix. This listing provides insurance against all
tape copies of a program being lost. In case of such a
loss, the program could be retyped from the listing
(inasmuch as such typing can be remarkably tedious,
the user is again urged (as in Appendix G) (0 make
backup tape copies of all programs used more than
once). The user will probably prepare a listing with a
note-type of documentation as an interim measure
when writing and debugging a long or complex test
program; this can be directly copied (after any cor-
rections) as the program listing, which would make
the notes readily accessible to anyone reading the
listing.
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APPENDIX J

INITIALIZATION STATUS

After the simulator power is turned on and the
multiprogrammer completes a self-test, the simulator
wili be in the state shown in Table J-1. In particular,
in each RF channel the pulse modulator is turned on,
the biphase circuit adds a 20 MHz comb, the fill os-
cillator is off, there is no output power level attenua-
tion, and the VCO select circuit may be ambiguously
connected. Also, the states of the FM and aM
auxiliary switch matrices are not definitely set but
may wake up randomly, and the data format of vari-
ous multiprogrammer output cards is not that re-
quired by the subroutine blocks. The result is that the
simulator is in an ambigous state and its output con-
sists of spurious signals. This result will also hold
whenever the *‘clear bus’ message is sent from the
controller, except that the auxiliary switch matrices
are not changed from their previous states.

The *‘initial”’ subroutine will remove the
spurious outputs and ambiguous conditions and put
the multiprogrammer cards into the data format
needed by the subroutine blocks. After *‘initial’* is
called, there will be no simulator outputs. All
modulators are off, attenuators are set to full
attenuation (this includes output power level), and all
switches are turned off. The subroutine will also
intitialize Z [* ] and print the current calibration data
identification on the HP9825’s internal printer.
Before calling “‘initial”’, Z[*] and U$ must be
dimensioned.

Once “‘initial’’ is called, the user may proceed to
build up a test modulation from a known starting
point (see Table J-1) and can rely on the multipro-
grammer cards accepting the subroutine block data
format.

Table J-1 - Initialization.

Power Up

Mulliprogrammer
D A card tormats

Card data 0

Tune frequency end
f.ow bands
High bands

Lnnigned binary

L ow freguenay
High Yreguenas

Hus Clear CIital”?

2 complement
(ots 2.1)

27600
ot 2-12)
O (uther stots)

Noise generator On-nottenuation Ot
Nose video [§]

Fadt oscrlator On no atcnuation Of
Pulse control Carner on Ot
Biphase control 20 MHZz comb Off
V(O selea B* B* B

Aunibiary switch mainces Random

Power levet set

Timer. pacer card mode 1-shot
W78 RAM contents [J]
6942 clock Reset

Indicates same as powet upcondinen
May be ambiguous

Deamateque ontof the octal panern 0,

o W A e i

0 dB attenuation

L natfected  Oft
R dB attenuanon
Recirculanng

Unattected U naffected
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-y Yy

Ml a e e




THE JOHNS HOPKINS UNIVERSITY
APPLIED PHYSICS LABORATORY

LAUREL MARYLAND

APPENDIX K

SUBROUTINE BLOCK MODIFICATIONS

There are a number of recommended moditi-
cations that could be made to the subroutine blocks
as they exist as of October 1981. These modifications
fall into three categories. First, some modifications
could be made to improve the usefulness and struc-
ture of the subroutine blocks. These would serve to
improve the existing subroutine block software.
Second, some modifications could be made by a user
for a particular test; such modifications are test spe-
cific. Third, some could be made to extend the sub-
routine blocks’ capabilities, especially by modifying
a one-VCO run type subroutine to cover several
VCOs. These are extension modifications. For clari-
ty. each of these three modification types is discussed
under a separate subheading.

Improvement

Some meodifications could be made to make the
subroutine blocks easier to use and understand. None
of these modifications is actually required, but some
will be made in the future to obtain their particular
benefits.

When checking frequency limits, the subroutines
might obtain the numbers from Z$, using VCO
number as an index and the num function to obtain
the actual numbers (which must be scaled to heriz
units). This would be longer and slower than the
present use of limits calculated from the band
number but would let the limits represent the actual
achievable hardware limits (though this would com-
plicate the calibration program since its operator
would then have to indicate when the output does be-
come clipped). It would also free the limit checks
from a dependence on having a particular type of RF
channel in a particular stot. 1t should be noted, how-
ever, that while on paper this would better match the
statement that the MMG ECM simulator channels
are interchangeable, it is not clear that in practice
that interchangableness extends to removing one
channel out of the rack and replacing it with a differ-
ent channel type for one test. Removing an RF
channel requires removing a number of screws and
connections; it is easier to leave the channels where
they are. When the type 111 RF channels are added,
such a change may be needed.
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A few changes are recommended for the
“fnoise’” subroutine blocks. Given its length, it
may be desirable to divide it into two or three subrou-
tines in order to make it easier to read. For example,
the instructions that find attenuator settings from the
fill and noise spots could be separated.

Aside from breaking up its length, a user may wish
to modify the details of how *‘fnoise’” actually gets
an attenuator value. Presently the subroutine looks
through the data tor attenuator settings from 1 to 7
and tries to find the first data entry less than the
desired output. If found, *‘fnoise’’ will use the pre-
vious attenuator value (0-6); if not, it will use 7. As
familiarity with the simulator is acquired, it can be
determined whether this method gives acceptable re-
sults; if not, the process can be modified. For ex-
ample, the subroutine might look through 0 to 6, use
the present attenuator value rather than the previous
one (especially if it looks through 0-6 rather than 1-
7), check for ** less than or egual 10’ rather than
‘“less than,”’ or report a fault if the desired spot is
less than the full attenuation value.

Two modifications could be made to “‘swpi75,”
both of which would be useful. First, the instructions
that calculated the W175 voltage based on the VCO
and the desired frequency deviation could be split off
into a separate subroutine (which might be called
*‘voltswp’® or ‘‘volt175”"). This separate subrou-
tine could then be called by the user’s program
whenever the user’s program wanted to check if a
W175 frequency deviation was legal (at present this
must be done by directly manipulating data entries,
which is awkward and requires fair knowledge of the
data setup). This would be particularly useful when
checking operator inputs.

Second, the check of the W175 block rate high
limit could be conditionally tied to the function
number to distinguish between RAM and ROM or
PROM blocks (sce Appendix H). This type of modi-
fication could also be made to “*AM175."

If a simple empirical relation can be found between
the frequency deviation at high rates and at low rates
(see Appendix H), that relation could be worked into
“‘swpl75.”" Whether this is done depends on what
magnitude the rate effect is found to have in practice
and what sort of empirical relation is noticed.

‘e
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It may be found desirable in practice to extend
“loadX$" to allow video filter values (as well as
numbers) 1o be passed. It may also be desirable (o
prepare a single subroutine that, when called, would
call all three ‘‘load-$’" subroutines using the same
VCO number.

Test Specific

The user will occasionally find it useful 10 make
some subroutine block modifications as part of a
particular test. Such modifications would be used
only in the test in which they are needed. It is impor-
tant that the user keep track of such modifications,
especially when the modified subroutine blocks are
separately taped. It will be up to the user to avoid
confusing the modified blocks with the original ones.
Good tape documentation will help.

Probably the most likely test specific modification
would involve “‘enter.”’ If a test allows operator en-
tries and does not expect any operator entries having
*milli->’ units (i.e., no milliseconds likely), then it
may be desirable to modify ‘‘enter’’ so that ‘‘meg-
a’’ units (i.e., MHz) can be entered with either an
upper- or lower-case character, as is the case with
‘‘giga-"’ or ‘*kilo-"’ units. This can be done by
deleting the small m line in “‘enter’’ and adding the
cap function to the large M line so that M is treated
similarly to G or K.

if this change is made, it will save the operator
some effort and make it easier to enter values without
making mistakes. The operator should be told that a
small m will specify ‘*mega-'’, cither in the docu-
mentation or as part of the program’s initiahza-
tion.

If it is found that this change is widely used in
practice, it might be made a permanent modification
similar to the improvement modifications described
carlier. It might be done as a permanent modification
anyway, so that an operator would not have to ie-
member if a large or small letter M will do in a partic-
ular program.

Other changes are less likely to be considered per-
manent. If the user wants flag 14 set throughout the
user’s program, the clear flag 14 instructions in vari-
ous subroutine blocks could be deleted (see Appendix
E).

If space is short, the subroutine blocks could be
abridged somewhat by cutting some of the checks
(such as the VCO number checks). This should be
done with care since any erroneous parameters
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(which are more likely in a long, complex program)
could then lead to undetected error conditions. It
would generally be bett>r to use a subset of the sub-
routine blocks (loading only those needed) or a multi-
interval with separately taped segments.

The user may on occaston also wish to change the
error branching to allow use of defaults without
crashing the program. This is acceptable if 1t 15 done
as a test-specific modification, with any such defaults
being reported (for example, by printing 4 notice on
the HP9825’s interval printer).

Some of the **7"" calls are not always necessary
and could theoretically be cut to save space, but it is
generally safer to leave this call intact.

Moadifications to the run typc subroutine blocks
can be carried out through the nextval subroutines if
only the output values are involved. More extensive
modifications are covered below.

Extension

Some modifications can serve to extend the capa-
bilities ot the subroutine blocks. These extensions
may be modifications within the framework of the
existing subroutine blocks. or they may involve such
modifications as to create new ones. The latier par-
ticularly applies to creating new run type subroutines
by building on and modifying an existing one.

The first group of extensions would involve a
number of desirable features that might wait until the
controller is upgraded and more memory space be-
comes available. Notably, the subroutines can be set
up to keep track of the data in the controller and up-
date then as necessary. A number of variables could
be dedicated for use as flags, perhaps by extending
Z{*]) or using a newly dimensioned Y|[*); initial
values would be set by **initial."’

The cxtended software would primarily involve
“setVCO™ and *“‘fnoise’” tracking the VCO num-
bers and video filters in use. The *‘load-$’" subrou-
tines would be called as needed when either the active
VCO in an R¥ channel or the video filter is used for
noise changes. However, there may be cases in which
the user might not want to spend the time needed to
change the data (see near the end of this appendix).
In such cases, the user would have to bypass or dis-
able any automatic data updating.

The other subroutines might be extended so that
when they are called they must be called with an
active VCO number. Subroutine blocks that affect
the tune centers or noise spot bandwidths can be
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given common global variable references that can be
checked 10 prevent illegal combinations, such as a
300 MHz noise spot, legally set on a 3.2 GHz center,
being moved to a new 2.0 GHz center. Checks could
be built in 10 preve..t a WI75 set as an FM source
from being connected to a pulse circuit.

While such extensions would remove some of the
subroutine block independence, the extensions would
also increase the confidence that the simulator will
always be in a legal state. Such extensions would slow
down the subroutine block execution time and in-
crease the required memory size by whatever is
needed for the additional instructions and the data
used to hold the checked values. 1t remains to be de-
termined if such extensions are really needed or use-
ful; such determination can be put off until such time
as the controller is upgraded, giving more time in
which to gain familiarity with the simulator and a
better idea of what extensions would really be use-
ful.

The second group of extensions involves modi-
fying run type subroutines to get new subroutines.
This sort of extension can be carried out whenever
needed. With time, a library of run type subroutines
can be built up, and the user would select only the
ones needed for a test.

It should again be noted that if a run type subrou-
tine needs only a different set of output values, the
subroutine can be modified, assuming it uses a next-
val approach, by simply changing the nextval (see
Appendix D). If the subroutine does not use a nextval
approach (i.e., ‘“‘ownswp’’), it would be rewritten
to use a different means of getting its values (e.g., in
“‘ownswp’’ one could change the triangular wave-
form to a sawtooth ramp by simply deleting one of
the two inner X loops).

The most obvious case in which the user may wish
to modify and extend a subroutine block would arise
when the user wants a one-VCO run pattern to run
on several VCOs simultaneously. The user can extend
the single VCO subroutine. How this is done will
depend on whether the VCOs, running simultan-
eously, share control cards and whether the indi-
vidual VCOs, running simultaneously, change syn-
chronously or asynchronously.

Generally, if the modulations of several VCOs
share control cards, the changes must be connected
through holding words; if there are no common
cards, the changes can be taken independently. For
example, if tune centers are changed, the user must
remember that two VCOs are controlled by one tune
card. Here the user must avoid accidentally wiping
out one tune word of a pair when changing the other

o A gt e e - -

Z—

57

- e a0 S GRS S oo e -

(unless the RF channel controlled by that tune word is
not in use). This can be done as in ‘‘stepmod.”
Instead of sending out the new value directly, it is
manipulated by binary operations to fit in an internal
word, and that internal word (which also contains the
data for the rest of the card) is sent out. On the other
hand, the AM D/A cards are independent, so values
for those cards can be handled separately.

In extending a run type subroutine block (or
writing a new one), the user must determine if the in-
dividual sources change synchronously or asynchro-
nously, and if asynchronously, if the rates are the
same or different. All but the last can be handled in a
fairly straightforward way.

If the sources in a multiple source run type subrou-
tine change synchronously, all of the new data is sent
over the bus at the same time, using the *‘output par-
allel’”” (OP) instruction. The desired output rate can
be set with a single controller wait instruction,

It should be noted that the user cannot specify the
same card slot address twice in the same OP instruc-
tion. If two of the synchronous changes are con-
trolled by the same card, they must be combined
before (or as part of) the OP instruction.

If the sources in a multiple source run change asyn-
chronously but all at the same rate, the new data can
be sent out using a series of OS instructions and
waits. Each wait (offset by a loop time) is set to re-
flect the relative timing between each asynchronous
change, subject to the constraint that the sum of all
the individual waits (offset by all of the loop times)
must match the overall dwell implied by the asyn-
chronous rate. Since the rates are all the same, the
relative timing between sources will be fixed. The
user must specify the order and relative timing of the
source changes.

It should be noted that, for the asynchronous
changes, the loop time that should offset the wait be-
tween one adjacent pair of changes will not neces-
sarily be the same as that for other pairs. Whether it
is or not will depend on the details of the output
loop. If a loop is set up to get all the values for one
pass of the loop and then sequentially sends them
out, the loop time between the last output of one pass
and the first of the next pass would be somewhat
greater than the loop time for pairs within the same
pass. An asynchronous/single rate loop could also be
set up so that it sequentially gets a value, sends it over
the bus, and waits; in this case the loop times between
any adjacent pair should be the same (assuming the
same amount of time spent getting each value), but
the loop time may increase.
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Which approach is used for an asynchronous/
single rate loop is up to the user. It might be slightly
easier to keep track of tabled values if all values for
one pass are collected at the same time. Of the two
approaches, the former is better suited for rippling
all the source changes close together in time, with a
longer time to the next set of changes, since it would
give the shortest loop time between changes within
one pass. Unless it takes very long to get all change
values, the former approach should also be satisfac-
tory for patterns in which the changes are more sym-
metrically timed (i.e., roughly equal times between
any two changes, including the last of one pass and
‘he first of a following pass); if it does take too much
time 1o get all the values, the user could first consider
a different way of getting those values, such as calcu-
lation in advance of the output run, with the output
values being held in an array.

