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SECTION I

INTRODUCTION

For the past five years, Harris SAI, Inc., Ann Arbor,

Michigan, has been developing advanced computer-aided

simulations of crossed-field amplifiers. Since March 1,

1977, Harris SAI has been supported in this effort by the

Air Force Office of Scientific Research under Contract No.

F49620-77-C-0091. This Final Technical Report covers the

entire period of the contract: March 1, 1977 through

February 29, 1980.

The report is in two parts. Part I describes the work

on the distributed-emission crossed-field amplifier. Part

II (this volume) describes the parallel effort on the injected-

beam crossed-field amplifier.

A. Research Objectives

Crossed-field amplifiers (CFA's) are commonly used to

produce microwave power in transportable systems where light

weight, compactness, high efficiency, and peak power of

kilowatts or megawatts are required. Radar and electronic

countermeasure systems are examples. In existing distributed-

emission CFA's, it is desirable particularly to raise the gain
and efficiency and extend the bandwidth over which the tube

will both start and operate in the desired mode. An injected-

beam CFA (IBCFA, Figure 1) can be used as the final amplifier

in an electronic countermeasure or radar transmitter where

relatively high gain of 20 to 30 dB is required at frequencies

covering an octave range. Because it can tolerate a wide

range of duty cycles at fixed peak power, it is especially
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suitable for multip.le functions (e.g. air-to-air or air-to-

ground transmission) in a single system. The designer of an

IBCFA aims for high efficiency and wide dynamic range with

a stable, low-noise beam.

The effort in the IBCFA studies has shifted the emphasis
from the RF properties of the tube, included in the original

(1977) Statement of Work, to a more detailed study of the

electron-gun region. The purpose is to improve the under-

standing of the beam injection conditions at the RF input, since

the gun is recognized to be the source of much of the noise

output, including intermodulation, of existing tubes.

The Northrop RW-620 injected-beam CFA was chosen as a

production tube suitable for providing measurement data.

The gun in this tube has a grid along the cathode in the beam-

drift direction, and beam scalloping has been observed in

the magnetic-field direction. Therefore, a full three-dimensional

model is necessary to accurately predict the beam shape and to

simulate design improvements.

The stated objectives of this research are as follows:

(1) Develop an electrostatic model for two-dimensional

simulation of a crossed-field gun, using the deformable mesh

technique.

(2) Develop a time-dependent two-dimensional crossed-field

gun model with a Monte Carlo simulation of noise characteristics.

(3) Apply the model to study the effects of varying the

accelerating anode voltage, the magnetic field, the sole
voltage, and the cathode temperature on cathode current, beam

shape, noise and stability.

(4) Extend the two-dimerional model to a full three-

dimensional simulation, including nonuniform magnetic fields
and grid wires in the beam-drift direction.
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(5) Develop a fast non-iterative solution for the

potential distribution on a deformable mesh.

(6) Investigate an existing approximate feedback model

for possible extension to three dimensions.

(7) Obtain experimental measurements for the RW-620

crossed-field gun through a subcontract.

(8) Analyze the three-dimensional gridded RW-620 with end

hats using a Monte Carlo analysis, and obtain beam noise

characteristics at specified positions.

(9) Analyze the RW-620 as a periodically gridded struc-

ture so that the effects of end hats can be found by comparison

with results of item 8 above.

B. Status of the Research Effort

Hariis SAI has completed a significant portion of this

work and has established all the basic techniques needed in

the full three-dimensional study. The excellent results for

the two-dimensional static gun analysis of a Kino short gun serve

to validate the deformable-mesh technique. Applying the same

static analysis to a longer cathode, such as in the RW-620,

shows instability due to returning cycloiding electrons,

and it has proved considerably more difficult to obtain a

convergent solution. The computed currents are higher than

measured. Since April 1979, therefore, work has been concen-

trated on the time-dependent gun analysis, with emphasis on

the correct modeling of the cathode.

Northrop Corporation Defense Systems Division have provided

experimental measurements on the RW-620 injected-beam CFA under

a subcontract. For this long-cathode gun, the time-dependent

two-dimensional analysis gives a clear dynamic steady state

4



and reasonable quantitative results. A newly developed

cathode emission model accounts for returning charge and for

the reduced electric field due to grid wires. The three-

dimensional solution of Laplace's equation for the RW-620

geometry demonstrates the fields that exist before the beam

is introduced.

Because of the large amount of computing time required

for the three-dimensional work, it was planned to make use of

,a Harris 550 computer which was more economical than the

alternative University of Michigan machine. This machine

became fully operational at Harris Corporate Headquarters,

Melbourne, Florida in late 1979. Unavoidable delays in the

installation of the machine during 1979 left insufficient time

for the three-dimensional IBCFA analysis. Instead, additional

work was performed on the concurrent distributed-emission

crossed-field amplifier simulation with worthwhile results.

C. Summary

The Harris SAI models of the IBCFA are compared with
other recent work in Section II. Details of the deformable-

mesh technique are given in Section III. Of the two alternative

solution methods developed for the Poisson difference equations,

relaxation is more efficient than a direct method. This is

because the successive potential solutions are similar and

require only about ten iterations each step.

The time-dependent analysis of the anode-sole region

(Section IV) has been developed to study the effects of the

beam injection on stability in the line-sole interaction

region. It uses a fast Poisson solution between rectangular

boundaries to reduce the computing time. Noise growth in the

gun is neglected.

5



The two-dimensional static analysis (Section V) gives

excellent agreement with published experimental measurements
for a short Kino gun in which the cathode is short relative to
the cycloid length. However, it has proved difficult to obtain

a self-consistent convergent solution for a long cathode

with this model (Section VI).

There remains considerable controversy about the existence
of an instability due to shot noise at a long cathode. Section

VII provides a brief description of the various recent theories.

So far, only the Ho and Van Duzer model has predicted this

effect.

An accurate model of cathode emission is essential for

a correct estimate of the beam current produced in the gun.

After a study of possible cathode-emission models of varying

complexity, two types of model have been selected as program
options. These are (1) a microscopic thermionic emission model

in which the local potential creates a minimum to suppress
excess charge, and (2) a macroscopic model which estimates the

self-consistent solution at each step, assuming a mesh interval
larger than the Debye length.

Section VIIIdescribes these models and estimates the
required mesh size, time step and effective cathode temperature

in a simulation. The macroscopic model now gives space-

charge limited currents which are 6 percent above the Child's

Law values (only 2 percent in the cylindrical model of the

distributed-emission tube), and about 30 percent above the
measured values for the Kino short gun. However, improvement

of the trajectory calculation should reduce these differences.

Under a subcontract to Harris SAI, Northrop Corporation
Defense Systems Division has measured the beam current in

several tubes for varied magnetic field, accelerating-anode
voltage, and grid voltage. They have also supplied the observed

6
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noise power in the absence of RF drive. Finally, "cold" and
"hot" RF measurements are included in Northrop's results.

As an initial application of the three-dimensional
model, the potential distribution has been computed in the

RW-620 gun using the exact electrode and grid configuration,
but without space charge. Graphical results are presented

in Section IX.

Simulation results obtained for the RW-620 in two
dimensions (Section X) show a stable beam and fair agreement

with the measured currents when a grid shielding factor is
used. Section XI presents conclusions and plans for

continued work.

Details of the RW-620 measurements are given in Appendices
A and B. The tube data required and the output information

from the time-dependent program are summarized in Appendix C.
Appendix D is a program output listing for a typical RW-620

simulation. The computer resources required are listed in
Appendix E.

7



SECTION II

STATE OF THE ART OF INJECTED-BEAM

CROSSED-FIELD AMPLIFIER ELECTRON GUN SIMULATION

Most existing crossed-field electron guns have been

designed empirically using elementary analyses of simple elec-

trode shapes in nongridded guns. 1 However, the injection

conditions of the beam into the anode-sole region of the injected-

beam crossed-field amplifier or oscillator are critical in

determining noise output and efficiency. Effort is now being

directed at improving the understanding of crossed-field

beams both experimentally and by computer simulation. The

computer models2-7 known to Harris SAI are summarized in Table 1.

Both the iterative electrostatic and the time-dependent

models have been developed by Harris SAI. The time-dependent

calculation predicts beam noise and will work for both stable

and unstable beams. The time-dependent motion in the anode-

sole region was studied previously by Harris SAI using a

rectangular interaction region with time-independent initial

conditions. Only an ideal Brillouin injected beam was treated.
7

The model now under development combines the gun, transition,

and anode-sole regions so as to give realistic injection condi-

tions for the beam between the line anode and the sole.

An accurate calculation of the beam current requires an

accurate model of the cathode emission in the local space-

charge fields. In the Harris SAI program, a macroscopic

model, originally developed by the Naval Research Laboratory

for magnetron simulations,8 ignores the electron velocity

distribution and shot noise at the cathode surface. The model

is verified by Child's Law, applies to both short and long

8



TABLE 1

STATE OF THE ART OF CROSSED-FIELD

ELECTRON GUN SIMULATION IN USA

Author References Features of Model

Shaw and Kooyers 2 Two- and three-dimensional
3 time-dependent analysis of
4 short and long guns with

rectangular region for
solution of Poisson equation,
and approximate grid effects.
Cannot treat space charge in
line-sole region.

True 5 Two-dimensional static
(iterative) solution for
short and long guns with
deformable-mesh Poisson
solution.

Lele and Rowe 6 Two-dimensional Monte Carlo
(time-dependent) analysis of
short Kino gun with rectangular
mesh for potential solution.

Chang, Fontana, 7 Two-dimensional static deform-
MacGregor and Rowe and this able-mesh solution for short
(Harris SAI, Inc.) report gun.

7 Two-dimensional time-dependent
deformable-mesh solution for
short and long guns.
Rectangular solution for line-
sole region with injected
Brillouin beam.
Model of space-charge-limited
cathode emission.

Three-dimensional model
under development.
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crossed-field guns, and should treat also the shielding effects

of grids.
2-4

A gun computer program has been developed by Shaw, et al.,

for design of dual-mode IBCFA's, but the techniques described

for that work appear to be restrictive. Charge motion is

computed as a time-dependent solution, but in a rectangular

interaction region with simplified boundary conditions in two

or three dimensions. The resolution of distance is fixed and

determined by the rectangular mesh of points used to solve

Poisson's equation. The effects of grid wires can only be

approximated. Ther3 is only a simple thermionic model of

cathode emission.

The deformable-mesh analysis9 '10 is a much more powerful

technique. This method involves solving Poisson's equation on

an adjustable triangular grid with arbitrary boundary shapes.

Computation time can be minimized and accuracy increased by

concentrating solution points in critical regions, such as

near the cathode. Harris SAI has obtained accurate results

for many 0-type traveling-wave tube guns and applied this

analysis to a short crossed-field gun during the first year

of this AFOSR contract. A three-dimensional version of the

0-type gun analysis is also giving excellent results for

radially gridded guns. The deformable-mesh analysis has

been applied to CFA guns also by Litton Industries, but only

a two-dimensional electrostatic model has been described in

published work.
5

Harris SAI is developing also a fully three-dimensional

calculation. That model includes arbitrary side electrodes

(end hats), a spatially variable magnetic field, grids in the

principal beam direction, and electronic motion in the magnetic

field direction. The grid wires are particularly important for

reducing noise and beam interception and raising the efficiency

of existing tubes.12 ,13 Their physical effects on the beam are

not well understood. Also needing an explanation is the

10



dramatic reduction of noise observed in a long Kino gun when

the magnetic field is tilted in the transverse plane by about

one degree relative to the cathode.
14

The RW-620 injected-beam CFA has a narrow, long cathode
gun and may exhibit one type of beam instability in which electrons

returning to the cathode cause excess noise over the shot noise

level. Ho and Van Duzer15 have demonstrated this using an
approximate feedback model and they have summarized experimental

results up to 1968. Recent analytic studies of shot noise and

potential perturbations,16,17 and of velocity noise with a
fixed potential,18 however, treat only a parabolic steady-state

potential and hence do not include this feedback effect.
The diocotron or "slipping-stream" instability19 is a second
major source of noise in crossed-field tubes.

These two instabilities are initiated by shot noise due to
random electron emission times and are distinct from the
"geometrical amplification" of the initial thermal velocity
distribution. The latter is a purely steady-state crossed-

field phenomenon and is at least partly the cause of the anode
current that can be measured in a supposedly "cutoff" crossed-

field diode. However, it is doubtful whether a true steady

state exists.

11



SECTION III

POTENTIAL AND TRAJECTORY CALCULATIONS

IN THE CROSSED-FIELD GUN

A. Introduction

The aim is to obtain the electron trajectories, the

potentials and the beam current with an arbitrary electrode

configuration. Two approaches are treated here: a static

analysis and a time-dependent analysis.

Both methods trace the motion of representative charges

("super-electrons") through the gun. The static calculation
computes all trajectories throughout the gun between successive

solutions of Poisson's equation and attempts to find a convergent

solution. A solution is defined to have converged when the end

points of the trajectories satisfy the criterion that fewer than

a specified number of these end points have changed their

nearest mesh mode in two consecutive iterative cycles. The

time-dependent calculation, on the other hand, does not search

for a steady state, but instead solves Poisson's equation at

every time step as the trajectories are advanced through the
gun. New charge is injected at the cathode at every step.

Figures 2 and 3 are outline flow diagrams for the two programs.

In both analyses the electrode voltages are independent of time.

Thus, the model represents a short-circuited, not open-circuited,

diode, and high-frequency effects on the boundary voltages are

ignored.

