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1.0 INTRODUCTION 

The continuum flow-field expansion of molecular species provides the environment and 
stimulus for a variety of interesting, and sometimes complicated, intermolecular collisional 
phenomena. These phenomena include such processes as vibrational and rotational 
relaxation, chemical reactions, and condensation processes. The prediction of the effects of 
these collision processes on the gas-dynamic parameters of the flow field is of importance 
for a variety of application areas. Some exemplary application areas include providing flow 
fields of known properties for calibration purposes, the design of mass-sampling probes, the 
formation of continuum molecular beams, and the prediction of radiation signatures of 
exhaust plumes. An accurate prediction, however, requires knowledge of the state-specific 
molecular species distribution functions which are, in general, quite difficult to calculate. 
Fortunately, for many applications such accuracy is not required, but, rather, it is necessary 
only that an order-of-magnitude estimate be obtained for the effect of the relevant 
intermolecular collision processes. 

For static gases, one approach to obtain such order-of-magnitude estimates is the 
calculation of the appropriate elastic collision rate coefficient which is adjusted by 
multiplication by the average transition probability for collision for the type of collisional 
process of interest. For expansion flow fields, this computation is complicated, for not only 
are the elastic collision rate coefficient and the inelastic collision transition probabilities both 

dependent on density and temperature, but now the density and temperature of the flow 
field are functions of the gas' reservoir properties, the nozzle (or expansion source), 
geometrical characteristics, and the spatial coordinates of the flow field. As a result, 
specification of the average number of collisions or transitions experienced by a molecule in 
traversing a specified region of the flow field requires numerical integration of the density- 
and temperature-dependent rate coefficients over the specified expansion flow-field region. 

The computation of the average elastic collision number experienced by a molecule in an 
expansion flow field is, in itself, of interest, for it is known that a variety of inelastic collision 
processes occur with collisional energy transfer probabilities which are of the same order of 
magnitude as those for elastic collisions. Such inelastic processes include rotational energy 
transfer, some chemical reactions, the quenching collisions of optical fluorescence, and 
optical line-broadening or phase-interrupting collisions. These computations have been 
performed, and the results are presented in this report. Specifically, the supersonic region of 
conical nozzle expansions has been investigated for flow fields of molecular constituents 
which interact with a variety of intermolecular potentials. The required numerical 
integrations were performed for collisions characterized by the hard-sphere potential, 
attractive inverse -r n potentials for n = 3 and 6, the two-term Lennard-Jones 12:6 potential, 
and the 12:6:3 Stockmayer and Krieger potentials. 
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Computations were performed to determine the average cumulative collision number of 
a molecule in traversing a specified region of the flow field, and the results demonstrate the 
effects on this collision number of the gas reservoir parameters, nozzle geometry and type of 

assumed interaction potential• Finally, the results are presented in a graphical form useful 
both for easy estimation of the effects of intermolecular collisions for a variety of 
application areas and for determination of the importance of accuracy in the representation 
or selection of the intermolecular potential function. 

2.0 THEORY 

2.1 COLLISION RATE FORMULATION 

The gas sample of equilibrium temperature T is assumed to consist of two species, each 
of which is characterized by the classical Maxwell-Boltzmann distribution function (Ref. 1) 

f,-,(~i) = (m./27rkBT) 3/2 e x p [ - ( m . / 2 k B T ) ~  • ~ ]  (1) 

where ct designates the species of mass m,~; i, the Cartesian component; and ~ is the velocity 
• 

of species ct relative to an origin which moves with the gas flow velocity. Defining Z to be the 
number of collisions per second per unit volume of the gas sample, 

dTZ = ~ .  nln2(Erb db)[(ml/21rknT)(m2/2~rkaT)]3/2v r • 
(2) 

P[ ( ~ -- -- ~2)/2k T ] d ~  -- ex -- ml • Vl + m2v2 • B dv2 

where ni is the local number density of species i 

Vr = IVrl = I v l -  V21 

b is the impact parameter of the collision and 

~ = 1  i ~ : j  
= ½ i = j  

Finally, dT~ designates the differential to be of 7 th order. 

The transformation from (Vl, v2) velocity space to the center-of-mass variables (vc, Vr) is 
simply effected, and since the transformation Jacobian is unity, one finds, after integration 
over the unimportant center-of-mass velocity vector vc, 

d4Z = ~n,n2(2~'b db)(m12/27rkaT) 3/2" Vrexp(-m,2~r • ~r/2knT)d~r (3) 
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where m12 is the reduced mass of species " 1 "  and "2" .  Therefore, the collision frequency 
(Z~ for atom, or molecule, of type " 1 "  with type " 2 "  species is given by Refs. 1 and 2: 

A O0 . . ~  O0  

Z = /~n,(m,2/2z-ksT) 3/2 I I l dvr Vr exp (-ml2v2/2kBT) ~o db 2a-b (4) 

Considering only spherically symmetric intermolecular potential functions, ~r ) ,  it is 
convenient to define the speed-dependent cross section otv) to be 

o(v) = 2a" ~ b db (5) 

and to transform the v space integrals of Eq. (4) to spherical v coordinates. Consequently, 
one finds 

Z" = ~* n 2 .  K(T) (6) 

where the temperature-dependent, density-independent rate coefficient K(T) is defined to be 

o o  

K(T) = 4~m12/2~-ksT)3/2 Iodv o(v) v3 exp(-ml2v2/2kBT) (7) 

which, perhaps, assumes a more familiar form when written as 

K(T) = : d v  o(v)v • f(v) 
O 

For collisions described by a hard-sphere (HS) potential 

~(r) = ~ r < d 
= o r >  d 

it is seen that 

(8) 

= ~. n2. (8RT/~r Ml2) ~ • ad~2 (9) 

m 

where Ml2 is the reduced gram molecular weight and R is the universal gas constant. The 
cross section a = a-d22 is, of course, v-independent, and the collision diameter d n  is given by 

d12 = (dl + dz)/2 

If the gas is composed of a single species, one obtains the even more familiar form 
t 

-- 2n(~rd2)(RT/1-M) ~ (IO) 

7 
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m 

where M is the gram molecular weight. 

