

	-		+#+	
Example.	anan.	-14.	. at 19	4 9

The contents of this report reflect neither a position nor an official policy of the Department of Transportation. This document is disseminated in the interest of information exchange. The United States Government assumes no liability for the contents of this document or use thereof.

đ

5

١,

۲

Accession For HEIS CRIME MIC TAB Machanestrood Justification. By_ Distribution/ Availability of des Avail and or Dist | Special

TABLE OF CONTENTS

Ē

1.0

(

C

ć

C

C

Chapter	· •	Page
I	INTRODUCTION TO THE ASSESSMENT	. 1
II	NATURE OF TECHNOLOGY	. 3
111	FUNCTIONS OF COMMUNICATIONS TECHNOLOGY IN AN AVIATION SETTING	. 11
	Functions of Communications Technology Air Traffic Management Detailed Outline of Function of Communi- cations Technology Pilot Functions	. 12. 22
IV	GENERIC AND ANTICIPATED EFFECTS	
	Anticipated Effects Productivity of En Route Controllers Productivity in the Terminal Controllers Total (En Route and Terminal) O&M Cost Approaches That Can Be Taken to Achieve Productivity Gains in Flight Service Stations Ways To Achieve FSS Productivity Gains Flight Service Trends Policy Impacts of ATC Automation: Human Factor Considerations	 63 67 69 70 71 72
v	THE CONCEPT OF PRODUCT IN THE AIRSPACE SYSTEM	. 83
VI	PRODUCTION FUNCTIONS	. 87
	General Notion of the Production Function Cobb-Douglas Production Function CES Production Functions Summary	. 94 . 97
VII	ANALYTIC APPROACH TO IMPACT ESTIMATES	. 99
	The Use of Production Functions in Estimating Impact Magnitude	.109
VIII	SPECIFIC EFFECTS	.112

TABLE OF CONTENTS

C

(

(

Ċ

,÷

Chapter	
IX	CAPITAL COSTS
	Introduction
	Projections
X	AGENCY LABOR INPACTS
	The Scenarios
XI	MEASUREMENT OF PRODUCTIVITY
XII	THE INPACTS OF CONTEXT
	The Stagflation Scenario
XIII	COMMUNICATIONS LOAD
	The Center Areas
APPENDIX	ABBREVIATIONS AND ACRONYNS

ſ

C

\$c	Anter and anote here and anote the second and an and a second and a se
A c	
¥c.	
€ c	())))))))))))))))))))))))))))))))))))
9.	
€ c	inservition and their intrag of thirdraft (hyphese and first and so the
₽.,	Common Marketerer and and and and and and and and and and
ĕ.	
Φı	Windolme Apropo Million and and a second a second a second s
¥0.	
¥¥.	Meters at Marthan Mat 444 Clamp
**.	
N .	Have sendling that there are the send to be the send of the send o
₩¥.	Hour traduction function dant to contain the second constant, and the
¥8.	
₩ .	Haney Malletter Martha Martheauth
著作し	
₩₽.	the featthe constant flexing and threating for the state of the second s
ĥø"	We featthe Constant Sectors and Sectors and Sectors.
200 -	the teast to construct the statement of

ACUMENICS

♥ŤŤ

TARLER

ſ

Sale in

NAT LE SA 6 X

	24 c	Stapfielles Apperto: Air Traffie Costrol, Mc411 fles and Sput,mont Projections: 1980-1980
	380 c	Stapfiellas Secarto: Dumary of Improvements and Appliture to Terminal Pacilities and Spulpment: 1960-1960127
·	360	Stagfielies Scenarie: Dumary of improvements and ANNITIONS to the Space Pacilities and Symipsont: 1960-1960136
	786 c	Stapfiettes Semarte: Summery of Expresents and AND thene to Flight Service Statics Pacilities and Sputement: 1000-1000
	30 .	Thisses Growth Secondic: Annual Capital Consumption: Ate Treffle Control, Solected Pacilities and Spatement: 1000-2000
•	200 <	Chartel Cost Accurptions for the Satellite Dased Charmanetetters and Revigstics System
C	24.	Inste Grovin Scenarie: Anoual Capital Consumption: Are Profile Control, Spleeted Pacilities and Equipment 1999-2009
	10 L	
	# .	temperate of Avietics Activity and Staff Level Increases 150
	# .	Noney Staff- Stufflation Seconflation
		Apartes Staff- Telescel Grupth
	æ .	agency Staff - Angle Grouth
	50 .	
	57 ·	Center Steff- 421 Scenarios
	51	formened Staff Activity: All Seconflos - Stafflation Chartel
	59 .	Center Staff Activity: All Scenarios - Stagflation Chartel
L	94.	formened Staff: Inteneed Growth Capital, Rapid Growth and Stagflation Activity

TABLES

Proces

(

			Page
	, 35.	Center Staff: Balanced Growth Capital, Rapid Growth and Stagflation Activity	.162
	36.	Terminal Staff: Rapid Growth Capital, Balanced Growth and Stagflation Activity	.163
	37.	Center Staff: Rapid Growth Capital, Balanced Growth and Stagflation Activity	.166
	38.	FSS Personnel - All Scenarios	.167
	39.	Balanced Growth Capital - Balanced Growth Stagflation Activity	.169
	40.	Rapid Growth Capital - Other Scenario Activity	.169
	41.	TOPS/TERM	.172
C	42.	Stagflation Scenario	.177
C	43.	Balanced Growth Scenario	.179
	44.	Rapid Growth Scenario	.181
	45.	Impact Measures - Congruent Conditions	.185
	46.	Impact Measures - Stagflation	.186
	47.	Impact Measures - Balanced Growth	.187
	48.	Impact Measures - Rapid Growth	.189
	49.	Relative Efficiency - Non-Congruent Conditions	.192
	50.	Relative Efficiency - Non-Congruent Conditions	.193
·	51.	Relative Efficiency - Non-Congruent Conditions	.194
	52.	Terminal Area Radar Control Locations	.197
•	53.	Communications Data Summary	.198
	54.	Communications Content Per Aircraft-Terminal Area	.202
(55.	Balanced Growth Center Communications Load	.204

ACUMENICS

TABLES

C

.

(

3

C

. 56 .	Rapid Growth Center Communication Load
57.	Center Stagflation Communication Load
58.	Balanced Growth Terminal Communication Load
59.	Rapid Growth Terminal Communication Load
60.	Stagflation Terminal Communication Load
61.	Center Communication Load - All Scenarios
62.	Terminal Communication Load - All Scenarios

ACUMENICS

A CARLES CAR

Page

Charle Acordine on the Construct of the

<u>____</u>

C

.

(

(

1.	Function and Operational Aspects of Technology
2.	Communication Technologies and Present Vertables
3.	Information Flow
4.	
5.	Isoquate Illustrating Production Punctions
6.	Center Communication Lond - All Beenaries
7.	Terminal Compunication Load - All Second sec

ACUMENICS

× 1. 3

ACTIMENTOS

energia an island south of the estant to which future technology is there is no island controp will be a function of the capital investant invest. The efficiency of their capital and the future econario the entries of the capital and the future econario

C

the present without of the report is comprised of thirteen ent that has had the the total the . The general structure of the Astune to he ends of the total of the total of technology and the denortes completed for tantating effects (!!). The functions of when he wanted that the the ore then defined (!!!). A were the terms and the set of the set of the set of planed when we are not and a server offeets. The conceptual latro-HIPPEN TO REPAIN IN A WINE BUSINESSON OF production functions when any the provides the participant by a description of the anter the antimus want to the analysis (#\$\$). Part #\$\$\$ identifies whe even and any and the sum the offects to be estimated. the minimum of Announceme when announce and the transitionant for each wanter the attraction the same shifts. Smethans t to till propert the demand of stano te for any and save server is constant issue. Section tter action the million in the sector of the

II. NATURE OF TECHNOLOGY

The purpose of this section is to provide a basis for the classification of generic impacts. The creation of impact classification allows one to examine the nature of impacts and determine the generic effects of impact. The use of such classification schemes does not imply that one paradigm obtains for all technology. Rather, a classification scheme allows one to distinguish among types of effects so that a priori decisions about the focus of this study can be applied with some degree of efficiency.

A technology can be defined as that knowledge or set of physical objects that allow a "want" of man to be attained. As such, the technology and the use thereof are an attempt by mankind to overcome inherent physical or intellectual limitations. The adoption of technology occurs if man perceives that some function can best be performed using a human surrogate. The use of technology alters the way in which a function has been performed proviously. The non-human performance of function requires that a technology operate. The act of operation requires the consumption of resources and generation of by-products. The impacts of technology, therefore, derive from function and operation.

The effects of function refer to the purpose of technology in its societal context; such effects represent or are indicative of the consequences of a class of technologies fulfilling the

ACUMENICS

and the second of a strate of the second strategy and the second strategy and

ſ

same or similar societal objectives. The effects of operation refer to the consequences of a technology's "being". As such, the effects of operation are independent of social purpose. For example, man has expressed a must for controlly generated electrical power. The function can be performed using a number of evallable techsologies coal-fired power plants, hydroelectric power plants, oil-fired power plants and suclear power plants. The effects of the function are to provide an intermediate gami that settisfies needs and vents.

The magnitude of such functional effects wary with the specific technology. However, the effects of approtion are dependent upon the specific technology not the function performed. An such, each technology will have different tappets on noturel repourse requirements. In addition, each technology will yield different actual or potential by products, e.g., the petential depicturity force of nuclear vs. emal-fired power plants.

Operational effects do not influence the nature of functional effects. Nather, the act of operation influences the magnitude of functional effects. That is, the operation of a technology may alter the magnitude of process variables. Where process variables are defined as those parameters common to a class of technologies performing the same or similar societal functions. For example. process variables in communication include: time required to traverse the channel, quantity of information carried and operations

ACUMENICS

Ware structure and the few the few the few the few the few the

ŧ.

cases. The might have of each of himse terholized 4923 tert 4944 the "heads," got the hypotens, of a approxite contentage.

wat the state of the set of the set of the

the this cut of supplication, this testimation in the testimate diam the title Status Status has assume to all the addition of the to the the past frank that an a stranger of second half half. Manus at the ba and an and the state of the sta the method and a see the contract of the the of the the 14 in 12 14 ather we are a class, and the Participan of herein an new the second former antier terting the the the trate of the trate of the terting terting the terting terti the attacts of the communitients of the function with the ***** the agent in time that that any time is it and it is the tradet if manifility to be the set of a state of the set of the s where the the this maintrive to the example of the the state. the ground ages state to the same to the south the south the sector the south the sector the south the southet the south the south the south the south the south the s

might include: time, content, the nature of the transaction, ease of use, cost, etc. The relationship between various communication technologies and process variables is illustratively shown in Figure 2.

1) the application of technology occurs due to the derived demand for some other good or service,

- the effects of technology derive from its function and being,
- the effects of technologies having the same function are similar in kind but vary in degree,
- the magnitude of effects due to function vary with the magnitude of sundry process variables,
- 5) the effects of operation are due to the physical attributes of the technology,
- 6) the effects of a technology due to operation are independent of function, and
- 7) the operation effects of technologies having similar physical attributes are alike in kind but vary in degree.

While the notion of technology is complex and the effects of "being" vary with specific technologies, some general propositions concerning machines can be stated. It should be noted that the statements derive from the use of the technology (i.e., turning on the switch) rather than from fulfilling a societal objective. In this respect then, technology in use has the following results

ACUMENICS

		COMMUNICATION		TECHNOLOGIES		OCESS V	AND PROCESS VARIABLES	(
	Technology .	Cost of Infrastructure to User	Cost of Use	Ease of Use	Distance	Time	Content	, Nature of Transaction	. epom
	Television	Ŧ	L	ы	U	2	Λ	1	Ċı
	Radio	¥	1	83	ပ	7	>	1	S
	Newspaper	٦	X	I	ບ	W	•	1	M
	Book	Ъ	H	C	۵.	H	×	1	3
8	Telephone	¥	X	ы	υ	Г	X	0	0 .
	C.B.	æ	Г	M	U	Г	×	5	S
	H = High L = Low E = Low B = Easy M = Mcdium D = Difficult C = Close P = Par V = Varied X = Limited 1 = One Way W = Written P = Pictoral AP = Animated S = Spoken	t Pictoral							
				Fic	Fiaure 2				

attributable to operation:

A DATA A DATA DATA A REAL AND A DATA A LOS CALCADADADES AND IN A DATA

(

- 1) it serves and specifies social or economic functions,
- 2) it yields a product or service.
- 3) it is self-consuming,
- 4) it consumes energy,
- 5) it consumes resources necessary for the production of a good or provision of a service.
- 6) it emits excess energy
- 7) it causes noise,
- 8) it may cause air pollution,
- 9) it may influence the ecology.
- 10) it employs/displaces labor,
- 11) it substitutes for another technology,
- 12) there is a risk associated with operation--

i.e., non-operation, structural failure,

injury to labor.

Each of these "results" can be treated as variables and, to some extent, be measured. The specific variables associated with each result include:

<u>Result</u>

<u>Variable</u>

It serves a specific social Define function. or economic function. It yields a product or identify product or services.

Smark I

ſ

ſ

P (

includio.

\$5 cashesulters antantigs.

th alling the auto-antice antumfight

\$4 -----

the second state of the second s

th all blands (Weiblaring taken .

Et andret etigtime frast anterstämt

Phone is a fish anno faint

foreship of annoance (). An,

Businistic of Ampi same,

Allens without daminent

Allenges & The artificant these terrors and some

\$\$\$\$\$\$\$\$\$\$\$\$\$ \$\$\$\$\$\$\$\$\$\$\$ \$

MINETIGNE OF COMMUNICATIONS TECHNOLOGY IN AN AVIATION SETTING

Compared to the second state of the second state of

As noted is the preceding contion may uses tochoology to entiaty works. in doing co. tochoology cobstitutes for actions that may will, is able, or attempts to perform. The initial effect of terminology to the diminish man's role is the performance of spesifts functions. As such the division of labor between man and machine may remain constant or shift with the introduction of new terminology: The object of the change in the division of labor hereine uses the success of the change in the division of labor indention is the invel or shift with the introduction of new terminology: The object of the change in the division of labor indention is the invel or nature of the functions performed. Therefunds, it is necessary to identify and complet the functions of indent in this effurt.

Pubertsuter of Commission Links Technology

Phe surpose of the study is to identify and examine the likely affects on works of future eviation communications technology. In generol, the groups will be impacted by the adoption of new technoingr. First, were of the airspace system will be impacted. Such works the two of the airspace system will be impacted. Such works the two of the airspace system will be impacted. Such works the two of the airspace of pilots and aircraft owners including denoral aviation, truck and local service carriers, computer sittings, air task services, etc. The managers of the airspace system will be the second group to accrue impacts due to the adoption of medimetery. The airspace managers include various FAA operations the imponent arthonnel from ATC. ATT and FSS.

ACUMENICS

The effects of new technology will derive from the functions performed and/or needed by airspace users and managers. The magnitude of effects will depend upon the extent which new technology usurps existing or creates new functions. Therefore, to examine these effects one must identify functions requiring or compatable with the new technology. This section of the report will identify the airspace manager or user functions attendant to the National Aviation System.

Air Traffic Management

A 1974 study by TRW¹ prepared under the auspices of the Transportation System Center identified ten categories of air traffic management services. The ten categories include:

A. <u>Airport/Airspace Use Planning</u> - this service refers to the provision of strategic services for the establishment and/or modification of plans for airport and airspace use. The planning effort is designed to enhance user safety as well as improve the operating efficiency. The components of the service include flight planning process and development, national and local air traffic flow control, air

¹<u>Automation Applications In An Advanced Air Traffic</u> <u>Management System</u>, Volume IIA, Functional Analysis of Air Traffic Management. Prepared for Transportation Systems Center by TRV Systems Group (August 1974).

traffic conflict prevention, efficient allocation of airspace through planning, and the flight clearance process.

- B. <u>Flight Plan Conformance</u> the purpose of flight plan conformance includes the tactical effort required to implement the airport/airspace use plan. This includes direct discourse between airspace users and managers. The components of flight plan conformance include; monitoring of air traffic activity to determine deviations from the extant plan, definition of actions necessary and implementation of corrections to the plan, modifications of the plan, monitoring air traffic to identify conflicts in the airport/ airspace use plan, identification of and implementation of actions to ameliorate conflicts.
- C. <u>Separation Assurance</u> separation assurance is a tactical service designed to improve the level of user safety in airspace. The service includes conflict and collision prevention. Tactical conflict prevention includes the following components; monitoring and predicting violations of specific airspace. Tactical collision prevention includes; monitoring to determine actual violations of airspace and resolution of airspace violations.

ACUMENICS

D. <u>Space Control</u> - space control includes tastical services designed to increase the efficient use of available airspace. The components of spacing control include: rusway configurations scheduling and allocation of rusway "slets" for takeoffs and landings; the determination of the appropriate sequence of aircraft for landings, takeoffs and en route movement; and identification and adjustment of separation distance among aircraft.

- E. <u>Airborne</u>, <u>Landing and Ground Navigation</u> this service identifies and defines the location of aircraft at a discrete point in time.
- F. <u>Flight Advisory Service</u> this service provides isformation to the pilot during all phases of flight. The information provided includes data concerning weather, air traffic, facilities, routes, obstructions and procedures and regulations.
- G. <u>Information Services</u> information services provide pilots with a variety of data during pre-flight planning. Pilots may obtain information about weather, air traffic, facilities, routes, obstruction, and regulations and procedures.
- H. <u>Record Services</u> record services include the actions, events, and documentation necessary to permit operations records.

- Je <u>Martinský Šutvisup</u> z alimitýmick ambisum straktur Na produktur al kalimitytýmich ali aristologicku umbist talat die ta adativní terktur

ſ

- A. <u>Public Last 1</u> Provident of Plydre Provide sufficient of the The provident of prior impunction sufficient of the In provident planning.
- P. <u>Exection 2</u> Control Wellie Then Semples the first the series of ections and exemple thet hereine system demand and expective. It addition the number the stand. It is traffic field function includes the stand.

ACUMENICS

the second second and the second second second

- (*) <u>Andersteinent</u> B. Altrepressen Annaglien Anaph. : Alte destigerens of whethe Anaphric Manager and the Constant of the Alter Anaphric destigerens of Alter oppose we Anaphric Manager alter Alter Alter Anaphric destination. Alter oppose we descented with the Alter Alter Alter Alter Alter A Anaphric alter and descented with the Alter Alter Alter Alter Alter Alter Alter alter alter and descented with the Alter Alt
- Ф. <u>Фаластикан ў</u> ланны Атанына аны Анарланы Сланкана С Спользы Сланкана Сланк Спользы Сланкана С
- Contraction of a substance of the state o

- 1

ACT WENTER

G. <u>Punction 7</u> - Maintain Conformance to Flight Plan - The purpose of this function is to monitor whether or not an aircraft is being flown in conformance with the flight plan. Actual and predicted deviations from the flight plan are evaluated. Actions are implemented to correct dangerous situations caused by flight plan deviations.

- *• <u>Punction 0</u> Assure Separation of Aircraft The purpose of this function is to predict and aneliorate factual conflicts between aircraft.
- f. <u>Function 9</u> Control Spacing of Aircraft The purpose of this function is to sequence and schedule aircraft to allow optimal use of airspace and facilities.
- F. <u>Substitut 10</u> Provide Airborne, Landing, and Ground Novidetion Chambility - The purpose of this function is to provide sidenls that can be utilized by the silent to betermine aircraft position.
- T. <u>Calinitizat 15</u> Provide Siteraft Guidence The purpose of this function is to route the eiteraft to a disorate prevition weight summified mectors.

ACUMENICS

C

L. <u>Punction 12</u> - Provide Flight Advisories and instructions - The purpose of this function is to provide information to the pilot before and during planning.

(

C

(

-. . . .

- H. <u>Punction 13</u> Manduff The purpose of this tuber tion is to transfer the responsibility for manager ment of aircraft from one hir Troffic Ranagement (ATM) jurisdiction to another.
- N. <u>Punction 14</u> Maintain System Records The purpose of this function is to compile and store doesmentation necessary to record the history of sitspace operations statistical and special reports.
- O. <u>Function 15</u> Provide Ancillary and Special Services -The purpose of this function is to provide to system users special service deliberted in the controllers manuals.
- P. <u>Function 16</u> Provide Divergency Services 7% putpose of this function is to provide secondary special services in the event of an accident of failure.
- Q. <u>Function 17</u> Waintain System Capability and Status Information - The purpose of this function is to maintain a current database describing the status and capability of airspace.

ACUMENICS

The secondary functions delivered above are generic activilles. The is, and at more of the functions any support a specific and the solargery. The relationship between the seventeen generic functions are the ten service categories is shown in Table 1. The second behavior generic functions and service categories is designated by one of one following:

- P = 141+ function demonstrates a feetaton to the provision of services, and.
- 4 = 14to function description chat is used to implement a survice.

C

it enough to note that the relationships are identified. Information transfer seconds for 67% of the relationships; New science 19%, and actions 18%. Purther, setther decisions not actions means without information transfer. Thus, the provision of 47% service is information dependent.

It should be noted that seventeen generic functions do not exist in an isolated environment. That is, the performance of a specific function is dependent upon information obtained from other functions. In addition, the performance of a function often requires information transfer to or from a pilot. the aircraft, and other exogenous factors. The information transfer between functions and external sources is shown on Table 2.

ACUMENICS

Table 1

NELATIONNE MENG CENERIC FUNCTIONS NO SERVICE CATEGORIES

	- SERVICES	rt/olesson	212		pecies Central		africally a	ervices t piemise	heard ervices	5:	acy B
PRICTICIE							6. Filght	7. Info eer (citght	8. Record	9. Ameillary services	0. Bergenci services
1.	Provide flight planning information							IDA	I		-
2.	Control traffic flow	IDA	l I		l I	l	ł		l		
2.	Propage flight plan	1	(l	([I	1	I	
4.	Process flight plas	I	IDA	I	II	{	I		I		I
5.	tana clearances S clearance changes		IDA		IDA	{			I		
•.	Monitor eliminati progress		I	I	1				I	I	D
7.	Wistais conformace With flight plan	I	IDA	I	I				I		
•.	Abore separation of aircraft		I	IDA	I				I		{
9.	Control spacing of Alforatt	I	I		IDA						
10.	Provide airborne, lasting and ground mvigation capability					IDA					
11.	Provide alsonaft Guidance		IDA	IDA	IDA				I		IDA
12.	New flight advisory 5 instructions						IDA		T		I
13.	Madoff		IDA	IDA	IDA				I		
14.	Wintain system records	1							IDA		
15.	Provide ancillary & Special services		I	I	I		I		I	IDA	
16.	Stratices	I		I	+ 		I		r		
17.	Wintain system cam- bility & status information	I	I	I	I	I	I	I	I	I	I

I = Information

D = Decision A = Action

ſ

C

4

1

Source: Automatic Application in an Advanced Air Traffic Management System. Vol. 11A. Functional Analysis of Air Traffic Management. Prepared for Transportation System Center, DOT by TRW Systems Group, 1974. (Contract No. DOT-TSC-512-2a)

C 140le 2

(

INFORMATION FLOW ANONG FUNCTIONS

(

. פטק		>	~				~	~			~		<u> </u>				<u> </u>			
Soxy			>	>			>	>			>	<u>`</u>	<u> </u>	$\frac{2}{5}$	<u> </u>	<u>``</u>	~			
330V					_	~	~	~		~	~	~			>	~	>			
PLLOC	-	~	_	~	~														•	
17				~	_	~									~				$\overline{}$	~
	· .																	_		_
16				>	<u> </u>	<u>`</u>	<u> ></u>				>	\geq					>		>	~
15				>		-					_						>		>	>
14				>	>	>	>	>			>	>	>				>			>
13		>		>		>											>			<
12		>		>		>									>	>	>		>	>
11					>	>						>			>	>	>		>	· >
10														_						~
C		>		>	>	>											>			>
80					~	>									>		>		>	>
2				~.	>	~										>	>		>	>
9				>													>	_	>	>
5		>		>		>	>		>	_		_	>	_		>	>		>	>
4		>	>			>	>		>						>		>			~
e				>	>							_					>	>	_	>
3																•	>	>		>
1													_				>	>		~
FROM	-	63	m	4	5	e	2	80	6	10	11	12	13	14	15	16	17	Pilot	Acft (ai a

فالمستعسف فالعارف

-

Tables 1 and 2 identify the services and functions among which information is transferred for ATM. If communication is defined as movement of information from one location to another, the information in Tables 1 and 2 represents communication channels. As such, future communication technology could be adopted and/or could effect the relationships indicated in Tables 1 and 2. Further, examination of the relationship between functions and information flow requires a detailed description of the causal relationships between functions. Such relationships are portrayed in Figure 3. The detail provided in this diagram allows the potential uses of future communication technology to be identified. As such, the diagram will serve as a basis for identifying discrete tasks and functions that might be influenced by the adoption of new communication technology. The products and independent variables for each function are delineated in the following section.

Detailed Outline of Function of Communications Technology

The following section expands on the functions of communications technology shown in Table 1. A detailed outline of these functions is given to show whether the communication required is external to the system (E) or internal to the system (I).

ACUMENICS

r		Filme Information Planning	Communication
	1. Pra	ME 16 -	
	\$ c	Atopiased Flight Planning Information	
	، ا	Prenantited Flight Plaasing Information	£
	7. INto	gendent Tertables	
	۰ ه	Request for Flight Planning Information by Pilot.	
	\$₀	Maintain System Capability (Punction 17)	t
c	<u>Cue Leni</u>	Tentile fire	
	¥. ##**	ipue 1 a	t
	۰.	Poleted heservalian	
	۴. د		E
		with Alternate Available Fines	E
	<u>ب</u>	Custimet Reserve Lions	
	۴.	Perminel Jurisviiction Potal Dunand as a Punction of Time	t
	۰.	terminel melays	t
	4.	Perminal Nelease Quotas	•
	¢.	En route Jurisdiction Neiense Quotas	t
	۴.	the Capacity (Netland	

C

.

~

.

ACUMENICS
Communication Required Independent Variables: 2. Exogenous Sources ٤. Flow control paradigm Ε Time Stimulus List of Terminal Jurisdictions T in ATM System Commercial Schedules E Pilot Request to Establish **b**. Е or Cancel Reservation Maintain System Capability T c. (Punction 17) C. Prepare Flight Plan Ε 1. Products: Ε a. Cancel Flight Plan Submitted Flight Plan ь. Independent Variables: 2. **Pilot** .. Ε Decision to use airspace intentions Aircraft capability and status Status of Onboard Equipment Pilot Qualifications Aircraft Identification and Type Issue Clearance and Clearance Ъ. Ε Changes (Function 5) Ε **Process Flight Plan (Function 4)** c. Ι Maintain System Capability (Function 17) d. **Exogenous Sources** e. Ε Flight Plan Format E Consistency Checking Paradigm

D. Process Flight Plan

1. Products:

2.

Intended Time position Profile Ι а. Priority of Proposed Flight Plan I b. Inform Pilot of Flight Plan Approval Ε с. Inform Pilot that Flight Plan must be d. Ε Changed Ε Accepted Flight Plan e. Ε Cancellation of Flight Plan f. Ε Define Communication Channels g. Between Aircraft and ATM System Ε h. Special Services Required Independent Variables: Maintain System Capability (Function 17) Ι a. T Control Traffic Flow (Function 2) b. Terminal release quotas 1. En route jurisdiction release quotas 2. Submitted Flight Plan (Function 3) E с. Τ Monitor Aircraft Progress (Function 6) d. Correlated position and identi-1. fication 2. Predicted long range time-position profile Ε Maintain Conformance with Flight Plan e. (Function 7) - Proposed Flight Plan Revision f. Control Spacing of Aircraft Ι Proposed revised flight plan 1. Provide Ancillary and Special Services E g. h. Exogenous Approval criteria 1. 2. Priority criteria

	-			Communic Requi
		ī.	Pilot	
			 Acceptance of Flight Plan Request for Flight Plan cancellation 	E Da I
Ξ.	Iss	uanc	e and Changes in Clearance	
	1.	Pro	oducts:	
		b. c. d. e. f.	Proceed to Alternate Request Approach Flight Plan Tolerances Vectoring Requirements Transmit Clearance Unable to Issue Clearance Issued Clearance	e e e e e e
	2.	Ind	ependent Variables:	
		a.	Exogenous Sources	
			 Identification code usage procedure Time stimulus Identify Code Paradigm Terminated Code Assignment Clearance Format 	es I
		b.	Control Traffic Flow (Function 2)	
			 Terminal Release Quotas En route Jurisdiction Release 	I I
		c.	Process Flight Plan (Function 4)	
			1. Accepted Flight Plan	I
		đ.	Monitor Aircraft Progress (Function 6)	
			 Long range predicted time-position profile Correlated position and 	I
			identification	I

C

(

(

1

ACUMENICS

r E
1
)
l l
•
, £
1
1
ļ.
E

16162

(

C

(

γ.

 . . .

. Édullandentellentelle fingel ingelisione All againstation ¥. 带狂的 的过去分词 计分子 化合金 化合金 化合金 化合金化合金法 Part Andrew Allender Allen * Washers graden & hards galde & Restrict a 2 Ł #14.640 # 14.000 # 400000 # 40 m \$ Bis des al à statement à Republic à Republic \$,\$ ٠. the first and gest the states in a stranger 1.0 ٤. All representer all a gate a d'a get a d'appendie and at 1 de la composición de la comp the transferrer frederer denter a water alle all and \$ ±_∎ Bereinen finnen anter enter 1. 4 ٠. 🔹 唐书:明书:黄字子:1日日 黄泽子 **ب** ا 輩. ----ŧ Hereit a strange an adates and and a ŧ L the state the set find and the state of the Antist the 5. 274 mpt 10 4.0 * 格。 《新林书书书书》中他,家园林中书书书书的书 制合,子子和中子子和子。 牛子和后 1 ÷. 推荐10月60月6月1日 有关资格的 古法的的 中国的资格学校的 (方法) 2010年1月1日。 State 1-201 - 1-2010年前前日十十十 **†** t. Clouged 199044 2904 \$ 偏子 建氯基 制化的复数形式的时候 计中心分词 中的部分 化二酚医学不足 Attendet Tinig ant gitters

(

. 5

(

C

(

;

€ r	ite an a provinsi the armstant Tage (\$.
₩ -e	\$P\$1033000000000000000000000000000000000	
	the seast at the it asset to ask the stand of the stand	
	Allera hay is a spire of	\$
i e .	All conferences and the second second second second	
	REGARG ARAS	\$
ï	alleost is a substate alternation from the target is a store	
		4
	Sectore	
•	With the and comment to the the and the bis case	\$
t	Manananana tao goi tota (the franking tag out and a	
	n∰ : 4:n,F.@HetseB (Berkij Gille)	\$
• • ••	the filteren finst fin an e fitte fant antiten timtestiff	
	namenta ta fan it in the and the state is a state	\$
-+	·····································	
		+
	the lates for feasts to a state of the states	
•	\$\$\$(****\$	
	5	ŧ
	多。 建筑主接持力 波压曲路 接持医雨桥医内面	7
	\$\$\$\$\$\$\$\$\$\$\$\$\$ \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$	
	€141€ Big dram Big a	\$
۴.	and the second second second second second second	
	· \$ \$ \$ \$ \$ \$ \$ \$ \$	
	1.1. \$P\$1.1.11 (1.1.11) (1.1.11) (1.1.11) (1.1.11) (1.1.11) (1.1.11) (1.1.11)	7
• .	Mall 2 中山桥,黄子中山市黄耆市,黄桥山陵中西南西,《常 Hell 4 平山Hel BC	
	11、 - Mar an Hall 11、 · · · · · · · · · · · · · · · · · ·	1
	think - martine - the states - the states - the state - the	
	990	7

Computication Beguired

	•	 Long-term predicted time-position profile 	1
		4. Correlated position and identi- fication	t
	d.	Provide Dnergency Services (Function 16):	
		 Inergency flight plan Revised emergency flight plan Bnergency ended 	
	•.	Fron exogenous source:	
		1. Time stimulus 2. System capacity to perform Function 7	t
	f.	Fron aircraft:	
		 Statement of preference for correction back to flight plan Statement of preference for revision of flight plan 	t t
	E •	Maintain System Capability and Status Information (Function 17):	1
		1. Active flight plan count	
Н.	Assure	Separation of Aircraft	
	1. Pro	ducts:	
	•	Rich implanted conflict mice	•

ſ

2

-

-	uign iminence conffict build	4
b.	No action required	1
с.	Careful monitoring required	1
d.	Performance correction required	1
	Transmitted performance change	
	Ressage	Ē
f.	Transmission required	E
g.	Revision required (of performance	
-	Ressage)	1
h.	Revision not required	1
i .	Action classification updated	1

•	Ŧ		
3.		ependent Variables	
	۹.	Fran exagenous source:	
		1. Time stimulus 2. Destination of airspace volumes	
		for conflict detection	I
		3. Destination of time intervals for conflict detection	T
		4. Path probability paradign	Î
		5. Update cycle time	
	b.	Monitor Aircraft Progress (Function 6):	
		 Predicted short-range time-position profile for the aircraft 	I
		2. Predicted long-range time-position	
		profile for the aircraft	I
		3. Current aircraft capability (includes performance capability and user class)	I
	¢.	Provide Ancillary and Special Services (Function 15):	
		1. Definition of special separation minima 2. Special service no longer required	I I
	d.	from the AircrAft:	
		 Acknowledgement (of performance change message) 	E
	e.	Maintain System Capability and Status Information (Function 17):	
		 Stored database iten (rules and procedures-minimum separation standards) 	I
	f.	Issue Clearance and Clearance Changes (Function 5)	
		1. Clearance issued	E

-.