On the other hand, it would be somewhat easier to
determine the loop time offset when each asynchro-
nous value is found separately, since then only one
loop time need be found rather than two or more.
However, getting all the loop values for one pass at
the same time will save overhead time by reducing the
number of times the loop must get a value. Also, it is
not difficult to roughly estimate how much time each
step in the loop should take. These estimates would
then be refined by measuring the actual output
dwells.

Some early simulator observations give rough esti-
mates for the maximum synchronous and asynchro-
nous output rates. Based on changing three RF
channels and using data calculated and tabled in ad-
vance of the output loop, the maximum synchronous
output rate is about 26.3 Hz. The maximum asyn-
chronous/single rate output rate is around 12.5 Hz,
but this could possibly be improved to about 16.5
Hz, since the 12.5 Hz estimate was made with a
simple loop in which shift operations were carried
out during the loop rather than in advance of the
run.

It would be more difficult to run independent
modulations at the same time, which is what asyn-
chronous changes at different rates would be. The
order in which the sources involved change will vary
and the time between changes will vary. Some of the
different rates may be multiples of some common
base, leading to an occasional coincidence of changes
for several of the sources.

In order to simulate asynchronous/different rates
output, the user must be able to specify the order of
source changes and the relative time between changes
as functions of time. This will in general be difficult,
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but if it can be done the controller can run the asyn-
chronous/different rates output.

Whenever possible, the user should try to tie sever-
al of the rates to a common base; the source changes
run at those rates could then be defined in terms of
their common output period. In other words, if some
overall repeat pattern can be found, then the output
can be organized in terms of that pattern. This is
easiest if all the sources running are involved in the
repeat pattern. Finding a repeat pattern would be the
most straightforward approach to simulating an
asynchronous/different rates output, but finding a
repeat pattern (if one exists) can be tedious and diffi-
cult; if the repeat period is very long, an explicit use
of that period may require too much space and effort
to be practical.

Most generally, the user could try to devise some
algorithm to describe at each output step which
source changes, what value it changes to, and how
much time elapses to the next change.

The same sort of subroutine could handle the
actual running regardless of how the user actually de-
fines the outputs. Basically the subroutine would de-
termine how many output changes to run; then for
each output it must determine an address (which
specifies the source that changes), a value, and a
wait. These values could be found using a nextval
subroutine, where the nextval contains the user’s
definition of the output pattern. Any necessary
checks or data manipulations (such as binary shifts
and word combinations) should be done within the
nexwval and can be tied to the nextval’s determina-
tion of the source or address. The basic form of the
main subroutine can be outlined as:

determine N (number of changes)
forindex = 1toN
call nextval: aetermine

address, value, time
write multiprogrammer: address, value
wait (time - offset)
next index.

This can, of course, be modified as the user sees
fit. It would, for instance, need modification if any
sources change simultaneously (perhaps by using a
conditional jump). Also, each pass of the output
loop might determine several address, value, and
time sets and output them, with the loop index being
changed to reflect the number of sets in each pass.

The maximum asynchronous/different rates out-
put rate will depend on the number of sources and
how complex the sequence determination proves, but
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it might be expected to be fairly low in practice, with
any individual source likely being limited te around 5
Hz when all sources have comparable rates. At the
time this is written, no measured asynchronous/
difierent rates measurements are available to check
the estimated rate limit.

Summarizing what has been said so far about the
extension of the run type subroutines: When ex-
tending a single VCO run type subroutine to handle
several VCOs, the user must determine if the run type
modulation sources are changed synchronously or
asychronously; if the latter, the user must determine
if the outputs are all changed at the same rate or with
different rates. With asynchronous changes, the user
must specify the order in which the sources change
and the relative timing between changes.

Other extensions could be made for single VCO
subroutines (these, of course, might then be extended
1o several VCOs). Two examples can be given
readily. First, the user can write a subroutine to gen-
erate an FM signal through the FM D/A in the multi-
programmer extender by exploiting the obvious simi-
larities with the AM D/A’s. This might be called
“*FMown’® and would be an analog of
*‘AMown,” just as ‘‘AMaux’’ is an analog of
“‘auxmod.”’

Second, suppose a test called for sweeping a noise
spot from a type Il RF channel between | and 3 GHz
(this assumes the 1-2 GHz VCOs would by then be
available). The controller could run such a pattern in
a manner analogous to that used in ‘“‘ownswp.”
The sweep would start with one VCO active and the
controlter would move the tune center along its sweep
pattern (whatever that happened to be) until it
reached the 2 GHz value that separates the two VCO
bands. The controller would then set the tune center
of the inactive VCO to the limit value of 2 GHz and
then switch the active VCO in the RF channel. The
sweep would then continue. The necessary D/A
nrumbers should be found in advance so that the data
need not be updated during the run of the sweep.
(The noise spot could be expected 1o change notice-
ably during such a sweep across VCO unless it were
reset at a few representative points along the sweep;
this would require the data to be updated, slowing
down the sweep).

The basic point of this part of the appendix is that
when a new run type output is wanted the user does
not have to start from scratch but can save much time
and effort by building upon the existing subroutines,
modifying them to suit the new requirements. The
actual nature of the modifications will depend on the
reeds of the user.
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APPENDiIX L

PROGRAM CHECKLIST

The actual instructions that make up a test pro-
gram will vary widely, depending on the nature of the
test and the way a user chooses to write that test.
However, some basic steps are common to every test
program, as described in Appendix B. This appendix
gives a brief summary and checklist of a few of those
steps, specifically those needed to get any output
from the simulator.

The simulator must be initialized: strings and
arrays must be dimensioned, subroutine blocks
loaded (if not already part of the program file),
‘*initial”’ called, data loaded, and so on (see Appen-
dix B). When the program is ready to create an out-
put signal, it must ensure that the right VCO in an RF
channel is active and call “‘setVCO’’ if it is not
active (*“initial’’ will set the B labeled, or higher fre-
gquency, VCQ in each RF channel as the active VCOs).
The program must then ensure that the biphase and
pulse carriers are set. If no biphase (or pulse) modu-
lation has been set for an RF channel, the carrier
should be turned on. The tune center might be ad-
justed so that the output will be in the response range
of that VCO (the wake-up D/A number of zero will
in some cases give a severely clipped output that is
out of the VCOs range). Finally, the output power
level should be adjusted from its post-*‘initial’’
value of 8! dB of attenuation.
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There is no fixed order for carrying out these es-
sential steps (after initialization, which is the first
step), but they must be done directly or indirectly if
any output signal is actually to be found at the simu-
lator’s output ports. Some steps can be done indi-
rectly; for example, setting a 20 MHz biphase comb
will turn on the biphase carrier, and setting a noise
spot through *‘fnoise’’ with a center frequency as
the fourth passed parameter will set the tune cen-
ter.

The following short list can be used as a pro-
gramming checklist to ensure that the essential steps
have been carried out.

—

Initialization
2. Set active VCO
a. Implicit after “‘initial”’ if VCO
number is even
b. Explicit (‘*‘setVCO’") if VCO number is
odd. Update data.
3. Turn carriers on
a. Pulse
b. Biphase
Set tune center D/A number
. Output power level (*‘ampset’’)
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APPENDIX M

MISCELLANY

This appendix contains a miscellany of notes and
suggestions that may be useful but that are not in
themselves important enough or long enough to justi-
fy separate appendixes.

Memory Size

The 15 October 1981 version of the subroutine
blocks requires 9970 bytes of the HP9825 con-
troller’s 22,910 available bytes, or roughly 44% of
the available memory. Unneeded subroutines can be
cut in a particular program to reduce the amount of
required space: the size of each subroutine is given in
Appendix K (the total of individual sizes does not
match the combined size due to storage overhead).
The variables and data used by the subroutine blocks
require about 3.5K (15%) of the controller memory.
The subroutine blocks could use about 13.5K (59%)
of the controller memory if the full subroutine block
set is used. This leaves about 9.4K bytes for the us-
er’s program and data.

Subroutine Block Placement

The subroutine blocks may be loaded in any part
of the controller memory; there is no dependence on
specific line numbers. Typically the user will write a
program and add the subroutine blocks to the end of
the test program. If a separately taped segment ap-
proach is used, it may be easier to load the subroutine
blocks first and add the program segments below the
blocks. If this is done, line 0 should have an uncon-
ditional go to branch to a label identifying the start
of the user’s program; otherwise, pressing RUN (or
CONTINUE after a reset or editing) will lead to an
execution error as the controller tries to run the sub-
routine blocks as if they were mainline programs.

f-Keys

The HP9825 has a number of user-definable
special function keys or f-keys (keys for short). The
keys work as part of the live keyboard, do not give an
interrupt capability, cannot be used to call a function

or subroutine, or use the ent statement in live key-
board.

The keys may be used during and as part of a test
program. Uses might include reading the multipro-
grammer clock and printing the values of some speci-
fied variables. The keys may run a for/next loop but
should never use as the loop index any variable also
used in the test program.

The keys can also be used to change the value of a
variable by assignment of a new value. This feature
might be used as a way of letting an operator rapidly
change the rate of a run type output during a test; the
output loop wait time would be assigned to a simple
variable, and a number of possible values for that
variable could be held in the keys; two keys might be
set up to increment and decrement that variable value
by some fixed amount each time those two keys are
used. The feature can also be used to allow an opera-
tor to control branching: The program would set a
variable to zero, then on a separate line use a prompt
message followed by a jump of that variable, the keys
assigning non-zero values to the variable. For
example, the program might be:

0—-A

dsp “‘select key’’; jmp A

gto “‘first”’

gto *‘second,”’

while the keys would be:
f0: * 1—-A fl: * 2—-A

The user will also find the keys helpful when typing
a long program into the controller. Frequently used
statements or combinations of characters can be
stored in the keys (without the immediate execute as-
terisk) and the keys used to add the stored phases to
the line being typed. The key contents do not have to
be complete statements or meaningful in themselves.
For example, when typing in a program that handles
a number of operator entries, two keys would be:

f0: < -U$; ent”
fl: <, US(I, 32];if fig (3.

Using the keys as a typing aid can greatly reduce
the workload of typing a long program.
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Fill On Noise Spots

This has been covered before (see Appendix E) but
can bear separate emphasis. The ‘‘fnoise’ subrou-
tine block will divide an RF channel’s desired noise
spot RF bandwidth into a part taken from the RF
channel’s fill oscillator and a part taken from the
noise generator. The fill is used to square off the
spot’s edges. Nominally, 20% of the desired spot is
generated by the fill oscillator, with the remainder
coming from the noise generator.

The fill can be used alone (noise generator off) by
calling “‘fnoise’” with an explicit video number of
zero. The user (or operator) can change the fraction
of a spot that ““fnoise’’ will get from the fill oscilla-
tor by changing the contents of X [5] from its normal
value of 0.2 to some other fraction before ‘‘fnoise”’
is called. The fraction should be in therangeOto 1. A
0 will set the fill oscillator to full attenuation, leaving
just the noise generator as the spot source. A 1 is not
equivalent to passing a video number of zero, since
the 1 would set the noise generator to full attenuation
but leave it on.

How the value of X[5] (and hence the fraction of
a spot generated by the fill oscillator) is varied is up
to the user or operator. X[5) can be changed from
the live keyboard; ‘‘fnoise’’ must be called before a
change in X [5] will take effect.

Interrupts

The user is reminded that the bus interrupt
handling capabilities of the HP9825 provide a power-
ful way for the controller to monitor the actual status
of the simulator. At present this capability is not used
and no simulator devices will actually interrupt the
controller, but the user should not forget about this
capability. Interrupts could be particularly useful if
the simulator is modified and extended to include
measurement devices to allow a closed loop moni-
toring of the simulator by the controller. The user
should consult the HP9825 reference manuals (espe-
cially the manual for the extended I/0O ROM) for de-
tails on handling interrupts.

Bus Device Status

This item is related to the above. The user should
not forget the possible uses of the bus device status
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line. The bus status is explicitly read by the controller
(e.g., rds 7, rds 723). It would be particularly useful
in cases where the program sets up some bus device to
do some slow or variable duration task and the pro-
gram should do one set of procedures while waiting
for the task to finish and another set after the finish.
If the device sets the SRQ line, the status can be mon-
itored to see when it is set. The HP9825 and 6942
(multiprogrammer) reference manuals can be con-
sulted for suggested uses and examples.

Timeouts

The user may find the *‘time’” function of the
HP9825S controller useful if the simulator is extended
by the addition of measurement devices. The
‘“‘time’’ function allows a specified tine for an 1/0
device to complete before ‘‘time’’ will cause an
error. This could be used to check for damaged de-
vices (those that fail to respond). It can also be used
in conjunction with the on error branching of the
controller to provide some alternate action if no 170
reply is made within a specified time. Several
‘“time”” periods could be looped to get longer
periods by using the on error branch and a counter.
The on error branch would replace or supplement the
one that enables ‘‘shutoff’’. At present only the
controller’s keyboard could be considered an 170
device suitable for use with ‘‘time,”’ but it is
unlikely that this feature will be used much.
However, it could be used to optionally allow
operator changes between intervals of a program,
with some default arranged if no reply is made within
some time period.

The user can also extend the timing control of the
simulator by using the n.ultiprogrammer reai-time
clock, and the multiprogrammer wait instructions
can be useful in special cases such as when several
multiprogrammer instructions are passed in the same
controller write instruction.

Bus Additions

The simulator can be expanded through the addi-
tion of new bus-compatible devices. Such devices can
be given any available device addresses on bus 7 at
first (see Table H-1). Up to three additional bus lines
could be added to the controlier’s interface (if the in-
terface slots are not used for some other purpose),
but it is rather unlikely that this would be necessary
to get more device addresses than are available on
bus 7. Additional bus lines could be added if inter-
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rupt capable measurement devices are added; by
selecting a bus number higher or lower than 7, the
user could control the interrupt priorities.

Lockouts

The controller may use the lockout (110) command
to prevent a device on the simulator’s bus from
being modified from the device’s front panel (see
Appendix H for a discussion of this in connection
with the W175s). The user would generally lock out
bus devices when they are being set and used by the
controller, in order to prevent undetected status
changes that could lead to faulty program results.

The user could also lock out the controller’s live
keyboard by disabling it (Ikd), though this is not rec-
ommended because it would keep the operator from
using the controller as a calculator during a test run,
would prevent the use of the function keys, and
would keep the operator from checking variable
values. Disabling the keyboard may seem attractive
as a way of keeping the operator from crashing a pro-
gram by ill-advised keyboard changes, but if an oper-
ator wants to crash a program the operator can al-
ways find a way. It seems better to allow the operator
free use of the live keyboard because it can improve
the workload of a knowledgeable operator and dis-
abling it would not keep an unknowledgeable one
from finding a way to crash.

