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1.0 INTRODUCTION

The continuum flow-field expansion of molecular species provides the environment and
stimulus for a variety of interesting, and sometimes complicated, intermolecular collisional
phenomena. These phenomena include such processes as vibrational and rotational
relaxation, chemical reactions, and condensation processes. The prediction of the effects of
these collision processes on the gas-dynamic parameters of the flow field is of importance
for a variety of application areas. Some exemplary application areas include providing flow
fields of known properties for calibration purposes, the design of mass-sampling probes, the
formation of continuum molecular beams, and the prediction of radiation signatures of
¢xhaust plumes. An accurate prediction, however, requires knowledge of the state-specific
molecular species distribution functions which are, in general, quite difficult to calculate.
Fortunately, for many applications such accuracy is not required, but, rather, it is necessary
only that an order-of-magnitude estimate be obtained for the effect of the relevant
intermolecular collision processes.

For static gases, one approach to obtain such order-of-magnitude estimates is the
calculation of the appropriate elastic collision rate coefficient which is adjusted by
multiplication by the average transition probability for collision for the type of collisional
process of interest. For expansion flow fields, this computation is complicated, for not only
are the elastic collision rate coefficient and the inelastic collision transition probabilities both
dependent on density and temperature, but now the density and temperature of the flow
field are functions of the gas reservoir properties, the nozzle (or expansion source),
geometrical characteristics, and the spatial coordinates of the flow field. As a result,
specification of the average number of collisions or transitions experienced by a molecule in
traversing a specified region of the flow field requires numerical integration of the density-
and temperature-dependent rate coefficients over the specified expansion flow-field region.

The computation of the average elastic collision number experienced by a molecule in an
expansion flow field is, in itself, of interest, for it is known that a variety of inelastic collision
processes occur with collisional energy transfer probabilities which are of the same order of
magnitude as those for elastic collisions. Such inelastic processes include rotational energy
transfer, some chemical reactions, the quenching collisions of optical fluorescence, and
optical line-broadening or phase-interrupting collisions. These computations have been
performed, and the results are presented in this report. Specifically, the supersonic region of
conical nozzle expansions has been investigated for flow fields of melecular constituents
which interact with a variety of intermolecular potentials. The required numerical
integrations were performed for collisions characterized by the hard-sphere potential,
attractive inverse -r™ potentials for n = 3 and 6, the two-term Lennard-Jones 12:6 potential,
and the 12:6:3 Stockmayer and Krieger potentials.
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Computations were performed to determine the average cumulative collision number of
a molecule in traversing a specified region of the flow field, and the results demonstrate the
effects on this collision number of the gas reservoir parameters, nozzle geometry and type of
assumed interaction potential. Finally, the results are presented in a graphical form useful
both for easy estimation of the effects of intermolecular collisions for a variety of
application areas and for determination of the importance of accuracy in the representation
or selection of the intermolecular potential function.

2.0 THEORY
2.1 COLLISION RATE FORMULATION

The gas sample of equilibrium temperature T is assumed to consist of two species, each
of which is characterized by the classical Maxwell-Boltzmann distribution function (Ref. 1

fulvi) = {ma/27ksT)*? exp[-(m,/2ksT)ve * Va) (1)

where o designates the species of mass m,; i, the Cartesian component; and \?; is the velocity
of species « relative to an origin which moves with the gas flow velocity. Defining Z to be the
number of collisions per second per unit volume of the gas sample,

d7Z = £« nyny(2xb db)[(m,/2xksT)(ma/27ksT)] 2V, « (2)

exp[—(myvy « vi + mavz « v2)/2ksT]dv; dvs
where n; is the local number density of species i
Vi = |Vr| = ]Vl -V

b is the impact parameter of the collision and

f j

i
i=j

0 #

1
4

I n

Finally, d°Z designates the differential to be of 7t order.
The transformation from (;{ , \7;_) velocity space to the center-of-mass variables (\7;. \7;) is
simply effected, and since the transformation Jacobian is unity, one finds, after integration

over the unimportant center-of-mass velocity vector 17;,

d4Z = ¢nyny(27b db)(m,/27kgT)¥? + v; exp(—myy; » 17;/21@”1‘):1\?: 3
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where m,; is the reduced mass of species '‘1’* and ““2”’, Therefore, the collision frequency
(Z) for atom, or molecule, of type *‘1’’ with type ““2’’ species is given by Refs. 1 and 2;

Z = fn(myp/27kgT)*2 [ ] dv, v, exp (—m;v3/2k5T) 50 db 2xb 4

Considering only spherically symmetric intermolecular potential functions, ¢{r), it is
convenient to define the speed-dependent cross section o{v}) to be

ofv) = 2« [ b dd (5)

and to transform the v ¢ space integrals of Eq. (4) to spherical v coordinates. Consequently,
one finds

Z = ten+K(T) ©
where the temperature-dependent, deasity-independent rate coefficient K(T) is defined to be

K(T) = 4n(my/2ekgT)¥2 | dv ofv) v3 exp (~myzv2/2k5T) M

which, perhaps, assumes a more familiar form when written as

K(T) = [ dvo) v » £(v) ®
o}
For collisions described by a hard-sphere (HS) potential
é(r) = o rs<s d
= 0 r> d
it is seen that
Z = Eenge (SRT/ 7 Myg)* « ndh @

where M is the reduced gram molecular weight and R is the universal gas constant. The
cross section ¢ = rdfz is, of course, v-independent, and the collision diameter d,; is given by

dy; = (d] + dz)f'Z

If the gas is composed of a single species, one obtains the even more familiar form