(

C

.

' (

Con	trol	Spacing of Aircraft	
1.	Pro	oducts:	
	٤.	Acceptable distribution (spacing not required)	I
	ъ.	No ETA/ETD changes required	
	c.	Performance necessary to implement sequence change	I
	d.	Revised flight plan	E
2.	Ind	lependent Variables:	
	a.	Control Traffic Flow (Function 2):	
		1. Terminal/jurisdiction total demand as a function of time	I
	b.	Process Flight Plan (Function 4):	
		 Priority of the proposed flight plan Accepted flight plan 	I I
	с.	Issue Clearance and Clearance Changes (Function 5)	
		 Flight plan tolerances Request approach 	I E
	d.	Monitor Aircraft Progress (Function 6)	
		1. Predicted short-range time-position profile for the aircraft	I
		2. Predicted long-range time-position profile for the aircraft	I
		3. Current aircraft capability (includes performance capability and user class)	I

.....

I.

(

C

l

e. Maintain System Capability and Status Information (Function 17):

1.	Stored weather sequences	I
2.	Stored weather forecasts	I
3.	Stored database items	I
	(rules and procedures - minimum allowable separation), (ground facilities status)	
4.	Stored user class database items	I

f. From exogenous source:

1.	Baseline capacity	I
2.	Time stimulus	I
3.	Criteria of excess demand and slack	I

J. <u>Provide Airborne, Landing and Ground Navigation</u> Capability

1. Products:

C

a.	En route navigation signals	E
b.	Landing navigation signals	E
c.	Ground navigation signals	E

2. Independent Variables:

The specific inputs are a function of the implementation chosen for the navigation subsystem but consist of some form of the following from exogenous sources:

- a. Geographic location of the nav aid
- b. A time reference
- c. The navigation system structure

Note:

(

The airborne, landing and ground navigation service provides a position location capability which is available for use by the aircraft. It does not determine an aircraft's position, merely provides signals which may be used onboard the aircraft to make that determination. These signals are produced and transmitted by the equipment. Their production places no demands on the "controllers." This results in the "function" which produces that service being considerably different from the other ATM functions.

This function does not utilize inputs produced by the other functions, nor produce outputs used by them. It does not require a series of man-machine interactions to produce the service provided.

There are, of course, monitoring, calibration, and maintenance tasks which must be performed. However, monitoring to determine if the function equipment is operating properly has been included with similar tasks in Function 17, Maintenance System Capability and Status Information. The nature of calibration and maintenance activities are a function of system implementation. They are not generic air traffic management activities. Therefore, the analysis of Function J has not been extended to the subfunction level.

> Communication Required

K. Provide Aircraft Guidance

1. Products:

2.

a.	Vectoring not required	I
b.	Transmitted vectoring message	Ε
с.	Responding as commanded	Ε
d.	Not responding as commanded, retransmit	E
e.	Not responding as commanded, declare emergency	E
Ind	ependent Variables:	
a.	Monitor Aircraft Progress (Function 6):	
	1. Correlated position and identification	I

ь.	Maintain System Capability and Status Information (Function 17)	
	 Stored weather sequences Stored weather forecasts Stored severe weather phenomena data 	1
	4. Stored database items (flight bazard information)	r T
c.	Provide Emergency Services (Function 16)	
	1. Description of guidance assistance required	£
d.	Provide Ancillary and Special Services (Function 15):	
	1. Description of guidance assistance required	E
e.	Issue Clearance and Clearance Changes (Function 5):	E
	1. Vectoring requirement	
ſ.	Provide Flight Advisories and Instruction:	
	1. Vectoring desired	E
g .	From Aircraft:	
	 Vectoring request Heading Airspeed Vertical speed 	
h.	Fron exogenous source:	
	1. Vectoring message format	E

C

(

(

Communication Beautrad

L. Provide Flight Advisories and instruction 1. Products: Actaoute to Incanabeliania ۰. (for information) £ information requested not available **D**. £ Treasmitted preformatted utvisory ¢., 1966649 £ 4. Trunsmitted special response £ Transmitted message to attot **e**. £ t. Vectoring desired £ 1. No vectoring desired Ē No applicable aircraft (i.e., on **N**. alreraft and the information) ŧ 1. No response ŧ. 2. Independent Variables Maintain System Capability and ê. Status Information (Punction 17) Stored vestber sequences 1. t 2. Stored weather forecasts t 3. Stored Satabase items (fules and procedures) (route information) (airspace restrictions information) (hecerds to flight information) (CTUM_ NAV system status) (ground facilities status) 4. Stored user class database item 1 5. Stored traffic data t Printents (VOTANS) \$. 1 7. Volce tapes t 9. Electronic displays 1 b. Process Plight Plan (Punction 4): 1. Accepted flight plan 1

C

•	Ŧ		nication quired
	ę.	Nonitor Aircraft Progress (Punction 6)	
		 Correlated position and identi- fication 	I
		2. Short-range predicted time-position profile for the aircraft	r
	4.	From Exogenous Source:	
		 Response message format Acknowledgement message format Flight advisory distribution paradign 	E E
		 Advisory priority distribution paradign Alert neusage format Time stimulus 	E E
	e.	From the atroraft:	
		1. Pilot information request message 2. Pilot's response 3. No response	e E E
	t.	Control Traffic Flow (Function 2):	
		1. Terminal delays	I
	E •	Provide Ancillary and Special Service (Punction 15)	
		1. Description of required advisories	E
	Þ.	Provide Emergency Service (Function 16)	
		1. Description of required technical instructions	E
	<u>do[[</u>		
1.	Pro	ducts:	
	±. b.	Ground-to-ground handoff not required No air-to-ground/ground-to-air handoff	I
		required	I

.

1

(

2

	c. d. e. f.	Handoff not acceptable Functions transferred Responsible facility Communication channel	I I I I
2.	Ind	ependent Variables:	
	٤.	Process Flight Plan (Function 4):	
		1. Accepted flight plan	I
	ь.	Monitor Aircraft Progress (Function 6)	
		1. Correlated position and identification	I
	c.	Maintain System Capability and Status Information (Function 17):	
		 Stored weather sequences Stored weather forecasts Stored database items (rules and procedures) (airspace structure and jurisdictional boundary information) (airspace restriction information) (hazards to flight information) (COMM-NAV system status) From exogenous source: a. Pilot's request (for ground/air handoff) b. Assignment paradigm c. Time stimulus Control Traffic Flow (Function 2): 	I I E I
		a. Terminal release quotas b. En route jurisdiction release quotas	I I
Main	ntair	n System Records	
1.	Proc	lucts:	
	a. b.	Operational report not required Completed statistical or special reports	I I

272

(

C

N.

. .

-	T]	enendent Venichles	
2.	Ind	ependent Variables:	
	a.	Process Flight Plan (Function 4)	
		 Accepted flight plan Cancellation of the flight plan Communication links to be used between aircraft and ATM system 	I E E
	b.	Issue Clearance and Clearance Changes (Function 5)	
		1. Transmitted clearance	E
	c.	Monitor Aircraft Progress (Function 6):	
		 Actual time-position profile Current aircraft status Current aircraft capability 	I I I
	d.	Maintain Conformance with Flight Plan (Function 7)	
		 Conflicts identified by location, time and aircraft involved 	I
		2. Closed flight plan	E
		3. Present out-of-tolerance deviations from flight plan (x, y, h and t)	I
		4. Short-range predicted out-of- tolerance deviations from flight plan (x, y, and h)	I
		5. Long-range predicted out-of- tolerance deviations from flight plan (t)	I
		6. Statement from pilot that he prefers correction of performance in order to return to existing flight plan	E
		7. Statement from pilot that he prefers a revised flight plan	E

(.

C

(

	1. High imminence conflict pairs
	2. Performance correction required
	3. Careful monitoring required
	4. Transmitted performance change message
	5. Transmission required
	6. Performance change revision required
f.	Provide Aircraft Guidance: (Function 11)
	1. Transmitted vectoring message
	2. Responding as commanded
	3. Not responding as commanded, retransmi
	4. Not responding as commanded, declare emergency
g.	Provide Flight Advisories and Instruction
	(Function 12):
	 Transmitted preformatted message to pilot
	2. Transmitted specially formatted
	message to pilot
	3. Transmitted message (severe weather
	warning) to pilot
	4. No response (to severe weather warning
	5. Vectoring desired
	6. No vectoring desired
h.	Handoff (Function 13)
	1. Responsible facility
	2. Functions transferred
	3. Communication channel
i.	Maintain System Capability and Status
	Informaion (Function 17)

(

C

(

-			Require
	j.	From exogenous source:	
		1. Classification paradigm	I
		2. Database form and format criteria	Ī
		3. Database storage paradigm	I
		4. Operational report information 5. Additional required information	1
		(not in database)	E
		6. Request for special report	I
		7. List of stored formats available	I
		8. Recurring reports schedule	I
Prov	vide	Ancillary and Special Services	
1.	Pro	ducts:	
	a.	Special service no longer required	E
	b.	Cease action because of safety	E E I E
	C.	New flight plan priority	E
	d.	Definition of area of restriction Description of guidance required	F 1
	e. f.	Definition of special separation	
	+ •	minima	E
	g.	Description of required advisories	E
	h.	Description of NOTAM requirement	E
	i .	No new flight plan priority required	E
	j.	No area of restiction required	E
		No guidance required	E E E
			E
		Advisories not required	E
_		NOTAM not required	C.
2.	Ind	ependent Variables:	
	a.	Process Flight Plan (Function 4):	
		 Special services required Priority of the proposed flight plan 	E t I
	b.	Maintain System Capability and Status	- •
	υ.	(Function 17)	
		 Stored database items (rules and procedures) 	I

(

C

(

Ĩ

0.

Cimmun 3.681	1 a h
Booul Po	e

¢.	from the atroraft	
	1. Angunat for aportal corates	€.
	2. Information recording programs at service	₽
4.	Fran etagenous wource	
	1. Angunat for symplet analytics	\$
	2. Information reparting progress of correspondences	
		\$.
109		•
		•
Prs		•
Prs	Energenet Services rivels Information request (for additional Information about the emergenery)	•
Prs	Energenet Services rivels Information requiret (for additional information about the energener) Description of required (methics)	•
P743 8. b.	Energenet Services rivels Information about the energeness Rescription of required (methales) Instructions	•
Prs	Energence Services Plusta Information request (for additional Information about the emergences) Rescription of required (methics) Instructions Description of guidance againtance	•
P75	Energenet Sprviews riugts Information requiret (for additional Information about the emergenery) Description of required technical Instructions Description of guidence agetatence required	•

P. Pro

1.

(

C

l

	information about the emergency (. 🕴
b.	Rescription of required inclusions	
	Instructions	\$
¢.	Rescription of guidence enclotence	
	regulred	\$
₫.	Assistance instructions (to easiering	
	alferaft)	\$
e.		
		ŧ
t.	Instructions to provide dround support	ŗ
	1551512460	†
€.	Instructions to cancel dround support	-
	assistance	¢
ħ.	Whe regained (troubl support assistance,	_
	assistance from other alteraft, technical	
	instructions. Avidance >	ŧ
i.		Ŧ
Ŧ.	Instructions to change to energener	
	commutentions link	Ŧ
R .	Derkenor flicht plan	;
1.	Revised emergency flight plan	Ē
۹.	Dierkency endel	Ē

Communication

.

۰.		
	t. ARTITIONS BURGLION INFORMETION	
	5. ANTOSTASTASTASTASTASTASTASTASTASTASTASTASTAS	
	at elatine at the energency	
њ.	Monthe Attractor (Function C)	
	to there a the transmission of the transmission	
	he affend fange a an fan f	
	为。 Chuptonk有 白菜用化用白菜片 医白白白肠清草菜有菜的粉	
	±, «Mattaction) in a line is a line in the stand stands of the stands of	
¢ e		
	ц. П раф іра фа ў лены сў леў а дст	
ŧ.c	Provident Tright Attinuities and Instaction	
	(FIR ¹ gable # € aub. \$2.2)	
	5. \$4\$ of Metson wat som 33 bhile	
۰	\$Proprime 并至重要的生素等的物(带的物质有重的的 集)	
	答。 · 斯··································	
	2. Slammuni oftan Jinka 1a we used between aiforation and 87% exatem	
₹.		
	(第1gadelの方言(made) 一字)	
	to be advised toxities on the transferrence flert	
۰.	Phanel # # # # # # # # # # # # # # # # # # #	
	t Vant van som fisse as commatised tottstelligt	

C

Į

	•			
		b.	Maintain System Capability and Status Information (Function 17):	
			1. Stored weather sequences	I
			2. Stored weather forecasts 3. Ground facilities status database	I
			iten	I
Q.	Mai	ntai	n System Capability and Status Information	
	1.	Pro	ducts:	
				I
		b.		1
			Transmitted weather observation report	E I
		a. e.	Purged data Stored database items	I I
		σ.	(rules and procedures)	4
			(airspace structure and jurisdictional	
			boundary information)	
			(route information)	
			(airspace restriction information)	
			(flight hazard information)	
			(CONH-NAV system status) (ground facilities status)	
		ſ.		I
			Stored user class database items	i
		-	Active flight plan count	Ī
			ETA's and ETD's by destination and origin	I
			ETOV's by jurisdictional boundary	1
			Stored traffic data	I
			Preformatted data module not required	I
			Printouts (NOTAMS) Voice tapes	I I
			Electronic displays	I
			Stored weather sequences	Ť
		r •		*

,

2. Independent Variables:

- a. From Exogenous Sources:
 - 1. Time stimulus
 - 2. Weather sensors data
 - 3. Veather observation report schedule
 - 4. Weather observation report criteria
 - 5. Weather transmission schedule
 - 6. Position and movement of severe weather phenomena

- 7. Weather sequences
- 8. Weather forecasts
- 9. Weather charts
- 10. Weather route summaries
- 11. Rules and procedures change information
- 12. Airspace structure and jurisdictional
- boundary change information 13. Route change information
- 14. Airspace restriction change information
- 15. Hazards to flight change information
- 16. NAV equipment status
- 17. COMN equipment status
- 18. Ground facilities status
- 19. Pilot qualification changes
- 20. Aircraft capability changes
- 21. Avionics changes
- 22. Event counting criteria
- 23. Preformatted data module criteria
- b. From the aircraft:
 - 1. PIREPS
 - 2. NAV equipment status
 - 3. COMM equipment status
 - 4. Ground facilities status
- c. Monitor Aircraft Progress (Function 6)
 - 1. Correlated position and identification
- d. Process Flight Plan (Function 4)
 - 1. Accepted flight plan

- e. Maintain Conformance with Flight Plan (Function 7)
 - 1. Closed flight plan

C

- f. Provide Ancillary and Special Services (Function 15):
 - 1. Description of NOTAM requirements

- 2. Definition of area of restriction
- 3. Description of required advisories
- 4. Special service no longer required

The preceding section delineated the components of each function. The critical factors or performance parameters for each function are shown in Figure 4. Any system construct should consider the variables identified in Figure 4.

PERFORMANCE PARAMETERS

(

C

(

R

	·····		r		1	•	r					r
Punction	Description	Product		Capa- city	Completa-	Flexi- bility	Valid- ity	Avail- abilit	Util- ity	Time-	Speed	Reneval
1.	Provide Flight Plan Information	IDA		x	x	X	x	x	x			
3.	Control Traffic Flow	IDA	x	l	x	x	x		{			
3.	Prepare, Flight Plan	т	x	l	x	x	x		ļ	x	ł	
4.	Process Flight Plan	IDA	x	x	x	x	x	x	x	x	ļ	
5.	Issue Clearance and clearance changes	TDA	x	{	x		x	x	{	×		
6.	Monitor Aircraft Progress	D		x	x		x		x	x		
7.	Maintain Conformance with Flight Plan	IDA	x	x		x	x		}	x		
8.	Assures Separation of Aircraft	IDA	x	x	x		x		x		x	
9.	Control Spacing of Aircraft	IDA	x				x			x		
10.	Provide Airborne, Landing & Ground Navigation Cability	IDA	x						ĺ	x		
11.	Provide Aircraft Guidance	IDA	x		x		x			x	x	
12.	Provide Flight Advis- ories and Instructions	IDA	x		x	x	x	x		x	x	
13.	Handoff	IDA	x	x		x	x	x	x	x		
14.	Maintain System Records	IDA	x	x	x		x		x			
15.	Provide Ancillary & Special Services	IDA				x						
16.	Provide Fmergency Services	IDA				x				x		
17.	Maintain System Capability and Status Information	I	x	x	x	x	x	x	x	x	x	x

FIGURE 4

Pilot Functions

The astached Tables 3 through 8 examine the major functions performed by pilots. Related functions are grouped into six areas:

Flight path control Collision avoidance Navigation Operation and monitoring of aircraft engines and systems Command decisions Flight documentation

It should be noted that in the above construct some functions occur in more than one area. Also, a function in one area may be contributory to a function in a different area. Basic pilot functions and other factors are using IFR air carrier operations as a paradigm. Other, less sophisticated types of aircraft operations may not require every pilot function listed or they may be performed in a different way.

In determining and evaluating the effects of future technology, the need for communications is derived from the need to perform the pilot functions that are delineated in the attached tables. Even though the literature describes communication as a separate functional area, it is not considered a basic pilot function in this report. Rather, communication is viewed as a necessary means to perform a basic function. This method permits one to analyze communications in the context of functions which must be performed in flying. In this way, one can identify which communication technology may be appropriate for performing the basic pilot functions more efficiently.

ACUMENICS

Communications functions, as currently performed, are identified for each pilot function. Functions contributing to basic pilot functions are also shown. These identify other elements which infringe upon the need for communications. Controlling elements associated with each function identify the methods for performing basic pilot functions. As such, controlling elements serve to define the structure of the current communications flow. New technology can alter the structure of communications flows. In fact, this must occur so that basic pilot functions can be performed more efficiently.

In the attached tables, communication functions are described as either internal or external. Internal communications (denoted by "I") are defined as those that occur within a particular system, i.e., an aircraft, an FSS, an enroute ATC Center, etc. Internal communications flows are described as either man-man, man-machine, or machine-machine. External communication functions (denoted by "E") are described as those which occur between systems, i.e., one aircraft to another aircraft, an aircraft to a radar scope, a pilot to a controller, etc. The same descriptions are used for external communication flows as are used for internal communication flows.

In assessing the potential of new technology to permit flight to be accomplished more efficiently, one must examine the communications requirements attendent to specific pilot functions. The

ACUMENICS

use of new technology can alter the elements used in the current communications flow. For example, a man-machine flow may be converted to a machine-machine flow through automation.

_

The data is this section indicates that the airspace management and aircraft operation have significant communication components. In particular, airspace management is primarily a set of communication functions. As such, communication technology in the context of the assessment effort is the entire complex of agency capital. That is, functions previously performed using air to ground voice communications coupled with pilot and controller judgement, have been replaced by technology to some extent. The technology improves the accuracy of the information, changes the nature of the information transferred, alters the location of the information terminal, but does not change the need for information.

The new stock of communication technology will alter the efficiency of agency capital. As such, it may shift more communications functions from man to machine. However, such communications functions will remain.

ACUMENICS

. . .

C

.

.

۰. ۰.

PLIGHT PATH COMBOL	RINCTIONS COMPLETING		COMMICATIONS FUNCTORS	
COMPARING OF ALTITUDE	RUNDA OF ATTACK	AUTOPILOT AUTONNOTTLE OF PILOT	MCHINE-MDHINE MCHINE-PLLOF	Ē
COMPARIOR OF ALTITURE	PLTCH	ANTOPILOT OF PILOT	MOTINE-MOTINE	ΞΞ
COMPARIAL OF SPEID	ANGLE of ATTMOX POWER	AUTOPILOT AUTORIOTTLE OF PILOT	MORINE-PRIOT	ÊÊ
COMPACE OF DIRECTION	RNEC NAVIGATION INSTRUMENTS	AUTOPILOT FLIGHT DIRECTOR OF PILOT	MOTINE-MOTINE MOTINE-PLLOT	ŝŝ
AIRPORT MRIVAL/INDMITURE	RAMA STD. APPRONOES STD. APPRONOES	PILOT COMPOLLER PUBLISHED THEO.		9 2
NDISE ABATBERT	CONTROL OF ALTITUDE CONTROL OF SPEED CONTROL OF DIRECTION	PILOT AUTOPILOT AUTOHNOTTLE LOCAL INSTILATIONS	MORTHE - MORTHE	ĒĒ

•

. .

-

R

C TABLE 4 COLLISION AVOIDANCE

. . . .

(

٩.

•

.

.

COLLISION AVOIDANCE FUNCTION	FUNCTIONS CONTRIBUTING	THE ELEMENT ELEMENT	COMMUNICATIONS FUNCTIONS	SNOL
			DILOR COMPANY I 20	Í
EXITZONAL SIMVEILLANCE	BCAS EQUIP. IN OTHER ATRAVART	BCAS	LOTI I - INITA	ÐE
	LOCATION OF AIRORAFT	RELIGION	MACHINE-CONTROLLER	(]
COMMUNICATIONS SURVEILLANCE	RADIO RECEIVER	PILOT	PILOT-PILOT	(B)
VERTICAL SEPARATION	conthol of Altitude Radar Mode C	PILOT AUTOPILICT AUTOPILICT	PILOT-CONTROLLER MACHINE-MACHINE MACHINE-PILOT MACHINE-CONTROLLER PILOT-CONTROLLER	<u>Beffe</u>
HORIZONTAL, SFJARATION	CONTROL OF SPEED CONTROL OF DIRECTON RAINAR TRANSPONDER	PILOT AUTOTHROTTLE AUTOPILOT CONTROLLER	MACHINE-MACHINE MACHINE-PILOT MACHINE-CONTROLLER PILOT-CONTROLLER	<u>effe</u>
TRACK SEPARATION	VERTICAL SEPARATION HORIZONTAL SEPARATION	HET FIOHUNCO	PILOT-CONTROLLER MACHINE-CONTROLLER	(E) (E)
SEPARATION FROM ENVIRORMENTAL HAZARDS	CONTROL OF ALTITUDE CONTROL OF DIRECTION	ALTIMETER RADAR GROUND PROXIMITY WARNING SYSTEM PILOT	MACHINE-PILOT	(EI)
EVASIVE ACTION	CONTROL OF FLIGHT PATH	PILOT PILOT PILOT	PILOT-CONTROLLER PILOT-PILOT	E)
CROUND HAZARD AVOIDANCE	CONTROL OF TAXI PATH	PILOT	HILOT-CONTROLLER	(E)
		GROUND CONTROLLER GROUND HANDLERS	PILOT-HANDLER	(E)
				ł

TABLE 5

NAVIGATION

. . . .

E

1. L. N. L. N.

C

(

۰.

- -

- - '

 ۰.

۰.

۰.

NAVIGATION FUNCTION	FUNCTIONS CONTRIBUTING	CONTROLLING ELEMENT	OOMMUNICATIONS FUNCTONS	SINO
CONTROL OF COURSE	control of Bank Radar	PILOT NAVIGATION INSTRUMENTS FLIGHT DIRECTOR OMEGA/VLF	PILOT-CONTROLLER MACHINE-PILOT MACHINE-CONTROLLER MACHINE-MACHINE	(E) (E) (E) (E) (E) (E) (E) (E) (E) (E)
ALTIMETER SETTING	ATOMOSPHIALE PRESSURE	PILOT TOWER/DEPARTURE CONTROL APPROACH CONTROL	PILOT-MACHINE PILOT-CONTROLLER	ĒĒ
COMPUTATION OF NAVIGATION DATA	WEATHER DESTINATION FLICHT PLANNING	PILOT FLIGHT DIRECTOR	PILOT-CONTROLLER PILOT-MACHINE	(E) (I)
OPERATION OF NAVIGATION EQUIPMENT	LOCATION	PILOT CONTROLLER	MACHINE-PILOT	(EI)
FLICHT PLANNING	LOCATION WEATHER	PILOT	HEFFIOHLNOD-LIOTIA	(E)

TABLE 6

C

ſ

OPERATION AND MONITORING OF AIRCRAFT ENGINES AND SYSTEMS

(

-

FUNCTION	FUNCTIONS CONTRIBUTING	CONTROLLING ELEMENT	COMMUNICATIONS FUNCTIONS	SNOL
PERFORM CHECKLIST	PHASE OF FLIGHT		PILOTIA-PILOTIA	(I)
		AIRCHARY PROCEDURES AIRCHART OPERATING MANUAL	MACHINE-PILOT	(1)
MOTIVE POWER	MONITORING OF ENGINE INSTRUMENTS	PILOT	MACHINE-PILOT	(1)
SYSTEM MONITORING		ANNUCIATOR FOR CONDITIONS	MACHINE-MACHINE	(I)
PRESSURIZATION SYSTEM MONITORING/SETTING		PILOT INSTRUMENTS	MACHINE-PILOT MACHINE-MACHINE	(1)
ELECTRICAL SYSTEM MONITORING		PILOT INSTRUMENTS	MACHINE-PILOT MACHINE-MACHINE	(I)
FULL SYSTEM MONITORING		PILOT INSTRUMENTS	MACHINE-PILOT MACHINE-MACHINEF	(1)
HYDRAULIC SYSTEM MONITORING		PILOT PILOT	MACHINE-PILOT MACHINE-MACHINE	(1)
PRE-PLICHT AND IN-PLICHT TEST AND PAULT DIAGNOSIS	MONITIORING OF SYSTEMS	PILOT INSTRUMENTS	MACH INE-PILOT	(1)
COMPUTATIONS AND INTERPRETATION OF INSTRUMENTS	COMPANY PROCEDURES AIRCRAFT FLICHT MANUAL	PILOT FLIGHT MANAGEMENT SYSTEM	MACHINE-PILOT	(1)

TABLE 7

(

•

C

ĩ

COMMAND DECISIONS

COMMAND DECISIONS FUNCTION	FUNCTIONS CONTRIBUTING	INTEREST SUITING	COMMUNICATIONS FUNCTONS	SNO
UNINNVTIA LIKUITA	ROUTE TIME	SSJ LOTId	NETTIONINOD-LOTIA	(E)
PERFORM EMEMPIENCY PROCEDURES	ALINGRAFT CONDITION WEATHER CONDITION ALINGRAFT POSITION	PLLOT	PILOT-CREW	(I)
CLEARANCE RECEIPT	TAKE-OPP DEPARTURE ENHOUTE ARRIVAL LANDING	PILOT TOLINO	HETTOHINCO-LOTId	(8)
RICRITY SETTING		CAPTAIN/PILOT	PILOT-CREW	(1)
CONFLICT RESOLUTION		APTAIN/PILOT	PILOT-CREW	(1)
CHEXCUIST INTERRITY	ALROADT CONDITION	CAPTAIN/PILOT	PILOT-CREW	(I)
MAINTAIN OPENATING PROCEDURE STANDARD	AIRCRAFT TYPE TYPE OF OPENATION GLEARANCES OBTAINED	CAPTAIN/PILLOT	PILOT-CREW	(I)
ACITOR WEATHER	WEATHER SPAVICE WEATHER RAMAR	PILOT	PILOT-CONTROLLER	(B)
MULTOR CREW ROLFS	REGIME OF PLICHT	PILOT/CAPTAIN	PILOT-CREW	Ξ
BRIFIP CRIMS	CREW HOLES PLICATE PLAN	PILOT/CAPTAIN	PILOT-CHER	(I)

· • .

·...*

٠...

TABLE B

PLICE DOUNDARY ATION

. . .

۰.

(

h (

۶

ſ

FLIGHT DOCIMENTATION PUNCTION	FUNCTIONS COMPLEXING		COMPACTIONS FUNCTIONS	
ALHART PERWARNET: LLFR	INSTRUMENTS AIN MATT CONDITIONS COMMINICATU MAINTRANCH FLLFHT ANNTRMLIT NUFFITS	CORNET FUNCTIONS	PIL/T-DISPATOWIK MJINTPANCK PIL/T	ତ୍ତି
PL. FORT LATES	AIRDAT RURS AIRDAT (DRIFFICE)	CORPANY PROCESSINGE PILOT PLOTE NEUR		<u>e</u> e
KOSTTHIN REPORTS		PILUT INISIMORIA	Million and Million and Million	Ð

• •

11. GENERIC AND ANTICIPATED EFFECTS

The evolution of new inition communication technology will not alter the system functions that need to be performed. Rather, technology will change the way in which such functions are performed. As such, new technology is likely to change the man-machine division of labor as well as decrease the time attendant to each function. Hencefic effects of new technology on users can be placed in the following categories system wide, agency staff; agency facilities.

The system-wide offects refer to major shifts that impact all parties. Such effects include but are not limited to:

a change in the methods for conduct of flight;

. change is the basis and method of navigation.

The mift in the basis and method of mavigation will have eignificant effects on users. In particular, new technology will change mavigation from a terrestrial to a space-based reference system. As such, the present type of segmented flight path will be eliminated. That is, flight paths dictated by the position of ground baset reference points will no longer be becessary. Rather, standard flight paths will be determined by the needs of the users and the agency. Future flight paths may well be segmented, but such definition will be referenced to airborne rather than terrestrial reference points.

ACUMENICS

The shift in the basis for navigation will alter the method of flight. That is, a pilot will not necessarily fly the same route with new technology as with old. In addition, new technology will allow the pilot to be more self sufficient, since the aircraft in a technical sense will be a flying TRACON.

Agency staff and capital will change significantly due to new technology. Likely effects of new technology will include, but not be limited to:

- increased substitution of capital for labor;
- increased capacity in terminal and en route airspace; and
- impacts due to the operation of the technology.

Increased substitution of capital for labor will result in an increased objective role for technology. The division of labor between man and machine will result in a reduction of the personnel requirement for many functions. In addition to reducing the number of personnel required per unit of activity, more capital intensive technology will change the nature and extent of responsibility for ATC personnel.

Increased capability in the terminal and en route environment will result from the widespread use of faster and more efficient technology. New technologies will provide more precise position, speed and altitude information on a more frequent basis. The technology will objectively analyze such information and issue directions to aircraft in the system. Aircraft will respond

ACUMENICS

more quickly owing to advances in automated control as well as the instantaneous availability of required information. As such, spacing minimums for en route and terminal airspace will be reduced. Further, better control will afford reduced spacing in approved patterns at airports. Diminished spacing will allow more aircraft to utilize runways per unit of time.