Clearly, 

K(T)Hs = 2o(RT/~-M)~ (11) 

The formulation culminating in Eq. (11) can be generalized easily to describe mixtures of 
multiple species. If the ordered subscript pair (i,j) denotes an i-species specific parameter 
resulting from j-species interactions, it is seen that 

where 

and 

Zi. = ij (12) 
) 

Zi) = njKij(T) (13a) 

Kij(r)  = 4~'(l~lij / 2~'kBr)3/2 JodV aij v 3 e x p ( -  nlijv2/2kBT) (13b) 

1/ mij = ( l / m ~  + (1/mj) (13c) 

2.2 CONVERSION TO FLOW COORDINATES 

The conversion of the preceding collision rate expressions to flow coordinates is effected 
most conveniently by using the relation 

dx = u®dt 

where u= represents the flow speed; t, the time; and x, the axial flow-field coordinate. 

For the conical nozzle source of throat diameter D it is convenient to define a 
nondimensional distance to be 

= x/D 

For the isentropic conical nozzle expansion one now finds 

dZi/d~ = nToD[< M>/TRTo]  'a * ( l / M ) .  [1 + [ (7-  1)/2] M2]tv-3)/~'-l)  • ~. XjKij 
J 

(14) 

8 
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where Xj is the mole fraction of species j for a gas mixture of reservoir number density n-to. 
The Mach number of the flow field is M, and -y is the specific heat ratio for the mixture. 

Further, the mixture gram molecular weight < M > is given by 

' < ~ >  = E; MiXi (15) 
i 

From Eq. (14) it is seen that the average number of collisions Z, (x2, Xl) experienced by a 

molecule of species i over spatial interval (~2, ,ql), R2 > ~1, is given by 

zi(~,2,~,~) = j dZi = nToD[< ~>/ - :RTo]~  • gXj i2d~- F(~-3)/2(,-,). K~j (16~) 
J x2 

where 

F = I + [ ( V - 1 ) / 2 ]  M 2 

The evaluation of Eq. (16a) clearly requires specification of the rate coefficient, Kij , and 
the relationship of the Mach number, M, and the axial position, ~. For a conical nozzle of 

expansion half-angle 0, it can be shown that 

tan 0 = -1 + [2/(y + 1)]('y + 1>/4(-~-i). ( l / if-M) • F(': + 1)/4(y-i) (16b) 

2.3 EVALUATION OF RATE COEFFICIENT AND COLLISION NUMBER 
FOR SELECTED POTENTIAL FUNCTIONS 

The rate coefficient K(T) is evaluated initially for the class of singie-term, attractive 
intermolecular potentials which vary inversely with the distance of separation of the 

colliding species, i.e., 

~(r)  = . ~ r s ,  s > o  (17) 

where a denotes the strength of the interaction. It will be seen that closed-form expressions 

are obtained for o(v) for this class of potential function. 

The essence of the cross-section calculation is the specification of those processes which 
lead to close molecular encounters. Such close encounters occur continuously, of course, if 
the species are bound and orbiting one another; or if, for a given impact parameter Co), the 
collision energy is sufficiently great to surmount the centrifugal barrier; or, thirdly, if, for a 
given energy, the impact parameter is sufficiently small that collisions occur (Refs. 1, 2, and 
3). It is this close encounter of the third kind which is of interest. 

9 
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Figure 1 shows the radial variation of  the effective potential ~eff(r)  for a potential 
~(r) = a / r  s where ~elf(r) is defined to be the sum of ¢~(r) and the centrifugal potential 
(Ref. 2) 

~ef f ( r )  = ~(r) + (mv2ob2/2r  2) (18) 

The initial speed and impact parameter are v o and b, respectively. Defining r" by 

[dC'eff(r)/dr]r=r* = o (19) 

one finds the maximum height ~eff(r*) of the centrifugal barrier to be 

~eff(r*) = [(rn v o b2)s/( s-2)/(~s)2/ts- 2)][(1/2)_ ( l / s ) ]  (20) 

From Eq. (20) it is seen that, for a given initial energy and speed Vo, the height of  the 
centrifugal barrier increases as b 2s/(s-2). As shown in Fig. 1, if m V2o/2 = E < ~eff(r*), the 

interaction occurs at large values of r which, in general, is ineffective for energy transfer 
processes. If, however, E > ~beff(r*), penetration and a close encounter occurs, satisfying the 
normal prerequisite for an inelastic process. 

Regarding E as constant, the critical impact parameter b¢ is given by 

E = ~e f f ( r* )  (21a) 

so that 

b 2 = (~s/E)2/s[( s . 2)/sl(2-s)/s = (as/rn v2o) 2/s [ ( s -  2)/s] (2- s)/2 (21b) 

Consequently, if b < bc, E > ~eff(r*) and a close encounter occurs; b > be, E < ~eff(r*), 
and the collision turning point exceeds r*, which defines a collision which is generally 
ineffective for energy transfer processes. The collision cross section a is defined, therefore, 
to be 

O" ---- 7rb 2 -- "/r(as/I~l Vo2) 2/s [ s / ( s -  2)] (s-2)Is 
(22) 

which shows o to be a function of speed. The evaluation of  the rate coefficient K(T) follows 
immediately (Ref. 2) 

K(T) = a.2/s (~r/1~l)½ . 2(3s-4)/2s ° (S- 2) 2/s (kBT)(s'4)/2s ]"[(s - 2)/s] (23) 

l0 
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where F(x) denotes the gamma function of x. 