Z = 2n(rd2)(RT/xM)" (10)
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where M is the gram molecular weight.
Clearly,
K(Tlys = 20(RT/ 7 M)* | (11)
The formulation culminating in Eq. (11) can be generalized easily to describe mixtur;s of

multiple species. If the ordered subscript pair (i,j) denotes an i-species specific parameter
resulting from j-species interactions, it is seen that

7. = T, (12
]
where
Z; = nKy(T) (13a)
Ki(T) = 4x (iy/ 2xkaT)¥2 § dv oy v3 exp( - fyv2/ 2k5T) (13b)
and
1/ my = (1/m) + (1/m;) (13¢)

2.2 CONVERSION TO FLOW COORDINATES

The conversion of the preceding collision rate expressions to flow coordinates is effected
most conveniently by using the relation

dx = u,_dt
where u, represents the flow speed; t, the time; and x, the axial flow-field coordinate.

For the conical nozzle source of throat diameter D it is convenient to define a
nondimensional distance to be

X = x/D
For the isentropic conical nozzle expansion one now finds
dZi/d% = nroD[< M>/4RTo)* « (1/M) « {1 + [(v - 1)72] M2]tv-3%v- 1 « EXK;
1

(14)

[r o}
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where X; is the mole fraction of species j for a gas mixture of reservoir number density n-,.
The Mach number of the flow field is M, and « is the specific heat ratic for the mixture.
Further, the mixture gram molecular weight <M > is given by

)

< M> = EI\_AIX‘ (15)

From Eq. (14) it is seen that the average number of collisions Z, (x;, x,) experienced by a
molecule of species i over spatial interval (%5, %)), X3 > X, is given by

— X2
Zi(iz,i]) = j dZ, = IITOD[< I\fl)/')J'RTC,]l",2 . EX] jj dx o F(-y-3),'2(7-l) . Kij (163.)
] x2
where
F =1+ [(y-1)/2} M2

The evaluation of Eq. (16a) clearly requires specification of the rate coefficient, Kj;, and
the relationship of the Mach number, M, and the axial position, X. For a conical nozzle of
expansion half-angle &, it can be shown that

Xtan 6 = -1 + [2/(y + D]+ D4 - 00 (1/4/M) « Flo + V46 - 1) (16b)

2.3 EVALUATION OF RATE COEFFICIENT AND COLLISION NUMBER
FOR SELECTED POTENTIAL FUNCTIONS

The rate coefficient K(T) is evaluated initially for the class of single-term, attractive
intermolecular potentials which vary inversely with the distance of separation of the

colliding species, i.e.,

o(r) = -a/rs,s>0 17

where a denotes the strength of the interaction. It will be seen that closed-form expressions
are obtained for o{v) for this class of potential function.

The essence of the cross-section calculation is the specification of those processes which
lead to close molecular encounters. Such close encounters occur continuously, of course, if
the species are bound and orbiting one another; or if, for a given impact parameter (b), the
collision energy is sufficiently great to surmount the centrifugal barrier; or, thirdly, if, for a
given energy, the impact parameter is sufficiently small that collisions occur (Refs. 1, 2, and
3). It is this close encounter of the third kind which is of interest.
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Figure 1 shows the radial variation of the effective potential ¢.{r) for a potential
$(r} = a/15 where ¢elr) is defined to be the sum of ¢(r} and the centrifugal potential
(Ref. 2)

¢eri(r) = o(r) + (mvib/2rd) (18)
The initial speed and impact parameter are v, and b, respectively. Defining r* by
[dges{r)/ar]; -« = o (19)

one finds the maximum height é.{r*) of the centrifugal barrier to be

Gerr(r*) = [(m vo b/ - By (asy2ts- ] [(1/2) - (1/9)] @0

From Eq. (20) it is seen that, for a given initial energy and speed v, the height of the
centrifugal barrier increases as b>/(-2), As shown in Fig. 1, if m v/2 = E < ¢(r"), the
interaction occurs at large values of r which, in general, is ineffective for energy transfer
processes. If, however, E > ¢.¢(t"), penetration and a close encounter occurs, satisfying the
normal prerequisite for an inelastic process.

Regarding E as constant, the critical impact parameter b, is given by

E = ¢eff(r‘) (21&)

s0 that

b2 = (as/E)¥¥[(s - 2)/5)@-9/5 = (as/m v3)¥s [(s - 2)/5)@-92  (21p)

Consequently, if b < b, E > ¢(r*) and a close encounter occurs; b > by B < ¢hesf(1Y),
and the collision turning point exceeds r*, which defines a collision which is generally
ineffective for energy transfer processes. The collision cross section o is defined, therefore,
to be

b2 = afme/m v 2)2s _ )] ts-2vs
o = wbZ = m(as/m v2)¥* [s/(s - 2)] 22)

which shows a to be a function of speed. The evaluation of the rate coefficient K(T) follows
immediately (Ref. 2)

K(T) = a¥s (a/m)% « 20s- 4/ 4 (5 - 2)¥s (keT)e-9/2 I'[(s - 2) /5] (23)
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where I'(x) denotes the gamma function of x.