1

The operation of new technology will diminish the role of FSS personnel. Much of the information at present made available by FSS will be obtained by system users through automated communication. As such, the role of FSS personnel will be altered from information interpretation and provision to automated system management.

The availability of automated information conveyed by satellite or land lines will diminish the need for voice guard communication equipment. Communications among facilities with respect to traffic management will be between machines, not personnel.

Impacts in the user environment derive from the agency investment in capital. As such user impact will emanate from alternatives, in the method of navigation, and operations imposed by the agency adoption of new technology. New navigation techniques will require retraining of the extant cadre of pilots and different means of training for new pilots. In addition, increased agency dependence of automation will result in the demise of VFR flight, owing to the precision and order required by new technology.

ACUMENICS
Anticipated Effects

The purpose of this section is to summarize the expected gain in productivity of air traffic controllers as a result of at present planned ATC Automation, and to discuss the policy impacts of ATC Automation on job satisfaction.

The productivity gains are summarized for three discrete automation levels. The levels are consistent with the DOT/FAA plans for upgrading the Third generation ATC System discussed in <u>Controller Productivity Study</u> (FAA-EM-73-3), Section 1.2.

To quantify the effects of identified systematic changes to the automated system on controller staffing, the concept of "productivity gain" is used. In general, the productivity gain factor P, can be defined as the following ratio:

> P = (Demand Serviced per Controller in an Improved System) divided by (Demand Serviced per Controller in the system before improvement).

The "P" values for each automation level are assumed to apply in these years:

Automation Level	Comparison Year
NAS Stage A Model 3d	1976
Upgraded 3rd, Phase I	1980
Upgraded 3rd, Phase II	1985

The above comparisons are picked on the assumptions that: 1) The designated system has been fully deployed and has been operational long enough to assume that users and operators of the system are well up on the learning curve, and 2) the productivity contributions of the succeeding system have not yet been realized in a significant way.

Slippage of the assured schedule does not change the "P" values, but does change the year in which they apply. The characterizations of the automation levels are shown in Table 9.

Productivity of En Route Controllers

The combined productivity impact of both pre- and data link eras is estimated to be 2.19 due to automation.

- A. The contributors to en route ATC productivity are as follows:
 - 1. 3rd generation (NAS Stage A)
 - a. Automated Flight Data Processing/Forwarding
 - b. Automated Tracking Displays with Alphanumerics
 - c. Automatic and Manual Display Filtering
 - d. Surveillance Data Mosaicking
 - e. Simplified Clearance/Coordination Procedures
 - f. Centralized Flow Control

TABLE 9

(

(

AUTOMATION LEVELS CHARACTERIZED

SYSTEM GENERATION	CHARACTERIZATION
3rd	- NAS Stage A En Route - ARTS III plus Enhancement
Upgraded 3rd, Phase I	 Software additions to 3rd generation New controller work station design
Upgraded 3rd, Phase II	 RNAV Applications Discrete Address Beacon System (DABS) Extensive data link
	applications - Microwave Landing System (MLS) - Higher levels of automation for both ATC and FSS

Source: Controller Productivity Study (FAA-EM-73-3).

- 2. Upgraded 3rd, Phase I
 - a. Flight Plan Error Correction by Source
 - b. Automatic Clearance Coordination

- c. Conflict-Free Clearances, including 2D/3D RNAV
- d. Track Conflict Detection and Resolution Aids
- e. More Flexible Allocation of Local Control Capacity
- f. Man-Machine Interface Improvements (Device Software)
- g. Modifications to Three-Man Sector Design (to permit reduced manning under light loads)
- 3. Upgraded 3rd, Phase II
 - a. Automatic Clearance/Command Generation by ARTCC Computer
 - b. Automatic Clearance/Command Delivery via Data Link
 - c. Automatic IPC Services to Assure VFR/IFR Separation/Segregation
 - d. Terminal Area Metering Aids, including automatically scheduled clearances (2D or 3D)
 - e. Man-Machine Interface Improvements (possibly new display systems)
 - f. Two-Man Sector Design (operable by one man under light loads)

B. Average Number of Controllers Per Sector

One means to achieve en route ATC productivity gain is to reduce the average number of controllers per sector. This can be accomplished by: 1. Reducing support workload;

- 2. Revising control team organizations; and
- 3. Redesigning control positions.

C. Average Instantaneous Aircraft Count Per Sector

Another means to achieve en route ATC productivity gain is to increase the average Instantaneous Aircraft Count per sector. This can be accomplished by:

1. Increasing "radar" controller capacity; and

2. Increasing capacity utilization efficiency.

D. Trends in the En Route System

It is expected that in en route traffic will nearly double between 1982 and the end of the century. The controller staff required to operate this system would have to increase accordingly. The staffing requirements of the baseline system (without any automation) would grow from 16,000 in 1985 to 29,000 controllers by the year 2000. This represents a growth of about 80%. With the automation planned for the pre-data link era, the controller staff requirement would be reduced, but would still grow during the same period from 12,000 to 21,000 controllers or about 75%. Restricting the growth of the staffing requirements in the en route system is the objective of the advanced automation concepts for the en route system.

ACUMENICS

Increases in productivity between 1985 and 1990 would restrain the increase in staff in the en route systems by an estimated 92,000 man-years and result in a savings of 2.25 billion dollars.

Productivity in the Terminal Controllers

Controller productivity would increase as a result of implementing the Upgraded Third Generation Air Traffic Control Automation programs.

A summary of the combined productivity gains in terminal facilities is shown in Table 10.

- A. <u>The contributors to terminal ATC productivity are as</u> follows:
 - 1. 3rd Generation (ARTS IV, V)
 - a. Automated Flight Data Processing/Forwarding (by NAS Stage A)
 - b. Automated Tracking Displays with Alphanumerics
 - c. Automatic and Manual Display Filtering
 - d. Simplified Clearance/Coordination Procedures
 - e. Arrival Metering and Spacing Automation
 - 2. Upgraded 3rd, Phase I
 - a. Improved Metering and Spacing Automation
 - b. Automatic Clearance Coordination

- c. Conflict-Free Clearances, including 2D/3D RNAV
- d. Track Conflict Detection and Resolution Aids
- e. More Flexible Allocation of Local Control Capacity

- f. Man-Machine Interface Improvements (Device Software)
- 3. Upgraded 3rd, Phase II
 - a. Automatic Clearance/Command Generation by ARTCC Computer
 - b. Automatic Clearance/Command Delivery via Data Link
 - c. Automatic IPC Services to Assure VFR/IFR Separation/Segregation
 - d. Terminal Area Metering Aids, including automatically scheduled clearance (2D or 3D)
 - e. Automated Final Approach Monitoring on Close-Spaced Parallel Runways
 - f. Man-Machine Interface Improvements (possibly new display systems)
 - g. All-Weather Ground Guidance and Control

B. Average Control Capacity Per Team

One means to achieve terminal ATC productivity gain is to increase average control capacity per team.

- 1. Tower = ground controller and local controller.
- 2. TRACON = arrival, departure and area controllers.

C. Number of Support Positions Per Team

Another means to achieve terminal ATC productivity gain is to reduce the number of support positions per team.

- a) Tower = Clearance delivery, flight data, coordinators.
- b) TRACON = Radar assistants, flight data, coordinators.

D. Trends in the Terminal System

According to the latest FAA Forecasts, the traffic growth in the terminal system is expected to approximately double between 1985 and the year 2000. Accordingly, the staffing requirements would have to grow substantially in order to handle this traffic increase. Even when the productivity benefits from the implementation of the pre-data link improvements are realized, which would reduce the staffing requirements from those of the baseline system, the staffing of the ARTS-IV terminals is still expected to grow from approximately 5000 controllers to 9000 controllers. This represents a growth in the ARTS-III terminal staff of about 80%. Restricting this growth is the objective of advanced automation concepts for the terminal facilities in the data link era.

Increases in productivity between 1985 and 1990 would restrain the increase in staff in the terminal system by 22,00 man-years and result in a savings of .5 billion dollars.

Total (En Route and Terminal) O & M Cost

Growth in the baseline system means increasing the controller staff from 32,500 by 1985 to 55,000 by the year 2000. By then,

ACUMENICS

the cost of ATC is about 1,350 million dollars per year in terms of 1975 dollars. If the productivity impact of the improvements planned for the pre-data link era are fully realized, the growth would decrease in absolute value but the rate of growth beyond 1985 is not significantly impacted. Thus, staffing in the improved system would grow from 25,000 by 1985 to 45,000 controllers by the year 2000. Even with pre-data link improvements, the annual dollar cost for operating the ATC system at the end of the century is about 1.1 billion dollars. This is about a 20% decrease from the cost of the baseline system.

Approaches That Can Be Taken to Achieve Productivity Gains in Flight Service Stations

It is estimated that productivity gains from flight plan filing and briefings automation can most readily be achieved if one or more of the following approaches are taken:

- A. The pilot is encouraged to file his IFR or DVFR flight plan directly with the automated ATC system, thereby eliminating manual handling of individual flight plans by FSS specialists.
- B. The pilot is encouraged to serve himself in obtaining preflight weather and system status briefings, rather than depending upon personalized service by the FSS specialist.

C. Where personal briefing services are offered, automated aids are provided to the FSS specialist which significantly reduce the workload associated with these services.

- D. Search and rescue services are provided by a more costeffective method than the failure of the pilot to cancel his activated VFR flight plan. The problem is the cost of manually handling millions of VFR flight plans yearly to provide this service to a few hundred overdue aircraft.
- E. If VFR flight plans are needed, they are filed, activated, and cancelled directly by the pilot and/or the FSS specialist with an automated system. Entries would be automatically forwarded and booked at one or more centralized locations.

Ways to Achieve FSS Productivity Gains

Productivity in the delivery of flight services can be achieved in one or more of the following ways:

- A. Automate the delivery of Flight Services
 - 1. Automation aids to FSS specialists
 - 2. Pilot self-service automation
- B. Reduce number of Flight Service Stations required
 - 1. FAA's reconfiguration plan
 - 2. Centralization of service automation

Flight Service Trends

Of the many services extended by flight Service Stations, three stand out as the major determinants of the staff required. In order of importance to workload, they are:

- A. Flight plan handling (IFR, DVFR and VFR)
- B. Pilot briefings (pre-flight and in-flight)
- C. Air-ground communications (all contacts)

The total number of flight plans originated in FY 63 was 3.6 million, about evenly split between IFR and VFR. The current estimate for FY 72 is 6.5 million, with IFR-DVFR flight plans representing over half of the total. For the same period, briefings will have grown nearly 6 times from 2.4 million for FY 63 to 13.7 million in FY 72. Radio contacts will have increased from 7.4 million in FY 63 to 10.5 million in FY 72.

To provide all flight services the number of specialists employed at Flight Service Stations has remained relatively constant at around 4 thousand between FY 63 and FY 70. The present FAA plan calls for 4.6 thousand in FY 72. The increased volume of services delivered has been achieved to date through more efficient methods of operation and by cutting back other services.

Policy Impacts of ATC Automation: Human Factor Considerations

Implementation of new ATC systems will both require and induce changes in the processes by which the FAA functions. Operational

impacts would be felt in such areas as:

A. Policy review

- B. Program planning
- C. Resource allocation
- D. Management of ATC services and regulatory responsibilities. ATC automation will affect the following control processes:
 - 1. Sector traffic flow planning
 - 2. Aircraft flight path planning
 - 3. Separation assurance decision making
 - 4. Flight information decision making, and
 - 5. Control message transmission

As planning and tactical control become more automated, the controller's work stress and job satisfaction would be affected. Factors which describe pertinent performance capabilities of humans are:

A. Job satisfaction and motivation

- 1. Achievement work alignment
- 2. Recognition
- 3. Responsibility
- 4. Control authority
- 5. Utilization of perceived skills
- 6. Challenge discretionary flexibility
- 7. Performance feedback
- 8. Interest

ACUMENICS

B. Man-Machine Interface

- 1. Vigilance
- 2. Stress
- 3. Intricacy
- 4. Restrictiveness
- 5. Rigidity
- 6. Decision Making
- C. Failure-Mode Operations
 - 1. Failure recognition
 - 2. Failure recovery
 - 3. Failure operations

Factors and functions that will change and the reasons for those changes are shown in Table 11.

TABLE 11

P (

ł

FACTORS AND FUNCTIONS THAT WILL CHANGE

	FACTORS THAT WILL CHANGE	HOW AND WHY
I.	Productivity of enroute and terminal area air traffic controllers.	Controller productivity will <u>incresse</u> as a result of implementing the Upgraded Third Generation Air Traffic Control Automation programs.
		Terminal Facilities
		(1) Combined productivity gain impact of Advanced Automation on large terminal facilities (including both the IFR room and tower CAB) is shown in this report to be about 1.33.
		(2) The impact on medium ARTS-III facilities is shown to be about 1.25.
		(3) No impact on small facilities is expected.
		(4) Averaging the controller productivity gain over all ARTS-III facilities regardless of size results in a weighted average gain of 1.3.
		(5) Combining this with the average gain in ARTS-III facilities, regardless of size, results in a gain of 1.72.
		(6) Average productivity impact of non-ARTS-III facilities was evaluated to be 1.05 at the end of the pre-data link era.
		The following features of Advanced Automation are expected to have a significant impact on controller productivity in the terminal facilities:
		(1) Automatic Generation of Routine Control Messages
		(2) Automatic Delivery of Control Messages via Data Link
		(3) Advanced Metering and Spacing (Multiple Runway & Departure)

FACTORS THAT WILL CHANGE	HOW AND WHY
	En route Facilities
	(1) The potential impact of Advanced Automation is shown in this report to be a productivity gain of 1.62.
	(2) Combined productivity impact of both pre-data link and post data link eras is 2.19.
	(3) The productivity gain in the data link era due to improvements of that period increases linearly from unity to 1.62.
	The following features of Advanced Automation are expected to have a significant impact on controller productivity in the enroute facilities:
	(1) Flight Profile Generation
	(2) Sector Clearance Planning
	(3) Flight Progress Monitoring
	(4) Automatic Clearance Delivery
II. Staffing	Increase in productivity between 1985 & 1990 would restrain the increases in staff in both enroute and terminal systems. Substantial savings would result.
	Potential Savings (in Data Link Era):
	TerminalEnrouteStaff22,000 man years92,000 man years
	\$.5 billion 2.25 billion

۰.

1

(

F	ACTORS THAT WILL CHANGE	HOW AND WHY
III.	Workload	Workload would be <u>reduced</u> with the aid of automation which may result in a productivity gain.
IV.	Average Number of Controllers per Sector	One means to achieve enroute ATC productivity gains is to <u>reduce</u> the average number of controllers per sector This can be accomplished by:
		(1) reducing support workload;
		(2) revising control team organization; and
		(3) redesigning control positions
۷.	Average Instantaneous Aircraft Count per Sector	Another means to achieve enroute ATC productivity gain is to <u>increase</u> the average Instantaneous Aircraft Cour per sector. This can be accomplished by:
		(1) increasing "radar" controller capacity; and
		(2) increasing capacity utilization efficiency
		Contributors to Enroute ATC Productivity
		A. 3rd Generation (NAS Stage A)
		 (1) Automated Flight Data Processing/Forwarding (2) Automated Tracking Displays with Alphanumeric (3) Automatic & Manual Display Filtering (4) Surveillance Data Mosaicking (5) Simplified Clearance/Coordination Procedures (6) Centralized Flow Control
		B. Upgraded 3rd Phase I
		 Flight Plan Error Correction by Source Automatic Clearance Coordination Conflict-Free Clearances, including 2D/3D RNA Track Conflict Detection & Resolution Aids More Flexible Allocation of Local Control Capacity Man-Machine Interface Improvements (Device Software) Modifications to Three-Man Sector Design (to permit reduced manning under light loads)

FACTORS THAT WILL CHANGE	HOW AND WHY
	C. Upgraded 3rd Phase II
	(1) Automatic Clearance/Command Generation by ARTCC Computer
•	(2) Automatic Clearance/Command Delivery via Data Link
	(3) Automatic IPC Services to Assure VFR/IFR Separation/Segregation
	 (4) Terminal Area Metering Aids, including automatically scheduled clearances (2D or 3D)
	(5) Man-Machine Interface Improvements (Possibly new display systems)
	(6) Two-Man Sector Design (operable by one man under light loads)
VI. Average Control Capacity per Team	One means to achieve terminal ATC productivity gains is to <u>increase</u> average control capacity per team.
	(a) Tower: Ground Controller & Local Controller
	(b) TRACON: Radar Assistants, Flight Data, Coordinators
VII. Number of Support Positions per Team	Another means to achieve terminal ATC productivity gains is to <u>reduce</u> the number of support positions per team.
	(a) Tower: Clearance Delivery, Flight Data, Coordination
	(b) TRACON: Radar Assistants, Flight Data, Coordinators

ACUMENICS

FACTORS THAT WILL CHANGE	ļ		HOW AND WHY
	Cont	ribu	tors to Terminal ATC Productivity
			Generation (ARTS III, II): Automated Flight Data Processing/Forwarding (by NAS Stage A)
		(2)	Automated Tracking Displays with Alphanumerics
		(3)	Automatic & Manual Display Filtering
		(4)	Simplified Clearance/Coordination Procedures
		(5)	Arrival Metering & Spacing Automation
	в.	Upgr	aded 3rd, Phase I:
		(1)	Improved Metering & Spacing Automation
		(2)	Automatic Clearance Coordination
		(3)	Conflict-Free Clearances, including 2D/3D RNAV
		(4)	Track Conflict Detection & Resolution Aids
		(5)	Man-Machine Interface Improvements (Device Software)
	с.	Upgr	aded 3rd, Phase II:
		(1.)	Automatic Clearance/Command Generation
		(2)	Automatic Clearance/Command Delivery via Data Link
		(3)	Automated IPC Services to Assure VRF/IFR Separation/Segregation
		(4)	Terminal Area Metering Aids, including auto- matically scheduled (2D or 3D)
		(5)	Automated Final Approach Monitoring on Close-Spaced Parallel Runways
		(6)	All-weather Ground Guidance & Control

(5

(

	· · · · · · · · · · · · · · · · · · ·
FACTORS THAT WILL CHANGE	HOW AND WHY
VIII. Delivery of Flight Services	One means to achieve productivity in the delivery of flight services is to <u>automate</u> the delivery of flight services. This can be accomplished by: (1) Automation aids to FSS specialists; and (2) Pilot self-service automation
IX. Number of Flight Service Stations	Another means to achieve productivity in the delivery of flight services is to <u>reduce</u> the number of Flight Service Stations required. This can be accomplished by:
	(1) FAA's reconfiguration plan; and
	(2) Centralization of services automation
	Contributors to Flight Service Station Productivity
	(1) The forecast number of flight plans to be handled;
	(2) The number of individual pilot briefings to be given.
	Approaches to Achieve FSS Productivity Gains
	(1) The pilot is encouraged to file his IFR or DVFR flight plan directly with the automated ATC system, thereby eliminating manual handling of individual flight plans by FSS specialists.
	(2) The pilot is encouraged to serve himself in obtaining pre-flight weather and system status briefings, rather than depending upon personalized service by the FSS specialist.
	(3) Where personal briefing services are offered, automated aids are provided to the FSS specialist which significantly reduce the workload associated with these services.

۰.,

i.

F	ACTORS THAT WILL CHANGE	HOW AND WHY
		(4) Search and rescue services are provided by a more cost-effective method than the failure of the pilot to cancel his activated VFR flight plan.
		(5) If VFR flight plans are needed, they can be filed activated, and cancelled directly by the pilot and/or the FSS specialist with an automated system. Entries would be automatically forwarded and booked at one or more centralized locations.
х.	Policy Review; Program Planning; Resource Allocation; Management of ATC Services; and Regulatory Responsibili- ties	Implementation of new ATC systems will require and induce changes in the processes by which the FAA functions. Operational impacts would be felt in these areas.
XI.	Communications; Surveillance Navigation Procedures; Separation Standards; Airspace Sectorization; Sector Control Equipment; Sector Manning Strategies; and Airspace Traffic Flow Regulations	Changes in these areas will be caused by technological developments.

(

(

FAC	TORS TH	HAT WILL CHANGE	HOW AND WHY
	libti	actors Satisfaction & ivation Achievement - work alignment	These human factors decribe pertinent performance capabilities of humans.
	(2)	Recognition	1
	(3)	Responsibility	
	(4)	Control Autho- rity	
	(5)	Utilization of perceived skills	
	(6)	Challenge - discretionary flexibility	
	(7)	Performance Feedback	
	(8)	Interest	1
В	3. Man- face	-Machine Inter-	
		Vigilance	
	(2)	Stress	
	(3)	Intricacy	1
	(4)	Restrictiveness	
	(5)	Rigidity	
	(6)	Decision/Making]
C.		lurc-Made rations Failure Recog- nition	
	(2)	Failure Re- covery	
	(3)	Failure Opera- tions	1

(

1

ACUMENICS

V. THE CONCEPT OF PRODUCT IN THE AIRSPACE SYSTEM

The national airspace system can be viewed as a competitive market within which users buy goods from providers of service. The users of the system include air carriers, commuters, air taxis and general aviation. Service providers are the constituent elements of the federal aviation agency, air traffic control and flight standards.

The providers of service are producing allowed levels of activity either in terminal or enroute facilities. Measures of such activity include operations, aircraft handled, and aircraft contacted. The users of the system procure "allowed activity" to provide for "user produced activity." As such, the levels of activity provided by the FAA and consumed by the user are numerically congruent. Thus, for the purpose of this analysis, allowable and user produced operations are equivalent.

If one examines the FAA allowable operations, it is seen that given levels of capital and labor provide a specific range of operation. Capital in this instance includes the technology required to provide an <u>a priori</u> specified level of service. In particular, capital is the technology measured in money terms that allows the functions defined in the previous section to be performed

ACUMENICS

with established proficiency. Labor refers to the number of people required to operate the technology to obtain specific levels of product.

Similar for the user side, a given number of aircraft combined with the set of pilots results in the performance of a certain level of operations. Labor for the user side is defined by the number and composition of pilots. User capital includes the number and composition of aircraft. Thus for both the system user and provider of service the relationship can be specified as

Operations = f(LABOR, CAPITAL).

The above specification is similar to that of an industrial production function in which,

$$Q = f(LABOR, CAPITAL)$$

where Q is the product of the industry. The production function relates the level and composition of production factors to product or service. As such, the production function considers the state of technology, or the relative substitution of capital for labor or labor for capital. If the products of two industries are the same then the production functions of each can be compared for the same level of product. That is, if industry one has a production function $Q_1 = f(L_1, C_1)$, and industry two has a production function $Q_2 = g(L_2, C_2)$ and $Q_1 = Q_2$ then, $f(L_1, C_1) = g(L_2, C_2)$.

ACUMENICS

The preceeding formulation provides a basis to determine the effects of shifts in productivity factors in one industry on the quantity of labor or capital in the second industry.

In the context of the present study, shifts in the level or composition of capital and labor for users will require changes in the FAA capital and labor to provide the services, or vice versa. New technology will alter the man-machine relationship in the performance of functions. However, the change in functions will ultimately affect the levels of capital and labor necessary to provide a specified level of service. Thus, the production functio construct may be used to estimate the impact of technological change on systems users and the providers of service.

The industries of concern are not homogeneous. Rather both the agency and industry can be desegregated into smaller components. The agency can be considered to be composed of three industries that have distinct production functions:

1) terminal areas

- 2) en route centers, and
- 3) flight service stations.

Each of the above industry segments has distinct measures of produc Terminal area product is measured in terms of annual aircraft operations. Aircraft handled is the measure of en route center product. Flight service station activity is measured as contacts.

85

If the notion of product is an acceptable hypothesis for the airspace constraint, then the effects of new technology can be measured using the production function construct. The construct allows one to estimate the relationships among industry product and the factors of production. Estimates of the present production function coefficients can be obtained from existing agency data. The production function coefficients can be modified based on the estimated change in the efficiency of the technology. The new technology production function coefficient can then be employed to estimate the shifts in labor or capital attendant to the new technology.

.

VI. PRODUCTION FUNCTIONS

......

The previous section discussed the notion of product and the factors of production in the airspace system. The production function construct is used in succeeding sections to estimate the change in agency labor owing to new technology. This section of the text will discuss the major production functions. The application of production functions will be described in the next section.

Since the Cobb-Douglas production function has proved so useful to the analysis employed in this study, this section provides a non-technical discussion of some of the important concepts relating to production functions, especially in regard to the measurement of technological change. Many of these concepts can quickly involve complicated mathematical expressions that, in a technical treatise, would require strict mathematical definition, derivation and proof. However, this is not a technical economics paper and in the discussion below the derivations, proofs, and even some of the more cumbersome formulas themselves will not be fully developed.² Instead, the general notion of the production

1

²For further information, the reader is referred to the following texts, particularly the first two, Brown, Murray, On the Theory and Measurement of Technological Change. Massachusetts: The University Press, 1968; Chiang, Alpha C., <u>Fundamental Methods</u> of Mathematical Economics (2nd ed.). New York: McGraw Hill, 1974. (Especially pages 186-7 and 404-422).; Lave, Lester B., <u>Technological Change: Its Conception and Measurement</u>. New Jersey: Prentice-Hall, Inc., 1966, Mansfield, Edwin, <u>The Economics of Technological Change</u>. New York: W. W. Norton Company, Inc., 1968: Samuelson, Paul A., <u>Economics</u>, (9th ed.) New York: McGraw-Hill Book Company, 1973; and Shepard, Ronald W., <u>Theory of Cost and Production Functions</u>. New Jersey: Princeton University Press, 1970.

ŝ

> MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

K.ø

;

. . .

function and how it relates to technological change will be discussed first. Next, the Cobb-Douglas production function will be explained in as non-technical a manner as possible, and its choice for this study explained. Because the Cobb-Douglas formulation is a special case of the constant elasticity of substitution (CES) production function, that function will then be briefly defined and discussed. A brief summary will conclude this section.

General Notion of the Production Function

The production function concept was developed to deal with the relationship between inputs and outputs, specifically, the maximum output possible for the various possible inputs to a production process, given the level of technology. The inputs are generally abstractly discussed as capital (K) and labor (L) inputs. Paul Samuelson defines a production function as follows:

> The production function is the technical relationship telling the maximum amount of output capable of being produced by each and every set of inputs (or factors of production). It is defined for a given state of technical knowledge.³

Note that the function discusses a technical relationship which does not depend on the prices of the factor inputs. It can be expressed as a mathematical function,

> Q = f (K,L), where Q = Output K = Capital L = Labor

³Samuelson, <u>op. cit.</u>, p. 535.

This general representation says that output is a function of (depends on) capital and labor inputs. The assumptions behind this statement are that only the most efficient production possibilities are considered, thus only the maximum possible outputs are given for any combinations of labor and capital, and that the technological possibilities are taken as fixed for that point in time.

An invention or a new method of production will change any given production function. The production function is usually shown as a set of curves, called isoquants, on a two-dimensional graph such as the following (Figure 5-a). Each isoquant shows that many different efficient combinations of the factor inputs can produce a given output. If capital (K) and labor (L) are shown on the axes, then each isoquant line such as A represents one possible amount of output, Q. For example, if A represents 1000 units of output, then the relationship represented in Figure 1 shows that 1000 units of output can be produced by using 100 units of capital and 20 units of labor in the most efficient way then known, or by using 75 units of capital and 30 units of labor in the most efficient way, or by any other indicated possible combination of capital and labor. However, 1100 units (shown by isoquant B) cannot be produced except by using more inputs than possible on line A.

ACUMENICS

Thus we see that, in the general abstract case, capital can substitute for labor (or vice versa) in various efficient methods of production. (Of course the production method chosen will depend on the relative prices of the inputs, but that does not concern us here). More output requires an increase in inputs, given the technology.

When a technological change of any sort occurs, such as a new invention, a new method of production, a new management technique, etc., the production function will be shifted. Increases in output due to the change will now be possible at least for some factor input combinations. A useful concept in this regard is that technological change can be <u>neutral</u> or <u>non-neutral</u>, depending on whether the change affects the relationship between the inputs or not.

> A neutral change neither saves nor uses labor; it is one which produces a variation in the production relation, itself, but does not affect the marginal rate of substitution of labor for capital. A non-neutral technological change alters the production function and can be either labor-saving (capital-using) or capital-saving (labor-using). If the production function is altered such that the marginal product of capital rises relative to the marginal product of labor for each combination of capital and labor, there is said to occur a capital-using (labor-saving) technological change.⁴

⁴Brown, <u>op. cit.</u> pages 20-21.

The nature of technological change may be intuitively understood by looking at Figure 5 (a) and (b). In Figure 5a, a <u>neutral</u> technological change would mean that the output (1100) previously possible from the various factor combinations shown by isoquant B can now be produced, say, with the factor combinations indicated by the old isoquant A. In other words, the same factor inputs now can produce more output than before, and if more of one factor is used, less of another is needed; the marginal rate of substitution between capital and labor remains the same.

A <u>non-neutral</u> technological change can be illustrated by Figure 5b, where before the change, 1100 units of output are possible from any of the factor combinations shown on isoquant B'. After the technological change, 1100 units are now possible from the various factor combinations shown on A; however, the marginal rate of substitution of capital for labor is different on the two isoquants, A and B'.

Murray Brown has found the production function to be a useful tool in the measurement and analysis of technological change. He develops the concept of 'an abstract technology,' and states, "It is relatively easy to define a technological change in terms of a change in the characteristics of an abstract technology."⁵ That is, if a production function relationship is shown to change

⁵Page 12.

ACUMENICS

over time in certain ways as we shall see below, the changes can indicate and to some extent quantify the type and effect of the technological change that is occurring.

The four characteristics of interest in measuring and analyzing technological change are: (1) the efficiency of a technology (2) the degree of economies of scale that are technologically determined; (3) the degree of capital intensity of a technology and (4) the ease with which capital is substituted for labor.⁶ Brown's definitions, which are useful, follow.⁷

- (1) Efficiency -- This characteristic ... enters only the relationship between inputs and outputs; it does not affect the relationship of inputs to inputs. For given inputs, and given the other characteristics of an abstract technology, the efficiency characteristic determines the output that results. If it is large, then output is large. ... One can think of ... (it) ... as a scale transformation of inputs into output.
- (2) Technologically determined economies of scale --For a given proportional increase in all inputs, if output is increased by a larger proportion, the firm enjoys increasing returns (or economies of scale); if output is increased by the same proportion, there are constant returns to scale; and if output is increased by a smaller proportion, decreasing returns result (or diseconomies of scale).⁸

6_{Ibid}.

h

⁷Ibid. pages 13-19.

⁸Economies of scale are often further classified as <u>internal</u> economies, which depend on the operation of the individual firm, and <u>external</u> economies, which depend on the general development of the industry or the economy as a whole.

(3) <u>Capital intensity</u> -- Degrees of capital intensity are reflected in the size of the labor-capital ratios for given relative factor prices.⁹

(4) The ease with which capital is substituted for labor The elasticity of substitution ... () ... tells us how rapidly diminishing returns set in to one factor of production ... (it) ... relates the proportional change in the relative factor inputs to a proportional change in the marginal rate of substitution between labor and capital ... Intuitively, it can be thought of as a measure of the ease of substitution of labor for capital; it can also be conceived of as a measure of the 'similarity' of factors of production from a technological point of view.¹⁰

Changes in the efficiency of technology and changes in economics of scale may be thought of as producing <u>neutral</u> technological change. Changes in the capital intensity of a technology and in the ease of substitution of capital for labor produce <u>non-neutral</u> technological change.¹¹

Cobb-Douglas Production Function

The Cobb-Douglas Production Function and the Measurement of Technological Change:

¹¹Ibid. page 21.

⁹Usually capital intensity is thought of as the quantity of capital relative to the quantity of labor, or the capital-labor ratio. Brown wishes to emphasize the necessity of eliminating the influence of relative factor price in the short run, on this ratio.

