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AN ALGORITHM FOR THE UNIVARIATE ANALYSIS OF VARIANCE
IN EXPERIMENTS WITH REPEATED MEASURES

INTRODUCTION

In a typical repeated measurements experiment, subjects are randomly
assigned to different treatment groups, and observations are made on the sub-
jects at distinct points in time in order to estimate and test for the treat-
ment effects. Under conditions given by Huynh [5], a univariate analysis of
variance is appropriate for this purpose. If the treatment groups are of equal
size and every subject has a data value at each time, the analysis can be read-
ily obtained from packaged computer programs such as SAS ANOVA, SAS GLM,
BMDP2V, BMDP4V, or BMDP8V [1,4,9]. One frequently encounters experimental sit-
uations in practice, however, where the cell sizes are unequal or where some of
the subjects have incomplete data. The SAS ANOVA and BMDP8V programs were not
designed for use in such cases, and there are situations where the other three
programs all suffer from serious drawbacks, some of which have been discussed
by Morris et al. [8].

For repeated measurements experiments with missing data, SAS GLM does not
include any provision for computing least-squares means which are averaged
across treatment groups of unequal size. The least-squares means for the
highest order interactions can be computed provided an explicit factor for
"between subjects within treatment groups" is included in the model. The
computer core storage and central processing unit (CPU) time used grow rapidly
as a function of the order of the X'X matrix, which can cause the analysis to
become very expensive if the number of subjects is large, as demonstrated by
the following. These examples were run using SAS GLM on an IBM 4341 Model 2
under a multiple virtual storage (MVS) operating system. The only differences
are the number of subjects in the cells.

Source df df df

A 1 1 1

B 2 2 2
AxB 2 2 2
Between subjects (AxB) 27 77 127
Time 3 3 3

* AxTime 3 3 3
BxTime 6 6 6
AxBxTime 6 6 6
Error 81 231 381
Core required (K bytes) 256 354 504
CPU time (min) .30 1.62 5.04

4

If any subject has incomplete data, neither BMDP2V nor BMDP4V provides a
method for computing properly adjusted least-squares means. Adjusted F-ratios
can be easily obtained provided all treatment groups are of equal size by
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including "between subjects within treatment groups" as a factor and analyzing
the data as if it were a full factorial experiment [2]. If the number of sub-
jects is large, however, we have the same problems discussed for SAS GLM. For
situations where missing values are present and the cell sizes are unbalanced,
the only way we have found to adjust the F-ratios in either BMDP program is to
create dummy covariates. This can be a laborious exercise or a tricky program-
ming problem, and it does not make these two programs generate the desired sum-

* mary means because the adjusted means are computed as if the dummy covariates
were true covariates.

This report describes a computing procedure for the univariate analysis of
*, a repeated measurements experiment where the subjects are arranged in a two-way

classification with cell frequencies that can be disproportionate. The analy-
sis is adjusted for missing values, provided their number and configuration do
not violate certain limitations. The method proceeds in such a way tha' the
order of the X'X matrix does not depend on the number of subjects in the exper-
iment (although it does depend on the number of missing values). The algorithm

* has been incorporated into a SAS procedure, REP2W1F, which produces useful sum-
L: mary statistics (including least-squares means) particular to the design. The

approach could be generalized to experiments where the number of treatment
factors is other than two and where the repeated measures have a factorial
arrangement of their own.

EXPERIMENTAL DESIGN AND MODEL EQUATION

In the particular situation we will consider here, N subjects are randomly
assigned to treatment groups which are arranged in a two-way classification
with factors A (having levels Ai, i=1,2,...a) and B (having levels Bi
j=1,2,...b). There are ni i (>0) subjects at the ith level of A andjt
level of B, designated by the subscript 1=l,2,...nij. Each subject is mea-
sured at. t levels of a fixed Time factor (Tk, k=1,2,...t). Tests of the main
effects A and 8 and of the interaction AxB are generally referred to as the
between-subject portion of the analysis, whereas tests for a main effect due to
Time or an interaction involving Time are referred to as belonging to the
within-subject part of the analysis. The model equation for the case of no
missing values appears as follows:

.4

Yijkx = Oijk + Eijk' (1)

where "ijk = p + Ai + Bj + (AB)i j + Tk + (AT)ik + (BT)jk + (ABT)ijk; p, Ai, Bj,K A B.(AB)ij, Tk, etc., are the usual fixed main effects and interactions; and cijkt

is a random error term.