Using Eq. (23) for the rate coefficient K(T) for attractive inverse power law potentials in
Eq. (16), it is seen that, for isentropic expansions, the cumulative collision number Z; (X,%)
is given by

X

a s M>1q, _ .
Zij(XiX) = &ij+ngo e D[ <M ]’(’ . (-:-)"“‘ cag e a¥s e (kgT) > o« X« [ (1/M) Fdz’
1) %

—_—

24

where Z;(X,X;) represents the average number of collisions experienced over the (%,%))
interval by an ith species molecule with j-species molecules.

Further,

M; = Nam;

and
o, = 205- 42 (52 2)2s o T [(s-2)/5]

Clearly, the total cumulative collision number Z,(X,%|) regardless of the species of
collision partner is given by

Zi%, %) = }? Z; (%, %1) J 25)
where the summation over *‘j'’ includes the index *‘i’’.
Equation (24) is generalized easily to include those cases for which the potential index
““s”* varies with the j'h species; i.e., s = s;;. Specifically, if
oi(r) = -a/rsi
Eq. (24) is made more general by adding the *‘ij** subscript pair to the parameters s and a.

Further simplification of appearance of Eq. (24) results by defining the interaction
parameter EiJ to be the product of a characteristic energy ¢; and a characteristic range

parameter d;;, i.e.,

eifr) = -e;(d,yr)%

11
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50 that
a; = & (dy)si

Using these characteristic parameters the dimensionless temperature, (T*}, throat diameter
{D*), and number density (n*) are defined as

Ti; = T/(&/kp)
D} = D/d;
and
njj = ﬂ(CTij)'3
Equation (24) can now be written as

Z(8%) = ZRR)/(E - & » V7« 07 DHTY) e[ < M>/ M;j]” X;) (26a)

'

= (/9% « | (U/M)FIU/rD - @) g1 (26b)
%

The explicit use of the subscript pair *‘ij’’ has been suppressed when requirements for its use
are obvious.

The total cumulative collision number Z; (%,%,) for a gas mixture is given by

Z (Rx) = LzZ,(ZR) = (z/)"% - L & g (ﬂi'oD*)ij(TB)ﬁz/s“[<ﬁ>/ﬁij]%xj
J ]

s
X

o | (/M)FVG -1 @Sy (26¢)
X
where
To = To/€j;
(n'}o D)U = Ny, D (_iﬁ
and

'Qsij = 'ei](dlj/rlj)Sij

To obtain comparable resuits for the hard-sphere interaction cumulative collision
number, Zi*j{s , one may, of course, use Egs. (9) and (16) or quite simply take the limit of
Eq. (24) as the parameter s approaches . The result is found to be

ZHS = ZU0/(5 22(n)% « ngD'l< M >/ M )% X} (27a)
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X
= (1/y)% « LI(I/M) s FU0 - Dggr (27b)

The hard-sphere characteristic distance d;; is defined by

di; = (d; + 4;)/2
From Eq. (27a) it is seen that Zli'jls (%, %) is independent of the reservoir temperature T,

HS
Z

For gas mixtures the total collision number is defined in'a manner similar to that

of Eq. (26c).

The variation of collision number Zj with the nozzle expansion angle is most clearly seen
by transforming the independent variable of the previous equations from axial position X to
Mach number M. As an example, using Eq. {26b) one finds

- M2 -1 {3y - .
ZMMy) = (eor o) el) | am [Tigg] reo-mrake g
1

where

gly} = (/9% [2/(y + 1)]& + V- D

From Eq. (27c) it is seen that the nondimensional collision number zZ (M.M,) varies, or
scales, according to cot #, a result which is well-known. Further, the Mach number M and
axial distance x are related by the usual Mach number-expansion area relationship for
isentropic conical nozzle expansions or M versus x relations provided by method of
characteristics solutions for external, vacuum-expansion flow fields.

The motivation for using single-term petentials of the form ¢(r) = — a/15 has been noted
to be, rather than accuracy, the ability to obtain closed-form expressions for the rate
coefficient K (T) and simple scaling laws for the collision numbers. To improve the accuracy
of the description of the intermolecular interaction, it is known that intermolecular
potentials of two or more terms are required. For nonpolar interactions a reasonably
successful potential is the Lennard-Jones 12:6 potential:

() = 4e[(d /)% - (d /1)) (28)

where the range parameter d, the molecular diameter, is the intermolecular separation
distance at which ¢ is zero and e, the characteristic strength parameter, is the well-depth of

13
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the interaction. For this interaction ¢(r) it is known that, to first-order, the viscosity, [4];, of
a pure gas (Ref. 1) is given by

[ahi = (5/16) (zmkgT)*/xd 2 Q2.2%(T) 29
where 1.2* (T*) is the collision integral Q%" (T*) for ¢ = s = +2and T* = T/(e/ky).
For the hard-sphere interaction
gHs = (5/16) (amkyT)"/md? (30

so that comparison of Eqs. (29) and (30) shows that the previous results for the collision
numbters for the hard-sphere interaction can be modified to describe the 12:6 §(r) interaction
by replacing the hard-sphere parameter d2 with the 12:6 product of parameters d20Q2.2)* (T*).
Therefore, for the 12:6 interaction, recalling Eq. (11),

K(T") = (e/K)% » d2022 (T°) « [4aRT"/M )¥ @b

Now, from Eqs. (27a) and (27b),

Z2¢ (k%) = Z*OR%) /(8- 2770 o s DT [<M>/M )%« X)) (320)

(172)% « (1/M) 8,22° (T3/F) « PV g (320)

where nsz.zr is the reduced collision integral for binary mixtures (Ref. 1).