¹⁰The concept of "constant elasticity of substitution," whereby this measure does not vary over the possible production process, will be important below. The Cobb-Douglas and, of course, the CES production functions both assume a constant elasticity of substitution.

The generalized expression of a Cobb-Douglas production function is

 $Q = AK^{\alpha}L^{\beta}$ 12

where, again, Q = output, K = capital, and L = labor. A, α and β are constants to be determined empirically, and depend, of course, on the technology. The Cobb-Douglas formulation of the production function is easily reformulated in logarithmic form:

 $\ln Q = \ln A + \alpha \ln K + \beta \ln L$. One reason for the wide use of this formulation is that it can then be applied in a straightforward manner to the available data, using least squares regression techniques. Again, note that the Cobb-Douglas function is a special case of the CES production function, which will be discussed further below.

Of interest for our purposes is the interpretation of these parameters A, α , and β , as indicators of technological change. Following Brown's schema (pp. 40 ff), the interpretation follows.

¹²More properly, in a Cobb-Douglas production function, the restriction that $(\alpha + \beta = 1)$ is imposed, and the function can also be written $Q = AK^{\alpha} \perp (1-\alpha)$. This is a "linearly homogeneous production function of degree one," which means that if K and L are increased by p percent, Q will also increase by exactly p percent (that is, p¹ percent!). In the more general case, if $(\alpha + \beta = r)$, a linearly homogeneous production function of degree r will mean that if K and L are increased by p percent, Q will be increased by p percent. See Chiang, op. cit. p. 406 ff.
(1) Efficiency: This characteristic is indicated by A. A change in A would indicate neutral technological change. A proportional increase in A will increase output in the same proportion.

- (2) Non-neutral technological change:
 - (a) Factor-saving or factor-using technological gains are indicated by the direction of change in the ratio, α/β . If α rises relative to β , then a capital-using technological change has occurred.¹³
 - (b) Variations in the elasticity of substitution between labor and capital, σ , would also result in a non-neutral technological change, but in a Cobb-Douglas function is always unity and thus unchanging.

Tinbergen Formulation of the Cobb-Douglas Production Function:

In order to capture a neutral rise in efficiency over time in a way that was easily quantified,¹⁴ Professor Tinbergen suggested and applied the following formulation of the Cobb-Douglas Production function:

 $Q = AK^{\alpha} L^{\beta} e^{yt}$

Where e is an estimate of "the productivity advance coefficient."¹⁵ the term e^{yt} can be thought of as a 'trend term' and has proven useful to analysis.

¹³If the reader does refer to Brown, <u>op. cit.</u>, please note that he uses slightly different terminology than this section, and particularly, he reverses the exponents α and β . Exponents have been made consistent throught this paper.

¹⁴That is, this formulation can also be readily converted to logarithmic form and applied to time-series data using least squares regression techniques.

15Brown, op. cit. p. 111.

CES Production Functions

The generalized form of a constant elasticity of substitution (CES) production function is

 $Q = A \left[\delta K^{-\rho} + (1-\delta) L^{-\rho} \right]^{-\nu/\rho}$

(Where A > 0; $\delta > 0$; $\rho > -1$). While this function assumes the elasticity of substitution is constant, it is not restricted to one or any particular value. However, this formulation is, according to Brown, statistically "relatively unmanageable,"¹⁶ and it has not been used in the present study. It has already been noted that the Cobb-Douglas production function used is a special case of the CES production function, where the elasticity of substitution is constant and unitary.

Of interest for our purposes is the meaning of the coefficients in this formulation for understanding and attempting to measure technological change. Admittedly, the meanings are somewhat flawed in some cases. Again following Brown and Chiang the following interpretations are suggested.

- (1) <u>Efficiency</u> is again represented by A: it indicates the state of technology.
- (2) Capital intensity is represented by δ . δ has to do with the relative factor shares in the product.

¹⁶Ibid. p. 128. For one thing, it is difficult to generalize to more than two factors of production; also, the statistical application is considerably more cumbersome. The logarithmic form does not yield an expression that can be evaluated by direct application of least squares regression techniques. For further discussion of these and c her problems, see Brown, esp. Chapter 9.

(3) The degree of returns to scale is represented by v. It should be noted that v can change for two reasons, an expansion in the scale of operations or a technological change that alters the rate of growth; v does not distinguish between the two causes.

ACUMENICS

(4) The ease of substitution of capital for labor is indicated by ρ . If the elasticity of substitution is σ , $\rho = -(1-1/\sigma)^{17}$

Summary

ŀ,

Although the abstractions necessary to quantify a production function necessarily entail some deficiencies in the final formulation,¹⁸ the concept of a production function has proved fruitful for the analysis and measurement of the economic effects of technological change. In particular, the Tinbergen version of the Cobb-Douglas production function has been found both quantifiable and useful. This formulation was found to be relevant to the present study since the data exploration indicated that its use was appropriate. The Tinbergen-Cobb-Douglas production function formulation was used throughout.

¹⁷Chiang, p. 419, shows that if $-1 < \rho < 0$, then $\sigma > 1$ if $\rho = 0$, then $\sigma = 1$ if $0 < \rho < \infty$, then $\sigma < 1$.

¹⁸The reader is referred to the works referenced here, or other intermediate economics texts, for a full discussion of the deficiencies of the Cobb-Douglas production function. Of course it is clear that the pre-specification of a unitary elasticity of substitution might be a drawback; however, this specification often fits the data well. Other statistical problems, such as collinearity, can arise when it is applied to time series data; these may be reduced by the use of the trend term in the Tinbergen specification. And finally, any interpretation of the meaning of the coefficients can be open to discussion, given the present state of knowledge in this field. This section did not attempt to discuss many other interesting aspects of production functions, such as their use in examining factor shares of income.

VII. ANALYTIC APPROACH TO IMPACT ESTIMATES

As noted above, the major impacts of new communications technology can be measured either in terms of personnel or capital requirements. As such, it seems reasonable that the magnitude of such impacts could be estimated using a production function formulation. The two basic production function formulations were reviewed by the project team. The team determined that the Cobb-Douglas formulation would be used owing to the <u>relative ease</u> of computation. The basic data for estimating industry, capital and labor requirements exist in the form of forecast variables under each scenario. The capital requirements for the agency were forecast using the OS or cost model, FAA forecast, and extrapolation of the FAA master equipment log.

The Tinbergen formulation of the Cobb-Douglas Production function was used in the present effort.¹⁹ The Tinbergen formulation provides a means to account for the effects of time in the computation of labor and capital coefficients. As such, the Tinbergen formulation is consistent with the data available, i.e. timeseries forecasts for the estimation of capital and labor coefficients.

ACUMENICS

¹⁹Murray Brown, <u>On the Theory and Measurement of Techno-</u> <u>logical Change</u>. (Massachusets, 1968) pp.111_{ff}. Also see preceding Chapter VI.

The general Tinbergen model is

 $Q = AK^{\alpha} L^{\beta} e^{yt}$

where

Q = product K = capital L = labor t = time A, α, β , y are empirically determined

coefficients.

The two major components of the airspace system are terminal areas and en route airspace. The users of such airspace are different. That is, terminal areas are used by general aviation, airtaxis, commuters, corporate aircraft as well as aircarriers. En route airspace is used predominately by aircarriers, commuters and corporate aircraft. As such, it was determined that separate production functions would be estimated for en route and terminal airspace. In addition two sets of production functions must be examined for each portion of airspace: system users and providers of service. The basic aggregate measure of product in a terminal area is total operations (TOPS). TOPS are comprised of local operations (LOPS) and itinerant operations. The user capital in the terminal area includes the active general aviation fleet, (GACAP) as well as the aircarrier fleet capital (TACAP). The labor component of the user includes the total pilots active in the terminal area (TPLT). The generic user production function in the

ACUMENICS

terminal area can be specified as follows:

TOPS = $A(TCAP)^{\alpha}$ (TPLT)^{β} e^{yt}

where TCAP = P(GACAP) + R(TACAP).

and P, R are the relative cost of the capital units. The agency or services providers generic production function also uses TOPS as the product. However, capital (CTERM) is defined as the consumed value of agency communication facilities in the area. Labor is defined as the array of government personnel, primarily controllers (TERM), necessary to manage TOPS. The generic agency production function is

TOPS = A (CTERM)^{α} (TERM)^{β} e^{yt}.

The use of en route airspace is dominated by aircarrier operations. As such the capital and labor attendant to such use is embodied in the aircarrier fleet and the transport pilots (TRANP). The measure of product in en route airspace is aircraft handled (AIRHAND). The estimate of en route product or workload is based on the number of IFR Departures (TIFRDEP) and overs (OVERS). As such the generic production function for en route space users is:

AIRHAND = $A(TACAP)^{\alpha}$ (TRANP)^B e^{yt}.

where TRANP = transport pilots and TACAP = aircarriers fleet capital.

The agency and user production function employ the same measure of product, i.e., AIRHAND. The agency measure of capital is the consumed quantity of technology necessary to service AIRHAND (CCENT). The labor component of the production function is the number of agency

personnel necessary to perform center (en route facilities) functions (CENT). The generic agency en route production function is:

AIRHAND = $A(CCENT)^{\alpha}$ (CENT)^{β} e^{yt}

It should be noted that user and agency production functions are estimated for each scenario. The effects of new technology are considered by estimating production functions constructed for the following time periods:

The actual estimates were prepared using a log linear form of the production function, i.e.,

 $ln(TOPS) = lnA + \alpha ln(CTERM) + \beta ln(TERM) + yt.$ During the curve fitting exercise certain restrictions were imposed:

```
\alpha + \beta = 1,\alpha > 0,\beta > 0,
```

The log linear user production function and appropriate statistics for each scenario are shown in Tables 12 - 14.

It has been assumed in this analysis that the largest individual unit effects of technology will accrue to the agency. In addition, new technology adopted by users will be compatible with agency investments. That is, users will not invest in new

ACUMENICS

TABLE 12

1000

l

USER PRODUCTION PUNCTION COEPFICIENTS

STACTLATICH

TERMINAL

$\ln (TOPS) = \ln A + O \ln (TCAP) + \beta \ln (TPLT) + yt$				
YEARS	INTERCEPT	TCAP	TPLI	ert
1991 - 2000	1.2185	.2879	.7120	.0025
2001 - 2010	1.4937	.3744	.7286	0016
2011 - 2020	2.0069	.2365	.7634	0042

CENTER

$\ln (AIRHAND) = \ln A + Cln (TACAP) + \beta \ln (TRAMP) + yt$				
YILLE	INTERCEPT	TACLP	TillP	ert
1991 - 2000	6.2161	.0111	.9 888	0159
2001 - 2010	4.6011	.1254	.8745	0134
2011 - 2020	.6652	.4070	.5029	 0059

ACUMENICS

TABLE	13
-------	----

.

F

USER PRODUCTION FUNCTION COEFFICIENTS

RAPID GROWTH

TERMINAL

	$\ln (TOPS) = \ln A + \alpha \ln (TCAP) + \beta \ln (TPLT) + yt$			
J YEARS	INTERCEPT	TCAP	TPLT ,	ejit
1991 - 2000	1.4508	.2870	.7329	•0001
2001 - 2010	1.5950	.2544	.7455	.00005
2011 - 2020	1.5870	.2484	.7535	-00003

CENTER

	in (AIRHAND)	= ln A +a ln (TACAP) + (3 ln (TRANP) + yt	
YEARS	INTERCEPT	TACAP	TRANP	e ^{jrt}
1991 - 2000	-4.1450	.7357	.2842	.0013
2001 - 2010	-3.4733	.AR71	-3128	.00008
2011 - 2020	-3.0496	.6550	.344044	.00003

.

TABLE 14 USER PRODUCTION FUNCTION CORPFICIENTS MARCED CROTTH

BALANCED GROWTH

TERMINAL.

4

4

. . . .

	$\ln (TOPS) = \ln A + Cln (TCAP) + \beta \ln (TPLT) + yt$			
YEARS	INTERCEPT	тсар	TPLI	ert
1991 – 2000	1.117	.2870	.7120	-0055
2001 - 2010	1.3506	.2744	.7256	-0029
2011 - 2020	1.8958	.2365	.7634	•0000

CENTER

$\ln (AIRHAND) = \ln A + \alpha \ln (TACAP) + \beta \ln (TRANP) + yt$				
YEARS	INTERCEPT	TACAP	TRANP	e ^{yt}
1991 - 2000	1.6980	.31945	.68055	0040
2001 - 2010	2.4275	.27002	.7299	0061
2011 - 2020	4.2089	.1455	.8544	0090

ACUMENICS

.

technology that cannot be employed in the airspace system. As such, the characteristics of the technology forcasted in previous sections of this effort will weigh most heavily in the coefficients of the agency production functions. The one technology characteristic that is likely to alter the division of labor in function performance is speed in data processing. That is, system speed will allow greater substitution of capital for labor in many of the functions specified in preceding sections of this work. The agency production functions will be specified based upon the technology forecast parameters, rather than forecasts of activity measures. In particular, production function estimates were determined for one scenario, i.e., stagflation.

It was assumed that the continued presence of existing agency technology beyond 1990 would represent conditions under the stagflation scenario. As such, agency production functions were estimated for the time period 1971-1981. As indicated before the functions of interest are

AIRHAND = A (CCENT)^{α} (CENT)^{β} e^{yt} TOPS = A (CCTERM)^{α} (TERM)^{β} e^{yt}

A STATUS DATE AND A STATUS AND A

The estimates were based on the log linear form of the relationship. $ln(AIRHAND) = lnA + \alpha ln(CCENT) + \beta ln(CENT) + yt$ $ln(TOPS) = lnA + \alpha ln(CTERM) + \beta ln(TERM) + yt$.

As noted above, the coefficients for the agency production function were altered based upon the relative increase in speed of VLSI data processing equipment projected in the technology forecast. The basic data processed are shown in Table 15. If stagflation is taken as the base case, i.e., stagflation = 1.00 then equivalent values for balanced growth and rapid growth are 1.05 and 1.15, respectively. That is, the net efficiency under balanced growth will be 5% greater than under stagflation. Under rapid growth the speed will be 15% greater than under stagflation. As such, one would expect similar differences in the production function capital coefficients for the balanced and rapid growth scenario when compared to the stagflation scheme. The agency log linear production function coefficients for each scenario are presented in Table 16. The application of the production functions will be described in the next section.

ACUMENICS

NO MAN ACALON (STATE

TABLE 15

(

(

VLSI DATA PROCESSING CHARACTERISTICS

SPEED (MIPS)

YEARS	BALANCED GROWTH	STAGFLATION	RAPID GROWTH
1980	3.1	3.1	3.1
1985	7.8	6.9	9.8
1990	15.6	13.2	20.99
2000	41.7	37.78	47.22

YEARS	BALANCED GROWTH	STAFFLATION	RAPID GROWTH
1980	1.0	1.0	1.0
1985	1.13	1.0	1.42
1990	1.18	1.00	1.59
2000	1.10	1.00	1.24
Average	1.10	1.00	1.31
Net Relative 50% Efficiency	0.05	0.00	.15

The Use of Production Functions in Estimating Impact Magnitude.

The preceding section has identified means of relating aviation product to the factors of production. Product is defined as either operations for terminal areas or aircraft handled for en route facilities. The equations developed provided for user and agency factors of production. The following equations have been developed according to the generic format for selected time periods under each scenario:

I) <u>Terminals</u>

TOPS = $A(TCAP)^B (TPLT)^C e^{yt}$ TOPS = $D(CTERM)^E (TERM)^F e^{zt}$

II) <u>Centers</u>

AIRHAND = $G(TACAP)^H$ (TRANP)^I e^{wt} AIRHAND = $J(CCENT)^K$ (CENT)^L e^{rt}.

In as much as the dependent variables for the user and agency are the same, the factors of production can be examined. For example, for terminal product,

 $A(TCAP)^B (TPLT)^C e^{yt} = D(CTERM)^E (TERM)^F e^{zt}$.

If the user factors of production, and the agency capital investment are provided, then one can estimate the agency labor, i.e., number of controllers. Or, if CTERM, TERM, and TPLT are specified the number of aircraft serviced can be estimated. Since the major

ACUMENICS

TABLE	16
-------	----

₹

AGENCY PRODUCTION FUNCTION COEFFICIENTS TERMINAL: 1991-2020

SCENARIO	INTERCEPT	ln (CTEXH)	ln (TERM)
TAGFLATION	5.836028	.186336	.338924
BALANCED GROWTH	5.836928	.195053	.329607
RAPID	5.836928	.204970	.320270

CENTER

$\ln (AIRHAND) = \ln A + \alpha \ln (CCENT) + \beta \ln (CENT)$						
SCENARIO	INTERCEPT	ln (CCENT)	ln (CENT)			
STAGFLATION	2.109721	•440310	.319192			
BALANCED GROWTH	2.109721	.462326	.297176			
RAPID GROWTH	2.109721	.484341	.275161			

individual impact will accrue to the agency, the relationships will be used to estimate the impact of

- 1) varying capital intensity on the number of controllers
- 2) varying number of controllers on capital intensity.

٤

VIII. SPECIFIC EFFECTS

As noted above, the primary effect of communication technology will be to change the division of labor between man and machine. As such, the functions performed by man and machine will be automated further.

It seems reasonable that the technology adopted by the agency will influence that used by the industry. That is, industry will use technology compatible with that adopted by the agency. Such industry use will be accomplished voluntarily and/or by regulation. Therefore, the primary impacts of concern here are those occurring to the agency.

The initial result of technological use is to shift responsibility in the performance of funtions. As the machine-man division of labor changes so do the relative composition of the factors of production. Therefore, the net and measurable effects of technological change are:

- o changes in the level and nature of agency capital investment;
- o changes in the magnitude and composition of the agency work force

The present effort will examine the agency impacts for the three principle components of the airspace system:

1) terminal areas,

- 2) en route facilities, and
- 3) flight service stations.

A change in the level of capital investment will be estimated based upon the system concept, innovation lag factor, and nature of the technology developed in the technology forecasts. Estimates were prepared based upon an examination of the agency's current agency and historic capital stock, current agency estimates, and other relevant published documents. Capital requirements by year were developed for each scenario.

The agency staff impacts were estimated using production function constructs. Current and historic capital and labor coefficients were estimated. The coefficients were modified based upon a change in the relative efficiency of technology across scenarios. Staff estimates were computed based upon the adjusted production function coefficients. The results are reported in terms of staff magnitude for each scenario, as well as for cross scenario conditions. That is, staff levels have been developed for the following generic cases:

scenario technology = scenario capital = scenario activity scenario technology = scenario capital ≠ scenario activity For example, the effects on staff level are estimated where balanced growth activity occurs in conjunction with an investment in rapid growth activity. In addition, staff productivity measures were calculated to place the impact measurement in the appropriate context. The productivity measures estimates vary with the component of the airspace system considered:

ACUMENICS

System Component	Productivity Measure
terminal areas	, total annual operations per terminal staff
en route	. total annual aircraft handles per center employee
FSS	. total flight services per FSS employee.

An increase or decrease in productivity is measured by changes in the activity per employee measures. The activity per employee measures indicate also the impact of the technology on operations efficiency.

Estimates of the communications load are presented also. Communications load estimates consider the magnitude and composition of messages for the terminal and center components of the airspace system.

IX. CAPITAL COSTS

Introduction

The effects of new communications technology on the air traffic control system have been estimated by assuming that the products of the system (aviation operations) are related to the capital and labor employed according to the following relationship:

$Q = AK^{\alpha} L^{\beta}$

where Y represents units of operation, K and L represent capital consumed and labor hours employed respectively, A is a coefficient of efficiency and α and β indicate the elasticity of output with respect to capital and labor. The form of the relationship is that of a Cobb Douglas production function.²⁰

The first requirement for using the function in the present context is to estimate the values of its coefficients. Historical data for the period 1970-1980 were available from the FAA on aviation's operations and labor hours. Estimates of capital consumption during the same decade have been prepared in order to calculate values for the coefficients.

The effects of changes in communications technology can be represented as improvements in both the amount of capital employed

²⁰Meghnad Desai, Applied Econometrics (New York: McGraw-Hill Book Company, 1976), pp. 111-112. See also Chapter VI.

to support air traffic control functions and the efficiency with which capital is used. Improvements will be reflected in reduced manpower requirements for the air traffic control system. The plan for the present forecast and assessment effort is therefore to project aviation operations and air traffic control capital investment over the forecast period (1980-2020), and then to derive future manpower requirements using a Cobb-Douglas production function. Aviation operations have been projected by the FAA to 1990, and these estimates have been extrapolated to 2020 for purposes of the present report. It has been necessary to construct projections of capital consumption as well.

This section of the report describes the sources of data and assumptions used to estimate capital consumption during the historical period (1970-1980) and the forecast period (1980-2020). The historical data is described first. Projections for the forecast period are then presented for each of three economic scenarios, identified as stagflation, balanced growth, and rapid growth.

Historical ATC Capital Growth (1970-1980)

Since the focus of this technology forecast and assessment is communications, capital consumption has been estimated for communications related facilities and equipment (F&E) in the air traffic control system. The categories of F&E that have been

ACUMENICS

identified with communication functions are adopted from a recent series of reports on the subject prepared for the FAA.²¹ All air traffic control (ATC) facilities and equipment have been assigned to one of the following three areas: terminals, en route centers and flight service stations. The rate of capital consumption for the period 1970 to 1980 has been calculated from historical data on replacement costs and an assumed aggregate useful life of 14 years. The total for all communications related facilities and equipment increased from \$125.7 million in 1970 to \$275.1 million in 1980. Details for terminals, en route centers and flight service stations are shown in Table 17.

The sources of information for historical F&E costs are summarized in Tables 18, 19, and 20. Terminal facilities and equipment (Table 18) are classified according to function as control (e.g. air traffic control towers), communications (e.g. remote transmitter/ receiver facilities), surveillance (e.g. airport surveillance radars), and navigation (e.g. inner, middle and outer radio marker beacons). Facilities and equipment at en route centers (Table 19) are assigned to similar categories under the headings: centers (e.g. air route traffic control centers), communications (e.g. remote center air/ground communications facilities), surveillance

²¹W. M. Kolb and I. Gershkoff, "FAA Communications Cost Model User's Guide (Revised)," prepared by ARINC Research Corporation for the Office of Aviation Systems Plans, (April 1980).

TABLE 17

ANNUAL CAPITAL CONSUMPTION AIR TRAFFIC CONTROL, SELECTED FACILITIES AND EQUIPMENT 1970 - 1980 (1979 DOLLARS IN THOUSANDS)

Terminals	En Route Facilities	FSS	Total
36,747	83,968	4,948	125,663
41,524	89,585	5,512	136,621
46,923	95,577	6,139	148,639
53,024	101,970	6,838	161,832
59,918	108,791	7,616	176,325
67,708	116,068	8,483	192,259
72,806	121,340	11,121	205,267
78,289	126,852	14,580	219,721
84,184	132,615	19,114	235,913
90,523	138,639	25,058	254,220
97,339	144,937	32,851	275,127
	36,747 41,524 46,923 53,024 59,918 67,708 72,806 78,289 84,184 90,523	TerminalsFacilities36,74783,96841,52489,58546,92395,57753,024101,97059,918108,79167,708116,06872,806121,34078,289126,85284,184132,61590,523138,639	TerminalsFacilitiesFSS36,74783,9684,94841,52489,5855,51246,92395,5776,13953,024101,9706,83859,918108,7917,61667,708116,0688,48372,806121,34011,12178,289126,85214,58084,184132,61519,11490,523138,63925,058

Source: Tables 2, 3 and 4.

ACUMENICS

and the set of the set

Table 18

Air Traffic Control, Selected Facilities and Equipment Terminal Replacement Costs

Facilities	1972	1972	1972	1975	1978	1979
Equipment	Unit Costs	Inventory	Unit Costs	Inventory	Unit Costs	Inventory
CONTROL						
	411.000		411.000	409	620,000	428
ATCT TRACON/TRACAB	661,700	331	611.000	-100	881.000	
TONB	94.000	20	94,000	302	142,000	303
RBDE	100.000	193	100,000	300	151,000	101
ARTS	664.000	2	055,000	81	989.000	93
CST	587,000	47	687,000	29	1.039.000	93 5
CTRAC	2,200,000	2	2,000,000	29 0		-
COLLENICATIONS]	}		
	87.000	483	87,200	737	132,000	791
STR CKT	50,000	4	50,000	4	75,000	191
FDEP	20,000		20,000	196	30,000	211
Cill	46,000	72 28	46,300	19	70.000	13
TELEY	100,000	5	100,000	3	151,000	5
SURVEILLANCE						
ASR	900,000	123	644.300	171	975.000	181
PAR	786,000	6	786,000		1,189,000	8
NAVIGATION						
FI	12,000	48	12.000	42	18,000	36
H	46.000	170	46,000	•213	699,000	207
	35,000	47	85,000	13	130,000	9
LDC	123,000	323	123.000	586	186,000	667
ŝ	79,000	299	74,100	555	120,000	509
MM	12,000	292	12,000	534	18,000	577
01	12,000	306	12,000	542	18,000	612
LDM/LCER	18,500	286	18,500	366	28,000	378
LM	7,400	18	7,400	50	11,000	65

(1) Weight average of ARTS II (@ \$250,000) and ARTS III (@ \$1,078,000).

(2) Four units assigned t CKT per 1972 Aviation Cost Allocation Study.

(3) Nineteen units assigned to en mate facilities per <u>1977 Amintion Cost</u> <u>Allocation Study.</u>

(4) All 123 ASR's are of the types ASR 2-7 having a weighted average cost of \$600,000.

(5) Includes all H and HH facilities, these assigned to both en route and FSS facilities. The <u>1972 Aviation Cost Allocation Study</u> assigned them as follows:

Terminals	Ħ	101	ŋ	\$46,000	HEI	0	ŧ2	\$85,000
En Route Facilities	Ħ	58	9	\$46,000	HEL	47	Q	\$85,000
F38	Ħ	11	9	\$46,000	HHL	0	e	\$85,000

(3) Includes RTR's at FSS facilities. Cost is a weighted average cost per <u>1972 Aviation Cost Allocation Study</u>: FSS 103 units (§ \$40,000);

(7) Includes CMLT's at FSS facilities. Cost is a weighted average cost per <u>1972 Aviation Cost Allocation Study</u>: PSS 4 units (? \$108,000); Terminals 24 units (? \$36,000).

Sources: C. Paul F. Dienemann, et. al., "Aviation Cost Allocation Study: FAA Airport and Airway System cost Element." Prepared for the Office of Policy Review - FAA (Feb. 1972). Table 2: "Airport Systems Costs". Table 3: "Terminal Central Systems Costs". Table 4: "En Route Central Systems Costs". Table 5: "Flight Service Systems Costs". Table 6: "Support Systems Costs".
S.A. Klein, S.C. Novikoff and E.M. Boeck, "FAA Communications Cost Model and Projections 1975-2000". Prepared for the Office of Aviation Policy - FAA - by Computer Sciences Corporation (Dec. 1975). Table B-7: "F 5 E Average Replacement Costs by Facility Type". Table 3-2: "Distribution of Facilities by Class by ARTCC W.M. Kolb and I. Gershkoff, "FAA Communications Cost Model User's Guide (Revised)". Prepared by AHINC Rosearch Opporation for the Office of Aviation System Plans (April, 1080). Appendix D: "Facilities and Equipment Cost Allocations". Appendix D: "Facility Category Descriptions".

ACUMENICS

Table 19

Air Traffic Control, Selected Facilities and Equipment En Route Center Replacement Costs

Facilities	1972	1972	1	1975	1978	1979
Equipment	Unit Costs	Inventory	Unit Costs	Inventory	Unit Costs	Inventory
CENTERS		1				
ARTCC CIRB	13,618,000 1,100,000	25 24	13,618,000 1,100,000	25 24	20,599,000 1,644,000	23 35 20
CCC , EDIPS (EVS '72)	1,100,000	0	7,500,000 1,100,000	16 5	11,345,000 49,372,000	20 1
COMMUNICATIONS						
RCAG LNKR	161,000 33,000	459 0	161,000 33,000	525 10	244,000 50,000	55 9 8
LCUT TROPO	33,000 405,000	106	33,000 405,000	108 3	50,000 613,000	84 3
CKT FDEP	50,000 20,000	1 19	50,000 20,000	1 19	76,000 30,000	1 19
SURVEILLANCE						
ARSR RMLR	2,180,000 110,000	91 495	2,180,000 110,000	108 521	3,298,000 166,000	102 518
RMLT BVEC CD	108,000	215	108,000 80,000 133,000	247 98 37	163,000 80,000 201,000	213 204 107
NAVIGATION AIDS						-
VOR (VAROUR TYPES) VOT	248,000 8,000	885 73	248,000 8,000	924 65	374,000 12,000	931 66
SRA SRL	93,000 64,000	13 13	93,000 64,000	18		-

Sources: C. Paul F. Dienemann, et. al., "Aviation Cost Allocation Study: FAA Airport and Airway System Cost Element." Prepared for the Office of Policy Review - FAA (Feb. 1972). Table 2: "Airport Systems Costs."

Table 3: "Terminal Central Systems Costs." Table 4: "En Route Central Systems Costs."

Table 5: "Flight Service Systems Costs."

Table 6: "Support Systems Costs".

S.A. Klein, S.C. Novikoff and E.M. Bosek, "FAA Communications Cost Model and Projections 1975-2000." Prepared for the Office of Aviation Policy - FAA - by Computer Sciences Corporation (Dec. 1975). Table B-7: "F & E Average Replacement Costs by Facility Type." Table B-2: "Distribution of Facilities by Class by ARTCC -

W.M. Kolb and I. Gershkoff, "FAA Communications Cost Model User's Guide (Revised)." Prepared by ARINC Research Corporation for the Office of Aviation System Plans (April, 1980). Appendix A: "Facilities and Equipment Cost Allocations." Appendix D: "Facility Category Descriptions."

Table 20

Air Traffic Control, Selected Facilities and Equipment Flight Service Station Replacement Costs

Facilities - Equipment	1972 Unit Costs	1972 Inventory	Unit Costs	1975 Inventory	1978 Unit Costs	1979 Inventory
STATIONS						
PSS	77,000	334	76,500			
IFSS	1,590,000	8	1,590,000)	116,000	
JF SR			795,000		2,405,000	
IFST	L —		159,000		1,203,000	
CRES			2,250,000		794,000	
IATSC	2,250,000	2			241,000	
AFTN	2,700,000	1	4,992,000		3,403,000	
MASC	4,992,000	1	20,000			
OAW	1	l —	{	í í	7,551,000	
]]	30,000	
COMPUNICATIONS		ļ	•			
1200	158,000	24	158,000	35	239,000	904
LRCO	11,700	484	11,700	587	18,000	581
00100	28,000	14	28,000	17	42,000	18
DF	22,000	6	35,900	239	54,000	205
LDA			100,000	3	17,000	10
SFO		·	27,000	77	41,000	128
SSO	-		50,000	4	76,000	3

Sources: C. Paul F. Dienemann, et. al., "Aviation Cost Allocation

Study: FAA Airport and Airway System Cost Element."

Prepared for the Office of Policy Review - FAA (Feb. 1972). Table 2: "Airport Systems Costs."

Table 3: "Terminal Central Systems Costs."

Table 4: "En Route Central Systems Costs." Table 5: "Flight Service Systems Costs."

Tuble 3: "Support ___tens Costs".

by ARTCC -

S.A. Klein, S.C. Novikoff and E.M. Bosek. "FAA Communications Cost Model and Projections 1975-2000." Prepared for the Office of Aviation Policy - FAA - by Computer Sciences Corporation (Dec. 1975). Table B-7: "F & E Average Replacement Costs by Facility Type." "Distribution of Facilities by Class Table B-2:

W.M. Kolb and I. Gershkoff, "FAA Communications Cost Model User's Guide (Revised)." Prepared by ARINC Research Oproration for the Office of Aviation System Plans (April, 1980). Appendix A: "Facilities and Equipment Cost Allocations." Appendix D: "Facility Category Descriptions."