The techniques described here are applied in both static
and dynamic analyses. They have been developed initially in

two dimensions, but extension to three dimensions is straight-

forward.

12
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13. The Deformable Triargular Mesh

1. Purpose

The deformable-mesh technique is used in the Harris SAI

electron-gun analyses to provide an accurate solution of

Poisson's equation with realistic electrode shapes. In the

past, many analyses of this type have used a rectangular mesh

because of the simplicity of the finite difference equations.

However, a deformable triangular mesh has two advantages over

a rectangular mesh. First, points of a deformable mesh more

closely approximate the boundary of an electrode because the

positions of the mesh points are adjustable. Thus,the boundary

contains the mesh points instead of being forced to fit the

nearest points of a rectangular mesh. Second, more mesh points

can be moved into critical regions, ensuring higher accuracy

where it is needed. This technique makes it possible to analyze

a gridded gun which requires high resolution in the grid region.

2. Generation of the mesh

Before the simulation can be started, a mesh must be

generated which outlines the geometry of the gun and defines

the position of each node. The first step in generating the

mesh is to set up the problem in "logical space," which is a

collection of nodes labeled by the coordinate pairs (I,J),

where I and J are integers. Each of the nodes in this space

has six nearest neighbors, just as each mesh node in real space

has six nearest neighbors. The indices (I,J) of a point differ

from those of its neighbors by at most one.

The boundaries of the electron gun are supplied to the

program by making the boundaries of the structure in logical space

coincide with the actual physical boundaries. Three types of

boundary points are used for these cases. "B" points are

assigned a position and potential, both of which remain fixed
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during the simulation. Likewise, the position and potential

of "C" points are fixed by the program input data; these points

are also capable of emitting electrons and, because they are

emission centers, the program generates a fine rectangular mesh

in their vicinity. "N" points constitute a Neumann boundary.

The position of these points is fixed, but their potential is

calculated as the simulation progresses. The program guarantees

that the normal component of the electric field at the Neumann

boundary is zero.

The particle search routine requires the restriction that

at most 2 nodes of any mesh triangle may be defined as boundary

points.

In addition to the boundary points discussed, the program
recognizes another type of constrained point which is very useful

in setting up complicated meshes. This is the "G" point, whose

position is fixed by the input data, but whose potential is

assigned as the solution of Poisson's equation progresses.

Figure 4 shows a portion of a typical mesh, first in

logical space and then after deformation to fit the physical

boundary shapes. Figure 5 shows a full mesh for the long-

cathode gun analyzed, and Figure 6 is an expanded diagram to

show the cathode region.

At the cathode a thin rectangular mesh of "G" points is

established. Its size is controlled by two input parameters:

(1) NAC, the number of rectangles normal to the surface,

and,

(2) FRT, defined as

FRT = 2 /(NAC •) , (1)

where and E are the respective mesh intervals along and

perpendicular to the surface. The values in Figure 6 are

NAC = 3 and FRT = 3.7.
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Figure 5. Mesh for simulation of RW-620 IBCFA.
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Cathode

Figure 6. Mesh for RW-620 expanded to show cathode region.
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The majority of the mesh points are "R" or interior

points, whose positions and potentials are not fixed by the

input data. The positions are determined by formulating the

zoning problem as a potential problem with the mesh line

playing the role of an equipotential line. The program

computes the positions of interior points by solving the

following Laplace's equations, using the method of successive

overrelaxation:

2(2)2a4+ -a4,- 0 (2)

and

=+ 0 (3)

Here y and z are the actual coordinates of each node and i

and j are the indices of the node on the coordinate map. Each

mesh point is connected to six neighboring mesh points (Figure

7).

For "R" points, the coordinates y and z are obtained by

repeated solution of the relaxation equations

n+l n n r/YO Y Yo + CL( Yk - 6Yo /6(4)

and

n+l n + a( _ ( n " n
z = z0 zk - 6 z) 6 (5)
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Figure 7. Mesh node, dodecagon, and six neighbors.
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where (yO, z ) are the coordinates of the node at the n th

iteration, n , z are the coordinates of the neighboring

points for k = 1 to 6, and a (the program variable ALPHA1) is

an overrelaxation parameter (usually 1.7). The "G" points

and boundary points are not moved. When the difference

between the nth and (n + 1)th calculations is less than a
chosen tolerance for all nodes (EPS1 percent of the cathode-

to-plate distance), the solution procedure is assumed complete.
Typically, 31 iterations suffice for a 28 x 36 mesh with a

tolerance, EPSI, of 0.01 percent.

C. Poisson's Equation

Poisson's equation is solved for the potential at each

point, given the potentials or their derivatives on the boundaries

and the space-charge density at each mesh point. Poisson's

equation in rectangular coordinates is:

a2V a2V- - -S(y,z) , (6)

where V is the potential and S is the source.

At each interior mesh point, the corresponding finite

difference equation is of the form:

= So (7)
1=0

where Vi is the voltage, the Wi are weights and i refers to one

of the nodes of a typical hexagon enclosing one node in an

irregular triangular mesh (Figure 7).

The weight Wi is computed between neighboring points P0

and Pi as
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w = . (cote + cot e-) (8)

The term S0 is defined as

6

so = a i+(1/2 ) Pi+(1/ 2 )/ E0 (9)

where ai+(1/ 2 ) and Pi+(1/2) are the quadrilaterial area and

space-charge density, respectively, for triangle i+(1/2).

The quantities 84+ and 8" are shown in Figure 7. Although

each interior point has six neighbors, only three weights

need be stored per point because of symmetry.

D. Boundary Equations

The two types of boundary conditions allowed are

(1) Dirichlet, with specified potential, and

(2) Neumann, with a zero normal electric field.

1. Dirichlet boundaries

On conducting boundaries, where the voltages are

specified, the difference equation becomes just

V = Vboundary (10)

at each mesh mode on a Dirichlet boundary.

2. Neumann boundaries

The case of zero electric field normal to a boundary

is a simple extension of the general difference equation derived

by Winslow.
1 0
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Suppose that point 0 (Figure 7) lies on a Neumann boundary.

Apply Gauss's theorem to the secondary mesh elements from the

triangles in Figure 7 that lie within the region.

Consider a volume of unit height normal to the mesh plane.

The normal flux out of the secondary mesh element about point

0 (part of the dodecagon in Figure 7) is equal to 1/c0 times

the total charge enclosed, and is also equal to the line

integral of the normal electric field around the element.

For example, if the boundary line is P i1OPi+l in Figure 7,

only the triangles i+( ) and i-(-) are used. Here the only

non-zero part of the integral of electric field is that normal

to the vectors a, b, c and d because of the Neumann condition.

It can be shown that the normal flux Ri_(1/2)+Ri+(1/2) is

given in this case by

V. - Vo  + (i 1 -V
Ri. =/0 cot L} =  (vc~t + cot 8. (i
R4(1/2) 2 2 (11)

and

R. -j (Vi -Vcot 8- + (ilo cot 8 i 1  (12)Ri, =)2 2

The angles e e i, i_1 and 8 are shown in Figure 7.

It is assumed that the electric field is uniform within each

mesh triangle, i.e. that the potential varies linearly there.

Hence, the difference equations at a Neumann boundary

point are the same as for an interior point provided that

(a) the weight between a boundary point and an external point

is defined as zero, and (b) the weight W between any two

boundary points is defined as .cot 6V where 8 i is the angle
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opposite the two points (O and P i + 1 in Figure 7) from the

triangle within the region. If either 0 or Pi is an interior

point, the weights from 0 to P. and from P. to 0 are both
e(t e+ + cot 6-).l 1 

Two alternative methods have been developed for solving

the difference equations: the iterative overrelaxation method

and the direct noniterative method.

E. Solution by Overrelaxation

The overrelaxation equation is

Vn+l = Vn + vGo W. (13)
0 0 V ~

i=l

where o represents the point at which the calculation is made

and i represents the six neighboring points. The term a V is

an overrelaxation parameter (ALPHAV), normally 1.3, and n is

the number of the relaxation cycle.

The residual G is defined as

6
G = Wi(V i - Vo ) + S0  •(14)

Points outside the boundary are skipped in Equations 13 and 14.

The initial values V; are an arbitrary approximate solution.

The solution is defined as convergent when, for every mesh point,

the residual G is smaller than a chosen value (usually

EPSV-0.01 percent of the plate-to-cathode voltage).
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F. Direct Noniterative Solution

The alternative non-iterative scheme developed here is

demonstrated as more efficient for a solution that requires

many relaxation iterations. The approach is that of Halbach

and Holsinger,2 3 who have determined the electric field

distribution at nodes of an irregular mesh covering a closed

cavity. Instead of solving finite difference equations for

mesh points by overrelaxation for each mesh node, they invert

a tridiagonal block matrix representation of the difference

equations for the entire structure.

1. Matrix structure

Let there be K (horizontally) by L (vertically) points

in the logical mesh space. Then the full matrix for the

difference equations has dimensions (K x L) by (K x L). If

the mesh points are numbered in successive rows, so that point

(I,J) has number K x (J-l) + I, the full matrix is reduced

to a tridagonal block form:

a11 a12 V 1 S11 1

a21 a22 a23 0 V2  S 2

a32 a33 a34 V3 S3 (15)

0 aL-l,L-2 aL-1,L-I aL-1,L V L- SL-1

aL,L-I aL,L V L L
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where: Vk = Vk, 1 Sk Sk, 1

Vk, 2 S k, 2

* •(16)

k, L-1 Sk, L-1

Vk, L Sk, L

Each matrix a.. is sparse and tridiagonal, and ofi] kth
dimension K x K. In the k row of blocks the diagonal matrix

akk contains the coefficients of potentials in Equation 7 for

points in the same row of the logical mesh. The two coefficients

from the row above are placed in the right off-diagonal block,

ak, k+l' K+l elements to the right of the main diagonal of

the full matrix, and the two coefficients from the points in

the row below are in the left off-diagonal block, ak, k-l' KZ I

elements to the right in the full matrix.

If, alternatively, the nodes are ordered along successive

columns, the full matrix consists of K x K blocks each of

dimension L x L, with only the diagonal and off-diagonal

blocks nonzero as before.

Treatment of boundary points is straightforward. When

node K is a Dirichlet boundary point ("B" point), the full

matrix contains a 1 as the Kth diagonal element, zeros

elsewhere in the Kth row and Kth column, and the specified

potential Vboundary becomes the Kth term in the source !e. :or.

When a node is a Neumann boundary point ("N" point), the weights

to adjacent boundary or interior points are already computed

and stored, and the weights to external points are zero.
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2. Solution procedure

The inversion of the full matrix is performed by a
23

Gaussian elimination and back-substitution method. The

method follows the standard procedure for linear equations,

but the elements a.. are matrices instead of single real1)

numbers.

The row or column numbering order is used for greatest

efficiency according as L < K or K > L. For L < K the

solution requires inversion of K full L x L matrices.

Additional storage arrays of dimensions (L, L, K-i)

and (L,K-l) are needed for the K-I modified right off-diagonal

matrices (L x L), and for the (K-1) source vectors used in the

back-substitution. These arrays may, however, be stored on

a disk instead of in CPU fast memory.

3. Test results

A simple test problem has been run to compare the direct

and iterative (relaxation solutions). The configuration is

a rectangular plane-parallel diode with a uniform charge

density and a Neumann boundary condition of zero electric

field normal to the X-directed boundary sides. The exact solution

is known analytically and agrees within 0.5 percent with the

numerical solution. The relaxation and direct solutions agree

to within 0.1 percent, demonstrating that both methods are

accurate.

For an initial solution on a 21 x 21 mesh, the direct

method requires about two-thirds as much computing time as

the relaxation solution (Table 2). The latter requires as many

as 137 iterative cycles to converge. However, for a series of

similar solutions as in the electron gun, the relaxation

method is the more efficient. As few as 7 iterations will

produce convergence when a good approximation has been obtained

from the previous time step. Although the two subroutines are
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coded to be interchangeable, the relaxation method is being

retained for both static and dynamic calculations.

G. Assignment of Space Charge to Mesh

At a given time step, each charged particle lies within

a mesh triangle. The charge is distributed over the three

mesh nodes forming that triangle as in Figure 8. Drawing lines

from the particle position P to the three nodes subdivides the

triangle into three separate triangular areas, A0 , A1 , and A2,

opposite nodes 0, 1, and 2. If q is the charge per particle,

the charge assigned to node 0, for example, is q A0
A0 + A1 + A2

In the two-dimensional model, the calculation refers only

to the y-z plane containina the triangular mesh.

In a three-dimensional model, there are several such

mesh planes spaced apart in the magnetic-field direction (x-

direction). The deformed triangular mesh is the same in all

the planes. The charge is assigned to the two nearest planes.

If the charge is distant x, and x2 from planes 1 and 2, then

fractions x2 and X1 are assigned, respectively,
xI + x2  xI + x2

to planes 1 and 2. The charge assignment over the triangle

vertices then proceeds as in the two-dimensional case.

A search algorithm (subroutine NEARST) locates the

mesh triangle containing a given point. If the point lies

outside the boundary,a switch indicates that no such triangle

has been found. A particle at the point is then assumed to be

intercepted on aboundary. The specific boundary is determined

from the particle coordinates and the electrode dimensions

(such as the cathode length or the plate height) that are supplied

by the user.
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Figure 8. Charge and its three local mesh points.
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In order that the search algorithm can succeed, the mesh

must be constructed so that no more than one side of any

triangle is a boundary line. In other words, at most two nodes

of any triangle may be defined as boundary points. Otherwise,

particles in the anomalous triangle will be treated as inter-

cepted. In Figure 7, line OP i+ or line OP., but not both,

may be defined as boundaries.