Using Eq. (23) for the rate coefficient K(T) for attractive inverse power law potentials in 
Eq. (16), it is seen that, for isentropic expansions, the cumulative collision number Zij (£,~1) 
is given by 

A 

^ ^  t )  f Zij(XlXl) = ~ij ° nTo" D [  <M>1'/2 • __r 'A . C~s° a 2/s° (kBTo) "2/s° Xjo ( l /M)  FaR' 
L~- -~u J ,~ ,y / '  Xl 

(24) 

where Zij(X,Xl) represents the average number of collisions experienced over the (~,xl) 
interval by an i th species molecule with j-species molecules. 

Further, 

Mij = NA mij 

and 

as = 2 (3s'4)/2s ( s -  2) 2/s. r [(s-2)/s] 

Clearly, the total cumulative collision number Z,(~,~l) regardless of the species of 
collision partner is given by 

Zi(R, 21) = ]2 Zij (~, £1) (25) 
J 

where the summation over "j" includes the index " i" .  

Equation (24) is generalized easily to include those cases for which the potential index 
" s "  varies with the jth species; i.e., s = sij. Specifically, if 

q~ij(r) = -aij/rSij 

Eq. (24) is made more general by adding the " i j "  subscript pair to the parameters s and a. 

Further simplification of appearance of Eq. (24) results by defining the interaction 
parameter aij to be the product of a characteristic energy ~ij and a characteristic range 
parameter dij, i.e., 

4~ij(r) -- -eij (dlj/r)SiJ 

11 
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so that 

ai j  = eij ( d i j )  sij 

Using these characteristic parameters the dimensionless temperature, (T*), throat diameter 
(D*), and number density (n*) are defined as 

and 

Equation (24) can now be written as 

T~j = T/(eij /kB) 

D[j = D/dij 

n~j = n(d'ij) 3 

"Z(~,~,) = Z (x ,x l ) /{~"  a s "  "q~"  n~-oD*(To)'2/s[< M > / M i j ]  ~A Xj} (26a) 
s 

= (1/7) '~ • I x (l/M)F-t('/vq)-t2/s)] cL~I' (26b) 
~t 

The explicit use of  the subscript pair " i j "  has been suppressed when requirements for its use 
are obvious. 

The total cumulative collision number Zi (x,£1) for a gas mixture is given by 

= = 

J 

where 

0r /7)  ~ " ~ ~ij ~sij (n~oD*)ij(To)7/sij[ < M > / M i j ] ~ x i  
J 

I x (1/M)F-tl/(v - I)-  (2/Sij)]dx ' (26c) 
i'l 

To = To/~ij  

and 

(n~o D)u = nTo D ~.2 
U 

t~ij = -~ i j (d l j / r , j ) s i j  

To obtain comparable results for the hard-sphere interaction cumulative collision 
number, Zi Hs , one may, of  course, use Eqs. (9) and (16) or quite simply take the limit of 
Eq. (24) as the parameter s approaches m. The result is found to be 

~ H S  --HS 
• . = Z i j  / { ~ 2 3 / 2 ( ~ r )  V" * n-~oD*[< M > / M  i j ] tAXj} (27a) U 

12 
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= (1/3')',~ . ~ I ( I / M  ) . F l / ( ' l , - i ,d~,  (27b) 

The hard-sphere characteristic distance dij is defined by 

dij = (di + dj)/2 

From Eq. (27a) it is seen that ~..Hs (£, ~1) is independent of the reservoir temperature To. lj 

For gas mixtures the total collision number ~Hs is defined in a manner similar to that 

of Eq. (26c). 

B 

The variation of collision number Zij with the nozzle expansion angle is most clearly seen 
by transforming the independent variable of the previous equations from axial position ~ to 
Mach number M. As an example, using Eq. (26b) one finds 

r M 2  - 1 ] , F ( 2 / s ) .  [(3.,/- 1)1/[4(~ - 1)] 
Z(M,M1) = (cot 0/4)g(3') ~ dM I M5/2 J (27c) 

M1 

where 

g(3,) = (1/3,) ~ [2/(3' + 1)1(* + 1)t4{v-1) 

From Eq. (27c) it is seen that the nondimensional collision number Z (M,MI) varies, or 
scales, according to cot 0, a result which is well-known. Further, the Mach number M and 
axial distance x are related by the usual Mach number-expansion area relationship for 
isentropic conical nozzle expansions or M versus x relations provided by method of 
characteristics solutions for external, vacuum-expansion flow fields. 

The motivation for using single-term potentials of the form ~(r) = - a/r s has been noted 

to be, rather than accuracy, the ability to obtain closed-form expressions for the rate 
coefficient K (T) and simple scaling laws for the collision numbers. To improve the accuracy 
of the description of the intermolecular interaction, it is known that intermolecular 
potentials of two or more terms are required. For nonpolar in*_eractions a reasonably 
successful potential is the Lennard-Jones 12:6 potential: 

6(r) = 4e[(d"/r) 12 - (d"/r) 6] (28) 

where the range parameter d, the molecular diameter, is the intermolecular separation 
distance at which ~ is zero and ~, the characteristic strength parameter, is the well-depth of 
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the interaction. For this interaction ~(r) it is known that, to first-order, the viscosity, [7/] i, of  
a pure gas (Ref. 1) is given by 

[711 = (5/16) (lrmkaT)'/M~ 2 fl(2,2)°(T ) (29) 

w h e r e  f](2,2)* (T*)  is the collision integral fl(k,s)* (T*)  fo r  t = s = + 2 and T* = T/(e/kb). 