For/Next Loop Indices

It can make a user’s program easier to read if a
consistent use of variables is maintained throughout
a test and between different tests. A suggestion in this
line is that the for/next loops use the variables I and J
as the main indices, with K, M, or N being used if
more than two for/next loops are stacked (X and Y
are used in the subroutine blocks). Q could be re-
served for live keyboard for/next loops.

The user must avoid stacking for/next loops in
such a way that an inner loop and an outer loop have
the same variable as the index. This includes cases in
which the inner loop is part of a subroutine called by
the outer loop.

Flags

Flags 0-12 are freely available. These are useful for
status indicators and branch or condition indicators,
especially when such indicators are passed from one
user subroutine or program segment to another.

HP6942 OQutputs

1t will be noted that most of the subroutine block
multiprogrammer outputs are by single output in-
structions. This keeps each multiprogrammer output
independent and increases the user’s flexibility in
combining subroutines. However, only a fraction of
the multiprogrammer’s power is used, since it can
accept a number of instructions in one write output
by the controller. 1t is difficult to use this power gen-
erally since the subroutine blocks (or other user-
written independent subroutines) do not generally
know in advance what combination of multipro-
grammer instructions will follow. In a run type sub-
routine, the instructions are known but not neces-
sarily the number of instructions or all of the instruc-
tion data; hence it is much easier to handle the output
one instruction at a time. The user should keep the
multiprogrammer’s multiple instruction capability
in mind and may find a use for it.

It should be noted that if multiple multipro-
grammer instructions are sent from the controller in
one write instruction, then the distinction between
the multiprogrammer’s serial mode (GS) and
parallel mode (GP) becomes important (the multi-
programmer is in serial mode after ‘“‘initial’’). The
HP6942 reference manual can be consulted for
details and examples.

For/Next Line Breakup

If the HP9825’s STOP key is pressed while the
controller is running, the program will stop when the
end of the current line is reached. There will be times
when the operator will want to stop a for/next loop
briefly and then go on with it by pressing
CONTINUE. For example, during a run type output
(such as a hoping noise spot), the operator may want
to stop the run long enough to check the signal being
changed (e.g., to look at the spot being hopped).

If a for/next loop is written so that it is entirely on
one line, then that loop must complete before a
STOP interrupt will take effect. It would be a good
programming practice 10 break every for/next loop
so that the loop is on at least two lines. An exception
might be made when space is short and the loop is
known to be short (few passes and littie time per
pass). An exception is also made for for/next loops
run by the live keyboard, which must of course be
one line. If stop is pressed during a live keyboard
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for/next loop, the loop will run through to its end at
a high rate regardless of any wait times written in the
loop (such waits would be bypassed). A live keyboard
for/next loop that is stopped by the operator cannot
be continued after the stop.

2 Position

The *‘?”" subroutine block is used to check the
multiprogrammer’s busy instuction register (see Ap-

pendix O). It should be inciuded in any user-writien
run type subroutines. Since it takes some time (0 exe-
cute this subroutine, it would be a good pro-
gramming practice to put this subroutine in toward
the end of a for/next loop rather than directly after
the write instruction. Thus, the multiprogrammer in-
struction could .omplete while any other loop in-
structions (such o5 a wait) are carried out; then, when
7" is called it will not have to wait for the multi-
programmer (at least it would not have to wait as
long). The arrangement of **AMown’’ (see Appen-
dix Q), provides an example of positioning **?"’
properly.
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APPENDIX N

SUBROUTINE BLOCKS, ONE-LINE DESCRIPTION

. ? (bit number, word number)

Checks status of HP€942 busy instruction
register and waits until instruction specified by
parameters is complete.

. fval # (VCO number, center frequency)

Finds the D/A code number corresponding to
the passed frequency and returns it in W,

. fset (VCO number, center frequency)

Sets the passed frequency on the specified
VCO.

. fnoise (VCO number, spot RF BW, video filter

number/BW, band part)

Sets in-channel noise of specified VCO. If spot
not given, or given as zero, will turn off noise.
Band part may be given as numbers 1-3 (low,
mid, or high band) or as frequency (in the latter
case, this will set that frequency as the center)
or may de_.:ult as mid band. Video filter may be
given as a filter number or a bandwidth value.
An explicit video number of zero will turn the
noise generator off but leave the fill oscillator
on to provide the requested spot.

. pulse (VCO number, source number)

Selects the modulation source switched into the
pulse circuit,

. biph (VCO number, source number)

Selects the modulation source switched into the
biphase circuit.

. auxmod (VCO number, source number)

Switches the coded modulation source through
the auxiliary FM switch matrix to the specified
VCO.

. AMaux (VCO number, source number)

Switches the coded modulation source through
the auxiliary AM switch matrix to the specified
vVCO.

ampset (VCO number, dB attenuation)

Sets the output power amplitude reference level
in dB down from maximum output.

. AMown (VCO number, rate, number points)

Uses controller and required ‘‘AMval’’ user
routine to run AM through D/A cards in
HP6943.

setVCO (VCO number)

Selects the active VCO in the appropriate RF
channel.
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12.

13.

20.

21.

22.

23,

initial

Initializes the simulator status.

stepmod (VCO, number points)

Uses controller and required ‘‘*stepval and
‘‘stepwt’’ user routines to run an arbitrary
modulation pattern through the tune card.

. ownswp (VCO number, low frequency, high

frequency, rate, number sweep)
Uses the controller to run a triangle D/A
number sweep on the given VCO.

. swpl75 (VCO number, center frequency, fre-

quency deviation, block rate, function
number)

Sets up the FM arbitrary waveform generator to
provide a frequency deviation about the center,

which is set on the appropriate tune card.

. AM175 (VCO number, maximum dB attenua-

tion, block rate, function number)

Sets the AM arbitrary waveform generator to
modulate the power amplitude of the VCO
output.

. DCI175 (% duty cycle, period, W175 number,

VCO numbers. . .)
Sets up either of the arbitrary waveform gener-
ators as a pulse source for up to six VCOs.

. T/P (period, VCO number. . .)

Sets up the timer/pacer card as a pulse source
for up to six VCOs.

. special (band number, rate, running time, table

length)

Uses the controller and required ‘‘valspec’
user routine to synchronously change the out-
puts of all VCOs in the band.

err stp

Disables simulator when other subroutines de-
tect an illegal condition.

shutoff

Disables simulator when controller detects an
error. Must be itself enabled to be in effect.
enter

Subroutine function. Will convert an aphanu-
meric operator entry to numeric form.

inRFid

Subroutine function. Will ask operator for RF
number and VCO as A or B, and return VCO
number.
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24. loadW$ (VCO numbers. . )
loadX$ (VCO number, video filter number,
VCO number. . .)
loadY$ (VCO numbers. . .)
These subroutines will load data from the stan-
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dard tape format to controller memory for
W175, noise, and fill, respectively. Up to six
VCOs (or VCO/filter number pairs) may be
specified.
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APPENDIX O

SUBROUTINE BLOCKS, SHORT REFERENCE

This appendix briefly summarizes the main charac-
teristics of each subroutine block. Included in each
description are lists of the variables and data used,
notes on the parameter ranges, and a brief descrip-
tion of the subroutine block’s purpose. The form of
cach description is indicated in Table O-1. Two
points should be noted about the descriptions. Under
*‘variables used,’’ the listed p-number is the highest
numbered one used, and all lower p-numbers are also
allocated. Flag 14 will be set and cleared by each sub-
routine block unless “‘no flag 14’ is noted.

1. ? (bit number, word number)
Size: 56 bytes
Parameter ranges:
bit number: 0-15 (integer)
word m nber: 1,2
Subroutines used: none
Variables used: p4; no flag 14
Data used: none
Error code: none

Table O-1 ~ Short reference form.

Label (parameter list)

Size: number of bytes
Parameter ranges:
Parameter number 1: r2«ge number 1

Subroutines used : list
Variables used v list
Data uszed o list

Error codes case number
cause number -~ cause
. .
L) »
. -

Notes:
Short description -’ subroutine

The ‘“?”’ subroutine block is used to avoid timing
problems with the multiprogrammer (mp). The mp
may have only one active instruction of a specific
type at any time. Thus, for example, if an OS output
instruction is being executed when a second OS
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instruction is sent from the controller to the mp, the
second OS would be lost. This subroutine will read
the mp busy instruction register until the instruction
bit specified by the passed parameters is unset, in-
dicating that the instruction has completed. **7"’
should be called whenever an output loop repeatedly
uses the same mp instruction. It may also be called in
nonloop cases as a general precaution. For easy
reference, the bit and word numbers for the output
serial (OS) and output parallel (OP) are:

0S:4,1

oP:2,1

9

fval# (VCO number, f,)
Size: 406 bytes
Parameter ranges:
VCO number: 1-12 (integer)
fo: fuin — Fnax(H2) (cf. Table C-2)
Subroutines used: none
Variables used: p9, V, W (return); no flag 14
Data used: Z$
Error code: 2
number 0-f, less than f,
number 1-f, greater than f,,,
number 2-D/A number out of bounds
The ““fval#’’ subroutine block is used to find the
D/A converter number corresponding to the passed
frequency and to return that number through the
variable W. The D/A number is found by linear
interpolation from the tune data held in Z$. *‘fval#”’
does not affect flag 14,

3. fset (VCO number, f,)
Size: 268 bytes
Parameter ranges:
VCO number: 1-12 (integer)
fo: fin — fma(H2) (cf. Table C-2)
Subroutines used: fval#, ?
Variables used: p5, Z[*], W (indirect: V)
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Data used: Z{* ] (indirect: Z%)
Error code: 1
number 0 — illegal VCO number passed
The *‘fset’” subroutine block is used to set the
passed tune center frequency on the specified VCO.

4. fnoise (VCO number, spot RF BW, video
number or BW, band part)
Size: 1316 bytes
Parameter ranges:
VCO number: 1-12 (integer)
spot BW: 0-f,...(Hz) (cf. Table C-2 and
below)
video BW: 0-5 (integer) (cf. Table E-3)
or: (1K, 10K, 100K, IM, SM)(Hz)
band part: 1 (low), 2 (mid), 3 (high), or
fmm - fmax(HZ)
(if not given, defaults 10 mid
band; see below)
Subroutines used: ?, fset (indirect: fval#)
Variable used: p16, Z{* 1, X (indirect: V, W)
Data used: X$, Y$, X[5], Z[*] (indirect: Z$)
Error code: 5
number 0 - illegal VCO number passed
number 1 - spot RF BW out of range
number 2 - illegal video filter passed
number 3 - band part frequency out of band
number 4 - spot RF BW cannot be achieved
(greater than 0 dB attenuation width)
Interior label: fnout

The ‘“‘fnoise” subroutine block is used to set the
passed noise spot on the specified VCO from the in-
channel noise and fill sources. The noise spot is
specified by the RF bandwidth, the video filter, and
the part of the band in which the signal lies (band
part).

The subroutine will turn off the noise spot if zero is
passed as the spot RF BW. The same effect would be
had if the subroutine were called with only the VCO
number passed. Legal nonzero spot RF BW’s must
meet the following conditions:

f, — Af/2 < = fmin
f, + Af/2 < = fmax

Af is identical with the spot RF BW, and f, is
determined by the passed band part parameter (if this
last parameter is not passed, it will default to mid-
band). If band part is passed as a number (1, 2, or 3),
f, will be:

fo = (1.2 + 0.3 (number — 1)] fmin
If band part is passed =5 a frequency (any number

not 1, 2, or 3), that frequency will be used as f,.
Moreover, in this last case the subroutine will call
““fset’’ to set the tune center frequency.

Video noise filters 1 through 5 correspond to
actual filters from I kHz to 5 MHz. A video filter of
zero corresponds to turning off the noise generator
while leaving the fill oscillator on; this is desirable
when very small spots are wanted (though the
resulting spot would have fill oscillator, not noise,
characteristics). A video filter number of zero must
be passed explicitly.

The software will check that a passed spot RF BW
is greater than zero and less than the bandwidth of
the VCO; the actual hardware limits will vary and
will be more restrictive.

S. pulse (VCO number, source number)
Size: 232 bytes
Parameter ranges:
VCO number: 1-12 (integer)
source number: 0-7 (integer) (cf. Table C-1)
Subroutines used: ?
Variables used: p3, Z [*]
Data used: Z[*]
Error code: 3
number 0 - illegal VCO number passed
number 1 - illegal scurce number passed
The *‘pulse’’ subroutine block is use . to select the
modulation source connected to the passed VCO
through the pulse modulation circuit. The source
numbers and sources are:
0 - carrier on
1 - 10 Hz, 50% square wave
2 - 100 Hz, S0% square wave

3-WI75(A)

4 - W175(B)

5 - timer/pacer card
6 - external

7 - carrier of f

6. biph (VCO number, source number)
Size: 230 bytes
Parameter ranges:
VCO number: i-12 (integer)
Source number: 0-7 (integer) (cf. Table C-1)
Subroutines used: ?
Variables used: p3, Z[*]
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Data used: Z{*}
Error code: 4
number 0 - illegal VCO number passed
number | - illegal source number passed
The “‘biph’’ subroutine block is used to select the
modulation source connected to the passed VCO
through the biphase modulation circuit. The source
numbers and sources are:
0 - 20 MHz comb
1 - 10 MHz comb
2 - 5§MHz comb
3 - carrrier on
4 - 40 MHz biphase noise
S - 20 MHz biphase noise
6 - 10 MHz biphase noise
7 - carrier off

7. auxmod (VCO number, source number)
Size: 300 bytes
Parameter ranges:
VCO number: 1-12 (integer)
source number: 0-3 (integer) (cf. Table C-1)
Subroutines used: ?
Variables used: p2, Z[12]
Dataused: Z [12]
Error code: 6
number 0 - illegal VCO number passed
number 1 - illegal source number passed
The *‘auxmod’’ subroutine block is used to select
the modulation source connected to the passed VCO
through the FM auxiliary switch matrix. The source
numbers and sources are:
0 - off
1 - external
2-D/AFM
3-WI75(B)

8. AMaux (VCO number, source number)
Size: 292 bytes
Parameter ranges:
VCO number: 1-12 (integer)
source number: 0-3 (integer) (cf. Table C-1)
Subroutines used: ?
Variables used: p2, Z[12]
Dataused: Z[12]
Error code: 17
number O - illegal VCO number passed

R R e ey T S e e RN S SN TP IR - = 7 R s
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number 1 - illegal source number passed
The ‘*AMaux’’ subroutine block is used to select

the modulation source connected to the passed VCO
through the AM auxiliary switch matrix. The source
numbers and sources are:

0 - off

1 - external

2-D/A AM

3- WI75(A)

9. ampset (VCO number, dB attenuation)
Size: 408 bytes
Parameter ranges:
VCO number: 1-12 (integer)
dB atten: 0-81
Subroutines used: ?
Variables used: p4, Z[11]
Data used: Z[11])
Error code: 7
number 0 - illegal VCO number passed
number | - passed dB value out of range

The ‘*ampset’’ subroutine block is used to set the
maximum output power amplitude level of the
passed VCO. The subroutine sets this level in terms
of dB below the absolute maximum, in | dB steps.
Should a programmer wish to set the amplitude level
in terms of dBm of output, the second passed
parameter may be an expression:

X[7+2int((VCO # - 1)/6)

- (VCO #)mod 2] — (dBm value)
or

X(6 + band number) — (dBm value)
since attenuation (dB) = max. output power
(dBm) - desired output power (dBm).