Once the charge contributions to the mesh nodes have been

summed over all the particles, the charge density o associated

with each node is computed. Each node is surrounded by a

corresponding dodecagonal area (Figure 9), the value ADOD of

which is computed when the mesh is generated. For a total

charge q. on mesh node j, the charge per unit area is qj/ADOD(j).

Only charge within the boundary is included in the charge

assigned to point 0, and the secondary mesh area (ADOD) at

O covers only the portion of the dodecagon contained in the

triangles within the boundary at 0. No fictitious points need

be defined outside the boundary.

For the two-dimensional model, the charge density p at

node j is then

qw = (17)

ADOD(j).(beam width in magnetic-field direction)

For a three-dimensional model, the dodecagon is projected

into a volume. There are two planes on each side of a given

plane, and the height of the dodecagonal volume equals half

the separation distance of these planes. Then the charge

density is

= ADOD(j).(height of dodecagonal volume) (18)
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Figure 9. Hexagon and dodecagon associated
with six mesh points surrounding a particular
mesh point.
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H. Electric Field

The electric field components in the plane of the triangular

mesh are derived at a given position in the plane using the

three nodes of the triangle surrounding the position, and the

six neighbors of each node in turn.

Firstly, the two first derivatives at node 0 are calculated

from a least-squares-error solution of the six Taylor series

equations

av0  aVo
Vk = V0 + - - Y0 ) + - k- z 0 );k = i, 6 . (19)

ay az

The solution is the set of derivatives which minimizes

the Euclidean norm 11RIJ of the residual vector

Vo avo

k= Vk - V 0 - (Yk -Y )  (zk - z0);k = i,. • • 6 (20);y az

and

6

IIRI = k (21)

=k= 1

Next, the above procedure is repeated for each of the

remaining two nodes of the triangle enclosing the particle

(nodes 1 and 2 in Figure R).

When the derivatives at the three surrounding nodes have

been calculated, the electric field components at the electron

position are computed by linear interpolation, following

Winslow (Equations 3 and 4 of reference 10).

This procedure differs from that described by True,
9

which derives five first and second derivatives at a single

point instead of two first derivatives at three points. The
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present method requires less machine storage because only two

derivatives at each point need be stored as they are computed.

It is also more readily extended.from two to three dimensions.

To reduce computing time, the program stores the fields

as they are computed at each mesh point and sets a switch to

indicate for subsequent particles in the same time step that

the local fields there have already been computed.

In the two-dimensional model, the above calculation is

performed in the single y-z plane perpendicular to the magnetic

field. The calculation is readily extended to three dimensions.

I. Trajectory Equations

Given the electric and magnetic fields, the trajectories

of sample electrons are found by solving the Lorentz force

equation. Assume the beam to be in the y-z plane direction

and the magnetic field in the x-direction. The trajectory

equations can be expressed in terms of the field components

as

= -n(E z + B ) (22)

and

y -n(Ey - zmx ) , (23)

where Ex, and By and Bz are zero and n = e/m, the charge-to-mass

ratio of the electron.
24

The difference equation solutions 
are:
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Zk+l l+(w2/4)[Zk - Zk-

and

Yk+l = i+(w2/4)[2Yk - - Yk-l

-w~z zkl - (Ey - H Ez)Q 6t)2] (25)

where

w = nBx At

The trajectories are started by specifying the initial

and final coordinates corresponding to a fictitious previous

time step. For an initial velocity (Vy, vz) at coordinates

(y,z),the preceding coordinates are (y-vyAt, z-vzAt). At
present only a single normal velocity

Vy f _ (26)

is set, corresponding to a cathode temperature T(*K),and where

k is Boltzmann's constant and m is the electron mass.

In the static calculation (Section V) the particle is

initially placed above the cathode. The time-dependent model

places the initial coordinate y on the surface, and the
"previous" position y-vy At is then behind the surface.

An alternative, time-centered, trajectory calculation
7

was implemented for the time-dependent analysis of the anode-sole

region (Section IV). There the electron velocity is determined

one half time step behind the position and the electric field.

This "leapfrog" method willbe incorporated in the three-

dimensional model.
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SECTION IV

LONGITUDINAL TWO-DIMENSIONAL IBCFA

ANODE-SOLE REGION PROGRAM

This computer program simulates the behavior of the

injected beam between the anode and the sole, with the

assumption that the beam velocity and charge distributions at

the start of the region are in a steady, time-independent state.

Here the beam may either be given as the analytic Brillouin

solution1 9'2 5 or be derived from the electrostatic crossed-

field gun calculation. In the latter case, the gun program

and interaction-region program are run in sequence with automatic

transfer of lata via a disk file.

A time-dependent calculation follows electron trajectories

through the region, taking into account space-charge forces

in the anode-sole and drift directions. It assumes a periodic

boundary condition in the drift direction for solution of

Poisson's equation in a reference frame moving with the mean

drift speed. In this longitudinal two-dimensional program,

the charge motion and electric fields are confined to the plane

perpendicular to the magnetic field. A more detailed description

of the program is given in a separate report.
7

If a Brillouin beam is used to initialize the calculation,

the beam may be subdivided into layers, each with a different

initial velocity. If the electron gun results are used, each

trajectory is treated as a separate beam layer. Only the final

positions of the gun trajectories are stored. At the interface,

the shape of these trajectories over the reference frame is

approximated by extrapolating backwards parallel to the sole,

as in Figure 10, so as to determine the particle positions.
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Figure 10. Interface of gun and anode-sole regions.
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Then each particle is advanced parallel to the sole with uniform

speed in every time step until it passes the plane z = 0. All

the particles contribute to the space-charge field, but the

actual beam shape behind the starting plane is replaced by the

extrapolated shape shown in Figure 11.

In this study the program is used to demonstrate the cycloiding

in the anode-sole region of a Kino short gun (Section V). The

theoretical beam shape agrees well with the results of published

beam-analyzer measurements. The program also demonstrates

the growth of the diocotron instability in the RW-620 CFA

assuming an ideal Brillouin injected beam (Section X).

The interface is computationally efficient and is realistic

provided that the static solution is valid in the gun region.

However, for a fully time-dependent analysis of a long gun, it

is more accurate to use a single deformable-mesh simulation for

both the gun and part of the anode-sole region, since the

interface approximations are then eliminated.
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Figure 11. Initial positions of simulation particles
for anode-sole-reejion program.
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SECTION V

STATIC SOLUTION FOR THE KINO GUN

A. ,Gun Configuration

Results for an experimental Kino gun 2 6'2 7 (Table 3) are used

here to verify the two-dimensional static gun analysis.

Figures 12 and 13 show the full mesh and the local rectangular

mesh at the cathode. The computed trajectories in Figure 14

show that the cathode is short compared with the electron cycloid

length.

B. Steady-State Cathode Emission

The electrostatic method used here aims to find a self-

consistent solution for the trajectories, the potentials, and

the space-charge-limited cathode current. Figure 2 is an

outline flow diagram for the program.

For computing the space-charge-limited cathode emission

current, the Child's Law method is used. This method,

originally developed for the linear-beam electron gun simulation,

works successfully also in the static crossed-field calculation

provided that the cathode is short relative to the cycloid

length for the emitted electrons. Near the cathode surface,

a thin rectangular mesh layer is established by the program,

as shown in Figure 15. The rectangles are assumed to be

essentially parallel-plate diodes. Thus, the cathode current

density can be found by using Child's law:

J = k-L = kCI2 (1)
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Figure 12. Mesh for simulation of Kino short gun.
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Figure 13. Rectangular mesh at cathode in
simulation of K-io short gun.
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TABLE 3

DATA FOR SIMULATION OF EXPERIMENTAL KINO SHORT GUN

Quantity Value

Magnetic field 0.0195 T
0.0219 T
0.0230 T

Anode voltage minus cathode voltage 1600 V

Sole voltage minus cathode voltage 0 V

Focusing anode voltage minus cathode voltage 1215 V

Height of anode above cathode at interface 7.45 mm
plane

Height of sole above cathode at interface 2.6 mm
plane

Angle between cathode and sole planes 9.740(0.17 radian)

Length of cathode 2.54 mm

Width of cathode in magnetic field direction 10 mm*

Front ramp electrode angle (relative to 18.780
cathode) (= 0.3279 radian)

Rear ramp electrode angle (relative to 34.940
cathode) (= 0.6098 radian)

Anode-sole distance (measured normal to 4.78 mm
sole)

Length of sole included in gun computation 2.6 mm

*Estimated from published values of pulsed current and cathode
current density.
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where

k = - (2)
9 0

and

77V() (3)

where n is the ratio of electron charge to mass.

If the trajectories bend significantly near the cathode,

Equation 12 is not accurate. However, with the aid of

deformable mesh techniques, the width of the parallel plate

diodes can be made arbitrarily small. Then the trajectories

inside the diodes are almost perpendicular to the planes of

the diodes and Equation 1 can give fairly good results for

the cathode current density calculation in most cases.

At each node on the cathode, a C is determined from Equation

3 for each of the NAC-I nodes in front of the cathode. Following
9

the method of True, the average C of these NAC-l nodes is

then taken as the C for that cathode node. Letting m denote

the nodes along the cathode, the quantity C for this node is

m= 4/• 4)I(£ ) (NAC-I) (4)

Next, Cm is laterally averaged with its neighbors by the

formula
9

Cm = R- m-1 + 2Cm + Rm+l " m+l

m_l + 2 m+l

where
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C m /C m- I if Cm <Cm-1
m (6)

r-imI/C m  if Cm ? CM 1

and

Cmn/C m+l if Cm < Cm+ 1

{ml C /C , if C > C(7= .(7)

m+1 m m = m+l

This lateral averaging will suppress the oscillation in

the current density due to the alternating nature of the mesh

at the cathode.

C. Comparison With Measurements

Three computer simulations have been made with fixed

voltages and magnetic fields of 0.0195 T, 0.0219 T and 0.0230 T.

The results in Table 4 show good agreement with the measurements.

The computed electron trajectories for the gun region are

displayed in Figures 14, 16 and 17. The results from the

anode-sole region, interfaced to the gun as in Section IV,

are shown in Figures 18, 19 and 20 (on a different scale).

For the first run, the analytical value of 0.0195 T is

used. The pronounced undulation of the trajectories in Figure

18 shows that the beam is injected too far above the sole. For

comparison, the injection positions of the ideal Brillouin beam

are marked on Figures 18, 19 and 20.

The periodic distance of the trajectory oscillations

approximately equals the ratio of the inital z-velocity and

the cyclotron frequency. Increasing the magnetic field to

0.0219 T and 0.023 T lowers the beam and reduces the vertical
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motion in the anode-sole region (Figures 19 and 20). At the

same time, the total currents and the cathode current density

shown in Table 4 are almost constant. The computed gun trajec-

tories show that the injection position is sensitive to the

magnetic field, while the trajectory shapes close to the cathode

are less so. The experimental current densities are about 4

percent less than the computed values, and are also almost

constant.

The experimental currents are reproduced in Figure 21,

which shows the nearly constant cathode current Ik and also

the current If intercepted on the focusing anode. This

intercepted current falls to zero at about 0.0195 T. The

computed trajectories, also, show no interception on the

focusing anode as the magnetic field is raised from 0.0195 T.

With the lowest field of 0.0195 T, the beam just misses the

focusing anode (Figure 14), in agreement with the experimental

cutoff result. The experimental results show that maximum

beam transmission and minimum beam cycloiding both occur with

a magnetic field of between 0.02 T and 0.024 T, well above

the Kino value of 0.0195 T. Although Masnari and Rowe ascribed

this discrepancy to experimental error,2 7 the present computed

results support the experiments. The trajectories are sensitive

to the electrode angles adjacent to the cathode, which are not

included in the analytical theory. In fact, an improved design

has been obtained both by Masnari and Rowe and with the present

program (see Figure 22).

The trajectories computed with the two programs agree well,

although the precise dimensions used by Masnari and Rowe are

not available and must be estimated from the published drawing.

The trajectories computed in the anode-sole region (Figures 18,

19 and 20) show the least undulation and are closest to the

ideal Brillouin beam for the magnetic field of 0.0230 T. This
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result is supported well by the experimental beam profiles

of Figure 23.26 These cover a distance up to about 25 mm

along the z-axis of Figures 18, 19 and 20. The interface plane

for the programs is 2.6 mm from the end of the sole nearer

to the gun.

For the optimum (0.023 T) magnetic field, the cyclotron

wavelength corresponding to the average injection velocity is

27 mm, while the theoretical diocotron gain for a Brillouin

beam is computed as 3.7 dB over this distance. However, the

diocotron effect does not appear in the present calculations

because the periodic length is made a small fraction (0.035)

of the cyclotron wavelength, in order to demonstrate the behavior

of the ideal static beam. Since the gun is only 12 mm in

length, the electrostatic analysis is probably sufficient there

also. This is a low-power tube with an available beam power of

76.5 W for the anode-sole voltage of 1600 V and peak pulsed

current of 0.0478 A.

The detailed beam profiles in the anode-sole region show

some minor discrepancies. Some electrons originating at the

rear end of the cathode (about 6 percent of the total current)

cross over in the gun and form a distinct bunch below the

majority of the beam. The beam tester did not resolve this,

possibly because of secondary emission on the grid wires which

reduced the resolution of variations in local beam current

density. The experimental beam showed less undulation at

0.0219 T than at 0.023 T and the experimentally observed initial

upward motion at 0.02 T (Figure 23) is not reproduced on the

plot for 0.0195 T (Figure 18). However; inthis case the beam

was observed then to descend to a minimum height of about

0.085 inch (2.16 mm) on the scale of Figure 20, or 1.86 mm

above the sole. This minimum occurred at a distance of

0.875 inch (22.23 mm) from the exit plane of Figure 20, or

19.7 mm from the start of the anode-sole-region computation.