For the hard-sphere interaction 

T/HS = (5/16) (~rmkaT)'/M~rd 2 (30) 

so that comparison of Eqs. (29) and (30) shows that the previous results for the collision 
numbers for the hard-sphere interaction can be modified to describe the 12:6 ~(r) interaction 
by replacing the hard-sphere parameter d 2 with the 12:6 product of parameters a2fl (2,2)* (T*) .  

'Therefore, for the 12:6 interaction, recalling Eq. (11), 

K(T*) = (e/k) w • a 2 fl(2,2)(T*) • [47rRT*/M ],A (31) 

Now, from Eqs. (27a) and (27b), 

~,1.2:6 (X,Xl) = Z 1 2 : 6 ( X , X I ) / { , ~ °  2 3/2 71"½ n~-o.  D ' [ < M > / M i j ]  '~ • Xj} (32a) 
]J U ° 

= (1/.t)~ . IX(l/M) fl,j(2,2)* ( T o / F ) .  F "ut~" ' )d~'  (32b) 
xi 

where fl(. 2'2)* is the reduced collision integral for binary mixtures (Ref. 1). --IJ 

For " i - j"  species interactions 

a,, = (a, + aj ) /2  

and 

~,,--  (~,~j)'/" 

Consequently, the total cumulative collision number Z~2:6(~,~1) is given by 

=  ,2:6 
ij (33a) 

- -  .~ (2,2)* (To/F) • F "u(v" 1) (81r/3') v2 • ~ i j ( n~oD*) i j [<M>/Mi j ]  v' • X i "  d~' (l/M)f~ij 
J ! 
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where the nondimensional reservoir parameters n÷o and To are defined by 

(n~oD*)ij = (nTo • D)a j (33b) 

and 

(To)ij = To/(%/kn) (33c) 

From Eqs. (32) and (33) it is seen that, unlike the simple inverse -r s potentials, the 
collision number integral does not exhibit simple multiplicative scaling with To. 

For a single, gaseous, polar species of dipole moment /~, the appropriate potential 

function is the Stockmayer potential (Ref. 1): 

~(r) = 4el(d/r)  12 - (d/r )  6] -(/~2/r3) g (01,02,~-  ~l) 
(34a) 

where (0i, ]"0 are the spherical polar and aximuthal angles, respectively, of alignment of the 
dipole moments of the molecules. Further, it can be shown (Ref. 1) that 

g(01,02,@ - (h) = 2 cos 0n cos 02 - sin 01 sin 02 cos(~ - 01) 

Monchick and Mason (Ref. 4) have calculated various 0(k,s)*functions for the Stockmayer 
potential, but only after replacing the angle-dependent potential by a central potential. The 
procedure for this computation is given in Ref. 4 and, in short, consists of the computation 
of the collision cross section for a fixed orientation and the thermal averaging of the 
resulting cross sections over the range of potentials which can occur in a collision. The values 
of [](2,2)* for such a thermally averaged Stockmayer potential axe given in Ref. 4 for the 
reduced temperature range 0.1 <_ T* < 100 and for the range of ~* 

0_<~*_<2.5 
where 

~* = (1/2)[/t2/(ea) 3] (34b) 

It should be noted that for 6* = 0, cI,(r) becomes the Lennard-Jones 12:6 potential and, as a 
result, values of fl0,s)*for the 12:6 potential are given in Refs. 1 and 4 for 0.1 _< T* _ 100. 

To appreciate the limitations imposed by a minimum T* of 0.1 for the collision integral 
tables, it is seen from the data of Ref. 1 for the well-depths of various molecular species that 
the existing ri0,s)* tables are inadequate for flow-field calculations for CO2 for T < 20 K and 

for both organic and halogen species for T < 50 K. A similar situation exists for polar 
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species for which well-depths e/k may be approximately 400 K, thereby yielding a minimum 
T for flow-field calculations of approximately 40 K. In other terms, for 3' = 1.2, T* = 0.1 

corresponds to a free-stream Mach number of  approximately 9.5 above which collision 

integral-based calculations are impossible with the existing tables of  the previously quoted 
references. 

To remedy this deficiency it was necessary to compute values of fl(2,2)* for T* _< 0.1 for 

both nonpolar and polar species. To accomplish this a computer program was acquired from 

the Computer  Program Library of  Queen's University of Belfast, Northern Ireland. This 

program, developed by O'Hara and Smith (Ref. 5), computes ~(I,s)*(T*) for specified 

accuracy for l,s _< 6 over a specified range of T* for interaction potentials ~ (r) which go to 
zero faster than r -2 as r -- oo . Using the program of  O'Hara and Smith', fl0,s)* (T*) values 

were computed for the 12:6 potential for the range 0.01 _ T* _< 1.1, and good agreement 
was obtained with the published values of Refs. l and 4 for T* _ 0.1. 

The Stockmayer potential of  Eq. (34) presented additional problems, for it was believed 
to be too time-consuming and unwarranted for this work to perform the potential function- 

averaging as was done by Monchick and Mason. A more simplistic approach was taken. The 
Stockmayer potential was replaced by the Krieger central-field potential 

~(r) = 4e[(a/r)  12 - (d / r )  6] + ~-(2/~2/r 3) 

= 4e[ ( r ) -12_(~ ' ) -6 ]  + ~ . ~ * . ( r ) .  3 (35) 

where ~" is + 1 and - l for parallel and anti-parallel alignment, respectively, of the dipole 
moment  vectors (/t-~ and r = d/r .  