For *‘i-)*’ species interactions
ai] = (CT, + aj)/Z
and

&y = (flfj) &
Consequently, the total cumulative collision number Z¥%®%,%,) is given by

ZVE5.%,) = L _Z:::ﬁ (%.%,) (33a)

— 3 -
= (Ba/y)" o gzij(n;bn*)i,—[<M>/Mij]% e X L] dg’ (1/M) @3 (To/F) » FV0-D

14
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where the nondimensional reservoir parameters n, and Ty are defined by

(D) = (npo » D)AE (33b)
and
(T5)ij = To/(e;y/kp) (33¢)

From Egs. (32) and (33) it is seen that, unlike the simple inverse -r5 potentials, the
collision number integral does not exhibit simple multiplicative scaling with Tg.

For a single, gaseous, polar species of dipole moment u, the appropriate potential
function is the Stockmayer potential (Ref. 1):

o) = 4[(d/0)' - (d/0)] -(w2/r) g (BrBd2 - ) (343)

where (8;, ®)) are the spherical polar and aximuthal angles, respectively, of alignment of the
dipole moments of the molecules. Further, it can be shown (Ref. 1) that

g(8,,82,8 - %) = 2 cos 8, cos B - sin 8, sin 8, cos(¢ - 31)

Monchick and Mason (Ref. 4) have calculated various 2&5*functions for the Stockmayer
potential, but only after replacing the angle-dependent potential by a central potential. The
procedure for this computation is given in Ref. 4 and, in short, consists of the computation
of the collision cross section for a fixed ‘orientation and the thermal averaging of the
resulting cross sections over the range of potentials which can occur in a collision. The values
. of 02" for such a thermally averaged Stockmayer potential are given in Ref. 4 for the
reduced temperature range 0.1 < T* < 100 and for the range of §*
0<é"<2.5
where

= (1/2)[p/(d)’] (34b)

It should be noted that for §* = 0, ®(r) becomes the Lennard-Jones 12:6 potential ahd, as a
result, values of £:5"for the 12:6 potential are given in Refs. 1 and 4 for 0.1 = T* < 100,

To appreciate the limitations imposed by a minimum T* of 0.1 for the collision integral
tables, it is seen from the data of Ref. 1 for the well-depths of various molecular species that
the existing (5" tables are inadequate for flow-field calculations for CO, for T < 20K and

for both organic and halogen species for T < 50 K. A similar situation exists for polar
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species for which well-depths ¢/k may be approximately 400 K, thereby yielding a minimum
T for flow-field calculations of approximately 40 K. In other terms, for y = 1.2, T* = 0.1
corresponds to a free-stream Mach number of approximately 9.5 above which collision
integral-based calculations are impossible with the existing tables of the previously quoted
references. '

To remedy this deficiency it was necessary to compute values of Q22" for T* =<0.1 for
both nonpolar and polar species. To accomplish this a computer program was acquired from
the Computer Program Library of Queen’s University of Belfast, Northern Ireland. This
program, developed by O’Hara and Smith (Ref. 5), computes QU.9°(T*) for specified
accuracy for 1,s < 6 over a specified range of T* for interaction potentials ¢ (r) which go to
zero faster than r-2 asr — oo . Using the program of O’Hara and Smith, Q0:5* (T*) values
were computed for the 12:6 potential for the range 0.01 < T* =< 1.1, and good agreement
was obtained with the published values of Refs. 1 and 4 for T* = 0.1.

The Stockmayer potential of Eq. (34) presented additional problems, for it was believed
to be too time-consuming and unwarranted for this work to perform the potential function-
averaging as was done by Monchick and Mason. A more simplistic approach was taken. The
Stockmayer potential was replaced by the Krieger central-field potential

o(r) = 4e[(d/r)12 - (d/r)8] + ¢(2x2/1%)
= 4d()2- ()9 + g8 ()7 &3

where { is +1 and —1 for parallel and anti-parallel alignment, respectively, of the dipole
moment vectors (x) and r = d/r.

Clearly, for high temperatures, the dipole-dipole interaction term will diminish in
importance and the 12:6 ¢(r) results will be obtained. Values of Q22*(T*) were calculated
for { = +1, and Table | shows the results for 0.01 < T* < 30. Also shown in Table 1 are
the resuits, ﬂﬁ'ﬁ" of Ref. 6 for the potential-averaged cases, and the large differences are
noted. Denoting 92D (T* to be the collision integral for specified
¢+ the geometric mean Q22°(T*) of the two values of a2-2(T*) was calculated; i.e.,

9%2(1') = [ (1) - 082" (1))