(e.g. air route surveillance radars), and navigation (e.g. VHF ormidirectional range facilities). Flight service station F&E costs are assigned either to communications (e.g. remote communications outlets) or to "stations". Under the latter reading are included the weather message switching center and the domestic and international flight service centers (Table 20).

Unit F&E costs are shown in Tables 18, 19, and 20 as they appear in the service reports in terms of either 1972 or 1978 replacement costs. In order to treat the capital cost information from different years on a comparable basis all cost data has been converted to 1979 dollars using the latest revisions to the Communications Equipment Price Index from the Bureau of Economic Analysis of the Department of Commerce.

Facilities and equipment replacement costs have been converted to estimated values for capital consumed (Table 17) by assuming that the average useful life for all units is 14 years. This is consistent with depreciation assumptions adopted in previous studies.²² Capital cost estimates for the years not reported in the contractors' studies are estimated by interpolation and extrapolation, assuming constant proportional increases or decreases.

 $^{^{22}}$ S. A. Klein, S. C. Novikoff and E. M. Bosek, "FAA Communications Cost Model and Projections, 1975 - 2000," prepared for the Office of Aviation Policy of FAA by Computer Sciences Corporation (December, 1975), pp. 3-1, 3-2, and 3-3.

Forecast Period (1980-2020)

Stagflation Scenario: Capital Projections

The basic assumptions concerning ATC facilities and equipment under the stagflation scenario are that no radical new technology is introduced; that conventional technologies and their improvements will determine the shape of the ATC system during the forecast period (1980-2020); and that growth in the replacement values of ATC facilities and equipment will slow down in relation to growth in GNP. Under these assumptions capital consumption has been projected to grow in the stagflation scenario from its 1980 value of \$275.1 million to \$1329.0 million in 2020. The increase represents an annual compound growth rate of four percent. Details for individual years and for terminals, en route centers and flight service stations appear in Table 21.

Capital growth for the stagflation scenario has been projected for the period 1980 to 1990 by estimating, first, additions to terminal facilities to match demands upon airport capacity and, second, improvements in facilities and equipment throughout the ATC system. The FAA has forecast the number of airports that will exceed their operating capacity over the next decade, and these forecasts form the basis of the additions to terminal capacity from 1980 to $1990.^{23}$ The airports identified in the FAA forecasts have been

²³Office of Aviation Policy, Federal Aviation Administration, Terminal Area Forecasts: 1980-1991 (Washington, D.C.; November, 1979), Tables 2, 12, 13, and 14.

TABLE 21

STAGFLATION SCENARIO ANNUAL CAPITAL CONSUMPTION AIR TRAFFIC CONTROL, SELECTED FACILITIES AND EQUIPMENT 1980 - 2020 (1979 DOLLARS IN THOUSANDS)

Terminals	En Route Facilities	FSS	Total
97,340	144,936	32,851	275,127
104,796	150,722	36,257	291,775
112,824	156,738	40,016	309,578
121,467	162,994	44,166	328,627
130,772	169,501	48,745	349,018
140,790	176,267	53,800	370,857
151,575	183,303	59,378	394,256
163,187	190,619	65,535	419,341
175,688	198,228	72,330	446,246
189,146	206,141	79,830	475,117
203,636	214,369	88,108	506,113
215,352	218,974	95,523	529,849
227,742	223,679	103,561	554,982
240,844	228,484	112,276	581,604
254,701	233,392	121,724	609,817
269,354	238,406	131,968	639,728
284,851	243,528	143,073	671,452
301,240	248,760	155,113	705,113
318,571	254,104	168,167	740,842
336,899	259,563	182,318	778,780
356,282	265,139	197,661	819,082
	97,340 104,796 112,824 121,467 130,772 140,790 151,575 163,187 175,688 189,146 203,636 215,352 227,742 240,844 254,701 269,354 284,851 301,240 318,571 336,899	TerminalsFacilities97,340144,936104,796150,722112,824156,738121,467162,994130,772169,501140,790176,267151,575183,303163,187190,619175,688198,228189,146206,141203,636214,369215,352218,974227,742223,679240,844228,484254,701233,392269,354238,406284,851243,528301,240248,760318,571254,104336,899259,563	TerminalsFacilitiesFSS97,340144,93632,851104,796150,72236,257112,824156,73840,016121,467162,99444,166130,772169,50148,745140,790176,26753,800151,575183,30359,378163,187190,61965,535175,688198,22872,330189,146206,14179,830203,636214,36988,108215,352218,97495,523227,742223,679103,561240,844228,484112,276254,701233,392121,724269,354238,406131,968284,851243,528143,073301,240248,760155,113318,571254,104168,167336,899259,563182,318

		TABLE 21 (Continued)		•
Year	Terminals	En Route Facilities	FSS	Total
2001	368,964	265,217 ·	209,849	844,030
2002	382,097	265,294	222,789	870,180
2003	395,698	265,372	236,527	897,597
2004	409,783	265,450	251,112	926,345
2005	424,370	265,528	266,597	956,495
2006	439,475	265,606	283,036	988,117
2007	455,119	265,684	300,489	1,021,292
2008	471,319	265,762	319,018	1,056,099
2009	488,095	265,839	338,689	1,092,623
2010	505,469	265,917	359,574	1,130,960
2011	510,307	265,917	372,153	1,148,377
2012	515,191	265,917	385,173	1,166,281
2013	520,122	265,917	398,648	1,184,687
2014	525,101	265,917	412,594	1,203,612
2015	530,126	265,917	427,029	1,223,072
2016	535,200	265,917	441,968	1,243,085
2017	540,323	265,917	457,430	1,263,670
2018	545.495	265,917	473,433	1,284,845
2019	550,716	265,917	489,995	1,306,628
2020	555,987	265,917	507,137	1,329,041

ACUMENICS

٠.

`•__*

.

assigned to three groups: towered airports ranked among the first 100 in operation, other towered airports, and non-towered airports. These airports are expected to exceed practical annual capacity during the decade, to reach saturation or other constraints or to exceed the initial criteria for tower candidacy. Additions to terminal facilities and equipment for the purpose of meeting forecast demand have been assumed as shown in Table 22a.

Increases in terminal area facilities will be accompanied by increases at enroute centers and flight service stations to provide for larger volumes of traffic. In the period from 1975 to 1979, for example, en route center F&E replacement values increased on average at 89% of the rate of growth of capital in the terminal areas (Table 17). Similarly, the growth in Flight Service Station F&E replacement costs was 221% of the growth of terminal area capital investment for the same years. It has been assumed, therefore, that each one percent increase in growth of terminal area capital from 1980 to 1990 will be accompanied by a 0.89 percent increase in en route center F&E investments and by a 2.21 percent increase in the F&E replacement costs of flight service stations. These additions are assumed to be in the form of conventional technology such as is represented in the F&E replacement cost estimates for 1975 and 1979 in Tables 18 through 20. The additions to facilities and equipment at the en route centers and flight service stations that were assumed for the stagilation capital projects are listed in Tables 22b and 22c.

ACUMENICS

TABLE 22a

STAGFLATION SCENARIO SUMMARY OF IMPROVEMENTS AND ADDITIONS TO TERMINAL FACILITIES AND EQUIPMENT: (1980 - 1990) (1979 DOLLARS IN THOUSANDS)

	litions to Facilities at Airports eeding PANCAP Limits by 1990	Total Replacement Value
1.	Non-Towered Airports	17,986
2.	Towered Airports Not Ranked Among the First 100 in Operations	222,945
3.	Towered Airports Ranked Among the First 100 in Operations (52)	170,820
Total Ad	lditions	411,751
B. Imp	provements to Facilities by 1990	
1.	Automation at Top-Ranked Airports (152)	212,800
2.	Automation at Medium Sized Airports (189)	113,400
3.	Vortex Advisory Systems	1,292
4.	Terminal Information Processing Systems	12,344
5.	Discrete Address Beacon Systems (90)	198,000
6.	Upgraded Airport Surveillance Radars (181)	333,633
7.	Microwave Landing Systems (152) Total	204,925
Total In	provements	1,076,394

Source: Figure 1

TABLE 22b

STAGFLATION SCENARIO SUMMARY OF IMPROVEMENTS AND ADDITIONS TO EN ROUTE FACILITIES AND EQUIPMENT: 1980 - 1990 (1979 DOLLARS IN THOUSANDS)

Ά.	Add	litions	Total	Replacement	Value
	1.	Increases in Facilities and Equipment Propotional to Additions to Terminal Areas		524,054	
в.	Imp	provements			
	2. 3. 4. 5. 6.	Remote Maintenance Monitoring Systems Upgrading Common Digitizers Direct Access Radar Channel Upgrading Air Route Surveillance Radars Discrete Address Beacon Systems Electronic Tabular Display Subsystems Additional Data Processing Capacity to Meet New Func-		98,056 10,754 8,933 168,198 66,000 45,310	
		tional Requirements		27,600	
Tota	al In	nprovements		448,013	

Sources: Figure 2

TABLE 22c

STAGFLATION SCENARIO SUMMARY OF IMPROVEMENTS AND ADDITIONS TO FLIGHT SERVICE STATION FACILITIES AND EQUIPMENT 1980 - 1990 (1979 DOLLARS IN THOUSANDS)

A. Additions

	Inc Pro Are	reases in Facilities and Equipment portional to Additions in Terminal as	232,590
Tota	232,590		
в.	Imp	rovements	
	1.	Replacement of Flight Service Stations with Automated Flight Service Stations	435,240
	2.	Aviation Weather Processors - Direct User Access Terminals	787,039
Total Improvements			1,222,279
Sour	ce:	Figure 3	

Currently the FAA is considering a range of possible improvements to facilities and equipment in the air traffic control system. It has been assumed that in the stagflation scenario the FAA will implement the improvements under consideration for the period 1980 to 1990. The MITRE Corporation has recently surveyed and described the FAA's development plans and this survey²⁴ has been used to identify the areas in which new technologies will be implemented. In the terminal areas, improvements have been projected in terms of the installation of the following systems:

- Vortex advising systems;
- Low level wind shear alert systems;
- Terminal information processing systems;

- Wake vortex advisory systems;
- Discrete address beacon systems;
- Microwave landing systems; and
- Upgraded airport surveillance radars.

In addition, a number of processors will be added to the data systems at the largest terminals to automate certain data analysis and communication functions. Seven additional processors are assumed for each of the major airports in the stagflation scenario, including analysis of wind shear and vortex data, aircraft location and

²⁴M. Kay and J. Matney, "Definition, Description and Interfaces of the FAA's Development Programs" a report in three volumes prepared by the MITRE Corporation for the Office of Systems Engineering Management of the FAA (September, 1978).

conflict data, digitization of radar data, control of data displays and data entry, and communication of traffic advisories to aircraft. The facilities and equipment required for these terminal area improvements are assigned a replacement cost of \$1.1 billion for purposes of the stagflation scenario capital projections, as detailed in Table 22a.

Improvements to facilities and equipment at en route centers have been projected in terms of implementation of the following systems:

- Remote maintenance monitoring systems;
- Direct access radar channels;
- Upgrading air route surveillance radars;
- Upgrading common digitizers;
- Discrete address beacon systems; and
- Electronic tabular display subsystems.

As in the case of the terminal area projections, processors will supplement the data systems of the en route centers to automate several data analysis and communication functions. Six processors have been assumed for the projections to 1990, automating the detection of minimum safe altitudes, flight path conflicts, and flight plan conflicts, the metering of traffic, and the formulation and communication of conflict resolution advisories. The facilities and equipment for these improvements have been assigned a replacement

ACUMENICS
cost of \$448.0 million for the purposes of the stagflation capital projections. The details of the cost projections for en route center improvements are listed in Table 22b.

Improvements assumed for the flight service stations consisted of the installation of sixty automated flight service stations, and an automated weather information system with direct user access for all stations. These improvements total \$541.00 million over the 1980's, as shown in Table 22c.

Beyond 1990 no comprehensive description of the FAA's capital programs has been discovered. Consequently, it is necessary to base capital projections on assumptions about the rate of growth of total capital investment. Total replacement costs for facilities and equipment in the FAA's air traffic control system grew more rapidly during the 1970's than the gross national product.²⁵ However, the F&E annual growth rate exhibited a slight declining trend to the extent any trend can be identified. For purposes of capital projections annual growth rates in F&E replacement costs from 1970 to 1980 shown in Table 17, have been fitted to a Linear model, using time as the independent variable. The trend has been extrapolated through the forecast period (1980-2020). For the decades after 1990 the annual growth rate at the mid-point of each decade was adopted as representative of the growth in ATC facilities and

 $^{^{25}}$ For example, compare Table 17 of this report with Table 23 of the FAA Aviation Forecasts: FY 1980-1981, Office of Aviation Policy (September, 1979).

equipment investment during that decade. The annual growth rates in total ATC facilities and equipment are therefore assumed to be:

Stagflation Scenario Total F&E Growth Rates

Decade	Annual Rate of Increase
1990-2000	1.04932
2000-2010	1.03279
2010-2020	1.01627

The rate for the period 1980-1990 forecast by this method is 1.06585, which corresponds closely to the increases resulting from aggregation of the individual improvements and additions actually assumed for the stagflation scenario and shown is Table 22a.

The growth rates beyond 1990 for facilities and equipment in the terminal areas, the en route centers, and the flight service stations have been assumed to bear the same relation to each other as they did in the period 1975 through 1979. That is, each percentage increase in terminal area F&E replacement costs has been accompanied by a 0.89 percent increase in en route center F&E costs, and 2.21 percent increase in flight service station F&E costs.

Finally, the projected F&E values shown in Table 21 represent the amount of capital consumed annually, assuming an average depreciation period of 14 years for all conventional ATC technologies.

ACUMENICS

Balanced Growth Scenario: Capital Projections

The capital projections for both the balanced growth scenario and the rapid growth scenario are based upon the assumptions about conventional technologies adopted in the stagflation scenario. The projections differ in two principle respects. First, the balanced growth and rapid growth scenarios assume that a satellite - aided communication system will replace conventional navigation and communication technologies. Second, total investments in ATC facilities and equipment grows faster in the balanced growth and rapid growth scenarios than in the stagflation scenario.

For the balanced growth scenario (Table 23) it is assumed that conventional technologies are employed to the year 2000. The decade from 2000 to 2010 will see the gradual replacement of conventional communication and navigational equipment with a satellite-aided system. By 2010 the replacement will be complete. The facilities and equipment affected by the change can be identified by reference to Tables 18, 19 and 20 as follows:

- o all the navigation aids associated with the terminal areas (Table 18);
- o all but five of the air route terminal control centers and associated equipment (F&E replacement costs under the heading "centers" in Table 19);
- o a proportion of the surveillance facilities and equipment associated with the en route centers (18/23, see Table 19);
- o all of the navigation aids associated with the en route centers (Table 19);

• all of the communication facilities and equipment associated with the flight service stations (Table 20).

• all of the 318 flight service stations themselves, but no other facilities and equipment categories under the heading "stations" in Table 20.

The projections for capital growth of conventional technology have been reduced to eliminate the replacement values originally associated with these F&E categories and the subsequent growth attributable to them. The reductions can be seen under the headings for terminal areas, en route Facilities and flight service stations from 2000 to 2010 in Table 23. Reductions have been assumed at constant annual proportional rates.

In place of conventional communication and navigation facilities, a satellite system will be implemented in the balanced growth scenario between 2000 and 2010. The system itself will consist of 24 orbiting satellites which locate aircraft by altitude, latitude, longitude and velocity (the GPS system); one communication and data satellite in geosynchronous orbit (the S/D satellite); and associated ground stations and data processing facilities. In Phase I form orbiting satellites will provide limited aircraft positioning information, using communication and data channels leased from commercial satellites. In phase II a system of six orbiting GPS satellites will replace the original four, and an experimental set of geosynchronous satellites will provide communication and data channels. During the course of Phase I and Phase II, the largest 100 terminal areas will receive additional data processing and communication equipment, a network of calibration stations will be established to maintain ACUMENICS

BALANCED GROWTH SCENARIO ANNUAL CAPITAL CONSUMPTION AIR TRAFFIC CONTROL, SELECTED FACILITIES AND EQUIPMENT 1980 - 1990 (2979 DOLLARS IN THOUSANDS)

	Year	Terminals	En Route Facilities	FSS	Satellite System	<u>Total</u>
	1980	97,340	144,936	32,851	-0-	257,127
	1981	106,004	152,244	37,200	-0-	106,004
	1982	115,438	159,921	42,125	-0-	317,484
	1983	125,713	167,985	47,702	-0-	341,400
	1984	136,902	176,455	54,017	-0-	367,374
(1985	149,087	185,352	61,169	-0-	395,608
l	1986	162,356	194,698	69,267	-0-	426,321
	1987	176,806	204,516	78,437	-0-	459,759
	1988	192,543	214,828	88,821	-0-	496,192
	1989	209,680	225,660	100,580	-0-	535,920
	1990	228,342	237,039	113,896	-0-	579,277
	1991	245,235	251,468	127,678	~0-	624,381
	1992	263,377	266,775	143,127	-0-	673,279
	1993	282,862	283,013	160,445	-0-	726,320
	1994	303,788	300,241	179,860	-0-	783,889
	1995	326,262	318,516	201,623	-0-	846,401
	1996	350,399	337,905	226,020	-0-	944,324
	1997	376,322	358,473	253,368	-0-	988,163

ACUMENICS

.

TABLE 23 (Continued)

Year	Terminals	En Route Facilities	FSS	Satellite System	Total
1998	404,162	380,294	284,026	-0-	1,068,482
1999	434,062	403,442	318,394	-0-	1,155,898
2000	466,174	428,000	356,920	-0-	1,251,094
2001	494,746	451,538	397,892	-0-	1,344,176
2002	525,068	476,370	443,567	-0-	1,445,005
2003	557,250	505,568	494,485	. -0-	1,554,303
2004	591,403	530,206	551,248	17,429	1,690,286
2005	627,650	559,364	614,527	25,582	1,827,123
2006	666,118	590,126	685,070	37,550	1,978,864
2007	706,945	622,580	763,711	55,115	2,148,351
2008	750,273	656,819	851,379	80,898	2,339,369
2009	796,257	692,940	949,111	118,742	2,557,050
2010	845,059	731,048	1,058,062	117,286	2,808,455
2011	872,417	729,154	936,087	217,791	2,755,449
2012	900,660	727,265	828,174	272,155	2,728,254
2013	929,818	725,382	732,701	340,090	2,727,991
2014	959,920	723,502	648,234	424,983	2,756,639
2015	990,996	721,628	573,505	531,066	2,817,195
2016	1,023,079	719,759	507,391	663,630	2,913,859
2017	1,056,200	717,895	448,898	829,284	3,052,277
2018	1,090,393	716,035	397,149	1,036,288	3,239,865
2019	1,125,693	714,180	351,365	1,294,965	3,486,203
2020	1,162,136	712,330	310,859	1,161,211	3,803,536
	1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019	1998404,1621999434,0622000466,1742001494,7462002525,0682003557,2502004591,4032005627,6502006666,1182007706,9452008750,2732009796,2572010845,0592011872,4172012900,6602013929,8182014959,9202015990,99620161,023,07920171,056,20020181,090,39320191,125,693	YearTerminalsFacilities1998404,162380,2941999434,062403,4422000466,174428,0002001494,746451,5382002525,068476,3702003557,250505,5682004591,403530,2062005627,650559,3642006666,118590,1262007706,945622,5802008750,273656,8192009796,257692,9402010845,059731,0482011872,417729,1542012900,660727,2652013929,818725,3822014959,920723,5022015990,996721,62820161,023,079719,75920171,056,200717,89520181,090,393716,03520191,125,693714,180	YearTerminalsFacilitiesFSS1998404,162380,294284,0261999434,062403,442318,3942000466,174428,000356,9202001494,746451,538397,8922002525,068476,370443,5672003557,250505,568494,4852004591,403530,206551,2482005627,650559,364614,5272006666,118590,126685,0702007706,945622,580763,7112008750,273656,819851,3792009796,257692,940949,1112010845,059731,0481,058,0622011872,417729,154936,0872012900,660727,265828,1742013929,818725,382732,7012014959,920723,502648,2342015990,996721,628573,50520161,023,079719,759507,39120171,056,200717,895448,89820181,090,393716,035397,14920191,125,693714,180351,365	YearTerminalsFacilitiesFSSSystem1998404,162380,294284,026-0-1999434,062403,442318,394-0-2000466,174428,000356,920-0-2001494,746451,538397,892-0-2002525,068476,370443,567-0-2003557,250505,568494,485-0-2004591,403530,206551,24817,4292005627,650559,364614,52725,5822006666,118590,126685,07037,5502007706,945622,580763,71155,1152008750,273656,819851,37980,8982009796,257692,940949,111118,7422010845,059731,0481,058,062117,2862011872,417729,154936,087217,7912012900,660727,265828,174272,1552013929,818725,382732,701340,0902014959,920723,502648,234424,9832015990,996721,628573,505531,06620161,023,079719,759507,391663,63020171,056,200717,895448,898829,28420181,090,393716,035397,1491,036,28820191,125,693714,180351,3651,294,965

the accuracy to the position measurements of the GPS satellites, and a control center including data processing facilities will be constructed. It is assumed that the Phase I and II programs will be implemented between 2000 and 2010 and that the F&E replacement values will total \$1.2 billion in 1979 dollars. Details are shown in Table 23a.

Phase III of the satellite-aided communication and navigation system will be in place by the year 2010. Phase III is the system in its completed form. Additional F&E investments for phase III will include the full complement of 24 GPS satellites, a new S/D satellite, a system of ground stations to allow the satellites and the aircraft to link with the earth, and an expansion in the capacity of the control center (see Table 23a for details). It has been assumed that the F&E costs for the three phases are cumulative. The replacement costs for the facilities and equipment added for Phase III will be approximately \$2.3 billion, bringing the total to \$3.4 billion.

The rate of capital consumption for the satellite based technologies is more rapid than for conventional technologies. An average useful life of seven years has been assumed, which is consistent with the lives estimated for satellite systems currently in place.²⁶

²⁶See for example "RCA Advances Data for Third Domestic Communications Satellite," New York Times (December 5, 1978), p. D7. ACUMENICS

TABLE 23a

Capital Cost Assumptions for the Satellite Based Comunications and Navigation System

....

Decado

A.	Add:	itions to facilities and Equipment in the	FIRST Deca	ue
	0	Phase I - Ground positioning satellite (GPS) system, including four orbiting satellites, delivery, spares and monitoring facilities:(1)	\$355	million
	0	Phase II – GPS system, including six orbiting satellites, delivery, spares and monitoring facilities:	505	million
	ο	Modifications to equipment at 100 largest terminal areas @ \$10 million:	100	million
	0	Development of a 69-transponder surveillance/data (S/D) satellite for use in conjunction with the GPS system: ⁽ 2)	100	million
	ο	Network of calibration stations (1000 stations @ \$50,000 ⁽ 3):	60	million
	ο	National Control Center for S/D satellite operations and GPS system:	100	million
TOTA	L		\$1220	million
В.	Add:	itions to Facilities and Equipment in the	Second Dec	cade
	0	Phase III - GPS system, including a full complement of 24 orbiting satellites, with delivery, spares and monitoring facilities:	\$2010	million
	0	Modification to equipment at 300 additional terminal areas, @ \$10 million:	300	million
	0	Delivery of 69-transponder S/D satellite in fully operational form, with spare:	100	million

TABLE 23a (Continued)

Capital Cost Assumptions for the Satellite Based Communications and Navigation System

- Network of ground stations for interconnection of satellite, ground communications networks (1000 stations @ \$100,000):
 100 million
- Additional capacity for the S/S control center:

TOTAL

50 million

\$2460 million

- (1) GPS system costs estimates are based upon a contract between Hughes Communication Services, Inc. and the FCC to build and launch four space satellites for communication purposes. The contract includes maintenance, one spare satellite, and two moveable earth stations and extends for a term of five years. See <u>New York</u> <u>Times</u>, (December 5, 1979), page D2.
- (2) The RCA Corporation's SATCOM 3 communication satellite has 24 transponders and costs \$50 million. To account for the increase in the number of transponders, and the increased complexity of the tasks to be performed, the S/D satellite has been assumed to require \$100 million for development and design and \$100 million for final delivery, with one spare. See <u>New York</u> Times (December 11, 1980) page A21.
- (3) Currently, small receivers for use with RCA's SATCOM system range in price from \$10,000 to \$40,000 (see <u>New York Times</u> (October 28, 1979) at pp. 34-34) Other reported earth station costs range up to \$200,000 per unit. (See for example, <u>New York Times</u> (November 23, 1980). The calibration stations for the GPS system will perform both transmission and receiving functions, and will therefore be more expensive. Likewise the ground stations will perform a range of functions that will increase their costs above the minimum cost for receivers.

The rate of growth in the system has been assumed, for purposes of the balanced growth scenario, to be a function of growth in the Gross National Product. In the period 1970 to 1980 the compound annual growth for ATC facilities was approximately 104.7% of the annual growth for GNP.²⁷ The average compound annual rate of growth in GNP forecast by the FAA for the balanced growth scenario (i.e. the "baseline" case) is approximately 102.9%. The growth in ATC facilities and equipment in the balanced growth scenario has been projected at a rate proportional to the historical relationship of ATC facilities and equipment replacement costs to GNP. The annual rate used or total F&E replacement costs in the balanced growth scenario is approximately 107.7%.

The growth rates for the terminal areas, en route centers and flight service stations are assumed to bear the same relationship to each other as they did in the stagflation scenario. That is, for each one percent increase in terminal area replacement values, there will be a 0.89 percent increase in values for en route centers and a 2.21 increase in values for the flight service stations. The satellite facilities are assumed to grow at the same rate as the total of the conventional technologies.

²⁷See Table 23 of the FAA Aviation Forecasts: FY 1980-1981, Office of Aviation Policy (September, 1979) extrapolated to 2020 by Acumenics Research and Technology, Inc. See Scenario Volume.

Rapid Growth Scenario: Capital Projections

Capital cost projections for the rapid growth scenario adapt the methods employed in the balanced growth scenario with two modifications. First, it has been assumed that the satellite-based communication and navigation system will replace conventional technology at a very early point in the rapid growth scenario. The satellite system is assumed to be fully implemented by the year 2000. Phase I and Phase II will be implemented between 1980 and 1990, with a total replacement cost of facilities and equipment in 1990 of \$1.1 billion. Starting in 1990, conventional navigation and communication facilities, identified in the same manner as in the balanced growth scenario, will be abandoned. In their place the Phase III satellite system will execute ATC navigation and communication functions. The total replacement value of the Phase III satellite system is assumed to be \$4.9 billion by the year 2000 in the rapid growth scenario, increased over the values used in the balanced growth scenario in order to relate the difference in GNP growth for the two sets of projections.

The second modification to the assumptions of the balanced growth scenario is that the replacement costs of the ATC facilities and equipment will increase at a compound annual rate of approximately 109.3%. This rate is the product of the average compound

ACUMENICS

increase in GNP assumed for the rapid growth scenario²⁸ (i.e. 104.3%) and the historical relationship of increases in F&E replacement costs to increases in GNP between 1972 and 1979 (approximately 104.7%).

Growth in conventional categories of ATC facilities and equipment has been apportioned among the terminal areas, en route centers, and flight service stations by the same method used in the stagflation scenario. That is, for each one percent increase in terminal area replacement costs, there is an increase of 0.89 percent in en route center replacement costs, and 2.21 percent for the flight service stations.

Capital consumption has been calculated on the basis of 14 years of useful life for conventional technologies, and seven years useful life for the satellite systems.

²⁸See Table 23 of FAA AVIATION FORECASTS: FY 1980-1981 Office of Aviation Policy (December, 1979) and its extrapolation to 2020. See Scenario Volume.

Fi

RAPID GROWTH SCENARIO ANNUAL CAPITAL CONSUMPTION AIR TRAFFIC CONTROL, SELECTED FACILITIES AND EQUIPMENT 1980 ~ 2020 (1979 DOLLARS IN THOUSANDS)

<u>Year</u>	<u>Terminals</u>	En Route Facilities	FSS	Satellite Syste	m <u>Total</u>
1980	97,340	144,936	32,851	-0-	275,127
1981	107,212	153,795	38,026	17,429	316,462
1982	118,086	163,197	44,017	21,942	347,242
1983	130,062	173,172	50,951	27,623	381,808
1984	143,213	183,758	58,977	34,775	420,723
1985	157,782	194,990	68,268	43,780	464,820
1986	173,784	206,909	79,023	55,115	514,831
1987	191,409	219,557	91,472	69,386	571,824
1988	210,822	232,978	105,882	87,352	637,034
1989	232,204	247,219	122,562	123,387	725,372
1990	255,754	262,331	141,870	174,286	834,241
1991	276,101	272,441	132,742	200,402	881,686
1992	298,067	282,940	124,201	230,432	935,640
1993	321,781	293,844	116,209	264,961	996,795
1994	347,381	305,168	108,732	304,664	1,065,945
1995	375,018	316,929	101,736	350,317	1,144,000
1996	404,854	329,143	95,190	402,811	1,231,998
1997	437,063	341,827	89,065	463,171	1,331,126

ACUMENICS

TABLE 24 (Continued)

	Year	Terminals	<u>En Route Faciliti</u>	es FSS	Satellite Syst	em Total
	1998	471,835	355,001	83,354	532,576	1,442,746
•	1999	509,373	368,682	77,972	612,380	1,568,407
	2000	549,898	382,890	72,955	704,143	1,709,886
•	2001	599,206	414,445	83,882	769,325	1,866,858
	2002	652,934	448,600	96,445	840,541	2,038,520
	2003	711,481	485,571	110,890	918,349	2,226 [,] 291
	2004	775,277	525,588	127,499	1,003,360	2,431,724
	2005	844,794	568,902	146,595	1,096,241	2,656,532
	2006	920,544	615,787	168,551	1,197,719	2,902,601
	2007	1,003,086	666,536	193,796	1,308,591	3,172,009
	2008	1,093,029	721,466	222,822	1,429,727	3,467,044
	2009	1,191,038	780,924	256,195	1,562,076	3,790,233
	2010	1,297,834	845,282	294,567	1,706,676	4,144,359
	2011	1,409,273	911,752	337,504	1,864,662	4,523,191
	2012	1,530,281	983,448	386,700	2,037,273	4,937,702
	2013	1,661,679	1,060,783	443,068	2,225,862	5,391,392
	2014	1,804,359	1,144,198	507,651 [:]	2,431,908	5,888,116
	2015	1,959,291	1,234,174	581,648	2,657,028	6,432,141
	2016	2,127,526	1,331,224	666,432	2,902,988	7,028,170
	2017	2,310,207	1,435,906	763,574	3,171,716	7,681,403
•	2018	2,508,574	1,548,820	874,876	3,465,319	8,397,589

Π

ţ

TABLE 24 (Continued)

Year	Terminals	En Route Facilit:	ies FSS Sa	atellite Sys	tem Total
2019	2,723,973	1,670,614	1,002,402	3,786,102	9,183,091
2020	2,957,868	1,801,984	1,148,516	4,136,579	10,044,947

2. Martin (唐代)

ACUMENICS

X. AGENCY LABOR IMPACTS

The primary impact of automation on labor is to add or delete personnel. This section of the report will present estimates of the agency labor requirements for each scenario, as well as specified contingencies. These estimates are based on the production functions developed in Chapter VII.

Estimates of terminal staff (TERM) and center staff (CENT) are presented for the years 1990 to 2020 for the stagflation, balanced growth and rapid growth scenarios. The estimates of TERM, as well as CENT are then compared for all scenarios. In addition, estimates for the following options have been prepared:

- (1) Staff levels under stagflation capital investment with balanced and rapid growth activity measures;
- (2) Staff levels under the balanced growth investment with stagflation and rapid growth aviation activity measures;
- (3) Staff levels under the rapid growth investment scenario and stagflation and balanced growth aviation activities.