The ‘‘ampset’” subroutine block, in practice, will
usually be called to match the power levels of dif-
ferent VCOs, so that dB attenuation will be the usual
unit of the second passed parameter.

10. AMown (VCO number, rate, number steps) i
Size: 360 bytes
Parameter ranges:
VCO number: 1-12 (integer)
rate: 0.0305 — 10°/X[4] [ = 25] (steps/s)
number steps: = 1
Subroutines used: 7, AMval, AMaux
Variables used: p7, U, X
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Dataused: X[*],Z["]
Error code: 8
number 0 - illegal VCO number passed
number 1 - rate out of range
number 2 - ‘*‘AMval’’ return out of bounds
(This subroutine ties up the controller.)

The **AMown’’ subroutine block is used to run a
digital AM signal through one of the D/A cards in the
multiprogrammer extender. The output rate and
duration are determined by the parameters passed to
this subroutine, while the output pattern (dB at-
tenuation at any step) is determined by the return
from ‘“AMval."” The **AMown’’ subroutine is thus a
calling shell for the next value subroutine *‘AMval.”

The controller is tied up when running this
subroutine. The tie-up time is determined by the
quotient of the passed number of steps divided by the
passed rate (steps/s). Should a programmer wish to
specify the AM pattern by time duration rather than
by the number of AM steps, the third passed
parameter can be an expression:

(time duratior.) * (rate) .

When the specified number of AM steps has been
sent, ““AMcwn’’ will restore the card word held in
Z[*]. This will be identical with zero unless the user
assigns some other value to the appropriate location
inZ{*].

11, setVCO(VCZO number)
Size: 186 bytes
Parameter range:
VCO number: 1-12 (irteger)
Subroutine used: ?
Variables used: p2, Z[*]
Dataused: Z{*]
Error code: 10
number 0 - illegal VCO number passed
The ‘‘set VCO’’ subroutine block is used to select
the VCO to be used in the appropriate rR¥ channel.
The VCO numbers are given in Table C-2. Operator
inputs of VCO number may be handled through
“inRFid"’.

12.  initial
Size: 400 bytes
No parameters
Subroutines used: ?
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Variables used: X, Z[*]; no flag 14

Data used: none

No error code

The “‘initial’’ subroutine block is used to clear and

initialize the hardware status of the simulator. The
subroutine will connect VCO B in each RF channel,
turn off the pulse and biphase carriers, set maximum
power amplitude level attenuation, wurn off the noise
generators, and disconnect the FM and AM auxiliary
switch matrices. The subroutine will also set the
format of the multiprogrammer cards in slots 2
through 12 to 2’s complement, and set the
timer/pacer card to recirculating mode. The Z[*]
array will also be initialized. The current calibration
data identification line will be printed for reference.

13.  stepmod (VCO number, number steps)
Size: 464 bytes
Parameter ranges:
VCO number: 1-12 (integer)
number steps: = 1|
Subroutines used: ?, stepval, stepwt
Variables used: p6, U, X, Z[*|
Data used: Z[*]
. Error code: 11
number O - illegal VCO number passed
number 1 - ‘‘stepval’’ return out of bounds
number 2 - “‘stepwt’’ return out of bounds
(This subroutine ties up the controller.)

The “*stepmod’’ subroutine block is used to run a
stepped modulation pattern on the passed VCO. The
step centers and step dwells are determined by the
returns from “‘stepval’’ and ‘‘stepwt,’’ respectively.
The “*stepmod’’ subroutine is thus a calling shell for
the nextvalue subroutines *‘stepval’’ and *‘stepwt.”’

The controller is tied up when running this
subroutine. The tie-up time is determined by the sum
over the passed number of steps of the “‘stwpwt"
returns. The subroutine will restore the initial tune
center when it completes.

14, ownswp (VCO number, f,,. f,,. rate,
number sweeps)
Size: 740 bytes
Parameter ranges:
VCO number: 1-12 (integer)
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fiow: i O £ (HZ) (cf. Table C-2)
Frign: fmin 10 £, (H2) (cf. Table C-2)
rate: see below (Hz/s)
number sweeps: =1
Subroutines used: ?, fval number
Variables used: p13, W, X (indirect: V)
Dataused: X[3], Z[*] (indirect: Z$)
Error code: 9
number 0 - illegal VCO number passed
number 1 - dwell per sweep step too high
number 2 - dwell per sweep step too low
(This subroutine ties up the controller.)

The “ownswp’’ subroutine block is used to run a
triangle frequency sweep on the passed VCO. The
sweep paraneters are determined by the passed
parameters. The controller is tied up when running
this subroutine. The tie-up time is determined by:

(time) = {[2(fy;,, — fiou )/ (rate)] * (number
sweeps).

The subroutine runs a triangle that is linearly
symmetrical in terms of the tune D/A number used.
The actual frequency sweep will be asymmetrical
since a real tuning curve will not be perfectly linear.
The triangle introduces a multiplier of two into the
controller tie-up time, as given above. A programmer
may easily modify this subroutine to get a ramp
sweep (multiplier of one), with either a positive or
negative slope.

The valid parameter range for the passed rate
depends on the passed sweep bandwidth and is
related to restrictions on the controller dwell at each
tune D/A number step. This dwell must be at least
the controller program loop execution time in X[3]
(corresponding to a minimum wait of zero) and at
most the loop time plus about 23 s (corresponding to
a maximum wait of 32767 ms). There will be a
minimum of two output D/A numbers (going
directly from one sweep limit to the other) and a
maximum of 1+ D, where D is the difference bet-
ween the high sweep limit D/A number and the low
limit D/A number (going from one limit to the other
by D/A steps of one).

If t = (dwell at D/A number) * (number of D/A
numbers), then the valid parameter range for the
passed rate is:

Af/t,,, < rate < Af/t, .

This can be worked out to give the joint restriction
on the passed rate and passed sweep limits (including
time-scale factors):

2x10°)X{3]) < Af/rate <= (X[3] +
32767)(1 + D)(10°) .

The ‘““ownswp’’ subroutine will restore the initial

tune center when it retarns.
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15.  swpl75 (VCO number, f,, Af, block rate.
function number)
Size: 898 bytes
Parameter ranges:
VCO number: 1-12 (integer)
fo: Foun 10 fax (cf. Table C-2)
Af: f, + Af/2=f,,.:
f, — Af/72=f,,,
block rate: 0 — 19.5 kHz (see below)
function number: 0-11 or 14-21 (integer)
Subroutines used: fset, auxmod (indirect: ?,
fval#)
Variables used: pl4, X, U$ (indirect: V, W,
Z[1*])
Data used: X (*), WS (indirect: Z[*], Z%)
Error code: 14
number O - illegal VCO number passed
number 1 - block rate out of bounds
number 2 - illegal function number
number 3 - (f,, Af) combination out of
bounds
number 4 - required W175S voltage out of
range
(This subroutine will affect the display format set-
ting.)

The “*swpl75’° subroutine block is used to set up
the FM arbitrary waveform generator (W175 (B)) to
modulate the output of the passed VCO. The passed
center frequency will be set on the tune card. The
passed frequency deviation will be provided by the
peak-to-peak voltage swing of the W175.

The deviation value set is the nominal value (at
19.5 kHz rate) based on the data table contents. The
actual deviation bandwidth will vary somewhat with
the W175’s block rate. It is up to the programmer
and operator to allow for this. The deviation value
also depends on what part of the band the passed
center is in; this is handled by the subroutine in
deciding what part of its data table to use.

The form of the W175 modulation depends on the
contents of the passed waveform function block,
whether a full or partial block is used, and the block
rate (or rather, sample time per point). The passed
rate limits in this subroutine assume a full block is
used; a programmer or operator wishing to use a
partial block and a higher rate may use some suitable
scaling expression when calling the subroutine.

The block rate can be related 10 the modulation
sweep by:

block rate = (sweep rate)/(k*Af) .
Here k is some scale factor included to allow for
block size and contents. For example, the scale factor
for a full size block using function number 0 is 2. The
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scale factor represents the number of maximum-
minimum value swings in the function number
contents.

The W17S voliage output set by this subroutine
can be connected to other VCOs by using the ‘*aux-
mod”’ subroutine. The resulting frequency deviation
on the other VCOs can differ from that set on the
VCO passed to ‘‘swpl75,” depending on the tune
centers and tuning curves of the other VCOs (of
course, if the other VCOs are in different bands, the
frequency deviations will differ).

16.  AMI175(VCO number, maximum dB at-
tenuation, block rate, function number)
Size: 396 bytes
Parameter ranges:
VCO number: 1-12 (integer)
maximum dB: (see below)
block rate: 0-19.5 kHz (see below)
function number: 0-11 or 14-21 (integer)
Subroutines used: AMaux (indirect: ?7)
Variables used: p5, U$ (indirect: Z[12])
Data used: X [*] (indirect: Z[12)
Error code: 18
number 0 - illegal VCO number passed
number 1 - block rate out of bounds
number 2 - illegal function number
number 3 - maximum dB value out of
bounds
(This subroutine will affect the display format set-
ting.)

The **AM175" subroutine block is used to set up
the AM arbitrary waveform generator to modulate
the output of the passed VCO. The form of the
modulation depends on the contents of the selected
W175 waveform block and the rate at which that
block is used.

The rate passed through this block is the W175
block rate, and the range limits assume that a full
block is used. Partial block usage at rates higher than
19.5 kHz requires that an appropriate scaling ex-
pression be used when passing the rate.

The maximum dB attenuation value passed sets the
maximum signal attenuation due to the AM
modulation circuit of the RF channel and should be
understood as being relative to the power level at-
tenuators (*‘ampset’’). The parameter range for the
passed dB value is related to the valid voltage range
of the W175 and to the dB/V conversion factor of
the D/A cards. The parameter range may be found
as.
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0.001 X[11] = (dBvalue) =<
X[14]1X[11] .
The usual range is currently (October 1981) estimated
to be 0.0055t027.5 dB.

17.  DC175 (% duty cycle, period, W175 number,
VCO numbers. . .)
Size: 552 bytes
Parameter ranges:
% duty cycle: 0-100 (%)
Period: = 0.051 (ms)
W175 number: 1 (W175-A) or 2(W175-B)
VCO numbers: up 1o six numbers; must lie
in different RF channels; 1-12 (integer)
Subroutines used: pulse (indirect: ?)
Variables used: p17, X, US$ (indirect: Z[*|)
Data used: none (indirect: Z[*])
Error code: 15
number 0 - illegal VCO number passed
number 1 - attempt to use both VCQOs in an
RF head
number 2 - illegal W175 number passed
number 3 - % duty cycle out of range
number 4 - period out of bound
(This subroutine will affect the display format set-
ting.)
The “*DC175”’ subroutine block is used to set either
of the arbitrary waveform generators to provide a
pulsed square wave blinking signal to the pulse
circuits of the passed VCOs. Up to six VCOs may be
specified in the call, provided they lie in different R
channels. The blinking signali is defined in terms of
the period and the duty cycle. This subroutine will
affect the W175 block size; it will also turn off the 50
@ output, leaving the 0 Q output to be sent to the
pulse circuits. Once set, the blinking signal may be
connected to or disconnected from any RF channel by
using ‘‘pulse.”’
The period (in milliseconds) may be replaced at the
option of the user by an expression using rate (in Hz):
period (ms) = 10*/rate (Hz) .
The user may also specify pulse width rather than
period by using the expression:
period = 100* pulse width/% duty cycle.

18.  T/P (period, VCO number. . .)
Size: 266 bytes
Parameter ranges:
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period: 2 x 10 "tol x 107 (ms)
VCO numbers: up to six numbers; must lie
in different RF channels; 1-12 (integer)
Subroutines used: pulse (indirect: 7)
Variables used: p15, X, Z[13] (indirect: Z[*])
Data used: none (indirect: Z[*])
Error code: 16
number 0 - period out of bound
number 1 - illegal VCO number passed
number 2 - attempt to use both VCOs in an
RF head
The ““T/P”" subroutine block is used to set the
timer/pacer card to provide a 50% duty cycle square
wave blinking signal to the pulse circuits of the
passed VCOs. Up to six VCO’s (in different RF
channels) may be passed in the same call. The
subroutine assumes that the timer/pacer card is
already in its recirculating mode. At the option of the
user, rate may be passed instead of period, using the
following relation:
period (ms) = 10*/rate (Hz) .
The period will be held in Z[13]. Pulse width is one-
half the period.

19.  special (band number, rate, running time,
table length)
Size: 392 bytes
Parameter ranges:
band number: 0-3 (integer) (cf. Table C-2)
rate: see below (Hz)
time: > 0(s)
Table length: > 0
Subroutines used: ?, valspec
Variables used: p8, U, V, W, X, Y, Z; no flag
14
Data used: X{1]
Error code: 12
number 0 - illegal band number passed
number 1 - illegal table length passed
number 2 - rate out of bounds
(This subroutine ties up the controller.)

The *‘special’’ subroutine block is used to simulia-
neously change the tune centers and head function
control words of all the available VCOs in the passed
band. The new values are determined by the returns
from ‘‘valspec.’’ The dwell at each set of tune centers
is determined by the passed rate, which describes the
desired number of tune center changes per second.
The parameter range for the rate is determined by the
controiler wait instruction limits and by the program

R Y WP = P,
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loop execution time. The range may be expressed as:

10°/(32767 + X[1]) =rate< 10°/X[1] .
In practice, the valid range for the passed rate will be
0.05-27.3 Hz.

The passed table length parameter is in turn passed
to the ‘‘valspec’’ subroutine. It would normally be
used to control the length of a table of values read by
““valspec.”” This is necessary so that ‘‘valspec’’ can
determine how much of the controller memory is
given over 10 data. By varying the passed table
length, a test may examine the effects of different
repeat periods of the change pattern, with the longer
periods coming closest to a random pattern. it should
be noted, however, that the table length parameter
could be used by ‘‘valspec’’ for other purposes, or
indeed not used at all; the actual use is determined by
‘‘valspec.”” The controller is tied up when running
this subroutine. The tie-up time (in seconds) is passed
directly as the third subroutine parameter.

The subroutine resets the noise spots by sending
out new channel function control words. In cases
where the user wants one fixed control word per
VCO (tixed spots), the variables Y, Z, and V can be
assigned from Z[*] after setting the spots and before
this subroutine is called; then *‘valspec’’ need only
return the tune data. In other cases, the control word
may vary. For example, by varying the noise spot
according to the tune frequency, the user can get a
pattern in which the apparent noise BW does not
change with tune center. Thg user could also achieve
a pattern in which a set of apparently fixed BW spots
occasionally changes at the tune change step. In
addition, biphase modulation may be switched on or
off at each step.