The values shown in Table 1 were determined for t* = 0.25 which, although arbitrarily
selected, coincides with one of the values presented in Ref. 6.
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For T* = 0.1 the integrated collision numbers were determined using #%?°(T*) obtained
from Ref. 6, 0%2°(T*) and Q2" (T*), all for the value of 8* = 0.25, For 0.01 = T* =, 0.1,
obviously, only the last three collision integrals could be used. From Table 1 it is seen that
ng;f" closely approximates 02" for T* = 0.1, and, specifically 0.90 < ﬂﬁlﬂ'/ﬂ‘:ﬁf)' <
1.04 over the range of 0.1 =< T* =< 30. Consequently, the suggested approach for the
determination of 22" for polar species is not to use the rather gross and nonmonotonic
interpolation in 8* required by use of the results of Ref. 6, but rather, if available, to employ
the calculation of Ref. 5 from which &2 (T)* can be obtained for any specific value of §*
desired. The extrapolation of ﬂg;lz)' to the region T* < (.1 cannot be rigorously justified but
is used for lack of anything better and its demonstrated accuracy at higher temperatures.
Finally, 'generalization of the equations involving the collision integrals (22° (T*) to
mixtures of both nonpolar and polar gases is straightforward and described in detail in Refs.
1 and 7.

3.0 RESULTS AND DISCUSSION .

3.1 HARD-SPHERE AND INVERSE -1s POTENTIALS

The preceding formulation was used to determine the cumulative nondimensional
collision number Z(X,, %,} for conical nozzle expansion flow fields. Of particular interest
were the variations in Z(X,, %) with nozzle expansion half-angle, reservoir properties, and
the type of interaction potential which was assumed for the intermolecular collisions. To
coincide with previous work, Reis. 8, 9, and 10, the nozzle expansion half-angles # = 5,
10.5, and 15 deg were studied, and the axial range investigated was 0 < X =< 25, where X was
measured with respect to the nozzle throat. For reference, Figs. 2, 3, and 4, respectively,
show the axial variations for M, T = T_/To, and = n_/n, for these half-angles for the
specific heat ratios ¥y = 5/3, 7/5, and 9/7. As Eq. (16b) shows, M is a function of X tan 0 as
are T and n. Therefore, the independent variable in Figs. 2 through 4 is X tan 8 which allows
evaluation for any desired expansion angle.

The intermolecular interaction potentials studied included the hard-sphere, inverse -rs
for s = 3 and 6, the two-term Lennard-Jones 12:6 potentizal, and the averaged three-term
Stockmayer and the Krieger potentials. The collision number Z{%,0) was calculated by
numerical integration of Eq. (27b) for the T,-independent hard-sphere interaction and by
integration of Eq. {27a) for the interactions

= -ay/r}
and #5(r) 3

de(r) = -a /16

17



AEDC-TR-83-6

From Eq. (26a) for the inverse -rs potential
¢s(r) = -Esz’rs

it is seen that Z(%,,R,) varies with the reservoir number density and throat diameter as n},D,
which is to be expected for the binary collision model. Obviously, an identical result is

obtained for all potentials in this work. Further, from Eq. (26a) it is seen that f(ﬁz,’i 1) varies
with the resevoir temperature as T,-2/s, Figure 5 shows the variation with T, of the ratio of
the collision numbers Z(%2,%)) 1, _ 39 k/Z(R2,%))7, at the reservoir temperatures of 300 K and
To. This variation is shown for the interaction potential parameter s values of 3,4,6,and 8,
which correspond, respectively, to dipole-dipole, charge-induced dipole, induced dipole-
induced dipole, and induced dipole-induced quadrupole molecular interactions. From Fig. 5
it is seen that for the T, range of 50 to 2000 K the collision ratio dependence on T, varies
from an approximate factor of 10 for s= 3 to an approximate factor of 3 for s =8. Ciearly,
the longer the interaction range (the smaller the s value), the greater the temperature
variation of the collision number Z(%;,%,).

Figures 6a, b, and ¢ show the variation of the hard-sphere interaction cumulative
collision number Z* (%,0) with axial distance % for y = 5/3, 7/5, and 9/7, respectively,
for the expansion half-angles of § = 5, 10.5, and 15 deg. Included as additional abscissae for
all figures for Z(x,0) versus % are the corresponding Mach numbers for the half-angles ¢ = 5,
10.5, and 15 deg. Shown in Fig. 6a for illustrative purposes are the loci for the constant
integer Mach numbers of 2 through 7 for ¥ = 5/3. Figures 7a, b, and ¢ show the variation
with X of the cumulative fraction of collisions for these same cases, and it is seen that at X =
10 for 8 = 5, 10.5, and 15 deg approximately 90 percent of the collisions have occurred,
Figures 8a, b, and ¢ and 9a, b, and ¢ show similar results for the variation of fij(ﬁ,o) for the
inverse -1 and inverse -ré potentials, respectively.