58



'I

_ _- . _'

, -'-

0 .. 0

0: - .4j0

it _ It w

w 04

z~U -4 .

w >U

5.. 0

0.w 4-)
44-

0-.

0
'0

..........................

- 0 0
(U n .

- ........

5- 0
z.~U

o 0) II

0~~ 0 4

- 59



This result agrees well with the minimun height attained in

the trajectories of Figure 18.

D. Conclusions

The deformable-mesh potential solution and the trajectory

equations are shown to reproduce well the behavior of the

beam away from the cathode. A more accurate calculation of

the beam current may be possible either with an improved static

model or with the time-dependent model. For example, more

cathode emission points would give more details of the local

electric field.
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SECTION VI

STATIC SIMULATION OF THE LONG CROSSED-FIELD GUN

Several attempts are described here to obtain a self-

consistent solution for the RW-620 gun. In this two-dimensional

model the grid is ignored. The design differs significantly

from the Kino short gun already described in that the magnetic

field is high enough and the cathode long enough for emitted

electrons to return to the surface.

A. Cathode Emission in the Static Model

Three different models of cathode emission were used, of

which the last yielded a convergent solution under conditions

described below. These are:

(1) emission according to Child-Langmuir Law,

(2) emission according to Kino flow,

(3) emission according to the power series of Radley

and Birtles.

The mesh structure for the RW-620 gun is shown in Figures

3 and 4. It is the same for all three emission models. Notice

that there are two regions. A closely spaced rectangular

region along the cathode contains "NAC" intervals in the y-

direction perpendicular to the surface, and trajectories are

launched from the top of this region. In the remainder of the

gun, the triangular mesh is constrained only by the electrode

boundaries. The rectangular mesh region along the cathode

is treated as a series of rectangular diodes, each extending for

one mesh interval along the surface and for NAC mesh intervals

normal to the surface. This example uses NAC=3.
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1. Emission according to Child-Langmuir Law

In the computer simulation of the electron gun, the

cathode region is represented by a series of rectangular diode

regions. In the 0-type gun and Kino short gun, Harris SAI

has successfully used Child's Law to represent emission-

limited operation at the cathode. Within each diode region,

voltage and charge emitted are given as a function of distance.

This feature enables the charge ejected from the cathode to be

consistent with the potential obtained from Poisson's solution

over the entire tube.

In the RW-620 electron gun, the trajectories of the

charge bend back toward the cathode. An electron at the far

end of the cathode may cycloid back to the cathode as many as

five times.

The static analysis did not converge. This can be attributed

to two main difficulties.

(1) Charge returning to the cathode violated assumptions

made in applying Child's Law.

(2) The trajectories must be allowed to bend even in

the diode region.

Making a fine mesh did not improve convergence. As many

as 5,000 nodes have been used to cover the tube. Figure 24

shows a typical cycle in a 3,000-node mesh. Notice the large

accumulation of charge at the front of the cathode. This

region is expanded in Figure 25. Some current will be intercepted

by the cathode in this region.

2. Emission according to Kino flow

This model differs from the Child's Law model in that

Kino short gun theory is assumed to hold in each diode region

about the cathode. The cathode current density is derived
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from the potential at the end of the diode region by solving

iteratively the Kino flow equations with a zero initial
velocity at the cathode surface. The trajectories are then

started at the end of the diode region with initial velocities

taken from the Kino equations. In the iterative procedure,

it is necessary to allow for transit times of more than one

cyclotron period.

The current launched from a rectangular region of one

cycle is averaged with that of the previous cycle by the

following formula;

Cnew = Cold + R(Ccalc-Cold (1)

where Ccalc is the calculated current density.

Implicit in this model is the assumption that charge

flows through the diode region without returning to the cathode.

Consequently, the model will not handle cases of extreme

cycloiding. The trajectories, however, are allowed to bend

in the diode region. They should allow a more accurate

representation of the initial conditions of each trajectory.

Litton Industries have used a similar model with some
success on an MBWO gun. This gun is about one cycloid length

long. 5 True also reported successful results for a long Kino

gun with about three cycloids over the cathode. However, there

are no reported comparisons with measurements on an actual gun.

The Kino flow model initially did not yield convergent

results for the RW-620 gun. A possible reason for the difficulty

is the same large amount of charge which cycloids back toward

the cathode. The charge tends to depress the potential in a

cathode region to a negative value, which tends to turn the

trajectories of the next iteration away from the cathode, and

which then raises the potential. Even with a low relaxation
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constant R=0.25, the process produced instabilities in which

the amount of charge varied greatly in successive iterative

cycles. A convergent solution was subsequently obtained by
applying the relaxation equation (1) to the charge density

at every mesh point.

However, the Kino flow model remains unsatisfactory because

of its basic assumption that no charge returns to the cathode.

For this reason, the Radley-Birtles model 28 ,29 was adopted

instead.

E. Emission according to the power series of Radley and
Birtles

Near the cathode, the potential is used to calculate

electron flow equations using the power series solution of

Radley, et al.
28

For each rectangular diode region, the potential power

series has the form:

V = Ay4/ (1 + a - yy4/3) (2)
A

Charge is assigned to each node in the cathode region and

initial conditions for the charge trajectory out of the cathode

region are obtained. The nodes on the cathode surface are

numbered 1,.., j,.. in the direction from the rear toward the

sole. These nodes are taken successively. There is one

trajectory emitted for each node j. The program computes the

emission current density and the entire trajectory from a

given node j before proceeding to the next node (j + 1) along

the surface. If a trajectory returns to the cathode, it does

so nearer to the sole than the emission point, and its effect

can thus be included in the same iterative cycle.
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The following steps are performed.

(1) The potential at each mesh node is obtained from

the solution of Poisson's equation over the entire mesh.

(2) At the j th node along the cathode, coefficients

aj and yj in Equation 2 are obtained from the value of the magnetic

field and the cathode current density for the j th node in the

previous cycle.2 8 In the first cycle, an estimate of current

density starts the calculation.

(3) The coefficient A. is found from a least-square-error

fit of Equation 1 to the potentials at the first NAC nodes in
th

the direction perpendicular to the cathode at the j node

along the surface.

(4) A. is smoothed using values of A from adjacent

diode regions along the cathode.

(5) Underrelaxation is applied to A. Using the value

of A. in the last cycle (Aj old ) , Aj is assigned the value:

Aj old + (A i Aj old ) R (3)

where the coefficient R is typically 0.2.
th

(6) Using A., the cathode current density at the j

node is calculated.
2 8

(7) At the jth node, the finite-difference derivative
1AJ is calculated.
az

(8) Using coefficients A., a', yj, and the derivative of

A., the electron velocities v, vi, are calculated at a node,
) y z

denoted N., which is NAC mesh intervals in the y-direction from

the cathode at the jth node. 28 ,29 The node N. is at theJ
interface between the cathode rectangular diodes and the deformable

mesh. The velocities are needed for the initial velocity

of the ray of charge.
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(9) At each of the NAC points in front of the jth cathode

node, charge is assigned via the power-series electron flow

solution of Radley and Birtles. 29 The charge at the point

N., NAC intervals above the cathode, is to be used in assigning

the charge to the jth ray.

(10) (Optional) If charge from a trajectory k (k is

less than j) has been deposited at node N. because of cycloiding,

this charge is subtracted from qj. The resulting value is

proportional to the amount of charge launched on the jth ray.

In this manner, charge launched on a ray is consistent with

both the power series solution and the presence of a returning

charge.

(11) The charge Q actually launched on the trajectory

ray from node N. is given by:

qj v j At Az.
Qj = YA. (4)

J

where Az. is the width parallel to the cathode of the j th

elemental diode, A. is the area of the rectangular mesh region

associated with node N., and At is the time step. See reference

9, Equations 5.6 and 6.41.

(12) The ray at node N. is launched with charge Qj and

initial velocity components v
] and v]
y z.

(13) A space-charge weight is added to charge at each of

the NAC nodes in front of the jth cathode node. This weight
28

is described by Radley, et al. It provides corrections to

the finite-difference residuals near the cathode for a crossed-

field gun so that the finite-difference potential solution is

consistent with the potential series.

(14) The position on the cathode is incremented to the

(j + 1)th node and the calculation repeated from step 2.
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B. Comparison of Theory and Measurement

The results of the two-dimensional static analysis of the

RW-620 are shown in Table 5 for a magnetic field of 0.25 T

and accelerating-anode voltages of 2.5 kV, 3.5 kV, and 4.5 kV.

The two-dimensional model gives only the current emitted per

unit width in the magnetic-field direction. To compare the

calculated and measured currents, it is assumed that the

grids shield one half of the cathode in the actual tube.

The two cases - (a) and (b) - correspond, respectively,

to including or excluding returning charge in the net charge

launched per ray in a given iterative cycle (see step 10 of

Seciton VI.A). Case (b) gives the lower beam currents.

For the ideal Brillouin crossed-field beam grazing the

cathode in a uniform plane-parallel diode, the anode voltage

(below cutoff), the magnetic field, and the anode-cathode

spacing together give a unique beam current per unit width and

a corresponding beam thickness in the plate-cathode direction.

The Brillouin current I per meter width in the magnetic-field

direction is given by:
2 2

I/I = (- (l - Va/V c )  2) 2 (5)

with

imax - L c, (6)21,

the current per meter width that fills the diode,

Wc = nB , (7)

the angular cyclotron frequency, and
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the cutoff voltage. Here, Va is the accelerating-anode (plate)

voltage, d is the anode-cathode spacing (treated as uniform),

B is the magnetic field, and n is the ratio of electron charge

to mass. The beam thickness ytop is given by:

top = 2 (9)

for Va <Vc (below cutoff) or

Ytop = d (10)

for V > V c(above cutoff).

The Brillouin currents per meter of cathode width are

also shown in Table 2. They are sensitive to the plate-to-

cathode spacing, which is tapered from 1.067 mm at the rear

to 0.838 mm at the front in the RW-620 (tube S/N 59242). The

values for both the front and the rear are tabulated. Since

the measured currents fall more rapidly with plate voltage

than the Brillouin currents, the effective cathode width

appears to be less at the lower plate voltages.

At 4.5 kV, the Brillouin current densities may exceed

the density available from the temperature-limited cathode,

which supplies between 1 x 10s and 2 x 10 A/m 2 over a length

of 4.34 x 10- 3 m in the beam-drift direction. The corresponding

temperature-limited current attainable per unit width is then

between 434 and 868 A/m, sufficient to supply the measured 1.5

A, but not with a Brillouin stream in the gun.

Looking next at the computed currents shows the following.
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(1) The computed current densities are of the correct

order of magnitude, but are in all cases higher-than measured.

(2) Closer agreement is obtained when the charge returned

to the cathode from points nearer to the rear is included in

deriving the potential distribution and the emission current

density at a given point than when the returning charge is

ignored.

(3) The values of 538 A/m and 341 A/m at 3,500 V and

4,500 V are anomalous since a higher voltage should produce

a higher current. The limitation of the model is its sensitivity

to whether or not cycloiding trajectories graze or intersect

the cathode. With more simulation trajectories, this sensitivity

would be reduced.

Corresponding trajectory plots are shown in Figures 26

through 31, and Figure 32 shows typical equipotentials.

At 2,500 kV, the cathode covers about five cycloid lengths;

at 4,500 kV, there are about three cycloids per trajectory

over the cathode.

In the anode-sole region (on the left of the figures),

a nonlaminar (non-Brillouin) beam appears to be launched with

some cycloiding and crossover, but no electrode interception.

C. Conclusion

While the electrostatic solution is useful for the linear-

beam tube and the short Kino crossed-field gun, convergence

difficulties make it less suitable for the long crossed-field

gun. The time-dependent method is more promising for treating

electrons that return to the cathode; in fact a time-independent

state may not exist in this case.
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Figure 26. RW-620 trajectories from two-dimensional
static model with plate at 2,500 V; returning charge
ignored for computing emission.
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Figure 27. RW-620 trajectories from two-dimensional static
model with plate at 3,500 V; returning charge ignored for
computing emission.
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Figure 28. RW-620 trajectories from two-dimensional static
model with plate at 4,500 V; returning charge ignored for
computing emission.
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Figure 29. RW-620 trajectories from two-
dimensional static model with plate at
2,500 V; returning charge included for
computing emission.
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Figure 30. RW-620 trajectories from two-

dimensional static model with plate at

3,500 V; returning charge included for

computing emission.
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Figure 31. RW-620 trajectories from two-
dimensional static model with plate at
4,500 V; returning charge included for
computing emission.
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Figure 32. RW-620 equipotentials from two-dimensional
static model with plate at 2,500 V; returning charge
included for computing emission.
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SECTION VII

SHOT NOISE AT THE CATHODE

A. Introduction

There is continuing controversy whether noise due to

random emission of electrons at the cathode of a crossed-field

gun is smoothed or amplified by returning charge.

Experimental results summarized by Ho and Van Duzer
15

show that excess noise is observed for long cathodes that cover

more than 0.55 cycloid lengths. In the physical model, returning

electrons cause a feedback of perturbations and a resultant

instability. More recently Harker and Crawford 1 6'1 7 have

concluded that if electron transit times are ignored, the

potential minimum always smooths shot noise originating with

random perturbations of the emission current at the cathode,

just as when the magnetic field is absent. In a parallel

study. 8- Shkarofsky has analyzed the effects of shot noise on

the thermal velocity distribution for a fixed, unperturbed,

parabolic potential, also in an infinite plane-parallel diode.