We assume that the components of model equation 1 meet a number of condi-
tions. The fixed main effects and interactions are assumed to follow the so-
called E-restrictions [12]. These are the same as the "usual constraints" in
which the sum over any subscript (i, j, k, or X) of any set of fixed main
effects or interactions containing that subscript is 0. For example, ZAi = 0
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and E(AB)ij= (AB)i • 0. Provision for weighted restrictions (such asi"

EwiAi = 0) could also have been made, although in the absence of substantial
1
prior knowledge about a given set of data, the E-restrictions are usually rea-
sonable.

The remaining assumptions involve the errors. If c.. represents a
t-vector of errors for the tth subject in treatment groupi i,j), then we
assume e - has been randomly drawn from a multivariate normal population

* with mean vector 0 and covariance matrix ij ..  For the between-subject por-
tion of our analyss to be valid, we assume in addition that the variance of
the sum over time, Ee... , is the same for all subjects in the experiment. ThelJKJ

within-subject port on of the analysis is valid if and only if the errors have
the property of multisample sphericity [5], which means that if C is a
(t-1)x(t) orthogonal contrast matrix, then there is a constant X for which the
equation CE.igC' = AIt.1 holds independently of i and j. (It-I is the identity
matrix of order t-1).

It frequently occurs that some of the subjects do not have complete data,
a circumstance that complicates the analysis. The analysis described here

assumes that the pattern of missing values is random and independent of any
treatment effects. At present, there is no universally accepted method for
handling all parts of the repeated measurements analysis of variance when miss-
ing values occur under this condition [2,3]. To compute the between-subject
portion of the analysis, we require that every treatment combination (i,j) has
at least one subject with complete data, and that at least one such treatment
combination has two or more subjects with complete data. If we denote by rij
the number of subjects with incomplete data in the (i,j) cell, this says that
(nil.1) - ri, is nonnegative for every cell and positive for at least one
cel. If this condition is met, the algorithm produces the between-subject
analysis we would have if subjects with missing values were completely
excluded. We have programmed REP2W1F so that if the condition is not met, a
message is printed informing the user that the between-subject analysis cannot
be computed, and the program continues with the within-subject analysis.

The within-subject portion of the analysis is obtained using dummy covari-
ates to adjust the tests for missing values. The resulting within-subject
analysis is equivalent to that suggested by Schwertman [10]. He proved that
for repeated measurements experiments with missing values, where the required
assumptions for a univariate analysis are otherwise met, F-tests of null
hypotheses involving the within-subject parameters can be constructed using
ordinary general linear regression techniques if explicit effects for subjects
within treatment groups (Si) are added to model equation 1. The sum of
squares for each hypotheses 0 is calculated by taking the difference between
the residual sum of squares for the reduced model under Hg and for the full
model. The difficulty with implementing Schwertman's idea irectly is that as
the number of subjects increases, the order of the X'X matrix to be stored and
inverted also increases, leading to core storage and CPU time requirements
that can become very expensive, or even impossible, to meet. The algorithm
presented here avoids the use of explicit subject effects and the resulting

O problem.
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If the total number of missing values in the experiment is m > 0, our
technique generates for each one a dummy covariate Zvijkt (v=1,2,...m) which
equals -1 if observation (i,j,kl) is the vth missing value, and 0 other-
wise. Model equation 1 is then altered as follows:

Yijkx = "ijk + E(Yv)(Zvijkt) cijk' (2)
v

where Pijk is the same as in equation 1; Yijkx = 0 if the observation is
missing; Zvijky is the dummy covariate and yv the regression coefficient
associated with the vth missing observation (v=1,2,...m).

It should be noted that our assumptions concerning multisample sphericity
of the error term are not altered in equation 2 by the presence of missing
data. If Yijkz = 0 represents the vth missing value, then we have

0 = Oijk + (-'1)(uijk + cijkl) + cijktV (3)

where ("ijk + 'ijkx) = yv and (-1) = ZvijkX in equation 2.