Clearly, for high temperatures, the dipole-dipole interaction term will diminish in 
importance and the 12:6 ~(r) results will he obtained. Values of fl(2,2)*(T*) were calculated 

for g" = + 1, and Table 1 shows the results for 0.01 _< T* _< 30. Also shown in Table i are 
the results, (2,2)* flMM of Ref. 6 for the potential-averaged cases, and the large differences are 
n o t e d .  D e n o t i n g  fI(2'2)*(T*) to he the  co l l i s ion  in t eg ra l  for  spec i f i ed  
~', the geometric mean [~2m2)*(T* ) of the two values of  f/(2'2)*(T*) was calculated; i.e., 

n(2,2") (T") = ,-r°(2'2)'+ 1 (T*) ,, ~!2,2), (T*)] vz 
-- gm 

The values shown in Table 1 were determined for ~'* = 0.25 which, although arbitrarily 
selected, coincides with one of  the values presented in Ref. 6. 
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For T* ~ 0.1 the integrated collision numbers were determined using f](2'2)*(T*) obtained 
from Ref. 6, fl~'2)*(T*) and f~(2,2)* -gin (T*), all for the value of /i* = 0.25. For0.01 _< T* _<,0.1, 
obviously, only the last three collision integrals could be used. From Table 1 it is seen that 

o(2,2)* for T* />  0.1, and, specifically 0.90 < °(2'2)'/°t2'2)* -< fi(2,2)* closely approximates * 'MM . . . .  MM " ' ° g i n  - -gm 
1.04 over the range of 0.1 _< T* _< 30. Consequently, the suggested approach for the 
determination of fl¢2,2)* for polar species is not to use the rather gross and nonmonotonic 

interpolation in 6" required by use of the results of Ref. 6, but rather, if available, to employ 
the calculation of Ref. 5 from which f~(2,2)* (T)* can be obtained for any specific value of ~i* --gm 

• (2 2)* desired. The extrapolation of figm to the region T* _< 0.1 cannot be rigorously justified but 
is used for lack of anything better and its demonstrated accuracy at higher temperatures. 
Finally, 'generalization of the equations involving the collision integrals ~(2,2)* ( T * )  to 
mixtures of both nonpolar and polar gases is straightforward and described in detail in Refs. 

1 and7.  

3.0 RESULTS AND DISCUSSION 

3.1 H A R D - S P H E R E  A N D  I N V E R S E  -r s P O T E N T I A L S  

The preceding formulation was used to determine the cumulative nondimensional 
collision number Z(~2, xl) for conical nozzle expansion flow fields. Of particular interest 

were the variations in Z(x2, Xl) with nozzle expansion half-angle, reservoir properties, and 
the type of interaction potential which was assumed for the intermolecular collisions. To 
coincide with previous work, Refs. 8, 9, and 10, the nozzle expansion half-angles 0 = 5, 
10.5, and 15 deg were studied, and the axial range investigated was o <_ ~ _ 25, where ~ was 
measured with respect to the nozzle throat. For reference, Figs. 2, 3, and 4, respectively, 
show the axial variations for M, T = T=/To, and ~ = n=/no for these half-angles for the 
specific heat ratios 7 = 5/3, 7/5, and 9/7. As Eq. (16b) shows, M is a function of ~ tan 0 as 
are T and n. Therefore, the independent variable in Figs. 2 through 4 is ~ tan 0 which allows 

evaluation for any desired expansion angle. 

The intermolecular interaction potentials studied included the hard-sphere, inverse -r s 

for s = 3 and 6, the two-term Lennard-Jones 12:6 potential, and the averaged three-term 
Stockmayer and the Krieger potentials. The collision number Z(~,o) was calculated by 
numerical integration of Eq. (27b) for the To-independent hard-sphere interaction and by 

integration of Eq. (27a) for the interactions 

and ~3(r) = -a3/r 3 

~6(r) = -a6/r  6 
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From Eq. (26a) for the inverse -r s potential 

= 

D 

it is seen that Z(£2,~1) varies with the reservoir number density and throat diameter as n÷o D, 
which is to be expected for the binary collision model. Obviously, an identical result is 
obtained for all potentials in this work. Further, from Eq. (26a) it is seen that Z(~2,~) varies 

with the resevoir temperature as To -2/s. Figure 5 shows the variation with To of the ratio of 

the collision numbers Z(~E,Xl) To = 3OO r/Z--(x2,xl)'ro at the reservoir temperatures of  300 K and 
To. This variation is shown for the interaction potential parameter s values of  3, 4, 6, and 8, 
which correspond, respectively, to dipole-dipole, charge-induced dipole, induced dipole- 

induced dipole, and induced dipole-induced quadrupole molecular interactions. From Fig. 5 

it is seen that for the To range of 50 to 2000 K the collision ratio dependence on To varies 
from an approximate factor of  10 for s = 3 to an approximate factor of  3 for s = 8. Clearly, 
the longer the interaction range (the smaller the s value), the greater the temperature 
variation of  the collision number Z(x2,:~l). 

Figures 6a, b, and c show the variation of the hard-sphere interaction cumulative 
collision number Zi~ s (~,o) with axial distance ~ for 7 = 5/3, 7/5, and 9/7, respectively, 

for the expansion half-angles of 0 = 5, 10.5, and 15 deg. Included as additional abscissae for 
all figures for Z(x,o) versus ~ are the corresponding Mach numbers for the half-angles O = 5, 

10.5, and 15 deg. Shown in Fig. 6a for illustrative purposes are the loci for the constant 
integer Mach numbers of 2 through 7 for 7 = 5/3. Figures 7a, b, and c show the variation 
with ~ of  the cumulative fraction of collisions for these same cases, and it is seen that at ~ = 

10 for 0 = 5, 10.5, and 15 deg approximately 90 percent of the collisions have occurred. 
Figures 8a, b, and c and 9a, b, and c show similar results for the variation of  Zij(~,o) for the 
inverse -r 3 and inverse -r 6 potentials, respectively. 