20. errsip

Size: 286 bytes

No parameters

Subroutines used: non-

Variables used: p24 (sec below); no flag 14

Data used: Z

Error code: not applicable

The *‘err stp”’ subroutine block is used to disable

the simulator when one of the other subroutines has
detected a fault. This subroutine will turn off the
pulse and biphase carriers and the noise of each of
the RF channels. In doing so, it will reset each RF
channel to VCO B. It will also turn off the 50 Q
outputs of the arbitrary waveform generators.
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The subroutine will print out the error code in-
formation that was written into Z. It will use p21-p24
in manipulating Z; these p-numbers were selected to
avoid overwriting the p-numbers of the block that
entered ‘‘err stp.”” An operator could, therefore,
read the contents of p-numbers as an aid in error
tracing beyond the printed error code.

The subroutine ends in an endless loop, flashing a
notice of the error. There is no explicit recovery from
this subroutine; to exit, the operator must stop the
machine, read the p-numbers if desired, and then
reset the controller.

21.  shutoff
Size: 236 bytes
No parameters
Subroutines used: none
Variables used: none (no flag 14)
Data used: rom, ern, erl
Error code: not applicable

The “*shutoff’’ subroutine block is used to disable
the simulator when the controller detects an execu-
tion error. The subroutine will turn off the pulse and
biphase carriers and the noise of each of the RF
channels. In doing so, it will reset each RF channel to
VCO B. It will also turn off the 50 Q outputs of the
arbitrary waveform generators.

The subroutine will print out the error information
available in the labels rom, ern, and erl. The
subroutine then ends in an endless message loop from
which there is no explicit recovery; the operator must
stop and then reset the machine.

The subroutine must be enabled before it will take
effect. If not enabled, an execution error will stop the
program without affecting the output, which would
be frozen at the state at which the error occurred.
The enable statement, when used, should be among
the first executable program lines. The subrouti -e is
enabled by the following program line:

on err *‘shutoff’

22.  enter
Size: 490 bytes
No parameters
Subroutines used: none
Variables used: p3; no flag 14
Data used: U$
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Error code: none
Interior label: —

The *‘entcr’’ subroutine function block is used to
convert an input entry string (U$) to numeric data
form. It will allow data to be entered in terms of a
multiptier unit, such as GHz or MHz. Syntax
checking is not rigorous but should suffice.

The function assumes the desired input is con-
tained in U$(1,32]. It will sequentially look for one
of the multiplier characters it recognizes. The first
one found (regardless of its position in the string) is
taken to indicate the desired unit. The rest of the
string, from the string beginning 1o just before the
character position, is taken to contain numeric data.
If this assumed numeric portion of the string con-
tains non-numeric characters (other than blanks), the
program will crash. If no recognized unit character is
found, the entire string is assumed to be numeric.

Since the function only looks for one character, an
operator only needs to enter that character. Thus,
G’ is as equally acceptable as **GHz.”

The characters currently recognized by the func-
tion are listed below, in the order in which the
function looks for those characters. The function
may readily be extended or modified to better match
some particular program. For example, a program
that does not need ‘‘milli-*’ units could remove the
appropriate *‘m”’ line and modify the **“M’* line with
the **cap’’ function. Use of this last function allows
either the upper- or the lower-case character to in-
dicate the units.

The characters currently recognized and their
multipliers are:

g or G: giga-(10°)

k or K: kilo-(10%)

u or U: micro-(10 9)
M: mega-(10%)

m: milli-(10 %)

d or D: decibels (1)
hor H: hertz (1)

sor S: seconds (1)

e: exponent (1)

23.  inRFid
Size: 224 bytes
No parameters
Subroutines used: none
Variables used: pl; no flag 14
Data used: US
Error code: none

—— - R, [, [ RV
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The *‘inRFid’’ subroutine function block is used to Subroutines used: none
accept an operator input specifying a VCO and Variables used: p13 (Y$, W$); p20 (X$), X,
convert it to the form used by the other subroutines. V$(*]; noflag 14
When used, this function will prompt an operator to Dataused: Y$ [*], X$[*], WS [*]
specify a VCO in terms of the RF channel number and Error code: 13
an identifying letter (A or B), which is the informa- number 0 - illegal VCO number, Y$
tion an operator would find printed on the simula- number | - attempt to use both VCOs in RF
tor’s front panel. Input form is “‘#{,"’ where # is an head, Y$
integer 1-6 and ?is a, A, b, or B, lllegal inputs will be number 2 - illegal VCO number, X$
rejected and the operator reprompted. There is a number 3 - illegal video filter number
default value of **6b,” specifying VCO # 12. number 4 - attempt to use both VCOs in RF

channel, X$

number 5 - illegal VCO number, W$
number 6 - attempt to use both VCOs in RF

channel W$
24.  load Y$ (VCO numbers. . .) (These subroutines will set the tape track to track 1.)

load X$ (VCO numbers, filter numbers. . .) The ““loadY$,”” ‘‘loadX$’’,and *‘loadW$’’ subrou-

load W$ (VCO numbers. . .) tine blocks are used to load data strings from tape to

Size: 540 bytes controller memory. The standard data tape format

Parameter ranges: on track one is assumed. Up to six VCOs may be

VCO number: 1-12 (integer); up to six specified in a single call, provided all six lie in dif-

numbers; must lie in different ferent RF channels. The video filter number passed in

RF channels; 1-12 (integer) “loadX$’’ must be an integer 1-5, corresponding to a

filter number: 1-5 video filter value of 1 kHz to S MHz.
)
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APPENDIX P

SUBROUTINE BLOCK, DETAILED DESCRIPTION

This appendix gives a detailed description of the
subroutine block program instructions as of October
1981. The descriptions include what each program
line does and what each local p-number is used for.
The reader should refer to Appendix O for a short
summary description of each subroutine block and to
Appendix Q for a program listing.

When describing the lines in a subroutine block,
this appendix will use relative line numbering (e.g.,
first line, second line, etc.) rather than absolute line
numbers (e.g., line 0, line 9, etc.). This may seem
slightly awkward; however, it keeps this appendix
free of the actual line numbers, so that the descrip-
tions could be applied to any listing regardless of the
location of the subroutine blocks in memory and re-
gardless of whether the listing for a subroutine block
was from some subset of the blocks. Use of relative
line numbers makes the description of each block in-
dependent of other descriptions. Hence one block
could be modified by adding or cutting lines without
throwing off the line references of all following de-
scriptions.

For convenience, though, the subroutine blocks
are described in the same order in which they would
be found when reading the listing in Appendix Q.
The actual line number in the listing of each subrou-
tine block’s first line is given as an aside to help the
reader find that subroutine in Appendix Q; in
keeping with the point of the previous paragraph, the
reader is reminded that such actual line numbers may
differ for other listings.

There are a number of program conventions and
other common features that would be tedious to de-
scribe repeatedly. The reader should find it easier to
follow the description if such common features are
described separately; then they only need to be men-
tioned in the actual subroutine block description. For
example, rather than describe the ‘‘err stp’’ branch
in each subroutine, the branch can be described sep-
arately and the subroutine block description need
only mention when the branch occurs. Common
features are described below, with the subroutine
block descriptions following.

The subroutine ‘‘?’" is used by every subroutine
that sends data to the multiprogrammer. The reader
can assume this to be present between a subroutine’s
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output to the multiprogrammer and the subroutine’s
return.

The subroutine blocks typically use the sort of
structure indicated by Figs. P-1 and P-2, which show
general flow charts. (Reference 2 includes a larger set
of flow charts.) The general set type flow chart shows
that a typical set type subroutine block will check the
parameters passed to it, branching to “‘err stp” if a

Subroutine called

Check passed
parameters

Ercstp

No
Yes

Data {ookups
& calcutations

No _Errep
Yes

Format output

Write output
on bus

Figure P-1 — Set type subroutine block flow chart.

2 J. M. Van Parys, MMG ECM Simulator Software,
Interim Documentation, JHU/APL F4D-4-80(U)-
002 (30 Sep 1980).
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bad parameter is found. It would perform some data

Subroutine c,,.ed manipulations ranging from calculating a multipro-
grammer slot number to searching a data table for
entries used in an interpolation and may involve

Check passed calling a separate subroutine. The results may be
parameters checked, with bad results causing an ‘‘err sip”

branch. The properly formatted and addressed out-
put would then be sent over the bus, and the subrou- :
No tine would return.

Err st The general run type flow chart shows that a typi-
cal run type subroutine is similar to a set type, up to
Yes the point where the output is found and sent over the
bus. A run type subroutine will set up a for/next loop

Data lockups N
& calculations to handle a number of output steps. On each pass of

the loop, the subroutine would find the next output |
value, typically by calling a nextval subroutine (see
Appendix O). The output value may be checked with
Eer stp a bad value leading to an *‘err stp” branch. The
properly formatted and addressed output would be
sent over the bus and the controller would then wait
for some amount of time in order to fix the output .
Set for/next loop rate. The loop pattern would repeat until the ‘ i
for number outputs specified number of output steps had been reached. ‘
There are several exceptions to the structure sug-
gested by the general flow charts, but most of the ex- !
ceptions can be understood with the general flow .
charts if the reader mentally masks out part of a fig- ;
ure or mentally expands one step to include addi- !
tional details. For example, the reader might !
mentally mask out the format and write steps in Fig. i
Err sto P-1; the flow chart should then serve to describe the !
structure of a calculation subroutine such as ’

:*
4
o

Get, check output

<

Yes *“fval#.”” The **?7”" subroutine block is one that ,‘

cannot be modeled with the general flow charts; it is §
Format autput basically just a loop that waits for a bit in the multi-

programmer’s busy instruction register to be unset -

—— before it returns. ‘ . \
The ‘“‘err stp” branching noted in the general

flow charts is a conditional branch to that label. The p

branch is activated if some conditional test indicates .
Timing wait that a value is illegal or out of range. As part of the

branch, the subroutine blocks will assign a coded ‘

number to the variable Z; this number will indicate i

? the cause of the ‘“‘err stp’’ branch that shut down :

No the controller (see Appendix F and Table F-1). The f

form of an *‘err stp’’ branch is typically: {

Yes if (value) (<, >) (limit); (cnde) - Z;

In the subroutine block descriptions, such a condi-
tional test and branch to “‘err stp’’ will usually be
Figure P-2 — Run type subroutine block flow chart. indicated by noting a possible error branch.

.
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The subroutine blocks will typically use a consis-
tent pattern in passing parameters, such as giving a
VCO number first, then a tune frequency, etc. (see
Appendix C). Typically (there are exceptions, such as
“ “PC17S’’, and “T/P’"), the first passed
parameter is a VCO number, so in reading the listings
the reader can generally take pl to be a VCO num-
ber.

Certain common calculations are used to find such
things as multiprogrammer tune and function control
slot numbers and the half of a tune card that should
be used. These are indicated in Table C-2.

Tune D/A numbers and W 175 voltages are found
by simple linear interpolation from data in the appro-
priate tables. The particular table entries used are
found by sequentially checking all appropriate table
entries for the VCO involved until some condition
(typically the desired value being greater or less than
the tabled value) is met. This can be done since the
tabled data are ordered (i.e., increasing attenuator
setting, increasing W175 voltage, or increasing
frequency). Because no table search invoives
checking more than eight entries, this simple easy-to-
program approach is used; one of the theoretically
more efficient table lookup algorithims would not
give any noticeable improvement for such a short
table search. On the noise, fill, and W175 tables, the
search is narrowed down by specifying a band part
number (see Appendix E).

The detailed descriptions of the subroutine blocks
will use a common form to make it easier to pick out
desired information. This form is:

‘‘Label name”’ (passed parameters)

(Size in bytes; listing line number of first line)

Brief statement of what the subroutine does

Line descriptions

first line

second line
[

The first line is numbered 1, the second line is
numbered 2, and so on. The reader is again reminded
that these numbers are taken with reference to the
subroutine and not to the actual line numbers of the
subroutine block programming, and that the listing
line number of the first line of the subroutine is for
the particular listing in Appendix Q.

*'?"" (bit number, word number)
(56 bytes; line 0)
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Checks multiprogrammer busy instruction register
until instruction bit checked is unset.
1. Reads busy instruction register status words
into p3 and p4. If passed bit of passed word is
set, the program jumps to the beginning of the
line.
Returns; reached when bit is not set (unset).

[

“fval#” (VCO number, f,)
(406 bytes; line 2)

Finds a D/A number corresponding to the passed
frequency by linear interpolation from the tune data.
1. Scales passed frequency to gigahertz and

checks that it is not less than the minimum
tabled frequency in Z% (note that the VCO
number is not checked; this will normally be
done by another subroutine calling this one).

2. Sets up a for.‘next loop (index V) to find the
first table entry less than or equai to the scaled
frequency. If such an entry is found, the entry
number is saved in p4 and the loop ended by
manipulating the index within the loop.

3. Checks that a table entry was found in the
second line; otherwise the passed frequency
was too high and an error branch is set.

4. Sets low and high data table entry points in p4

and p9, respectively. Gets the high D/A num-
ber and the difference between high and low
D/A numbers and saves them in pé6 and p$,
respectively.

Note: Low and high refer to the entry numbers; low
frequency will be less than high frequency but
“low’” D/A number may or may not be less
than “‘high”’ D/A number.

Note: If the linear interpolation is thought of in
terms of X and Y, the D/A number corre-
sponds to the Y axis.

S. Gets the high frequency (p7) and the high-low
frequency difference; then calculates the local
slope of the Z$ data about the entry points.
The slope is saved in pS.

6. Calculates the desired D/A number corres-

ponding to the passed frequency and assigns it
to W, Checks that the D/A number is within
the 8 bit absolute D/A range.

7. Returns.

“fset’” (VCO number, [,)
(268 bytes; line 9)
Sets the passed frequency as the tune center for the
specified VCO. This calls **fval#*.

> ——y
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Sets flag 14, then checks that the VCO number
is legal.

Calculates the RF number (p3) and finds the
binary shift and mask bytes (p4 and ps,
respectively).

Calls “*fval#’ to get the D/A number, then
manipulates the D/A number to fit into the
proper halfof Z [*].

Sends the new Z[*} word to the multipro-
grammer, clears flag 14, and returns.

**‘fnoise’’ (VCO number, spot RE BW, video, band

part)

(1316 bytes; line 13)

Sets a noise spot on the output from the specified

VCO, using the in-channel noise generator and fill
oscillator. Band part may be a number 1 (low part of
band), 2 (mid), or 3 (high); it may be a frequency, or
it may be defaulted (not given) to midband. The spot
can be turned off by calling the subroutine with just
the VCO number given or by passing a value of zero
for the spot RF bandwidth. This subroutine may call
“fset’.

1.
2.