If M(w %]} is defined to be the Mach number at which w percent of the collisions occur
for a given intermolecular potential interaction and expansion v, Figs. 10a, b, and ¢ show
the variation with y of M(50%), M(90%) and M(%9%) for the hard-sphere, %, and r3
potentials, respectively. From Eq. (27c) it is seen that these results are independent of 8, and
Fig. 2 yields the axial positions corresponding to these Mach numbers for the specified v and
9 values. Figure 10a shows that for the hard-sphere interaction 50 percent of the total
collisions in the expansion occur at M = 2, and this result is independent of v for the range
of v investigated. Figure 10b shows that for the inverse -r6 interaction the result is nearly
identical. For the long-range, inverse -r? potential, M(50%) is approximately 2.5 and
independent of y to within + 10 percent. Clearly, increasingly greater variation with ¥ OCCUTS
for M(w%) as w increases. Shown in Fig. 11 is the variation of dZ_i](ZS.S,O) with expansion
half-angle 8, and the results for the r-3, r6, and hard-sphere potentials are shown for the ¥
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values of 5/3, 7/5, 9/7. From these results it is seen that for a conical nozzle of fixed
expansion length X = 25.5 the collision number fij(ZS.S,O) decreases with increasing 6 from
5 to 15 deg by an approximate factor of 3 regardless of the specific heat ratio v and
interaction potential. Further, for a specified #, the variation of Z(25.5,0) with type of
potential interaction is, again, approximately a factor of 1.5 to 2 increase from the short-
range hard-sphere results to those of the longer range inverse -r* values. It should be noted in
Fig. 10 that the collision number Z(25.5,0) for the inverse -r6 interaction is quite insensitive
to variations in the specific heat ratio, y. Specifically, for all three nozzle angles used, there
is approximately only a six percent variation in Z(25.5,0) for the range of v shown in Fig. 11.
Similar conclusions apply to axial values other than X = 25.5. This insensitivity of Z, to vy is
of particular interest for experimental studies of spectral line-broadening phenomena of
molecular species for which the long-range r term is dominant for the phase-interrupting
collisions. For such species, Fig. 10 shows that the effect of molecular relaxation and the
resulting v change are of little importance in the calculation of Z(%3,%;). Further, for the
range 5 deg < # =< 15 deg estimates of Z4(%,0) for either the r? or r% interactions can be
obtained by using the hard-sphere results for any & within this range, and the resulting
estimate will be incorrect by less than a factor of 10, Conversion of the nondimensional
Z(X,0) results to the actual collision number is effected easily by use of the appropriate
scaling constants given in the previous equations.

3.2 LENNARD-JONES 12:6, STOCKMAYER AND KRIEGER POTENTIAL RESULTS

Since simple multiplicative scaling in Tg is not possible for the Z(x,0) results for the two-
and three-term potentials, computations were found for the Tj values of 2, 5, and 10, which
for typical nonpolar species correspond approximately to the T, range of 200 to 400 K up to
2000 to 4000 K. For polar species the lower and upper limits of the T, range are increased by
a nominal factor of 2.

The -y values used previously were employed, but only 6 = 5 deg was used for the
calculation. Scaling to other expansion angles has been described previously and can be
performed to obtain results for values of ¢ other than § deg. Figures 12a, b, and ¢ show the
axial distance and Mach number variations of Z(X,0) for v = 5§73, 7/5, and 9/7,
respectively, for the Lennard-Jones 12:6 potential. The variation of Eij(oo,o) with T over
the T;, over the T} range 2 to 10 is shown in Fig. 13 for ¥ = 5/3, 7/5, and 9/7. From these
results it is seen that f;](oo,o) varies inversely with T; as expected; i.e., for large T values
the average collision energy will be sufficiently great so that the attractive portion of the
potential will have but little effect. However, as Ty decreases the term -4e(r)® assumes
greater importance, and the results will resemble more nearly those for the inverse -ré
potential results.

It is interesting to compare directly the distance and Mach number variations of the
collision number with T}, for the hard-sphere, inverse -ré, and 12:6 potentials. Comparison
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of the last two potentials will indicate, as a function of T}, the degree of inaccuracy of using
the easily scaled, inverse -r¢ potential function. Further, comparison of the 12:6 and hard-
sphere potentials will show that the hard-sphere collision diameter will be tempetature-, or
Ts-, dependent; and knowledge of this dependence will enable correction of previous
collision number calculations based on hard-sphere potential interactions (Ref. 11). To
make such a comparison it is necessary to ensure that the same Z{x,0) function is being used,
for, when possible, T has been eliminated from the integrated collision number. If this
common integrated collision number is defined to be f(:’i,o) and the 12:6 Z{X,0) functional
form is chosen for reference,

Zi7 (ko) = Z[ (ko) = ZRo)1k + 27 » " e D [<M>/M]" X} 56

For the hard-sphere case, Eqs. (27a) and (27b) show that

Zi (ko) = @ya) « 2 (x0) -

where d;, is the hard-sphere diameter which is acknowledged to be unequal to aij; i.e., if the
characteristic lengths are determined from either second virial coefficient data or viscosity
measurements, the resulting value of d;j will depend upon the assumed form of the
interaction potential. To transform the inverse -5 potential collision number, Eqs. (26a) and
(26b) show that

Zi (o) = (as2?) (1) - 7 (Re0) (38)

where, again,
a = 203 -4)/2s (S - 2)5/2 . T [(3_2)/51
Fors = 8§,
(es/2¥?) (To) s = 1.7062 (To)'”?
Therefore,

Z® (x,0) = 1.7062 (T;) " Z'9 (x,0)
! (39

Figures 14a, b, and c show the variation with Tj of fu-(ao,o) for the three potential
functions for v = 5/3, 7/5, and 9/7. For all three values of v, it is seen that for the lowest T,
(= 2) flow-field expansions, the 12:6 results are approximately a factor of 2 larger than the
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hard-sphere results. Further, this difference decreases as T, increases, which is to be
expected, for, as T; increases, the average intermolecular collision energy increases and the
importance of the dispersion energy term in the 12:6 potential lessens. The penetration
distance of separation decreases with increasing T:, and the 12:6 results equal the hard-
sphere results at a value of T}, which depends upon ¥, or the expansion characteristics, or
history. Clearly, Z126(2,0) < ZHS(ce,0), assuming d=ij = c—iij, which shows that the average
distance of closest approach is less than dj;.