Here "shot noise" is defined as the random fluctuations in the

number of electrons emitted in a given time over a region of the

cathode and the random fluctuations in their emission times.

In this section the Ho theory is compared with these

alternative models.

B. Diode Model

The diode is made infinitely broad in the magnetic-field

direction so that all motion may be confined to the plane

perpendicular to the magnetic field. The diode is specified

by the anode voltage, the magnetic field, the anode-cathode
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spacing, the cathode length in the beam-drift direction, and

the maximum current density available at the given cathode

temperature. Ho assumes that the potential distribution between

the potential minimum and the anode approximates that of a Kino

long gun,I '2 2 in the region where the equipotentials are roughly

parallel to the cathode surface.

A "space-charge-limited" condition is assumed with a

parabolic potential distribution between the cathode and

potential minimum that is uniform along the unperturbed diode.

The space-charge-limitea condition is characterized by tne

existence of a critical plane parallel to the cathode for each

value of the initial velocity component parallel to the surface.

At the critical plane, the electron will either turn back to

the cathode or escape entirely into the electron stream, dependirg

on its initial normal component of velocity. Van Duzer and

Whinnery30 have provided a clear explanation of this effect.

If there are no critical planes, the diode is "magnetic-field-

limited" and all electrons either intercept the anode or return

to the cathode plane.

Ho and Van Duzer use the Kino short gun flow equations

to estimate the density Ja of the current component escaping

normal to the cathode, and hence to derive the position and

depth of the potential minimum and distinguish the space-charge-

limited regime. The feedback theory then derives the effects

of perturbations of the emitted current.

With the parabolic potential distribution, the space-

charge-limited condition is

21VmI >

x 2  c
m
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with 1VmI and xm the magnitude and position of the potential

minimum and w the radian electron cyclotron frequency, qB.

This condition is, equivalently, written as

S > W , (2)p c

where w is the radian plasma frequency of the electron stream

up to the potential minimum and is uniform on the parabolic

potential assumption. The term w may be estimated from the3p
value in the nonmagnetic diode,

3 1

Z Ja mn 2  (3)
p = 0  2 kT)

where m is the electron mass, k is Boltzmann's constant, T is

the cathode temperature, and Ja is the density of escaping

current normal to the cathode at the potential minimum.

In an actual gun, however, the space-charge-limited

and magnetic-field-limited regions are not straightforward

to find. The emission current density must be averaged over

the width of the cathode and the effects of the end hats on the

electric field neglected. Extending the theory to three

dimensions appears to be difficult because of the complex

electron trajectories produced by the nonuniform electric

field and the nonparabolic potential distribution at the

sides. The time-dependent numerical simulation is preferable

for study of an actual gun, since the realistic electrode

boundary conditions can then be applied to solve Poisson's

equation.

C. Mechanism of Instability

In the nonmagnetic diode, there is only one "critical

plane," located at the potential minimum. An excess emission
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current (a shot-noise perturbation) depresses the potential

minimum, producing a compensating fluctuation that smooths the30,31
shot noise from the temperature-limited value. According

32
to Ho and Van Duzer, the instability in the crossed-field

diode arises from a cumulative effect of electrons cycloiding

and returning to the cathode. Van Duzer's and Whinnery's 196130
model of the crossed-field diode used only a one-dimensional

calculation of the time-dependent emission-perturbation current,
nd did not predict instability. That model treated the effect

of an increased emission current on the trajectories of the

critical electrons and showed that the thermal velocity distribu-

tion is not directly responsible for excess noise. If a

deepening of the potential minimum causes an extra near-critical

electron to return to the cathode without crosbing the critical

plane, a corresponding "hole" is formed in the stream. These

hole trajectories, assumed to be collected on the anode in the

1961 model, can, in fact, return to the cathode if the cathode

is sufficiently long relative to the cycloid length, making the

potential minimum less deep and increasing the perturbati.on

current emitted.

At this point Ho and Van Duzer's model differs significantly

from that analyzed by Harker and Crawford.1 6'1 7 According

to the latter, at a given plane between the anode and the

cathode, there are just three classes of electrons:

(1) Electrons with insufficient initial normal velocity

to reach the critical plane and which return to the cathode,

(2) Electrons for which the given plane is a critical

plane, so that they are moving parallel to the cathode, and

(3) Electrons whose initial normal velocity is sufficient

that they can pass their critical plane.

Class (1) contains equal numbers of electrons moving towards

the anode and returning towards the cathode. All electrons

in class (3) are moving away from the cathode and will eventually

reach the anode.
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This classification is complete when the potential varies

parabolically throughout the diode. However, the potential

distribution used beyond the potential minimum by Ho and Van

Duzer allows some of the electrons from class (3) to return

to the cathode. It is these electrons that perturb the

potential minimum in that model and produce instability. In

Figure 33,electrons 1 and 2 are in classes (1) and (2) respec-

tively, and electrons 3 and 4 of class (3) have passed their

critical planes. However, only electron 4 escaped to the anode.

A further explanation of the electron trajectories is given

by Lindsay (see reference 33, Figure 4).

According to Ho and Van Duzer, a perturbation that deepens

the potential minimum creates "holes" in the electron stream.

These "holes" follow the same trajectories as the electrons they

replace. Ho attributes the instability to the difference

between these hole trajectories and the trajectories of emission

perturbation electrons. The holes originate at critical planes

with normal velocities near zero; emission perturbation electrons

that pass their critical plane have larger normal velocity there.

The Ho and Van Duzer model uses an iterative, rather than a

time-dependent, theory, and uses the lack of convergence to

demonstrate instability in a long gun. Their cathode length

criterion shows good qualitative agreement with experimental

observations on crossed-field guns, both short and long compared

with the Kino cycloid length 2 2 rJ /(C0 3 ), where n is thea 0Oc
electron charge-to-mass ratio and wc = iB is the electron

cyclotron frequency for the magnetic field B.

In the RW-620 gun, the ratio of cathode length to Kino

cycloid length varies from about 9 to 18 as the beam current

density varies from 10 to 5 A/m 2 at 0.25 T magnetic field.

This ratio clearly fulfills the criterion for e.xcess noise

due to cycloiding. However, the grids in the actual gun may

suppress the effect; the full computer simulation is necessary.
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D. Conclusion

There is no contradiction between the theories mentioned

here: all three make different assumptions. Ho and Van

Duzer15,32 have the most general model although their calculations

are not enalytically rigorous. It appears that an instability

may be caused by cycloiding electrons that escape into the

electron stream and then return to the cathode. There are no

such electrons when the potential is parabolic throughout the

diode, as in the analytic models.

The Harris SAI time-dependent computer model may predict

instability if a noise current is added to the average local

cathode emission, since a fluctuation at one point will
affect the subsequent emission along the surface. However,

the present RW-620 calculations, with no applied noise current,

are stable over 120 cyclotron periods. It would be interesting,

also, toperform a detailed computer simulation of a long

rectangular crossed-field diode on a scale sufficiently fine

to distinguish the critical planes and the potential minimum.
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SECTION VIII

iME-DEPENDENT CATHODE EMISSION

A. Introduction\

There are two \ lternative methods of beam simulation at

the cathode. A micxpscopic approach models the emission at the

cathode surface and t ien uses the derived potentials to give

the space-charge-limited current. A small mesh interval and

time step are needed; thieir values are estimated below.

Alternatively, a macroscopic model can be used in which the

Debye length (defined bel w) is short-relative to the mesh

interval in the model, an~ the net emitted current is estimated

from the electric field. e Child's Law calculation of the

static analysis is an exampl e of the latter method.

For economy incomputati4, it is advantageous to use the

largest potential mesh and th smallest number of particles

consistent with a realistic siulation. It is also useful

to determine which effects are \important and which will be

resolved by a given model, sirnc the ca,.hode phenomena are

critical in determining the be a current and its stability.

B. Debye Length

The Debye length (AXD) is significant in two ways.

First, it is a good estimate of the distance from the cathode

to the potential minimum. In the classical non-magnetic

space-charge-limited diode?' this distance equals 1.225X D

JD

Secondly, the average energy of a cloud of electrons in

thermal equilibrium through individual collisions is of the

order of kT. If the density of the cloud is perturbed from a

uniform state, the resulting space-charge field acting over

a sufficient distance can produce energy changes of the same

order, kT. The Debye length is a measure of this distance.

87



The number of particles in a Debye sphere is approximately

equal to the ratio of the mean collision time to the period of

plasma oscillations. When the Debye length is much less than

the device dimensions the beam may be treated as a collisionless

plasma.

The Debye length for an electron beam is defined as

XD = v (1)

p

where v is a characteristic speed of the particles and w is

the angular plasma frequency corresponding to the local charge

density. An estimate of w p in the crossed-field gun is

given by the Brillouin flow condition
19

Wp = Wc = nB , (2)

where w c is the angular cyclotron frequency in the magnetic

field B, and n is the ratio of electron charge to mass.

A more precise definition of XD is
31

XD 2 2/W 2 .(3)Y!

Here v2 is the mean square normal component of the thermal emissionY
velocity given by

= 2kT/m (4)Vy

for a cathode of temperature T, where k is Boltzmann's constant

and m the electron mass. For the term wp Birdsall and Bridges
31

use the radian plasma frequency at the potential minimum, given

in a non-magnetic diode by Equation 3(VII)
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2 * M 0 (5)

The term J is the current density escaping normal to the cathode
y

at the potential minimum. An upper limit to Jy is the maximum
thermionic current density, Js, which is attained where the

cathode is locally or instantaneously emission limited.

C. Microscopic Emission Model

Here the model requires only the thermionic current density

Js A/m 2 and the number, NEPM, of charge rods to be emitted

per mesh interval C along the cathode surface. Then the total

charge emitted in a time interval At is given as

Q = - Js At x (cathode area) . (6)

This charge is distributed evenly over the cathode surface

at every time step independently of the local eletric field or

charge already emitted. The charge per rod per meter width

in the magnetic-field direction is

q = DQROD = - Js At/NEPM (7)

Let the mesh intervals along and normal to the cathode equal

and &, let At be the time step of the simulation, and let q

be the charge per meter width for a single rod in a two-dimensional

model. Estimates of the mesh size and time step required to

compute the potential minimum and the effects of thermal velocities

there are

< X D '(8)

< A D '(9)
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At < XD_/V (10)

The maximum charge per unit length per rod is then

lql C (11)

or

0 2kTIqi - n C/in (12)

to give at least one rod per Debye square.

For a three-dimensional model each rod must then be

divided lengthwise into at least as many particles as the number

of Debye lengths across the device.

Table 6 shows the Debye length at the cathode in the

two guns studied here (cathode temperature 1500 K), the

maximum mesh size allowed compared with the distance from the

cathode to the accelerating anode (plate), and the largest

time step and charge per particle that will permit a resolution

of the potential minimum. Table 7 summarizes the model

parameters actually used for the two crossed-field guns

simulated in the present study. It shows also the values used

in earlier calculations by Wadhwa and Rowe 34 for a plane-parallel

diode and by Lele and Rowe6 for a short Kino gun. The latter

two models were fine enough to distinguish the potential

minimum. The same detailed calculation for the RW-620 gun

appears impractical.

One way to remove this difficulty is to raise the cathode
314.

temperature, T. The Debye length is proportional to T , and

can thus be made to exceed the practical mesh interval. Of

course the noise computed will increase also. For example, the
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simulation of the RW-620 gun with its present mesh size requires
a temperature of 2.12xl05 K instead of the actual 1500 K. The

noise study of Kooyers and Shaw4 for a long Kino gun uses a

mesh interval of about 20 times the Debye length for an actual

cathode temperature of 1323 K. The corresponding effective

cathode temperature for generating noise effects in the beam

is 71,800 K. In that case ten time steps per cyclotron period

and a density of two or more rods per mesh rectangle for a

Brillouin stream are sufficient. With space-charge limitation,

the minimum beam temperature actually computed by Kooyers and

Shaw 4 is about 62,0000 K, and their beam current is about 3 percent

above the theoretical value.

This microscopic model is retained as an option in the

present Harris SAI program. It has not been extensively tested,

but initial trials give an excess beam current in the short Kino

gun. It is found that all the thermionic current escapes

into the beam and no potential minimum is formed to return

excess charge. Thus, this method is not generally applicable

to guns of varying cathode lengths.

D. Macroscopic Emission Model

Accurate and efficient prediction of the beam current is

the primary purpose of this model. It implicitly assumes that

the mesh interval exceeds the Debye length at the cathode.

At each time step and at each mesh mode on the cathode,

the total charge is counted within one mesh rectangle above the

surface. At the node sufficient charge is emitted, then,to reduce

the local electric field to zero. If the charge required

exceeds the available charge derived from the thermionic

current density, only the available charge is emitted. The

same algorithm is used with excellent results, in the

distributed-emission CFA model. Part I of this report gives

a detailed description. It is expected that it will be more

93



accurate than the microscopic model for the full 3D

simulation of the RW-620 gun which has a grid 0.2 mm (4 mesh

intervals) above the cathode. To determine the charge per
rod the user supplies the parameter FBRILL which is the

number of charge rods required to cover one mesh rectangle at

the cathode with the density of a Brillouin stream. Thus, the

charge per rod per meter width in the magnetic-field direction

is

DQROD = -Co nB1 • RDIS . ZDIS/FBRILL , (13)

where RDIS and ZDIS are the mesh intervals along and perpendicular

to the cathode. Present runs use the values FBRILL = 3.0 in

the KINO short gun and FBRILL = 16.0 in the RW-620 long gun.