Checks that the VCO number is legai.
Calculates the RF number (p5) and the channel
function control slot number (pl0). The
minimum frequency is calculated from the
band number and saved in pl1.

Checks if the spot RF BW is zero (explicitly
passed zero or only the VCO number passed);
if it is, the fill attenuation (p13) and noise
attenuation (pl4) values are set and the
subroutine branches to its *‘fnout”’ label.
Checks if the video was specified by a video
filter number 0-6; if so, that number is
assigned to pé and the subroutine jumps three
lines to the seventh line.

Checks if the video was specified as 5 MHz; if
so, sets the video number (p6) and jumps two
lines to the seventh line.

Calculates the video number (p6) from the
video bandwidth and checks that it (and hence
the passed video bandwidth) is legal.

Uses the passed band part parameter as an
initial value for the reference center frequency
(p13). Checks if the band part was actually
passed; if not, it will set a midband frequency
as the reference center {pi13) and will set the
data table band part offset (p7), then jump
four lines to the eleventh line.

Checks if the band part was specified by a
low/mid/high code number; if so, it sets
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reference center (pl13) and table offset (p7)
values, then jumps three lines to the eleventh
line.

If this line is reached, it is assumed the band
part was specified by passing a frequency. This
line checks that the value is within the band
limits, the high limit being assumed equal to
twice the low limit.

Calls *‘fset”” to set the passed band part
frequency as the tune center, then finds the
data table band part offset (p7).

Checks that the desired spot bandwidih about
the reference center will not be clipped, by
checking if the spot would overlap the band
limits.

Divides the desired spot RF BW into fractions
from the fill oscillator (p8) and the noise
generator (p9) and initializes full attenuation
for the fill attenuator (pl3) and noise at-
tenuator (pl4) settings. If the video was
specified as zero, it will reset the fill and noise
spots so that all of the desired spot RF BW will
come from the fill oscillator.

Checks that the fill oscillator spot is not
greater than the zero attenuation fill oscillator
bandwidth. If the spot is greater, then the fili
spot is reset to the zero attenuation value, the
fill attenuation value set for zero attenuation,
the noise generator spot adjusted to maintain
the overall spot bandwidth, and a flag (p15) set
to indicate that this resetting has been done.
This check may be unnecessary or undesirable
in practice. If the user prefers, the conditional
action after the check could be changed from
the resetting to an ‘‘err stp” branch; line 14
should be modified to match, and lines 185, 16,
and 19 could be cut.

Similar to the thirteenth line, but for the noise
generator spot. The flag is pl6. See the note
above.

Checks if both resetting flags (thirteenth and
fourteenth lines) have been set.

Checks if the fill spot has been reset; if so, the
program jumps three lines to the nineteenth
line.

Sets up a for/next loop (index X) to search the
fill oscillator data for the first tabled entry less
than the desired fill spot. If such an entry is
found, the previous index is used for the at-
tenuator setting (i.e., if the table entry for an
attenuator setting of 4 is found to be less than
the desired spot, then the previous attenuator
setting, in this case a setting of 3, is used as

Rl
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being the closest setting greater than or equal
to the desired spot). If no table entry is found,
then the full attenuator setting that was set in
the twelfth line is used.

Note: The table search may be easily modified if
actual use of the simulator suggests a better
approach. The check could be for *‘less than
or equal to’’ and the present index used for the
attenuator setting (replace X-1 by X). The
check could also be modified to branch to **err
stp” if the full attenuation value is too large
(see second and third lines of ““fval#”’).

18.  Completes the fill oscillator data search.

19.  Checks if the noise generator spot has been
reset; if so, the program jumps three lines to
the twenty-second line.

20.  Similar to line 17, but for the noise generator
attenuation. The note after line 17 also applies
to this line.

21.  Completes the noise generator data search.

22.  ‘“‘fnout” label. Sets flag 14 and masks out the
proper Z[* ]} card word.

23.  Forms the Z[*] channel function control
word so it contains the new fill oscillator and
noise generator attenuator settings and the
new video number.

24. Sends the new Z[*] word to the multipro-
grammer, clears flag 14, and returns.

‘*pulse’” (VCO number, source number)
(232 bytes; line 37)

Sets the pulse circuit of the RF channel of the
specified VCO so as to connect the specified source
(see Tabie C-1).

1. Checks that the VCO number is legal.

2. Checks that the source number is legal.

3. Sets flag 14 and forms the new Z[*| head
function control card word.

4. Sends the new Z[*] word to the multipro-
grammer, clears flag 4, and returns.

“biph™ (VCO number, source number)
(230 bytes; line 41)

Sets the biphase circuit of the RF channel of the
specified VCO to provide the specified biphase
modulation (see Table C-1). This subroutine is
similar to ‘‘pulse’’ (immediately above), differing
only in the values of the shift and mask bytes. The
line-by-line description of ‘‘pulse’’ can be directly
used for this subroutine as well.

; F

80

e T ORI G At .. e g e i

‘*auxmod’’ (VCO number, source number)

(300 bytes; line 45)

Sets the auxiliary FM switch matrix to connect the
specified source to the RI* channel of the specified
VCO.

I Checks that the VCO number is legal.

2. Checks that the source number is legal.

3. Sets flag 14, then forms the new Zj}12)
auxiliary switch word to represent the new
status of the matrix, including the RF channel
involved.

4, Sends the new Z[i12} word to the
multiprogrammer and wails a minimal time
for that value to settle.

5. Disables the switch matrix from following
changes until this subroutine is called again,
clears flag 14, and returns.

“*AMaux’’ (VCO number, source number)

(292 bytes; line 50)

Sets the AM auxiliary switch matrix to connect the
specified source to the RF channel of the specified
VCO. This subroutine is virtually identical to
“‘auxmod’’ (immediately above), differing only in
the shift and mask bytes, and the same line-by-line
description used for ‘“‘auxmod’ also describes
‘“AMaux.”

‘*ampset’’ (VCO number, dB attenuation)
(408 bytes; line 55)

Sets the output power reference level by specifying
the dB of attenuation (0-81 in 1 dB steps) set by the
level set attenuators.

1. Checks that the VCO number is legal.

2. Assigns the passed dB value into a local
variable (p4) so that a fater instruction (the
seventh line) need not depend on some con-
ditional assignments (third and fourth lines).
This line also checks that the passed dB value
is legal.

3. Checks if the passed dB value is 81 dB; if so, it
sets the coarse (p4) and fine (p3) attenuator
codes, then jumps three lines to the sixth line.

4. Similar to the third line, except that it checks
for a passed value of 80 dB.

5. Sets the fine attenuation code (p3); pS is used
as a temporary holding variable.

6. Sets flag 14 and masks out the previous power
level data from Z[11].

7. Forms the new Z{11] word to contain the RF
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channel number (offset by —1 to match the
hardware), the fine attenuation code, and the
coarse attenuation code.

8. Sends the new Z{11] word to the muliipro-
grammer, clears flag 14, and returns.

““AMown’ (VCO number, rate, number of output
s1eps)
(360 bytes; line 63)

Uses the controller to run an AM pattern through
one of the AM D/A cards in the multiprogrammer
extender. The pattern is determined by the user-
provided nextval subroutine ‘‘AMval’’ (see Ap-
pendix D). This also calls **AMaux’".

1. Checks that the VCO number is legal.

2. Calculates the wait time (p4) and checks that it
is within range.
3. Calculates the multiprogrammer extender slot

number of thc AM D/A card for the RF
channel of the specified VCO (pS;, then calls
‘*AMaux’’ to connect the Rt channel and D/A
card. The line then sets up a for/next toup
(index X) to run the output pattern, starting by
calling the nextval ‘“‘AMval’’.

4, Checks that the ‘*AMval’’ return in U of a dB
value is within range.

5. Sends the value in U to the multiprogrammer,
waits to establish the rate, and continues the
for/next loop.

6. Restores the D/A card to the value held in
Z {* | before the output pattern was run (unless
the user directly assigns a new value to Z[*]
after ‘‘initial”’, this will amount to setting the
D/A card to 0 dB attenuation when the outpt:!
loop is done). The line then returns the
subroutine to the calling program.

“selV(;Q" (VCO)
(186 bytes; line 69)
Sets the active VCO of the pair in each RF channel.

1. Sets flag 14, then checks that the VCO number
is legal.

2. Calculates the channel function control card
slot number (p2) and forms the new Z[*]
word. An even VCO number (‘*‘B’’ labeled
VCO of an RF channel pair) gives a control bit
of 0.

3. Sends the new Z[*) word to the multipro-
grammer, clears flag 14, and returns.
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““initial”’
(400 bytes; line 72)

Sets the initial status of the simulator (see Ap-
pendixes B and J, and Table J-1). This will set the
tape to track 1. Z[*] and U$ must be dimensioned
before calling this.

1. Clears the bus, gets and prints the calibration
data identification line (see Appendix E), waits
to allow the multiprogrammer to pass self-test,
and sets the timer/pacer card to its recir-
culating mode.

2. Waits to allow the “WF'" instruction of the
last line to complete (**?"’ cannot be used since
“WF” is not monitored by the busy in-
struction register), then initializes Z[*]. A
for/next loop (index X) is set up to change the
data format of the digital output cards in slots
2-12 to 2’s complement. A brief wait allows
each instruction to complete before the next is
sent (it was found in practice that **7"’ would
not work if used when setting the data for-
mats).

3. Completes the loop begun in line 2. A new
for/next loop is begun to initialize the status of
the RF channels. It first sets the channel
function control cards and the corresponding
Z[*] words.

4. As part of the loop begun in line 3, the VCO
select bit is flip-flopped to ensure that it will be
in a known state.

Note: The fourth line of ‘‘initial’’ is an example
whiiin the subroutine blocks (however trivial)
of use of the multiprogrammer’s capability for
accepting several instructions at the same time,

5. Continuing the loop begun in the third line,
this line sets the auxiliary FM and AM switch
matrices to off states.

6. Sets the level set atienuators to nrovide full
output power attenuation, then continues the
loop begun in the third line.

7. Disables the auxiliary switch matrices from
following changes, then returns.

**stepmod”’ (VCO number, number of output steps)

(464 bytes; line 79)

Uses the controller to run an arbitrary output
pattern involving the specified VCO. The pattern is
determined by user-provided nextval subroutines
“‘stepval’’ and *‘stepwt’’ (see Appendix D).

1. Checks that the VCO number is legal.
2. Calculates the tune card slot number (p4).
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Sets up pé for local use in place of the tune
word in Z[*]; then finds the shift (pS) and
mask (p3) bytes.

Sets flag 14, sets up a for/next loop (indea X)
to run the output pattern, and calls the nextval
“‘stepval’”,

Checks that the *‘stepval’’ return in U of a
D/A number is within the absolute 8 bit range
for that number.

The D/A number rangc that gives meaningful
frequency outputs will generally be con-
siderably less than 0-255; however, the ab-
solute range is easier, quicker, and shorter to
check than the proper limits held in the ap-
propriate parts of Z$.

Forms and sends to the multiprogrammer the
new tune word.

Calls the nextval *‘stepw!” 10 get the total
dwell until the next output change, offsets the
return in U of a dwell in milliseconds by the
loop time to get the wait, and checks that the
wait is within range.

Waits to establish the dwell, then continues the
output loop.

Restores the original pre-“stepmod’™ tune
data, clears flag 14, and returns.

“ownswp' (VCO number, low frequency, high
frequency, rate, number of sweeps)

Uses the controller to run a frequency sweep by
changing the tune center of the specified VCO. A
triangle waveform is used to change the tune card

D/A

nonsymmetric =’
effectsir e

1
N

.

3.

number:: +, - frequency may be nonlinear and
10 nonlinearities and hysteresis
syning curve. This calls *‘fval#’’.
Checks that the VCO number is legal.
Calculates that tune card slot address (p10),
and the shift (p14) and mask (p12) bytes.
Masks out the tune word in Z [ * ] and assigns it
to pl5 for local use. The line then calls
“fval#’’ 10 get the low frequency D/A
number, saving it in p7.
Calls “*fval#’’ to get the high frequency D/A
number, saving it in p8; then, if necessary, will
swap p7 and p8 (using p!! as a holding
variable) so that the low D/A number in p7 is
really less than the high D/A number in p8.
Calculates the time allowed for one sweep (in
milliseconds) from the frequency limits and
the rate, saving this time in plt. The line also
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gets the difference between the high and low
D/A numbers, saving this in p6. The quotient
of the time for one sweep divided by the D/A
number difference is offset by the loop time
and saved in p13. This gives the wait time that
would be needed if the controller swept be-
tween frequency limits with a D/A number
change per siep of one. Such a sweep would
give the best resolution and also would be used
to get the slowest possible sweep. The wait
time is checked to see if it is too large (i.e., if
the rate is too low for the specified trequency
sweep range, or alternately, if the frequency
sweep range is too large for the specified rate).
The line should also check that the value in p13
is not less than zero, which would indirectly
check either the order of the fow and high
frequency limits or the sign of the rate (but not
both simultaneously; it the low and high limits
are reversed and the rate is negative, pl3
would be positive). The line would have to be
split in two for the zero check to be made,
however,

If the user does need a controller run sweep in
which each step needs more than 32767 ms, the
user can modify the wait method to get any
wail greater than zero (e.g., a for/next loop
repeating a number of waits, or use of the
multiprogrammer clock).

Sets the D/A number change per output step
(p9) as 1. If the wait time in p13 is greater than
or equal to zero, this is the combination of
D/A number change pex step and wait per step
that will be used, and the program jumps to
the eighth line.

If this line is reached, then a D/A number
change per output step of one would take too
long. The wait per step is reset as zero, and the
line calculates the D/A number change that
would then be needed. This change would
typically be greater than one, giving less
resolution but taking less time to run. The line
checks that the D/A number change s
achievable (an error here would imply that the
rate is too high for the specified frequency
limits, or alternately. that the frequency limits
are too low for the specitied rate).

Sets up a for/next loop (index Y) to run the
specified number of sweeps, then sets up an
inner for/next loop (index X) to run the up
slope of the D/A number triangle waveform.
The user can easily modify this subroutine 1o
use a ramp waveform to run the D/A number
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sweep by cutting out one or the other of the
inner (X index) loops. The user is reminded
that up and down refer to the sweep of the
D/A numbers and this may or may not
correspond to the sense of the resuliing
frequency sweep.

9. Handles the word formatting,
multiprogrammer output, and wait time for
each step of the up slope.

10.  Sets up an inner for/next loop to handle the
formatting and multiprogrammer output for
each step of the down slope.

11.  Waits to establish the rate of the down slope,
then continues with the output sweep loop.
When the output sweep loop is done, the
original presweep tune data are restored.

12.  Clears flag 14 and returns.

“swpl75” (VCO number, center frequency,
frequency deviation, W175 block rate, function
_number)

(898 bytes; line 100)
Sets up the FM W175 and tune center 10 give an FM
waveform as specified by the passed parameters. This

calls ““fset’’ and ‘‘auxmod”’.
1. Checks that the VCO number is legal.