There are limitations on the number and configuration of missing observa-
tions we can have for any treatment combination (i,j) and still be able to com-
pute the within-subject analysis. Within each cell, when all subjects in that
cell have complete data, there are (nij-1)(t-1) degrees of freedom for the
residual sum of squares. Each missing observation in the cell costs one degree
of freedom, so that if there are mij missing values in the (i,j) cell, the
number of degrees of freedom the cell contributes to the residual sum of
squares is (nij-1)(t-1) - mij. Our algorithm requires that this quantity

be nonnegative within every cell and that it be positive for at least one
cell. In addition, certain configurations of missing values violate our
requirements for the within-subject analysis. Two examples would be missing
data for 1) all times on a given subject or 2) all subjects within a cell for a
particular time. Either too many missing values or the wrong configuration of
missing values will result in our trying to invert a singular matrix. The
matrix inversion routines in REP2W1F recognize singularities, and when one is
found, the program immediately prints a message to indicate what has happened
and terminates the analysis.

When both the between- and within-subject analyses can be computed,
REP2W1F produces an analysis of variance table which includes all the source
lines shown in Table 1. The use of dummy covariates to adjust source lines in
the table for missing values has previously been recommended by Jarrett [7]
based on the ideas of Wilkinson £13]. The approach as they described it
involves building and testing effects in a hierarchical manner instead of

making use of the E-restrictions to test main effects and first-order interac..
tions adjusted for all other effects in the model. As a result, their tests
for effects due to A, B, Time, AxTime, and BxTime would differ from those to be
presented here.
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TABLE 1. SOURCE LINES AND DEGREES OF FREEDOM FOR THE ANALYSIS
OF VARIANCE BASED ON MODEL EQUATIONS 1 AND 2

Degrees of
Source freedom

Between subjects A a-i
B b-i
AxB (a-l)(b-1)
Error(a) [(nij-l) - rij]

13

Within subjects Time t-1
AxTime (a-i)(t-i)
BxTime (b-1)(t-i)
AxBxTime (a-1)(b-1)(t-i)
Error(b) X[(nij-1)(t-l) - mij]X.ij 1(1) mi

THE MODEL IN MATRIX NOTATION

We now introduce the matrix notation we use in describing the computing
algorithm, which will make it possible to present the derivations in a more
compact form. Starting with equations 1 and 2, let Y = (Yijkt) denote the
vector of observations (including zeros for missing values), sorted so that k
is the fastest moving index, t the next fastest, and i the slowest. Similarly,
define the error vector c = (Eijkd) so that it conforms with Y.

In writing the parameter vector 0, we eliminate certain of the main
. effects and interactions which are redundant due to the E-restrictions. For

the main effects, this is accomplished by arbitrarily selecting the effect with
the largest subscript for deletion, and since, for example, Aa =
-(Ai+A 2+...Aa-1), these deleted effects are not needed in the calculations to
follow. Effects for a-1 levels of factor A, b-1 levels for factor B, and t-1
levels of Time will thus be included in a, and any interaction effect which
involves the ath level of A, the bth level of B, or the tth level of Time
can be deleted.

It is convenient to write a as a partitioned vector with V' - (8t B;)
* where 01 contains the between-subject parameters, 82 contains the within-

subject parameters, and 23 = (yv) contains the regression coefficients
associated with the missing values. A total of (a)(b) elements are contained
in f , including (in order) U, a-1 main effects from factor A, b-1 main effects
from factor B, and (a-1)(b-1) first-order interaction effects from AxB. There
are (a)(b)(t-1) elements in 02, the first t-1 of which are the main effects for
Time, followed by (a-1)(t-)-effects for AxTime, (b-1)(t-1) effects for BxTime,
and (a-i)(b-1)(t-1) effects for AxBxTime. In 83 are m elements, the number of
missing observations. Shown in equation 4 for the case of a=2, b=3, and t=2
are 0' and '

* 5
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(p A, Bi B2 (AB)11 (AB)12 )

and

= (T1 (AT)1 , (BT)11 (BT)21 (ABT)111 (ABT)121). (4)

We also use the notation Jt for a t-vector of 1's; It for an identity
matrix of order t; and Kt for the (t)x(t-1) partitioned matrix defined as

Kt (5)

The Kronecker product operator I is defined in the following illustration. If
U = (ui i) is a (2)x(3) matrix and V is a matrix, then the Kronecker product
of U and V is the partitioned matrix

U V= FuiiV u12V u13V (6)

U21V uv u2 3v J

Equation 2 can now be rewritten in matrix notation as

Y = (D@JtdID@KtIZ) [k" + (7)

02

where D is a matrix discussed in the following paragraph, and Z = (Zvijkt) is
the matrix of dummy covariates (needed only if missing values occur).