It is seen from Figs. 14a, b, and c that the results of the inverse -ré potential differ from
those of the 12:6 potential by less than 20 percent over the investigated ranges T; and v,
which, for certain applications, is a sufficiently small difference to recommend the use of the
more easily scaled inverse -r® potential interaction.

Finally, using the results of Figs. 14a, b, and ¢ and Eq. (37), the ratio dzi}-/ai,- was
determined as a function of T5. Figure 15 shows these results for y = 5/3, 7/5, and 9/7 for
both Z” (c0,0) and Z1¥¥(,0); i.¢., the ratio d,,/d,, was determined to yield equal values of
the just-mentioned collision numbers and ZH8 (o ,0). The strong T5 dependence and the
much weaker variation with y of the d:j/aij ratio are evident in Fig. 14, and these results
should be useful for making corrections to hard-sphere elastic collision number calculations
to obtain the more accurate 12:6 potential results.

The difficulties associated with the calculation of the collision number 21132’6'3(?(231]
for the Stockmayer potential have been discussed previousty, Shown in Fig. 16 is the
variation of ‘_Zl'f“:‘“:’ (%,0) with the axial distance parameter % tan # and Mach number M.
The resuits shown in Fig. 16 were obtained for y = 5/3, Tg = 5, and §" = 0.25 and are

“presented to exemplify the differences obtained using the various and previously described
collision integrals (2.2 (T*, §*). Note that the resulis obtained using the 222" values of
Monchick and Mason are in excellent agreement with the {2.2* values which are the
geometric mean of those obtained for § = x1 of Eq. (3%). Additionally, FAGARNVEY
obtained using ¢ = =1 differ from the Monchick-Mason and geometric mean values by
approximately + 20 percent, respectively; greater differences are to be expected for 6* >
0.25.

4.0 SUMMARY AND CONCLUSIONS

The cumulative elastic collision number of molecules has been calculated for the
supersonic region of isentropic, continuum conical nozzle flow fields for gaseous species
characterized by the specific heat ratios y = 5/3, 7/5, and 9/7. The cumulative collision
number was determined as a function of Mach number and axial distance parameter X tan 8,
the latter of which was specialized to the nozzle half-angles 6 = 5, 10.5, and 15 deg. The
calculations were extended to study the effects of the type of intermolecular potential
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interaction on the cumulative collision number. Specifically, the interaction potentials
investigated included the attractive inverse -r? and inverse -r6 potentials; the Lennard-Jones
12:6; the Stockmayer and Krieger 12:6:3 potentials; and the hard-sphere interaction, The
results have been presented in nondimensional form in terms of the characteristic well-depth
energies and ranges of the intermolecular potentials, and the range of the nondimensional
reservoir temperature studied was 2 < T, < 10, which corresponds to the range of
approximately 200 to 1000 K for typical nonpolar molecular species.

For the inverse -r* potentials a close encounter collision model was employed for
calculation of the elastic collision cress section which resulted in simple multiplicative
scaling of the nondimensional collision number with reservoir temperature. However, for
the two- and three-term potentials it was necessary to perform the calculations using the
kinetic theory collision integrals Q2.2°(T*). For these cases it was necessary to extend the
lower range of the temperature of the published collision integral tables from T* = 0.1to T*
= 0.01 to cover the required Mach number range of the flow field, Special problems were
encountered in this extension with the 12:6:3 potential, and the extended tabular data for
this case are used without rigorous justification.

The results for the nondimensional cumulative number have been generalized to describe
gaseous mixtures, and detailed comparisons of the hard-sphere, inverse -r, and the
Lennard-Jones potentials were presented. The collision number for the inverse -r potential
was found to be quite insensitive to the specific heat ratio, -y, which recommends its use for
collision number estimates of relaxing flow fields for which ¥ may be uncertain. Further, the
inverse -ré potential was found to yield results which agreed to within approximately 20
percent of the more accurate 12:6 potential results for the entire temperature range studied.
In contrast, the hard-sphere results exhibited an increasing departure from the 12:6 potential
results with decreasing reservoir temperature T, which was to be expected.

In addition to providing information concerning the effects of the intermolecular
potential functions on the intermolecular collision numbers in expansion flow fields, it was
intended that the results be useful in the design of gas-sampling systems for both mass-
sampling and optical diagnostics studies. In this regard, it was found that little advantage
was afforded for the quenching of intermolecular collisions by increasing the nozzle
expansion half-angle from 5 to 15 deg. Consequently, particularly for optical diagnostics
applications, the expansion angle, in this range of angles, should be selected with the
primary criterion of providing the desired flow-field parameters for the diagnostics system.