If M(w°/e) is defined to be the Mach number at which w percent of the collisions occur 
for a given intermolecular potential interaction and expansion 7, Figs. 10a, b, and c show 

the variation with 7 of M(500/e), M(900/0) and M(99%) for the hard-sphere, r -6, and r -3 

potentials, respectively. From Eq. (27c) it is seen that these results are independent of 0, and 

Fig. 2 yields the axial positions corresponding to these Mach numbers for the specified "r and 

0 values. Figure 10a shows that for the hard-sphere interaction 50 percent of the total 
collisions in the expansion occur at M - 2, and this result is independent of 3' for the range 

of 7 investigated. Figure 10b shows that for the inverse -r 6 interaction the result is nearly 
identical. For the long-range, inverse -r 3 potential, M(50070) is approximately 2.5 and 

independent of  7 to within + 10 percent. Clearly, increasingly greater variation with 3' occurs 
for M(w0/e) as w increases. Shown in Fig. 11 is the variation of Zij(25.5,0) with expansion 

half-angle O, and the results for the r -3, r ~s, and hard-sphere potentials are shown for the "r 
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values of 5/3, 7/5, 9/7. From these results it is seen that for a conical nozzle of fixed 

expansion length ~ = 25.5 the collision number Zij(25.5,0) decreases with increasing 0 from 
5 to 15 deg by an approximate factor of 3 regardless of the specific heat ratio 3' and 

interaction potential. Further, for a specified 0, the variation of Z(25.5,0) with type of 
potential interaction is, again, approximately a factor of 1.5 to 2 increase from the short- 
range hard-sphere results to those of the longer range inverse -r 3 values. It should be noted in 
Fig. 10 that the collision number Z(25.5,0) for the inverse -r 6 interaction is quite insensitive 

to variations in the specific heat ratio, 3'. Specifically, for all three nozzle angles used, there 

is approximately only a six percent variation in Z(25.5,0) for the range of 3' shown in Fig. 11. 

Similar conclusions apply to axial values other than ~ = 25.5. This insensitivity of 7.~j to 3' is 

of particular interest for experimental studies of spectral line-broadening phenomena of 
molecular species for which the long-range r -6 term is dominant  for the phase-interrupting 

collisions. For such species, Fig. 10 shows that the effect of molecular relaxation and the 
resulting 3" change are of little importance in the calculation of 7.(~2,~1). Further, for the 
range 5 deg _ 0 - 15 deg estimates of Z(~,o) for either the r -3 or r -6 interactions can be 

obtained by using the hard-sphere results for any 0 within this range, and the resulting 
estimate will be incorrect by less than a factor of 10. Conversion of the nondimensional 

Z(£,o) results to the actual collision number is effected easily by use of the appropriate 

scaling constants given in the previous equations. 

3.2 LENNARD-JONES 12:6, STOCKMAYER AND KRIEGER POTENTIAL RESULTS 

Since simple multiplicative scaling in To is not possible for the Z(~,o) results for the two- 

and three-term potentials, computations were found for the To values of 2, 5, and 10, which 

for typical nonpolar species correspond approximately to the To range of 200 to 400 K up to 
2000 to 4000 K. For polar species the lower and upper limits of the To range are increased by 

a nominal factor of 2. 

The 3, values used previously were employed, but only /9 = 5 deg was used for the 

calculation. Scaling to other expansion angles has been described previously and can be 
performed to obtain results for values of 0 other than 5 deg. Figures 12a, b, and c show the 

axial distance and Mach number variations of Z(~,o) for 3' = 5/3, 7/5, and 9/7, 

respectively, for the Lennard-Jones 12:6 potential. The variation of Zij(~ ,o) with To over 

the To over the To range 2 to 10 is shown in Fig. 13 for 3, = 5/3, 7/5, and 9/7. From these 

results it is seen that Z'-ij(~ ,o) varies inversely with To as expected; i.e., for large To values 
the average collision energy will be sufficiently great so that the attractive portion of the 

potential will have but little effect. However, as To decreases the term -4e(~) -6 assumes 
greater importance, and the, results will resemble more nearly those for the inverse -r 6 

potential results. 

It is interesting to compare directly the distance and Mach number variations of the 
collision number with To for the hard-sphere, inverse -r 6, and 12:6 potentials. Comparison 
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of the last two potentials will indicate, as a function of To, the degree of inaccuracy of using 
the easily scaled, inverse -r 6 potential function. Further, comparison of the 12:6 and hard- 
sphere potentials will show that the hard-sphere collision diameter will be temperature-, or 
To-, dependent; and knowledge of this dependence will enable correction of previous 
collision number calculations based on hard-sphere potential interactions (Ref. 11). To 
make such a comparison it is necessary to ensure that the same Z(:~,o) function is being used, 
for, when possible, To has been eliminated from the integrated collision number. If this 
common integrated collision number is defined to be Z'(~,o) and the 12:6 Z(~,o) functional 
form is chosen for reference, 

g~j2:6(~,o ) _ ~.,2:6ij (~,0) = Z~j2:6(~,o)/I/~. 23/2 • rc '/2. rT~D' [<M>/Mi j ]  'A Xj] 

For the hard-sphere case, Eqs. (27a) and (27b) show that 

(36) 

: ( #a0 . z . s  
(37) 

where ~ij is the hard-sphere diameter which is acknowledged to be unequal to dij; i.e., if the 
characteristic lengths are determined from either second virial coefficient data or viscosity 

measurements, the resulting value of dij will depend upon the assumed form of the 
interaction potential. To transform the inverse -r s potential collision number, Eqs. (26a) and 
(26b) show that 

~ii~ ) (~,o) = (C~s/23/2) (To) 2/s • ZI~ ) (~,0) (38) 

where, again, 

For s = 6, 

Therefore, 

tx s = 2 (3s'4)/2s • (S- 2) s/2 • 1" [(S-2)/S] 

(a6/23/2) (To) 2/s = 1.7062 (T9  ' /3  

~(6) (X,O) = 1.7062 (To) ''/3 ~(6)(~,O ) U 1J 
(39) 

Figures 14a, b, and c show the variation with To of Zlj(oo,o) for the three potential 
functions for 3' = 5/3, 7/5, and 9/7. For all three values of 3,, it is seen that for the lowest To 
(=  2) flow-field expansions, the 12:6 results are approximately a factor of 2 larger than the 
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hard-sphere results. Further, this difference decreases as To increases, which is to be 
expected, for, as To increases, the average intermolecular collision energy increases and the 
importance of the dispersion energy term in the 12:6 potential lessens. The penetration 

distance of separation decreases with increasing To, and the 12:6 results equal the hard- 
sphere results at a value of To which depends upon 7, or the expansion characteristics, or 
history. Clearly, Z12:6(o0,O) (ZHS(°°,O), assuming ~iij = dij, which shows that the average 

distance of closest approach is less than dij. 