The D matrix is the design matrix we would associate with $I for an
experiment with only one reading per subject (that is, no repeated measures).
It has one row for each subject in the experiment and one column for each of
the (a)(b) elements of _a,. This means that D does not change as the number of

I repeated measures increases. Our requirement that (nii-1)(t-1) - mij be
nonnegative within every treatment combination (i,j) means that nii > 0 and D
is of full column rank. An example of the D matrix for the case o1 a=2, b3,
and nij= 2 for all cells is given in Table 2.

Because any pair of error elements from distinct subjects are independent,
* the variance of the vector e is block diagonal. The matrices down the diagonal

we denote by z ij, (x-1,2,-... nij), where Eij is the covariance matrix for
the errors of the xth subject in the cell (i,j). Huynh and Feldt [6] showed
that because of multisample sphericity, each zijX may be written as:

* ijX = + (J ii + ., (8)

6
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where ci is a t-vector which may change from subject to subject, and X is
a constg which is the same across all subjects.

TABLE 2. EXAMPLE OF THE MATRIX DENOTED BY D IN EQUATION 7 FOR
THE CASE OF a=2, b=3, AND nij= 2 FOR ALL CELLS

Subscripts of Y Elements of D

i j £ = u Al BI B2  (AB)11  (AB)12

"1 1 1 1 1 1 0 1 0

1 1 2 1 1 1 0 1 0
1 2 I1 0 1 0 1
1 22 1 1 0 1 0 1
1 3 1 1 1 -1 -1 -1 -1
1 3 2 1 1 -1 -1 -1 -1
2 11 1 -1 1 0 -1 0
2 12 1 -1 1 0 -1 0
2 2 1 -1 0 1 0 -1
2 22 1 -1 0 1 0 -1
2 3 1 1 -1 -1 -1 1 1
2 3 2 1 -1 -1 -1 1 1

COMPUTATIONAL ALGORITHM

Between Subjects

If no missing values occur in the data to be analyzed, we compute the aver-
age value across Time for each subject, using the notation Tij. = F iYijkt-
When these values are considered in terms of the E-restrictions n the
within-subject parameters, we obtain equation 9:

Y = u + Ai + Bj + (AB)ij + cij.1 . (9)

* In our matrix notation, if there were N subjects in the experiment, equation 9
could be rewritten as:

1(IN @ J')Y= '(IN @ Jm)(D @ JtI D I Kt) 2 + (IN  J').t t (10)

Since JjKt = 0, equation 10 reduces to

*7



I N  _ = ID JtJt1.i + -I N , (11)

b -t t t t t

Equation 11 has the familiar general form y = X__l + e for linear models. The
assumptions on the variances of the errors, namely independence between sub-
jects and homogeneity of -ij.x across subjects, make the between-subject
analysis straightforward using well-known methods for obtaining tests of main
effects and interactions, all mutually adjusted for each other [12].

Useful summary statistics printed by REP2W1F for the between-subject anal-
ysis include the table of AxB means (the arithmetic means within each (i,j)
cell) and the marginal means for A and B (the unweighted averages of these cell
means).

If missing values do occur for some subjects, an appropriate between-
subject analysis can still be computed by limiting this part of the analysis to
only those subjects with complete data, which REP2W1F does, provided every
(i,j) cell has at least one subject with complete data, and at least one cell
has two or more subjects with complete data. When these last two conditions
are not met, REP2W1F prints a message to this effect and moves on to the
within-subject analysis. If we use BMDP2V or BMDP4V with dummy covariates to
compute the entire analysis in a single call of the program, the between-
subject portion of the analysis is equivalent to that just described. A gen-
eralized least-squares [11] analysis, making use of available data from sub-
jects with values missing and in which tests of the between-subject parameters
are adjusted for the within-subject factors, would require additional knowledge
of, or assumptions about, the covariance matrix of the error vector e.