The Scenarios

The official FAA estimates of staff for the period 1970-1990 are shown in Table 25. The historic data 1970-1990 indicates that the center workforce increased from 10,597 to 10,982 or 3.5%. The terminal staffing increased from 8,569 to 11,859 or 38.3% during the 1970-1979 period. Estimates of staffing from 1980 to 1992 incorporate planned technological shifts. From 1970 to 1992 the increase in terminal staff is from 8,569 to 16,175 or 88.7%. The increase for center staff between 1970 and 1992 is 10,597 to 13,121 or 42.6%.

ACUMENICS

CONTROLLER STAFFING

F.Y.	TERMINAL	CENTERS	FSS
1970	8,569	10,597	4,545
1971	9,249	11,328	4,581
1972	9,399	10,772	4,457
1973	9,949	10,682	4,330
1974	10,472	10,764	4,471
1975	10,832	10,813	4,664
1976	11,092	11,000	4,892
1977	11,385	10,981	5,054
1978	11,610	10,954	4,966
1979	11,859	10,982	4,989
1980	12,653	11,532	5,035
1981	12,653	11,688	5,068
1982	13,363	11,833	5,200
1983	13,695	12,338	5,200
1984	13,983	12,734	5,200
1985	14,307	13,198	5,200
1986	14,597	13,538	5,220
1987	14,867	13,849	5,240
1988	15,000	14,131	5,240
1989	15,396	14,358	5,240
1990	15,659	14,613	5,153
1991	15,916	14,894	4,770
1992	16,175	15,121	4,415

A comparison of center and terminal staff with terminal total aircraft operations and center IFR aircraft handles for the 1970-1992 period is shown in Table 26. The terminal staff is expected to increase 88.7% and the operations workload 75.1%. Center staff is expected to increase 46.6% but workload is estimated to enlarge by 103.7%. The tentative conclusions drawn from the FAA forecast and staff level projections is that <u>ceteris paribus</u> the staff magnitude will increase with more aviation activity. However, technological change will cause the center staff levels to grow at a slower rate than terminal staff.

The preceeding statement obtains only when new technology is substituted for extant technology on a continuing basis. If the extant technology is replaced with the same genre of equipment, one would expect labor utilization to be less efficient. Inefficient labor utilization would result in a staff growth rate proportional to activity levels.

The stagflation scenario assumes that the agency capital to 2020 is based on extant technology. As such, the level of capital may increase, but will not impede an increase in agency staff proportional to activity levels. The projected agency impact for 1990 to 2020 is shown in Table 27. It is anticipated that the number of terminal personnel will increase from 15,540 to 17,696 or 13.9%. The size of the center workforce is expected to increase from 14,370 in 1990 to 21,924 in 2020 or 52.5%.

ACUMENICS

COMPARISON OF AVIATION ACTIVITY AND STAFF LEVEL INCREASES

	STAFF		TERMINAL AIRCRAFT	CENTER IFR AIRCRAFT
FY	TERM	CENT	OPERATIONS (MILLIONS)	HANDLES (MILLIONS)
1970	8,589	10,597	56.2	21.6
1992	16,175	15,121	98.4	44.0
% CHANGE	88.7	42.6	75.1	103.7

ACUMENICS

TABLE	27
-------	----

AGENCY STAFF 1980-2000: STAGFLATION SCENARIO

		·	
OBS	YEAR	STERM	SCENT
21	1990	15539.4	14369.7
22	1991	15801.5	14768.3
23	1992	16027.5	15123.0
24	1993	16217.2	15433.1
25	1994	16371.0	15698.0
26	1995	16489.4	15917.9
27	1996	16573.2	16093.7
28	1997	16623.4	16226.3
29	1998	16641.5	16317.5
30	1999	16628.8	16368.9
31	2000	16586.8	16382.7
32	2001	16708.7	16841.0
33	2002	16804.8	17277.3
34	2003	16876.0	17691.2
35	2004	16923.4	18083.0
36	2005	16948.1	18453.0
37	2006	16951.2	18801.6
38	2007	16933.8	19129.3
39	2008	16897.3	19436.8
40	2009	16842.9	19725.0
41	2010	16771.6	19994.2
42	2011	16919.9	20253.7

It is expected that terminal staff will increase with activity and center staff will decline under the balanced growth scenario. That is, centers will be more automated than terminals. The expected staffing levels for centers and terminals under the balanced growth scenario is shown in Table 28. The terminal staff is expected to increase from 17,062 in 1990 to 25,131 in 2020 or 47.5%. Owing to automation, the center staff is expected to decrease from 13,434 in 1990 to 4071 in 2020 or -69.7%.

The rapid growth scenario is expected to result in increased terminal staff to accomodate growth. Increased automation will result in decreased center staff. The estimated staff levels under the rapid growth scenario are shown in Table 29. Under rapid growth, terminal staff is expected to increase from 21,636 in 1990 to 31,147 or 43.9%. Center staff is expected to decrease from 10,983 in 1990 to 2,172 in 2020 or-79.4%.

A comparison of terminal and center staff levels across scenarios is shown in Tables 30 and 31. The continued discussion of the staff levels in the context of aviation activity is in a succeeding section.

The Stagflation Option

The following section includes the staff estimates for the following conditions:

- (a) The agency capital investment is for extant technology i.e., the capital investment under Stagflation.
- (b) Aviation activity levels during the forecast period reflect rapid or balanced growth levels.

AGENCY STAFF-BALANCED GROWTH

OBS	YEAR	BTERM	BCENT
	1000		
· · · - <u>1</u> - ·	1990		
2	1991	17687.9	13477.4
3	1992	18307.0	13478.4
4		- 18917+0	-13437-9
5	1994	19515.6	13356.5
6	1995	20100.3	13235.6
7 .	1996		-13076+8-
8	1997	21218.6	12882.0
9	1998	21747.6	12653.6
-10-			
11	2000	22734.3	12106.0
12	2001	23352.2	11894.8
-13	2002 —	23948.5	
14	2003	24520.8	11392.7
15	2004	24850.3	10828.8
17	2006	25647.0	9980.9
18	2007	25935.1	9481.8
19-	- 2008-		
20	2009	26201.2	8304.9
21	2010	26130.6	7616.4
	- 2011		
23	2012	26897.0	7604.3
24	2013	27134.3	7463.5
25	2014		
26	2015	27258.0	6882.4
27	2016	27123.1	6445.4
	2017		
29	2018	26421.5	5338.2
30	2018	25848.8	4711.4
			4/11.4
	- 2020	251-31+1	
32	2021	•	•

ACUMENICS

in a la sta

5 (

AGENCY	STAFF-RAPID	GROWTH
--------	-------------	--------

OBS	YEAF	RTERM	RCENT
1	1990	- 21636.4	
2	1991	22467.4	11118.1
3	1992	23250.4	11168.1
4	1993		
•	1994	24659.5	11013.8
5	1995	25280.1	10815.2
6	1775 <u>1</u> 9 96		<u></u>
-	1997	26342.7	10199.0
8 9	1998	26781.8	9796.5
10	1770 - <u>1999</u>	27158+3	
11	2000	27471.5	8846.5
12	2000	27984.3	8380.1
		28457.6	
14	2002	28891.5	7467.5
	2003	29286.0	7026.2
15	-	29641.3	
- 16		29957.9	6182.7
17	2006		5783.1
18	2007	30236.2	5399.8
19	2008	30476.8	5033.2
20	2009	30680.3	<u>4683+7</u>
-21	2010-		-4364+9
22	2011	31021.1	4061.5
23	· 2012	31160.3	3773.5
24	2013	31265.9	
- 25	- 2014		
26	2015	31380.3	3243.4
27	2016	31391.0	3000.9
	20-17		
29	2018	31324.2	2559.0
30	2019	31246.8	2358.2
- 31	2020 -		2171+7
32	2021	•	•

ACUMENICS

TERMINAL STAFF-ALL SCENARIOS

OBS	YEAR	STERM	BTERM	RTERM
· 1 ·- ·	1990	-15541.4	17062+1	
2	1991	15803.5	17687.9	22467.4
3	1992	16029.5	18307.0	23250.4
4	1993	-16219.3 -	- 18917.0-	-23982.1
5	1994	16373.0	19515.6	24659.5
6	1995	16491.4	20100.3	25280.1
7	1996	16575.2	- 20668+7	
8	1997	16625.5	21218.6	26342.7
9	1998	16643.6	21747.6	26781.8
			22253.5	
11	2000	16588.9	22734.3	27471.5
12	2001	16710.8	23352.2	27984.3
13	-2002	16806.9		
14	2003	16878.2	24520.8	28891.5
15	2004	16925.6	24850.3	29286.0
-16	-2005		25280-7	
17	2006	16953.3	25647.0	29957.9
18	2007	16936.0	25935.1	30236.2
1.9	2008			
20	2009	16845.0	26201.2	30680.3
21	2010	16773.7	26130.6	30847.5
	- 2011-		26558-5	-31021-1
23	2012	17056.4	26897.0	31160.3
24	2013	17177.4	27134.3	31265.9
-25	- 2014			
26	2015	17381.6	27258.0	31380.3
27	2016	17465.9	27123.1	31391.0
- 28	- 2017	- 17539+1 -		
29	2018	17601.9	26421.5	31324.2
30	2019	17654.7	25848.8	31246.8
- 31	-2020		25131+1	
32	2021		aus ter da tur da 🔻 da 💳 —	•
		•	•	•

ACUMENICS

CENTER STAFF-ALL SCENARIOS

OBS	YEAR	SCENT	BCENT	RCENT
			6 mm 6 mm 6 mm	
1	-1990			
2	1991	14768.3	13477.4	11118.1
3	1992	15123.0	13478.4	11168.1
4	<u>1993</u>	15433+1		
5	1994	15698.0	13356.5	11013.8
6	1995	15917.9	13235.6	10815.2
. 7			-13076-8 -	- 10541 - 1
8	1997	16226.3	12882.0	10199.0
9	1998	16317.5	12653.6	9796.5
10	<u>1999</u>		-12394-1	9342.5
11	2000	16382.7	12106.0	8846.5
12	2001	16841.0	11894.8	8380.1
13	2002	17277.3	11656.3	7919.6
14	2003	17691.2	11392.7	7467.5
15	2004		10828-8-	7026.2
16	2005	18453.0	10428.2	6597.4
17	2006	18801.6	9980.9	6182.7
18	2007	19129.3	9481.8	5783.1
19 -	2008			53998
20	2009	19725.0	8304.9	5033.2
21	2010	19994.2	7616.4	4683.7
22			7652-1	4364+9
23	2012	20496.3	7604.3	4061.5
24	2013	20722.6	7463.5	3773.5
- 25 -	- 2014		7223-4	3500.9
26	2015	21130.2	6882.4	3243.4
27	2016	21313.2	6445.4	3000.9
28				
29	2018	21641.3	5338.2	2559.0
30	2019	21787.9	4711.4	2358.2
31	- 2020-	21923.8	4071.2	
32	2020	دي) ولي شد / مدينية.	TV/ 4 4 4 1	· · · · · · · · · · · · · · · · · · ·
شد ف	2V21	•	•	•

ACUMENICS

In essence, this section considers the impacts if the agency invests technology on the stagflation level and balanced or rapid growth aviation activity occurs.

Estimates of terminal staff requirements are shown in Table 32. If stagflation investment occurs with stagflation growth the terminal staff will increase from 15,541 in 1990 to 17,698 in 2020 or 13.8%. If stagflation investment occurs with balanced growth activity the terminal staff will increase from 19,512 in 1990 to 56,812 in 2020 or 191.2%. In similar, if the stagflation investment occurs with rapid growth activity the terminal staff will increase from 33,522 in 1990 to 138,112 in 2020 or 312%.

Estimates of center staff requirements are shown in Table 33. If the stagflation capital investment occurs with stagflation aviation activity levels, the number of center staff will increase from 14,370 in 1990 to 21,924 in 2020 or 52.6%. If the stagflation capital investment is coupled with balanced growth activity measures then the center staff will increase from 18,812 in 1990 to 67,936 in 2020 or 261.1%. In similar, if stagflation capital is used in conjunction with rapid growth activity the number of center staff would increase from 34,737 in 1990 to 245,218 in 2020 or 605.9%.

ACUMENICS

TERMINAL STAFF-ACTIVITY ALL SCENARIOS-STAGFLATION CAPITAL

OBS	YEAR	STERM	STERMB	STERMR
1	1990	15541.4	19511.7	33522
2	1991	15803.5	20419.5	35633
3	1992	16029.5	21335.9	37772
4	1993	16219.3	22258.4	39936
5	1994	16373.1	23183.9	42120
6	1995	16491.5	24109.7	44320
7	1996	16575.3	25032.7	46532
8	1997	16625+6	25949.7	48753
9	1998	16643.6	26857.8	50980
10	1999	16630.9	27753.6	53207
11	2000	16588.9	28634.2	55433
12	2001	16710.8	29838.2	58322
13	2002	16807.0	31044.4	61263
14	2003	16878.2	32249.3	64251
15	2004	16925.6	33449.3	67286
16	2005	16950.3	34641.1	70364
17	2006	16953.3	35821.2	73483
18	2007	16936.0	36986.0	76641
19	2008	16899.5	38132.4	79835
20	2009	16845.0	39256.9	83062
21	2010	16773.8	40356.4	86320
22	2011	16922.1	42011.6	90870
23	2012	17056.5	43673.7	95557
24	2013	17177.5	45339.1	100384
25	2014	17285.6	47004.5	105349
26	2015	17381.6	48666.6	110455
27	2016	17465.9	50321.9	115702
28	2017	17539.2	51967.2	121091
29	2018	17602+0	53599.3	126621
30	2019	17654.8	55215.3	132295
31	2020	17698.2	56812.2	138112
32	2021		•	•

CENTER STAFF-ACTIVITY ALL SCENARIOS-STAGFLATION CAPITAL

OBS	YEAR	SCENT	SCENTB	SCENTR
1	1990	14369.7	18811.5	34 737
2	1991	14768.3	19959.7	37579
3	1992	15123.0	21116.4	40507
4	1993	15433.1	22276.0	43517
5	1994	15698.0	23432.5	46603
6	1995	15917.9	24579.8	49761
7	1996	16093.7	25711.9	52984
8	1997	16226.3	26822.6	56268
9	1998	16317.5	27906.4	59607
10	1999	16368.9	28957.3	62996
11	2000	16382.7	29970.1	66430
12	2001	16841.0	31847.4	71954
13	2002	17277.3	33758.5	77782
14	2003	17691.2	35697.5	83921
15	2004	18083.0	37658.6	90380
16	2005	18453.0	39636.0	97167
17	2006	18801.6	41623.8	104292
18	2007	19129.3	43616.0	111763
19	2008	19436.8	45607.1	119587
20	2009	19725.0	47591.6	127775
21	2010	19994.2	49563.7	136334
22	2011	20253.7	51539.5	145331
23	2012	20496.3	53494.9	154724
24	2013	20722.6	55425.1	164521
25	2014	20933.7	57326.4	174733
26	2015	21130.2	59194.6	185368
27	2016	21313.2	61026.7	196436
28	2017	21483.3	62819.4	207945
29	2018	21641.3	64570.1	219905
30	2019	21787.9	66276.4	232325
31	2020	21923.8	67936.3	245214
32	2021	•	• • •	•

ACUMENICS

The Balanced Growth Option

This section considers the agency impacts if the balanced growth scenario capital is in place and rapid growth or stagflation aviation activity prevail. Estimates of terminal staff for the above contingency are included in Table 34. If stagflation activity levels occur then the number of terminal staff (BTERMS) will decrease from 13,503 in 1990 to 7,575 in 2020, a change of 43.8%. If the rapid growth scenario activity levels prevail, then the number of terminal staff (BTERMR) will increase from 29,765 in 1990 to 62,647 in 2020, an increase of 110%.

The estimates for center staff are included in Table 35. If stagflation activity levels prevail the number of center staff (BCENTS) will decrease from 10,059 in 1990 to 1,200 in 2020, a change of 87.9%. If rapid growth activity occurs, then the center staff (BCENTR) will decline from 25,981 in 1990 to 16,161 in 2020, a change of 37.7%.

The Rapid Growth Impacts

This section presents the agency impacts if the rapid growth scenario technology is adopted and activity levels are at the balanced growth or stagflation scenario levels. Estimates of terminal staff requirements are presented in Table 36. The number of term staff (RTERMS) for stagflation activity levels will decrease from 9,592 in 1990 to 3,541 in 2020, a change of 63.1%. If balanced growth activity levels prevail, the terminal staff level (RTERMB)

ACUMENICS

1

1

1

TERMINAL STAFF BALANCED GROWTH CAPITAL-RAPID AND STAGFLATION ACTIVITY

OBS	YEAR	BTERMS	BTERM	BTERMR
1	1999	13583.1	17962.1	29765.9
2	1991	13598.6	17687.9	31355.8
3	1992	13643.2	18397.8	32937.7
4	1993	13661.7	18917.8	34586.5
5	1994	13647.5	19515.6	36058.7
6	1995	13682.2	20100.3	37598.9
7	1996	13527.2	28668.7	39999.5
8	1997	13424.4	21218.6	40581.6
9	1998	13295.8	21747.6	42934,3
19	1999	13143.4	22253.5	43455.0
11	2996	12969.2	22734.3	44941.2
12	2001	12865.8	23352.2	46517.7
13	2882	12742.4	23948.5	48176.4
14	2993	12600.6	24528.8	49814.7
15	2984	12334.7	24850.3	59985.8
16	2005	12122.7	25239.7	5239 9. 9
17	5 996	11884.2	25547.8	53691.6
18	2687	11616.4	25935.1	54866.8
19	2008	11315.7	26127.2	55855.0
28	2969	18977.2	26291.2	56625.1
21	2918	18594.7	26130.6	57186.3
22	2011	19426.2	26558.5	58711.7
23	2912	16229.6	26897.0	69167.3
24	2913	19982.1	27134.3	61442.9
25	2914	9744.6	27258.4	62502.7
26	2915	9456.1	27258.8	63315.7
27	2916	9136.6	27123.1	63847.7
28	2017	8786.7	26845.9	64968.5
29	2918	8497.9	26421.5	63952.5
29	2919	7982.9	2:40.3	53451.9
31	224	57. C	5 13.1	62647.5
1.	1719			

Copy available to DTIC does not permit fully legible reproduction

ACUMENICS

161

and the second secon

CENTER STAFF BALANCED GROWTH CAPITAL-RAPID AND STAGFLATION ACTIVITY

OBS	YEAR	BCENTS	BCENT	BCENTR
1	1998	19959.4	13434.3	25961.2
2	1991	9751.9	13477.4	26592.3
3	1992	9417.1	13478.4	27133.8
4	1993	9868.2	13437.9	27586.6
5	1994	8686.1	13356.5	27951.3
6	1995	8299.9	13235.5	28232.1
7	1996	7985.8	13876.8	28429.8
8	1997	7598.1	12882.9	28548.2
9	1998	7110.5	12653.6	22599.6
19	1999	6716.2	12394.1	28561.3
11	2866	6328.2	12186.0	28463.4
12	2991	5888.8	11894.8	28547.3
13	2292	5676.8	11656.3	28569.9
14	2883	5360.0	11392.7	28534.0
15	2884	4924.7	18828.8	27730.3
16	2665	4587.6	18428.2	27328.6
17	2 996	4250.6	9980.9	26768.9
18	2007	3912.3	9491.8	26050.5
19	2998	3570.8	8925.2	25135.4
28	2009	3224.6	8304.9	23989.8
21	2010	2872.6	7616.4	22581.0
22	2011	2896.0	7652.1	23299.7
23	2012	2713.7	7684.3	23794.4
24	2813	2594.3	7463.5	24813.9
25	2814	2448.0	7223.4	23912.2
26	2015	2276.2	6882.4	23454.1
27	2916	2082.2	6445.4	22623.7
28	2017	1871.2	5924.4	21429.4
29	2018	1650.0	5338.2	19907.9
30	2019	1426.3	4711.4	10122.4
. ?!	2328	225	477.1	161- 9. 8
:2		· · · · · · · · · · · · · · · · · · ·	. •	•

Copy available to DTIC does not permit fully legible reproduction

ACUMENICS

. · .

162

7 (:

یں ا

İ

TERMINAL STAFF RAPID GROWTH CAPITAL-BALANCE AND STAGFLATION ACTIVITY

OBS	YEAR	RTERMS	RTERNE	RTEPH
1	1996	9591.92	12263.8	21636.4
2	1991	9593.63	12464.1	22467.4
3	1092	9386.38	12793.4	23259.4
4	1993	9241.88	12919.8	23982.1
5	1994	9072.58	13189.4	24659.5
6	1995	9880.41	13273.1	25288.1
7	1996	8667.97	13488.9	25841.7
8	1997	8437.61	13515.7	26342.7
9	1000	8191.75	13592.6	26781.8
10	1999	7932.56	13639.2	27158.3
11	2 966	7663.24	13654.9	27471.5
12	2991	7455.21	13768.9	27984.3
13	2882	7240.63	13860.9	28457.6
14	2983	7821.83	13938.7	22891,5
15	2 984	6797.82	13978.0	29286.0
15	2995	6572.31	14082.7	29641.3
17	2996	6345.71	14995.1	20057.0
18	2997	6119.12	13985.4	38236,2
19	2998	5893.52	13943.8	30476.8
20	2999	5669.38	13880.8	32689.3
21	2919	5448.75	13797.1	30847.5
22	2911	5239.19	13711.7	31021.1
23	2012	5030.80	13606.5	31160.3
24	2813	4827.38	13482.7	31265.9
25	2914	4628.29	13349.7	31339.0
26	2015	4433.98	13181.6	31388.3
27	2016	4244.51	13096.5	31391.0
29	2017	4868.32	12816.3	31371,9
29	2018	3281.72	12612.1	31324.2

will decrease from 12,203 in 1990 to 12,166 in 2020, a small change of 0.3%.

Center staff requirements are shown in Table 37. If stagflation activity occurs then center staff (RCENTS) levels will decrease from 3,945 in 1990 to 132 in 2020, a change of 96.6%. The center staff level (RCENTB) for balanced growth activity levels will decline from 5,392 in 1990 to 490 in 2020, a change of 90.9%.

Flight_Services_Station Personnel

The impact of technology on flight service station staff is shown in Table 38. The staff level estimates are for congruent activity and capital. If the existing technology is continued in use under the stagflation scenario, the flight service personnel (SFSS) will increase from 4,714 in 1992 to 22,698 in 2020; a net increase of 382 percent. If the agency went in balanced growth technology, the number of flight service staff (BFSS) will decrease from 4,191 in 1992 to less than 100 in 2020. If rapid growth activity occurs in conjunction with the use of rapid growth technology, the workforce (RFSS) is expected to increase from 1,690 in 1992 to 3,800 in 1992, then decrease to 109 by 2020.

Two non-congruent condition sets of staff estimates are shown in Tables 39 and 40. The data in Table 39 contrasts the following conditions: balanced growth activity with balanced growth technology (BFSS), and stagflation activity with balanced growth technology (BFSSS). As noted above, for the balanced growth, congruent

ACUMENICS

condition staff is expected to diminish from 4,191 in 1992 to less than 100 in 2020.

If balanced growth technology is used with stagflation activity, the FSS will be fully automated by 2003.

.

Ĩ

•

If rapid growth technology is fully employed with either balanced growth (RFSSB) or stagflation activity (RFSSS), their flight service stations could be fully automated by 1992.

CENTER STAFF RAPID GROWTH CAPITAL-BALANCE AND STAGFLATION ACTIVITY

OBS	YEAR	PCENTS	RCENTB	RCENT
1	1999	2944.77	5391.58	10992.8
2	1991	3762.79	5336.69	11118.1
3	1992	3561.34	5245.57	11168.1
4	1995	3344.66	5119.67	11132.7
5	1004	2117.65	4968.89	11013.8
6	1995	2882.27	4772.13	18815.2
7	1096	2645.99	4556.46	10541.1
. 8	1097	2418.48	4318.31	18199.9
9	1938	2179.59	4061.98	9796.5
10	1999	1956.64	3792.21	9342.5
11	2200	1743.83	3510.82	8846.5
12	2891	1554.68	3255.55	8386.1
13	2992	1382.75	3007.43	7919.5
14	2883	1227.89	2776.40	7467.5
15	2884	1096.67	2544,91	7826.2
16	2005	960.44	2331.45	6597,4
:7	2896	847.33	2138.25	6182.7
18	2207	745.27	1941.43	5783.1
19	2898	656.22	1764.94	5399.8
29	2889	576,19	1600.62	5032.2
21	2916	585.22	1448.21	4683.7
22	2011	443.79	1311.33	4364, 9
23	2912	389.33	1184.75	4061.5
24	2813	341.18	1968.11	3773,5
25	2014	298.66	960.95	3568.9
26	2815	261.19	962.83	324?.4
27	2816	228,21	773.23	3006.9
28	2017	199.22	691.67	2772.9
29	2818	173.75	617.61	2559.9
30	2819	151.43	558.49	2,935
31	2020	131.94	489.96	2171.7
35	2921	•		•

ACUMENICS

FSS PERSONNEL ALL SCENARIOS

OBS	YEAR	SF35	JF35	RF55
123456789011231456178901222345	1992 1993 1995 1995 1995 1996 2002 2003 2004 2005 2005 2005 2005 2005 2005 2005	4714.5 4744.4 4705.9 4402.9 4234.0 3985.7 3708.4 3411.5 3673.4 3914.3 4129.3 4314.0 4579.9 465.0 4579.9 4695.7 4695.7 4695.7 4695.7 4695.3 35629.6 3750.3 3036.7 9502.3 11159.8	4199.72 3523.48 2997.48 2391.13 1473.66 1138.22 503.36 449.42 503.36 384.72 299.43 165.19 75.96 48.10 29.02 16.52 12.92 24.72 59.43 192.73 245.32	RF55 1687.73 2386.52 3048.19 3549.68 3880.46 5771.95 3697.88 3053.27 2525.66 2528.58 2479.60 2383.74 2081.99 1894.22 1694.24 1298.64 1298.64 1298.64 1298.64 1298.55 531.62 408.44 321.90 256.54
24		11159.8 13821.4 15097.9 17398.2 19930.2 22698.4	245.82 245.30 192.29 120.42 61.85 26.87	321.90

167

l

ACUMENICS

.

 Ĭ

BALANCED GROWTH CAPITAL-BALANCED GROWTH AND STAGFLATION

085	YEAR	BFSS	BFSSS
123456789011123456789012222256789	1993 1999 1999 19997 19997 19997 20000 20000 20000 20000 20000 20000 2000 2001 20000 2000000	BFS5 4190.72 3523.48 2907.48 2907.48 2391.13 1878.79 1473.22 866.30 503.36 1138.22 503.36 304.72 290.43 168.76 115.96 48.10 299.62 16.52 12.92 59.62 19.35 245.82 245.30 192.29 120.42 61.85 26.87	BF\$5\$ 351.132 270.224 204.945 153.512 113.146 82.456 59.357 42.230 29.675 21.616 15.564 15.564 15.564 15.564 1.695 1.695 2.474 1.491 0.858 0.466 0.349 9.633 - 1.480 2.846 4.420 5.423 5.223 3.952 2.392 2.392 2.392
30	2021	•	•

(

RAPID GROWTH CAPITAL-OTHER SCENARIO ACTIVITY

OBS	YEAR	RF\$\$	RFSSS	RFSSB
1234567891011233456789101123341516718902122334	1992 1993 1994 1995 1997 1998 2000 20003 20003 20003 20006 20007 20006 20007 20006 20010 20010 20010 20010 20010 20013 20013 20013 20115	$1689.73 \\ 2386.52 \\ 3048.19 \\ 3549.68 \\ 3800.46 \\ 3771.95 \\ 3497.88 \\ 3052.27 \\ 2525.66 \\ 2528.58 \\ 2479.50 \\ 2383.74 \\ 2248.29 \\ 2081.99 \\ 1894.22 \\ 1694.24 \\ 1490.58 \\ 1290.64 \\ 1100.36 \\ 927.93 \\ 771.43 \\ 632.48 \\ 511.62 \\ 408.44 \\ \end{cases}$	0.177478 0.187452 0.181836 0.163128 0.106913 0.079229 0.037675 0.031040 0.020319 0.016154 0.012697 0.012697 0.007589 0.005776 0.005776 0.004347 0.003239 0.00239 0.001760 0.001279 0.001279 0.001279	2.11543 2.44104 2.57630 2.50498 2.26083 1.90829 1.51731 1.1420 0.82343 0.82343 0.72189 0.62343 0.53120 0.44625 0.36990 0.30264 0.24448 0.19507 0.11978 0.09261 0.05356 0.04009 0.02969
			0.000464 0.000464 0.000464 0.000325 0.000226 0.000226	
29 30	2020 2021	109.85	0.000106	0.00569

ACUMENICS

.....

XI. MEASUREMENT OF PRODUCTIVITY

The basic measure of technology and labor productivity is the system product divided by the labor necessary to provide the product. As noted previously, system product is a function of the factors of production (i.e., labor (L) and capital (C), or Q = f(C,L). The formulation employed in estimating system product is $Q = AC^{\alpha} L^{\beta}$. Thus, the ratio of product to labor provides and indicates the average product as well as the general efficiency of the technology.

The system components, product and labor are:

Component	Product	Labor
terminals	operations (TOPS)	terminal staff (TERM)
centers	aircraft handled (AIRHAND)	center staff (CENT)
FSS	contacts (CONT)	flight service staff (FSS)

The average product for each component is then:

Curator

System Component	Average Product
terminals	TOPS/TERM
centers	AIRHAND/CENT
FSS	CONT/FSS

Both the numerator and denominator of the average product for each system component has been estimated. The numerators are the forecast estimates provided in the scenario section. The denominator projections have been developed using the production function construct.

The average product measure (APM) indicates staff productivity since it indicates the level of product produced by each staff The APM also indicates the relative impact of technology member. since the average reports the productivity of staff for a given technological construct. Thus, the APM indicates for the same time period, whether more or less product is produced under a given technological regime. Thus, if the APM for a given time is the same across scenarios, the technology allows one to accommodate growth, but offers no unit labor savings. However, if the APM is greater under balanced growth then compared stagflation the techcology is labor saving. An example of non-labor saving and labor saving APM's are shown in Table 41. The non-labor saving condition occurs when stagflation APM = balanced growth APM = rapid growth The labor saving effect of technology is shown in Row B where APM. stagflation APM \neq balanced growth APM \neq rapid growth APM. Under the Row A conditions, the relative effects of balanced and rapid growth technology compared to stagflation technology is 1.00 or

 $\frac{\text{Balanced growth APM}}{\text{Stagflation APM}} = \frac{6000}{6000} = 1.0$

 $\frac{\text{Rapid growth APM}}{\text{Stagflation APM}} = \frac{6000}{6000} = 1.0$

The relative efficiency of technology for balanced and rapid growth under row B conditions are:

 $\frac{\text{Balanced growth APM}}{\text{Stagflation APM}} = \frac{8000}{8000} = 1.33$

 $\frac{\text{Rapid growth APM}}{\text{Stagflation APM}} = \frac{12,000}{6,000} = 2.0$

T/	ABI	E	4	1
----	-----	---	---	---

TOPS/TERM

	SCENARIO				
	Stagflation (S)	Balanced Growth (BG)	Rapid Growth (RG)		
А	6000	6000	6000		
В	6000	8000	12,000		

ACUMENICS

يتربين للمك

(

The above indicates that for the given scenario activity levels the staff can produce 1.33 operations under balanced growth for each 1.00 generation for stagflation.

Comparative APM estimates are provided for two generic sets of conditions. A set of estimates is provided where the scenario activity and capital estimates are congruent. For example, stagflation activity and capital were used to estimate staff. The second set of estimates are noncongruent. The estimates examined the impact of using one scenario activity level with another scenario's capital. For example, estimating staff using stagflation activity and balanced growth capital, the second set of estimates provides impact measures for a non-optimal allocation of resources. As such, the second set of estimates provides a basis of comparing the efficiency of different scenario technology using a constant activity basis. Thus, the congruent and noncongruent conditions allow the calculation of a series of if - then estimates. The following provides a summary of the if - then relations.