2. Calculates the RF number (p6), then checks
that the block rate is legal (see Appendix H).

3. Checks that the function number is legal.

4. Calculates the band number (p7) and initializes
the data table pointer (p12).

5. Calculates a minimum frequency based on the

band of the specified VCO (pl0) and finds the
data table part offset (p11).

6. Checks that the frequency deviation about the
center will be within range.
7. Sets up a for/next loop (index X) to search the

W$ data able for the first entry greater than
or equal ¢o0 the desired deviation bandwidth. If
such an entry is found, then the table number
of the entry is saved in pl2 and the search
ended by manipulating the for/next index
within the loop. The value of the data table
entry will be in p14; this is the high voltage.

Note: If the voltage-bandwidth calibration curve is
thought of in terms of X and Y, voltage is the
Y axis.

8. Completes the table search. If no entry was
found in the search, the subroutine will use the
last entry (highest tabled voltage).

9, Finds a low voltage (p13) to be used with the
high voliage in pl14.
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10.  Calculates the voltage (p8) corresponding to
the specified frequency deviation bandwidth.
The local slope of the calibration curve is in
pl3.

I1. Checks that the voltage calculated in the
previous line is legal.

12.  Sets up U$ 1o contain the specified block rate.

13.  Modifies U$ 1o also specify the volitage am-
plitude and offset and the function number,
and also to turn on the 50 ohm output.

14.  Calls ““fset’’ to get the specified tune frequen-
¢y, sends U$ to the FM WI175 10 get the FM,
calls *‘auxmod’’ to connect the M W175 and
the RF channel of the specified VCO, then
returns.

“‘AMI75” (VCO number, maximum dB, WI175
block rate, function number)
(396 bytes; line 114)

Sets up the AM W175 to give an AM waveform as
specified by the passed parameters. This calls
“AMaux.”"

I. Checks that the VCO number is legal.
2. Checks that the block rate is legal (see Ap-

pendix H).
3. Checks that the function number is legal.
4. Calculates the W175 voltage corresponding to

the specified maximum dB depth (pS) and
checks that it is within range.

S. Sets up U$ to contain the specified block rate.

6. Modifies U$ to contain the voltage amplitude
and offset and the function number, and to
turn on the 50 ohm output.

7. Sends U$ to the aM WI175 to set the AM
waveform, calls ‘**AMaux’’ to connect the AM
W175 to the RF channel of the specified VCO,
and returns.

“DC175"" (% duty cycle, period, W175 number,

VCO numbers. . )

(550 bytes; line 121)

Sets up either W175 1o provide a simple pulse
waveform to the RF channels of the specified VCOs.
Up to six VCOs may be specified if they are all in
different RF channels. The AM W175 is indicated by a
W175 number of 1 and the FM W75 is indicated by a
2. The simple pulse waveform (one on/off pulse per
period) is taken from the W175 square wave function
block; a partial block is used to get the specified duty
cycle. The period in milliseconds is used to set the
block rate in hertz.
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Sets up a for/next loop (index X) to check the
passed VCO numbers, and checks that the
VCO numbers are legal.

Calculates the RF number (pil) of each VCO
number and checks that RF number has not
already been used.

Sets a flag (p12-p17) (o indicate that the RF
number has been used, and continues the
for/next loop. The line then checks if the
W 175 number is legal.

Checks if the % duty cycle is within range.
Checks if the period is too low.

The fifth line checks the period against a limit
of 0.051 (ms), corresponding to a maximum
rate of 19.5 kHz, the full block limit. Since a
partial block will be used (unless the duty cycle
is 50%), the actual limit would be lower,
depending on the actual block size and hence
the duty cycle. The limit in the fifth line might
be replaced by an expresion that allows for the
actual block size, which would be somewhat
more complex. The limit value might also be
replaced by a simple value of 2e-3 for the 5.1e-
2, to reflect the 500 kHz response limit of the
pulse circuits. There is no upper limit check
since it is felt unlikely that any real test will
need pulse periods greater than 71 hours.
Calculates the start and stop addresses (pl3
and pl2, respectively) for the square wave
function block. The line modifies the stop
address if the duty cycle is less than or equal to
50%.

Modifies the start address if the duty cycle is
greater than 50%.

Sets U$ to contain the start and stop addresses,
the partial block indicator, the voliage am-
plitude and offset, and the function block
number, and to turn off the 50 ohm output.
Modifies U$ to contain the block rate
corresponding to the passed period; then
conditionally jumps one or two lines,
depending on vhich W175 was specified as the
pulse source.

Sends U$ (o the AM WI175, then jumps two
lines to the twelfth line.

Sends US$ to the FM W175.

Sets up a for/next loop (index X) that calls
“‘pulse’’ 10 connect the WI175 serving as the
pulse source with the RF channel of each
passed VCO.

Completes the for/next loop, then returns.
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‘“T/P” (period, VCO numbers. . .)

(266 bytes; line 134)

Sets the multiprogrammer timer/pacer card as a
pulse waveform source for the specified VCOs. Up to
six VCOs may be specified if they lie in different RF
channels. The pulse waveform is a 50% duty cycle
square wave, The timer/pacer card should already be
in its recirculating mode, as set by “‘initial’’; if the
user has changed the card mode it is up to the user to
reverse that change.

1. Checks that the period is legal.

2. Sends the period to the multiprogrammer,
putting the new period valuein Z[13].
3. Sets up a for/next loop to handle the checking

and setting for each passed VCO number. The
loop begins by checking that the VCO number
1» legal,

4. Calculates the RF number of the VCO being
checked (p9) and checks that the rR¥ channel
has not already been used.

S. Sets an RF use flag (pl0-pl15), then calls
“‘pulse’’ to connect the timer/pacer card to the
pulse circuit of the R¥ channel of the specified
VCO. The loop then continues. When done,
the subroutine returns.

length)
(392 bytes; line 139)

Uses the controller to run a synchronous pattern
on the three available VCOs in a band. Both tune
centers and channel function control words can be
changed at each step. The changed values are
determined by the user-provided nextval function
*‘valspec’’ (see Appendix P). The reac>r should see
the notes on this subroutine in Appendix K.

1. Checks tha: the band number is legal.

2. Determines the channel function control card
slot numbers for the three VCOs in the band
(p6, p7. and p8, in order of increasing VCO
number) and the slot number for the double
word tune card (i.e., the tune card on which
both halves control a VCO within the specified

band).

3. Checks that the table length parameter is not
less than zero.

4. Calculates the wait on each output step (p9)
and checks that it is legal.

5. Calculates the number of output steps (p7),

then sets up a for/next loop (index X) to
handle the output. The loop first calls
‘‘valspec.”’

——— iy T
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6. The unchecked and unmanipulated returns
from ‘‘valspec’’ are sent directly to the
multiprogrammer, the controller waits to
establish the rate, and the output loop con-
tinues until done, when the subroutine returns.

‘‘err stp”’

(286 bytes; line 145)

Handles the simulator shutdown and program stop
directed if one of the subroutine blocks finds an error
during a check (see Appendix F). This is not a true
subroutine since it is entered by a branch rather than
a call, and it has no return.

l. Sets the display format and turns off the 50
ohm outputs of the W175s.

2. Sets the channel function control cards to their
‘““initial’’ state: pulse and biphase carriers
turned off, fill oscillator and noise generator
set to full attenuation, and video turned off.
The VCO select will be set to the ““B’’ labeled
VCO in this process. It may be noted that this
does not affect the Z[* ] contents.

3. Formats the error code contents in Z into three
parts (p21, p22, and p23; p24 is a holding
variable). See Table F-1 for a list of the
subroutine block error codes.

4. Writes the formatted error code on the
HP9825’s internal printer.
5. Sets up an endless loop that beeps and flashes

an operator’s notice of the error.

**shutoff”’

(236 bytes; line 150)

Handles the simulator shutdown and program halt
directed if a controller error is encountered. This
must be enabled (on err ‘‘shutoff’’) before it takes
effect. It is strongly similar to ‘‘err stp’’, differing
only in the error information printed.

1. Prints a notice on the HP9825’s internal
printer, turns off the 50 ohm outputs of the
W175s, and sets the display format.

2. Turns off the simulator through the channel
function control cards (see the second line of
‘‘errstp’).

3. Writes the controller’s error information on
the HP9825’s internal printer.

4, Sets up an endless loop that beeps and flashes

an operator’s notice of the fault.

‘‘enter’’

(49C bytes; line 154)
Converts and scales an input alphanumeric string
1o a numeric form that is returned by this subroutine

function (see Appendix C). The syntax checking is
minimal but should work. This function will
sequentially check for a recognized character
anywhere in U$. Note that this means the operator
cannot combine an exponential form number with a
character. If a recognized character is found, the
function will treat all of the string up to that
character as the numerical part of the string. Each
line is very similar, with pl as the scale multiplier, p2
as the end point of the numeric portion of U$, and p3
as a character position holding variable. If a
character is recognized by a line, that line will branch
to the last subroutine function line.

i. Initializes the multiplier (pl) and end pointer
(p2), then checks for the giga prefix.

2. Checks for the kilo prefix.

3. Checks for the micro prefix.

4. Checks for the mega prefix.

5. Checks for the milli prefix.

Note: As mentioned in Appendix K, these last two
lines could be modified to eliminate the milli
check and allow either an upper- or a lower-
case letter M to indicate the mega prefix.
Checks for a dB indicator.

Checks for a Hz indicator.

Checks for a seconds indicator.

Checks for the exponent sign (if found, then
the entire string is assumed numeric).

10. ‘="' label. Finds and returns the scaled

numeric content of the string.

© 2~ o

““inRFid’’

(224 bytes; line 164)

Prompts an operator to specify a VCO by the RF
channel number and the VCO letter label, in-
formation available to an operator looking at the
front of the simulator rack, and finds the VCO
number of the specified VCO. This is a subroutine
function.

1. Clears out old U$ contents and specifies a
default of 6B (VCO number 12), then prompts
the operator to make an entry. The cap
function is used so that the operator may use
upper- or lower-case letters.

2. Checks that the RF channel number is legal; if
it is, the program jumps two lines to the fourth
line.

3. Notifies the operator that the entry form was

bad, indicates the correct form, and then
jumps back two lines to the first line.
4, Checks that the VCO letter label is legal; if
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not, the program jumps back one line to the
third line (and thence back to the first).

5. Calculates and returns the VCO number of the
specified VCO.

“‘load Y$”’ (VCO numbers. . .)
“‘load X$”’ (VCO numbers, video number, . . .)
“load W$’ (VCO numbers. . )

(540 bytes; line 169)

These subroutines are similar enough that they can
be described together as a general ‘‘load$’’. They are
used to update the controller data from tape. They
are separate so that only the data affected by some
program change need be updated. Fill oscillator and
FM WI175 data are updated by ‘‘loadY$’ and
“loadW$"’, respectively: the only difference between
the two is the string involved and the tape files used
1o get the updated data. Noise generator data are
updated by ‘‘loadX$’’, which includes a line 1o
identify the video filter number. Up to six VCOs (or
six VCO/video number pairs for *‘loadX$’’) may be
specified in one call, provided the VCOs all lie in
different rRF channels.
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The following line-by-line description applies
e.;ually well (o either “‘loadY$’’ or *‘loadW$'"; the
description for *‘loadX$’’ that then follows refers to
the earlier description.

1. Sets the tape track number to track 1, then sets
up a for/next loop (index X) to handle each
passed VCO.

2. Checks that the VCO number is legal.

3. Calculates the RF channel number (p13) and

checks that that channel has not already been
used.

4. Sets an RF use flag (p7-p12), then transfers the
taped data through V$ to the controller data
string,

The line-by-line description for “‘loadX$*’:

—

Same as first line above.

2. Same as second line above.

3. Checks that the video number is legal and
nonzero, using p20 as a holding variable.

4. Same as third line above (except that pl9 is
used to hold the RF number).

5. Same as fourth line above (except that p13-p19

are used as the RF use flags).
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APPENDIX Q

SUBROUTINE BLOCKS, PROGRAM LIST

Note: The type face of the printer used for the ment arrow has been replaced by a right paren-
appended program listing differs from that of thesis and the power arrow by a caret.
the HP982S’s internal printer. The assign- Note: The program listing is that of October 1981.

T ————--
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503
Sis
521
5X:
541
55¢
Sé:
S7s3
58:
S
601
b1t
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"Prrred 72313,p3,pliif bit(pl.p(24p2) 33 mp O

ret

"fval#':if (p2/1epR)<val (I8Ip1.1.51);2e3+pllZ;q9to "err stp"

for V=2 to 63if p3Idi=val (Z$[pl1,9V-8,9V-41);3;Vip4; 103V

next Viif V<1032100+pi3Z2:gto "err stp"