Within Subjects

Consider a transformation of the Y values in which the last observation
for each of the N subjects is subtracted from each of the first t-1 levels, and
the last value then dropped. This is equivalent to multiplying each side of
equation 7 by the matrix IN I K , giving:

(IN 0 K,)Y = (IN I K9)(D 0 JtD 0 KtZ) F'1 + (IN I K ).. (12)

This transformation leads to two simplifications: first, (IN I Kj)(D 0 Jt)
(IN D)@(K'Jt), but K'Jt = 0, which means that the coefficients multiplying the
elements of a, in equafion 12 are all O's; second, (IN @ K )(D @ Kt) =
D 6 KjKt. Equation 12 therefore reduces to

(I 0 K')Y = (D KtKt(IN 0 K')Z)[ + (I  I K'Lt . (13)

8
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Now we introduce the following notation:

V KKt  It_1 + Jt_1Jt.

Y*= (IN I Kj)Y,

Z*= (I 0 KI)Z,

- = (IN I Kj.9S

and

a 2 (14)

If equation 13 is rewritten in this new notation, the result is

Y* = (D u V IZ*) ] + _*. (15)

The form of equation 15 is the familiar linear model.

Now we need to find the variance of c*. We have Var(e*) =

IN 9 K')Var(e)(IN I Kt), where Var(E) is block diagonal with the matrices ijj-
rom eqtation8 down the diagonal. Var(€E*) is also block diagonal, with tie

matrices K~YijxKt on the diagonal. Finally, using equation 8 we have

K' i j kKt = K'((aijjtJ) + (Jt-iJ . ) + = KKt = 2 V, (16)

since JjKt = 0' and K Jt = 0.

Equations 14, 15, and 16 combine to give equation 17.

Var(s*) = 02(IN @ V), (17)

where V is known and a2 is unknown. Because of equations 15 and 17, the normal
equations to be solved in obtaining the generalized least-squares estimates
[11] of _2 and _3 are as follows:

9
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_D'D v ( .. Z, 1 [ D I E2 Do .t1(8

Z*'(D I Iti) Z*'(IN * v-1)z* jZ*'(IN 6 v-1 ) J
You can reduce computational effort by observing that Y* and Z* can be
partitioned as shown in equation 19, with each pair ( ,Zn) associated with
one subject.

Y* = Y* Z* = Z* (19)
- -1 1Y* Z*

-2 2

This produces normal equations given byK' [ ,ID I V (Do Iz, j IIj (D , I I It (20)

.nEZln' -nJ

In equation 20 the only matrices which must be stored and whose orders depend
on N are Y* and Z*; the normal equations shown are in the form we use for
computation-al purposes in REP2W1F. Conceptually, however, it is helpful in the
remaining discussion to back up to equation 18 and rewrite it as

W= UY* (21)

where

D D I V (D - I It-1)z*1

L Z*'(D I Iti) Z*'(IN 1 V-)Z*'

and

K~D I= DIt_,
Z*'(IN I V- ' )

10



The within-subject parameter estimates can be computed as in equation 22
provided W is nonsingular.

= W-Iuy*. (22)

The order of the matrix W is (a)(b)(t-1) + m, which does not involve N. This
is where the savings in computer core storage and CPU processing-time
requirements are achieved by REP2W1F relative to SAS GLM. If m = 0 (meaning
there are no missing values), then W = D'D I V can be shown to be a nonsingular
matrix under the condition we have imposed that (nij-1)(t-1) be nonnegative
within every cell (i,j) and positive for at least one cell. Under this
condition, the rank of D'D, which is (a)(b), equals the order of D'D, so that
D'D is nonsingular. Additionally, V is nonsingular. Since the eigenvalues of

n  V are equal to 6rVs, where 6r is the rth eigenvalue of D'D and vs is the
s eigenvalue of V, D'D i V has (a)(b)(t-1) nonzero eigenvalues and is thus
nonsingular.

If m > 0, the possibility exists that W might be singular. This will
happen if (nij-1)(t-1) - miu- < 0 for one of the cells (i,j). It can also
happen for certain configurations of missing values such as all times missing
for a given subject or all subjects missing within a cell for a particular
time. The matrix inversion routine in REP2W1F uses Cholesky decomposition in
finding W- . When the lower triangular matrix T such that W = TT' has been
found, the elements along the diagonal of T are compared. If the ratio of the
smallest to largest elements is less than 10- 5, the matrix is declared to
be singular. In such cases a message is printed and the particular analysis
termi nate,.