Congruent

If	S capita	l and S	activity	then	S	workforce
If	BG capita	l and E	G activity	then	В	workforce
If	RG capita	1 and R	G activity	then	R	workforce

Noncongruent

If	S	capital	and	BG	activity	then	S	workforce	В
If	S	capital	and	RG	activity	then	S	workforce	R

ACUMENICS

If BG capital and S activity then B workforce S If RG capital and BG activity then B workforce R

If RG capital and S activity then R workforce S If RG capital and BG activity then R workforce B

¢

when workforce equals TERM, CENT, FSS as appropriate

The following table provides a summary of the different conditions embodied in congruent and noncongruent estimates.

Congruent

Scenario Conditions	Stagflation (S)	Balanced Growth (BG)	Rapid Growth (RG)
Activity	S	BG	RG
Capital	S	BG	RG

Noncongruent

Scenario Conditions	Stagflation (S)		Balanced Growth (BG)		Rapid Growth (RG)	
Activity	BG	RG	S	RG	S	BG
Capital	S	S	BG	BG	RG	RG

XII. THE IMPACTS IN CONTEXT

The previous sections have presented the impacts of technological change in terms of agency workforce level. This section will view those staff estimates in the context of scenario variables for discrete years. The years of interest are 2000, 2010, and 2020.

Summary statistics for the stagflation, balanced growth, and rapid growth scenarios are presented in Tables 42, 43, and 44. The statistics in the summaries include: total operations, local operations, itinerant operations, aircraft handled, IFR departures, overs, total general aviation (GA) aircraft, single engine GA aircraft, multiple engine GA aircraft, total air carrier, total pilots, private pilots, transport pilots, student pilots, terminal staff, center staff, GNP, DPI and employment. In addition to the descriptive estimates, several descriptive statistics are also provided, including messages/operation, messages/aircraft handled, total operations /aircraft, total operations/terminal staff, total aircraft handled/ center staff, total operations/total pilots.

Stagflation Scenario

The stagflation scenario (Table 42) is a slow growth environment with the agency capital investment based on extant technology. Under the stagflation scenario total annual operations will be 99.9, 107, and 111 million in 2000, 2010, and 2020 respectively. The total aircraft handled will average from 44.4 million in 2000 to

ACUMENICS

Stagflation Scenario

U

TIME/VARIABLE	2000	2010	2020
Total Operations (Millions)	99.918	107.048	110.964
Local Operations (Millions)	32.3	35.1919	37.0913
Itinerant Operations (Millions)	67.6176	71.8559	73.873
Aircraft Handled (Millions)	44.4683	47.3693	48.7322
IFR Departures (Millions)	18.0815	19.4167	20.0594
Overs (Millions)	8.44861	8.76848	8.90390
Total GA Aircraft (Thousands)	287.742	291.412	292.166
Single Engine GA Aircraft (Thousands)	226.229	228.890	229.438
Multi-Engine GA Aircraft (Thousands)	34.5468	40.6088	46.6708
Total Air Carrier	2317.25	2190.15	2063.05
Total Pilots (Thousands)	1153.81	1323.03	1492.25
Private Pilots (Thousands)	469.721	534.468	599.215
Transport Pilots (Thousands)	127.894	161.921	195.948
Student Pilots (Thousands)	256.77	284.486	312.202
Total Flight Service			
Terminal Staff	16588.9	16773.7	17698.2
Center Staff	16382.7	19994.2	21923.8
Messages/Operation	5.91	5.91	5.91
Messages/Handled	6.47	6.48	6.49
GNP (Billions 1972 \$)	2006.8	2328.9	2702.8
DPI (Billions 1972 \$)	1393.5	1617.2	1876.8
Employment (Millions)	113	118	123
Total Operations/Aircraft	344.47	364.60	377.13
Total Operations/Terminal Staff	6023.18	6381.9	6269.79
Total Aircraft Handled/Center Staff	2714.35	2369.15	2209.12
Total Operations/Total Pilots	86.60	80.91	74.36
2 * IFR Departures/Transport Pilots	141.38	119.91	102.37

48.7 million in 2020. The total general aviation fleet will increase from 287,242 aircraft in 2000 to 292,166 in 2020. The total number of pilots will change from 1,153,810 in 2000 to 1,492,250 in 2020.

The agency staff to accommodate this slow growth will include 16,589 terminal and 16,383 center personnel in 2000, and 17,698 terminal and 21,924 center staff in 2020.

The total operations/aircraft are expected to increase from 344 in 2000 to 377 in 2020. The average workload for agency terminal, i.e., operations/terminal staff will increase from 6,023 in 2000 to 6,269 in 2020. It is anticipated that the workload for center staff (aircraft handled/center staff) will deteriorate from 2,714 in 2000 to 2,209 in 2020.

Balanced Growth Scenario

The balanced growth (Table 43) scenario includes a mixed terrestrial and space based communication system. In addition, the balanced growth scenario expects modest growth in the economy and aviation. Total operations are expected to increase from 120.4 million in 2000 to 165 million in 2020. The number of aircraft handled at centers are expected to increase from 53.6 million in 2000 to 67.9 million in 2020. The GA fleet will increase from 362,471 in 2000 to 412,246 in 2020. The total pilot population will enlarge to 1,729,160 in 2020 from 1,275,200 in 2000.

ACUMENICS

Balanced Growth Scenario

2

R

TIME/VARIABLE	2000	2010	2020
Total Operations (Millions)	120.385	144.341	164.959
Local Operations (Millions)	38.9481	49.7968	61.3843
Itinerant Operations (Millions)	81.437	94.544	103.575
Aircraft Handled (Millions)	53.5956	62.1904	67.9117
IFR Departures (Millions)	22.3817	26.8072	30.0088
Overs (Millions)	9.2829	9.9363	10.2766
Total GA Aircraft (Thousands)	362.471	396.647	412.246
Single Engine GA Aircraft (Thousands)	279.915	303.785	314.605
Multi-Engine GA Aircraft (Thousands)	42.0431	48.1430	51.9011
Total Air Carrier	3559.3	4001.51	4443.72
Total Pilots (Thousands)	1275.20	1502.18	1729.16
Private Pilots (Thousands)	514.813	600.963	687.113
Transport Pilots (Thousands)	151.517	196.753	241.989
Student Pilots (Thousands)	274.198	310.221	346.244
Total Flight Service			
Terminal Staff	22734.3	26130.6	25131.1
Center Staff	12106	7616.4	4071.2
Messages/Operation	5.9	5.9	5.9
Messages/Handled	6.51	6.6	6.63
GNP (Billions 1972 \$)	2700	3600	4700
DPI (Billions 1972 \$)	2000	2670	3640
Employment (millions)	126.6	144.1	158
Total Operations/Aircraft	328.89	360.27	395.88
Total Operations/Terminal Staff	5295.24	5523.96	6563.96
Total Aircraft Handled/Center Staff	4427.19	8165.33	16681
Total Operations/Total Pilots	94.4	96.09	95.4
2 * IFR Departures/Transport Pilots	147.72	136.25	124.01

Based upon the aviation activity levels, terminal staff will grow from 22,734 in 2000 to 25,131 in 2020. However, new technology will result in a reduction of center staff from 12,106 in 2000 to 4,071 in 2020.

The average number of operations per aircraft is expected to increase from 329 in 2000 to 396 in 2020. The workload for terminal staff (total operations/terminal staff) will increase from 5,295 in 2000 to 6,564 in 2020. At centers, the workload (air handles/ terminal staff) will increase from 4,427 in 2000 to 16,681 in 2020.

Rapid Growth Scenario

The rapid growth scenario (Table 44) embodies a predominately space based communication system. In addition, aviation activity will experience great levels of growth. Total operations are expected to increase from 150.4 million in 2000 to 222.7 million in 2020. Aircraft handled by centers are expected to increase from 71.1 million in 2000 to 108.4 million in 2020. Similarly, the GA fleet is expected to grow to 640,340 aircraft in 2020 from 457,952 in 2000. The cadre of pilots will increase to 2,550,690 in 2020 from 1,698,560 in 2000.

Terminal staff will increase from 27,471 in 2000 to 31,147 in 2020. However, center staff will decrease from 8,846 in 2000 to 2,172 in 2020.

ACUMENICS

Rapid Growth Scenario

ſ

TIME/VARIABLE	2000	2010	2020
Total Operations (Millions)	150.437	186.562	222.687
Local Operations (Millions)	41.336	49.6006	57.8676
Itinerant Operations (Millions)	109.103	136.961	164.819
Aircraft Handled (Millions)	71.118	89.785	108.452
IFR Departures (Millions)	29.4194	37.3914	45.3634
Overs (Millions)	10.8517	13.0117	15.1717
Total GA Aircraft (Thousands)	457.952	566.564	640.34
Single Engine GA Aircraft (Thousands)	352.787	435.043	493.184
Multi-Engine GA Aircraft (Thousands)	51.6666	68.1547	83.5728
Total Air Carrier	4782.43	5770.71	6758.98
Total Pilots (Thousands)	1698.56	2124.63	2550.69
Private Pilots (Thousands)	665.257	822.017	978.777
Transport Pilots (Thousands)	230.303	312.521	394.739
Student Pilots (Thousands)	343.372	411.921	480.470
Total Flight Service			
Terminal Staff	27471.5	30847.5	31147.3
Center Staff	8846.5	4683.7	2171.7
Messages/Operation	2.37	2.11	1.93
Messages/Handled	6.33	6.31	6.3
GNP (Billions 1972 \$)	3500	5500	8400
DPI (Billions 1972 \$)	2440	3830	5830
Employment (Millions)	128	146	163.9
Total Operations/Aircraft	325.10	325.97	344.13
Total Operations/Terminal Staff	5476.11	6047.88	7149.48
Total Aircraft Handled/Center Staff	8039.11	19169.67	49938.76
Total Operations/Total Pilots	88.57	87.81	87.30
2 * IFR Departures/Transport Pilots	127.74	119.64	114.92

The average operations per aircraft will increase from 325 in 2000 to 344 in 2020. Terminal staff workload will increase from 5,476 operations per controller in 2000 to 7,149 operations per controller.

Comparative Measures of Effects

The previous sections present characteristic data for each scenario at three discrete time periods. Incorporated in the characteristic data were estimates for staff levels. However, the prior data considered factors for congruent capital and activity levels. That is, staff were estimated for the following conditions:

Activity	Capital Investment
Stagflation	Stagflation
Balanced growth	Balanced growth
Rapid growth	Rapid growth

However, staff estimates have also been provided for noncongruent activity and capital investment conditions:

Activity	Capital Investment
Balanced growth Rapid growth	Stagflation
Stagflation Rapid growth	Balanced growth
Stagflation Balanced growth	Rapid growth

The purpose of the noncongruent level estimates is to examine the marginal changes in staff for fixed capital investment of one sort and variations in activity levels of a different sort. That is, to determine the effects on staff levels if, for example, the agency

ACUMENICS

invests in balanced growth technology but activity levels are not at balanced growth levels. However, the "raw staff" estimates do not show productivity gains or losses across congruent or noncongruent conditions.

가는 이 것 같은 것 같아요. 이 것은 것은 것은 것은 것은 것 같은 것은 것은 것은 것은 것은 것 같은 것은 것 같아요. 한 것은 것은 것 같아요. 한 것은 것은 것은 것 같아요. 한 것은 것은 것

The general trends in the staff estimate data presented previously are:

a. a general increase over time in the number of terminal staff for congruent conditions. The increase can be attributed to widespread system growth and use.

b. a general increase in center staff for stagflation, owing to the relative inefficiency of the extant technology, and a decline in the center staff for balanced and rapid growth scenarios.

Two descriptive statistics provide a means of assessing the impacts of technology: operations/terminal staff (O-T) and aircraft handles/center staff (A-C). The O-T, A-C measures serves as surrogates for the scenario conditions since the averages tend to normalize the growth in activity and staff among scenarios. In general, high productivity results in higher ratios, since each staff member is responsible for more workload. For example, an O-T ratio of 6,025 is more efficient than 5,250, since the proportions are 6,023 operations per staff compared to 5,250 operations per staff. The O-T, A-C measures indicate the consolidation of the productivity gains obtained by altering the factors of production.

ACUMENT

AD-A1	25 358 55IFIED	SOC PHF TEC DOT	LIDECO SE IV HNOLO -FA78	NONIC IMPAC Gy inc Mai-93	IMPACT T A. (BETHE 2	(ASSES U) ACL SDA MI	SMENT	COMMU 5 RESE Feb 81	NICATI ARCH F FAR-F	IONS II IND IPO-81 F/G	-11 L7/2.1	/ 3/ NL	3
					END								
					PINED								

\$

いたからに

のためのためであるのです。 1993年の日本でのです。 1993年の日本では、1993年の日本での日本では、1993年の日本では、1993年の日本 1993年の日本では、1993年の日本での日本 Contractor and the

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A The relative efficiency of technology for each scenario and congruent conditions are shown in Table 45. The terminal data suggest, <u>ceteris paribus</u>, that the extant technology is as efficient as the new technology until 2012. The optimum efficiency of the balanced and rapid growth technology does not occur until 2020. It should be noted, that the stagflation scenario operations increase 11%, balanced growth 36%, and rapid growth 48% between 2000 and 2020. Thus, the efficiency of the stagflation technology obtains only for low growth rates in operation. The relative inefficiency of new technology in terminal areas is due to the inherent constraints of airports. Excess or increased traffic can be accommodated by other airports in the terminal area.

The center staff estimates of congruent conditions (Table 45) indicates that the stagflation technology is inefficient when compared to the balanced and rapid growth technology. The A-C measures for stagflagation, balanced growth and rapid growth in 2000 are 2714, 4427, 8039, respectively. In 2020 the AC measures for stagflation, balanced growth and rapid growth are 2207, 16,681 and 49,938. Another way of stating the relative efficiency is that in 2000 the balanced growth A-C is 63% greater than stagflation; the rapid growth A-C is 196% greater than stagflation. In 2020 the balanced growth A-C is 655% greater than stagflation; the rapid growth A-C is 2,160% greater than stagflation.

ACUMENICS

TABLE 45

Impact Measures - Congruent Conditions

Operations/Terminal Staff

		ACTIVITY LEVEL	
YEAR	STAGFLATION	BALANCED GROWTH	RAPID GROWTH
2000	6023	5295	5476
2010	6382	5524	6048
2020	6270	6564	7149

Aircraft Handled/Center Staff

	ACTIVITY LEVEL				
YEAR	STAGFLATION	BALANCED GROWTH	RAPID GROWTH		
2000	2714	4427	8039		
2010	2369	8165	19,170		
2020	2209	16,681	49,938		

Ĩ

The Terminal Capital Efficiency

The non-congruent effects of technology are examined in Tables 46, 47, and 48. The O-T and A-C measures presented indicate the efficiency if the technology in place is required to accommodate higher or lower aviation activity levels.

The terminal staff measures indicate that if balanced growth activity occurs using stagflation capital (Table 46) the relative productivity declines. That is, the operations per terminal staff decrease from 6,023 to 3,489 in 2000, 6,382 to 2,652 in 2010, and 6,270 to 1,953 in 2020. If rapid growth activity occurs, then terminal productivity also deteriorates from 6,023 to 1,802 in 2000, 6,382 to 1,240 in 2010, and 6,270 to 803 in 2020. The terminal based diminished productivity obtains also for center staff. That is, if balanced growth activity occurs with staff stagflation capital, then A-C decreases from 2,714 to 1,484 in 2000, 2,369 to 956 in 2010 and 2,209 to 717 in 2020. A similar pattern holds for center staff if rapid growth activity occurs during stagflation. The A-C deteriorates from 2,714 to 669 in 2000, 2,369 to 347 in 2010, 2,209 to 198 in 2020. One may conclude that continued investment in extant technology will not effectively accommodate reasonable growth in aviation activity. As such, the capital investment strategy for stagflation should not be pursued beyond 1990.

ACUMENICS

Impact Measures - Stagflation

Operations/Terminal Staff

		STAGFLATION CAPITAL				
YEAR	STAGFLATION ACTIVITY	BALANCED GROWTH ACTIVITY	RAPID GROWTH ACTIVITY			
2000	6023	3489	1802			
2010	6382	2652	1240			
2020	6270	1953	803			

Aircraft Handled/Center Staff

		STAGFLATION CAPITA	L
YEAR	STAGFLATION ACTIVITY	BALANCED GROWTH ACTIVITY	RAPID GROWTH ACTIVITY
2000	2714	1484	669
2010	2369	956	347
2020	2209	717	198

ACUMENICS

The relative efficiency of balanced growth technology is shown in Table 47. These data indicate O-T and A-C measures if stagflation and rapid growth activity occur with balanced growth technology in use. In the current context center and terminal staff efficiencies will increase for stagflation activity and diminish for rapid growth aviation activity. If stagflation activity occurs then the O-T will increase from 5,295 to 9,283 in 2000, from 5,524 to 13,623 in 2010, and from 6,564 to 21,776 in 2020. As noted above rapid growth terminal activity will result in diminished efficiency. In particular, O-T will diminish from 5,295 to 2,685 in 2000, from 5,524 to 2,528 in 2010, and from 6,564 to 2,640 in 2020.

The preceding general trend holds for centers. That is, under balanced growth capital investment the efficiency of the technology increases if stagflation activity occurs and decreases if rapid growth activity obtains. With respect to center staff, the A-C measure with stagflation and balanced growth activity will increase from 4,427 to 8,469 in 2000, from 8,165 to 21,646 in 2010, and from 16,681 to 56,218 in 2020. If rapid growth activity occurs then the capacity per unit of balanced growth technology will decrease from 4,427 to 1,883 in 2000, from 8,165 to 2,754 in 2010, and from 16,681 to 4,202 in 2020.

Rapid growth technology will be the most efficient with respect to other scenario activity. That is, rapid growth technology employed in conjunction with stagflation or balanced growth

ACUMENICS

and and the second s

Impact Measures - Balanced Growth

Operations/Terminal Staff

	BAL	ANCED GROWTH CAPITA	AL
YEAR	STAGFLATION ACTIVITY	BALANCED GROWTH ACTIVITY	RAPID GROWTH ACTIVITY
2000	9283	5295	2685
2010	13,623	5524	2528
2020	21,776	6564	2640

Aircraft Handled/Center Staff

	BALANCED GROWTH CAPITAL				
YEAR	STAGFLATION ACTIVITY	BALANCED GROWTH ACTIVITY	RAPID GROWTH ACTIVITY		
2000	8469	4427	1883		
2010	21,646	8165	2754		
2020	56,218	16,681	4202		
	L	<u> </u>	ACUMENIC		

activity will increase system productivity. The data for the rapid growth technology non-congruent conditions are shown in Table 48. If rapid growth technology is employed with stagflation at terminal the O-T increases from 5,476 to 19,631 in 2000, from 6,048 to 34,237 in 2010, from 7,149 to 62,888 in 2020. Similarly, if rapid growth technology is employed with balanced growth activity, then O-T increases from 5,476 to 11,017 in 2000, from 6,048 to 13,521 in 2010, from 7,149 to 18,304 in 2020. Similar trends hold with respect to center staff. If stagflation activity occurs with rapid growth technology, the A-C increases from 8,039 to 40,779 in 2000, from 19,170 to 177,792 in 2010, and from 49,938 to 821,606 in 2020. If balanced growth activity occurs with rapid growth technology then A-C increases from 8,039 to 20,238 in 2000, from 19,170 to 62,006 in 2010 and from 49,938 to 221,330 in 2020.

The relative efficiency of the technology for the non-congruent conditions defined in Tables 46 to 48 are shown in Tables 49, 50, and 51. Relative efficiency for a given technological level (i.e., stagflation, balanced growth, rapid growth), is defined as

OT (activity = capital scenario) AC (activity ≠ capital scenario)	<u>OT</u>	<u>(activity</u>	#	capital	scenario)
AC (activity # capital scenario)	OT	(activity	=	capital	scenario)

or

The tables are read as follows: if rapid growth activity occurs using stagflation capital then operations/terminal staff will be 30% of the O-T if stagflation activity obtains in year 2000 (See Table 49).

ACUMENICS

the second definition of the second sec

The of Parls and a last the of the second

.7

and the standard states of the second

Impact Measures - Rapid Growth

Operations/Terminal Staff

	RAPID GROWTH CAPITAL										
YEAR	STAGFLATION ACTIVITY	BALANCED GROWTH ACTIVITY	RAPID GROWTH ACTIVITY								
2000	19,631	11,017	5476								
2010	34,237	13,521	6048								
2020	62,888	18,304	7149								

Aircraft Handled/Center Staff

	RAPID GROWTH CAPITAL									
YEAR	STAGFLATION ACTIVITY	BALANCED GROWTH ACTIVITY	RAPID GROWTH ACTIVITY							
2000	40,779	20,238	8039							
2010	177,792	62,006	19,170							
2020	821,606	221,330	49,938							
			ACUMENICS							

۰.

Relative Efficiency - Non-Congruent Conditions

Operations/Terminal Staff

	STAGFLATION CAPITAL										
YEAR	STAGFLATION ACTIVITY	BALANCED GROWTH ACTIVITY	RAPID GROWTH ACTIVITY								
2000	1.00	.57	•30								
2010	1.00	.42	.19								
2020	1.00	.31	.13								

Aircraft Handled/Center Staff

	STAGFLATION CAPITAL										
YEAR	STAGFLATION ACTIVITY	BALANCED GROWTH ACTIVITY	RAPID GROWTH ACTIVITY								
2000	1.00	.54	•25								
2010	1.00	.40	.14								
2020	1.00	.32	•09								

ACUMENICS

Relative Efficiency - Non-Congruent Conditions

Operations/Terminal Staff

	BALANCED GROWTH CAPITAL										
YEAR	STAGFLATION ACTIVITY	BALANCED GROWTH ACTIVITY	RAPID GROWTH ACTIVITY								
2000	1.75	1.00	.51								
2010	2.47	1.00	.45								
2020	3.32	1.00	•40								

Aircraft Handled/Center Staff

	BALANCED GROWTH CAPITAL										
YEAR	STAGFLATION	BALANCED GROWTH	RAPID GROWTH								
2000	1.91	1.00	.42								
2010	2.65	1.00	.33								
2020	3.37	1.00	.25								

Relative Efficiency - Non-Congruent Conditions

Operations/Terminal Staff

	RAPID GROWTH CAPITAL										
YEAR	STAGFLATION ACTIVITY	BALANCED GROWTH ACTIVITY	RAPID GROWTH ACTIVITY								
2000	3.58	2.01	1.00								
2010	5.66	2.23	1.00								
2020	11.48	3.02	1.00								

Aircraft Handled/Center Staff

	RAPID GROWTH CAPITAL										
YEAR	STAGFLATION	BALANCED GROWTH	RAPID GROWTH								
2000	5.07	2.51	1.00								
2010	9.27	3.23	1.00								
2020	16.45	4.43	1.00								

AC (activity ≠ capital scenario) AC (activity = capital scenario).

or

The tables are read as follows: if rapid growth activity occurs using stagflation capital then operations/terminal staff will be 30% of the O-T if stagflation activity obtains in year 2000 (See Table 49).

XIII. COMMUNICATIONS LOAD

and any state of the
It is anticipated that both terminal area and en route activity will increase under the three socio-economic scenarios. As such, it is reasonable to assume that the message load will increase with shifts in activity level. The differences among scenarios will be the communication magnitude as well as the extent to which messages are automated.

The purpose of this section is to present estimates of the message load at terminal areas and en route centers for each scenario. The basic data for the analysis derives from a study of controller/pilot communications in fourteen terminal radar facilities.²⁹ The study examined tower voice tapes at selected terminals for discrete time periods. The terminals studied are shown in Table 52.

The reduced data included information on the number of messages per aircraft and message type per aircraft handled. Data were collected for both scheduled (AR) and non-scheduled operations. The types of messages concerned: advisories, vectors, altitude, speed, beacon assignment, radar contact and miscellaneous communication. A summary of the Jolitz data are presented in Table 53.

ACUMENICS

²⁹Gordon D. Jolitz, "A Sample of Controller/Pilot Communications from Fourteen Selected Terminal Radar Controllers," DOT-FA79-WA-4323, October 27, 1980.

TERMINAL AREA RADAR CONTROL LOCATIONS

TCA Group I and II

Atlanta, Ga. (ATL) Washington Nat'l (DCA) Las Vegas, Nev. (LAS) Pittsburgh, Pa. (PIT)

TRSA

Phoenix, Az. (PHX) Baltimore, Md. (BAL) Dayton, Oh. (DAY) Burbank, Ca. (BUR) Wichita, Ks (ICT) Greensboro, N.C. (GSO) Peoria, Ill. (FIA)

Stage II Radar Services

Fresno, Ca. (FAT) Austin, Tx. (AUS) Monterey, Ca. (MRY)

Source: Jolitz Study

TABLE 53 COMMINICATIONS DATA SUBMARY

(BASE DATA)

3

SITE	ac handled		5D	YESSAGE COUNT			ADVISORIES			ISORY	VECTORS			
	AR .	GA	TOT	AR	GA	TOT	AL	GA	107	1. No	U.S.N.	AR.	GA	107
ATL DCA LAS PIT	291 237 178 231	247 235 278 254	538 472 456 485	1730 1264 829 1523	1844 1419 1518 1373	3613 2683 2347 2896	23 58 83 151	138 77 134 125	159 135 207 275	83 101 128 - 139	76 34 70 137	407 440 149 391	366 414 305 287	775 954 454 678
SUB- TOTAL	937	1014	1951	5385	6154	11539	315	462	777	451	326	1387	1374	2761
"; (MESSAGE COUNT)							5.8	7.5	6.7			25.8	22.3	23.9
PHX BAL DAY BUR ICT GSO PIA	150 99 47 37 42 68 12	136 352 185 381 244 380 115	466 451 232 418 286 449 127	778 560 234 242 280 410 91	2038 1846 964 2328 1904 2472 748	2916 2406 1096 2570 2184 2882 839	165 72 23 66 33 25 17	303 263 71 472 164 176 109	468 335 94 538 197 201 126	168 153 41 226 63 60 55	300 182 53 312 134 141 71	102 127 50 44 65 75 23	322 296 198 360 390 469 150	424 425 248 404 456 544 173
SUB- TOTAL	455	1793	3428	2595	12200	14905	401	1558	1950	796	1193	487	2187	2574
5 (MESSAGE COUNT)							15.5	12.8	13.2			18.8	17.9	18.0
FAT AUS MRY	15 30 16	129 375 199	144 405 105	84 178 43	671 1795 730	755 1983 793	17 25 3	130 203 120	147 228 123	43 30	104 198 117	14 42 15	58 369 128	72 411 143
SUB- TOTAL	61	626	687	325	3196	3531	45	453	498	79	419	71	555	628
"; (MESSAGE COUNT)							13.8	14.2	14.1			21.8	17.4	17.7
TOTAL.	1453	3433	5086	8305	21550	29965	761	2473	3234	1296	1938	1945	4116	606 1
(MESSAGE COUNT)							9.2	11.5	10.8			23.4	19.1	30.2

Reference = A sample of Controller/Pilot Communications from Fourteen Selected Terminal Area Radar Control Facilities - Table 2 & 5. (Jolitz; DOT-FA79-WA-4323)

TABLE 53 (Continued) COMPARTICATIONS DATA SUMMARY (BASE DATA)

.

P

(

> .• ۰.

SITE		LTITUD	E		SPEED		ME	SCELLAN	eous	A	BEACON SSICINE	NI.	RA		r
	AR	GA	101	<u>AR</u>	GA	TOT	AR	GA	TOT	ÅR	GA	101	AR_	GA	TOT
ATL DCA LAS PIT	465 447 245 418	549 400 415 346	1314 847 660 764	220 87 56 55	26 30 18 18	255 107 74 73	161 107 194 309	434 280 308 307	595 387 502 616	5 8 8 9	89 61 84 71	54 69 62 80	98 101 66 95	105 88 145 110	203 189 211 306
SUB- TOTAL	1575	1710	3585	427	82	509	771	1329	2100	30	305	335	361	448	809
S (MESSAGE) COUNT)	29.2	27.8	31.1	7.9	1.3	4.4	14.3	21.6	18.2	.6	5.0	2.9	6.7	7.3	7.0
PHX BAL DAY BUR ICT GSO PIA	194 153 64 61 84 158 19	408 351 247 507 477 595 118	602 504 311 568 561 753 137	71 1 0 10 11 11 9	52 2 1 68 64 26 12	123 3 1 78 75 37 21	124 101 62 43 36 94 15	448 384 195 364 352 659 151	572 485 257 407 388 753 166	4 17 1 3 16 21 1	136 151 49 190 160 167 44	140 168 50 193 176 188 45	45 54 9 7 18 12 2	150 184 58 100 124 155 70	205 227 67 107 142 167 72
SUB- TOTAL	73 3	2703	3436	113	225	338	475	2553	3028	63	897	980	137	850	987
5 (MESSAGE COUNT)	28. 2	22.2	23.1	4.4	1.8	2.3	18.3	30.9	20.3	2.4	7.4	6.4	5.3	7.0	6.6
FAT AUS MRY	21 48 13	99 269 122	120 317 135	0 3 2	8 26 5	8 39 7	20 33 17	149 484 128	169 517 145	0 9 6	83 105 99	83 114 105	. 6 11 5	83 164 34	89 175 89
SUB- TOTAL	82	490	572	5	30	11	70	751	331	15	757	200	22	331	353
5 (MESSAGE COUNT)	25.2	15.3	16.2	1.5	1.2	1.2	21.5	23.8	23.5	4.6	9.0	8.6	6.8	10.4	10.0
TOTAL	2390	4903	7593	545	346	801	1316	4643	5959	108	1489	1597	520	1629	2149
5 (MESSATE COUNT)	28.8	22.8	25.3	6.6	1.6	3.0	15.8	21.5	19.9	1.3	6.9	5.3	6.3	7.6	7.2

Table 53 shows how communications were distributed by message content and by user category. The numbers represent the total data collected for a 2 hour period studied for 2 days - one week day and one week-end day. The sites used in the study were grouped by airspace designation.

The first column shows the number of aircraft handled for each site during the days and times studied. The total is broken down into scheduled operations (AR) and general aviation (GA). For example, for every site studied there was a total of 1,453 aircraft handled concerning scheduled operations and 3,433 concerning general aviation, during the days and times studied, or a grand total of 5,066.

According to column 2, the total message count for every site during the days and times studied was 8,305 for scheduled operations, 21,550 for general aviation, or a total of 29,985. There were a total of 3,234 advisory communications, 1,296 of which the altitude was known and 1,938 of which the altitude was unknown. There were 6,061 vector communications or other navigational instructions, 7,593 altitude instructions, 891 speed control instructions, and 5,959 miscellaneous information exchanges. The chart also indicates that there were 1,597 Beacon assignment communications and 2,149 radar contact communications.

It was determined that the best measure for aggregated load forecasting was to employ the average messages (Total) for both

ţ

ACUMENICS

scheduled and non-scheduled operations. In addition, the composition of messages per aircraft were modified to allow projections of en route communication load. The communication load for each aircraft handled used in the forecast are shown in Table 54.