(9p43p9) -93p4a; (val (I$lpl,p?-3,p?) Iipb)-val (Z¢lpl,p4-3,p41)3ipT

pS/ ((val (Z$[pl,p9-8,p9-41)3p7)-val (Z$lp1,.p4-8,p4-4])3pt) }pS

int (pS(p3-p7)+pb)3Wsif WO or W>255;2200+p13Z3qgto "err stp”

ret

"foet":sfq 143if pl<0 or p1>12 or frc(pl)ilel3dZigto "err stp"
2+int ((p1—-.5) /4) 3p3; -B2p4: 2552p5sif int (plmodd/2+.5)=1:03p4;652803p5
cll "fval®#’ (pl,p2)sior (hand(Z[p31,pS) . shf (W, ps))3Z2Lp3]

wrt 723,"08",.p3.Z[p3I1,"T"scll """ (4,1)sicfa 143ret
"fnoise":if pl1<0 or p1312 or frc(pl);SeliZigto "err stp”
(Iint (P1/24+.5)3pS) +43p 10 (2. %eB) 27 (1+2int ((p1-1) /6) —plmod2) 3pl i
if p2=0:;72p13ipldsqto "fnout”
if p? O and p3<é and not frc(p3) sp3dpbrimp 3
if p3=5eb3;Sipbsimp 2
log(p3)-23pb3if pb<l or pbi4 or frcipb);;5200+4p13l3gto "err stp’
p4rpl133if p0=33403p7:1.5p11ip1Tsimp 4
if pd4=1 or p4=2 or p4=3;(1.2+.3(40(p4-1)2p7)/40)p112pi13;imp 3
if p8<pll or p4:>2p11:5300+plliZigto "err stp"

cll ’Ffset’ (pl,.pa);0¥p7sif par1.33pi13403p71if plas1.66pl113;803p7
if pl3-p2/2<p1l or piR+p2/2:2p11;5100+p13Z3gto "err stp"
p2-(p2%XLS51IpB) 3 pP373p13iplasif pb=03p2ip8
if pBi(val (YSIpS, 1+p7,5+p7 1) k1ebdpl ) ;pl2-(p112pB) 3p?P:02p13213p1S
1f pPi(val (X$IpS,1+p7.5+p7 ) k1leblpl)sp2-(pliip?) 3pBr0Iplasldplb
if p15 and p16:5400+p1l3Zigto "err stp"
if p15;jmp I
for X=1 to 73if val (Y$IpS5,S5X+1+p7,5X+S5+p7]) ¥1eb<pBsX—13p13;103X
next X
if pl1é6 or pbé&=03imp =
for X=1 to 731if val (X$I[pS.SX+1+p7,.3X+5+p7 1) ¥1eb{pPsX-13p145103X
next X
"fnout":sfg 14:band (Zfp101,65024)2Z[p10]
ior(Zfp10l,ior (ior (shf (p13,-6),5hf(p14,-3)),pb&)) ZLpl0]

wrt 723,"08",pl10,2(p101,"T";cll "2 (4,1)3cfq l4iret
"pulse”":if pld<l or pl1>12 or frc(pi)i3e3lZigto "err stp"
if p2<0 or p2:7 or frc(p2)33100+plliZigto “err stp”

sfg 14zior (shf (p2,-9) .band(ZLint (p1/2+.5)+42p3],61951))3Z(p3F]
wrt 723,"08",p3,Z[p3]1,"T"3cll “?* (4,1)3cfg 14:ret
"biph"zif pl<l or p1>12 or frci(pl)ide3lili;qto "err stp"
if p2<0 or p2:7 or frc{p2)3;4100+pll2;gto "err stp"

sfq 14zior (shf (p2,-12) ,band (Z[int (p1/2+.5)+4}p3]1,I6B63))I}ZILp3]
wrt 723,"08",p3,Zpx], "T"scll "7 (4,1)5cfg td4sret
"awmod":if pl40 or pli:12 or fre(pl)ibeldsgto "err stp”
if p240 or p2>3% or frc(p2)3;6100+p13Zigto "err stp"
sfq 145ior (band(Z{123,1022) ;ior (shf (int(pl1/2+.9),~-10),8hf (p2.~-1X)))132012)]
wrt 723,"0S,12",Z0123,"“T*3cll "27(4,1)swait 1

wrt 723,"08,12",band(Z[12],58367) 3720121, "T"scll *?"(4,1)3cfq tdszret
"AMaux":if p1<O or pl>12 or frc(pl)z17000}Z3gto “"err stp"
if p2<0 or p2*3 or frc(p2)317100+pilZiqgto "err stp"
sfq 143ior (band(ZL12],65472),ior (int(pl/2+.5) ,shf(p2,-3)))32012]
wrt 723,"08,127,Z0121,"T"3cll "?27 (4, 1) jwait 1

wrt 723,"08,12",band(20121,65528) 320121, "T"s1cll 7' (4,1)1cfg 143ret
"ampset”31if p1<l or p1>12 or frc(pl);7e3rZiqto "err stp"
if (p23pa)<0 or p4:8137100+p1l3Z3gto "err stp"
if p4=811702p4y153pIzimp 3
if pd=B03703pa; 143p3; imp 2

PAmodi0}p3ipSyif pI>=B1123pZ1if pS=93133p3
sfg 143band(20111,464512)32011)
tor(int(p1/2+4.5)-1,ior (shf ((p4-pd4mod10) /10,~7) ., shf (p3I,-3)))>32[11)
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92:
93:

95

963

97:

98:

99:
100:
101:
102
103:
104:
108:
1062
107:
106
109:
1102
1112
112
113
114,
115;:
1162
1171
118s
119
1202
1211
1223

wrt 723,"08,11",ZE111,"T"scll *?’(4,1)3cfg 143ret

“"AMown"1if pl<l or p1>12 or frc(pl)zBeXlZjgto "err stp"

if (int(1e3/p2)-X[413p4) <0 or pd:327673;8100+p1l2Zigto "err stp”

79+int (p1/2+.5)2pS3cl]l "AMaux’ (p1,2)3for X=1 to p3scll *AMval’ (p1l)

if UCO or UX10XE11138200+p1XZsgto "err stp”

wrt 723,"08".pS5,U,"T"swait plscll "7 (4,1)snext X

wrt 72%,"08",pS5,Z[p5-851,"T";1cll ’?2°(4,1)3ret

"setVCO"tsfg 143if pi<0 or pi>12 or frc(pl)zledlZ;qgto "err stp"
ior(band (ZLint (p1/2+,5) +43p21,32767) ,shf (pimod2,~-15))32Cp21

wrt 723,"08",.p2,ZCp21,"T"3cll *?*(4,1)3cfqg 14zret

"initial":clr 73trk 131df 91,Ussprt Usiwait 35001wrt 723,"WF,13.2,1,T"
wait 3503ina Zzfor X=2 to 12;wrt 723F,"SF",X,2,1,1,"T";wait 100

next X;‘or X=1 to é3wrt 723F,"0S",X+4,327603ZLX+4]1,"T"zcll 7?7 (4,1)
wrt 72X,"0R",X+4,15,1,"T, WA, .S5T,0R", X+4,15,0,"T"

wrt 72X,"0S8,12",i0r (shf (X,—10) X)) "T"gcll "2°(4,1)

wrt 723,"0S,11",ior (1008,X-1),"T"3cll 7?7 (4,1)3next X

wrt 723,"0S,12,0,T"jret

"stepmod":if pl1<1 or p1>12 or frc(pl)3110003Zigto "err stp"

2+int ((p1-.5)/4) 3p4a

Ilp41ipb;—-BIpS:2553p3sif int (pimodd/2+.5)=1303p53652802p3

sfg 143for X=1 to p2;3cll ‘*stepval’ (pl)

if UO or U255 or frc(U);11100+pidZ3gto "err stp"

wrt 723,"08",p4,ior (shf (U,pS) ,band(pb,p3)) Ipé, "T"

cll ’stepwt’ (pl)sint(U-XI[2D)3Uzif U<O or U>32767311200+pl1lZsqto "err stp”
wait Uscll *?7(4,1)3next X

wrt 72X,"0S",p4,Z20p4al,"T"scll "?° (4,1)35¢cfg 1lazret

"ownswp"1if pl1<l or p1>12 or frc(pl);?Pel3lZygto "err stp"

2+int ((p1-.5)/74) }p1O;~-BIp1832T53p125if int(plmodd/2+.5)=1;03p14;465280)p12
band(p12,ZLlp101)2p1S3cll *fval#’ (pl,p2)Wip7

cll *fval®’ (pl1,p)3if (WipB)<p7ipBlplisp73pB3pliip7

if ((1eF(p3-p2)/plaipi1)/(pB-p7ipb)-XL3IIIp13) »32767391003Z1gto "err stp"
13p~31if p13>=03 jmp 2

03 p.31int (pbXX[II/pi1)3pPrif pI<1l or p9rpbiP200+plliZigto "err stp”
for ¥Y=2 to pS+lifor X=p7 to p8 by p9

wrt 723,"08",pi0,ior (shf(X,p14),p15) ,"T"swait pil3icll "2 (4,1)gnext X
for X=pB8 to p7 by -pPiwrt 723,"0S",pl0,ior (shf(X,p14),p15),"T"

wait p133cll *?’ (4,1)3next Xsnext Yswrt 72%,"0S",p10,Z(p10J,"T"

cll *?°(4,1)3cfg 143ret

"swpl175"1if pl<l or pl1:12 or frc(pl)3;14000)Zsgto "err stp"
int(p1/2+.5)}pbiif pda>1.95e4 or p4<03;14100+piliZzgto "err stp"

if (p5<0 or p5*11) and (p5<14 or pS>21)314200+pi2Zigto "err stp"
1+2int ((p1-1)/6'—pimod22p73;73p12

(2.5@8)2"p73p10:03pllgif p2>1.33p103403pl13if p2>1.66p103B803p11L

if p24+pX/2>2p10 or p2-pIX/2<p1031400+p122;gto "err stp"

for X=1 to 71if (val (WS[p6E,SX+1+p11,5X+5+p111)3p14)>=xp3/1ebyXipi2y103X
next Xgif X<Pival (Welp6,5p12+1+p11,5p12+5+p111)3pl4

val (WS[pb,Spi12-4+p11,S5pl12+p11])23p13X
(X£131/(p1a-p13)3p13) (Pp3/1eb) +(XT121+p12%X[13])-p13p143p8

if pB8{le-3 or p8>X[101314400+p12Zsgto "err stp"

"UIUSsFlt 1;"Fi&str(pd)dUS; "E"IUSLEL, 6] Fxd 2

UsL"A"&astr (pB8)&"C"&str (pS)&"DOFP1I"3IUS

cll ’*fset’ (pl,p2)ywrt 701,Us3cll ’auxmod” (pl,3)3ret

"AM175"31if pl1<l or pi1>12 or frc(pl)r1.8ed43Zsgto "err stp”

if p3<O or p3>1.95e4;18100+p1lZ3gto "err stp"

if (p4<0 or p4>11) and (p4<id4 or p4a>21);18200+pl1lZzgto "err stp"

if (p2/%XL[1113pS)<1e-3 or pS5>X[14]1;18300+p1)2Zjgto "err stp"

PUIUSEFIE 13 "F &str(pX)JUSE "E"IUSLL, 611 ¥xd 2

USL"A"str (pS)&"D"&atr (pS/2) IUS: Fxd O1USL"C"&atr (p4)&"P1I"3US

wrt 702,Us3cll "AMaux’ (pl,X) jret

"DC17S"1for X=4 to pOiif pX<1l or pX>12 or frc(pX):15000+X3Z1gto "err stp"
int(pX/2+.5))pl13if p(11+4p11)3151003Z3gto “err stp"”
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12%: 1Ip(11+pl)snext X3if p3Wl and p3I#2315200}Zsqto "err stp"

124: if pl<0 or p1>1003153003Z5qto "err stp"

125t 1F¥ p2<5.1e-231540032Z3qto "err stp"

1261 OIp13I32553p123if pl<=S0;255-int (2.54(50-pli))Ipl12; jmp 2

1273 int(2.54(p1-S0))3Ip13

128: fxd O3 “"JUS: "W "&str (p12)&"V"&etr (p13) &"UIA2DIC2PO"US

129: flt 1;USL"F"&str (1e3/p2)&"I"}UsSscap (Us)IUSs jmp plI

1301 wrt 702,U$t jimp 2

1X1: wrt 701,Us$

132: for X=4 to pOicll ’pulse’ (pX,pI+2)

33X: next Xsret

134: "T/P"3if pi<le-2 or plr1e7;316000321qto "err stp”

135: wrt 723,"0S,13",p1/2,"T"s5cll *?°(4,1);3p132013]

1363 for X=2 to pO3if pX<1l or pX>12 or frc(pX);16100+X3Ziqto "err stp”
1X7: int(pX/2+.5)3pPiif p(F+pD)31620037Z5g9to “"err stp"

1381 1}p(9+pF)scll “pulse’ (pX,S)snext Xiret

139: "special"tif pl1>3 or pl<0 or frc(pl)3;12000)Z3ato "err stp"

140: ((BIpb)+13p7)+13pB314tpStif plac2323pSy ((SIpb)+13p7)+13p?

141: if p4<0312100+pbliZ:gto "err stp”

142: int(1eX/p2-XL11)Ipbsif pb<O or pb6>327673122003Z3q9to “err stp"
14X int(p2p3)3p7:+0r X=0 to Zp7 by 2icll “valspec’ (p4)

144: wrt 723,"0P" S, U3, W.pb,Y,p7.Z:p8. V. "T"swait péscll "?7(2,1)3next Xyret
145: "err stp"ifxd Oswrt 701,"FOI"zwrt 702,"POI"

144: wrt 723,"0P,5,32760,6,32760,7,32760,8,32760,9,32760,10,32760,T"
147: (int(Z2/1e2)2p24)-10(int(Z/1eX)3p21)3p225Z-100p243p23

148: fmt 1,."faults ", $2.0,2x,f1,.0,%,€2.0,2/3wrt 16.1,p21,p22,p2T
149: dsp "X error ",Z," X"jbeepiwait 12503dsp ""“jwait 9933imp O

150: “"shutoff":prt "stopped / error”iwrt 701,"POI"z;wrt 702,"POI"gfxd O
151: wrt 723,"0P,S,32760,6,32760,7,32760,8,32760,9,32760,10,32750,T"
152: fmt 1,"error ",c,f3.0,/,"line#",£3.0,2/3wrt 16.1,char (rom),ern,erl
1S3: dsp “% shutdown R“3;beepjwait 1250jdsp ““iwait 993imp O

154: "enter":13p13;32¥p2:if pos(cap(Us$),"G")pIip3-13p2:ie9ipligto "3"
1551 if pos(cap(U$),"K") 2 p3ip3-13p2311e3lplzgto "3

156: if pos{cap(Us$),"U")p3:p3-12p2ile-6iptigto "3"

157: if pos(U$,"M")2p33p3-13p2;lesipligto "2

158: if pos(Us,"m")Ip3ip3-13p2sile-brplzgto "3"

159: if pos{cap(U$),"D")3pIip3-13p2313pligto "3"

160: if pos{cap(Us$),"H") p3ip3~-13p2s1iplzgto "I"

tbl: if pos(cap(Us$),"S")Ip3:ipi—-12p2illipligto "3

162: if pos(Us,"e");323p2slipligqto "3"

1621 "}"iret val (US[1,p2])%pt

164: "inRFid":"6b"}Uszent "RF#(1-6), VCO-(A,B)",UsL1,.2]1scap(Us)IUS
165: if (num(USC1,11)3¥pl) 48 and pl<S5;imp 2

166: dsp "bad form; reenter (e.q.3: “6a’)"i;wait 25003 jmp -2

1671 if (num(US(2,2133p1)#865 and pi#ée6: jmp —1

16481 ret 2val (USL1,1D)+pl-66

169: "loadyY$":trk 13for X=1 to poO

170: if pX<1 or pX>12 or frc(pX):13000}Zzqgto "err stp"

171: if p(int(pX/2+.5))Ipl1X)+6)313100+pX3Zsgto "err stp"

1723 pi3¥p(pl13+6)31dFf pX+6,VE;VSIYSIP13Tsnent Xiret

173: “loadXxs":trk 1ifor X=1 to 2p0-1 by 2

1783 1f pX<1l or pX:12 or frc(pX);13200}Z3gto "err stp"

175s if (p(X+D)Ip202<1l or pZ20>% or frc(p20)313300+pXlZigto "err stp"
1762 if p(lint(pX/2+.5)Ipl19)+12)313400+pX323qto "err stp"

1773 pl192p(p19412)31dFf SpX+p20+13,VE;VEIXS[PpIfItnext Xjret

1781 "loadWs$":trk 1z:for X=1 to poO

1793 if pX<1 or pX>12 or frc(pX):1350037Z:qto "err stp"

1802 if p((int(pX/2+.5)3}p13)+4)3;13600+pX22Z1gto "err stp”

1813 pl33p(p13+6)31df pX+78,Ve:VeUSIpLlIIsnext Xyret
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