To simulate noise effects beyond the potential minimum,

random perturbations of the emission current and an initial

thermal velocity distribution may be added after the mean

emission current has been determined.

E. Tests of the Macroscopic Model

1. Child's Law

The model has been tested using the analytic Child's Law

solution in a plane-parallel diode with no magnetic field.
The computed currents are at present 6 percent above the analytic

values, although the 3/2 power law is obeyed as the voltage is

raised. The reason for this error is that the trajectory

equations now used for the IBCFA are not time-centered. The

initial velocity and positions are specified at the same instant
instead of one-half step apart. As a result, an emitted electron

sees the full electric field from the previous step during its

first trajectory step and its self-field is not included. Future
versions of this program will advance the emitted electrons
only for one half a time step initially.
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In the cylindrical distributed-emission CFA model (Part

I of this report), the trajectories are corrected after the

solution of Poisson's equation, and the er in the Child's

Law simulation is only two percent.

The Child's Law test reveals a second limitation which is

due to the triangular mesh structure (Figure 34). The electric

fields computed at 'odd-J' mesh points differ from those at
'even-J' points in the presence of space charge even for a
uniform electron stream because of the manner in which charge

is assigned to the mesh. The effect on the emitted charge is

reduced by using the mean of the normal electric fields above

two adjacent cathode points to control the emission at each

point. The same smoothing is used in the crossed-field gun

simulations. A "ripple" on the computed trajectories remains,

however (Figure 35).

2. Dynamic simulation of the Kino short gun

Since the Kino short gun has a short cathode relative

to the cycloid length, it can be treated either by the static
or the time-varying model. The results from the two models

(Table 8) show that the cathode currents from the dynamic model
now converge to values about 33 percent too high. These currents

are, however, less than the available thermionic current

supplied to the model, whereas the time-dependent microscopic

model failed to show a space-charge-limited condition. The

tests should be repeated with the improved calculation of the

trajectories at the cathode.

F. Summary

The two cathode modeling options are compared in Table 9.

The macroscopic model shows less detail but is computationally

more efficient than an accurate microscopic model. It should

be incorporated also in the three-dimensional gun simulation.
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TABLE 9

COMPARISON OF TIME DEPENDENT MODELS

OF CATHODE EMISSION

Beam Microscopic Macroscopic
Property Model Model

General Cathode emits full Emitted charge
Features thermionic current; controlled to cancel

net current limited electric field
only by returning on cathode.
trajectories.

Accuracy of In short gun, all 2 % above Child's
Net Current injected charge escapes Law values.

into beam. In long gu4
(Shaw) 3% accuracy;
accuracy with gridded
gun not known.

Effective Proportional to Not known.
Cathode Mesh Size
Temperature Debye length

Potential Accurate only with Neglected.
Minimum at short time step and
Cathode fine mesh.

Thermal Included, but unimportant Included, but
Velocities in practical models. probably unimportant.

Shot Noise Included but magnified Imposed on emission
at Cathode by discrete particle current and magnified

size. by particle size.

Smoothing of Included. Not included.
Shot Noise by
Space Charge
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TABLE 9 (CONT.)

Beam Microscopic Macroscopic
Property Model Model

Excess Shot Included in principle, To be investigated.
Noise at Long but not computed so
Cathode far.

Diocotron Included. Included.
Growth of
Noise Away
from Cathode

100



SECTION IX

THREE-DIMENSIONAL POTENTIAL CALCULATION

IN THE RW-620 GUN

As the initial stage of the three-dimensional analysis

of the RW-620 gun, the charge-free solution shows the shielding

effect of the grid wires along the cathode.

A. Mesh Generation

A three-dimensional mesh is set up to fit the electrode
and grid boundaries of the RW-620 gun in the following manner.

First, the two-dimensional triangular mesh is generated

as Section III describes (see Figure 5). Next, this mesh is
projected on each of several planes perpendicular to the magnetic

field, with the mesh triangles constrained to match the grid
wires and projected from one plane to the next. There is one
such plane on each face of a grid wire and two in the space

between the grid wires. The boundary potentials over the gaps
between the plate and end hats, and between the end hats and

the cathode, are linearly interpolated. Since the gun is
symmetric about its midplane perpendicular to the magnetic

field, the solution need only be computed for one half of the

gun.

B. Potential Solution

In three dimensions, Poisson's equation is given by

V2V = -S(x,y,z) . (1)
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A mesh point o has six neighbors, (i=l,.-., 6) in the y-z

plane (Figure 7) and two neighbors (j+l, j-l) in the x-y

plane (Figure 36). The difference equations, derived below,

are solved by successive overrelaxation. Taking the volume

integral of both sides of Equation 1 and applying the

divergence theorem, gives

JAVVin da = S dv I (2)

here dv = dx dy dz and da = dx dy or dy dz. The term T is
the volume enclosed by A, which consists of the dodecagon

shown in Figure 7 between the two planes P1 and P2 shown in

Figure 36.

An equation relatingV 0 to Vi can be derived by evaluating

the integrals in Equation 2. The result is

6l Vj~ -v °

= i(Vi -V O ) + 2 xJ+ I -0J ) ( -+1o~
M_ j+l - xj...1 (x+ 1 - x0

v -v
(xj+ I - X 1 ) (x - Xj_ 1  ai+(1/2)

6
S i+1(1/2 )a+ (1/2 ) (3)

i= 1

where Wi and ai+(I/ 2 ) are defined in Section III. The potential

at point o can be found as

6
S(WiVi + Bi)

-i-i

VO  A 0 (4)
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Figure 36. Mesh point o and its two neighbors
in x-y plane.
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where

2ai+ (1/2)
A = Wi + ,x• (5)

and

B i 2a + (/2) 71 (XO- xj + vj- 1 (i+ 1 - xQ)

= 2~~(/2)(xj+ 1 - xj.. 1) tj+l - x0) (x0 - x-

+ Si+l(1/2) ai+(1/2 )  . (6)

Numerically, V of the (n+l)th iteration can be computed from

Vi and VO of the nth iteration. Therefore, we have

Vn+l _ Vn + a +1 - V)

(,WV1 n+1
V + a " _ - n (7)

where a is the overrelaxation parameter and n is the number of

relaxation steps. Vnn+l represents Vi' or V.+l if it already
has been calculated.

The residual is defined as

6

(v1nn+l+

G V i-(8)
A 0  0
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C. Results

The computed equipotentials are shown in Figures 37, 38,

and 39. Figures 37 and 38 are views in the magnetic-field

direction in planes containing a grid wire (Figure 37) and between

two grid wires (Figure 38). Figure 39 is a cross section

perpendicular to the grid wires, 0.1" from the rear end of

the emitting cathode surface, showing the right end hat and
looking in the beam-drift direction. Note that the first five

equipotentials above the cathode are at 100 V intervals and
the remainder areat 500 V intervals up to 3,000 V. The plate

voltage is 4,000 V. The grid is at the cathode potential

(0.0 V).

These results show the following.

(1) The mesh interval normal to the cathode is

0.046 mm, small enough relative to the grid height of 0.203 mm

for good resolution of the electric field. This result
demonstrates the power of the deformable-mesh analysis for a

complex electrode shapes.

(2) The nonuniform field due to the end hats is mainly

to the right of the grid box and is expected to have a
negligible effect on the beam. This result implies that the

three-dimensional beam motion in a uniform magnetic field can

be computed with a reflecting boundary condition for the motion

in the magnetic-field direction and Neumann boundary conditions
for the potential. Treating only a single grid wire will provide

a considerable saving of computer time.

(3) The grid wires mask a portion of the cathode greater

than their area parallel to the cathode by making the electric

field zero between the wires and the cathode surface. There-2
are 14 wires each 7.87x10 mm broad, and the total emitter

width of 10.19 m is halved if the wires mask 4.6 times their

area.
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Figure 37. Equipotentials in RW-620 without space charge
viewed in beam-drift direction .1 inch from end of
emitting surface.
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Figure 39. Laplace equipotentials in RW-620 gun viewed
in magnetic-field direction between two grid wires.
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(4) Between the grid wires, the electric field decreases

toward the surface and is less than it would be in the absence

of a grid.

(5) The width of the uniform field region above the grids

and away from the end hats is about 7.8 mm, two grid wire

pitches less than the cathode emitter width. In the anode-sole

region, the width of the positive potential region confining

the beam was previously estimated at 7.3 mm. 7 Hence, some
inward focusing in the magnetic-field direction is expected

between the gun and the anode-sole region.
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SECTION X

DYNAMIC SIMULATION RESULTS FOR THE RW-620

LONG-CATHODE GUN

This section describes the results of two dimensional

dynamic simulations of the RW-620 electron gun. One objective

was to test the cathode emission model by determining the RW-620

beam current in the two-dimensional case. Appendix A gives the

details of the gun and lists the measured results which should

be reproduced in these and future simulations. Here, the gun

dimensions are taken for tube model 59242. The magnetic field

is 0.25 T throughout the present calculations.

A. Currents and Beam Profiles

The measured and computed currents from three models

are compared in Table 10. The time-varying model gives the

closest agreement. However, all three currents from these

two-dimensional computer models appear to be high. It is

expected that the grid will shield less of the cathode surface

at the higher plate voltages. Therefore the effective cathode

width is probably greater than the assumed 4.5 mm at the

higher voltages, and the estimates of 111 A/m and 333 A/m

for the current per meter width are then too high for the actual

measured currents of 0.5 and 1.5 A. Straightforward modifications

to the trajectory calculation will reduce the computed current.

The beam profiles obtained from the instantaneous trajectory

segments (Figures 40-43) show how increasing the plate voltage

from 2,500 V to 4,500 V controls the cathode current. If the

currents per unit width emitted from the cathode are less than

computed here, the beams will appear proportionately thinner,

in the line-sole direction (at the top of each plot).
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The numerical results of Table 11 include tests with a

varied particle charge and a varied time step. The particle charge
_1 0

of -0.72x0 C/m corresponds to a density FBRILL=16 particles per

mesh rectangle adjacent to the cathode under the Brillouin flow

condition, wp - *c Here the number of simulation particles

required varies between 1442 (at 2,500 V) and 2723 (at 4,500 V).

Ten time steps per cyclotron period give sufficient accuracy.

Three test results are generally consistent. The one

anomaly at 2,500 V is removed when the electric field is averaged

over two adjacent cathode points to control the cathode emission.

B. Cathode Current Density

The cathode current density (the total emission-limited or

space-charge-limited density without subtraction of returning

charge) is displayed for the three plate voltages in Figure 44.

Seventeen emission points are treated. The minima occur where

backbombarding charge increases the local electric field and hence

reduces the emission allowed. At 2,500 V there are three peaks

and two such minima. At 4,500 V the rear of the cathode (the lower

end in Figures 40-43) emits the full thermionic current density of

20 A/Cm 2.

C. Beam Stability

Extending a run from the usual 40 cyclotron periods to 120

cyclotron periods demonstrates (Table 12) that the dynamic

equilibrium is reached. In contrast to the static model, this time-

dependent model with the macroscopic cathode emission calculation

predicts a steady beam current despite the returning charge.

In the anode-sole region, the diocotron effect should cause noise

to grow by up to 9 dB (at 4,500 V plate voltage) over the 2.9 mm

treated here, 7 but this distance is apparently too short to show

an instability. There is also no evidence of a feedback instability

at the cathode of the type predicted by Ho and Van 
Duzer.1 5
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TABLE 12

STEADY-STATE CURRENTS COMPUTED IN RW-620 GUN

Number of Total Returning
Cyclotron Emitted Cathode Beam
Periods Current (A/m) Current (A/m) Current (A/m)

10 414 182 129

20 347 166 183

30 352 169 182

40 348 167 182

50 350 169 180

60 348 169 179

70 349 169 181

80 348 168 180

90 350 169 183

100 348 168 180

110 349 168 182

120 346 167 179
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However, to properly test this hypothesis, a perturbation should

be superimposed on the emitted charge.

To quantify an instability with the present gun program,

current fluctuations and beam temperature should be computed at

three planes: parallel to and above the cathode, at the start

of the line-sole region, and at least 3 mm into the line-sole

region. The present program includes the code for storing the

instantaneous current and particle velocities at these planes,

but the noise calculation is not yet implemented. Simple calcula-

tions of the average values and mean square fluctuations of

current and electron velocity (for a beam temperature) will

suffice for the present purpose.

D. Line-Sole Region

In the actual tube, beam currents above about 0.6 A show

instability and oscillation. The diocotron effect does not appear

in the present deformable-mesh calculations, probably because only

2.8 mm of the sole in included. However, the simulation with the

rectangular model of the anode-sole region alone shows beam breakup

after about 20 mm. See Figure 45. The beam current per unit

width here is only 167 A/m because the 1.5 A current is assumed to

cover a 9 mm width. Here an ideal Brillouin beam is injected.

The theoretical growth rate for noise is about 1.4 dB/mm. Previous

three-dimensional calculations, shown in Figures 46 and 47, predicted

greater instability because of scalloping between the end hats.

Clearly the beam stability and the observed output noise

are affected by the shape of the injected beam at the start of

the sole as well as by noise effects produced at the cathode.

120



0
C2

U(a

X 01

o .41
.- H

0) 4

0

o p 0

.4)4

12.1



o~ 0)

Ei

$4-4

E-4

80

SIT a 0 900 ord

IOIX)N

120



11

0

o

* .0 ,.