Table 54, Communications Content per Aircraft-Terminal Area, indicates the average number of messages for each type of communication per aircraft, using the data obtained in the Communications Data Summary chart. In the Terminal Control area (TCA) there were an average of 5.74 messages concerning scheduled operations (AR), 6.07 messages concerning general aviation (GA), and an average of 5.91 messages for total operations. These averages are broken down into the various types of communications - Advisories, Vectors, Altitude, Speed, Miscellaneous, Beacon Assignment and Radar Contact. According to the second column, in the Terminal Radar Service Area (TRSA) there were an average of 5.70 messages concerning scheduled operations, an average of 6.80 messages concerning general aviation, and an average of 6.13 messages for all operations in the TRSA. The breakdowns for the different types of communications are then given. The third column shows that, in other terminal areas, there were an average of 5.32 messages concerning scheduled operations, an average of 5.10 messages concerning general aviation, and an average of 5.13 messages for total operations. Column 4 gives the average number of messages for the entire terminal area. In the terminal area as a whole, there were an average of 5.71

ACUMENICS
Table 54

COMMUNICATIONS CONTENT PER AIRCRAFT-TERMINAL AREA

INFORMATION/ A.C. HANDLED		TCA			TRSA			TCA			TRSA		BUDORNE
	AR	GA	TOF	AR	GA	TOT	AR	GA	TOF	AR	GA	TOF	¥
kessages	5.74	6.07	5.91	5.70	6.80	6.13	5.32	5.10	5.13	5.71	6.27	5.91	6.45
Advisories	•33	.46	.40	.88	.87	.81	.73	.72	.72	.52	.72	•64	.32
Vectors	1.48	1.36	1.42	1.07	1.22	1.10	1.16	-87	.91	1.34	1.20	1.20	1.00
Altitude	1.68	1.69	1.84	1.61	1.51	1.41	1.34	.78	•83	1.64	1.43	1.50	1.68
Speed	.46	80.	•26	•25	.13	.14	8.	8	-07	. 38	.10	.18	1.00
Miscel laneous	1.37	1.74	1.41	1.45	2.10	1.86	1.41	1.68	1.65	1.40	1.92	1.65	.45
Beacon Assignments	-03	.30	.17	.14	•20	.40	.24	.46	.44	-00	.43	.32	1.00
Radar Contact	39	.44	.41	•30	.47	.41	.38	•53	.51	-36	.47	.42	1.00

300

ALTER ACTOR AND A CALLER AND A DATA
messages concerning scheduled operations, an average of 6.27 messages concerning general aviation, and an average of 5.91 messages for total operations. Column 6 provides an estimate of the average number of messages in the en route area (6.45) and the breakdown of this estimated average into the various types of communications.

Based upon the data in Table 54 forecasts of communications load were derived using appropriate activity measures. That is, estimates of total annual operations for terminal areas and total annual aircraft handles were used to forecast communications load. The results of these forecasts are summarized below in Table 55 through 62.

Center Areas

The balanced growth scenario forecast for the communications load for en route center areas is shown in Table 55 for 1992 to 2020. Changes in communications load in the balanced growth scenario for en route center areas are projected as follows. Messages (BCMESS) are expected to increase from 290 million in 1992 to 454 million in 2020. Advisory communications (BCADV) will increase from 14 million in 1992 to 23 million in 2020. Vector communications (BCVEC) will increase from 45 million in 1992 to 70 million in 2020. Altitude instructions (BCALT) will increase from 75 million in 1992 to 118 million in 2020. Speed control instructions (BCSPEED) will increase from 45 million in 1992 to 70 million

ACUMENICS

		¥, 18,		2.3
ŝ	-			
	•			
	181			
	, The second sec			
	5			
	IRY			
	FEBRUA	9	8885399999999999379997379999999999999999	•
	fel	SCRAD	\$\$\$\\$	ļ
	X,		44444555555555555555555555555555555555	
	MONDAY			
		U	\$\$\$\$\$7.9\$\$\$\$\$ \$\$\$\$\$7.9\$\$ \$\$\$\$\$7.9\$ \$\$\$\$\$7.9\$ \$\$\$\$\$7.9\$ \$\$\$\$\$ \$\$\$\$\$ \$\$\$\$	÷
	:19	BCBE	ġġŇġġŔġġġġġġġġġġġġġġġġġġġġġġġġġġġġġġġġ	
	18		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
ļ		4	\$\$\$4\$4447M=\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$ \$\$NN4=447=\$ \$\$NN4=447=\$	
. .		1150	ŎĊŇŎŊĊŊŊŶŇŊŊŊŎĠĿŊŎŊŎŊŎŎŊŶŎŊŊ ĦŊŊŊŊŊŊŊŊŊŎĊĊŢŊŎŊŎŎŊŊŊŎŎŎŊ	ĺ
ŀ	AD	BCMI	& C I I N N N N N N N N N N N N N N N N N	
Ľ	LOA			
	SHO		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	1110	CSPEI	8083N366639NA8NNNN + 667 - 107 - 66893 8083N366639NA8NNNN + 667 - 468 - 469 -	ł
	110/	ŝ	44445555555555555555555555555555555555	
22	CL MUICATIONS	~		
ALF		CALI	4444%/1000000000000000000000000000000000	
T A B	TER	ă	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ļ
	CENI			
	H	4	4M37480199M9939401784495178784499	ĺ
	GROWTH	CVEC		ļ
	-	ă	***************************************	Ì
	ANCED			
	ALAN	2	&&AQC #&@GANGANGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAG	
E	2	BCAD	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	-	-		
			ゆらむなびごのなーの7ジのうごゆびろの~うさなの707 0	
i.		ESS	50555555555555555555555555555555555555	ļ
F	•	BCM	\$``\$`\````````````````````````````````	!
		_		i
		AR	NM48978669086998699986999899999999999999999	
		ΥE		
下(· ·	
		OBS	00000000000000000000000000000000000000	
		-		

from 20 million in 1992 to 32 million in 2020. Beacon assignment communications (BCBEC) will increase from 45 million in 1992 to 70 million in 2020. Radar contact communications (BCRAD) will increase from 45 million in 1992 to 70 million in 2020.

In the rapid growth scenario for en route center areas, shown in Table 56, changes in communications load are projected as follows. Messages (RCMESS) are expected to increase from 356 million in 1992 to 683 million in 2020. Advisory communications (RCADV) will increase from 18 million in 1992 to 34 million in 2020. Vector instructions (RCVEC) will increase from 55 million in 1992 to 106 million in 2020. Altitude instructions (RCALT) will increase from 93 million in 1992 to 178 million in 2020. Speed control instructions (RCSPEED) will increase from 55 million in 1992 to 106 million in 2020. Miscellaneous communications (RCMISC) will increase from 25 million in 1992 to 48 million in 2020. Beacon assignment communications (RCBEC) will increase from 55 million in 1992 to 106 million in 2020. Radar contact communications (RCRAD) will increase from 55 million in 1992 to 106 million in 2020.

Changes projected in communications load for en route center areas in the stagflation scenario are shown in Table 57. Messages (SCMESS) are expected to increase from 260 million in 1992 to 316 million in 2020. Advisory communications (SCADV) will increase from 13 million in 1992 to 16 million in 2020. Vector communications (SCVEC) will increase from 40 million in 1992 to 49 million in 2020.

ACUMENICS

ю		
1981		
18:19 MONDAY, FEBRUARY 2.	SCRAD	<pre>49.34 40.349 41.69.43 42.182.42 42.182.43 42.182.45 44.172.428 45.182.45 45.182.4</pre>
18:19 NON	SCBEC	44 46 46 46 46 46 46 46 46 46 46 46 46 4
	SCMISC	
FLATION COMPUNICATION LOAD	SCSPEED	44 46 46 46 46 46 46 46 46 46 46 46 46 4
INNNNOO NOI.	SCALT	
STAG	SCVEC	44 46 46 46 46 46 46 46 46 46 46 46 46 4
CENTER	SCADV	11111111111111111111111111111111111111
•	SCMESS	9699648766279770578747886077728766 71569487662797758767878787878787878787878787878787878
	YEAR	
	68 5	

LE 57

Ĩ

207

C 1.V

Altitude instructions (SCALT) will increase from 68 million in 1992 to 82 million in 2020. Speed control instructions (SCSPEED) will increase from 40 million in 1992 to 49 million in 2020. Miscellaneous communications (SCMISC) will increase from 18 million in 1992 to 22 million in 2020. Beacon assignment communications (SCBEC) will increase from 40 million in 1992 to 49 million in 2020. Radar contact communications (SCRAD) will increase from 40 million in 1992 to 49 million in 2020.

Terminal Areas

In terminal areas, the projected change in the communications load in the balanced growth scenario is shown in Table 58. Messages (BTMESS) are projected to increase from 592 million in 1992 to 974 million in 2020. Advisory communications (BTADV) are expected to increase from 32 million in 1992 to 53 million in 2020. Vector communications (BTVEC) will increase from 120 million in 1992 to 198 million in 2020. Altitude instuctions (BTALT) will increase from 168 million in 1992 to 277 million in 2020. Speed control instructions (BTSPEED) will increase from 18 million in 1992 and to 30 million in 2020. Miscellaneous communications (BTMISC) will increase from 165 million in 1992 to 272 million in 2020. Beacon assignment communications (BTREC) are expected to increase from 32 million in 1992 to 53 million in 2020. Radar contact communications (BTRAD) will increase from 42 million in 1992 to 69 million in 2020.

ACUMENICS

	etter fil	14. T		
	4			
	981			
and the second se	19			
	5.		•	
(د ح			
	FEBRUARY		n for din maggen og fan nen fragen for an fan her fan	
88999999	BR	V	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
		BTR	NN4N9N890ANM4N9N89N89N89N89N89N89N89N89N89N89N89N89N8	
6	N,		& & & & & & & & & & & & & & & & & & &	
42 1	MONDAY			
5	Ŭ	С Ш	MAARNAAN ARAARAAAAAAAAAAAAAAAAAAAAAAAAAA	
an an	8:19	B TB	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	18		ที่ที่ที่ที่ที่ที่ที่ที่ดีจังจังจังจังจังจังจังจังกักไม่มีไม่มี 	
		SC	ਜ਼ਸ਼ਖ਼ਗ਼ਲ਼ਗ਼ਗ਼ਸ਼ਗ਼ਗ਼ਗ਼ਗ਼ਖ਼ਗ਼ਗ਼ਗ਼ਗ਼ਸ਼ਗ਼	
		IWI	\$	
	AD	B		
	ĽŐ			
	NO	ED	© 1 4 8 9 9 8 9 9 8 9 4 9 7 7 9 9 9 6 9 9 9 9 9 9 9 9 9 9 9 9 9	
	ATI	SPE		
	4IC	BT	HHHHHUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU	
28	COMMUNICATION			
	COV	<u>ــ</u>	8029079779989999999999999999999999999999	
81	Ļ	TAL	80.905.907.4004.80.9064.80.909.909.909.909.909.909.909.909.909.	
ΤV	ERMINAL	ŝ	00000000000000000000000000000000000000	
	H	ပ	でんしおしていんちでのないでのないののからのしんらしつのこうはんのおうなうののであっとしんでしょうのつきなったのです。	
	GROWTH	BTVE	HHHHNNNNNNDDDDD000000000000000000000000	
	GRC	8		
	ĒD			
	BALANCED	_	994 98 - 95 - 79 9 6 7 7 - 6 9 9 4 9 - 1 9 9 - 77 - 77	
	ALA	ADV	68942088942689344694484248554728 989455967799426949627443484812100 4896779814789495976677667109385778	
	2	BT	МММИММММА4444446444495660000 Оли450606000000000000000000000000000000000	
	•			
			or Noshaa qaadaa qaa sa s	
		ESS	\$ \$48019090780800999999999999909090 \$28078070799999900909090999	
F1	•	BTM	りのごろぶんはの123らんなの123らん70023ちん70 1ん1ん1ん0らのいのよは271んひ1ちは00ごアの123人	
		61	Ĩ9999999900000000000000000000000000000	
		×	NM4SS628001NM4SS6280001NM4SS62001	
		EAI	66666666666666666666666666666666666666	
		7		
FI		s		
		085	008400888908089899999999999999999999999	

Projected changes in communications load in the rapid growth scenario for terminal areas are shown in Table 59. Messages are expected to increase from 718 million in 1992 to 1316 million in Advisory communications (RTADV) are expected to increase 2020. from 39 million in 1992 to 71 million in 2020. Vector communications (RTVEC) will increase from 146 million in 1992 to 267 million in 2020. Altitude instuctions (RTALT) are expected to increase from 204 million in 1992 to 374 million in 2020. Speed control instructions (RTSPEED) will increase from 22 million in 1992 to 40 million in 2020. Miscellaneous communications (RTMISC) will increase from 200 million in 1992 to 367 million in 2020. Beacon assignment communications (RTBEC) will increase from 39 million in 1992 to 71 million in 2020. Radar contact communications (RTRAD) are expected to increase from 51 million in 1992 to 94 million in 2020.

Projected changes in communication load in the stagflation scenario for terminal areas are shown in Table 60. Messages (STMES) are expected to increase from 537 million in 1992 to 656 million in 2020. Advisory communications (STADV) will increase from 29 million in 1992 to 36 million in 2020. Vector communications (STVEC) will increase from 109 million in 1992 to 133 million in 2020. Altitude instructions (STALT) will increase from 153 million in 1992 to 186 million in 2020. Speed control instructions (STSPEED) will increase from 16 million in 1992 to 20 million in 2020. Miscellaneous communications

ACUMENICS

a pulse	<u>i pr</u>	<u>0-90</u>		
	ŝ			•
	1981			
	-			
(53			
	FEBRUARY			
	BRU	AD	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
		RTR	- NARV-80-1949/00/00/00/00/00/00/00/00/00/00/00/00/00	
	ΑΥ.,		ちちちちちちんんんんん アアアアアア おおおおかか かう	
	MONDAY		~~~~~~~~~	
		BEC	アろりぶしてろのぶしてろのぶしてろのぶしてろのぶし	•
	67:1	RTI	80-105556000-1055000000000000000000000000	
	18		ジムムムネムムムムここれこここのううろんろろろろんろ レレレ	
			ੑੑੑੑੑੑੑੑੑੑੑੑੑੑੑੑੑੑੑੑੑੑੑੑੑੑੑੑੑੑੑੑੑੑੑੑੑ	
		i ; I	ĞĞŴŊŴŊŊĨĨĨĨĨĨŎŎŎŎ ŨŎ ŊŊŊŊĠĠŊŊŊŊ	
		RTM	090840908409977886007778877899778 00777877999788600778879997 09084099840997788600778877899778	
	LOAD			
		ED	\$	
	HOII	SPE	& らしめみしてなのてろののろののののののののようなのていっているとしてなるので、 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	· ·
	ICA.	R1		
6	CUMMUNICAT			
	Mno	H		
TABLE-5		RTAL	404N8404N8404M2NH2N9NH2N9NH240	•
, t L	ERMINAL	-	ฉี่ฉี่ผลี่ผลี่ผลี่ผลี่ผลี่ผลี่ผลี่ผลี่ผลี่ผล	
	I ER		₽ 4	
	E	VEC		
	ROWT	RTI	ようちららって おおおり りつし 11 こころ 34 4 4 5 5 6 6 7 7 8 8 8 8 9 9 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	:
	GR.			
E .	PID	_	<u>๛๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚</u>	
	RA	ADV	0	
		RT	₩╃╉╉₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	
	•			
		22	00000000000000000000000000000000000000	
E.		IME	- M980049804950649806990064980900000 80008999049804990098099999 	
		2		
		EAR	10000000000000000000000000000000000000	
		¥		
FI		Ś	-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
		OBS		

	<u></u>		Σ		3		<u> </u>						22	2	1			-						حنا										_			2	
	9																																					
	198																																					
	(]																							•														
	BRUARY	AD		-1	n	9	5	ø	1) 15	١	٦ (1	. 4	• IA	-	M) -	1 11) C) Ó	Ĵ¢	9	P N	d N	14	۳ 🖛	1.0	2	5	m	020	40					
	Ē	STRI	•	-		N	ſ.	2			•	סי			9) 117		9	; ^		•	. 0		•	<i>י</i> אי) C		1	4	6.6						
	AY.		1	21	M	m	m	4	4	• 4			• •	. 4	. 4	• vđ	4		• 4	• •					7 3	r d					4	4	4					
	MONDAY	с U																														86						
	191	TBE		2	640.	6.	. 28	. 65	6	44		55				90	5	9]]		, F				; ~	31	14.	50	. 59					
	18:	ŝ																														5						
				-4 1		m	0	•0			2 14		- 14		•	. 16			. 16			• 0		-	• 0	ð	~ ~) d	•: ^	1	<u>ح</u>	-	€0			•		
	0	ISC		24.	60.	. 18	. 13	. 08	6	9 9 9	- 0) 	32.		5	5	0.7		Ň			14) \ \ \ \		5.0	.10	.61	60.	.53					
		STMI	•	* I	ŝ	ŝ	ŝ	ŝ	1	1	3 4	2	2) 🖌	3	-	-	-	• •	. ~	• *	< P	• •	~ P	< P	< r	- 6) 📢) #6	10	-	183	60					
	N DAD											•																							•			
<u></u>	N LON	EED	1	n (N	0	3	ŝ	4		7 14	א ר	11	5	1 📢) ÷Č		- C		-) C	> r	• 8	0 4	* 4) M	2	9	-	736	N					
	ICATION	TSP	•	•	0	9.	۲.	7.	-		:-	:-) «	50	•	. a	. a	. a	. a	• σ	. a		0		9	9.9	•					
1	VICA	S				-	-	-		•		+	-	•		-		• •	•	•	•	-	• -		-	-	•	-	-			-	~					
- 	CONNIN	-	ļ		63	87	19	62	16	0) M) M	20	10			N N	. O	8 8 V) (ľ)5	10						- 4			16	52	20	75					
		TAL	•		4	\$	٩.		~	i d	-	. r	:0		5			-				0 0	• •	> -						5	5	6.4	÷.					
	MINAL	S																														18						
	ER																															~						
Ì	N T	TVEC		2	9.	-	5	°,	5	ז ת י		. 0	• •	2	ð	. ۳	5	~	2	? –	•	9.4		<u>></u> ~	• -	- 1	• -	! *			•	3.15	4					
	ATIO	S			_	-	-	-	-	• •	•	•	10	10	10	10	10	10	10	10	10	J C	J C	V C	N N	7 M	7 H	7 14) //) M	m	13	m					
	TAGFLAT					_							_				_	_					_			_	_		_			_						
	STA	ADV		2	62	000	89	5	:0	10		2 F	20		3	9	10	3	12	55		- u 0 u	} •		27	- C - L - L			12	1	16	1086	95					
		51/			¢.	<u>.</u>	0	0	, ,			-	••			14			> M				•	• •	ŕ	• •	r 4	- 14	``	ເທ	5	35.5	5					
•	-				••		•••				•••		•••				•		•••		•••		•••	••					• • •									
•		55	- (~	8	ŝ	o	\$	Ś	7	ς α	` _	4 10	۰,	i	1	9	۰e	۶M	2	ŕκ	r ư	٦r	~ 6	D r	š 🛛	0 4	- 15	١Ó	ف ا	5	66	•					
	•	TME			÷.	~	<u>.</u>	ę,	5		5 d		> LC							i v	5 d								;		5	55.7	2.					
		S																														9						
		AR	9	N	ň	4	ຽ	90	2		0 0		22	•	1	94					00		2 -	- 6	4 10	24	r u	<u></u>		-	5	0	2					
		ΥEA			σ	ø		σ	σ	۰ø	• 0			•		c	G	,) C	• •) (> c	> <	> <	> c	> <	> <			0	0	202	0					
(_																		. .		_			_		_			_	-					
		085	•		N	r)	4	5			• #	9 0																				29						
-																																						

(STMISC) will increase from 150 million in 1992 to 183 million in 2020. Beacon assignment communications (STBEC) will increase from 29 million in 1992 to 36 million in 2020. Radar contact communications (STRAD) are expected to increase from 38 million in 1992 to 47 million in 2020.

Summary

To enable a summary comparison of the projections for the years 1992 through 2020, under the three scenarios, the total message loads forecast for the three scenarios are shown for center operations in Table 10 and for terminal operations in Table 11; they are also illustrated in Charts 1 and 2.

For center operations, total messages projected under the stagflation scenario (SCMESS) may be compared with total messages projected under the balanced growth scenario (BCMESS) and the rapid growth scenario (RCMESS) in Table 61. Chart 1 illustrates the three different projected paths of growth.

Similarly, for terminal operations, Table 62 compares total messages projected under the stagflation scenario (STMESS) to total messages projected under the balanced growth scenario (BTMESS) and under the rapid growth scenario (RTMESS). The three different projected paths of growth for terminal messages are illustrated in Chart 2.

ACUMENICS

1	
A second s	
Fe Bar V A	
	-
	•
YANDM QL	i
× ·	
θ o magangangangangangangangangangangangangan	
\$\$`\$``````````````````````````````````	
С К мммм444444444450	
U H K K K C C C C C C C C C C C C C C C C	
Ŋ	
(」	
- A M のうようひてキーないろうちょうちゃののしのいかよの300からのうう - 1 9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	.
- 4 A NNMMMMMMMMMMMMMMMM 6 	
	l
王 5、 アキアのなののアミアの1ののな」なのとなどのかならののちょう 5、 アキアのこのはちゃの1の00のちょうのうのから、 2、 3、 3、 3、 3、 3、 3、 3、 3、 3、 3、 3、 3、 3、	i
10000000000000000000000000000000000000	!
	!
N N N N N N N N N N N N N N N N N N N	
00000000000000000000000000000000000000	
₩ ≻	
C) 5) うえろみがらておりの123々ぢら7890123々ぢら7890 . E Z M M M M > ⊣⊣⊣⊣⊣⊣⊣чилилилилилилилилилилилилилилилил	i
し、 しころみめらてありのしころみからしころかだらでありの ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	i
0	ļ
	1
	•
	i
•	i
•	

186	•						
3, 1							
۲ ۲ ۲							
FEBRUAN							
, FE							
IQAY.							
9 MONQAY							
8:19							
a.							
	5 8	×1010101	0	190191914 19019001	6161616161		
2012	RIME	0000 000 000 000 000 000 000 000 000 0	20000000000000000000000000000000000000				
SCENARIO	-			3333333			
ب ے .	S	4~555 0~7055-	964498095		1010000000 141000000		
5 2	BTMES		90000000000000000000000000000000000000	7949 49496	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
LOAD-		50000	000nnnn	~ 40 60 60 60 60 60 60 60	000000000		
(<u>B</u>	S	905044	00000000000000000000000000000000000000	ONGANNON	. 000 M M M M M M M M M M M M M M M M M		•
MUNICATIUN	SIMES		// 86 00 00 00 00 00 00 00 00 00 00 00 00 00		- MODONSINN		
NNW	ŝ	មមម្រាល់ប្រការ				•	
COM	AR	~~~~~~	× • • • • • • • • • • • • • • • • • • •	0000	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
INAL	YE		0000000				
TERMINAL	S			500000000000000000000000000000000000000	10000000000000000000000000000000000000		
-	OB				a (a (a (a (a (a (a))		
							•

APPENDIX A

and the second second

and a second
ABBREVIATIONS AND ACRONYMS

APPENDIX A

ABBREVIATIONS AND ACRONYMS

ABDIS	Automated Service B Data Interchange System
ACD	Airport Traffic Control Tower Consolidated Display
ACD	Automatic Call Distribution
ADCOC	Air Defense Command Operation Control
AERA	Automated En Route Air Traffic Control
AFCD	Airport Facilities Consolidated Display
AFOS	Automation of Field Operations and Services
AFS	Airway Facilities Service
AFSS	Automated Flight Service Station
AFTN	Aeronautical Fixed Tele- communications Network
A/G	Air/Ground
A/G/A	Air-to-Ground-to-Air
AGL	Above Ground Level
AID	Airport Information Desk
AIRHAND	Aircraft Handled
AIRS	Airport Information Retrieval System
ALWOS	Automated Low-Cost Weather Observation System

No.		
5		
N .		
(Airline Reservation Office Air Route Surveillance Radar
	ARO	Airline Reservation Office
	ARSR	Air Route Surveillance Radar
с. С	ARTCC	Air Route Traffic Control Center
	ARTS	Automated Radar Terminal System
	ASDE	Airport Surface Detection Equipment
	ASR	Airport Surveillance Radar
	ATARS	Automated Traffic Advisory and Resolution Service
	ATCBI	Air Traffic Control Beacon Interrogator
	ATCRBS	Air Traffic Control Radar Beacon System
2 () ()	ATCSCC	Air Traffic Control Systems Command Center
	ATCT	Airport Traffic Control Tower
	ATIS	Automated Terminal Information System
	ATS	Automated Terminal Services
	AUTOVON	Automated Voice Network
	AV-AWOS	Aviation Automated Weather Observation System
	AWP	Aviation Weather Processor
	AWS	Air Weather Service
	AWSDS	Advanced Wind Shear Detection System
	AWSS	Airborne Wind Shear System
	BCAS	Beacon-Based Collision Avoidance System

ACUMENICS

BDIS	Automatic Data Interchange System, Service "B"
BRITE	Bright Radar Indicator Tower Equipment
BUEC	Back-Up Emergency Communications
CAL	Commercial Airlines
CARF	Central Altitude Reservation Function
CCC	Center Computer Complex
CCENT	Consumed Quantity of Technolgoy Necessary to Service AIRHAND
CCP	Contingency Command Post
CCTV	Closed Circuit Television
CD	Common Digitizer
CDC	Computer Display Channel
CENT	Number of Agency Personnel Necessary to Perform Center Functions
CERAP	Combined Center/RAPCO
CFC	Central Flow Control
CFJC	Central Flow Jacksonville Computer
СКТ	Control Circuit Equipment
СМА	Control Message Automation
CMLT	Communications Microwave Link Terminal
Сомсо	Command Communications Outlet
CONUS	Conterminous United States
CRD	Computer Readout Device

CST	Combined Station/Tower
CTA	Calculated Time of Arrival
CTERM	Consumed Value of Agency Communications Facilities
CTRB	Center Building Maintenance
CWSU	Center Weather Service Unit
DABS	Discrete Address Beacon System
DARC	Direct Access Radar Channel
DCC	Display Channel Complex
DCS	Data/Communication System
DDD	Direct Distance Dialing
DEDS	Data Entry and Display Subsystem
DF	Direction Finder
DME	Distance Measuring Equipment
DR&A	Data Recording and Analysis
DTE	Data Terminal Equipment
DUAT	Direct User Access Terminal
EBCDIC	Extended Binary Coded Decimal Interchange Code
EDPS	Electronic <i>Cata Processing</i> System
EFAS	En Route Flight Advisory Service
EMSAW	En Route Minimum Safe Altitude Warning System
ETABS	Electronic Tabular Display Subsystem

FAD Fuel Advisory Departure FAX Facsimile FDAD Full Digital ARTS Display Flight Data Entry and FDEP Printout F&E Facilities and Equipment FP Flight Plan FSAS Flight Service Automation System FSDPS Flight Service Data Processing System FSH Flight Service Hub FSS Flight Service Station FTS Federal Telephone System FWS Flight Watch Specialist FX Foreign Exchange GA General Aviation GPCAP Active General Aviation Fleet GPS Global Positioning System Geostationary Operational Environmental Satellite GOES GS Glide Scope Η Homing Radio Beacon HH Homing Radio Beacon - High Power HSP High Speed Printer HUD Head Up Display

LRCO	Limited Remote Communications Outlets
LSR	Limited Surveillance Radar
MIL	Military
MLF	Medium Low Frequency
MLS	Microwave Landing System
MM	Middle Marker
M& S	Metering and Spacing
MSAW	Minimum Safe Altitude Warning
MTBF	Mean Time Between Failure
MTBR	Mean Time Between Repair
MTD	Moving Target Detector
MTI	Moving Target Indicator
NADIN	National Airspace Data Interchange Network
NAFAX	National Facsimile Circuit
NAFEC	National Aviation Facilities Experimental Center
NAS	National Airspace System
NASCOM	National Aviation Systems Communications
NATCOM	National Communications
NAVAID	Navigational Aid
NDB	Nondirectional Beacon
NOAA	National Oceanic and Atmospheric Administration
NORAD	North American Air Defense Command

.

International Aeronautical IATSC Telecommunications Switching Center International Civil Aviation ICAO Organization IFR Instrument Flight Rules International Flight Service IFSR **Receiving Station** IFSS International Flight Service Station International Flight Service IFST Transmitter Station ILS Instrument Landing System IM Inner Maker Input/Output Control Element IOCE LASS Line Automatic Sensing and Switching VHF/UHF Link Terminal LCOT Localizer - Type Directional LDA Aid LF Low Frequency LLWSAS Low Level Wind Shear Alert System LMM Compass Locator at the ILS Middle Marker LNKR Link Repeater LOC ILS Localizer LOM Compass Locator at the ILS Outer Marker LOPS Local Operations LORAN Long Range Navigation

ACUMENICS

A. W. W.

A-6

NOTAM	Notice to Airmen
NMC	National Meteorological Center
NWS	National Weather Service
OAG	Offical Airline Guide
OAW	Off-Airways Weather Station
OM	Outer Marker
ORD	Operational Readiness Demonstration
ORES	IFSS Residual Facility
OTC	Over the Counter
PAR	Precision Approach RadarFAA and Military
PATWAS	Pilot Automatic Telephone Weather Answering Service
PDME	Precision DME
PIREP	Pilot Weather Report
PVD	Plan View Display
RBDE	Radar Bight Display Equipment
RCAG	Remote Communications Air- Ground
RCO	Remote Communications Outlet
RCCS	Radio Communications and Control System
RCS	Radio Communications Subsystem
RDF	Radio Direction Finder
RML	Radar Microwave Link
RMLR	Radar Microwave Link Repeater

RMLT	Radar Microwave Link Terminal
RMMS	Remote Maintenance Monitor System
RNAV	Area Navigation
R/T	Receiver/Transmitter
RTR	Remote Transmitter/Receiver
RVR	Runway Visual Range
RX	Receiver
SAC	Strategic Air Command
SAM	System Acquisition Management
SAMOS	Semi-Automated Meteorological Observation System
SCC	(ATC) System Command Center
SFO	Single Frequency Outlet
SFSS	Satellite Field Service Station
SMMC	System Maintenance Monitoring Console
SRAP	Sensor Receiver and Processor
SRG	Systems Requirements Group
SSO	Self-Sustained Outlet
STC	Sensitivity Time Control
SWL	Severe Weather Labs
SVSS	Small Voice Switching System
TAC	Air Carrier Fleet
TACAN	Tactical Air Navigation
TACAP	Air Carrier Fleet Capital

1

.....

ACUMENICS

A-9

	TAGS	Tower Automated Ground Surveillance System
	TCAP	Total Aircraft Capital
, ,	TCDD	Tower Cab Digital Display
	TCS	Technical Control Subsystem
	TDP	Technical Data Package
	TELEX	Telephone Exchange
	TERM	Controllers
	TIFRDEP	IFR Departures
	TIPS	Terminal Information Processing System
	TOPS	Total Operations
	TOWB	Tower Building Maintenance
	TPLT	Total Pilots Active in the Terminal Area
	TRACAB	Terminal Radar Approach Control, Tower Cab
	TRACO	Terminal Radar Approach Control
	TRACON	Terminal Radar Approach Control, IFR Room
	TRANP	Transport Pilots
	TROPO	Tropospheric Scatter Station
	TRSB	Time Reference Scanning Beam
1	TTS	Teletype Switching Facilities
	TTY	Teletypewriter
	TWEB	Transcribed Weather Broadcast
	ТХ	Transmitter
	VAS	Vortex Advisory System

l

Ċ

VASI Visual Approach Slope Indicator Voice Communications Subsystem VCS VFR Visual Flight Rules VICON Visual Confirmation of Voice Takeoff Clearance VLF Very Low Frequency VMC Visual Meteorological Conditions VOR Very High Frequency Omnirange Station VORTAC Colocated VOR and TACAN VOT Very High Frequency Onmidirectional Range Test VRS Voice Response System VSCS Voice Switching Control System V.T. Vacuum Tube WAVE Wind and Altimeter Voice Equipment WBRR Weather Bureau Romote Radar Recorder **WECO** Western Electric Company WFMU Weather and Fixed Map Unit WMSC Weather Message Switching Center WSFO Weather Service Forecast Office WSR Weather Service Radar WVAS Wake Vortex Avoidance System WX Weather

The second s

v

2