It is seen from Figs. 14a, b, and c that the results of the inverse -r 6 potential differ from 

those of the 12:6 potential by less than 20 percent over the investigated ranges To and 7, 
which, for certain applications, is a sufficiently small difference to recommend the use of the 

more easily scaled inverse -r 6 potential interaction. 

Finally, using the results of Figs. 14a, b, and c and Eq. (37), the ratio dij/dij was 
determined as a function of To. Figure 15 shows these results for 7 = 5/3, 7/5, and 9/7 for 
both ~ii~ ) (oo,o) and ~ii2:6(oo,o); i.e., the ratio ffiij/a~, was determined to yield equal values of 
the just-mentioned collision numbers and ~n-ls (oo ,o). The strong To dependence and the 
much weaker variation with 7 of the ffij/dij ratio are evident in Fig. 14, and these results 
should be useful for making corrections to hard-sphere elastic collision number calculations 

to obtain the more accurate 12:6 potential results. 

The difficulties associated with the calculation of the collision number ZIj2:6'3(XE,X1) 

for the Stockmayer potential have been discussed previously. Shown in Fig. 16 is the 
variation of ~j2:6:3 (x,o) with the axial distance parameter ~ tan 0 and Mach number M. 

The results shown in Fig. 16 were obtained for 7 = 5/3, T o = 5, and 6" = 0.25 and are 
"presented to exemplify the differences obtained using the various and previously described 
collision integrals Q(2,2)* (T*, 6"). Note that the results obtained using the ~(2,2)* values of 
Monchick and Mason are in excellent agreement with the 12 t2,2)* values which are the 

geometric mean of those obtained for ~" = - 1  of Eq. (35). Additionally, ZIj 2:63 (,~,o) 
obtained using ~" = + 1 differ from the Monchick-Mason and geometric mean values by 
approximately - 2 0  percent, respectively; greater differences are to be expected for 6* > 

0.25. 
4.0 SUMMARY AND CONCLUSIONS 

The cumulative elastic collision number of molecules has been calculated for the 
supersonic region of isentropic, continuum conical nozzle flow fields for gaseous species 

characterized by the specific heat ratios 7 = 5/3, 7/5, and 9/7. The cumulative collision 
number was determined as a function of Mach number and axial distance parameter ~ tan 0, 
the latter of which was specialized to the nozzle half-angles 0 = 5, 10.5, and 15 deg. The 
calculations were extended to study the effects of the type of intermolecular potential 
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interaction on the cumulative collision number. Specifically, the interaction potentials 
investigated included the attractive inverse -r 3 and inverse -r 6 potentials; the Lennard-Jones 

12:6; the Stockmayer and Krieger 12:6:3 potentials; and the hard-sphere interaction. The 
results have been presented in nondimensional form in terms of  the characteristic well-depth 

energies and ranges of  the intermolecular potentials, and the range of the nondimensional 

reservoir temperature studied was 2 < To < 10, which corresponds to the range of 
approximately 200 to 1000 K for typical nonpolar molecular species. 

For the inverse -r 3 potentials a close encounter collision model was employed for 
calculation of  the elastic collision cross section which resulted in simple multiplicative 

scaling of  the nondimensional collision number with reservoir temperature. However, for 

the two- and three-term potentials it was necessary to perform the calculations using the 

kinetic theory collision integrals [~(2,2)*(T*). For these cases it was necessary to extend the 

lower range of  the temperature of  the published collision integral tables from T* = 0.1 to T* 

= 0.01 to cover the required Mach number range of  the flow field. Special problems were 
encountered in this" extension with the 12:6:3 potential, and the extended tabular data for 
this case are used without rigorous justification. 

The results for the nondimensional cumulative number have been generalized to describe 
gaseous mixtures, and detailed comparisons of  the hard-sphere, inverse -r 6, and the 

Lennard-Jones potentials were presented. The collision number for the inverse -r 6 potential 

was found to be quite insensitive to the specific heat ratio, % which recommends its use for 

collision number estimates of  relaxing flow fields for which 3' may be uncertain. Further, the 

inverse -r 6 potential was found to yield results which agreed to within approximately 20 

percent of  the more accurate 12:6 potential results for the entire temperature range studied. 
In contrast, the hard-sphere results exhibited an increasing departure from the 12:6 potential 
results with decreasing reservoir temperature To, which was to be expected. 

In addition to providing information concerning the effects of the intermolecular 
potential functions on the intermolecular collision numbers in expansion flow fields, it was 
intended that the results be useful in the design of gas-sampling systems for both mass- 

samplir/g and optical diagnostics studies. In this regard, it was found that little advantage 

was afforded for the quenching of  intermolecular collisions by increasing the nozzle 

expansion half-angle from 5 to 15 deg. Consequently, particularly for optical diagnostics 

applications, the expansion angle, in this range of angles, should be selected with the 
primary criterion of  providing the desired flow-field parameters for the diagnostics system. 