4

0

1233

ccc

-- ~~~ -4 i m

,0

0n

1233



E. Conclusions From the RW-620 Simulation

These two-dimensional results have confirmed the feasibility

of the deformable-mesh model and the macroscopic cathode emission

model. Results are consistent as the time step and particle

charge are varied. A clear steady state beam develops, both

at the cathode with returning charge and in the beam at the

exit plane.

Now the full three-dimensional calculation must be developed,

since transverse motion and grid shielding effects cannot be

neglected in a design study. The following effects in the

actual tube should be investigated by computer simulation:

(1) The mechanism by which the focusing anode voltage

affects the beam current at a fixed magnetic field;

(2) The degree of cycloiding in the anode-sole region

for various sole voltages;

(3) The amount of scalloping in the transverse (magnetic-

field) direction;

(4) The effect of the grid in reducing beam cycloiding

and anode interception (simulations should be made also without

the grid);

(5) The mixing distance for the separate beam filaments

created by the grid;

(6) The threshold beam current at which noise output

increases as the focusing anode voltage is raised (about 0.3 A

measured, compared with an operating 1.5 A);

(7) The effect of the sole voltage on the noise output

for a given beam current;

(8) The effect of the grid in improving beam stability;

(9) The effect of the non-uniform magnetic field. (The

field at the end hats is about four percent higher than at the

center plane.)
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In the absence of imposed noise signals, no instability

appears at the cathode in present calculations. Next, however,

noise currents should be added at the cathode, initially in the

2D model, and then in the 3D model, to determine the effects of

fluctuations in the returning charge at points along the surface

from the emission. If excess noise is obtained, the 3D calcula-

tions should be repeated with a component of magnetic field

normal to the cathode surface.

The 8.4 mm length of the gun covered by the present mesh

includes 2.9mm of the line-sole region. This is sufficient

for an efficient computation of the beam current and noise growth

in the gun region. However, selected 2D and 3D calculations should

then be extended to about 20 mm along the sole to determine the

beam stability and reproduce the transverse scalloping in that

region. This would require about nine times as much computing

time as at present.

125



SECTION XI

GENERAL CONCLUSIONS AND RECOMMENDATIONS

FOR FURTHER WORK

The time-dependent analysis of the injected-beam crossed-

field amplifier gun with the deformable-mesh potential calculation

and realistic boundary shapes has been established as feasible

for use in future design studies. The newly implemented macro-

scopic model of cathode emission produces a stable beam and is

particularly well suited to a gridded-gun configuration.

Inclusion of shot noise in this model may help to resolve

the continuing controversy about the causes of beam instability

at a long cathode. The existing analytical theories are apparently

not sufficiently general to include all the charge that returns

to the cathode.

Extension to a three-dimensional mode]. now requires only

techniques already established in this study. The three-dimensional

model can be verified using the detailed experimental results

obtained for the RW-620 gun. The program will then be a practical

design tool for improving existing injected-beam crossed-field

guns.

126



REFERENCES

1. E. Okress (Ed.), Crossed-Field Microwave Devices, vol. 1,
Academic Press, New York; 1961.

2. E. K. Shaw and G. P. Kooyers, "Computer-Aided Design of
Electron Guns for Injected-Beam Crossed-Field Amplifiers,"
IEEE Trans. Electron Devices, vol. ED-26, No. 7, pp. 1100-
1102; July 1979.

3. G. P. Kooyers and E. K. Shaw, "The Study of Noise Phenomena
in Crossed-Field Electron Beams," Interim Scientific
Report, Feb. 15, 1977-Feb. 15, 1978, Contract F49620-77-C-
0061, prepared for Air Force Office of Scientific Research
by UCA Systems Inc., Palo Alto, CA; April 10, 1978.

4. G. P. Kooyers and E. K. Shaw, "Noise Phenomena in Crossed-
Field Electron Beams," Annual Technical Report, Feb. 15 1978-
Feb. 15, 1979, Contract F49620-77-C-0061, prepared for Air
Force Office of Scientific Research by UCA Systems Inc.,
Palo Alto, CA; April 1, 1979.

5. R. B. True, "Crossed-Field Guns Analyzed on a Deformable
Mesh," Tech. Digest, IEEE International Electron Devices
Meeting, Washington, D.C.; 1978.

6. S. G. Lele and J. E. Rowe, "Transport of Noise Fluctuations
in Convergent Flow Crossed-Field Electron Guns," IEEE
Trans. Electron Devices, vol. ED-16, No. 3, pp. 261-277;
March 1969.

7. D. M. MacGregor and J. E. Rowe, "Computer Simulation of
Transverse Effects in the Injected-Beam Crossed-Field
Amplifier," Final Report, Purchase Order 63908, Prepared
for Northrop Corporation Defense Systems Department, Des
Plaines, IL by Shared Applications, Inc., Ann Arbor, MI;
September 1977.

8. A. T. Drobot, "Simulation Techniques for Self-Consistent
Treatment of Electron Dynamics in High Power Microwave
Tubes," Technical Digest, IEEE International Electron
Devices Meeting, Washington D. C., pp. 633-665; December
1979.

9. R. B. True, "Space-Charge-Limited Beam Forming Systems
Analyzed by the Method of Self-Consistent Fields With
Solution of Poisson's Equation on a Deformable Mesh,"
Dissertation, University of Connecticut; 1968.
(Available through University Microfilms, Ann Arbor, MI.)

127



10. A. M. Winslow, "Numerical Solution of the Quasilinear
Poisson Equation ina Nonuniform Triangle Mesh," J.
Computational Physics, vol. l,No. 2, pp. 149-152--ov. 1966.

11. K. Chang, P. F. McGuire, F. Rose, J. E. Rowe and J. E.
Stevens, "Three-Dimensional Analysis of TWT Guns,"
Final Report AFAL-TR-79-1201 for Air Force Avionics Labora-
tory Contract No. F33615-77-C-1117, Harris SAI, Inc.,
Ann Arbor, MI; December 1979.

12. G. Dohler, "Beam Injection Control in Broad-Band Crossed-
Field Amplifiers," Tech. Digest, IEEE International Electron
Devices Meeting, Washington, D. C.; 1974.

13. R. J. Espinosa and R. R. Moats, "Broad-Band Injected-
Beam Crossed-Field Amplifiers," IEEE Trans. Electron
Devices, vol. ED-24, No. 1, pp. 13-21; January 1977.

14. N. S. Nicholls, L. Damon, and B. P. Scoffield, "Reduction
of Noise in High-Power Crossed-Field Amplifiers,"
Electronics Letters, vol. 9, No. 17, pp. 398-399;
August 23, 1973.

15. R. Y. C. Ho and T. Van Duzer, "The Effects of Space Charge
on Shot Noise in Crossed-Field Electron Guns," IEEE Trans.
Electron Devices, vol. ED-15, No. 2, pp. 75-84; February
1968.

16. K. J. Harker and F. W. Crawford, "Noise in Planar Crossed-
Field Guns -I: Theory," IEEE Trans. Electron Devices, vol.
ED-26, No. 10, pp. 1623-1633; October 1979.

17. K. J. Harker and F. W. Crawford, "Noise in Planar Crossed-
Field Guns -II; Numerical Solution," IEEE Trans. Electron
Devices, vol. ED-26, No. 10, pp. 1634-1641; October 1979.

18. I. P. Shkarofsky, "Velocity Noise in a Crossed-Field
Planar Diode," Int. J. Electronics, vol. 47, No. 1, pp. 17-
40; July 1979.

19. M. Chodorow and C. Susskind, Fundamentals of Microwave
Electronics, McGraw-Hill, New York; 1964.

20. M. A. Pollack and J. R. Whinnery, "Noise Transport in the
Crossed-Field Diode," IEEE Trans. Electron Devices,
vol. ED-Il, No. 3, pp. 81-89; March 1964.

21. P. A. Lindsay and G. D. Sims, "Electron 'Temperature' in
Crossed-Fields," J. Electronics and Control, vol. 14,
No. 3. pp. 273-288; March 1963.

128



22. G. Smol, "A Study of Electron Flow in Crossed-Field
Diodes with Plane Cathodes," Ph.D. Thesis, University
of London; March 1971. (Available Through University
Microfilms, Ann Arbor, MI.)

23. K. Halbach and R. F. Holsinger, "SUPERFISH - A Computer
Program for Evaluation of RF Cavities with Cylindrical
Symmetry," Particle Accelerators, vol. 7, pp. 213-222;
1976.

24. J. E. Boers, "Digital Computer Simulation of Crossed-
Field Electron Guns," IEEE Trans. Electron Devices, vol.
ED-17, No. 4, pp. 373-377; April 1970.

25. J. C. Slater, Microwave Electronics, Van Nostrand, New
York; 1950.

26. N. A. Masnari, "Investigation of Convergent Laminar Flow
in Crossed-Field Guns," Technical Report No. 80, Electron
Physics Laboratory, The University of Michigan, Ann Arbor,
MI; November 1964.

27. N. A. Masnari and J. E. Rowe, "Investigation of a Convergent
Flow Crossed-Field Gun," International Journal of Electronics,
vol. 19, No. 14, pp. 343-359; October 1965.

28. D. E. Radley, D. Dirmikis, and A. B. Birtles, "High-
Accuracy Cathode-Current Calculations in Computer Simulation
of Electron Guns," Proc. IEE (London), vol. 122, No. 6,
pp. 620-624; June 1975.

29. D. E. Radley and A. B. Birtles, "Approximate Solutions
to the Electron-Flow Equations," It. J. Electronics,
vol. 21, No. 5, pp. 465-477; 1966.

30. T. Van Duzer and J. R. Whinnery, "High-Frequency Behavior
of the Crossed-Field Potential Minimum," IRE Trans. Electron
Devices, vol. ED-8, pp. 331-341; July 1961.

31. C. K. Birdsall and W. B. Bridges, Electron Dynamics of
Diode Regions, Academic Press, New York; 1966.

32. R. Y. C. Ho and T. Van Duzer, "Approximate Formulas for
Crossed-Field Potential-Minimum Parameters," IEEE Trans.
Electron Devices, vol. ED-15, No. 2, pp. 70-74; February
1968.

33. P. A. Lindsay, "General Steady State Theory of Linear
Magnetrons II," J. Electronics and Control, vol. 17, No. 1,
pp. 67-79; July 1964.

129



34. R. P. Wadhawa and J. E. Rowe, "Monte Carlo Calculation
of Noise Transport in Electric and Magnetic Fields, "

IEEE Trans. Electron Devices, vol. ED-10, No. 6,
pp. 378-388; November 1963.

130



APPENDIX A

THE RW-620 INJECTED-BEAM CFA

A. Introduction

The RW-620 is a grid-controlled high power (3 to 5 kW)

octave bandwidth (4 to 8 GHz) IBCFA manufactured by Northrop

Corporation. It can be operated in either continuous-wave

(CW) or pulse modes with RF output programmable over a 10 dB

range by varying the grid-to-cathode voltage. The high

efficiency (20 to 30 percent), high gain (20 to 22 dB), and

the high power-to-weight ratio and compact construction of the

RW-620 make it suitable for airborne systems.

The RW-620 was chosen as suitable for testing of the

computer simulations being developed by Harris SAI. Under a

subcontract (No. 009482) from Harris SAI, Northrop has provided

the tube dimensions and performance characteristics (beam current,

noise, and RF output for varied electrode voltages and magnetic

field). A copy of Northrop's report is provided in Appendix B.

B. Tube Dimensions

The important dimensions of the RW-620 gun, transition,

and anode-sole regions are shown in Figures Al, A2 and A3.

Figure Al shows a cross section containing a grid wire. Figure

A2 is a cross section of the gun in which the magnetic field is

directed from left to right. Figure A3 shows the end hats that

confine the beam in the magnetic-field direction. Each grid

wire is made in two sections to prevent buckling. The gap in

the wire is, however, ignored in the computer simulation.

The RF circuit consists of 97 bars, each of width 0.016"

(along the beam-drift direction) and spacing 0.0118". They are
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joined at alternate ends to form a meander line of pitch 0.0556"

and total length 2.685" (68.2 mm).

Because of the limits of accuracy in tube production, the

precise dimensions of the tube vary with the actual model used.

The spacing of the focusing anode and the grid has the most

significant effect on the beam current. The variations in

this distance are given for four tubes in Table Al.

C. Additional Information

The following additional details of the RW-620 were

supplied by Northrop.

(1) In all tube models, the cathode, grid, accelerating

anode (plate), sole, and line anode (RF circuit) are electrically

isolated and may be at different potentials.

(2) In addition, tube 59242 had an isolated collector

when the measurements were made.

(3) The end hats are at the grid potential in the cathode

region and at the sole potential in the anode-sole region.

(4) The cathode is an 80 percent dense tungsten matrix

impregnated with barium and calcium carbonates and aluminum

oxide. It operates at about 1,2000 C to produce a thermionic

current density of between 104 A/m2 and 2 x 104 A/m 2 .

(5) As a result of the differences in the grid-plate

spacing, the measured current-voltage characteristics differ in

different tubes. For example, the beam currents in tubes

59242, 59505, and 59506 are 0.35 A, 0.30 A, and 0.4 A, respectively,

at a plate voltage of 2.9 kV and a magnetic field of 0.26 T.