In conclusion, the calculations of this study can be extended easily to subsonic internal
flow fields and supersonic external flows for which the Mach number-distance relationship
is known,

(o]
t2
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50, 90, and 99 percent of the collisions occur.
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Figure 11. Variation of collision number Z_Il (25.5, 0) with expansion half-angle, &.
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Figure 12. Variation of the Lennard-Jones 12:6 potential cumulative collision number
with axial-distance X and reservoir temperature T,.
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Figure 13. Variation with T; of the collision number Z; (e, O} for
the Lennard-Jones 12:6 potential.
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Figure 14. Variation with T: of the collision number Z,j {o, 0} for the hard-sphere,
inverse —r6, and Lennard-Jones 12:6 potential.
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Table 1
Polar Gas Collision Integrals

AEDC-TR-83-6

T 0Py afPay oGy oo ol a/olM 1y
01 29,760 21.295 25.174
02 19.07 12.305 15.319
03 14.802 8.482 11.205
04 12.417 6.431 8.936
05 10.864 5.206 7.521
06 9.760 4.419 6.567
07 8927 3.885 5.889
08 8272 3.508 5.387
09 7741 3.236 5.005
0.10  7.30! 3.027 4.701 4.266 0.908
02  5.083 2172 3.313 3.305 0.998
03 4135 1.841 2.759 2.836 1.028
0.4 3.601 1.634 2.426 2.522 1.040
0.5 3223 1.497 2.197 2.2m 1.036
06 2924 1.397 2,021 2.081 1.030
0.7 2683 1.324 1.885 1.924 1.021
0.8  2.476 1.271 1.774 1.795 1.012
0.9 2303 1.228 1.682 1.689 1.004
1.0 2.158 1.194 1.605 1.601 0.998
11 2034 1.165 1.539 1.52 0.988
12 1926 1.141 1.482 1.465 0.989
1.4 1.748 1.103 1.389 1.365 0.983
1.6 1612 1.074 1.316 1.289 0.979
18 1.507 1.051 1.259 1.231 0.978
20 1422 1.032 1.211 1.184 0.978
25 1271 0.996 1.125 1.100 0.978
30 Lm 0.968 1.065 1.044 0.980
35 1102 0.947 1.022 1.044 1.022
40 1082 0.929 0.989 0.9732 0.942
50 0982 0.900 0.940 0.9291 0.988
60 093 0.878 0.907 0.8979 0.990
7.0 0.903 0.859 0.881 0.8741 0.992
8.0 0877 0.843 0.860 0.8549 0.994
9.0  0.856 0.830 0.843 0.8388 0.995
10.0 0839 0.818 0.828 0.8251 0.996
120 0812 0.798 0.805 0.8024 0.997
140 0.791 0.781 0.786 0.7840 0.977
160 0774 0.767 0.770 0.7687 0.998
180  0.759 0.754 0.756 0.7554 0,999
200  0.747 0.743 0.745 0.7438 0.998
250 0721 0.720 0.721 0.7200 0.999
300 0.702 0.701 0.702 0.7011 0.999

55



AECC-TR-83-8

NOMENCLATURE

a Strength of interaction
b Impact parameter
b, Critical impact parameter
D Orifice or throat diameter
D} D/d;,
d Collision diameter
di) Characteristic range parameter
d Hard-sphere collision diameter
E Energy

Function equal to {1 + [(y-1)/2]M%}
f(v) ¥elocity distribution function
2 Function defined by Eq. (27¢)
K Rate coefficient
ks Boltzmann’s constant
M Mach number
M; Gram molecular weight of species i
<M> Gram molecular weight of mixture gas
M Reduced mass gram molecular weight
m; Mass of species i molecule
m Reduced mass of collision
m;; Reduced mass of species i and j defined by Eq. (13d)
Na Avogadro’s number
n Number density
n* Dimensionless number density defined by Eq. (33b)
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Wl

N} N)

R

I'(x)

at

Universal gas constant
Intermelecular separation distance
Potential index

Temperature

Dimensionless temperature T/{/kg)
Time

Flow speed

Speed

Mole fraction of species i
Flow-field axial distance

x/D

AEDC-TR-83-6

Cumulative collision number for species i molecule attributable to collisions

with species j molecule

Nondimensional cumulative collision number defined by Eqs. (26a), (27a),

(27¢), and (32a)

Nondimensional cumulative collision number defined by Eqs. (36), (37), and

(38)

Collision frequency

Collision frequency per unit volume
Parameter defined by Eq. (38)
Gamma function of x

Specific heat ratio

Parameter defined by Eq. {34b}
Characteristic energy

Dipole alignment parameter

Viscosity
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# Nozzle half-angle

] Spherical polar angle of alignment of dipole moment
u Dipole moment

£ Species identity factor

o Cross section

e Potential

E&o Azimuthal angle of alignment of dipole moment
LS Collision integral

SUBSCRIPTS

c Center of mass; critical

eff Effective

gm Geometric mean

MM Maonchick-Mason

o Reservoir parameter

r Relative velocity

T Total value

a,l,j Species type

¢ Dipole alignment parameter

oo Free-stream parameter

SUPERSCRIPTS

12:6 Parameter appropriate to Lennard-Jones 12:6 potential
12:6:3 Parameter appropriate to 12:6:3 potential

HS Hard-sphere

3 Parameter appropriate to inverse -r$ power potential
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