In conclusion, the calculations of  this study can be extended easily to subsonic internal 

flow fields and supersonic external flows for which the Mach number-distance relationship 
is known. 
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Table 1 
Polar Gas Collision Integrals 

T* fl~'12)°(T *) II~'12)*(T*) fl~2) '(T*) fl~'~*(T*) 

.01 29.760 21.295 25. 174 --- 

.02 19.071 12.305 15.319 --- 

.03 14.802 8.482 11.205 --- 

.04 12.417 6.431 8.936 --- 

.05 10.864 5.206 7.521 --- 

.06 9.760 4.419 6.567 --- 

.07 8.927 3.885 5.889 --- 

.08 8.272 3.508 5.387 --- 

.09 7.741 3.236 5.005 --- 
0.10 7.301 3.027 4.701 4.266 
0.2 5.053 2.172 3.313 3.305 
0.3 4.135 1.841 2.759 2.836 
0.4 3.601 1.634 2.426 2.522 
0.5 3.223 1.497 2.197 2.277 
0.6 2.924 1.397 2.021 2.081 
0.7 2.683 1.324 1.885 1.924 
0.8 2.476 1.271 1.774 1.795 
0.9 2.303 1.228 1.682 1.689 
1.0 2.158 1.194 1.605 1.601 
1.1 2.034 1.165 1.539 1.52 
1.2 1.926 1.141 1.482 1.465 
1.4 1.748 1.103 1.389 1.365 
1.6 1.612 1.074 1.316 1.289 
1.8 1.507 1.051 1.259 1.231 
2.0 1.422 1.032 1.211 1.184 
2.5 1.271 0.996 1.125 1.100 
3.0 1.172 0.968 1.065 1.044 
3.5 1.102 0.947 1.022 1.044 
4.0 1.052 0.929 0.989 0.9732 
5.0 0.982 0.900 0.940 0.9291 
6.0 0.936 0.878 0.907 0.8979 
7.0 0.903 0.859 0.881 0.8741 
8.0 0.877 0.843 0.860 0.8549 
9.0 0.856 0.830 0.843 0.8388 

10.0 0.839 0.818 0.828 0.8251 
12.0 0.812 0.798 0.805 0.8024 
14.0 0.791 0.781 0.786 0.7840 
16.0 0.774 0.767 0.770 0.7687 
18.0 0.759 0.754 0.756 0.7554 
20.0 0.747 0.743 0.745 0.7438 
25.0 0.721 0.720 0.721 0.7200 
30.0 0.702 0.701 0.702 0.7011 

f • ( 2 , 2 ) *  :r ,x/o(2,2)*l,r ,~ 
MM ~= /~'~gm ~= J 

. . .  

. . .  

. . .  

. . .  

° . .  

0.908 
0.998 
1.028 
1.040 
1.036 
1.030 
1.021 
1.012 
1.004 
0.998 
0.988 
0.989 
0.983 
0.979 
0.978 
0.978 
0.978 
0.980 
1.022 
0.942 
0.988 
0.990 
0.992 
0.994 
0.995 
0.996 
0.997 
0.977 
0.998 
0.999 
0.998 
0.999 
0.999 
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b 

bc 

D 

D.*. 
U 

d 

aij 

E 

F 

f(v) 

g 

K 

kB 

M 

Mi 

< M >  

Mij 

mi 

m 

mij 

NA 

n 

n* 

NOMENCLATURE 

Strength of interaction 

Impact parameter 

Critical impact parameter 

Orifice or throat diameter 

D/aij 

Collision diameter 

Characteristic range parameter 

Hard-sphere collision diameter 

Energy 

Function equal to [1 + [(~'-l)/2]M 2} 

Velocity distribution function 

Function defined by Eq. (27c) 

Rate coefficient 

Boltzmann's constant 

Mach number 

Gram molecular weight of species i 

Gram molecular weight of mixture gas 

Reduced mass gram molecular weight 

Mass of species i molecule 

Reduced mass of collision 

Reduced mass of species i and j defined by Eq. (13d) 

Avogadro's number 

Number density 

Dimensionless number density defined by Eq. (33b) 
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R 

r 

s 

T 

T* 

t 

U** 

V 

Xi 

X 

Zij 

2 

Z 

Z 

Z 

Ots 

r(x) 

E 

Universal gas constant 

Intermolecular separation distance 

Potential index 

Temperature 

Dimensionless temperature T/(~/ks) 

Time 

Flow speed 

Speed 

Mole fraction of species i 

Flow-field axial distance 

x/D 

Cumulative collision number for species i molecule attributable to collisions 

with species j molecule 

Nondimensional cumulative collision number defined by Eqs. (26a), (27a), 

(27c), and (32a) 

Nondimensional cumulative collision number defined by Eqs. (36), (37), and 

(38) 

Collision frequency 

Collision frequency per unit volume 

Parameter defined by Eq. (38) 

Gamma function of x 

Specific heat ratio 

Parameter defined by Eq. (34b) 

Characteristic energy 

Dipole alignment parameter 

Viscosity 
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0 

/z 

a 

fl(I,s)* 

SUBSCRIPTS 

C 

eff 

gm 

MM 

O 

r 

T 

~,i,j 

SUPERSCRIPTS 

12:6 

12:6:3 

HS 

Nozzle half-angle 

Spherical polar angle of alignment of dipole moment 

Dipole moment 

Species identity factor 

Cross section 

Potential 

Azimuthal angle of alignment of dipole moment 

Collision integral 

Center of mass; critical 

Effective 

Geometric mean 

Monchick-Mason 

Reservoir parameter 

Relative velocity 

Total value 

Species type 

Dipole alignment parameter 

Free-stream parameter 

Parameter appropriate to Lennard-Jones 12:6 potential 

Parameter appropriate to 12:6:3 potential 

Hard-sphere 

Parameter appropriate to inverse -r s power potential 
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