(6) In the absence of RF drive, the maximum beam current

without oscillation was observed as about 400 mA in tube

59242 (with isolated line and collector) and 600 mA in th,_

other tubes (with the line and collector connected).
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TABLE Al

SPACINGS OF GRID AND FOCUSING ANODE AT

FRONT OF IBCFA GUN IN FOUR PRODUCTION TUBES

Tube Spacing of Grid
Number and Focusing Anode

59242 Between .0328" and .0330"

59505 Between .0331" and .0332"

59506 Between .0316" and .0317"

59508 Between .0325" and .0334"
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(7) The noise output in the absence of RF drive is very

sensitive to the sole voltage. For example, the noise power

measured at the RF input position varies from 1.4 mW to 0.05 mW

as the sole voltage is varied between -4.65 kV and -4.8 kV

with a fixed beam current of 0.35 A.

D. Operating Points for Computer Simulation

Table A2 shows operating points selected from Northrop's

report as suitable for testing the computer model.
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APPENDIX B

NORTHROP CORPORATION REPORT

The results presented here were measured by Northrop
Corporation Defense Systems Division, Electron Tube Section,

Des Plaines, Illinois under Subcontract No. 009482 from Harris

SAI.

The report provided by Northrop follows.
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1. INTRODUCTION

It is the purpose of the work reported here to provide data for

verification of mathematical models of injected-beam crossed field amplifiers

(IBCFA's). Harris SAI inc. is developing such mathematical models for

computer simulation of IBCFA performance under Contract No. F49620-77-C-OOgl,

issued by the Air Force Office of Scientific Research. The work reported

here has been performed for Harris SAI, inc. by Northrop under Sub-contract

No. 009482/3-17-78.

The IBCFA selected for these measurements is Northrop's type RW-620,

for which there is a substantial history of operating data, and for which

there are numerous tube models available for measurement.

2. DATA ON IBCFA

2.1 Dimensioned Drawings

A set of dimensioned drawings of the gun and interaction space, and

the transition between these two regions, has been supplied to Harris SAI,

and has been reviewed jointly by Harris SAI and Northrop personnel. This

requirement is considered complete.

2.2 Electrode Current

It is a requrement of the sub-contract to measure currents to cathode,

collector, accelerating anode, grid, delay line anode, and sole under prac-

tical stable beam conditions without RF drive. The IBCFA is stable, i.e.,

there are no free-running oscillations, only for beam currents well under

1 A peak. Under these conditions, it was found that all of the cathode

current reaches the collector, and the sole and delay line currents were

zero. Under these conditions, and under all normal operating conditions,

grid and accelerating anode currents were zero.
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Data are presented here showing grid and accelerator control of beam

current. Figure 1 and 2 are representative sets of curves showing grid con-

trol for three values of magnetic field (Tube S/N 59508, S/N 59242).

Figures 3, 4 and 5 show control of beam current by accelerating anode (S/N

59242, S/N 59505, S/N 59506).

Magnetic field values are derived from the value of electromagnet

current, based on calibration made with a set of dummy pole pieces. Al-

though calibration readings are repeatable to within about +30 Gauss, ex-

perienc with operating tubes indicates that error is in the range of

+60 Gauss.

2.3 Noise and Stability

Data are presented here for noise and stability for four different

tubes, each with three different values of magnetic field. Measurements

are given as a function of beam current, with sole voltage fixed for max-

imum gain at 6 GHz. There are also some measurements of noise power, as

a function of sole voltage with beam current set just below the start-

oscillation current. Measurements were made at 10% duty factor.

Tube Serial No. 59542 was connected with coaxial bolometer loads on

both input and output. In both the input and the output arm immediately

adjacent to the tube there were connected "monitor-T" elements. These

transmit RF signals in the straight-through direction and block direct

currents, which are transmitted to the side arms. Thus it is possible

to measure current intercepted by the delay line. Appropriate coaxial
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attenuators, 10 dB at the input and 20 dB at the output, were connected

between the monitor-T's and the bolometer loads. A directional coupler

connected to a spectrum analyzer was injected in the output arm, to ob-

serve oscillations. Noise power was measured at both the input and the

output as a function of both grid control and accelerator control of beam

current (Figures 6, 7, and 8). Under all circumstances, oscillation began

at approximately 0.4 A, a value much lower than normally observed in RW-620's.

When the beam current was varied by accelerator control (grid at cathode

potential), a minimum of noise power output between 0.2 and 0.3 A peak

was observed and noise power increased with decreasing current, at least

down to 0.05 A peak. With grid control (accelerating anode set at the

value which would give 1.5 A peak with grid at cathode potential), noise

continued to decrease with decreasing current. Above 0.3 A peak, the char-

acter of the noise output curves was similar for either accelerating

anode or grid control, and the current for start-oscillation was the same.

Figures 9, 10, and 11 show the great sensitivity of noise power output

to sole voltage, with beam current set below start-oscillation. The arrows

on the x-axis indicate the sole voltage setting for noise measurements

as a function of beam current. No current to the circuit was observed in

any of these measurements, nor when the beam current was raised to 1 A.

The relatively low start-oscillation currents were attributed to RF re-

flections from the monitor-T's. These devices were omitted when the other

tubes were measured.
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The three other tubes which were tested were connected in the manner

normally used in RW-620, with the output connected to a double-ridge wave-

guide. The only exception was that the input was terminated in a 50-ohm

load. Beam current was varied by the accelerating anode. Power was measured

by a bolometer load connected through a directional coupler. Figure 12

shows noise power as a function of current and Figure 13, 14, and 15 show

noise power as a function of sole voltage for S/N 59505. Figure 16 shows

noise power as a function of current and Figures 17, 18, and 19 show noise

power as a function of sole voltage for S/N 59506. Figure 20 shows noise

power as a function of current for S/N 59275. Oscillations were observed

only above 0.6 A peak beam current, and generally in the vicinity of 6 GHz.

The curves of noise power as a function of sole voltage are difficult

to analyze because there appear to be multiple periodicities. A segment

of the curve for S/N 59506 at B = 2600 (Figure 19) was selected as an ex-

ample because at the high end of the curve the periodicity appears simple.

The voltage difference between peaks is about 310 V. Mean beam velocity

ve, is equal to E/B, or to (VL-VS)/Bd, where B is magnetic field, d is

sole-line spacing, and VL-VS is sole-line voltage. Assuming VL-VS - 11860

and d = 0.002 m., ve = 2.28 x 107 m/second. Let us postulate a reflected wave

model. The number of half wavelengths will be ve/Ave, or 11860/310 - 38.

The quantity SeL is equal to 38 -, where L is the length of the reflected

wave system, and 6e- 2Trf/ve where f is a frequency. The length of the circuit

is 0.0685 m. If we set this value equal to L, we find f = 6.3 x 10, close

to the frequency at which oscillations will start when current is increased.

It is therefore a reasonable explanation that the peaks and voltages of

noise are related to re-reflections on the circuit.
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2.4 Magnetic Field

The magnetic field in the RW-620 is shown in the longitudinal direction

by Figure 21, where the positions of the pole pieces and the cathode are

indicated. Transverse measurements in three planes are shown. Figure 22

corresponds to the plane through the edge of the cathode nearest the inter-

action space, Figure 23 to a plane at the center of the interaction space,

and Figure 24 to a plane through the collector. In the latter three sets

of measurements the level was pre-set to 2400 Gauss at the center. A pro-

portionality constant should be used corresponding to 2350 Gauss shown

at the cathode in Figure 21. There is no significant pole piece saturation;

proportionality constants are applicable to all locations.

2.5 Power Transfer Curves

Power output as a function of RF drive is shown in Figure 25 for S/N

59242, Figure 26 for S/N 59505, and Figure 27 for S/N 59506. The dis-

continuity in slope at 4 GHz for S/N 59242 is believed to be an actual

phenomenon and not an error of measurement.

2.6 Cold Test Data

RF phase velocity vph is shown in Figure 28 for S/N 59242, Figure 29

for S/N 59505, and Figure 30 for S/N 59506. The plots show delay ratio,

c/vph, as a function of wavelength, with frequency also indicated.

The interaction impedance of the RW-620 as a function of frequency is

shown in Figure 31. The measurement method is that described by Arnaud,1

- J. Arnaud, "General Properties of Periodic Structures", Crossed-Field
Microwave Devices (E. Okress, ed.,) vol. 1, pp 17-33, Academic Press,
New York, 1961.
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which used dielectric perturbation. Several measurements were made at each

of several frequencies across the band with different spacings between

the dielectric perturber and the circuit, and for five different RW-620

delay line circuits. The differences of measured values at any one frequency

for any one circuit were much greater than the differences between the

different delay line circuits. The curves plotted represent statistical

averaging of points observed, and the values of impedance with respect to

frequency represent a curve which has been smoothed for best fit to the

theoretical bar line model. 2 About 80 data points were used in this process.

The statistical standard deviation of the measurements was more than 7 ohms.

Because of the number of data points, the accuracy of the curves is believed

to be much less than +7 ohms.

Circuit attenuation curves are shown in Figure 32 for S/N 59242,

Figure 33 for S/N 59505, and Figure 34 for S/N 59506. The length of the

circuit is 6.85 cm.

3 SYMBOLS

The following symbols were use in the graphs:

B - Magnetic field

Ib  = Beam current

VL a Delay line voltage with respect to cathode

VS  x Sole voltage with respect to cathode

Va = Accelerating anode voltage with respect to cathode

T 'W. Sobotka, "Le TPOM en Regime Continu", Thesis, University of Paris,
25 June 1970.
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Vg = Grid voltage with respect to cathode

c = Velocity of light

Vph = Phase velocity of circuit
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APPENDIX C

TUBE DATA AND OUTPUT INFORMATION FOR THE

TIME-DEPENDENT IBCFA GUN ANALYSIS PROGRAM

A. Data

The following data are required for analysis of a gun.

" Drawings showing the gun shape, grids (if any), electrode
positions and dimensions, including the boundary of the

cathode emitting surface. Examples are given in Appendix

A.

" Voltages of cathode, grids, accelerating anode (plate),

line anode, sole, and other electrodes if any.

" Magnetic field.

" Cathode temperature (K).

" Maximum thermionic-emission current density on the cathode

surface.

For program verification the measured beam current and the

electrode interception currents should be supplied for various

magnetic fields and specified electrode voltages, as in Appendix

B.

B. Output

The present 20 model provides the following printed informa-

tion, as in the example (Appendix C).

" Verification of data.

* Mesh plot.

" Important dimensions and beam parameters.

182



The remaining information is printed only at selected steps.

" The number of rods, total and active

" The number of charges emitted at the cathode, returned

(BACK), and the net emitted number

" The number suppressed at the cathode as too small for

emission (QSMALL)

" The number intercepted on the plate, line and sole

" The number crossing the exit plane

" The charge above each mesh point on the cathode, CGCAT

C/m

* The local electric field EZCATH V/m

" The emitted charge DQEMIT C/m

* Normalized electric fields, charge densities and emitted

current densities at the cathode

• Currents (A/m) averaged over several steps. The "EXIT"
value printed is the mean beam current per meter width

" Mean cathode current den-ity for each cathode point

" Plotted trajectory segments from a single time step

A separate program uses Tektronix PLOT10 subroutines to -

display the mesh, the equipotentials and the trajectory segments

on a TEKTRONIX 4010 series graphics terminal.
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APPENDIX D

SAMPLE OUTPUT FROM THE TWO-DIMENSIONAL

TIME-DEPENDENT IBCFA GUN PROGRAM
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APPENDIX E

COMPUTATION TIME AND STORAGE

Table Elsummarizes the parameters for a typical run of the

2D time-dependent program.

Approximate equivalent CPU times for other machines are

as follows:

Computer CPU time(sec)

Harris 550 1

IBM 360/67 1.16

IBM 370/148 0.51

CDC 6500 2.28

Amdahl 470V/6 0.124

Amdahl 470V/7 0.083

The three-dimensional analysis will require an estimated

10,000 particles (300 K 48-bit words of CPU storage) and 1

hour of CPU time per run for a single grid wire. It is expected

to require about 32,000 particles (500 K words of storage) and

4 hours of CPU time per run for a full simulation including the

end hats.
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TABLE El

COMPUTATION PARAMETERS FOR TWO-DIMENSIONAL

SIMULATION OF RW-620 GUN

Mesh size: 28 x 36

Length of sole simulated: 2.9 mm

Number of time steps: 200 (20 cyclotron periods)

Number of interacting rods: 1350

CPU time on Harris 550
machine (sec): 508

CPU sec/rod/time step: 1.88 x 10- '

CPU storage on Harris 550
machine (48-bit words): 160,000
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APPENDIX F

PROFESSIONAL PERSONNEL AND INTERACTIONS

The principal investigators for this phase of the study

of the injected-beam CFA are Dr. Joseph E. Rowe, Vice President

for Technology of Harris Corporation, and Drs. Thomas P. Fontana,

Donald N. MacGregor, and Richard Mains, Staff Engineers at Harris

SAI, Inc.

The data for the RW-620 injected-beam CFA were supplied

by Dr. Robert R. Moats of Northrop Corporation Defense Systems

Division, Des Plaines, Illinois. A helpful discussion of the

tube and the Northrop measurements took place between Dr. Moats

and Drs. Fontana, MacGregor, and Mains of Harris SAI at Northrop

on March 12, 1979.

Harris SAI is also grateful to Dr. Richard True of Litton

Industries, Inc., who provided helpful information about the

static gun calculation at the IEEE International Electron Devices

Meeting in Washington, D.C. on December 4-6, 1978.

Some preliminary results of this contract are being presented

at the Tri-Services Cathode Workshop, Rome Air Development Center,

April 15-17, 1980, together with more detailed results from the

distributed emission CFA study.
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