Provided W is nonsingular, the quantitites needed to test linear hypothe-
ses of the form Ce = 0 are straightforward [11, pp. 110-112].

SSE = Y*'(IN I V-1)Y* - (UY*)'W'(4UY*) (23)

with degrees of freedom (N-(a)(b))(t-1) - m,

;2 = SSE / {(N-(a)(b))(t-1)- m}, (24)

Q = estimated variance of = 2(W-'U(IN I V)U'W'), (25)

SSH(Ho: CO = 0) = (Ce)'(CQC')-'(C_), (26)

where C is required to have full row rank equal to h, which is also the degrees

of freedom for SSH. REP2W1F employs efficient algorithms equivalent to these
formulas to calculate the sums of squares for lines in the within-subject
portion of Table 1. To illustrate in more detail what is being computed,
suppose a=2, b=3, t=2, and m=2, so that

* 11
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= (Ti (AT)I (BT)11 (BT)21 (ABT)111 (ABT)12 1) (27)

and

-L = (Y1 Y2).

The adjusted hypothesis sums of squares to test for an overall main effect due
to Time and for interactions involving Time are shown in equation 26 with C
given as:

Time: C = ( 1 0 0 0 0 0 0 0 ),

AxTime: C = ( 0 1 0 0 0 0 0 0 ),

and

AxBxTime: C = [0 0 0 1 0 10 0 (28)

The sum of squares for Error(b) is SSE in equation 23.

All of these sums of squares are the same as the Type III and Type IV sums
of squares from SAS GLM when "subjects within treatment groups" is included as
a term in the model for that program. These are also the same as the sums of
squares given by BMDP2V and BMDP4V when dummy covariates are used in these
programs to adjust for missing values.

Adjusted means for the within-subject portion of the analysis are obtained

after inserting the estimates of the missing values (from B ) back Into their
respective locations in the original data vector Y. The AxBxTime means are
computed from the reconstituted Y vector. These aF the same as the AxBxTime
least-squares means produced by 3AS GLM. The marginal means for Time, AxTime,
and BxTime in REP2W1F are the unweighted averages of these adjusted AxBxTime
means. The SAS GLM procedure can be manipulated to give these means, provided
we do not have both unbalanced treatment groups and missing data simulta-
neously. The BMDP4V program can generate these means if the cell sizes are
unequal, but none of the BMDP programs print useful summary means unless all
subjects have complete data.

Standdr'd errors for the adjusted means are also produced by REP2WIF.
Morris et al. [8] have discussed the shortcomings of SAS GLM and RMDP2V in this
rPldrd. The fact that REP2W1F is written to analyze data from one particular
design makes it possible to compute the standard errors of interest (although
in the case of missing data, these are only approximate).
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CONCLUSION

We have described the method of analysis incorporated in REP2W1F, a SAS
procedure for the univariate analysis of a repeated measurements experiment
where the subjects are arranged in a two-way classification with treatment
groups that may be unequal in size. The program assumes a E-restricted model
[12] to produce analysis of variance F-tests and least-squares means that are
adjusted for incomplete data. The computer resources required by REP2W1F to
obtain least-squares means when we have missing values do not escalate nearly
as rapidly as a function of the number of subjects in the experiment as SAS
GLM. For example, in our introduction we showed a situation where SAS GLM
required 504K bytes of storage and 5.04 minutes of CPU time. The same analysis
using REP2W1F consumed 202K bytes and 0.23 minutes. When any data are missing,
BMDP2V and BMDP4V do not produce any useful summary least-squares means at
all. The REP2WIF program produces standard errors which can be used to place
confidence intervals on, or test for differences between, selected
least-squares means. As pointed out by Morris et al. [8], SAS GLM and
BMDP2V are deficient in this regard. Our studies of BMDP4V indicate that it is
also deficient. A generalization of the algorithm in REP2W1F to situations
where the number of treatment factors is other than two, or where the repeated
measures have a factorial arrangement of their own, would be straightforward.
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